
iSBC™
Applications

Manual

The material in this Application Note is for informational purposes only and is subject to change
without notice. Intel Corporation has made an effort to verify that the material in this document
is correct. However, Intel Corporation does not assume any responsibility for errors that may
appear in this document.

The following are trademarks of Intel Corporation and may be used only to describe Intel
products:

ICE INSITE INTEL
INTELLEC LIBRARY MANAGER MCS
MEGACHASSIS MICROMAP MULTIBUS
PROMPT UPI ~SCOPE
RMX/BO iSBC iCS
INTELVISION FSP MULTI MODULE

and the combination of ICE, MCS, RMX, and iCS and a numerical suffix.

PREFACE

Since Intel introduced the ISBC 80/10 Single Board Computer in early 1976, the family of Intel OEM Microcomputer
Systems has grown rapidly. Original equipment manufacturers and volume end-users alike have responded to the con­
cept originated by Intel of having all the functions of a computer - central processing unit, memory, input-output and
system expansion capability - present on one printed circuit board.

The capabilities of a single board computer have been enhanced by the creation of the industry-standard MULTIBUS
system bus. System expansion boards have been introduced for memory, serial I/O and parallel I/O expansion, as well
as analog I/O, DMA controllers and peripheral controllers. A unique feature of the MULTIBUS architecture, however, is
its capability to support multiple single board computers. This capability permits sophisticated multiprocessing con­
figurations using standard off-the-shelf 8-bit and 16·bit single board computers. Powerful software tools like the
RMXl80 Real-Time Multitasking Executive, the FORTRAN run-time package and the resident BASIC interpreter also
are key members of the iSBC product family. They provide users with the tools for quick implementations of simple or
complex systems. The recently introduced iCS product line provides chassis and signal conditioning/termination
strips as well as board level products which were developed specifically for industrial users.

This application manual is divided into three sections: iSBC Hardware, iSBC Software and iCS Products. It contains all
of the current application notes, reliability reports, magazine articles and professional journal reprints on the products
of the Intel iSBC product family. We have compiled all of this information into a Single publication for your conven­
ience. Please contact us with your questions, comments, and suggestions on how we may provide you with useful in·
formation on our products.

INTEL CORPORATION
OEM Microcomputer Systems
Applications Engineering
Hillsboro, Oregon 97123

FUNCTIONAL INDEX

iSBC HARDWARE

AP·26 iSBC 80/10A-SYSTEM 80/10 Single
Board Computer Applications. 1·3

Ap·28A Intel MULTIBUS Interfacing 1-45

AP·43 Using the iSBC 957 Execution Vehicle
for Executing 8086 Program Code 1·79

Ap·53 Using the iSBC 544 Intelligent
Communications Controller 1·111

RR·17 Intel iSBC 80/10 Single Board
Computer 1-175

RR·23 Intel iSBC 86/12A Single Board
Computer 1-187

AR·48 Reduce your I'C·based system design
time by using single board
microcomputers 1·195

AR·55 Design Motivations for Multiple
Processing Microcomputer
Systems 1·207

AR·65 Triple·bus Architecture on a single
board microcomputer. 1·217

AR·69 Dual·port RAM Hikes Throughput in
Input-Output Controller Board 1·225

Ii

AR·72 16·bit Single Board Computer
Maintains 8·bit Family Ties 1·233

iSBC SOFTWARE

Ap·33 RMX/80 Real·Time Multitasking
Executive. 2·3

Ap·47 Using FORTRAN·80 for iSBC
Applications. .. 2·33

AR·41 An Integral Real·Time Executive for
Microcomputers. 2·73

A Small·Scale Operating System
Foundation for Microprocessor
Applications. .. 2·81

iCS PRODUCTS

Ap·52 Using Intel's Industrial Control Series
in Control Applications , 3·3

Ap·60 Closed Loop Control Using the iSBC
569/941 Intelligent Digital
Processors. .. 3·61

AR·91 DeSigning and Assembling Micro·
computer Systems Grows Easier 3·123

Related Intel Publications 3·127

Technical Literature List. 3·129

1 iSBC Hardware

I
I
I
I

I

I
I
I
I

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I

I
I

I
I
I
I

iSBC HARDWARE

INTRODUCTION

The current hardware products available in the iSBC product line include six single board computers and over 30 ex·
pansion boards and accessories. Each Intel single board computer provides all the resources of a full computer (i.e.,
CPU, read/write memory, read only, parallel 1/0 and serial 110) on a single printed circuit board. The iSBC 655 and iSBC
660 chassis extend these capabilities Into low cost, fully packaged RETMA rack·mountable computers. The Intel
single board computers are supported by a complete line of memory, parallel and serial 110, digital 1/0 and analog 110
expansion boards, and peripheral and DMA controllers, all of which are compatible with the industry·standard micro·
computer bus - the Intel MULTI BUS system bus.

This section contains application notes and magazine articles covering the architectural features of the iSBC product
family, the iSBC 80/10A, ISBC 80/30, and iSBC 86/12A Single Board Computers, and the iSBC 544 Intelligent Slave
Board. In addition, reliability reports for the iSBC 80/10A and iSBC 86/12A boards are Included.

TABLE OF CONTENTS

Ap·26 iSBC 80/10A-SYSTEM 80/10 Single Board Computer Applications... 1·3
Ap·28A Intel MULTIBUS Interfacing ... 1·45
Ap·43 Using the iSBC 957 Execution Vehicle for Executing 8086 Program Code. .. 1·79
AP·53 Using the iSBC 544 Intelligent Communications Controller .. 1·111
RR·17 Intel SBC 80/10 Single Board Computer. ... 1-175
RR·23 Intel iSBC 86/12A Single Board Computer ... 1-187
AR-48 Reduce your /-IC-based system design time by using single board microcomputers 1·195
AR-55 Design Motivations for Multiple ProceSSing Microcomputer Systems 1-207
AR·65 Triple·bus architecture on a single board microcomputer .. 1-217
AR-69 Dual-port RAM Hikes Throughput Input-Output Controller Board 1·225
AR-72 16-bit Single Board Computer Maintains 8-bit Family Ties ... 1-233

1-2

© Intel Corporation, 1978

APPLICATION
NOTE

1·3

AP-26

9800752

iSBC 80/10A-SYSTEM 80/10
Single Board Computer
Applications

1·4

Contents

INTRODUCTION. • . . • . . . •• 1-5

OVERVIEW .•...•....................... 1-5

SHC CONFIGURATION OPTIONS .•..•... 1-7

Serial I/O Options 1-7
Paraliell/O Options , 1-8
Bus Interfacing. .. 1-8

APPLICATIONS ...•........••.....•...• 1-10

Instrumentation 1-10
Communication 1-15
Process Control 1-23
110 Device Controller 1-27

CONCLUSION ..•....................... 1-31

APPENDIX A - iSBC SO/lOA
SCHEMATICS '" ...••........•..... 1-33

INTRODUCTION

The recent entry of the single board computer into
the broad field of electronic applications is sub­
stantiating the billing as a "super component".
Single board computers provide a solution to
several problems that have not been solved by the
use of conventional computers: cost, size, and
design specialization.

Many potential microcomputer applications have
been overlooked because of the design tasks
required to build a microcomputer system. These
tasks traditionally include interfacing of the system
clock, read/write memory, I/O ports and drivers,
serial communications interface, bus control logic
and drivers. Intel's iSBC 80/1 OA enables the design
engineer to concentrate on the application of
microcomputers, rather than on implementation
details.

This application note begins with an overview of
the Intel® iSBC 80/10A. Readers who are familiar
with the iSBC 80/10A may choose to skip to the
applications section, which describes the following
typical iSBC 80/IOA applications:

• The iSBC 80/10A used for instrumentation
control of a Fluke 8375 Digital Multimeter.

• The iSBC 80/10A used as a SCADA Terminal
in a communication application.

• The iSBC 80/l0A used for temperature moni­
toring in a process control application.

• The iSBC 80/1 OA used as an interrupt driven
device controller for a Centronics printer.

TTY

Each example shows the user program and hard­
ware required for the application. The program
listings are interspersed with the text describing
the application. Both 8080 Macro Assembly
Language and Intel's PL/M-80 are used in the
examples.

The software was developed on an Intel® Micro­
computer Development System (MDS). The MDS
provided the tools necessary to edit, assemble or
compile, link and locate the application software.
Hardware development was facilitated by the use
of Intel's In-Circuit Emulator (ICE 80). For further
information regarding the Microcomputer Develop­
ment System, the reader is referred to the publica­
tions listed at the beginning of this application
note.

OVERVIEW

The iSBC 80/IOA is a member of Intel's complete
line of OEM computer systems which take full
advantage of Intel's LSI technology to provide
economical, self-contained computer based solu­
tions for OEM applications. The iSBC 80/ I OA is a
complete computer system on a single 6.75-by-12
inch printed circuit card. A block diagram of the
iSBC 80/10A is shown in Figure 1.

Intel's powerful 8-bit n-channel MOS 8080A CPU,
fabricated on a single LSI chip, is the central pro­
cessor for the iSBC 80/1 OA. The 8080A contains
six 8-bit general purpose registers and an accumu­
lator. The six general purpose registers may be
addressed individually or in pairs, providing both
single and double precision operators.

1
INTERRUPT

REQUEST
LINE

USER DESIGNATED
PERIPHERALS

D

seC·BonDA

ADDRESS BUS SYSTEM

DATA BUS I aDS MEMORY

CONTROL BUS ~~c?
EXPANSION

1. Interrupts originating from the Programmable Communications Interface and Programmable Peripheral Interface are jumper selectable.

Figure 1. iSBC 80/10A Block Diagram

1-5

The 8080A has a 16-bit program counter which
allows direct addressing of up to 64K bytes of
memory. An external stack, located within any
portion of read/write memory, may be used as a
last in/first out stack to store the contents of the
program counter, flags, accumulator and all of the
six general purpose registers. A l6-bit stack pointer
addresses the external stack. This provides sub­
routine nesting that is bounded only by memory
size.

The iSBC 80/1 OA contains 1 K bytes of read/
write memory using Intel's low power static RAM.
All on board RAM read and write operations are
performed at maximum processor speed. Four
sockets for up to 8K bytes of non-volatile read­
only memory are provided on the board. Read­
only memory may be added in 1 K byte increments
(up to 4K total) using Intel® 8708 erasable and
electrically reprogrammable ROMs (EPROMs)
or Intel 8308 masked ROMs. Optionally, if more
than 4K bytes are required, read only memory may
be added in 2K byte increments (up to 8K total)
using Intel® 2716 EPROMs or 2316E masked
ROMs. All on-board ROM or EPROM read opera­
tions are performed at maximum processor speed.

The iSBC 80/10A contains 48 programmable para­
llel I/O lines implemented using two Intel® 8255
Programmable Peripheral Interfaces. The system
software is used to configure the I/O lines in any
combination of unidirectional input/output, and
bidirectional ports indicated in Table I. Therefore,
the I/O interface may be customized to meet
specific peripheral requirements. To support the
large number of possible I/O configurations,
sockets are provided for interchangeable I/O line
drivers and terminators. Hence, the I/O interface

provides the appropriate combination of optional
line drivers and terminators to allow the required
sink current, polarity, and drive/termination
characteristics for each application. The 48 pro­
grammable I/O lines and signal ground lines are
brought out to two 50-pin edge connectors that
mate with flat, round, or woven cable.

A programmable communications interface using
Intel's 8251 Universal Synchronous/Asynchronous
Receiver/Transmitter (USART) is contained on the
iSBC 80/IOA. A jumper selectable baud rate
generator provides the 8251 with all common
communication frequencies. The 8251 can be pro­
grammed by the user's system software to select
the desired asynchronous or synchronous serial
data transmission technique (including IBM Bi­
sync). The mode of operation (synchronous or
asynchronous), data format, control character
format, parity, and asynchronous transmission
rate are all under program control. The 8251 pro­
vides full duplex, double buffered transmission and
receive capability. Parity, overrun, and framing
error detection circuits are all incorporated in the
8251. The inclusion of jumper selectable TTY or
EIA RS232C compatible interfaces on the board,
in conjunction with the 8251, provide a direct
interface to teletypes, CRTs, asynchronous and
synchronous modems, and other RS232C com­
patible devices. The RS232C or TTY command
lines, serial data lines, and signal ground lines are
brought out to a 25-pin edge connector that mates
With RS232C compatible flat, round, or woven
cable.

Interrupt requests may originate from six sources.
Two from the 8255's, two from the 8251 and two
from user designated peripheral devices.

TABLE 1 INPUT/OUTPUT PORT MODES OF OPERATION

MODE OF OPERATION
UNIDIRECTIONAL

PORT NO. OF LINES INPUT OUTPUT BIDIRECTIONAL CONTROL
LATCHED & LATCHED &

UNLATCHED STROBED LATCHED STROBED

1 8 X X X X X
2 8 X X X X
3 8 X X Xl
4 8 X X
5 8 X X
6 4 X X

4 X X

1. Note: Port 3 mUlt be used as 8 control port when either Port 1 or Port 2 are used as a latched and strobed Input or a latched and
strobed output or Port 1 is used as a bidirectional port.

1-6

The 8255's can generate interrupts when a byte of
information is ready to be transferred to the CPU
(Le., input buffer full) or a byte of information has
been transferred to a peripheral device (Le., output
buffer is empty).

The 8251 can generate interrupts when a character
is ready to be transferred to the CPU (Le., receive
channel buffer is full) or a character is ready to be
transmitted (Le., transmit channel data buffer is
empty).

The user designated peripheral devices can generate
two interrupts: one via the system bus and the
other via the I/O edge connector.

The two interrupts from the 8255's and the two
interrupts from the 8251 are all individually mask­
able under program control. The six interrupt
req uest lines share a single CPU in terru pt level.
When an interrupt request is recognized, a RE­
START 7 instruction is generated. The processor
responds by suspending program execution and
making a subroutine call to a user defined interrupt
service routine originating at location 38 (Hexa­
decimal).

iSBC 80/1 OA memory and I/O capacity may be
increased by adding standard Intel memory and
I/O boards. Modular expandable backplanes and
card cages, each with a four-board capacity, are
available to support multi-board systems.

The development cycle of iSBC 80/1 OA based
products may be significantly reduced using the
Intellec Microcomputer Development System. The
resident macro-assembler, PL/M-80 compiler, text
editor, and system monitor greatly simplify the
design, development, and debug of user designed
iSBC 80/1 OA system software. A diskette-based
system allows programs to be loaded, assembled,
edited, and executed faster than using conventional
paper tape, card, or cassette peripherals. A unique
In-Circuit Emulator (ICE 80) provides the capa­
bility of developing and debugging software
directly on the iSBC 80/1 OA.

iSBC CONFIGURATION OPTIONS

The iSBC 80/1 0 provides the user with a powerful
and flexible I/O capability for both parallel and
serial transfers. This section discusses the user
programmable and jumper-selectable options, and
bus interfacing.

SERIAL I/O OPTIONS

The serial I/O interface, using Intel's 8251 USART,
provides a serial data communications channel that
can be programmed to operate with most of the

1-7

current serial data transmission protocols. There
are three general areas of serial I/O options:

I. choice of interface type, RS232C or current
loop,

2. baud rate and program-selectable mode
options,

3. choice of an interrupt mechanism.

The user has the choice, through jumper connec­
tions, of configuring the serial I/O logic to present
either an RS232C or a 20 mA current loop inter­
face to an external device. If an RS232C interface
is used, the 8251 can assume the role of a "data
set" or a "data processing terminal". This enables
the serial interface to be connected to different
devices such as modems and computer terminals.

There are two factors which enter into the choice
of baud rate. They are the actual clock frequency
used to drive the transmit/receive clocks on the
8251 and the baud rate factor selected by a pro­
grammable mode instruction control word output
by the processor to the 8251. The baud rate factor
is used to effectively divide the 8251 transmit and
receive clocks by 1, 16 or 64. During normal oper­
ation a factor of 16 is selected for asynchronous
transmissions from 9.6K to 300 baud. A factor of
64 must be used to achieve a baud rate of 110. The
baud rate factor is only applicable to asynchronous
transmission, as all synchronous transmission is
done with an implied factor of one.

Before beginning serial I/O operations, the 8251
must be program-initialized to support the desired
mode of operation. The CPU initializes the 8251
by issuing a set of control bytes to the US ART
device. These control words specify:

• synchronous or asynchronous operation
• baud rate factor
• character length
• num bel' of stop bits
• even/odd parity
• parity/no parity

Refer to the iSBC 80/10 and iSBC 80/1 OA Single
Board Computer Hardware Reference Manual or
the "8251 Application Note" for details on the
control words used to direct the operation of the
8251.

The serial I/O logic can be configured with differ­
ent forms of interrupt request mechanisms. By
connecting a jumper, the user can allow the 8251 's
Receiver Ready output to generate an interrupt
request. The Receiver Ready output goes high
whenever the Receiver Enable bit of the command

word has been set and the 8251 contains a charac­
ter that is ready to be input to the CPU. The user
can also choose to have the 8251 's Transmitter
Ready or Transmitter Empty output activate the
interrupt request. The Transmitter Empty goes
high when the 8251 has no characters to transmit.
Transmitter Ready is high when the 8251 is ready
to accept a character from the CPU. Both Trans­
mitter Empty and Transmitter Ready are enabled
by setting the Transmit Enable bit of the command
word. Upon receiving an interrupt, the program
can determine the actual condition which is
responsible for the interrupt by reading the status
of the 8251 device.

PARALLEL I/O OPTIONS

The parallel I/O interface consists of six 8-bit I/O
ports implemented with two Intel 8255 Program­
mable Peripheral Interface devices. Eight lines
already have a bidirectional driver and termination
network permanently installed. The remaining 40
lines are uncommitted. Sockets are provided for
the installation of active driver networks or passive
termination networks as required to meet the
specific needs of the user system.

The primary considerations in determining how to
use each of the six I/O ports are:

I. choice of operating mode,

2. direction of data flow (input, output or
bidirectional),

3. selection of interrupt mechanism,

4. choice of driver/termination networks for
the port's data path.

Operating Modes. There are three basic operating
modes that can be selected by the system software.
The modes of operation will be described here in
general terms, leaving it to the reader to obtain
details from the iSBC 80/10 and iSBC 80/1 OA
Single Board Computer Hardware Reference
Manual or the "8255 Application Note."

Mode 0 is a basic input/output functional con­
figuration which provides simple input and out­
put operations. No "handshaking" is required,
data is simply written to or read from a specified
port. The outputs are latched and the inputs are
unlatched.

Mode I is a strobed input/output functional
configuration which provides a means for trans­
ferring I/O data to or from a specified port in
conjunction with strobes or handshaking signals.
The outputs are latched and are accompanied by

1-8

an output control line which indicates that the
processor has loaded the output port with a data
byte. The input data is latched when accompa­
nied by its externally operated control signal.

Mode 2 is a strobed bidirectional bus input/
output functional configuration which provides
a means for communicating with a peripheral
device or structure on a single 8-bit bus for both
transmitting and receiving data. Handshaking
signals are provided to maintain proper bus flow
discipline in a manner similar to mode 1.

Data Flow Direction. In addition to the choice of
operating mode, the user may also specify the
direction of data flow, input or output from the
8255's. At the time of RESET, the 8255's are
configured into the input mode until altered by a
control word directed to the control word register.
When an output mode control word is received,
all of the data bits are set to the low output state.

Interrupt Mechanism. When the 8255 is pro­
grammed to operate in mode I or mode 2, control
signals are provided that can be used as interrupt
request inputs to the CPU. The interrupt request
signals, generated from one of the ports (port C),
can be inhibited or enabled by setting or resetting
the associated interrupt enable flip-flop, using the
bit set/reset function of port C. This function
allows the programmer to mask the interrupts from
specific I/O devices without affecting any other
device in the interrupt structure.

Driver/Termination Networks. Depending on the
direction of data flow, the user will select the
appropriate TTL line drivers and Intel terminators
that are compatible with the I/O driver/terminator
sockets on the iSBC 80/IOA. The list of suitable
line drivers includes those with inverting, non­
inverting, and open collector characteristics.
There are two types of terminators: a 220-ohm/
330-ohm divider or a I K ohm pull-up.

BUS INTERFACING

The system bus interface logic consists of three
general groups of circuitry:

I. gates that accept the various bus control
signals, the interrupt request lines, and the
ready indications, and then apply these
signals to the CPU logic elements,

2. the system bus drivers,

3. the failsafe circuitry which generates an
acknowledgment during interrupt sequences
and during those cycles in which an ac-

knowledgment is not returned because a
non-existent device was inadvertently ad­
dressed.

Bus Interface Signals. The following paragraphs
describe portions of the system bus interfacing
logic relevant to interfacing a user device to the
iSBC 80/1 OA. (Note: Whenever a signal is active­
low, its mnemonic is followed by a slash; for
example, MRDC/ means that the level on that line
will be low when the memory read command
is true.)

BCLK/ - Bus clock; used to synchronize bus
control circuits on all master modules. BCLK/
has a frequency of 9.216 MHz. BCLK/ may
be slowed, stopped or single stepped, if
desired.

IN IT / - Initialization signal; resets the entire
system to a known internal state.

BPRN - Bus priority input signal; indicates to
the iSBC 80/l0A that a higher priority mas­
ter module is requesting use of the system
bus. BPRN suspends the processing activity
and drivers of the iSBC 80/1 OA until the sig­
nal goes low.

BUSY / - Bus busy signal; indicates that the bus
is currently in use. BUSY/prevents all other
master modules from gaining control of the
bus. BUSY/is driven by the HLDA/ output
from the iSBC 80/1 OA in response to a
BPRN input. It indicates that the bus is
available.

MRDC/ - Memory read command; indicates
that the address of a memory location has
been placed on the system address lines and
specifies that the contents of the addressed
location are to be read and placed on the sys­
tem data bus.

MWTC/ - Memory write command; indicates
that the address of a memory location has
been placed on the system address lines and
that a data word has been placed on the
system data bus. MWTC/ specifies that the
data word is to be written into the addressed
memory location.

IORC/ - I/O read command; indicates that the
address of an input port has been placed on
the system address bus and that the data at
that input port is to be read and placed on the
system data bus.

IOWC/ - I/O write command; indicates that the
address of an output port has been placed on
the system address bus and that the contents

1-9

of the system data bus are to be output to
the addressed port.

XACK/ - Transfer acknowledge signal; the
required response of an external memory
location or I/O port which indicates that the
specified read/write operation has been com­
pleted (that is, data has been placed on, or
accepted from, the system data bus lines).

AACK/ - An advance acknowledge, in response
to a memory read or write command, that
allows the memory to complete the specified
operation without requiring the CPU to wait.

CCLK/ - Constant clock; provides a clock signal
of constant frequency (9.216 MHz) for use by
optional memory and I/O expansion boards.
The same signal is used to drive both CCLK/
and BCLK/.

INTRI/ - Externally generated interrupt re­
quest.

ADRO/-ADRF/ - 16 Address lines; used to
transmit the address of the memory location
or I/O port to be accessed. ADRF / is the most
significant bit.

DATO/-DAT7/ - Bidirectional data lines; used
to transmit/receive information to/from a
memory location or I/O port. DAT7/ is the
most significant bit.

Bus Acknowledges. Further distinction between
transfer acknowledge (XACK/) and advance
acknowledge (AACK/) is required. All external
memory and I/O transfer requests must return
XACK/ to the iSBC 80/l0A (even if AACK/ is also
returned). XACK/ indicates that data has been
placed on (read command) or accepted from (write
command) the system data bus lines. AACK/ is an
advance acknowledge in response to a memory or
I/O port command. It has been provided because
the 8080A samples the ready line before valid data
is required on the bus. If this condition is properly
anticipated, AACK/ can be returned before the
data is actually read, thus allowing an earlier opera­
tion to be completed. AACK/ should be used only
with a thorough understanding of the additional
information provided in the iSBC 80/10 and
iSBC 80/1 OA Single Board Computer Hardware
Reference Manual. DMA Transfers. An external
device can make DMA transfers to or from RAM
expansion boards. The transfer is coordinated
with the iSBC 80/1 OA by means of two bus
signals: bus priority input (BPRN) and bus busy
(BUSY I). The first step in making a DMA transfer
is to obtain control of the system bus. This is

achieved by asserting BRPN to the iSBC 80/1 OA
and then waiting until the iSBC 80/1 OA returns
BUSY /, indicating that it has relinquished control
of the system bus. When this step is completed the
external device may proceed with its DMA trans­
fers until it is finished. At that time BPRN should
be removed to allow the iSBC 80/1 OA to regain
control of the system bus. It should be noted
that the iSBC 80/1 OA is placed in a hold state
when it does not have control of the system
bus.

APPLICATIONS

The iSBC 80/1 OA may be applied to a wide variety
of applications. Specific applications in four areas
are presented in this application note. They are
presented to illustrate a broad spectrum of single
board computer capabilities ahd to demonstrate
the use of various system features.

INSTRUMEN,TATION

Microprocessors have been used in instrumentation
for many tasks ranging from handling simple inter­
face functions to control of the analog to digital
conversion process. The use of a single board com­
puter can further serve in the application of
instruments themselves to laboratory or process
control environments. It is qui,te often necessary in
these applications to control instrumentation
remotely. A number of rather expensive minicom­
puter-controlled solutions now exist on the market
as automatic test equipment (ATE) systems. The
iSBC 80/! OA presents itself as a cost effective solu­
tion in situations where the larger ATE systems are
beyond economic justification.

The iSBC 80/l0A can be the sale CPU element
in the system, providing instrumentation control
and computational capability; or it can supple­
ment a larger host CPU by handling distributed
processing requirements.

Instrumentation Control Application Example

Most instruments such as DVMs, counters, data
loggers, synthesizers, etc., have optional data out­
put units (DO Us) and/or remote control units
(RCUs). It is particularly time consuming to inter­
face each instrument's DOU/RCU with custom­
digital logic. Until the recent IEEE-488 interface
standard, there was little in common from one
interface to the next. The parallel I/O lines of the
iSBC 80/1 OA provide a common interface element
that can be adapted to a majority of the DOUs and
RCUs available today by means of software.

HO

FLUKE 8375

DOU

DATA

DIGIT
SElECT

CONTROL

Figure 2. Interface Block Diagram

iSBC B0/10A

This instrumentation control application shows
how the iSBC 80/1 OA has been used to control and
read the data from the data output unit (DOU) of
a Fluke 8375 Digital Multimeter.

Interfacing the iSBC 80/1 OA to the Fluke 8375
DOU has been accomplished through the use of
three parallel I/O ports shown in Figure 2. An 8-bit
port has been used to read input data from the
Fluke 8375 DOU. Another 8-bit port has been
used to control the multiplexing of data from the
DOU to the iSBC 80/1 OA. And, an 8-bit port has
been used to provide the required control and
monitoring of the following DOU functions:
busy flag, sample sync flag, timeout enable, exter­
nal trigger and trigger inhibit.
The following listing contains a complete program
to provide the necessary interface control func­
tions as well as an exercise program. The program
listing is interspersed with text that is used to
clarify the elements of the program.

o ;
1; INSTRUMENTATION CONTROL APPLICATION
2 ;
3 j fLUKE 8375 DIGITAL MULTIMETER
4 ;
5; DATA OUTPUT UNIT (DOU) CONTROLLER
6 ;
7 ;
8

The CSEG directs the ISIS-II 8080· Assembler to
generate a relocatable code segment. Relocatable
code can later be placed at any memory address by
Intel's LOCATE program. This lets you write your
program without worrying about the application's
final memory configuration.

9
10;
l' CSEG
12 ;
13

Equate Table. The following table is used to give
symbolic names to the binary I/O port addresses.
The names used later in the program increase
readability.

14
15 ;
16; EQUAr& TABL.E
17 ;
18 CWR EQU OEBH
19 DATIN EQU OE8H
20 STS EQU QE9H
21 FL.G EQU \.lEAH
22 TRG EQU OEAH
23 ;
2~

i 8255 iJ2 COt.1TROL \olORD REGISTER
; DECADE PAIR DATA INPUT PORr
; STR08E OUTPUT PORT
i FLAG INPUT PORT
i TRIGGER OUTPUT PORT

The exercise program uses some of the subroutines
provided in the iSBC 80/l0A System Monitor
PROMs. The addresses of the subroutines are
included in the equate table.

25
2& ;
27 GETC. EOO
28 co EQU
29 CROUT EQU
30 "MOUT EQU
3' ;
32

0220H j OgJ' CONSOLE INPUT I MASK OFF PARlT'i
01 EI!H ; CONSOLE OUTPUT
01F3H i PRINT <CR><LF>
02CZH ; DISPLAY BYTE IN ACCUM

The use of the iSBC 80/l0A parallel I/O ports
requires that the mode of operation be defined for
each port. This is typically done by an initializa­
tion subroutine executed when the iSBC 80/IOA
is powered up or reset.

8255 Control Word. When the opcode field (bit 7)
of a control word directed to an 8255 is equal to
one, the control word is interpreted as a mode
definition control word. The mode definition
control word format is shown below:

CONTROL WORD

10,1 D. 051 0,1 031021 0, 100 I
-,- L / GROUPS "-

PORT C (LOWER - PC3-PCO)
1'" INPUT
0" OUTPUT

PORT B
''"INPUT
0" OUTPUT

MODE SELECTION
O"MODEO
, = MoeE 1

/ GROUPA " PORT C (UPPER - PC7-PC4)
1 = INPUT
a-OUTPUT

PORT A
1 = INPUT
0= OUTPUT

MODE SELECTION
OO=MODEQ
01 = MODE 1
lX = MODE 2

/ OPCODE "-, MODE SET

1-11

Observing the schematic for the iSBC 80/ I OA -
Fluke 8375 DOU (Figure 3), it can be seen that the
8255 #2 should be configured through the use of
the mode control word as:

Port 4 (A)
Port 5 (B)
Port 6 (C)
Port 6 (C)

Mode 0 Input
Mode 0 Output
Bits PC2-PCO Output
Bits PC5-PC4 Input

The following mode control word is used:

101 10• 051 0'1 031 021 0,1 00 I
-e- Ii Port C Bits PCO-PC2 Output = 0

Port B Output = 0

Port B Mode 0 = 0

Port C Bits PC4-PCS Input = 1

Port A Input c 1

Port A Mode = 00

Opcode Mode Set = 1

Mode Control Word = 1001 1000 Binary = 98H

33
3~ ;
35 ; ... 8255 #2 INITIALIZATION SUBROUTINE
3& ;
37 INIi:
313 MVI A,100110008 .; LD MODE CONTROL WORD
39 OUT C~R i OUTPUT TO 8255112 eNTL WD REG
~O ;
~,

This coding loads the mode control word into the
8255 #2 control word register. Additional initial­
ization code is required to set the strobe and
trigger output ports to an inactive state. The sche­
matic shows that inverting drivers have been used
for both the strobes and the trigger. When a com­
mand is issued to place port 5 (B) into the output
mode, bits PB7 -PBO are set to the low output
state. Because the low outputs are then inverted
and used as strobes to the Fluke 8375, they must
then be disabled. The initialization subroutine
concludes by disabling the strobes and trigger. The
strobes are signals to the DOU which enable its
drivers to send data to the iSBC 80/l0A. The trig­
ger is a signal to the DOU that the Fluke 8375
should take a reading.

MVI A,OFFH
OUT STB
OUT TRG
RET

i LD MASK TO:
i DISABLE STROBES
i DISABLE TRIGGER

External Trigger Control. Two subroutines are
implemented to enable and disable the external
trigger mode of the instrument. These subroutines
use the bit set/reset capability of the 8255 to inde­
pendently set or reset three control lines of the
Fluke 8375 DOU.

When the opcode field (bit 7) of an 8255 control
word equals zero, the control word is a port 6 (C)
bit set/reset command word.

The bit set/reset control word format is shown
below:

CONTROL WORD

NOT USED SET TO 000

BIT 0
BIT 1
BIT 2
BIT 3
BIT4
BIT 5
BIT6
BIT7

The following example demonstrates how the port
6 (C) bit set/reset control word is constructed to
disable the Fluke 8375 external trigger. Note from
the schematic (Figure 3) that port 6 (C) bit 0 con­
trols the inhibit external trigger line.

Set Bit =,

Bit Select = 000 (Binary)

Not Used ~ 000 !Binaryl

Bit Set/Reset Opcode '" 0

The control word for set Port C bit 0 is 0000 0001 Binary .. 01 H

50
51 ;
52 ; ... ENAaLE EXTERNAL TRIGGER SlJBHOUTINE ...
53 ;
54 ETRIG:
55 MVI A,OOOOOOOOB ; LD RESe;r BIT 0 CONTROL ~OAD
56 OUT CwR ; OUTPUT TO 8255#2 CNTL WD REG
57 RET
5d j

59 ; ••• DISABLE EXTERNAL TRIGGER SUBROUTINE •••
60 ;
61 DTRIG:
62 MVI A,OOOOOOO1B i LD SET BIT 0 CONTROL WORD
63 OUT CWR ; OUTPUT TO 825512 CNTL flO REG
64 RET
65 ;
66

Subroutines to enable and disable the timeouts are
written in an analogous fashion. The timeout
enable line is controlled by port 6 (C) bit 2.

67
68 ;
69 ; ... ENABLE TIMEOUTS SUBROUTINE
70 ;
11 EPOS:
72 MVI A,00000101B ; LD SET BIT 2 CONTROL WORD
73 OUT CwR ; OUTPUT TO 825512 CNTL WD REG
74 RET
75 ;
76 j ... DISABLE TIMEOUTS SUBROUTINE ...
77;
78 opos:

1·12

79
do
81
d2 ;
d3

MVI A,00000100B
OUT C'IlR
REr

; LD RESET BIT 2 CONTROL wORD
; OUTPUT TO 8255112 CNTL WD RSG

Obtaining Readings. The Fluke 8375 DOU allows
readings to be taken in one of two modes. The
first, a triggered mode, assumes that the external
triggering has not been inhibited and requires the
positive edge of a pulse with a minimum width of
I microsecond on the trigger input. Setting and
resetting the port 6 (C) bit I produces the 8375
external trigger. After a reading is triggered the
8375 busy flag is tested until the not busy state is
reached. At that time the reading that was
triggered can be read by the iSBC 80/1 OA. The
last statement in this routine jumps to TKDAT A
which reads the data from the DOU and then
executes the return.

84
85 ;
86 ; ... SUBROUTINE TO TAKE EXTERNALLY TRIGGERED READING ...
87 ;
88 TRGR:
89
90
91
92
93 NT:
94
95
96
97
98 ;
99

MVI
our
INR
our

I.
ANI
J"
JMP

A,OOOOOOlOB
OWR
A

C"'
FLO
001000008
rwr
.i'KDATA

; LD RESET BIT 1 CONTROL wORD
; OUTPUT TO 8255112 CNrL WD REG
; MODIfY CONTROL WORD TO SET BIT ,
; OUTPUT TO 8255112 CNTL WD REG

; INPUT THE BUSY FLAG
; TEST PORT C BIT 5
; LOOP UNTIL NOT BUSY
; GO READ DATA FROM OOU AND RETURN

The second method for reading the Fluke 8375 is
to rely on the sample rate set from the front panel
controls and to wait until a full transition of the
busy flag is observed. This guarantees that a previ­
ous reading is not mistakenly interpreted as a new
reading.

100
101 ;
102 ; ... SUBROUTINE TO OBTAIN NEXT READING ...
103 ;
104 NXTRD:
105
106
107
108 NXTlo/T:
109
110
111
112
113 ;
114

I.
ANI
JZ

I.
ANI
J.z
JMP

FLG
001000008
NXTRD

FLG
00100000B
'Xl'WT
TKDATA

i INPUT THE BUSY FLACi
; TEST PORT C BIT 5
; LOOP UNTIL BUSY WITH NEXT READING

; INPUT THE BUSY FLAG
; TEST PORT C BIT 5
; LOOP UNTIL NOT BUSY
i GO READ DATA FROM oem AND RETURN

Notice that the loops beginning at NXTWT in the
above program segment and at TWT in the previous
program segment are identical. This suggests the
possibility of some obvious code optimization that
is omitted here for the sake of clarity.

There is one subroutine remaining to complete full
utilization of the Fluke 8375 DOU capabilities. It
is the subroutine to take data from the 8375 DOU.
The schematic (Figure 3) shows that port 5 (B) bits
PB4-PBO are used to enable the DOU drivers. Data
from the DOU includes:

• 5 decades of digits
• encoded range and overrange

• function: Volts DC, Volts AC, Ohms, Kil-
ohms

• modifiers: Filter, Ext. Ref., Remote
• overload
• trigger

The function of this subroutine is to read five
bytes of data from the 8375 DOU and place them
in a RAM buffer on the iSBC 80/ lOA.

115
116 ;
117 ; H' SUBROUTINE TO TAKE DATA fROM 8375 DOll u,
118 ;
119 TKDATA:
120 LXI H,RDBUF' ; LD BUFFER POINTER
121 MVI A,OEFt-! ; SETUP FIRST STROBE
122 T!<O:
12J I"IOV B.A ; SAVE CURRENT STROBE
12" OUT STB ; STROBE DECADE PAIR
125 IN DATIN ; READ DATA
126 MOV M,A ; PLACE DATA INTO SBC 80/10 RAM
127 INX H : INCRF;ME~lT BLlFfER PortHER
128 t10V A,8 j RESTORE STROBE
129 RHe i HorAn: TO NEXT STROBE POSrrION
1JO Je TKO ; LOOP UNTIL BIT 0 STROBE DONE
1J1 OUT SIB ; DISABLE ALL STROBES
132 RET
133 ;
13"

This completes the software required to service the
Fluke 8375 DOU. The following code consists of a
routine to display the data from the interface on
the console output device and a short executive
program to allow exercising of the driver sub­
routines.
The display subroutine takes 5 bytes of data from
the RAM buffer in which the reading has been
stored and prints them, 2 ASCII characters per
8-bit byte, on the console.

135
136 ;
137 ; H. SUBROUTINE TO DISPLAY READING BUFfER ON CONSOLE ...
138 ;
139 DISI'LAY:
140 LXI
141 HVI
142 DISPO:
"3

'"" "5
,"6
"7
"8
'"9
ISO ;
151

MOV
CALL

INX
oce
JNZ
RET

H,RDBUF
0,5

A,M
NMOUT

n
o
DISPO

; LD BUfFE'! POINTER
; INITIALIZE COUNTER'

; LD NEXT BYTE fROM BUFFER
; CALL SBC 80/10 MONITOR SUBROUTINE
; TO DISPLAY ACCUMULATOR CONTENTS
; INCREMENT RUFFER POINTER
; DECREMENT COUNTER
; LOOP FOR 5 DISPLAY BYTES

Operator Interface. The short executive program
provides a tool for the purposes of exercising the
8375 DOU driver subroutines. The executive begins
by calling the initialization subroutine and then
continues on to prompt the operator with a '>' on
the console. At that point the operator may enter
one of the following characters, causing the pro­
gram to execute the specified subroutine:

SUBR DESCRIPTION

T ETRIG
I DTRIG
E EPOS
D DPOS
N NXTRD
S TRGR
X DISPLAY

Enable external trigger
Disables external trigger
Enable programmed timeouts
Disable programmed time outs
Next reading
Trigger and get a reading
Display reading buffer

1-13

After the operator has entered a command charac­
ter, the program obtains the address of the sub­
routine to be executed and proceeds to set up a
return address on the stack. This technique allows
a load program counter instruction (PCI-IL) to be
used to enter the subroutine and a return instruc­
tion (RET) to resume execution of the executive.

152
153 i
154 ; .11 SIMPLE EXECUTIVE EXEHCISE PROGRAM •••
155 ;
156 START:
157
158
159 EXEC:
160
161
162
163
16"
165
166
167
16d EXECO:
169
170
171
172
173
174
11~ EXEC1:
176
177
178
179
180
181
182
183
18"
185
186 ;
187

LXI
CALL

CALL
MVI
CALL
CALL
CALL
MOV
LXI
LXI

01P
,1Z
INX
OCR
JNZ
JMP

LXI
DAO
DAO
MOV
INX
MOV
MOV
LXI
PUSH
PCHL

SP,STACK
INIr

CHOUT
C ')'
CO
GETCH
CO
A,e
B,NCt,mS
H,CTAS

M
EXEC1
H
e
cXECO
EXEC

rl,CADR
B
B

'.M
H
H,M
L,A
D,EXEC
o

; SETUP STACK POINTER
; INITIALIZE THE SBC 80/10 8255112

; EXEC ENTRY POINT - PRINT (CR)(LD
; C LOADED WlTIi PROMPT CHARACTER
; CONSOLE OUTPUT
; GET CMND CHAR, MASK OFF PARITY
; PRINT THE CHARACTER ON THE CONSOLE
; PUT CHARACTER BACK INTO THE ACCIlM
; C CONTAINS LOOP AND INDEX COUNT
; HL POINTS TO CMND TABLE

; COMPARE TARLE ENTRY AND CHARACTER
; BRANCH If fQUAL - CMND RECOGNIZED
; ELSE, INCRFY.ENT TABLE POINTER
; DECREMENT LOOP COUNT
; BRANCH IF NOT AT TABLE END
; ELSE, CMND ILLEGAL - IGNORE IT

; LD ADR OF TABLE Of CMND SUBRS
; ADD WHAT IS LEfT Of LOOP COUNT
; - EACH ENTRY HI CADR IS 2 BYTES
; GET !...SP OF ADR Of TABLE ENTRY TO A
; POINT TO NXT BYTE IN TABLE
; GE:' MSP Of ADR Of TABLE ENTRY TO H
; PUT LSP OF ADR OF TABLE ENTRY TO L
; SETUP RETURN ADR ON THE STACK

; flEX! INSTR COMES fROM CMND SUBR

The command and address tables as well as the
reading buffer follow to complete the application
software.

188
189 i
190; COMMAND AND ADDRESS TABLES
191 ;
192 CfAB:
193 DB 'XSNDEIT'

194 flCMDS EOU
195 ;
196 CADR:
197
198
199
20D
201
202
203
20'
205 ;

:;i-CTAB

o
ETRIG
DTRIG
EPOS
OPOS
NXTRD
THGR
DISPLAY

; NUMBER OF VALID Ca1MANDS

206; READING BUFfErl AND STACK SPACE
201 ;
208 HDBllF':
209
210 ;
211
212
21J

os

END

; READING BLIFFER

START ; TRANSFER ADL'R::3S IS TO START

SUMMARY /CONCLUSIONS

This instrumentation control application has been
presented to demonstrate the simple techniques
used to apply the iSBC 80/1 OA to the task of inter­
facing instrumentation. A natural extension of this
example would include the control of the Fluke
8375 RCU, as weIl as the control of many addi­
tional instruments to build a small ATE system.

BUSY FLAG

SAMPLE SYNC
FLAG

TIMEOUTS
ENABLE

EXTERNAL
TRIGGER

EXTERNAL
TRIGGER

INHIBIT

OVERLOAD

TRIGGER

FILTER

REMOTE

VOL TS DC

VOLTS AC

OHMS

RANGE c "{
OVER

RANGE

d

m5T 1 DECAOE

" r SECONlJ

D,eADE , l
d

" 1
THfilO

DECADE c

d

" 1
FOURTH
D~CADE c

d

" 1
FIFTH

DECADE:

FLUKE 8375 DOU

IDATA OUTPUT UNITI

1281
e~

1231)

1221
e-

1231

"
1211

e-
12171

l=n 12131

-=n 12151

1222)

tp 1218)
--

12201 t:r)

tn (21(;)

"::::h l?ldi

1226)

'I) 126)

t:r) (2d)

=n (212)

:::::n (210)

(135)

(136)

l=n (133)

1=F) (1311

.. LR (132)

~
0341

(125)

-n (127)

'--D 1129)

'------~ =n (128)

>-=0 030)

(119)

L =n 11211

=n (123)

I-

=n (1221

=n (1241

11131

--=n (11,,1

'I) 11171

I
I-~

11161

1118) =n -~

115)

t::.:n Jr= 119;

t:n (111)

~-====sr=-t:n 11101

=n (112)

1111

bJ (13)

bJ 116)

f-n 1171

=n 1141

Figure 3. Interface Schematic

1-14

SBC80! 'OA

IJ229)

IJ227)

1J221)

IJ2231

1J225)

1J211)

(J23)

(J29)

IJ271

1J2S1

Vee

1K

iJ235)

IJ2J7I

1J23'l)

1J241J

IJ249)

IJ247)

1J245)

(J243)

Vcc ,1' 1---- --,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1K
I PORT61Ci

I UPPER

PCS

I
PC,

A10 I :;'7 I PC, ::: I
PCl P~~~~~C)

::f I
PCO,-

I
I
I
I
I
I
I
I ,
I

I

8255
GROUP2

All. A21

7~7

...... ~ I
PS,

I PORT 5(B)

... I
........ I PB3

I

<H- '"'
I
I

<l>- t- PA,

I

-4-~ PBO

A,

1

A,

~

I
I
I
I

PA,

I PORT4(AI

I
PAS

PAS

I
PA4

I
I
I
I
I PA3

i
PA,

PA,

I
I PAD

L _____

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.J

COMMUNICATION

A diverse range of single board computer applica­
tions exists in the field of communication. The
increase in distributed processing generates require­
ments for self-contained computers to control
elements of a communication system, increasing
both the throughput and reliability.

There are many situations that necessitate monitor­
ing and controlling a system from a remote site.
Typical examples are systems that cover large geo­
graphic areas or systems in dangerous environments
for human operators. If the object system, which
provides the actual parallel inputs and outputs to
the plant, is far from the controlling system, you
can lower costs by reducing the number of inter­
connecting wires via the addition of multiplexers
to both systems. In the extreme (and often desira­
ble) case of reducing the interconnects to an
absolute minimum, all communication between the
systems takes place on a single serial data link. If
large distances are involved, this link can be stand­
ard telephone wires. For moderate distances, the
link can be a single twisted pair. In either case, the
equipment used to interface the object system to
the serial link is called a supervisory control and
data acquisition (SCADA) terminal.

The decision to replace a multitude of intercon­
nects with a SCADA terminal is largely economic.
Cables and their associated drivers and receivers
can represent a significant part of the total cost of
a factory automation project, particularly if an
electrically noisy environment requires the use of
shielded cables. Any potential savings in cabling
must, of course, compensate for the additional cost
incurred by adding the SCADA terminal to the
system.

Communication Application Example

A SCADA terminal demonstrates an industrial com­
munication application of the iSBC 80/ lOA. The
Intel® 8251 USART provides the serial communi­
cation link and the two Intel 8255 Programmable
Parallel I/O devices provide 48 parallel lines for the
object system. A block diagram of a SCADA
terminal is shown in Figure 4.

The task of the software in this SCADA terminal
example is two-fold. First, it must continually scan
its parallel inputs, transmitting the status of those
lines in a bit serial mode using the USART. And
second, it receives bit serial data from the USART
which is to be used to update 'the parallel outputs.
Thus, a major portion of the software deals with

1-15

PARAllEL
OUTPUT

PARALLEL
INPUT

iSBC S0!10A

Figure 4. SCADA Terminal Block Diagram

SERIAL
INPUT

the communications protocol on the serial data
lines.

Communications Protocol. A communication pro­
tocol is an agreement between communications
users that defines the record formats used for data
transmissions. The protocol selected for this
SCADA terminal application provides the follow­
ing features:

I. A readable character set to simplify the
human interface.

2. Error detection by means of a checksum.

3. Each record specifies the number of data
bytes in the record and the initial port
number.

Despite its value for human interface, the ASCII
character set has problems representing 8-bit
binary values, since the high-order bit is not used.
Therefore, each binary value is treated as two 4-bit
hexadecimal values. Because hexadecimal numbers
fall in the range 0-9 and A-F, they can be repre­
sented as ASCII characters. However, this repre­
sentation requires twice as many bytes as a pure
binary format.

Record Format. The information encoded into the
ASCII hexadecimal format is grouped to form
records. Each record has a record mark to flag the
beginning of the record, a number of ports specifi­
fication (record length), destination output start
port number, the data field itself, and a checksum.

The record format described below is according to
the fields in the record.

Record mark field: Byte 0

The ASCII code for a colon (:) is used to signal
the start of a record.

Number of ports field: Byte I

The number of data bytes in the record is repre­
sented by a single ASCII hexadecimal digit in this
field. This corresponds to the number of 8-bit

ports to which data will be output by the
SCADA terminal in a parallel fashion. The maxi­
mum number of data bytes in a record is IS (F
in hexadecimal). A record length of zero is a
special case and can be reserved for control
information.

Port address field: Byte 2

The single ASCII hexadecimal digit in byte 2
gives the port number of the initial output port.
The first data byte is output to the port indi­
cated by the port address; successive bytes are
output in successive port locations on the iSBC
80/1 OA or on expansion I/O boards.

Data field: Bytes 3 to 3+2*(number of ports}-I

An 8-bit binary value is represented by two
bytes containing the ASCII characters 0-9 or
A-F, which represent a hexadecimal value
between 0 and FF (0 and 255 decimal). The
high-order digit is in the first byte of each pair.

Checksum field: Bytes 3+2*(number of ports} to
3+2*(number ofports}+1

The checksum field contains the ASCII hexa­
decimal representation of the two's complement
of the 8-bit sum of the 8-bit bytes that result
from converting each pair of ASCII hexadecimal
digits to one byte of binary, from the number of
ports field (the number of ports and port ad­
dress constitute a pair) to and including the last
byte of the data field. Therefore, the sum of all
the ASCII pairs in a record after converting to
binary, from the number of ports field to and
including the checksum field, is zero.

Sample Hexadecimal format:

:303A178FFO

~~I LCh"',,mField

~OataFleld
Starting Port Address

Number of Ports

Record Mark

Design Approach Using a State Diagram. Before
proceeding to examine the software used to imple­
ment the SCADA terminal, consider how the prob­
lem might have been approached with TTL logic
rather than a microcomputer. The design would
likely have been formulated with a state diagram to
specify the transitions of a sequential state ma­
chine. The sequential-circuit operations would
include decoding the serial input records and

1·16

encoding the serial output records. An examination
of the serial input record state diagram (Figure 5)
is useful in understanding some of the procedures
encountered later.

IN IT

HAC

Figure 5. State Diagram

Notes: HAC = Hexadecimal ASCII character
LHAC = Last Hexadecimal ASCII character
PO Parallel output

The receipt of an invalid HAC will cause a return
to state O.

The receipt of a colon at any time will produce a
transition to state I.

STATE DESCRIPTION

o record mark state
I number of ports state
2 start port number state
3 high-order half of data byte state
4 low-order half of data byte state

State 0 is entered at the time of initialization. All
state transitions occur when the next character is
received. States I, 2, and 3 are entered with the
input of a colon (:), the number of ports and start
port number, respectively. States 3 and 4 will cycle
as required until all the high and low-order pairs of
data have been input. The transition from state 4
to state 0 occurs when the last data byte has been
received. If the checksum is correct, the parallel
output latches are loaded with the data field of
the record.

There are many references to the states contained
in this diagram during the discussion of the soft­
ware procedures. Thus, the state diagram is used as
a "flowchart" for the software. As in the other
examples in this application note, a textual descrip­
tion accompanies each segment of code. Intel's
high-level programming language, PL/M-80, has
been used to show the capability to program in a
natural, algorithmic language which eliminates the
need to manage register usage or memory alloca­
tion.

SCADA Terminal Program. The program begins
with a comment, that is followed by the program
segment label "SCADA". With resident PL/M-80,
all programs are considered to be labelled blocks,
or modules. This means that all PL/M programs
must begin with a LABEL and a DO statement and
end with an END statement.

/'
INDUSTRIAL CCtlt1UNICATION APPLICATION

SCADA TERMINAL
'/

SCADA:

DO;

All variables used in the program must be declared
before they can be referred to by their identifiers.
This is done by means of a DECLARE statement.
In addition to the declaration of variables, macros
are declared using the reserved word LITERALLY.
These macros are expanded at compile time by
textual substitution.

2 1 DECLARE
SRLINSTATE BYTE,
SRL$INtPRT BYTE,
SRLINCNT BYTE,
PRLINSTATE BYTE,
PRLINSTRTSPRT BYTE,
PRLINNHB$PRTS BYTE,
SRLINPRLOUTBFR(3) BYTE,

PRLOUTPRT$O LITERALLY I OE5H I I

PRL$OllT$PRT$l LITERALLY 'DEAH',
PRLOUTPRT$2 LITERALLY 'DE8H',

SRLOUTSTATE BYTE,
SRLOUTPRT BYTE,
SRLOUTCNT BYTE,
PRLOUTSTATE BYTE,
PRLOUTSTRT$PRT BYTE,
PRLOUTNHB$PRTS BYTE,
SRLOUTPRLINBFR(4) B'iTE,

PRLINPRT$O LITERALLY • OE4H' •
PRLINPRT$l LITERALLY 'OE6H'.
PRLINPRT$2 LITERALLY I QE9H I •

USART$CMD LITERALLY 'OWH',
USART$IN LITERALLY 'OECH'.
USART$OUT LITERALLY • OECH I •

USART$STATUS LITERALLY 'OEDH',
USART$HODE$INSTR LITERALLY 'OCFH'.
USARTCHDINSTR LITERALLY '025H'.

TXRDY LITERALLY 'OOlH'.
RXRDY LITERALLY '002H',

PPICWR1 LITERALLY 'OE1H',
PPICWR2 LITERALLy 'OEBH'.
PPICWO1 LITERALLY 'OSOH',
PPICWO2 LITERALLY '09BH'.

THUE LITERALLY 'OFFH'.
fALSE LITERALLY 'OOOH'.

FOREVER LITERALLY 'W'HILE TRUE' •

NEXT$BYTE BYTE,
CHECKSUM BYTEi

8251 and 8255 Initialization. The INIT procedure
sets up the 825 I and 8255's and initializes several
variables. Interrupts are disabled to insure that no
interrupts are serviced during the execution of the
INIT procedure.

3 1 INIT: PROCEDUREi

q 2 DISABLEi

1·17

The serial input and serial output state counters are
set to state O. Port number 0 is the parallel input
start port and 3 ports of data are input from the
parallel ports for serial transmission.

SRLINSTATE = 0i
SRLOUTSTATE = OJ
PRLINSTRT$PRT = OJ
PRLINNHB$PRTS = 3 i

The Intel 825 I USART must be set up by loading
it with mode and command instructions.

The mode instruction format is shown below:

-~LM""Mn.-00 "'SVN MODE
r 01 "ASYNX1

1 0 ASVNX16
11 .. ASVN X64

CHARACTER LENGTH

OO--SBITS
01 ... 6 BITS
10"'7BITS
11 -"8 BITS

PARITV CONTROL

X 0 NO PARITV
01 .. ODD PARITV
1 1 ... EVEN PARITV

FRAMING CONTROL

>_N_O_-_A_SV_N_IO-,':...O..:.O_*_O °_' ___ 1 g ~ : ~~fci,A~~
1 0 .. 1% STOP BITS
11 ,.. 2 STOP BITS

SVN CONTROL

L-----------~I ~~ ~~~EERR~~~SS~~
o X DOUBLE SVN CHAR
1 X SINGLE SVN CHAR

The 825 I characteristics required by this SCADA
terminal application include 9600 baud transmis­
sion and 8-bit characters. The parallel inputs of the
8255's are periodically scanned. The scanning
frequency is determined by the baud rate and
number of ports of data being transmitted. For
example, the transmission of 3 ports of data
requires 11 characters. At a baud rate of 9600 the
approximate scan rate is 100 Hz.

The following 825 I mode instruction is used:

I ~Il-~ ~.-.-.~" L- Character Leng,th '" 11

Parity Control = 00

Framing Control" 11

Instruction'" 1100 1110 Binary" CEH

After the mode instruction is sent to the 8251, a
command instruction is required to complete the
8251 initialization.

The command instruction format is shown below:

"TRANSMIT ENABLE
1- ENABLE
0- DISABLE

DATA TERMINAL
READV

"HIGH" WILL FORCE
oTR OUTPUT TO ZERO

RECEIVE ENABLE
'---~.I 1 '" ENABLE RxRDY

O. DISABLE RxRDY

SEND BREAK

'-------� CH1A=R~8~~~s TxO "LOW"
0'" NORMAL OPERATION

eRROR RESET '-______ -1 ,., RESET ALL ERROR

FLAGS IPE. DE. FE)

REQUEST TO SEND

'----------~I ~G~~~i~g~~~o

INTERNAL RESET
"HIGH" RETURNS 8251
TO MODE INSTRUCTION
FORMAT

~NTER HUNT MODE '--___ '--_________ 1 1'" ENABLE SEARCH FOR

SVN CHARACTERS

The command instruction enables the transmit and
receive functions of the 8251.

The following command instruction is used:

Transmit Enable = 1

Data Terminal Ready:: 0

'---- Receive Enable = 1

III '----- Send Break Character" 0

Error Reset .. 0 '--_____ ::~::: ::n~;'

L. _________ EnterHuntMode=O

Instruction = 0010 0101 Binarv '" 25H

Output instructions send the initialization com­
mands to the 8251. Note that previously declared
macros are used to literally replace the mnemonics
in the following lines of code.

9
'0

OUTPUT(USART$CMD) • USARl'$I4ODE$I.STR,
OUTPUT(USAIIT$CHD) : USART$Ci'lD$INSTR;

1·18

Initialization of the 8255's is then done to set up
the following configurations:

8255 #1

Port 1 (A)
Port 2 (B)
Port 3 (C)

8255 #2

Port 4 (A)
Port 5 (B)
Port 6 (C)

Mode 0
Mode 0
Mode 0

Mode 0
Mode 0
Mode 0

Output
Output
Output

Input
Input
Input

The following command instruction is used for the
8255 #1:

10'1 06 051 041 0,1 0,1 0, 100 I

I'
Port C Bits pea-PCa Output

Port B Output = a

-0

Port 8 Mode 0 .. 0

Port C Bits PC7-PC4 Output -0

Port A Output'" 0

Port A Mode = 00

Opcode Mode Set = 1

Mode Control Word = 1000 0000 Bfnarv .. SOH

The following command instmction is used for the
8255 #2:

I 0'1 061 051 041 0'1 021 0, I DO I - II Port C Bits PC3-Pta Input

Port B Input = 1

.,

flort B Mode 0 '" 0

Port C Bits PC7-PC4 Input ..

Port A Input-1

Port A Mode'" 00

Opcode Mode Set '" ,

Mode Control Word = 10011011 Binarv = 9BH

The 8255 initialization commands are given in a
similar manner to the 8251 commands,

" OUTPUT(PPI,CW',,) • PPI.e'D$"
'2 OUTPUT(PPI$CW"2) • PPI$CW0$2,

The INIT procedure concludes by enabling inter­
rupts.

'3 2 EHABLE,

'4 2 EHD INlT;

Conversion Procedures. Two conversion procedures
are required in the program. The first procedure
produces a hexadecimal ASCII character from a
4-bit binary value. A typed procedure has been
used which returns a value of the type byte. It is
called by using its name in an expression.

15 1 CHAR$CONV: PROCEDURE (CIiAR) BYTE:

16 2 DECLARE CHAR BYTE:

17
18
19
20

CHAR:; CHAR ~ '0';
IF' CHAR> '9' THEN

CHAR;; CHAR + 7:
RETURN CHAR;

21 2 END CHAR$CONV;

The second procedure produces a 4-bit binary
value from a hexadecimal ASCII character. Because
this procedure is used only when a hexadecimal
ASCII character is expected, an illegal character
(i.e., not a 0-9 or A-F) causes the serial input
state counter to indicate state O. This procedure is
also typed. The NMB$CONV procedure emphatic­
ally illustrates the point that PL/M-80 performs
unsigned arithmetic. Note that when the ASCII
value for a zero is subtracted from the digit,
NUM = NUM - '0'; a positive number is always
produced, even if the value of NUM is less than '0'.

22 1 NMB$CONV: PROCEDURE (NMB) BYTE;

23 2 DECLARE NMB BITE;

21j NHB=NKB4'O':
25 IF NMB > 9 THEN
26 00;
27 IF (HMB > 16) AND (NMB < 23) THEN
28 NMB:NMB-7;

ELSE
29 SRLINSTATE :; 0;
30 END;
31 RETURN NKBj

32 2 END NMB$CONV j

Parallel Input Procedure. A parallel input proce­
dure is used to input data bytes from the 8255's.
The data bytes are then transmitted by the bit
serial output device. This procedure also computes
the checksum for the serial output record. The
checksum, TEMP2, is initialized to contain the
parallel input number of ports and the start port,
shifted to fit within a single byte. Each cycle of the
iterative DO block adds the next data byte to the
checksum and places the input data into the
SRLOUTPRLINBFR array until the loop is
complete. The checksum is then computed as the
two's complement of the accumulated sum and
also stored in the serial input parallel output
buffer.

1·19

33 1 PARALLEL$IN: PROCEDURE;

311 2 DECLARE (TEMP1, TEHP2) BYTE;

35 2 TEMP2 :: PRLINNHB$PRfS * 16 + PRl.$IN$STRT$PRT;

36 2 DO PHLINSTATE :: PRLINSTRT.$PRT TO
PRLINSfRT$PRT + PRL$lNNMBPRTS - 1;

TI 3 00 CASt: PRLINSTAT£;

If PRL IN PRT 0 *1
311 4 TEMPl = INPUT(PHLHIPt1T$O);

1* PRL IN PHT 1 *1
39 4 ri:::I'1Pl = INPUT(PRLltJPRT$ 1} ;

I" PRL IN PHT 2 "1
40 4 TEMPl = INPUT(PRL$INJ;PRT$2);

41 Ii END;

42
43

.')RLOUTPRLINBFR(PRLINSTATE) = TEKP1;
TEKP2 .; TEKP2 ... TEMP';

44 3 END;

1.j5 2 SRLOUTP~LINBFR(PRLINSTRT$PRr ... PRL$INNMBPRTS) = -TEMP2;

46 2 END PARALLEL$IN;

Parallel Output Procedure. When a complete serial
input record has been received and the checksum is
correct, the transition from state 4 to state 0 is
accompanied by the parallel output of the data
from the data field of the serial input record. The
parallel output starting port and the number of
ports of data is contained in the input record and
is thus used in directing the parallel output opera­
tion. An iterative DO block increments the
PRLOUTST ATE index variable through the
required ports and a DO CASE block selectively
executes one of the OUTPUT statements for each
cycle of the loop.

4)

4d 2

49 2

50 3

51

52 4

53 4

PARALLEL$OUT: PROCEDURE;

D£CLAI1E TEMP BnE;

00 PRLOUTSTATE = PRLOUTSTI1T$PRT ro
PnLOUTSTI1T$PI1T ... PRL$OUTNMBPRTS _ 1;

Tf..MP = SRLINPRLOUTBfR(PRLOUTSTATS};

DO CASE PI1LOUTSTATE;

II: PRL OUT PRT 0 *1
OUfPUT(PRLOUTPI1T$O) = TEMP;

II: PRL OUT PRT 1 1:1
OUTPUT(PRLOUTPRT$l) = TEMP;

II: PRL QUT PRT 2 "I
54 4 OUTPUT(PRL$OllT$PRT$2) = TEMP;

55 END;
56 END;

57 2 EUD PARALLEL$OUT;

Serial Input and Output Procedures. The next two
procedures contain the software implementations
of the state diagram described previously. The
processing during each state of the first procedure,
the serial character input procedure, is described
in the following text.

The procedure begins by reading a character from
the 8251 and then converts the character into a
4-bit binary value using the number conversion
procedure. The DO CASE block is the mechanism
by which a program segment is selected to examine

the input character, provide the required outputs,
and to specify the transition to the next state.

58 SERIAL$CHAR$IN: PROCEDURE;

59 2 DECLARE (CHAR, TEMP) BYTE;

60 CHAR = INPUT(USART$IN) AND 07fHj
61 TEMP;; NttB$CONV(CHAR);

62 2 DO CASE SRLINSTATEj

State 0 is entered through the initialization proc­
ess, at the completion of the processing of a serial
input record, or when an invalid character has been
received. The serial input state will remain 0 until a
colon (:) is received, at which time a transition to
state I is specified.

63
64
65
66

/' SRL IN STATE 0 = RECORD MARK '/
00;

IF CHAR :;: ':' THEN
SRLINSTATE :;: 1;

END;

The parallel output number of ports is obtained,
the counter initialized, and a transition to state 2 is
specified from state I.

67
68
69
70
71

/* SRL IN STATE1:;: NHB PRTS '1
00;

PRLOUTNMB$PRTS :;: TEMP;
SRLINCNT :; TEMP;
SRLINSTATE :;: 2;

END;

In state 2 the parallel output starting port number
is obtained, the serial input port is initialized, the
checksum is set to contain the parallel output
number of ports and starting port, and a transition
to state 3 is specified.

72
73
74
75
76
77

1* SRL IN STATE 2 = STRT PRT ./
00;

PRLOUTSTRT$PRT :;: TEMP;
SRLINPRT = TEMP;
CHECK5LIM :;: PRLOUTNI'.a$PRTS*16 + PRL$OUT$STRT$PRTj
SRLINSTATE = 3;

END;

In state 3 the high-order half of a data byte is
obtained and shifted into the proper position of
the NEXT$BYTE variable. A transition is specified
to state 4.

78
79
80
81

/* SRL IN STATE 3 :;: HI ORDER HALF DATA BITE '/
00;

NEXT$BYTE ::: TEMP*16;
SRLINSTATE :;: 4;

END;

State 4 is the final state and requires more process­
ing than the others. First, a whole byte of data is
assembled by adding the low and high-order data
halves, and then testing to determine if the check­
sum has been received. If so, and the checksum is
correct, the parallel output procedure is executed.
Once the entire serial input record has been re­
ceived, a transition is specified to state 0 whether
the checksum is correct or not. However, if the

1-20

serial input count has not been exhausted, the
assembled byte is placed into the serial input
parallel output buffer and a transition back to state
3 is specified.

82
83
84
85
86
87
BB
89
90

91
92
93
94
95
96
97

98

If SRL IN STATE 1\ :;: LO ORDER HALf DATA BYTE */
00;

NEXT$BYTE ;- NEXT$BYTE + TEMP i
CHECKSUM = CHECKSUM + NEXT$BYTEj
IF' SRLINCNT ;- 0 THEN
00;

IF CHECKSUM ;: 0 WEN
CALL PARALLEL$OUT;

SRLINSTATE :: OJ
END;
ELSE
00;

SRLINPRL$OIJT$BFR(SRLlNPRT) = NEXT$BYTE;
SRLINPRT = SRLINPRT + 1;
SRLINCNT :: SRLINCNT - 1;
SRLINSTATE = 3:

END:
END;

END: 1* END OF CASES */

99 2 END SERIAL$CHAR$IN;

The serial character output procedure is similar to
the serial character input procedure. During state 0
the parallel inputs of the 8255's are stored in the
serial output parallel input buffer for transmhsion.

100 SERIAL$CHAR$OUT: PROCEDURE;

101 2

102 2

103 2

1011
105
106
107
10d

109
110
111
112
llJ

''" 115
116
117
118

119
120
121
122

123
12'
125
126

127
128
129
lJO
1Jl
132

133 3

DECLARE (CHAR,TEMP) SHE;

CHAR = OJ

DO CASE SRLOUTSTATE;

/* SRL OUT STATE 0 = RECORD MARK *1
00;

CHAR = ': I j
CALL PARALLEL$IN;
SRLOUTSTATE = ';

ENDj

/* SRL our STATE 1 = NMB PRTS */
DO;

TEMP = PRLINNMB$PRTS;
SR[.OUTCNT = TEMP;
SRL.OUTSTATE = 2 j

END;

/* SRL OUT STAfE 2 = STRT PRT *1
00;

TEMP = PRLINSTRT$PRT;
SRLOUTPRT = TEMP;
SRLOUTSTATE = 3;

END;

/* SRL OllT STATE 3 = HI ORDER HALF DATA BYTE */
00;

TEf~P = SHR(SRLOUTPRLINBFR(SRLOUTPRT), 4);
SRL.OUTSTATE = 4;

END;

/* SRL OUT STATE 4 = LO ORDER HALF DATA BYTE *1
00;

TEMP = SRLOUTPRLINBFR(SRLOUTPRT) AND OFH:
IF SRLOUTCNT = 0 THEN

SRLOUTSTATE = 0;
ELSE
00;

SRLOUTCNT = SRLOUTCNT - 1;
SRLOUTPRT = SRLOUTPRT + 1;
SRLOUTSTATE = 3;

END;
END;

END; /* END OF CASES */

'3lJ IF CHAR <> ,:, THEN
135 CHAR = CHAR$CONV(TEMP);
136 OllTPUT(USART$OUT) = CHAR;

137 2 END SERIAL$CHAR$OUTj

Interrupt Service Routine. The software in this
SCADA terminal application example is interrupt
driven. Interrupts, which occur when the trans­
mitter of the 8251 is ready for another character
Of when the receiver has obtained a serial charac­
ter, direct the execution of either the serial input

or output character procedures. The following
procedure is entered when an interrupt occurs.

13d 1 USART$INTERRUPT: PFOCEOUR£ IN1'ERRlJPr 7:

139 2 Dt:CLARE STATUS BYTE:

11m 2 STATUS = INPIJT(USART$STATUS)j

1111 IF (STATUS AND rXADY) = TXADY THEN
1112 CALL SERIAL$CHAR$OUT;

1113 IF (STATUS AND RXRJ>Y) = RXRDY TriEU
1411 CALi.. SERIAL$CHAH$IN i

145 2 END USART$INTgRRUprj

Main Program. The function of the main program
is rather simple. It calls the initialization routine
and then loops "FOREVER." Notice that the
other software is executed only when an interrupt
occurs. Rather than loop idly while waiting for an
interrupt, the "main program" could take advan­
tage of excess CPU time by processing some other
task.

146 1

147
14d

/
MAIN$PROGRAM:

............ /
CALL HUT:

00 FOREVER;
ENDj

1I~9 1 END:

1·21

SUMMARY /CONCLUSIONS

Further consideration should be given to error
checking in the implementation of a SCADA termi­
nal. A checksum has been used in this example
which provides some error detection but no
correction.

The industrial communication example in this
application note has shown a SCADA terminal.
Besides providing a convenient forum in which to
explore the use of PL/M in an interrupt-driven
environment, this application provides a realistic
and almost fully-developed tool for the replace­
ment of a multitude of parallel lines. Two such
systems can be connected through the serial lines
to provide a parallel to parallel transmission
scheme as shown in Figure 6.

SCADA TERMINAL ;,

SERIAL 1/0

Figure 6. Two SCADA Terminals

..----, PARALLEll/O

SCADA TERMINAL
;2

BIT SERIAL INTEHFI\CE

SERIAL OUTPUT

SERIAL INPUT

PARALLEl IN

Vee

! em "0"" tou"

r
~INX

SWITCH

INPUT

OUT 0

our 1

OUT 2

OUT 3

OUT4

OUT 5

OUT 7

OUT 8

OUT 10

OUT 11

OUT 13

OUT 14

OUT 15

OUT 16

OUT 17

OUT 18

OUT 19

OUT 20

OUT 21

OUT 22

'NO

IN 2

IN)

IN'

INS

IN'

INO

IN 10

IN 13

IN 14

IN 15

IN 16

IN 17

IN 18

IN 19

IN 21

IN22

IN 23

J
I

--.J
TERFACE_

-

iSBCS0l10A

r--u;51
(J331

(J1431

iJ1411

IJ1451

(J1471

IJ139)

1J1371

IJ135)

IJ1331

IJ171

U1SI

(J13)

1J111

(J19)

(J1111

(J1131

(J115)

(J1251

(J129)

(J119)

IJ1171

IJ1211

(Jl·2n

(J123)

(J1311

VCC

IJ243) f
IJ245)

(J247)

(J2491

(J241)

(J2391

(J2371

IJ235)

{J251 1
(J271

U291

(J23)

IJ2111

(J2l3)

(J2151

IJ217)

IJ225) f
IJ223)

(1221)

(J2191

(J227)

(J229)

IJ2311

U2331

Figure 7. SCADA Terminal Schematic

1·22

SERIAL INPUT

SERIAL OUTPUT

8226

A~

""'A-
.......
......

A~

A- ~
A~

A~ "'"
""'A-

7437

A~

""'A-
.............
""'A-

.......
...... A~

A-
............

7437

.A
A.

""'A-
A
......

A~

A
...... A

.....

GROUP 1
8255

r-----
I

PAC

I
PA,

I
I

PA,

PA)

~ PORT llAI
PA4

I
PAS

I
PAG

i
PA,

I
I
I

PBO

I
PB,

PB,
I

PB)
I PORT 2 (8)

I
PB,

PB5

PB6

PBl

I
I

PCO

1
PC, PORT 3 Ie)

1 UPPER
PC,

I PC)

1 ---
1

pc,

I pes PORT 31C)

PC6 LOWER

I
I PC,

-,
I
1

I
1

1

1

1

1

1

1

I
1

I
I
I
1

I
1

1

1

1

1

I
1

1

I
1

L ____
-.-J

GROUP2
8255 1Kr-----

.1 PAo

.1 PA,

.1 PA,

.1 PA)

.1 PORT4(M
PA4

I PAS

.1 PAG

.1 PA,

1

lKl
1

I
PBo

I
PB,

PB)

--' PB,
I PORTS (8)

I
PB,

PBS

--' PB6
I
I

PB,

1
lKl

PCo

PC, PORT6 Ie)

PC) UPPER

PC,

Po,

PCSpORT6 (CI
pe6 LOWER

PC7

L _____

-,
1

1

I
1

I
1

1

I
1

1

I
1

1

1

PROCESS CONTROL

Many single board computers have already been
applied in the field of process con tro!. Some of the
common denominators observed in these applica­
tions include the use of AID and D/A peripheral
boards, process monitoring functions such as
servicing display panels for operator interaction,
and alarm indicators.

Temperature Monitoring Application Example

A temperature monitoring system has been devel­
oped for the purposes of a process control applica­
tion example. The single open loop system utilizes
an AID converter, a multiplexed display, switches
for operator control, and two alarms. A block dia­
gram of the operator's panel is shown in Figure 8
and a schematic in Figure 9.

GROUP =2
8255

iSBC BO/10A
TEMPERATURE MONITORING

OPERATOR'S PANEL

/u ___ -j SWITCH

INPUT

7·SEGMENT
DATA

DIGIT SELECT &
ALARM
INDICATORS

Figure 8. Operator's Panel Block Diagram

Operator's Panel. The operator's panel in this
temperature monitoring system contains four
7-segment displays to show the temperature, two
light emitting diodes (LEOs) that indicate alarm­
low and alarm-high conditions, and six switches.
The function of the switches is as follows:

Set Limit - controls whether the current
temperature reading is to be displayed (off) or
if upper/lower limits are to be set (on).

Set Hi Lo - when set limit is "on", this switch
controls whether the low (off) or high (on)
limit is to be displayed.

Digit Selects - these two switches control the
selection of the digit of the limit which is to
be modified. The four binary positions 00,
01, 10 and II correspond to the four 7-
segment digits.

1-23

Leave It - controls whether the digit selected
is to be incremented (off) or maintained at its
current value (on). When this switch is "off"
the digit selected is incremented every 512 ms
until the operator turns the switch "on".

Enable Alarm - when set limit is "off" and the
current temperature is displayed, this switch
controls whether the action of the alarm indi­
cators is to be enabled (on) or disabled (off).

The simple means used to set upper and lower
temperature limits is similar to setting the time on
a digital wrist watch.

The purpose of the software is to initialize the
system and then to enter an endless loop which
accumulates 16 readings, updates the displayed
reading or handles limit setting, updates the display
latches, waits 4 ms, and obtains an A/D reading.

Temperature Monitoring Program. This application
example has been coded in Intel's resident PL/M-
80 language.

J'

'J

PROCESS CONTROL APPLICATION

OPEN LOOP

TEMPERATURE MONITOR

TEHPERATURE$MONITOR:

00;

The declaration statement includes some dimen­
sioned variables with INITIAL attributes. They
provide data strobe positions, a table of bit pat­
terns to convert BCD data to 7-segment data, and
a table of the powers of 10 for binary to BCD
conversions.

2 1 DECLARE
READING ADDRf..ss,
DIGITS(I!) BYTE INITIAL (80H,40H,20H, lOHl,
BCDTO'ISEG(11) BYTE INITIAL (3FH,06H,5BH,4FH,66H,

6DH, 7CH,07H, 7FH,67H,O),
TENS(4) ADDRE.':"-,s INITlAL (1000,100,10,1),
DIGIT$DATA(4) anE,
NXT$DIGIT BYTE,
UPDATE$COlJNT BYTE,
SET$COlJNT RYTE,
LIMIT(2) ADDRESS,
ACCUM$RDNG ADDRESS,

CwR LITERALLY' OEBH',
SLCT LITERALLY 'DEAH',
SEes LITERALLY 'OE3H',
SwTS LITERALLY 'D£9H',
SEfUP$PORTS LITERALLY '082H',

SET$LII-IIT LITERI\LLY 'D01H',
SETHILO LITERALLY 'OOlH',
LEAVE$IT LITERALLY 'OlOH',
DIGIr$SLCT LITERALLY 'oaCH',
ENABLE$ALARM LITEIlALLY '020H',
SET$ALARM$LO LITERALLY 'OOlH',
SET$ALARM$HI LITERALLY '003H',
HESET$ALAHM$LO LITERALLY 'GaOH',
RESET$ALARM$HI LITERALLY '002H',

TRUr.: LITERALLY 'OfrH',
FOREVER LITERALLY 'WHILE TRUE';

The analog to digital conversion procedure has
been coded in assembly language and is not in­
cluded in this application note. It is declared as an
external typed procedure with no arguments and
returns a value of the type address. The value
returned is the current temperature. The ATOD
procedure is linked later in a step to produce an
absolute load module of the entire program.

3 1 ArOD: P/1QCEDURE ADDRESS EXTERNAL;

4 2 END Aroo;

Bit set/reset functions of the 8255 have been used
to control the alarm-low and high output bits. Use
of this function allows individual bits to be con­
trolled without affecting others of port C which
are concurrently selecting the digit to be multi­
plexed on the display.

5 1 RESET$ALARMS: PROCEDURE j

OUTPUT(CWR) " RESET$ALARH$LOj
OllTPUT(CIoi'R) :: RESET$ALARrt$Hlj

d 2 END RESET$ALARMS;

The following procedure is used to initialize the
8255 and several program variables.

9 1 INIT: PROCEDURE;

10 OUTPUT(CwR) :: SETUP$PORTS;
11 CALL RESET$ALARMS;
12 NXT$DIGIT :: 0;
13 UPDATE$COUNT :: 0;
14 SET$COUNT ;: 7;
15 READING :' OJ
16 ACClJM$RDNG :: OJ
17 LIMIT(O) :: 0000;
ld LIM!T(1) :: 9999;

19 2 END INIT;

A multiplexed display is controlled by the soft­
ware. Two ports of an 8255 are required for this
function shown in Figure 9. The first output port
holds the data which drives the four 7-segment dis­
plays in parallel. The second output port contains
four strobes, each going to a separate common
cathode of one of the 7-segment displays.

The update display procedure begins by blanking
7-segment data in the output port. This step avoids
shadows that would be produced if the data for
the next digit position were loaded prior to up­
dating the strobe. The strobe is then advanced,
retaining the alarm bits that occupy other bits of
the same output port. Note that an output con­
figured 8255 port can be read with an 8080A
INPUT instruction to determine the currently
latched output data. The BCD data is obtained
from the next digit position of the DIGIT$DATA
array and used as a subscript into a table of
BCDT07SEG data. The 7-segment data is also

1-24

output to the 8255 port in
The procedure concludes
NXT$DIGIT pointer.

20 1 DISPLAi'$UPOATE: PROCEDURE;

21 OUTPUT(SEGS) :: 0;

the same statement.
by advancing the

22 OUTPUT(SLCT) :: (OIGITS(NXT$DIGIT) OR (INPUT('SLCT) AND 03H»;
23 OUTPUT(SEGS) :: BCDT07SEG(DIGIT$DATAUIXT$DIGIT));
2l.! NXT$DIGIT :: (NXT$DIGIT+ 1) AND 03H;

25 2 END DISPLAY$UPDATE;

Binary to BCD Conversion. Binary data from the
AID converter must be converted to BCD before it
can be used by the DISPLAY$UPDATE procedure
to show the current temperature reading. The
BINTOBCD procedure performs this conversion
operation.

26 1 BINTOBCD: PROCEDURE;

27 2 DECLARE (BCD,I) BYTE;

2d 2

29
30

31
32

J3 4

34 3

35 3

00 1 = 0 TO 3;

BCD = 0;
00 wHILE HEADING)= TENS(I);

READING" HEADING - TENS(r):
BCD=BCD+lj

END;

DIUIT$DATA(I) = BCD;

END;

36 2 END BINTOBCDj

BCD to Binary Conversion. The reverse conversion
process is also needed. That is, BCD data must be
converted to binary. This procedure is used to take
limits, which are set by manipulating BCD digits,
and convert them to binary data for use in testing
against current temperature readings. Based vari­
ables have been used in this procedure to allow
access to the actual variables used as arguments in
the calling program.

37 1 BCDTOBIN: PROCEDURE (BCD$ARRAY$ADR,BIN$DATA.$ADR);

38 2 DECLARE
(BCD$ARRAY$ADR ,BIN$DATA~ADR) ADDRESS,
(BCD$ARRAY BASED BCD$ARRAY$ADR) (4) BYTE,
(BIN$DATA. BASED BIN$DATI\$ADR) ADDRESS,
I BYTE;

39 BIN$DATA = OJ
40 00 I = 0 TO 3;

Itt BIN$DATA = BIN$DATA'l0 + BCD$ARRAY(I) IJ
41 BIN$DATA = SHL(BIN$DATA,1) + SHL(BIN$DATA,3) + BCD$ARRAY(I);
42 END;

43 2 END BCDTOBIN;

Updating the Display. The UPDATE procedure is
entered each time 16 readings have been taken
from the A/D converter. The UPDATE$COUNT is
reset and the operator switches are input to control
the execution path through the procedure. The
accumulated reading, which is the total of 16 AID
readings, is divided by 16 to obtain an average
reading. Then the accumulated reading is zeroed.

44 1 UPDATE: PROCEDURE:

45 2 DECLARE (SI<iTFLG,HILO,DIGIT) BYTE:

116 UPDATE$COUNT = 15;
47 SWT$FLG = INPUT(SWTS) j
48 READING = SHR{ACCUH$RDNG,IJ);
49 ACCUH$HDNG = 0;

Setting Limits. If the set limit switch is ON, the
limits are to be dealt with instead of testing and
displaying the current temperature reading. The
alarms are reset during limit setting. The specified
limit is converted to BCD and then the Leave-It
switch is tested to see if the digit selected is to be
incremented or held constant.

50
51
52
53
54
55
56

IF (SwT$FLG AND SET$LIHIT) = SETtLIMIT THEN
DO;

CALL RESET$ALARMS;
HI$LO = SHR({SWT$FLG AND SETHILO}, 1);
READING = LIHIT{HI$l.O);
CALL BINTOBCD;
IF (SIolT$FLG AND LEAVEtIT) <> LEAVE$IT THEN

Another counter is used to control digit incre­
menting. Its purpose is to control the rate at which
the selected digit is to be incremented. The major
loop in the program has a 4-millisecond delay.
Thus, 16 AID conversions require a period of
64 ms which provides an update frequency of 16
readings per second. This is too fast to accurately
select a desired digit which is being incremented.
SET$COUNT insures eight update periods (512
ms) between each increment. After the digit has
been incremented, the BCD limit value is con­
verted back to binary to set the respective limit.
This concludes the action taken when setting
limits.

57 00;
58 IF SET$COUNT = 0 THEN
59 00;
60 SET$COUNT = 7 i
61 DIGIT = SIIR((S'wT$F'LG AND DIGIT$SLCT), 2) i
62 IF DIGIT$DATA(OIGIT) = 9 THEN
63 OIGIT$DATA(OIGIT) = OJ

ELSE
64 DIGIT$DATA(DIGIT) = DIGIT$DATA(DIGIT) + 1;
65 CALL BCDTOBIN(,DIGIT$DATA, .LIHIT(HI$LO»;
66 END;

ELSE
67 SET$COUNT = SET$COUNT - 1:
68 END;
69 END;

Testillg the Averaged Reading. If the set limit
switch is OFF, then the averaged reading is to be
tested and displayed. The averaged reading is con­
verted to BCD and then a test is performed to
determine whether the reading is to be compared
with the upper and lower limits.

ELSE
70 00;
71 GALL BINTOSCDj
72 If (SWT$FLG AND ENABLt:$ALARM) = ENABLE$ALARM THEN

1-25

The reading is compared with both the upper and
lower limits if the alarms have been enabled. The
results of the tests are used to set and reset the
corresponding alarm output bits.

73
74
75

76 4

77
7d

79
do

DO;
IF HEADING (LIMIT{O) THEN

OUTFUT(CWR) = SET$ALARM$LO:
E:L.SE

OUTPUT(CWH) = RESET$ALARH$LOi

If !'lEADING> LltHr(1) THEN
OUTPUT{CwR) = SET$ALARM$Hli

ELSE
OUfPUT(CtlR) = RESET$ALARHSHI;

END;

If the alarms are not enabled, both the alarms are
reset to the "off" condition.

81
82

ELSE
CALL RESET$ALARMS,

END;

83 2 END UPDATE;

Main Program. The main program is shown below.
Its purpose is to initialize the system and then to
cycle, continuously executing the code previously
described.

/u .•••••••••••

HAIN$PROGRAM:

......... "' ... /
84 1 CALL INli;

85 1 00 fOREVER;

86 2 ACCUH$RDNG = ACGUM$RDNG + READING;

87 If UPDATE$COUNT = 0 THEN
88 CALL UPDATE:

ELSE
89 2 UPDATE$CQUNT = UPDATE$COUNT - 1;

90 CALL DISPLAY$UPDATE;
91 CALL TIME(40);
92 READING = ATOD;

93 2 END:

94 1 END:

SUMMARY ICONCLUSIONS

The goal of this application example is to demon­
strate some of the common functions required for
process control systems. Rather than show a small
portion of a larger, more complex problem, this
example was chosen because it presents a complete
solution to a smaller problem. In summary, refresh­
ing a multiplexed display was shown. Conversion
procedures for binary to BCD and BCD to binary
were used. A simple technique, in terms of hard­
ware requirements, was used to enter lower and
upper test values. And, limits testing was done,
providing alarm indicators.

r
I
I

GROUP:.o2 I
.255 I

I
I

VCC

-----,
I

PBs

I
PB,

I

PB3
PORT 5 (B) I

PB2

I
PB,

PBO I

I
I
I
I
I
I

PA7

I
PAa

:
PA5

I
PA<

: PORT 4 (AI

PA3

I
PA2

I PA,

I
PAa

I
I
I
I
I
I

PC7
I

I
I
I

PCa

I
I
I

PC5

I
PORT a leI I

I
PC,

I
I
I

PC,

I
I

PCo

L _____ J

iSBC SO/lOA

7437

.....
::::
:::.
::
::: ::
::: ::
~

7437

~
....

.....
~

.....
~

.....

.....

.....

_X-LOGIC

OPERATOR'S PANEL ,.
(J2·13) .. - ENABLE ALARM

(J2·11) - LEAVE IT

(J2·31 -
} DIGIT SELECT, IJ2·9) -

IJ2·7) - SET HI/CO

(J2·5) - SET LIMITS

0:-

VCC

20n

(J2·35) 2kU r.;
IJ2·371 VI'!::::
(J2-39) ~ ~

(J2·41) r.; ,'!::::
IJ~·491· G '!::::

IJ2-47) .r¥ ,\t::
(J2·45) G \!:::::

(J2·43) B r.; E, \t::
~

C '3 '2 11 a 5 3 4 '0
A B

~i
D E F

,~ ,.,P
~~ ,~ ~~ ~~ " 2,.

(J2·33)

<Q
!!

fJ2-31J

~
!!

(J2·29)

!:!

<Q (J2-27)
TIL313

VCC

(J2-23) ~o:-

\:Y
ALARM HI

(J2·25) ~
\:Y

ALARM LO

Figure 9. Operator's Panel Schematic

1-26

I/O DEVICE CONTROLLER

Peripheral processors have become common ele­
ments in computer systems of all sizes and capa­
bilities. The purpose of such a processor is to
relieve a central processor from the burden of
handling I/O devices. In effect, it is a form of
distributed processing. The iSBC 80/1 OA can be
used as a peripheral processor and/or as an I/O
device controller. In such a capacity it can signifi­
cantly reduce the amount of hardware required to
interface peripherals. Because the iSBC 80/1 OA
controls only I/O, it is of little consequence that
it must do a great deal of detail work that other­
wise wastes the processing capability of a larger
central processor.

Consider the activity of producing a listing on a
line printer. The overhead in maintaining a pro­
gram in the queue of a central processor which is
producing data for a line printer can seriously
impact system throughput. If, however, the pro­
gram were to send the list to a disk file and then
command a peripheral processor to take care of the
printing, a significant improvement in system
performance may be achieved. Printers represent
one example of a large number of I/O devices that
can be controlled by an iSBC 80/1 OA. Other
devices include cassettes, magnetic tape drives,
paper tape readers and punches, etc.

Character Printer Controller Application Example

The control of a Centronics 306 character printer
is used as an I/O device controller application
example. This example shows the interrupt capa­
bility of mode I 8255 operation. A block diagram
of the printer controller is shown in Figure 10 and
a schematic in Figure II.

Table 2. Printer Software Control Block

NAME POSITION

iSBC BO/10A
CENTRONICS

PRINTER

DATA

CONTROL

Figure 10. Printer Controller Block Diagram

When the mode I or mode 2 configuration is used,
software is generally required to support interrupts
used in conjunction with handshaking operations.
Software routines written for an interrupt driven
environment tend to be more complex than status
driven !'outines. The added complexity is because
interrupt-driven systems are constructed such that
other software tasks are run while the I/O transac­
tion is in progress. A software routine that controls
a peripheral device is generally referred to as a
device driver. One method of implementing an
interrupt-driven device driver is to partition the
device driver into a "command processor" anci an
"interrupt service routine." The command proces­
sor is the module that validates and initiates user
program requests to the device driver. A common
method of passing information between the various
software programs is to have the requesting routine
provide a device control block in memory. The
device control block used in this application
example is shown in Table 2.

DEFINITION

Status Byte a A l-byte field which defines the completion status of an I/O.

00 = Good completion
01 = Error - command already in progress.

Buffer Address Byte 1,2 Pointer to the start of the data to print.

Character Count Byte 3 Count of the number of characters to print.

Character Byte 4 The number of characters transferred.
Transferred Count

Completion Byte 5, 6 Address of a user supplied routine which will be called after the I/O has been
Address performed.

1-27

The command processor validates the transaction
anp initiates the operation described by the control
block. Control is then returned to the requester
so that other processing may proceed. The inter­
rupt service routine processes the remainder of the
transaction.

Interrupt Service Routine Requirements. The
interrupt service routine requires the following
functions:

I. The state of the machine (registers, status,
etc.) must be saved so that it may be re­
stored after the interrupt is processed.

2. The source of the interrupt must be deter­
mined. The hardware may support a register
whi'ch indicates the interrupting device, or
the software may poll the device status
registers.

3. Data must be passed to or from the device.

4. Control must be passed to the requesting
routine at the completion of the I/O.

5. The state of the machine must be restored
before returning to the interrupted program.

Printer Controller Program. The software for this
application has been coded using Intel® 8080
Macro Assembly Language.

0;
1 i U '"
2 ;
3 ; I/O DEVICE CONTROLLER APPLICATION

~ ; INTERRUPT DRIVEN
6 ;
7 ; CHARACTER PRINTER
8 ;
9 i •

The following program equates are used to allow
symbolic reference to the 8255 ports. Group # I
8255 on the iSBC 80/1 OA has been used because
it will support mode 1 operation.

10 ;
11 :H""
12 ; PROGRAM EQUATES
13 ;"111'
11l PORTA EOll OE4H
15 PORTS EQll 0E5H
16 PORTe EOU OE6H
17 CwR EQll OE7ti

; 8255 PORT A
; 8255 PORT B
; H255 PORT C
; $255 CONTROL WORD REGISTER

An initialization control word sent to the control
word register of the 8255 will set up the desired
configuration.

18 ;
19 ;
20 ;
?1 ;
22 ;
23 ;
24 ;
25 ;
26 ;
27 ;
28 ;
29 ;**111.
30 lew
31 i·

INIrIALIZATION CONTROL WORD

EQU

USED TO CONF IGURE THE 8255 AS FOLLOWS:

PORT A - OUTPUT MODE 1
PORT B - INPUT MODE 0 (NOr USED)
PORT C LOIolER - OUTPUT

101010108 ; INITIALIZATION CONTROL WORD

1-28

The bit set/reset capability of the 8255 is used to
control the strobe to the printer and to enable/
disable interrupts from the 8255.

32 ; SET/ RfSET CONTROL wORDS
33 ;
34 STBON BOll 00000001 B ; SET STROBE
35 STBOf EQU 000000008 ; RESET STROBE
36 ;uu'
37 ; 8255 ENABLE/DISABLE INTERRUPT CONTROL WORDS
3d jllU'

39 lEN EQLl 000011018 j ENABLE INTERRUPTS
40 ION EQU 00001100B ; DISABLE INTERRUPTS
41 ;'UII

Device status, control block, and completion
equates are shown below.

42 ; DEVICE SiATUS EQUATES
43 ;~u**
411 LPBSY BQU 080H

08H
; BUffER FULL (LINE PRINTER BUSY)
; INTERRUPT REQUEST 45 INTRA EQU

46 ; 'IIU

47 ; CONTROL BLOCK EQUATES
48 .111**

49 CBST t:Oll DOH
01H
03H
04H
05H

; STATUS BnE
50 CBUF BQU j BUFfER ADDRESS
51 cacc EQll ; CHARACTER COUNT
52 CBCT BOll ; CHARACTER TRANSfERED COUNT

j COMPLETION SERVICE ADDRESS 53 caCMP BQll
54 j.1II1I

55 ;
56 ;'U"
57 STGD
58 ST£1
59 ;.11 ..

COMPLETION STATUS EQUATES

EQU
EQU

DOH
01H

; GOOD Ca-IPLETION
; ERROR - COMMAND ALREADY IN PROGRESS

There are two ongm statements in this program.
The first origin at 38 hexadecimal is the entry
point used when an interrupt is generated by the
8255. A jump instruction to the printer interrupt
routine is stored at that location. The second
origin at 3000 hexadecimal is the address where
the rest of the code will be located.

60 ;
61 ; .. 11.

62
63
64 ;.111 ••
65 ;
66 j.lI ..

67
68 ;.1111

RESTART 7 ENTRY POINT

ORG 0038H
JMP PINT

PROGRAM ORIGIN

ORG 3000H

An initialization subroutine issues the mode con­
trol word to the 8255 control word register after
reset of the device. The printer strobe must then be
disabled.

69 ;
70 ;
71 ;
72 ;
73;
74 ;
75 INIT:
76
77
78
79
80
81

INITIALIZATION ROUTINE

A,H,L REGISTERS MODIFIED

MVI A,ICW; GET MODE CONTROL WORD
OUT CWR ; OUTPUT TO CONTROL WORD REGISTER
MVI A,STBON ; GET SET DATA STROBE CONTROL WORD
OUT CWR ; SET DATA STROBE (LOW TRUE SIGNAL)
RET ; RETURN TO CALLER

The command processor is started by the user
routine through a subroutine call to PSTRT, with
the address of the control block in the D and E
registers. The command processor insures that an
I/O operation is not already in progress, starts the
I/O, enables interrupts, and returns to the caller so
that other processing may proceed.

The flowchart and listing for the command proces­
sor are shown below.

82
83 ;
84 ;
85 ;
86 ;
87 ;
88 ;
89 ;
go ;
91 ;
92 ;
93 ;
94 PSTRT:
95
96
97
98
99

100
101
102
103
10'
105
106
107
108
109 ;u ...
110 ; .
111 j

112 P5TE:
113

'" 115

COMMAND PROCESSOR

INPUTS: CONTROL BLOCK ADDRESS IN P AND E REGISTERS

OUTPUTS: START 110 OR ERROR STATUS IN CONTROL BLOCK

A,H,L REoJISTERS MODIFIED

LOA
ANA

JNZ
XCHG
SHLD
XCHG
LXI
OAD
MVI
CALL
EI
RET

PIPRG+ 1 ; GET PRINT IN PROGRESS BLOCK ADDRESS
A ; SEE IF ZERO (PRINT IN PROGRESS)

; IF BLOCK ADDRESS NOT EQUAL TO ZERO THEN
; PRINT IN PROGRESS

psrE ; IF YES - BRANCH TO ERROR

PIPRO ; SAVE CONTROL BLOCK ADDRESS

H,CBeT ; GET INDEX TO C1
o ; COMPUTE ADDRESS OF C1
M,OOH ; CLEAR C1
PDATA ; START I/O

j ENABLE PROCESSOR INTERRUPTS
; RETURN TO CALLER

ERROR - TRANSACTION ALREADY IN PROGRESS

HVI A,SlE1; GET ERROR STATUS CODE
JMP POST ; PASS CONTROL TO COMPLETION ROUTINE

Interrupt Processing. When the 8255 generates an
interrupt, the interrupt request is serviced by the
8080A CPU. The CPU disables processor interrupts
and then executes the instruction at location 38
hexadecimal, which is a jump to the interrupt
service routine. The interrupt service routine saves
the processor state and polls the 8255 to determine
the source of the interrupt. Once the interrupting
device is identified, the printer output data routine

1-29

is called. After the entire buffer has been printed,
the interrupt service routine passes control to the
user-supplied completion routine. Before returning
from the interrupt, the state of the processor is
restored.

There are a number of error conditions which may
occur, such as an interrupt from a device that does
not have an active control block, or an interrupt
when polling establishes that no device requires
service. Neither of these errors should occur, but if
they do, the driver should perform in a consistent
fashion. The recovery routines implemented to
handle these interrupt error conditions are deter­
mined by the environment of the particular appli­
cation.

The flowchart and listing for the printer interrupt
service routine are shown below.

116
117 ;u,,,
118 ;
119 ;
120 j

121 PINT:
122
123

'" 125
126 ;'"''

INT7

PRINTER iNTERRUPT SERVICE ROUTINE
ALL REGISTERS SAVED AND RESTORED

PllSH PS\oI
PUSH B
PUSH D
PUSH H

SAVE PSW
SAVE REGISrER PAIR BAND C
SAVE REGISTER PAIR 0 AND E
SAVE REGISrER PAIR HAND L

127 ;
128 jU'"

129
130
131
132
133
134
135
136
137
138
139

'" 1111
1112 ;
143 j

11111 PRTN:
145
146
147
140
149
150
151 j'"''
152 :
153 j
1511 ;
155 ;
156 PPOLL:
157
158 j

159 ;
160 ;
161 ;
162 PIERl:
163
164

POLL INTERRUPT SOOReE .. SEE OF 8255

IN
ANI
JZ
MVI
OUT
EI
LHLD
XRA
CMP
JZ
XeHG
CALL

PORTC
INTRA
PPOLL
A,ION
ew.

PIPRG
A
H
PIERl

j GET STATUS OF DEVICE
; SEE IF HIT
; NO -BRANCH TO POlL OTHER DEVICES IF ANY
; GET 8255 INT DISABLE CONTROL WORD
j DISABLE DEVICE INTERRUPTS
; ENABLE PROCESSOR INTERRUPfS
; GET CONTROL aLOCK ADDRESS
; CLEAR A REG
; SEE IF PRINT IN PROGRESS
; NO - BRANCH TO ERROR ROUtINE

; PRINT DATA

RESTORE REGISTERS AND RETURN FROM INTERRUPf

POP
POP
POP
POP
EI
REf

H
o
8
PSw

; RE.,,)TORE REGISTER PAIR H A.ND L
i RESTORE REGISTER PAIR D AND E
; RESTORE REGISTER PAIR SAND C
; RESTORE PSW AND A.
; ENABLE PROCESSOR INTERRUPfS
; RETURN TO INTERRUPfED PROCESS

POLL OTHER DEVICES IF ANY
IF NO OTHER DIVICES TO POLL - USER SUPPLIED ERROR
RECOVERY ROUTINE.

JMP PRTN ; RETURN

ERROR - INTERRUPT FROM IDLE DEVICE
USER SUPPLIED ERROR RECOVERY ROUtINE

JMP PRTN ; RETURN

The printer output data routine places a character
in the output buffer of the 8255. Data in the
control block is used to direct the transfer of a
character. A data strobe signal is then generated
through the use of the port C bit set/reset feature.

The flowchart and listing for the printer output
data routine are shown below.

1-30

165
166 jun.
167 i
168 ; PRINTER OUTPUT DATA ROUTINE
169 ;
no j CONTROL BLOCK ADDRESS IN D AND E REG
171 ;
172 j

173 PDATA:
174 '" PORTe ; GET STATUS OF DEVICE
175 ANI LPBSY ; SEE IF BUSY (SUFFER FULL)
176 JZ POlO j IF BUSY _ BRANCH
177 LXI H,CBCT j GEl' INDEX TO CT
178 DAD 0 j COMPUTER ADDRE.SS OF CT
179 MOV A,M ; GET CT
180 I"R " ; INC CT
181 DC' H ; DEC TO CC
182 eMP M ; SEE IF EQUAL
183 JZ PCOMP IF EQUAL - OONE GO TELL USER
1d4 LXI H,CBUF GET INDEX TO BUFFER ADDRESS
185 DAD 0 COMPUTE ADDRESS OF BUrFER ADDRESS
106 PUSH 0 SAVE 0 AND E REGISTERS
187 MOV E,M GET LSB bF BUFFER ADDRESS
188 IN, H INC TO NEXT BYTE
189 MOV 0,M GET aUFFER MSB
190 MVI H,OOH CLEAR H REG
191 .'lOV L,A GET CT
192 DAD 0 j COMPUTER CHARACTER ADDRESS
193 MOV ',M j GET CHARACTER
194 OUT PORTA ; OUTPUT CHARACTER TO PRINTER
195 MVI A,STBOF ; RESET DATA STROBE (LOW TRUE SIGNAL)
196 OUf CWR
197 INR , ; GENERATE SET CONTROL WORD
198 OUT CWR j SET DATA STROBE
199 fOP 0 ; RESTORE CONTROL BLOCK ADDRESS
200 JMP PDATA ; LOOP UNTIL BUSY
201

If the printer is busy at the time the printer output
routine is called, a printer busy routine is executed.
The printer busy routine disables the processor
interrupts, enables the 8255 interrupts and then
enables the processor interrupts on its return to
the caller.

202
203 ;
2011 ;
205 ;
206 POlO:
207
208
209
210

PRINTER BUSY - RETURN

D1 ; DISABLE INTERRUPTS
MVI A,IEN j ENABLE DEVICE INTERRUPTS
OUT CriR ; SET INTERRUPT ENABLE
RET ; RETURN TO CALLER

When the printer output routine has exhausted the
data from the buffer, a good status code is posted
to the user. The command in progress flag is also
cleared.

211 ;
212 i
213 j

2111 ?COMP:
215
216
217
218
219
220

POST GOOD COMPLETION TO USER

MVI
CALL
'RA
STA
RET

A,STGD
,OST
A
PIPRG~'

; GET GOOD STATUS CODE
; POST TO USER
; CLEAR A REG
; CLEAR CctlMAND IN PROGRESS ADDRESS
; RETURN TO CALLER

The post to user completion routine obtains the
completion address from the device control block
and passes control to the user routine.

221
222
223
224
225
226
227
228
229
2)0
231
232
233
234

POST TO USER COMPLETION ROUTINE

INPUTS: STATUS CODE IN A REG
CONTROL BLOCK A.DDRESS IN D AND E REG

OUTPUTS: PASSES CONTROL TO USER CQHPLETION ADDRt.S
SPECIFIED IN CONTROL BLOCK
wITH CONTROL BLOCK ApDRESS IN D AND E RE

A,M,L,B,C REG MODIFIED

235 POST:
236
237
23B
239
,"0
2"
,"2
243
21111
245

XCHG
MOV
XCt!G
LXI
OAO
MOV
INK
MOV
PUSH
OKT

M,A. j UPDATE STATUS

H, CBCHP j GE:T INDEX TO CCt1PLETION ADDRF.5S
D j COMPUTE ADDRESS
C,M j GF;! LSB OF' GrnPLEl'ION ADDRESS
H j INC TO NEXT BYTE
8 ,M j GET MS8 OF CGiPLETION ADDRESS
8 j PUSH ADDRESS Ol~ STACK

; PASS CONTROL TO USER ROUTINE:
2116 j

2111 i DfS.!I. AND TABLES
2118 j

2119 ORG
250 PIPRG: OW
25'
252

3000H
a ; IN PROGRESS CONTROL BLOCK ADDRESS

; IF DATA = 0 NO CONTROL BLOCK IN PROGRESS
j IF DATA <> 0 CONTROL BLOCK IN PROGRESS

2S3 j

2511 j END OF MODE ONE EXAMPLE
255 j

256 ENO

SUMMARY /CONCLUSIONS

r
I
I

GROUP .,1
8255 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L

iSBC BO/10A CENTRONICS 306

-------,

PA7
I ::"37 (Jl·331

:::: (Jl·351
PAS

J::: PA5
(Jl·J71

~ (Jl·J91
PA4

PORT 1 (AI

~
(J147) DATA

PA3

I {Jl·451
PA2

I::: (Jl·411
PA, I

PAO H-t> (Jl·43)

I

J;;7 (J1-251
PCO D"AfASTROaE

i 'f PORT 31C)

I '"
I IJI.23)

PC. ACKNLG

ACKA I
I

------'

The iSBC 80/l0A has the capability to function in
the capacity of a peripheral processor and/or a
device controller. This capability is provided in
part by the interrupt support logic accompanying
the parallel I/O ports. This application example
shows how the iSBC 80/l0A requires only an inter­
connect to the device to be controlled. Figure 11. Printer Controller Schematic

CONCLUSION

The purpose of this application note has been to
expose the reader to a broad spectrum of potential
applications of the Intel iSBC 80/1 OA and System
80/10 products. Applications have been presented
in the areas of instrumentation, communication,
process control and I/O device control. The exam­
ples were limited to short problems that could be
completely described.

Intel's PL/M-80 and 8080 Macro Assembly Lan­
guage were both used in the examples. Instead of
using only assembly language, it was felt that
PL/M-80 should also be shown. Coding in an
algorithmic language is generally more natural than
assembly language and provides these added bene­
fits: reduced program development time and cost,
improved product reliability, and easier program
maintenance.

1-31

While the task of actually configuring the SBC
80/10 for the applications has not been described
in this note, detailed instructions are contained in
the tables of Chapter 4 in theiSBC 80/10 and iSBC
80/l0A Single Board Computer Hardware Refer­
ence Manual.

The Intel iSBC 80/ I OA has been designed to pro­
vide users with subsystems that have processing
power, memory storage, parallel and serial pro­
grammable I/O interfaces. A design goal of the
iSBC 80/10A was to minimize the requirements
for customized interface hardware in user applica­
tions. This application note has demonstrated the
achievement of this goal. The net effect is to
reduce the number of tedious design tasks, thus
allowing the systems designer to concentrate on
systems integration and other problems unique
to his job.

APPENDIX A
iSBC 80/10A SCHEMATICS

1-33

.....
w ...

~

-+ ~5 IQ" '.uJ _1J ~
~ II.IT 5!'>1 ,R:>4- Ae~· __ 0---0 "="

+/oJ. ,.;;, "". Z OK ;~ m_"/~ ." .. ' ,. - -~;;~~ " " 1:.- 11":'''i' - -"" ~= 'S~, ,~f ~ A;2 ~. - ~g~~ !

~
<LQ!
Sffi!

"'"

p, "'0 ".'" Leo .. OA" AD% !
EXT '''''' 'Ifill. ,OK ,oK "S04" j'''' ","7 ~,,, , ... ,:'" ~~i I ~

i~," '" R," :~:::: ::;'e :;.~ m 00 ~g: ~ 'ElJ>e ! ~11 Q'\.~'iJt'5' i;'S< ~ ,~~ ~E: = ~!
.,. '0"' ;\..J"-.,4 l'r.:. ... \~\I--" VPD ~"l.' iilil ::~O\ Rt>C>oto ~gRI' ~

o ss i ,~, ,J , '. -r--n' , 'llif°""'" =
, 1fb- ' ,<C"" .,,""/ ± GO r· . ~ -.. ' " ~
N'" .. 'C. f'" -"', 'yo 8~~~ ... ~ ~ , ,i l~ MB bj'!~' ~ ~::;,~ ,0 ';~! ::: ":'6'1[i; ,.~ ~ • • " ~ • .1&>8 ' c::: ,,0" ~, " ~o. ~,; , """,

""''''- YO ,-'.:i~~ ""', ,---- :,~ I: ~ -z' '.. E ;::?!'54 3 "~'"2. A~"!ll "'~ 'S.4l,'-~ ""'V.I ,," .," '---,,-' 0'- ..' ~,oo., .
R""" MM' 'P4>-=1 '," ;:~ ,:; ~~O' ...":.;;. ~Ii:;;~ ("p .e~" ';;P~"'. ": ° 'i;,",;'~t== ~~ l L-t-- 'i!.D::" t:Ml

10

1>1 r{~RoI>;jfAc~ 9 ~~bll (itTr Jt~" ,,~' ",';,," ~ : ~ ~ ~ ~ ~~E
10ROYoN! _ '0 '0' '" ,.,00 1 ".,. "";4'-" l= ,,~ .. '0 ',,' "OR7'

PRO" OOYO"/ ---" '" • "'" ~ A I-- :~ ,3D ".I- ,i~ , :~ oc,' ~," '" .. ,
RAM ROYO"/ " "Sao ","00 ,.""" ~ , "" • 00'''3 ~ ~ 5 --~JA'8. \l BuS ~ "'::I. til "'-l '~ 00", !:lIZ ;~ 49 AORbl I

"' """'0 ",,$" '4,,,",, ' .;::. ., 9 .,0 b "

'>3 ,OK I, '7 ,---- ""ocE rO' ."~, = At"''' ~ ~4_ i I ,. 04 --.m;- 0., -, , 4' 'ORA>

"'1'1 r~' "' .' " ;" -"'
,4.0<0. '~" ~~' ", ~~",,,,, ~ ,~; -:~ :' AORCO 14S00 ,A4b I I$V _~4b ';1L ~e"",, ..--L" ~, """'~ , , ~'. 'b AO"O'

".... ~ ',: ",,-01':.0 ~ " E.': .: "'" - ~ - --~
c~~Q 3 ,,';, r..

~ ~~'-t------~

~~ ~
"" c..'!> r

--~ f at ,.,
_-----d-oi ,

O TA v
M'i':.DCI
Mw'C.1
~02.C/
1:0....-..Jej
':>TATu:::,~t~""'"
MEME:./!I ZLMo
AtN MfMWI

~orE5~ uULE~S O""HE2.WI~E s~ec;"'IEo) ~CRI ~

~'i~~~~ t. THIS DOCUMENT REVLECTS ARTWORK. REV~D.~
~E515TOQ VALUES ARE IN OHMS 1/4W!. Sr.. •

3. CC.PA.(.lTOR VALUES o.RE: IN MIC.ROFARAOS 15V lOra 0

4. OI>J 2"1 AND J"2.,E.VEN P'r-.l~ ARE G~"-JCl.
@:::> A3 'fl.lRU A.1I,21,2:!I-Z(P ARE. 51-l0W~~FOR

CLARITY, ACTUAL COMPOI'>JENTS""'t..RE
CU5"TOMER INSTALLED.

@!:::> A4-1, 42.,14- MA'-I & '5Uf!6TITUTED INliH
A "'1q.LSL3~.

" "

a."c ~

16fl.ow/~
!!Iousy'/
CCL~I (~.'Z.HoV.H~)
ec.LKo/ (9.2.I!40MI-I1.)

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

c:"
CJ1

:{U .'I,ldllllllll .,rllIllllll •. TI,IIIIIII.;m11 IIII r= ""'MEM"'~

(ACRI:l ___ _

7ZJll ~~E~;----
37...£;.L AO"«f _____ •

t'~:~~" T2o.L ";"l,-SCO •

~2._1
AD",.D~X)'!:..J

II
~ I ' :tic i"---

~ ~IO~~
~ 1IOe

"l "'1 rob,14
I '2.,.D 811IA·4-

, I,O::!:c!. ~
.::::£ C£

~o.n

Ulli~~§~~~.l i :,: ,~ ., "" :::[.1::>.;
00 s,,,,,",,

, tl A~

~ CE~

I111111111 cCC.ooal

•~~' F f; :ttll'Z

n I" .- .-5. 5 ~~

-, A~ :rIo., '4
"l0081\\A.-'\­
""w"0fj

.'0 tt CE

~ 'lr ~::~,; DIM}~" n 4 !:>~
'S 5 I}o~ z

11Emiffi~' ",9; U04 0:; D""~
,: ~D~""'-4
IC'l U:: cr

LOC ~FiZ'G

Dr~~
OMj

5
:;'_,_4'520
~c.. e~ 'RAM'2DY'"I / ~ '5"Ze..&

/4500

"~

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

~ ~R!
lJ~9

iL~ ~JZk' ,'!I L.OC tiD , LOC. .q1ZlZ dr °:1.0- ~r-8''''0;~ ~ ;_-8?08:~ ~!~~~ ~~~J~ "----{, '~ ~a.5(O,

~ ~5 0;:7 '"1 "
~ e. 08"7

~c:.~ ~C~

.~,

R" [§>

~
{D"~

'=" I~
ADIaE:

II:: ::,ZO,!>

I ~ '~oi>----

~c'OOI,r~ S:: 10 ... ~~ _ 3

" '-'-{E> "<t 3~ ~E2: IlP3
-'41.:~OC: ~~ 11(. 1

+5V

~ E Io'I'f'bY1N/

~ MEMR/

~ 5 ~_

. A43
B

741.~C4 I
,.rlS04 L!:£E)0 .,.

- --_._-- --- -- - -

: ~J:,kk Il··--~ ... '9_ 1:1 LOC ~ 1'!I:t.1 I.-oc. c.~"

~lr6?OT~ ~r"_ ~ !;>A25 ~,~

~~~r~ ;~!~ ~G <;,1 

, " 
2. .... : oe" :z.~ e 0& 17 

~'Z ,.~ 

~Cfs- '----'" 

D!MU-=O 
~L~ CMiJ 

2," 

L.......!Q OBl. A55 ~~ P.P 
~De3 ~~ 

Dec 

ou e.OA'Ii!P 
~D~ ~~ 

~::~ VMEM C~tV 
L-Y. DB, JJi. 0 

'le. 
1;4LSOO 

""," 

~ 

ME ..... FlO 

--

~ 

j-----!£~~?\ 
~DB3~ ~!~ 

DB';' ~Pz-I._ 
b Del C\!,t3:-i 

~ 
0.", 

P'~MIt'CY\\o.I1 =... 
ADREF ~ 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE DNL Y. 



c:., 
"-./ 

~ A~cigjJ ~~A~ :~':::.l!,, ______________________________________________ ~O~OYI""r ~ 
_ ~C51/ 

I ~CSa! Ii 
I?i> iilAUO RATE , ( P2- 50 

-;z.u{f; 
ADR:G 

~ 

74~~4-
13f'-.....12-

.5V 

~O'5c. 

" TTY IX 

2NZ'90~ 

I I "" 
- --- - --~ DATA SE"T RDY 

All; -ol.?" 

L¥.I4~_tli...., 
,2:,\3, _ I 

I ~ .. :~ 'a U .K ;23 Z<! ,t=:e=)IG. i. __ 
~I 246 

, II 41 ftf~~' :: 2~,t"._u, 
""'2.,2.."11< 

1\1\ :'I 2.41-( ?~~ IN. ~!I "'iZ..o!!.... 

T~ Cl~ /DAT.t. TE.RU'L ROT I It' 
",,",umEO D"A I I " I OBI} 

, I 4 Z 
? " I ~ ~ ~ j" ~ ~ 

co. 
?-~~l 

2.?r<. 

R3 J;' 

~ -1211~ ;~~ ~ ~~~~~ RET 

G.. 
'c"'~7 ". 4? 

~ .oWl 'I 
\ 1>.1 ¢~<'TTL..) 
I ~E~ET 
I CI A02.0 

" ~" 
,W 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 



c:., 
(Xl 

~ "'D~0 
A021 
12~S.ET 
J:oeJ § \ Iowl 
C52.1 
C'51/ T biJ 

~ De., 

PI 

-5" ~ 1,,,,1(.81C24~<'.8~-SV 

I I +W~'-I"' 
.'ZVW

1 

: 59J l,w I,,,,, 
el' 1- r'·' I"':" .01 .1 UF 

C63'" 1 ca { 
"-2. I T .01 

lZAl STATUS '3TI?O".,£ 

l1l;& oa 

, I 
, I 

P1 

?4L-~ 

~ ,-~~~~ D~~~~C:; 
"'" 

AND SCHEMATICS 
CHANGE WITHOUT 
REFERENCE ON L Y. 



~ 

c::. 
CO 

.~v 

"'S:'.Z!.L 1m 55/ :=;~f======:::t00. :az!5! rllT511 r--c'il-<J~F--~--

5ZA!. I~.TO~~K I 

AZI:u T~~~'(~ ,AlKI 

3Ze.t ROM [IlVIUI :==~~~~~t=z~fH 
~IZAM!.DVINI 

'5V_~--' I 

14SOD 

UQTE~~ UlJl£.!IS OlI-lE£,WISE 5PHIFIED: 
1. nus DDC.UMllJT tEJ:U.tT~ AE1"MXK 'tEVA.", 
z. eE.~SiOIZ. VA.LUE..3 AIi!~ III OWMSo.I/4W.±5-". 
~ CAPAC-ITOe VAlUlS A2.," 1r.J M1t2nJ:"A2.A0S.Z~ 
B:> au JI AlIt) .J2 EV9J PIt.J~ AU G2.OUUI::::t.. 
~ A'!io Tl-ttru AlI,ZI,2:' llJe:U 'lID Ae.l SI-IOWU fOf. Cl..ArJiY. 

At.lUAL COMPOUUJTS Ai:l C.l.Jl"TOMt.1:. IlJSTALLE..D. 

~ A.AI,4Z 2'4 NAY &. ~&311'TUTED WIT~ A 'l4LSI~&. 

A •• 

1~~!l4 

.,v 
~p. fBtP 
~ 

14'5.~Z 

~'" _&.4 

~ 

<., 
10K 

'J
05 

~7U1Zrz 

p~~ 

~ 
PI 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 



J,. 
o 

~~Bi 
UB7 

~
£{1l 

~ II 
AD~ 9 

AD" ME.M W/ 
TZM 

{;lDR C 
TZ..c! AOi. 0 

~12E. 

1Z.ru ME.M R./ 

-r:RB 1Zr:u ACe A. 

AOC, 

~ • = . = , 
ArJ GNO 8 AQ 6"10 4f.:.,fJ Gti\,) 

~' ~ ~ mil ~ i m" o I DIlu-
~ .3A40 ~ 3 A:."3 ~ 3A~BA< 
~ ~8IDZ'" ~ ~OOZA. ~ ~Bl02 g! ~ ~Gl ~ ~~ ~ ~~ ~ -====t! 2. 

tt " n ,3 I~ 3 13 3 13 

i~ 
3 A'Z ~~ 

~o 
5 A44 " • C3 

~C2 A41 574L'SOD EI 3205 
4.0.5'3(0 ~ 

- , 
'![ ONO 

~I 8'l 0111 
7 !l A~"l 

~4810l.A.. 
I 5 

~~ ~\Z 
~B "9 

3 13 TI 
III 

~ , ~ , 
A¢ C:JN.O .<1 ~ ~\.lO 

I 
~ ~ 0111 q Z 0111 

~ .0.3/0 3 A~:" 

~ ~B!D2A q ~8ImA. 
-------J 10 ~Io 
~7 1'2. ~~tl\llI'2 ~.B.~ 

~TI 
4A9 

N 3 13 3 13 

" 
3 

~ RPS 
IZK 

+sv 
1,-

~ , ~ q 

t(J GIJD 

~ ~ DIll § 3.,. 

~ Z. DIll 
~ .3A~~ ~r~ 
,~ ~BmA i510lA 

~ ~ OOIZ ~~ o;zII2 

-'===::.E A' ~A~ 
3 13 tT 3 13 tT 

,~ 
4 

EP4 
12K 

.sv 
1,-

P2tS) 

l~= DJf 

eAM eo'< IlIJ/ 
1Zll. 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY, 



~ 

~
¢ 

~" I! 
ADR9 

~
O"-A 

IZQl I: 
AOCE 

+12V +5V 

,-____ J!<7DO ~E>8bCJ i 
7~ 

67~+SV66 
b5nYa~,~1~~-----------c-2B~1~~----------~-o11-~-------------, 

, '.f J; .I ~ .I;!; 
-5Y ..,. • --:-

IlfflllE I 11 11111 ' ,dllill I 1111111' P ~ D~U 

1 
~ 2.AM et)V Ihl/ __________ --j_t-_______________________ ---#-74l~OO :!~l! 

Cl.1 BOAED 

10 74L';}OD ~ 
9'fA:B):B tltEM CMW 

~ 

~ 
M~IIfIJ2/ 914L~g4 

[):43 

,JUMP,,!! TA.BL.E 

211t, 77-78 

2700 76-78 

A2b 

27013 0 -3FF (X)·7FF -BFF ·FF' 

74lS04 
5 f'.. .• r" 

k' F~ VA43 
::::A~~~~: 

T 5 V 3 DB82'''' DO~ Ii o DIo 

~ __ '-'--'''''00 ~o 2 

h~ cs DI~~: S 
1 15 

Ii> 
I 

DB"Z 

peOM eDY llJ/ 

~ 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 



J,. 
N 

"TZru. AI:N lOWI 
~ IORI ==;:::::========'~0~14~OO t 14~~ TOenY 1""1 ~ 

• I "'. m~ ~ 
II I e.A,UD 2ATE UK ,CPZ-5O 

~ 

=11; -----,--., 
I~~ 
~ 4~1 10 

i18l o:::.c. 

:!.~ 

~ 

TXC.LK 

~7 

s. 
p-z.4£D 

EP; 
IH 

,""V 

T" t" ", 

-I-5V 

_13 
,-------1151 1lY IX 

Gl' 
Z\J2'OO 

" II 
~----H-+------4W-k", 11~=========~;;~(3] 2E.E.E\\IE.O OCI.iA. L CIlJ DAlA ~T f:EAtN 

J~ 'l.3fs IW Pi tLEAe TO ~t.JD 

c.HA!:.~15e:.\lO 1~I,q ~ -1'ZV~TT'f"TJt RE1UfkJ 
_ +12\/ ~ [)AcTA CA~2.lE.£ EE:TUffIJ 

W-12V .I>V ~?4'-'\D2 '_'K 
Il\ 'G:> 'Z fUT'e>J/ ~ 

7~,1l'f ~H "? 15 

TTV~~F9-____ J-7_.'_K ________ ~~~tt~~~~-t~'~.~==~=i~: I ~ E£(ENE UKI TTY R X en 
I 

TIUOOs~m£O~AQQ---------------~~~L+~~ 

T",a..K{[)A1A 1l12M'l ttr1~, i?,---------------~_j)-"'_+-----1 
2E£lTO~po---------------~-j)-¥'-+-----1 

GIJO~ 

1Zl>! 
1ZA! 
1ZA! = 

lOW I 
!Zi'l(TlL) 
1ZE~l 
AC2.Q) 

.. 
1.7\0{ 

<5 
?rK. 

m-., 
47,1/2'11 J3 
~ mTT)' £0 r:.DUl120l 

0.1 
?1I2'301 

+5V 

_1'ZV~Tll' 'Rt>c.ot..ll~Cl. EEl 

." 41,ZW 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 



..... 
~ 

lZD! ADIi?;O 
1Z1l! A.D~I 
TZA! IU.3ET 

=i ru " J1 13:> 
~---~ 

iili ~TATU~ sn.OBE 
~ 01/1(80-"0) 

R'~ 40 0 41 522" RPI ~ +5V~4Z AI -tsvfo[f". 
" ry I~ IK ,: JI 13:> 

~ 
l!!J 
1 1 
G5J 

~ 
II 
Fl 
mJ 
I I 
l3SJ 

II 
mil 
I I 
lZ!!l 
1 I 

+5V 

~ 

.,. 
'>OK 

+5V 

<25 
O>K 

I-< PZ·"" 

Q' 
ZU 3~04 

A, 

'" 

II 1-
All I I 
§> I"~'----!I~ 

L-______ ~~ ~3~--~rn 

~ 
IUT5':;./~ 

T~ ~~,." 
f~4 ~ r -' 2 ~--------.----------~~E O'0'-rK~C~~ :;!--- 1'Z..C..:a. I 

Are I II 
[jb.Q.l=v;.J 

l'-lT[J ,74LWO 

-------------------------------4~~ 

INFORMATION AND SCHEMATICS 
SUBJECT TO CHANGE WITHOUT 
NOTICE, FOR REFERENCE ONLY. 





inter 

© Intel Corporation, 1979. 

APPLICATION 
NOTE 

1-45 

AP-28A 

January 1979 

9800587B 



Intel® MUL TIBUSTM 
Interfacing 

1-46 

Contents 

I. INTRODUCTION ................... 1-47 

II. MULTIBUS™ SYSTEM BUS 
DESCRIPTION ...................... 1-47 

Overview ............................ 1-47 
MUL TIBUS™ Signal Descriptions ...... 1-47 
Operating Characteristics .............. 1-51 
MUL TIBUS™ Slave Interface Circuit 

Elements .......................... 1-60 

III. MULTIBUS™ SLAVE DESIGN 
EXAMPLE .......................... 1-62 

Functional/Programming 
Characteristics ..................... 1-62 

Theory of Operation .................. 1-63 

IV. SUMMARy ......................... 1-66 

APPENDIX A - MULTIBUS™ PIN 
ASSIGNMENTS ......................... 1-67 

APPENDIX B - BUS TIMING 
SPECIFICATIONS ...................... 1-69 

APPENDIX C - BUS DRIVERS, 
RECEIVERS, AND TERMINATIONS ...... 1-71 

APPENDIX D - BUS POWER SUPPLY 
SPECIFICATIONS ...................... 1-73 

APPENDIX E - MECHANICAL 
SPECIFICATIONS ...................... 1·74 

APPENDIX F - MULTmUSTM SLAVE 
DESIGN EXAMPLE SCHEMATIC 
8/16·BIT VERSION ...................... 1·75 

APPENDIX G - MULTIBUS™ SLAVE 
DESIGN EXAMPLE SCHEMATIC 
8-BITVERSION ......................... 1·77 



I. INTRODUCTION 

A significant measure of the power and flexibility 
of the Intel OEM Computer Product Line can be 
attributed to the design of the Intel MULTIBUS 
system bus. The bus structure provides a common 
element for communication between a wide 
variety of system modules which include: Single 
Board Computers, memory, digital, and analog 
I/O expansion boards, and peripheral controllers. 

The purpose of this application note is to help you 
develop a working knowledge of the Intel MULTI­
BUS specification. This knowledge is essential for 
configuring a system containing multiple mod­
ules. Another purpose is to provide you with the 
information necessary to design a bus interface for 
a slave module. One of the tools that will be used to 
achieve this goal is the complete description of a 
MULTIBUS slave design example. Other portions 
of this application note provide an in depth 
examination of the bus signals, operating charac­
teristics, and bus interface circuits. 

This application note was originally written in 
1977. Since 1977, the MULTIBUS specification 
has been significantly expanded to cover opera­
tion with both 8 and 16-bit system modules and 
with an auxiliary power bus. This application 
note now contains information on these new 
MULTIBUS specification features. 

In addition, a detailed MULTIBUS specification 
has also been published which provides the user 
with further information concerning MULTI BUS 
interfacing. The MULTIBUS specification and 
other useful documents are listed in the overleaf of 
this note under Related Intel Publications. 

II. MULTIBUSTM SYSTEM BUS 
DESCRIPTION 

Overview 

The Intel MULTIBUS signal lines can be grouped 
in the following categories: 20 address lines, 16 
bidirectional data lines, 8 multilevel interrupt 
lines, and several bus control, timing and power 
supply lines. The address and data lines are 
driven by three-state devices, while the interrupt 
and some other control lines are open-collector 
driven. 

Modules that use the MULTIBUS system bus have 
a master-slave relationship. A bus master module 
can drive the command and address lines: it can 
control the bus. A Single Board Computer is an 
example of a bus master. A bus slave cannot 

1-47 

control the bus. Memory and I/O expansion 
boards are examples of bus slaves. The MULTI­
BUS architecture provides for both 8 and 16-bit 
bus masters and slaves. 

Notice that a system may have a number of bus 
masters. Bus arbitration results when more than 
one master requests control of the bus at the same 
time. A bus clock is usually provided by one of the 
bus masters and may be derived independently 
from the processor clock. The bus clock provides a 
timing reference for resolving bus contention 
among multiple requests from bus masters. For 
example, a processor and a DMA (direct memory 
access) module may both request control of the 
bus. This feature allows different speed masters to 
share resources on the same bus. Actual transfers 
via the bus, however, proceed asynchronously 
with respect to the bus clock. Thus, the transfer 
speed is dependent on the transmitting and 
receiving devices only. The bus design prevents 
slow master modules from being handicapped in 
their attempts to gain control of the bus, but does 
not restrict the speed at which faster modules can 
transfer data via the same bus. Once a bus request 
is granted, single or multiple read/write transfers 
can proceed. The most obvious applications for the 
master-slave capabilities of the bus are multi­
processor configurations and high-speed direct­
memory-access (DMA) operations. However, the 
master-slave capabilities of the bus are by no 
means limited to these two applications. 

MULTIBUS™ Signal Descriptions 

This section defines the signal lines that comprise 
the Intel MULTIBUS system bus. These signals 
are contained on either the PI or P2 connector of 
boards compatible with the MULTIBUS specifi­
cation. The PI signal lines contain the address, 
data, bus control, bus exchange, interrupt and 
power supply lines. The P2 signal lines contain the 
optional auxiliary signal lines. Most signals on 
the bus are active-low. For example, a low level on 
a control signal on the bus indicates active, while a 
low level on an address or data signal on the bus 
represents logic "I" value. 

NOTE 

In this application note, a signal will be 
designated active-low by placing a slash (I) 
after the mnemonic for the signal. 

AppendiX A contains a pin assignment list of the 
following signals: 



MUL TIBUS PI Signal Lines -

Initialization Signal Line 

INITI 

Initialization signal; resets the entire system to 
a known internal state. INIT I may be driven by 
one of the bus masters or by an external source 
such as a front panel reset switch. 

Address and Inhibit Lines 

ADROI - ADR131 

20 address lines; used to transmit the address of 
the memory location or 110 port to be accessed. 
The lines are labeled ADROI through ADR9/, 
ADRAI through ADRFI and ADR101 through 
ADR13/. ADR131 is the most significant bit. 
8-bit masters use 16 address lines (ADROI -
ADRF I) for memory addressing and 8 address 
lines (ADROI - ADR7 I) for 110 port selection. 
16·bit masters use all twenty address lines for 
memory addressing and 12 address lines 
(ADROI . ADRB/) for 110 port selection. Thus, 
8-bit masters may address 64K bytes of memory 
and 256 110 devices while 16-bit masters may 
address 1 megabyte of memory and 4096 110 
devices. (The 8086 CPU actually permits 16 
address bits to be used to specify 110 devices, 
the MULTIBUS specification, however, states 
that only the low order 12 address bits can be 
used to specify 110 ports.) In a 16·bit system, 
the ADROI line is used to indicate whether a low 
(even) byte or a high (odd) byte of memory or 
110 space is being accessed in a word oriented 
memory or 110 device. 

BHENI 

Byte High Enable; the address control line 
which is used to specify that data will be trans­
ferred on the high byte (DAT81 - DATF I) of the 
MULTIBUS data lines. With current iSBC 
boards, this signal effectively specifies that a 
word (two byte) transfer is to be performed. This 
signal is used only in systems which incorporate 
sixteen bit memory or 110 modules. 

INH11 

Inhibit RAM signal; prevents RAM memory 
devices from responding to the memory address 
on the system address bus. INH11 effectively 
allows ROM memory devices to override RAM 
devices when ROM and RAM memory are 

1-48 

assigned the same memory addresses. INHlI 
may also be used to allow memory mapped 110 
devices to override RAM memory. 

INH21 

Inhibit ROM signal; prevents ROM memory 
devices from responding to the memory address 
on the system address bus. INH21 effectively 
allows auxiliary ROM (e.g., a bootstrap pro­
gram) to override ROM devices when ROM and 
auxiliary ROM memory are assigned the same 
memory addresses. INH21 may also be used to 
allow memory mapped 110 devices to override 
ROM memory. 

Data Lines 

DATOI - DATFI 

16 bidirectional data lines; used to transmit or 
receive information to or from a memory loca­
tion or 110 port. DATF I being the most signifi­
cant bit. In 8-bit systems, only lines DATOI -
DAT7I are used (DAT7I being the most signi­
ficant bit). In 16-bit systems, either 8 or 16 lines 
may be used for data transmission. 

Bus Priority Resolution Lines 

BCLKI 

Bus clock; the negative edge (high to low) of 
BCLKI is used to synchronize bus priority re­
solution circuits. BCLKI is asynchronous to the 
CPU clock. It has a 100 ns minimum period and 
a 35% to 65% duty cycle. BCLKI may be slowed, 
stopped, or single stepped for debugging. 

CCLKI 

Constant clock; a bus signal which provides a 
clock signal of constant frequency for unspeci­
fied general use by modules on the system bus. 
CCLKI has a minimum period of 100 ns and a 
35% to 65% duty cycle. 

BPRNI 

Bus priority in signal; indicates to a particular 
master module that no higher priority module 
is requesting use of the system bus. BPRNI is 
synchronized with BCLKI. This signal is not 
bused on the backplane. 



BPRO/ 

Bus priority out signal; used with serial (daisy 
chain) bus priority resolution schemes. BPRO/ 
is passed to the BPRN / input of the master 
module with the next lower bus priority. BPRO/ 
is synchronized with BCLK/. This signal is not 
bused on the backplane. 

BUSY/ 

Bus busy signal; an open collector line driven 
by the bus master currently in control to indicate 
that the bus is currently in use. BUSY/prevents 
all other master modules from gaining control 
of the bus. BUSY/is synchronized with BCLK/. 

BREQ/ 

Bus request signal; used with a parallel bus 
priority network to indicate that a particular 
master module requires use of the bus for one 
or more data transfers. BREQ/ is synchronized 
with BCLK/. This signal is not bused on the 
backplane. 

CBRQ/ 

Common bus request; an open-collector line 
which is driven by all potential bus masters 
and is used to inform the current bus master 
that another master wishes to use the bus. If 
CBRQ/ is high, it indicates to the bus master 
that no other master is requesting the bus, and 
therefore, the present bus master can retain the 
bus. This saves the bus exchange overhead for 
the current master. 

Information Transfer Protocol Lines 

A bus master provides separate read/write 
command signals for memory and I/O devices: 
MRDC/, MWTC/, IORC/ and IOWC/, as ex­
plained below. When a read/write command is 
active, the address signals must be stabilized at all 
slaves on the bus. For this reason, the protocol 
requires that a bus master must issue address 
signals (and data signals for a write operation) at 
least 50 ns ahead of issuing a read/write command 
to the bus, initiating the data transfer. The bus 
master must keep address signals unchanged until 
at least 50 ns after the read/write command is 
turned off, terminating the data transfer. 

A bus slave must provide an acknowledge signal to 

1-49 

the bus master in response to a read or write 
command signal. 

MRDC/ 

Memory read command; indicates that the 
address of a memory location has been placed 
on the system address lines and specifies that 
the contents (8 or 16 bits) of the addressed 
location are to be read and placed on the system 
data bus. MRDC/ is asynchronous with respect 
to BCLK/. 

MWTC/ 

Memory write command; indicates that the 
address of a memory location has been placed 
on the system address lines and that data (8 or 
16 bits) has been placed on the system data bus. 
MWTC/ specifies that the data is to be written 
into the addressed memory location. MWTC/ is 
asynchronous with respect to BCLK/. 

IORC/ 

I/O read command; indicates that the address 
of an input port has been placed on the system 
address bus and that the data (8 or 16 bits) at 
that input port is to be read and placed on the 
system data bus. 10RC/ is asynchronous with 
respect to BCLK/. 

IOWC/ 

I/O write command; indicates that the address 
of an output port has been placed on the system 
address bus and that the contents of the system 
data bus (8 or 16 bits) are to be output to the 
address port. IOWC/ is asynchronous with 
respect to BCLK/. 

XACK/ 

Transfer acknowledge signal; the required 
response of a slave board which indicates that 
the specified read/write operation has been 
completed. That is, data has been placed on, or 
accepted from, the system data bus lines. 
XACK/ is asynchronous with respect to BCLK/. 

Asynchronous Interrupt Lines 

INTO/ - INT7/ 

8 Multi-level, parallel interrupt request lines; 



used with a parallel interrupt resolution net­
work. INTOI has the highest priority, while 
INT7 I has lowest priority. Interrupt lines 
should be driven with open collector drivers. 

INTAI 

Interrupt acknowledge; an interrupt acknowl­
edge line (INTA/), driven by the bus master, 
requests the transfer of interrupt information 
onto the bus from slave priority interrupt con­
trollers (8259s or 8259As). The specific informa­
tion timed onto the bus depends upon the 
implementation of the interrupt scheme. In 
general, the leading edge of INT AI indicates 
that the address bus is active while the trailing 
edge indicates that data is present on the data 
lines. . 

MUL TIBUS P2 Signal Lines - The signals 
contained on the MULTIBUS P2 auxiliary con­
nector are used primarily by optional power 
back-up circuitry for memory protection. P2 
signals are not bused on the backplane, and 
therefore, require a separate connector for each 
board using the P2 signals. Present iSBC boards 
have a slot in the card edge and should be used 
with a keyed P2 edge connector. Use of the P2 
signal lines is optional. 

ACLO 

AC Low; this signal generated by the power 
supply goes high when the AC line voltage 
drops below a certain voltage (e.g., 103v AC in 
115v AC line voltage systems) indicating D.C. 
power will fail in 3 msec. ACLO goes low when 
all D.C. voltages return to approximately 95% 
of the regulated value. This line must be pulled 
up by the optional standby power source, if one 
is used. 

PFINI 

Power fail interrupt; this signal interrupts the 
processor when a power failure occurs, it is 
driven by external power fail circuitry. 

PFSNI 

Power {ail sense; this line is the output of a 
latch which indicates that a power failure has 
occurred. It is reset by PFSR/. The power fail 

1-50 

sense latch is part of external power fail cir­
cuitry and must be powered by the standby 
power source. 

PFSRI 

Power fail sense reset; this line is used to reset 
the power fail sense latch (PFSN I). 

MPROI 

Memory protect; prevents memory operation 
during period of uncertain DC power, by in­
hibiting memory requests. MPROI is driven 
by external power fail circuitry. 

ALE 

Address latch enable; generated by the CPU 
(8085 or 8086) to provide an auxiliary address 
latch. 

HALT! 

Halt; indicates that the master CPU is halted. 

AUX RESET! 

Auxiliary Reset; this externally generated sig­
nal initiates a power-up sequence. 

WAIT! 

Bus master wait state; this signal indicates 
that the processor is in a wait state. 

Reserved - Several PI and P2 connector bus 
pins are unused. However, they should be regard­
ed as reserved for dedicated use in future Intel 
products. 

Power Supplies - The power supply bus pins 
are detailed in Appendix A which contains the 
pin assignment of signals on the MULTIBUS 
backplane. 

It is the designer's responsibility to provide 
adequate bulk decoupling on the board to avoid 
current surges on the power supply lines. It is also 
recommended that you provide high frequency 



decoupling for the logic on your board. Values of 
22uF for +5v and + 12v pins and 10uF for -5v and 
-12v pins are typical on iSBC boards. 

Operating Characteristics 

Beyond the definition of the MULTIBUS signals 
themselves, it is important to examine the 
operating characteristics of the bus. The AC 
requirements outline the timing of the bus signals 
and in particular, define the relationships between 
the various bus signals. On the other hand, the DC 
requirements specify the bus driver character­
istics, maximum bus loading per board, and the 
pull-up/down resistors. 

The AC requirements are best presented by a 
discussion of the relevant timing diagrams. 
Appendix B contains a list of the MULTIBUS 
timing specifications. The following sections will 
discuss data transfers, inhibit operations, inter­
rupt operations, MULTIBUS multi-master opera­
tion and power fail considerations. 

Data Transfers - Data transfers on the MULTI­
BUS system bus occur with a maximum band­
width of 5 MHz for single or multiple read/write 
transfers. Due to bus arbitration and memory 
access time, a typical maximum transfer rate is 
often on the order of 2 MHz. 

Read Data 

Figure 1 shows the read operation AC timing 
diagram. The address must be stable (tAS) for a 
minimum of 50 ns before command (IORC/ or 
MRDC/). This time is typically used by the bus 
interface to decode the address and thus provide 
the required device selects. The device selects 
establish the data paths on the user system in 
anticipation of the strobe signal (command) 
which will follow. The minimum command pulse 
width is 100 ns. The address must remain stable 
for at least 50 ns following the command (tAH). 
Valid data should not be driven onto the bus prior 
to command, and must not be removed until the 
command is cleared. The XACK/ signal, which is 
a response indicating the specified read/write 
operation has been completed, must coincide or 
follow both the read access and valid data (tDXL). 
XACK/ must be held until the command is cleared 
(tXAH)· 

1-51 

+--ICMO--+ 

Figure 1. Read AC Timing 

Write Data 

The write operation AC timing diagram is shown 
in Figure 2. During a write data transfer, valid 
data must be presented simultaneously with a 
stable address. Thus, the write data setup time 
(tDS) has the same requirement as the address 
setup time (tAS). The requirement for stable data 
both before and after command (IOWC/ or 
MWTC/) enables the bus interface circuitry to 
latch data on either the leading or trailing edge of 
command. 

i'CMD I 1DONS MIN-----
lowe! 

~ V ., 
MWTCI 

SONS MIN .... I 'AS ~ -+-/ 'AH j.-SONS MIN 

ADDRESS X X 
MASTER 

STABLE ADDRESS TO LINES SLAVE 

SONS MIN-./ 'os /.- -+fOHW~50NS MIN 

DATA X STABLE X LINES WRITE DATA 

f.- 'XACK ~ j.- 'XAH ..... ONSMIN 65NS 
MAX 

XACK/ 

Figure 2. Write AC Timing 

Data Byte Swapping in 16-bit Systems 

A 16-bit master may transfer data on the MULTI­
BUS data lines using 8-bit or 16-bit paths 
depending on whether a byte or word (2 byte) 
operation has been specified. (A word transfer 
specified with an odd 110 or memory address will 
actually be executed as two single byte transfers.) 
An 8-bit master may only perform byte transfers 
on the MULTIBUS data lines DATO/ - DAT7I. 

In order to maintain compatibility with older 
8-bit masters and slaves, a byte swapping buffer 
is included in all new 16-bit masters and 16-bit 
slaves. In the iSBC product line, all byte transfers 
will take place on the low 8 data lines DATO/ -
DAT7 I. Figure 3 contains a example of 8/16-bit 



data driver logic for 16-bit master and slave 
systems. In the 8/16-bit system, there are three 
sets of buffers; the lower byte buffer which 
accesses DATOI - DAT7I, the upper byte buffer 
which accesses DAT81 - DATF/, and the swap 
byte buffer which accesses the MULTIBUS data 
lines DATOI - DAT7I and transfers the data 
to/from the on-board data bus lines D8 - DF. 

Figure 4 summarizes the 8 and 16-bit data paths 
used for three types of MULTIBUS transfers. Two 
signals control the data transfers. 

Byte High Enable (BHEN I) active indicates that 
the bus is operating in sixteen bit mode, and 
Address Bit 0 (ADRO/) defines an even or odd byte 
transfer address. 

On the first type of transfer, BHEN I is inactive, 
and ADROI is inactive indicating the transfer of 
an even eight bit byte. The transfer takes place 
across data lines DATOI - DAT7I. 

On the second type of transfer, BHEN I is inactive, 
and ADROI is active indicating the transfer of a 
high (odd) byte. On this type oftransfer, the odd 
(high) byte is transferred through the Swap Byte 
Buffer to DATOI - DAT7I. This makes eight bit 
and sixteen bit systems compatible. 

16-BIT DEVICE MULTIBUS BHENI 

DATO/- DAT7I 

H 

DATBI· CATFI 

DATO/- DAT71 

H 

DATBI· CATFI 

DATO/- DAT71 

L 

DATBJ - CATF/ 

BUFFERED 
BHENI 

AORO 

USER BUS 

00.07.4-----.. 1 

DIRECTION ----+----; 
SWAP 
BYTE 
BUFFER 

..._-+!A 

T 
DATOI 

CAlF! 

DATB/·CATF! 

UPPER 
BYTE 
BUFFER 

AEN/---+-.... 

ADROI 

H 

L 

H 

Figure 3. 8/16-Blt Data Drivers 

MULTIBUS 
TRANSFER 
DATA PATH 

B-BIT. 
DATOI - DAT71 

8-BIT. 
DATOI - DAT7 I 

16-BIT. 
DATOI - DATFI 

DEVICE 
BYTE 

TRANSFERRED 

EVEN 

ODD 

EVEN 
AND 
ODD 

Figure 4. 811&'Bit Device Transfer Operation 

1-52 



The third type of transfer is a 16 bit (word) 
transfer. This is indicated by BHEN/ being 
active, and ADRO/ being inactive. On this type of 
transfer, the low (even) byte is transferred on 
DATO/ - DAT7I and the high (odd) byte is 
transferred on DATB/ - DATF/. 
Note that the condition when both BHEN/ and 
ADRO/ are active is not used with present iSBC 
boards. This condition could be used to transfer a 
high odd byte of data on DAT8/ - DATF/, thus 
eliminating the need for the swap byte buffer. 
However, this is not a recommended transfer type, 
because it eliminates the capability of communi­
cating with 8-bit modules. 

Inhibit Operations - Bus inhibit operations are 
required by certain bootstrap and memory mapped 
I/O configurations. The purpose of the inhibit 
operation is to allow a combination of RAM, ROM, 
or memory mapped I/O to occupy the same 
memory address space. In the case of a bootstrap, 
it may be desirable to have both ROM and RAM 
memory occupy the same address space, selecting 
ROM instead of RAM for low order memory only 
when the system is reset. A system designed to use 

memory mapped I/O, which has actual memory 
occupying the memory mapped I/O address 
space, may need to inhibit RAM or ROM memory 
to perform its functions. 
There are two essential requirements for a success­
ful inhibit operation. The first is that the inhibit 
signal must be asserted as soon as possible, within 
a maximum of 100 ns (tCI), after stable address. 
The second requirement for a successful inhibit 
operationis that the acknowledge must be delayed 
(tXACKB) to allow the inhibited slave to ter­
minate any irreversible timing operations in­
itiated by detection of a valid command prior to its 
inhibit. 

This situation may arise because a command can 
be asserted within 50 ns after stable address (tAS) 
and yet inhibit is not required until 100 ns (tID) 
after stable address. The acknowledge delay time 
(tXACKB) is a function of the cycle time of the 
inhibited slave memory. Inhibiting the iSBC 016 
RAM board, for example, requires a minimum of 
1.5 usec. Less time is typically needed to inhibit 
other memory modules. For example, the iSBC 104 
board requires 475 ns. 
Figure 5 depicts a situation in which both RAM 

ADDRESS! R, _________ ----..I 
I' r---- READ DATA 

SLAVE A 
(RAMI 

SLAVE 8 
(PROMI 

DATA! fl'--i -----------'1 
COMMAND/ 

I 1 ! 
DRIVER I I 1 ENABLE! 

I 
~I 

XACK! ~ I 1--\ I RAM XACK IF NOT INHIBITED I f--------..J 
'XACKA-·I 

SELL~~~~ \ II'----_~~I 
DRIVER 

ENABLE! 

XACKI 

'\ 
\ 1--_=-,XACK....:.,-B-\---~-I ------I 
\1 V I .----

INH1/ \ • tiD j r 
--.;..~YL....--__ ------'! 

LOCAL 
SELECT! 

Figure 5. Inhibit Timing 

1-53 



and PROM memory have the same memory 
addresses. In this case, PROM inhibits RAM, 
producing the effect of PROM overriding RAM. 
After address is stable, local selects are generated 
·for both the PROM and the RAM. The PROM local 
select produces the INHII signal which then 
removes the RAM local select and its driver enable. 
Because the slave RAM has been inhibited after it 
had already begun its cycle, the PROM XACKI 
must be delayed (tXACKB) until after the latest 
possible acknowledgement from the RAM 
(tXACKA)· 

Interrupt Operations - The MULTIBUS inter­
rupt lines INTOI - INT71 are used by a MULTI­
BUS master to receive interrupts from bus slaves, 
other bus masters or external logic such as power 
fail logic. A bus master may also contain internal 
interrupt sources which do not require the bus 
interrupt lines to interrupt the master. There are 
two interrupt implementation schemes used by 
bus interrupts, Non Bus Vectored Interrupts and 
Bus Vectored Interrupts. N on Bus Vectored 
Interrupts do not convey interrupt vector address 
information on the bus. Bus Vectored Interrupts 
are interrupts from slave Priority Interrupt Con­
trollers (PICs) which do convey interrupt vector 

BUS MASTER 

address information on the bus. 

Non Bus Vectored Interrupts 

N on Bus Vectored Interrupts are those interrupts 
whose interrupt vector address is generated by the 
bus master and do not require the MULTIBUS 
address lines for transfer of the interrupt vector 
address. The interrupt vector address is generated 
by the interrupt controller on the master and 
transferred to the processor over the local bus. The 
source of the interrupt can be on the master module 
or on other bus modules, in which case the bus 
modules use the MULTI BUS interrupt request 
lines (lNTOI - INT7 I) to generate their interrupt 
requests to the bus master. When an interrupt 
req uest line is activated, the bus master performs it 
own interrupt operation and processes the inter­
rupt. Figure 6 shows an example of Non Bus 
Vectored Interrupt implementation. 

Bus Vectored Interrupts 

Bus Vectored Interrupts (Figure 7) are those inter­
ruptswhich transfer the interrupt vector address 
along the MULTIBUS address lines from the 
slave to the bus master using the INTAI command 
signal for synchronization. 

REMOVED BY BUS 
MASTER COMMAND 

I MASTER CPU I 
LI _______________ T_O_SL_AV_E_~~I-------INTX! 

INTAI iNTAI DATA 
BUS 

I PROGRAMMABLE INTERRUPT , I 
CONTROLLER 

7 6 5 <l 3 2 1 0 
FROM 

MASTER 

BUS SLAVE 

INTERRUPT INTERRUPT 

~ RE~~~ST t-
FLOP 

R 

IORC; J 
OR 

lowel 

1-

FROM 
MASTER 

BUS SLAVE 

INTERRUPT 

~ 

IORC; 
OR 

lowel 

INTERRUPT 
REQUEST 

R 

i 

FLlP- t­
FLOP 

1-

~ 
INTOI ------+-''--------""*-+-+-+----t------oI--+--++----r-oI---"j ~ .5 

</J 
W 

INT1/ --------'----------~_t_-+----+_-----+--t-+----r-~-

~ .5 Z 
::; 

INT2I ------------------4.-+----t--------~+----r-~-

~ 
.5 

INTJ/ -------------------4----t---------~----r-oI---

~ +5 INnl ______________________ ~ ____________ '--~_ 

Figure 6. Non Bus Vectored Interrupt Implementation 

1-54 



US MASTER BUS SLAVE 

INTERRUPT 
STROBE 

MASTER CPU . INTERRUPT 
(IORCI REQUEST 

FROM OR FLlP-
MASTER lowell 

R 
FLOP • 

DATA INTRI INTAI 
BUS 

INT 7 6 5 4 3 2 1 0 

PROGRAMMABLE INTERRUPT PROGRAMMABLE INTERRUPT 
CONTROLLER CONTROLLER 

DATO/-71 O~7 INT DATO/-71 

- - - - ~ -- -- -
INTERRUPT ACKNOWLEDGE (INTA/) 

INTERRUPT REOUEST (INTx!) 

INTERRUPi CODE (ADR81 - ADRA/) 

INTERRUPT VECTOR ADDRESS (DATA BUS) 

MUL TIBUS TIMING 

INTRI ~_, ----------------~~ 
INTAI ~ lL....-_------J 
ADR8/A ________________________ __JX~ ______ 'N_T_R_X_A_DD_R_E_SS ____ __J)(~ ________________________ _ 

DATO/-7 ______________________________________ -J)( RESTART, )(~ ________________________ __ 

XACKI u 
BUS LOCKI * -----------,\ / 

'-_____ ----J NON MULTIBUS SIGNAL 

Figure 7. Bus Vectored Interrupt Logic (With 2 INTAI Timing Diagram) 

When an interrupt request from the MULTIBUS 
interrupt lines INTO/ . INT7/ occurs, the interrupt 
control logic on the bus master interrupts its 
processor. The processor on the bus master 
generates an INTA/ command which freezes the 
state of the interrupt logic on the MULTIBUS 
slaves for priority resolution. The bus master also 
locks (retains the bus between bus cycles) the 
MULTIBUS control lines to guarantee itself 
consecutive bus cycles. After the first INTA/ 
command, the bus master's interrupt control logic 
puts an interrupt code on to the MULTIBUS 
address lines ADRS/ - ADRA/. The interrupt code 
is the address of the highest priority active inter· 
rupt request line. At this point in the Bus Vectored 

1·55 

Interrupt procedure, two different sequences could 
take place. The difference occurs, because the 
MUL TIBUS specification can support masters 
which generate one additional INTA/ (SOS6 
masters) or two additional INTA/s (SOSOA and 
SOS5 masters). 

If the bus master generates one additional INTA/, 
this second INTA/ causes the bus slave interrupt 
control logic to transmit an interrupt vector S·bit 
pointer on the MULTIBUS data lines. The vector 
pointer is used by the bus master to determine the 
memory address of the interrupt service routine. 

If the bus master generates two additional 
INTA/s, these two INTA/ commands allow the 



bus slave to put a two byte interrupt vector address 
on to the MULTIBUS data lines (one byte for each 
INT AI). The interrupt vector address is used by 
the bus master to service the interrupt. 

The MULTIBUS specification provides for only 
one type of Bus Vectored Interrupt operation in a 
given system. Slave boards which have an 8259 
interrupt controller are only capable of 3 INT AI 
operation (2 additional INTA/s after the first 
INTA/). Slave boards with the 8259A interrupt 
controller are capable of either 2 INTAI or 3 
INTAI operation. All slave boards in a given 
system must operate in the same way (2 IN TAl s or 
3 INTA/s) if Bus Vectored Interrupts are to be 
used. However, the MULTIBUS specification 
does provide for Bus Vectored Interrupts and Non 
Bus Vectored Interrupts in the same system. 

MULTIBUS Multi-Master Operation - The 
MULTIBUS system bus can accommodate several 
bus masters on the same system, each one taking 
control of the bus as it needs to affect data trans­
fers. The bus masters request bus control through 
a bus exchange sequence. 

Two bus exchange priority resolution techniques 
are discussed, a serial technique and a parallel 
technique. Figures 8 and 9 illustrate these two 
techniques. The bus exchange operation dis­
cussed later is the same for both techniques. 

Serial Priority Technique 

Serial priority resolution is accomplished with a 
daisy chain technique (see Figure 8). The priority 
input (BPRN/) of the highest priority master is 
tied to ground. The priority output (BPROI) of the 

HIGHEST 
PRIORITY 
MASTER 

BPANI BPAN! 

highest priority master is then connected to the 
priority input (BPRN/) of the next lower priority 
master, and so on. Any master generating a bus 
request will set its BPROI signal high to the next 
lower priority master. Any master seeing a high 
signal on its BPRNI line will sets its BPROI line 
high, thus passing down priority information to 
lower priority masters. In this implementation, 
the bus request line (BREQ/) is not used outside of 
the individual masters. A limited number of 
masters can be accommodated by this technique, 
due to gate delays through the daisy chain. Using 
the current Intel MULTIBUS controller chip on 
the master boards up to 3 masters may be accom­
modated if a BCLKI period of 100 ns is used. If 
more bus masters are required, either BCLKI must 
be slowed or a parallel priority technique used. 

Parallel Priority Technique 

In the parallel priority technique, the priority is 
resolved in a priority resolution circuit in which 
the highest priority BREQI input is encoded with 
a priority encoder chip (74148). This coded value is 
then decoded with a priority decoder chip (74S138) 
to activate the appropriate BPRN I line. The 
BPROI lines are not used in the parallel priority 
scheme. However, since the MULTIBUS back­
plane contains a trace from the BPRNI signal of 
one card slot to the BPROI signal of the adjacent 
lower card slot, the BPROI must be disconnected 
from the bus on the board or the backplane trace 
must be cut. A practical limit of sixteen masters 
can be accommodated using the parallel priority 
technique due to physical bus length limitations. 
Figure 9 contains the schematic for a typical 
parallel resolution network. Note that the parallel 
priority resolution network must be externally 
supplied. 

LowEST 
PRIORITY 
MASTER 

BPROI 

Figure 8. Serial Priority Technique 

1-56 



r-<' 

NO.1 
PRIORITY 
(HIGHEST) 

SPRN/ 

BRED/ 0---

--< 

NO 2 
PRIORITY 

BPRN/ 

.... 
'R'Oll 

r-<' 

'US 

NO 7 
PRIORITY 

BPRNI 

BREal p----

-----<: 

NO.8 
PRIORITY 
(LOWEST) 

BPRN/ 

BREal p-

PRIORITY 
RESOLVER 

, ,0-

L-<:, 60----
P , P 0 (---< 5 R N R , 

5 C>-l 
OTHER --C <1 ' C ' C <1 0-- OTHER 

MASTER 00 00 MASTER 

INPUTS l--c 3 R 0 R 0 3 0-- J OUTPUTS , , ' , 1---< 2 : R : R 2 C>-
r' , 

,-f-<o 74148 745138 0 

Figure 9. Parallel Priority Technique 

MULTIBUS Exchange Operation - A timing 
diagram for the MULTIBUS exchange operation 
is shown in Figure 10. This implementation 
example uses a parallel resolution scheme, how­
ever, the timing would be basically the same for 
the serial resolution scheme. 

In this example, master A has been assigned a 
lower priority than master B. The bus exchange 
occurs because master B generates a bus request 
during a time when master A has control of the 
bus. 

The exchange process begins when master B 
requires the bus to access some resource such as an 
I/O or memory module while master A controls the 
bus. This internal request is synchronized with 
the trailing edge (high to low) of BCLKI to 
generate a bus request (BREQ/). The bus priority 
resolution circuit changes the BPRNI signal from 
active (low) to inactive (high) for master A and 
from inactive to active for master B. Master A 
must first complete the current bus command if 
one is in operation. After master A completes the 
command, it sets BUSY I inactive on the next 
trailing edge ofBCLK/. This allows the actual bus 
exchange to occur, because master A has relin­
quished control of the bus, and master B has been 
granted its BPRN/. During this time, the drivers 

1-57 

for master A are disabled. Master B must take 
control of the bus with the next trailing edge of 
BCLKI to complete the bus exchange. Master B 
takes control by activating BUSY I and enabling 
its drivers. 

It is possible for master A to retain control of the 
bus and prevent master B from getting control. 
Master A activates the Bus Override (or Bus Lock) 
signal which keeps BUSY I active allowing con­
trol of the bus to stay with master A. This 
guarantees a master consecutive bus cycles for 
software or hardware functions which require 
exclusive, continuous access to the bus. 

Note that in systems with only a single master it is 
necessary to ground the BPRNI pin ofthe master, 
if slave boards are to be accessed. In single board 
systems which use a CPU board capable of Bus 
Vectored Interrupt operation, the BPRN I pin must 
also be grounded. 

In a single master system bus transfer efficiency 
may be gained if the BUS OVERRIDE signal is 
kept active continuously. This permits the master 
to maintain control of the bus at all times, there­
fore saving the overhead of the master reacquiring 
the bus each time it is needed. 

The CBRQI line may be used by a master in 
control of the bus to determine if another master 



PRIORITY 
RESOLUTION 

SHOWN 
HERE 

MASTER A 

MASTER B 

MASTER A 

BCLKI 

TRANSFER 
REOUEST I 

I BREal 

BPRNI 

TRANSFER 
REQUESTI 

IBREOI 

9PRNI 

"NOTE: BUS PRIORITY MUST BE RESOLVED 
WITHIN ONE BCLKI PERIOD. 

BUSYI 

ADDRESS! ACTIVE STATE 

COMMAND! ACTIVE 

-I'BCY 1-""1 law ... 

MASTER B 
ON 8US 

(LOW) 

(LOW) 

HIGH IMPEDENCE 
STATE 

HIGH IMPEDENCE 

------------------------~ 

EXCHANGE 
OF BUS 
SHOWN 

HERE 

DRIVER 
ENABLE! 

ADDRESSI 
HIGH IMPEDENCE 

~H~IG!H~I~M~PE~D~E~NC~E~ ________________________ +_----flr---~ 
MASTER B COMMAND/- ACTIVE 

DRIVER 
ENABLE/ 

Figure 10. Bus Control Exchange Operation 

requires the bus. If a master currently in control of 
the bus sees the CBRQI line inactive, it will 
maintain control of the bus between adjacent bus 
accesses. Therefore, when a bus access is required, 
the master saves the overhead of reacquiring the 
bus. If a current bus master sees the CBRQI line 
active, it will then relinquish control of the bus 
after the current bus access and will contend for 
the bus with the other master(s) requiring the bus. 
The relative priorities of the masters will deter­
mine which master receives the bus. 

1·58 

Note that except for the BUS OVERRIDE state, no 
single master may keep exclusive control of the 
bus. This is true because it is impossible for the 
CPU on a inaster to require continuous access to 
the bus. Other lower priority masters will always 
be able to gain access to the bus between accesses 
of a higher priority master. 

Power Fail Considerations - The MULTIBUS 
P2 connector signals provide a means of handling 
power failures. The circuits required for power 



AC LINE 

115 VAG 

AClO 

+ 5V Vee 

PFINI 

PFSNI 

MPROJ 

INITI 

l(on'MIN 
1

"-100ns MIN--..j 

~\\\\\\\\\\\\\ lro-
i 

J.....---5msM'N~1 

POWER DOWN POWER UP 

Figure 11. Power Fail Timing Sequence 

failure detection and handling are optional and 
must be supplied by the user. Figure 11 shows 
the timing of a power fail sequence. 

The power supply monitors the AC power level. 
When power drops below an acceptable value, the 
power supply raises ACLO which tells the power 
fail logic that a minimum of three milliseconds will 
elapse before DC power will fall below regulated 
voltage levels. The power fail logic sets a sense 
latch (PFSN/) and generates an interrupt (PFIN I) 
to the processor so the processor can store its 
environment. After a 2.5 millisecond timeout, the 
memory protect signal (MPRO/) is asserted by the 
power fail logic preventing any memory activity. 
As power falls, the memory goes on standby 
power. Note that the power fail logic must be 
powered from the standby source. 

As the AC line revives, the logic voltage level is 
monitored by the power supply. After power has 
been at its operating level for one millisecond 
minimum, the power supply sets the signal ACLO 
low, beginning the restart sequence. First, the 
memory protect line (MPRO/) then the initialize 
line (IN IT I) become inactive. The bus master now 
starts running. The bus master checks the power 
fail latch (PFSN I) and, ifit finds it set, branches to 

1-59 

a power up routine which resets the latch (PFSR/), 
restores the environment, and resumes execution. 

Note that INITI is activated only after DC power 
has risen to the regulated.voltage levels and must 
stay low for five milliseconds minimum before the 
system is allowed to restart. Alternatively,INITI 
may be held low through an open collector device 
by MPROI. 

How the power failure equipment is configured is 
left to the system designer. The backup power 
source may be batteries located on the memory 
boards or more elaborate facilities located off­
board. The location of the power fail logic 
determines which MULTIBUS power fail lines are 
used. Pins on the P2 connector have been specified 
for the power failure functions for use as needed. 

To further clarify the location and use of the power 
fail circuitry, an example of a typical power fail 
system block diagram is shown in Figure 12. A 
single board computer and a slave memory board 
are contained in the system. It is desired to power 
the memory circuit elements of the memory board 
from auxiliary power. The single board computer 
will remain on the main power supply. To ac­
complish this, user supplied power fail logic and 



* USER SUPPLIED 

Figure 12. Typical Power Fail System Block Diagram 

an auxiliary power supply have been included in 
the system. 

The single board computer is powered from the PI 
power lines and accesses the P2 sign;J.l lines 
PFIN/, PFSNI and PFSRI (only the P2 signal 
lines used by a particular functional block are 
shown on the block diagram). The PFSRI line is 
driven from two sources, a front panel switch and 
the single board computer. The front panel switch 
is used during normal power-up to reset the power 
fail sense latch. The single board computer uses 
the PFSRI line to reset the latch during a power-up 
sequence after a power failure. Current single 
board computers must access the PFSN 1 and 
PFSRI signals either directly with dedicated 
circuitry and a P2 pin connection or through the 
parallel I/O lines with a cable connection from the 
parallel 1/0 connector to the P2 connector. 

The slave memory board uses both the PI and P2 
power lines, the P2 power lines are used (at all 
times) to power the memory circuit elements and 
other support circuits, the PI power lines power all 
other circuitry. In addition, the MPROI line is 
input and used to sense when memory contents 
should be protected. 

The power fail logic contains the power fail sense 
latch, and uses the PFSRI and ACLO lines for 
inputs and the PFINI PFSN/, and MPROI lines 
for outputs. The power fail logic must be powered 
by the P2 power lines. 

1-60 

DC Requirements - The drive and load charac­
teristics of the bus signals are listed in Appendix 
C. The physical locations of the drivers and loads, 
as well as the terminating resistor value for each 
bus line, are also specified. Appendix D contains 
the MULTI BUS power specifications. 

MULTIBUS™ Slave Interface 
Circuit Elements 

There are three basic elements of a slave bus 
interface: address decoders, bus drivers, and 
control signal logic. This section discusses each of 
these elements in general terms. A description of a 
detailed implementation of a slave interface is 
presented in a later section of this application note. 

Address Decoding - This logic decodes the 
appropriate MULTIBUS address bits into RAM 
requests, ROM requests, or I/O selects. Care must 
be taken in the design of the address decode logic 
to ensure flexibility in the selection of base address 
assignments. Without this flexibility, restrictions 
may be placed upon various system configura­
tions. Ideally, switches and jumper connections 
should be associated with the decode logic to 
permit field modification of base address assign­
ments. 

The initial step in designing the address decode 
portion of a MULTIBUS interface is to determine 
the required number of unique address locations. 
This decision is influenced by the fact that 
address decoding is usually done in two stages. 
The first stage decodes the base address, pro­
ducing an enable for the second stage which 
generates the actual device selects for the user 
logic. A convenient implementation of this two 
stage decoding scheme utilizes a pair of decoders 
driven by the high order bits of the address for the 
first stage and a second decoder for the low order 
bits of the address bus. This technique forces the 
number of unique address locations to be a power 
of two, based at the address decoded by the first 
stage. Consider the scheme illustrated in Figure 
13. 

As shown in Figure 13, the address bits A4 -ABare 
used to produce switch selected outputs of the first 
stage of decoding. The lout of 8 binary decoders 



have been used. The top decoder decodes address 
lines A4 - A 7, and the bottom decoder decodes 
address lines A8 -A B. If only address lines AO -A 7 
are being used for device selection, as in the case of 
110 port selection in 8-bit systems, the bottom 
decoder may be disabled by setting switch S2 to the 
ground position. Address lines A7 and A B drive 
enable inputs E2 or E3 of the decoders. The 
address lines AO - A3 enter the second stage 
address decoder to produce 8 user device selects. 
The second stage decoder must first be enabled by 
an address that corresponds to the switch-selected 
base address. 

Address decoding must be completed before the 
arrival of a command. Since the command may 
become active within 50 ns after stable address, 
the decode logic should be kept simple with a 
minimal number of layers of logic. Furthermore, 
the timing is extremely critical in systems which 
make use of the inhibit lines. 

A linear or unary select scheme in which no binary 
encoding of device address (e.g., address bit AO 
selects device 0, address bit Al selects device 1, 
etc.) is performed is not recommended because the 
scheme offers no protection in case multiple 

AO==========================DA~O--~ A1 A1 
A2 A2 

A3 --------------------------jE 2, E3 

8205 
DECODER 

Ei 

E1 f 
-;- FIRST STAGE BASE 

ADDRESS DECODER 

8205 
DECODER 

Ei 
SECOND STAGE USER 
DEVICE SELECTS 

SWITCH 
S1 

Figure 13. Two Stage Decoding Scheme 

1-61 

devices are simultaneously selected, and because 
the addressing within such a system is restricted 
by the extent of the address space occupied by such 
a scheme. 

Data Bus Drivers - For user designed logic 
which simply receives data from the MULTIBUS 
data lines, this portion of the bus interface logic 
may only consist of buffers. Buffers are required 
to ensure that maximum allowable bus loading is 
not exceeded by the user logic. 

In systems where the user designed logic must 
place data onto the MULTIBUS data lines, three­
state drivers are required. These drivers should be 
enabled only when a memory read command 
(MRDC/) or an 110 read command (lORC/) is 
present and the module has been addressed. 

When both the read and write functions are re­
quired, parallel bidirectional bus drivers (e.g., Intel 
8226,8287, etc.) are used. A note of caution must be 
included for the designer who uses this type of 
device. A problem may arise if data hold time 
requirements must be satisfied for user logic 
following write operations. When bus commands 
are used to directly produce both the chip select for 
the bidirectional bus driver and a strobe to a latch 
in the user logic, removal of that signal may not 
provide the user's latch with adequate data hold 
time. Depending on the specifics of the user logic, 
this problem may be solved by permanently 
enabling the data buffer's receiver circuits and 
controlling only the direction of the buffers. 

Control Signal Logic - The control signal logic 
consists of the circuits that forward the 110 and 
memory read/write commands to their respective 
destinations, provide the bus with a transfer 
acknowledge response, and drive the system 
interrupt lines. 

Bus Command Lines 

The MULTI BUS information transfer protocol 
lines (MRDC/, MWTC/, lORDI. and lOWC/) 
should be buffered by devices with very high speed 
switching. Because the bus DC requirements 
specify that each board may load these lines with 
2.0 mA, Schottky devices are recommended. LS 
devices are not recommended due to their poor 
noise immunity. The commands should be gated 



with a signal indicating the base address has been 
decoded to generate read and write strobes for the 
user logic. 

Transfer Acknowledge Generation 

The user interface transfer acknowledge genera­
tion logic provides a transfer acknowledge re­
sponse, XACK/, to notify the bus master that write 
data provided by the bus master has been accepted 
or that read data it has requested is available on 
the MULTIBUS data lines. XACK/ allows the bus 
master to conclude its current iilstruction. 

Since XACK/ timing requirements depend on both 
the CPU of the bus master and characteristics of 
the user logic, a circuit is needed which will provide 
a range of easily modified acknowledge responses. 

The transfer acknowledge signals must be driven 
by three-state drivers which are enabled when the 
bus interface is addressed and a command is 
present. 

Interrupt Signal Lines 

The asynchronous interrupt lines must be driven 
by open collector devices with a minimum drive of 
16 mA. 

In a typical Non Bus Vectored Interrupt system, 
logic must be provided to assert and latch-up an 
interrupt signal. In addition to driving the 
MULTI BUS interrupt lines, the latched interrupt 
signal would be read by an I/O operation such as 
reading the module's status. The interrupt signal 
would be cleared by writing to the status register. 

III. MULTIBUSTM SLAVE DESIGN 
EXAMPLE 

A MULTIBUS slave design example has been 
included in this application note to reinforce the 
theory previously discussed. The design example 
is of general purpose I/O slave interface. This 
design example could easily be modified to be used 
as a slave memory interface by buffering the 
address signals and using the appropriate. 
MULTI BUS memory commands. In addition, to 
help the reader better understand an application 
for an I/O slave interface, two Intel 8255A Parallel 
Peripheral Interface (PPI) devices are shown con­
nected to the slave interface. 

The design example is shown in both 8/16-bit 
version and an 8-bit version. The 8/16-bit version 

1·62 

is an I/O interface which will permit a 16-bit 
master to perform 8 or 16 bit data transfers.8-bit 
masters may also use the 8/16-bit version of the 
design example to perform 8-bit data transfers. 

The 8-bit version of the design example may be 
used by both 8 or 16-bit masters, but will only 
perform 8-bit data transfers. It does not contain 
the circuitry required to perform 16-bit data 
transfers. 

Both the 8/16-bit version and the 8-bit version of 
the design example were implemented on an iSBC 
905 prototype board. The schematics for each of 
the examples are given in Appendices F and G. 

Functional/Programming Characteristics 

This section describes the organization of the 
slave interface from two points of view, the 
functional point of view and the programming 
characteristics. First, the principal functions 
performed by the hardware are identified and the 
general data flow is illustrated. This point of view 
is intended as an introduction to the detailed 
description provided in the next section; Theory of 
Operation. In the second point of view, the 
information needed by a programmer to access the 
slave is summarized. 

Functional Description - The function of this 
I/O slave is to provide the bus interface logic for 
general purpose I/O functions and for two Intel 
8255A Parallel Peripheral Interface (PPI) devices. 
Eight device selects (port addresses) are available 
for general purpose I/O functions. One of these 
device select lines is used to read and reset the state 
of an interrupt status flip-flop, the other seven 
device selects are unused in this design. An 
additional eight I/O device port addresses are 
used by the two 8255A devices; four I/O port 
addresses per 8255A (three I/O port address for 
the three parallel ports A, B, and C and the fourth 
I/O port address for the device control register). 

Figure 14 contains a functional block diagram of 
the slave design example. This block diagram 
shows the fundamental circuit elements of a bus 
slave: bidirectional data bus drivers/receivers, 
address decoding logic and bus control logic. Also 
shown is the address decoding logic for the low 
order four bits, the interrupt logic which is selected 
by this decoding logic, an4 the two 8255A devices. 



IN 
IN 

TO!-< 
H! 

ADRO!· 
ADR3! 

ADR4I • 
AD RBI 

RD! 10 

10 

XA 

WRTI 

CK! 

/\4 

/\8 

v 

C 

< 

16 

ATO!-¢ 
ATFI 

D 
D 

ADDRESS 8 

~ 
INTE:RRUP 

DECODING LOGIC 
-----../ 

CSO! . r-
CS?! 

INTERRUPT~ 
4 REQUEST 

DO 

8255A 

f¢ PPI - (2) 

ADDRESS 
DECODING 

BASE AODR SELECT 

t 
CONTROL RD! 

LOGIC WRTI 

BD ENABLE! 

DATA ~6 
BUS V 

DRIVERS 
ON· BOARD DATA BUS DO· OF 

-

Figure 14. MUL TIBUS'" Slave Design Example 
Functional Block Diagram 

Programming Characteristics - The slave 
design example provides 16 1/0 port addresses 
which may be accessed by user software. The 
base address of the 16 contiguous port addresses 
is selected by wire wrap connections on the proto­
type board. The wire wrap connections specify 
address bits ADR41 - ADRB/. They allow the 
selection of a base address on any 16 byte 
boundary. Twelve address bits (ADROI -ADRB/) 
are used since 16-bit (8086 based) masters use 12 
bits to specity I/O port addresses. If an 8 bit (8080 
or 8085 based) master is used with this slave board, 
the high order address bits (ADR81 -ADRB/) must 
not be used by the decoding circuits; a wire wrap 
jumper position (ground position) is provided for 
this. 

The 16 I/O port addresses are divided into two 
groups of8 port addresses by decoding address line 
ADR3/. Port addresses XXO - XX7 are used for 
general I/O functions (XX indicates any hexi­
decimal digit combination). Port address XXO is 
used for accessing the interrupt status flip-flop and 

1-63 

port addresses XXI - XX7 are not used in this 
example. Port addresses XX8 - XXF are used for 
accessing the PPls. If port addresses XX8 - XXF 
are selected, then ADROI is used to specify which 
of two PPls are selected. If the address is even 
(XX8, XXA, XXC, or XXE) then one PPI is selected. 
If the address is odd (XX9, XXB, XXD, or XXF), 
then the other PPI is selected. ADRll and ADR21 
are connected directly to the PPls. Table 1 
summarizes the I/O port addresses of the slave 
design example. Note that if a 16-bit master is 
used, it is possible to access the slave in a byte or 
word mode. If word access is used with port 
address XX8, XXA, XXC, or XXE, then 16 bit 
transfers will occur between the PPls and the 
master. These 16 bit transfers occur because an 
even address has been specified and the MULTI­
BUS BHEN I signal indicates that a 16-bit 
transfer is requested. 

Theory of Operation 

In the preceding section, each of the slave design 
example functional blocks was identified and 
briefly explained. This section explains how these 
functions are implemented. For detailed circuit 
information, refer to the schematics in Appendices 
F and G. The schematic in Appendix F is on a 
foldout page so that the following text may easily 
be related to the schematic. 

The discussion of the theory of operation is divided 
into five segments, each of which discusses a 
different function performed by the MULTIBUS 
slave design example. The five segments are: 

1. Bus address decoding 

2. Data buffers 

3. Control signals 

4. Interrupt logic 

5. PPI operation 

Each of these topics are discussed with regard to 
the 8/16-bit version of the design example; 
followed by a discussion of the circuit elements 
which are required by the 8-bit version of the 
interface. 

Bus Address Decoding - Bus address decoding 
is performed by two 82051 out of8 binary decoders. 
One decoder (A3) decodes address bits ADR81 -
ADRBI and the second decoder (A2) decodes 
address bits ADR41 - ADR7 I. The base address 



Table 1 

SLAVE DESIGN EXAMPLE PORT ADDRESSES 

1/0 PORT ADDRESS READ WRITE 

BYTE ACCESS 

XXO Bit 0 = Interrupt Status Reset Interrupt Status 

XX1 - XX? Unused Unused 

XX8 Parallel Port A, Even PPI Parallel Port A, Even PPI 

XX9 Parallel Port A, Odd PPI Parallel Port A, Odd PPI 

XXA Parallel Port B, Even PPI Parallel Port B, Even PPI 

XXB Parallel Port B, Odd PPI Parallel Port B, Odd PPI 

XXC Parallel Port C, Even PPI Parallel Port C, Even PPI 

XXD Parallel Port C, Odd PPI Parallel Port C, Odd PPI 

XXE Illegal Condition Control, Even PPI 

XXF Illegal Condition Control, Odd PPI 

WORD ACCESS 

XXO Bit 0 = I nterrupt Status Reset Interrupt Status 

XX2 - XX6 Unused Unused 

XX8 Parallel Port A, Even and Odd PPls Parallel Port A, Even and Odd PPls 

XXA Parallel Port B, Even and Odd PPls Parallel Port B, Even and Odd PPls 

XXC Parallel Port C, Even and Odd PPls Parallel Port C, Even and Odd PPls 

XXE Illegal Condition Control, Even and Odd PPls 

XX = Any hex digits, assigned by jumpers; XX defines the base address. 

selected is determined by the position of wire wrap 
jumpers. The outputs of the two decoders are 
ANDed together to form the BASE ADR SELECT I 
signal. This signal specifies the base address 
for a group of 16 I/O ports. Using the wire wrap 
jumper positions shown in the schematic, a base 
address of E3 has been selected. Therefore, this 
MULTIBUS slave board will respond to I/O port 
addresses in the E30 - E3F range. 

If this slave board is to be used with 8-bitMULTI­
BUS masters, the high order address bits must not 
be decoded. Therefore, the wire wrap jumper 
which selects the output of decoder A3 must be 
placed in the top (ground) position (pin 10 of gate 
A9 to ground). 

The low order 4 address lines (ADROI -ADR3/) are 
buffered and inverted using 74LS04 inverters. 
These address lines are input to an 8205 for 
decoding a chip select for the interrupt logic; the 
address lines are also used directly by the PPls. 
LS-Series logic is required for buffering to meet the 
MULTIBUS specification for IlL (low level input 

1-64 

current). S-Series or standard series logic will not 
meet this specification. 

Address decoder A4 is used to decode addresses 
E30 - E37. The CSOI output of this decoder is used 
to select the interrupt logic, thus I/O port address 
E30 is used to read and reset the interrupt latch. 
The remaining outputs from decoder A4 (CSII -
CS7/) are not used in this example. They would 
normally be used to select other functions in a 
slave board with more capability. Note that in the 
schematic shown in Appendix G for the 8-bit 
version of this slave design example, the high 
order (ADR81 - ADRB/) address decoder is not 
included and the BHEN I signal is not used. 

Data Buffers - Intel 8287 8-bit parallel bi­
directional bus drivers are used for the MULTI­
BUS data lines DATOI - DATF/. In the 8/16-bit 
version of the slave board, three 8287 drivers 
are used. 

When an 8-bit data transfer is requested, either 
driver A5, which is connected to on-board data 



lines DO - D7, or driver A6, which is connected to 
on-board data lines D8 - DF, is used. If a byte 
transfer is requested from an even address, driver 
A5 will be selected. If a byte transfer from an odd 
address is requested, driver A6 will be selected. All 
byte transfers take place on MULTIBUS data 
lines DATOI - DAT7I. When a word (16-bit) 
transfer is requested from an even address, drivers 
A5 and A 7 will be used. Note that if a user program 
requests a word transfer from an odd address, 
16-bit masters in the iSBC product line will 
actually perform two byte transfer requests. 

The logic which determines the chip selection 
(8287 input signal OE, output enable) signals for 
the bus drivers uses the low order address bit 
(ADRO/) and the buffered Byte High Enable 
signal (BHENBLI). Note that the MULTIBUS 
signal BHENI has been buffered with an 74LS04 
inverter. This is done to meet the bus address line 
loading specification. The SWAP BYTEI signal 
which is generated is qualified by the BD ENBLI 
signal and used to select the bus drivers. 

The steering pin for the 8287 drivers is labelled T 
(transmit) and is driven by the signal RD. When 
an input (read) request is active or when neither a 
read or write command is being serviced, the 
direction of data transfer of the 8287 will be set for 
B to A. 

The 8287 drivers are set to point IN (direction B to 
A) when no MULTIBUS 110 transfer command is 
being serviced for two reasons. First, ifthe driver 
were pointed OUT (direction A to B) and a write 
command occured, it would be necessary to turn 
the buffers IN and set the OE (output enable) 
signal active before the data could be transferred 
to the on-board bus. A possibility of a "buffer­
fight" could occur in some designs if the OE signal 
permitted an 8287 to drive the MULTIBUS data 
lines momentarily before the steering signal could 
switch the direction of the 8287. In this case, both 
the MULTIBUS master and the slave would be 
driving the data lines; this is not recommended. 
(In this particular design, the steering signal will 
always stabilize before the OE signal becomes 
active.) 

The second reason the driver is pointing IN when 
no command is present is due to the "data valid 
after WRITE" requirements of the 8255As. The 
8255A requires that data remain on its data lines 
for 30 ns after the WRITE command (WR at the 
8255A) is removed. This requirement will be met if 
the direction of the 8287 drivers is not switched 

1·65 

when the MULTIBUS IOWCI signal is removed 
(WRT I could have been used to steer the 8287 
instead of RD); and if the capacitance of the on­
board data bus lines is sufficient to hold the data 
values on the bus after the 8287 OE signal and the 
8255A PPI WRT I signal go inactive. The on-board 
data bus may easily be designed such that the 
capacitance of the lines is sufficient to meet the 30 
ns data hold time requirement. In addition, the 
current leakage of all devices connected to the on­
board bus must be kept small to meet the 30 ns data 
hold time requirement. 

The 8-bit version of this design example uses only 
one 8287 instead of the three required by the 8/16-
bit version. The logic required to control the swap 
byte buffer is also not necessary. The chip select 
signal used for the 8287 is the BD ENBLI signal. 

Control Signals - The MULTIBUS control 
signals used by this slave design example are 
IORC/, IOWC/, andXACK/. IORCI andlOWCI 
are qualified by the BASE ADR SELECT I signal 
to form the signals RD and WRT. RD and WRT 
are used to drive the interrupt logic, the PPI logic 
and the XACKI (transfer acknowledge) logic. 

For the XACKI logic RD and WRT are ORed to 
form the BD ENBLI signal which is inverted and 
used to drive the CLEAR pin of a shift register. 
When the slave board is not being accessed, the 
CLEAR pin of the shift register will be low (BD 
ENBLI is high). This causes the shift register to 
remain cleared and all outputs of the shift register 
will be low. When the slave board is accessed, the 
CLEAR pin will be high, and the A and B inputs 
(which are high) will be clocked to the output pins 
by CCLK/. To select a delay for the XACKI signal, 
a jumper must be installed from one of the shift 
register output pins to the 8089 tri-state driver. 
Each of the shift register output pins select an 
integer multiple of CCLKI periods for the signal 
delay. Since the CCLKI signal is asynchronous, 
the actual delay selected may only be specified 
with a tolerance of one CCLKI period. In this 
example a delay of 3 - 4 CCLKI periods was 
selected; with a CCLKI period of 100 ns, the 
XACKI delay would occur somewhere within the 
range of 300 - 400 ns from the time when the 
CLEAR signal goes high. 

The control signal logic used in the 8-bit version of 
the slave design example is identical to the logic 
used in the 8/16-bit version. 



Interrupt Logic - The interrupt logic uses a 
74S74 flip-flop to latch an asynchronous interrupt 
request from some external logic. The Q output 
of the INTERRUPT REQUEST LATCH is output 
through an open collector gate to one of the 
MULTIBUS interrupt lines. The state of the 
INTERRUPT REQUEST LATCH is transferred 
to the INTERRUPT STATUS LATCH when a 
read command is performed on I/O port BASE 
ADDRESS+O (E30 for the jumper configuration 
shown). The Q output of INTERRUPT STATUS 
LATCH is used to drive data line DO of the on­
board data bus by using an 8089 tri-state driver. 
If a user program performs an INPUT from I/O 
port E30, data bit 0 will be set to 1 if the INTER­
RUPT REQUEST LATCH is set. 

The purpose of INTERRUPT STATUS LATCH is 
to minimize the possibility of the asynchronous 
interrupt occuring while the interrupt status is 
being read by a bus master. If the latch was not 
included in the design and an asynchronous inter­
rupt did occur while a bus master is reading 
MULTIBUS data line DATOI, a data buffertm the 
master could go into a meta-stable state. By 
adding the extra latch, which is clocked by the 
10RDI command for I/O port E30, the possibility 
of data line DATOI changing during a bus master 
read operation is eliminated. 

The INTERRUPT REQUEST LATCH is cleared 
when a user program performs an OUTPUT to I/O 
port E30. 

This interrupt structure assumes that several 
interrupt sources may exist on the same MULTI­
BUS interrupt line (for example, INT3/). When the 
MULTIBUS master gets interrupted, it must poll 
the possible sources of the interrupt received and 
after determining the source of the interrupt, it 
must clear the INTERRUPT REQUEST LATCH 
for that particular interrupt source. 

The interrupt logic for the 8-bit version of the 
design example is identical to the interrupt logic of 
the 8/I6-bit version of the design example. 

PPI Operation - Two 8255A Parallel Peripheral 
Interface (PPI) devices are shown interfaced to 
the slave design example logic. One PPI is con­
nected to the on-board data bus lines DO - D7 and 
is addressed with the even I/O port addresses 
E38, E3A, E3C, and E3E. The second PPI is 
connected to data bus lines DB -DF and is address­
ed with the odd I/O port addresses E39, E3B, 

1-66 

E3D, and E3F. The even or odd I/O port seleCtion 
is controlled by using the ADRO address line in 
the chip select term of the PPls. In addition, the 
odd PPI (All) is selected when the BHENBL 
term is high. This occurs when the MULTIBUS 
signal BHENI is low indicating that a word 
(16-bit) I/O instruction is being executed. When 
a word I/O instruction is executed, both PPls will 
perform the 1/0 operation specified. 

The specifications of the 8255A device state that 
the address lines AO and Al and the chip select 
lines must be stable before the RD or WR lines are 
activated. The MULTIBUS specification address 
set-up time of 50 ns and the short gate propagation 
delays in this design assure that the address lines 
are stable before RD or WR are active. 

The data hold requirements of the 8255A were 
discussed in a previous section. The 8255A speci­
fication states that data will be stable on the data 
bus lines a maximum of 250 ns after a READ 
command. This specification was used to select 
the delay for the XACKI signal. 

The PPI operation for the 8-bit version of the 
design example is slightly different than that used 
for the 8/I6-bit version. The chip select signal for 
the bottom PPI does not use the BHENBL term 
since I6-bit data transfers are not possible with an 
8-bit I/O slave board. Also, the chip select and 
address signals have been swapped so the top PPI 
occupies I/O address range X8,- XB, and the 
bottom PPI occupies 1/0 address range XC -XF (X 
is the base address of the 8-bit version). This 
swapping of the address lines was not necessary; 
however, it was thought to be more convenient to 
access the PPls in two groups of 4 contiguous I/O 
port addresses. 

IV. SUMMARY 

This application note has shown the structure of 
the Intel MULTIBUS system bus. The structure 
supports a wide range of system modules from the 
Intel OEM Microcomputer Systems product line 
that can be extended with the addition of user 
designed modules. Because the user designed 
modules are no doubt unique to particular applica­
tions, a goal of this application note has been to 
describe in detail the singular common element -
the bus interface. Material has also been 
presented to assist the systems designer to under­
standing 'the bus functions so that successful 
systems integration can be achieved. 



APPENDIX A 

PIN ASSIGNMENT OF BUS SIGNALS ON MUL TIBUS BOARD P1 CONNECTOR 

(COMPONENT SIDE) (CIRCUIT SIDE) 

PIN MNEMONIC DESCRIPTION PIN MNEMONIC DESCRIPTION 

1 GND Signal GND 2 GND Signal GND 
3 +5V +5Vdc 4 +5V +5Vdc 

POWER 5 +5V +5Vdc 6 +5V +5Vdc 
SUPPLIES 7 +12V +12Vdc 8 +12V + 12Vdc 

9 -5V -5Vdc 10 -5V -5Vdc 
11 GND Signal GND 12 GND Signal GND 

13 BCLKI Bus Clock 14 INIT/ Initialize 
15 BPRNI Bus Pri. In 16 BPROI Bus Pri. Out 

BUS 17 BUSYI Bus Busy 18 BREOI Bus Request 
CONTROLS 19 MRDCI Mem ReadCmd 20 MWTCI Mem Write Cmd 

21 10RCI 110 ReadCmd 22 10WCI IIOWriteCmd 
23 XACKI XFER Acknowledge 24 INH11 Inhibit 1 disable RAM 

BUS 
25 Reserved 26 INH21 Inhibit 2 disable PROM or ROM 

CONTROLS 
27 BHENI Byte High Enable 28 AD101 

AND 
29 CBROI Common Bus Request 30 AD111 Address 

ADDRESS 
31 CCLKI Constant Clk 32 AD121 Bus 
33 INTAI Intr Acknowledge 34 AD131 

35 INT61 Parallel 36 INlll Parallel 

INTERRUPTS 37 INT41 Interrupt 38 INT51 Interrupt 
39 INT21 Requests 40 INTJI Requests 
41 INTOI 42 INT11 

43 ADREI 44 ADRFI 
45 ADRCI 46 ADRDI 
47 ADRAI Address 48 ADRB/ Address 

ADDRESS 
49 ADR81 Bus 50 ADR91 Bus 
51 ADR61 52 ADR71 
53 ADR41 54 ADR51 
55 ADR21 56 ADR31 
57 ADROI 58 ADR11 

59 DATEI 60 DATFI 
61 DATCI 62 DATDI 
63 DATAl Data 64 DATBI Data 

DATA 
65 DAT81 Bus 66 DAT91 Bus 
67 DAT61 68 DAlll 
69 DAT41 70 DAT51 
71 DAT21 72 DATJI 
73 DATOI 74 DAT11 

75 GND Signal GND 76 GND Signal GND 
77 Reserved 78 Reserved 

POWER 79 -12V -12Vdc 80 -12V -12Vdc 
SUPPLIES 81 +5V +5Vdc 82 +5V +5Vdc 

83 +5V +5Vdc 84 +5V +5Vdc 
85 GND Signal GND 86 GND Signal GND 

All Mnemonics © Intel Corporation 1978 

1-67 



APPENDIX A (Continued) 

P2 CONNECTOR PIN ASSIGNMENT OF OPTIONAL BUS SIGNALS 

(COMPONENT SIDE) (CIRCUIT SIDE) 

PIN MNEMONIC DESCRIPTION PIN MNEMONIC DESCRIPTION 

1 GND Signal GND 2 GND Signal GND 
3 5 VB +5V Battery 4 5 VB +5V Battery 
5 Reserved 6 vccpp + 5V Pulsed Power 
7 -5 VB -5V Battery 8 -5 VB -5V Battery 
9 Reserved 10 Reserved 

11 12 VB + 12V Battery 12 12 VB + 12V Battery 
13 PFSRI Power Fail Sense Reset 14 Reserved 
15 -12 VB -12V Battery 16 -12 VB -12V Battery 
17 PFSNI Power Fail Sense 18 ACLO ACLow 
19 PFIN! Power Fail Interrupt 20 MPRO! Memory Protect 
21 GND Signal GND 22 GND Signal GND 
23 +15V +15V 24 +15V +15V 
25 -15V -15V 26 -15V -15V 
27 PAR11 Parity 1 28 HALT! Bus Master HALT 
29 PAR21 Parity 2 30 WAIT! Bus Master WAIT STATE 
31 1\ 32 ALE Bus Master ALE 
33 34 Reserved 
35 36 Reserved 
37 38 AUX RESETI Reset switch 
39 40 
40 42 
43 Reserved 44 
45 46 
47 48 
49 50 Reserved 
51 52 
53 54 
55 56 
57 58 
59 60 

Notes: 

1. PFIN, on slave modules, if possible, should have the option of connecting to INTO! on P1. 
2. All undefined pins are reserved for future use. 

All Mnemonics © I ntel Corporation 1978 

1·68 



APPENDIX B 

BUS TIMING SPECIFICATIONS SUMMARY 

Parameter Description Minimum Maximum Units 

tBCY Bus Clock Period 100 D.C. ns 
tBW Bus Clock Width 0.35tBCY 0.65 tBCY 

tSKEW BCLK/skew 3 ns 
tPD Standard Bus 3 

Propagation Delay 

tAS Address Set-Up Time 50 ns 
(at Slave Board) 

tDS Write Data Set 50 ns 
UpTime 

tAH Address Hold Time 50 ns 

tDHW Write Data Hold Time 50 ns 
tDXL Read Data Set 0 ns 

Up Time To XACK 

tDHR Read Data Hold Time 0 65 ns 

tXAH Ac~nowledge Hold 0 65 ns 
Time 

tXACK Acknowledge Time 0 tTOUT ns 

tCMD Command Pulse 100 tTOUT ns 
Width 

tiD Inhibit Delay 0 100 ns 
(Recommend < 100 ns) 

tXACKA Acknowledge Time of t1AD +50 ns tTOUT 
of an Inhibited Slave 

tXACKB Acknowledge Time of 1.5 tTOUT p.s 
an Inhibiting Slave 

tlAD Acknowledge Disable 0 100 ns 
from Inhibit (An (arbitrary) 
internal parameter on 
an inhibited slave; 
used to determine 
tXACKA Min.) 

tAIZ Address to Inhibits 100 ns 
High delay 

tlNTA INTAI Width 250 ns 

tCSEP Command Separation 100 ns 

1-69 



APPENDIX B (Continued) 

BUS TIMING SPECIFICATIONS SUMMARY 

Parameter Description Minimum Maximum Units 

tBREQL IBCLKI to BREQI 0 35 ns 
Low Delay 

tBREQH IBCLKI to BREQI 0 35 ns 
High Delay 

tBPRNS BPRN I to IBCLK I 22 ns 
Setup Time 

tBUSY BUSYI delay 0 70 ns 
from IBCLKI 

tBUSYS BUSY I to IBCLKI 25 ns 
Setup Time 

tBPRO IBCLKI to BPROI 0 40 ns 
(CLK to Priority Out) 

tBPRNO BPRNI to BPROI 0 30 ns 
(Priority In to Out) 

tCBRO IBCLKlto CBRQI 0 60 ns 
(CLKto Common 
Bus Request) 

tCBRQS CBRQI to IBCLKI 35 ns 
Setup Time 

tCPM Central Priority 0 tBCy-tBREQ 
Module Resolution -2tPD 
Delay (Parallel -tBPRNS 
Priority) -tSKEW 

tCCY C-clock Period 100 110 ns 

tcw C-clock Width 0.35 tCCY 0.65tCCY ns 

tlNIT INITIWidth 5 ms 

tlNITS IN IT I to MPROI 100 ns 
Setup Time 

tPBD Power Backup 0 200 ns 
Logic Delay 

tPFINW PFINI Width 2.5 ms 

tMPRO MPROI Delay 2.0 2.5 ms 

tACLOW ACLOI Width 3.0 ms 

tPFSRW PFSRI Width 100 ns 

tTOUT Timeout Delay 5 00 ms 

IDCH D.C. Power Supply 3.0 ms 
Hold from ALCOI 

tDCS D.C. Power Supply 5 ms 
Setup to ACLOI 

1·70 



APPENDIX C 

BUS DRIVERS, RECEIVERS, AND TERMINATIONS 

Orlver1,3 Receiver 2,3 Termination 

Bus Signals Location Type IOL IOH Co Location IlL IIH CI Location Type R Units 

Mlnma Mln~a Maxpf Maxma Max/18 Maxpf 

DATO/-DATFI Masters TRI 16 -2000 300 Masters -0.8 125 18 1 place Pullup 2.2 KQ 

(16tines) and Slaves and Slaves 

ADRO/-AORB/, Masters TAl 16 -2000 300 Slaves -0.8 125 18 1 place Pullup 2.2 KQ 

BHENI 
(21 tines) 

MRDC/,MWTCI Masters TRI 32 -2000 300 Slaves -2 125 18 1 place Pullup 1 KQ 

(Memory; 
memory-
mapped I/O) 

IORC/,IOWCI Masters TRI 32 -2000 300 Slaves -2 125 18 1 place Pullup 1 KQ 

(I/O) 

XACKI Slaves TRI 32 -2000 300 Masters -2 125 18 1 place Pullup 510 Q 

INH1/,INH21 Inhibiting OC 16 - 300 Inhibited -2 50 18 1 place Pullup 1 KQ 

Slaves Slaves 
(RAM, PROM, 
ROM, Memory-
Mapped I/O) 

BCLKI 1 place TTL 48 -3000 300 Master -2 125 18 Mother- To +5V 220 Q 

(Master us) board ToGND 330 Q 

BREQI Ear,h TTL 5 -400 60 Central 2 50 18 Central Pullup 1 KQ 

Master Priority Priority 

Module Module 
(not req) 

BPROI Each TTL 5 -400 60 Next Master -1.6 50 18 (nol req) 

Master in Serial 
Priority 
Chain at 
its BPRNI 

BPRNI Parallel: TTL 5 -400 300 Master -2 50 (not req) 

Central 
Priority 
Module 
Serial:Prev 
Masters 
BPROI 

BUSY/, CBRQ All Masters O.C. 32 - 300 All Masters -2 50 18 1 place Pullup 1 KQ 

INITI Master. O.G. 32 - 300 All -2 50 18 1 place Pullup 2.2 KQ 

CCLKI 1 place TTL 48 -3000 300 Any -2 125 18 Mother- To +5V 220 Q 
board ToGND 330 Q 

INTAI Masters TRI 32 -2000 300 Slaves -2 125 18 1 place Pullup 1 KQ 

(Interrupting 
I/O) 

INTOI-INTlI Slaves O.C. 16 - 300 Masters -1.6 40 18 1 place Pullup 1 KQ 
(8 lines) 

PFSRI User's Fran TTL 16 -400 300 Slaves, -1.6 40 18 1 place Pullup 1 KQ 
Panel? Masters 

PFSNI Power Back TTL 16 -400 300 Masters -1.6 40 16 I place Pullup 1 KQ 
Up Unit 

ACLO Power O.G. 16 -400 300 Slaves, -1.6 40 18 1 place Pullup 1 KQ 
Supply Masters 

PFINI Power Back- O.C. 16 -400 300 Masters -1.6 40 18 1 place Pullup 1 KQ 
Up Unit 

MPROI Power Back- TTL 16 -400 300 Slaves -1.6 40 18 1 place Pullup 1 KQ 

Up Unit Masters 

1-71 



APPENDIX C (Continued) 

BUS DRIVERS, RECEIVERS, AND TERMINATIONS 

Driver 1,3 Receiver 2,3 Termination 

Bus Signals location Type IOl IOH Co location III IIH CI location Type R Units 

Minma Min"" Maxpf Maxma Max"a Maxpf 

Aux Reset! User's Swilch - - - Masters -2 50 18 None 
Front toGND 
Panel? 

Notes: 

1. Driver Requirements 

10H = High Output Current Drive 
IOl = low Output Current Drive 
Co = Capacitance Drive Capability 
TRI = 3-State Drive 
O.C. = Open Collector Driver 
TTL "" Totem·pole Driver 

2. Receiver Requirements 

IIH = High Input Current load 
IlL = Low Input Current Load 
C, = Capacitive Load 

3. TTL low state must be 2 -0.5v but,;. 0.8v at the receivers 
TTL high state must be2 2.0v but ~ 5.5v at the receivers 

4. For the iSBC 80/10 and the iSBC 80110A use only a lK pull-up resistor to +5v for BCLKI and CCLKI termination. 

1·72 



APPENDIX D 

BUS POWER SPECIFICATIONS 

Standard (P1) Optional (P2) 

Analog Power Battery Power Backup 

Ground +5 +12 -12 + 15 -15 +5 +12 -12 -5 

Mnemonic GND +5V + 12V -12V + 15V -15V +5B + 12B -12B -5B 

Bus Pins P1 + 1,2, P1 + 3,4, P1 + 7,8 P1 + 79, P2+23, P2+ 25, P2+ 3,4, P2 + 11, P2+ 15, P2-7,8 
11,12, 5,6,81, 80 24 26 5,6 12 16 
75,76 82,83, 
85,86 84 

Nominal Output Ref. +5.0V + 12.0V - 12.0V + 15.0V -15.0V +5.0V + 12.0V -12.0V -5.0V 

Tolerance from 
Nominal' Ref. ±5"10 ±5"10 ±5"10 ±3"10 ±3"10 ±5"10 ±5"10 ±5"10 ±5"10 

Ripple 
(Pk-Pk)' Ref. 50 mV 50 mV 50 mV 10 mV 10 mV 50 mV 50 mV 50 mV 50 mV 

Transient 
Response 500 P.s 500p.s 500 P.s 100 P.s 100 P.s 500 P.s 500 P.s 500 P.s 500 P.s 
Time' 

Transient 
Deviation' ±10% ± 10% ± 10% ± 10% ± 100/0 ± 10% ± 10% ±10% ± 10% 

NOTES: 

1. Tolerance is worst case, including initial voltage setting line and load effects of power source, temperature drift, and 8ilY additional steady 
state influ~nces. 

2. As measured over any bandwidth not to exceed 0 to 500 kHz. 

3. As measured from the start of a load change to the time an output recovers within ± 0.1 % of final voltage. 

4. Measured as the peak deviation from the initial voltage. 

1-73 



0.25 X 45Q 

2 PLA-':ES 

~ 
'A/ a.109 0 

3 HOL ES 

0.0 
T 

6R 
VP 

I' 
I 
~ 

~ 

I. 
NOTES: 

~ 
[9 

APPENDIX E 

MECHANICAL SPECIFICATIONS 

12.00 
to.OO5 

11.500 

COMPONENT SIDE 

D> 

D> 
------]l 

6.767 to.OOS 

BOARD THICKNESS: 0.062 

MUl TIBUS CONNECTOR: a&PIN, 0.156 SPACING 

CDC VFB01E43DOOA1 
VIKING 2VH43/1ANE5 

AUXILIARY CONNECTOR: 60·PIN, 0.100 SPACING 

CDC VPB01 B30DOOA 1 
TI H311130 
AMP PE5·14559 

I. 

5. 

6. 

7. 

a. 

I-- 0.25 

I 
o i--'!·fL 

5.950 
to.OOS 

6.20 

6.7 5 REF 

D> 01-
-----~r - -

L- ,----1'\ 0.55 L o. 
3.oao I-:- 0.390 

30 

4.570 "" CHAMFER ALL 
CONNECTOR EDGES 
0.040 X 45° 

EJECTOR TYPE: SCAN BE #S203 

0.015 ± 0.005 X 450 

2 PLACES 

BUS DRIVERS AND RECEIVERS SHOULD BE LOCATED AS CLOSE AS POSSIBLE TO 
THEIR RESPECTIVE MULTIBUS PIN CONNECTIONS 

BOARD SPACING: 0.6 

COMPONENT HEIGHT: 0.4 

CLEARANCE ON CONDUCTOR NEAR EDGES: 0.050 

1-74 



APPENDIX F 
MULTIBUSTM SLAVE DESIGN EXAMPLE SCHEMATIC 

8116·BIT VERSION 

1-75 



8 7 6 5 4 3 1 

DI ID 
MwLT1Bu') C.UWN£tTOI2. 

PI 

~ INT1I 

~ ~~C>:~~ --Dm 

~ ---_ .. A~~~ t AUP;:S~4 BIIEN.BU 
BIlE.N~L 

~ -- --AfC>i-t.S0~-~--T- enl 

[§J 
C5<o/ 

-~4LS"li- ---- CS '51 

~ ---·-----"'1 t. C54/ 

74l':J04 0531 

§!l " " 
cs ZI 

Al 74L504 I . LAD" 
CSt! 

~ I ~ r.z. 7 7 ~ 
t~)fll 

el ADRC ~ f~ Ie 
ZBS(2l'j~ 

~~ A.OR I 

~ ~ AlIR0 
4 

II 

~ , I?:----o , " I, 00 

~ I ~ (ON·"""" 0."'''''') » 
[t • 

~ "lI 
.ltllIIDS- "lI 

m 
PPrW1IT1 

Z 
.:.., ~ 74500 C 

II >< 0> WI ROI 
~ 745fl1lj 

"TI RD 

~ .-------- BDENBLI 

~ 
"DR) 

BI [Vf.N,WI IB 
'" IloDR2. f'l "'I 00·D1 

fl..\)Rl :A.0 O'J A.\0en.~ 
~ ~DR 0 ===:i:jty PA.(J. 

IN.11 ~tL8.,"~~ lID mot; (14 U"") 

~ 
~ 
~ 

ADR'1. Do-Dr 
I>..DR0 :' 0\\') l~ 

r...DR I 
LC»JB'11( 

~201 B~N'Ol 1-4Si!'Z INIT 110 R)m (24 u""l ~< > 00-01 
1J..T7! I T OC I 74S~ 5_""~ ""'WI 

AI A.II..V 74C;04 74S'SZ. i1teI0 ==ML-iA 
RD 

~ D8-Df ~.EM.T>I"'" SJ.\ItOC'i.l~DI>I.\R£ 

!1rI.1FI BI\L.·iIIT~OO 

8 7 6 5 t 4 3 

MULTIBUSTM SLAVE DESIGN EXAMPLE SCHEMATIC 8/16-BIT VERSION 



APPENDIX G 
MULTIBUSTM SLAVE DESIGN EXAMPLE SCHEMATIC 

8·BIT VERSION 

1-77 



8 

D 

c 

~ co 

B 

A 

8 

7 6 5 4 3 1 

',',.LTIi;u'.:> 2')I.JN[tTDR 

~ !"22!. 
LINITi I -----[>,,,,.. INIT 

'0- -- I -- -~-~- FOB -0571 I"TN 
7~LS04 ---1 {'xI,lC,~ ~(,5~1 ~ 

---------f .0- -:---r-- B ':> - CS 51 OO~ 
74lS0<l I I 4 C54/ oc. ~.-. 'j 

~LSM---- r~ -- ~c. J, ('53/ Vu. ~~;' = 
, 1 =t 2." - cs Zt I 7401.> TNTSI 

--------j[:~L5-"-- --+ t L ------- - [2. I -- CS If II<. ~:fMT("1 
,----- _ ADR"') ~ C;l.\ 0 (Sail I Yu... nn~ 

I :1eJ"'l.o -------"C l A.DR I lK' IK 

4 ~ L·.VOL ill ~~1¥~J 

~~Wf 

~ 

~ 

1:"\'.R)~i 

~. -- ~ lr- ~ Il.DRZ. I J ~-
~ ---;, --~~-. - "',. I' ,SCT Q • 

~ . ---------------i~ ">1> <: 74514 

fi~·~--j" 2'~ ClR W _~,~"T OlR~.~ DO ~111 __ - r-jlL I~- ---c ! L i) Q (C>'H:l:AADDA.'/Io.B.JS) = "" ' I 7 ,.,. INTE.RR. &!At!> 
_ , ~'~ [I ~---' ~ ~'" S1J..llf.. 

JIJIJ.ii.g:;, IK~ -::=- i B».SEM)R<£.EtT~. -~-----L>r4S04 .-~ 
!.v ~ WitT ---~------,., 

t<. PoD _ .. ' ~<"SOO 

~ 

~ 
~ 

~ 
~ :S?101 ~ ,-~-------. ~ ct :===============>00-D1 

RD· -- "~vE.~6Lf 

r !~74SW---

i ' 
A.DR",> -~ 

-r> r,l 

""'" 

9?l 

- DPIWRTI 

WI RDI 

RD 
~u[N[,~1 

C)Jl-i)l 

~_----=-:" [/O~Ki'.:,(;:<ll'\I~,,>J 

I/O mKTS (:4 LW~::') 

D 

c 

B 

~" "'_1" -_.". A 
I't, J • '-e' ~,T:=" 

=.-J g".U~"'~ '"J..~V£. 1XS,16N lJ.mRI 
B-BIT rtRS'Dt..\ 

:!'I~ .. _~,J--~ 1 ~ 

7 6 5 4 3 1 

MULTIBUS'· SLAVE DESIGN EXAMPLE SCHEMATIC a-BIT VERSION 

l> 
"tl 
"tl 
m 
Z 
S! 
>< 
C) 



©Intel Corporation, 1978 

APPLICATION 
NOTE 

1-79 

Ap·43 

November 1978 

9800816 



Using The iSBCTM 957 
Execution Vehicle 
For Executing 8086 
Program Code 

1·80 

Contents 

I. INTRODUCTION. . . . . .. . . . . . . . . . .. 1-81 

II. THE iSBCTM 86/12 SINGLE BOARD 
COMPUTER ...................... , 1-81 

III. THE iSBC™ 957 PACKAGE. . . . . . . . .. 1-85 

IV. THE iSBCTM 957-iSBCM 86/12 
MONITOR PROGRAM .............. 1-88 

V. MATRIX MULTIPLICATION 
EXAMPLE ......................... 1-92 

VI. CONCLUSION .... . .. .. .. .. .. .. .... 1-98 

APPENDIX A - iSBCM 86112 
SIMPLIFIED LOGIC DIAGRAM. . . . . . . .. 1-99 

APPENDIX B - PROGRAM LISTINGS 
FOR EXECUTION$VEHICLE AND 
FIND MODULES ....................... 1-101 

APPENDIX C - PROGRAM LISTING 
FOR EXECUTION$VEHICLE MODULE 
FORCODEEXPANSION ............... 1-107 



I. INTRODUCTION 

The iSBC 957 Intellec-iSBC 86/12 Interface and 
Execution Package contains the hardware and soft­
ware required to interface an iSBC 86/12 Single 
Board Computer with an Intellec Microcomputer 
Development System. The iSBC 957 package gives 
the 8086 user the capability to develop software on 
an Intellec System and then debug this software on 
an iSBC 86/12 board using a program download 
capability and an interactive system monitor. The 
8086 user has all the capabilities of the Intellec sys­
tem at his disposal and has the powerful iSBC 
86/12 system monitor commands to use for 
debugging 8086 programs. 

The iSBC 86/12 board is an Intel 8086 based proc­
essor board which, in addition to the processor, 
contains 32K bytes of dual port RAM, sockets for 
up to 16K bytes of ROM/EPROM, a serial 110 
port, 24 parallel 110 lines, 2 programmable 
counters, 9 levels of vectored priority interrupts, 
and an interface to the MUL TIBUS™ system bus. 
The iSBC 957 package consists of monitor EPROMs 
for the iSBC 86/12 board, Loader software for the 
Intellec system, four (4) cable assemblies, assorted 
line drivers and terminators, and signal adapters. 
The iSBC 957 package provides the capability of 
downloading and uploading program and data 
blocks between an iSBC 86/ 12 board and an Intellec 
system. In addition, monitor commands and 
displays may be input and viewed from the Intellec 
system console. The iSBC 957 package, when used 
with the iSBC 86/12 board and an Intellec Micro­
computer Development System, provides the user 
with the capability to edit, compile or assemble, 
link, locate, download, and interactively debug 
programs for the 8086 processor. The iSBC 957 
package and the iSBC 86/12 board form an ex­
cellent "execution vehicle" for users developing 
software for the 8086 processor regardless of 
whether the users are 8086 component users or 
iSBC 86/12 board users. Using the iSBC 957 pack­
age 8086 programs may be debugged at the full 5 
MHz speed of the processor. The recommended 
hardware for the execution vehicle is an iSBC 660 
system chassis with an 8 card slot backplane and 
power supply, an iSBC 032 32K byte RAM memory 
board, the iSBC 957 package, and the iSBC 86/12 
board. 

This application note will describe how the iSBC 
957 package may be used to develop and debug 
8086 programs. First a description of the iSBC 
86/12 board will be presented. Readers familiar 

1·81 

with the iSBC 86/12 board may want to skip this 
section. Next follows a detailed description of the 
iSBC 957 package and the iSBC 86/12 system 
monitor commands. A program example of a 
matrix multiplication routine will then be presented. 
This example will contain both assembly language 
and PL/M-86 procedures. The steps required to 
compile, assemble, link, locate and debug the 
program code will be explained in detail. A typical 
debugging session using the iSBC 86/12 system 
monitor will be presented. 

II. THE iSBC™ 86/12 SINGLE BOARD 
COMPUTER 

The iSBC 86/12 Single Board Computer, which is 
a member of Intel's complete line of iSBC 80/86 
computer products, is a complete computer system 
on a single printed-circuit assembly. The iSBC 86/ 
12 board includes a 16-bit central processing unit 
(CPU), 32K bytes of dynamic RAM, a serial com­
munications interface, three programmable parallel 
110 ports, programmable timers, priority interrupt 
control, MUL TIBUS control logic, and bus expan­
sion drivers for interface with other MUL TIBUS­
compatible expansion boards. Also included is dual 
port control logic to allow the iSBC 86/12 board 
to act as a slave RAM device to other MUL TIBUS 
masters in the system. Provision is made for user 
installation of up to 16K bytes of read only mem­
ory. Figure 1 contains a block diagram of the iSBC 
86/12 board and in Appendix A is a simplified 
logic diagram of the iSBC 86/12 board. 

Central Processing Unit 

The central processor for the iSBC 86/12 board is 
Intel's 8086, a powerful 16-bit H-MOS device. The 
225 sq. mil chip contains 29,000 transistors and has 
a clock rate of 5MHz. The architecture includes 
four (4) 16-bit byte addressable data registers, two 
(2) 16-bit memory base pointer registers and two (2) 
16-bit index registers, all accessed by a total of 24 
operand addressing modes for complex data han­
dling and very flexible memory addressing. 

Instruction Set - The 8086 instruction repertoire 
includes variable length instruction format (in­
cluding double operand instructions), 8-bit and 16-
bit signed and unsigned arithmetic operators for 
binary, BCD and unpacked ASCII data, and iter­
ative word and byte string manipulation functions. 
The instruction set of the 8086 is a functional 
superset of the 8080A/S085A family and with 



CONTROL 
INTERFACE 

24 PROGRAMMABLE 
PARALLEL 1/0 LINES 

c-----------------~ 
Figure 1. iSBCTM 86/12 Single Board Computer Block Diagram 

available software tools, programs written for the 
8080A/8085A can be easily converted and run on 
the 8086 processor. 

Architectural Features - A 6-byte instruction queue 
provides pre-fetching of sequential instructions and 
can reduce the 1.2 Ii sec minimum instruction cycle 
to 400 nsee by having the instruction already in the 
queue. 

The stack oriented architecture facilitates nested 
sub-routines and co-routines, reentrant code and 
powerful interrupt handling. The memory expan­
sion capabilities offer a 1 megabyte addressing 
range. The dynamic relocation scheme allows ease 
in segmentation of pure procedure and data for 
efficient memory utilization. Four segment registers 
(code, stack, data, extra) contain program loaded 
offset values which are used to map 16-bit addresses 
to 20-bit addresses. Each register maps 64K-bytes at 
a time and activation of a specific register is con­
trolled explicitly by program control and is also 
selected implicitly by specific functions and 
instructions. 

1·82 

Bus Structure 

The iSBC 86/12 board has an internal bus for 
communicating with on-board memory and I/O 
options, a system bus (the MUL TIBUS) for refer­
encing additional memory and I/O options, and 
the dual-port bus which allows access to RAM 
from the on-board CPU and the MUL TIBUS Sys­
tem Bus. Local (on-board) accesses do not require 
MUL TIBUS communication, making the system 
bus available for use by other MUL TIBUS masters 
(i.e. DMA devices and other single board com­
puters transferring to additional system memory). 
This feature allows true parallel processing in a 
multiprocessor environment. In addition, the MUL­
TIBUS interface can be used for system expansion 
through the use of other 8- and 16-bit iSBC com­
puters, memory and I/O expansion boards. 

RAM Capabilities 

The iSBC 86/12 board contains 32K-bytes of 
dynamic read/write memory. Power for the on­
board RAM and refresh circuitry may be option­
ally provided on an auxiliary power bus, and 



memory protect logic is included for RAM battery 
backup requirements. The iSBC 86/12 board con­
tains a dual port controller which allows access to 
the on-board RAM from the iSBC 86/12's CPU 
and from any other MUL TIBUS master via the 
system bus. The dual port controller allows 8- and 
16-bit accesses from the MULTIBUS System Bus 
and the on-board CPU transfers data to RAM over 
a 16-bit data path. Priorities have been established 
such that memory refresh is guaranteed by the on­
board refresh logic and that the on-board CPU has 
priority over MUL TIBUS requests for access to 
RAM. The dual-port controller includes independent 
addressing logic for RAM access from the on-board 
CPU and from the MUL TlBUS system bus. The 
on-board CPU will always access RAM starting 
at location OOOOOH. Address jumpers allow on­
board RAM to be located starting on any 8K-byte 
boundary within a 1 megabyte address range for 
accesses from the MUL TIBUS system bus. In con­
junction with this feature, the iSBC 86/12 board 
has the ability to protect on-board memory from 
MUL TIBUS access to any contiguous 8K-byte 
segments. These features allow multi-processor 
systems to establish local memory for each proces­
sor and shared system (MUL TIBUS) memory con­
figurations where the total system memory size 
(including local on-board memory) can exceed 1 
megabyte without addressing conflicts. 

EPROM/ROM Capabilities 

Four sockets are provided for up to 16K-bytes of 
non-volatile read only memory on the iSBC 86/12 
board. Configuration jumpers allow read only 
memory to be installed in 2K, 4K, or 8K increments. 

On-board ROM is accessed via 16 bit data paths. 
System memory size is easily expanded by the 
addition of MULTIBUS compatible memory boards 
available in the iSBC 80/86 family. 

Parallel I/O Interface 

The iSBC 86/12 board contains 24 programmable 
parallel I/ 0 lines implemented using the Intel 
8255A Programmable Peripheral Interface. The 
system software is used to configure the I/ 0 lines 
in any combination of unidirectional input/ output 
and bidirectional ports. 

Therefore, the I/O interface may be customized to 
meet specific peripheral requirements. In order to 
take full advantage of the large number of possible 
I/O configurations, sockets are provided for inter­
changeable I/O line drivers and terminators. 
Hence, the flexibility of the I/ 0 interface is further 

1·83 

enhanced by the capability of selecting the appro­
priate combination of optional line drivers and 
terminators to provide the required sink current, 
polarity, and drive / termination characteristics for 
each application. The 24 programmable I/O lines 
and signal ground lines are brought out to a 50-pin 
edge connector that mates with flat, woven, or 
round cable. 

Serial 110 

A programmable communications interface using 
the Intel 8251A Universal Synchronous/ Asyn­
chronous Receiver /Transmitter (USART) is con­
tained on the iSBC 86/12 board. A software 
selectable baud rate generator provides the USART 
with all common communication frequencies. The 
USART can be programmed by the system soft­
ware to select the desired asynchronous or syn­
chronous serial data transmission technique (in­
cluding IBM Bi-Sync). The mode of operation (I.e., 
synchronous or asynchronous), data format, con­
trol character format, parity, and baud rate are all 
under program control. The 8251A provides full 
duplex, double buffered transmit and receive capa­
bility. Parity, overrun, and framing error detection 
are all incorporated in the USART. The RS232C 
compatible interface on each board, in conjunction 
with the USART, provides a direct interface to 
RS232C compatible terminals, cassettes, and asyn­
chronous and synchronous modems. The RS232C 
command lines, serial data lines, and signal ground 
line are brought out to a 26 pin edge connector that 
mates with RS232C compatible flat or round cable. 
The iSBC 530 teletypewriter adapter provides an 
optically isolated interface for those systems re­
quiring a 20 mA current loop. The iSBC 530 
adapter may be used to interface the iSBC 86/12 
board to teletypewriters or other 20 mA current 
loop equipment. 

Programmable Timers 

The iSBC 86/12 board provides three independent, 
fully programmable 16-bit interval timers / event 
counters utilizing the Intel 8253 Programmable In­
terval Timer. Each counter is capable of operating 
in either BCD or binary modes. Two of these 
timers / counters are available to the systems de­
signer to generate accurate time intervals under 
software control. Routing for the outputs and gate/ 
trigger inputs of two of these counters is jumper 
selectable. The outputs may be independently 
routed to the 8259A Programmable Interrupt Con­
troller and to the II 0 line drivers associated with 



the 8255A Programmable Peripheral Interface, or 
may be routed as inputs to the 8255A chip. The 
gate/trigger inputs may be routed to I/O termin­
ators associated with the 8255A or as output con­
nections from the 8255A. The third interval timer 
in the 8253 provides the programmable baud rate 
generator for the iSBC 86/12 RS232C USART 
serial port. In utilizing the iSBC 86/12, the systems 
designer simply configures, via software, each timer 
independently to meet system requirements. When­
ever a given time delay or count is needed, soft­
ware commands to the programmable timers / event 
counters select the desired function. 

The contents of each counter may be read at any 
time during system operation with simple read 
operations for event counting applications, and 
special commands are included so that the contents 
can be ready "on the fly" . 

MULTIBUS™ and Multimaster Capabilities 

The MUL TIBUS system bus features asynchronous 
data transfers for the accommodation of devices 
with various transfer rates while maintaining maxi­
mum throughput. Twenty address lines and sixteen 
separate data lines eliminate the need for address / 
data mUltiplexing / demultiplexing logic used in 
other systems, and allow for data transfer rates up 
to 5 megawords/sec. A failsafe timer is included in 
the iSBC 86/12 board which can be used to gener­
ate an interrupt if an addressed device does not 
respond within 6 msec. 

Multimaster Capabilities - The iSBC 86/12 board 
is a full computer on a single board with resources 
capable of supporting a great variety of OEM sys­
tem requirements. For those applications requiring 
additional processing capacity and the benefits of 
multiprocessing (i.e., several CPUs and/or con­
trollers logically sharing system tasks through 
communication over the system bus), the iSBC 86/ 
12 board provides full MULTIBUS arbitration 
control logic. This control logic allows up to three 
iSBC 86/12 boards or other bus masters, including 
iSBC 80 family MUL TIBUS compatible 8-bit single 
board computers, to share the system bus in serial 
(daisy chain) priority fashion, and up to 16 masters 
to share the MUL TIBUS with the addition of an 
external priority network. The MUL TIBUS arbitra­
tion logic operates synchronously with a MUL TI­
BUS clock (provided by the iSBC 86/12 board or 
optionally provided directly from the MUL TIBUS 
System Bus) while data is transferred via a hand­
shake between the master and slave modules. This 

1·84 

allows different speed controllers to share resources 
on the same bus, and transfers via the bus proceed 
asynchronously. Thus, transfer speed is dependent 
on transmitting and receiving devices only. This 
design prevents slow master modules from being 
handicapped in their attempts to gain control of the 
bus, but does not restrict the speed at which faster 
modules can transfer data via the same bus. The 
most obvious applications for the master-slave 
capabilities of the bus are multiprocessor configur­
ations, high speed direct memory access (DMA) 
operations, and high speed peripheral control, but 
are by no means limited to these three. 

Interrupt Capability 

The iSBC 86/12 board provides 9 vectored interrupt 
levels. The highest level is the NMI (Non-Maskable 
Interrupt) line which is directly tied to the 8086 
CPU. This interrupt cannot be inhibited by soft­
ware and is typically used for signalling catastrophic 
events (e.g., power failure). 

The Intel 8259A Programmable Interrupt Con­
troller (PIC) provides vectoring for the next eight 
interrupt levels. 

The PIC accepts interrupt requests from the pro­
grammable parallel and serial I/O interfaces, the 
programmable timers, the system bus, or directly 
from peripheral equipment. The PIC then deter­
mines which of the incoming requests is of the 
highest priority, determines whether this request is 
of higher priority than the level currently being 
serviced, and, if appropriate, issues an interrupt to 
the CPU. Any combination of interrupt levels may 
be masked, via software, by storing a single byte 
in the interrupt mask register of the PIC. The PIC 
generates a unique memory address for each in­
terrupt level. These addresses contain unique 
instruction pointers and code segment offset values 
(for expanded memory operation) for each interrupt 
level. In systems requiring additional interrupt 
levels, slave 8259A PIC's may be interfaced via the 
MUL TIBUS system bus, to generate additional 
vector addresses, yielding a total of 65 unique 
interrupt levels. 

Interrupt Request Generation - Interrupt requests 
may originate from 16 sources. Two jumper select­
able interrupt requests can be automatically gener­
ated by the programmable peripheral interface. 

Two jumper selectable interrupt requests can be 
automatically generated by the USART when a 
character is ready to be transferred to the CPU or a 
character is ready to be transmitted. 



A jumper selectable request can also be generated 
by each of the programmable timers. Eight addi­
tional interrupt request lines are available to the 
user for direct interface to user designated peripher­
al devices via the system bus, and two interrupt 
request lines may be jumper routed directly from 
peripherals via the parallel I/O driver Iterminator 
section. 

Power-Fail Control 

Control logic is also included to accept a power-fail 
interrupt in conjunction with the AC-low signal 
from the iSBC 635 Power Supply or equivalent. 

Expansion Capabilities 

Memory and I/O capacity may be expanded and 
additional functions added using Intel MUL TIBUS 
compatible expansion boards. High speed integer 
and floating point arithmetic capabilities may be 
added by using the iSBC 3 IO high speed mathe­
matics unit. Memory may be expanded to I mega­
byte by adding user specified combinations of 
RAM boards, EPROM boards, or combination 
boards. Input 1 output capacity may be increased by 
adding digital 110 and analog 110 expansion 
boards. Mass storage capability may be achieved 
by adding single or double density diskette con­
trollers. Modular expandable backplanes and card­
cages are available to support multi board systems. 

III. THE iSBC™ 957 PACKAGE 

The iSBC 957 Intellec-iSBC 86/12 Interface and 
Execution Package extends the software develop­
ment capabilities of the Intellec Microcomputer 
Development systems to the Intel 8086 CPU. Pro­
grams for the 8086 may be written in PL/M-86 
and/ or assembly language and compiled or as­
sembled on the Intellec system. These programs 
may then be downloaded from an Intellec ISIS-II 
disk file to the iSBC 86/12 board for execution and 
debug. The programs will execute at the full 5 MHz 
clock rate of the 8086 CPU with no speed degrada­
tion caused by the iSBC 957 hardware or software. 
Special communication software allows transparent 
access to the powerful interactive debug commands 
in the iSBC 86/12 monitor from the Intellec con­
sole terminal. These debug commands include 
single-step instruction execution, execution with 
breakpoints, memory and register displays, memory 
searches, comparison of two memory blocks and 
several other commands. After a debugging session, 
the debugged program code may be uploaded from 
the iSBC 86/12 board to an Intellec ISIS-II disk 
file. 

1-85 

The iSBC 957 Intellec-iSBC 86/12 Interface and 
Execution Package consists of the following: 

a. Four Intel 2716 EPROMs which contain the sys­
tem monitor program for the iSBC 86/12 board. 

b. An ISIS-II diskette containing loader software 
for execution in the Intellec which provides for 
communications between the user or an Intellec 
ISIS-II file and the iSBC 86/12 board. Also in­
cluded on the diskette are a library of routines 
for system console I/O. 

c. Four cable assemblies used for transmitting com­
mands, code and data between the iSBC 86/12 
board and the Intellec system. 

d. An iSBC 530 adapter assembly which converts 
serial communications signals from current loop 
to RS232C. 

e. Line drivers and terminators used for the iSBC 
86/12 parallel ports. 

f. A small printed circuit board which is plugged 
into an iSBC 86/ 12 receiver / terminator socket 
and is used when program code is downloaded 
or uploaded using the parallel cable. 

iSBCTM-Intellec ™ Configurations 

There are two distinct functional configurations for 
the iSBC 957 package; one configuration for the 
Intellec Series II, Models 220 or 230 development 
systems and another for the Intellec 800 series 
development systems. 

Intellec Series II System Configurations 

When used with Intellec Series II Model 220 or 
230 systems, a set of cables are used to connect the 
serial I/O port edge connector on the iSBC 86/12 
board and the SERIAL 1 output port on the Intellec 
system. This configuration is shown in Figure 2. 
How this system functions is explained in the fol­
lowing paragraphs. 

The SERIAL 1 port on the Intellec Series II Model 
220 or 230 system is an RS232 port which is de­
signed for use with a data terminal. This port may 
be used on the Intellec system for interfacing to 
RS232 devices such as CRT terminals or printers. 
The serial ports on the iSBC 86/12 board and the 
Intellec systems are connected as shown in the 
Figure 2. The flat ribbon cable connected to the 
iSBC 86/12 board has an edge connector for con­
necting to the board on one end and a standard 
RS232 connector on the other end. The second 
cable, the RS232 UplDown Load cable, has an 
RS232 connector on each end. This cable, however, 



INTELLEC SERIES 11 
MODEL 220, 230 

SERIAL 11 0 
PORT 

iSBC 86/12 

Figure 2. Inteliec™ Series II Model 220, 230-iSBCTM 86/12 Configuration 

is not a standard cable with the RS232 signals bussed 
between identically numbered pins on each of the 
connectors. The schematic for the cable is shown in 
Figure 3. Note that the TXD (transmit data) and 
the RXD (receive data) and the RTS (ready to send) 
and the CTS (clear to send) signals have been 
crossed. This is done because both the Intellec system 
and the iSBC 86/12 board are configured to act as 
data sets which are communicating with data 
terminals. Swapping these signals permits the units 
to communicate directly with no modifications to 
the Intellec or iSBC 86/ 12 systems themselves. 

FGD 1 r------------i 1 FGD (FRAME GROUND) 

TXD 2 2 TXD (TRANSMIT DATA) 

RXD 3 3 RXD \RECEIVE DATA) 

RTS 4 4 RTS (READY TO SEND) 

CTS 5 5 CTS (CLEAR TO SEND) 

SGD 7 7 SGD (SIGNAL GROUND) 

Figure 3. InteliecTM -iSBCTM 86/12 RS232 
UP 1 DOWN LOAD Cable 

The software in the Intellec system accepts characters 
output from the iSBC 86/12 board through the 
Intellec SERIAL 1 port. The software then outputs 
these characters on the CRT monitor built into the 
Intellec Series II Model 220 or 230. In a similar 
fashion, characters input from the Intellec key-

1·86 

board are passed down the serial link to the iSBC 
86/12 monitor program. The integrated CRT 
monitor and keyboard on the Intellec system then 
becomes the "virtual terminal" of the iSBC 86/12 
monitor program. If this were the only function of 
the iSBC 957 package, there would be no real 
benefit to the user. However, when the "virtual 
terminal" capability is combined with the capa­
bility to download and upload program code and 
data files between the Intellec ISIS-II file system 
and the iSBC 86/12 board, a very powerful soft­
ware development tool is realized. The software in 
the Intellec system must examine the commands 
which are input from the keyboard and in the case 
of the LOAD and TRANSFER commands. (see 
later sections for details on monitor commands), 
the software must open and read or write ISIS-II 
disk files. 

Transfer rates using Intellec Series II Model 220 or 
230 system are 9600 baud when transferring hexa­
decimal object files to or from a disk file and 600 
baud when transferring commands between the 
iSBC 86/12 board and the CRT monitor and key­
board. With a 9600 baud transfer rate, it is pos­
sible to load 64K bytes of memory in about four 
minutes. 

Intellec 800 System Configurations 

The iSBC 957 package may be used with the In­
tellec 800 system in four different configurations. 
These four configurations are determined by two 



variables. The first variable is whether the iSBC 
86/12 board is connected to the Intellec 8oo TTY 
port or to the Intellec 8oo CRT port. The second 
variable is whether or not a parallel cable is used 
for uploading and downloading hexadecimal object 
files. Figures 4A and 4B illustrate the four 
configurations. 

In Figure 4A, the configuration shows the TTY 
port of the Intellec 8oo system connected to the 
iSBC 86/12 serial port using two cables and an 
iSBC 530 teletypewriter adapter. The TTY port of 
the Intellec 8oo system is designed for using a 
teletypewriter as the Intellec console device. To use 
this port for communication with the iSBC 86/12 
board, the current loop TTY signal must be con­
verted to an RS232 compatible voltage signal. This 
function is performed by the iSBC 530 adapter. 

The cable which connects the Intellec 8oo system to 
the iSBC 530 adapter performs a function similar 
to the RS232 Up/Down Load cable described 
above. A schematic for this cable and all other 
components of the iSBC 957 package are included 
with the delivered product. 

The transfer rate for both commands and data 
when the TTY port is connected to the iSBC 86/12 
board is 110 baud. This means to download even 
moderately sized programs would require large 
amounts of time, several minutes or even hours. 
However, much faster times may be achieved by 
using the parallel ports of the iSBC 86/12 board 
and the Intellec system for downloading program 
files. This parallel port used on the Intellec 8oo 
system is the output port labeled PROM which is 
normally used with the Universal Prom Pro-

4A 
PROM 
PORT 

PARALLEL 
LOAD CABLE 
(OPTIONAL) 

4B 

INTELLEC 
MDS 800 
SYSTEM 

INTELlEC 
MDSBOO 
SYSTEM 

I~ 

CRT PORT 

Q~ 
~ "'-'SBC530 

OEM RS232-C 
CABLE 

"" TTY ADAPTER 
TTY UP / DOWNLOAD 

CABLE 

PARALLEL 
LOAD CABLE 
(OPTIONAL) 

/ 
is Be 86/ 12 

........ TOTTY / 

TERMINAL ~ 1 
~ OEM RS232·C 

CABLE 

Figure 4A, 4B. Inteliec™ 800-iSBCTM 86/12 Configurations 

1·87 

SERIAL 
1/ 0 PORT 



grammer. A cable is connected between the In­
tellec PROM port and the parallel I/O port, 11 of 
the iSBC 86/12 board. Parallel port B of the iSBC 
86/12 board is used for the 8-bit byte transfers 
from the Intellec system to the iSBC 86/12 board, 
port A is used for the byte transfers from the iSBC 
86/12 board to the Intellec system and port C is 
used for controlling the byte transfers. A special 
status adapter piggyback board must be inserted 
into a receiver /terminator socket of the iSBC 86/12 
board. This status adapter circuit is required to 
provide the necessary handshaking signals from the 
iSBC 86/12 parallel ports to the Intellec PROM 
port. 
The transfer rate achieved when downloading and 
uploading hexadecimal object files with the parallel 
cable is approximately 1,000 bytes per second. The 
time required to load 64K bytes of memory is 
approximately 2V2 minutes. 

Figure 4B shows a configuration with the Intellec 
800 CRT port connected to the serial port of the 
iSBC 86112 board. The TTY port of the Intellec 
800 system is connected to a teletypewriter or some 
other current loop device to act as a system con­
sole. The optional parallel load cable is also shown. 
The cables used for this configuration are the same 
as those used with the Intellec Series II Configur­
ations. Command transfer rates require Ito baud 
because the TTY port of the Intellec 800 system is 
used for communicating with the console device. 
However, hexadecimal object files can be loaded at 
9600 baud since this operation uses only the Intellec 
to iSBC 86/12 RS232 link. 

It is also possible to download files with the parallel 
cable, this mode being somewhat faster than the 
serial download mode (2Yz minutes versus four 
minutes for 64K bytes of memory). Table I con­
tains a summary of the command and memory 
transfer rates for each of the Intellec-iSBC 86/12 
configurations. 

Comparing the Intellec 800 configurations shown in 
Table 1 and in Figures 4A and 4B it should be 
noted: 

1. Using the TTY port (Figure 4A) of the Intellec 
800 system for communications with the iSBC 
86/12 board (essentially) requires installation of 
the parallel cable and jumper modifications for 
downloading and uploading files, and thus, pre­
vents the use of the parallel ports for other I/O 
functions. 

2. Using the CRT port (Figure 4B) of the Intellec 

1-88 

800 system for communication with the iSBC 
86/12 board provides for a fast serial download 
capability, thus freeing the parallel ports for 
other uses. However, this configuration requires 
a teletypewriter or a CRT capable of accepting 
a current loop input signal as the Intellec system 
console. 

Table 1 

COMMAND AND MEMORY TRANSFER RATES FOR 
INTELLEC-iSBCTM 86/12 CONFIGURATIONS 

Effective 
Command Rate 

Load / Transfer 
Rate 

Serial 
Parallel 

Approximate Time 
to load 64K bytes 
of memory 

Serial 
Paraliel 

INTELLEC 
SERIES" 220/230 

SERIAL PORT 
TO iSBC 86/12 

600 Baud 

96(X) Baud 
N/A 

4 minutes 
N/A 

INTELLEC 800 
TTY PORT 

TO iSBC86/12 

110 Baud 

110 Baud 
1 K bytes I sec** 

5 hours 
2.5 minutes 

INTELLEC 800 
CRT PORT 

TO isac 86/12 

110 Baud* 

9600 Baud 
1 K bytes I sec·· 

4 minutes 
2.5 minutes 

-The actual baud rate of the Intellec-iSBC 86/12 link is 9600 baud, but the effective 
command rate is determined by the slower Intellec- console serial link. 

··Transmission rate over the parallel link is determined by the speed of the two processors 
and is approximately lK bytes per second. 

IV. THE iSBC 957-iSBC 86/12 MONITOR 
PROGRAM 

The iSBC 86/12 monitor program is an EPROM 
resident program which facilitates debugging of 
user written programs. The monitor program used 
in the iSBC 86/12 board with the iSBC 957 pack­
age is the same monitor program written to inter­
face the iSBC 86/12 directly to an RS232C data 
terminal. When interfaced directly to a terminal, 
the iSBC 86/12 board functions in a stand-alone 
environment communicating directly with the user 
via the data terminal. A user may use the monitor 
for entering small programs in hexadecimal format, 
executing a program, examining registers and 
memory contents, etc. 

To use the monitor program with an Intellec system, 
the proper cables must be installed and the iSBC 
957 Loader program must be loaded into Intellec 
memory and executed. The Loader program is resi­
dent on a file named SBC861, and when executed, 
the Loader outputs a sign-on message. Next, the 
iSBC 86/12 monitor program must be started and 
the baud rate of the iSBC 86/12 to Intellec serial 
communications link must be determined. This is 
done by pressing the RESET switch on the chassis 



Table 2 

MONITOR COMMAND LIST 

COMMAND FUNCTION AND SYNTAX 

Load Hex 
Object File 

T Transfer Hex 
Object File 

E Exit 

Loads hexadecimal object file from Intellec into iSBC 
86/12 memory using serial IS} or paraliel (PI mode. 

L {S I p} ,< fI'lename;:.[, <bias addr>j<cr> 

Transfers blocks of iSBC 86/12 memory to Intellec as 
a hex object file using serial (51 or paraliel (PI mode. 

llXI {SIP} ,<start addr:>, < end addr>, < filename;:. 

I, < exec addp]<cp 

Exits the loader program and returns to ISIS. 

E<cr> 

N Single Step Executes one user program instruction, 

N[ <addr>J,((<addr> 1, [*< cr> 

G Go Transfers control of the 8086 CPU to the user program 
with up to 2 optional breakpoints. 

G[<start addr>J L<break 1 addr> 

[,<break 2 addr>J J<Cf> 

S Substitute Displays/modifies memory locations in byte or word 
Memory format. 

SIW].::addr>, [[new contents[,]* <cr> 

X Examine/Modify Displays/modifies 8086 CPU registers. 

Register X[<reg>] [[<new contenrs>I,I*<cr> 

D Display Memory Displays contents of a memory block in byte or word 
format. 

D[W] <start addr>L<end addr>l<cr> 

M Move Moves contents of a memory block. 

M<start addr>, < end addr>,<destination addr> < Cf> 

C Compare Compares two memory blocks. 

C<start addr>,<end addr>,<destination addr><cr> 

F Find Searches a memory block for a byte or word constant. 

F[W]<start addr>,< end addr>,<data>< cr> 

H Hex Arithmetic Performs hexadecimal addition and subtraction. 

H<data ?>,<data 2><cr> 

I Port Input Inputs and displays byte or word data from input 
port. 

IIW]<port addr>,U*<cr> 

o Port Output Outputs byte or word data to output port. 

O[W)<port addr>,<dara>i,<data;>]*<cr;> 

Syntax conventions used in the command structure are as follows: 

[AI indicates that "A" is optional 

[AI* indicates one or more optional iterations of "A" 

<B> indicates that "B" is a variable 

{AlB} indicates "A" or "B" 
<cr;> indicates a carriage return is entered 

Numeric arguments can be expressed as a number, the contents of a register, 
or the sum or difference of numbers and register contents. Thus, addresses 
and data can be expressed as follows: 

addr .. - ! <:expr>:]<expr> 

expr .. - <number>!-<register>l<expr> {+ I-} <number>1 

<expr> {+ I-} <register> 

register :: ~ AXIBXICXIDXISPIBPISIIDIICSIDSISSIESIIPIFL 

number :: = <digit>l<digit><number> 

digit :: ~ 01'1213141516171819IAIBICIDIEIF 

Numeric fields within arguments are entered as hexadecimal numbers. The 
valid range of numerical values is from OOOO·FFFF. Larger numbers may be 
entered, but only the last four digits (or two in the case of byte values) are 
significant. Leading zeros may be omitted. 

An address argument consists of a segment value and an offset value separ­
ated by a colon (:). If a segment value is not specified, the default segment 
value is the CS register value. 

1·89 

contammg the iSBC 86/12 board and typing two 
"U"s on the Intellec console. The ASCII uppercase 
character U has a binary pattern of alternating ones 
and zeros, the iSBC 86/12 monitor uses this pattern 
to determine the baud rate of the serial link. After 
the baud rate has been determined, the monitor 
program outputs a sign-on message to the console. 
An example of loader program execution and 
monitor program initialization is shown below (user 
entered characters are underlined). 

:F1:SBC861 
ISIS-II iSBC 86/12 LOADER, Vx.x 
(user resets iSBC 86/12 board and types two "U"s) 
!SBC 86/12 MONITOR, Vy.y 

The monitor prompts with a period "." when it is 
ready for a command. The user can then enter a 
command file, which consists of a one- or two­
character command followed by zero, one, or more 
arguments. The command may be separated from 
the first argument by an optional single space; a 
single comma is required as a delimiter between 
arguments. The command line is terminated by a 
carriage return or a comma depending on the com­
mand, and no action takes place until the command 
terminator is sensed. The user can cancel a com­
mand before entering the command terminator by 
pressing any illegal key (e.g., rubout or Control-X). 

Table 2 contains a summary of the loader and 
monitor commands. These commands will not be 
explained in detail; instead, the next section of the 
application note will show examples of using these 
loader and monitor commands. The iSBC 957 
User's Guide referenced at the front of this docu­
ment does, however, contain a complete description 
of each of the monitor and loader commands. 
Table 3 contains a list of the 8086 hardware registers 
and abbreviations used by the monitor program. 

Table 3 
8086 CPU REGISTERS 

REGISTER NAME ABBREVIATION 

Accumulator AX 
Base BX 
Count CX 
Data DX 
Stack Pointer SP 
Base Pointer BP 
Source Index SI 
Destination Index DI 
Code Segment CS 
Data Segment DS 
Stack Segment SS 
Extra Segment ES 
Instruction Pointer IP 
Flag FL 



ON-BOARD { FFFFFH 39 
EPROM MONITOR PROGRAM 

18K bytesl FEOOOH 3B 

37 

---
INTR 7 

---
INTR 6 

r---"" --
INTR 5 

9CH 

9BH 

94H 

36 

35 

INTR 4 

r---- ---
INTR 3 

90H 8259A PIC 

BCH VECTORS 

34 INTR2 BBH --
33 INTR 1 B4H 

AVAILABLE 
32 8000H ------ USER ------

AREA 
31 

INTR 0 SOH 

RESERVED 
FOR 

FUTURE 
USE BY 

I INTEL 
I 

leaH 
ON-BOARD 

INITIAL USER STACK RAM 
130H (32K bytes) 

MONITOR 
DATA 
AREA 

AOH 
Interrupt on Overflow 10H 

One-Byte Intr Instruction CH 

INTERRUPT Non-Maskable Intr 8H 
VECTORS 

0-39 Single Step 4H 

°H 
Divide by Zero °H 

Figure 5. Memory Map of iSBCTM 86/12 Memory With Monitor Program 

Figure 5 contains a memory map of the iSBC 
86/12 memory with the monitor program. Note 
that the monitor uses the top 8K bytes of memory 
for its program code and the first 384 bytes of 
memory Oocations ~ hex to 17F hex) for monitor 
and user stack, data and interrupt vectors. When 
the monitor program is reset, the segment registers, 
the IP and the flags are set to 0; and the SP is set 
to ~IC~H allowing 64 bytes for the user's stack. If 
64 bytes is not sufficient for" the user's application 
program, the SP should be set to some other value. 
The monitor program sets the single-step, one-byte 
instruction trap and non-maskable interrupt vectors 
to monitor entry points. The monitor also sets the 
8259A Priority Interrupt Controller to fully nested 
mode with level 0 at the highest priority and all 
interrupts unmasked. The eight interrupt vector 
addresses for the 8259A are also set to addresses in 
the monitor. User programs may change the 8259A 
interrupt vectors to interrupt service routine ad­
dresses within the user programs; it is not necessary 
for users to program the 8259A chip directly. When 
an interrupt occurs, control passes to either the 
monitor or directly to user code depending on the 
address stored in the vector location. When the 
monitor responds to an interrupt, it acknowledges 
the interrupt and displays the interrupt level, CS 
and IP register values and next instruction byte on 

1-90 

the system console (e.g., 1=3 @ l00:230F F5). 

When a user requests a breakpoint with a "G" 
command, the monitor inserts the single byte 
instruction trap instrU<.:tions (INT 3) in the location 
where the breakpoint is requested. It is also possible 
for the user to code an INT 3 instruction in his 
program. When a user coded INT 3 instruction is 
executed, the monitor will be re-entered and a line 
with the format @<CS Value>:<IP Value> <In­
struction byte> will be displayed (e.g., @ 1200:3F02 
F5). 

Included on the diskette with the Loader program 
are two libraries containing 110 routines for the 
console. The library files are named SBCIOS.LIB 
and SBCIOL.LIB; they contain similar routines. 
The routines in SBCIOS.LIB are written to be 
called with intrasegment subroutine calls, a PL/M-
86 module compiled with the "small" control 
generates this type of call. The routines in 
SBCIOL.LIBare written to be called with interseg­
ment subroutine calls, a PL/M-86 module com­
piled with either the "medium" or "large" control 
generates this type of call. 

The console input output routines, CI and CO, 
contained in the library should be used when per­
forming character input and output on the console. 
Example PL/M-86 calls to the two routines are: 



CI: PROCEDURE BYTE EXTERNAL; 
END CI; 

CO: PROCEDURE (X) EXTERNAL; 
DECLARE X BYTE; 
END CO; 

DECLARE INPUT$CHAR, 
OUTPUT$CHAR BYTE; 

INPUT$CHAR CI; 

CALL CO(OUTPUT$CHAR); 

General Comments on Use of the iSBC 957 Package 

1. If the iSBC 86/12 board is reset any time after 
the initial baud rate search, it is not necessary to 
reload the iSBC 957 Loader program or to 
download the program code a second time to the 
iSBC 86/12 board. It is only necessary to re­
establish the communications link by typing two 
"U"s for the baud rate search. 

2. The iSBC 86/12 board should not be plugged 
into an available card slot in an Intellec chassis; 
a separate chassis should be used. There are at 
least three reasons for this: 

a. There is only one RESET signal available on 
the Intellec system bus. Thus, each processor 
may not be reset independently. This means 
that the iSBC 86/12 board cannot be reset 
without re-booting the ISIS-II operating sys­
tem and restarting the iSBC 957 Loader. 

b. The Intellec system uses five of the eight avail­
able interrupts on the system bus. This severely 
restricts the range of interrupts available to 
the iSBC 86/12 board. Also, the iSBC 86/12 
board cannot turn-off the interrupt lamps on 
the Intellec front panel. 

c. The iSBC 86/12 board may address up to 1 
Megabyte of memory using a 20 bit address. 
Many Intellec systems contain boards which 
generate and decode only the low order 16 
address bits. For example, the iSBC 016 mem­
ory expansion board and the Intellec 800 

1·91 

monitor PROMs only decode 16 address bits. 
Memory expansion above 64K bytes in these 
systems is difficult since the boards which de­
code only 16 bits will force "holes" in the 
address space above 64K. 

3. The iSBC 86/12 board is delivered with two 
inputs to the 8259A Priority Interrupt Controller 
connected. Interrupt request 2 (IR2) is connected 
to the counter ~ output of the 8253 Program­
mable Interval Timer. IR5 is connected to the 
INT5 / signal of the MUL TIBUS System Bus. If 
these interrupts are not desired, the wire wrap 
jumpers making the connections should be re­
moved from the iSBC 86/12 board. A particular 
problem may exist with the counter ~ connection 
to IR2. If the 8253 counter ~ is not specifically 
initialized with software, a low frequency square 
wave output will exist at counter ~'s output. This 
may cause unwanted interrupts when interrupts 
are enabled by user programs. 

4. If the iSBC 86/12 board is used in a system with 
expansion boards, it is important that the MUL­
TIBUS bus exchange pins be properly jumpered. 
For example, if the iSBC 86/12 board is used 
with an iSBC 032 expansion memory board in a 
system, the BPRN / MUL TIBUS pin for the 
iSBC 86/12 board should be grounded. 

In addition, if any interrupts are used with the 
iSBC 86/ 12 board the BPRN / pin must be 
grounded. This is true in both single and mul­
tiple board systems. 

5. Certain user systems require more than one single 
board computer in the system for performing the 
functions required by the application. The MUL­
TIBUS System Bus has been specifically designed 
to permit mUltiple CPU boards to communicate 
and to share system resources. However, de­
bugging systems with mUltiple CPUs has always 
posed somewhat of a problem. The iSBC 957 
package provides a solution to this problem. The 
serial cable which connects the iSBC 86/12 
board to the Intellec system may be removed 
after the program has been downloaded to the 
iSBC 86/12 board. A console CRT may then be 
connected directly to the iSBC 86/12 board and 
the monitor program may be used to debug the 
program running on the board. Other iSBC 
86/12 boards may also be downloaded from the 
Intellec system and then switched to their own 
local terminals. An 8-bit processor board, such 
as the iSBC 80/30 board, may also be included 



in the system and ICE-85™ may be used for 
debugging the iSBC 80/30 program concurrently 
with the iSBC 86/12 programs. Using this 
scheme, it is possible to debug a system which 
has several CPU boards by setting breakpoints 
and using other debugging features on each of 
the individual CPUs. 

V. MATRIX MULTIPLICATION EXAMPLE 

To illustrate how the iSBC 957 package can be used 
to assist in the writing and debugging of 8086 pro­
grams on the iSBC 86/12 board, an example pro­
gram of a matrix multiplication will be presented. 
The example chosen has been intentionally kept 
simple and straightforward. The emphasis of this 
section will be to document the steps required to as­
semble, compile, link, locate and debug software 
using an Intellec system, the iSBC 957 package and 
the iSBC 86/12 board. Part of the example will be 
written in 8086 assembly language and part in PLI 
M-86. 

The main program is written in PLlM-86. The 
main program fiist performs some initialization 
and the matrix multiplication, then the program 
calls an assembly language procedure (subroutine), 
a PL/M-86 procedure and the console output pro­
cedure CO supplied in the 110 library on the iSBC 
957 diskette. A flow diagram for the example 
program is shown in Figure 6. 

Explanation of the Program Code 

The program code is contained in three software 
modules EXECUTION$VEHICLE, FIND, . and 
SBCCO. EXECUTION$VEHICLE contains the 
main program coded in PL/M-86 and the binary 
to ASCII conversion procedure BIN$DEC$ASC 
also coded in PL/M-86. The module FIND con­
tains the assembly language procedure FIND$MX 
which searches a matrix for its maximum value. 
The module SBCCO resides in the library of con­
sole I/O routines supplied with the iSBC 957 pack­
age. The procedure CO will be used from this 
library. 

The program code for the EXECUTION$VEHICLE 
and FIND modules will be explained in the follow­
ing paragraphs. Appendix B contains compilation 
and assembly listings for the two modules; also 
contained in Appendix B is a memory and debug 
map for the linked modules. The listings contain 
circled reference letters (e.g., @) which are referred 
to by the code description below. The listings in the 
appendix have been printed on fold-out pages so 
that they may easily be seen when reading the text. 

1·92 

Initialize 
X$ROW & Y$ROW 

Matrices 

Multiply 
Matrices, 

store result in 
Z$ROW 

Output MAX 
value on 

terminal using 
CO routine 

Figure 6. 
Flow Diagram of Matrix Multiplication Example 

Much of the description given below assumes that 
the reader is familiar with the PL/M-86 language 
and compiler, the 8086 assembler, and the link and 
locate program QRL86. It is recommended that the 
reader have at least a cursory knowledge of these 
subjects. The Intel literature for these subjects is 
listed near the front of this application note. 

The EXECUTION$VEHICLE Module 

® The first section of the module includes intro­
ductory comments and then statements to de­
clare the matrices, other variables, and pro­
cedures used in the program. Note that the 
matrix dimensions are declared using the literals 
M, N, and P which are initially set to 6, 5, and 
3. Later in this note, other values for M N 
and P will be used. ' , 

® The next section of code contains the state­
ments which initialize the two matrices that will 
be multiplied X$ROW and Y$ROW. 

As a result of this initialization, the two ma­
trices will contain values as shown in Figure 7. 



o o -1 -2 

-1 -2 

- 1 -2 

-1 -2 

4 -1 -2 

X$ROW (6X5) Y$ROW (5X3) 

Figure 7. 
X$ROW and Y$ROW Matrices After Initialization 

© The next program section performs the matrix 
multiplication. The algorithm required to mul­
tiply two matrices X and Y, storing the result in 
a third matrix Z is: 

n 

Zmp = L Xmi *Yip 

i = 1 

Assuming X to be 6X5 matrix and Y a 5X3 
matrix then 

ZII =XIIY11 +X12Y21 +XlJYJ1 +XI4X..I +X1SYS1 
Thus, the upper left term is equal to the sum of 
the products of the top row of the X matrix 
times the left column of the Y matrix. The re­
sult that is obtained by multiplying the two 
matrices X$ROW and Y$ROW after they are 
initialized as explained above, is shown in 
Figure 8. 

o 0 

-5 -10 

-10 -20 

-15 -30 

-20 -40 

o -25 -50 

Z$ROW (6X3) 

Figure B. Result of Multiplying the Initialized Matrices 
X$ROW and Y$ROW 

© The external assembly language procedure 
FIND$MX is called to determine the maximum 
value in the matrix. The procedure is a typed 
procedure and returns the maximum value to 
the calling program which stores it in the inte­
ger variable MAX. 

1·93 

® The maximum value is then converted to a six 
(6) digit ASCII character string by the pro­
cedure BIN$DEC$ASC. The character string is 
stored in the array MAX$ASC$ARRA Y, which 
contains the sign of the number and five (5) 
digits for the magnitude. 

® Finally, the characters "MAX VALUE =" are 
output on the system console followed by the 
6 ASCII characters containing the maximum 
value. The PL/M-86 built-in procedure SIZE 
returns the number of bytes of the array TEXT 
as a word value. The PL/M-86 built-in pro­
cedure SIGNED changes the type of the value 
from WORD to INTEGER. This is required so 
that the type of the arguments in the DO state­
ment agree. The console output procedure CO 
is used to output the characters on the system 
console. 

@ Also contained in the module MATRIX.PLM 
is the binary to ASCII conversion procedure 
BIN$DEC$ASC. The first portion of the code 
contains the comments explaining the para­
meters and the calling sequence followed by the 
declarations. Note that the address of the array 
where the characters are to be stored is passed 
to the procedure and that the characters will be 
stored in the array using based variables. The 
next section of the code stores either a + or -
sign in the first character position of the ASCII 
array and stores the absolute value of VALUE 
in the variable TEMP. Finally, the binary value 
is converted to ASCII using the algorithm 
explained in the comments. The MOD operator 
returns the remainder of the division by 10. The 
UNSIGN built-in procedure is required to 
change the type of the expression from INTE­
GERtoWORD. 

The FIND Module 

® The FIND module contains the assembly lan­
guage procedure FINDMX. The calling se­
quence and the parameters are explained in the 
comments at the beginning of the listing. Note 
that the label FINDMX has been declared 
PUBLIC so the link program can fill in its 
address in the CALL statement in the main 

CD 
program of module EXECUTION$VEHICLE. 

The FIND module will contain three segments: 
a data segment, a stack segment and a code 
segment. It will be both convenient and prag­
matic to append these three segments to the 
code, data and stack segments created by the 



o 

compiler for the EXECUTION$VEHICLE 
module. To accomplish this, the three segments 
must be given the same SEGMENT and CLASS 
names as those given these segments by the 
compiler. The SEGMENT and CLASS names 
used by the compiler are CODE, DATA, and 
STACK. The GROUP statements are used to 
place the segments DATA and STACK in the 
group DGROUP and the segment CODE in the 
group CGROUP. These group definitions con­
form with the group definitions generated by 
the PL/M-86 compiler when the SMALL size 
control option is used. A group is a collection 
of segments which requires less than 64K bytes 
of memory. 

The ASSUME directive informs the assembler 
that the DS and SS registers will contain the 
base address of DGROUP and the CS register 
will contain the base address of CGROUP. 
This information will be used by the assembler 
when constructing machine instructions. 

The first segment appearing in the module is 
the data segment. The order of the segments is 
arbitrary, although it is recommended that the 
data segment precede the code segment to mini­
mize forward references to variables which may 
cause the assembler to generate longer instruc­
tion codes. The data segment is declared 
PUBLIC, aligned on a WORD boundary and 
given both a segment and class name of DATA. 
Then follows the contents of the segment. In 
this particular example, only one word of stor­
age is required. The ENDS directive indicates 
the end of the segment. 

® Next comes the stack segment which is given 
the segment name of STACK, the combine­
type attribute of STACK and the class name of 
STACK. The combine-type attribute of STACK 
assures that the stack storage required in this 
module will be appended to the storage re­
quired in the PL/M-86 compiled modules. Two 
bytes of stack are required by the code in this 
module, however, the monitor uses 13 words of 
stack when breakpoints and interrupts are used. 
Therefore, 14 words are reserved for the stack. 

Finally comes the code segment. The code seg­
ment has been given a segment name and class 
name of CODE and a group name of 
CGROUP, and has been declared PUBLIC. 
The alignment attribute of BYTE is specified 

1·94 

since it is desired that the code from this 
module be appended directly to the code from 
other modules without gaps between the code 
modules. 

The assembly language code follows next. The 
code for the procedure must be enclosed be­
tween a pair of PROC, ENDP statements. The 
PROC statement is given the label FINDMX 
and specified as a NEAR procedure indicating 
it will be called with a near (intra-segment) 
CALL instruction and not a far (inter-segment) 
CALL instruction. 

The comments at the beginning of the module 
and adjacent to the program statements ex­
plain the function being performed by the 
assembly language code. 

The SHCCO Module 

@ The console output procedure CO is contained 
in the object module SBCCO of the library file 
SBCIOS.LIB. SBCIOS.LIB is part of the iSBC 
957 package 110 libraries. The calling sequence 
and parameters for CO may be seen in the 
external procedure declaration in the EXE­
CUTION$VEHICLE module. 

Compiling the EXECUTlON$VEHICLE 
Module 

The EXECUTION$VEHICLE module is stored on 
a file named MATRIX.PLM on disk device :Fl:. 
To compile the module, the following command 
line is used: 

- PLM86 :Fl :MATRIX.PLM DEBUG 

This command line will cause the module stored in 
the file :Fl :MATRIX.PLM to be compiled. The 
object code generated will be stored in a file with 
the default name :Fl:MATRIX.OBJ and the listing 
generated will be stored in a file with the default 
name :Fl:MATRIX.LST. To override the default 
object and listing files, the NOOBJECT and NO­
LIST compiler control switches can be used. File 
names for the listing and object files may also be 
specified in the command line. The DEBUG com­
piler control switch causes the compiler to generate 
extra symbol and line number information which 
will be used during debugging of the program. A 
listing of the compiled EXECUTION$VEHICLE 
module is contained in Appendix B. 

To aid in the debugging of the program, the 
module was compiled a second time with the fol­
lowing command line: 



- PLM86 :Fl:MATRIX.PLM NOOBJECT 
CODE DEBUG PRINT (:Fl :MATRIX.XLS) 

This command line specified that no object file is to 
be created and a listing file should be stored in the 
file :Fl :MATRIX.XLS. The CODE compiler con­
trol switch causes the compiler to list the assembly 
language statements which the compiler has gener­
ated for each line of PL/M code. The listing stored 
in the file MATRIX.XLS is contained in Appendix 
C. 

Assembly of the FIND Module 

The assembly language module FIND is stored on a 
file named FIND.ASM, to assemble this module 
the following command line is used: 

ASM86 :Fl :FIND.ASM DEBUG 

This command line will cause the FIND module to 
be assembled with the object code stored in the 
default file :Fl :FIND.OBJ and the listing stored in 
the default file :Fl :FIND.LST. The listing of the 
assembled FIND module is contained in Appendix 
B. 
Linking and Locating the Object Module 

To link and locate the object modules, the QRL86 
program will be used. The QRL86 program per­
forms both the linking and the locating of the 
object modules in a single step. QRL86 is primarily 
designed for the debugging stages of program devel­
opment. Some applications may require the extended 
capabilities of the separate LINK and LOCATE 
programs when the final link and locate is per­
formed. The command line used to invoke the 
QRL86 program is: 

QRL86 :Fl :MATRIX.OBJ, :Fl :FIND.OBJ, 
SBCIOS.LIB ORIGIN (lOOOH) 

This command line will cause QRL86 to link the 
code from the three modules and to locate the 
resultant absolute object module starting at location 
1000 hexadecimal. The iSBC 86/12 monitor uses 
the first 180H bytes of memory for the monitor 
stack, data and interrupt vectors, l000H was chosen 
as a convenient starting address for the program. 
The absolute object code will be stored in a default 
file :Fl :MATRIX (note no file name extension is 
used). By default, the memory and debug maps 
which are generated are stored in the file :Fl :MA­
TRIX.MPQ and are contained in Appendix B. 

® The memory map contains the starting ad­
dresses and sizes of the CODE, CONST, 
DATA, STACK and MEMORY segments of 
the object module. Note that the start address 

1·95 

® 

for the program is specified as (~I~H, m2H) 
indicating a CS value of ~1~H and an IP 
value of m2H or an absolute value of 01~2H. 
The first two bytes of the code segment contain 
address values which the code generated by the 
compiler will use for setting up the OS and SS 
registers. The memory map shows the code 
segments from the three modules collected into 
the group CGROUP. The code segment from 
the EXECUTION$VEHICLE module is given 
the segment and class names of CODE and is 
put into CGROUP by the PL/M compiler. To 
assure that the code segment from the FIND 
module is concatenated with the code segment 
from the EXECUTION$VEHICLE module the 
identical class, segment and group names were 
specified in the SEGMENT and GROUP state­
ments in the FIND module. Next, the group 
DGROUP is shown in the memory map. 
DGROUP contains 4 segments labelled 
CONST, DATA, STACK and MEMORY. 
Putting all of these segments in the same group 
tells the linker that they will all be in the same 
64K block of memory. The SMALL size con­
trol option of the compiler, which was invoked 
by default, creates CGROUP, DGROUP, and 
the segments contained in them. 
The debug map contains the memory address 
of variables, instruction labels and the ad-
dresses of each code line of the PL/M-86 
module. Notice that the variable storage labels 
have their addresses specified in the format (OS 
register value, displacement). For example, the 
variable TEMP has an address of DS=~12AH, 
displacement = mCH or an absolute address 
of ~136H. Instruction labels and line numbers 
use the format (CS register value, IP register 
value). Thus, line number six (6) in the module 
EXECUTION$VEHICLE has the address 
CS=~I~H, IP=~B5H or ~11 B5H. 

Object to Hex Conversion 

Before downloading the program to the iSBC 86/12, 
the format of the object module must be converted 
from the absolute object module format which 
QRL86 creates to a hexadecimal! ASCII representa­
tion of the object module. This is done using the pro­
gram OH86 with the following command line: 

OH86 :Fl:MATRIX TO :Fl:MATRIX.HEX 

Downloading and Debugging the Program 

The hardware configuration used for debugging the 
matrix multiplication example program code was 



an Intellec Series II Model 230 development sys­
tem, the iSBC 957 package, an iSBC 86/12 board, 
and an iSBC 660 system chassis. What follows is 
the system-user dialog for a typical debugging 
session. 

The first step required is to bootstrap load the 
ISIS-II operating system by hitting the RESET 
switch of the Intellec. The Intellec resident loader 
software is then loaded and executed. Throughout 
the dialog which follows operator entered charac­
ters will be underlined: 

ISIS-II, V3. 4 
-SBCB61 

ISIS-II ISBC 86/12 LOA.DER, VI.2 

To initialize the iSBC 86/12 monitor, the user must 
hit the RESET switch on the iSBC 660 chassis and 
type two "U"s on the system console. The monitor 
program will output a line on the console when it is 
properly initialized. 

ISBC 86/12 MONI':~R, vI. 2 

The monitor command "X" is typed to check that 
the monitor is properly operating and to examine 
the contents of the 8086 registers . 

• X 
AX=0fHH~ BX=IHHhl CX=i1iHH:1 DX"'i1tH1'd SP=01C~ SP=0000 51=11000 
!)I=000~ C8=0011e DS=000~ SS=0fHHt E:S='H.I~0 rF'=IHHl0 FL='HHHi 

To download the hex object file to the iSBC 
86/12, the "L" command is used. Because an 
Intellec Series II Model 230 is being used, a serial 
download is specified. The hex file name is 
MATRIX. HEX which is resident on disk device 
:FI:. 

• LS,: FI: MAfRIX, HEX 

The "X" command is used again to examine the 
CPU registers. Note that the monitor has changed 
the contents of the CS and IP registers to the value 
of the starting address of the program. 

.x 
AX=0000 BX='H100 CX=0~HHJ· DX=01:l"0 sp=~nC0 BP=LHHi0 81=13000 
01=013130 CS=010~ DS=I:i'100 SS=0~"0 E8=0009 IP=0002 FL=0000 

The "D" command is next used to display the first 
101 bytes of the program code. Unless another seg­
ment register is specified, the display command 
assumes all addresses specified are relative to the CS 
register. Thus, the code displayed will be from abso­
lute addresses 1000 through 1100. The program code 
displayed may be compared with program code gen­
erated by the PLlM-86 compiler shown in Appendix 
C, code line 36. 

1·96 

. 00,1013 
'HH10 ZA .,1 FA 2E BE 16 013 99 Be 00 1d0 BB EC 16 IF ~"B 
0010 C"I 06 8E 80 80 00 81 3E 8E 00 05 08 7E 03 E9 3C 
8020 00 C7 06 90 00 00 00 81 3£ 90 00 04 00 7E 03 E9 
0830 22 08 88 06 9E 00 89 0A 08 F7 £9 88 36 90 00 01 
0040 E6 89 C3 88 0£ 8E 00 89 88 10 00 81 06 90 00 01 
80S. 80 E9 03 FF 81 06 8E 00 01 00 £9 B9 FF C7 06 8£ 
0060 00 00 00 81 3E 8E 00 04 00 7£ 03 £9 40 00 C7 86 
0070 90 00 00 00 81 3E 98 80 02 00 7E 03 £9 26 0" oB 
0080 06 90 00 F7 08 50 88 86 8E 88 89 06 00 F7 £9 88 
0090 36 90 00 01 £6 89 C3 59 89 88 4C 80 81 06 90 00 
B0A8 01 00 E9 CF FF 81 06 8E 80 01 80 £9 B5 FF C7 06 
0088 92 00 00 00 81 3E 92 00 02 00 7E 03 E9 8C 00 C7 
B0C0 06 8E 00 00 08 81 3£ 8£ 00 05 00 7E 03 E9 72 00 
8000 88 06 8E 00 89 06 00 F7 E9 88 36 92 00 01 E6 89 
00£0 C3 C7 B0 6A 00 00 08 C7 06 90 00 00 08 81 3£ 90 
00F0 08 04 00 7£ 03 £9 41 00 88 06 8E 00 B9 0A 00 F7 
0100 E9 

The PL/M-86 compiler ends the main program in 
the EXECUTION$VEHICLE module with a halt 
instruction. After execution of the program it is 
more desirable to return to the monitor. To ac­
complish this, an INT 3 instruction (code=CC) 
will be substituted for the halt instruction (code= 
F4) at the address of IB4H relative to a CS value 
of lOOH. First the "D" command is used to verify 
the address of the halt instruction, then the "S" 
command is used to change the instruction to an 
INT 3 instruction. 

.01B4 
0lB4F4 
.5194. F4- ~ 

To execute the PL/M-86 main program, the "0" 
command is used. After the "0" is typed, the 
current contents of the IP are output, followed by 
the contents of the byte pointed to by the IP. A 
new value for the IP or breakpoint addresses may 
be specified before a carriage return <CR> is typed. 
In this example, only a <CR> is typed. 

.G IH102- FA 
MAX V,\LUE = -~HHI50 
@tHtl0:11185 55 

The program executes and outputs the maximum 
value of the matrix calculated. The INT 3 instruc­
tion is executed which causes a return to the 
monitor. The monitor types out an at-sign (@) 
followed by the CS and IP register values and the 
first byte of the instruction following the INT 3 
instruction. 

The "X" command is typed to examine the CPU 
registers. Note that the program has set both the SS 
and DS registers to ~12A. (~12A~H is the address 
of the DOROUP as shown in the memory map.) 

• X 
AX=kl030 8X=0005 CX"'000A DX=IHHl0 SP=0000 BP=00D0 SI=0~Hn 
DI:0006 CS:~100 DS:012A 55:012A £5:0000 IP:01B5 FL:F202 

The three matrices are displayed. Note that a word 



display has been specified by using the "OW" 
Command and that the addresses have been speci­
fied relative to the OS register. The addresses of 
X$ROW, Y$ROW, and Z$ROW may be found in 
the debug map given by QRL86. Note that the 
values stored in the matrices are the same as those 
shown in Figures 8 and 9. 

.1J\'lD.s:l~ 
IH1Hl iHHH~ UiHHl \1 {Hl\:l 0000 UtHl0 rHJ01 0001 ~{HJl 
0U2U i-.J(Hll IHH:ll ll002 0002 IH1U2 ~HJ02 fHHJ2 iHHJ3 
IHJ30 0\H13 00U3 IHHU U(.)Cj3 tHH14 I:H:HJ4 DIHJ4 ~004 

0040 0U04 0005 lW<l5 (H105 0U05 "HHJ5 
.~ DS:4C,6t3 
004C U!HHl FFFT 
~:Hl50 Fr'FE kHHH} fFfF FFFE UldJU FFFr' FfFE; O~HHj 
U060 FFFF f:'FFE 0000 fFFr' FFfE 
• DioJ uS: 6A f Be 
U06A lhHH) litHH1 OU00 
0070 lHlllU FFFB FFF6 iJ(HHJ FFF6 FFEe OOUO FFFI 
"h180 FFE2 (-HH1U FFEe FF'DI:l IHHHl FFS? ffeE 

The "G" Command is used to reset the IP register 
to the start address of the program (1/YIJ2) and to 
specify a breakpoint at address 0AEH, which is the 
address of statement 57 of the main program. 
Statement 57 is the point in the program after the 
X$ROW and Y$ROW matrices have been initial­
ized, but before the matrix multiplication is 
performed. After the <CR> is typed, the program 
executes until the breakpoint is encountered. At 
this point, the monitor outputs a line specifying 
the number of the breakpoint, the CS and IP 
values and the first byte of the next instruction to 
be executed. 

.~ 0185- 55 002,AE 

SRl @OHHJ:OUAE C7 

Next, the single-step capability is used with the 
"N" command to execute single instructions. At 
any time, CPU registers may be examined or 
changed. In this example, the "X" command is 
used. Execution of succeeding instructions is caused 
by typing a comma (,). 

.~ 00AE- C7 ..L 

1:11:184- 81 , 
008A- 7E --; 
00BF- C7 -

.~ 
AX=U018 BX=IH1l8 CX=FFFE DX=IHHH) SP=0UDO 8P=UU00 SI=\'HHJ4 
DI;=(HHJ6 C5=0100 DS:::tJ12A 55=012A ES=0tlUO IP-=0UBF FL=F293 

.N {H1fW- C7 , 
U0C5- 81 , -
tH:lCB- 7E -

The contents of the X$ROW and Y$ROW matrices 
are examined and changed with the "SW" (sub­
stitute word) command. If a comma (,) is typed 
after the contents of memory are displayed, then 
the contents are left unchanged and the next word 
of memory is displayed. If a value followed by a 
comma or <CR.> is entered, then the contents are 
changed. If a <CR> is entered, the substitute 

1·97 

sequence is terminated. 
.sw 05:11\, I:lUtll- , 
0~lC UU~l-. -
DOlE IHhJl- III 
.SW 05:5/\, FFr-'F- -l 

OOSC FFFE- , 
OOSE UIHHl- ~ 
OU60 FPPF- §J 

After the matrices are modified, execution is 
resumed with the "G" command. The max value is 
output and the INT 3 instruction executed. Finally, 
the contents of the 3 matrices are displayed. 

.G tHlCB- 7E 
MAX VALUE -= HHl43D 
(:1IHOO:01BS SS 
.ow os:~ 
OUHl ~HHJ0 (lUUU 00U0 Otll:JU I:HHlO OU01 0\J01 13Ultl 
0U20 0\:)01 00101 OU02 ~HH}2 U0U2 "'tl02 001]2 OlHJ3 
lHl30 IHH13 00133 lHl133 iHl133 130114 UOU4 110134 130134 
OU40 kHltl4 IH105 ~Hj05 I1fHlS U0U5 0005 13000 FFFF 
0111513 FFFE 001Hl FFFF FFFE OlH:lU FFFF FFFE 0111Hl 
tHl6U 00164 FFFE 01300 FFFF fFFE kHH10 ~HHJU U000 
UI17U IHHHl fH:l51 FFOB lHHHl UIlCU FFEe UtHlO iH2U 
ka180 FFE2 IHHlU 11180 FFOB f:HH:l0 IHE" .FFCE 

Expanding the Example Program's 
Memory Requirements 

To illustrate how the iSBC 86/12 board may be 
used for executing 8086 programs which require 
large amounts of RAM, the example program will 
be modified. The matrix dimensions of the example 
will be changed from values of 6, 5 and 3 for the 
literal symbols of M, N, and P to values of 100, 
50, 70. The three matrices will then be of size 
looX50, 50X70, and lOOX70. The memory re­
quired for these matrices is 15.5K words or 31K 
bytes. The data, constant, stack and memory 
segments which are contained in the group 
OGROUP will now comprise almost 32K bytes of 
memory. 

The extra memory requirements will be supplied 
by using an iSBC 032 board with the iSBC 86/12 
board in the iSBC 660 chassis. The iSBC 032 board 
is a 32K byte RAM board which is compatible 
with both 8- and 16-bit CPU boards. The base 
address of the board may be selected anywhere in 
a 0 to 1 megabyte range on any 16K byte boundary. 
8- or 16-bit data transfers may be selected. The 
iSBC 032 board will be jumpered to respond to 
addresses in the 512K or 544K address space (20 
bit hex address range to 8W/>fIJH to 87FFFH). This 
will illustrate the capabilities of the 8086 to access 
a 20-bit, 1 megabyte address range. 

One other modification is required to the program. 
The magnitude of the numbers which would result 
from multiplying matrices of this size would great­
ly exceed the capacity of the 16-bit integer storage, 
even with the two matrices initialized to the small 



values they presently contain. To keep the example 
simple, the initialization values will be changed so 
all elements of the X$ROW matrix are set equal to 
2 and all elements of the Y$ROW matrix are set 
equal to 3. The result of the multiplication should 
make all the elements of Z$ROW equal to 300. 

The modified lines of program code are shown 
below. 

27 
28 
29 

/* MATRIX DPlENSIONS. */ 
DECLARE M LITERALLY , HI", '; 
DECLARE N LITERALLY '50'; 
DECLARE P LITERALLY '70' i 

36 DO I "" 0 TO (~-l); 
37 DO J = 0 TO I N-l) ; 
38 X$ROWII) .COLIJ) = 2; 
39 END; 
40 END; 

41 DO I = 0 TO IN-I); 
42 00 J = 0 TO I P-l) ; 
43 Y$ROWII) .COLIJ) = 3; 
44 END; 
45 END: 

The EXECUTION$VEHICLE module must be re­
compiled and then the three program modules must 
be linked and located using the QRL86 program. 
Specifying the SEGMENTS option of QRL86, the 
origin of the CODE segment which is in the group 
CGROUP is set at 1 OOOH , as in the first example. 
However, the origin of the CONST, DATA 
STACK and MEMORY segments which make up 
the group DGROUP is set at 80000H. 

QRL86 :Fl :MATRIX.OBJ, :Fl :FIND.OBJ, 
SBCIOS.LIB SEGMENTS (CODE(I000H), 
CONST (80000H), DATA STACK, MEMORY) 

The memory map generated by QRL86 shows the 
CGROUP having a start address of 01000H and 
the DGROUP having a start address of 80000H. 

INVOKED BY: 
QRL86 :Fl:MATRIY.OBJ,:Fl:FIND.OBJ,SBCIOS.LIB & 
SEGMENTS (CODE (11300H) ,CONST (80IHH:lH) , DATA ,STA.CK, MEMORl.') 

INPUT :-10DULES INCLUDED: 
: PI: MATRIY .OBJ (EXECUTION VEHICLE) 
: Fl: FIND. 08J (FIND) 
SBCIOS. LIB (SBCCO) 

RESUL'r wRIT'rEN TO :Fl:MATRIY(EXECUTIONVEHICLE) 
START ADDRESS IS (0100H,IH1hl:2.H) 

START LTH ALIGN NAME CLASS 

0HJ00H 298H G /GS/ CGROUP 
0HHHI~-l 21DH W CODE (EXECUTIONVEHICLE) CODE 
01210H 41H B CODE IFIND) CODE 
0125EH JAH W CODE (SBCCO) CODE 

/GE/ CGROUP 
81ii01HIH 7970H G /GS/ OGROUP 
tlfH:H:HlH CH W CONST (EXECUTIONVEHICLE) CONST 
80110CH 0H W CONs'r (58CCO) CONST 
81HHlCH 792AH W DATA (EXECUTIONVEHICLE) DATA 
87936H 2H W DATA (FIND) DATl\ 
87938H 0H W DATA (sacco) DATA 
B7940H 30H SW STACK ST.l\CK 
87970H 0H W MEMORY MEMORY 

/GE/ DGROUP 
87971:1H 0H G ??SEG (FIND) INULL) 

1·98 

The object code is then converted to hex format 
and downloaded to the iSBC 86/12 board. When 
the program is executed, the maximum value is 
calculated and output on the console. 

-S3C861 

ISIS-II ISBC 86/12 LOADER, Vl.2 

IS8C 86/12 MONITOR, ,VI. 2 
• L5,: FI: r1ATRIY. HEX 

.51I\C, F4- ~ 

.G 0002- FA 
MAX VALUE = +00300 
@{JHIO:0IAD 55 

VI. CONCLUSION 

This application note has described the iSBC 957 
Intellec-iSBC 86/12 Interface and Execution 
Package, and how this package may be used to 
develop and debug programs for the 8086 processor. 
First, the iSBC 86/12 single board computer was 
described, followed by a detailed description of the 
iSBC 957 package and the iSBC 86/12 system 
monitor commands. The power and versatility of 
the iSBC 957 package and monitor commands for 
developing and debugging programs for the 8086 
were illustrated by a program example. In the 
example a program which consisted of PL/M-86 
and assembly language routines was presented. The 
program code was explained, and the steps required 
to compile, assemble, link, locate, and debug the 
program were illustrated. Finally, a typical de­
bugging session using the iSBC 86/12 system moni­
tor which illustrates the powerful capabilities of the 
monitor was presented. 



BUSADE_ 

v 

~
"oc, 

GENERATOR ". 
P2ES£7~ 

1'" '" ~ 
C:- r 

"",,] 

to 
<D 

I 

''!'' 1 

,eo 
'" 

~ 

~ 
t 

I---=--""':'-I~ I! I I 

, J 

I''''·'''' 
ABO·ABF ? 

" 
'" 

CLOCK 
CIRCUIT 
Al6.171a 

22.12 

"~ 

iSBCTM 86/12 SIMPLIFIED LOGIC DIAGRAM 

INPUT / OUTPUT AND INTERRUPT 

BPIIO 

BUSY! 

~ 

'"' ADEN 

lFl~:~~ 
IORC-

~ 

_ I A.OR10_AORll ,16"'DAO·ADRll,2t) 

L.{J:: 
--ct: 

~~----------~ 

1"""0-
Rftn 

I.!J 

:x> 
-0 
-0 
m 
Z 
o 
X 
:x> 

s. 
~ 



~ 

~ 

8 

I N. 
I " ~~ ~RESET 

'L RESET 

CLOCK 
S.OMHZClK " 5 ADEN_ G£NERATOR ... 

READY " 
" IT 

"u 

.~ 
'" F--BHEI( 

.... " .. f--LOCK 

... 016· ... 01' . 
lACK ADO·ADIS 16 , 

" 
... OO· ... OF 

of A 

" 
ADVLOADR ASS-AlII: . (SEEr-· o

,) 

• ~"~OM F PROM AACK ~~~E~ES PROM ENABLE 

LOGIC 
",&68 . 

B~::R T I. PROM ENABLE 

AiW..S ~ 

ADI·ADC 12 

t 

les 'd PROM 
A2a29.41\.U 6 

OOO·DBf I 

RESET RESET ,-- .~O 

ceo ce, .U" 
SO-52 "4' 'US aREIl-

ONBDAOR tSEEF1G.4"~ 
ARBITER 

~ 
CHRO' 

"'SSf,~BlY 

1.EL-rl~ ~l n 

~IA~':' ~3~~ 
BPAN 

~I I OC" 
STATUS 

._e 
= I DECODER ".oc M' _e 

!.22MHZ 

~ I " 0» " . 
~ 

r---- MADe. I ". I ... o~.m j s:.~~ BUS MWTC l lOGIC G , ~~~: ~ SLAVE MODE 
ADDRESS ABO-AOI320 r "'1l~ISEE 

LATCH I ~ I ':PL-n~ AG'-' "'404157~ 
OPW-< 

A810· ... S13 . es 
I 

AI)OftESS ., 
AORCIo· ... DRI3 ""' AMO·AMB -:~: ~ fn ~ 

SLAVE MDOE 8USAOEN 

I I A:J'F~~~S I 16 AMCI-AMF I" ]_ ADO-AOF ABO·ABF 16 4 AIIIC.AMF AD~~F 
" 

, 
I ..,4;: rs1 I 0'::" 5 AOROI-, " ADRI30 

DP ON BD ADA EN DP ON 80 AOR EN 

""." 
ABI3 

OFf BD RAM ADR ACT 
PROM ENABlE 

ON BO RAM RCT "'-''" I D~~~~r OFF BD RAM CUD ~~ESS 
SLAVE MODE, LOGlC~: I ~~::, rd 22.12 111HZ 

" 
8USDEN 

~~"'~w es~ 
C~LER RAMXACKI 

MEIIPROT, 

" AUXPWR 

CONTROL AODRESS f 
I ~. ,-1 An·79.92-!19 

" 
_'-ORMO.ooMF 

I .,~"' J-B~:R G 

~ 
A71191 

'( " "00 

,~ I r--
ADO·AOF " 

I T DATA CS I 
DMO·DfoIIF DMO-DMF I ~ATABUST I OATOi·DATFI l B,.u~~,R ~ I ~.: ~ 

SWAL, 

r-
""'-- I C:TABUST I OAT8IDATFI 

I O~R r.l 

iSBCTM 86/12 SIMPLIFIED LOGIC DIAGRAM 

ROM / EPROM AND DUAL PORT RAM 

-

; 

!,-

" 
~ 

,!!. 

; 
i.-

» 
"'tI 
"'tI 
m 
Z 
o 
X 
» 
R) 

S. 
~ 



APPENDIX B 

PROGRAM LISTINGS FOR EXECUTION$VEHICLE AND FIND MODULES 

1·101 



® 

© 

®{ 

PL/M-86 COMPI LER EXECUTIONVEHICLE 

ISIS-II PL/M-86 V!. ~ COMPILATION OF MODULE EXECU'eIONVEHICLE 
OBJECT MODULE PLACED IN :F1:MATRIX.OBJ 
COMPILER INVOKED BY: PLM8Fi :F1:MATRIX.PLM DEBUG 

10 
II 
12 
13 
14 

15 
10 
17 
I? 
19 
20 
21 

22 

'3 

24 
2S 
20 

27 
2R 
29 

30 
31 
]2 

33 
14 
35 

1* MATRIX MULTIPLICATION EXAMPLE PROGRAM 

'/ 

PL/M-86 MAIN PROGRAM WHICH: 
A) INITIALIZES TWO INTEGER ('o1ATRICES 
B) MULTIPLIES THE TWO MATRICES AND STORES THE RESULT IN A 

THIRD MATRIX 
r:} CALLS AN ASSEMBLY LANGUAGE PROCEDURE wflICH SEARCHES THE 

THIRD MATRIX FOR THE MAXIMUM Vl>,LUE 
D) CALLS A PL/M PROCEDURE WHICH CONVERTS THE .IVI,"-IXIMUM VALUE 

FROM INTEGER TO ASCII 
E) CALLS p. PROCEDURE WHICH OUTPUTS THE ASCII CH.nRACTERS ON 

THE SYSTEM CONSOLE 

EXECUTION$VE:H ICLE: 
DO; 

1* FINDtMX - EXTEHr.JAL ASSEMBLY LlI,NGUAGE PROCEnURF. i,<.IHICH S8!1,RCHES A 
MATRIX FOR THE LARGEST ABSOLUTE MAGNITUDE. 
PARAI<lETERS: 

MATRIX$lIDR - ADDRESS OF THr. IIIATRIX TO Rr. SE.t\RCHED 
ROWS - NUMBER OF RO\.\'S IN THE: MATRIX 
COLe: - NUMBER OF COLUMNS IN THE I\1/1TRIX 

'/ 
F'TND$MX: PROCEDURE (MATRIX$PTR, ROI'JS, COLS) INTEGER EXTERNl .... L; 
DECLARE (ROWS, COLS) INTEGER; 
DECLARE MATRIXSPTR POINTER; 
END FINDSMX; 

/* 8IN~DF.CSASC - BINARY TO DF'CJMAL ASCII CONVERSION PROCEDURE 

'/ 

PARAMF,'i'ERS: 
VALUE - INTEGE:R V.n.LUr. TO BE CONVERTED TO ASCI I 
CHAR$ARRlIY$ADR - ADDRESS Of is BYTE ARRlIY ltiHERE: ASCI I 

STRING CONTAINING THE VALUE WILL BE :>TORI:":D 

BIN~DEC$A8C: PROCEDURE IVALUE, f:HARSARRAY$.n.DR}; 

DECLARE (VALUE, TEf"IP, I) INTEGER; 
DECU\RE CHARS,~RRAYSADR POINTER; 
DECLARE (CHAR~ARRAY BASED CHARSA.RRAY~ADR) (6) BYTE; 

IP VALUE < Y' THEN 
DO, 

CHAR$ARRAY (~) = '- I. 1* SIGN CHAR",CTER *1 
TEMP = -VALUE; 

END; 
ELSE 
DO; 

CHARSARnAY(~) = '+'; 
TEMP = VlILUE; 

EN"O; 
DO J = 5 TO 1 BY -1; 

CHAR$A.RRAY (I) = UNS IGN (TEMP MOD 1 r) + 3 fiH; 
TF.!toIP 0: TEMP/~ (1; 

1* ASCII CHARACTERS :~ THRU .19 HEX REPRESENT THF DIGITS e THRU 9. THUS 
TO CONVERT AN INTEGER TO ASCII REPE.n.TED DIVISIONS BY HI AND ADDING 
THE REMAINDER 'ra )r, HEX WILL ACCOMPLISH THE CONVERSION */ 

END; 

END IHNSDECSASC; 

/* CO - EXTERNAL PROCEnURE TO OUTPUT A CHARAC'fER TO THE SYS'fEM CONSOLE. 
THIS PROCEDURE IS PAR'r OF THE ISBC 957 LIBRARY FOR CONSOLE I/O 
PARAMETER: 

CHAR - ASCII CHARACTER 'ro BE OllTPUT ON THE CONSOLE , / 
CO: PROCEDURE (CHAR) EXTERN/lo.L; 
DECLARE CHAR E?YTE; 
END CO; 

1* MATRIX DIMENSIONS *1 
DECLARE M LITERALLY '~I; 

DECLARE N LITERALLY '5'; 
DECLARE: P LITERALLY '1'; 

1* THE THREE MATRICES ARE DECLARE:D P-.S ARI1AYS OF STRUCTURES. XSROW IS COMPOSED 
OF M STRUCTURES EACH OF WHICH IS COI'1POSED OF N INTEGER ELEt-lENTS. THUS 
X$ROW MAY BE THOUGHT OF AS A M X N MATRIX. THE MATRIX WILL BE STORED AS 
A ROW-ORDER MATRIX WITH THE ELEMENTS OF EACH ROW STORED IN ADJACENT MEMORY 
LOCATIONS. Y$ROW IS DECLARED AS A N X P MATRIX AND Z$ROW AS A N X P MATRIX *1 

DECLARE X$ROW(M) STRUCTURE (COLIN) INTEGER); 
DECLARE Y$ROW(N) S'l'RUCTURE (COL(P) INTEGER); 
DECLARE Z$ROW(M) STRUCTURE (COL (P) INTEGER); 
DECLARE (I,J/K,MAX) INTEGER; 
DECLARE MAX$/I.SC$ARRAY(f)) BYTE; 
DECLARE TEXT(*) BYTE DATA ('MAX VALUE = '); 

1-102 



Jrj 
17 
18 
19 

® to 

, ] 
" '3 

" , 5 

©{ 
, r, 

" , 8 
,9 
5" 
~ ] 

52 
53 

@ 5< 

® ,,5 

®{ 50 
57 
58 

50 
6e 
6] 

('2 

® 

11< INITIALIZE XSROI-] SUCfl TIlA'J' THE F'JRST RO\;r IS SET EQUAL TO e, THE SECOND 
nm<l EQUAL TO I, THE TIlIHD Rm~' EQUloL TO 2, ETC. 1<1 

DO I = ~ TO (M-l); 

DO .] 00: r TO (N-l); 
XSROW(I) .COLla) = Ii 

EN[lj 
END; 

/* INITIALI7E Y$RDW SUCH THAT TilE F'IRST COLUMN IS SET EQUAL 'fO 0, THE 
SECOND COL UMN EQUAL TO -1, AND THE Til I RD COLUMN EQUAL TO -7. 1< I 

DO 1 = r TO IN-I); 

00.1 = r TO (P-l)j 
YSHOW(I).COLfJ) = -Jj 

END; 
ENll j 

1* Pf,RFORM MATRIX ~llJLTIPLrCl\TIO~l *1 
DC K = r TO (P-l)j 

DO I = Vl TO (~l-l) i 
Z~ROW(T).COL(K) = 0; /1< SET Z$ROW ELHIENT TO r */ 
DO J" = r TO (N-l); 1* SUM THE PRODUCT OF XSROW ROW Tl::RMS AND Y$ROW COLU~lN TERMS 1</ 

Z$ROI;,I(I}.COL(R) = ZSROWII}.COL(K) + ( XSROW(I).COL(J) * Y$ROI<lIJ).COL(K) )j 
END; 

END; 
END; 

"'l\X .: FIND$MX (("Z:':RO\';, M, P); 11< FIND MAX VALUE OF ZSROW *1 

CALL BINSDEC$l\SC ("1AX, iJMAX$1\SC$ARRAY); 1* CONVERT TO DECIMAL ASCII *1 

no I = (1 TO (SIGNED(SIZEITEXT)) - 1); 1* OUTPUT HEADEH TEXT */ 
CflLL CO(TEXT(!)); 

END; 

DO I = r 1'0 5; 11< OUTPUT ASCII MAX VALUE 1<1 
CALL co (MAX~ASCSr,RRAY I I) ) j 

END; 

END EXEClJTION$VEHICLE; 

f.10DULE TNFORl'll\TTaN: 

CODE AHEA SIZE 07251-1 
CONSTANT AREA 8T2E orr-eH 

5490 
120 

144D 
PO 

VARIABLf. AREA S I2 E ri09flH 
MAXI MUl"l STACK 5 rZE ~(J08H 

117 LINES HEAD 
0 PROGRAM ERROR (S) 

eND OF PL/M-86 COMPILATION 

ISIS-I I MCS-Sfi ASSEMBLER ASSEMBLY OF MODULE FIND 
OBJECT MODULE PLACED IN :Fl:FIND.OBJ 
ASSEMBLER INVOKED BY: ASM86 :Fl:FIND.ASM DEBUG 

L OC OBJ 

LINE SOURCE 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
28 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

NAME FIND 
PUBLIC FINDMX 

FINDMX 
ASSEMBLY LANGUAGE PROCEDURE TO FIND THE ELEMENT OF AN INTEGER 

MATRIX WITH THE LARGEST ABSOLUTE MAGNITUDE. THE VALUE OF TBE 
ELEMENT IS RETURNED IN THE AX REGISTER. 

PL/M CALLING SEQUENCE: 
MAX$VALUE .::: FINDSMX(ADR$OF$MATRIX, #$OF$ROWS, #$OF$COLS); 

PARAMETERS: 
ADR$OF$MATRIX - ADDRESS OF THE MATRIX WHICH WILL BE SEARCHED 
J!.$OF$ROWS - NUMBER OF ROWS IN THE MATRIX 
#$OF$COLS - NUMBER OF COLUMNS IN THE MATRIX 

PL/M WILL PASS THE THREE PARAMETERS IN THE CALL TO THIS PROCEDURE ON 
THE STACK. ON ENTRY TO THE PROClmURE SP+6 WILL POINT 1'0 THE FIRST 
PARAMETER(ADRSOF$MATRIX) AND SP+4 AND SP+2 WILL POINT TO THE SECOND 
AND THIRD PARAMETERS. 

THE PROCEDURE IS A TYPED PROCEDURE WHICH ASSIGNS THE MAXIMUM VALUE 
IN THE MATRIX TO A VARIABLE (IN THIS CASE MAX$VALUE) IN A PL/M 
ASSIGNMENT STATEMENT. TO ACCOMPLISH THIS ASSIGNMENT THE VALUE IS 

RETURNED IN THE AX REGISTER. 

THE ALGORITHM USED IS SIMILAR TO TilE FOLLOWING PL/M CODE: 
FOR I = {l TO (#$OF$ROWS - l); 

FOR J = I:l TO (#$OFSCOLS - 1); 
IF IABS(MATRIX(I).Y(J») > IABS(MAX) THEN MAX = MATRIX(I).Y(J); 

END; 
END; 

WHERE lABS (XYZ) REPRESENTS THE ABSOLUTE VALUE OF THE INTEGER XYZ 

1·103 



0{ 
0{ 
®{ 

cg 

LOC OBJ 

~vHH1 IHHH~ 

0~0 V' 

Vl~0h r 1 
~HH1.<1 r 1 
or08 [] 

13 rIJe 
"roo 55 
IHHll BBEe 
IHH"3 3 3D2 
f'l005 8BFA 
Oe'07 8Bf2 
r 009 89!!)!3iHHl 
~HHlD 884£04 
'" 010 01E1 

0012 P 8 5E P 8 

(1(115 RBC0 
0017 ~8C0 

r019 79'" ? 
0018 F7D8 
n01D 3ac? 
('01 F 7C07 
r ~ 21 8BDr 
r023 8EHH~ 
rr25 A30000 
yH'28 83C()02 
VlP2B 38FI 

(H:l2D 72Ef) 
'iJ~2F 8D18 
r 0 3 J 8£0000 
P 03" 47 

1'113 35 387£136 
0038 72D8 
003A AHHHHl 
IHl3D 50 
1303E C21'16130 

SYMBOL TABLE LISTING 

Nl\ME TYPE 

??SEG SEGMENT 
ABC L NEAR 
ADR OF MATRIX V WORD 
CGROUP: GROUP 
CODE. SEGMENT 
DATA. SE:GMENT 

DEF L NEAR 
DGRDUP. GROUP 
fINDMX. L NEAR 
_AX V WORD 
NO OF COLS. V WORD 
NO=OF=RO\<fS. v WORn 

STACK SEGMENT 
XYZ L NEAR 

LINE SOURCE 

40 
4 J 
42 
43 
44 
45 
46 
47 
4 B 
49 
5. 
5 J 
52 
53 
54 
55 
50 
57 
58 

DEFINE GROUPS TO CONFORM WITH PL/M-86 CONVENTIONS. DATA, STACK, AND 
CODE SEGMENTS WILL BE APPENDED TO THEIR RESPECTIVE SEGMENTS IN THE 

PL/M-86 MODULES. 
DGROUP 
CGROUP 

GROUP DATA, STACK 
GROUP CODE 

INSTRUCT THE ASSEMBLER THAT 'rHE DS 55 AND CS REGISTERS WILL CONTAIN 
THE BASE ADDRESS VALUES FOR THE DGROUP: DGROUP AND CGROUP GROUPS. 
ASSUME DS: DGROUP, SS: DGROUP ,CS: CGROUP 

;***************DAT/\ SEGMENT 

DATA SEGMENT \vORD PUBLIC I DATA' 

MAX ow ~ 
OATl\ ENDS 

59 ;***************STACK SEGfv1ENT 
6r 
')] STACK SEGMENT STACK 'STACK' 

62 ow 14 DUP (~) ;RESERVE 13 WORDS or STACK FOR MONITOR 

;:;3 ;AND 1 WORD FOR FINDMX PROCEDURE 

64 STACK ENDS 
55 
61) ; ***************CODE SEGMENT 

67 
1j8 CODE SEGMENT BYTE PUBLIC 'CODE' 

59 
70 
7J 
72 
73 

7' 

; PARAMETERS ON 
NO OF ROWS 
NO-Of-COLS 
ADR_OF_MATRIX 

75 fI NDMX pnoc 
76 PUSH 
77 MOV 

78 XOR 
79 MOV 
80 MOV 
81 MOV 
82 MOV 
83 SHL 

B4 
85 ""OV 
86 
87 ABC: 1Y10V 
88 OR 
89 JNS 

911' NEG 
91 DEF': CMP 
92 JL 
93 MOV 
94 MOV 
95 MOV 
96 XYZ: ADD 
97 CMP 
98 JB 
99 LEA 

100 MOV 
Hll INC 

10? CMP 

UD J8 
104 MOV 
105 POP 
106 RET 
1~7 

108 FINDMX ENDP 

i~~ CODE ENDS 
111 
112 END 

VALUE ATTRIBUTES 

SIZE=fHHHlH PARA 
0(1] 5H CODE 
0008H [BP] 

CODE 
SIZE=0041H BYTE 
SIZE=0002H WORD 

0£llDH CODE 
DATA STACK 

H00H CODE PUBLIC 

C000H DATA 
IHJ04H [BP] 
(1006H rBP] 

SIZE=(-l01CH PARA 
0028H CODE 

STACK, DISPLACEMENT FROM TOS INCREASED BY TWO DUE TO INITIAL PUSH 

EQU WORD PTR [BP+6 J 
EQU WORD PTR [BP+4] 
EQU WORD PTR [BP+8] 

NEAR 
BP 
BP, SP 

DX,DX 
DI,DX 
SI,DX 
MAX,DX 
CX ,NO OF COLS 
Cx,i - -

; PROCEDURE DECLARATION 
iSAVE BP REGISTER 
i BP POINTS TO PARAMETERS 
; SET ox = ABS OF CURRENT 
iOI '" I (ROW INDEX) = 0 
iSI = J (COLUMN INDEX) '" 0 
; MAX = CURRENT MAX = 0 

ON S'l'ACK 
MAX = 0 

;CX = (#$OF$COLS) * 2 
;TERMINATION FOR J (SI) INDEx 

BX,ADR OF MATRIX jADR$OF$MATRIX PARAMETER 
- - ;BX POINTS TO FIRST ELEMENT OF A GIVEN ROW 

AX,[BX][SI] GET ELEMENT OF MATRIX 
AX,AX SET FLAGS 
D£f JUMP IF SIGN'" 0 
AX NEGATE TO FORM POSITIVE NUMBER 

AX, OX 
XYZ 
J)X,AX 
AX, [BX] [51 J 
MI\X,AX 
SI,2 
SI,CX 
ABC 

BX, r BX+S I 1 
SI, A 
OJ 
DI,NO OF kOWS 

ABC 
AX,MAX 
BP 
6 

PUSL IC 

PUBLIC 'CODE' 

PUBLIC 'DATA' 

STACK I STACK' 

COMPARE TO CURRENT MAX 
JUMP IF LESS THAN CURRENT MAX 

MOVE TO ABS OF CURRENT MAX 
MOVE MATRIX VALUE TO CURRENT MA;~ 

INCREMENT J INDEX BY TWO 
END OF THIS ROW?? 
IF NO, LOOP BACK FOR NEXT ELEMENT Of THIS ROW 

BX = BX + (2 * #$OF$COLS), BX POINTS TO NEXT ROW 
J == 0 
I = r + 1 
LAST ROW?? 

IF NO, DO THE NEXT ROW 
RETURN MAX VALUE IN AX REGISTER 

RESTORE BP REGISTER 
INCREMENT SP BY 6 AND RETURN TO CALLER 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

1-104 



® 

® 

ISIS-II ('IRL-PIl, Vl. 1 

INVOKED BY: 
1,.1HLPr; :Fl:MA'I'I1IX.OB,J,:Fl:F'IND.orLl,SBCJOS.LI8 ORTGTN(10I'C!1) 

rNPUl' MODUL!::S 'P"Cl.UDED: 
: r 1: MATH I X. OAJ (P.XFCUTJ O"iVE!lI eu: 1 
:1"1 :FIND.ORJ (FIND) . 
SBCJOS. LIB (SJ3CCnl 

RESULT WRITTEN 'fa: FJ :Ml"'l'RIX(EXECUTTON\lEHlCLE) 
START ADDRESS IS (llH~nH,rIH'2H) 

STflRT Ll'H I\L lGN NAME CLASS 

f'1H'lOrH ?ArH G /GS/ CGROUP 
r:l(H~f'1H nSIl w CODE (EXECl1T r ONVE H rc LE ~ CODE 

01 nSH 41H CODF. (FIND) CODE 
P126GH :lAH W CODE (SHeeO) COOE 

IGE/ CGROUP 
[112ArH D~!! IGS/ DGROUP 
C} 2fd'!U ell w CONST (EXECUT IONVW reLE) CONST 
rl2ACH nil w CONST (speeQ) CONST 
r,12ACti 9~H w DATA (EXECUTIONVEHICLE) DATA 
~ 13 3eH 211 " DATA r FIND) DATA 
01nEH 011 w DATA (sacco) DATA 
01340H ~r,H sw STACK STACK 
fl137eH 011 w MEMORY MEMORY 

IGE/ DGROUP 
e 37(lH 011 ??SEG (FIND) (NULL) 

DEBUG "'P OF : FI :Ml\TRIX (EXECUTIONVEllJCLE) 

MODULE: EXECUTJO/liVEH rCLE 0ICOH,01E}H 

012AH, v.cmOH SYMBOL MF.MQRY ~l~CH,r:lFBH 

V110NI,rlB5H SYMBOL BINDECASC flHlOH,r,21 ?H 
f'l?/',H,nr.OCH SYMBOL TEMP rUH~H,r2JF.H 

0) 2A.H, r:n0EH SYMBOL I CHI(HI,fl22JH 
P 17AH, V.fll0H SY!>lBOL XRO\-I fllNlH,01?-07:H 

"'DAH,OC4CH SYMROL YROW Ii' Ifl(lH, Or?lH 
('l2AH, r.116AH SYMBCL ZROW rlfleH, ~1132H 
fll?AH,IH'!8EH SYMBOL r CH00H,(H'ltlBH 
o 12J'1H, r:09(1H SYMBOL J OU~~H,r:r5"'fl 

rl'17AH,0r92H SYMBOL K PIP0H,'HJ5DH 
r.12AH, rVl94H SYMBOL MAX fJV0H,rCf>EH 

C117AH,f'l09(iH SyMBOL MAXASCARRAY 0H1rlH, r,r7FIl 
IH2AH, rCHHlH SYMBOL TEXT ~H!rH, 1l09CH 
Olf}~H,rlB5H LINE , 0 01reH,~0A5H 

rI00H,rlBRH LINE 10 0JOOH,00AEH 
0HH'H,OJC2H LINE 12 fl] f,0H, Or,BFH 
o HH'!H, fllC SH LINE 13 01CflH,0VlDPH 
010rH,elDIH LINE 14 (,HH"H,P0E7H 
010flH,01Dt'H LTNE lfi VlHHJH,¥10F81-l 
PHH'H,0IDAH LINE 17 01 rr.Il,0 J j rH 

1·105 

LINE 

UN!:: 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 

#' 19 rlrl?tl, C 11S'H LINE ~ : " 
" ?n llHJ~1I,r'1I17.H LINE " :i3 

" n 010011, f-11I,BH LINE " 5' 
#, 22 o lfHHI," 1 SEH LINE # 5S 

" n (11 (,9H LINE # 5(' 

" 3(1 ~17MI LINE # 57 

" J7 rHH'/1,0185fi LINE # 58 

#' ]8 (l10V'f1, (118EH LIi'JE " 
" '" ClJ(HHI,rlS'FH LINE fi') 

" " 0lCP-H,rlAAH LJ NE '1 

" 41 nHlPH,,~lB3H LINE (;2 

f' " MODULE FIN 

" (lHHlH,023AH SYMBOL ABC 

" 0HHlH,0242H SYMBOL DEf' 
'5 0HH'lH,()225H SYMBOL FINDMX 

'" ~12AH,~Hl9CH SYMBOL MAX 

47 0IC0H,024DH SYMBOL XYZ 

'2 (lICeH, 0225~1 PUBLIC FINDf"IX 
49 MODULE sacco 
5' e100H,02GGH PUBLIC CO 
51 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

I 
I 
I 

I 

I 
I 
I 
I 



APPENDIX C 

PROGRAM LISTING FOR EXECUTION$VEHICLE MODULE WITH CODE EXPANSION 

PL/M-86 COMPILER EXECUTIONVEHICLE 

ISIS-II PL/M-8-fi Vl.(! COMPILP.TION OF MODULE EXECUTIONVEHrCLE 
NO OBJECT MODULE REQUESTED 
COMPILER INVOKED BY: PLM8fi :fl :MATRIX.PLM DEBUG CODE NOOBJECT PRINT{:FI:MATRIX.XLS) 

I. 

11 
12 

j) 

/* MATRIX MULTIPLICATION EXAMPLE PROGRAM 

PL/M-86 MAIN PROGRAM WHICH: 
11.1 INITIALIZES TWO INTEGER MATRICES 
B) MULTIPLIE~ THE TWO MJ'lTRICES AND STORES THE RESULT IN A 

THIRD MATRIX 
C) CALLS AN I'ISSE,"1BLY U\NGUl\GE PROCEDURE ''''flICH SEARC'HES THE 

THIRD MATRIX FOR THE MAXIMUM VALUE 
0) CALLS 1\ PL/M PROCEDURE 't.·HH~H CONVERTS THE "'1l\XIMlJM VALUE 

FROM INTEGER TO ASCT r 
E) CALLS A PROCEDURE \'iHTCH OUTPUTS THE ASCII CH,b,RAC''I'ERS ON 

THE SYSTEM CONSOLE 
'/ 

EXEr.UTIONSVEHICLE: 
DD; 

/* FINDS'!>1X - EXTERNAl. ASSEMBl.Y LANCUAGE PROCEDURE I,o,'HICH SEt .. RCHES A 
MATRIX FOR THE l.ARGP.ST ABSOl.UTE MAGNITUDE. 
PARAMETERS: 

MATAIXSADR - l\DDRESS OF rHE MATRIX TO BE SEARCHED 
Rml/S - NUMBER OF ROWS IN THE MATRIX 
COl.S - NUMBER OF COLUMNS IN THE MATRIX 

,/ 
FIND$I-1X: PROCE:DURE (MATRIX$PTR, ROWS, eOLS) INTESER EXTERNAL; 
DEr:U\RE (ROWS, COl.S) INTEGER; 
DECLARE MATRIXSPTR POINTER; 
END FINDSMX; 

I" BIN$DECSI\SC - BIN"'RY TO DECIMAL AfCII CONVERSION PHOCEOllRE 
PARAMETERS: 

VJl.LUE - INTECER VALUE TO 8E CONVERTED TO ASCII 
CHAR.$ARRAY$AOR - ADDRESS OF Ii BYTE ARRAY WHERE ASCII 

STRING CONTAINING THE VAl.UE WIl.l. BE STORED 
,/ 
BJNSflEC$ASC: PRQCF:DURE (V,r..LUE, CHARSfI.RRAY$ADR); 

STATEMENT # "i 

0lB5 55 
8186 8BEC 

B TNDECASC 
PUSH 
MDV 

PRoe NEAR 
BP 
BP, SP 

DECLARE (VAl.UE, TEMP, I) INTEGER; 
DECl.ARE CHARSAARAYSADR POINTER; 
DECLARE (CHAR$J..RRl'Y BASED CUARSARRAY$ADR) «(-j) BYTE; 

IF VALUE < C1 THEN 

0lBR 817E~1i0~HJF! 

r IBD 7C03 
r51BF E912[1'" 

DO; 
CHARSP.RRA Y (r.) 

r.lC2 8B5E04 
01C5 C5077D 

TEMP " -VALUE; 

rICR 8B4t.;fHi 
a Ica nD8 
r lCD R9~fiP'aca 

END; 

0,101 E9flD0(l 

ELSE 
DO; 

CHAR$AARJl.Y(f') 

'!lD~ 8135E('t, 
~lD7 C6P'72B 

eMP 

JL 
JMP 

,_ I. 

MeV 
MOV 

MOV 
NEG 
MOV 

JMP 

'+' ; 

r<10V 
Mev 

; STATEMENT ~ IF! 
rBP1. VAl.UE, f,H 

B+SH 
@1 

1* SIGN CHAR ..... CTER *1 
; STA.TEMENT l2 

ax, fSP1.CHARARRAY/lDR 
CHARARR/IY rBX}, 2DH 

; STATEMENT l! 13 
/IX, fBP].VALUE 

TEMP,AX 

STATEMENT ~ 14 
@2 

STATEMENT # " 8X, rSP1.CHARARRAYAOR 
CHARARRl>.Y [ex 1, 7I3H 

17 TEMP = VII.LUE; 

rlDp.. [lsg[1() 
STATEfo'iENT • 17 

MOV AX, rBP1.VAl.UE 
?lOD 89[1 r; f'f'M, '<1(,V TEMP,I'X 

18 END; 
612 : 

1 9 DO I '" 5 TO 1 BY -\ ; 
STATEMENT ff ]9 

rIEl C7Cl6r2F!~~5r,r. MOV r, SH 
r.IE7 E?C7fire ,IMP ~S 

@'3: 
"lEA B1V,li0/.r0FFFF ADD r, VF£lFFH 

1·107 



" 

1P 

nre 
rlFf; 
(llFe E926f'r 

t<ls: 

CHARSARRAY (I) 

J, 1 H 
S+SH 

UNSIGN(TEMP MOD HI) + 3rH; 
; STATEME:>IT If ?O 

r 1FB BBr~'HH~CJ MOV 
VlJ FF B9(lAN' Mav 
fl2e2 3102 XOR 
02(i1L! F7FI) IDIV 
02~fi 81C?3fH~(l ADD 
('20A 885E[111 MOV 

0200 88360200 MOV 
02J1 S8lf' MOV 

TEMP'" TEMP/lVl; 

AX, TEMP 

CX,CAH 
OX ,DX 
ex 
DX,3V1H 

BX,.[BP1.CHARARRAYADR 
S I, I 
fBX1.CHlIRARRAyrSIJ ,DL 

; STATEMENT # 21 
/* ASCII CHARACTERS 3a THRU 39 HEX REPRESENT THE DIGITS r THRU 9. THUS 

TO CONVERT AN INTEGER TO ASCII REPEATED DIVISIONS BY H~ AND ADDING 
THE REMAINDER TO 3£' HEX WILL ACCOMPLISH THE CONVERSION */ 

r2}J 8BV'f;V',"'Hl Mav AX, TEMP 
(1217 99 CWD 
0218 F7F9 IDIV ex 
021A 89fV;(l0(Hl Mav TEMP, AX 

END; 
STATEMENT # 22 

(.'21£ E9C9FF JMP A 3 
(ill: 

END BIN$DEC$ASr; 
STATEMENT , 2 :: 

07.21 ::;0 POP 8P 
('277 C2rl'~H" 'H 

ENDP 

/* CO - EXTERNf'..L PROCEDURE TO OUTPUT ". CHAR!I('l'FR TO THE SYSTE,'.l 
THTS PROCEDURE IS PART OF THE lSEiC 9~7 LIBRARY FOR CONSOLE p" RAMETER: 

CHhR - flscrl CHARACTER TO Rt: OUTPUT ON THE: (':ONSOLE 

PROCEDURE ICHAR) EXTERNl\L; 
DF:C: LARE CHAR BYTE; 
~:~D Cr); 

MATRIX DIMEI\ISTONS 
"l LITERALLY' G'; 

DE('L{,RE N LITER".LLY '5'; 
DECLARE P LTTF.:RALLY ':3'; 

/* THE THREE I-1ATIUCES ARE DECLARED OF STRUCTURES. X:-RO\l,' IS C'Jr'<lPOSED 
OF M STRUctURE'S EACH OF' \o,'HICI-l IS :::W N lNTEGr~R ELEMENTS. THUS 
X$RO'.'! -"\,"'Y RE": THOUGHT OF AS fl. IV! X N MATHIX. 
A ROW-ORDER MATRIX WITH THF.: ElE,'>1ENTS OF EACH ROW STORED IN 
L'JCATIO~S. ySRClW IS DECLARED AS A N X P "lATRIX AND ztROW AS A N X P I>1ATRrX */ 

['pelf.RE XSRDW(f.1) STRur'TURE (COL (N) INTEGER); 
Df.CLl'.RE Y$ROW(N) STRUCTURE (CaLIP) INTEGER); 
DECLr..RE 2$R(lW(M) STRUCTURE (CI)L (P) INTEGER); 

DECL"RE (I,J,K,MAX) INTEGER; 
DECll>RE M.hXSASCSARRAY (ii) BYTE; 
DECl".Rf. TEXTI*) eYTE DATA I'.MAX VALVP. = 'l; 

/* IN[rp.LIZE X~ROW SUCH THAT THE FIRST ROW IS SET EQUAL TO 0, THE SECOND 

DO ~o~ I~~J;; THE THIRD ROI" EQUAL TQ 2, ETC. ~/ 

; STATEMENT il 3'-:; 
FA eLI 
2Eef1G~rr-r MOV SS , CS : l"@STACKSFRAME 

r~r8 HC~8r0 MOV SP , «I ~STAC K SOF FS ET 
fl00B BEEC MOV SP ,SP 
(HH:1D 10 PUSH SS 
(1 ~0E 1 F POP DS 
1-'00F' FB STI 
f'l0Hl C7~fi820Vr~HJ0 MOV I, V'H 

r.16: 
fH?16 BI3E8n~V'5'Hl eMP 1, SH 

~~l C 7Er3 .1LE $+5H 
r ~ IE EQ]CrC' JMP 

DO J " 0 TD (N-l) ; 
STATEMENT • J 7 

rr 7.1 C'7131i84r:':HHH"C "OV J,0H 

~r?7 CMP .J,1l1! 
0\120 JLE £+5H 
rn IF r<l9 

" I; 
STATE'Il£NT , ~ 8 

r~ 12 MOV !IX, J 
f'l03'; MOV ex, ('.L>.H 
r: r 19 IMUL ex 

';r,.J 
S [,1 

0;)" 1 ?9C 3 .'V1()V 8X,AX 
~1 r: 4 J :'lOV ex, T 
r r~" "7 MOV rBX1.XRo\<!rST1,ex 

SND; 

10108 



t,{l 

" 

" 

'3 

" 

(1(1.-113 p.l(.lr,p-1rrrH1C 
r051 EOD3FF 

END; 

rr~')t. RU'r;82~~1(JHI\l 

r~~5i\ E()B9FF' 
«17 : 

"no 
,JMP 

ADD 
JMP 

/' INITHLJZE Y~ROt,ol SUCI1 

.1,111 
ep 

I , 1 ~I 
Pi) 

THAT THE 

;,TATEMENT ~ .19 

; S'I'ATE"1ENT ij 11 n 

FI RST COLUMN IS SE:'I' EQUAL 
SECOND COLm1N EQUAL TO - J, AND TIlE THIRD COLUMN EQUAL 'I'D 

no I = , TO iN-I) ; 
; STATEMENT # 4J 

Y'i~ 5D C7 '3 ()B 21'H~ 0 rf,' P- MOV r, ~H 
@If: 

or63 813E[120fH14vH' eMP I,4H 
~r69 7E03 JLE $+51l 
or,r;o E9L10rH1 JMP «llJ 

DO .1 = R TO (P-l) ; 
STATEMENT » 42 

(l06E C70684 ~OfHH:1Vl MOV J, PH 
@12; 

O~7t1 813E84\HH~2~O eMP J,2H 
C07A 7E03 JLE $+5H 
~Hnc E9260~ JMP @13 

YSROW(I) .COL(J) = -J; 
STATEMENT # , 3 

'HnF' P8~fi8400 MOV AX,J 
0083 F7D8 NEG AX 
{W85 5. PUSH AX ; I 
008fi 88~6820" MOV AX, I 
fl'OBA 89002121 MOV eX,6H 
D08D F7E9 IMUL ex 
{H'l8F B83684(Hl MOV SI"J 
{l093 D1EIi SHL SI,l 
~0~5 8 9c 3 MOV BX, AX 
o (l97 59 POP ex 1 
Cl098 89884~O(l MOV rSX1.YROWr5Il,CX 

END; 
; STATE:MENT # 44 

Ot19C 810684~oc.u~e ADO ,J,lH 
00A2 E9CFFF JMP (212 

i<1l 3: 
E~D; 

STATEMENT # 45 
~~A5 81rI)82f10y;]~r ADD I,IH 
["1VlAB E9F1.'JFF JMP (,lHl 

f.'l1l: 
1* PERFORM MATRIX .~ULT1:PLTr.ATrON '1-1 
DO K::= e TO (P-J); 

C7~r;Rr,~tl(lC'Vlr MOV 
014: 

e 13C8:'j(H"02Ml CMP 
7Er3 ,nE 
E98CI"'0 JMP 

['0 I '" (l TO (1'1-]); 

,'>lOV 

('(1e5 P13E8}nr!C'5(1[1 C'>IP 
7E0.1 .JLE:: 
ES'72rr JMP 

"',2H 
~ + 511 
«11 5 

r,?1l 

r , ~.!l 
S+SH 

7 

STATE,'1ENT ff ~:} 

ST/I.'I'E'r'ilENT 4 t 7 

ZSROIv(T) .CIJL(K) '" ~; ;.:;ET Z$RO'.'1 ELE~ENT TO r "/0/ 
; STl\TE.'1ENT ij 48, 

rlrDfl PBrr:>S2rr MOV AX, r 
r.OD4 B~%I~r r-lOV CX, <:;11 
r~D7 F7E9 JMUL ex 
(·'cm9 883()2GC'Vl MOV SI,K 
rr-DD 011::1') SHL SI,l 
0(l[)F R<)C3 MOV OX,AX 
\l'OE1 c7Rr5E"r'~Ql(lC' MOV rsX] .ZROWrSll ,rH 

TO , , TIlE 
-?. . / 

4:') 00 J :0: Pi TO (N-l); 1* SUM THE PRODUCT OF' XSRO!'j' ROI" TERMS AND Y$ROW COLUMN TER"1S */ 

00E7 C701')84fH'iHHHI MOV 
@18: 

rr.ED 8IJEf)I1VlC'["1<lC'0 eMP 
iH~r] 7E["13 .JLE 
r,PF5 E901] 0('1 JMP 

50 Z$ROW(I) .COL(R) = 

r,OF8 8B(J682(l~ MOV 
rV'lFC 89C'Arr, MOV 
Or,FF F7E9 I,,1UL 
(1 lfH 8B36R4~~ MOV 
01rs DJ Efi SHL 
(lu-n 50 PUSH 
0He 88'3G84011 MOV 
01 V',C R9~fi""~ MOV 
~ IP!F F7E9 "[MUL 
0111 883E86f'lr. MOV 
(1'115 D] E7 SHL 
~)l7 8 9C 3 MOV 
0119 8881<lCD0 MOV 
rllD 5B POP 
011E F7A801J00 1MUL 
~] 22 50 PUSH 
:ill 23 880682re MOV 
r 12 7 F7E9 IMUL 
['1129 89C:' MOV 

J, V!H 

J, ~H 
$:+~H 

~19 

; STATEMENT # ~ 9 

ZSROW(I).COL(R) + ( XSROW(I).COLr-1) * Y$RDW(.J).CQ[.(K) ); 
; STATP..'1ENT # 5V'1 

AX, I 
CX, ?ll,ll 
ex 
S I,J 
S1,l 
l'.X ; 1 
AX,J 
ex, fiH 
ex 
D1, K 
DI,l 
ex, AX 
AX,r8X1.YROw rDJl 
ex ; 1 
rRX] • XROW [51] 

AX ; 1 
AX, I 
ex 
8X,AX 

1-109 



~ 1 

57 

5 :< 

5' 

r] 2B '8 POP l\X 
r] 2C elSl5EPr'l ".00 rSX] • 

END; 

Cl13?' 8] Clf,81l00eUHl ADD a,IH 
01 Ji) E98~FF JMP f] 8 

r 19: 
END; 

~l 39 ADD I,H1 
f'l13F JMP I?Ji) 

P17 : 
END; 

(11Ll2 eH~68(-j~l0~lcr ADD K,] I-l 
r He E9"'9FF JMP "'1t. 

«1)<;: 

M/I,X = FIND$MX (82'~':ROW, M, P) i j' 

'" 1 tl8 
r J 4E 
7.1"F BP(l('r1 r 

r.1 ,)1'1 SP 
(lIS7 ESrrrr 
015A 89fHi8PIHJ 

MOV AX ,OFFSET 
PUSH A.X 

"OV 1'-X, riH 
PUSH AX ; 
MOV '""X,3H 
PUSH AX ; 
CALL F INDMX 
MOV "1AX,AX 

J, f..X 

STATEMENT # 5] 

STATEMENT , ~, 2 

STATEMEt~T I 5_~ 

, / 

" 
J 

55 CIILL I3IN$DEC$ASC (MAX, f<lMAX$/iSC$ARRAY); /* CONVERT TO DECW.AL ASCII */ 

5(, 

57 

58 

59 

h] 

52 

; STATEMENT flo 55 
(115E FF3fi88(1~ PUSH MAX ; 1 
0Hi2 B88A~0 MOV AX,OFFSET(MAXASCARRAY) 
V1165 50 PUSH AX ; 2 
r16fi E84C!!-r CALL BINDECASC 

DO [ = , TO (SIGNED (SIZE (TEXT)) - ]); /' OUTPUT 
; STATEMENT 

011)9 C70682fHHHH'f?, MOV I, VJH 
@20: 

k'l'16F elJE82{H~0Be0 CMP I, aBH 
0J 75 7E(13 JLE $+Sfl 
0177 E91400 JMP ~2] 

CALL CO (TEXT (I) ) ; 
STATEMENT 

f'J 7A 8Bl£8200 MOV ax, I 
0'17E FFB70(1~H'l PUSH TEXT rEX1 ; ] 

0182 E8~Hl00 CALL CO 
END; 

STATEMENT 
CHS5 Slr:682000H10 ADD I, JH 
OJ 88 f.9EIFF JMP t'l?0 

~21 : 

DO I = r, TO 5; /' OUTPU'j' ASCII MAX VALUE */ 

012E 

0194 
Vl] 9A 

019C 

C71J6R2er,00Vl0 MOV I,CH 
«122: 

81:<E820Vl0~0(j eMP T,5H 
7Er3 -TLE S+SH 
E9] 400 JMP @2J 

CALL CO(f¥!AXSASCSARRAYIT)); 

; STATEMENT 

HEADER , 56 

I 57 

I :-i8 

# 59 

; s'rATEMENT tI 6 (l 
Vl19F 
0] A? 
V'lA 7 

8BIER?~? 
FFB78Afl0 
F.:8~Hl[~k'l' 

END; 

eJ",A 8Hl1S82r.001rr 
~18e E9EIFP 

@23: 

MOV 
PUSH 
CALL 

ADD 
JMP 

END EXECUTION$VEHICLE; 

0183 FB 
0184 FLl 

ST[ 
HLT 

ax, I 
MAXfI.SCARRAY rsx J; 1 
CO 

I,] H 
~ 22 

; STATEMENT # 61 

STATEMENT # F>2 

MODULE INFORMATION: 

CODE AREA SIZE 022SH SIl9D 
CONSTANT AREA SIZE 000CH 12D 
VARIABLE I\REA SIZE 0090H 144D 
MAXIMUM STACK SIZE Pl008H 80 
137 LINES READ 
I" PROGRAM ERROR (S) 

END OF PL/M-86 COMPILATION 

1-110 

TEXT 'j 



inter 

@Intel Corporation, 1979. 

APPLICATION 
NOTE 

1·111 

AP-53 

October 1979 

9800933 



Using the 
iSBC 544 Intelligent 
Communications Controller 

1-112 

Contents 

I. INTRODUCTION ................. 1-113 

II. OVERVIEW ...................... 1-113 

Intelligent Slave Architecture ......... 1-113 
The iSBC 544 Board ................ 1-115 

III. HARDWARE CONSIDERATIONS .. 1-115 

Two Mode Operation ............... 1-115 
Dual Port RAM .................... 1-116 
Interrupt Structure ................. 1-117 
Modem and Autocall Interface ....... 1-117 

IV. SOFTWARE CONSIDERATIONS ... 1-117 

Device Programming ............... 1-117 
Master/Slave Protocols ............. 1-118 
Communications Support ........... 1-119 

V. THROUGHPUT ANALYSIS ........ 1-119 

Stand-Alone Throughput ............ 1-119 
Intelligent Slave Throughput ......... 1-121 

VI. APPLICATIONS EXAMPLES ...... 1-124 

A Distributed Control System ........ 1-124 
Design Requirements ............... 1-125 
System Configuration ............... 1-126 
Preliminary Design ................. 1-126 
Summary ......................... 1-127 
Terminl!l Cluster Controller .......... 1-127 
Design Criteria ..................... 1-127 
System Configuration ............... 1-128 
Preliminary Design ................. 1-129 

VII. SYSTEM SOFTWARE ............. 1-130 

Data Transfer Primitives ............ 1-130 
Sample Slave Software .............. 1-130 
Sample Master Software ............. 1-135 

VIII. SUMMARY .•..................... 1-136 

APPENDIX A .......................... 1-138 

APPENDIXB .......................... 1-140 

APPENDIX C .......................... 1-145 

APPENDIX D .....•.................... 1-151 



I. INTRODUCTION. 

As the microcomputer system found its way into 
more and more demanding applications the need 
became clear for a new and innovative solution to 
the old problem of providing timely response to 
real world events. This need was never clearer 
than in the field of communications where 
throughput and response time are the keys to 
success. The iSBC 544 Intelligent Communica­
tions Controller (ICC) is the vanguard of a family 
of intelligent slave computers that provide a 
unique and powerful answer to the needs of the 
microcomputer user. 

This application note is intended to introduce the 
reader to the intelligent slave concept in general 
and the iSBC 544 board in particular. After a 
brief overview of the evolution of the concept and 
the features it provides, the hardware and 
software aspects of the controller are studied. 
Following this a summary of various system 
throughput tests is examined to evaluate the 
performance of the intelligent slave versus more 
traditional system architectures. We then study 
two example applications of the product and 
relate the earlier discussions to the real world. 
Finally, some system software is presented that 
handles all data transfer duties between master 
single board computers and intelligent slaves on 
the MULTIBUS system bus. More detailed 
information on many of the topics covered in this 
note can be found in the related publications 
listed in the front-piece. 

II. OVERVIEW 

Intelligent Slave Architecture 

Over the years, component technology has 
increased at a rapid pace going from discrete 
components (eg. transistors) to integrated circuits 
(eg. TTL devices) to programmable peripheral 
controllers (eg. Intel 8251A Universal Synchro­
nous/ Asynchronous Receiver/Transmitter) to 
fully intelligent slave devices (eg. Intel 8041A 
Universal Peripheral Interface). At the system 
level the evolution followed a similar path using 
the increasing component technology to create 
more and more powerful system building blocks. 
The iSBC 508110 board used TTL logic to provide 
digital 110 expansion for iSBC computers. The 

1·113 

iSBC 534 board took advantage of programmable 
LSI devices to provide a programmable commu­
nications expansion board. Now, with the advent 
of the iSBC 544 Intelligent Communications 
Controller, a new level of system capability is 
made possible with the fully intelligent slave 
controller. 

The cornerstone of the intelligent slave architec­
ture is the dual port memory. Through the use of 
this shared memory space, a fast and efficient 
protocol can be established to allow for coopera­
tion between master and intelligent slave in 
solving the needs of the application system. In 
addition to the shared memory, the CPU on the 
intelligent slave also has some local RAM and 
local PROM storage for programs. By using this 
architecture the advantages of multiprocessing 
and Direct Memory Access (DMA) controllers are 
blended together. Unlike DMA controllers, the 
intelligent slave works totally within its own data 
space. Therefore, it is not affected by bus traffic 
nor does it add to this traffic. And, since the on­
board CPU gets its instructions from local PROM 
instead of predefined hard-wired logic or micro­
code, the user has total flexibility in defining the 
functions the intelligent slave will assume in the 
overall system. . 

Although the contents of an intelligent slave 
make it look very similar to a single board 
computer, the assumption of the slave role pro­
vides a distinct advantage. By performing duties 
for a . master single board computer, the slave 
relieves the master of low-level processing duties 
and at the same time is itself relieved of system 
responsibilities. 

In order to position the iSBC 544 product and 
outline what features it brings to the application 
system it is necessary to define the functions 
involved with communicating data. The three 
main functional divisions are illustrated in Fig­
ure 1. At the lowest level the physical intercon­
nection is maintained. This level involves such 
standards as RS232C which defines the require­
ments for transmitting bits from point to point. 

The data transmission level involves the transfer 
of bytes and/or blocks of data from devices to 
computers and from node to node in computer 
networks. The hardware dependent software 
such as interrupt service and device polling is 



DATA PROCESSING 

I I I I 
DATA TRANSMISSION 

I I I I 
PHYSICAL INTERCONNECTION 

Figure 1. Layering of Communication System Functions 

part of this level as are handlers for standard 
protocols such as SDLC, HDLC, Bisync and X.25 
or special purpose schemes and custom protocols. 

The highest level performs the actual processing 
of the data and calls upon the lower levels to move 
the data from place to place. The application 
software resides at this level as do some high level 
software functions such as program to program 
and process to process communications packages. 

Now that we have a map of system functions to 
guide us, it is possible to gain an understanding of 
the usefulness of a product like the iSBC 544 
Intelligent Communications Controller. If an 
iSBC 534 board (which contains four USART 
devices) was included to handle the expansion of 
serial I/O capacity the mapping of system 
functions would look like that shown in Figure 
2. The four USARTs on the board would handle 
the physical interconnection but due to the lack of 
intelligence on the board the master CPU would 
be burdened with all of the data transmission 
duties in addition to its real duty, data processing. 

When an iSBC 544 board is used in the system, 
the mapping of system functions is as shown in 
Figure 3. The physical interconnection is still 
handled by the USARTs on the board but now the 
on·board CPU canbe programmed to assume the 
data transmission duties. With an intelligent 
slave in the system, the master CPU is freed to 
concentrate on the data processing functions and 
the end result is that each function in the system 
is handled in the most efficient manner possible. 

1-114 

1- - - - - ~ST~I~ ~D~MPUTE;-I 

I I 
I DATA PROCESSING I 

1 1 

I 1 

I I 
I I 
I DATA TRANSMISSION I 
1 I 
l ____________ J 

}J" '"'' ""'" '"' 
- - - - -;;Be -;;;-BOARD I 

I--------USART-I I 
1 1 I 

1 i PHYSICAL INTERCONNECTION : I 

I I _________ --,--.J 1 

L ____________ I 

Figure 2. Mapping of System Functions with 
iSBC 534 Board 

1- - - - M~E;;N~B~D_;;;;_M~TE_;;_I 
I 1 

I DATA PROCESSING I 
I 1 

I 1 _ ~~-_-_-rl~,",,,,,~,:J_ 
I iSBC 544 BOARD I 
I I 
1 DATA TRANSMISSION I 

1 1 

1 1 

1 I 
I --------~s~-l I 
I 1 I 
I PHYSICAL INTERCONNECTION I I 
1 1 I I 

1_ 1-= =-=-=-=-=-=-=-=----=-=-~ J 
Figure 3. Mapping of System Functions with 

iSBC 544 Board 



The iSBC 544 Board 

The iSBC 544 Intelligent Communications 
Controller contains: 

• An Intel 8085A CPU operating at 2.76 MHz. 

• Sockets for up to 8K bytes of read only memory 
(user can choose Intel 2716, 2316E or 2732 
devices). 

• 16K bytes of dynamic, dual port Random 
Access Memory (RAM). 

• 256 bytes of static local RAM. 

• Four Intel 8251A USARTs with programmable 
baud rates. 

• Two Intel 8253 Programmable Interval Timers. 

• Intel 8155 parallel interface providing 22 
parallel 110 lines and one 14 bit interval 
timer. Various input and output lines are 
dedicated to provide an interface to a Bell 801 
or equivalent Automatic Call Unit (ACU). 

• 8259A Priority Interrupt Controller. 

III. HARDWARE CONSIDERATIONS 

This section of the application note will focus on 
the iSBC 544 hardware and will outline the 
features of the board and its uses. Appendix A 
contains simplified logic diagrams of the iSBC 
544 board which can be referenced in the follow­
ing discussions. 

Two Mode Operation 

The iSBC 544 board is capable of operating in one 
of two modes; 1) intelligent slave and 2) stand­
alone communications computer. The mode can 
either be set with a switch or it can be "toggled" 
via a software driven flip-flop on the board. In 
the intelligent slave mode the CPU on the iSBC 
544 board operates strictly' within its on-board 
resources. Communications with 8-bit and 16-bit 
master single board computers is accomplished 
through the dual port memory. Since the on­
board CPU executes code out of its local PROM 
program storage the system designer is free to 
define which functions the slave will assume in 
the system design. As discussed earlier, this 
could include all or part of the system data 
transmission duties or could involve application 
specific duties such as terminal format control, 
code conversion or terminal input editing. 

1-115 

In the stand-alone mode, the logic on the board 
disables off board access to the dual port RAM 
and the bus buffers are used to allow the on-board 
CPU to access expansion memory and I/O on the 
MUL TIBUS system bus. In this mode the iSBC 
544 board drives the bus busy (BUSY /) control 
line active disallowing any other bus master 
access to the bus. The stand-alone communica­
tions computer is capable of performing all of the 
functions of the applications system. Referring 
once again to the diagram of the functions of a 
communication system, the stand-alone commu­
nications computer, with or without system 
expansion, is responsible for all data transmis­
sion and data processing functions. In small 
applications requiring multiple serial lines the 
stand-alone iSBC 544 controller is a perfect fit. 

In very special circumstances it is possible to 
share the system bus by toggling the mode set 
flip-flop between master and slave mode. Figure 4 

Figure 4. iSBC 544 Controller Running iSBC 204 
Disk Controller 



shows the flow chart for a routine (code in 
Appendix B) that makes use of the "software 
switch" to operate an iSBC 204 Diskette Control­
ler. Using the iSBC 544 board in a system with 
DMA devices is not recommended except in cases 
where DMA accesses are short and relatively 
rare. The use of the CPU for the handling of other 
system devices could seriously degrade its 
performance as a communications controller. 
However, this capability could be extremely 
useful in a system such as a small message store 
and forward where the disk traffic is not heavy 
and including a CPU card just to handle the disk 
would be wasteful. Use of the "software switch" 
to share the bus with another iSBC CPU is not 
advised because of the amount of protocol that 
would be required to keep the CPUs from interfer­
ing with each other on the bus. 

Dual Port RAM 
Figure 5 illustrates the dual port RAM memory 
array on the iSBC 544 card. A triple bus architec­
ture is used to allow other MULTIBUS bus 
masters access to the RAM on the intelligent 
slave. Both the on-board CPU's bus and the 
MUL TIBUS system bus are connected to the dual 

'" :::> 
C!l 
:; 
W ... 
'" > 

'" '" :::> 
C!l 

~ 
:::> 
:; 

16K 
RAM 

Figure 5. Dual Port Control Logic 

'" :::> 
C!l 

" 0: 

'" o 
C!l 
z 
o 

80SSA 

1-116 

port controller. From here the dual port bus is 
connected to the 16K of dynamic RAM memory. 
Memory transfer requests from either of the first 
two busses are handled by the dual port control 
logic with the on-board CPU being given priority 
if contention arises. The local CPU is favored so 
that it is not overly delayed in handling its time 
critical functions. 

The address mapping of the dual port memory on 
the iSBC 544 is diagrammed in Figure 6. The user 
can enable access from the MULTIBUS system 
bus to 0, 4K, 8K or all 16K of the RAM on each 
iSBC 544 board. The dual port control logic 
decodes the full 20-bit address and provides an 
8-bit data path to the bus. For these reasons the 
iSBC 544 board is compatible with 8080A, 8085A 
and 8086 based single board computers. The user 
can also select the block of addresses on the 
system bus to which the iSBC 544 RAM will 
respond. 

MULTIBUS ISBC 544 
SYSTEM ON·BOARD 

ADDRESS ADDRESS 
SPACE SPACE 

XFOOO FOOD 

xoooo EDoa 

XEOOO 0000 

xeaoa COOO 

XBnDa BOOO 

XAOOO ADOD 

X9DOO 9000 

xaDOO BOOO 

X7000 7000 

X6000 6000 

X5000 5000 

X4000 4000 

DEDICATED 
X3000 STATIC RAM 3000 

X2000 

.OW,"O. ! ----- 2000 

X100Q ----- 1000 

X 0 ANY PAGE ADDRESS, 0 TO F(HEX) 

Figure 6. Address Mapping on Dual Port RAM Block 



When accessed by the on-board CPU, the dual 
port RAM always appears at 8000R_ If the iSBC 
544 board is operating in the stand-alone compu­
ter mode, the board is capable of generating the 
16-bit bus address supported by the 8085A CPU. 

Interrupt Structure 

The interrupt structure of the iSBC 544 controller 
is designed to handle the heavy load imposed by 
the inherent real-time nature of the communica­
tions application. An 8259A Priority Interrupt 
Controller handles the four receiver and transmit­
ter ready interrupts from the 8251A devices and 
provides vectored interrupts using one of many 
available priority schemes. In addition to the 
eight interrupt sources handled by the 8259 there 
are various others that can be connected directly 
to the vectored interrupt inputs on the 8085A 
(RST 5.5, 6.5, 7.5 and TRAP). One interrupt is 
generated by the dual port control logic whenever 
a byte is written into the base address of the dual 
port memory by an offboard CPU. This interrupt, 
the flag interrupt, is cleared automatically when 
the on-board CPU reads the byte and is useful 
when designing a master-slave protocol since it 
provides a unique interrupt to each slave in the 
system. 

If the 8251A devices are used to interface to 
modems the loss of carrier and ring indicator 
interrupts from all four channels need to be 
connected to 8085A interrupt request inputs. This 
is accomplished with four input OR gates tying 
the eight sources into RST 6.5. The ring indicator 
and carrier detect lines can also be monitored 
through a parallel 110 port. This port would be 
read in a polled system to determine status or 
could be used along with the OR-tied interrupts to 
determine which channel is sourcing the current 
interrupt. 

The remaining interrupt sources come from the 
extra timer/counters and from the MULTIBUS 
interrupt lines. In addition to receiving interrupts 
from the bus, the iSBC 544 board has the 
capability of generating MULTIBUS interrupts 
using the Serial Output Data (SOD) line on the 
8085A CPU. 

Modem and Autocall Interface 

The iSBC 544 controller uses 8251A and 8155 
devices for interface to modems and an autocall 

unit respectively. All of the necessary handsha­
king signals concerned with the modem interface 
are connected to the 8251A and the carrier detect 
and ring indicator signals, as previously men­
tioned, can be connected to interrupt inputs. The 
8155 parallel ports are wired as shown in Figure 
7. All ofthe commonly used signals defined in the 
EIA RS-366 specification for interface to an 
autocall unit are provided. The software neces­
sary for handling the ACU becomes a simple 
matter of responding to the ACU requests and 
sending out the BCD digits representing the 
number being dialed. In addition to the ACU 
interface, the 8155 monitors various signal states 
and provides software reset capabilities for the 
USARTs and some interrupts. 

IV. SOFTWARE CONSIDERATIONS 

Software for the iSBC 544 ICC falls into three 
main categories; device programming, master­
slave protocols, and communications support. 
Each of these three topics is covered in the 
following section with the aim of defining the 
software requirements and functions of the iSBC 
544 board. 

Device Programming 

The main sources of the power and flexibility of 
this product are the programmable LSI devices on 
the board. The first duty of the on-board software 
is programming these devices to handle the 
specific task at hand. To start with, the 8251A 
USART can be programmed for synchronous or 
asynchronous operation. In synchronous mode 
the user specifies even, odd or no parity and either 
external or internal sync detect with one or two 
sync characters. In the asynchronous mode the 
programmer selects the parity, the character 
length (5, 6, 7 or 8 data bits), the framing control 
(I, 1112 or 2 stop bits) and the baud rate scaling 
factor (input clock frequency divided by I, 16 or 
64). 

The 8253 Programmable Interval Timers provide 
the receiver and transmitter clocks for the 
USARTs and, along with the 8251A baud rate 
scaling factor, are programmed by the software to 
provide the desired communications frequency. In 
addition, two additional 16 bit timers are left 
available to the applications programs to be used 
as event counters, real-time interrupts, etc. 

1-117 



PORT A 

'----------- DIGIT PRESENT ON NUMBER BIT 

LINES: 0 0 TRUE 

'-__________ CALL REQUEST: 0 0 TRUE 

PORTC 

Os 0 4 0 3 O2 0 1 DO 

1~6~i l PFS j FINTj ACR j DLO j COS j PND j 

PORTB 

'----------- CARRIER DETECT. PORT 2: 0 0 TRUE 

'----------- CARRIER DETECT. PORT 3: 0 " TRUE 

~ PRESENT NEXT DIGIT: 0 0 TRUE 

CALL COMPLETE. LINE TRANSFERRED TO MODEM: 
0 0 TRUE 

DATA LINE OCCUPIED: 0 " TRUE 

'------- ABANDON CALL & RETRY: 0 ' TRUE 

'--------- FLAG INTERRUPT: 1 0 TRUE 

'---------- POWER FAIL SENSED: 1 0 TRUE 

Figure 7. 8155 Pinout Definitions 

The 8259A Priority Interrupt Controller is 
programmed to vector all interrupts through a 
jump table in memory. Also, the device provides 
software selectable priority schemes and an 
interrupt mask register for sophisticated interrupt 
management designs. 

Last, but not least, the 8155 Programmable 
Peripheral Interface provides various software 
controlled input and output ports as discussed in 
previous sections. One specific point to remember 
is that the power on state of the 8155 clamps the 
reset signal to the USARTs active and must be 
removed by programming the 8155 before com­
munications can begin, 

Master-Slave Protocols 

If an application system is visualized at the 
highest level it appears to be a computer with 
various inputs and outputs as depicted in Figure 
8a. If this computer is broken down into a master 
CPU and one or more intelligent slaves, great 
increases in efficiency and system throughput 

can be realized by distributing the duties between 
the CPUs (Figure 8b). Once this split is per­
formed, some well defined means of communica­
tion between master and slaves needs to be 
defined so that the processes that execute on the 
different machines can cooperate. This means of 
communication takes the form of a protocol 
followed by both master and slave. 

INPUTS 

APPLICATION 

SYSTEM 

OUTPUTS 

APPLICATION SYSTEM 

INPUTS .~ 
• MASTER =; SLAVE 

\ r OUTPUTS 

"" "" ) J 

Figure 8a and 8b. System Software Block Diagrams 

1-118 



The intelligent slave architecture was designed to 
simplify the development of the necessary 
protocol. The shared memory space in the dual 
port RAM provides a large communications 
buffer area where data and commands can be 
transferred using normal memory transfers. Data 
structures of any needed complexity can be built 
in this memory area and accessed by both master 
and slave. The flag interrupt can be used to 
provide a unique synchronization signal from a 
master to a given slave. In addition, the MULTI­
BUS interrupt lines can be used to provide extra 
signals in both directions. As we shall see in the 
system software section, these basic tools can be 
utilized to design a general purpose data transfer 
mechanism which isolates the applications 
processes from the worries of protocols and 
synchronization. 

Communications Support 

The previous software topics dealt mainly with 
the system overhead that must be handled by the 
communications processor. The larger and more 
important duty of the CPU is dealing with the 
application at hand-communications. 

When configured as an intelligent slave to some 
master iSBC CPU board, the iSBC 544 board 
works to offload the master of communications 
related functions ahd at the same time is itself 
relieved of a major share of the system overhead 
and can be tuned to provide the highest possible 
throughput. With this combination, more com­
plex applications can be tackled where the 
number of lines and the line frequencies are 
greatly increased. Multiple systems can be 
employed to provide a network facility with the 
iSBC 544 board now handling the network 
protocol in addition to its other duties. The 
architecture of the iSBC 544 controller is designed 
to simplify the user's software development 
process. The board can be programmed to handle 
many possible data transmission functions from 
simple line protocols to terminal control to link 
protocols and all the way up to network protocols. 

In the stand-alone mode, the iSBC 544 board can 
assume total responsibility for the application. 
This can be done with on-board resources only or 
can include the support of offboard expansion like 
the iSBC 534 four channel serial controller. Appli-

1-119 

cations of the stand-alone controller could include 
cluster controllers, peripherals managers, line 
concentrators or any other small system. 

V. THROUGHPUT ANALYSIS 

This section of the application note deals with 
studies that have been done to quantify the 
performance of the iSBC 544 board in both the 
stand-alone and intelligent slave modes. After 
describing the various test configurations and 
assumptions the data will be presented in 
graphical form and analyzed. The graphical data 
can be found in Appendix C. 

Stand Alone Throughput 

The first two tests were run to determine the 
absolute best case throughput of the iSBC 544 
board configured as a stand-alone computer. Fig­
ure 9a shows the iSBC 544 controller continuously 
outputting data from four buffers to the four 
USARTs. Figure 9b shows essentially the same 
setup with eight channels, foul' on the iSBC 544 
board and four on the iSBC 534 expansion 
card. In each configuration the 8251A was run in 
synchronous mode and the baud rate was incre­
mented until the transmitter empty signal from 
the USARTs became active. Further increments 
of the baud rates would not have resulted in 
higher throughput since the CPU was already 
spending 100% of its available time responding to 
USART service requests. 

The maximum rate for the first configuration 
(iSBC 544 board only) was 32,311 baud per 
channel. When the iSBC 534 expansion board 
was added a rate of 12,186 baud per channel was 
achieved. The drop in baud rate was due to the 
extra processing required by the offboard logic 
(eg. reading 8259 interrupt controller on the iSBC 
534 board to determine which device is requesting 
service). 

It should be noted that the serial throughput tests 
were run with almost no overhead and no actual 
processing of the data involved. The reader is 
expected to apply information on the amount of 
overhead expected in each individual application. 
For instance, if the application code for a given 
system is expected to utilize approximately 40% of 
the available CPU time and we wish to run four 



8085A 

iSBC 
544 

BOARD 

MUL TIBUS SYSTEM BUS 

Figure 9a and 9b. Stand-Alone Throughput Configurations 

H20 

RING BUFFERS 

~ iSBC 544 BOARD 

ISBC 
534 

BOARD 



full duplex channels in asynchronous mode the 
estimate of maximum baud rate would take the 
following form. 

32,331 baud per channel - 40% = 19,398.6 baud 

19,398.6 baud per channel synchronous x 10/8 
= 24,248.25 baud asynchronous 

24,248.25 baud per channel half duplex/2 = 
12,124.125 full duplex 

Therefore, the maximum standard baud rate 
would be 9600 baud per channel in full duplex 
asynchronous mode. 

Intelligent Slave Throughput 

The remaining four configurations were set up to 
determine the effectiveness of the intelligent slave 
in the overall system. The general system config­
uration is illustrated in Figure 10. The boards 
surrounded by the box' represen t the systems 
under test. The disk controller and two iSBC 
80/20 single board computers were active on the 
bus to simulate the normal bus traffic load in an 
application system. Various bus duty cycles were 
created using the computers and the disk control­
ler to perform tasks that resulted in fixed bus 
utilization. 

Figure 10. General System Configuration for 
Throughput Testing 

In each configuration a single full duplex channel 
was set up with the input provided by another 
CPU. Only those functions dealing with system 
overhead were included and the data measured 

1·121 

reflected the amount of bus time, master CPU 
time and slave CPU time left available to 
applications oriented tasks. In each case this 
percentage of time available was measured as the 
baud rate was stepped up so that a graph could be 
constructed showing time available as a function 
of transmission speed. 

CPU free time was measured using a counting 
program running in the background. After each 
USART interrupt the counter was started. As 
interrupts from other sources came in the count­
ing was preempted and then resumed after 
servicing the interrupt. When the next USART 
interrupt occur ed, the counter contents were 
examined and if the value was lower than the 
stored value the current value became the stored 
value. After ten minutes the stored value was 
retrieved and used as an indicator of the worst 
case time available between interrupts. 

System bus utilization was measured using the 
circuit shown in Figure 11. The voltage measured 
by the digital voltmeter represented a time 
average of the voltage at the output of the flip­
flop. A calibration chart was created using a 
pulse generator to simulate various duty cycles 
and then this chart was used to measure bus 
activity while the test was running. 

BUSY/ 
o a 

a 
ClK 

BClKI 

I 
Figure 11. Bus Free Time Measurement Circuit 

Configuration 1 is shown in Figure 12. This 
system uses a typical method of communications 
expansion with the iSBC 80/30 single board 
computer handling the lines directly via the serial 
I/O ports on the iSBC 534 I/O controller board. 



I~~-'-'~--- - - -------------------1 

1 1 

I I 
I I 
1 I 
I ~ 1 
1 ISBC 80/30 CPU ~ I 

I I 
1 I 
1 1 
1 iSBC 534 1 

I EXPAN~~~~~OARD J 

I I 
I I 
1 1 

I I 
I MUL TIBUS SYSTEM BUS 

I 1 

I 1 
1 ____ - _________________________ -.J 

Fi~lIre 12, System Throughput Test, Configuration 1 

Th!J second configuration (Figure 13) illustrates 
the perfollma,nce of the traditional DMA control­
ler approach. If the communications controller 
had PMAlogic instead of a dual port memory and 
transferred data directly into system memory the 
perfofman~e would be as observed in this test. 

configuration differs from the second in that 
memory transfers involved only local memory 
and bus access was not required on a per 
character basis. 

1n confignfl.ition 3 (Figure 14) the iSBC 544 board 
"Ya~ used in the intelligent slave mode. This 

The fourth and final configuration sought to 
identify the loading that additional intelligent 
slave controllers would impose on master CPU 
time and bus free time. Figure 15 shows the 

I-""'~""'~-------- -- --- - -- ------- ---- - --I 

ISBC 8Q/30 
SINGLE BOARD 

COMPUTER 

MULTI BUS SYSTEM BUS 

ISBC 80/30 
SINGLE BOARD 

COMPUTER 

1 1 
I..." __ '"T"" ____________________________ J 

Figure 13. System Throughput Test, Configuration 2 

1-122 

MEMORY 



r--------------------------------------~ 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I SI~~L~ ~Ob~RD IN+~~~I~~NT I 

COMPUTER CO~~~~lgt~~~NS I 

~ i 
I 
I 
I 
I 
I 
I 
I 

------------------ __ ---------------------' 

Figure 14. System Throughput Test, Configuration 3 

r--------------------------------------I 

iSBC 80/30 
SINGLE 
BOARD 

COMPUTER 

Isac 544 
INTELLIGENT 

COMMUNICATIONS 
CONTROLLER 

iSBC 544 
INTELLIGENT 

COMMUN'CAT~nNS 
CONTHOLLE.R 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I 
I I 
I I 
I I 
I I 
I I 
I 1 
1 ___ - _________________________________ I 

Figure 15. System Throughput Test, Configuration 4 

1·123 



configuration with two iSBC 544 boards execut­
ing identical programs. 

The graphical presentation of the results is split 
into two sections. The first three graphs (Graph 1 
through Graph 3) show the relationship between 
baud rates and the master CPU, system bus, and 
slave CPU utilization. All of these results are 
based upon tests with 30% induced bus traffic (Le., 
the two iSBC 80120 computers and the iSBC 204 
disk controller were active.) 

In graph 4, processor free time is graphed as a 
function of bus traffic. The processor in this case 
is the one actually involved with the data on a per 
character basis (Le., iSBC 80/30 board in con­
figuration 1, iSBC 80/30 board simulating DMA 
Controller in configuration 2, and iSBC 544 board 
in configuration 3). 

Finally, graph 5 illustrates the maximum attain­
able baud rate for each configuration as the bus 
traffic is increased. 

All of the graphs identify the relative perfor­
mance difference between the configurations. 
Absolute numbers are not presented due to the 
fact that the overhead imposed by the test 
software affects the CPU time being measured. 
Since the overhead applies equally to all config­
urations, the relative performance indications are 
valid. 

Based upon the data presented, the DMA control­
ler and intelligent slave use 3 times less CPU time 
than an I/O controller. Also, the iSBC 544 
intelligent slave generates 12% and 6% less bus 
traffic than the 1/0 controller and DMA control­
ler respectively. Finally, the intelligent slave uses 
8% less slave CPU time than the DMA controller 
approach. 

The earlier discussion that dealt with the intelli­
gent slave architecture pointed out that the 
distribution of intelligence would offload the 
master CPU so that it would retain sufficient 
processing power for the actual application, 
whatever that may be. In addition, it was stated 
that the assumption ofthe slave role would relieve 
the slave CPU of system overhead and at the 
same time reduce system bus traffic. All of these 
assumptions are supported by the results of the 
testing presented here. 

1-124 

The second set of graphs identify the effects of 
bus traffic on the performance of the various 
components of the system. The main observation 
to be made in this sequence is the drop in CPU 
free times and maximum baud rates that occurs 
when the bus gets busy. This effect is observable 
in the communications processor free time when 
the iSBC 534 expansion board or the DMA 
controller configuration is used. No effect is 
evident in the configuration with an iSBC 544 
board. 

The cause of this effect is the amount of bus 
access required by each configuration to move the 
characters from the USART to or from the 
buffer. With an iSBC 534 board the master CPU 
receives an interrupt, polls the offboard 8259 
interrupt controller, reads in a character, stores it 
in system memory and sends an end of interrupt 
command to the offboard interrupt controller. 
When the iSBC 80/30 computer receives an 
interrupt all processing is performed onboard 
until a bus access is required to move the data 
byte from Ito memory. In the case of the intelli­
gent slave, all processing for a character is 
performed onboard. Thus, as the system bus 
becomes very fully utilized, the delays encounter­
ed in receiving bus access by the first two 
configurations become significant. 

The fourth configuration, which was set up to test 
the effects of adding more intelligent slaves, 
shows that extra slaves cause no appreciable 
increase in system load. All of the data points for 
two slaves were identical to the points for one 
slave in graphs 1 through 5. 

VI. APPLICATION EXAMPLES 

A Distributed Control System 

The potential applications for a product like the 
iSBC 544 communications controller are almost 
unlimited and not restricted to the traditional 
Data Communications market. The first applica­
tion example that is studied concerns industrial 
automation. Due to the fact that the system is 
distributed and requires a generalized network, 
the iSBC 544 board is a natural prospect to handle 
the communication links between the various 
nodes in the system. 



Design Requirements 

The system to be designed is intended to provide 
the framework for a family of distributed control 
systems where the configurations and the objects 
to be controlled vary from system to system. Fig­
ure 16 shows the general picture of the system. 

HOST 

Figure 16. General Diagram of Distributed 
Control System 

SERIAL 

Figure 17. Expanded Diagram of Distributed Control System 

1-125 

The host is responsible for providing supervisory 
control and a high-level human interface. The 
system can be expanded as shown in Figure 17 
where the controllers attached to the host are 
replaced by intermediate nodes which contain 
controllers or other nodes. This process can be 
continued as far as is necessary to provide the 
needed number of controllers. Each controller in 
the diagram represents a localized closed loop 
control system that is tailored to the specific 
application. 

The following system requirements need to be met 
by the computer network: 

• The host CPU must have sufficient computa­
tional power to handle the human interface, 
mass storage management, supervisory control 
calculations and network control. 

• The host CPU must not be overly burdened by 
low-level communications functions if it is to 
handle the other duties assigned to it. 

• Node controllers must be capable of handling 8 
medium speed lines and also modems and 
autocall units since the nodes or controllers 
attached may be remote. 

o 
o 

o 



• The message transmission format must be 
independent of the configuration and end 
application. The nodes in the network must be 
capable of passing through messages with and 
without interpreting the contained data. 

• The system must be capable of auto-configura­
tion (since the network configuration is tailored 
to the specific application, the host must be 
able to automatically determine the setup at 
power on). 

• Each node controller is responsible for verify­
ing the integrity of the nodes attached. 

System Configuration 

Based upon the design criteria and the bench­
mark information the chosen configuration uses 
an iSBC 86/12 Single Board Computer as the host 
with an iSBC 544 intelligent slave handling the 
communications load for the CPU. The USART 
on the CPU board will talk to the local terminal 
and an iSBC 206 Hard Disk Controller will be 
used to provide up to 40 Megabytes of mass 
storage capacity. 

The requirements for the node controllers point to 
an iSBC 544 board configured as a stand-alone 
communications computer with an iSBC 534 
board as expansion to provide the necessary 8 
lines. The throughput data indicated a raw 
throughput value of 12K baud on each channel. 
With the data rates expected being far below this, 
sufficient time will be left over for background 
functions. Thus, the software requirements for 
each node can all be met by the CPU on the iSBC 
544 board and the inclusion of an expansion 
board does not necessitate another iSBC compu­
ter. 

A typical controller in the system would look like 
that shown in Figure 18. The iSBC CPU handles 
the local closed loop control, using parametric 
information sent from the host. This information 
would typically include setpoints, tolerances and 
alarm limits. The serial channel on the CPU will 
be used to maintain the link to the next level in 
the network. 

Preliminary Design 

The message format that the system uses is 
shown in Figure 19. When multiple nested levels 

1-126 

SERIAL 
LINK 

DIGITAL INPUTS 

CLOSED LOOP 
CONTROLLER 

i$BC 80/10A SINGLE BOARD 
COMPUTER WITH iSBC 732 

ANALOG I/O BOARD 

DIGITAL OUTPUTS 

ANALOG 
OUTPUTS 

Figure 18. Typical Controller in Distributed System 

Figure 19. Message Format 

Figure 20. Nested Level Address Information 

of nodes are used the data area of the message 
contains command and address information for 
the next level down (Figure 20). Interpretation of 
the commands in a given message is done on an 
individual basis except for a set of system-wide 
commands (eg. IDENTIFY is a system command 
meaning respond with your ID code). The flexi­
bility afforded by this scheme can be extremely 
useful in a system where the end applications and 
configurations may be quite diverse (eg. a node 
controller that is processing a transmit command 
may be the only one that knows that it is sending 
to another node via a phone line and thus it 
interprets the contained data differently than 
another node would). The level of intelligence 
and the ease of programming of the iSBC 544 
board make this generalized transmission scheme 
possible. 



The simplest means of auto-configuration re­
quires each controller in the system to send an 
identity message to the nearest node_ This node 
would know the logical address of the controller 
that sent the message and would attach this 
address to the message and retransmit it to the 
next level as illustrated in Figure 21. This process 
would be repeated until the host is reached and 
would contain, at this point, all necessary address 
information to reach the given controller_ 

CONTROLLER 

Figure 21_ Auto Configuration 

The human interface on the host would provide a 
mapping mechanism to attach meaningful 
symbolic names to the various nodes in the 
system_ This labeling, along with the application 
specific control algorithms, make it possible to 
say something like "lower the temperature on the 
third floor to 68°F"_ The host breaks this 
information down into setpoints and tolerances, 

1-127 

uses the map to determine the path to the node(s) 
responsible for the third floor and transmits the 
information through the network. 

Each node controller in the system has the added 
responsibility of verifying the integrity of all the 
nodes attached to it. This duty can be handled by 
periodic background commands issued from the 
host and propagated through the network. Each 
node is responsible for passing the command 
along and also polling the nodes attached to it 
and reporting back any error conditions. 

Summary 

Through the use of a powerful 16-bit iSBC Single 
Board Computer, various low-cost 8-bit iSBC 
CPUs and the iSBC 544 communications control­
ler, a flexible and extensible distributed control 
system is easy to design. The dual nature of the 
iSBC 544 board provides both an intelligent front 
end to the host computer and a high-speed stand­
along nodal concentrator. The ability to individ­
ually customize the software on each controller 
provides for an easily expandable system design. 

Terminal Cluster Controller 

The second application example concerns itself 
with a terminal cluster controller. The system 
shown in Figure 22 uses a number of "dumb" 
terminals and makes them appear "intelligent" 
via a local microcomputer system. The local 
microcomputer interfaces with the operator and 
accesses a local data base to provide an inquiry 
and data entry service. When necessary, the local 
microcomputer is capable of calling the host via 
an autocall unit and exchanging information and 
updates to the data base. 

Design Criteria 

The terminal cluster controller must meet the 
following criteria: 

• Support must be provided for from four to 
sixteen operator terminals all running at rates 
up to 2400 baud. 

• Line editing on input must be provided (delete 
characters, delete lines and pause output). 



Figure 22. Terminal Cluster 

• Support for the terminals must be configurable 
in that certain stations may require different 
screen formats. 

• Support for an optional hard copy device must 
be allowed for. 

• A considerable amount of CPU free time must 
be available after the basic terminal facilities 
are included. This is due to the fact that the 
data base management software to be written 
to run on the master single board computer will 
be extensive. 

• Type ahead would be a desired feature since the 
. processing on the master CPU after a line of 

input has been transmitted may cause a delay 
in responding and we would like to have the 
ability to continue entering input while waiting 
for the response. 

System Configuration 

The specific iSBC products needed to implement 
the system described are the iSBC 80/30 Single 
Board Computer with an iSBC 032 RAM Expan· 

1-128 

LOCAL 
DATA 
BASE 

....... ----7 

sion Board, an iSBC 206 Hard Disk Controller 
and one to four iSBC 544 Intelligent Communica· 
tions Expansion boards. Intel's RMX/80 Real­
Time Multitasking Executive will provide the 
basis for the software system and will include 
disk file support for the iSBC 206 controller 
through DFS/80. The full system configuration 
is illustrated in Figure 23. 

BLOCK DIAGRAM 

Figure 23. Terminal Cluster Controller System 
Configuration 



Preliminary Design 

The first design decision to be made involves the 
distribution of system functions. Due to the 
requirements for line·editing and type-ahead the 
software for processing characters input from the 
terminal keyboards will be somewhat lengthy. 
The standard terminal output handler will be 
very small but provisions for special screen 
format controls and/or hard copy devices must be 
allowed for. All of these requirements lead to the 
use of the iSBC 544 controller for all terminal 
functions. If the master CPU were burdened with 
all ofthese duties it would be unable to adequately 
perform its data base management functions. 
The fast CPU and SK PROM capacity of the iSBC 
544 board will be more than adequate for the task 
at hand. 

The throughput tests indicate that the loading 
imposed by expanding the number of terminals 
(and therefore the number of iSBC 544 boards) 
will not adversely affect the performance of the 
rest of the system. Master CPU free time and bus 
traffic data for two intelligent slaves in the 
system were identical to the numbers for one 
slave. Thus, since the iSBC SO/30 single board 
computer and the MULTIBUS system bus can 
handle one iSBC 544 controller they can also 
handle the maximum of four controllers that may 
be required by this application. The only observ­
able effect will be caused by the load the extra 
operators impose on the data base software itself. 

The software needed for the iSBC 544 board is 
now defined and divided into three major pieces; a 
terminal input handler, a terminal output handler 
and system software to support the handlers. 
Since the input and output handlers are invoked 
via USART interrupts, all that need be done is to 
write a single routine for each handler and have it 
talk to all of the devices on the board. This can be 
accomplished by vectoring the proper interrupts 
to the entry point of the routine and then polling 
the S259A interrupt controller to determine which 
device needs servicing. 

The standard terminal input handler needs to 
read in the available character from the USART, 

check it to see if it is a special command character 
and, if not, store it into a buffer. If a command 
character is encountered, the handler will respond 
by performing the appropriate operation. 

The standard terminal output handler simply 
takes characters out of a buffer upon interrupt 
from the transmitter and sends them ,to the 
appropriate USART. If a different output handler 
needs to be substituted for a special terminal or a 
hard copy device, a new routine can be included 
by modifying the interrupt vector address in the 
S259A jump table. 

1-129 

Since the RMX/SO Real-Time Multitasking 
Executive is being utilized on the master CPU it is 
desirable to create an RMX/SO handler for the 
iSBC 544 boards that accepts and processes 
normal terminal handler request messages. In 
this manner, application tasks that formerly 
communicated with the on-board USART via the 
RMX/80 Terminal Handler can be made to talk to 
one of the devices on the iSBC 544 board by 
simply changing the address of an exchange. The 
following paragraphs, as well as paragraphs in 
the section on system software, assume a know­
ledge of the RMX/80 Real-Time Executive. This 
knowledge is not necessary to use the information 
contained in this application note. Interested 
readers are referred to the RMX/80 references 
listed in the front-piece. 

Since this application can have from one to four 
iSBC 544 boards the RMX/SO driver will need to 
be configurable. A set of tasks and exchanges 
will be created for each terminal in the system. 
One task and exchange pair will accept and 
process terminal input request messages while 
another pair will process terminal output re­
quests. 

The remaining piece of software that is needed by 
this system will provide the means for getting 
commands and data between the master and 
intelligent slave. Since this is a common need in 
any system utilizing an intelligent slave we will 
develop a general purpose scheme that can be 
used by any application. In this manner, a 
routine such as the terminal input handler can be 
written without any concern for how it will get the 
data it is inputting to the master CPU; all it need 
do is call upon a standard routine to "transmit" 



the data. With these thoughts in mind, the 
following section discusses the system software 
developed for master-intelligent slave communi­
cation. After the discussion of the system soft­
ware we will revisit the software for the second 
application as an example of the use of the data 
transfer routines. 

VII. SYSTEM SOFrWARE 

In the earlier discussion of master-slave protocols, 
the notion was presented of developing a general 
purpose data transfer scheme which would enable 
the applications routines on both the slave and 
master to operate without concerning themselves 
with protocols and synchronization. This scheme 
can be implemented by designing a set of 
primitive routines to handle the. data transfer 
activities. Thus, Figure 8b is expanded as shown 
in Figure 24 and the applications processes now 
call upon the primitives to handle the communica­
tions between the master and the slave. 

Data Transfer Primitives 

The basic mechanism used by this implementa­
tion of the primitives is a wraparound queue as 
shown in Figure 25. Each 8251A device has 
associated with it, in dual port memory, an input 
and an output queue each of which have a give 

MASTER 

r-----r---Poi~~ER 

Figure 25. Wrap-around Queue Used by Data 
Transfer Primitives 

and a take pointer. The give pointer contains the 
address of the next location in the queue that is 
available for filling with data. The take pointer 
contains the address of the next byte in an output 
queue that has been filled and 'is available. A 
queue is empty when the give and take pointers 
are equal and it is full when the act of incre­
menting the give pointer would make it equal to 
the take pointer. A wrap function is defined to 
increment a pointer such that an increment past 
the bottom of the queue "wraps" the pointer 
around to the top of the queue. 

SLAVE 

MULTIBUS 
SYSTEM 

MASTER M SLAVE 
APPLICATION f---- I+"- APPLICATION 

SOFTWARE f\----I SOFTWARE 

'-iJ '-V 

APPLICATION SYSTEM 

OATA 
TRANSFER • 
PRIMITIVES 

, . 

Figure 24. System Software Diagram with Data Transfer Primitives 

1·130 



The primitives all make use of a queue informa· 
tion block located at the base address of the 
slave's dual port memory (Figure 26). All pointer 
information is base relative to accommodate the 
needs of the two CPUs who have different 
memory maps. The two flag bytes carry informa· 
tion for master·slave and slave·master synchron· 
ization signals. 

FLAG I MASTER -- SLAVE 

FLAG I SLAVE - MASTER 

1 GIVE (0) I 
· :c------, 

GIVE (7) 

TAKE (0) 

TAKE (7) 

TOP (0) 

TOP (7) 

BOTTOM (0) 

BOTTOM (7) 

Figure 26. Queue Information Block 

The set of primitives provides two distinct 
methods of information transfer, line oriented 
and byte oriented. The line oriented primitives 
are listed in Table 1. Both get$line and send$line 
transfer information between the queues and 
buffers provided by the caller. The disadvantage 
of this scheme is the number of memory moves 
needed to transfer information. The advantages 
of the line oriented method are the relative 
efficiencies and the simplicity of the interface 
from the calling routine. 

The byte oriented primitives (Table 2) allow the 
calling routine to transfer data directly into and 
out of the queues. An example of the sequence for 
putting a character into a queue is illustrated in 
Figure 27. The routine servicing the receiver 
ready interrupt calls next$space to get a pointer to 
the next available slot in the queue and then uses 
this pointer to transfer the data byte directly into 
the queue. The new$line, xmit, open$line and 
receive primitives are necessary since the global 
give and take pointers cannot be modified until 
all manipulations on the affected section of the 
queue are complete. If the pointers were modified 
continuously the routine gathering the data from 
the other side may see invalid data. 

/* OPERATOR TYPES "l" ." I 

PTA ~ NEXT$SPACE (QUEUE$NUMBEA): 
VALUE ~ INPUT (USAAT$DATA$PORT); 

QUEUE QUEUE 
TOP -

GIVE 

--­BOTTOM 

..-TAKE 

N 

T 

N 

T 

~TAKE 

Z 
LINES OF INPUT 

~ WAITING FOR 
~ MASTER PROCESSOR 

- ...--GIVE 

Figure 27. Sequence for Putting Data Into Queue 

Table 1 

Line Oriented Primitives 

Primitive Arguments Usage 

send$fine Queue$token, buf$ptr, count Inserts count characters into queue from buffer 
Returns: overflow If insufficient room available, overflow indicates how many would not fit 

get$line Queue$token, buf$ptr, count Retrieves count characters from queue and puts them in buffer 
Returns: Actual Actual indicates how many were actually moved 

1-131 



The remaining primitive routines deal with the 
general purpose needs of the application software 
with regard to interrupts, initialization and status 
checking. A full list of these support routines is 
contained in Table 3. 

Another important feature of the primitive 
routines is the fact that they do not interpret the 
bytes that are sent to them. Due to this fact, the 
applications routines are free to send commands 
and parameters interspersed with the actual 
data. As an example, the terminal driver on an 
iSBC 544 board might perform format control 
based upon table information. The master appli­
cations software could use the data transfer 
primitives to transmit commands and parameters 
to the slave to update its format control informa­
tion. Another advantage of the fact that the data 
is not interpreted is that it allows the calling 
routine to determine what data gets sent along. 
For instance, a specific terminal might be 
transmitting ASCII code while the master 

There are many features of this implementation 
and a few of them should be pointed out at this 
time. By defining a general purpose set of 
primitive routines to handle the data transfer, the 
actual means by which the bytes are transferred 
between slave and master is not visible to the 
calling routine. If the actual mechanism used 
needs to be altered the change will not affect the 
application software as long as the same external 
interface is maintained. 

Primitive Arguments 

new$line Queue$token 
Returns: ptr 

next$space Queue$token 
Returns: ptr 

back$space Queue$token 
Returns: ptr 

xmit Queue$token 
Returns: status 

open$line Queue$token 
Returns: ptr 

next$char Queue$token 
Returns: ptr 

receive Queue$token 
Returns: status 

Primitive Arguments 

get$status Queue$token 
Returns: status 

set$interrupt Queue$token, type 
Returns: status 

set$handler Queue$token, handler$adr 
Returns: status 

s$init none 

m$init none 

Table 2 
Byte Oriented Primitives 

Usage 

Sets up a queue for byte oriented input. 
Ptr returned points to the first available byte. 

Increments the temporary give pointer to the next open space. 
Ptr returned either points to next byte or is zero specifying full queue. 

Decrements temporary give pointer. 
Ptr returned either points to byte or is unchanged indicating that the 
global give pointer was reached. 

Closes off a line entered via byte mode by updating global give ptr to 
equal temporary give ptr. Status. is either "normal" or "null". 

Opens up a line for byte oriented output. 
Ptr returned either points to the next byte or is zero indicating an 
empty queue. 

Increments temporary take pointer. 
Ptr returned either points to next byte or is zero indicating an 
empty queue. 

Closes off a line retrieved in byte mode by updating global take 
pOinter to equal temporary ptr. Status is either "normal" or "null". 

Table 3 

Support Routines 

Usage 

Returns status of queue. 
"full" and "null". 

Possible values are "normal", "empty", 

Generates a slave - master or master - slave interrupt. Type code 0 
is illegal and codes 8H - OFH are reserved for use by the primitives. 

Inserts address into vector table used for handling interrupts 
described above. 

Called from slave software to initialize. 

Called from master software to initialize. 

1-132 



software is expecting EBCDIC. The routine on 
the slave can very easily perform the necessary 
code conversion before stuffing the data into a 
queue. 

Sample Slave Software 

Given the existence of the primitive routines the 
applications routines on the slave and master can 
deal with the specific duties of each device. The 
following paragraphs revisit the code from 
application example 2, first for the slave and then 
for the master. Full code listings for these 
programs can be found in Appendix D. 

The flowchart for the terminal input handler 
resident on the iSBC 544 board is shown in Figure 
28. Support is provided for deleting characters 
(Rubout), deleting lines (control-X), pausing and 
resuming output (control-S and control-Q) and 
terminating lines (escape and carriage return). 
The sections of code reproduced below use this 
terminal input handler to present an example of 
the use of the data transfer primitives to enter and 
edit a line of input from a terminal. The byte 
variable value is based on the address variable 
value$ptr which is assigned by calls to the 
primitives. The routine var$inp inputs and 
returns a data byte from an 110 port specified by 
a calling parameter. This is necessary since the 
particular USART to be serviced is determined by 
reading the 8259A in-service register. 

1* cas€> 1; rubouti fjelete char *1 

do; 

end; 

new~ptr~haCK~space(token)i 

if new$ptr=lengthbPtr ther, 
dummy=echo(token+l,. (oel1 ),1); 

else 
do; 

end; 

dummy=echoCtoke n +l,.(8S,SP,BSJ,3l; 
ptr=new:!iptr; 
count=count"'li 

Following this, the byte input is checked to see if 
it is a control character and if so a block within a 
DO CASE statement is executed. As an example 
of one ofthese blocks, ifthe character input was a 
RUBOUT the code sequence below is executed. 
The back$space primitive is called and a tempo­
rary pointer is returned to a location in the queue. 
A check is made to determine if the line was 
empty and, if so, a bell is echoed to signal the 
operator. If the pointer returned did not indicate 

1·133 

an invalid RUBOUT the real pointer is assigned 
the value of the temporary pointer and a back­
space, space, backspace is echoed to delete the 
previous character on the screen. Lastly, the 
character count for the current line is decre­
mented. 

VAL08~PTR=NEXT$SPACE(Q0EOE$NUMgER); 
VAL0E=VAR$IclP(OSART~DATA$PORT(NOM)) ; 

RECEIVER READY 
INTERRUPT 

t 

CONTROL 
CHARACTER 

? 

QUEUE FULL? 

YES 

YES STOP 
FURTHER ECHOING 

Figure 28. Flow Chart for Terminal Input Handler 



In order to facilitate retrieval of the proper 
amount of information on the master side, the 
first byte of each message is defined to contain 
the number of characters in the message. Thus, 
when the master routine needs a line of input he 
uses the first byte as a count to retrieve the full 
line. The requirement for type-ahead is met by 
this mechanism since the number of lines in the 

TRANSMITTER 
READY 

INTERRUPT 

COUNTER O? 

NO 

YES 

YES 

Figure 29. Flow Chart for Terminal Output Handler 

1-134 

queue at a given time is limited only by the length 
of the queue. When a full line of input is finished, 
the terminal input handler generates a slave to 
master interrupt to signal the master routine who 
may be waiting for this event. 

The flowchart for a minimal terminal output 
handler is shown in Figure 29. Upon receipt of a 



transmitter ready interrupt the output handler 
requests a character from the appropriate queue. 
If one is available it is output to the USART. If 
the queue is empty, the transmitter is disabled. 
Whenever the master routine sends a line into the 
queue it will generate an interrupt to signal the 
slave handler and the transmitter will be reen­
abled. A line is opened via a call to open$line and 
it is kept open until 100 characters have been 
retrieved via calls to next$byte. At this time the 
line is closed by a call to receive making the space 
available to be reused. After this, a new call to 
open$line starts the process over again. If the 
call to get$status shows that the queue was full 
prior to the call to receive, an interrupt is sent to 
the master to reawaken any routine that may 
have been waiting for room in the queue to 
become available. 

INPUT 
HANDLER 

"­
"­

"­
"­

"­
"-

" ----',// '\ 

~ USER \ 

Sample Master Software 

The RMX/SO handler for the master single board 
computer that will communicate with the soft­
ware on the iSBC 544 board is diagrammed in 
Figure 30. In addition, the RMX/SO message used 
to convey information to the handler is shown on 
the right. The full software diagram is illustrated 
in Figure 31. 

The input driver tasks execute a reentrant routine 
that services a request exchange that is specified 
in an initialization block that is unique to each of 
the input tasks. The necessary information is 
extracted from the request message and the 
get$line primitive is called upon to get a line of 
input from the queue. If the call to get$line for the 
length byte is unsuccessful the input task waits at 

LINK 

LENGTH 

TYPE I 
HOME EXCHANGE 

I RESPONSE 1---" 
\ EXCHANGE J 
\ / 

' .... _--/ 
RESPONSE EXCHANGE 

OUTPUT 
HANDLER 

"-
"-

"-
"-

"­, 

OUTPUT 
REQUEST ~ 

EXCHANGE 

""'-, /""'-- ......... , 
.... 1 \ 

I USER \ 

\ :ig~~~~~ /----..... 
\ I ' ... _-_ .... / 

Figure 30. RMX/SO Handler for ISBC 544 Board 

1-135 

STATUS CHAR$BUFF 

BUFFER ADDRESS ~ 
COUNT 

ACTUAL 



MASTER 

/---..... , 
I \ MASTER APPLICATION SOFTWARE 

I IN I 
\ I , / ..... _-

RMXI80 
DRIVER -------0 USER 

SOFTWARE 

/"'--'" 
( OUT ) 

\ / 
...... _-/ 

Figure 31. Master Software with RMX/BO Handler 

the appropriate signal exchange for an interrupt 
from the slave indicating that a line is now 
available. Once the request is fulfilled the actual 
and status fields are set and the message is sent to 
the response exchange specified by the user. 

The output handler performs in a manner very 
similar to the input handler. Upon receipt of a 
request message the handler attempts to transfer 
the characters from the user buffer to the 
appropriate queue. If the attempt is unsuccessful 
(ie. the queue has insufficient room available) the 
handler sends as many characters as will fit 
(count - overflow) and then waits for an interrupt 
from the slave indicating that room has been 
made available. This process is repeated until all 
of the data has been transmitted. As soon as the 
operation is complete the status field is cleared 
and the message is returned to the user specified 
response exchange. 

Since the number of iSBC 544 slaves in the 
system is variable as are the memory base 
address, device programming information and 

queue sizes, some means of providing configura­
tion information to the RMX/SO handlers is 
needed. This information resides in the mem­
ory$allocation$module. Public variables are 
declared in this module that are used by the 
RMX/SO tasks to determine how many devices 
(and therefore how many tasks need to be created) 
are in the system and where in the system address 
space their dual port RAM is located. In addition, 
queue sizes and device programming information 
are specified here. 

VIII. SUMMARY 

The intent of this application note has been to 
introduce the reader to the concept of the 
intelligent slave architecture and show the 
versatility of the first product based upon this 
architecture, the iSBC 544 Intelligent Communi­
cations Controller. The hardware and software 
aspects of the device were studied and results of 
benchmark tests were presented and studied. 
Finally, two example applications were worked 
out using the product as both a stand-alone 
controller and as· an intelligent slave: 

H36 



The bottom line is that the iSBC 544 controller, 
due to the advanced architecture around which it 
is designed, can be the means to the end for any 
application that requires communication. The 
dual nature of the controller provides the full 
power of a single board computer to the small 
application while the large system can make use 

of the fully programma bale in telligen t sla ve to free 
the CPU for complicated processing duties. 

I would like to extend my gratitude to Dave 
Jurasek for the work on the throughput testing 
and to Jack Tyler Inman for aid in the design of 
the system software. 

1-137 



~;'~ ;; :;: 

: ~; 

• 

APPENDIX A 

Figure A-1. iSBC 544 Input/Output and Interrupt Block Diagram 

1-138 



APPENDIX A (Continued) 

" ~; s/¢===~==:::!.I 

Figure A-2. iSBC 544 Memory Block Diagram 

1-139 



APPENDIX B 

A M8iiJ :Fl:DMA544.1·1811 

I SIS-II 8 0B~/8 08;' MACRO ASSEMBLER, V3. 0 l~ODULE PAGE 1 

LOC OBJ 

Iilliia0 
00E4 
I:1!'1E5 
0052 
41:1FF 
1:1004 
'Hall 
0002 

~H)00 

i'JJ 2C 
002C D3E4 
002Jl OB81 
0030 A" 
0031 C43900 
0034 FB 
lOil3S C9 

0000 F3 
0001 31FFBF 
0~ 04 D3E4 
01:106 CD0000 
0009 3E04 
000B D388 
000D 3EFF 
000F D385 
IHlll 3E40 
0013 D385 
IIH1l5 3Ekl0 
0017 D384 
IH'Jl9 3E00 
001B 0384 
001D CD0000 
0020 3E52 
0022 D380 
0024 CD0001il 
0027 3E01 
IiHl29 D381 
0"'2B CD0000 
1il1il2E 3E02 
0030 0381 
0032 D3E5 

C 

E 

D 

D 

E 

E 

E 

LINE 

1 $MOD85 
2 BASE 
3 MMSET 
4 MMRSET 
5 READ 
6 'rcouw£ 
7 DMAMOD 
'3 TADOR 
9 SADDR 

10 
11 BUFFER: 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
4i1 
49 
50 
51 
52 
53 
54 
55 
56 
57 

SOURCE STATEMENT 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
DSEG 
OS 

, 
ASEG 
ORG 2CfI 
O(l'r 
IN 
XRA 
CNZ 
EI 
RET 

, 
EXTRN 
EXTRN 
EXTRN 
CSEG 
01 
LXI 
OUT 
CALL 
MVI 
OUT 
MVI 
OUT 
MVI 
OUT 
MVI 
OUT 
MVI 
OUT 
CALL 
MVI 
OUT 
CALL 
~lVI 

OUT 
CALL 
MVI 
OUT 
OUT 

8i!lH 
I'lE4H 
IilE5H 
52H 
40FFH 
04H 
1 
2 

128 

BASE ADDRESS OF 204 
MASTER MODE SET ADDRESS 
MASTER MODE RESE'r ADDRESS 
READ COMMA(W CODE 
'£ERMHIAL COUNT AND DMA MODE 'OF 
DMA MODE WORD 
TRACK ADDRESS 
SECTOR ADDRESS 

; SECTOR 3UFFER 

'rEST OF CAPA3ILI'rY FOR 544 TO SHARE MULTIBUS 
WITH O'rHER MASTERS. ROUTINE PROGRMIS THE 2~4 

BOARD, INITIATES A READ TRANSFER, WAITS FOR 
AN INTERRUPT AND THEN TRAPS TO ICE85 BREAK­
POIN'r AT 200. 

MMSET 
BASE+l 
A 
ERRTRP 

MAINLINE ROUTINE 

INI-r24 
WAITC 
WAITP 

SP,0BFFFH 
MMSET 
INIT24 
A,DMAMOD 
BASE+8 
A,LOW(TCOUNT) 
BASE+5 
A,HIGH(TCOUNT) 
BASE+5 
A,LOW(BUFFER) 
BASE+4 
A,HIGH (BUFFER) 
BASE+4 
WAI'rC 
A,READ 
BASE+1il 
WAITP 
A,TADDR 
BASE+l 
WAITP 
A,SADDR 
BASE+l 
MMRSET 

1-140 

RST 5.5 ENTRY POINT 
SET MASTER MODE 
GET RESUL'r 
SET FLAGS 
NON-ZERO RESULT; ERROR TRAP 
REENABLE 
CONTINUE ON 

204 INITIALIZATION ROUTINE 
WAIT FOR 204 No'r BUSY ROUTINE 
WAIT FOR 204 PARAMETER REGISTI 

DISABLE 
SET STACK POINTER 
SET MASTER MODE FLIP FLOP 
INITIALIZE 204 
SET DMA MODE 

SET CONTROL REGISTER 

OUTPUT LOW BYTE OF DMA ADDRESS 

OUTPUT HIGH BYTE 0" DMA ADDRESS 

OUTPUT READ COMMAND 

TRACK ADDRESS 

SECTOR ADDRESS 

RESET MASTER MODE FLIP/FLOP 



0034 FB 
0035 76 
0036 C30002 

0039 76 

PUBLIC SYMBOLS 

EXTERNAL SYMBOLS 
INIT24 E 00",0 

USER SYMBOLS 
BASE A 008f1l 
READ A 0052 

58 
59 
60 
61 ERRTRP: 
62 
63 

WAI'l'C E 00110 

BUFFER D 0000 
SADDR A 0002 

APPENDIX B (Continued) 

EI 
HLT 
JMP 201lH 

HLT 
END 

WAITP E 0000 

ENABLE 
AND HALT ; WAIT FOR INTEF 
TRAP TO ICE85 BREAKPOINT AT 200 
ERROR TRAP 
FOR NOW 

DMAMOD A 0004 ERRTRP C 01'139 INIT24 E fIl0B0 MF 
TADDR A 0001 TCOUNT A 41!lFF WAITC E 1!l000 WAI 

1-141 



APPENDIX B (Continued) 

A M80 :fl:INIT24.M80 

ISIS-II 8080/8085 MACRO ASSEMBLER, V3.~ MODULE PAGE 1 

LOC OBJ 

0080 
00E4 
00E5 
0069 
0035 
0010 
00Id 
00FF 
01!1FF 
0000 
0008 
00138 
0009 
4000 
0liHJ4 
0kl,~0 
0020 
Iih1l0 

0000 F3 
0001 3E0E 
0003 30 
0004 D3E4 
0006 D38F 
000<3 3E01 
0liHlA 0382 
000C AF 
0000 03<32 
0"HIF CD9900 
0liH2 3E35 
0014 0380 
0016 CDAleHl 
0019 3E0D 
001B 0381 
0010 CDA100 
0020 3E08 
0022 0381 
0024 CDAHHJ 
0027 3E08 
0029 0381 
0028 CDAld0 
002E 3E09 
0030 0381 
0032 CD9900 

C 

C 

c 

C 

C 

C 

LINE 

1 $MOD85 
2 SASE 
3 MMSET 
4 MMRSET 
5 SEEK 
6 SPECFY 
7 BADTRI 
8 BADTR2 
9 N08AD 

hI C'l'ADDR 
11 CHARS 
12 SETTLE 
13 STEP 
14 LOAD 
15 TCOUNT 
16 DMAMOD 
17 BUSY 
18 PARFUL 
19 RESFUL 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 INI'r24: 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
H 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

SOURCE STATEMENT 

EQU 
EQU 
EQU 
EQU 
EQO 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

, 
CSEG 
PUBLIC 
PUBLIC 
PUBLIC 

01 
MVI 
5I[~ 

OUT 
OUT 
MVI 
OUT 
XRA 
OUT 
CALL 
MVI 
OUT 
CALL 
MVI 
ou'r 
CALL 
MVI 
OUT 
CALL 
MVI 
OUT 
CALL 
MVI 
OUT 
CALL 

81'1H 
0E4H 
0E5H 
69H 
35H 
HlH 
18H 
0FFH 
0FFH 
0DH 
08H 
0clH 
kl9H 
4000H 
kl4H 
8klH 
20H 
10H 

BASE ADDRESS OF 204 
MAS'l'ER ':~OOE SET ADDRESS 
MASTER MODE RESET ADDRESS 
SEEK COMMAND 
"SPECIFY" COMMAND CODE 
SPECIFY BAD TRACKS SURFACE 1 
SPECIFY BAD TRACKS SURFACE 2 
NO BAD TRACKS 
CURRENT TRACK ADDRESS NOT KNOW~ 
SPECIFY DRIVE CBARAc'rERISTICS 
HEAD SETTLE TIME(SA800) 
S'I'EP RA'l'E 
clEAD LOAD 'I'IME 
TERMINAL COUN'l' AND DMA MODE 'OF 
DMA MODE WORD 
204 BUSY MASK 
204 PARAMETER REGISTER FULL 'A~ 

204 RESULT BITE FULL MASK 

204 INITIALIZATION ROUTINE. RESETS 204 BOARD 
AND PERFORMS ALL OF THE NECESSARY INITIALIZATIO~ 
OF THE 8257 AND 8271. 

INI'l'24 
\~AITC 
WAITP 

A,0EB 

M,"ISET 
BASE+l5 
A,l 
BA3E+2 
A 
BASE+2 
WAI're 
A,SPECFY 
BASE+~ 

WAITP 
A, CHARS 
BASE+l 
WAITP 
A,Sl'EP 
BASE+l 
WAITP 
A,SE'rTLE 
BASE+l 
WAITP 
A,LOAD 
BASE+l 
WAITC 

1·142 

ENTRY POINT 
WILL BE USED EXTERNALLY 

DISABLE 
ENABLE 5.5 INTERRUPT 

S~T MASTER MODE FLIP FLOP 
RESE'l' INTERFACE 
RESET 204 

WAIT 'I'ILL COMMAND WRITE VAL: 
OUTPUT "SPECIFY" COMMAND 

WAIT TILL PARAMETER WRITE Vi Ir 
SPECIFYING DRIVE CHARACTERISTIC 

OUTPUT STEP RATE 

OUTPUT HEAD SETTLE TIME 

OUTPUT HEAD LOAD TIME 



APPENDIX 8 (Continued) 

IHl35 3E35 55 MVI A,SPE:CFI' SPE:CIFI' BAD TRACKS 
~1j37 D3a~ 56 OUT BASE+0 
~039 CDAHro C 57 CALL WAITP 
0113C 3ElI' 58 MVI A,BAOTRI 8AO 'rRACKS FOR SURFACE: 1 
IHl3E D381 59 ou'r 3ASE+l 
00410 CDAl~0 C S~ CALL WAITP 
0043 3EFF 61 Mill A,NOBAD FIRs'r TRACK 
01145 D381 62 ou'r 9ASE+l 
0047 COAl"''' C 63 CALL WAITP 
IHi4A 3EFF 64 MVI A,NOBAO S ECO,~O l3AOrRACK 
11I14C D381 65 ou'r BASE+l 
004E CDAHifj C 66 CALf" WAI'rP 
01051 3EFF 67 MVl A,CTADOR CURRENT TRACK ADDRESS {NOT r 'O~ 

IH'53 D381 68 OuT BASE+l 
0055 C0991Hl C 69 CALL WAI'rC 
10058 3E35 711 MITI A,SPECFI' 
005A 0380 71 OU'T 8ASE+~ 

1005C COA100 C 72 CALL WAITP 
thl5F 3E18 73 MVI A,BAOTR2 SURFACE 2 
0061 0381 74 OUT 9ASE+l 
0063 COA101O C 75 CALL WAITP 
0066 3EFF '16 [~VI A,NOBAO FIRST TRACK 
I""j68 0381 77 OUT BASE+l 
1006A CDAl110 C 78 CALL WAI'rp 
0060 3EFF 79 MVI A,NOBAD SECOND TRACK 
0116F 0381 tl0 OU'T BASE+l 
0071 COAH'0 C 81 CALL WAITP 
00"f4 3EFF 82 MVI A, C'TADDR CURRENT TRACK ADDRESS (NOT ro~ 
1'1':176 0381 83 OUT BASE+l 
0078 CD99100 C 84 CALL WAI'TC 
~H17B 3E69 85 MVI A,SEEK SEEK TO TRACK ~ 
0070 0380 d6 OUT 9ASEHJ 
IlI-J7F CDA100 C '37 CALL WAITP 
~H182 3E00 88 MVI A," 
0084 0381 89 OUT SASE+l 
01186 D3E5 90 OUT MMRSE:T GO TO SLE:E:P WHILE 204 DOES IT 
0088 FB 91 E:I ENABLE INTERRUPTS 
0089 76 92 HL'T SLEEP 
008A F3 93 01 DISABLE 
008B 3E04 94 MVI A,OMAMOD SET DMA 1'10DE 
0080 0388 95 OUT 8ASE+8 
008F 3E00 96 MVI A,LOW{TCOUNT) SE'r CONTROL REGIS'TER 
0091 0385 97 OUT 8ASE+5 
IHl93 3E4~ 98 MVI A, HIGH ('rCOUNT) 
0095 0385 99 OUT BASE+5 
01197 FB 1011 E1 
0098 C9 101 RET RETURN 

102 
103 WAITe AND WAITP ROUTINES 
11-)4 , 

0099 DB80 105 WAITC: IN BASE+Jij GE'T STATUS BYTE 
1109B E6811 11')6 ANI BUSY BUS\:,? 
0090 C29900 C h7 JNZ WAITC YES,LOOP 
lHlA0 C9 10B RET NO,RETURN 

109 , 
001'.1 DB80 llkJ WAITP: IN BASEHl GET STATUS REGISTER 
00A3 E620 111 ANI PARFUL PARAMETER BUFFER FULL? 
001'.5 C2AH!0 C 112 JNZ WAITP YES,LOOP 
001'.8 C9 113 RET NO,RE'rURN 

114 END 

PUBLIC SI'MBOLS 
INIT24 C 0000 WAITC C ki099 WAITP C 00Al 

1-143 



EXTERNAL SYMBOLS 

OSER SYMaOLS 
BADTRI A 0010 
INIT24 C 01HJ0 
SEEK A 0069 

BADTR2 A 0018 
LOAD A 0009 
SETTLE A 0008 

APPENDIX B (Continued) 

BASE A 0080 
MMRSET A 00E5 
SPECFY A 0035 

1·144 

BUSY 
I~MSE'r 

STEP 

A 0080 
A 00E4 
A 0008 

CHARS A 00liD 
NOBAD A 00FF 
TCOON'r A 4000 

CTA 
AF 

WAI 



APPENDIX C 

1·145 



.. .. 
ID 

:l 
j .. 
III 
:Ii 
;: 
:::l 
Go 
U .. .. 
Iii 
Ii .. 
0 
of. 

APPENDIX C (Continued) 

GRAPH 1 
MASTER CPU FREE TIME 

VS BAUD RATE 

l00~ ________________________ ~ ____________________________ ~DM=A~C~O~N~T~R=OL=L=ER~A~N~D~I~NT~E~LL~IG=E~N~T;S=~~V=E _____ 4% 

80 

80 

40 

20 

BAUD RATE 

1-146 



w .... 
OJ 
j 
;; 
> ..: 
w 
:;; 
;:: 
<II 
::> 
OJ ... 
0 
.r. 

APPENDIX C (Continued) 

GRAPH 2 
BUS FREE TIME 
VS BAUD RATE 

10011~~~::::~~~~~~~~======================~~~~=:~~~~I:N:TE:L:L:IG:E:NT~SL:A:V~E 
DMA CONTROLLER 

95 

90 

85 

80 

10 

BAUD RATE 

1·147 



APPENDIX C (Continued) 

GRAPH 3 
SLAVE CPU ~REE TIME: 

VS BAUD RATE 

100 

80 

w ... .. 
j 

80 
~ c 
w 
2 
;: 
::> 
r; 
w 

~ 
III 
Yo 
0 
ill 

1·148 



1/0 CONTROLL~R 

10 20 

APPENDIX C (Continued) 

GRAPH 4 
COMMUNICATIONS PROCESSOR FREE TIME 

VS BUS TRAFFIC 
@ 9600 BAUD FULL DUPLEX 

30 40 50 80 

~. MAX BUS TRAFFIC 

1-149 



1/0 CONTROLLER 

'0 20 30 

APPENDIX C (Continued) 

GRAPH 5 
MAXIMUM BAUD RATE 

VS BUS TRAFFIC 

40 50 60 

% MAX BUS TRAFFIC 

1·150 

70 80 90 100 



APPENDIX D 

PL/M-d0 COMPILER SLAVE MAINLINE ROUTINE PAGE 1 

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE MAINLINE 
OBJECT MODULE PLACED IN :Fl:MAINLN.OBJ 
COMPILER INVOKED BY: PLMB0 :Fl:MAI~LN.PLM PRINT(:F5:MAINLN.LST) PAGEWIOTH(78) 

1 

13 
14 

15 

16 
17 
18 

19 

20 

21 
22 
23 
24 

1 
2 

1 

1 
1 
1 

1 

1 

1 
1 
1 
2 

$title('slave mainline routine') 
main$line: 

/* 

pts 

*/ 

DO; 

Mainline routine. Sets UP stack$ptr, calls s$init to init­
ialize queues, initializes some of the hardware, sets up the 
initial flag interrupt handlers, and then halts with interru 

enabled allowing the rest of the system to operate totally 
in i~terrupt mode. 

$nolist 

initial$handler: PROCEDURE EXTERNAL; 
END initial$handler; 

DECLARE 
command$word LITERALLY '41h', 
port$a$8155 LITERALLY '0e9h' , 
command$8155 LITERALLY '0e8h', 
mask$8 259 LITERALL~ 'iZle7h' , 
icwl$8259 LITERALLY '0e6h', 
icw2$8259 LITERALLY '0e7h', 
ocw3$8259 LITERALLY '0e6h', 
read$isr LI'rERALLY '0bh', 
mask$word BYTE PUBLIC, 
port$a$value BYTE PUBLIC, 
stat BYTE, 
i BY'rE; 

output(icwl$8259)=0f6h; 
output(icw2$8259)=0fh; 
output(mask$8259) ,mask$word=0ffh; 

CALf" s$init; 

/* set up 8259 for ISR reads */ 

output(ocw3$8259)=read$isr; 

output(command$8155)=command$word; 
output(port$a$8155) ,port$a$value=0c0h; 
DO i=0 TO 7; 

stat=set$handler(i,.initial$handler); 

1·151 



APPENDIX D (Continued) 

25 2 END; 

26 1 DO WHILE 1; 
27 2 HALT; 
28 2 END; 

29 1 END main$line; 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
I~AXIMUM STACK SIZE 
72 LINES READ 
o PROGRAM ERROR(S) 

IdI;40H 
0004H 
':lIHl2H 

77D 
4D 
20 

1·152 



APPENDIX D (Continued) 

P /M-tl~ COMP ILER SLAVE APPLICATION LEVEL SIGNAL H~NDLE 

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE INITIALHANDLER 
OBJECT MODULE PLACED IN :Fl:FINTRT.OBJ 

PAGE 1 

COMPILER INVOKED BY: PLM80 :Fl:FINTRT.PLM PRINT(:F5:FINTRT.LST) PAGEWIDTH(78) 

1 

32 1 

$title('slave application level signal handler') 
in i tial$handler: 

/* 

*/ 

DO; 

Fields application level flag interrupts from the 
master. If the type=go$type the device attached to the queue 
specified is initialized with programming info sent into 
the queue by the master. If the type is data$available the 
specified transmitter is enabled unless a control$s pause 
is in effect. 

$nolist 

DECLARE 
no$pause LITER"LLY '1' , 
go$type LITER"LLY '1', 
data$available LITER"LLY '2', 
enableS xmi t LI T ER"LLY , 1 ' , 
reset LITER"LLY '40h', 
timer$l$command$port LI'rER"LLY '0dbh', 
timer$2$command$port LI'rERALLY '0dfh', 
mask$8259 LITERALLY '0e7h', 
mask$word BYTE EXTERNAL, 
mask (8) 3YTE DAT,,( 

0fch, 
0fch, 
0f3h, 
0f3h, 
0cfh, 
0cfh, 
03fh, 
03fh) , 

transmitter$state (8) BYTE PUBLIC, 
type BYTE, 
token 3YTE, 
i BY1'E, 
prog$info (5) 3YTE, 
actual ADDRESS, 
~sart$command$port (8) BYTE EXTERNAL, 
usart$state (8) BYTE PUBLIC, 
length$pointer (8) ADDRESS PUBLIC, 
pointer (8) ADDRESS PUBLIC, 
char$count (8) BYTE PUBLIC, 
timer$load$Dort (8) BYTE DA'rA ( 

008h, 

1-153 



33 1 

34 2 

35 2 
36 2 

37 2 
38 2 
39 3 

40 3 
41 4 
42. 4 

43 3 

44 3 

45 3 
46 3 

47 3 
48 3 

49 3 
513 3 
51 3 

52 3 
53 3 
54 3 
55 3 
56 3 

57 2 

58 2 
59 3 
69 3 

61 3 

APPENDIX D (Continued) 

0d8h, 
0d9h, 
0d9h, 
f3dah, 
adah, 
0dch, 
0dch) 1 

in itia1$hand1er: PROCEDURE (code) PUBLIC1 

DECLARE code BYTEl 

token=code AND ~fhl 
type=shr(code,4)1 

IF type=go~type THEN 
001 

transmitter$state(token)=no$pause1 
/* reset usart */ 

DO i=f3 TO 31 
,CALL varout(usart$command$port(token) ,0)1 

El~Dl 

CALL varout(usart$command$port(token) ,reset) 1 

actua1=get$1ine(token,.prog$info,5) 1 

/* program the devices */ 

CALL varout(usart$command$port(token) ,prog$info(f3» 1 
CALL varout(usart$command$port(token) ,usart$state(token) 

:=prog$info(1» 1 
IF token < 7 THEN 

CALL varout(timer$1$command$port,prog$info(2» 1 
ELSE 

CALL varout(timer$2$command$port,prog$info(2» 1 
CALL varout(timer$1oad$port(token) ,prog$info(3» 1 
~ALL varout(timer$1oad$port(token) ,prog$info(4» 1 

/* open up the four input queues for data input */ 

1ength$pointer(token-1)=new$1ine(token-1) 1 
pOinter (token-l)=next$space(token-1)1 
char$count(token-1)=01 
output (mask$8259) ,mask$word=mask$word AND mask(token) 1 

ENOl 

ELSE 
IF (type=data$avai1ab1e) AND (transmitter$state(token)=no$pa 

use) THEN 
001 

usart$state(token)=usart$state(token) OR enable$xmitl 
CALL varout(usart$command$port(token) ,usart$state(token) 

1·154 



RETURN; 
END; 

APPENDIX D (Continued) 

63 

64 

2 

1 END initia1$hand1er; 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
154 LINES READ 
o PROGRAM ERROR(S) 

0182H 
khl43H 
~H'04H 

3860 
670 

40 

1-155 



APPENDIX D (Continued) 

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE INPUTHANDLER 
OBJECT MODULE PLACED IN :Fl:INHDLR.OBJ 
COMPILER INVOKED ElY: PLM8k3 :Fl:INHOLR.PLt1 l:'RINT(:F5:INHDLR.LST) P.lI.GEWID'rH(78) 

1 

34 1 

35 1 

$nointvector title('slave terminal input handler') 
input$handler: 

/* 

*/ 

DO; 

544 resident interrupt service routine. After receiver 
ready interrupt the 8259 In Service Register(ISR) is 
read to determine which device is requesting service. 
The character is read in and placed in the appropriate 
queue. A check is made for break characters ana appropriate 
action is taken if any are found. When an endline character 
is encountered the length byte is filled in ( it was left 
vacant when the line was started) and the xmit primitive is 
called to update the global queue pointer to permit access 
to the line. At this time the master is signalled to signify 
that a new line is available for processing. 

$nolist 

DECLARE 
control$x LITERALLY '18H' , 
control$s LITERALLY '13H', 
control$a LITERALLY 'llH', 
rubout . LITERALLY '7FH', 
escape LI'rERALLY' 13H' , 
CR LITERALLY '0DH', 
LF LITERALLY' k3AH' , 
BS LITERALLY '08H', 
SP LITERALLY '20H', 
bell LI'TERALLY '07H' , 
?tr LITERALLY 'pointer(token)', 
length$ptr LITERALLY 'length$pointer (token) , , 
count LITERALLY 'char$count(token) " 
disable$xmit LITERALLY '0FEH', 
enable$xmit LITERALLY '018', 
no$pause LIT8RALLY '1', 
pause LITERALLY '0', 
line$available LITERALLY '1' , 
ocw2$825~ LITERALLY '0E68', 
ocw3$8259 LITERALLY 'k3E6B', 
EOI LITERALLY '20H'; 

DECLARE 
value$ptr ADDRESS, 
value BASED value$ptr BYTE, 
line$length BASED value$ptr BYTE, 
dummy ADDRESS, 
ISR BYTE, 
token BYTE, 

1·156 



36 1 

37 1 
38 2 

39 2 
41 2 
43 2 
45 2 
47 2 
49 2 
51 2 
52 2 

53 1 

54 2 

55 2 
56 2 
57 2 
58 2 
59 2 

60 1 

61 2 
62 2 
63 2 
64 2 
65 2 
66 2 

67 1 

68 2 
69 2 
70 2 
71 2 
72 2 
73 2 
74 2 
75 2 
76 2 
77 2 

APPENDIX D (Continued) 

stat BYTE, 
new$ptr ADDRESS; 

DECLARE 
pointer (8) ADDRESS EXTERNAL, 
length$pointer (8) ADDRESS EXTERNAL, 
char$count (8) BYTE EXTERNAL, 
usart$state (8) BYTE EXTERNAL, 
usart$command$port (8) BYTE EXTERNAL, 
usart$data$port (8) BYTE EXTERNAL, 
transmitter$state (8) BYTE EXTERNAL; 

index: PROCEDURE (value) BYTE; 
DECLARE value BYTE; 

END; 

IF value=control$x THEN RETURN 0; 
IF value=rubout THEN RE'rURN 1; 
IF value=control$s THEN RETURN 2; 
IF value=control$q THEN RETURN 3; 
IF value=escape THEN RETURN 4; 
IF value=CR THEN RETURN 5; 
RETURN 6; 

echo: PROCEDURE(token,buf$ptr,num$char) ADDRESS; 

DEC~~RE (buf$ptr,num$char,actual) ADDRESS, 
token BYTE; 

actual=send$line(token,buf$ptr,num$char) ; 
usart$state(token)=usart$state(token) OR enable$xmit; 
CALL varout(usart$command$port(token) ,usart$state(token)); 
RETURN actual; 
END; 

delete$line: PROCEDURE; 

END; 

length$ptr=new$line(token) ; 
ptr=next$space(token) ; 
count=0; 
dummy=echo(token+l,. ('#' ,CR,LF) ,3); 
RETURN; 

end$line: PROCEDURE; 

END; 

value$ptr=length$ptr; 
line$length=count; 
ptr=next$space(token) ; 
stat=xmit(token) ; 
length$ptr=new$line(token) ; 
ptr=next$space(token) ; 
count=0; 
stat~set$s$interrupt(token,line$available) ; 
RETURN; 

1·157 



78 1 
79 2 

80 2 

81 2 

82 2 
83 2 
84 3 

86 3 
87 4 
88 4 
89 4 

9fil 3 
91 2 
92 2 

93 2 

94 3 
95 4 
96 4 

97 3 
98 4 
99 4 

lfillil 4 

Ifill 4 
HI2 5 
103 5 
104 5 
105 5 
106 4 

HI? 3 
lfil8 4 

lfil9 4 

IHJ 4 
III 4 

112 3 
113 4 

APPENDIX D· (Continued) 

in$hdlr: PROCEDURE INTERRUPT 0 PUBLIC; 
ISR=input(ocw3$8259) ; 

tOken=6; 

again: 
ISR=shl(ISR,2); 

IF NOT carry THEN 
DO; 
IF token=0 THEN RETURN; /* no bits set */ 
ELSE 

DO; 

END; 

END; 

token=token-2; 
GOTO again; 

value$ptr=ptr; 
value=varinp(usart$dat~$port(token)) AND 07fh; 

DO CASE index(value); 

e$xmit; 

/* case 0; control$x; delete line */ 

DO; 
CALL delete$line; 

El~D; 

/* case 1; rubout; delete char */ 

DO; 

END; 

new$ptr=back$space(token) ; 
IF new$ptr=length$ptr THEN 

dummy=echo(token+l,. (bell) ,1); 
ELSE 

DO; 

END; 

dummy=echo (token+l, . (BS, SP, 8S) ,3) ; 
ptr=new$ptr; 
count=count-l; 

/* case 2; control$s; pause output */ 

DO; 
usart$state(token+l)=usart$state(token+l) AND disabl 

CALL varout(usart$command$port(token+l) ,usart$state( 
token+l)) ; 

transmitter$state(token+l)=pause; 
END; 

/* case 3; control$g; resume output */ 
DO; 

usart$state (token+l)=usart$state (token+l) OR enableS 

1·158 



114 4 

115 4 
116 4 

117 3 
118 4 
119 4 
12'1 4 
121 4 
122 4 

123 3 
124 4 
125 4 
126 4 
127 4 
128 4 
129 4 
130 4 
131 4 

132 3 
133 4 
134 4 
135 4 
137 4 
138 4 

139 3 
140 2 

141 2 

142 2 

143 1 

APPENDIX D (Continued) 

xmit; 
CALL varout(usart$command$port(token+l) ,usart$state( 

token+l)) ; 
transmitter$state(token+l)=no$pause; 

El~D; 

/* case 4; escape; terminate line */ 
DO; 

Ei~D; 

dummy=echo(token+l , . ('11' ,CR,LF) 13); 
value=CR; 
count=count+l ; 
CALL end$line; 

/* case 5; carriage return; terminate line */ 
DO; 

END; 

dummy=echo(token+l , . (CR,LF) 1 2 ); 
count=count+l; 
ptr=next$space(token) ; 
value$ptr=ptr; 
vi3 lue=LF; 
count=count+l; 
CALL end$line; 

/* case 6; non-break character; stuff into queue */ 
DO; 

El~D; 

dummy=echo(token+l , ptr , l); 
ptr=next$space(token) ; 
IF ptr='1 THEN CALL delete$line; /* full buffer */ 
ELSE count=count+l; 

END; /* of do case */ 
output(ocw3$8259)=EOI; 

RETORN; 

END; 

END input$handler; 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
255 LINES READ 
o PROGRAM ERROR(S) 

0398H 
0011H 
(HlHJH 

920D 
17D 
l6D 

1-159 



APPENDIX D (Col1til1ued) 

P IM~ 80 COMP lLER SLAVE CHAJ.)ACTEK ou'rpu'r HANDLER 

IS IS ... II PL/M-81:l V3.1 COMPILATION OF MODULE OU'rpUTHANDLER 
OBJECT MODULE PLACED IN :Fl:0U'rHLR.OBJ 

PAGE 1 

COMPILER INVO~EO BY: PLMBI:l :Fl:OUTHLR.PLM PRINT(:F5:0UTHLR.LST) PAGEWIDTH(78) 

1 

11 1 

1.2 1 

13 1 

$nointvector title('slave character output handler') 
output$handl!'!r: 

1* 

*1 

DO; 

544 resident interrupt service routine. After transmitter 
ready interrupt, B259 In Service Register (ISR) is read to 
determine which device is requesting service. A character 
is requested fr9m the appropriate queue and, if available, 
is sent to the usart. If the queue is empty the transmitter 
is disabled pending a signal from the master when more 
characters are put into the queue, 

$nolist 

DECLARE 
ocw2$8259 LITERALLY 'I'IE6H', 
ocw3$8259 LI'rERALLY '0E6a' , 
disable$xmit LITERALLY '0FEH', 
true LITERALLY '0FFH', 
false LITERALLY' 01'lH' , 
EOI LITERALLY 'I'IAI'IH'; 

DECLARE 
ISR BYTE, 
token BYTE, 
actual ADDRESS, 
value 9YTE; 

DECLARE 
usart$state (8) BYTE EXTERNAL, 
usart$command$port (8) BYTE PUBLIC OATA( 

001H, 
0DIH, 
0D3H, 
IiiD3H, 
i:lD5H, 
0D5H, 
007H, 
I'ID7H) , 

usart$data$port (8) BYTE PUBLIC DATA ( 
0D0H, 
001'lH, 
002H, 
I'ID2H, 
004H, 

1-160 



14 1 

15 2 

16 2 

17 2 

18 2 
19 2 
21:1 3 

22 3 
23 4 
24 4 
25 4 
26 4 
27 3 

28 2 
29 2 
31:1 2 
31 3 

32 3 

33 3 

34 2 
35 2 
36 2 
37 2 
38 1 

APPENDIX D (Continued) 

004H, 
006H, 
1:I06H); 

out$hlr: PROCEDURE INTERRUPT 1 PUB~IC; 

/* get active level number and use it to determine queue$token * 
/ 

ISR=input(ocw3$8259); 

again: 
ISR=shl (ISR,l); 
IF NOT carry THEN 

DO; 

e$xmit; 

EI~D; 

IF token=l THEN RETURN; /* no bits in ISR set */ 
ELSE 

DO; 

END; 

token=token-2; 
ISR=shl(ISR,l); 
GOTO again; 

actual=get$line(token,.value,l); 
IF actual=!:! THE~ 

DO; /* empty queue. Disable transmitter */ 
usart$state(token)=usart$state(token) A~D disab1 

CALL varout (usart$command$port (token) ,usart$stat 
e (token» ; 

END; 
ELSE 

CALL varout(usart$data~port(token) ,value); 
output (ocw3$8259)=EOI; 
RETURN; 
3ND; 

END output$handler; 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
102 LINES READ 
'" PROGRAM ERROR(S) 

"'0MH 
0005H 
000CH 

1640 
50 

120 

1·161 



APPENDIX D (ContInued) 

PL/M-80 COMPILER RMX/80-544 INITIALIZATION 'rA3K 

ISIS-II PL/M-80 V3.l COMPILATION OF MODULE INIT544 
OBJECT MODULE PLACED IN :Fl:INIT54.0BJ 

PAGE 1 

COMPILER INVOKED BY: PLM80 :Fl:INIT54.PLM PRINT(:F5:INIT54.LST) PAGEWIDTH(78) 

1 

56 
57 

58 
59 

60 
61 

62 

63 

1 
2 

1 
2 

1 
2 

1 

1 

$title('rmx/8~-544 initialization task') 
init$544 : 

/* 

*/ 

DO; 

Task code for 544 driver initialization task. Info 
from a9plication supplied memory allocation block 
is accessed to set up queues and transfer device programming 
info to the slave board(s) and create the required 
service handler tasks. 

$nolist 

input$driver: PROCEDURE EXTERNAL; 
END input$driver; 

output$driver: PROCEDURE EXTERNAL; 
END output$driver; 

signal: PROCEDURE EXTERNAL; 
END signal; 

DECLARE 
stack$size LITERALLY 
go$type LITERALLY 

DECLARE 
ptr ADDRESS, 

'256' , 
II' ; 

init$table BASED ptr STRUCTURE ( 
base$adr ADDRESS, 
queue$token BYTE, 
prog$info (5) BYTE), 

i BYTE, 
overflow ADDRESS, 
queue$init$table (1) STRUCTURE ( 

base$adr ADDRESS, 
aueue$size (8) ADDRESS) EXTERNAL, 

initlalization$table (1) BYTE EXTERNAL, 
stat BYTE, 
num$devices BYTE EXtERNAL. 
num$boards BYTE EXTERNAL, 
service$exchange$table (1) ADDRESS EXTERNAL, 
signal$exchange$table (1) ADDRESS EXTERNAL, 
service$exchanges (1) BYTE EXTERNAL, 
signal$exchanges (1) BYTE EXTERNAL, 
task$descriptors (1) BiTE EXTERNAL, 

1-162 



64 1 

65 1 

66 2 

67 2 
68 2 
69 2 
70 2 
71 2 

72 1 

73 2 
74 3 
75 3 

76 2 

77 2 

78 2 

79 2 

80 3 

81 3 

APPENDIX D (Continued) 

stacks (1) BYTE EXTERNAL, 
info$block (1) STRUCTURE ( 

base$adr ADDRESS, 
queue$token BYTE, 
index BYTE) EXTERNAL, 

rgactv ADDRESS EXTERNAL; 

DECLARE 
:om$input$std static$task$descriptor DATA ( 

'input' , 
.input$driver, 
0, /* stack will be assigned individually */ 
stack$size, 
200, 
'1, /* tba */ 
0),/*tba*/ 

rom$output$std static$task$descr iptor DA'rA ( 
'output' , 
.output$driver, 
11 , 
stacksize, 
201, 
0, 
11) , 

input$hdlr$std static$task$descriptor, 
output$hdlr$std static$task$descriptor; 

init$xch: PROCEDURE (xch$ptr); 
/* initializes expanded interrupt exchanges */ 

DECLARE xch$ptr ADDRESS, 
xch BASED xch$ptr int$exchange$descriptor; 

xch.link=.xch.link; 
xch.type=int$type; 
xch.length=5; 
RETURN; 
END; 

init$54: PROCEDURE PUBLIC; 

) ; 

DO i=0 TO num$boards-l; 
CALL m$init(.queue$init$table(i)); 

END; 

CALL move,(size(rom$input$std) ,.rom$input$std,.input$hdlr$std 

CALL move (size(rom$output$std) ,.rom$output$std,.output$hdlr$ 
std) ; 

ptr=.initialization$table; 

DO i=0 TO num$devices*2 BY 2; 
/* send pogramming info to slave */ 

overflow=send$line(init$table.base$adr,init$table.queue$ 
token,.init$table.prog$info,5); 

stat=set$m$interrupt(init$table.base$adr,init$table.queu 

1·163 



82 3 

83 3 

84 3 
85 3 
86 3 

87 3 

88 3 

89 3 
9~ 3 
91 3 
92 3 

93 3 
94 3 
95 3 
96 3 
97 3 
98 3 

99 3 
Hl0 3 
Hll 3 
102 3 

HJ3 2 
104 2 
105 2 
106 2 

107 1 

APPENDIX D (Continued) 

e$token,go$type) 1 

/* create service and signal exchanges */ 

CALL rqcxch(service$exchange$tab1e(i) :=.service$exchange 
s+10*i) 1 

CALL rgcxch(service$exchange$tab1e(i+1):=.service$exchan 
ges+l0*(i+l» ; 

15* i) i 

CALL init$xch(.signa1$exchanges+15*i) 1 
CALL init$xch(.signa1$exchanges+15*(i+1» 1 
CALL rgcxch(signa1$exchange$taple(i) :=.signa1$exchanges+ 

CALL rqcxch(signa1$exchanqe$tab1e(i+1) :=.signa1$exchange 
s+15*(i+1» 1 

END1 

info$b1ock(i) .base$adr, 
info$b1ock(i+1).base$adr=init$tab1e.base$adri 
info$b1ock(i) .gueue$token=init$tab1e.queue$token-11 
info$b1ock(i+1) .queue$token=init$tab1e.queue$token1 
info$b1ock(i) .index=i; 
info$b1ock(i+1) .index=i+1i 

input$hd1r$std.sp=.stacks+stack$size*ii 
output$hd1r$std.sp=.stacks+stack$size*(i+1); 
input$hd1r$std.exchange$address=.info$b1ock(i) i 
output$hd1r$std.exchange$address=.info$b1ock(i+l)i 
input$hdlr$std.task$ptr=.task$descriptors+20*ii 
output$hd1r$std.task$ptr=.task$descriptors+20*(i+1)1 

CALL rqctsk(.input$hd1r$std); 
CALL rqctsk(.output$hd1r$std) 1 
ptr=ptr+81 

CALL rqsetv(.signa1,2)1 
CALL rqe1vl(2) 1 
CALL rqsusp(rqactv) 1 

END1 /* of task */ 

END init$544; 

MODULE INFORMA'rION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
285 LINES REAO 
~ PROGRAM ERROR(S) 

02C3H 
002AH 
0006H 

707D 
420 

60 

1-164 



APPENDIX D (Continued) 

P /M-8" COMP ILER RMX/80-544 INITIALIZATION MODULE AND 

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE INITMODULE 
OBJECT MODULE PLACED IN :Fl:MAB.OBJ 

PAGE 

COMPILER INVOt<ED BY: PLMil0 :Fl:MAB.PLM PRIl~T(:F5:'.'lAB.LS'I') PAGEWIOTH(78) 

1 

$title('rmx/80-544 initialization module and memory allocation b 
lock' ) 

1 

2 1 

init$module: 

/* 

44 

*/ 

DO; 

Initialization tables created and allocation of memory for 5 

handler done here. 

OECLARE 
number$of$devices LITERALLY '4', 
baud$rate$count$l LITERALLY '32', 
baud$rate$count$h LITERALLY '00', 
usart$mode LITERALLY '4eh', 
usart$cmd LITERALLY '27h', 
ctr$0$mode LI'rERALLY' 36h' , 
ctr$l$mode LITERALLY '76h', 
ctr$2$mode LITERALLY '0b6h', 
ctr$3$mode LITERALLY' 36h' , 
num$devices BYTE PUBLIC DATA(number$of$devices-l), 
num$boards BYTE PUBLIC DATA(l), 
service$exchange$table (8) ADDRESS PUBLIC, 
signal$exchange$table (8) ADDRESSPUBtIC, 
signal$type (8) BYTE PUBLIC, 
service$exchanges (80) BYTE PUBLIC, 
signal$exchanges (120) BYTE PuBLIC, 
task$descriptors (160) BYTE PUBLIC, 
stacks (2048) BYTE PUBLIC, 
info$block (32) BYTE PUBLIC, 
queue$init$table (1) STRUCTURE ( 

base$adr ADDRESS, 
queue$size (8) ADDRESS) PUBLIC DATA ( 

0el!l 00h, 
256, 
1765, 
256, 
1765, 
256, 
1765, 
256, 
1765) , 

base$table (1) ADDRESS PUBLIC DATA ( 
0e" 00h) , 

initialization$table (number$of$devices) STRUCTURE ( 
base$adr ADDRESS, . 

1·165 



APPENDIX D (Continued) 

queue$token BYTE, 
prog$info (5) BYTE) PUBLIC DATA ( 

0efHH:lh, 
1. 
usart$mode, 
usart$cmd, 
ctr$0$mode, 
baud$rate$count$l, 
baud$rate$count$h, 

0e000h, 
3, 
usart$moae, 
usart$cmd, 
ctr$l$mode, 
baud$rate$count$l, 
baud$rate$count$h, 

icle"HJ0h, 
5, 
usart$mode, 
usart$cmd, 
ctr$2$mode, 
baud$rate$count$l, 
baud$rate$count$h, 

0e01cl0h, 
7, 
usart$mode. 
usart$cmd, 
ctr$3$mode, 
baud$rate$count$l, 
baud$rate$count$h) ; 

3 1 END init$modu1e; 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
79 LINES READ 
o PROGRAM ERROR(S) 

0036H 
09B0H 
01cl00H 

540 
24800 

00 

1·166 



APPENDIX D (Continued) 

P /M- BI'l COMP ILER SLAVE->MASTER INTERRUP'r HANDLER PAGE 1 

ISIS-II PL/M-8~ V3.1 COMPILATION OF MODULE SIGWALHANDLER 
OBJECT MODULE PLACED IN :FI:SIGNAL.OBJ 
COMPILER INVOKED B~: PLM8~ :FI:SIGNAL.PLM PRINT(:F5:SIGNAL.LST) PAGEWIDTH(78) 

1 

26 

27 

28 

29 

31iJ 
31 
32 
33 

35 
36 

37 
38 

1 

1 

2 

2 

2 
2 
3 
3 

3 
3 

2 
2 

$nointvector title('slave->master interrupt handler') 
signal$handler: 

/* 

d 

*/ 

001 

Fields all slave->master signals(interrupts) and calls rqisn 

with the proper signal exchange address. 

$nolist 

DECLARE 
i BYTE, 
ptr ADDRESS, 
(flag BASED ptr) BY'rE, 
num$boards BYTE EXTERNAL, 
num$devices BYTE EXTERNAL, 
signal$type (1) BYTE EXTERNAL, 
index BYTE, 
token BYTE, 
signal$exchange$table (1) ADDRESS EXTERNAL, 
base$table (1) ADDRESS EXTERNAL 1 

signal: PROCEDURE INTERRUPT 2 PUBLICI 

/* poll slave boards and find one generating interrupt */ 

i=iIll 

next: 
ptr=base$table(i)+ll 
IF flag=1iJ THEN 

/ 

DOl 
i=i+ll 
IF i > num$boards THEN RETURNI /* erroneous signal * 

ELSE GOTO nextl 
ENOl 

/* get queue token and use it to index into signal exchange tabl 
e */ 

token=(flag AND \'lfh) 1 
index=4*i+tokenl 

/* if index is out of range don't attempt the isend */ 

1-167 



APPENDIX D (Continued) 

39 2 IF index <= num$devices THEN 
4'1 2 DO; 
41 3 CI\LL rqisnd(signal$exchange$table(index)) ; 
42 3 signal$type (index) =shr (flag, 4) ; 
43 3 END; 

ELSE 
44 2 CI\LL rqendi; 

/* z'ero flag to acknowledge interrupt */ 

45 2 flag=0; 
46 2 RETURN; 
47 2 END; 

48 1 END signal$hand1er; 

MODULE INFORMI\TION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MI\XIMUM STACK SIZE 
110 LINES READ 
o PROGRI\M ERROR(S) 

0'18BH 
0itJ05H 
01illilAH 

139D 
5D 

llilD 

1-168 



APPENDIX D (Continued) 

P /M-cllO COMP HER RMX/8~-544 INPUT SERVICE HANDLER PAGE 

ISIS-II PL/M-80 V3.l COMPILATION OF MODULE INPUTDRIVER 
OBJECT MODULE PLACED IN :Fl:INPUT.OBJ 
COMPILER INVOKED BY: PLM80 :Fl:INPUT.PLM PRINT(:F5:INPUT.LST) PAGEWIDTH(78) 

1 
$title('rmx/80-544 input service handler') 
input$d river: 

/* 

DO; 

Master resident task code. Monitors service exchange 
and fills input requests by retrieving characters from 
the proper queue(board$base and device info is passed 
via default exchange field). By definition the first byte 
of a line of input contains the length of that line. 

1 

This figure is used to retrieve the exact number of characte 

27 

28 

29 

30 

31 

1 

1 

2 

2 

2 

rs 
available in a given line. 

*/ 

$nolist 

DECLARE 
rqactv ADDRESS EXTERNAL. 
td BASED rqactv task$descriptor, 
service$exchange$table (1) ADDRESS EXTERNAL, 
signal$exchange$table (1) ADDRESS EXTERNAL; 

input$driver: PROCEDURE REENTRANT PUBLIC; 

DECLARE 
service$exchange ADDRESS, 
board$base ADDRESS, 
queue$token BYTE, 
signal$exchange ADDRESS, 
msg$ptr ADDRESS, 
msg BASED msg$ptr th$msg, 
actual ADDRESS, 
dummv ADDRESS, 
info$block$ptr ADDRESS, 
info$block BASED info$block$ptr STRUCTURE ( 

base$adr ADDRESS, 
queue$token BYTE, 
index BYTE) , 

num$char BYTE, 
stat BYTE; 

/* get info out of default field */ 

info$block$ptr=td.exchange$address; /* default exchange fiel 
d */ 

service$exchange=service$exchange$table(info$block.index); 

1·169 



32 
33 
34 
35 

36 

37 

38 
39 
40 
41 
42 

43 

44 
45 
46 
47 

48 

4~ 

2 
2 
2 
2 

3 

3 

3 
3 
4 
4 
4 

3 

3 
3 
3 
3 

2 

1 

APPENDIX D (Continued) 

board$base=info$block.base$adr; 
gueue$token=info~block.queue$token; 
signal$exchange=signal$exchange$table(info$block.index) ; 
DO forever; 

/* wait for request message */ 

msg$ptr=rqwait(service$exchange,0) ; 

retry: 
/* try to get line count out of queue */ 

actual=get$line(board$base,gueue$token,.num$char,l) ; 

/* if unsuccessful wait for signal and try again *1 

IF actual=0 THEN 
DO; 

El~D ; 

dummy=rqwait(signal$exchange,0); 
GO'rO retry; 

/* if all okay get line */ 

actual=get$line(board$base,queue$token,msg.buffer$adr,nu 
m$char); 

~sg.actual=actual; 

msg.status=0; 
CALL rqsend(msg.resp$ex,msg$ptr); 

END; /* of do forever */ 

END; /* of task */ 

END input$driver; 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
171 LINES READ 
o PROGRAM ERROR(S) 

eJl2CH 
0000H 
0017H 

300D 
0D 

23D 

1-170 



APPENDIX D (Continued) 

P /M-80 COMPILER RMX/8~-544 OUTPUT SERVICE HANDLER PAGE 1 

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE OUTPUTDRIVER 
OBJECT MODULE PLACED IN :Fl:OUTPUT.OBJ 
COMPILER INVOKED BY: PLM80 :Fl:OUTPUT.PLM PRINT(:F5:0UTPUT.LST) PAGEWIDTH(78) 

1 

39 

40 

41 

42 

1 

1 

1 

2 

$title('rmx/8~-544 output service handler') 
output$dri ver: 

/* 

DO; 

Master resident task code. Monitors service exchange and 
fills output requests by stuffing characters into the approp 

riate 

*/ 

queue. If insufficient room is available the task waits 
for 1 second and retries up to 100 times after which it 
signals a time out error. If the transmission completes 
successfully the slave is signalled to indicate that data' is 

available. 

$nolist 

DECLARE 
data$available LITERALLY '2', 
time$out LITERALLY '1'; 

DECLARE 
rqactv ADDRESS EXTERNAL, 
(td BASED rqactv) task$descriptor, 
s~rvice$exchange$table (1) ADDRESS EXTERNAL, 
signal$exchange$table (1) ADDRESS EXTERNAL; 

output$driver: PROCEDURE REENTRANT PUBLIC; 

DECLARE 
service$exchanqe ADDRESS, 
signal$exchange ADDRESS, 
base$adr ADDRESS, 
queue$token BYTE, 
msg$ptr ADDRESS. 
msg BASED msg$ptr th$msg, 
tries$left BYTE, 
overflow ADDRESS, 
dummy ADDRESS, 
stat BYTE, 
info$block$ptr ADDRESS, 
info$block BASED info$block$ptr STRUCTURE ( 

base$adr ADDRESS, 
queue$token BYTE, 
index BYTE) ; 

1-171 



43 2 
44 2 
45 2 
46 2 
47 2 

48 2 

49 3 
50 3 
51 3 

52 3 
53 3 
54 4 
55 4 
56 4 

58 4 
59 5 
60 5 
61 5 
62 5 
63 4 
64 3 
65 3 

66 3 
67 3 

68 3 

69 2 

70 1 

APPENDIX D (Continued) 

/* initialize */ 

info$block$ptr=td.exchange$addres s 1 
service$exchange;=service$exchange$table (info$block •. index),1 
signal$exchange=signal$exchange$table(info$block.index)1 
bas~$adr;=info$block.base$adr1· . 

·queue$token=info$b1ock.queue$token1 

DO forever1 

/* wait for request message */ 

msg$ptr=rqwait(service$exchange,~)1 
tr ies$1eft=U~ 1 

retry: 
overflow=send$1ine(base$adr,queue$token,msg.buffer$adr,m 

sg;count) 1 

) 1 

IF overflow <> 0 THEN 
D01 

END1 

dummy=rqwait(signa1$exchange,20) 1 
t~ies$1eft=tries$left-11 
IF tries$1eft > 0 THEN GOTO retrY1 
ELSE 

D01 

END1 

msg.status=time$out1 
msg.actua1=01 
GOTO quit1 

msg.status=01 
stat=set$m$interrupt(base$adr,quetie$token,data$avai1abIe 

msg.actual=msg.~ount1 
quit: 

CALL .rqsend (msg. resp$ex ,msg$ptr) 1 ' 
END1 /* of do forever */ 

END1 /* of task */ 

END output$driver1 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
198 LINES READ 
o PROGRAM ERROR(S) 

U59H 
0000H 
rlll/119H 

3450 
00 

250 

1·172 



APPENDIX D (Continued) 

A M8il :F1:CFG544.iI\80 PRIJ.'l'r(:F4:CFG544.LS'I') PAGBWIO'rH(78) MACROFILB 

ISIS-II 80811/8085 I1ACRO ASSEI1BLBR, V3.fi CFG544 PAGE 1 

LOC OBJ 

IH'J'Ilfii 0800 

PUBLIC SYMBOLS 
RQCRTB C 0026 

EXTERNAL SYMBOLS 

LINB 

1 
2 
3 
4 
5 

RQRA'l'E: 
$NOLIS'r 
$LIST 
$NOGEN 
N'rASK 
NEXCH 

SOURCB S'rATEMBNT 

NAt1E CI?G544 
CSEG 
PUBLIC RQRATB 
DW 8 

SET 0 
SET 0 

BUILD THE INITIAL TASK TABLE 

1;!7 
128 
129 
130 
131 
132 
133 
134 1 --------\ THIS TASK IS NECBSSARY FOR THE 544 HANDLE 

R 
135 
136 
191 
246 
247 
248 
249 
253 
251 
255 
256 
264 
265 
266 
267 
274 

--------/ IT CREATES EVERYTHING ELSB IT NEEDS. 
lL'IIT54, 200,1, '" 

RQRATE C 1001:10 

STO 
S'l'O LINECH, 64,130,0 

ALLOCATE TASK DESCRIPTORS 

GENTO 

BUILD INITIAL EXCHANGE TABLB 

XCHADR RESPEX 

BUILD CREATE TABLE 

CR'rAB 
END 

INIT54 E 0000 LINECH E 0000 RESPBX E IHJ00 

USER SYMBOLS 
CRTAB + 10000 
INTXCii + 100010 
NTASK A 1010102 
RQRATE C 01000 
XCHADR + 10002 

GENTD + 101000 
ITT C 10002 
PUBXCH + iIl007 
STO + 100100 

lET C 01024 
LINECH E 00010 
RESPBX E 00100 
TOBASE 0 0108 

1·173 

INIT54 E 01000 
NEXCR A 0001 
RQCRTB C 01026 
XCH + 0005 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



© Intel Corporation 1977 

RELIABILITY 
REPORT· 

1·175 

RR-17 

JUNE 1917 



Intel® SBC 80/10 
Single Board Computer 
Reliability Report 

1·176 

Contents 

INTRODUCfION ..•..•.••..•...•..••.• 1·177 

SBC 80/10 COMPUTER DESCRIPTION •• 1·177 

SINGLE BOARD COMPUTER 
QUALITY ASSURANCE .......••....... 1·178 

Component Quality Assurance ............ 1-178 
Board Assembly ......................... 1-179 
Board Production Testing .............. , .1-179 

THE SBC 80/10 RELIABILITY TEST •.•.. 1·180 

Reliability Test .......................... 1-180 
CPU/MemoryTest ...................... 1·181 
InputlOutput (1/0) . ..................... 1-181 
Error Handling .....•.. , ................. 1-181 
Temperature ............................ 1-181 

BOARD RELIABILITY AND mE 
LIFE CYCLE •...•.••.•..••••....•..••.• 1·181 

Reliability Mathematics .................. 1-182 
Confidence Levels ....................... 1-183 

LIFE TEST RESULTS ................... 1·184 

Field Data ........................•..... 1-185 

SUMMARY ......•...•.........•..•.•.. 1·185 

APPENDIX - RELIABILITY TEST 
FLOWCHART ..........•......•..•...• 1·186 



INTRODUCTION 

This report presents reliability test and supporting 
data for the Intel® SBC 80/10 Single Board Com­
puter, a complete computer system on a single 
6.7S-by-12 inch printed circuit board. The CPU, 
system clock, read/write memory, non-volatile 
read-only-memory, I/O ports and drivers, serial 
communications interface, bus control logic and 
drivers all reside on the board. 

A complete life testing program has .been imple­
mented to ascertain and quantify the reliability 
level of the Intel® SBC 80/10 Single Board Com~ 
puter. This report presents a review of this pro­
gram, including a discussion of the test configura­
tion utilized, the system exerciser/diagnostic soft­
ware used, the number of hours of testing per­
formed, and the ambient test temperatures. High 
temperature testing was performed to accelerate 
prodl\ct aging and to provide operational data on 
the reliability performance of the SBC 80/10 com­
puter at elevated temperatures. 

Data gathered from this life testing shows the 
SBC 80/10 to provide extremely, reliable perform­
ance. MTBF for the SBC 80/10 Single Board Com­
puter is shown to be 91,739 hours (90% confi­
dence) in continuous +2So C environments (average 
"room" temperature) and 25,006 hours (90% 
confidence) in continuous +55°C high temperature 
environments (maximum operating temperature 
specified for SBC 80 products). Data is also 

presented which shows that this life test data 
correlates well with actual field reliability data. 

A full description of Intel's complete component 
testing and quality assurance and board-level 
assembly, testing, and quality assurance procedures 
is also included in this report. This will provide an 
understanding of the production, testing, and qual­
ity assurance procedures ~hich all Intel®. SBC 
80 Single Board Computer products undergo prior 
to shipment. This report is presented as a basis for 
reliability performance estimates for Intel's com­
plete SBC 80 line of Single Board Computers and 
supporting expansion boards. 

SBC 80/10 COMPUTER DESCRIPTION 

The SBC 80/10 Single Board COp1puter is con­
tained on a 6.75-by-12 inch printed circuit board. 
As Figure 1 shows, the CPU, system clock, read/ 
write memory, non-volatile read-only-memory, I/O 
ports and drivers, serial communications interface, 
bus control logic and drivers all reside on the 
board. Intel n-channel MaS LSI technology and 
bipolar TTL are the basis for the feasibility of such 
a full computer on a single PC board. Such a single 
board approach is inherently more reliable than 
traditional multiboard implementations through 
minimization of inter-board connectors. 

The heart of the SBC 80/10 Single Board Com­
puter is the Intel® 8080A CPU which contains six 

USER DESIGNATED 
PERIPHERALS 

ADDRESS BUS I (> MULTIBUsnl' 
DATA BUS MEMORY 

L~=£C~ON~T~RQjOL~B~U~S==::::::t:=======~:t======t:~====~t . AND I/O EXPANSION 

1. Interrupts originating from the Programmable Communications Interface and Programmable Peripheral Interface are jumper selectable. 

Figure 1. SBe ~0/10 Block Diagram 

1-177 



8-bit, general-purpose registers and an accumulator. 
Complete reliability data on the 8080A micro­
processor is contained in Intel Reliability Report 
RR-IO. 1024 bytes of read/write storage are pro­
vided by eight Intel· low-power static RAMs. In 
addition to read/write memory, four sockets are 
provided to install four Intel 8708 1024 X 8 non­
volatile, erasable and reprogram mabie read-only­
memories. The Intel 8708 EPROM has been shown 
to be an extremely reliable Read-Only-Memory 
(see Intel Reliability Report RR-12 for complete 
details). 

Two Intel 8255 Programmable Peripheral Interface 
devices supply 48 parallel I/O lines. These lines are 
routed to sockets on the board which are used to 
buffer lines programmed as outputs with TTL 
drivers or to terminate lines programmed as inputs 
with SBC 90 I or SBC 902 resistor terminator 
packs. 

For serial communication, an Intel 825 I Universal 
Synchronous/Asynchronous Receiver/Transmitter 
(USART) is contained on the SBC 80/10 com­
puter. Additional circuitry provides jumper-select­
able teletypewriter (20 mA current loop) or 
RS232C compatible interfaces for the USART. 

For further information on detailed operation of 
the SBC 80/10 computer, consult the Intel SBC 
80/1 0 Single Board Computer Hardware Refer­
ence Manual. 

SINGLE BOARD COMPUTER QUALITY 
ASSURANCE 

The reliability of a board level product like the 
Intel® SBC 80/10 Single Board Computer is a 
function of the quality of components used on the 
board, care in board design and fabrication, and 
the extent of testing performed on the product 
before shipment. An examination of each of these 
functions will provide an understanding of the 
Intel quality assurance program for microcomputer 
system products. 

Component Quality Assurance 

Standard Intel® component quality assurance 
processing and 100% screening are applied to all 
Intel components used on the SBC 80/10 com­
puter before they are assembled on the board. 
Once a component device has been qualified as 

reliable and transferred to systems level manufac­
turing, it is imperative that complete process con­
trClls are in effect to assure the continuation of 
high quality. Intel's component QA flow centers 
around a series of acceptance gates between 
process entities (see Figure 2) and detailed inspec­
tion within the processing areas at critical points. 
For example, in wafer processing, furnaces are 
routinely monitored for contamination through 
the use of capacitance voltage measurements on 
test chips. Also, electrical tests such as breakdown 
strength measurements are performed on test 
patterns on each wafer. Routine high magnification 
scanning electron microscope examinations at 
critical process steps also provide important 
process control feedback. A final QA acceptance is 
performed on all lots prior to shipment to assem­
bly locations. Table I details the Intel component 
QA acceptance gates within the assembly flow and 
identifies the appropriate method employed per 
MIL-STD-883. During the test and finishing opera­
tion, QA maintains standards, test tape and calibra­
tion control of all production equipment. Final QA 
inspection is performed after the mark and pack 
operation. 

1-178 

Table I 

COMPONENT ASSEMBLY FLOW 

OPERATION 
MIL-STO-8S3 

METHOO 

Piece Part Inspections 

Scribe and Break 

QA Acceptance 2010.1B 
2nd OPtical Inspection 2010.1B 

Lead Bond 

QA Acceptance 2010.1B 
3rd Optical Inspection 2010.1B 

Seal 

Temperature Cycle 1010 (C) 

QA Acceptance 1014 (B) 
Fine Leak 1014 (A) 

( 1 O' 7 atm cc/sec) 

QA Acceptance 1014 (e) 
Gross Leak 1014 (C) 

QA Acceptance 2009 
Final Visual 2009 



Figure 2. Component QA Flow Diagram 

Board Assembly 

Figure 3 shows the stringent cycle of inspection 
and testing each board undergoes before being 
shipped to the customer. After bare board manu­
facture, boards are inspected for raw board quality 
conformance (i.e., hole registration, drilling, lami­
nate integrity, artwork registration, etc.). Selected 
samples are sectioned and microscopically analyzed 
for compliance to specification. 

Figure 3. Board Manufacture and Test Flow/Screening 

Components for an assembly "kit" are then pulled 
together and readied for the assembly operation. 
Visual inspection of each kit of components is then 
conducted. The kit is assembled onto the bare 
board and the assembled parts of the board are 
inspected prior to wave solder for proper location 
and after wave solder for soldering defects. Final 
assembly inspection insures the boards are ready 
for test. 

Board Production Testing 

Manufacturing testing, though not a part of relia­
bility testing per se, is very effective in eliminating 
"infant mortality" failures. These types of failures, 
by their nature, occur in the early life of a product 
(see page 5). Each SBC 80/10 Single Board Com­
puter is pre-baked at 80°C prior to any testing. 
Figure 4 shows some of the ovens utilized in this 
process. The boards are allowed to cool and then 
exhaustively tested on a Teradyne L125 Digital 
Diagnostic Tester. Use of a special "bed of nails" 
vacuum test fixture insures that all critical board 
test points may be accessed by the test system. 
Figure 5 shows the test fixture for the SBC 80/1 a 
computer, and Figure 6 shows one of the Teradyne 
test systems used in lntel® microcomputer board­
level testing. Failed components are replaced, and 
the boards are retested on. the Teradyne test sys­
tem. 

---
Figure 4. Ovens Utilized for Board Pre-Bake 

1-179 



When the boards have passed this thorough testing, 
they are then "system tested" to guarantee Intel® 
MUL TIBUS™ interface integrity. This consists of 
installing a set of Monitor and diagnostic program 
memory. EPROMs into the four SBC 80/10 
EPROM sockets, applying all necessary voltages, 
and monitoring the SBC 80/10 computer's per­
formance with a teletypewriter. The board per­
forms all of the functions as described later in the 
reliability test section. After test, the boards are 
inspected for possible test damage. Boards passing 
this final screen are then released by Intel Quality 

Figure 5. SBC 80/10 Single Board Computer Test 
Fixture 

Figure 6. A Teradyne Test System Utilized in SBC 80 
Board Testing 

Assurance to Intel's standard product warehouse. 
Each product shipped is also subject to an audit. 
This audit consists of a complete review of docu­
mentation, test, functional performance workman­
ship, and han~lling. 

THE SBC 80/10 RELIABILITY TEST 

In order to establish reliability data for the SBC 
80/10 Single Board Computer, an extensive life 
test program has been implemented. Twenty-one 
SBC 80/10 ,computers have been tested under vari­
ous operating conditions. The various aspects of 
this program are discussed below. 

Reliability Test 

The test program used to exercise each SBC 80/10 
computer during life testing was a modified version 
of the normal systems test, monitor, and diagnostic 
exerciser programs that each unit must pass prior 
to shipment. Figure 7 illustrates the hardware con­
figuration of the test. Four Intel® 8708 EPROMs 
containing the monitor/diagnostic exerciser were 
installed in each SBC 80/10 computer to exercise 
virtually all of its functions. 

EQUIPMENT USED; 

Power Supplies: 

Power One G5·35/0UP 5113 
Lambda LXS-O·S·OV 

Test Equipment: 

Fluke BODA 
Fluke 2240A 
Delta Design 6300/6400 

Communication: 

Teletype Model 33 
Centronics 306e 

Figure 7. Life Test Configuration 

1-180 



The monitor program was a basic conditioning and 
communicative program. Among other things, it 
conditioned each SBC 80/10 computer to commu­
nicate with a teletypewriter, allowed the operator 
to display and/or change the contents of RAM 
memory locations and direct the program counter 
to any designated memory location to begin 
processing instructions. The monitor program 
occupied the first lK of memory and started 
processing at location OOOOH. 

The diagnostic exerciser program, starting address 
0400H, is arranged into two major sections: the 
CPU/memory Test and the I/O Test. The Appendix 
provides a flowchart of this reliability test program. 

CPU/Memory Test 

The test program first sets aside sections of RAM 
memory to be used as temporary storage needed 
in later processing. It then begins executing the 
instruction set of the 8080A CPU, starting with 
conditional jumps, adds, subtracts, and compare 
instructions. Six sequential conditional call and 
return instructions are executed with combinations 
of register manipulations. All registers are checked 
for proper incrementing, decrementing, and com­
paring. Different combinations of register com­
pares and conditional jumps are done, followed by 
data move operations from register to register. A 
test of the and, or, and exclusive or instructions is 
then run. Each byte of a double register (l6-byte) 
is incremented and decremented separately to see 
the effect on its companion register and on the 
Processor Status Word (flags, carry, parity, etc.). 
Exchange, register store, direct register add, deci­
mal adjust, rotate left and rotate right instructions 
are then performed. Finally, a series of push and 
pop instructions combined with store directs and 
exchanges are executed to test as many applica­
tion sequences as possible. 

The memory is well exercised as a part of the CPU 
test. The memory test executes a complete series 
of store directs into and load directs from memory 
via double CPU registers. This is done to insure 
proper functioning of all memory locations. 

Input/Output (I/O) 

One of the Intel® 8255 Parallel I/O Interfaces is 
addressed and programmed to be a set of three 
output ports. Alternate bit patterns 1010 10 1 0 and 
01010101 (binary) are presented to each port and 

LEDs are attached to allow monitoring. The sec­
ond Intel® 8255 is programmed as a set of three 
output ports. One of these ports is used to drive 
a line printer in recording failures. 

Serial I/O is tested periodically by manually re­
setting the board and using a teletypewriter com­
municating with the Monitor program. The auto­
matic portion of the test is then restarted from 
this mode. 

Error Handling 

After the execution of selected compares and 
jumps, a routine is executed to record the occur­
rence of any errors on a line printer and to stop 
processing. If the failure was catastrophic, the 
board would be removed and trouble-shot to deter­
mine the failure mechanism. 

Temperature 

Twenty-one boards were tested at ambient temper­
atures of +25°C, +55°C, and +70°C. The +55°C 
and +70°C elevated temperatures were used to 
increase stress on the boards and stimulate failures. 
(Tables IV and V on page 9 present the number of 
unit-hours run at each temperature.) 

BOARD RELIABILITY AND THE LIFE CURVE 

There is a fundamental principle of reliability engi­
neering which predicts that the failure rate of any 
group of products implemented from integrated 
circuits will follow a curve such as that shown in 
Figure 8. 

This curve can be divided into three major cate­
gories of failures: Infant Mortality, Random, and 
Wear Out. 

1-181 

c.. 
w' 

!;;: 
a: 
w 
a: 
::J 
..J 

<C u.. 

INFANT 

\MORT:TY W".OUT 

"'--= RANDOM J ----~~~~--~l . L-__________________________ ~ 

TIME,t 

Figure 8. Reliability Life (Bathtub) Curve 



Infant Mortality is that area of the curve where 
failures caused by manufacturing defects in both 
the components and/or the board are most appar­
ent. Infant Mortality usually lasts from board 
manufacture to the low hundreds of hours of 
board operation. 

Random failures occur during the useful portion of 
the product life. These failures are a function of 
temperature, circuit complexity, device loading, 
and other factors. The Random failure rate ap­
proaches a low constant value where it remains 
from hundreds to hundreds of thousands of oper­
ating hours (for printed circuit boards with inte­
grated circuits). Since it is the parameter of great­
est interest to the system designer, the failure rate 
for SBC 80/10 Single Board Computers through 
the Infant and Random failure regions was ex­
plored in reliability testing. During these tests, no 
evidence of wear out was experienced. Wear-out 
failures, as the name implies, occur when wear-out 
takes place, both physically and electrically, at the 
end of a device's useful life. Statistically, this will 
not happen until hundreds of years have elapsed 
for LSI-based products such as the SBC 80/1 0 
Single Board Computer. 

Reliability Mathematics 

When information on the failure rate for a given 
LSI-based product is desired, that product gener­
ally must have its life "accelerated" due to the low 
failure rates involved. This can be done by subject­
ing the unit to high temperature, high voltage, or 
both. When high temperature is used, the thermal 
activation energy of failures can be used along with 
the failure rate at that temperature, to derive the 
effective failure rate at other temperatures. Such 
derivation is accomplished using the plot shown in 
Figure 9. This is an Arrhenius plot in which average 
time to failure (inverse of failure rate) is plotted 
against the reciprocal of temperature. The slope of 
the curve is related to the thermal activation 
energy in electron-volts. From these plots the 
effective failure rate at a given temperature may be 
derived from failure rate data determined at a dif­
ferent temperature. The two failure rates are re­
lated as follows: 

where: 

ETT] Effective Time (hours) at T] (Ambient 
Temperature) 

MF Multiplication Factor 

ATT2 = T2 (Test Temperature) 

1-182 

The Multiplication Factor (MF) is found from the 

expression~F = exp {+ ~ (i] -i2)} 
where: 

MF 

E 

k 

10' 

10' 

10' 

Ul 
a: 
:> 
0 
:I: 

10· I 
w 
a: 
:> 
.oJ 

~ ... 
0 
I- 105 
W 
::;: 
j:: 

10' 

10' 

10' 

10' 

10' 

Multiplication Factor 

Thermal Activation Energy (e V) 

Boltzmann's Constant 
(3.63 X 10-5 eVtK) 

Ambient Temperature 

Test Temperature 

}/ 
II 

/ 
I / 

/ II 
I / 

/ 1/ 
J 
I / 

I / L / 
I I ./ ./ 

I V 

/1 ~ ~ ,/ 
L 

1/ // /' 

~ ?' 

I 

/ 
I 

II 

I 

I 

j 
I 

/ 

II 
~ 

.1/ 

I 

<:>. ;f/ 
/./<:>~ 

/ <:>~ 

./ 

250 200 175 150 125 100 75 50 25 

Figure 9. Arrhenius Plot 



The thermal activation energy used in the calcula­
tion is determined by the failure mechanism. Table 
II lists the most common failure mechanisms for 
MaS LSI devices. As can be seen from Table II, 
activation energies for n-channcl MaS devices 
range from 0.3 e V to 1.4 e V. Bipolar devices have 
been shown to exhibit activation energy perform­
ance at about 0.5 eV. Table III lists the most com­
mon failure mechanisms for printed wiring assem­
blies. 

A mixture of n-channel MaS LSI, bipolar SSI and 
MSI, and discrete components are used on the SBC 
80/10 Single Board Computer. The activation 
energy of the one failure during SBC 80/10 life 
testing could not accurately be determined. The 
failure occured in an Intel® 8224· clock generator 
at 460 hours into the test at an ambient tempera­
ture of +25°C. This clock generator is sensitive to a 
+ 12V /-'12V reversal of supply voltages which hap­
pened once during the test. This may explain the 
one failure shown in Table IV. 

The Intel® 8080 life test program produced results 
indicating 0.5 eV as an appropriate activation 
energy for failure rate analysis (see Intel Reliability 
Report RR-IO). An activation energy of 0.5 e V 
was used here as a conservative basis for failure rate 
conversion. 

Confidence Levels 

When calculating a failure rate, the simplest form 
of calculation is: 

Number of Failures 
Failur~ Rate 

(No. of Devices) X (No. of Hours Tested) 

The only problem in this equation is that the fail­
ure rate thus calculated· does not reflect a very high 
degree of confidence. In fact, the confidence level 
is only 50% for this equation. Since failures occur­
ring beyond "Infant Mortality" and before product 
"wear out" are random in nature, the average fail­
ure rate for products operating in this region will 

Table II 

COMPONENT FAILURE MODES 

FAILURE MODE TYPE 
ACTIVATION 

DETECTION 
ENERGY (E.ct) 

Slow Trapping Wear Out 1.0eV High Temperature Bias 
Contamination Wear Out/Infant 1.4 eV High Temperature Bias 
Surface Charge Wear Out 0.5-1.0 eV High Temperature Bias 
Polarization Wear Out 1.0eV High Temperature Bias 
Electromigration Wear Out 1.0eV High Temperature Operating Life 
Microcracks Random - Temperature Cycling 
Contacts Wear Out - High Temperature Operating Life 
Oxide Defects Infant/Random 0.3 eV High Voltage Operating Life and Cell Stress 

Table III 

PRINTED CIRCUIT FAILURE MECHANISMS 

FAILURE MODE TYPE DETECTION PREVENTATIVE MEASURES 

Fractured Wirewrap Random Visual & Functional Proper Tool Handling 

Gold Finger Contamination Random Visual & Functional Cleanliness, Gold Thickness 

1-183 



follow a Normal probability distribution. Such a 
distribution is shown in Figure 10. In Figure 10, 
the failure rate curve shows failure rate on the 
abscissa (X axis) and the failure frequency on the 
ord'inate (y axis). The 50% confidence level is 
synonymous with the mean point of the curve and 
simply means that, in the population of product 
units, 50% of the units will have a failure rate less 
than or equal to the observed failure rate. The 90% 
confidence level is the 90th percentile of the distri­
bution and means that 90% of the parts will have a 
failure rate less than the quoted number. 

Of course, the failure rate at the 90th percentile is 
much higher than at the 50th percentile and deter­
mination of the failure rate at a 90% confidence 
level of greatest interest. Since the failure rate for 
random failures follows a Normal probability 
distribution, the Chi-squared probability function 
provides a direct tool for derivation of failure rates 
at various confidence levels. Using the Chi-squared 
function, the failure rate can be calculated at any 
confidence level by: 

Failure Rate = X2 (l -: CL, 2r + 2) 
2nt 

where: 

X2 = Chi-square function 

CL = Confidence level expressed as a decimal 

r = Number of rejected boards 

n = Number of boards tested 

t = Total test time 

The values of X2 may be found in most texts on 
statistics where the 2r + 2 term is treated as the 
degree of freedom (DF). Given these tools for 
analysis, let us fully examine the results of the life 
test performed. 

LIFE TEST RESULTS 

The results of the SBC 80/10 life test program are 
described in Tables IV, V, and Vt. If the data from 
Table IV is used along with the information from 
the reliability mathematics section, the +2SoC 
MTBF for the SBC 80/10 Single Board Com­
puter at a confidence level of 90% is 91,739 hours 
(failure rate = 1.09% per 1000 hours). A high 
temperature analysis was done concurrently with 
the +25°C program. As shown in Table VI, the 

50% CONFIDENCE LEVEL 

~ z 
w 
::I o 
w 
a: 
u. 

FAILURE RATE 

NOTE 1: ALL BOARDS AT A GIVEN CONFiDENCE LEVEL 
HAVE FAILURE RATE < THE FAILURE RATE AT THA1' LEVEL 

Figure 10. Failure Rate VI. Failure Frequency 

1-184 



SBC 80/10 Single Board Computer is shown to 
have an MTBF of 25,006 hours (failure rate = 
3.99% per 1000 hours) with a confidence level of 
90% when operated continuously at ambient 
temperatures of +55°C (specified maximum 
ambient temperature for SBC 80/10 computer 
operation). 

Field Data 

The SBC 80/10 Single Board Computer was intro­
duced in early 1976. Based on the number of SBC 

80/10 Single Board Computers shipped to date, a 
conservative estimation of actual unit running time 
provides an experience of more than 2,579,000 
unit-hours of operation. Intel field service has 
experienced 18 SBC 80/10 computer failures dur­
ing this operational period. This data yields a 
90,845-hour, +25°C MTBF at a 90% confidence 
level (25°C operation assumed for all unit-hours). 
This correlates well with the results of the life 
testing program. 

Table IV 

LIFE TEST DATA EXTRAPOLATED TO 25°C 

TEST TEMPERATURE +25°C +55°C +70°C TOTAL FAilURES 

Unit·Hours @Temperature 24663 14296 20020 - 1 

Equivalent Unit·Hours @ +25°C 24663 84624 256580 365867 1 

Table V 

LIFE TEST DATA EXTRAPOLATED TO 55°C 

TEST TEMPERATURE +55°C +70oC TOTAL FAilURES 

Unit· Hours @Temperature 14296 20020 - 0 

Equivalent Unit·Hours @ +55°C 14296 43345 57641 0 

Table VI 

LIFE TEST RESULTS 

FAILURE RATE PER MTBF, 
TEST TEMPERATURE 

+25°C 

+55°C 

SUMMARY 

As a result of the reliability tests and In tel's relia­
bility program, the SBC 80/10 Single Board Com­
puter has demonstrated an MTBF of 25,006 hours 
at 90% confidence level when operated at 55°C. 
Stated another way, if a system using an Intel® 
SBC 80/10 Single Board Computer were used 24 
hours a day at an average ambient temperature of 
55°C, there is a 90% probability that such a system 
will operate for almost 35 months before the sys­
tem would fail due to an SBC 80/10 computer fail-

1000 hours hours 
90% tiCl 90% UCl 

1·185 

1.09% 91.739 

3.99% 25006 -

ure (over 10 years at +25°C operation). Of course, 
the system failure rate would be somewhat higher 
due to the failure rates of other elements in the 
system. 

The SBC 80/10 Single Board Computer was 
introduced in January, 1976, and has become an 
industry standard. Intel's system of manufacturing 
microcomputer systems, coupled with extensive 
reliability monitoring and tests, has yielded a high 
reliability, low-cost product - the SBC 80/10 
Single Board Computer. 



;: 

1-186 



©Intel Corporation 1979 

RELIABILITY 
REPORT 

1-187 

RR-23 

OCTOBER 1979 

142646 



Intel@ iSBC 86/12A 
Single Board Computer 
Reliability Report 

Contents 

INTRODUCTION •.........•........•.. 1·189 

iSBC 86/12A COMPUTER 
DESCRIPTION ..•...•.............•.... 1·189 

SINGLE BOARD COMPUTER 
QUALITY ASSURANCE ......•......•.. 1·190 

Computer Quality Assurance .............. 1-190 
Board Assembly ......................... 1-191 
Board Production Testing ................ 1-191 
Environmental and Temperature Testing .... 1-192 
Vibration ............................... 1-192 
Shock .................................. 1-193 
Humidity ............................... 1-193 
Temperature ............................ 1-193 
Summary ............................... 1-193 

1·188 



INTRODUCTION 

This report presents reliabilty tests and support­
ing data for the Intel iSBC 86/12A Single Board 
Computer with the optional iSBC 300 32K Byte 
RAM Expansion Module and the iSBC 340 16K 
Byte EPROM/ROM Expansion Module. The 
iSBC 86/12A Single Board Computer is a complete 
computer system on a single printed circuit board; 
the CPU, system clock, read/write memory, read­
only-memory, I/O ports, serial communications 
interface, priority interrupt logic, programmable 
timers, bus control logic and drivers all reside on 
the board. The optional memory expansion 
modules attach to the board, allowing the on-board 
RAM to be expanded by 32K bytes (for a board 
total of 64K bytes), and the on,board EPROM/ 
ROM to be expanded by 16K bytes (for a board 
total of 32K bytes). 

A complete reliability testing program has been 
implemented to ascertain the reliabilty level ofthe 
Intel iSBC 86/12A microcomputer and the iSBC 
300 and iSBC 340 Expansion Modules. This report 
presents a review of this program, including a 
discussion of the test configuration utilized, the 
system exerciser/diagnostic software used, the 
number of hours of testing performed and the 
ambient test temperatures .. High temperature 
testing was performed to accelerate product aging 
and to provide operational data on the reliability 
performance of the iSBC 86/12A microcomputer at 
elevated temperatures. 

A full description of the quality assurance 
proced ures that all ofIn tel's com plete line of sing Ie 

MULTIBUS·· SYSTEM BUS 

board computers undergo prior to shipping is also 
included. 

iSBC 86/12A'· BOARD DESCRIPTION 

The iSBC 86/12A Single Board Computer is 
contained on a 6.75 by 12 inch (17.15 by 30.48 em) 
printed circuit board. Figure 1 shows an overall 
block diagram of the board. Intel n-channel MOS 
LSI technology and bipolar TTL are the basis for a 
full computer on a single PC board. Such a single 
board approach is inherently more reliable than 
traditional multiboard implementations through 
minimization of inter-board connectors. 

The heart of the iSBC 86/12A Single Board 
Computer is the Intel 8086 16-bit microprocessor 
(CPU). The8086 CPU includes four 16-bit general 
purpose registers, which may also be addressed as 
eight 8-bit registers. In addition, the CPU 
contains two 16-bit pointer registers and two 
16-bit index registers. Four 16-bit segment 
registers allow extended addressing to a full 
megabyte of memory. 

The standardiSBC 86/12A microcomputer in­
cludes 32K bytes of read/write memory; con­
nectors are provided to allow the addition of up to 
16K bytes of programmable read only memory in 
lK, 2K, or 4K byte increments. Intel EPROMs are 
used for programmable read only memory. Up to 
32K bytes of additional on-board RAM and 16K 
bytes of additional EPROM can be added to the 
standard iSBC 86/12A board with the iSBC 300 
and the iSBC 340 Expansion Modules, respective­
ly. 

RS232C 
COMPATIBLE 

DEVICE 
24 PROGRAMMABLE 
PARALLEL 1/0 LINES 

Figure 1. iSBC 86/12A'· Single Board Computer Block Diagram 

1-189 



One Intel® 8255A Programmable Peripheral 
Interface device supplies 24 programmable 
parallel I/O lines. These lines are routed to 
sockets on the board that are used to buffer lines 
programmed as outputs with TTL drivers or to 
terminate lines programmed as inputs with iSBC 
901 or iSBC 902 resistor terminator packs. 

For serial communication, an Intel® 8251A 
Universal Synchronous/Asynchronous Receiver/ 
Transmitter (USART) is part of the iSBC 86/12A 
board. Additional circuitry provides jumper­
selectable Teletypewriter (20 rnA current loop) or 
RS232C compatible interfaces for the USART. 

For further information on detailed operation of 
the. iSBC 86/12A microcomputer, consult the Intel 
iSBC 86/12A Single Board Computer Hardware 
Reference Manual. 

SINGLE BOARD COMPUTER QUALITY 
ASSURANCE 

The reliability of a board level product like the 
Intel iSBC 86/12A. Single Board Computer is a 
function of the quality of components used on the 
board, care in board design and fabrication, and 
the extent of testing performed on the product 
before shipment. An examination of each of these 
functions will provide an understanding of the 
Intel quality assurance program for micro­
computer system products. 

Component Quality Assurance 

Standard Intel component quality assurance 
processing and 100% screening are applied to all 
Intel components used on the iSBC 86/12A 
microcomputer before they are assembled on the 
board. Once a component device has been quali­
fied as reliable and transferred to systems level 
manufacturing, it is imperative that complete 
process controls are in effect to assure the 
continuation of high quality. Intel's component 
QA flow centers around a series of acceptance 
gates between process entities (see Figure 2) and 
detailed inspection within the processing areas at 
critical points. For example, in wafer processing, 
furnaces are routinely monitored for contamina­
tion through the use of capacitance voltage 
measurements on test chips. Also, electrical tests 
such as breakdown strength measurements are 
performed on test patterns on each wafer. Routine 
high magnification scanning electron microscope 
examinations at critical process steps also provide 
important process control feedback. A final QA 
acceptance is performed on all lots prior to 
shipment to assembly locations. 

1-190 

Figure 2. Component QA Flow Diagram 

Table 1 details the Intel component QA acceptance 
gates within the assembly flow and identifies the 
appropriate method employed per MIL-STD-883. 
During the test and finishing operation, QA 
maintains standards, test tape and calibration 
control of all production equipment. Final QA 
inspection is performed after the mark and pack 
operation. 

Table 1. Component Assembly Flow 

MIL-STD-883 
OPERATION METHOD 

Piece Part Inspections --
Scribe and Break -
QA Acceptance 2010.1B 
2nd Optical Inspection 2010.1 B 

Lead Bond --
QA Acceptance 2010.1B 
3rd Optical Inspection 2010.1B 

Seal --
Temperature Cycle 1010 (C) 

QA Acceptance 1014 (B) 
Fine Leak 1014 (A) 

(107 atm cc/sec) 

QA Acceptance 1014 (C) 
Gross Leak 1014 (C) 

QA Acceptance 2009 
Final Visual 2009 



Board Assembly 

Figure 3 shows the stringent cycle of inspection 
and testing each board undergoes before being 
shipped to the customer. After bare board manu­
facture, boards are inspected for raw board quality 
conformance (Le., hole registration, drilling, 
laminate integrity, artwork registration, etc.), and 
tested for trace "shorts" and "opens". 

Components for an assembly "kit" are then pulled 
together and made ready for the assembly 
operation. Visual inspection of each kit of 
components is then conducted. The kit is assem­
bled onto the bare board and the assembled parts 
of the board are inspected prior to wave solder for 
proper location and after wave solder for soldering 
defects. Final assembly inspection insures the 
boards are ready for test. 

QA/ADVANCED 
RELIABILITY AUDIT 

Figure 3. Board Manufacture 
and Test Flow/Screening 

1·191 

Board Production Testing 

Manufacturing testing, though not a part of 
reliability testing per se, is very effective in 
eliminating "infant mortality" failure. These 
types offailures, by their nature, occur in the early 
life of a product. Each iSBC 86/12A microcom­
puter is pre-baked at 70°C prior to any testing. 
Figure 4 shows some of the ovens used in this 
process. The boards are allowed to cool and then 
exhaustively tested on a Teradyne L125 Digital 
Diagnostic Tester. Use of a special "bed of nails" 
vacuum test fixture insures that all critical board 
test points may be accessed by the test system. 
Figure 5 shows the test fixture for the iSBC 86/12A 
board, and Figure 6 shows one ofthe Teradyne test 

Figure 4. Ovens Utilized for Board Pre-Bake 

Figure 5. iSBC 86/12A'· Single Board 
Computer Test Fixture 



systems used in Intel microcomputer board-level 
testing. Failed components are replaced, and the 
boards are retested on the Teradyne test system. 

When the boards have passed this thorough 
testing, they are then "system tested" to guarantee 
Intel® MULTIBUSTM interface integrity. This 
consists of installing a set of monitor and 
diagnostic program memory EPROMs into the 
four iSBC 86/12A EPROM sockets, applying all 
necessary voltages, and monitoring the iSBC 
86/12A board's performance with a CRT terminal 
(see Figure 7). The monitor/diagnostic exerciser 
program tests the CPU, dual port memory, 110 
interfaces, and MULTIBUS interface in a multi­
processing environment. After test, the boards are 
inspected for possible test damage. Boards 
passing this final screening are then released by 
Intel Quality Assurance to Intel's standard 
product warehouse. Each product shipped is also 
subject to an audit. This audit consists of a 
complete review of documentation, test, functional 
performance, workmanship and handling. 

Figure 6. A Teradyne Test System Utilized 
in iSBC 86/12A'M Board Testing 

Environmental and Temperature Testing 

Intel's Advance Reliability/Quality Assurance 
Department also performed a series of environ­
mental and temperature tests on production 
versions of the iSBC 86/12A Single Board 
Computer, the iSBC 300 RAM Expansion Module 
and the iSBC 340 EPROM/ROM Expansion 
Module. These tests were designed to assure that 
the boards can withstand the worst conceivable 
physical and temperature conditions that might 
be found in a light commercial or industrial 
environment. A light commercial or industrial 
environment is defined as an area with moderate 
temperature and humidity, suitable for occupation 
by operating personnel, as for example an office or 
a manufacturing plant. 

1-192 

The temperature tests were performed in Intel's 
Environmental Testing Laboratory in Hillsboro, 
Oregon. VIKING LAB, an independent labor­
atory in Mountain View, California, was engaged 
to perform the environmental tests, which 
consisted of vibration, shock and humidity 
testing. 

The iSBC 86/12A board was tested in two test 
configurations. In one configuration, two iSBC 
86/12A boards were installed in an iSBC 604 
cardcage and exercised in a master/slave multi­
processing environment. The other configuration 
was identical except that an iSBC 300 Expansion 
Module and an iSBC 340 Memory Expansion 
Module were connected to each iSBC 86/12A board 
in the test configuration. When possible, each of 
the board configurations were tested concurrently. 
The programs to exercise the boards during the 
various environmental and temperature tests were 
contained on EPROMs installed on each iSBC 
86/12A board. . 

Two parallel 110 ports were used as test monitors 
with specially designed LED fixtures. A CRT 
terminal connected to the serial 110 port was used 
to start the test and monitor the system testing. 

Both boards in each board configuration were 
exercised over the MULTIBUS interface, which in 
turn exercised the Intel® 8289 Bus Arbiter. Dual 
port exchange was exercised as well between 
RAMs. Approximately 80% of the CPU's instruc­
tion set was exercised. 

The EPROM on each board exercised and checked 
its resident RAM (and expansion module RAM 
when present) as well as the RAM (and expansion 
module RAM) on the companion board. This 
cross checking allowed maximum exercising of 
the boards. The exercise routines were then 
looped to provide continuous operation of the 
boards before, during, and following the various 
environmental and temperature tests. 

Vibration 

For the vibration tests, the two board configura­
tions were tested on a horizontal vibration table in 
all three axes (X, Y and Z). On each axis the 
vibrations applied were cycled up and down 
between 10 and 55 Hz, with a total cycle time of! i/2 
hours. Each major resonance point was dwelled at 
for 15 minutes, during which time a strobe light 
was used to observe the relative movement 
between boards. If no resonance points were 
observed during the first half of the test cycle, the 
15 minute dwell was performed at 55 Hz. At the 
completion of the. test of each axis, a visual 
inspection of the boards was performed. The iSBC 



CRT POWER 
TERMINAL SUPPLY 

MASTER SLAVE 
ISBC 86/12A K MULTIBUS > ISBC 86/12A 

BOARD BOARD 

ISBC 300 ISBC 340 ISBC 300 ISBC 340 
MODULE- MODULE" MODULE· MODULE· 

• Expansion modules removed in second test configuration. 

Figure 7. Block Diagram of Test Set-Up PSI76 

86/12A board, iSBC 300 and iSBC 340 modules 
passed the vibration test without failure. This test 
is intended to simulate an environment with low 
level vibrations such as those caused by a large 
industrial motor or machine, or as might be found 
in a mobile installation. 

Shock 

In testing the ability of the board configurations to 
withstand shock, the board configurations were 
subjected to 30g shocks for 11 J.lsec (1f2 sinewave). 
Shocks were applied to each ofthe six sides of the 
board configuration, 12 shocks per side. A 
performance test cycle was performed before, 
during, and following each shock; a visual 
inspection was performed at the completion of the 
test of each side. At the end of the shock test, a 
post-test performance test was performed. No 
visual damage was noted as a result of the shock 
tests to the iSBC 86/12A boards or the iSBC 300 or 
iSBC 340 modules, nor did the tests have any effect 
on the performance of the boards. This test 
simulates typical shipping conditions with 
commercial carriers and the kind of occassional 
shocks that occur from bumps or dropping a piece 
of equipment from a low height. 

Humidity 

Each board configuration was subjected to the 
following test cycle in a humidity chamber: (while 
operational) 

1. Relative humidity and temperature of the 
chamber was ramped up to 80% and 25°C 
(taking approximately 1 hour). 

3. Relative humidity and temperature are then 
ramped up to 95% and 40°C (taking approxi­
mately 1 hour). 

4. Chamber is held at this state for 17 hours. 

5. Relative humidity and temperature are ramped 
down. 

This cycle was performed four times on each board 
configuration with no effect on the performance of 
the boards and no resulting board or component 
failure. These humidity conditions test the boards 
reliability not only at high humidity and 
temperature, but also accelerates the effects of 
moderate humidity over a long period of time. 

Temperature 

Three temperature related tests were performed on 
the board configurations: a non-operating test, an 
operating test, and a temperature vs. power supply 
voltage test. For the non-operating test, the board 
configuration was exercised, then placed in a 
-40°C environment for 2 hours. After removal 
from this environment, the board configuration 
was allowed to stabilize for 1 hour and then it was 
exercised again. This test was repeated at 75°C. 

For the operating test, the board configuration 
was exercised at 55°C for 16 hours, turned off and 
allowed to stabilize for '1f2 hour at room 
temperature, then operated for {1/2 hours at 
O°C. These non-operating temperature tests are 
intended to simulate worst case storage or 
transportation temperatures_ 

For the temperature vs. power supply voltage test, 
2. Relative humidity was held at 80% for 2 hours. the three power supply voltages (+5V, -5V and 

1-193 



-12V) are adjusted first to their +5% tolerance 
extreme and then to their -5% tolerance 
extreme. At each of these settings, the board 
configurations were exercised for 2 hour intervals 
both at DoC and +55°C. These two procedures test 
the ability of the boards to continue operating in 
extremes of a light commercial or industrial 
environment and under the combined conditions 
of extreme temperature variation and poorly 
adjusted or unstable power supply voltages. 

The iSBC 86/12A, iSBC 300 and iSBC 340 boards 
performed without problem through each of these 
temperature tests. 

1-194 

Summary 
Having been subjected to these tests as a part of 
Intel's reliability testing program, the iSBC 
86/12A Single Board Computer, the iSBC 300 32K 
Byte RAM Expansion Module, and the iSBC 340 
16K Byte EPROM/ROM Expansion Module have 
demonstrated a high reliability/confidence level. 
The reliability of these boards will be further 
monitored through continued reliability testing, 
Intel's production quality assurance program and 
the analysis of field reports. Evidence of failures 
will be distilled back into the engineering process 
and used in refining quality assurance testing 
procedures. 



inter ARTICLE 
REPRINT AR·48 

February 1, 1978 



Part 1 

Reduce your J,LC-based system design time, 
by using single-board microcomputers. Assembled boards 
in the S8e-80 series offer stock answers to custom demands. 

System designers eager to take advantage of the 
dramatically increased capabilities of micro­
computers have been hindered two ways: Their pro­
duction volumes have been too low to amortize soft­
ware and hardware development costs effectively, or 
hardware subtleties and test requirements have con­
fined them to fully assembled and tested computer 
subsystems, But now those obstacles are overcome 
with families of fully assembled and tested micro­
computers and system-expansion boards like the Intel 
SBC-80 series. They are ready-to-use, flexible and 
inexpensive-prices range from just $195 to $825 in 
unit quantities. 

The main members of the SBC-80 family are the 
80/04, 80/05, 801l0A, 80/20 and 80/20-4 central­
processor boards, with either an 8080A or 8085 micro­
processor acting as the master CPU (Table 1). Most 
of the boards measure 6.75 X 12 in. and contain the 
CPU, clock, read/write memory, control ROM, I/O 
ports, serial communications interface and bus-con­
trol logic. 

I/O interfacing is an area where design flexibility 
is essential to meet changing requirements efficiently. 
The programmable parallel and serial I/O structures 
of the boards make them versatile enough to do just 
that. What's more, upgrading system performance is 
easy thanks to the SBC-80 system bus, the Multibus, 
which permits modular performance expansion. 

The Multibus provides a defined, standard interface 
between the SBC-80 single-board computers and ex­
pansion boards. As many as 16 SBC-80 family boards 
can simultaneously share the bus. 

All in the SBe-SO family 

As exemplified by the block diagram of the 
SBC-80/lOA (Fig. 1), the SBC-80 microcomputer sys­
tem has all that's needed for many applications. The 
SBC-80/10A is the oldest board in the family and has 
been widely imitated since it was one of the first 
"standardized" microcomputers commercially avail­
able. 

The CPU section of the 80/10A board consists of 

George Adams, Product Line Manager. Single-Chip Micro­
computers. Intel Corp,. 3065 Bowers Ave .. Santa Clara. 
CA 95051. 

Note: Multibus, RMX·80, fCE and Intel/ecare regIstered trademarks of In fel Corp. 

Reprinted from ELECTRONIC DESIGNIFebruary 1, 1978 

the 8080A CPU, the 8224 clock generator and the 8238 
system controller. Capable of fetching and executing 
any of the 8080A's 78 instructions, the CPU section 
can respond to interrupt requests originating on and 
off the board. (For more about the 8080A, see "Micro­
processor Basics, Part 2," ED No. 10, May 10, 1976, 
p.84). 

The system-bus interface section includes an assort­
ment of circuits to gate the interrupt arid hold re­
quests, the ready signals, and a systeJI1-reset signal. 
Other circuits drive the various control lines. Two 
8216s help drive the bidirectional data bus, and six 
8226s drive the external system-dita and address 
buses as part of the SBC-80/lOA's Multibus interface. 

The RAM section of the SOIlOA consists of 1024 
bytes of static MOS memory. For program storage, 
up to 8192 bytes of ROM can be mounted on the board 
in 1024-byte increments by means of a 2708 or 8708 
EPROM, an 8308 mask-programmed ROM, or in 2048 
bvte increments via the 2716 EPROM or 2316 ROM . 
. A serial interface on the board uses an 8251 pro­

grammable universal synchronous/asynchronous 
receiver/transmitter to provide a serial-data channel. 
The serial port operates at programmable rates up to 
38,400 baud (synchronously) or 19,200 baud (asynchro­
nously) with a choice of character length, number of 
stop bits, and even, odd or no parity. On-board 
interfaces provide direct EIA RS-232 or teletypewriter 
current-loop compatibility. 

Two 8255 programmable peripheral interface 
circuits provide 48 I/O lines for transferring data to 
or from peripheral devices. Eight already-committed 
lines have bidirectional drivers and termination 
networks permanently installed, so that they can be 
inputs, outputs or bidirectional (jumper-selectable): 
The other 40 lines are uncommitted. On-board sockets 
permit drivers and termination networks to be in­
stalled, as needed. Since software configures the I/O 
lines, I/O can be customized for every application. 

The 801l0A also responds to a single-level interrupt 
that can originate from one of many sources, the 
USART, programmable I/O and two user-designated 
interrupt-request lines. When an interrupt is recog­
nized, a Restart-7 instruction is generated, and the 
processor accesses location 38 H to get the starting 
address of the service routine. 

System expansion and support are possible with a 

III""",,, I)""., J. I'ehruan I. 197K 

Copyright Hayden Publishing Co., Inc. 1978. All rights reserved. 1 ~ 196 



wide variety of alternate-source CPU, memory, and 
110 boards (Tables 2 and 3). Up to 65,536 bytes of ROM, 
PROM or RAM can be accessed by one 80/l0A. 
Expandable backplanes and card cages are also avail­
able to support multiboard systems. 

Interfacing starts with the bus 

Although the SBC-80/lOA is a complete micro­
computer system, it can be expanded readily or it can 
serve as a primary master controller for other micro­
computer cards. The 80/l0A has five edge connectors, 
three on the top of the board and two on the backplane, 
or bottom, side. Two of the "top" connectors, J I and 
J2, serve as parallel 110 ports, while J3 is a serial 110 

ADDRESS BUS 
DATA BUS 

CONTROL BUS 

port. All parallel I/O lines on the 50-contact J I and 
J2 connector areas are paired with an independent 
signal/ground pin to permit alternate signal/ground 
wiring when using flat-cable interconnects. Serial port 
J3 uses a 26-contact PC-edge connector to provide 
interfaces for both RS-232 and current-loop devices. 

To communicate with other system-compatible 
boards, the 80/l0A uses the 86-pin Multibus (PI). To 
provide accessible test points, the 80/l0A has a 60-
pin edge connector (P2). The control signals on the 
Multibus provide the real power and capability in 
control applications. 

Of the 86 pins that make up the Multibus, 24 are 
assigned to power and ground, 16 to addressing, eight 
to bidirectional data, and 12 to signal and control 

1 
INTERRUPT 

REOUEST 
LINE 

USER DESIGNATED 
PERIPHERALS 

D 

Interrupts originating from the Programmable Communications Interface and Programmable Peripheral Interface are jumper selectable. 

J1 

1 

CPU 

P1 

1. Based on an SOSOA !,P, the SO/IDA microcomputer has 
a straightforward design suitable for general-purpose 

El.ECTRONIC DESIGN 3, February I, 1978 

J2 

1 

1-197 

J3 

1 

PROM/ROM 

RAM 
P2 

computing and control. The board has 48 programmable 
I/O lines and serial interfaces. 



CPU MASTER NO.1 
sec 80/20 

1/0 DEDICATED TO 
MASTER NO. I 

COMMON HIGH 
SPEED MATH 

PROCESSOR 

(sec 310) 

COMMON 110 
AND PERIPHERALS 

I!() DEDICATED TO 
MASTER NO.2 

MULTI BUS 

2. The Multibus interface for the SBC-80 CPU boards not 
only permits simultaneous multiprocessing, but also 
enables several processors to share the same bus and 

(these 12 are defined in Table 4). The remaining 26 
pins are unassigned at this point. Higher capability 
SBC-SO products, though, are in development. These 
boards will use many of the unassigned lines (eight 
unassigned pins are allocated for additional bidirec­
tional data lines). The remaining lines provide multi­
level (eight) interrupt lines, various control lines and 
a multimaster, bus-arbitration control structure (Fig. 
2). Address and data lines are three-state, and the 
interrupt and control lines are open-collector. 

Boards using the Multibus have a master-slave 
relationship; A bus master-such as an SBC SO CPU 
board, a DMA controller or a diskette controller-can 
control the command and address lines. Conversely, 
slave boards-such as a memory, I/O-expansion or 
mathematics boards-cannot control the bus. 

Arbitration resolves priority disputes 

In multimaster systems, the bus-arbitration logic 
uses the CCLK signal of the bus to provide a timing 
reference to help satisfy many simultaneous requests 
for bus control. As a result, different speed masters 

peripheral devices. Arbitration logic on the CPU boards 
decides which board gets on the bus first if several units 
simultaneously access the bus. 

can share resources on one bus. Actual transfers on 
the bus proceed asynchronously with respect to the 
bus clock. Once bus access is granted, single or 
multiple read/write transfers can proceed at up to 150 
kbytes/s for CPU operations and up to 1 Mbyte/s for 
DMA operations. The bus has a bandwidth of 5 
Mbytes/s so that future performance enhancements 
may be directly supported. 

Both serial and parallel modes of bus-priority reso­
lution are available. In the serial mode, up to three 
masters can share the system bus, with requests 
ordered on the basis of bus location. Each master on 
the bus notifies the next one down in priority when 
it needs to use the bus, and monitors the bus-request 
status of the closest higher-priority master. With an 
external priority network, up to 16 masters can share 
the bus. 

The dual-bus nature of the Multibus permits each 
processor-based master within the system to retain 
its own local memory and I/O, which it uses for most 
operations. Such local operations occur entirely on the 
individual board and don't require the system bus. 

In contrast to the dual bus architecture, all masters 

Table 1. Comparison of SBC-80 CPUs 
SBC 80/04 SBC 80/05 SBC 80/10A SBC 80/20 SBC 80120-4 

CPU 8085 8085 8080A 8080A 8080A 

EPROM capacity (bytes) 
(with 2716) 4096 4096 8192 8192 8192 

(with 2708) 2048 2048 4096 4096 4096 

RAM (bytes) 256 512 1024 2048 4096 

Programmable parallel 
I/O lines 22 22 48 48 48 

Serial I/O capability RS232C RS232C RS232C/TTY RS232C2 RS232C2 
SID/SODl. 2 SID/SODI. 2 USART USART USART 

Timers 1 1 0 2 2 

I nterru pt levels 4 4 1 8 8 

Multibus interface None Multi-master Single-master Multi-master Multi-master 

Price (unit quantity) $195 $350 $495 $735 $825 

Noles: IProvlded by 8085 CPU SID and SOD semi 110 lines. 20ptlOnai sse 530 TTY Interface IS available 

1-198 
h" IRO'I( DIs,,;, J. Fehruary 1. 1978 



Table 2. Additional sse support boards 

Function 

RAM 

EPROM 

Model 

SBC 016 
SBC 032 
SBC 048 
SBC 064 
SBC 094" 

SBC 416 

Description 

16 kbyte dynamic RAM 
32 kbyte dynamic RAM 
48 kbyte dynamic RAM 
64 kbyte dynamic RAM 

4 kbyte CMOS static 
RAM with 96 hour bat­
tery backup. 
16 k?'ytes uS~[lg 2708 
type (1024 x 8) EPROM 

Price 
(unit 
qty) 

$ 825 
$1360 
$1860 
$2200 
$ 795 

$ 295 

Digital SBC 508" 32 input lines/32 out- $ 350 
I/O put lines, all buf­

fered/terminated 

SBC 517 48 programmable par- $ 400 
allel lines with full 
bufferi ng/termination 
options, full RS232C 
port, 1 ms real-time 
clock. and 8-line inter-
rupt control 

SBC 519* 72 programmable par- $ 395 
allel lines with full 
b u fferi n g/termi nation 
options, real-time 
clock (interval is 
jumper selectable to 
0.5, 1. 2, or 4 ms), and 
8-level programmable 
interrupt control. 

Communi- SBC 534 Four programmable $ 650 
cations synchronous/asyn-

chronous serial ports, 
each with: program­
mable baud rates, pro­
grammable data for­
mats, programmable 
interrupt control, 16 
RS232C buffered pro­
grammable parallel 
I/O lines configured as 
a Bell Model 801 auto­
matic calling unit in­
terface. Two program­
mable 16-bit interval 
timers (usable as real­
time clocks), and soft­
ware selectable loop­
back of serial ports for 
diagnostic use. 

SSC 556* 48 optically isolated $ 395 
lines; 24 input 16 out-
put, and 8 program-
mable (in/out), 8-level 
programmable inter-
rupt control, and 1 ms 
real-time clock. 

Analog SBC 711" 16/8 (single-ended/ $ 895 
I/O differential) 12-bit aid 

channels; user expan­
dable on-board to 
32116 channels 

SBC 724" Four 12-bit d/a chan- $ 750 
nels 

SBe. 732" Combination analog $1125 
I/O; same aid capabili-
ty as SBC 711 plus 2 
d/a channels 

Combina- SBC 104 8 kbytes capacity $ 715 
(sockets) using 2716 tion 

memory 
and I/O 

ReqUires +5 V only 

(2 k x 8) EPROM or 4 
k using 2708, 4 kbytes 
dynamic RAM, 48 pro­
grammable parallel 
I/O lines, with full buf­
fering/termination, as 
options. RS-232C port, 
alms real-time clock, 
and an eight-line inter-
ru pt control 

EIICT""'" D,,,,,, J_ Fehruary I. 197H 

in multi master/single-bus systems use the common 
bus for all instruction or data fetches or whenever 
data must be written to output devices or memory. 
Rapidly, then, the system bus becomes the bottleneck 
for over-all system throughput. Masters in SBC-80 
systems only use the Multibus when data or instruc­
tions are resident in common, or global, memory or 
110. Since masters can request the Multibus simulta­
neously, on-board arbritration logic resolves any mul­
tiple contention. 

Examine board performance 

A look at the entire family of SBC-80 micro­
computers reveals varied levels of performance. All 
five boards are inexpensive, but the most inexpensive 
is the 80/04, which costs $99 in 100-unit quantities, 
and is intended for stand-alone applications. To get 
the cost down, the board was designed to use the 8085 
CPU and the 8155 RAM, timer and 110 circuit. 

The 80/04 contains an 8085 CPU, 256 bytes of RAM, 
space for up to 4 kbytes of EPROM (two 2716 EPROMs, 
or two 2708 EPROMs), 22 programmable parallel 110 
lines with sockets for buffer and termination options, 
a 14-bit programmable timer/event counter, and pro­
vision for an RS-232-C serial port using the 8085 
SID/SOD serial interface. The board can also house 
an on-board +5-V regulator, so an unregulated voltage 
can be connected. 

The next step up, the 80/05, has the same architec­
ture and connector types and pinouts as the 80/04. 
Direct software compatibility is achieved with the 
same CPU along with the same RAM, ROM, 110, and 
timer addressing. However, the 80/05 contains twice 
as much RAM as the 80/04. And since the 80/05 has 
the full Multibus multimaster interface, 80/05-based 
systems can be expanded with any of the Multibus­
compatible boards from Intel or other suppliers. 

The SBC-80/10A comes next. It provides more on­
board memory and 110 for systems requiring ex­
panded on-board resources. Based on the 8080A CPU, 
the board contains 1 kbyte of RAM, up to 8 kbytes 
of EPROM/ROM, 48 programmable parallel 110 lines, 
a full USART serial port with RS-232-C and tele-

1-199 

SBC 108 

SBC 116 

High-speed SBC 310* 
math 

Peripheral SBC 201 
control 

SBC 202 

DMA SBC 501 
control 

Same as SBC 104, ex- $ 815 
cept has 8 kbytes of 
dynamic RAM 

Same as SBC 104, ex- $ 985 
cept has 16 kbytes of 
dynamic RAM 
High speed mathema- $ 595 
tics processor includ-
ing floating-point ca-
pability (32 bit). 
Dual single-density dis- $ 995 
kette controller 

Quad double-density $1290 
diskette controller 
DMA controller, up to $ 450 
1 MHz transfer rates 



typewriter interfaces, and a full Multibus interface 
(but only single-master capability; the board has no 
multimaster capability). Intended for single-CPU sys­
terns. with only one other Multibus peripheral con­
troller, the 801l0A can interface with such as the 
SBC-201 or SBC-202 single and double-density dis­
kette controllers, or the SBC-501 DMA controller. 

System designers requiring the same on-board 110 
capability as the SBC-80/lOA but with more RAM, 
more efficient real-time capability, and full multi­
master Multibus control can go further up the ladder 
to the SBC-80/20 or SBC-80/20-4. These boards differ 
only in that the 80/20 contains 2 kbytes of RAM and 
the 80/20-4 contains 4 kbytes. Both boards can hold 
up to 8192 bytes of ROM or EPROM, handle up 

CPU BOARD 

BIDIRECTlONAL DRIVERS 
AND TERMINATORS 

~ 
~ 
~ 

., 
0: 

"' ~ 
Q 

0-----'"'" ---() 
0-----'"'" ---() SWITCHES 

o--H--o CON1lIICTS 
0 ~r 0 

~--9 LEOS 

o-v.....v--o 
INDUCTIVE 

I/'-.....L--". DATA 

1--+--- CONTROL 

lOADS 

INTERPROCESSOR BUS 
(TO SECOND sac BO) 

D 
cPU BOARD 

3. Programmable I/O lines from the SBC·80 parallel 
interfaces can be set so that they are individually program· 
mabie as inputs or outputs (a), byte-programmable as 
inputs or outputs with handshaking (b), or bidirectional 
on a byte-programmable basis (c). 

1·200 

to eight levels of prioritized interrupt, and share the 
Multibus in the multimaster mode. Either board has 
two programmable interval timers/event counters. 
Auxiliary power buses and memory-protect control 
logic on the board permit battery backup of the RAM. 

Take advantage of interrupts and timers 

Real-time applications frequently require that high­
priority programs operate on the basis of external 
events, time-of-day, or elapsed time without impact­
ing current background processing. These multi­
programming requirements are supported in the 
80/20 and 80/20-4 by an eight-level programmable 
interrupt controller (PIC) and two programmable 
interval timer/event counters. The priority level of 
any event generating an interrupt request is assigned 
through jumper selection and the priority algorithm 
chosen by system software. . 

Any combination of interrupt levels may be masked 
by storing a single byte in the interrupt-mask register 
contained by the PIC, whose four software-selectable 
priority algorithms are described in Table 5. The PIC 
generates a unique memory address for each interrupt 
level. These addresses are equally spaced at intervals 
of 4 or 8 bytes (software-selectable). The resulting 32 
or 64-byte block may begin at any 32 or 64-byte 
boundary in the 65,536-byte memory space. A single 
8080A jump instruction at each of these addresses 
then provides linkage to locate each interrupt service 
routine independently anywhere in memory. 

The two programmable timers may be used to 
generate real-time clocks by requesting periodic inter­
rupts through the PIC, so that the CPU is free to 
handle numerous other system-timing and control 
functions. The outputs and gate/trigger inputs of the 
timer/counters can be routed via jumpers to the PIC, 
the 110 driver/terminators, or the programmable 
parallel 110. 

Seven software-selectable timing/counting func­
tions are available. Either timer may be set to act as 
a rate generator (divide-by-N counter), a square-wave 

4. By using the RMX-80 executive and the library of of ten­
used subroutines, program development can be simplified 
since the subroutines are modular and can be linked 
together, then checked out in a system prototype. 

F.II(,TR()~I( D~slc;N 3, February I, 1978 



Table 3. Non-Intel SBC-compatible boards 

GI 
III U 

'E .. ~ 
CII III .. B .8 GI 
'E 'E CII 

~ .5 .. .. 'E :g III 0 .8 .. I!! .c c c 0 CII GI 0 0 0 
::J ~ .c 'E c CII u u 'i III III 0 :::I CII 
II. CII 0 ::I: .. u .c .. u 'E III 'E (.) 'E 'I: .~ GI 

E 0 .8 i 
III .. U .. 

CII .. GI II: 00 

.~ :c c 0 e 0 c:i 
:::I 0 E ..... 00 >. :::I .c .c c 
~ 

.c till 0 ... E c. 
::I: 0 

'" c. 0 "C GI 
::I: f! 0 iii c. & c. E GI .l: .. 

~ '3 L&I "C iii f! cc 0 II: C (.) 
!!! .. 0 0 

Manufacturer ::I: II: (.) II. cc cc l- i&: (.) :; ::I: I:D C3 

ADAC Corp .. 118 Cummings Park. 
Woburn. MA 01801.(617) 935·6668 • 451 
Ampex, Memory Products Div., 200 N. Nash St., 

. EI Segundo, CA 90245.(213) 640·0150 • 452 
Analog Devices. Route 1 Industrial Park. • 453 P.O. Box 280. Norwood, MA 02062.(617) 329·4700 
Au~at Inc., 33 Pera Ave., P.O. Box 779, 
Att eboro, MA 027 3. (617) 222·2202 • 454 
Burr·Brown. International Airgort In~ust{)al Park. 
P.O. Box 11400, Tucson, AZ 5734. 602 294·1431 • 455 
Cybernetic Micro~stems, 2460 Embarcadero Way. 
Palo Alto, CA 943 3.(415) 321·0410 • • 456 
Data Translation Inc., 23 Strathmore Road, 
Natick, MA 01760.(617) 655·5300 • 457 
Datacube Corp .• 25 Industrial Park. 
Chelmsford, MA 01824. (617) 256·2555 • 458 
Datel Systems Inc., 1020 Turnpike St., Building S., • 459 Canton, MA 02021.(617) 828·8000 
Digidata CO:!h8580 Dors~ Run Road. 
Jessup,MD 0 94.(301) 4 8·0200 • 460 
EDAC Corp., 1417 San Antonio Ave., 
Alameda, CA 94501.(415) 521·6600 • 461 
Electronic Engineering & Prod. Services, TE. #2. 

. Louisville, TN 37777. (615) 984·9640 • 462 
Electronic Solutions, 7969 Engineer Rd., • San Diego, CA 92111.(714) 292·0242 • • 463 
Garry Mfg. Co., 1010 Jersey Ave .• 
New Brunswick, NJ 08902.(201) 545·2424 • 464 
Hal Communications cor~ .. Box 365B. 807 E. Green St., 
Urbana. IL 61801.(217) 67·7373 • 465 
lasis, 815 W. Maude Ave., 
Sunnyvale, CA 94086. (408) 732·5700 • 466 
ICOM, 6741 Variel Ave .. • Canoga Park. CA 91303.(213) 348·1391 467 
Megalogic Corp .• 9650 National Road, 
Brookville. OH 45309.(513) 833·5222 • 468 
Micro Memories Inc., 9438 Irondale Ave .. 
Chatsworth. CA 91311.(213) 998·0700 • 469 
Microtec, P.O. Box 60337. • Sunnyvale, CA 94088.(408) 733·2919 470 
Monolithic Systems Inc., 14 Inverness Drive. 
East. Englewood, CA 80110.(303) 770·7400 • • 471 
National Semiconductor, 2900 Semiconductor Drive. 
Santa Clara. CA 95051.(408) 737·5000 • 472 
North Star Computers· Inc .. 2465 Fourth St., • Berkeley, CA 94710. (415) 549·0858 473 
The Thomas Engineeri~ Co., 1201 Park Ave., 
Emeryville, CA 94608.( 15) 547·5860 • 474 
Vector Electronic Products, 12460 Gladstone Ave., • Sylmar. CA 91342.(213) 365·9661 475 
Zia Tech., 10762 La Roda Drive. • Cupertino. CA 95015. (408)996 ·7082 476 

1·201 



generator, a programmable retriggerable one-shot, or 
software or hardware-triggered strobe. One of the 
timers can be jumper-selected as an event counter, 
and either can generate an interrupt after a specified 
interval or after a specified number of events. 

The programmability of each on-board timer allows 
timing intervals from approximately 2 /-IS to over 60 
ms. But the two timers may be cascaded to provide 
intervals greater than 1.1 hour, in 1.86 /-IS increments. 
In the event counter mode,' external event rates up 
to 1.1 MHz may be counted. 

Flexible I/O, a must for any system 

All SBC-80 microcomputers provide 22 or 48 pro­
grammable parallel I/O lines that, grouped as 8-bit 
ports, are fully programmable to allow enough flex­
ibility to handle any changes in system interfacing. 
Programmability is permitted through data direction, 
control mode, interrupt handling, and 
buffer/termination. The 110 configuration for a spe­
cific application is selected through software in­
itialization of the parallel 110 control logic, jumper 
selection of control/interrupt line routing, and the 
particular buffer and termination devices chosen. 

Fig. 3 illustrates the basic modes of operation that 
may be selected by software to meet application 
requirements. Mode 0 is used for slow-to-medium­
speed interfacing where immediate handshake re­
sponse or interrupt generation is not needed. This 
mode is extremely useful for interfacing to inputs such 
as switches or outputs such as LED indicators or 
numeric displays. 

Mode 1 provides handshaking lines required for 
many medium to high-speed peripherals. A typical 
output function could be a line printer; an input device 
could be an encoded keyboard or paper tape reader. 

In addition, the 80/l0A and 80/20 have Mode 2, a 
bidirectional data/control structure. This interface 
may provide, for example, a communication link 
between parallel processors. 

The SBC-80 110 structure also permits multiple 
options for output buffering and input termination. 
TTL drivers with 16 to 48 mA of drive can be used, 
and input lines may be terminated to minimize the 
impact of noise and cable disconnects. Any of the TTL 
drivers (four outputs) or input terminators (for inputs) 
listed in Table 6 may be inserted into sockets to provide 
proper buffering or termination. 

Like the design flexibility of the SBC-80 parallel 110 
structure, the serial 110 structure allows interface 
characteristics to be revised rapidly through software, 
jumper, and buffer changes. Besides the SBC-80/lOA, 
the 80/20 and 80/20-4 contain the USART serial 
channel. These boards provide RS-232 interfaces, but 
the SBC-80/19A also has a teletypewriter current-loop 
interface. Synchronous/asynchronous mode, data for­
mat, control-character format, and parity are all 
under program control. So is baud rate on the 80/20 
and 80/20-4. Baud rate is jumper-selectable on the 

1-202 

Table 4. Multibus control signals 
AACK Advance-acknowledge signal. used iri 

SOSOA-based systems. It is sent to the 
SBC-SO board by a memory bank in re­
sponse to a mj!mory-read command, allow­
ing the memory to complete the access 
without requiring the CPU to wait. 

BCLK Bus clock. used to synchronize bus-control 
circuits on all master boards. It has a period 
of 101.725 ns (9.S304 MHz) and a 30 to 70% 
duty cycle. The signal may be slowed. 
stopped or single-stepped. 

BPRN Bus-priorityCinput signal. used to indicate to 
the master that a higher-priority master 
board wants to use the system bus. When 
brought high. the signal suspends process­
ing activity and places line drivers of the 
master in a standby mode. 

BUSY' Bus-busy signal. a bidirectional control line 
that allows control and monitoring of the 
Multibus in multimaster s~mSYs. As an 
output from a bus master. indicates 
the bus is being used by the board. It 
prevents all other master boards from gain­
ing control of the bus. Each master 
monitors BUS"i' as an input to determine 
current Multibus usage status. 

CCLK Constant clock. used to provide a 9.S304-
MHz clock signal for o~~[nal memory and 
I/O expansion boards. K coincides with 
BC[R and has a period of 101.725 ns and 
a 30 to 70% duty cycle. 

INIT Initialize signal. used to reset the entire 
system to a known internal state. 

INTRI Interrupt input. used to interrupt the proc­
essor via an externally generated interrupt 
request. 

10RC I/O-read command. a signal generated by 
the master to indicate that the address of 
an input port has been placed on the 
system-address bus and that the data at 
that input port are to be read and placed 
on the system-data bus. 

10WC I/O-write command. a signal generated by 
the master to indicate that the address of 
an output port has been placed on the 
system-address bus and that the contents 
of the system-data bus are to be output to 
the addressed port. 

MRDC Memory-read command. a signal generated 
by the master that indicates that the ad­
dress of a memory location has been placed 
on the system-address bus. It specifies that 
the contents of the addressed location are 
to be read and placed on the system-data 
bus. 

MWTC Memory-write command. a signal gener­
ated by the master to indicate that the 
address of a memory location has been 
placed on the system-address bus. It causes 
information on the data bus to be written 
into the addressed memory location. 

XACK Transfer-acknowledge signal. an input sig­
na I to the master board from an external 
memory location or I/O port to indicate that 
a specified read or write operation has been 
completed. 

EI.I',CTRONI(' DI'SIGN 3. February \. 1978 



80/l0A CPU board. 
The synchronous and asynchronous nature of the 

serial interface makes it compatible with virtually 
every standard serial data-transmission technique 
used today (including IBM's Bi-Sync). This allows 
multiple SBC-80 boards to be interconnected as a 
distributed-processing network. The resulting task 
segregation or redundancy (or both) significantly 
improves both system performance and reliability. 

Two jumper-selectable interrupt requests may be 
generated automatically by the serial interface. One 
occurs when a newly received character is ready to 
be loaded into the CPU (receive-channel buffer is full). 
The other occurs when new data are ready to be 
transmitted to the remote device (transmit-data buf­
fer is empty). 

Both the SBC-80104 and 80105 provide serial 110 
capability through the serial input data (SID) and 
serial output data (SOD) functions of the 8085 CPU. 
These functions are controlled by software executing 
the 8085 read-interrupt mask (RIM) and set-interrupt 
mask (SIM) instructions. 

For systems requiring many serial channels, the 
SBC-534 communications-expansion board provides 
four USART channels with RS-232-C and optically 
isolated current-loop interfaces, programmable inter­
rupt, timing, baud-rate control, and a Bell 801 Auto­
Call unit interface. 

Expand the system via the Multibus 

The SBC-80 family is gaining not only in popularity 
but in support for its Multibus as more and more 
companies offer SBC-compatible boards. Intel now 
provides high-speed mathematics, RAM, EPROM, 
mass storage, digital 110, combination memory and 
1/0, serial communications, and analog-1I0 expansion 
boards. 

For applications requiring fast, high-precision 
number crunching, the SBC-310 math unit acts as an 
intelligent slave to perform floating-point and fixed­
point mathematics. A processor uses the 310 by 
passing parameters to it along with a command byte 
to select the desired operation from the SBC-310's 14 
instructions. The repertoire includes 32-bit f1oating­
point (single-precision) addition, subtraction, multi­
plication, division, squaring, square root, com­
parisons, and tests; 16-bit fixed-point mUltiply, sub­
tract, extended divide, and extended compare; and 
conversion from fixed to floating point or vice versa. 

A completed operation may be signaled either by 
the math unit via an interrupt or by the host 
processor's polling the "operation complete" flag in the 
unit's status register. The result may be retrieved at 
this point or left in the 310's accumulator for further 
use. 

In addition, the 310 provides control circuitry so that 
it may be treated as a "shared resource" among several 
CPU boards. 

Two diskette options are available for mass storage. 

EirCTRONI( DESIGN 3. February I, 1978 1·203 

Table 5. Programmable interrupt 
modes,SBC-80/20-4 

Mode Operation 
Fuliy nested Interrupt request line prior-

ities fixed at 0 as highest. 7 
as lowest. 

Autorotating Eql191 priority. Each level. af-
ter 'receiving service, be-
comes the lowest priority 
level until next interrupt oc-
curs. 

Specific priority System softwa re assigns low-
est priority level. Priority of 
ali other levels based in se-
quence on this assignment. 

Polied System software examines 
priority-encoded system in-
terrupt status via interrupt 
status register. 

Table 6. Line drivers and terminators 
Line drivers 

Driver Characteristic Sink current (mA) 

7438 I.OC 48 
7437 I 48 
7432 NI 16 
7426 I.OC 16 
7409 NI.OC 16 
7408 NI 16 
7403 I.OC 16 
7400 I 16 

Note: I = Inverting; NI ::: noninverting: oc l: open collector 

sv~ 
o INTEL sBe 901 

2ZO 

"" 330 
--- - - - - -- ---- -------------- -----

svo VVo o INTEL SBe 902 
Ik 

The SBC-201 diskette controller provides full control 
for one or two single-density diskette drives and acts 
as a programmable slave to masters on the Multibus. 
All diskette information is stored in the IBM soft­
sectored format. For systems requiring greater 
storage capacity, the SBC-202 provides full control for 
up to four double-density diskette drives. Thus, 2 
Mbytes of mass storage may be added to SBC-80-based 
systems for each SBC-202 plugged into the bus. 

Digital 1/0 may be expanded using any of three Intel 
boards. The SBC-519 provides 72 programmable par­
allel 110 lines as well as interrupt handling and a real­
time clock. 

The 519's clock can interrupt the appropriate CPU 
periodically so that the CPU can monitor system-I/O 
status. High-speed 110 events can gain the CPU's 
attention via interrupts. The SBC-517 combination 
1/0 board and the SBC-104, 108 and 116 combination 
memory and 1/0 boards offer 48 programmable par­
allel lines, a full RS-232 USART serial channel, 
interrupt handling and a 16-ms real-time clock. The 



Table 7. RMX-80 routine library 
RMX/SO module Function 

Nucleus (executive) Provides basic capabilities (concurrence, priority, and synchroniza-
tion/communication) found in all real-time systems. 

Terminal handler Provides real-time asynchronous I/O between an operator's terminal and tasks 
running under the RMX/SO executive, includes a line-edit feature similar to 
that of ISIS-II (supervisory system on the Intellec development system) and 
type-ahead facility. 

Diskette file systems Diskette driver and file management capabilities, allows user to load tasks 
into the system and to create, access, and delete fi les in a real-time 
environment without disrupting normal processing. File formats compatible 
with ISIS-II for both single and double-density systems. 

Free space manager Maintains a pool of free RAM and allocates memory out of the pool upon 
request from a task; reclaims memory areas when no longer needed. 

Debugger Specifically designed for debugging software running under the RMXlSO 
executive; used by linking it to an application program or task. Thus, it can 
be run directly from the single-board computer's memory. 

Math handler Provides full control and communication for sse 310 math board for high-
speed fixed and floating-point math functions. 

Analog interface handler Provides real-time control for sse 711, 724, and 732 analog I/O expansion 
boards. 

104, 108 and 116 also hold up to 8 kbytes of EPROM, 
along with 4, 8 or 16 kbytes of RAM, respectively. 

For systems geared to especially noisy environ­
ments, the SBC-556 provides 48 optically isolated lIO 
lines, which are configured as 24 input lines, 16 output 
lines, and eight programmable-lIO lines. The user 
fixes the optical-isolation characteristics according to 
his exact system requirements by installing the opto­
isolators and current-limiting resistors of his choice 
into the board sockets. Input voltages up to 48 V, 
output lines up to 30 V and currents up to 60 rnA may 
be interfaced. 

Of course, many more RAM, ROM, communications 
and interface options are available. But for systems 
to come together quickly during development, there 
must be some standardized operating software to 
provide some of the most fundamental system rou­
tines. 

System software: the glue that binds 

Where the Multibus provides a standard hardware 
structure, RMX-80, a real-time multitasking executive 
supplies a modular software framework. With 
RMX-80, routines don't have to be developed for task 
synchronization, priority resolution and peripheral 
control (printers, terminals, diskettes, etc.). Versions 

are available for the SBC-80/20, 80/20-4 and 801l0A 
CPU boards. 

Critical projects can be completed rapidly because 
RMX-80 provides major portions of the software 
requirements for many real-time systems. For exam­
ple, the diskette file-extension software of the RMX-80 
program may be linked into the system software. 
Thus, users can immediately have a diskette file 
structure with facilities to open and close files, create 
and delete files, read or write files sequentially or 
randomly (read function may be used for initial 
program load, if desired), or allocate file storage 
dynamically on single or double-density diskettes. 

The compactness of RMX-80-the entire executive 
resides in 2 kbytes of ROM-reduces memory require­
ments and eliminates the need for bootstrap-program 
loading. All RMX-80 operations are based on individ­
ual tasks. A task is a program with unique data and 
stack that operates asynchronously with other such 
programs in the system. 

Basically, the RMX-80 is a library of "standard" 
routines (Table 7), such as an analog-interface handler 
and a terminal handler. Fig. 4 illustrates how to 
develop software by selecting appropriate RMX-80 
modules, then locating and linking them with particu­
lar software tasks on an Intellec microcomputer 
development system. In addition, a debugger module 

1·204 Ell (TRONI" DeSIGN 3, February I, 1978 



r-------
I 
I 

SEE FIG. 6 FOR EXPANSION 

---., 
I 

I 
~-

TO REMOTE 
EDP 

CENTER 

I ~ _______ ~~~~ __________ --{ 
L ___________________ ..l 

5. This possible SBe-SO system configuration uses fou r 
SBC-80/05s to monitor and control pipeline parameters 

in the RMX-80 speeds real-time system development. 
The executive accesses system resources according 

to task priority, intertask communication, interrupt­
driven control for standard devices, real-time clock 
control, interrupt handling, and other optional func­
tions. In all, there are 255 separate task-priority levels, 
and since mUltiple tasks may share the same level, 
the actual number of tasks is limited only by memory 
size. 

Develop programs with the Intellec 

The Intellec and its ICE-80 and ICE-85 in-circuit 
emulators help minimize the time required to develop 
software and hardware. Standard Intellec stand-alone 
software includes resident macroassemblers for the 
8080A and 8085 CPUs, a text editor, and a system 
monitor/debugger. As a result, programs can be 
assembled, loaded, edited, executed, and debugged. 

ICE diagnostics can significantly reduce program 
development and debug time. Break points may be 
set on user-specified memory-read or write opera­
tions, I/O read or write operations, or user-defined 
extension parameters. Programs can be single-stepped 
to check operating conditions and performance. 

PL/M-80 is the high-level systems-programming 
language. The optional Intellec-resident PLiM com­
piler provides the ability to program in this natural, 
algorithmic language, so there is no need to manage 
register usage or to allocate memory. PL/M programs 

ELlCT"ONI(' DESIGN 3. February I, 1978 

and feed data back to a master controller, an SBC-80/20-4. 
The master controller sends data back to a host system. 

6. Expanding the pipeline monitor/controller system is as 
simple as plugging more cards into the Multibus and 
altering the software. By adding another SBC-80/20 to the 
master controller, some local processing can be done and 
a local CRT and high-speed printer can be added as well 
as RAM and diskette-memory space. 

may be linked to assembly-language programs to 
hasten product development further. 

A relocatable macroassembler residing on the In­
tellec translates symbolic assembly language into 8080 
or 8085 machine code and permits the use of re­
locatable and linkable object code. With full macro 
capability, similar sections of code needn't be written 
over and over. 

Intellec options include a diskette operating system, 
ISIS-II, with diskette controller, single or dual diskette 

1-205 



drives and ISIS-II software. ISIS-II provides all the 
facilities for producing and handling relocatable code, 
including a relocating macroassembler, relocating 
loader and a linker to help link separately compiled 
or assembled programs. 

Apply the SSC boards to real use 

To get an idea of the SBC 80 family's capabilities, 
examine the application shown in Fig. 5. In this case, 
a remote control/monitoring section of a pipeline 
supervisory control system grows with increasing 
requirements for additional local throughput and 
processing capability. 

Four SBC-80/05s act as remote pipeline 
monitors/controllers. Each unit monitors various con­
tact closures (limit switches, relays, etc.) and a hex 
keypad, with a subset of its own I/O lines programmed 
as inputs. Contact debounce is performed in software. 
Other digital I/O lines on each SBC-80/05 act as output 
lines to drive a numeric display and various control 
relay coils. 

Analog-control lines are interfaced with an SBC-732 
combination analog-IIO board. Transducers indicat­
ing temperature and pressure drive analog inputs, and 
analog outputs drive valves. Flow rate is determined 
in software by manipulating differential pressure 
data available from pressure transducers. 

The four 80/05s are linked serially to a remote 

1-206 

SBC-80i20-4-based data concentrator. An SBC-534 
communications expansion board provides four 
RS-232-C serial channels, each interfacing directly 
with one of the four 80/05-based pipeline 
monitor/controllers. The 80/20-4 periodically queries 
each monitor to determine its current status. The 
concentrator also relays control commands from a 
host computer controlling the entire pipeline. The 
80/20-4's own RS-232-C serial channel provides the 
interface for this high-speed synchronous link to the 
host CPU. 

The 80/20-4 can contact the host CPU with the Bell 
801 automatic calling-unit interface on the SBC-534. 
The synchronization and control of communication 
between the four 80/05s and the host are handled by 
RMX-80 on the 80/20-4. 

The 80/20-4 system can be expanded to provide local 
processing capability, as shown in Fig. 6. Here, anoth­
er 80/20 is added as a second master on the Multi­
bus to provide control for a local CRT and high­
speed printer, and to provide local processing 
capability. 

An additional 32 kbytes of RAM are furnished by 
an SBC-032 RAM-expansion board. A third master, 
an SBC-202 dual-density diskette controller, can also 
be added to the Multibus, along with two double­
density diskette drives. Communication between the 
two 80/20s is handled via user-written intermaster 
message tasks .•• 



ARTICLE 
REPRINT 

AR-55 

April, 1978 



DESIGN MOTIVATIONS 
FOR MULTIPLE PROCESSOR 
M'ICROCOMPUTER SYSTEMS 

Design decision factors involved in developing multiple processor 
microcomputer systems include means of minimizing contention for 
system bus utilization. System applications detail the appropriate 
hardware and software considerations as related to single-board 
computers in a multimaster bus structure 

George Adams and Thomas Rolander Intel Corporation, Santa Clara, California 

Large-scale integrated circuit technology has reduced 
the cost of central processors to such a low level that 
the previously avoided concept of applying multiple 
processors to meet system performance requirements has 
now become an attractive and viable alternative. Several 
key benefits accrue from such an approach. In addition 
to enhanced system performance (throughput), improved 
system reliability, and improved system realtime re­
sponse, modular system expansion capabilities may be 
realized. Although designing such systems "from 
scratch" with microprocessor component families can 
be a complex system design task with many subtle pit­
falls which can inhibit efficient system operation, the 
advent of second generation single-board computers, 
such as the Intell!ll SBC 80/05 and 80/20, has allowed 
multiple processor microcomputer systems to become 
off-the-shelf products. 

Motivation and Design Concepts 

Discussion of the benefits of multiple processor structures 
in system applications will provide an understanding of 
the motivation for this implementation approach in sys­
tem design. A primary objective addressed through 

Reprinted from COMPUTER DESIGNIMarch 1978. 

Copyright Calners Publishing Co., Inc., 1978. All rights reserved. 
1-208 

multiple. processor approaches is enhanced system per­
formance and throughput. Enhanced performance is 
achieved through partitioning of overall system functions 
into tasks that each of several processors can handle 
individually. 

In general, as the number of individual tasks any 
given processor must handle is reduced, that processor's 
response time to new requests for service will be reduced. 
A well' planned multiple processor bus structure will 
allow new processors to be added to the system in 
modular fashion. When new system functions (ie, more 
peripherals) are added, more processing power can be 
applied to handle them without impacting existing pro­
cessor (master) task partitioning. 

As used here, a "master" is any element existing on the 
system bus that may take control of the bus (ie, assert 
address and control lines). Typical examples include 
processors and direct memory access (DMA) controllers 
that address memory and input/output (1/0) locations 
resident on the bus. "Slave" elements include passive 
functions on the bus, such as memory or non-DMA· I/O 

interfaces. Note that although slaves may possess intelli-



Fig 1 Multiple processor bus structure. Dual onboard/offboard structure of MULTIBUS allows each master to use jts 
own memory and lID without utilizing common system bus (a). Only when a master requires access to common mem­
ory or lID does it use the bus (b). Note that other masters may continue onboard operations simultaneously 

22 PROGRAMMABLE 
I/O LINES 

21/0 INTERRUPT 
REQUEST LINES 

EXTERNAL 
INTERRUPT 

REQUEST 
LINE 

SERIAL I/O SERIAL I/O 
INTERFACE INTERFACE 

(TTl LEVELS) (RS-232~C lEVELSI 

1-209 

Fig 2 SBC 80/05 block diagram. 
SBC 80/05 is a full microcom­
puter on a single PC board. It 
provides 8085 CPU plus RAM for 
program or data storage, EPROMI 
ROM for program storage, inter­
val timer, programmable parallel 
lID (22 lines), serial lID, and 
full MUL TIBUS multi master con­
trol logic 

COMPUTER DESIGN/MARCH 1978 



gence (eg, an onboard processor), they are not bus 
"masters" unless they can control the system bus. 

Hardware Considerations 

Hardware considerations must be thoroughly evaluated 
in any multiple processor bus structure. These factors 
are described in detail around a specific implementation 
of such a structure, the Intel· MULTIBUS™, which sup­
ports multiple processor systems with its multi-master 
bus structure. 

Bus Architecture 

One architectural option open to the system designer is 
that of a multiple master/single bus structure. Under 
this partitioning, every master utilizes the common bus 
data path to fetch instructions or data from memory, 
read data from input devices, or write data to output 
devices or memory. Therefore, the common system bus 
rapidly becomes the bottleneck for overall system 
throughput, and fast DMA transfers can easily approach 
the full bandwidth of the bus during block transfers so 
that all other masters must idle for extended periods. 

RS-232-C 
COMPATIBLE 

DEVICE 

Such performance constraints can severely limit total 
system performance. 

System bus utilization may be minimized through 
implementation of an alternate dual-bus structure as 
shown in Fig 1. Each processor-based master within the 
system retains its own local memory and I/O that it 
utilizes for most operations. Such lpcal operations occur 
totally on the individual board and do not require the 
system bus. This greatly reduces the service request 
frequency by each master requiring use of the system bus. 
Such a dual-bus structure is implemented on the SBC 
80/05 and 80/20 single-board computers, as shown in 
Figs 2 and 3, respectively, with the multi-master system 
bus (MULTIBUS) .1.2 

Access to the system bus is requested only when a 
global (resident on the bus and accessible by multiple 
masters) memory location or I/O device is referenced 
during an instruction execution cycle_ LocaIjglobal (on­
board/oflboard) distinction is defined through the value 
of the physical address referenced. If it lies within the 
address range of onboard memory or I/O, no bus request 
is made_ Only when the address references a global 

Intel@ and MULTIBUS TlI are trademarks of Intel Corp, Santa Clara, 
Calif. 

USER DESIGNATED 
PERIPHERALS 

48 PROGRAMMABLE 
PARALLEL I/O LINES 

Fig 3 SBC 80/20-4 block diagram. SBC 80/20-4, also a full microcomputer on a single PC board, provides 8080A-2 CPU, 
4k bytes of RAM, up to 8k bytes of EPROM/ROM, 48 programmable I/O lines, three interval timers, full RS-232-C serial 
port, 8-level priority interrupt logic, and MUL TIBUS multimaster control logic 

1-210 



memory or I/O location, is a system bus request initiated. 
If no other master is currently utilizing the bus, this 
"new" master will be granted access immediately. How. 
ever, this new master must wait if another master is 
currently utilizing the system bus. It continues to monitor 
the status of the system bus to determine when its cur. 
rent cycle may be completed. Thus, the MULTIBUS must 
provide a method for masters to determine whether or 
not another master is currently utilizing it. 

Other masters may also simultaneously request the 
system bus. Arbitration must then be performed to reo 
solve this multiple contention for the system bus. The 
MULTIBUS structure provides this arbitration in one of 
two techniques: serial (daisy chain) or parallel (en. 
coded). The structure consists of four control lines that 
are synchronized by the common bus clock. These four 
control lines and the bus clock are active low. This is 
represented by the slash U) character after each signal 
mnemonic. Control lines are as follows: 

Bus Clock (BCLK/) -The negative edge of BCLK/ is 
used to synchronize bus arbitration. BCLK/ may be asyn· 
chronous to all CPU clocks, and it has a 100·ns minimum 
period. BCLK/ may be slowed, stopped, or single· 
stepped for debugging. 

Bus Priority In Signal (BPRN/)-Indicates to a par· 
ticular master that no higher priority master is request· 
ing use of the system bus. 

Bus Priority Out Signal (BPRO/)-Used with serial bus 
priority resolution scheme. BPRO/ is passed to BPRN/ 
input of master with next lower bus priority. 

Bus Busy Signal (BUSY/)-Driven by bus master cur. 
rently in control of MULTIBUS to indicate that bus is 
currently in use. BUSY/prevents alI other masters from 
gaining control of bus. 

Bus Request Signal (BREQ/)-Used with parallel bus 
priority network to indicate that a particular master reo 
quires use of the bus for one or more data transfers. 

},';, 

~~'IY~'~' 

---+---8USYI 

1-211 

Serial (Daisy-Chain) Bus Arbitration 
In a serialIy arbitrated MULTIBUS system (Fig 4) reo 
quests for system bus utilization are ordered by priority 
on the basis of bus location. Each master on the bus 
notifies the next lower priority master when it needs to 
use the bus for a data transfer, and it monitors the bus 
request status of the next higher priority master. Thus 
the masters pass bus requests along from one to the next 
in a daisy·chain fashion. 

The highest priority master (Master 1) in the system 
wilI always receive access to the system bus when it 
requires it. There is no higher priority master to inhibit 
its bus requests, and its bus priority input line (BPRN/) 
is thus permanently enabled. 

Masters operate asynchronously on the MULTiBUS. A 
master may thus be in the middle of a bus operation 
when a higher priority master requests the bus. Ob. 
viously, interruption of such an in·process cycle must 
not be allowed. The mechanism for avoiding such 
erroneous operation is the BUSY/line. Upon being 
notified that access to the bus is possible, the master 
examines BUSY;. If this control line is inactive, the 
master will assert it, and complete its bus operation. 
If BUSY/is already active, another master is currently 
using the bus. In this case, the master will examine 
BUSY/ upon every falIing edge of BCLK/, typically 
once every 100 ns, until it becomes inactive. When 
BUSY/returns to its inactive state, the master will assert 
it, then complete its operation. The BUSY/line then in. 
hibits higher priority masters from destroying a bus 
transfer cycle that may be already in progress. 

The BUSY/line is also controlled by a bus lock 
function on the SBC 80/05 and 80/20. This function 
alIows a master, which currently has control of the bus, 
to retain control by independently' asserting the BUSY / 
line until it issues an unlock command that releases 
BUSY;. This permits a bus master to obtain exclusive 
control of the system bus for critical system functions, 

Fig 4 Serial bus arbitration. When any master 
requires use 01 MUL TIBUS in serial (daisy-chain) 
priority mode. its BPROt line inhibits lower prior­
ity masters Irom system bus utilization. BUSY t 
line is used to ensure that in-process operations 
of lower priority masters are not destroyed by 
asynchronous bus requests of higher priority 
masters 

COMPUTER DESIGN/MARCH 1978 



such as high speed memory or I/O data transfers and 
critical read-modify-write operations. With BUSY/ 
asserted in this way, all other masters will find the bus 
"in use" when they attempt to access it. Whereas system 
bus transfers normally take place on an interleaved basis 
(bus arbitration performed for each cycle), this bus 
lock function permits fast multiple-word transfers, when 
needed. 

Two basic parameters determine the number of masters 
that can coexist on the system bus in serial bus arbitra­
tion mode. These are the BCLK/ cycle time and the 
BPRN/ to BPRO/ propagation delay of bus masters. 
Masters may be added to a system as long as the cumula­
tive BPRN/ to BPRO/ propagation delay is such that the 
lowest priority master will always have its BPRN/ line 
driven inactive before the next BCLK/ falling edge after 
the highest priority master requests the bus. This worst­
case tlmmg condition is met as long as the following 
relationship is satisfied. 

N-j 

~ (tl!l'n:S-III'RO) 1< tll('I.K ~ t~h 
i=J 

where 

(tru·R .... _BI'RO) I ::::::: Propagation delay for master i 
t".-LK = Bus clock (IlCLK) eycle time (period) 
t.h = Allowance for bus setup and hold times 
N ::::::: Number of bus masters 

Using serial bus arbitration and SBC 80 onboard 
clocks, up to three masters may coexist on the system 
bus_ This number can easily be extended, if desired, by 
generating a BCLK with a longer cycle. The SBC 80/05 
and 80/20 provide a jumper option which allows the 
onboard BCLK/ to be disabled. This allows the system 
designer to generate BCLK/ externally. 

Parallel (Hardware-Encoded) Bus Arbitration 
The parallel bus arbitration technique resolves system 
bus master priorities using external hardware. The 

1-212 

parallel multimaster control line (BREQ/) comes into 
force in this case_ Each master asserts BREQ/ when it 
requires access to the system bus. These lines are fed 
to a 2-chip parallel priority network. As with serial 
priority resolution, BPRN/ acts as the bus access enable 
input to each master. As Fig 5 illustrates, up to eight 
master priority levels are encoded by a 74148 priority 
encoder to a 3-bit code representing the highest priority 
master currently requesting the system bus. This code 
drives the 8205 3-to-8 decoder which asserts the proper 
BPRN/ line low to grant bus access to the highest 
priority master. The 74148/8205 propagation delay is 
less than 40 ns, easily fast enough to allow eight masters 
to coexist in this configuration utilizing a BCLK/ with 
a 100-ns period. 

Systems requiring up to 16 masters may implement bus 
arbitration by utilizing two 74148 priority encoders and 
two 8205 decoders to provide a 16-level hardware pri­
ority network. The actual number of bus masters feasible 
on the system bus will also depend on bus drive/loading 
considerations. Even under this consideration, systems 
containing up to 16 masters are feasible. 

Thus, single-board computer masters, in conjunction 
with the MVLTIBVS control structure, provide off-the-shelf 
hardware solutions for the development of efficient multi­
ple processor microcomputer systems_ In addition to this 
hardware capability, the system designer needs to con­
sider several software design issues_ 

Software Considerations 

Several software operations, such as mutual exclusion, 
communication, and synchronization, are essential to 
proper multiple processor system operation_ 'The 
MVLTIBVS/SBC 80 functions that enable these software 
operations are examined. 

Mutual Exclusion 
In a multiple processor microcomputer system, there are 

Fig 5 Parallel bus arbitration_ Under parallel bus 
arbitration structure, multiple requests for access to 
the MUL TIBUS are determined by 2-chip hardware 
priority network, When simultaneous multiple bus re­
quests occur, only highest priority master has its bus 
grant (BPRN/) line asserted. BUSYI line inhibits other 
masters from interfering with system bus cycles in 
progress 



usually many resources that are shared by the processors. 
Such shared resources include common memory and 
peripherals. A properly functioning system must provide 
a mechanism to guarantee that asynchronous access to 
those resources is controlled in order to protect data 
from simultaneous change by two or more processors. 
Thus, some form of mutual exclusion must be provided 
to enable one processor to lock out access of a shared 
resource by other processors when it is in a critical 
section. A critical section is a code segment that once 
begun must complete execution before it, or another 
critical section that accesses the same shared resource, 
can be executed. 

A Boolean variable can be used to indicate whether 
a processor is currently in a particular critical section 
(true) or not (false). Testing and setting this variable 
also presents a critical section. This function must be 
performed as a single indivisible operation; if it is not, 
two or more processors may 'test the variable simul­
taneously and then each set it, allowing them to enter 
the critical section at the same time. Such simultaneous 
entry would destroy the integrity of data and control 
parameters in global memory or cause erroneou,s double 
initialization of a global peripheral controller. 

Mutual exclusion can be implemented as a software 
function alone, as described by Dijkstra4, for n proces­
sors operating in parallel. The SBC 80/05 and 80/20 
bus lock function mentioned earlier provides a means 
for using program control to simplify mutual exclusion. 
While the system bus is locked, the master can perform 
the indivisible test and set operation on the Boolean 

sac 534 SBC 016 sac 80/05 

1-213 

variable used to control access to a critical section with­
out intervention from other masters. 

Communication 

Communication is an essential function that allows a 
program executing on one processor to send or receive 
data from a program executing on another processor. 
Typically, two processors communicate through buffer 
storage in common memory. One program, called a 
producer, adds data to buffer storage; another, called a 
consumer, removes information from buffer storage. 

In a typical application, one master may produce 
buffers of data that are to be consumed by a program 
executing on another master that services an output 
device. Communication through buffer storage requires 
the operations of adding to and taking from buffers. 
These operations constitute critical sections that can be 
controlled by providing mutual exclusion around the 
buffer manipulation operations. 

Synchronization 

At times there is a need for one master to send a syn­
chronization signal to another. In a sense, synchronization 
is a special case of communication during which no 
data is transferred. Rather, the act of signaling is used 
to "wake up" a program executing on another master. 
A program may "sleep," by waiting for a synchronizing 
signal, until it receives a wake-up signal that enables 
it to continue execution. Manipulation of synchronization 
signals requires mutual exclusion. 

soc 80/20 Fig 6 Multiple processor 
communication application. 
Multiple processors may be 
utilized to increase throughput 
in system requiring several 
high speed serial channels. 
sse 80/05 single-board com­
puter controls four RS-232-e 
or 20-mA serial channels in­
terfaced to system through 
sse 534 communication ex­
pansion board. Second single 
board computer (SSe 80/20) 
retrieves data records con­
structed by sse 80/05 and 
performs further processing 

COMP1,JTER DESIGN/MARCH 1978 



System Initialization 

In a microcomputer system that has multiple processors 
sharing a common system bus, a system initialization 
mechanism must be designed to set up the variables that 
control access to the shared resources. All single.board 
computers on the MVLTIBVS begin execution simulta­
neously following a system reset. The bus lock function 
of the computers can be used by one specifically desig­
nated master to lock the bus immediately upon system 
reset and to perform system initialization for common 
resources before any other master attempts to access 
them. Since a locked bus has no effect on a single-board 
computer that is executing out of its local memory and 
using its local I/o, normal initialization by each processor 
can proceed while the shared resource initialization takes 
place. 

Multiprocessor 
Applications 

Two applications that are well suited to multiple pro­
cessor microcomputer systems are examined. The first 
provides increased throughput, and the second allows 
shared resources. 

Increased Throughput 
Consider a system that is controlling multiple high speed 

sec 310 SBC 116 sec 80/05 

1-214 

serial communication channels in addition to other data 
processing activities. In this case, multiple processors 
may be utilized to increase system throughput. Such a 
system with four full·duplex serial channels operating 
at 4800 baud could produce interrupts every 250 I'-s. 
Interrupts at that frequency in a single master system 
would leave little time for other processing activities. 
In a multiple processor approach, one processor can be 
used to handle the interrupts from the serial channels, 
accumulate data into records, and then provide those 
records to another processor by placing them in com­
mon memory. The second processor is not burdened 
with the overhead of handling each character on an 
interrupt· driven basis, instead it is sent entire records 
of data available for further processing. 

As shown in Fig 6, this application can be handled 
on the MVLTIBVS with four boards. The SBC 80/05 
single.board computer is used to service the communi­
cation board and prepare the data records. A 4-channel 
serial communication board (SBC 534) is used to pro­
vide the hardware interface for four serial communica­
tion channels. The SBC 80/20 single. board computer is 
used to process data records prepared by the SBC 80/05. 
Common memory is provided by the SBC 016 16k 
random-access memory (RAM). 

Application of multiple processors to this problem 
requires communication through buffer storage. Two 
primitive operations, introduced by Dijkstra., can be 
used to simplify the communication and synchronization 
between the masters. These primitives, designated P and 
V, operate on non-negative integer variables called 

sac BO/20 

Fig 7 Multiple processor 
shared-resource a p p I i c a­
tion. MUL TIBUS multiple 
processor structure allows 
two independent single­
board computers to share 
common system resource. 
such as an SBC 310 high 
speed math board. to per­
form floating point opera-· 
tions 



semaphores. The V procedure increments the sema­
phore (5) in a single indivisible operation. To make 
certain that fetch, increment, and store are not inter­
rupted by another processor, the bus is locked during 
the operation. 

Procedures for P and V primitive operations can be 
implemented in PL/M6 as follows: 

v: 
PROCEDURE ISlA DR) ; 
DECLARE S DASED SSADR BYTE; 

OUTPUTIBUSJLOCK) = LOCK; 
5 = 5+1; 
OUTPUTIBUS,LOCK) = UNLOCK; 

END v; 

/' ""I'k MIII.TIDIiS " 
" Int'rement semaphore " 
" Unllwk MULTIBUS .. / 

The P procedure loops in a busy wait until 5 is greater 
than zero, at which time it decrements 5. The act of 
fetching, testing, decrementing, and storing 5 is also an 
indivisible operation. Note that if several masters with 
different speeds are in a busy wait on the same sema­
phore, the solution presented may not be "fair" to the 
lower speed processor; that is, the lower speed processor 
would test the semaphore less frequently, resulting in 
an unfair advantage for higher speed processors. 

Implementation of a procedure for the P primitive is 
shown in the following PL/M code. 

P: 
PROCEDUREIS'ADR) ; 
DECLARE S DASED S'ADR BYTE; 

DO FOREVER; 
IF 5> 0 THEN 
DO; 

OUTPUTIDUS'LOCK) ,: LOCK; 
IF S > 0 THEN 

-DO; 
5 = S-I; 
OUTPUTIDUS'LOCK) = UNLOCK; 
RETURN: 

END; 
OIJTPUTIBUS'LOCK) = UNLOCK; 

END; 
END; 

ENDP; 

"Tt'st N!maphure '/ 

" l.m·k MUI.TIIHlS " 

" Hl'lt'SI s,emaphore " 

/' Dcrccml'nt sl'maphure " 
" Ullloc·k MliI,TUItiS" 

" Exil hum P procedure " 

" Un)UI,k MITLTIUIIS " 

" and continue h'slinl '" 

It is important to observe in the program listing that 5 
is tested prior to issuing a bus lock. This initial test 
avoids continuous locking and unlocking of the system 
bus while looping in a busy wait. The second test is 
required because another processor could also have found 
5 greater than zero and tried to enter the critical section 
at the same time. 

With the P and V operations, semaphores can be used 
as resource counters in the buffer manipulation required 
for communication between the 5BC 80/05 and 80/20. 
For example, a consumer program can use the P oper­
ation to decrement the number of full buffers and a V 
operation to increment the number of empty buffers. 
In a similar fashion, a producer program can use the 
P operation to decrement the number of empty buffers 
and a V operation to increment the number of fuJI 
buffers. In addition to full and empty buffer counters, 
it is necessary to maintain linked lists pointing to actual 
full and empty buffers. A semaphore can be used to 
provide mutual exclusion around the manipulation of 
the linked lists. In the example that follows, three 
variables (FULL, EMPTY, and SEMA) are used to imple­
ment these functions. The two PL/M programs illustrate 
consumer and producer code segments, respectively. 
Note that the consumer performs initialization because 
it accesses the semaphores prior to the producer. 

1-215 

CONSUMER: 
DECLAIIE EMPTY BYTE EXTERNAL; 

FU1.L BYTE EXTERNAL; 
SEMA BYTE EXTERNAL; 

OUTPUTIDUS,LOCK) = LOCK; 
EMPTY = NUMB'BUFFERS; 
FULL = 0; 
SEMA = I; 
OUTPUTIDUS'LOCK) = UNLOCK: 
DO FOREVER; 

CALL PIt'ULL): 
CALL P(SEMA); 

j Take data from buffer and 
Illal'e it in local memory. 
1I10VI~ huffer frum full to 
emply linked Iisl) 

CALL V(SEMA): 
CALL V(EMPTYI; 

I Process the data) 

END; 
ENI) CONSU\IER: 

PRODUCER: 

"Number of emply buRen" 
" Number of full buffers " 
" BinarY semaphore " 
" Lock MULTIBUS " 

" Initialize semaphores " 

" Unlock MULTIBUS 'J 

" Decrement full buffer -, 
,- semaphore-/ 
,- Decrement mutual exclusion -, 
,- ~emaphore-/ 

,- Innement mutua) exclusion -/ 
,- sl'maphore-' 
,- Increment empty buffer -, 
,- semaphore-' 

DECLARE (EMPTY. FULL. SEMA) BYTE EXTERNAL; 
no FOREVER: 

I Prepare data in local 
memory) 

CALL P(EMPTY); 
CALL P(SEMA) ; 

(Place data in a buffer. 
move buffer from empty 
to full linked list) 

CALL V(SEMAI: 
CALL V(FIILL); 

END; 
END PRODUCER; 

Shared Resources 

,- Decremf'~t empty buffer semaphore -, 
,- De(~rement mutual exclusion -, 
,- semaphore-' 

,- Inat'ment mutual exclusion -, 
,- semaphore-' 
,- Inaement full buffer semaphore -, 

Another typical application for a multiple processor 
microcomputer system would be to allow sharing of a 
resource by two processors. For example, consider two 
independent processors that have a need for high speed 
mathematical functions. Although it inay not be possible 
to justify a high speed math module for each system, 
such a module might be justified if it were to be shared 
by both processors. A multiple processor microcomputer 
system could provide the capability to allow both pro­
cessors to share the math module and not interfere with 
their otherwise unrelated functions. 

This application (illustrated in Fig 7) could be 
handled with four boards. The 5BC 80/05 single-board 
computer is used to perform various data processing 
functions requiring high speed floating-point arithmetic. 
The 5BC 80/20 single.board computer controls a process 
where high speed numeric computations are required. 
High speed floating-point mathematics functions for 
both single-board computers are performed by an 5BC 
310 high speed math unit. 5BC 116 combination memory 
and I/O board provides 16k RAM, 8k electrically pro­
grammable read-only memory (EPROM), 48 parallel 
I/O lines, and an RS-232-C serial port. 

CO~ TfMA<cH 19'/' 



The problem to be solved in this application is to 
ensure that only one processor has access to the shared 
math module resource at one time. Thus, mutual ex· 
clusion must be provided to control the access to the 
resource. The following PL/M function returns TRUE 

if access to a critical section, used to implement the 
mutual exclusion, has been granted. 
ENTERSCRITICAL'SECTION, 

PROCEDURE IFLAG'ADRI BVTE; 
DECLARE FLAG BASED FLAG$ADR BYTE; 
DECLARE ACCESS BYTE; 

IF FLAG = BUSY THEN 
RETURN FALSE; 

ACCESS = FALSE; 
OUTPUTIBUS,LOCKI = LOCK; 
IF FLAG = NOT BUSY THEN 
DO; 

FLAG = BUSY; 
ACCESS = TRUE; 

END; 
OUTPUTIBUS'LOCKI = UNLOCK; 
RETURN ACCESS; 

END ENTER'CRITICAU5ECTION; 

" Tesl flsg" / 
" Return false if busy" 

/' Lock MULTIBUS " 

" Retest flag " 

" Set flag busy' / 
/' and access TRUE " 

" Unlock MllLTIBUS '/ 

" Return either TRUE or • / 
/. FALSE access' / 

This PL/M function first tests the flag for the busy 
condition before issuing a busy lock. As in the P pro· 
cedure described earli~r, this initial test avoids con· 
tinuous locking and unlocking of the MULTIBUS while a 
husy wait is heing executed. The following procedure 
performs a husy wait operation on the flag used to 
control access to a critical section. 

BUSHWAlT, 
PROCEDURE IFLAG'ADRI; 
DO WHILE NOT ENTERSCRlTlCAUSECTION IFLAG'ADRI; 
END; 

END BUSY,WAIT; 

Typical code segments illustrating the use of these pro­
cedures follow. 

DECLARE MATH'BD,FLAG BOOLEAN EXTERNAL; /. Flog mu,' b, • / 

MATH'BD'FLAG = NOT BUSY; 

CALL BUSHWAlTI.MATH'BD'FLAGI; 

(Process math funclions) 

MATH'BD'FLAG = NOT BUSY; 

" We could also lest and then do some other' / 
I' processing if the math module is busy' J 
IF ENTER'CRlTlCAL'SECTION (.MATH'BD'FLAG) 
THEN DO; 

<Process math functions) 

MATHtBD'FLAG = NOT BUSY; 
END; 

ELSE DO; 

(Something else) 

END; 

Conclusions 

" initialized' / 

/. Here we wait until " 

" we have access "" 

;, Set fiag not busy" 

;. Sel flag not busy -, 

The motivations for implementing multiple processor 
microcomputer systems include enhanced performance 

and throughput. When the appropriate hardware/soft· 
ware design considerations are made, modularity is 
easily achieved. Hardware solutions to many problems 
are provided by means of a MULTlBUS structure and 
SBC 80 single.board computers that have multimaster 
capahility. Through control of MULTlBUS functions, the 
software designer can perform multiple processor com· 
munication, synchronization, and mutual exclusion. 

Even with these significant steps toward the simplifi· 
cation of multiple processor microcomputer systems, the 
design of such systems remains a complex software/ 
hardware design task. The future trend of multiple 
processor microcomputer systems will he to simplify the 
software tasks of implementing communications, syn· 
chronization, and mutual exclusion. These functions 
could be performed in varying degrees by additional 
hardware hus functions. 

Potential rewards for a multiple processor architecture 
include enhanced· system throughput, improved real·time 
response, modular system expansion, and improved sys· 
tern reliability. These benefits will pressure the tech. 
nology of parallel processing to include microcomputers 
in an increasing number of computer applications. 

References 
1. "SSC 80/05 Hardware Reference Manual," Pub 98004a3, 

Intel 'Corp, Santa Clara, Calif, 1977 
2. "SSC 80/20 Hardware Reference Manual," Pub 9800317, 

Intel Corp, Santa Clara, Calif, 1976 
3. A. C. Shaw, The Logical Design 01 Operating Systems, Pren· 

tice-Hall, Englewood Cliffs, NJ, 1974, pp 59·78 
4. E. W. Dijkstra, "Solution of a Problem in Concurrent Pro· 

gramming 'Control," Communications 0/ the ACM, Sept 1965, 
p 569 

5. "Intel MULTIBUS Interfacing," Pub AP·28, Intel Corp, Santa 
Clara, Calif, 1977 

6. D. McCracken, A Guide to PL/ M Programming lor Micro. 
computer Applications, Addison·WesIey, Reading, Mass, 1978 

1·216 



inter ARTICLE 
REPRINT 

1·217 

AR-65 

September, 1978 

9800791 A 



Triple-bus architecture lets a 
single-board microcomputer's CPU operate at full speed 
while other system components share the main memory. 

The introduction of Intel's iSBC 80/30 marks the 
beginning of the third generation of single board 
computer architecture. Two features separate the new 
microcomputer from second-generation single-board 
J.(Cs. The major one is a triple-bus architecture that 
supports a dual-port memory. As a result, the on­
board CPU does not tie up the main system bus (Intel's 
Multibus) when using the memory. Moreover, with 
two ports, the memory becomes a global resource, 
accessible via the three buses from the on-board 8085A 
CPU as well as from remote CPUs and other external 
devices in multimaster schemes. 

In addition, the 80/30 contains two microprocessors: 
an 8085A acting as the master CPU and an 8041 single­
chip microprocessor acting as a slave, or intelligent-
110, processor. 

Jim Johnson, Project Leader, Craig Kinnie, Project Man­
ager, and Mike Maerz, Marketing Manager, Intel Corp., 
Santa Clara, CA 95051. 

Reprinted by Permission: Electronic Design, 1978. 1·218 

To appreciate the benefits of the 80/30's triple-bus, 
dual-port memory architecture, examine the following 
problem. Now that fully one fourth (16-kbytes) of the 
available memory space in a 64-kbyte J.(C system can 
reside on a single-board J.(C, the CPU must share these 
16-kbytes with other system components, such as 
direct-memory-access devices, discs and other proces­
sors. What's the best solution-especially when, in 
many applications, 16-kbytes is all the memory that's 
required by the whole system? 

Alternatives have problems 

The most straightforward way is a split-buB 
architecture, in which both the CPU and the system 
have equal access to the memory (Fig. la). While the 
system bus will be able to handle memory access 
efficiently from devices tied to it, it will be tied up 
by the CPU-so external operations not related to 
memory accesses will be hindered. 

ELECTRONIC DESIGN IS, July 19. 1978 



SPLIT BUS 

BUS 

1. Microcomputer·bus organizations takes several forms: 
In a split·bus approach (a) the CPU and system have equal 
access to memory. but the CPU ties up the system bus; 
in a single-bus (b). the CPU encounters extra delays in 

A single-bus approach (Fig. Ib) is hampered by 
buffer and bus-intervention delays which limit the 
CPU's performance, And dual-bus architecture (Fig. 
Ie), while granting the CPU exclusive access, does not 
allow other bus masters access to the memory. Also 
dual-bus suffers from buffer delays. 

A triple-bus, dual-port architecture (Fig. Id) pro­
vides the benefit of both single and dual-bus architec­
tures: total system access and exclusive access by the 
CPU. But it also has its disadvantages: Dual-port 
architecture requires many buffers as well as access­
arbitration logic. However, 20-pin octal buffers in­
troduced by several manufacturers don't take up 
nearly as much board space or cost as much as 
equivalent standard buffers. Since the octal buffers 
come in unidirectional or bidirectional forms-and at 
nearly the same cost-the three-bus approach used 
on the 80/30 actually takes only as many packages 
as the split-bus approach. 

Access arbitration is solved in the 80/30 with cycle 
status signals from the 8085A CPU. Instead of provid­
ing equal access to the RAM from both the CPU and 
the system, the arbitration logic is designed to favor 
the CPU. By assigning the default state of the arbiter 

ELECTRONIC DESIGN 15, July 19, 1978 1-219 

SINGLE BUS 

<~========:> SYSTEM BUS 

using the system bus. A dual-bus structure (c) also has 
buffer delays. and no system access to on-board memory. 
But a triple-bus (d) avoids all these problems. allowing 
total system access to memory. 

to the CPU, the logic anticipates aCPU memory access 
and reserves the memory until the cycle is complete. 

In addition, if an on-board CPU access is imminent, 
a reservation signal derived from the 8085A CPU 
status signals, the ALE (address latch enable), the 
address, and the cycle status signals (SO, SI, 1O/M) 
will hold off bus contention. As a result, the CPU can 
operate at full speed without tying up the system bus. 

Of course, this extra CPU performance cuts into the 
rest of the system's memory-access time. However, 
the penalty imposed by the arbiter is less than 200 
ns-Iess than the time it would take a DMA device 
to regain control of the bus in the split-bus approach, 
where access must be interleaved. 

A bus hierarchy 

The three buses in the 80/30 hierarchy (Fig. 2) are 
an on-board bus, a dual-port (DP) bus and the Multi­
bus (system bus). Innermost is the on-board bus, 
which connects the 8085A, all on-board I/O peripher­
als and ROM. The next bus in the hierarchy, the dual­
port connects a dual-port controller, I6-kbytes of 
dynamic RAM and a dynamic RAM controller. The 



16K)( 8 

RAM 

RS232C 
COMPATIBLE 

DEVICE 

POWER FAIL 
INTERRUPT 

4 INTERRUPT 
REQUEST LINES 

USER DESIGNATED 
PERIPHERALS 

42 PROGRAMMABLE 

PARALLEL I/O LINES 

2 INTERRUPT 
REQUEST LINES 

8 INTERRUPT 
REQUEST LINES 

TWO 

PROGRAM 

'MULTIBUS'-

2. The full 80/30 one-board microcomputer is organized 
around its three buses: on board, dual-port, and the 
external-system Multibus. The main CPU, an 8085A, runs 

RAM 
ADDRESSES 

32K-48K 

RAM 

ON-BD 
16 K iSBC 201 

RAM DISKETTE 

DUAL 
PORT 

BUS 

CONTROLLER 

ADDRESSES 
48K-64K 

MULTIBUS'-

3. The microcomputer's on-board memory may be ad­
dressed independently by the on-board central processor 
and Multibus bus masters to increase the efficiency of 
usage of the total available memory space. 

at 2.76 MHz, while an 8041A one-chip microprocessor 
serves as a peripheral controller or slave processor, 
running with a 2.6-ms cycle time. 

outermost bus, the Multibus, offers modules that 
permit either the expansion or addition of system 
resources. 

With the on-board bus, the 8085A communicates 
with its on-board I/O and ROM (or PROM, if desirable) 
and the dual-port bus. Since the on-board bus permits 
access to the I/O and ROM only from the 8085A, all 
I/O and ROM (up to 8-kbytes are the 8085A's private 
property), And as a result, the 80/30 can operate on 
its on-board bus while another Multibus master uses 
the Multibus, accessing data from the board's dual­
port RAM without reducing processor speed. 

The dual-port (DP) bus contains 16-k of read/write 
memory, implemented with Intel's 2117 16-kbyte 
dynamic RAM and the 8202 dynamic RAM controller 
(DRC). The DRC interfaces the DP bus to the 16-
kbytes of dynamic RAM, and provides an almost 
static-RAM type interface. It provides the system with 
multiplexed addresses, address strobes, and refresh 
control to the RAM, as well as refresh/access arbi­
tration and acknowledges. 

The RAM on this bus can be accessed fr.om either 

1·220 ELECTRONIC DESIGN 15, July 19, 1978 



the SOS5A on the 80/30 or the Multibus. The DP 
controller arbitrates the RAM requests and performs 
the bus exchanges. 

The DP controller always leaves the DP bus under 
the control of the S085A when it is not in use. This 
permits the S085A to operate at maximum processor 
speed when controlling the bus, since there isn't any 
bus-exchange overhead. When the Multibus requests 
access to the DP RAM, the DP controller transfers 
control of the DP bus to the multibus, as soon as the 
DP bus is not busy. Once the Multibus transfer is 
complete, the DP bus is returned to the 8085A. 

Multiple communication 

The DP controller has two independent address 
decoders-one for decoding Multibus requests, the 
other for SO/30 requests. This not only permits the 
address space of the memory to be located in two 
different parts of memory (Fig. 3), it enables several 
SO/30s to talk to each other over the Multibus, while 
sharing the same on-board address as seen by the 
SOS5A. Thus, one program can be loaded in any SO/30 
without relinking and relocating the software for 
execution. 

Each bus can communicate either within itself, or 
with the adjacent bus. Thus, the on-board bus cannot 
communicate directly with the multibus. However, 
when the CPU makes a bus request, the on-board and 
dual-port buses simultaneously determine if they can 
fulfill it. If the on-board bus can acknowledge the 
request, it does so, and the DP bus control is not 
required to determine if the DP bus can acknowledge 
the request. If the DP bus, not the on-board, can 
acknowledge the request, it does so, and the controller 
then lets the CPU use the bus. Thereafter, the RAM 
controller completes the operation and generates an 
acknowledge signal. 

If neither the on-board nor DP bus can fill the bill, 
the Multibus is solicited by the CPU. Since a bus can 
only communicate with an adjacent bus, the on-board 
bus must request the DP bus to communicate with 
the Multibus via the DP controller. The on-board bus 
will retake control of the DP bus only after the request 
to use the Multibus is granted. This prevents lockout 
problems with the DP bus, where the CPU requests 
the Multibus when it is controlled by another bus 
master accessing the DP RAM. 

How the 80/30 performs is directly related to how 
many buses it must use to complete a requested 
operation. The on-board bus always operates at max­
imum processor speed. The DP bus operates at max­
imum only if it hasn't been busy and a memory refresh 
cycle was not in process. The processor speed when 
the Multibus is used depends on bus overhead involved 
and the type of module requested. 

The SO/30 boasts more than a three-bus architec­
ture. For one thing, its 1/0 is designed to interface 
to a wide variety of external devices, including 
switches, motor drives, bistable sensors, displays, 

ELECTRONIC DESIGN 15, July 19, 1978 1·221 

The 80/30 in brief 

The iSBC 80/30 uses the latest LSI components to 
obtain the highest performance of any Intel single­
board computer. Built on a 6.75 X 12-in. board, it 
contains the following features: 

• 8085A central processor operating at 2.76 MHz. 
• 16-kbytes of dual-port RAM using Intel's new 16-

kbyte dynamic RAMs and 8202 dynamic RAM con­
troller. 

• Sockets for 2, 4 or 8-kbytes of ROM using Intel's 
2758, 2708, 2716, or 2332 EPROMs or ROM re­
placements. 

• A socket for Intel's 8041A/8741A universal pe­
ripheral interface (UPI) having 18 software-con­
figurable I/O lines with sockets for drivers/termi­
nators. 

• A programmable serial-communication channel 
with RS-232 interface and programmable baud rate. 

• Multibus control logic which allows up to 16 
masters to share the system bus. 

• 12 vectored priority interrupts. 
• Two programmable 16-bit BCD or binary internal 

timers. 

keyboards, printers, teletypewriters, communicator 
modems, cassettes and other computers. This ver­
satility is provided with LSI programmable devices 
such as Intel's 8255 programmable parallel I/O device, 
S251A programmable communication channel, S253 
interval timer, S259 interrupt controller, and 
S041A/S741A universal peripheral interface (UPI). 

The slave processor 

The ability to interface this wide variety of external 
devices is facilitated by the S041A1S741A UPI (Fig. 
4), which can be added to the S0/30. The UPI is a 
complete single-chip microcomputer which acts as a 
peripheral to the SOS5A. It is completely user-pro­
grammable with l-kbyte of ROM (S041A) or EPROM 
(S741A) memory for data storage. The UPI allows you 
to fully specify your control algorithm in the peripher­
al chip without relying on the SOS5A. Devices such 
as printer controllers and keyboard scanners can be 
completely self-contained, relying on the SOS5A only 
for data transfers. 

The UPI is a powerfulS-bit CPU with a 2.6-ms cycle 
time and an instruction set optimized for bit manipu-



4. The 8041A/8741A single-chip microcomputer (UPI-41) 
has its own on-chip ROM and RAM and can be pro­
grammed to perform various peripheral control functions. 

STATUS 

PORT 

DB 
PORT 

5. The UPl's two data registers are organized so that the 
8085A CPU can write in just one register and read from 
the other. As a result. the two registers appear as one 
register to the main 8085A CPU. 

lation and I/O operations. It contains an 8-bit 
counter/timer, buffers to communicate with the 
8085A, and two 8-bit programmable I/O ports, which 
can be customized by software or by plugging in 
suitable line drivers or terminators into sockets. The 
UPI also has two input bits that it can test directly. 
An RS-232 driver and receiver on the 80/30 permit 
the UPI to be programmed as a simple serial-com­
munication channel. 

Interfacing to the on-board bus 

The UPI interfaces asynchronously with the on­
board bus using two data and two status registers. 
The UPI's two internal data registers appear to the 

1-222 

8085A as only one register, since one data register can 
be written into only by the UPI and read only by the 
8085A, and the other can be written into only by the 
8085A and read by the UPI (Fig. 5). This is done to 
prevent the two CPUs from simultaneously writing 
into a data register. 

The UPI can communicate with the 8085A by 
loading a data register and then returning to its 
previous control task. The 8085A can periodically poll 
the UPI status port for the valid-read (VR) flag, which 
is set in hardware when the UPI writes to its data 
port,-or the UPI can generate an interrupt to the 8085A 
via an I/O bit that can be programmed to be the VR 
flag. 

Once the 8085A determines the VR flag is true, it 
can transfer the data to its own memory without 
disturbing the UPI. The VR flag is automatically 
cleared after the data are transferred. Similarly, when 
the 8085A transfers data to the yFI, a valid output 
(VO) flag is set and an interrupt to the UPI is 
generated (if enabled) automatically. Once the UPI 
transfers the data, the VO flag is cleared. The VO flag 
can also be programmed to a port bit for generating 
interrupts to the 8085A to indicate that the transfer 
is complete. 

An extensive interrupt system 

The 80/30 provides 12 vectored priority interrupts, 
four of which are handled directly by the 8085A's 
interrupt-processing capability and routed to fixed, 
unique memory locations. The remaining eight levels 
are handled via the 8259A programmable interrupt 
controller (PIC), which generates a unique memory 
address for each level. These addresses are equally 
spaced at intervals of four or eight (software-selec­
table) bytes. This 32 or 64-byte block may be located 
to begin at any 32 or 64-byte boundary in the 65,536-
byte memory space. A single 8085A jump instruction 
at each of these addresses then provides the linkage 
to locate each interrupt-service routine independently 
anywhere in memory. The PIC provides a selection 
of four priority algorithms so that the manner in 
which real-time requests are processed may be con­
figured to meet the requirements of the system under 
design. 

The 80/30 also has two 8253-based programmable 
16-bit BCD and binary timers/event counters, which 
can be used for a variety of functions. Both timers 
may be set to act as a rate generator (divide-by-N 
counter), a square-wave generator, a programmable 
retriggerable one-shot, or one of the timers can be 
jumper-selected as an event counter. In addition, an 
interrupt can be generated when a time interval has 
expired or when a specified number of events has 
occurred. 

To see how useful the 80/30 can be, consider a 
supervisory control/monitoring system (Fig. 6) using 
an Intel iSBC 80/30 single-board computer, iSBC 201 
diskette controller, and iSBC 732 analog input/output 

ELECTRONIC DESIGN 15, July 19, 1978 



DIGITAL 

CONTROL 

INPUTS 

HOST 

COMPUTER 

SYNCHRONOUS 
DATA 
LINK 

SYSTEM 

OATA 

MULTIBUS'Y 

ANALOG ANALOG 

CONTROL PROCESS 
SIGNALS VARIABLES 

6. In this application example, the 80/30 forms the heart 
of a remote data-acquisition system. By taking advantage 
of the one-board microcomputer's dual-port memory and 
universal peripheral interface, the system achieves a 
combination of attractive cost and efficiency. 

ELECTRONIC DESIGN 15, July 19, 1978 1-223 

board. Here local commands and process-status sig­
nals are given and displayed on a CRT, which is 
interfaced via the iSBC 80/30 resident UPI and 
RS232C components. Process variables are converted 
from analog to digital using the analog I/O board. 
Control variables are passed over the Multibus from 
the 80/30 to the 732, where they are converted from 
digital to analog. 

System data are logged on two diskettes, which are 
controlled by the 201. The controller board's on-board 
DMA interface accesses the 80/30's dual-port memory 
and stores the data on one of the floppy discs. 

At the end of the day, a remote host processor, 
interfaced to the 80/30 via a modem (through the 
80/30's 8251A and RC232C circuits) can request all 
or part of the diskette-resident data. Here, the 80/30 
uses its on-board dual-port memory as a data buffer 
for transfers to the host. 

Intel's RMX/80 real time executive, disc-file system 
and analog drivers provide the majority of the 
system's software ... 

Note: Multibus and iSBC are registered trademarks 
of Intel Corp. 





ARTICLE 
REPRINT 

1-225 

AR·69 

November 1978 

9800834 



Dual-port RAM hikes throughput 
in inpuVoutput controller board 
On-board random-access memory, accessible from system bus, 

makes input! output controller subsystem look like 
just another memory board to the host microprocessor 

by Craig Kinnie and Michael Maerz, InIal Corp., Sanla Clara, Calif. 

o Input/output controllers based on microprocessors 
step up throughput in microcomputer systems by reliev­
ing the host processor of tedious, time-consuming control 
tasks-and a new design concept that increases the 
processing capability of this subsystem promises to hike 
throughput even more. It will cut the host intervention 
needed to transfer data and to run the controller. 

In this configuration, all communications between the 
host processor and the controller are handled through a 
section of dual-port memory that resides in the controller 
subsystem. This setup allows more efficient transfer of 
large blocks of data from the 110 device to the system 
without contention over access to the system bus. It also 

I/O DEVICES 

TAl LO R ED I/O 

simplifies interprocessor communications because the 
subsystem controller appears to the host processor sim­
ply as an additional RAM board. 

Although this concept allows the subsystem to remain 
dedicated to its 110 control function and to assume a 
subservient role to the host processor, it has more 
processing power than previous generations of such 
controllers. Hence it has been dubbed the intelligent­
slave concept by Intel, which applies it il)...t-h'ci'iSBC 544 
intelligent communications controller. / 

The new subsystem architecture is divided into three 
major sections: dedicated 110, dedicated computer, and 
dual-port memory (Fig. 1). The dedicated input/output, 

DEDICATED 
INPUT/OUTPUT 

1. Heart of memory. New controiler archi­
tecture includes the dedicated input! output 
circuitry and dedicated processor of an Intel­
ligent peripheral controiler, but its heart Is 
the dual-port random-access memory. 

r----------- ---------, 
I 
I 
I 
I 
I 
I 
I 
L_ 

COMMON I/O 
(TIMERS, INTERRUPT) 

CENTRAL PROCESSING 
UNIT 

Electronics/ August 17, 1978 

HOST SYSTEM BUS 

I 
I 
I 
I DEDICATED 
I PROCESSOR 

I 
I 
I 

1·226 

DUAL·PORT 
MEMORY 

Reprinted with permission from Electronics 
Copyright McGraw-Hili, Inc., 1978 



lal 

CPU 

Ibl 

CPU 

leI 

r----., rt~~ul 
r-----., 
I' CPU , 
L.....: ___ J 

2. Performence advantage •. In adding a real-time task to an existing real-time system, the load on the system bus is significantly reduced 
over the traditional multitasking approach (a) or the intelligent controller approach (b) by the intelligent-slave controller approach (e). 

r - - - - - - - - - - - - - - - - - - - - - -~ DEDICATED I/O 

r-­
I 
I FOUR 

I ttNUEOR~fri~s 
I 
I 
I 
I 
I 
I 
I 

TIMERS 

BOS5A CPU 

I 
I 
I 
I 

--I 
I 
I 
I 
I 
I 
I 
I 

~-----------------7----~ 
DEDICATED PROCESSOR 

JUMPERS TO CONVERT FROM DATA 
TERMINAL TO DATA SET INTERFACE 

USART = UNIVERSAL SYNCHRONOUS/ASYNCHRONOUS 
RECEIVER /TRANSMITTERS 

TO HOST SYSTEM BUS 

3. The 544. Based on the B08SA microprocessor with 4 kilobytes of PROM and 16 kilobytes of RAM, the subsystem is designed as a 
communications controller with four synchronous/asynchronous buffered serial I/O channels, and a la-bit parallel I/O interface. 

Electronics/ August 17, 1978 

1·227 



Dual-port RAM a~so shows up In new single-board computer 

The concept of a dual-port read-write memory used In the 
iSBC-544 communications board is also employed in 
another new Intel product: its latest single-board comput­
er, the iSBC-80/30. A dual port makes the 80/30's 
random-access memory directly accessible by the on­
board 8085A central processing unit via internal busing 
without tying up the external system bus, the Multibus. At 
the sarne time, it also makes the RAM directly accessible 
by any other boards, like direct-rnernory-access control­
lers or other one-board computers that may be tied to the 
Multibus. 

Moreover, the 80/30 adds its dual-port bus to the 
earlier iSBC computers' pair of buses: an internal, bus, 
which hooks the CPU to peripheral chips and read-only­
memory program storage and the system bus, over which 
the CPU and other boards communicated with RAM. Eight 
bits wide, the new bus is connected to a pair of buffer 
registers that coordinate, thus making the RAM accessible 
either by the internal bus or the system bus. 

The objective is throughput: the CPU has priority in 
access to the on-board RAM. But since the access is not 
over the Multibus system bus, which might be tied up, 
there is no waiting. From the viewpoint of other system 
boards, the system bus is accessible a greater percentage 
of the time. 

conslstmg of the necessary peripheral chips, timers, 
buffers, and interface integrated circuits, tailors the 
controller to the application's 1/0 requirements. 

The dedicated computer consists of a general-purpose 
microprocessor, electrically programmable read-only 
memory, dedicated RAM, timers, interrupt logic, and the 
decode and chip-select logic. The size and speed of the 
central-processing unit can be tailored to match the 
requirements of the dedicated 110 section. 

The dual-port memory is the heart of the architecture 
and sets it apart from traditional approaches to intelli­
gent controllers and multiprocessing. Passing all 
commands and data between the system and the control­
ler's processor through this memory offers a number of 
significant advantages. 

First, the dedicated computer's performance can be 
optimized for its applications. Its software always oper­
ates at full speed, since all required memory and 1/0 
resources are immediately accessible on the board, with­
out indeterminate delays caused by other system activity 
on the bus. This accessibility is especially important in 
real-time systems, since it allows the controller's 
performance to remain constant even though system bus 
activity may change. 

Secondly, the architecture presents a consistent and 
convenient interface between the host CPU and all the 
controllers in the system, regardless of function. Because 
the controllers' dual-port RAM looks to the host CPU like 
just another location in system memory, the hardware 
and software problems associated with connecting multi­
ple processors together are reduced to interfacing a 
number of identical intelligent memory locations. 

Also, the architecture offers a degree of protection for 
the data in memory. The subsystem computer and soft-

Electronics/ August 17, 1978 

With the incorporation of 16 kilobytes of memory on the 
80/30, Intel had little choice but to move to the dual-port, 
triple-bus architecture. The reason is that few system 
designs require more than 16 kilobytes, so In many appli­
cations all boards will be demanding access to the 
80/30's memory over the Multibus. The CPU had better 
have priority to its RAM, through its own private line, .lest 
the queue for the system bus bog down throughput. 

The 80/30 also packs lots of extras, in addition to the 
total 16,384 bytes of read/write memory built with 2116 
16-K dynamic RAMs. A pair of ROM sockets provide 
4,096 bytes of program storage if fitted with 16-K erasable 
programmable read-only memories like the 2716. When 
pin-compatible 32-K erasable PROMs are available, 
program storage can be extended to 8 kilobytes. 

Also on board is a socket for Intel's universal peripheral 
interface chip, the 8041 (or 8741 erasable-PROM 
verSion), which can function as a slave processor to drive 
peripheral devices. An 8251 A universal synchro­
nous/ asynchronous receiver/transmitter Is included for 
serial communications, and the 80/30 also boasts three 
16-bit programmable timers. The 24 programmable 
input! output lines are brought out to sockets that accept 
quad line-drivers or -terminators for interfacing. 

Ray Capece 

ware can only alter that portion of system memory that 
resides in its own dual-port memory section. In contrast, 
traditional intelligent controllers have access to the 
entire system RAM and, should a malfunction occur, can 
destroy all of that memory. 

System performance advantages 

Because all processing assigned to the new controller's 
CPU takes place off the system bus, its architecture offers 
important performance advantages to the system. These 
advantages come from the appearance of the processed 
data blocks in system memory without consuming any 
system resources or bus time 

The advantages of this approach are best demon­
strated by comparing it to alternative means of adding a 
real-time task to an existing real-time system. In this 
case, the new task requires additional CPU, memory, and 
110 resources. 

The traditional multiprocessor approach of Fig. 2a 
expands CPU resources in one of, two ways: software 
utilization of reserve capacity in the existing processor, 
or adding another processor. In either case, memory and 
110 increments generally will be required. 

The primary disadvantages of this approach are the 
increased complexity of the system software and the 
increased load on the system bus. Both will slow the 
existing real-time system unless it has been designed 
with adequate reserve. The system bus must also provide 
sufficient capacity for the incremental memory-execu­
tion and data-transfer operations. This additional bus 
load will also require that the primary real-time task can 
tolerate CPU delays due to bus contention. 

The intelligent-controller approach of Fig. 2b has 
gained widespread use since the advent of the micropro-

1·228 



HEXADECIMAl HEXADECIMAL 
SYSTEM SUBSYSTEM 

ADDRESSES ADDRESSES 

XFOOO FOOO 

XEOOO EOOO 

DODO 

XCOOO 

1 

cooo 

XBoob BODO 

X9000 

xeooo 

117 X7000 7000 

X6000 BUOO 

X5000 5000 

X4000 4U00 
DEDICATED 

X3000 STATIC RAM 3000 

X2000 

ROM/PROM { 

2000 

Xl000 1000 

x = ANY PAGE AOORESS.O TO FIHEXI 

4. Memory mapping. The variable system memory addresses are 
always mapped Into the on-board address 01 8000HEX. providing 
software Independence lor the subsystem and the host. 

cessor. This approach combines the CPU and 1/0 incre­
ments onto a single module that usually includes direct­
memory-access transfer logic. In some cases the execu­
tion memory for the CPU is included. 

This approach lessens the bus-loading problem since 
the 1/0 data transfers and some memory-execution cycles 
take place off the system bus. However, both cpus' 
programs will have to tolerate delays caused by 
increased bus contention. Increased software sophistica­
tion is the primary disadvantage of this approach, much 
as with the multiprocessing approach of Fig. 2a. 

The intelligent-slave approach of Fig. 2c can be 
viewed as a logical extension to the intelligent-controller 
approach. Combining the CPU, 1/0, and memory incre­
ments creates a single module that has a minimal impact 
on the existing system software and bus loading. What's 
more, the subsystem can operate at full capacity without 
regard to other system activity. It can be programmed 
outside the primary system and then added with minimal 
impact on the system software or performance. 

A limitation of the approach is the inability of the 
subsystem to transfer data into portions of the system 
memory space that reside off its board. This problem is 
minimized by the ability of the controller's RAM to serve 
as a substantial portion of the entire memory space 
addressable by the system. In this light, the on-board 
processor can be viewed as having a DMA capability 
limited to a portion of the system's address space. 

In a system with more than one of the new controllers, 
the system CPU handles any data that must be trans-

lAflLE EIAIlS 212 CSIGNALSPHOVIDEDANIlSlJPPOH1ED 

Carrier detect Receive clock 

Clear to send Receive data 

Data set ready Ring indicator 

Data terminal ready Transmit clock 

Request to send Transmit data 

ferred from one to another. Applications involving the 
transfer of large blocks of data would be best served by a 
central block-transfer device elsewhere on the bus. 

The advantages offered by the new approach in this 
example of adding onto an existing system are just as 
applicable to a ground-up design. This modular 
approach to configuring real-time multiprocessing 
systems simplifies hardware and software design, as well 
as system integration. 

While the primary design objective of the new archi­
tecture is operation in a multiprocessing system, it can 
provide significant utility as stand-alone processors. 
Thus these controllers incorporate a second mode of 
operation called the limited bus-master mode. 

In this mode of operation the new controller can be 
used like a single-board computer as long as it is the 
system's only master of the bus. It can be connected to 
standard memory or 110 expansion boards to enhance its 
capability. It can even be used to drive other such 
controllers as long as they are used in the subsystem 
mode. This dual operational mode will allow the new 
controllers to serve a broad range of applications. 

Communications first 

Communications applications present complex pro­
cessing requirements and an inherent real-time nature, 
so it is logical that a communications processor be the 
first of these new controllers to be marketed. The iSBC 
544 intelligent communications controller can serve as a 
flexible front end to an iSBC system or as a cost­
effective stand-alone processor configured as a terminal 
cluster or line concentrator. Its design (Fig. 3) incorpo­
rates an 8085A CPU, 16 kilobytes of dual-ported dynamic 
RAM, 4 kilobytes of PROM, programmable interrupt 
control, three interval timers, four programmable baud­
rate generators, four synchronous/asynchronous buf­
fered serial 1/0 channels, and a IO-bit parallel interface 
compatible with a Bell 801 automatic calling unit. 

The dual-port memory block basically consists of the 
l6-kilobyte bank of random-access memory, which is 
accessible from either the system bus or the on-board 
processor through the dual-port controller. This memory 
block provides the primary means of communication 
between the system and the on-board 8085A. The port to 
the memory, which looks to the system bus like any other 
RAM card belonging to the system, features full 20-bit 

Electronlce/August 17, 1978 

1·229 



addressing and a typical access time of 600 nanoseconds. 
The interface's address-decode logic allows switching 

of the base address of the iSBC 544 to any 4-kilobyte 
boundary in the host system's address space. In addition, 
the user may reserve 8, 12, or 16 kilobits of the 544's 
memory for use by the on-board processor only. This 
reserved memory is not accessible from the system bus 
and does not occupy any system address space. The only 
restriction is that all of the unreserved memory reside in 
the same 64-K address page of the system memory. 

This memory division can be a significant advantage 
in large 8-bit microcomputer systems. Only that portion 
of the controllers' memory needed to pass data between 
CPus must be made accessible to the system. The 
remaining buffer and execution memory does not 
consume any system address space. 

The net result is an increase in the system's overall 
memory capacity. For example, a microcomputer system 
that would usually be limited to 64 kilobytes of memory 
has a total memory capacity of over 190 kilobytes when 
driving seven 544s. 

Address maps and interrupts 

To the on-board processor, the base address of its 
memory is fixed at 8000HEX. Furthermore, all on-board 
addresses are fixed, so that multiple 544s operating on 
the same system bus can be running identical programs 
regardless of their base address on that bus. This capa­
bility necessitated the address-mapping logic to trans­
form addresses from the system bus into the equivalent 
in the on-board address space starting at location 
8000HEX (Fig. 4). 

The address-mapping logic also implements the flag­
interrupt feature. It provides an interrupt to the on­
board processor whenever a byte is written into the 544's 
base address from the system bus, and a read from the 
on-board processor to the base address clears the inter­
rupt. Since each 544 in a system has a different base 
address in that system's RAM, it also has a unique 
interrupt. This !lag-interrupt capability is a key element 
in establishing a protocol for communications between 
the host CPU and the subsystems' processors. 

The dual-port control logic is responsible for resolving 
contention over access to the memory and is designed to 
optimize the performance of the subsystem CPU. Unless 
the system bus has initiated a memory cycle before the 
on-board processor requests memory, that CPU runs at 
full speed. The maximum delay that can be encountered 
is one memory cycle. The arbitration logic actually 
reserves the memory for the on-board processor before it 
generates the necessary commands. This advance reserv­
ing guarantees that the on-board CPU will suffer mini­
mum intervention from system bus accesses. 

When the iSBC 544 is used in the stand-alone limited 
bus-master mode, the dual"port logic is disabled and the 
bus interface buffers are turned around to drive onto the 
bus. This reversal allows the on-board central-processing 
unit access to the memory of other subsystems or 1/0 
expansion boards on the system bus. 

The dedicated computer is built with an 8085A CPU 
operating at 2.76 megahertz, between 2 and 4 kilobytes 
of PROM and ROMS or 8 kilobytes of ROM using 2332 

Electronlcs/ August 17. 1978 

HOST-SYSTEM BUS 

5. Communication. appllcallons. Two typical applications of the 
new iSSC 544 would be as a front-end communications processor to 

a microcomputer system and as a remote concentrator to a series of 
point-to-point or multidrop connected terminals. 

mask-programmable parts, 256 bytes of static RAM, two 
l6-bit and one l4-bit interval timers, and a 8259 
programmable interrupt controller for individual receive 
or transmit interrupt inputs for each serial port. 

Special command-decode logic was added to the CPU 
to allow it to operate at maximum speed independent of 
other system activity. There are 21 sources of interrupt 
on the 544, including the separate transmit and receive 
interrupts for each port and separate timer interrupts. In 
addition to receiving an interrupt from the system, the 
544 can also send an interrupt to the system bus via the 
8085A's serial-output data line. 

Since this controller is intended for communications 
applications, latched interrupts are provided directly to 
the CPU for loss of carrier and ring indicator for all four 
1/0 ports. The ring-indicator and carrier-detect lines cal' 
also be monitored through the parallel port. 

Dedicated 1/0 

The dedicated-I/o section of the 544 provides a high 
degree of flexibility and programmability. This results 
primarily from the inclusion of four 8251A universal 
synchronous/asynchronous receiver/transmitters. These 
devices are programma ble for synchronous or asynchro­
nous mode, character size, parity bits, stop bits, and 
baud rates. Data, clocks, and control lines are buffered 
with RS-232-C--compatible drivers and receivers to four 
26-pin card-edge connectors. Each port is configured as 
a data-terminal interface, but may be converted to a 

1-230 



la) 

Ib) 

AUTOMATIC DIALER 

REMOTE-CONNECTION 
TO'HQ~T 

6. From eleve to maDter. In its stand-alone mode, the 544 can operate as a bus master and be configured as an intelligent terminal controller 
connecting dumb terminals to a data link (a) or as a peripheral controller connecting RS-232-C-compatible units to the terminal (b). 

data-set interface by cha)1ging a single jumper-plug 
assembly. The ports support most RS-232-C signals 
(those that are listed in the table). 

A programmable baud-rate generator is also provided 
for each port. The range of baud rates available is 75 to 
56 ki!obits per second. The generators are implemented 
with 8253 programmable interval timers, which receive a 
jumper-selectable input frequency of 1.84 or 1.23 MHZ. 
In addition, one of the cpu's interval timers can be 
converted to baud-rate operation and jumpered to any 
port to provide it with split-speed operation. 

The 544 also provides a parallel port with four 
RS-232-C buffered input lines and six RS-232-C 
buffered output lines. This port is configured to interface 
to most automatic calling units but may be used as a 
general-purpose liD port. It is implemented with an 8155 
programmable peripheral interface that also provides the 
256 bytes of static RAM and the l4-bit timer. 

Applications 

A likely common use of the 544 as a subsystem is as a 
front-end processor or terminal multiplexer (Fig. 5) in 
an iSBC system. The 544 performs all communications­
related functions such as format control, code conver­
sion, data-link control, error checking, data compression, 
and protocol management. It can handle multiple proto­
cols, line speeds, and data formats. 

All the system processor sees are the processed data 

blocks that appear in system memory. An automatic 
dialer could be added to provide a dial-up connection to 
a host processor or network. 

Also shown in Fig. 5 is another 544 used in its limited 
bus-master mode as a remote concentrator and terminal 
controller. The line and memory capacity of the remote 
concentrator can be increased by the addition of stan­
dard iSBC memory and liD expansion boards. 

The intelligent-terminal controller shown in Fig. 6a is 
a prime example of a 544 used in the stand-alone mode. 
It can connect one or more dumb terminals to a data link 
and provide the necessary buffering, code conversion, 
and data-link control. It could also connect a terminal 
that happens to communicate in a different protocol to a 
new network or to more than one network. 

The iSBC 544's multiple serial lines do not have to be 
used for communications. They can also be used to 
connect RS-232-C-compatible peripherals to the termi­
nal (Fig. 6b). In this configuration, the 544 can provide 
message editing and formatting, bulk storage, and hard­
copy output. 

As this last application suggests, the 544 is the 
vanguard of a family of intelligent liD controllers that 
will add tremendous increases in throughput and versa­
tility to the iSBC line of single-board computers. The 
basic architecture will simplify the task of developing 
multiprocessing hardware and software solutions that 
will overcome throughput limitations. D 

Electronics I August 17, 1978 

1-231 





ARTICLE 
REPRINT 

1-233 

AR·72 

November 1978 

9800835 



Technical articles -----------

16-bit single-board computer 
maintains 8-bit family ties 
Three-bus 8086-based board addresses a megabyte, 

communicates over expanded system bus 

by Robert Garrow, Jim Johnson, and Les Soltesz, Intel Corp .. Santa Clara. Calif. 

o For the first time ever, 8- and 16-bit single-board 
computers can brainstorm over the same system bus. 
The iSBC 86/12 16-bit SBC has been designed to work 
intimately with its predecessors, the iSBC 80 family of 
8-bit boards. What's in it for the user? Design flexibili­
ty - 8-bit designs can be enhanced to 16 bits, developed 
software can be transported and, beyond that, 8- and 
16-bit devices can be mixed in multiprocessing configu­
rations. Several features make these options possible: a 
16-bit CPU and instruction set designed for 8-bit compat­
ibility; greatly expanded memory resources; and an 
extension of the Multibus specifications. 

At the heart of the iSBC 86112 is a 16-bit, high­
performance metal-oxide-semiconductor 8086 central 
processing unit that operates at S megahertz. Because 
the 8086 instruction set is a superset to that of both the 
8080A and 808SA 8-bit processors, the CPU can execute 
the full set of 8080A/808SA-type 8-bit instructions plus 

OUAL·PO RT RAM 
CONTROLLER 
LOGIC 

PROG RAM MABLE 

~NTERRUPT CHIP~ 

MU LTI BUS/MU LTIMASTE R 

PERIPHERAL 
INTERFACE 

a new set of 16-bit instructions. Thus, programs gener­
ated for 8-bit-cpu systems can easily be upgraded to run 
on the iSBC 86/12 using the software tools available 
with the Intellec microcomputer development system. 
Programs written in Intel's high-level programming 
language, PLlM, can be executed on both iSBC 80 and 
iSBC 86 products, preserving the software investment in 
8-bit systems as a user moves into l6-bit applications. 

Other features of the 8086 CPU are signed 8- and 
l6-bit arithmetic (including multiply and divide), effi­
cient interruptible byte-string operations, and improved 
bit manipulation. Furthermore, the 8086 provides mech­
anisms for reentrant code, position-independent code, 
and dynamically relocatable programs. 

This enhanced processing power is supported by the 
largest memory ever offered on a CPU board (Fig. I). 

Memory address space has been extended over the iSBC 
80 series to one million bytes. Up to 16 kilobytes of 

PROGRAMMABLE 
INTERVAL·TIMER 

\ 
SYNCH RONO US/ ASYNCH RON OUS 
RECEIVE RITRANSMIHE R I UNIVERSAL 

ROM 
SOCKETS 

1. What a board. The iSSC 86/12 has 32 kilobytes of RAM and room for 16 kilobytes of ROM. The 5-MHz 8086 CPU executes 

8080A/8085A-type as well as 16-bit instructions. including multiply and divide. Address space has been increased to a megabyte. 

Electronics/October 12, 1978 

1-234 

Reprinted with permission from Electronics 
Copyright McGraw-Hili, inc., 1978 



THE iSBC 86/12 SINGLE-BOARD COMPUTER 

RS-232-C 
COMPATl8LE DEVICE 

24 PROGRAMMABLE 
PARALLEL I/O LINES 

r - - - - - - - - - - - - - - - - CONTRoL INrEiiFACE SERIAL OEVICE --, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

r=-.....;::.~ 

INTERRUPT 

~PUL~~J~S~ I¢:::===;-' 

L 

I 
I 

-----------------~ 

2. LSI+SBC=86/12. A number of programmable LSI devices take credit for the power and flexibility of the iSBC 86/12. Note their 
interconnection to the three-bus hierarchy. When the 8086 requests a resource, the system bus is used only as a last resort. 

read-only memory can be installed on the iSBC 86/12 
itself. Furthermore, an additional 32 kilobytes of 
dynamic random-access memory with on-board refresh 
may be accessed independently by the CPU or by the 
system bus (Multibus). 

Like the iSBC 80/30, the 86/12's RAM has dual ports 
to extend its use off board for access by other Multibus 
masters, including single-board computers, direct-memo­
ry-access devices, and peripheral controllers [Electronics, 
Aug. 17, p. 109]. All memory operations on the board 
occur independently of the Multibus, freeing it for exter­
nal parallel operations. For applications that require 
data integrity at all times, a separate bus supplies power 
to the RAM and support logic via the edge connector. An 
auxiliary power source energizes the RAM in the event of 
power failure. 

Multibus-the new look 

To exploit the greater performance of the 8086 CPU 

and simultaneously make the iSBC 86/12 fully compati­
ble with the iSBC 80 family of SBCS and expansion 
products, the Multibus specification has been extended 
to support 20 bits of address and 16 bits of data. The 
control lines, too, have been expanded to direct 8- and 
16-bit data transfer over the system bus. These improve­
ments enable the iSBC 86/12 to address directly a full 
one megabyte of system memory, access data in 8- or 
16-bit word lengths, and recognize and acknowledge a 
variety of interrupts. 

Address space has been enlarged to 1 megabyte by 
adding four address lines, A IO-A Il. Next, 8- and 16-bit 

data operations have been defined to permit both types 
in the same system. This is done by reorganizing the 
memory modules, adding one new signal and redefining 
another. The memory is divided into two 8-bit data 
banks, which form a single 16-bit word. The banks are 
organized such that all even-byte-addressed data is in 
one bank (00-0,) and all odd-byte-addressed data is in 
the other bank (OS-OF)' A new bus-address signal has 
been defined to control the odd-byte bank called byte 
high enable (BHEN) during 16-bit operations. When 
active, BHEN enables the high byte of the data word from 
the addressed boards on the OS-OF Multibus data lines. 
Ao controls the even byte bank and, when inactive, 
enables the low byte of the data word on the 0 0-0, 
Multibus data lines. All word operations must occur on 
an even-byte-address boundary with BHEN active for 
maximum efficiency. (Ao is inactive for all even 
addresses-see the table.) Word operations on odd-byte 
boundaries will be converted to 2-byte operations by the 
8086, one for low-byte, one for high-byte. Byte opera­
tions can occur in one of two ways. The even bank is 
accessed when BHEN and Ao are both low. This puts the 
data on 0 0-0,. To access the odd bank (normally placed 
on OS-OF during a word operation), a new data path has 
been defined. The active state of Ao and the inactive 
state of BHEN are used to enable a swap-byte buffer, 
which places the odd data bank on 0 0-0,. This permits 
an 8-bit master access to both bytes of the data word 
while controlling only Ao. Ao therefore specifies a unique 
byte and is not part of the word address, since all word 
operations are on even-byte boundaries. 

Electronics IOctober 12, 1978 

1-235 



Flexibility: LSI chips are the key 

The iSSC 86/12 owes much of its flexibility to program­
mable large-scale integrated devices. An 8255A peripher­
al interface chip provides 24 programmaple I/O lines that 
may be tailored to the customer's needs by simply 
programming the device for input, output, or bidirectional 
modes with or without handshaking abilities. In conjunc­
tion with the 8255A's configuration the user may then 
select appropriate line drivers and terminators for the I/O 
lines that can be inserted into sockets on the iSSC 86/12 
board. 

An 8251A universal synchronous/asynchronous receiv­
er /transmltter is included to provide an RS-232-C Inter­
face for serial communication with other computers, RS-
232-C-type peripherals (cassette tape, modems, etc.) or 
cathode-ray-tube terminals. The 8251A enables the user 
to customize the communication link. Synchronous/asyn-

chronous mode, data format, control character format, 
parity and baud rates from 75 to 38.4 kilobauds are all 
under program control. 

For system timing functions an 8253 programmable 
interval timer provides two programmable timers, each of 
which may be used as a square-wave generator, retrigger­
able one-shot multlvibrator or as an event counter. 

The interrupt structure of the iSSC 86/12 encompasses 
nine levels with vectored priority. Eight of these levels are 
handled by an 8259A programmable Interrupt controller 
chip, which may be configured for different priority 
processing modes in accordance with the application. 
One nonmaskable interrupt is available to immediately 
alert the CPU to catastrophes like a power failure, in which 
case the CPU can branch to an appropriate routine in 
memory to effect an orderly system shut-down. 

07FFF 

06000 

...... ---1 04000 

...... ---1 02000 

----... 00000 

3. RAM, pie .... The 808S's view of on-board memory Is fixed from zero to 07FFFH. When an outside master accesses this space, the DP 
controlier performs the translation. Here, locations OSOOOH to 07FFFH are available to another master by addressing CAOOOH to CBFFFH. 

Since all 8-bit accesses via Multibus are done on the 
lower byte of the data word, the iSBC 86/12 can access 
8-bit memory or 1/0 devices from the system bus. This 
makes the iSBC 86/12 compatible with all iSBC 80 
Multibus modules. 

More interrupts, too 

The iSBC 86/12 expands the previous MuItibus defi, 
nition of interrupts by creating two distinct types: non­
bus-vectored (NBVI) and bus-vectored (BVI) interrupts. 
Each Multibus interrupt line can be individually defined 

Electronics/October 12, 1978 

through software to be a BVI .or NVBI. Using BVIS, t~e 
interrupt capability of a Multibus system can be 
increased to 64 bus-vectored-priority interrupts. 

Using NBVIS, a slave module activates an interrupt line 
and the interrupted bus master generates its own restart 
address to service that interrupt. The MuItibus address 
or data lines are not used. A BVI uses the MuItibus 
address and data lines to communicate with the inter­
rupting slave. When the slave module generates an inter­
rupt, the bus master requires that module to generate the 
restart address. One additional command, signal is 

1·236 



16 DIFFERENTIAL INPUTS 

iSSC 111 
ANALOG INPUT SOARD 

4. Open loop. Shown above is a simple alarm and monitoring system. The iSBG 711 analog-input board samples 16 differential inputs and the 
8-bit iSBG 80/20 compares the inputs to the high and low limits. An alarm condition illuminates an LED and gets logged'on a teletypewriter. 

La 
o TELET~PEWRITER 

16 DIFFERENTIAL INPUTS 4 CONTROL OUTPUTS 

iSSC 711 iSSC 724 

5. Closed loop. Suppose the system in Fig. 4 needs to be upgraded to handle a closed-loop system. For this application an iSBG 86/12 

replaces the 80/20-04 to cope with the higher processing. The output control variables are handled by an iSBG 724 analog-output board. 

LQ HI 
o 0 0 

LIMIT LIMIT. ALARM 
TELETYPE· 
WRITER 16 DIFFERENTIAL INPUTS 4 CONTROL OUTPUTS 

iSSC 711 iSSC 724 

6. Multi/master. To enhance the control system in Fig. 5, add a dedicated GPU to control valves, vents, and dampers that, in turn, affect 

pressure and flow parameters in the system. This has been done by adding an iSBG 80105 in a Multibus/multimaster arrangement. 

defined-interrupt acknowledge (INTA)-to request the 
restart address from the slave module. 

The iSBC 86/12 board architecture, like that of the 
8-bit iSBC 80/30, is organized around a three-bus hier­
archy: an on-board bus, a dual-port bus and a system bus 
(Multibus). All three buses have been expanded over 
their 80/30 counterparts to incorporate 20 address lines 
and 16 data lines. 

The iSBC 86/12 architecture 

The on-board bus links the 8086, all the 110 peripher­
als, and the read-only memory. Next in the hierarchy is 
the dual-port bus, which connects to the DP controller, 32 
kilobytes of dynamic RAM, and the dynamic RAM 
controller. Finally, the system bus permits expansion of 
system resources through Multibus modules (Fig. 2). 

The bus protocol of the iSBC 86/12 dictates that each 

of the three buses communicate with an adjacent bus or 
operate independently. When the CPU makes a request 
for a resource, the on-board and dual-port buses simulta­
neously determine if their hardware can fulfill the 
request. If the on-board bus is able to acknowledge the 
request, it does so and the DP bus is not disturbed. (The 
DP bus is not interrupted to determine whether it can 
acknowledge the request.) The 8086 always controls the 
on-board bus, and requested operations can be 
completed without delay. If the DP bus is needed, it is 
requested and the dual-port controller grants the use of 
the bus to the processor. Thereafter, the dynamic-RAM 
controller completes the operation and generates an 
acknowledge. 

If neither the on-board nor the DP bus can satisfy the 
request, the CPU asks for the system bus. The 8086 must 
use the on-board and dual-port buses to communicate 

Electronics/October 12, 1978 

1-237 



1-.-:- -=- - - - - -CONTROL FOR - TElB-;E'- -16 O~IFFE-RENT-IAL- - - - - - - -'1 
VALVES. VENTS WRITER I 1810181s181 "'"~""' ~ ~ I 

! L:J L::J ! L________ _ __________________ ~ 
I;:::::==== __ =:::::} TO OTHER CLOSED· LOOP SYSTEMS 

7. Four loops. An iSBC 86/12 can be used In conjunction with an iSBC 544 intelligent communications controller to perform a supervisory 

function for four closed-loop systems. The iSBC 544 controls the line protocol and the iSBC 86/ 12 processes the 544's data. 

with the system bus. The 8086 takes control of the DP 

bus when the system bus is granted. This prevents lock­
out problems with the DP bus-that is, when the proces­
sor requests the system bus while another bus master has 
control of it and is accessing the dual-port RAM. 

Naturally, the fewer the buses it has to access, the 
faster the iSBC 86/12 completes a transaction. The 
on-board bus always operates at maximum board speed. 
But the DP bus operates at maximum board speed only if 
it was not busy or taken up with a memory refresh cycle. 
When the system bus is brought into play, the processor 
speed depends on the overhead in acquiring it and the 
type of Multibus module being accessed. 

With this three-bus architecture the iSBC 86/12 can 
be operating over its on-board bus at the same time as 
another Multibus master is using the system bus. It does 
so by accessing data from the DP RAM at no reduction in 
board speed. The on-board bus permits access only from 
the 8086. Thus all 110 and ROM are private to the 8086. 

The dual-port controller has two independent address 
decoders-one for the 8086 and one for the Multibus. 
The 8086 decoder fixes the 8086's RAM addresses from 
hexidecimal 00000 to 07FFF using a fusible-link 
programmable ROM. The Multibus decoder allows the 
user to select any address range for the on-board RAM by 
specifying two parameters-a top-of-memory pointer 
and the size of the accessible memory. The TOM pointer 
(as seen by another Multibus master) can be set to any 
8-kilobyte boundary in the I-megabyte memory space. 
The amount of memory on the iSBC 86/12 accessible by 
another master can be set to 8,16,24, or 32 kilobytes (or 
no access) with an on-board jumper. For example, fixing 
the accessible memory size to 24 kilobytes provides the 
8086 with 8 kilobytes of RAM that only it can access. 
This private area can be used for the processor's stack, 
interrupt jump table and other special system paramet­
ers that are generally protected from other Multibus 
masters. The only addressing restriction is that the 
memory block accessible to the Multibus cannot cross a 
128-kilobyte boundary. 

Suppose a Multibus master wants to load a program 

Electronics/October 12. 1978 

into the iSBC 86/12's dual-port RAM for execution. 
Since the 8086's view of the DP-RAM address space is 
fixed, the Multibus address must be translated into the 
on-board 8086 memory space. The DP controller 
performs this translation by mapping the TOM pointer 
(as seen by other Multibus masters) t9. 8086-address 
07FFFH, the top of the 8086's on-board RAM. Point­
er - 1 is mapped to the top of 8086 on-board RAM - I, 
and so on. 

In the example shown in Fig. 3, the Multibus address 
selection is divided into three parts-two selecting the 
TOM pointer (X and Y) and one selecting the size of the 
accessible memory (Z). The TOM pointer is equal to a 
I 28-kilobyte segment (X) plus address displacement (Y) 
from that segment. In this example, X is set to COOOOH 
and Y is set to OBFFFH, so the TOM pointer equals 
CBFFFH. Next, the size of the accessible memory (Z) is 
set, in this case to 8 kilobytes. This address translation 
makes the top 8 kilobytes of the 8086's RAM locations 
06000H to 07FFFH available to another Multibus 
master when it addresses locations CAOOOH to 
CBFFFH. The 8086 still has 24 kilobytes (OOOOOH to 
05FFFH) of private memory. 

Multiprocessing schemes 

In mUltiprocessing systems, a master must be able to 
access the system without another master obtaining the 
bus. The iSBC 86/12 incorporates bus-arbitration logic 
to effect these transactions. Since the system bus is only 
requested when a system resource is needed, the iSBC 
86/12 can perform true parallel processing with other 
iSBC 80 or 86 masters. 

A typical example is the use of a common memory 
location that contains the status byte (busy/not busy) of 
a floppy-disk controller. When the floppy disk is net:ded, 
the master must first read the location and, if not busy, 
write the status word without another master obtaining 
the bus (to use the floppy disk). A bus-lock function on 
the iSBC 86. once enabled, allows the iSBC 86 to 
maintain control of the system bus until the lock is 
disabled by program control. This bus-lock function may 

1-238 



LOW EVEN BYTES 

B-bit B-bit 
even l6-bit 0 0 
address mixed 

HIGH ODD BYTES 

LOW EVEN BYTES 

l6-bit l6-bit 0 

HIGH ODD BYTES 

LOW EVEN BYTES 

B-bit B-bit 
odd l6-bit 0 
address mixed 

HIGH ODD BYTES 

be activated in one of two ways-by an output bit from 
the resident 8255A peripheral-interface chip or by a 
software prefix on any 8086 instruction_ The iSBC 86 
can perform the test and set function by exchanging the 
accumulator with the memory location, preceding the 
instruction by a lock prefix. For example, the status 
word is read into the accumulator and, without another 
intervening bus cycle, a busy status is written. The 
accumulator is then tested: if busy-try again (writing a 
busy does not destroy status as it was already busy); if 
not busy, the flqppy disk is now under the master's 
control and the status location is set to busy. 

The iSaC 86/12: a design tool 

For system debugging and full-speed execution, the 
iSBC 86/12 can be linked to the Intellec microcomputer 
development system. Programs generated on the Intellec 
system can be downloaded into the iSBC 86/12 RAM via 
cables. Through a virtual-terminal capability, the Intel­
lec console can directly access an iSBC-resident monitor, 
which provides commands for software debug. Once the 
debugging cycle is completed, the user has the option of 
uploading the software back to the Intellec for storage 
on diskettes. 

The Multibus and form-factor compatibility of the 
8-bit iSBC 80 and 16-bit iSBC 86 single-board comput­
ers provide a degree of design flexibility previously unob­
tainable. Initial design problems can be solved with 
low-cost 8-bit hardware. As product requirements 
evolve, 16-bit performance can be added. Eventually, 8-
and 16-bit multiprocessor solutions can be conveniently 
implemented. 

Consider the application shown in Fig. 4, an alarm 
and monitoring system in a typical process plant. Sixteen 
differential inputs from pressure and flow transducers 
are sampled once every second, then compared to high 
and low limits previously entered through thumbwheel 

EVEN-BYTE BUFFER 0 0- 7 

SWAP-BYTE BUFFER 

ODD-BYTE BUFFER DB- F 

EVEN-BYTE BUFFER 0 0- 7 

SWAP-BYTE BUFFER 

ODD-BYTE BUFFER °B-F 

EVEN-BYTE BUFFER 0 0- 7 

SWAP-BYTE BUFFER 

ODD-BYTE BUFFER °B-F 

switches. The iSBC 711 analog-input board takes care of 
sampling the inputs and the 8-bit iSBC 80120-4 com­
pares the data to the high and low limits. Whenever 
these limits are exceeded, an alarm LED lights up and the 
alarm condition is logged on the system teletypewriter 
along with input identification, high limit, low limit and 
sampled value. 

Closed loops 

Instead of an open-loop system, suppose the design 
must be enhanced to control four output variables­
thereby making it a closed-loop system. The sampling 
rate must be increased to once every third of a second 
and more processing will be required to run through the 
control algorithm and output the control-loop data. For 
this application, and iSBC 86/12 replaces the 80120-4 to 
handle the higher processing requirements. An iSBC 724 
analog-output board is also added to provide the four 
output-control variables (see Fig. 5). Carrying this 
example one step further, one may want to dedicate 
another processor to controlling valves, vents, and damp­
ers that in turn affect pressure and flow parameters in 
the system. This can be done by adding an iSBC 80/05 
in a multi master arrangement as shown in Fig. 6. 

Finally, an iSBC 86/12 can be used with an iSBC 544 
intelligent communication-controller to supervise four 
closed-loop systems of the type shown in Fig. 6. The 
86/12 of each system interfaces with the supervisory 
system via its serial interfaces, which are connected to 
the iSBC 544's serial ports (see Fig. 7). The iSBC 544 
performs the control functions associated with the line 
protocol. The supervisory iSBC 86/12 can access the 
iSBC 544's dual-port memory and can perform further 
processing of the data received from the four closed-loop 
systems. In this configuration large amounts of memory 
may be required; since the iSBC 86/12 can address up to 
1 megabyte, this presents no problem. D 

ElectronicslOctober 12, 1978 

1-239 





I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

2 iSBC Software 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 

I 
I 
I 
I 



iSBC SOFTWARE 

INTRODUCTION 

Software provided by Intel for the iSBC product family includes the RMX/80 Real-Time Multitasking Executive, the 
iSBC 801 RMXl80 FORTRAN Run-Time Package and the ISBC 802 Resident BASIC Interpreter. 

The RMXl80 executive provides users of Intel's ISBC 80 series single board computers with a simple-to·use tool for im­
plementing microcomputer software. Applications which monitor and control multiple asynchronously occurring 
events are prime candidates for use with the RMXl80 executive. The RMXl80 disk file system, terminal handier, analog 
driver and debugger have ali been designed and optimized specifically for single board computer applications. 
RMX/80's modular design, consisting of a series of linkable and relocatable modules, can be configured to optimize 
system software for any specific application. 

The iSBC 801 FORTRAN Run-Time Package and the iSBC 802 Resident BASIC Interpreter provide further enhance­
ments to the RMXl80 executive. They provide users with a broad choice of programming languages for fast and effi­
cient implementation of sophisticated system designs. 

Publications reprinted in this section include an application note, a magazine article and a professional journal paper 
on the RMX/80 executive, and an application note on using FORTRAN with single board computers. 

TABLE OF CONTENTS 

AP-33 RMXl80 Real-Time Multitasking Executive ....................................................... 2-3 
AP-47 Using FORTRAN-80 for iSBC Applications ....................................................... 2-33 
AR-41 An Integral Real-Time Executive for Microcomputers .............................................. 2-73 

A Small-Scale Operating System Foundation for Microprocessor Applications ......................... 2-81 

2-2 



© Intel Corporation, 1977, 1978, 1979 

APPLICATION 
NOTE 

2-3 

Ap·33 

October 1977 

98005~7A 



RMXl80 Real-Time 
Multitasking Executive 

2·4 

Contents 

INTRODUCTION ....................... 2·5 

OVERVIEW. . . . . . . . . . . . . . . . . • . . . . . . . . . .. 2·5 

Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-5 
General Characteristics. . . . . . . . . . . . . . . . . . .. 2-5 
Nucleus Operations. . . . . . . . . . . . . . . . . . . . . .. 2-7 

EXTENSIONS ..•........................ 2·10 

Free Space Manager ...................... 2-10 
Terminal Handler ........................ 2-11 
Disk File System .......................... 2-11 
Debugger. ............................... 2-11 

USING THE RMX/SOTM SOFTWARE ...... 2·11 

Task and Exchange Definition .............. 2-12 
Priority Assignment. ...................... 2-13 
Static Descriptions ........................ 2-13 
Compilation/Assembly .................... 2-13 
Linking ................................. 2-14 
Locating ................................ 2-14 
Debugging ............................... 2-14 

APPLICATIONS ........................ 2·14 
Minimal Terminal Handler ................. 2-14 
Closed-Loop Analog Control. .............. 2-18 

APPENDIX A ........................... 2·21 

APPENDIX B ........................... 2-25 

APPENDIX C •.......................... 2·27 



INTRODUCTION 

A large number of microcomputer applications 
require the ability to respond to events in real time. 
RMX/80 provides the system software around 
which you can build a real-time multitasking appli­
cation on Intel SBC 80 Single Board Computers. 
In addition, RMX/80 increases the utilization of 
a Single Board Computer by allowing its resources 
to be shared among several tasks executing concur­
rently. Synchronization of these multiple real-time 
tasks is handled by RMX/80, freeing you to con­
centrate your major programming efforts on your 
application. 

This application note begins with an overview of 
RMX/80. Readers who are familiar with the mate­
rial presented in the RMX/80 User's Guide may 
choose to skip to the next section, a description of 
how to use RMX/80 and the steps involved in 
using it by describing two applications. 

• An interrupt driven minimal terminal handler 
for a CRT or Teletypewriter. 

• A closed-loop analog control subsystem utiliz-
ing the Intel SBC 711 analog-to-digital board. 

Each example has diagrams illustrating the rela­
tionships between its tasks and exchanges. These 
are useful tools in conceptualizing the activities 
taking place in real time. Program listings of the 
applications are interspersed with text describing 
the application. 

OVERVIEW 

Real-time systems provide the ability to control 
and respond to events occurring asynchronously 
in the physical world. Later in this application 
note, a process control application is described 
that monitors and controls the temperature within 
several chambers. The system controls the process 
by simply turning on and off a heat source. The 
system could also display the temperature on an 
operator's console and permit entry of new set­
point temperatures and error ranges. 

A single large program could have been used to 
perform the functions in a sequential manner. 
However, this approach may not permit an opera­
tor to enter control variables at the same time the 
process is being monitored and controlled. In 
contrast, real-time systems do not operate sequen­
tially. A number of events may all be happening 
at the same time. This concurrence of events is a 
distinguishing characteristic of real-time systems. 

2·5 

BASIC CONCEPTS 

There are basically three concepts that the user 
must master to effectively use RMX/80. The first 
is the task, an independent program which com­
petes for resources within the system. The second 
concept is the message. Messages convey data and 
synchronization information between tasks. The 
third concept is the exchange. An exchange enables 
one task to send a message to another. As we will 
see later, the interaction between tasks and ex­
changes enables the user to implement mutual 
exclusion, communication, and synchronization. 
Mutual exclusion is a technique that controls 
access to a shared resource such as an I/O device 
or a data structure. 

Task 

Under RMX/80, the user codes a separate program, 
known as a task, for each event. An arbitrary num­
ber of these tasks execute concurrently and are 
subject to synchronization as required by their 
functions. Tasks share resources such as data struc­
tures and can communicate between themselves. 

Message 

A message is a unit of communication between 
tasks. Together with the exchange mechanism, it 
conveys information between tasks and can syn­
chronize their operations. 

Exchange 

RMX/80 uses message exchanges for task-to-task 
communication. An exchange is a pair of queues 
represented by a data structure at which messages 
are left by one task to be picked up by another. 
Tasks may send messages to an exchange, and may 
wait for messages at an exchange. A task which 
waits for a message may perform a timed or an 
untimed wait. A timed wait will terminate upon 
the receipt of a message or at the end of the speci­
fied period of time, even if it has not received a 
message. When a task does an untimed wait for a 
message it is guaranteed that the task will not exe­
cute again until a message is available for it. A 
representation of the exchange data structure is 
shown in Figure 1. 

GENERAL CHARACTERISTICS 

In addition to the basic concepts of tasks and ex­
changes, several other general characteristics of 
RMX/80 are relevant in this overview. 



Figure 1. Exchange Data Structure 

System Time Unit 

RMX/80 uses a system time unit that is the period 
of time between "ticks" of the system clock. The 
standard RMX/80 system time unit is 50 milli­
seconds. The system time unit provides timing and 
user task scheduling. A task may wait at an ex­
change for a specified number of system time 
units and then continue execution. A task could 
be written to generate messages at specific time 
intervals. Tasks waiting for the messages would 
then be scheduled according to those time intervals. 

Message Producing/Consuming Tasks 

In general, tasks can be classified as message pro­
ducing or message consuming tasks. The processing 
flow of these types of tasks are usually cyclic in 
nature and can be shown as follows. 

----_._----------------
TASK ENTRY POINT 

INITIALIZE TASK 

,------1 WAIT FOR ReQUEST 

PERFORM FUNCTION 

'-------' SEND RESPONSE 

CONSUMER 

TASK ENTRY POINT 

INITIALIZE TASK 

,---1 PERFORM FUNCTION 

INITIALIZE OPERATION 
(SEND MESSAGE) 

'-------' WAIT FOR RESPONSE 

PRODUCER 

Figure 2. Message Producing/Consuming Tasks 

A consumer task waits for a message to be posted 
at a particular . exchange and .takes control of the 
processor only when it has received a message and 
no other tasks of higher priority are ready to exe­
cute. The consumer task performs some action 
based upon the message and then simply resumes 
waiting until the next message is received. Usually, 
the consumer task acknowledges completion of 
its function by sending a response message to some 
other exchange associated with a task. 

2-6 

A producer task initiates its function by sending 
a message to another exchange and then surrenders 
control of the processor. The task continues to 
wait until it receives a response to its message. 

Notice that the distinction between these types 
of tasks is relative since most tasks both produce 
and consume messages. However, the producer/ 
consumer concept helps clarify the general struc­
ture of tasks-tasks are typically programmed 
loops. A producer task performs a function, sends 
a message, waits for a response, then loops back to 
begin again. A .consumer task waits for a message, 
performs a function, sends a response, then loops 
back to wait again. 

Interrupts 

Hardware interrupts are treated as messages from 
peripheral devices for which a task can wait, as If 
the interrupt were a message from some other task. 
These messages arrive at particular exchanges, 
called interrupt exchanges, but are otherwise treated 
as described above. The system provides the abil­
ity to mask particular interrupts so that no mes­
sages ever arrive at a particular interrupt exchange 
associated with the masked interrupt. In the event 
that the overhead associated with turning an inter­
rupt into a message is too high, the interrupt can 
be treated by the user directly via a user supplied 
interrupt service routine. 

Task States 

Tasks may exist in a number of states. A task is 
running if it actually has the processor executing 
instructions on its behalf. A ready task is one that 
could be running (any wait for a message or time 
period has been satisfied), but a higher priority 
task is currently running. A task is waiting if it 
cannot be ready or running because it is waiting 
at an exchange for a message. A suspended task is 
one that is not permitted to run or compete for 
system resources until it is resumed. The rela­
tionships between the task states are illustrated in 
Figure 3. 

Priority 

Each task has associated with it a priority that in­
dicates its importance relative to other tasks in 
the system and relative to the interrupts of peri­
pheral devices. RMX/80 schedules a task for exe­
cution based on the task's priority. Whenever a 
decision must be made on which task should be 



run, the highest priority ready task is chosen. Each 
of the eight hardware interrupt levels has a set of 
priorities, one of which must be assigned to the 
task that services the interrupt. When an interrupt 
occurs that task is executed if it is the highest 
priority ready task. At the time a higher priority 
task preempts a lower priority task, RMX/80 
saves all the relevant information about the pre­
empted task so it can eventually resume execution 
as though it were never interrupted. This process 
is known as a context save. 

II I 
RUNNING 

----
READY 

L I SUSPENDED 

I 

WAITING 

1 

Figure 3. Task States 

NUCLEUS OPERATIONS 

The RMX/80 nucleus provides several operations 
that you can access with programmed calls. Two 
basic operations are covered in this section (addi­
tional operations are described in the RMX/80 
User's Guide): 

• RQSEND, send a message to an exchange 

• RQWAIT, wait for a message or time interval 

These two operations provide the capability to 
pass messages between tasks in a system running 
under RMX/80. 

Message Fonnat 

The messages used by the send and wait operations 
to convey information between tasks are variable 
in length and contain the infonnation shown in 
Figure 4. 

2-7 

o 
2 

4 

5 

7 

9 

LINK 

LENGTH 

TYPE I 
HOME EXCHANGE 

RESPONSE EXCHANGE 

REMAINDER 

+ I ndicates optional 

Figure 4. Message Format 

(BASE) 

+ 
+ 

+ 

Fields 

I. LINK - a 2-byte field used to enter the mes­
sage on a linked list at an exchange. 

2. LENGTH - a 2-byte field containing the total 
length of the message in bytes. The minimum 
message length is 5 bytes (LINK, LENGTH, 
and TYPE). 

3. TYPE - a I-byte field indicating the type of 
message. 

4. HOME EXCHANGE - an optional 2-byte 
field containing the address of an exchange to 
which this message should be sent when it has 
no further use. This field is very useful in im­
plementing and managing a pool of messages. 

5. RESPONSE EXCHANGE - an optional 
2-byte field containing the address of an ex­
change to which a logical response to this 
message should be sent. This field is intended 
to specify the exchange at which a sending 
task is waiting for an acknowledgement 
message if one is needed. 

6. REMAINDER - an optional field of arbi­
trary length that may contain any data por­
tion of the message. 

Sending a Message to an Exchange 

The RQSEND operation enables a task to post a 
message at an exchange. When you send a message 
to an exchange, RMX/80 actually posts only the 
address of the message at the exchange, not the 
body of the message. RMX/80 avoids the overhead 
required to move an entire message to an ex­
change. Thus it is possible to queue a number of 
messages at tire same exchange with little overhead 
in either execution time or memory requirements. 
When a task sends a message to an exchange, sev­
eral functions are performed. 



• The message is placed on the specified ex­
change. 

• If there are one or more tasks waiting at the 
exchange, the first task is given the message 
and is made ready. 

• If a higher priority task is thereby made 
ready, the sending task loses control until 
it once again becomes the highest priority 
ready task. 

After a message is sent to an exchange, it must not 
be modified by the sending task. A task which then 
receives the message by waiting at the exchange 
where the message has been posted is free to modi­
fy the message. The format of the RQSEND opera­
tion is as follows. 

RQSEND( exchange-address,message-address) 

Message exchanges are defined by the user, and are 
normally addressed symbolically. For example, 
the exchange used to pass readings from an analog­
to-digital (A/D) task might be named ATODEX. 
The reading itself could be contained in a message 
with the name RDNG. Thus, a typical call for a 
send in a PL/M program might be as follows: 

CALL ROSEND (,ATODEX,.RDNG) ; 

The call procedure in assembly language is as 
follows. 

LXI B,ATODEX 

LXI D,RDNG 

CALL ROSEND 

The assembly language rules for passing parameters 
to RMX/80 are the same as for passing parameters 
to a PL/M procedure called from an assembly lan­
guage module. For 2-byte parameters, the first 
parameter is passed in the Band C registers; the 
second parameter is passed in the D and E registers. 

Waiting for a Message or Time Interval 

The RQWAIT operation causes a task to wait for 
a message to arrive at an exchange. It is also pos­
sible to delay execution of a task when no message 
is anticipated for the task. The task simply waits 
for the desired time period at a message exchange 
where no message is ever sent. When a task waits 
for a message at an exchange several operations 
are performed. 

2·8 

• The task is made to wait until a message is 
sent to the specified exchange, or until the 
time limit has expired. 

• When a message is available, its address is 
returned to the task. 

• If the time limit expires before a message 
becomes available, a system TIME$OUT mes­
sage is returned to the task. 

The format of the RQWAIT operation is as follows. 

RQW AIT( exchange-address, time-limit) 

The time limit is eritered as some number of sys­
tem time units (50 milliseconds); a I-second wait 
is equal to 20 time units. If zero is specified the 
wait is not timed, producing an indefinite wait 
until a message is actually sent to the exchange. 
Note that a specified wait of five time units may 
sometimes only produce an actual wait of four 
time units. This can occur if you enter a wait 
immediately before the clock "ticks." In this 
case the count would be decremented immediately 
after entering the wait. Only four full time unit 
periods would lapse before completion of the 
wait. Thus a user who wishes to ensure that at least 
five time units are spent in an asynchronous wait 
must specify six time units in the wait operation. 
A task which waits synchronously to the system 
clock, i.e., performs repetitive timed waits, does 
not have this problem because a new wait is exe­
cuted following a tick that satisfied the previous 
wait. The following are typical calls for the 
RQWAIT operation. 

PL/M 

PTR = ROWAIT(.ATODEX,20) ; 

The RQWAIT procedure returns an address value 
which is the address of a message. 

Assembly Language 

LXI B,ATODEX 

LXI D,20 

CALL ROWAIT 

The address of a message is returned in the HL 
register pair. 



Send - Wait Interaction 

To a large extent, the power of RMX/80 as a pro­
gramming tool is derived from the interaction 
between send and wait. The interaction includes 
three multi-tasking operations. 

• Communication 

• Synchronization 

• Mutual Exclusion 

In describing these operations, a graphic notation 
for diagramming tasks, exchanges, and their 
interaction (send and wait operations) is useful. 
The notation is described in the next section on 
communication. 

Communication. The most common interaction 
between tasks is that of communication - the 
transmission of data from one task to another 
via an exchange (Figure 5). 

TASK 
A 

Figure 5. Communication 

TASK 
B 

Rectangles designate tasks while circles represent 
exchanges. Arrows that are directed from tasks to 
exchanges indicate send operations. Wait opera­
tions are shown by arrows directed from exchanges 
to tasks. 

Figure 5 shows an example of communication 
between task A and task B. Task A sends a message 
to exchange X and task B waits for a message at 
that exchange. Task A is the message producer 
and task B the message consumer. 

Synchronization. At times there is a requirement 
to send a synchronizing signal from one task to 
another. This signal can take the form of a message 
that contains only header information, that is, 
LINK, LENGTH, and TYPE. 

Let us consider the implementation of a task 
scheduler, used for the purposes of synchronizing 
another task that performs a particular function 
at periodic intervals. The relationship between the 
tasks and exchanges is shown in Figure 6. 

2-9 

Figure 6. Synchronization 

Task A, the scheduler, performs a timed wait on 
the X exchange. Note that the full wait period 
will always occur because there is no task that 
is sending messages to exchange X. In this manner, 
a specific timed wait by task A precedes the pass­
ing of a synchronization message from task A to 
task B via exchange Y, and then the return from 
task B to task A via the Z exchange. 

If task B waited on X directly, rather than using 
task A for scheduling, it would be scheduled n sys­
tem time units from when it waits instead of n 
units from the last time it was awakened. A com­
parison between the two methods is shown in 
Figure 7. 

TIME TIME 

-~ oBnB non 

TASK B WAITING DIRECTL Y ON X TASK A SCHEDULING TASK B 

Figure 7. Scheduling Methods 

Mutual Exclusion. In an environment with multi­
tasking, resources often must be shared. Examples 
of shared resources include data structures and 
peripherals such as the Intel SBC 310 Math Module. 
Mutual exclusion can be used to ensure that only 
one task has access to a shared resource at a time. 
Figure 8 shows how an exchange can be used to 
limit access to a resource. 



TASK 
A 

TASK 

• 

TASK 
N 

Figure 8. Mutual Exclusion 

In this example, the X exchange is sent a single 
message at system initialization. Then, as tasks re­
quire the resource, they wait for a message from 
the X exchange. When the message is received, 
the task knows it has sole access to the resource 
because there is only one message associated 
with the exchange. After the task finishes with 
the resource it sends the message back to the X 
exchange. The next task waiting for the resource 
continues, knowing it has exclusive access to the 
resource. 

EXTENSIONS 

RMX/80 has several extensions which provide 
operations commonly used in real-time applica­
tions. The nucleus of RMX/80 requires less than 
two thousand bytes of memory and includes all 
of the basic operations. The extensions include a 
Free Space Manager, Terminal Handler, Disk File 
System, and a Debugger. 

FREE SPACE MANAGER 

The Free Space Manager maintains a pool of free 
RAM and allocates memory from that pool upon 
request from a task. The Free Space Manager also 
reclaims memory and returns it to the pool when 
it is no longer needed. 

The Free Space Manager is especially useful in two 
applications. The first application arises from the 
need for variable length messages. If you have a 
task that produces messages of variable length, 
such as a task sending text for display on a CRT, 
the Free Space Manager can be used to provide 
a message to meet your exact size requirements. 

2·10 

An alternate solution is to maintain a pool 
of large fixed length messages. The pool can be 
maintained without the Free Space Manager; 
however, memory is wasted because of the unused 
space remaining in the fixed length messages. 

The second application of the Free Space Manager 
relates specifically to effective use of memory. 
In a typical application, the total RAM require­
ment is computed by adding up the maximum 
RAM requirements for each task in a system as 
shown in Figure 9. 

TASKC 

ROM 

TASK A 

RAM l MAXe 

RAMTOT AL .. MAXA + MAXS + MAXC 

Figure 9. RAM Requirements 

The efficiency of memory utilization is a function 
of the total RAM memory needed during typical 
system operation. Reducing the total amount of 
RAM by sharing it among the. tasks often has 
little impact on total performance. However, signi­
ficant cost advantages may be gained by reducing 
the total amount of memory. The memory require­
ments can be calculated as the minimum RAM for 
each task plus the pool (shared memory), as shown 
in Figure 10. 

TASKS 's ' ROM 
TASK A TASK C 

ROM ROM BEl MINA RAM } MIN. BEl MINe 

POOL 

D 
RAMrOTAL = MINA + MINs + MINe + POOL 

Figure 10. RAM Requirements Using a Pool 



TERMINAL HANDLER 

The Terminal Handler provides real-time asyn­
chronous I/O between an operator terminal and 
tasks running under the RMX/80 executive. The 
Terminal Handler provides a line-edit capability 
similar to that of ISIS-II and an additional type­
ahead feature. (ISIS-II is the diskette supervisor 
system used on the Intellec Microcomputer Devel­
opment System.) Access to the Terminal Handler 
is provided by two exchanges where messages are 
sent to initiate read and write requests. 

Several features of the Terminal Handler have 
been incorporated specifically to facilitate interac­
tion with the debugger. Because of this interaction, 
the Terminal Handler is required for operation of 
the debugger. 

DISK FILE SYSTEM 

The Disk File System (DFS) provides users of 
RMX/80 with disk file management capabilities. 
This system allows user tasks to create, access, and 
maintain disk files in a real-time environment. This 
means that many I/O requests can be processed 
concurrently, rather than one at a time. 

In addition to the file handling services, DFS pro­
vides a program loading facility that allows you to 
load program segments into memory from disk. 

The DFS can be configured to include only those 
functions which you require. For example, if 
your disk accesses are sequential rather than 
random, you omit the SEEK function. This philo­
sophy of minimizing memory requirements by 
including only the functions your application re­
quires is found in virtually all aspects of RMX/80. 

DEBUGGER 

An environment that is continually changing in 
response to asynchronous physical events can pre­
sent a serious debugging challenge. The Debugger 
aids you in debugging tasks running under the 
RMX/80 executive. The Debugger provides a 
command language that can be used to passively 
display information about the system, or actively 
modify and interact with the system. 

Passive Functions 

Because RMX/80 manages a fairly complex set of 
data structures, the Debugger has the capability 
of displaying them in an intelligible format. The 
Debugger can be used in this manner to view 
tasks, exchanges, messages, and other data struc-

2-11 

tures maintained within the RMX/80 environment. 
The contents of all RAM and ROM memory loca­
tions may also be displayed by the Debugger. 

Active Functions 

The active Debugger functions include those of 
modifying memory, setting breakpoints, and moni­
toring stack overflow. The memory modification 
commands enable you to update the contents of 
memory and to move a series of bytes from any 
location to any other location. 

Breakpoints can be set, allowing you to gain con­
trol when encountered by a task. Two kinds of 
breakpoints are supported: execution breakpoints 
and exchange breakpoints. An execution break­
point can be placed at any instruction within read/ 
write (RAM) memory. When the breakpoint is 
reached, the task encountering the breakpoint is 
stopped from further execution. The task registers 
may then be examined and modified before resum­
ing execution. 

Exchange breakpoints can be used to detect 
RQSEND and/or RQWAIT operations performed 
on specified exchanges. The exchange breakpoint 
can thus enable you to monitor the activity of any 
of the exchanges in your system. The task execut­
ing the appropriate RQSEND or RQWAIT to an 
exchange which has a breakpoint is stopped, allow­
ing you to examine the task. This enables you to 
breakpoint a ROM resident task. The breakpointed 
task and the message involved in the operation 
with the exchange may then be displayed and 
modified before resuming execution. 

The debugger can also be used to monitor stack 
overflow. This function is provided by the De­
bugger SCAN command which examines the stacks 
of all tasks in the system at a specified periodic 
interval. The fact that each task's stack is initialized 
with a unique value allows stack overflow to be 
detected. When a task stack overflows, it is re­
moved from the system and a message is displayed. 

USING RMX/80 

This section of the application note describes the 
steps involved in using RMX/80. The process 
begins with the definition of the individual tasks 
and exchanges in your application. It continues 
with a discussion of the data structures that you 
must prepare. The task coding, compilation or 
assembly, linking, and locating is also described. 



Finally, some comments are directed towards de­
bugging tasks within the RMX/BO envirnment. 

Before the details of using RMX/BO are discussed, 
some general observations are necessary to deter­
mine the suitability of RMX/BO for your applica­
tion. To effectively utilize RMX/BO, your applica­
tion must either use interrupts or require device 
polling. Thus, the key element is the need to 
respond to external events. If your application 
satisfies this criteria, it is a likely candidate. How­
ever, you must then determine if RMX/BO is capa­
ble of supporting your application. This can be 
done by examining your interrupt response time 
and frequency requirements. The time required to 
transform an interrupt into a message that is sent 
to an interrupt exchange is approximately BOO 
microseconds for an SBC BO/20. This is the 
RMX/BO interrupt latency. It can be reduced to 
60 microseconds by handling the interrupt directly, 
using the RQSETV operation to bypass the 
RMX/BO interrupt exchange mechanism. In this 
latter mode, an interrupt-driven asynchronous 
block transfer rate of about 10kHz can be achieved. 

TASK AND EXCHANGE DEFINITION 

The initial design step for an application that runs 
under the RMX/BO Executive is to define your 
tasks, exchanges, and the interaction between 
them. This is perhaps best accomplished using the 
graphic notation introduced earlier in the section 
on Send - Wait Interaction. The graphic notation 
provides a clear picture of the relationships be­
tween the tasks and exchanges in your system. 
You can begin either in a top-down or bottom-up 
fashion. That is, you can use a top-down approach 
to define, at a gross level the operation of your 
system and then gradually break it down to the 
individual tasks. Or, you can start with the tasks 
associated with the external events in your appli­
cation and then build the pieces to form the gross 
structure of your system. 

The bottom-up approach forces you to begin with 
external events that drive your system. The num­
ber of these events, the amount of processing 
required, and the relationships between them 
define the tasks and exchanges in a system. For 
example, consider a system that samples an analog 
input with an A/D converter. Assume that the A/D 
provides an interrupt at the completion of a con­
version. To use the data from the A/D converter it 
may also be necessary to scale it and add an offset. 

2-12 

With this information the portion of the task and 
exchange definition that relates to this function 
can be constructed. 

Begin with the external event, the interrupt from 
the A/D. An 'interrupt priority level must be as­
signed to the A/D converter. This same level will 
be used by the task which waits on the interrupt 
exchange. 

The relationship between the interrupt exchange 
and the A/D task is shown in Figure II. If pro­
cessing must be performed on raw data from the 
A/D, a second, lower priority, task could be used. 
Another task for this function will require a syn­
chronizing signal from the ADC task to indicate 
that raw A/D data has been obtained and is ready 
for processing. 

QO 
~ 

Figure 11. I nterrupt Exchange and AID Task 

The interaction between the ADC task and the 
CONY task that processes the raw A/D data is 
shown in Figure 12. Two exchanges provide 
synchronization. The ADC task uses the TRGR 
exchange to signal that data is ready for process­
ing by the CONY task. The CONY task uses the 
RTRGR exchange to signal the completion of its 
processing and thus its readiness to accept more 
raw data. 

Q 
~~~ 

&:~ p
Figure 12. ADC and CONV Task Interaction

In this example two tasks and three exchanges
have been defined. To develop an entire system,
the tasks and exchanges associated with all of the
external events in the system can be defined in
the same manner. Then, proceeding bottom-up,
the next step is to define the tasks and exchanges
required to support the interaction between tasks
running at the level of the real-time events.

After defining the entire application, you can begin
actual coding of the tasks. You may choose to
code in either assembly language or the PL/M 80
high-level language. Where possible, it is desirable
to code in PL/M because PL/M lends itself to
structured programming. Assembly language often
encourages an ad hoc approach. Even if your appli­
cation ultimately requires assembly language coding
because of critical time and/or space parameters,
initial design work in PL/M followed by transla­
tion into assembly language is recommended.

A total of IS operations are supported by the
RMX/80 nucleus. Only two of the operations,
RQSEND and RQWAIT, are described in any detail
in this application note. The remaining operations
are described in the RMX/80 User's Guide. The
reason for presenting only the send and wait opera­
tions is because they are sufficient for the imple­
mentation of a large number of real-time applica­
tions. These two operations provide a great deal of
power and flexibility, yet their simplicity should
enable those who are new to real-time program­
ming to quickly develop applications.

PRIORITY ASSIGNMENT

The relative priority of tasks within a system run­
ning under RMX/80 determines which task is to
be executed. Therefore, the assignment of a pri­
ority to each task is extremely crucial. For exam­
ple, consider a compute bound task placed at a
higher priority than an interrupt-driven task
responsible for servicing an I/O device. This im­
proper assignment of priorities could result in
missed interrupts from the I/O device. Several
steps can be followed in the assignment of task
priorities.

I. Assign hardware interrupt priority levels
according to the requirements of your appli­
cation.

2. Specify priorities for the tasks which service
the interrupts. These tasks should generally
be short and serve only to perform the data

2-13

transfers. A second task with a priority lower
than those assigned to the hardware inter­
rupts should be used where further processing
of the data is required.

3. Priority assignment should be made for all
other tasks in the system based on the relative
importance and interaction among the tasks.

Unfortunately the last step in assigning task pri­
orities is largely intuitive. In fact, you may need
some empirical data from actually running your
application before you settle on your final task
priority assignment.

STATIC DESCRIPTORS

When a system running under RMX/80 begins
execution, several tables of data are used to ini­
tialize the system. These tables usually reside in
ROM. The first table is the create table (RQCRTB)
that specifies the number of tasks and exchanges
in the system, and the addresses of the initial
task table and the initial exchange table. The ini­
tial exchange table contains the addresses of all
the exchange descriptors. The initial task table
contains the static task descriptors for each task,
and contains the following task parameters.

1. Name

2. Initial PC - the location at which'to start
task execution

3. Initial SP - the location at which to start
the task stack

4. Stack length

5. Priority

6. Initial Exchange (described in the RMX/80
User's Guide)

7. TD Address - the RAM address of the task
descriptor

You must prepare all three of these tables to pro­
duce a configuration module for RMX/80. The
release diskette for RMX/80 includes a set of files
which contain assembly language macros that sim­
plify the preparation of your configuration module.
The relationship between these tables is shown in
Figure 13.

COMPILATION / ASSEMBLY

Preparing program segments for compilation and
assembly can be simplified by use of files provided
on the RMX/80 diskette. As described in the last

section, a set of macros is included to assist you in
preparing your configuration module. Other files
are provided that are useful when coding calls to
RMX/80 and preparing data structures in PL/M.

ROCTAB ITT lET

ITT POINTER I--~ ,.. EXCHANGE·ADDRESS·'

c1AJ~T I STD2 EXCHANGE·ADDRESS·2

JET POINTER . .
EXcGJiuA:rGEJ STDn EXCHANGE-ADDRESS-" -

Figure 13. ROM Based Tables

By coding in a modular fashion you can separately
compile and maintain tasks. This is advisable since
a single large module containing all your tasks
would require a lengthy recompilation to change
anyone of the tasks. Following the compilation
and assembly of your source code modules, a
library containing the object modules can be
created.

LINKING

The process of linking prepares a single object mo­
dule from libraries containing the RMX/80 object
modules and your own application libraries or se­
parate object modules. The order in which you
specify the files to be linked is crucial to successful
linking. In general, your libraries or separate object
modules should be specified before the RMX/80
libraries. The link command should conclude with
the unresolved library (UNRSL V. LIB) that con­
tains miscellaneous modules for resolving PUBLICs
not used in the application code. PUBLICs extend
the scope of variables to allow linkage between
separate program modules. Figure 14 illustrates
how an application program is linked from RMX/80
and user tasks.

LOCATING

It is appropriate in this section to give some guide­
lines regarding the assignment of RAM and ROM
address space for your Single Board Computer
environment. The SBC 80 Single Board Computers
have ROM based at location O. Since the LOCATE
program places all code in a contiguous block, the
code must begin at location O. Likewise, the read/
write (RAM) data is also placed in a contiguous
block. The base address of data should be placed
at your RAM base address. Depending on the

2-14

amount of code space required by your applica­
tion it may be necessary to move the RAM mem­
ory base address on your SBC to a higher location.
A ST ACKSIZE of zero should be specified because
you allocate stack for each RMX/80 task in the
static task descriptors.

DEBUGGING

As mentioned in the overview of the RMX/80 De­
bugger, the real-time environment is a complex
one in which to debug your programs. Intel pro­
vides two tools that you can use for debugging.
The RMX/80 Debugger and the Intel In-Circuit
Emulator (ICE). It is desirable to have both of
these debugging tools at your disposal.

Figure 14. RMX!80 Linking

ICE enables you to use Intel Microcomputer Devel­
opment System memory in place of SBC 80 mem­
ory. This allows RAM residency during your debug­
ging as opposed to programming PROMs for each
iteration. Your system may initially fail before the
RMX/80 Debugger can begin operation. In this
situation ICE can be used to debug your program.

APPLICATIONS

RMX/80 is suitable for a wide variety of applica­
tions. Two specific examples are presented in this
application note. Each example illustrates the
steps involved in using RMX/80 and provides a
detailed description of the coding itself.

MINIMAL TERMINAL HANDLER

The basic functions required for a terminal handler
are well defined. The handler must respond to

operator input, transmit output characters, and
echo characters as they are entered. This applica­
tion note describes one implementation of a mini­
mal terminal handler.

The terminal handler presented here is not the
RMX/80 Terminal Handler. It does provide some
common functions and uses the same exchanges
and message formats. However, many features
of the RMX/80 Terminal Handler have been left
out. Omitted features include special hooks to run
with the Debugger, an alarm exchange, control S,
Q, and 0 operations.

As described in the chapter on using RMX/80, the
process of developing an RMX/80 application be­
gins with the definition of the tasks and exchanges.
The graphic notation is used to prepare a diagram
(Figure IS) showing the tasks, exchanges, and their
interaction.

RDMIN
TASK

8RQL6EX RECEIVER

~ADV/ ____________ ~
~_ USART

WRMIN
TASK

Figure 15. Minimal Terminal Handler

As shown in Figure 15, the RDMIN task waits
on the RQINPX exchange for input requests. The
RDMIN task also successively waits on the RQL6EX
andRQL 7EX exchanges. It uses the RQL6EX
exchange to determine when a character has been
received by the USART. The RQL 7EX exchange
is used to indicate when the transmitter is ready
to accept another character. RDMIN uses RQL 7EX
for echoing input characters.

The WRMIN task waits on the RQOUTX exchange
for output requests. When it receives a request, it

2-15

waits on the RQL 7EX to determine when charac­
ters can be sent to the US ART.

The following listing* shows the RDMIN and
WRMIN tasks. These tasks provide a minimal ter­
minal handler. The program is written in PL/M.
The WRMIN task is also presented in assembly
language in Appendix B. The program listing is
interspersed with explanatory text. The program
begins with the program segment label "MINI­
MAUTERMINAL$HANDLER:" and a DO state­
ment.

MIl'<l MAL:;>l'LkM I'NAL$ tIANCL!::k:

t.0;

Several macros are declared using the reserved
word LITERALLY. These macros are expanded
at compile time by textual substitution.

DE.CLAlU. 11Wl:: LIT!:.MLLY '0FFH';
DI..CLARL F0fiI:;Vl;R LI'lERALLY '"HILJ:: 'l:kUE:':

/. SI'<:CIAL ASCII CHARAC'rI:;RS */
Of-CLARE

BI:.LL
LF

" CONTftOLSk
CONTkOL$X
esc
RueOUT

LITE.RALLY '0!7fl',
LITERALLY '01111'.
LI'l'ERALLY '0I)H',
Ln'CRALLY '12H',
LITERALLY' ISU',
Ll1'<.1<.ALL'1 'lBH',
LITE:RALLY '7FH';

Some macros are used to simplify the declaration
of RMX/80 data structures. The structures de­
clared here are for the exchange descriptor, inter­
rupt exchange descriptor, and the messages used
by the minimal terminal handler.

5 1

, 1

t.;t.CLARE EXCHANGL$DE~CkIPT0R LITERALLY ,'STRUC'I'URE (
MESSAGE$III:.Au AOL;f<£SS,
ME.SSA(;E.$'rAIL ADDRI:.,sS,
'lASK$HE.AD ADDFt.SS,
'lASK$TAIL ADuIU.SS.
I:.XCHANGE$LINK ADDRESS)':

OE.CLAIU .. IN'I'$I;.XCtlANGE$DE.SCRlI'TOR LITERALLY 'STRUCTURE (
ME.SSAGE$HI:.AD ADDR<'SS,
M.l:.SSAGE$TAlL AODR!::SS,
TA~KSHEAD ADDRESS,
TASK$TAI L ADDRE-S5,
EXCHANG.I:.$LII><K ADDkI:.SS,
LINK ADDRESS,
LENGTH ADDRf:SS,
TYPE BYTE) • J

DECLARE 'l'h$MSG Un-RALLY 'STIWC'IURf.(
Llt'<K AODkf.St.,
LI:.t<GTH A[;IJIU.S5,
TYt'£ Il'l:Tt.,
h0ME$I:.XCHAr.GI:. AuCR!;;::;S,
RL!>I-'Or. .. E$EXCI,IINGI:. A['['RI;.SS,
5'l'A'lU5 AOIJld:.SS,
IJUFFI:.RSAIJDht.SS Af-uH!:.::;S,
COUNT AOCkt.SS,
ACt-lIAL Af-t,RI:.SS)';

The following macros are specifically for the SBC
80/20. The macros require changes to run the
minimal terminal handler on a different Single
Board Computer. Intel 8253 timer/counter and
8251 USART chips are used.

'Full size listings in Appendixes A and C.

" 11
12
13

15
16
17

18

j'
8253 PORT At:.DRi:.SSE.S.

'j
GlCLARf. A82S1$MODE LITERALLY '0DfH';
DlCLARE A6253$CTk2 Ll1l:.RALLY 'ilDE.h':

j'
8253 COMMANDS.

'j
DECLARE SELECT$2 LIT£RALLY '1~iH10ilIHIB' I
DECLARE RL$BOTH LITERALLY • iHlIHHlil0S , :
DECLARE MOO£$3 LITERALLY '00000110B';
DECLARE B24110 L!n.RALLY 'SelCH':

/.
8251 PORT ADDRE.SS£S.

'j
PECLARE USART$IN Ll'rERALL'i 'il£CH'.

/.

USAIiT$OUT LITI:RALL'i 'ilECh'.
USARTSCUN'I'ROL LITERALLY 'il£Dh':

8251 MODES.
'/
DECLARE STOPSl LITf.RALLY I iIllHHHI00B' :
DECLARE eLB LITERALLY 'IHHI011IHIB':
DECLARE kA'I'E.$16X LITEkALLY '00111:1110111S':

/.
8251 COHMANPS.

'/
DECLARE USAR1'$RES£.1 LITERALLY '01000000B'.

fITS LITERALLY I IHllll\liHIi!S' ,
t.kROR$RES£.T LI1'ERALLY '0011100088'.
RXE LI'l"f.RALI..'i '000001008',
DTR LITERALLY '0001HlillilB',

LITERALLY '00i10~iHIlB';

RDMIN and WRMIN call three RMX/80 opera­
tions. They are RQSEND, RQWAIT, and RQEL VL.
RQSEND and RQW AIT allow tasks to send and
receive messages from exchanges. RQEL VL enables
a specific interrupt level.

" 21

"
21
24

J;.,.SEt'lD:
I'kOCEDlihE (EXCIiANGE.$POlt'lTER, ME.SSAGE$POINTER) EXTERNAL;

DECLARE. (EXCHANGE$FOINtER,MI:,SSAGE.$FOINtER) ADDRESS;
I:.t'lu RIJSEND/

R,.I<IAI1 :
PROCEDURE. (EXCHANGI::$POIt-ITE.R,DE.LAY) ADDRESS EXTERNAL;

DE.CLAJ;.L (LXCHANGL$POIN'IE.R,DELAY) ACORESS;
Et.D fI Al'f;

2~ h\;I:,LVL:
PflOCEDUKE. (Ll:.VE.L) EXTI:,RNAL;

2& DECLARE LEVLL BYTI:.;
27 END R LLVL;

The exchange descriptors and interrupt exchange
descriptors must be PUBLIC because they are
referenced by the configuration module.

2B DI:.CLARE k"lNPA EXCHANGE$DESCEi.lPTOR PUBLIC;
29 uLCLARE RIoOLiTX EXCHAt-IGI:.$DESCRlPTOR PUBLIC;

)IJ DECLARE R/wL6EX INT$I:;XCHANGE$DESCRIFTOR FUBLIC;
31 Df.CLARE R L7f.,X INT$EXCI1At'lGE$Df.SCRlPTOR PUBLIC;

The following procedure initializes the 8253 and
8251 (USART). The 8253 generates the baud rate
clock (2400 baud in this example). The program
sends four nulls to the USART control port to
ensure that the USART is ready for a command,
no matter what state it was previously in. The pro­
gram then sends a reset command to the US ART,
followed by the mode and another command.

"
))

14

J5

"
J7
J8

"

INITIALIZATION;
PkOCEC.URE;
OUTPUt(AIl2~)$MOOL) .. SELECT$2 OR RL$BOTH OR MODE$3;
OU1'PU1'(AB2S1$CTk2) = LOI<II(6241HI);

ou'rpU1'(A82~3$C1'R2J .. ItIGIt(B241:1Ilj;
OUl'PU1' (U5AflT$C()Nl'ROLj ,
OUTPUT (USAfll'$CON'l'ROL) ,
OU'I'PUT (USART$CONTROL) ,
OU1'PUT (USAR1'$CONTRULj " 0;
OUTPUT(lISAkT$C(JN1'ROLj = USART$RESET;
UUTPUT(USAR1'$CON'I'kULj = S'l'OP$l Of{ CLB OR RATL$16X;
OU'I"I'UT(USAkl'SCOt-l1'kGLj = RTS OR i::kROR$RLSET OR

RXE OR OTR OR '{'XEN;
I:,t-ID INI1'IALIZAT10N;

2-16

Tasks coded in PL/M take the form of parameter­
less PUBLIC procedures. The procedure declara­
tion is followed by the variables used in RDMIN.
MSGPTR receives the address of an input request
message. The based-variable MSG accesses the
data in the input request message. INTMSG is a
dummy variable which simply receives the address
of the interrupt message. BUF$ADDRESS points
to the buffer where the input characters are to be
placed. The BUF array is based at the buffer
pointed to by BUF$ADDRESS.

41

" 41
44
45

RD$MIN:
?ROCEDUR\:. >'UBLIC;

I)r;CLARE (MSGP1'f{, INTMSG, BUr$ADDRESSJ ADDRESS;
CtECLAkE (CHAR,PTk,I) BYTE;
[)I:;CLARE MSG BASf.D MSGPTR TH$MSG;
DECLAkE (BLiF BASE.[) BlJrSADDRESS) (1) BYTE;

The RDMIN task echoes characters after they are
read in. The ECHO$CHAR procedure performs this
function. It waits for a level 7 interrupt, indicating
that the transmitter is ready for another character.
ECHO$CHAR then transmits the character.

46

47
48 .,
"

\:.CIlO$CIlAf..,
PROCEDUkf. (ChARI;

DECLAftE CHAR BYTf.;
INTMSG '" kQwAll (.RQLnX,0);
OU1'PU'l'(USAkl'SOU1') = CHAR;

f.t.D E.CHOSCI1AR;

Execution of the RDMIN task starts with the next
statement, a call to the initialization procedure.
This call is followed by two calls to the procedure
which will enable interrupt levels 6 and 7.

51

" 53

CALL INITIALlZAl'HJN;

CALL flVELVLi6J;
CALL f<\iELVL(7);

The basic structure of an RMX/80 task is that of
a program with an imbedded infinite loop. This
loop starts with the DO FOREVER statement.
In the continuous loop, the task waits for an input
request message. This wait is satisfied when some
other task in the system sends an input request
message to the RQINPX exchange. The based
variable used to point to BUF is assigned from a
field in the input request message, MSG.BUF­
FER$ADDRESS. An index for the BUF array,
PTR, and the variable CHAR are initialized.

54
s;
56
57

"

DU rOk\:.Vl:.k;
MSGPTR = R(jwAIT(.RUINPX,0}:
(lUf$ADDRr:.S:' = MSG.BUff'l,R$AODRESS - 1:
<''IR ,. 11;
CHAR" N01' Ck;

Task execution continues inside the next loop
until a carriage return (CR) is input. An escape
character (ESC) within the loop simulates a CR

which enables an exit from the loop. The task
simply waits on the RQL6EX exchange for a mes­
sage: This amounts to an interrupt service routine.
When the wait is satisfied, the USART has received
a character.

59

"
DO wltILE. CHAft <> CHi

It.'I'MSG " kl,JwAIT(.RQLf'if.X,0J;

The next statement performs a whole series of
operations. The character input from the USART
is logically ANDed with 7FH to mask off the parity
bit, assigned to the variable CHAR, and tested to
determine if it is a RUBOUT character. If a RUB­
OUT is found, either a BELL is echoed to the ter­
minal if there are not characters to delete in the
buffer (PTR = 0), or the last character in the
buffer is echoed and the pointer is decremented.

61
62
63
64

" 66
67
68
69

If (CHAI< ;" INPUT(U5Ak'l'SIN) AND 7FH) .. RUBOUT THEN
DO;

If' PTk " ~ 'tItI::N
CALL ECHCi$ClJAR(BELL);

ELSE.
DO;

CALL ECHG$CHAR (BUF (PTR)) ;
P'I'R .. f'TR - 1;

END;
END;

If CHAR is not a RUBOUT, it is tested for a
CONTROL$X. The function of a CONTROL$X
is to delete the entire line by resetting PTR to
zero. After deleting the line, the system prompts
the operator with a "#" character and is ready to
accept a new line.

" 11
72
73
74
7S
76

"

ELSE
DO;

IF CHAR = CONTROL$X ThEN
DO;

CALL ECHO$CHAR (' ••) I
CALL ECHO$CIlAR(CR) I
CALL ECHO$CHAR (LF I;
PTR = 0;

I::ND;

The next test determines if CHAR is a CON­
TROL$R. CONTROL$R echoes the entire line
that has been entered. This function is useful for
displaying a line containing a number of RUBOUTs.
Such lines can be difficult to interpret because
RUBOUT echoes deleted characters. Because
CONTROL$R echoes only the remaining data
in the buffer, it eliminates "garbage" from the
display.

7b S

B

'" 81
82
83
8'
ss
86

DO;

IF euAk " COt.'l'kOL$k ThEN
DO;

CALL I::CHOSCltflk(Ch);
CALL f.CfJU$CttAR (LF);
[10 I " 1 TO 1'1'1'1

CALL lCIJUSChAk (btl!' (I));
t.M);

It<G;

2·17

The character is then placed in the buffer unless
the end of the buffer has been reached. If the
buffer is full, a BELL is sent to the terminal.

87

" 89

" 91

" 93

DO;
H P'I'k (HSG.C('Ll'<l 'lhl:.N

lllJ~'(l"rk := l"lk+lJ = <.:Iiflk;
!:.LSI:;
DU;

If (hflH <> Ck 1hl:.t'<
CUlIK '" BUL;

I:.r-<C;

The last test is for an ESC character. It is echoed as
a "$" and is treated as if a CR were entered.

94 If' CrlAl{ = 1:.,,('I)11:./11
95 Lv;
'i6 CALL ~ChU$CHAIo. ('$') ;
97 thAIo. " tl<,
~b ll'<[;;
99 CALL lCHU$ChAfI(CHAr.);

1<HI I:.I'<[);
l~l EI'<G;
1"2 1.1-<D;
l~ 3 eND;

The program places a line feed (LF) at the end of
the buffer when an exit is forced by a CR or an
ESC. The input request message actual character
count (MSG.ACTUAL) and the status (MSG.
ST ATUS) are set before sending the message to
its response exchange.

104
105
106
l"
m
m
11'
111

H 1'1'1< ~ MSG.CUI..Jt.T 'rh~N
BU'(f'TH'~f'Th+l) = LF,

MSG.AC'lUAL ~ PTR;
MSG.S'l'A'fUS = "J
CALL RI..IS£ND (MSG. kI:.SPONSl$EXCuAhGE, MSG!'1'RJ ;
CALL lCIIU$CHAR(Lf);

1:.1'<0;
£ND kD$MIN;

The WRMIN task begins by enabling interrupt
level 7. Note that no other initialization is per­
formed before WRMIN waits for an output request
message to arrive at the RQOUTX exchange. Here
correct operation depends on the fact that RDMIN
has a higher priority than WRMIN. Were this not
the case, WRMIN could try to transmit a message
before the 8253 and 8251 have been set up.

112 1 "k$MIN:
PROC£DURI:. PUBLIC;

11) DlCLAHE (MSGPTH,II'<'IM!:IG,IH"'$ADDRl::;S) AOCkE::;::;;
114 CECLARE PTR BYTE;
115 DECLA"E MSG BASlO MSGP'1'R THSMSG;
116 DECLARE (BUf BASI::[; BUF$ADDRtSS) (1) Bnt;

117;;: CALL R"r:LVL(7);

118 DO t'0REVER;
119 MSGPTR = RQr.Al'I'(.RQOI..J'I'x,il);
12~ BUV$ADDRt::.S = MSG.BUff£R$ADDRI:.SS - 1;

The next loop transmits all of the characters speci­
fied by the output request message. Once again,
the interrupt service routine is implemented by
simply waiting on the RQL 7EX exchange for a
transmitter ready interrupt message. When this
message is received, the next character in the
buffer is transmitted.

121
1~2
121
124

DO PTR .. 1 1'0 MSG. CCut'<l;
INTM,SG = f<1j .. All'(.RLlLnX,0);
OD1'PUT(USAR1S0UT) = BUf(P'If<);

END;

The WRMIN task concludes by setting the actual
count and status, and then sends the output re­
quest message to its response exchange.

125 MSG.ACIUAL "' M5G.COUN1;
126 HSG.S'I"AT1JS " tl;
127 CALL RQSt.ND (M5G. RE5PONSI:.SEXChANG£,MSGf'Tk) I
128 END,
129 END IotR$HII>I;

Using the macros provided on the RMX/80 dis­
kette, the following static task descriptors (STD)
should be placed in your configuration module.

STO ROMIN,64,l12,O

STD WRMIN,64,128,O

The entries in the STD are interpreted as follows.

STO NAME,STKLEN,PRI,EXCH

where:

NAME

STKLEN

PRI

EXCH

the symbolic name assigned to the task asso­

ciated with the STO

the number of bytes allocated to the task
stack

the task priority level

an optional field, usually 0

Priorities of 112 and 128 have been assigned to
RDMIN and WRMIN because they correspond to
hardware interrupt levels 6 and 7.

The . following exchange addresses should be
placed in your configuration module.

XCHAOR

XCHAOR

XCHAOR

XCHAOR

ROINPX

ROOUTX

ROL6EX

ROL7EX

The XCHADR macro only requires the address of
the exchange descriptor.

Characters typed at the terminal are ignored unless
an input request message has been received. Thus,
type-ahead is not a built-in feature. However,
if type-ahead is desired, it is sufficient to ensure
that input requests are always queued for the
RDMIN task and that the full input buffers are
sent to an exchange that queues full buffers.

2-18

This can easily be accomplished by sending several
input requests to the RQINPX. These input
requests have the address of a "full-buffer" ex­
change as the response exchange and the RQINPX
exchange as the home exchange. Then, tasks need­
ing terminal input wait on the "full-buffer" ex­
change and send the message to the home exchange
when finished.

CLOSED-LOOP ANALOG CONTROL

In the next example, a closed-loop analog control
subsystem using the Intel SBC 711 analog-to­
digital board illustrates task scheduling and syn­
chronization in a process control application. In
general, the subsystem samples an analog input at
specified intervals, converts the data to temperature
in degrees centigrade, and then. - based upon pro­
grammed temperature limits - controls a heating
element. The algorithm used provides a 2-position
controller with neutral intermediate zone (or sim­
ply "bang-bang" control). The control algorithm
is shown in Figure 16.

POSITION ,OUTtJjLPUT ~SWITCHING POINTS

(ON) \:

I
I

: ~
PO~g;~)N 2 TEMPERATURE

SETPOINT

Figure 16. 2-Position Controller with Neutral Intermediate
Zone

The graphic notation in Figure 17 diagrams the
tasks, exchanges, and their interaction.

Figure 17. Analog Subsystem

This application includes three tasks and six asso­
ciated exchanges. The TICKER task schedules
the ADC task. TICKER has a very high priority
because nothing else in the system should inter­
fere with its scheduling activities. It is also a very
short task since it repetitively executes a timed
wait and then handshakes a message.

TICKER schedules the ADC task. The ADC task
services the AID converter. After obtaining data
from the AID it handshaj<es with the CONTROL
task to signal that data is ready for processing.
The ADC task is assigned a priority equivalent
to the level of the hardware interrupt from the
A/D. Clearly, calculations should not be performed
at that priority.

Thus, CONTROL performs the processing function
at a lower priority. The CONTROL task used the
T$PARAM$LOCK exchange to govern access to
the control parameters. This avoids problems re­
sulting when some other task is updating the pa­
rameters at the same time the CONTROL task is
using them for testing.

As in the minimal terminal handler, the following
listing contains the complete analog subsystem
tasks and is interspersed with explanatory text.
The program begins with the program segment
label "ATOD:" and a DO statement.

DO:

The macros and externals used in this module
are brought in by means of INCLUDEs from the
RMX/80 diskette.

10

$INCLUDE(:Fl :COMHON.ELT)
DECLARE 'rAUE LITERALLY' OFFH';
DECLARE FALSE LITERA!.t.Y 'DOH';
DECLARE BOOLEAN LITERALLY 'BYTE';
DECLARE FOREVER LITERALLY 'WHILE ";

$INCLUDE(:Fl :EXCH. ELY)
1 " DECLARE EXCHANGE$DESCRIPTOR I.ITEfiALLY 'STRUCTURE (

MESSAGESHEAD ADDRESS,
MESSAGE$TAlL ADDRESS,
TASK$HEAD ADDRtSS,
TASKSTAIL ADDRESS,
EXCHANCULINK ADDRESS)';

$INCLUDE(:Fl:1EO,ELT)
1 " DECLARE INl$EXCHANGESOESCRIPTOR LITERALLY 'STRUCTURE (

MESSAGE'HEAD ADDRESS,
MESSAGE,HIL ADDRESS,
TASK.$HEAD ADDRESS.
TASK$TAIL ADDRESS,
EXCHANGE$l.INK ADDRESS,
LINK ADDRESS,
LENGTH ADDRESS,
TYPE BYTE)':

SINCLUDE(:Fl:MSG.ELT)
DECLARE MSG$HDR LITERALLY'

LINK ADDRESS,
LENGTH ADDRESS,
TYPE BYTE,
HDME$£XCHANGE ADDRESS,
RESPONSE$EXCHANGE ADORESS':

DECLARE MSO$DESCRIPTOR LITERALLY 'S"IRUCTURE(
MSG$HOR,
REMAINDER(1) BnE)':

$INCLUDE(:Fl :IMTRPT.EXT)
ROENDI:

PROCEDURE EXTERNAL:

2-19

END ROENDI:

ROELVL:
PROCEDURE (LEVEL) EXTERIUL:

DECLARE LEVEL BnE:

END RQELVL:

/lQOLVL:
PROCEDURE (LEVEL) EXTERNAL:

DECLARE LEVEL BYTE:

ENIl RQDLVL:

ROSETV:
P RO CEO U REt P RO C , LEV EL ~ EXT E ~ N A L ;

DECLARE PROC ADDRESS:
DECLARE LEVEL BYTE:

END ROSETV;

$INCLUDE(:Fl :SYNCH.EXT)
ROSEND:

PROCEDURE (EXCIIANGESPOINTEA,MESSAOESPOINTER) EXTERNAL:
PECLARE (EXCHANGUPOINTER,MESSAGESPOINTER) ADDRESS:

END ROSEI'D:

ROWAI"I:
pROCEDURE (EXCIIANGE$POINTER,Oyi..AY) ADDRESS EXTERNAL:

DECLARE (EXCHANGE$POINTER,I}ELAY) ADDRESS;

END ROWAIT:

ROACPT:
PROCEDURE (EXCKANOESPOINTER) ADDRESS EXTERNAL:

DECLARE EXCHANGE$POINTER ADDRESS:

END RaACPT:

ROISND:
PROCEDURE (IED$PTR) EXTERNAL;

DECLARE IEPSPTR ADDRESS:

END RQISND:

Additional macros are declared to aid in the use
of the SBC 711 analog-to-digital board.

3"
35

" 37

" 39

"'
"' "' "3

"" os

"' "'

SBC 711 ANALOG TO DIGITAL BOARD
'/
DECLARE ADC$BASE ADDRESS AT (OnOOH):
DECL"ilE COHMAND$REGISTER BYTE AT (.ADC$BASE+O):
DECLARE STATUSSREGISTER BnE AT (,ADC$BASE+O):
DECLARE FIRSTSCHANNHSREGISTER BITE AT (,ADC$BASE+ll:
DECLARE LASTSCHANNELSREGISTER BITE AT (.ADC$BASE+2):
DECLARE CLEAR$INTERRUPTSREOUEST BITE AT (.ADC$BASE+3);
DECLARE .AOI!SDATASREGISTER ADDRESS AT (.ADC$BASE+4);

DECLARE GOSBIT LITERALLY"':
DECLARE AUTO$INCREMENT$EN,I,SLE LITERALLY' 2' :
DECLARE BUSY LITERALLY 'S'l
DECLARE EOS$INTERRUPIHNABLE LITERALLY' 10H'.
DECLARE EOC$INTERRUPUENABLE LITERALLY '20H':
DECLARE EMD$OFSSCAN LITERALLY '40H':

DECLARE EMDOFCONVERSION LITERALLY '80H';

The exchange descriptors and the interrupt ex­
change descriptors are declared.

os

"' " 51
52

53

DECLARE DUMMY EXCHANGE$DESCRIPTOR PUBLIC.
DECLARE RETSI'ULSE EXCHANGESDESCRIPTOR PUBLIC;
DECLARE GO$PULSE EXCHAMOE$DESCRIPTOR PUBLIC:
OECLARE TRIGGER EXCHAMGE$DESCRIPTOR PUBLIC;
DECLARE RETSTRIG EXCHAMGE$DESCRIPTOR PUBLIC:

DECLARE ROL2EX INTSEXCHANGE$DESCRIPTOR:

The CONTROL task uses an external data struc­
ture to obtain operating parameters. This data
structure (BOX$P ARAMS) has an exchange asso­
ciated with it (T$PARAM$LOCK) that is used to
provide mutual exclusion, ensuring that only one
task accesses the data structure at a time.

"
DECLARE TSPARAM$LOCK EXCHANGE$DESCRIPTOR EXTERNAL;

DECLARE BOX$PARAMS{S) STRUCTURE(
CHANNEL BYTE,
SETSPOIWT ADDRESS.
ERROR ADDRESS,
OFFSET ADDRESS,
SAMPLES ADDRESS,
COUNT ADDRESS,
ACCUM ADDRESS,
READING ADDRESS) EXTERNAL:

TICKER, the scheduler task, has an initialization
sequence in which it sets up two messages and
sends them to the RET$PULSE exchange. Then it
enters an infinite loop where it waits on the
DUMMY exchange for 250 milliseconds. After
the timed wait is complete, TICKER passes a mes­
sage from the RET$PULSE exchange to the GO$­
PULSE exchange. In effect this is a handshake,
checking to see that the ADC task has completed
its last operation and then signaling it to perform
another.

56 TICICER$TASK:
PROCEDURE PUBLIC;

57 DECLARE Msa ADDRESS;
58 DEC1.ARE PULSE$MSG(2) STRUCTURE (

MSG$I!DR 1;

59 PULSE$MSG(O) .LENGTH,
PULSE$MSG(l).LENGTH = SIZE(PULSE$HSG(O»;

liD PULSE$MSO(O) ,TYPE,
PULSE$HSG(1) .TYPE = 55;

61 CALL RQSEND(.RET$PULSE, .PULSE$HSG(O»;
62 CALL RQSEND(.RET$PULSE,.PU1.SE$MSG(l»;

63 DO FOREVER;
611 Msa ::: RQWAIT(,DUMMY,S);
65 MSO = RQWAIT(,RET$PULSE,O);
66 CALL RQSEND(.GO$PULSE,HSO)i
67 END;

66 END TICKER$TASK;

Scheduled by TICKER, the ADC task performs the
AID sampling. It begins by setting up TRIGGER$­
MSG and enabling the level 2 interrupt from the
A/D. Inside the ADC task continuous loop, mes­
sages are passed from the GO$PULSE exchange to
the RET$PULSE exchange. Then it waits for ac­
cess to the BOX$PARAMS data structure. When
the ADC task has access, it loops through the A/D
channels, accumulating readings in BOX$PARAMS.
After all the A/D channels are sampled and the
BOX$P ARAMS readings updated, the LOCK$MSG
is returned to the T$PARAM$LOCK exchange.
The ADC task concludes the continuous loop by
handshaking a message with the CONTROL task.

"
70

71
72
73
74

75
76
T7
78

79
80
81

" " "
"
86
87
88

" 90

" 92
9l

"

ADCUASK:
PROCEDURE PUSl.IC;

DECLARE TRIGOER$HSQ STRUCTURE (
HSG$HDR 1;

DECLARE (T$HSG,HSG,LOCK$HSG) ADDRESS:
DECLARE I SHE;
DECLARE GAIN LITERALLY' 00':
DECLARE N$CHNLS LITERALLY'S'.

TRIGGER$HSG. LENGTH ~ SI ZE(TRIGGER$HSG) ;
TRIGGEUHSG.TYPE ::: 65:
CALL RQSENo(. RET$TRIG, • TRIGGER$HSG) ;
CALL RQELVL(2):

00 FOREVER;
HSG " RQWAn(.GO$PULSE,O):
CALL RQSEHD(.RET$PULSE,HSG);
LOCK$HSO ::: ROWAIT(. T$PARAH$LOCK. 0) ;
DO I " 0 TO N$CHNLS.1:

FIRST$CHANNEL$REGISTER " BOX$PARAHS(I).CHANNEL
+ ROL(OAIN,6);

COHHAND$.fIEGISTEfI ::: GO$BIT
OR EOC$INTERRUPT$ENABLE;

HSO " ROWAIT(.ROL2EX,0):
COHHAND$REGISTER ::: 0:
BOX$PARAHS{I) .ACCUH " BOX$PARAHS(I).ACCUH

+ ADC$DATUREGISTER;
END;
CALL RQSEND(. T$PARAM$LOCK, LOCK$MSG);
T$HSG :: RQWAIT(.RET$TRIG,O);
CALL RQSEND(.TRIGGER,T$HSO);"

END;

END ADC$TASK;

2-20

The CONTROL task waits for a message from the
ADC task signaling that A/D readings have been
taken and are ready for further processing. It com­
pletes the handshake by sending the message to
the RET$TRIG exchange. Then, as in the ADC
task, accesses the BOX$P ARAMS data structure.

Inside the next loop, the readings are averaged,
scaled, offset, and tested. Appropriate action is
taken to turn the heating elements on or off. The
loop concludes by returning the message to the
T$PARAM$LOCK exchange.

95 CONTROL$TASK:
PROCEDURE PUBLIC; "

96 DECLARE (LOCK$HSG,T,HSOl ADDRESS;
97 DECLUE I BYTE;
98 DECLARE NCHNLS LI'l'ERALLY '5';
99 DECLARE TURNHAHP$ON

LITERALLY 'OUTPUT(OE1H)"SHL{ 1, 1)';
100 OECLUE TURN$LAHP$OFF

,CO
105
,06
'07
'08 ,,,
"0
",
112

113

".
115

116

,,, ,,,
120

12'

LITERALLY 'OUTPUT(OE7HhsHL(I,1l+1';
• DECLARE SETUP$8255 LITERALLY 'OUTPUT(OE7H),,80H;

OUTPUT(OE6H):OFFH';
SETUP$8255:

DO FOREVER;
HSG " RQWAIT(.TRIGGER ,0);
CALL RQSEND(.RET$TRIG ,HsO):
LOCK$HSG= RQWAIT(,T$PARAH$LOCK,O);
DO I" 0 TO NCHNLS.l;

BOX$PARAMS(1) .COUNT " BOX$PARAHS(Il .COUNT + 1:
IF BOX$PARAMS(I).COUNT

" BOX$PARAMS(1) .SAMPLES THEN
DO;

T.
BOX$PARAHS(I),READINO

" (BOX$PARAHS(1) .ACCUH
IBOX$PARAHS(I).SAMPLES) I 38
+ BOX$PARAMS(I) .OFFSET;

IF T (" BOX$PARAHS(I) .SET$POINT
• BOX$PARAHS(I). ERROR THEN

TURN$LAHP$ON;
ELSE

IF T >= BOX$PARAHS(1) .SET$POINT
+ BOX$PARAHS(I).ERROR THEN

TURN$LAMP$OFF;
BOX$PARAMS(I).ACCUH,
BOX$PARAHS{ I) .COUNT " 0;

END;
END;

CALL ROSEND{ .T$PARAH$LOCK,LOCKSHSG);
EIIDI

END CONTROL$TASK;

123 END nOD;

SUMMARY/CONCLUSIONS

The purpose of this application note is to intro­
duce you to the Intel RMX/BO, Real-Time Multi­
tasking Executive. The general framework of
RMX/BO was discussed, including the nucleus and
extensions.

This application note described the steps involved
in using RMX/BO. Key emphasis has been placed
on the need to fully define the tasks and exchanges
in your application using graphic notation.

Applications have been presented to demonstrate
task communication, synchronization, and mutual
exclusion in a minimal terminal handler and an
analog subsystem. The tasks responded to real­
time asynchronous events such as USART and
A/D interrupts.

RMX/BO represents a significant step in the sophis­
tication of microcomputer software. Its ease of
use, flexibility, and power should enable you to
quickly implement real-time software for your
applications.

1

2
3

4

5

6

7

8
9

1
1

1

1

1

1

1
1

APPENDIX A

MINITH PL/M LISTING

MINIMAL$TERMINAL$hANCLER:

GO;

DECLARE 'lRUE LITERALLY '0FF'f-i';
GECLARE FOREVER LITERALLY 'WHILE TRUE';

/* SPECIAL ASCII ChARAC'TERS * /
DECLARE

BE.LL
LF
CR
CONTROL$R
COJ';TROL$X
ESC
RUBOU'l'

LITERALLY
LI'l'ERALLY
LI'lERALLY
LI'I'ERALLY
LITERALLY
LI'l'ERALLY
LI'l'ERALLY

'0 7h' ,
'0AH' ,
'0DB' ,
, 12H' ,
'18h' ,
'ISH' ,
'7FH' ;

DECLARE EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE (
MESSAGE$hEAD ADDRESS,
MESSAGE$TAIL ADDRESS,
TASK$HEAD ADDRESS,
TASK$TAIL ADDRESS,
EXCSANGE$LINK ADDRESS) ';

DECLARE INT$EXCBANGE$DESCRIPTOR LITERALLY 'STRUCTURE (
MESSAGE$BEAD ADDRESS,
MESSAGE$TAIL ADDRESS,
TASK$BEAD ADDRESS,
TASK$TAIL ADDRESS,
EXChANGE$LINK ADDRESS,
LINK ADLRESS,
LENGTH ADDRESS,
TYPE BY'IE) , ;

DECLARE 'l'h$MSG LI'l'ERALLY 'S'l'RUCTURE (
LINK ADDRESS,
LENGTH ADDRESS,
TYPE BYT£,
HOME$EXCBANGE ADDRESS,
RESPONSE$EXCHANGE ADLRESS,
S'l'ATUS ADDRESS,
BUFFER$ADDRESS ALDRESS,
COUN'I' ADDRESS,
ACTUAL AGDRESS) ';

/*
8253 PORT ADDRESSES.

*/
DECLARE AB253$MODE L'ITERALLY '0DFS';
DECLARE AB253$CTR2 LITERALLY '0DEB';

2-21

10
11
12
13

14

15
16
17

18

19

20
21

22

23
24

25

26
27

28
29

30
31

32

33
34

1
1
1
1

1

1
1
1

1

1

2
2

1

2
2

1

2
2

1
1

1
1

1

2
2

/*
8253 COMMANDS.

*/
DECLARE SELECT$2 LI'I'ERALLY , h0001010108' ;
DECLARE RL$80'l'H LI'rERALLY , 00111000108' ;
DECLARE MODE$3 LITERALLY '10100001108';
DECLARE 82400 LITERALLY '001C8';

/*
8251 PORT ADDRESSES.

*/
DECLARE USAR'l'$IN LI'fERALLY , 0ECH' ,

USART$OUT LITERALLY '0ECh',
USART$CON'l'ROL LITERALLY , 0EDh' ;

/*
8251 f'lODES.

*/
DECLARE STOP$1 LITERALLY '01000000B';
DECLARE CL8 LITERALLY '0000110IOB';
DECLARE RA'l'E$16X LI'I'ERALLY , 1010000011OB' ;

/*
8251 COMI1ANDS.

*/
DECLARE USART$RESET

RTS
ERROR$RESET
RXE
DTR
'l'XEN

RI.!SEND:

LI'.rERALLY
LITERALLY
LI'l'ERALLY
LI'I'ERALLY
LITERALLY
LITERALLY

'10100001OIOB',
, 0010100008' ,
'10001fijI0100B',
'01000011008',
'0000001108',
'10000001018';

PROCEDURE (EXCHANGE$POINTER,MESSAGE$POIN'I'ER) EXTERNAL;
DECLARE (EXCHANGE$POINTER,MESSAGE$POINTER) ADDRESS;

END RuSEND;

RUWAIT:
PROCEDURE (EXCHANGE$POINTER,DELAY) ADDRESS EXTERNAL;

DECLARE (EXCHANGE$POINTER,DELAY) ADDRESS;
END RQWAI'I';

R\.iELVL:
PROCEDURE (LEVEL) EXTERNAL;

DECLARE LEVEL BYTE;
END R\.iELVL;

DECLARE RQINPX EXCHANGE$DESCRIPTOR PUBLIC;
DECLARE RUOUTX EXCHANGE$DESCRIPTOR PUBLIC;

DECLARE RQL6EX INT$EXChANGE$DESCRIPTOR PU8LIC;
DECLARE RQL7EX INT$EXCHANGE$DESCRIPTOR PUBLIC;

IN I 'I'IAL I ZA'!'ION :
PROCEDURE;

OUTPUT(A8253$MODE)
OUTPUT(A8253$CTR2)

2-22

SELECT$2 OR RL$BOTH OR MODE$3;
LOW(B2400);

35
36

37
38
39

40

41

42
43
44
45

46

47
48
49
50

51

52
53

54
55
56
57
58
59
610
61
62
63
64

65
66
67
68
69

70
71
72
73
74
75
76
77

78

2
2

2
2
2

2

1

2
2
2
2

2

3
3
3
3

2

2
2

2
3
3
3
3
3
4

4
4
5
5

5
6
6
6
5

4
5
5
6
6
6
6
6

5

OUTPUT(A8253$CTR2) = hIGH(B2400);
OUTPUT (USAkT$CONTROL) ,
OUTPUT (USAkT$CONTROL) ,

0;
USART$RESE'!' ;

OUTPUT(USAkT$CONTROL),
OUTPUT (USART$CONTkOL)
OUTPUT (USART$CONTROL)
OUTPUT (USART$CONTkOL)
OUTPUT (USAkT$CONTROL)

S'I'OP$l OR CL8 OR RA'!'E$16X;
RTS OR ERROR$RESET OR
RXE OR DTR OR TXEN;

END INITIALIZATION;

RD$IHN:
PROCEDURE PUBLIC;

DECLARE (MSGPTR,INTMSG,BUF$ADDRESS) ADDRESS;
DECLARE (CHAR,PTR,I) BYTE;
DECLARE MSG BASED MSGPTR TH$MSG;
DECLARE (BUF BAS.E,D BUF$ADDRESS) (1) BY'rE;

ECHO$CHAR:
PROCEDURE (CHAR);

OECLARE CHAR BYTE;
INTMSG = RQ~AIT(.RQL7EX,0);
OUTPUT (USART$OUT) = CHAR;

END EChO$ChAR;

CALL INITIALIZATION;

CALL RI"iELVL(6);
CALL R(,JELVL(7);

DO FOREVER;
MSGPTR = RQWAIT(.RQINPX,0);
BUF$ADDRESS = MSG.BUFFER$ADDRESS - 1;
PTR = 0;
CHAR = NOT CR;
DO WHILE CHAR <> CR;

INTMSG = R~WAIT(.RQL6EX,0);
IF (CHAR := INPUT(USART$IN) AND 7FH)
DO;

IF P,!'R = 0 THEN
CALL ECHO$CHAR(BELL);

ELSE
DO;

CALL EChO$CHAR(BUF(PTR));
P,!'R = PTR - 1;

END;
END;
ELSE
DO;

IF ChAR = CONTROL$X ThEN
00;

CALL ECHO$CHAR('#');
CALL ECHO$CHAR(CR);
CALL EChO$CHAR(LF);
P'!'R = 0;

END;
ELSE
DO;

2·23

RUBOUT THEN

79 6
80 6
81 7
82 7
83 7
84 8
85 8
86 7

87 6
88 7
89 7

90 7
91 8
92 8
93 8
94 7
95 7
96 8
97 8
98 8
99 7

100 7
101 6
102 5
103 4
104 3
105 3
106 3
107 3
108 3
109 3
110 3
111 2

112 1

113 2
114 2
115 2
116 2

117 2

118 2
119 3
120 3
121 3
122 4
123 4
124 4
125 3
126 3
127 3
128 3
129 2
130 1

IF CHAR = CONTROL$R THEN
DO;

CALL ECHO$CHAR(CR);
CALL ECHO$CHAR(LF);
DO I = 1 TO PTR;

CALL ECHO$CHAR(BUF(I));
END;

END;
ELSE
DO;

IF PTR < MSG.COUNT THEN
BOF(PTR := PTR+l) = CHAR;

ELSE
DO;

IF CHAR <> CR THEN
CHAR = BELL;

END;
IF CBAR = ESC THEN
DO;

CALL ECHO$CHAR('$');
CHAR = CR;

END;
CALL ECHO$CHAR(CHAR);

END;
END;

END;
END;
IF PTR < MSG.COUNT THEN

BUF(PTR:=PTR+l) = LF;
MSG.ACTUAL = PTR;
MSG. S1'A'rUS = Ii);

CALL RQSEND(MSG.RESPONSE$EXCHANGE,MSGPTR);
CALL ECHO$CHAR(LF);

END;
END RD$MIN;

~m$MIN :
PROCEDURE PUBLIC;

DECLARE (MSGPTR,INTMSG,BOF$ADDRESS) ADDRESS;
DECLARE PTR BYTE;
DECLARE MSG BASED MSGPTR TH$MSG;
DECLARE (BUF BASED BUF$ADDRESS) (1) BYTE;

CALL RI,.l£LVL(7);

DO FOREVER;
MSGPTR = RQWAIT(.RQOOTX,0);
BUF$ADDRESS = MSG.BUFFER$ADDRESS - 1;
DO PTR = 1 TO MSG.COUNT;

INTMSG = RQWAIT(.RQL7EX,0);
OUTPUT (USART$OUT) = BUF(PTR);

END;
MSG.ACTUAL = MSG.COUNT;
MSG.S'l'ATUS = 0;
CALL RQSEND(MSG.RESPONSE$EXCHANGE,MSGPTR);

END;
END wR$MIN;

END MINIMAL$TERMINAL$HANDLER;

2·24

APPENDIX B

WRMIN ASSEMBLY LANGUAGE LISTING

LOC OBJ SEQ SOU RCE STATEMENT

1 NAME WRMIN
2 EXTRN RQELVL,RQOUTX,RQWAIT,RQSEND
3 PUBLIC WRMIN,RQL7EX

OOEC 4 DATOUT EQU OECH ; USART OUTPUT PORT ADR
5 CSEG
6 WRMIN:

0000 OE07 7 MVI C,7
0002 CDOOOO E 8 CALL RQELVL ENABLE INTERRUPT LVL 7

9 WRO:
0005 110000 10 LXI D,O
0008 010000 E 1 1 LXI B,RQOUTX
OOOB CDOOOO E 12 CALL RQWAIT WAIT FOR OUTPUT RQST
OOOE E5 13 PUSH H PUSH MESSAGE ADDRESS
OOOF 110700 14 LXI D,7
0012 19 15 DAD D
0013 4E 16 MOV C,M GET RESPONSE EXCHANGE
0014 23 17 INX H
0015 46 18 MOV B,M
0016 23 19 INX H
0017 C5 20 PUSH B PUSH RESPONSE EXCHANGE
0018 3600 21 MVI M,O STATUS = 0
001A 23 22 INX H
001B 3600 23 MVI M,O
001D 23 24 INX H
001E 5E 25 MOV E,M GET BUFFER ADR/IN DE
001F 23 26 INX H
0020 56 27 MOV D,M
0021 23 28 INX H
0022 4E 29 MOV C,M GET COUNT IN BC
0023 23 30 INX H
0024 46 31 MOV B,M
0025 23 32 INX H
0026 71 33 MOV M,C ACTUAL COUNT
0027 23 34 INX H
0028 70 35 MOV M,B

36 WR 1 :
0029 78 37 MOV A,B
002A Bl 38 ORA C
002B CA4300 C 39 JZ WR2 EXIT LOOP IF COUNT = 0
002E C5 40 PUSH B
002F D5 41 PUSH D
0030 110000 42 LXI D,O
0033 010000 D 43 LXI B,RQL7EX
0036 CDOOOO E 44 CALL RQWAIT WAIT FOR TXRDY INTRPT
0039 Dl 45 POP D
003A Cl 46 POP B
003B 1 A 47 LDAX D
003C 13 48 INX D
003D D3EC 49 OUT DATOUT TRANSMIT NEXT CHAR
003F OB 50 DCX B
0040 C32900 C 51 JMP WRl

52 WR2:

2·25

0043 C1 53 POP B BC = RESPONSE EXCHANGE
0044 D1 54 POP D DE = MSG ADDRESS
0045 CDOOOO E 55 CALL RQSEND SEND MSG TO RESP, EXCH
0048 C30500 C 56 JMP WRO

57
58 DSEG
59 RQL7EX:

OOOF 60 DS 1 5
6 1
62 END

2-26

2 =
3 =
4 =
5 =

6
=

=

=

7 =

=

=
=
=
=

8 =

=

=
=

9 =
=
=

10
=

11 2 =

12 =
=

13 2 =

14 2 =

APPENDIXC

ATOD PL/M LISTING

ATOD:
DO;

$ INCLUDE(: F 1 : COMMON, ELT)
DECLARE TRUE LITERALLY 'OFFH';
DECLARE FALSE LITERALLY' OOH';
DECLARE BOOLEAN LITERALLY' BYTE';
DECLARE FOREVER LITERALLY , WHILE 1';

$ INCLUDE(: F 1: EXCH, ELT)
DECLARE EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE (

MESSAGE$HEAD ADDRESS,
MESSAGE$TAIL ADDRESS,
TASK$HEAD ADDRESS,
TASK$TAIL ADDRESS,
EXCHANGE$LINK ADDRESS) I ;

$INCLUDE(:F1 :IED.ELT)
DECLARE INT$EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE (

MESSAGE$HEAD ADDRESS,
MESSAGE$TAIL ADDRESS,
TASK$HEAD ADDRESS,
TASK$TAIL ADDRESS,
EXCHANGE$LINK ADDRESS,
LINK ADDRESS,
LENGTH ADDRESS,
TYPE BYTE)';

$INCLUDE(:F1 :MSG,ELT)
DECLARE MSG$HDR LITERALLY ,

LINK ADDRESS,
LENGTH ADDRESS,
TYPE BYTE,
HOME$EXCHANGE ADDRESS,
RESPONSE$EXCHANGE ADDRESS';

DECLARE MSG$DESCRIPTOR LITERALLY 'STRUCTURE(
MSG$HDR,
REMAINDER(1) BYTE)';

$INCLUDE(:F1 :INTRPT,EXT)
RQENDI:

PROCEDURE EXTERNAL;

END RQENDI;

RQELVL:
PROCEDURE (LEVEL) EXTERNAL;

DECLARE LEVEL BYTE;

END RQELVL;

2·27

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34
35
36
37
38
39
40

41
42
43
44
45
46

=
=
=

2 =
=

2 =

=
=

2 =
2 =

=
2

=
=

2 =
=

2 =
=
=
=

2 =
=

2 =
=
=
=

2 =
=

2 =

=
=

2

=
2 =

1
1
1
1
1
1
1

RQDLVL:
PROCEDURE (LEVEL) EXTERNAL;

DECLARE LEVEL BYTE;

END RQDLVL;

RQSETV:
PROCEDURE (PROC,LEVEL) EXTERNAL;

DECLARE PROC ADDRESS;
DECLARE LEVEL BYTE;

END RQSETV;

$INCLUDE(:F1 :SYNCH.EXT)
RQSEND:

PROCEDURE (EXCHANGE$POINTER,MESSAGE$POINTER) EXTERNAL;
DECLARE (EXCHANGE$POINTER,MESSAGE$POINTER) ADDRESS;

END RQSEND;

RQWAIT:
PROCEDURE (EXCHANGE$POINTER,DELAY) ADDRESS EXTERNAL;

DECLARE (EXCHANGE$POINTER,DELAY) ADDRESS;

END RQWAIT;

RQACPT:
PROCEDURE (EXCHANGE$POINTER) ADDRESS EXTERNAL;

DECLARE EXCHANGE$POINTER ADDRESS;

END RQACPT;

RQISND:

/*

PROCEDURE (IED$PTR) EXTERNAL;
DECLARE IED$PTR ADDRESS;

END RQISND;

SBC 711 ANALOG TO DIGITAL BOARD
*/
DECLARE ADC$BASE ADDRESS AT (OF700H);
DECLARE COMMAND$REGISTER BYTE AT (.ADC$BASE+O);
DECLARE STATUS$REGISTER BYTE AT (.ADC$BASE+O);
DECLARE FIRST$CHANNEL$REGISTER BYTE AT (.ADC$BASE+1);
DECLARE LAST$CHANNEL$REGISTER BYTE AT (.ADC$BASE+2);
DECLARE CLEAR$INTERRUPT$REQUEST BYTE AT (.ADC$BASE+3);
DECLARE ADC$DATA$REGISTER ADDRESS AT (.ADC$BASE+4);

DECLARE GO$BIT LITERALLY' 1';
DECLARE AUTO$INCREMENT$ENABLE LITERALLY '2';
DECLARE BUSY LITERALLY '8';
DECLARE EOS$INTERRUPT$ENABLE LITERALLY '10H';
DECLARE EOC$INTERRUPT$ENABLE LITERALLY '20H';
DECLARE ENDOFSCAN LITERALLY '40H';

2-28

47

48
49
50
51
52

53

54

55

56

57
58

59

60

61
62

63
64
65
66
67

68

69

70

71
72
73
74

75
76
77
78

2
2

2

2

2
2

2
3
3
3
3

2

2

2
2
2
2

2
2
2
2

DECLARE ENDOFCONVERSION LITERALLY '80H';

DECLARE DUMMY EXCHANGE$DESCRIPTOR PUBLIC;
DECLARE RET$PULSE EXCHANGE$DESCRIPTOR PUBLIC;
DECLARE GO$PULSE EXCHANGE$DESCRIPTOR PUBLIC;
DECLARE TRIGGER EXCHANGE$DESCRIPTOR PUBLIC;
DECLARE RET$TRIG EXCHANGE$DESCRIPTOR PUBLIC;

DECLARE RQL2EX INT$EXCHANGE$DESCRIPTOR;

DECLARE T$PARAM$LOCK EXCHANGE$DESCRIPTOR EXTERNAL;

DECLARE BOX$PARAMS(5) STRUCTURE(
CHANNEL BYTE,
SET$POINT ADDRESS,
ERROR ADDRESS,
OFFSET ADDRESS,
SAMPLES ADDRESS,
COUNT ADDRESS,
ACCUM ADDRESS,
READING ADDRESS) EXTERNAL;

TICKER$TASK:
PROCEDURE PUBLIC;

DECLARE MSG ADDRESS;
DECLARE PULSE$MSG(2) STRUCTURE (

MSG$HDR);

PULSE$MSG(O).LENGTH,
PULSE$MSG(1) • LENGTH = SI ZE(PULSE$MSG(0)) ;
PULSE$MSG(O).TYPE,
PULSE$MSG(1) • TYPE = 65;
CALL RQSEND(. RET$ PULSE, • PULSE$MSG (0)) ;
CALL RQSEND(,RET$PULSE, .PULSE$MSG(1));

DO FOREVER;
MSG = RQWAIT(.DUMMY,5);
MSG = RQWAIT(.RET$PULSE,O);
CALL RQSEND(, GO$ PULSE, MSG) ;

END;

END TICKER$TASK;

ADC$TASK:
PROCEDURE PUBLIC;

DECLARE TRIGGER$MSG STRUCTURE (
MSG$HDR);

DECLARE (T$MSG,MSG,LOCK$MSG) ADDRESS;
DECLARE I BYTE;
DECLARE GAIN LITERALLY '00';
DECLARE N$CHNLS LITERALLY' 5';

TRIGGER$MSG,LENGTH = SIZE(TRIGGER$MSG);
TRIGGER$MSG.TYPE = 65;
CALL RQSEND(.RET$TRIG, .TRIGGER$MSG);
CALL RQELVL(2);

2-29

79
80
81
82
83
84

85

86
87
88

89
90
9 1
92
93

94

95

96
97
98
99

100

101

102

104
105
106
107
108
109
110

111
112

113

114

115

2

3
3
3
3
4

4

4
4
4

4
3
3
3
3

2

2
2
2
2

2

2

2

2
3
3
3
3
4
4

4
5

5

5

5

DO FOREVERj
MSG = RQWAIT(.GO$PULSE,O) j
CALL RQSEND(.RET$PULSE,MSG)j
LOCK$MSG = RQWAIT(.T$PARAM$LOCK,O)j
DO I = 0 TO N$CHNLS-1j

FIRST$CHANNEL$REGISTER = BOX$PARAMS(I).CHANNEL
+ ROL(GAIN,6)j

COMMAND$REGISTER = GO$BIT
OR EOC$INTERRUPT$ENABLEj

MSG = RQWAIT(.RQL2EX,0) j
COMMAND$REGISTER = OJ
BOX$PARAMS(I).ACCUM = BOX$PARAMS(I).ACCUM

+ ADC$DATA$REGISTERj
ENDj
CALL RQSEND(.T$PARAM$LOCK,LOCK$MSG)j
T$MSG = RQWAIT(,RET$TRIG,O)j
CALL RQSEND(.TRIGGER,T$MSG)j

ENDj

END ADC$TASKj

CONTROL$TASK:
PROCEDURE PUBLICj

DECLARE (LOCK$MSG,T,MSG) ADDRESSj
DECLARE I BYTEj
DECLARE NCHNLS LITERALLY' 5' j
DECLARE TURN$LAMP$ON

LITERALLY 'OUTPUT(OE7H) =SHL(I, 1)' j
DECLARE TURN$LAMP$OFF

LITERALLY 'OUTPUT(OE7H)=SHL(I,1)+1' j
DECLARE SETUP$8255 LITERALLY 'OUTPUT(OE7H)=80Hj

OUTPUT(OE6H)=OFFH' j

SETUP$8255j

DO FOREVER j
MSG = RQWAIT(. TRIGGER, 0) j
CALL RQSEND(.RET$TRIG,MSG) j
LOCK$MSG= RQWAIT(,T$PARAM$LOCK,O) j
DO I = 0 TO NCHNLS-1j

BOX$PARAMS(I).COUNT = BOX$PARAMS(I) ,COUNT + 1j
IF BOX$PARAMS(I).COUNT

= BOX$PARAMS(I).SAMPLES THEN
DOj

T,
BOX$PARAMS(I) .READING

= (BOX$PARAMS(I).ACCUM
IBOX$PARAMS(I).SAMPLES) I 38
+ BOX$PARAMS(I) ,OFFSETj

IF T <= BOX$PARAMS(I),SET$POINT
- BOX$PARAMS(I),ERROR THEN

TURN$LAMP$ONj
ELSE

IF T >= BOX$PARAMS(I),SET$POINT
+ BOX$PARAMS(I).ERROR THEN

2·30

116

118
119

120
121

122

123

5

5
4

3
3

2

TURN$LAMP$OFF;
BOX$PARAMS(I).ACCUM,
BOX$PARAMS(I).COUNT = 0;

END;
END;
CALL RQSEND(.T$PARAM$LOCK,LOCK$MSG);

END;

END CONTROL$TASK;

END ATOD;

2·31

© Intel Corporation 1978

APPLICATION
NOTE

2·33

Ap·47

November 1978

9800836A

Using FORTRAN-aO for
iSBCTM Applications

2·34

Contents

I. INTRODUCTION 2-35

II. OVERVIEW 2-35

FORTRAN-80 2-35
Software Decisions 2-35

III. USING FORTRAN-80 2-36

110 Capabilities 2-36
Math Capabilities 2-38

IV. APPLICATION EXAMPLE 2-39

An Automated Test Stand 2-39

V. USING THE iSBC 801 2-42

RMX/SO™ Overview 2-43
The RMX/SQTM Model 2-43

VI. APPLICATION EXAMPLE 2-44

A Sewage Treatment Plant Control
System 2-44

VII. SUMMARY 2-50

APPENDIX A 2-51

APPENDIX B 2·63

I. INTRODUCTION

In March of 1978, Intel announced the availability of a
resident FORTRAN compiler for the Intellec® Micro­
computer Development System. In November of 1978,
Intel announced the availability of a run-time package
to support the execution of FORTRAN-80 compiled
programs in the RMX/80™ environment. With this sup­
port package, user's of Intel's complete line of iSBCTM
Single Board Computer products can benefit from the
full set of I/O and math capabilities provided by the
FORTRAN-80 language.

This application note is intended to familiarize the
reader with the features, benefits and usage of the
FORTRAN-80 package and RMX/80™ Executive. The
reader who is unfamiliar with any of these topics is
urged to refer to the related Intel publications listed in
the front-piece.

Following the overview, two application examples will
be studied. In the first example, FORTRAN code is used
in a "stand-alone" environment; i.e., without operating
system support. The second example is a multitasking
system managed by the RMX/80 Executive which sup­
ports standard I/O interfaces to the RMX/80 Terminal
Handler and Disk File System.

II. OVERVIEW

Intel's FORTRAN-80 compiler is an implementation of
the standard FORTRAN known as ANS FORTRAN 77
approved by the American National Standards Institute
(ANSI) in April, 1978. The implementation is of the
FORTRAN 77 subset, plus most of the full I/O capabil­
ity and Intel defined extensions. For a fuller description

FORTRAN
80

PLIM
80

ASM
80

2-35

of the implementation, consult the FORTRAN-SO Pro­
gramming Manual.

FORTRAN-80 is a high level applications program­
ming language with flexible I/O handling and floating­
point math instructions. With the FORTRAN-80 lan­
guage, the programmer can easily implement sophisti­
cated applications involving scientific calculations,
process and instrument control, test and measurement,
and a host of other applications requiring the power
and flexibility the FORTRAN-80 language provides.

With the addition of the iSBC 801 FORTRAN-80
RUN-TIME PACKAGE for RMX/80 SYSTEMS, the
user who wishes to implement his application using
Intel's Single Board Computers and the RMX/80 Real­
Time Multitasking Executive can take full advantage of
the FORTRAN-80 I/O and math capabilities. The pack­
age allows the user to accelerate the run-time execution
of FORTRAN-80 coded mathematical formulae through
special interfaces to the optional iSBC 3lO™ High
Speed Mathematics Unit. All disk and terminal I/O is
interfaced directly to the RMX/80 Disk File System and
either the full or the minimal Terminal Handler. The
libraries that comprise the iSBC package are construc­
ted in a modular fashion, allOWing the user to configure
systems with as much or as little of the support libraries
as needed for a given application.

In order to effectively utilize the hardware and software
products now available, it is important to design the ap­
plication system from the top down. This implies that
we need to think of an application in very general terms
and then successively introduce more detail until we
have program code as our final step. At each stage of
the definition, we have to make decisions about the us­
age and configuration of various products.

FORTRAN
80

PLiM
80

ASM
80

The decision-making process that concerns itself with
software can be shown as a tree (Figure I). The first
decision that must be made is whether or not the
RMX/80 Real-Time Multitasking Executive should be
utilized. In general, this package will prove extremely
useful if the application to be designed must respond to
multiple asynchronous events, or contains multiple,
semi-independent processes that could be executed in
parallel, or has need of standard vendor supplied device
drivers. If the application is very small and simple,
handles few or no interrupts, has no need for parallel
execution of multiple processes, and the designer is
willing to supply his own 110 device drivers, the pro­
gram may be able to execute without the support of an
operating system.

Whether the RMX/80 package is used or not, the system
designer must now choose in which language or
languages the programs should be coded. Each of the
three languages shown is optimized for different pur­
poses. The PUM-80 language is well suited for systems
programming. The ASM-80 language is best suited for
applications requiring direct control of the computer
(e.g., the registers and memory). The FORTRAN-80
language is highly desirable for those applications
requiring mathematical calculations and formatted

PORT
110

NON·RMXf80™
FORTRAN·80

INTERNAL
BUFFER

FORMATTING

USER HIGH·
LEVEL DRIVERS

110. In many cases, the optimal solution will use a mix
of two or even all three of these languages.

III. USING FORTRAN·80

I/O Capabilities

After the decision has been made to use the FORTRAN-
80 language for an application, various types of 110
support are available to the user (see Figure 2). If the
program code is to run without any support from an
operating system, the user must supply drivers for any
devices he wishes to include in his system.

When designing an RMX/80 system, the iSBC 80 I pack­
age supplies the standard interface to the disk and
terminal while the user may support additional devices
in the same manner as the "stand alone" program
would. The following sections expand on the topic of
FORTRAN-80 110 support.

Port 1/0

The simplest and most direct method of performing 110
in the FORTRAN-80 language uses two pre-defined sub­
routines, INPUT and OUTPUT. The example below il­
lustrates the use of these subroutines to input bytes from
and output bytes to any of the 8080A/8085A 110 ports.

RMX·80™
DISK FILE
SYSTEM

RMX/BOTM
FORTRAN·80

RMX/80™
TERMINAL
HANDLER

NON
STANDARD

DEVICES

PORT 110

INTERNAL
BUFFERS

USER HIGH·
LEVEL DRIVERS

Figure 2. The 1/0 Support Decision

2·36

INTEGER' 1 IV AL

C
C -- PROGRAM THE 8255 PARALLEL 110 CHIP
C--PORT# = EB; VALUE = 94
C

CALL OUTPUT (#OEBH, # 94H)

•
C
C -- INPUT 8 BITS FROM PORT A INTO IV AL
C -- PORT # = E8; VALUE INPUT TO IVAL
C

CALL INPUT (#OE8H,IVAL)
•

•
Port 110 is extremely useful in many applications. How­
ever, this method requires the programmer to directly
handle each and every byte. Also, it does not utilize the
power of the FORTRAN-SO formatting routines.

Internal Buffer Formatting

One method of overcoming the shortcomings of Port
I/O is to use character strings as "virtual devices." This
is accomplished by specifying a character string as the
unit number in a READ or WRITE statement. External
routines can be used to fill the character strings with
input for the READ statement and to output buffers that
have been formatted by the WRITE statement. The ex­
ample below shows the use of this method.

C

SUBROUTINE EXAMPL
CHARACTER*SOBUFFER

•
•
•

C -- CALL DEVICE DRIVER TO GET BUFFER OF
C -- CHARACTERS
C

CALL BUFIN (BUFFER)
C
C -- NOW READ FROM BUFFER INTO VARIABLES
C -- UNDER FORMAT CONTROL
C

READ (BUFFER, 100) X, Y, Z
100 FORMAT (F10.3, FI2.4, FI3.5)

•
• PROCESS OAT A STORED IN VARIABLES
• X,Y,Z
•

C
C -- WRITE RESULTS TO BUFFER
C

WRITE (BUFFER, 200) A, 13, C, 0
200 FORMAT (4F12.3)
C

2-37

C -- CALL DEVICE DHIVER TO OUTPUT BUFFER
C

CALL BUFOUT (BUFFEH)

•

User Provided High-Level Drivers

If an application requires only simplp input (READ) and
output (WRITE) capabilities, the previous method
would probablv be sufficient. If, however, the devicc(s)
in the· system arc more complex, it may be nccessary to
perform other I/O operations. One way of doing this
would b(' to write subroutines for each operation. A
much nicer solution is to use the FORTRAN-SO I/O in­
structions (OPEN, CLOSE, READ, WRITE, PRINT,
BACKSPACE, REWIND, and ENDFILE) to interface
to user-written routines which implement these instruc­
tions for the special device.

This is possible because, for each open file in the system,
the FORTRAN-SO 110 system keeps a table connecting
the unit number with the addresses of the routines that
handle all operations on that unit. The I/O system
allows the user to substitute his own device drivers into
this table. To do this, the system designer codes a
routine and labels it FQOL VL. This routine is then
made known to the 110 system (i.e., declared PUBLIC).
Whenever a file is first accessed (i.e., OPENED), the I/O
system calls FQOLVL with a set of parameters, one of
which is the file name referenced in the OPEN state­
ment. The designer, in his code for FQOLVL, scans the
file name to decide if this is one of the files for which he
wishes to supply drivers. If so, he passes back a table of
the addresses of the routines that will take care of the
eight primitive file 110 capabilities (refer to the example
following this paragraph and to the FORTRAN-SO
Compiler Operators Manual).

FQ0LVL: PROCEDURE(fl1eSptr,buf$ptr) BYTE PUBLIC;

I" table of entry point addresses for driver routines *;

DECLARE table (S) ADDRESS DATA(
.openShdlr, lit address of OPEN routine "/
.closeShdlr, /" address of CLOSE routine */
.read$hdlr, lit address of READ routine It/
.write$hdlr, 1* address of WRITE routine 11/
.back$hdlr, lit address of BACKSPACE routine It/
,mv2recShdlr, I" address of MV2REC routine *1
. rewind$hdlr, 1* address of REWIND routine It/
.makeSeofShdlr 1* address of END OF FILE routifle */
);

DECLARE (returned$status,index) BYTE;
DECLARE (file$ptr,bufSptr) ADDRESS;
DECLARE buf BASED bufSptr (1) B'iTE;
DECLARE file$name BASED f11e$ptr (1) BYTE;
DECLARE analogSin (It) BYTE DATA(':I\I:')1

1* set flag initially -FFH *1

returned$status=3FFH;

I'" if any character of file$name does not compare set flag=3 "'I

DO index"" TO 3;
IF filename(index) <> analog$in(index) THEN

returned$status"" ;
END;

I'" if flag=FFH pass back the addresses of the drivers *1

IF returned$status="FFH THEN
CALL move (s i ze (tabl e) , . table ,bufsptr) ;

RETURN returnedSstatusi
END; 1* of FQ0LVL "'I

RMX/80™ Support

When using the RMX/80 Executive, the iSBC 80 I
FORTRAN-80 RUN-TIME PACKAGE for RMX/80
SYSTEMS can be used to provide a direct interface to
standard RMX/80 high level drivers, the Disk File
System and the Terminal Handler. With the RMX/80
Executive, users can code multiple, concurrently
executing programs that perform formatted I/O to disk
files and the console, as shown in the following
example:

C
C -- OPEN disk file
C

C

OPEN (8,FILE = ':DO:TSTDTA.FIL',ACCESS =
'SEQUENTIAL')

C -- perform tests
C

•
•
•

C
C -- WRITE results to file for archival storage
C

WRITE(8, 100) (RESULT (1),1 = I, I 0)
100 FORMAT(IOFI2.3)
C
C -- PRINT completion message on console
C

PRINT 200
200 FORMAT ('TESTS COMPLETE')

•
•
•

If it is necessary for a FORTRAN program in the
RMX/80 system to perform I/O to a device not handled
by one of the high level drivers, any of the methods pre­
viously described can be utilized to augment the I/O
system.

FORTRAN-80 Math Capabilities

The FORTRAN-80 language supports four data types
labelled INTEGER, REAL, LOGICAL, and CHARAC­
TER. Also supported are various operators which can
manipulate objects of various types. Both INTEGER
(fixed point) and REAL (floating-point) objects can be
manipulated by the add (+), subtract (-), multiply (*),
divide(/), and exponentiation (* *) operators. In addition,
Integers can be operated on by the Boolean operators
(e. g., .AND.,.OR.). In this case, the operations are per­
formed bit-wise on the operands.

All floating-point arithmetic operations are performed
with algorithms that adhere to the Intel Floating-Point
Standard' which allows for seven decimal digits of pre­
cision. Whenever math operations are used, the user

can make the decision to use a software package to
implement the floating point support or to accelerate the
execution of these operations (by as much as a factor of
five or six) by installing an iSBC 310 High-Speed Mathe­
matics Unit and linking in special FORTRAN-310
drivers. In either case, due to the adherence to the
standard, the results of all calculations will be identical.
In addition, the libraries have been designed to allow the
switch to be made from software routines to a faster hard­
ware solution with no code changes.

Above and beyond the basic mathematical operators in
FORTRAN-80, a large number of intrinsic functions
are available. These functions provide services like type
conversion, remaindering, and logarithmic and trigo­
nometric calculation. Since the calculations involved
in performing these high-level functions require the
mathematical operators, they too can be accelerated by
the inclusion of the iSBC 310 board and its associated
drivers.

Error Handling

The math processing system also provides flexible error
handling. The user can choose to use either an Intel­
supplied error handler or one of his own design. The
capability also exists to change the active error handler
dynamically in cases where different routines require
different handlers. The default error handlers are named
FQFERH. One exists in each of the arithmetic libraries
(Figure 3). This error handler will attempt to recover
from an error by taking the most reasonable action (e. g.,
underflow error returns result = 0). If code is being run
"stand-alone" or under the RMX/80 executive the
handlers in the math libraries should be used or the user
should supply his own. Appendix B of the ISIS-II FOR­
TRAN-SO Compiler Operator's Manual contains all of
the information necessary to implement a custom error
handler or to use the default routines.

FPSOFT.LIB - Software package for "stand-alone"
and ISIS-II systems

FPHARD.LIB - iSBC 310 drivers for same
* FPSFTX.LIB - Software package for RMXJ80 systems
*FPHRDX.LIB - iSBC 310 drivers for iSBC 80{20,

80{20-4 and 80/30 boards
*FPHX I O.LIB - iSBC 310 drivers for iSBC 80/1 0 and

80/1 OA boards

2-38

FPEF.LIB - Library of routines implementing
intrinsic functions

'Available in iSBC 801 FORTRAN-80 RUN-TIME
PACKAGE for RMX/80 Systems.

Figure 3. Available Math Libraries

I Palm('f, John F .. "The Inlt·1 Standard for Flnatin~-Point Arithmelk," Pron'f'dings of tlU'
First fntf'rnational Computer Sojtu.>arf' and Applications ConjeTf'nCf' (Chicago; IEEE Com­
putcrSot'iety), November. 1977, pp 107-112.

IV. APPLICATION EXAMPLE

An Automated Test Stand

This example shows the steps taken to design and imple­
ment an automated test stand. The hardware system
must interface to a test fixture upon which test items can
be mounted. Operator inputs and test outputs involve a
300-baud hard copy terminal. The software to be devel­
oped must allow an operator to invoke a variety of tests
from the console and to receive some printed perfor­
mance record for the object under test. In addition, the
software must allow for tests to be added and deleted
often, and each test must be allowed to obtain any
number of parameters from the command line tail.

After examining the problem definition and the decision
making diagram presented earlier, it was decided that
this application could be implemented with a simple
sequential program.

Since formatted I/O and mathematical calculations
are involved, the FORTRAN-80 language is well suited
to be the main programming language. Also, some
ASM-80 routines will come in handy for communicating
with the console.

An analysis of the I/O to be performed breaks down into
two distinct" types. Various inputs to and outputs from the
text fixture will be 8-bit parallel transfers. These will
likely go through the 8255A ports on the Single Board
Computer. Port I/O will be used to handle this function.
Interface with the operator requires READ'S AND
WRITE's to the console device. The simplest way of per­
forming this function is to use character strings as the
target of READ and WRITE oper<ltions and coding small
ASM-80 routines to transfer these buffers from/to the
console.

A diagram of the test stand is shown in Figure 4. The
computer hardware necessary to solve this application
includes a. Single Board Computer (the iSBC 80/20
board), a PROM memory module and an analog I/O
board. Digital I/O with the test fixture is handled by the
8255A ports on the Single Board Computer. The analog
inputs on the test fixture come from the two D/ A conver­
ter channels on the iSBC 732 board.

The software solution utilizes a very rudimentary com­
mand line interpreter. The mainline routine gets a line
of input and finds the first non-blank character. If this
character is an alphabetic character, it is used in a
computed GOTO statement to transfer control to one
of a possible 26 entry points. Tests may be added by
choosing a key letter and inserting a label in the GOTO
statement to transfer control to the new test routine. The
command input line and the index in the line are stored
in a common block so that any test routine can continue
scanning the line for parameters or can reset the index
and find out what keyletter caused its invocation. The
flow of the software is illustrated in Figure 5.

For the purpose of explanation, routines are shown to
implement a .. calculator mode" which allows the opera-

2-39

tor to perform arithmetic from the console, and a logic
transition tester which determines whether the object on
the test fixture changes state at the proper voltages.

~ COMPUTER

r- SYSTEM

,,),
I DIA I I AID I

L-..
TEST

FIXTURE

Figure 4. Test Stand Diagram

Code Description

The following sections describe the program code for
this application example. Fold-out code listings are con­
tained in Appendix A. The circled reference letters in
the text refer to the corresponding letters in the listings.

The DRIVRS Module

The module DRIVRS contains three primary routines.
START @ is located at 0 so that it is executed upon
power up. This routine is responsible for programming
the on-board hardware (8255A, 8251, 8253), setting up
the system stack, and calling the FORTRAN routine
labeled MAINLN.

The input routine BUFIN ® is called from
FORTRAN routines with a character string as an argu­
ment. Note that passing a string argument from FOR­
TRAN results in the address and length of the string
being sent as parameters. The string is filled with char­
acters input from the console until a carriage return i~
encountered. A simple line-editing scheme is imple­
mented allowing character deletion (RUBOUT), line de­
letion (CONTROL-X), and echoing of the current buffer
contents (CONTROL-R). Attempted entry of characters
beyond the end of the string and RUBOUTS past the be­
ginning cause the audible bell to sound.

The output routine, BUFOUT © ,also takes a char­
acter string as an argument. The entire contents of the
string are sent to the console unless a carriage return is
encountered in the string. If a carriage return is the ter­
minator, a line feed is output as well. If a CONTROL-S
is entered at the console while output is in progress,
output is suspended until a CONTROL-Q is typed.

INITIALIZE

GET FIRST
NON·BLANK
CHARACTER

GOTO
PROPER
ROUTINE

Figure 5. Flow Diagram

The MAINLN Module

The module MAINLN @ contains the mainline rou­
tine that implements the command line interpreter. The
statement IMPLICIT LOGICAL A-Z will cause most
usages of undeclared variables to be reported as illegal
mixed mode; the intent in writing these programs was
to declare all variables, which is generally considered

2-40

good programming practice, even though Fortran
makes default assumptions about undeclared variables.

The default handler is to be used for any errors that
may occur while performing mathematical calculations.
Also, the routines that perfor~ the calculations must be
initialized. Both of these operations are performed by
the call to FQFSET ® . The call takes two arguments.
The first argument is a two byte field specifying which
error handler is to be used. If the 10\Y order bit of the
high 'order byte is a one (e.g., 100 hexadecimal), the
math routines will call a user error handler whose
address is given as the second parameter. If the low
order bit is zero (as is the case in this example), the
routines will use the default handler and ignore the
second argument.

A banner is output to the console by the sequence at
® where a formatted WRITE is performed on an

internal buffer (IMAGE) and then the external driver
BUFOUT is called to output the buffer to the console.
The variable CARRET is used to insert a carriage
return into the string to be output. In order to allow in­
dividual characters in the character string to be accesSed,
the EQUIVALENCE statement is used to cause
LINBUF and IMAGE to occu~ the same memory
space. The variable INDEX (S) is us~d to scan
through the input buffer.

A call to BUFIN ® fetches the command line from
the ·console. DBLANK is called CD to position INDEX
to the first non-blank character. This character is con­
verted to its integer representation, normalized to I and
checked to see if it is a valid alphabetic character CD .
If the key letter is valid, the computed GOTO ®
causes execution to branch to the correct pOint in a
jump table @ . Note that A (add,) S (subtract), M
(multiply), and D (divide) all branch to a single routine
MATH, T (transition test) branches to a routine called
TRANST and all other key letters are trapPed into line
100. Any and all I/O errors cause the ERROR routine to
be called.

The DBLANK Module

The DBLANK routine @ de-blanks the input line. If
a carriage return is encountered, the operator is
prompted for more input.

The ERROR Module

The ERROR routine @ prints out an error message,
with the error number, to the console.

The MATH Module

In many of the tests, the human operator must supply
numeric parameters. A calculator mode is supplied for
the simple calculations that might be needed here. This
mode is implemented through the MATH routine @ "
Since anyone of four keyletters could haye caused this
routine to be invoked, MATH rescans the command line
to obtain the key letter ® . Followin.g this, two oper­
ands are read in by calls to CONVRT @ and the
operation requested is performed on them.

The CONVRT Module

Subroutine CONVRT ® is called from other routines
to extract floating-point operands from the input line
buffer. Characters are transferred into a tempora ry
buffer ® until either a carriage return or a comma is
encountered. The temporary buffer is then read under
format control to obtain the returned value (D .
The TRANST Module

The item to be tested is composed of combinatorial
logic as shown in Figure 6. The transition test sets all
inputs except one to a constant value. By varying the
voltage at the remaining input, the transitions at the
output can be checked. This test must be run while the
+ SV power to the fixture is varied through a range of
values. This testing is performed by the TRANST
routine.

Vee

+

Power is supplied to the test fixture through one of the
two D/A channels on the iSBCTM 732. Three of the input
parameters specify the starting and stopping voltage
values for Vcc and the incremcnt to be added each step.
The fourth parameter is the tolerance to be used to
decide if the test passes or fails at each stcp. Once the
test is running, the output voltage at (1) is measured
for inputs at CD of 0 and SV. The voltage input is then
incremented from OV (using D/A channell) until a
transition is sensed in the output voltage at @ . At
this point, the input voltage at ill is checked to see if
it is within tolerance. The same process is then repeated
with the voltage at CD going from + SV downward.
After the test is complete, a formatted report is
generated containing the ambient temperature
(measured through a temperature sensor) and the per­
formance record for the item under test.

TEST INPUT CD
COMBINATIONAL

LOGIC

TEST OUTPUT @

1 1 1··· 1
LOW TO HIGH TRANSITION ALL OTHER

INPUTS
HELD

CONSTANT

HIGH TO LOW TRANSITION

TIME

TEs'r s'rAND V0. I"
COMMAND?

w
C!I

~
o
>

Figure 6. Transition Test

TIME

M 34.h78,'45.~3
34.678e0 * 345.43000 = 11978.82160

COMMAND?
T 4.5,5.5,.2,5.
TRANSITION TEST TOLERANCE= 5.[1%

VCC HIGH TRANS LOW TRANS
4.5 'Hl.81 3.42
4.7 00.80 3.44
4.9 ~0.80 3.67
5.1 00.80 3.71
5.3 er.80 3.73
5.5 00.80 3.74

COMMAND?

AMBIENT TEMPERATURE =
HIGH LOW TEST
~.43 0.12 PASSED
4.67 0.08 PASSED
4.88 0.02 PASSED
4.93 0.02 PASSED
~.98 0.01 PASSED
4.99 0.01 PASSED

Figure 7. Sample Output

2-41

25.30 DEGREES C

An external routine @ , ADCIN, is called to input
samples into the variable given as the first parameter
from the channel given as the second parameter. The
counts from the temperature sensor exhibit a logarith­
mic curve, so the input is linearized using the equation
shown. The routine DACOUT @ takes the first para­
meter and outputs it to the channel specified by the
second parameter. If no transition occurs when the test
input is run through its entire range, the item is assumed
non-functional, a message is output, and control is re­
turned to the console ® .

The ADCIN Module

Subroutine ADCIN ® fetches samples from the AID
converter on the iSBC 732 board. The channel number
is an input parameter and the data is the returned value.
Of special note in this routine is the use of the FORTRAN
common block to control a memory-mapped device.
The master CPU communicates with the iSBC 732 by
way of memory read and write commands instead of
I/O commands. The primary reason for this is the fact
that the 8080A IN and OUT instructions operate on
only 8 bits at a time whereas SHLD and LHLD instruc­
tions can manipulate 16 bit operands. This is
convenient when working with 12-bit inputs from the
AID and 12 bit outputs to the D/A. In the code, a
common block is created which has the same makeup as
the memory mapped registers on the iSBC 732 board.
The common block will be origined at the address of the
iSBC 732 by the ISIS-II LOCATE program.

The DACOUT Module

Subroutine DACOUT CD makes use of the same com­
mon block to output given values to a specified D/A
channcl.

LINK and LOCATE

The ISIS-II LINK command needed to pull together the
individual pieces of this example is shown in Figure 8.
After compilation, the object modules of all of the pre­
viously described routines are placed in the library
FRTMOD.LIB by the ISIS-II Library ManagerTM. The
LINK statement starts with the module DRIVRS.OBJ,
which has one EXTERNAL reference, MAINLN. To

satisfy this reference, MAINLN.OBJ is linked in from
FRTMOD.LIB and its EXTERNAL references cause the
inclusion of other modules.

The LOCATE command shown in Figure 9 is used to
assign absolute memory locations to the code in the
LINKED modules. The common block labelled ADC is
explicitly assigned to FFFOH so that it will correctly
overlay the memory-mapped space of the iSBC 732
board. The ORDER statement is used to tell the locator
in what order the various segments should be placed in
memory.

LINK :FJ:DRIVRS.OBJ, &
:Fl:FRTMOD.LIB, &
:F0:F80RUN.LIB, &
:F0:F80NIO.LIB, &
:Fe:F80ISS.LIB, &
:F0:FPEF.LIB, &
:F0:FPSOFT.LIB, &
:F0:PLM80.LIB &

TO :Fl:TSTND.LKH PRINT(:Fl:TSTND.LNK) MAP

Figure 8. LINK Command for Test Stand Example

V. USING THE FORTRAN-80 RUN-TIME PACKAGE
FOR RMXI80™ SYSTEMS

The iSBC 801 package provides I/O interface and math
routines for users who are coding RMX/80 applications
in the FORTRAN-80 language. In the following sec­
tions, an overview of the RMX/80 system will be
presented along with a discussion of the use of the iSBC
80 I package. This overview is not intended to be ex­
haustive. If the reader is unfamiliar with the RMX/80
package, he should gain from this section enough un­
derstanding to comprehend the concepts in the example
presented. If the reader is planning on implementing an
RMX/80 system, the RMX/80 references in the front­
piece should be studied carefully.

LOCATE :Fl:TSTND.LK0 PRINT(:Fl:TSTND.LOC) MAP LINES SYMBOLS PUBLICS &
ORDER(CODE DATA /LINE/ /ADC/) /ADC/(0FFF0H) STACKSIZE(0) CODE(0)

Figure 9. Locate Command for Test Stand Example

2-42

Overview of the RMX/80™ Executive

A largc number of microcomputer applications require
the abil ity to respond to events in real-time. The
RMX/80 Executive provides the system software around
which you can build a real-time multitasking applica­
tion using Intel iSBC 80™ Single Board Computers. In
addition, the RMX/80 package provides the application
designer with various high-level drivers (such as a
terminal handler and a disk file system) which make it
easier to develop sophisticated applications software.

The RMX/80™ Model

At this time, it is appropriate to discuss the RMX/80
model, or in other words, the general concepts upon
which the RMX/SO Executive is built. Real-time
systems, such as the RMX/SO system, provide the cap­
ability to control and respond to events occurring asyn­
chronously in the physical world. To handle these
events, the application is broken up into smaller semi­
independent pieces, and each of these pieces is brought
into action to handle the event for which it is intended.
Each of these independent program units is a task. The
RMX/80 Executive manages the execution of these tasks
in accordance with a user-designated priority scheme to
insure that the highest-priority task in the system has
control of the CPU. It is also necessary, in a system such
as this, for these semi-independent program units (tasks)
to communicate with each other. This communication
may be for the purpose of synchronization, data
passing, mutual exclusion or any other use that may
arise. To facilitate inter-task communication, the
RMX/80 model incorporates the notion of messages and
exchanges. A message is a data structure that can con­
tain an arbitrary amount of information to be commun­
icated from one task to another. An exchange is a "mail
box" where tasks may send messages to be picked up by
other tasks. The primary operations (primitives) that
accomplish message transfers in the RMX/SO system are
RQSEND" and RQW AIT". Figure 10 diagramatically
shows the interaction of tasks, messages, and exchanges
and introduces the symbolism used to represent these
RMX/SO concepts in the system design.

Tasks

Typically, a task will execute a section of code that per­
forms some initialization and then enters an infinite
loop performing some processing over and over again
as shown in Figure II.

Each task in the system has a priority associated with it.
The RMX/80 Executive uses this priority scheme to de­
termine which ready task to run. The assignment of
priorities to individual tasks is up to the system design­
er, giving him the capability to tune his system by
assuring timely execution of important functions.

2·43

C

LEGEND:

TASKD

EXCHANGE 0
TASK SENDING MESSAGE ~o

'------'

TASK RECEIVING MESSAGE o-D

TASK
A

Figure 10. Task, Message, Exchange Interaction

SUBROUTINE TASK I

C -- DECLARATION OF VARIABLES HERE
C
C
C -- INITIALIZE VARIABLES AND I/O PORTS
C

C

CALL OUTPUT (#OESH,O)
FLAG = I
INDEX = I
COUNT = 0
SUM = 0

C -- ENTER INFINITE LOOP
C

CALL INPUT(#OE9H,IVAL)

•
o

•
GOTOI
END

Figure 11. Task Loop

·In onkr \0 differentiate H!\IX/!lO pw{,t'duf{'s and data ~trudlHl'~ from the u~('r\, the llaJ1w.\

of ~y~tt'm objet'b Me illways preceded b~' RQ.

Each HMX/80 task also has its own stack, and there is
no system stack. Whenever a task must give up the pro­
cessor (e.g., must wait for the occurance of an interrupt)
all of the information necessary to reawaken it at some
future time without affecting the results of it's proces­
sing is stored on its stack.

Exchanges

An exchange in the HMX/SO system is a data structure
that contains pointers to lists of tasks and messages.
Whenever a message is sent to an exchange where there
are no tasks waiting, it is added to the list of messages at
that exchange until a task accepts it. Similarly, if a task
waits at an exchange for a message and there is no mes­
sage in the list, the task is added to the list of tasks wait­
ing at that exchange. In both cases, the tasks and mes­
sages arc serviced on a first come, first served basis. Fig­
ure 12 shows the possible states an exchange may be in
at a given time.

8
Figure 12. Exchange Lists

Messages

A message in the RMX/SO system is a contiguous section
of memory of an arbitrary length. Information can be
stored in the message prior to it being sent to an
exchange where it will be accepted by another task.

Configuration

The configuration module contains various tables and
PUBLIC variables that are accessed by the system at
start-up time. All of the necessary information on the
tasks and exchanges to be created and the disk file

2·44

system to be utilized are contained in this section of
code. Configuration modules can be coded in either
PUM or assembly language (for which there are macros
included with the RMX/SO product.)

Memory Usage

In systems using disk, it is necessary to ensure that cer­
tain buffers used by the disk controller for Direct Mem­
ory Access (DMA) are located in memory that is acces­
sible to the disk controller. The buffers needed are allo­
cated in a separate module called the controller addres­
sable memory module. In the case of the iSBC SOIlO,
SOIlOA, S0/20, and S0/20-4 boards, this module should
be LOCATED before being included in the LINK state­
ment to make sure that it does not contain any RAM on
the CPU board itself (and, therefore, not controller­
addressable). This restriction does not apply to iSBC
80/30 systems, since the iSBC SO/30 board has a dual
port bus allOWing system access to on-board RAM.

VI. APPLICATION EXAMPLE

A Sewage Treatment Plant Control System

In the early 1900's, the most popular type of sewage
treatment system was known as a Sequencing Batch
Reactor. It provided excellent effluent quality, but as
populations grew, the amount of control necessary to
operate the plant became too great for human opera­
tors, and a new type of treatment system came into use.
This new system did not require such accurate control,
but it also did not perform as well. With the passage of
stricter and stricter water quality laws, and with the
advent of low-cost, high powered microcomputer con­
trol systems, a serious look is being taken once again at
Sequencing Batch Reactors.

A diagram of the treatment system and its sensors and
actuators is shown in Figure 13. The system usually
consists of three tanks, with each tank having individual
influent and effluent valves, mixers and aeration equip­
ment.

At any given time, all influent is being routed to one
tank. When this tank is filled, the influent is routed to
one of the other two. The full tank is agitated and
aerated until the bacteria in the tank digest the sewage
to within given limits. At this time, the mixer and aer­
ator are turned off and the contents settle. After a time,
the supernatant fluid is drawn off leaving the layer of
concentrated bacteria to digest the next batch.

The computer control system necessary for controlling
these reactors is shown in Figure 14. The system is res­
ponsible for monitoring the various sensors and contact
closures, maintaining archives of system status, logging
reports upon command, activating operator alarms,
and performing on-line control of the batch cycle.

FLOW
SENSOR

BATCH REACTOR #1

ON/OFF
VALVE

INFLUENT

SENSORS

SENSORS

MIXON

AIRON

ON/OFF
VALVE EFFLUENT

Figure 13. Sewage Treatment System and Sensors

Software

An analysis of the functions that need to be performed
by the software for this control system leads to a
decision to use the RMX/SO Executive. Timely response
to multiple asynchronous events is the main thrust of
this application. A breakdown of the individual func­
tions in the system would be:
• data collection - gathers inputs from the sensors and

contact closures and stores them where other routines
can access them. Also, converts data from analog
counts to engineering units.

• on-line control - based on current sensor inputs
determines whether aeration. agitation, discharge
and fill should be on or off.

• alarm scanning - compares current status values
with setpoints and sets operator alarms if conditions
are out of tolerance when effluent is on.

• data logging - once every five minutes logs current
system status into a disk file record.

• real-time clock - maintains day, month, year, and
time of day.

• operator console handler - monitors operator con­
sole to detect operator commands for time and set­
point changes, report generation, alarm clearing, etc.

• report generation - upon operator command, for­
mats either the file corresponding to yesterday's oper­
ation or today's operation to the current moment.

Each of these functions must be studied independently

2·45

before the decision on which language to use for each is
made. The functions concerned with data collection,
on-line control, and alarm scanning will be concerned
with mathematical calculations. The functions concern­
ed with data logging and report generation will have
need of formatted disk and console I/O. These routines
will thus be coded in the FORTRAN-SO language.

As was mentioned earlier, the PUM-SO language is a
systems programming language. This means that it is
optimized to deal with the concepts embodied in a high­
level system such as the RMX/SO system. The program
code that implements the real-time clock and operator
console handler will be written in the PL/M-SO
language. In addition, various PUM-80 support routines
will be written to be called on by one or more of the
FORTRAN-SO routines. The purpose of these routines
will be explained as they come up in the code descrip­
tions follOWing.
Hardware

The hardware used to implement this control system
must perform the following functions:
• inputting analog samples from the various sensors
• outputting analog values to the pneumatic positioners
• inputting digital values from the contact closures and

operator console
• outputting digital values to the operator console and

alarm panel
• storing and retrieving data from diskette files

REPORT
GENERATION

PNEUMATIC
POSITIONERS

I I I I 00
,II' ,1 ,1/ ,1/,1/
-0--0--0- -0--0-
/1' /1" /1' /1' /1'

OPERATOR
CONSOLE

RELAYS

DISK DATA STORAGE

Figure 14. Computer Control System

The hardware configuration chosen includes an iSBC
SO/30 Single Board Computer, an iSBC 732 Combina­
tion Analog Input/Output Board, a combination of
PROM and RAM memory modules, and an iSBC 201
Diskette Controller.

There are various types of I/O devices in this system and
each will require different FORTRAN-80 I/O support.
The terminal and disk devices are supported through
the iSBC 801 run-time package and the RMX/SO high
level drivers, Communications with the A/D and D/A
converters is accomplished using internal buffer
formatting in conjunction with the RMX/SO Analog
Handlers, Finally, port I/O is used for the digital inputs
and outputs.

The next step in the design is to assign the system soft­
ware functions to individual tasks in a manner that will
allow for their parallel execution. The following tasks
will be created to handle this application:

• STSINP - status input and unit conversion
• CNTROL - on-line control
• SCAN and TIMERS - alarm scanning and data

logging
" TIMER and TIMUPD - real-time clock
• CONSOL - operator console handler
• REPORT - report generation
Figure 1 S shows the interaction of these tasks in the
RMX/80 system,

2-46

System Considerations

At this point, let us consider some of the mechanisms this
system will require to synchronize and co-ordinate the
tasks we have created, Status and setpoint information
will be stored in FORTRAN common blocks, This will
allow the STSINP, CNTROL, SCAN, CONSOL, and
TIMUPD tasks access to the STATUS information, and
the CNTROL, SCAN, and CONSOL tasks access to the
SETPNT information. Once per five minutes, SCAN will
be notified through a flag byte (MIN SUP) that he is to
write the current system status to the file TODA YS.RPT.
Upon command from the operator, REPORT will need to
read these files to generate reports.

Since the RMX/SO system is designed to handle asynchro­
nous events, it is quite possible for any of the tasks to be
pre-empted at any point in their execution (e.g., an inter­
rupt occurs or a higher priority task becomes ready to
run). Thus, the SCAN task may be in the process of
reading the last byte of a four-byte REAL integer when
STSINP pre-empts the SCAN task and writes new infor­
mation into the STATUS common block, thus inval­
idating the current SCAN operation. In another instance,
REPORT may be in the process of fetching a disk record
when SCAN attempts to write to the file. For these
reasons, and more, it is necessary to implement some sort
of synchronization mechanism in this system. We will
insure that at most, one task has access to the common
blocks and disk records by using a technique called
mutual exclusion. In the RMX/SO system, this is accom-

REPORT

Figure 15. System Design Diagram

plished by creating an exchange for each shared resource
and initially sending one message to it. Any task
requiring access to the resource first waits at the associ­
ated exchange for the key message. If a message is at the
exchange, the task obtains the message and continues
running until finished and then sends the message back.
If another task waits at the exchange while the first is pro­
cessing, it will stop execution until the first task finishes
and returns the message.

Code Descriptions

What follows is a description of the code used to imple­
ment most of the tasks discussed. Appendix B contains
fold-out code listings with circled reference letters. In the
description, sections of the code will be called out using

2·47

circled letters that correspond to symbols in the
appendix.

The Semmod Module
Two PUM routines called LOCK and UNLOCK perform
the mutual exclusion operation discussed earlier. There
are three exchanges used for the purpose of exclusion:
STSLOK, SETLOK, and DSKLOK. They govern access
to the STATUS common block, the SETPNT common
block and the disk file respectively. The LOCK procedure
@ takes one parameter, a number representing one of

the three exchanges, and performs a wait at the appro­
priate exchange. Note the use of based variables to access
the parameter. This is necessary since FORTRAN passes
parameters by reference (address) rather than by value.
The UNLOCK procedure ® takes the same para­
meter and sends the single key (message) back to the
appropriate exchange.

These routines are written in the PUM language because
they must deal directly with a few system concepts that
the FORTRAN-SO language does not. In particular, the
RQW AIT routine returns to the caller the address of the
message received from the exchange. In either the PUM­
SO or ASM-SO languages this address can be used to
access the information in the message received.
FORTRAN-SO routines do not have the capability to use
address values to access data outside of their own
module.

The STSINP Module

The module STSINP © performs the function of
updating the STATUS common block with new data
from the sensors that has been converted to engineering
units. STSINP initializes the FORTRAN-SO math
routines @ and directs them to use the default error
handler. STSINP then calls INIT$IO ® which initial­
izes the message that will be used to communicate with
the RMX/SO Analog Input Handler. The call to
SMPLIN ® fills the buffer with analog samples from
the sensors, and the following DO loop right-justifies
the 12-bit samples in the 16 bit field © . STSINP now
waits for access to the STATUS block, converts the
samples, stores them, inputs and stores the values of the
contact closures and calls UNLOCK ® . The function
performed by STSINP is not a continuous function.
Update of the status information once per second is
sufficient. The call to WAIT CD delays execution for
one second.

LINK

LENGTH

TYPE I
HOME EXCHANGE

RESPONSE EXCHANGE

STATUS

BASE REGISTER POINTER

ARRAY1 POINTER

ARAAY2 POINTER

COUNT

Figure 16_ Request Message for Sequential Channel In­
put with Single Gain

The ANALOGIOMOD Module

In the module labelled ANALOGIOMOD, the declar­
ation of READ$MSG CD uses the predefined LITERAL
calledAI$MSG. This LITERAL is one of many in the
RMX/SO package that can be used to attach meaningful
symbolic names to PUM data structures. In this instance,
AI$MSG defines the fields of a standard analog input
request message. Figure 16 is a diagram of the individual

2·48

fields of the request message. The definition and usage of
each of these fields is described in the RMXISO User's
Guide. The procedure INIT$IO ® is called by
STSINP. It simply initializes the analog input request
message and returns. Note the assignment operation in
line 29. The RESPONSE$EXCHANGE field of the
request message must contain the address of the exchange
where the RMX/SO Analog Handler should send the res­
ponse to the request (see Figure 17 for a diagram of the
request-response mechanism). In the PUM language, this
address is assigned using a location reference - a variable
name preceded by a period, which stands for the address
of the variable. FORTRAN-SO routines lack the ability to
refer to the address of variables.

Figure 17. Request/Response Mechanism

The procedure SMPLIN @ fills in a buffer, given as an
input parameter, with analog samples from sequential
channels on the A/D. Note the mechanism used to handle
the passing of a FORTRAN string as a parameter. For
every string in the parameter list, FORTRAN passes the
starting address. of the string followed by its length in
bytes.

PH

CHARACTER
'57 BUFFER

Figure 18. Use of EQUIVALENCE Statement

The SCAN Module

The SCAN task is responsible for operator alarms and
data logging. The EQUIVALENCE statements (fD
cause the STATUS common block to be overlaid by a
character string, as illustrated in Figure 13. This allows
for a compact file on disk of numerical data which can
be broken out later for report generation.

After initialization, SCAN waits for access to both the
STATUS and SETPNT common blocks. Operator alarms
need to be set only if a parameter is out of specification
and the effluent pump is on ® . After performing the
scan, the variable MINsUP is checked @ to see if a
report should be logged. If so, SCAN ~ins access to the
disk file and writes a single record \.V . All locks are
now released, a one-second delay is counted out, and
SCAN repeats the whole process. Normally, any errors
that occur during the execution of I/O statements in the
run-time package cause a message to be output on the
console and the offending task to be suspended. Since this
action is often undesirable, it is wise to handle one's
errors programatically @ .

The MIN5MOD Module

The module MINsMOD contains two procedures.
Both routines make use of the timed wait facility in the
RMX/30 system. Any time a task calls RQW AIT to wait
for a message at an exchange, an optional timc limit (in
SO msec. intervals) can be specified. This is useful if the
designer does not wish the task to be hung up forever if
a message is never sent to that exchange. This mechan­
ism can also be used to implement a timed wait if an
exchange is specified to which no one will ever send a
message. WAIT ® delays execution of the calling
task for one second. TIMERS ® waits for five
minutes and then sets the variable MIN SUP to signal
SCAN to log a disk record of current status.

The REPORT Module

The system console contains two buttons, one each for
requests for printouts of today's and yesterday's status
reports. Whenever one of these two buttons is pushed, the
CONSOL task sends a message to the PRTREQ
exchange with the TYPE field indicating which file to
print. REPORT accepts these messages, checks the TYPE
field G) ,and calls the FORTRAN subroutine PRINT
with the appropriate filename as a parameter. It then
returns the request message to its sender via the response
exchange field and waits for another request. Figure 19 is
an example of the report generated by this system.

The PRINT Module

The PRINT subroutine will read in the compressed
records written by SCAN and use the same set of EQUIV­
ALENcE statements to break out the numerical data so

2·49

that it can be formatted for printout. If the type
field @ indicates that today's file is being accessed,
PRINT obtains the key to the DSKLOK exchange since
SCAN may disturb output operations if it attempts to log
a new record. If yesterday's file is being accessed, the lock
is not necessary, since no other task will be accessing this
file. Once the lock is obtained, a record is read, the digital
value of the contact closure status is converted to a more
readable form @ (ON or OFF), and the status line is
formatted and printed. Since the SCAN task has an
important function (operator alarms), we do not wish to
hold it up for long if it happens towant to log a new status
record. For this reason, PRINT relinquishes access to the
file after every tenth record to allow SCAN to log its
record and continue on. The rest of the code ® checks
for end of file indications and returns when printing is
finished.

The INITMOD Module

Last in order (but first in execution) is the INIT proce­
dure. It is called from the TIMER task, which is the
highest-priority task in the system (and thus, will be the
first to execute after start-up). INIT's role in life is to call
FQOGO ® to initialize the FORTRAN I/O system,
send one message to each of the lock exchanges G:) ,and
initialize the operator alarm panel ® . The call to
FQOGO is a requirement for an RMX/30 system in which
any FORTRAN-30 code that makes use of the iSBC 30 I
package is to be executed. The call must be made prior to
the execution of any FORTRAN-30 I/O or math instruc­
tions. Also, the call to FQOGO should only be made
once.

DATE TIME PH VOLUME TEMP DISSOLVED TOTAL ORGAtHC
OXYGEN CARSON CARBON

(CU.H) (e) (I1G/"'L) ("GIl'lL) (MG/MI.)
9/19/78 8: 5: P 6.1 l1H2.32 25.4080 12.3490 76.9800 34.9818
9/19/78 8:18:" 6.2 2614.08 25.4ue 12.5U18 88.P'34B 48.49)3

SUSPENDED PHOSPHATE INFl.UENT EFFLUENT TURBID AIR DIS MIX INt'
SOLIDS CONe FLOW FLOW

(MG/I'IL) (MG/ML) (MC/I'IL) (HG/ML) ,
16.8987 56.98118 112.899 9.1"11:1 74.56 ON Ct'.'
19.3943 61.4]lIiI 119.J4e1 0.0i111 86.4]

Figure 19. Sample Output

SYSTEM GENERATION

Configuration Module

Now that all of the code for the individual tasks is written,
it is time to generate the tables that give the RMX/80
Executive the information it needs to configure all of the
tasks and exchanges. Assembly language macros are in­
cluded in the RMX/30 product to help make building
the configuration module a little easier. After the
counters have been initialized, the STD macro is invoked
several times to define Static Task Descriptors for the
tasks in the system. Of special note are the last two entries
@ . Any task that uses the FORTRAN I/O system

must allocate approximately 800 bytes of stack. This
extra stack space is needed to save information on the

current I/O operations. Also, any task performing
floating point calculations with the software package
needs to append an extra 18 bytes to its Task Descriptor
as a workspace area. If the iSBC 310 drivers are used
this need be only 13 bytes long. This last field is de­
fined by passing a value of 13 or 18 to the optional
parameter, TDXTRA, in the STD macro. The routines in
the FORTRAN-80 Run-Time Package require one ex­
change, FQOLOK, which is allocated using the XCH
macro @ ,and adde~ the Initial Exchange Table
bythePUBXCHmacro 0 .

Controller Addressable Memory Module

The CAMMOD module @ allocates the blocks of
memory needed by the RMX/80 Disk File System.
Specific details on the contents of this module can be
found in the RMXI80 User's Guide.

LINK

Figure 20 shows the ISIS-II LINK command used to bind
all of the individual modules together with the RMX/80
libraries needed to implement this application. The
FORTRAN-80 I/O interface routines are found in the
library F80RMX.LIB which is part of the iSBC 80 I pack­
age. the library FPSFTX.LIB contains the software
floating point package. If it is desired to accelerate the
execution of the mathematical operations in this system,
the iSBC 310 board can be included and the library
changed to FPHRDX.LIB for iSBC 80/20, 80/20-4, and
80/30 systems or FPHX I O.LIB for iSBC 80/1 0 and
80/ I OA systems.

The RMX/80 extensions included are the Disk File Sys­
tem, the Analog Handlers, and the Minimal Terminal
Handler.

LOCATE

After the Link has been finished, the command shown in
Figure 21 is used to invoke the ISIS-II LOCATE program.
The ORDER statement sets the proper order for all of the

different segments and common blocks. The common
blocks themselves are allocated as fixed blocks of
memory to make possible their shared usage by PL/M
routines using the AT attribute. This mechanism is
discussed in greater detail in AP-44, "How to use
FORTRAN With Other Intel Languages".

VII. SUMMARY

The purpose of this application note has been to describe
the design process used to decide what operating system
support to use, what language to code programs in, what
hardware to use and what type of I/O to use to solve a
given application problem. The specific application ex­
amples presented have keyed on the use of the
FORTRAN-80 language.

The lesson that has been learned is that prop~r design
techniques result in the use of the right tool for every job.
With a complete set of programming languages, each
optimized for a. specific use, a powerful real-time
executive, and a complete line of flexible hardware
products, complicated applications become easy to
solve.

LINK :Fr:RMX83V.LIB(START), ["
:Fl:X2CFG.OBJ, f,

:Fl:RPTMOD.OBJ, (,
:Fl:FRTMOD.LIB, (,
: Fl: INITMD. OBJ, I\.
:FCJ:FBlIRUN.LIB, (,
:F~:FeflRMx.LIB, (,
:F0:FPEF.LIB, (,
:FC:FPSFTX.LIB, &
:F0:SYSTEM.LTB, &

: H~: DFSDI R. LIB (DIRECTORY, DELETE, RENAME, SEEK), &
:F0:DI083~LLIB, &
:Fr.:DFSUNR.LIB, (,
:F1 :CAM.OBJ, &
:Fl:PLMMOD.LIB, &
:F0:iHHDLR.LIB, 6-
: F0: AOHDLR. LIB,
:Fe!:MTI830.LIB,
: F0:MT0830. LIB, &
:F~:RMX830.LIB, &
:F0:UNRSLV.LIB, &
:F0:PLMS0.LIB TO :F']:SEWAGE.LK0 PRINT(:Fl:SE'i\'AGE.LNK) MAP

Figure 20. LINK Command for Sewage Treatment Example

LOCATE :Fl:SEWAGE.LKe PRINT(:Fl:SEWAGE.LOC) MAP &
CODE(0) STACKSIZE(0) LINES SYMBOLS PUBLICS &
ORDER(CODE DATA /LSTREC/ /STATUS/ /SETPNT/ /MIN5/) /STATUS/(FFA5H) &
/SETPNT/(FFDEH) /MIN5/(FFEEH) /LSTREC/(FFA3H)

Figure 21. LOCATE Command for Sewage Treatment Example

2-50

APPENDIX A
CODE LISTINGS

2·51

ASMBe :Fl:DRIVRS.M80 DEBUG PAGEWIDTH(78) PRINT(:F5:DRIVRS.LST)

ISIS-II 8080/8085 MACRO ASSEMBLER, V2.0 DRIVRS PAGE

LOC OBJ

e00D
000A
00lB
0018
BB7F
0008
0B13
0011
8907
B912
B0ED
89EC
BBBI
0002
0840
0B4E
B027
BOB6
0B92
BODE
BBDF
88EB
888S
89EB

LOC

008e

0002

0e00
0003
0004
0006
0008
000A
~r0C

C00E
0~10

0~12
~e14

OBJ

317F00
AF
D3ED
D3ED
D3ED
03EO
3E40
D3ED
3E4E
D3ED
3En

0

SEQ SOURCE STATEMENT

1 NAME
2 ;

DRIVRS

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
'5
46
47
48
49
50
51
52

SEQ

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

: +t++++++ +t++++ ++ ++ +ttttt++++++ +ttttt+++++++++++++++++

CONSOLE I/O ROUTINES FOR FORTRAN-iSBC SYSTEM.
START INITIALIZES THE HARDWARE AND CALLS THE
FORTRAN ROUTINE MAINLN. BUFOUT ACCEPTS TWO
PARAMETERS .FROM THE CALLING FORTRAN ROUTINE
(ACTUALLY ONE FROM THE ROUTINE SINCE PASSING
A STRING ARGUMENT FROM FORTRAN RESULTS
IN THE ADDRESS AND LENGTH OF THE STRING BEING
SENT) AND OUTPUTS THE STRING TO THE USART
ON THE P0/20. BUFIN TAKES THE SAME TWO
ARGUMENTS AND FILLS IN THE BUFFER WITH
CHARACTERS UNTIL <CR> IS ENCOUNTERED. LINE
EDITING IS PROVIDED TO THE EXTENT THAT
RUBOUT DELETES A CHARACTER AND ECHOES IT,
CONTROL-X DELETES THE BUFFER AND STARTS OVER,
AND CONTROL-R PRINT, THE BUFFER CONTENTS.
BUFOUT CALLS THE ROUTINE CHKIO TO DETERMINE
IF A CNTL-S HAS BEEN ENTERED TO CAUSE A PAUSE
IN THE OUTPUT. IF ENCOUNTERED THE ROUTINE
WAITS UNTIL A MATCHING CNTL-Q IS ENTERED.

;tt+++
CR EQU ODH ;ASCII CODE FOR CARRIAGE RET.
LF EQU OAH ;ASCII CODE FOR LINE FEED
ESC EQU IBH ;ASCII CODE FOR ESCAPE
CNTLX EQU 18H ;ASCII CODE FOR CONTROL-X
RUB OUT EQU 07FH ;ASCII CODE FOR RUB OUT
BS EQU ~8H ;ASCII CODE FOR BACKSPACE
CNTLS EQU 13H ;ASCI! CODE FOR CONTROL-S
CNTLQ EQU IIH ; ASC I! CODE FOR CONTROL-Q
BELL EQU 07H ;ASCI! CODE t'OR BELL
CNTLR EQU 12H ; ASC II CODE FOR CONTROL-R
CSTS EQU 0EDH ; USART COMMAND/STATUS PORT ADD
CDATA EQU BECH ; USART DATA PORT ADDRESS
TXRDY EQU OIH ;MASK FOR TRANSMITTER READY
RXRDY EQU 02H ;MASK FOR RECEIVER READY
RESET EQU 4 "H ; USART RESET COMMAND
USMODE EQU 4 E H ; USART MODE WORD
USCMND EQU 27H ;USART COMMAND WORD
TIMCMD EQU 0B6H ;BAUD RATE CNTR COMMAND wORD
CMD55 EQU 92H ;8255 COMMAND WORD
CNTR2 EQU 0DEH ;BAUD RATE CNTR PORT ADDRESS
TIMCP EQU 0DFH ;TIMER CONTROL PORT ADDRESS
PR8255 EQU OEBH ;8255 COMMAND PORT ADDRESS
STKSIZ EQU 128 ;STACK SIZE
BDFCTR EQU 224 ;BAUD RATE FACTOR(CQUNT VALUE)

ALLOCATE STACK

SOURCE STATEMENT

DSEG
FRTSTK: OS STKSIZ

LOCAL DATA STORAGE

BUFPTR: OS :8UFFER POINTER STORAGE
CSEG

START--STARTUP ROUTINE PROGRAMS THE USART
AND TIMER THEN CALLS THE FORTRAN
ROUTINE. IF THE FORTRAN ROUTINE
RETURNS START SIMPLY STARTS OVER.

EXTRN MAINLN
START: LXI SP,FRTSTK+STKSIZ-l ;SET STACK POINTER

XRA A ;ZERO ACCUMULATOR
OUT CSTS ;BRING USART TO KNOWN STATE
OUT CSTS ;BY SENDING FOUR NULLS
OUT CSTS

® OUT CSTS
MVI A,RESET :RESET USART
OUT CSTS
MVI A, USMODE ;SEND USART MODE WORD
OUT CSTS
MVI A, USCMND ;SEND USART COMMAND

2-52

~016 D3ED
0~18 3EB6
001A D3DF
0~IC 3EEr.
C01E D3DE
0020 3Ee~

0022 D3DE
0~24 3E92
M21i D3EB
~e28 CD00~0

0~ 2B C 3000 0

002E E5
e02F F5
0e,~ C5
0031 60
C~32 69
0033 2280~0
0036 16~0

0038 D5

~~39 CDE20~
003C FE7F
003E C24700
0e41 CD9~P~

LOC OBJ

0~44 C3390~

0047 FE18
~049 CAA200
004C FE12
004E CAF900
0051 ID
0~52 C26300
0055 FE0D
e057 CA630~
0~5A lC
095B ~E07
005D CDB4C0
0~60 C3398e

~~53 4F
0864 CDB488
0867 71
8068 23
0C69 14
896A 3E8D
8e6C B9
886D C2398~
0070 Dl
8871 C I
0872 Fl
0073 El
0~74 C9

8075 E5
8876 F5
8877 68
8078 69
8879 CDCD88
887C 4E
887D CDB408
BB88 3EBD
8882 B9
8883 CA8D08
8086 23
0887 IB
0888 7A
8089 B3
088A C27980
098D Fl
888E El
888F C9

8898 15

E
C

D

C

C
C

C

C

C

C

C

C
C

C

C

C

C

C

C

78
79
8e
81
82
83
84
85
86
P7
88
89
90
91
92
93
94
95
96
97
9P
99

100
10 I
1~2
183
104
105
106
le7

®

OUT
MVI
OUT
MVI
OUT
MVI
OUT
MVI
OUT
CALL
JMP

CSTS
A,TIMCMD ;SEND COMMAND WORD
TIMCP
A,LOW(BDFCTR) ;SEND LOW ORDER BYTE
CNTR2 ;OF COUNTER VALUE
A,HIGH(BDFCTR) ;SEND HIGH BYTE OF
CNTR2 ;COUNTER VALUE
A,CMD55 ; 8255 COMMAND WORD
PR8255 ;PROGRAM 8255
MAINLN ;CALL FORTRAN ROUTINE
START ;IF ROUTINE RETURNS START OVER

BUFIN--FILLS BUFFER WITH INPUT FROM TERMINAL

PUBLIC
BUFIN:r PUSH

PUSH
PUSH
MOV
MOV
SHLD
MVI

PUSH
GETCHR:

CALL
CPI
JNZ
CALL

BUFIN

H
PSW
B
H,B
L,C
BUFPTR
D,B

D

CI
RUBOUT
BUFe5
DLTCHR

;SAVE HL PAIR
;SAVE PSW
;SAVE BC
;GET BUFFER POINTER TO HL
;
;SAVE IT
;ZERO TO , CHARACTERS COUNTER
;NOTE: STRING LENGTH <=255
;SAVE COUNTERS

;GET CHARACTER
;RUBOUT?
; NO, CONTINUE
;YES,DELETE LAST CHARACTER

SEQ ®
108

SOURCE STATEMENT

JMP GETCHR ;GET NEW ONE
189
ll~
111
112
113
114
115
116
117
118
119
128
121
122
123
124
125
126
127
128
129
138
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
158
151
152
153
154
155
156
157
158
159
168
161
162

BUFB5 :

BUFl0:

CPI
JZ
CPI
JZ
DCR
JNZ
CPI
JZ
INR
MVI
CALL
JMP

MOV
CALL
MOV
INX
INR
MVI
CMP
JNZ
POP
POP
POP
POP
RET

CNTLX
DLTLIN
CNTLR
PRTBUF
E
BUF18
CR
BUF10
E
C,BELL
ECHO
GETCHR

C,A
ECHO
M,C
H
D
A,CR
C
GETCHR
D
B
PSW
H

;CONTROL-X?
;YES,DELETE BUFFER
;CONTROL-R?
;YES,PRINT BUFFER
;DECREMENT SPACE LEF~' COUNTER
iCONTINUE IF COUNTER > 0
; IF THIS, END OF LINE ALL IS OK

;BRING COUNTER BACK ONE
;NOT OK, ECHO BELL

;GET NEW CHARACTER

;MOVE CHARACTER TO C
;AND ECHO IT
;STORE IT IN BUFFER
; INCREMENT BUFFER POINTER
;INCREMENT • OF CHARS COUNTER
; IS IT A NEWLINE CHARACTER

jNO,CONTINUE FILLING
:YES,RETURN

:RETURN

BUFOUT ENTRY POINT

('7,UBLIC
BUFOUT: PUSH I PUSH

MOV
MOV

OUTCHR: CALL
MOV
CALL
MVI
CMP
JZ
INX ©
DCX
MOV
ORA
JNZ

EXITLP: POP
I ~OP
~ET

BUFOUT
H
PSW
H,B
L,C
CHKIO
C,M
ECHO
A,CR
C
EXITLP
H
o
A,D
E
OUTCHR
PSW
H

DLTCHR--DELETES

OCR o

2-53

;SAVE HL REGISTER PAIR
;SAVE PSW
;GET STRING POINTER INTO HL

:CHECK FOR PAUSE (CNTL-S)
;GET CHARACTER
;OUTPUT TO TERMINAL
;IS IT A <CR>?
;
:YES, EXIT
; INCREMENT POINTER
; DECREMENT STRING COUNT
;GET HI BYTE
;AND WITH LO BYTE
;IF STRING COUNT <> 0 CONTINUE
; RESTORE PSW
;RESTORE HL
;ALL THROUGH

LAST CHAR ENTERED INTO BUFFER

;DECREMENT • OF CHARS COUNTER

LOC OBJ SEQ SOURCE STATEMENT

0091 F29BOO C 163 JP DLTC 1 e IF >=e CONTINUE
0894 14 164 INR 0 RUBOUT PAST START OF BUFFER
OB95 9E07 165 MVI C, BELL INCREMENT COUNT, ECHO A BELL
0097 CDB40B C 166 CALL ECHO
009A C9 167 RET AND RETURN

168 DLTC1B:
e89B 1C 169 INR E ;INC. SPACE LEFT INDICATOR
eB9C 2B 179 DCX H ; DECREMENT BUFFER POINTER
se9D 4E 171 MOV C,M ;ECHO DELETED CHARACTER
009E CDB409 C 172 CALL ECHO
BeA1 C9 173 RET ;AND RETURN

174
175 DLTLIN--DELETES LINE BUFFER AND BEGINS REFILL
176 ;
177 DLTLIN:

OeA2 eE23 178 MVI C," I ,ECHO A • f •
00A4 CDB4ee C 179 CALL ECHO
eeA7 eEeD 1BB MV! e,eR ; ECHO A CRLF
BeA9 CDB40e C 181 CALL ECHO
BBAC 2A8Bee D 182 LHLD BUFPTR ,GET ORIGINAL POINTER BACK
BBAF D1 183 POP 0 iGET COUNTERS BACK
BBBB D5 184 PUSH 0 ;RESAVE
BBS1 C339BO C 185 JMP GETCHR ;GET NEW CHARACTERS

18~
187 ECHO--ECHOES CHARACTERS 'ro THE TERMINAL
188

~CHO: BBB4 41 189 MOV B,C ; SAVE ARGUMENT

OBB5 3E1B 19~ MVI A,ESC ,SEE IF ECHOING AN
seS7 B8 191 CMP B jESCAPE CHARACTER
seS8 C2SD8B C 192 JNZ ECH05 , NO--BRANCH
BBSB 8E24 193 MVI c, '$ I ;YES,ECHO AS • $'

194 ECH95 :
BBSD CDEEBB C 195 CALL CO ; OUTPUT IT
seco 3EBD 196 MVI A,CR
BOC2 B8 197 CMP e ,CHARACTER ECHOED A CR?
eBC3 C2CSB8 C 19B JNZ ECH18 ,NO--SPECIAL ACTION NOT NEEDED
seC6 BEM 199 MVI C, LF ;YES--ECHO FREE LINE FEED
UC8 CDEEB8 C 288 CALL CD

'48
2B1 ECHIS:

eBCB 282 MOV C,S ,RESTORE ARGUMENT
eBCC C9 283 RET

284
285 CHKIO--CHECKS FOR CNTL-S OPERATION
286 ;

BBCD DBED 297 CHKIO: IN CSTS ;GET STATUS
BeCF E6B2 288 ANI RXRDY ;CHARACTER AVAILABLE?
UD1 ce 2B9 RZ jNO,RETURN
BSD2 DBEC 218 IN CDATA ;YES,GET CHARACTER
B004 E67F 211 ANI 7FH ;STRIP OFr PARITY
BeD6 FE13 212 CPI CNTLS jCONTROL-S?
eeDB ce 213 RNZ ;NO, IGNORE IT
BeD9 CDE2Be C 214 WAIT4Q: CALL CI iYES,WAIT FOR A CONTROL-Q
eODC FEll 215 CPI CNTLQ
seDE C2D9Be C 216 JNZ WAIT4Q
seE 1 C9 217 RET ;GOT IT, RETURN

LaC OBJ SEQ SOURCE STATEMENT

218
219 CI--ENTER CHARACTER FROM TERMINAL
220

GCE2 DBED 221 I: IN CSTS ;GET STATUS BYTE
88E4 E6~2 222 ANI RXRDY ,CHARACTER AVAILABLE
~0E6 CAE200 C 223 JZ CI ;NO,LOOP
08E9 DBEC 224 IN CDATA ;READY,GET CHARACTER
reEB E67F 225 ANI r7FH ,STRIP OFF PARITY
P0ED C9 226 RET

227
228 CO--OUTPUT CHARACTER IN C REGISTER TO TERMINAL
229

~8EE DBED 230 co: IN CSTS ,GET STATUS BYTE
00H E6~1 231 AN I TXRDY ,TRANSMITTER READY?
00F2 CAEEPP C 232 JZ CO jNO,LOOP
00F5 79 233 MOV A,C i YES, MOVE CHARACTER TO ACC.
0~F6 D3EC 234 OUT CDATA ,SEND TO TERMINAL
00FB C9 235 RET

236
237 PRTBUF--PRINTS CURRENT BUFFER(CONTROL-R)
238 ;
239 PRTBUF:

00F9 0E0D 240 MVI e,eR ;ECHO CRLF
S0FB CDB'~8 C 241 CALL ECHO ;
80FE E5 242 PUSH H ,SAVE CURRENT BUFFER POINTER

2-54

a~FF 2M0~0 D 243 LHLD BUFPTR ,GET POINTER TO BEGINNING
B102 05 244 PUSH 0 ,SAVE CURRENT COUNTERS

2'-5 PRLOOP:
~IB3 15 246 OCR 0 ,DECREMENT COUNTER
~ID4 FA0F01 C 247 JM PREXIT ,NO MORE CHARACTERS IN BUFFER
~1~7 4E 248 MOV C,M ,GET CHARACTER
0108 CDB400 C 249 CALL ECHO ,ECHO IT
01rB 23 ,50 INX H ,INCREMENT POINTER
01ec C3P301 C 251 JMP PRLOOP ,LOOP UNTIL ALL CHARS OUTPUT

252 PREXIT:
Pl0F 01 253 POP 0 ,RESTORE COUNTERS
nll0 El 254 POP H ,RESTORE POINTER
0111 <'33900 C 255 JMP GETCHR ·,GET NEW CHARACTER

256 END

FORTRAN COMPILER PAGE

ISIS-II FORTRAN-BB COMPILATION OF PROGRAM UNIT MAINLN
OBJECT MODULE PLACED IN : FI :MAINLN. OBJ
COMPILER INVOKED BY: FORTBB :fl:MAINLN.FRT DEBUG DATE(lB/12/7B) PAGEWIDTH(7B)

5
6
7

@ SUBROUTINE MAINLN
IMPLICIT LOGICAL (A-Z)

C
C-- MAINLINE ROUTINE FOR TEST STAND SOFTWARE. COMMAND LINE IS
C-- SEARCHED FOR KEYLETTER AND APPROPRIATE ROUTINE IS CALLED.
C-- ALL UNUSED LETTERS TRAP TO ERROR ROUTINE.
C
C

C

CHARACTER LINBUF(B0)*I,IMAGE*SB
INTEGER INDEX. 2, CARRET* 1, KEYLTR* 1, ERRFLG* 2, DUMMY* 2
COMMON /LINE/ LINBUF,INDEX,CARRET
EQUIVALENCE (LINBUF, IMAGE)
DATA CARRET 1131

C-- INITIALIZE SYSTEM
C @ DUMMY=1l

CALL FQFSET(DUMMY,DUMMY)
C
c-- WRITE BANNER
C

10 1 WRITE (IM~,GE, lr., IOSTAT=ERRFLG, ERR=999) CARRET
FORMAT('TEST STAND V0.B',A) Il® I~ F C

C-- OUTPUT BUFFER

12
C

C
C-­
C

13@c2 r,

C--
C

INITIALIZE INDEX POINTER TO s'rART OF LINBUF

INDEX=1

PROMPT OPERATOR

14 WRITE (IMAGE, .'0, IOSTAT=ERRFLG, ERR=999) CARRET
15 30 FORMAT ('COMMAND?' ,A)
I~ CALL BUFOUT(IMAGE)

C
C--

17@:

C--

18G):

C--
C

~: CDc

GET COMMAND LINE

CALL BUFIN(IMAGE)

POSI1'ION INDEX TO FIRST NON-BLANK CHARACTER

CAeL DBLANK

CONVERT KEYLETTER 'TO NORMALIZED INTEGER VALUE IE. 'A'=1

KEYLTR=ICHAR(LINBUF(INDEX))-,4BH
INDEX=INDEX+l

c-- CHECK FOR INVALID CHARACTERS
C

21
22

C
C-­
C
C

23®c

IF(KEYLTR.GE.I) THEN
IF(KEYLTR.LE.~IAH) THEN

IF VALID CHARACTER JUMP TO PROPER HANDLING ROUTINE

ABC 0 E F G H I J K L M N
GOTO (3"~, 1"", H'~, 30", UJ0, UHl, HIe',] e~, 1~0, UH', lC~, 100, 3"~, HI",

o P Q R STU V W X y Z
Cl"", 100, l~~, 10 0 f 3~", UH!I, lOr., 10e, lee, U:0, 100,190) KEYLTR

2-55

24
25

26
27
28
29

30
31
32
33

C

ENDIF
ENDIF

C-- IF INVALID OUTPU'r EHROR AND GET NEW LINE
C

C
C--
C
C
C-­
C

100
lIe

C
C-­
C

WRITE (IMAGE, 40, I OS'rAT=ERRFLG, ERR=99 9) CARRET
FORMAT('INVALID KEYLTR',A)
CALL BUFOUT (IMAGE)
GOTO 2~

CONTROL BRANCHES TO ONE OF THESE BA:;W ON KEYLETToR

STATEMENT LINE HJ~ IS USED TO TRAP ALL KEYLETnRS NOT USOl)

WRITE (IMAGE, 110, I OSTAT=ERRFLG, ERR=999) CARRET
FORMAT ('NO SUCH TEST',A)
CALL BUFOUT(IMAGE)
GOTO 2~

TRANSITION TEST

~~©m
c

CALL TRANST
GOTO 20

C-- CALCULATOR MODE
C

36 3ge CALL MATH
37 GOTO 20

C
C-- ERROR HANDI.ER
C

38 999 CALL ERROR(ERRFLG)
39 GOTO 1
40 END

ISIS-II FORTRAN-8a COMPILATION OF PROGRAM UNIT D8LM<
OBJECT MODULE PLACED IN :Fl :DBLANK.OBJ
COMPILER INVOKED BY: FORT?0: Fl : DBLANK. FRT DEBUG DATE r Jr./l 2/7'P) PAGrcW[DTfI r 78)

SUBROUTINE DBLANK
IMPLICIT LOGICAL (A-Z)

C
C-- POSITIONS INDEX TO NEXT NON-BLMK CHAHACnR IN LIN~UF
C

INTEGER INDEX*2,CARRET*1,ERRFlG*2
CHARACTER LINBUF(80)*l,IMAGE*80,ENDLIN*l
EQUIVALENCE (LINBU!, IMAGE) , (E'IDLIN, CAHRoT)
COMMON /LINEI LINBUF,INDEX,CARRET

C
7 1 IF(LINBUF(INDEX).EQ.ENDLIN) GOTO
8 IF(LINBUF(INDEX) .NE.' ') RETURN
9 INDEX=INDEX+l

19 IF(INDEX.L£.7?) GOTO
C
C-- IF END OF LINE ASK FOR MORE PARAMETERS
C

II 2 WRITE (IMGE, 3, IOSTAT=ERRF LG, ERR=999) CARr'ET
12 3 FORMAT('MISSING PARAMETER, PLEASE ENTER',!>.)
13 CALL BUFOUT(IMAGE)
14 CALL BUFIN(IMAGE)
15 INDEX=1
16 GOTO 1

C
C-- ERROR HANDLER
C

17 999 CALL ERROR(ERRFLG)
18 RETURN
19 END

!SI~:-II tORTRAN-B~ (,OMPILAT!ON OF PROGRAM UNIT ERROR
O~JECT MODULE PLACED TN :Fl:ERhOR.OBJ
rO~PlLcR r NVOKED ~Y: FORT? 1 : Fl : ERROR. FRT DEBUG DATE (l r /12/7 8) PAGEWIDTH (78)

@ SUoWJIJTINE ERROR (ERRNUM)
r',PLIrrT LOGICAL(A-Z)

r' __ CUT PUT ERHOR MESSAGE
c

2-56

7
8
9

H
II

CIIAHACT~R IMAGE*~~,LINBUF(H0)*1

INT~GER ERRNUM*2,INDEX*2,CARRET*1
EQUIVALENCE (LINBUF, IMAGE)
CCMMON /LINE/ LINBUF,INOEX,CARRE'r

~RITE(IMAGE,lO) ERRNUM,CAHRET
FORMAT('***ERROR*** ",14,A)
CALL BUFOUT (IMAGE)
f~ETURr.:

END

ISIS-ll FORTRAN-er COMPILATION O~ PROGRAM UNIT MATH
OBJECT MODULE PL'C~D IN :FI:MATH.OBJ
CO~PILER INVOKED "Yo FORT"r :Fl:MATH.FRT DEBUG DATE(I~/12!7P) PAGEWIDTH(78)

1 I~

II

@
c

SUHIWUTINE MATH
IMPLICIT LOGICAL (1\-2)

c-- JMPLEME~TS CALCULATOR MOD~
C

C

INTE~ER INDEX*2,CARRET*1,ERRFLG*2
CHARACTER LINBUF(8~)*1,IMAGE*ae,COMMND*1,SYMBOL*1

REAL OP1,OP2,RESULT
EQUIVALENCE (LINBUF,lMAGE)
COM,,'ON /LINE/ LINBUF,INDEX,CARRET

('-- I1ESCAN KEYLt::TT~:H 'fO DETERMINE OPERATION
c

®
C

INDEX=INDEX-l
:OMMND=LINBUF(INDEX)
INDEX=TNDEX+l

C-- MOVE INDEX TO FrUST OP~i~AND
c

Cr\LL DBLANK

('-- GET IT IN
C 1@ CALL rONVRT f ('P 1)
C

c-- REPeAT FOR SECOND OPERAND

l'
14

IS
Ie
17
I B
19

2~

21
22
23
;>4

2~

?r.
27
28
?9

31
32
33
34

C
CALL DBLANK
CALL CONVRT (OP?!

r:-- PERl-"ORM OPeRATION
C

C"

C

C

IF{COMMND. EQ. 'M') "HEN
RESUL1'=OPl"OP'
SYMBOL=' * I

(JOTO 11
ENOlf'

JF(COMMND.EQ.'D ') THEN
RESULT=OP1/0P2
SYMBOL=' /'
GOTO 11
I:::NDIF

TF(COM~ND.EC.'A') THEN
RESULT=OP1+OP'
SYMBOL='+'
GOTO II
~NDIF

IF(COMMND.F.Q.'S') THEN

RESULT=OPI-OP2
S YMBQL= 1- I

GOTO II
ENDIF

C-- OUTPUT RESULTS
C

35 11 WRITE(IMAGE,12,IOSTAT=ERRFLG,ERR=999) OP1,SYMBCL,OP2,RESULT,
ICARRET

36 12 FORMAT(F18.5,lX,A,)X,F'Je.5,lX,'=',IX,F18.5,A)
37 CALL BUFOUT(IMAGE)

2·57

38 RETURN
C
C-- ERROR HANDLER
C

39 999 CALL ERROR(ERRFLC)
40 RETURN
41 END

FORTRAN CO~PI LER

ISIS-II FORTRAN-Be COMPILATION OF PROGRM UNIT CONVRT
OBJECT MODULE PLACED IN :Fl:CONVRT.OBJ

10/12/78 PAGE

COMPILER INVOKED BY: FORTa~ :Fl:CCNVR1'.FRT DEBUG OAT£(18/12/78) PAGEWIOTH(78)

® SUBROUTINE CONVRT(VALUE)
IMPLICIT LOGICAL(A-Z)

C
C-- INPU1'S NEXT PARAMETER IN LINBUF
C

C

INTEGER 1-1, INDEX*2, TMPIND* 1 ,CARRET'* 1, ERRFLG*2
REAL VALUE
CHARACTER LINBUF (ee) *1 ,TMPBUF (20) *1 ,BUFFER* 20, ENDLIN*1
EQUIVALENCE (TMPBUF,BUFFER), (ENDLIN,CARRET)
COMMON /LINE/ LINBUF, INDEX,CARRET

C-- INITIALIZE
C

a bo 21 1=1,19
9 n TMPBUF(I)="

10 TMPBUF ('"0) =ENDLIN
11 TMPIND=!

12
13
14
15
I~
17
JR
19
29

C
C-- FILL 8UFFER UNTIL COMMA OR ENDLINE ENCOUNTERED
C

22

®
C
c-­
C

TMPBUF (TMPIND) =LINBUF (INDEX)
INDEX=INDEX+l
TMPIND=TMPIND+1
If(LINBUF(INDEX).EQ.·.·) THEN
INDEX=INDEX+I
GOTO 23
£NDIF
IF(LINBUF(INDEX) .EQ.ENDLIN) G01'O 23
GOTO 22

READ UNDER FORMAT CONTROL

21 (!) 23
22 T' 24
23

READ (BUFFER, 24, IOS1'AT=ERRFLG. ERR=999) VALUE
FORMAT (Fl9. 5)
RETURN

C
C--
C

ERROR HANDLER

24 999 CALL F.RROR(ERRFLG)
25 RETURN
26 END

ISIS-II FORTRAN-80 COMPILATION OF PROGRAM UN1T TRANST
08JECT MODULE PLACED IN :Fl:TRANST.OBJ
COMPILER INVOKED BY: FORTe0 :FI:TRANST."RT DEBUG DAT£(10/12/78) PAGEWIDTH(78)

C

SUBROUTINE TRANST.
IMPLICIT LOGICAL (A-7.)

C-- PERFORM TRANSITION TESTING
C

C

C

C

C

C

REAL START,STOP,STEP,TOL,TEMP,VOLTAG,VCC(2~),
ILOWLVL(20),LOTOHI(20).HILVL(20),HITOLO(20)

INTEGER CARRET*l, ITEMP* 2, TS1'INP*2, SAMPLE*2,
lLSTSAM* 2 ,DELTA. 2, ERRFLG* 2, PNTCNT* 1, INDEX· 2, 1·1

CHARACTER LINBUF(8~)*1,IMAaE*8r.TEST(2~)*"

EQUIVALENCE (LINeUF.IMAGE)

COMMON /LINE/ LINBUF, INDEX,CARRET

C-- INITIALIZE
C

2·58

8
9

le
11

12
13
14
15
1~
17
18
19

2P.
21
22
23
24
25

26
27

ze
29

3r
)1

32

J 3

3~

15
:,r)

C
C-­
C
C
C'

C

DO 5, 1=1,20
TEST (I) =' PASSED'
TSTINP=~
PNTCNT=I

SCAN COMM~ND TAIL fOR PARAMETERS

vce START STOP

CALL DB LANK
CALL CONVRT (START)
CALL DBLANK
CALL CONVRT(STOP)
CALL DBLANK
CALL CONVRT(STEP)
CALL DB LANK
CALL CONVRT (TOL)

STEP 'rOLERANCE

C-- If (STOP-START) /STEP YIELDS MORf THAN 2~ STEPS
C-- OUTPUT MESSAGE AND RETURN
C

I~

C

IF(lfIX((STOP-START)/STEP) .GT.2~) THEN
WR ITE,(IMAGE, I ~,IOSTAT=ERRfLG, ERR=99 9) CARRET
FORMAT ('TOO MANY PO I NTS ' ,A)
CALL BUFOUT (IMAGE)
RETURN
ENDIF

c-- GET TEMPERATURE AND LINEARIZE
C

@
CALL ADCIN(ITEMP,~)
TEMP=9B.'3*ALOG(FLOAT(ITEMP))+13.5r,

C-- OUTPUT HEADER

J~

C

WRITE (IMAG E, 20, IOS1'AT=ERRfLG, ERR=999) TaL, TEMP, CARRET ,CARRET
f'ORMAT('TRANSITION TEST TOLERANCE=' ,FS.l,

] 1% AMIHE'NT TEMPERATURE = I, Fr.. 2, I DEGREES C I ,A,A)
CALL BUFQUT (IMGE)
WRITE (IMAGE, 30, I OSTAT=ERRHG, ERR=999) CARRET, CARRET
FORMAT (' VCC HIGH TRANS LOW TRANS HIGH LOW TeST',

JA IA)
CALL 8UfOUT (IMAGE)

c-- BEGIN TEST; OUTPUT STARTING vee V~LUE
c

VCLTAC=START
VCC (PN'i'CNT) =VOLTAG
CALL DACOUT(IFIX(VOLTAG*4r9.6),p)

C
C-- OUTPUT ZERO VOLTS TO TEST INPUT

37®~ CP,LL DACOUT(TSTINP,I)

'.-- GET ONE SAMPLE

3R CALL ADCIN (SA~PLE, I)

41
42

(,
44

C
C-- MAKE IT THE LAST SAMPLE A~P ALSO STORE IT
C

LST~AM=SAMPLc
LOWLVL (PNTCNT) =fLOAT (SAMPLE) *4~9. ~

c
c-- PECIN LOOP LOOKING FOR LO\-' TO HIGH TRANSITION
c
se

C

'l'STINP=TSTINP+l
CALL DACQUT(T5TINP,1)

C-- Gf1' SAMPLE
C

c

CALt. ADCIN (SMPLE,I)
DE L T,.. =r.AMPLE -lSTSAM

c-- SEE If TRANSITION;DELTA .GT. 2.7 VOLTS
C

C

IfIDELTA.LT.gel) THEN
LSTSAM=SAfv1PLE

c-- NO TRANSITION; IF '!'S'rJNP NOW UP TO S.SV AND NO TRANSITION
C-- OUTPUT MESSAGE INDICATING DEAD PART AND RETURN

IFITSTINP.GE.225J) THEN

2·59

~ P ® (WRITE (IMAGE,'~, IOSTIIT=ERRFLG, ERR=999)
49 11'" FORMAT ('DEAD PART, NO TRANSITION' ,A)
sr CALL BUFOUT(I~AGE)
51 RETURN
52 ENDIF

r

53
54

55

(:-- CONTINUE LOOP

C

C

GOTO 50
ENDIF

C-- TRANSITION, ASSIGN ARRAY ELEMENT
C

LaTaH I (PNTCNT) =FLOAT (T-8TINP) 1409.6
C
C-- CHECK TOLERANCE
C

CARRET

56 IF ((LOTOHI (PNTCNT) .GE. (.8- (TOLl] 00. *. n) J) • AND.
I(LOTOHI(PNTCNT).LE.(.8+(TOL/100.*.8)))) "GOTO 70

57

C
C-- TEST FHLED
C

TEST(PNTCNT)='FAILED'
C
C-- BEGIN HIGH TO LOW TEST
C
C
C-- OUTPUT 5.0 VOLTS
C

58 70 TSTINP=2048
59 CALL DACOUT (TSTINP, 1)

60

C
C-- GET SAMPLE
C

CALL ADCIN(SAMPLE)
C
c-- MAKE IT LAST SAMPLE AND ALSO STORE IT
C

61 LSTSAM=SAMPLE
62 HILVL(PNTCNT)=FLOAT(SAMPLE) *409.6

C
C-- BEGIN "LOOP LOOKING FOR HIGH TO LOW TRANSITION
C

63 80 TSTINP=TSTINP-l
64 CALL DACOUT (TSTINP,])

65
66

67
68

69

70
71

72
73

74
75

77

C
C-- GET SAMPLE
C

C

CALL ADCIN(SAMPLE,])
DELTA=LSTSAM-SAMPLE

C-- SEE IF TRANSITION, DELTA .GT. 2.2 VOLTS
C

C

IF(DELTA.LT.901) THEN
LSTSAM=SAMPLE

C-- NO TRANSITION, CHECK TO SEE IF VOLTAGE DOWN TO ZERO
C

IF(TSTINP.LE.0) THEN
C
C-- YES, OUTPUT DEAD PART MESSAGE
C

WRITE (IMAGE, 60, IOSTAT=ERRFLG, ERR=999) CARRET
CALL BUPOUT (IMAGE)

C

RETURN
ENDIF

c-- CCNTINUf: LOOP
C

c:

GOTO pr
ENDIF

C-- TRANSITION, ASSIGN ARRAY ELEMENT

HI TOLO (PNTCNT) =FLOAT (TSTINP) *4 09.6
co
C-- CHECK TOLERANCE
C

IF'((RITOLO(PNTCNT) .GE. (3.5-(TOL/10e.*3.5))) .AND.
I(HITOLO(P~TCNT)'LE. (].5~(TOL/100.*3.5)))) GOTO 90

c-- TEST FAILED
c

2-60

7E TEST(PNTCNT)='fAILED'
C
C-- INCREMENT vec AND IF NOT .GT. STOP CONTINUE
C

79 9'~ VOLTAG=VOLTAG+ST£P
g~ IF(VOLT~G.LE.STOP) THEN
P.l PIIlTCNT=PN'rCNT+ 1
P2 TSTINP=~

83 nOTO ~r
3~ ENDIF

c
C-- TEST COMPLETE; OUTPUT RESULTS
C

85 00 ll~,I=l,PIllTCNT
8(, WRITP.(IMAGE,10~,IOSTAT=ERRFLG,ERR=999) VCC(I),

lLOTGHI (I) ,HITOLO(I) ,HILVL (I), LOWLVL II) ,TEST (I) ,CARRET
87 Hl~ FORMAT DX, F5. 2, 3X, F'i. 2, 6X, F6. 2, 3X, F6. 2, 1 X, F6. 2, 2X, 6A,A)
rp 11~ CALL RUFOllT(IMAGE)
A9 RETURN

9P
91
92

c:
C-- ERROR HANDLER
C

999 CALL P.RROk (ERRF LG)
RETURN
END

rOl!'rRAN COMPI LER

ISIS-II F0RTRAN-B? COMPILATION OF PROGRAM UNIT ADCIN
OBJfCT MODllLE PLACED IN :FI:ADCIN.CRJ

le/12/78 PAGE

COMPILER INVOKED BY: FQRTBr :FI:ADCIN.FRT DEBUG DATE (1r./12/78) PAGEWIDTH(78)

IP.

11

12

J]

14

® SUBROUTINf ADCIN (VALUE,CHAN)
c
,~-- ROUTINE TO INPUT SINGLE VALUE FROM A/D CONVERTER CHANNEL
C-- GI VEN !\NO RETURN IT IN VALUE FI ELD.
C

INTEGER-? VALUE
INTEGER-I CHAN

SINCLUDE(:FI:ADCDAC.DEC)
C
c-- DEFINI'rIONS OF TSBC n2 REGISTERS
C
C
C-- COMMAND STATUS REGISTER
C

INTEGER* 1 CMeSTS
C
c-- MUX ADDRESS REGISTER
C

INTEGER*l MUXADR
C
c-- LAST CHANNEL REGISTER
C

INTEGER-I LSTCHN
C
C-- CLEAR INTERRUPT COMMAND
C

INTEGER-I CLRINT
C
C-- APC DATA REGISTER
C

r NTEGER* 2 ADeDAT
c
C-- DAC r DATA REGISTER
C

INTEGI:R*2 DAcr
C
C-- DAC 1 DATA REGISTER
C

INTEGER-2 DACI
C
C-- SET UP COMMON BLOCK
C

WORD

COMMON lADe/ CMOSTS ,MUXADR, LSTCHN ,CLRINT,ADCOAT, DAC0 ,DACl
c
c-- SET UP CHJI.NNEL ADDRESS
C

MUX~DR=CHAN

C
C-- START CONVERS ION
C

CMDSTS='IH

2·61

C
c-- WIlIT FOR END OF CONVERSION
C

] ~ J IF((CMDSTS.AND.'8Cfl) .Ne.leeH) GOTO I
C
C-- GET DA'rA IN
C

Hi VALUE=ADCDAT
C
c-- nIGHT JUSTIFY liND CONVERT TO COUNTS
C

17 VA~UE=VIlLUE/16
18 IF(VA~UE.~T.~) VALUE=VA~UE+4 ~96+ I
19 RETURN
2~ END

ISIS-II FORTRAN-8~ COMPI~ATION OF PROGRAM UNIT OACOUT
OBJECT MODU~E P~ACED IN :Fl:DACOUT.OBJ
COMPI~ER INVOKED BY: FOR'r80 :Fl:DACOUT.FRT DEBUG DATE(10/12/78) PAGEWIDTH(78)

10

11

12
13
!4
15
16
17

SUBROUTINE OACOUT (VALUE,CHANI

OU1'PUTS Vl'.LUE TO D/'" CONVERTEH

TNTEGER*2 VALUE,CHAN
SINCLUDE (:FI :ADCDAC.DEC)
C
c-- DEFINITIONS Of' ISBC 732 REGISTERS
C

C
C-- COMMAND STilT US REGISTER
C

INTEGER'l CMDSTS
c
C-- ~UX ADDRESS RECIS,'ER
C

INTEGER'l MUXADR
C
C-- ~AST CHIINNE~ REGISTER
C

INTEGER'l ~STCHN
C
C-- C~EIIR INTERRUPT COMMAND WORD
C

INTEGER"l C~RINT
c
C-- 'DC DATA REGISTER
C

INTEGER*2 ADCDAT
C
C-- DAC ~ DATA REGIS,'ER
C

INTEGER* 2 DAC0
C
C-- DAC 1 DATA REGISTER
C

INTEGER"2 DACI
C
C-- SET UP COMMON BLOCK
C

COf"lMON IADe/ CMDSTS ,MUXADR, LSTCHN ,CLRINT,ADCDAT,DAC",DACI
C

c-- OUTPUT VA~UE TO PROPER CHANNE~
C-- AFTER SHIFTING INTO HIGH ORDER 12 BITS
C

IF (VA~UE. ~T. 0) VALUE=VA~UE+4096+l
VALUE=VALUE'*16
IF (CHAN. EQ. P.) DAC0=VALUE
IF(CHAN. EQ.l) DACl=VA~UE
RETURN
END

2·62

APPENDIX B
CODE LISTINGS

PL/M-SS COMPILER

1515-1 I PL/M-80 V3.1 COMPILftTION OF MODULE SEMAPHORES
OBJECT MODULE PLACED IN :Fl:SEMMOD.OBJ

10/12/7B PAGE

COMPILER INVOKED BY: plm80 :Fl:SEMMOD.plm DEBUG DATE(10/J2/7B) PAGEWIDTH (7B)

17
18

19

20

21
22
23

24
25
26

27

28
29

2
2
2

SEMAPHORES:
DO;

/* * " .. * * *. * •• * * * * *. * * * * •• ,. ... * * * *. * ••• *1' * * * * *

Contains LOCI< and UNLOCK procedures for
manipulating semaphores. Called by FORTRAN
routines with one parameter; the address of
the index of the semaphore to be operated on .

•• *.* •• * •••••• ** •• ~ •• * ••• ********.*****.*.* •• ***.***.* _ •• _;

$nollst

DECLARE (sts1ok,setlok,dsklok) (10) BYTE PUBLIC;
DECLARE semaphore (3) ADDRESS PUBLIC DATA (

.stslok,

.setlok;

.dsklok) ;
DECLARE token (3) STRUCTURE (

link ADDRESS,
length ADDRESS,
type ADDRESS) PUBLIC;

LOCK: PROCEDURE (sema$number$pt r) REENTRANT PUBLIC;

DECLARE semaSnumberSptr ADDRESS;
DECLARE semaSnumber BASED semaSnumberSptr BYTE;
DECLARE msg$ptr ADDRESS;

msg$ptr=R~AIT (semaphore (semaSnumber),~);
RETURN;
END;

UNLOCK: PROCEDURE (semaSnumberSptr) REENTRANT PUBLIC;

DECLARE semaSnumberSptr ADDRESS;
DECLARE sema$number BASED semaSnumberSptr BYTE;

30
31
32
33

®
CALL RQSEND(semaphore(semaSnumber), .token(semaSnumber));
RETURN;
END;

END SEMAPHORES;

ISIS-II FORTRAN-8S COMPILATION OF PROGRAM UNIT STSINP
OBJECT MODULE PLACED IN :FJ:STSMOD.OBJ
COMl'ILER INVOKED 8Y: FORT8S :Fl:STSMOD.FRT DEBUG DATE (10/12/78) PAGEWIDTH(78)

3
4
5
6
7
8

©
C
C-­
C-­
C-­
C

C
C--

9@C
Ie

C
C--

ll®:
C-­
C l2®U F ~ __
C

SUBROUTINE STSINP
IMPLICIT LOGICAL (A-Z)

TASK CODE FOR STATUS INPUT TASK. UPDATES STATUS COMMON
BLOCK WITH ANALOG AND DIGITAL DATA VALUES. ALSO DOES
ANALOG COUNT TO ENGINEERING UN IT CONVERS IONS.

CHARACTER SMPLBF.22,CLOCK.12
INTEGER·2 SAMPLS (11) ,DUMMY
REAL ANDATA (11)
EQUIVALENCE (SMPLBF,SAMPLS)
INTEGER*l DIGDAT, I
COMMON /STATUS/ ANDATA ,DIGDAT,CLOCK

INITIALIZE FLOATING POINT LI8RARIES

DUMMY·S
CALL FQFSET(DUMMY,DUMMY)

CALL INITIALIZATION ROUTINE

CALL INITIO

CALL ROUTINE TO INPUT SAMPLES

CALL SMPLIN (SMPLBF)

SHIFT SAMPLS TO RIGHT JUSTIFY

2-64

DO 50 1=1,11
SAMPLS(I)=SAMPLS(I)/16 ~;@

15 50 IF (SAMPLS (I) • LT. B) SAMPLS (I) =SAMPLS (I) HB90+1
C
C-­
C--

WAIT FOR ACCESS TO STATUS COMMON BLOCK FOR UPDATE
THEN CONVERT SAMPLES TO ENGINEERING UNITS AND STORE

16
17
18
19
20
21
22
23
·24
25
26
27
28

®

C

CALL LOCK (0)
ANDATA (1) =FLOAT (SAMPLS (1))
ANDATA(2)=ALOG10(FLOAT(SAMPLS)-2.34)-365.98
ANDATA (3) =ALOGIB (FLOAT (SAMPLS (3) 113.9) -21. 5,
ANDATAr4)=13.23-FLOAT(SAMPLS(4))-2~.78
ANDATA (5) =FLOAT (SAMPLS (5))
ANDATA(6)=FLOAT(SAMPLS(6n/14.225
ANDATA (7) =FLOAT (SAMPLS (7))
ANDATA(8)=ALOG(FLOAT(SAMPLS(8)/23.98)+235.98
ANDATA (9) =FLOAT (SAMPLS (9))
ANDATA(l~)=FLOAT(SAMPLS(lB)) ,
INDATA(11)=(FLOAT(SAMPLS(ll))-119.34)/5.734
CALL INPUT(tBEOH,DIGDAT)

C-- RELEASE LOCK ON STATUS COMMON BLOCK

29 CALL UNLOCK(r)
c
C-- DELAY FOR 1 SECOND THEN SCAN AGAIN

"00: CALL WAIT

C--: LOOP BACK

31 GOTO Ir
32 END

PL/M-8B COMPILER

ISIS-II PL/M-8e V3.1 COMPILATION OF MODULE ANALOGIOMOD
OBJECT MODULE PLACED IN :Fl:aiomod.OBJ

10/12/78 PAGE

COMPILER INVOKED BY: pimBB :Fl:aiamad.plm DEBUG DATE(10/12/78) PAGEWIDTH(78)

24
25

27
28
29
3~
31

32
33

34

35
30

37
38

39
4B

{D
1

ANALOGSIOSMOD:
DO;

;***************.***************************** •• ** ••• * •••• -

Inputs analog samples into buffer provided as
calling parameter.

---*-----, .. _*---_._. __ . __ ._---, _--,.,-_ ,.,.****/

Sn01 ist

DECLARE AN$RESP (10) BYTE PUBLIC;
DECLARE ANALOGSREQUESTSMESSAGE aiSmsg;

INITIO: PROCEDURE PUBLIC;

f* initializes mesage to be used for analog samples *1

2 UNALor,SREQUESTSMESSAGE.length=Slze (ANALOG$REQUESTSMESSAGE);
2® ANALOGSREQUESTSMESSAGE. type=AISQS;
2 K ANALOGSR EQUEST$MESSAGE. response$exchange=. AN$RESP:
2 ANALOGSREQUESTSMESSAGE. baseSpt r= 0FFF0H;
2 ANALOGSREQUESTSMESSAGE. channel Sg~ in=0;

RETURN;
END; /* of INIT$IO */

SMPLSIN: PROCEDURE(sampleSbufferSptr,bufSsize) PUBLIC;

/* inputs bufSsize/2 analog word samples */

DECLARE (sampl eSbuf fe rSpt r , bufSs i ze, dummy) ADDRESS;
DECLARE sampleSbuffer BASED sampleSbuffer$ptr (1) BYTE;

ANALOGSREQUESTSMESSAGE. a r raySpt r=sample$buffe rSptr;
ANALOG$REQUESTSMESSAGE.count=bufSsize/2;

CALL RQSEND (. RQAIEX, .ANALOG$REQUESTSMESSAGE);
dummy=RQWAITf .ANSRESP, 0);

2·65

41
42

43

RETURN;
END; /* of SMPLSIN */

END ANALOGSIO$MOD;

ISIS-II FORTRAN-8A COMPILATION OF PROGRAM UNIT SCAN
OBJECT MODULE PLACEIJ IN : FI: SCANMD. OBJ
COMPILER INVOKED BY: FORT8e :Fl:SCANMD.FRT DEBUG DATE(10/12/78) PAGEWIDTH(7S)

SUBROUTINE SCAN
C
C-- CODE FOR SCAN TASK THAT COMPARES STATUS VALUES WITH
C-- SETPOINTS AND SETS OPERATOR ALARMS ACCORDINGLY. ALSO
C-- LOGS DISK RECORD OF STATUS WHEN MINSUP FLAG IS TRUE.
C
$INCL DE (: Fl: EQUIV. DEC)

CHARACTER BUFFER'S7,PARAMS(S7)'1
REAL PH ;VOLUME, TEMP ,01 SOXY, T01'CAR, QRGeAR
REAL SUSSOL,PHOSFT,INFLOW,EFLFLO,TURBID
INTEGER' I DIGDA'l'

7 INTEOER*2 MONTH,OAY,YEAR,HOUR,MINUTE,SECOND
8 EQUIVALENCE (PARAMS,BUFFER)
9 EQUIVALENCE (PARAMS,PH)

19 EQUIVALENCE (PARAMS(S) ,VOLUME)
11 EQUIVALENCE (PARAMS (9) ,TEMP)
12 EQUIVALENCE (PARAMS(13),DISOXY)
13 EQUIVALENCE (PARAMS(17),TOTCAR)
14 EQUIVALENCE (PARAMS(21) ,ORGCAR)
15 EQUIVALENCE (PARAMS(25),SUSSOL)

16 :=@EQUIVALENCE(PARAMS(29),PHOSFT)
17 - EQUIVALENCE (PARAMS (33) ,INFLOW)
18 EQUIVALENCE (PARAMS(37),EFLFLO)
19 EQUIVALENCE (PARAMS (41) ,TURBID)
28 EQUIVALENCE (PARAMS(4S),DIGDAT)
21 EQUIVALENCE (PARAMS (46) ,MONTH)
22 EQUIVALENCE (PARAMS(48) ,DAY)
23 EQUIVALENCE (PARAMS (5e) ,YEAR)
24 EQUIVALENCE (PARAMS (52) ,HOUR)
25 EQUIVALENCE (PARAMS (54) ,MINUTE)
26 EQUIVALENCE (PARAMS (56) ,SECOND)
27 INTEGER"2 ERRFLG,RECNO,DUMMY
28 REAL SET SOL, SETCAR, SETPHS, SETTRB
29 INTEGER"1 MIN5UP
38 COMMON /MIN5/ MIN SUP
31 COMMON /SETPNT/ SETPHS,SETSOL,SETCAR,SETTRB
32 COMMON /STATUS/ BUFFER
.33 COMMON /LSTREC/ RECNO

34

C
C-- INITIALIZE RECORD COUNTER
C

RECNO=1
C
C-- INITIALIZE MATH LIBRARIES
C

35 DUMMY=9
36 CALL FQFSET (DUMMY ,DUMMY)

C
C-- WAIT FOR ACCESS TO STATUS AND SETPOINT COMMON BLOCKS
C

37 10 CALL LOCK (9)

38 CALL LOCK(I)
C
C-- SCAN FOR ALARMS ONLY IF EFFLUENT PUMP IS ON
C

39 IF ((DIGDAT. AND.194H) • EQ. '04H) THEN
40 IF(PHOSFT.GT.5ETPHS) THEN
41 CALL OUTPUT(t0EBH,t01H)
42 ELSE
43 CALL OUTPUT(UEBH,te0H)
44 ENDIF
4S

®
IF(SUSSOL.GT.SETSOL) THEN

46 CALL OUTPUT(,0EBH,f03H)
47 ELSE
48 CALL OUTPUT(leEBH,102H)
49 ENDIF
58 IF(TOTCAR.GT.SETCAR) THEN
51 CALL OUTPUT(10EBH,'A5H)
S2 ELSE

2·66

53
54
5<;
56
57
58
59
6~

® IF(TURBID.GT.SETTRB) THEN
CALL OUTPUT(i0EBH,i~7H)
ELSE lCALL OUTPUT(iAEBH,*~4H)
ENDIF

C
C--

CALL OUTPUT(10EBH,106H)
ENDIF
ENDIF

IF MIN5 TASK HAS SET MIN5UP LOG STATUS ON DISK

61@C
li2

IF(MIN5UP.NE.O) THEN
MIN5UP=0

C

C-- WAIT FOR ACCESS TO DISK

li3
64 OPEN (1, FI LE=' : 00: TODAYS. RPT ' ,STATUS= 'OLD' , IOSTAT=ERRFLG,

C [CALL LOCK (2)

65
(,6

G7
6R
69

lERR=9~0e,ACCESS='DIRECT',RECL=57) ® \;RITE (3, REC=RECNO, IOSTAT=ERRFLG, ERR=9100) BUFFER
RECNO=RECNO+I
CLOSE (3,IOSTAT=ERRFLG,ERR=92r~)
CALL UNLOCK (2)
ENDIF

C
C-- RELEASE LOCK ON STATUS AND SETPOINT COMMON BLOCKS

70
71

72

73

74@

75
76
77
78
79
80
81
82
83

C

C

CA LL UN LOCK (I)
CALL UNLOCK (0)

C-- DELAY FOR 1 SECOND THEN SCAN AGAIN
C

CALL WAIT
C
C-- LOO? BACK
C

GOTQ l~
('

c-- ERROR HANDLERS

C
9000 WRITE(Ii,9001) ERRFLG
9001 FORMAT('OPEN ERROR IN

GOTO·10
9100 WRITE(6,9101) ERRFLG
9101 FORMAT ('WRITE ERROR IN

GOTO 10
9200 WRITE(6,9201) ERRFLG
9201 FORMAT ('CLOSE ERROR IN

GOTO 10
END

SCAN;" ",14)

SCAN; • 1,14)

SCAN; I ' ,I 4)

PL/M-80 COMPILER

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE MIN5MOD
OBJECT MODULE PLACED IN :Fl:MINSMO.OBJ

10/12/78 PAGE

COMPILER INVOKED BY: plm8e :FI:MIN5MD.plm DEBUG DATE(lO/12/78) PAGEWIDTH(/8)

19
2r
21
22
23

24

25
26

MINS5SMOD:
DO;

This module contains the code f.or TIMEH$S who
waits for 5 minutes and sets a flag telling
SCAN to log a report on the disk, and for
WAIT who waits for 1 second then returns

*** .. * * ** * ** * * * *** *** * * *** ** ***** *** ** * * * ** ** ** * * *. * * ** ** /

Snolist

DECLARE minS5Sex (10) BYTE PUBLICi
DECLARE minS5$up BYTE AT(0FFEEH);
DECLARE timeSout$msgSptr ADDRESS;
DECLARE fiveSrninute$delay$count LITERALLY 16000 1;
DECLARE timesSup LI'rERALLY 10lH';

WAIT: PROCEDURE REENTRANT PUBLIC;

timeSoutSmsgSptr=RQWAIT (.minS5Sex, 23);
RETURN;

2-67

27

28
29

30
31
32
33
34
35

END;

TIMERS: PROCEDURE PUBLIC;
minSS$up=C;

IA enter task loop AI

DO WHILE 1;
timeSoutSmsg$ptr=RQWAIT(.minSSSex,fiveSminute$delayScount):
mi n$SSup=t imes$up;
END; /- of do while J *1

END; 1* of procerture *1
END; 1* of module -I

ISIS-IIPL/M-se V3.1 COMPILATION OF MODULE REPORT
OBJECT MODULE PLACED IN :FJ :RPTMOD.OBJ
COMPILER INVOKED BY: plmBe :Fl:RPTMOD.plm DEBUG DATE (10/12/78) PAGEWIDTH(78)

21
22
23
24

25
26
27

28

29

39
31
32
33

34
35

36
37

38
39

49
41

42
43

45
46
47

1
2
2
2

REPORT:
DO;

lit ••• •••• It. It It***. * •• * •• * * * *. *A * * * * * * * ** * .. * * .*** * * * *. * * #I: #I: * #1:* •• * *

This module contains the code for the REPORT
task that prints formatted reports of system
status upon command. Commands come in from
PRTREQ exchange wi th type=100 for todays
status report and type = 101 for yesterday's
status report. PRINT is the FORTRAN routine
that does the actual work.

* * *. 1t1I' ••• *" ••••• ** .*. * * * •• * *. * *. *. *** * ** * ** *** _ * ... * ••• * ** * * * ** I

Snolist

PRINT: PROCEDURE (file$ptr,nameSsize,requestStype) EXTERNAL;
DECLARE (fileSptr,name$size) ADDRESS;
DECLARE requestS type BYTE;

END PRINT;

FQFSET: PROCEDURE(A,ERRH) EXTERNAL;
DECLARE (A,ERRH) ADDRESS;
END FQFSET;

DECLARE prt$req (10) BYTE PUBLIC;

REPORT: PROCEDURE PUBLIC;

DECLARE todayStype LITERALLY' HHJ';
DECLARE yesterdayStype LITERALLY' If'l';
DECLARE (ptr ,dummy) ADDRESS;
DECLARE msg BASED ptr STRUCTURE (

link ADDRESS,
length ADDRESS,
type BYTE,
homeS exchange ADDRESS,
response$exchange ADDRESS);

DECLARE today$fileSname (*) BYTE DATA (':De':TODAYS.RPT') j

DECLARE ystdaySfileSname (*) BYTE DATJ.(':Df':YSTDAY.RPT');

1* initialize math handler *1

dummy=9;
CALL FQFSET(.dummy, .dummy);

,1* enter task loop *1

DO WHILE 1;
ptr=ROWAIT (. prt$req, 9) ;

IF msg. type=today$type THEN

ype) ;
CALL pr i nt (• todaySf i 1 eSname, SIZ E (today$ f i le$ name) , . msg. t

ELSE IF msg.type=yesterday$type THEN
CALL pr int (. ystdaySf i le$name, size (ys tdaySf i 1 e$name) , • msg

.type) ;
CALL RQSEND (msg. response$exchange, ptr) ;
END; 1* of do while *1

END; /* of task *1
END REPORT;

2-68

ISIS-II FORTRAN-S0 COMPILATION OF PROGRAM UNIT HEADER
OBJECT MODULE PLACED IN :FI:PRNTMD.OBJ
COMPILER INVOKED BY: FORT80 :FI:PRNTMD.FRT DEBUG DA'rE(IO/12/78) PIIGEWIDTII(78)

6
7

8
9

SUBROUTINE HEADER
C
C-- CALLED BY PRINT TO OUTPUT REPOR1' HEADER
c

202

WRITE (6,200)
FORMAT (1 DATE TIME PH VOLUME TEMP DISSOLVED

llTOTAL ' ORGANIC SUSPENDED PHOSPHATE INFLUENT EFFLUENT',
2'TURBID AIR DIS MIX INF')

WRITE (6, 2~1)
FORMAT (44X, 'OXYGEN CARBON CARBON

l' FLOW FLOW')
WRITE (6,202)
FORMI\T(24X,' (CU.M) (C) (MG/ML)

I' (MG/ML)
RETURN
END

(MG/ML) (MG/ML) (MG/ML)

SOLIDS CONC',6X,

(MG/ML) (MG/ML)

%')

ISIS-II FORTRAN-B0 COMPILA1'ION OF PROGRAM UNIT PRINT
OB,JECT MODULE PLACED IN :Fl:PRNTMD.OBJ
COMPILER INVOKED BY: FORT80 :FI:PRNTMD.FRT DEBUG DATE(IO/12/78) PAGEWIDTH(78)

I
2
3
4
5
6
7

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
?7
28
29
30
31
32
33

35

36

C-- SUBROUTINE PRINT CALLED BY REPORT TO GENERATE FORMATTED
C-- REPORTS. PRINTS EITHER TODAY '5 FILE OR YESTERDAY'S
C-- DEPENDING ON FILNM INPUT VALUE.
C

SUBROUTINE PRINT(FILNM,TYPE)
IMPLICIT LOGICAL (A-Z)
CHARACTER*14 FILNM
INTEGER*2 ERRFLG,RECCNT,LSTREC
INTEGER*l TYPE
INTEGER*} INDEX

SINCLUDE (: FI: EQUIV. DEC)

c

CHARACTER BUFFER*57,PARAMS(57) *1
REAL PH,VDLUME,TEMP,D!SDXY,TOTCAR,ORGCAR
REAL SUSSOL,PHOSFT,INFLOW,EFLFLO,TURBID
INTEGER*} DIGDAT
INTEGER*2 MONTH,DAY,YEAR,HOUR,MINUTE,SECOND
EQUIVALENCE (PARAMS,BUFFER)
EQUIVALENCE (PARAMS,PH)
EQUIVALENCE (PARAMS (5) ,VOLUME)
EQUIVALENCE (PARAMS(9) ,TEMP)
EQUIVALENCE (PARAMS(13) ,DISOXY)
EQUIVALENCE (PARAMS (17) ,TOTCAR)
EQUIVALENCE (PARAMS(21) ,ORGCAR)
EQUIVALENCE (PARAMS (25) ,SUSSOL)
EQUIVALENCE (PAHAMS(29) ,PHOSFT)
EQUIVALENCE (PARAMS (33), INFLOW)

~g~g~t~~g~ i~~~~~Wn :~mtgl
EQUIVALENCE (PARAMS(45) ,DIGDAT)
EQUIVALENCE (PARAMS (46) ,MONTH)
EQUIVALENCE (PARAMS(~8),DAY)

EQUIVALENCE (PARAMS (50) ,YEAR)
EQUIVALENCE (PARAMS (52) ,HOUR)
EQUIVALENCE (PARAMS (54) ,MINUTE)
EQUIVALENCE (PARAMS(56),SECOND)
CHARACTER*3 AIR,MIX,INFLNT,DISCHG
COMMON /LSTREC/ LSTREC

C-- INITIALIZE RECORD COUNT

REceNT=1
c
c-- INITIP.LIZE INDE:X

INDEX=1
C
C-- OUTPUT HEPDER
C

CALL HEADER

2-69

C-­
C

37 1

WAIT FOR FILE ACCESS IF TODAY'S FILE

38@.1

39 10
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62 101

C

IF(TYPE.EO.10B) CALL LOCK(2)
OPEN(8,FILE=FltNM,STATUS='OLD',IOSTAT=ERRFLG,
lERR=9'HH~, ACCESS= I 0 IREeT I, RECL=5 7)
READ (8, REC=RECCNT, IOSTAT=ERRFLG, ERR=91 G~) BUFFER
RECCNT=RECCNT+l
IF((DIGDAT.AND. telH) .EO.f0IH) THEN
AIR=' ON'
ELSE
AIR='OFF'
ENDIF
IF((DIGDAT.AND.*~2H) .EQ.*~2H) THEN
MIX=' ON'
ELSE
MIX='OFF'
ENDIF
IF((DIGDAT.AND.tG4H).EO.104H) THEN
DISCHG=' ON'
ELSE
DISCHG= 'OFF I

ENDIF
IF((DIGDAT.AND.t~8H).EC.#08H) THEN
INFLNT= I ON I

ELSE
INFLN'T= I OFF'
ENDIF
WRITE(6,101) MONTH,DAY,YEAR,HOUR,MINUTE,SECOND,

IPH, VOtUM E, TEMP, orsoxy, TOTCAR, ORGC~.R, sussor., PHOSFT,
2INFLOW, EFLFLO, TURBID, AI R, 01 SCHG, MI X, I NFLNT

FORMAT (12, 1/1 , 12, 1/1 , I 2,1 X, I 2, I : 1 , 12, , : I , I 2,1 X, F 4.1, IX, F9. 2,
Z IX, F9. 4, IX, F9. 4,] X, Fa. 3, .1 x, F8. 3, IX, F9. 4, 1 x, F9. 4, IX, F8. 3, IX, Fa. 3

-,lX,F7.3,
ZlX,A3,lX,A3,lX,A3,lX,A3)

C-- CHECK FOR END OF FILE AND OTHER THINGS
C

63
64
65
66
67
68
69

;~ 'vi'
72 ~
73
74
75
76
77
78
79
80
81
82

83
84
85
81i

C
c--
C

87 9~~0

88 9001
89
90 91e0
91 Slrl
92
93 92r0
94 92(0
95
96

INDEX=INDEX+I
IF(TYPE.EO.100) THEN
IF(INDEX.LE.10) THEN
IF(RECCNT.LT.LSTREC) THEN
GOTO 10
ELSE
CLOSE (8, IOSTAT=ERRFLG, ERR=920 ~)
CALL UNLOCK (2)
RETURN
ENDIF
ELSE
INDEX=1
CLOSE (8, IOSTAT=ERRFLG, ERR~920~)
CALL UNLOCK(2)
GOTO 1
ENDIF
ELSE
IF (RECCNT. LE. 288) THEN
GOTO 10
ELSE

CLOSE(8,IOSTAT=ERRFLG,ERR=92G0)
RETURN
END I F
ENOIF

ERROR HANDLERS

WRITE(6,9rel) ERRFLG
FORMAT('OPEN ERROR IN PRINT; I' , 14)
RETURN
WRITE(Ii,9101) ERRFLG
FORMAT (' READ ERROR IN PRINT; • I I 14)
RETURN
WRITE (Ii, 9201) ERRFLG
FORMAT('CLOSE ERROR IN PRINT, t I I I4)
RETURN
END

2·70

PL/M-se COMPILER

ISIS-II PL/M-8~ V3.1 COMPILATION OF MODULE INITMD
OBJECT MODULE PLACED IN : F1: INITMD. OBJ

10/12/78 PAGE

COMPILER INVOKED BY: plmB0 :Fl:INITMD.p1m DEBUG DATE(10/12/7B) PAGEWIDTH(7B)

1r,

17

18
19

2~
21

22

/.3
24
25

2"

27

2B
29
30

2@

INITMD:
DO;

Snol ist

FQ~GO: PROCEDURe EXTERNAL;
END FQflGOi

DECLARE sem~phore (3) ADDRESS EXTERNAL;
DECLARE token (3) STRUCTURE (

msg S hd r) EXT ERNAL i

INIT: PROCEDURE PUBLIC;
DECLARE i BYTE;

CALL FQ~GO;

/* initi?1ize semaphores */

DO i=~ TO 2;
CALL RQSEND(semaphore(i}, .token(i»;
END;

1* PROGRAM THE B255 *1

OUTPUTI0EBH)-92H;

1* TUHN OFF ALL ALARMS *1

OUTPUT(~EAH)-~;

RETURN;
END;
END INITMD;

ASMB~.OV3 :F1:X2CFG.MB0 DEBUG PAGEWIDTH(7B)

ISIS-II BBBO/BaB5 MACRO ASSEMBLER, V2.e X2CFG PAGE

LOC OBJ SEQ SOURCE STATEMENT

I NAME X2CFG
2 CSEG
3 PUBLIC RQRATE

~M0 2eer 4 RQRATE: DW 32
5 SNOLIST

35a $LIST
301 SNOGEN

r0ee 1i12 NTASK SET
00ea 3(,3 NEXCH SET
(H'~" 364 NDEV SET
0000 365 NCONT SET

36<;
367 BUILD INITIAL TASK TMLE
36B
369 STD RQADBG,64,129,RQWAKE
426 STD RQTHDI,36,112,RQOUTX
483 STD RQPDSK,~8,129,RQDSKX
540 51'0 RQPDIR, 48,13 eI, RQDIRX
597 STD RQPDEL,64,131,RQDELX
654 51'0 RQPRNM,~4,132,RQRNMX

711 STD RQAIH,34,133,RQAIEX
7t;S EXTRN RQHD1
769 CONSTD CNTROL,RQHOl,S",CNSTK,S1,CONTEX
8B2 STD TIMER,64,2~,,,

9 39 STD TIMUPO,64, 140,~
9913 STD TIMERS,64,141,0

1053 STD STSINP,114,142,0
11H STD CHANGE,64,143,~
1167 ;@ STD REPORT,90~,144,e,18
1224 STD SCAN,see,144,0,18
12Bl
12B2 ALLOCATE TASK DESCRIPTORS
1283
12B4 GENTD
12B8
12B9 ALLOCATE EXCHANGES
129~

1291 XCH CONTEX
1295 XCH FQ0LOK

2-71

1299
@

INTXCH RQL5EX
13~5
1306 BUILD INITIAL EXCHANGE TABLE
1307
))08 XCHADR RQDSKX
1315 XCHADR RQDIRX
1322 XCHADR RQRNMX
1329 XCHADR RQDELX
1330 XCHADR RQAIEX
1343 PUBXCH CONTEX
1350 @ PUBXCH RQL5EX
1357 PUBXCH FQ0LOK
1364 XCHADR RQINPX

LOC OBJ SEQ SOURCE STATEMENT

1371 XCHADR RQOUTX
1378 XCHADR RQDBUG
1385 XCHADR RQWAKE
1392 XCHADR RQALRM
1399 XCHADR RQL6EX
1406 XCHADR RQL 7EX
1413 XCHADR STSLOK
1420 XCHADR SETLOK
1427 XCHADR DSKLOK
1434 XCHADR BMPTIM
1441 XCHADR TIMPOL
1448 XCHADR PRTREQ
1455 XCHADR CHRESP
1462 XCHADR ANRESP
1469 XCHADR MIN5EX
1476 XCHADR TIMEEX
1483 XCHADR RDRESP
1490
1491 BUILD CREATE TABLE
1492
1493 CRTAB
1500
1501 BUILD DEVICE CONFIGURATION TABLE
1502
1503 DCT D~,~,~,,,

1544 DCT D1,", "',1
1585
1586 BUILD CONTROLLER SPECIFICATION TABLE
1587
1588 CST ~,80H,5,RQL5EX,CONTEX

1604
1605 BUILD BUFFER ALLOCATION BLOCK
1606
1607 BAB 3,BUFPOL
1627 END

PL/M-80 COMPILER 10/12/78 PAGE

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE CAMMOD
OBJECT MODULE PLACED IN :Fl:CAM.OBJ
COMPILER INVOKED BY: plm80 :Fl:CAM.plm DEBUG DATE(10/12/78) PAGEWIDTH(78)

CAMMOD:
DO;

/* CONTROLLER TASK STACK */

1 DECLARE CN$STK (80) 8YTE PU8LIC;

® /* DFS INTERNAL BUFFER SPACE *1

DECLARE RQDBUF (?e0) BYTE PUBLIC;

1* DFS STATIC BUFFER POOL * 1

DECLARE BUF$POL (1/.00) BYTE PUBLIC;

END CAMMOD;

2-72

inter ARTICLE
REPRINT

2·73

AR-41

July 1977

9800579A

Single-board microcomputers offer hardware cost-effectiveness for

implementing many real-time systems. A compatible, resident, real­

time executive program provides savings in software development

An Integral Real-Time Executive
For Microcomputers

Kenneth Burgett and Edward F. O'Neil

Intel Corporation
Santa Clara, California

Single.board computers, or microcomputers, that contain
central processor, read· write and programmable read·
only memory, real·time clock, interrupts, and serial and
parallel inputj output all on one printed circuit board,
have made feasible a whole spectrum of applications
which previously could not be economically justified.
These microcomputers have also opened up a range of
applications where the high functional density of large.
scale integration provides advantages over previous solu·
tions such as hardwired logic or relatively expensive
minicomputers. While microcomputers readily solve hard·
ware requirements, software for single·board computer
applications with real·time characteristics (which are
in the majority) has until now been generated individu·
ally for each application.

The Intel RMX/30* Real·Time Multi.Tasking Execu·
tive simplifies real·time application software development,
and at the same time furnishes capabilities optimized for
the microcomputer environment. It provides the means to
concurrently monitor and control multiple external events
that occur asynchronously in real·time. The program
framework allows system builders to immediately imple.
ment software for their particular applications, and to
avoid specific details of system interaction.

Maj or functions of the executive include system reo
source access based on task priority, intertask communi·
cation, interrupt driven device control, rcal·time clock
control, and interrupt handling. In combination, these
functions eliminate the need to implement detailed real·
time coordination for specific applications.

Previously, two alternative software approaches were
used to solve microcomputer applications. First, many

designers created their own operating executive, indio
vidually tailored for each application. Obviously, this
approach was expensive and time·consuming. The second
approach was to use a minicomputer executive which had
been adapted to a microcomputer. Since this software
was designed for a different processing environment and
then "stripped down," it suffered from major inad·
equacies when executed on microcomputers. The alterna·
tive, RMXj30, has been designed specifically to provide
a general·purpose real·time executive tailored to Intel
SBC 30 and System 30 microcomputers.

Real. Time System Requirements

All software design approaches for use in real·time ap·
plications include capability for· concurrence, priority,
and synchronization/communication.

Concurrence-Real·time systems monitor and control
events which are occurring asynchronously in the physi.
cal world. Microcomputer software does not know ex·
actly when external events will occur; however, it must
be prepared to perform the necessary processing upon
demand, whenever the events actually do occur. Typical.
ly, interrupts are used to inform the microcomputer that
an event has occurred. At interrupt time, system control
software determines what processing to perform, as well
as the relative sequence in which processing must take
place.

*H\lX/ROnr is a rpgist{'ff'd trademark of the Intel Corp, Santa
Clara. Calif.

Reprinted from COMPUTER DESIGN, July 1977. Copyright Cahners Publishing CO.,lnc. 1977. All rights reserved ..

2·74

Programs related to external events are processed in
an interleaved manner based on interrupt occurrence
and priority. For instance, one routine is executing when
an interrupt activates, signaling that a higher priority
event has occurred. At this point, the routine related to
the priority interrupt is started, while execution of the
less important routine is discontinued temporarily. When
the more important routine is completed, or temporarily
halted for some other reason, execution of the less im.
portant routine is resumed. In this manner, multiple pro­
grams execute concurrently in an interleaved fashion.
Priority-In a real-time environment, certain events re­
quire more immediate attention than others because of
their significance within the physical world. Immediacy
is relative to other processing, and is determined by ap­
plication requirements. The concept of immediacy or pri­
ority, however, is common throughout all real·time micro­
computer applications. In priority-based systems, the most
important program (one that is not waiting for some
physical or logical reason) is the one executing.

A classic illustration of program priority in real·time
systems is found in the area of plant control. When the
plant begins to fail in a nonrecoverable manner, it is
imperative that the plant be shut down as quickly as
possible. For this reason, shutdown processing takes
priority over all other system demands. Software pri­
ority enforces this hardware concept of physical opera­
tional events.
Synchronization/Communication-Another common sim­
ilarity in most real-time systems i~ the need for synchro­
nization 'between various events in the physical world
which are under microcomputer control. Synchroniza­
tion is defined as the process whereby one event may
cause one or more other events to occur. Communication
is the process through which data are sent between in­
put/output (I/O) devices or programs and ot\:ler pro­
grams within the microcomputer system.

An example of the need for synchronization and com­
munication is a microcomputer system for weighing and
stamping packages. One part of the system weighs the
package, calculates pricing, and releases the package
onto a conveyor belt. Price and weight data are com­
municated to another part of the system which stamps
the data onto the package after it arrives at a sensor
station. Synchronization is demonstrated by the occur­
rence of one event-package arrival~causing another
event-package stamping-to occur.

Compatible Benefits

To satisfy real-time microcomputer software require­
ments, the RMX/80 Real-Time Executive software (Fig
1) was designed. This program differs from existing
software systems by offering capabilities directly re­
lated to the single-board microcomputer environment
in which it operates. These capabilities have two major
bottom-line benefits compared with equivalent minicom­
puter systems. First, the executive code is compact
enough to allow a large number of real-time applications
to be processed on a single microcomputer board. To
accomplish this capability, its nucleus is optimized to
reside in less than 2k bytes [ie, in a single 16k program­
mable read-only memory (p/ROM) 1, thereby allowing up
to 10K of on board memor}, for application-related soft"
ware and storage.

2·75

Fig 1 A typical RMX/SO system. Mul­
tiple tasks control a given application.
Nucleus controls execution of both
user and executive tasks through
task-to-task communication, real-time
clock, priority resolution, and inter­
rupt handling facilities. All tasks with­
in an RMX/SO-based application use
at least some of these capabilities;
other optional executive tasks include
debugger, free-space manager, and
device control for operator's console,
diskette file system, analog subsys­
tems, and high speed mathematics
unit

Second, the executive may be p/ROM-resident. When
the microcomputer system is po;wered on, the software
system (executive plus application programs) is auto­
matically initialized and begins execution of the highest
priority application task. Typical major real-time execu­
tives, however, are totally random-access read-write semi­
conductor memory (RAM) -resident, which means they
must be initialized (booted) from a peripheral device,
such as diskette, cassette, or communications line, into
microcomputer memory. The need for peripheral devices
significantly increases the total cost of traditional real­
time executive-based solutions.

Sample Application

Functioning as a real·time executive for microcomputers,
this software system provides facilities for orderly con­
trol and monitoring of asynchronously occurring ex­
ternal events. Although these events may differ widely
from application to application, facilities are adaptable
to nearly all processes where the microcomputers are
used, including process and machine control, test and
measurement, data communications, and specialized on­
line data processing applications (where one or more
terminals access diskette-based data). The executive is
particularly useful in dedicated low cost applications
which were not economically feasible before the advent
of microcomputers. For example, consider the require­
ment of gas pump control in a service station (Fig 2).

In this station, a microcomputer system operating
with RMX/80 concurrently monitors and controls mul­
tiple gas pumps, and sends price and volume informa-

CO:\IPUTER DESIGN/JULY 1977

tion to one central location. At the same time, informa­
tion about station operation is being transmitted over a
communications line to a regional computer.

Individual tasks are developed independently to mea­
sure gas flow, calculate and display price information,
transfer data to the central computer, and monitor levels
of gasoline in underground storage. All this processing
takes place concurrently under program control. (Credit
verification, charge slip printing, and billing can also,
be controlled, by additional software tasks.)

Efficient gas station operation demands that the hard­
ware/software system. be highly reliable. The compatible
benefits of compact code, p/ROM residency, and self­
initialization on a single-board microcomputer system all
combine to ensure functional integrity.

Software Struc,ture
RMX/BO simplifies the effort for developing a real-time
system, first, by providing many commonly required
software functions. Second, its software structure pro­
motes efficient program development. Programmers who
are familiar with structured programming will find task
orientation both natural and easy to use.

Tasking means that a larger program is divided into
a number of smaller, logically independent programs or
tasks. The key is to identify functions that may occur
concurrently. For example, consider 'the tasks required
for a termihal handler-real·time asynchrorious I/O be­
tween an operator's. CRT terminal and the executive.

Input Ha7u1ler Task-One task must be ready to accept
a data character from the terminal at any time. This is
done by respondihg to an interrupt signal from the
terminal and then accepting the data character. 'The task
immediately passes the input character to' a subsequeht
task automatically and then goes back to wait for an'
other interrupt.

Line Buffer Task-As characters are received from. the
input handler they must be placed into a buffer to form
a line: Eventually, the buffer will be filled or the logical
end-of-line will be signaled by a carriage return char­
acter. At this point, the line buffer must be sent to some
other task for processing.

Echo Driver Task-For a full-duplex terminal, it is
necessary to return each input character to the terminal
for display on the CRT screen. This task. waits for a
character, which could be sent by either the line buffer
or input handler task, ,and then sends the character to
the terminal. It then waits for the next character.

Note that input handler and echo driver are described
as waiting for an event. Within the RMX/BO, that is
literally the case. ,While they wait, however, system re­
sources are available for other tasks, such as that of the
line buffer. Thus, effective processing may occur con­
currently with necessary waiting periods. Notice also
that a number of other tasks may also be active within
the system. In fact, the greater the number of tasks run­
ning concurrently, the more effectively.system resources
are used. Concurrent 'operation eliminates many time
wasting procedures frOIll a real-time system., For ex­
ample, the executive can eliminate the need for many
timing loops where the processor simply executes a no­
operation instruction repeatedly while waiting· for an
event to occur,

2:76

I~/l,i;l
'.$V~1t,.';

TO REGIONAL
/ COMPUTER VIA

/ TELEPHONE LINES

Fig 2 Microcomputer control for gas pump automa­
tion. In this example, executive-based system, simul­
taneously controls two pumps, displays information on
operator's console, and ,communicates with regional
computer. At a given time, more or fewer functions
could be operating concurrently. System expansion
can be easily accomplished by adding tasks and
modular hardware

Within the executive, tasks, not only are logically in­
dependent, they are also physically independent, actually
contending' with each other for the use of the processor
and other system resources. The executive resolves thi's
contention based on the priority of each task.

In the terminal handler example, it is clear that the
input handler must have highest priority, since accept­
able performance cannot tolerate the loss of data. Second
highest priority is given to the echo driver, so that data
appearing on the screen remain coordinated with the
input. Lowest priority goes to the line buffer, since tbat
function does not depend directly on an external asyn­
chronous event. There are, no particular real-time con­
straints o'n the line buffer as long as the input char­
acters are eventually processed.

It is possible to write the entire terminal handler as
a single large task instead of 'as several smaller tasks.
However, consideration must be given other high priority
tasks operating within the system which may not be
able to gain control while a low priority portion of the
terminal handler, such as the line buffer task, is execut­
ing. Therefore, tasks assigned as high priority are gen­
erally kept as short as possible. If the terminal handler
were written as one large task, it could tie up the entire
processing system for a relatively trivial function.

Task States

Two task states have been implied-running and wait­
ing. A· running task is always the task which currently
has the highest priority and is not suspended or waiting.
A waiting task remains in the wait state until it receives
a message or an interrupt for which it is waiting or until
a specified time period has passed. The wait period can
be timed using the system clock.

A running task may suspend itself on some other task
in the system. A suspended task cannot begin execution
again until some running task orders it to resume. As
an example, a password routine might temporarily sus­
pend the echo driver of the terminal handler so that the
password is not displayed. (The password routine must

RMX/80

exCHANGE

101 Ibl
INTERTASK COMMUNICATION INTERTA5l(<DMMUNICATION WITH DELAY

Fig 3 System message exchanges.
In intertask communication (a) task
1 sends a message to an exchange,
where it is held until task 2 requests
message via accept. In intertask
communication with delay (b), task
2 waits for a message from task 1
until data are available or until a
certain time period has passed,
whichever occurs first. In task con­
trol (c), any task may suspend or
resume any other task. In interrupt
processing (d), an I/O interrupt is
transformed into a message that task
1 receives via a wait command.
Task 1 then performs appropriate
interrupt processing

RMX/80

Ie!
TASK CONTROL

P/ROM-BASED SEGMENTS

• > .W/tO NUCLEUS

I' OevI'E CONTROL
TASKS •

fREE S~ACE
/AANAG£R

USER, tASK

USER'TASk N

RAM- BASED SEGMENTS

....c SYSTEMSTQRIIGE "

TASK LOCAL STORAGE

fREE SPACE

Fig 4 Memory utilization. RMX/80 nucleus, de­
vice control task, and free-space allocation mod­
ules are linked with user tasks to form a real-time
system. Although executive may be RAM-resident,
it Is designed to reside in p/ROM and uses RAM
only for temporary storage and free space, User
tasks are provided by user at generation time.
RAM may be used by RMX/80 and all associated
tasks for temporary storage, including stack.

RMX/80

)(CHANGE

Idl
INTERRUPT PROCESSING

2·77

remove the password from the line buffer, or it will be
displayed as soon as execution of the echo driver is
resumed.)

A task may also be in the ready state. A ready task is
one that would be running except that a task with higher
priority temporarily controls the system resources. The
executive maintains a list of all tasks that are ready to
run. The next task to be run is always the task with
the highest priority in the ready list.

The running task relinquishes its control of the sys­
tem by

(1) Putting itself into a wait state

(2) Suspending itself

(3) Sending a message to a higher priority task, which

if it has the highest current priority, becomes the run­
ning task

(4) Being preempted by an interrupt to a higher pri­
ority task

In the case of an interrupt, the executive saves the
status (contents of registers, etc) of the interrupted task
so that it will be restarted correctly.

Message ExchangeS

Tasks communicate with each other by sending messages
(Fig 3). The sending task constructs the message to be
sent in RAM or uses a previously assembled message.

CO~ll'lTTEH DESl(;:-;lJULY 1977

i TASK ENTRY POINT

I
I ,
: INITIALIZE TASK
I
I
I
I

r-- - - - - - -i WAIT FOR REQUEST
,
I
I
I
I PERFORM FUNCTION
I
I
I
I I
, I

t- - - - - - _.-J SEND RESPONSE

Fig 5 Consumer task flow.
Consumer task performs ini­
tialization and then drops into
cyclic loop, alternately waiting
for messages, performing func­
tions requested by message,
and sending an acknowledge­
ment in form of a response
message

The sending task then issues a SEND command that posts
the address of the message at an exchange.

An . exchange is simply a set of lists maintained by the
executive. The first list contains the addresses of messages
available at that exchange. The second list consists of a
list of tasks that are waiting for messages at that ex­
change. When a task enters a wait state, it specifies the
exchange where it expects eventually to find a message.
The task may wait indefinitely, or it may specify that it
will only wait a specific period of time before resuming
execution.

Messages, together with the exchange mechanism, pro­
vide for automatic intertask communication and also for
task synchronization. For example, a message to a par­
ticular task may specify that the task is to send a re­
sponse to a certain exchange. Thus, the original task
may request an acknowledgement response to its mes­
sage, or it may specify that a message is to be sent to
a third task. RMX/80 treats interrupts like messages,
the only difference being that interrupts have their own
set of exchanges.

Note that the sending and receiving of messages classi­
fies tasks into two types--message consumers and mes­
sage producers. A consumer task waits for a message,
performs an action based on the message, and then
returns to the wait state until another message is reo
ceived. A producer task initiates its function by sending
a message to another task, waits for a response, and then
sends another message. Figs 5 and 6 graphically illustrate
the processing within these two tasks. The distinction be-

2-78

TASK ENTRY POINT

INITIALIZE TASK:

....------1 PERFORM FUNCtiON

INITIALIZE OPERATION
(SEND MESSAGE I

'------' WAIT FOR RESPONSE

Fig 6 Producer task flow.
Produc~r processing flow is
opposite to that of consumer
task. Instead of passively re­
acting to requests from other
tasks, producer task issues re­
quests to which other tasks
must respond

tween consumer and producer tasks is relative since many
tasks act as both consumer and producer.

Executive Modules

RMX/80 is supplied as a library of relocatable and link­
able modules. These modules are added selectively as
required when the user-supplied tasks are passed through
the link program. Only modules actually requested by
the application are linked in. For example, if the appli­
cation program does not specify use of the free-space
manager, that module is not linked into the system.

One module, the nucleus, provides basic capabilities
(concurrence, priority, and synchronization/communi.
cation) found in all real-time systems. Additional, op·
tional modules may be configured with user programs
(tasks) to form a complete application software system.
These modules include:
Terminal handler-Providing real·time asynchronous
I/O between an operator's terminal and tasks running
under the RMX/80 executive, the handler offers a line­
edit feature similar to that of ISIS-II and an additional
type-ahead facility. (ISIS-II is the supervisory system
used on the Intellec Development System.)
Free.space manager-This module maintains a pool of
free RAM and allocates memory out of the pool upon
request from a task. In addition, the manager reclaims
memory and returns it to the pool when it is no longer
needed.

81

CONFIGURATION
PARAMETERS

USER APPLICATION TASKS

Debugger--Designed specifically for debugging soft·
ware running under the RMXj80 executive, the debugger
is used by linking it to an application program or task.
Thus, it can be run directly from the single·board com·
puter's memory. In addition, an in·circuit emulator,
such as ICE.80, can be used to load and execute the
debugger, providing all resources of the Intellec de·
velopment system to simplify debugging effort.

Analog inter/ace handlers-----£onsisting of RMXj80 tasks,
these handlers provide real·time control for SBC 711,
724, and 732 systems.

Diskette file systems-Giving RMXj80 users diskette
file management capabilities, the diskette driver allows
users to load tasks into the system and to create, access,
and delete files in a real·time environment without dis·
rupting normal processing. All file formats are compatible
with ISIS'I! for both single and double density systems.

In addition to application program module or task
requirements, the user also supplies a set of generation
parameters. These parameters are a set of tables that
inform the executive of the number of tasks and ex·
changes in the system. Fig 7 illustrates the system gener·
ation process.

Summary

The significance of RMXj80 to software design parallels
the significance of the single.board computer to hard­
ware design. Microcomputers allow designers without ex­
tensive experience in digital systems to bring computer
processing power into their applications. Similarly, the
executive relieves the hardware designer of much soft­
ware design required for real-time applications. Designed
to facilitate growth, since new software needed to support
hardware expansions can be supported easily by the ad·
dition of new tasks, this executive also substantially re-

2-79

Fig 7 Target microcomputer system.
Configuration parameters are linked
together with appropriate RMX/80 and
user task modules. Resulting program
is then transferred to its target sse
80 system via programmed pI ROMs
or is debugged using in-circuit emula­
tion and then transferred

duces recurring costs because it requires a mInlmum of
memory and does not require peripheral bootstrap load­
ing devices. RMXj80 results in economical, shorter, and
more flexible software development efforts when design­
ing, building, and verifying real-time user applications.

Bibliography

C. G. Bell, A. Newell, Computer Structures: Readings and Ex·
amples, McGraw·Hill, New York, 1971

P. Brinch·Hansen, Operating SYstems Principles, Prentice Han,
1973

E. W. Dijkstra, "The Structure of the THE Multiprogramming
Systems," Communications of the ACM, May 1968, pp 341·
346

E. r. Organick, The Multics System: An Examination of Its
Structure, MIT Press, Cambridge, Mass, 1972

D. M. Hichie, K. Thompson, "The UNIX Time Sharing System,"
COTllTllunications of the ACM, July 1974, pp 135·143

C()~ll>lITEII lJESl(;N/TllLY HJ77

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I

I
I

I
I
I
I

PROCEEDINGS OFTHE IEEE, VOL. 66, NO.2, FEBRUARY 1978

A Small·Scale Operating System Foundation for
Microprocesor Applications

KEVIN C. KAHN

A bstract-Sound engineering methodology, which has long been val­
ued in hardware design, has been slower to develop in software design.
This paper uses a case study of a small real-time system to discuss soft­
ware design philosophies, with particuar emphasis on the abstract ma­
chine view of systems. It demonstrates how the currently popular soft­
ware design axioms of generality and modularity can be used to produce
a software system that meets severe space constraints while remaining
relatively portable across a family of microcomputers, These sorts of
constraints have often been used to justify. ad hoc design approaches in
the past. The results of the project suggest that the use of such tech­
niques actually make the meeting of many constraints easier than would
a less organized approach. In addition, the reliability and maintainability
of the resultant product is likely to be better.

A
I. INTRODUCTION

PROCESSOR, as defined only by its hardware, is typi­
cally not an adequate base upon which to build applica­
tions software. Broad classes of applications can be ex­

amined and found to share more than the hardware defined
instruction set. To avoid the reengineering of this common func­
tionality, we would prefer to build such common parts once and
thereafter treat this base software as though it were part of the
machine. For example, a software system sometimes called an
operating system, an executive, a nucleus, a kernel, or some
similar term, is often supplied with a hardware product and can
be viewed in exactly this way. In this paper, we examine a small­
scale system to demonstrate this approach to bridging the gap
between the hardware and the application. That is, we will view
the software as a direct extension of the h~rdware-a view which
may indicate future directions in microprocessor integration of
function.

This paper is meant as both a case study of a particular system
design and as a suggestion of the proper approach to such design
situations in general. We will first discuss the abstract machine
view of computer systems and attempt to demonstrate that this is
a useful philosophical approach for building systems. We will
then apply this approach to the discussion of a system to coor­
dinate programs performing real-time control functions- RMX-
80™ [18]. The emphasis of the paper will be on techniques and
methodology rather than on the particular functionality of RMX.
Special attention will be given to such issues as the use of
modularity to enhance the adaptability of the system and the use
of design generality to achieve global rather than local optimiza­
tions.

II. THE CONCEPT OF ABSTRACT MACHINE

What is a computing "machine" or processing unit? We gen­
erally identify a processing unit as a particular collection of hard-

Manuscript received September I, 1977; revised October 11, 1977.
The author is with the Intel Corporation, Aloha, OR 97005.

TMIntel Corporation, Santa Clara, CA.

ware components that implement the instruction set of the
machine. This very physical definitiop of a computer dates from
mechanical processors. Even with 'modern computers, before
large-scale integration, it was easy to physically point at the proc­
essing elements as distinct from memories, peripherals, and pro­
grams. Continued integration of function has at least made this
physical distinction more difficult with single chips subsuming
processing, memory, and peripheral interface functions. Micro­
programming (i.e., replacing hardwired instruction logic with a
more elementary programmed processor) as an implementation
strategy has logically blurred this distinction as well. That is,
when the basic visible instruction set of a processor is itself imple­
mented in terms of more primitive instructions it is more difficult
to identify '''the machine." It is clear that this narrow physical
definition of a processor is not adequate for current technology
levels and is likely to become even less viable as the technology
continues to develop.

Actually we have been using alternative definitions of a proces­
sor for some time. All of the theoretical work in finite state
machines, for example, deals with conceptual processors. Like­
wise applications programmers seldom really regard the machine
they program as much more than collection of instructions found
in a reference manual-the physical implementation of the
machine is of little concern to them. Indeed, they may never come
physically near the hardware if they deal with a typical time­
sharing system-rather, the terminal is the only physical manifes­
tation of the computer such users may see.

More to point, perhaps, are the numerous interpreters that
have been written for languages such as Basic. Each such inter­
preter actually produces a conceptual machine with one instruc­
tion set targetted to a specific application. With standard com­
piled languages such as Fortran, Algol, or Pascal, a higher level
source statement is translated into the instruction set of the
physical hardware. In contrast, interpreted language systems
translate the source into the instruction set of some conceptual
machine that is better suited to the running of programs written in
the language. For example, the hardware may not provide
floating-point instructions or define a floating-point data repre­
sentation. In such a case it may be easier to define a machine that
recognizes a particular floating-point data format with an instruc­
tion set that includes floating operations. These interpreters are
high-level machines that have usually been implemented in soft­
ware. Likewise, it should be readily apparent that, just as these in­
terpreters provide high-level machines to their associated trans­
lators, any programming language, compiled or interpreted, pro­
vides one to its users.

Interpreters of this sort typically may examine and decode a
stream of instruction values in a manner analogous to the hard­
ware. Alternately, the new instructions may all be executed as
subroutine calls using the appropriate hardware instruction. That
is, the entire bit pattern for CALL X (where X is the address of a

0018-9219/78/0200-0209$00.75 © 1978 IEEE
Reprinted with permission.

2·81

USER
APPLICATION

SYSTEM

I COBOL BASIC II FORTRAN

DATA FLOATING
BASE POINT

SYSTEM PACKAGE

I OPERATING SYSTEM I

I BASE HARDWARE I
Fig. 1. Typical c~llectioD of abstract machines.

routine that implements a part of the new instruction set) can be
regarded as a new operatioll code rather than as the hardware
operation CALL. In either case the programmer using these exten­
sions can view the \larware-software combination as though it
were a new machine with a more useful instruction set. Micropro­
grammed machines such as the IBM 5100 or Bur;ough's 1700
have simply optimized the performance of such interpreters or
subroutine packages by committing them to a faster storage
medium:

Viewed in this light we can identify any collection of hardware
and software that provide some well defined set of functions as
defining an abstract machine [10),[12). This machine has an in­
struction set that consists of the functions provided by the hard­
ware-software combination. For a particular application it may
be possible to view multiple such abstract machines by taking
various pieces of the whole. For example, the physical machine
provided by a set of components is just one abstract machine. It is
of particular interest since it is the greatest common abstract
machine that can be identified as being used by any application
running on that computer system. A Basic interpreter running on
this machine might then constitute a second virtual machine. A
Basic program ninnihg on this interpreter that accepted high level
commands and performed according to them might be a third

'level machine usable by people with nQ knowledge of either the
hardware or Basic. Whenever we can idj:ntify functions of suffi­
cient commonality among a number or applications, it may be
worth viewing the software which provides these functions as ex­
tensions of the base hardware machine which define some aug­
mented or even,different machines. Users p,rogiamming such an
application can then view this abstract machine, rather than the
base machinl; ~s the vehicle that they are Programming, and in
doing so avoid reengineering the functions that it provides. Fig. 1
illustrates an example of such machines. It is important to remem­
ber that at any time, many abstract machines may be thought of
as existing on the same base hardware. '

III. OPERATING SYSTEMS AS ABSTRACT MACHINES

The terins operating system or executive have been used to
describe software systems of widely different functionality. These
inachines generally provide for the management of some machine
resources such as input, output, memory space, meinory access,
or processor execution time. We might then attempt to define an
operating system as some collection of software modules which
defines an abstract machine that includes resource management
functions as well as the hardware supplied computatio')lil func-

PROCEEDINGS OF THE IEEE, VOL. 66, NO.2, FEBRUARY 1978

tions [2),[6),[8),[11). With such a broad definition, however,
'large-scale multi-user time-sharing systems and small single user
'microprocessor development systems both may claim to have
operating systems. Clearly, the range of software systems covered
by this definition is large, encompassing products which differ by
orders of maghitude in complexity. Rather than become involved
in trying to resolve this disparity, we will qualify our use of the
term and refer to an operating system "foundation." That is, we
will describe a ;oftware system which provides a minimal base for
the construction of real-time applications. We will avoid the
somewhat irrelevant question of whether the system comprises a
complete "operating system."

The important item to realize from the above discussion is that
any operating system functionally enlarges the processor seen by
the programmer. The functions that it provides become as much a
part of the machine's functionality as jump instructions. Indeed,
it is functionally unimportant to the user desiring to read from a
file whether it requires a single hardware instruction or a large
software, routine to accomplish it. In terms of the abstract
machine discussion above, we will examine a software package
which defines 'an abstract machine that includes functions re­
quired to coordinate programs performing real-time control ap­
plications [1),[9),[12).

The key overall requirement of the operating sytem foundation
that we discuss in this paper will be that it supply a minimal cover­
ing set of functions to permit coordination of asynchronous
tasks. To determine this set we will need to further examine the
needs of its users and environment of its use. In detc"ribing this
foundation, we are defining an abstract machine that must be
programmed to be oftise; that is, like the instruction set of the
base machine the foundation by itself performs no work but
rather provides an environment within which useful tasks can be
run.

We should note, here, some of the limitations of the system
which differentiate it from large-scale operating systems. First, it
is not primarily intended for a multi-user environment, particu­
larly because the underlying hardware does not provide the neces­
sary support to protect users from one another. Also, it will often
be used to control functions of specialized devices and therefore is
"close" to the 1/0 devices. That is, it does not supply the sort of
high level 1/0 control system which is often present in larger sys­
tems for controlling more conventional I/O devices. Finally, it
does not assume a backing store from which program overlays
can be loaded (but it c~i1: easily support such an extension).

IV. DESIGN CONSIDERATIONS

A. Use Environment

The foundation system we will describe is RMX-80 [5) which
was designed to be used with members of Intel's Single Board
Computer (SBC) family of products. This family includes a wide
range of bus compatible processor, memory, and peripheral
boards. Of most interest to this discussion are the processor
boards which are based on the Intel 8080 or 8085 microprocessors
and include varying amounts of on-board ROM and RAM mem­
ory and I/O interfaces. In addition, the boards vary in the sophis­
tication of their interrupt structures and timing facilities. In terms
of abstract machines we might characterize these computers as
essentially the same machine at the processor level but different
machines at the computer system level. It was desired that the
abstract machines defined by adding RMX to the underlying com­
puters be as much the same as possible.

During the design of RMX, we expected that its users would
span the entire broad range of applications across which the SBC

2·82

KAHN: SMALL-SCALE OPERATING SYSTEM FOUNDATION

hardware was being put to use_ This implied that it might see uses
ranging from minimal single board systems that functioned as
single device controllers to complex multiboard applications im­
plementing involved real-time process or industrial control func­
tions_ In particular we expected that many user-built I/O boards
and peripherals would be used with the system. It was important
for us to allow full use of these unknown devices with RMX while
still providing as much assistance as possible in the building of the
controlling software systems.

As is the case with most processors, the concrete (Le., physical)
machines represented by the SBC family do not themselves in­
clude any facilities to permit multiple asynchronous functions to
be programmed, to provide for the coordination of such func­
tions, or to provide time information needed for real-time ap­
plications. Typically, users of these products have directly pro­
grammed these functions in an ad hoc manner within their ap­
plications. An examination of the sorts of functions necessary to
such applications reveals that at the very least this reengineering is
a waste of resources. Worse is the high probability of error in pro­
gramming such critical functions.

The SBC hardware products were designed to eliminate the
complexities of board engineering, particularly for those users
without the necessary expertise to handle the task, by functionally
integrating individual components into complete boards. The
programming of functions to coordinate parallel software activi­
ties is, likewise, an area which should be carefully engineered in
order to avoid subtle errors. The development of RMX was there­
fore viewed as a process of functional integration analogous to
the integration of LSI components into boards. That is, just as a
well designed board relieves the user of component level hardware
engineering, RMX relieves the users of low-level software engi­
neering.

B. System Requirements

The hardware environments and anticipated uses of RMX de­
fined a stringent set of requirements for it. Foremost among these
were its memory constraints; indeed, for the anticipated uses,
memory size considerations dominated execution speed ones over
a considerable range. Since we expected applications that would
reside entirely on a single board with 4K bytes of PROM, the
maximum size of the RMX foundation code was set at half of this
or 2K bytes. Further, unlike larger minicomputer systems, many,
if not most, applications of the SBC boards would not have avail­
able any mass storage or other program loading device. It was
thus important that RMX be designed to be ROM (or PROM)
resident and capable of automatically initializing the system when
powered on.

We also anticipated that the expertise of many RMX users
would be in areas lither than programming systems. We therefore
felt that the RMX machine needed to provide a fairly simple set of
concepts, avoiding where possible those constructs most likely to
cause errors. For example, we felt that a very frequent source of
programming difficulty lay in dealing with interrupts. Many
latent errors in programming systems stem from the occurrence of
an interrupt at an unexpected time. We therefore decided to at­
tempt to minimize the need for users to deal with hardware inter­
rupts or with the interrupt-like occurrences found in many mini­
computer operating systems. At the same time we had to accom­
modate the needs of the sophisticated user who still desired to
take advantage of RMX but had a specific need to directly control
the hardware via the interrupt facility.

Finally, to define the general functionality of RMX we exam­
ined its anticipated applications. Real-time applications com­
monly need to perform a number of tasks of differing importance

logically in parallel, with preference always being given to execut­
ing the most critical ones first. While these tasks may be relatively
independent, they may need to periodically synchronize them­
selves with one or another distinct task or with the outside world.
For the latter, interrupts are the usual hardware supplied mecha­
nism. Some tasks may also need to communicate data with one
another. For example, a task servicing a sensing device may take
readings from the device which need to be communicated to two
tasks: one task which reacts to the reading by controlling some
other device, and another task which logs or tabulates the read­
ings. Ranked in order of importance these might be control, sens­
ing, and logging. Finally, the tasks must have the ability to con­
trol themselves relative to real-time, either by delaying their exe­
cution for certain periods or by guaranteeing that they are not in­
definitely delayed by, for example, a faulty device.

Requirements on the system design were also generated by con­
siderations internal to the design project. One of these was the
need to provide a single RMX abstract machine on a variety of
underlying SBC boards. While separate versions of RMX for each
board could have been designed with the same external appear­
ance, this approach would have led to an unnecessary amount of
internal engineering. Additionally, without careful initial design,
the differences in the base hardware would have had visible ef­
fects on the RMX abstract machine for each of the boards_ This
requirement demanded that we partition the structure of RMX
into two parts. One part would implement those aspects which
were independent of the particular hardware. The second part
would interface the first part to the underlying hardware of the
specific boards [71.

We also wished to minimize the software development costs by
applying the best available software engineering techniques. His­
torically, tight space constraints have often led to a very ad hoc
approach to software design in the belief that more generally
designed external features or more modularly built internal
designs would lead to inherently larger systems. As a result of this
philosophy, each needed function is designed to be as small as
possible. Unfortunately, while each function may be locally opti­
mized, it is possible that the overall design suffers from duplica­
tion or overlap between such individual elements. Current work
in progr~mming methodology stresses modularity, generality, and
structure (most often for their side effects in producing more
maintainable, less error prone systems).

We felt that there was more to gain, both in development cost
and space performance, by avoiding optimized specialization of
function in favor of more general designs [171. This reduced the
number of separate functions that RMX had to supply. The re­
sulting external design therefore has a single mechanism that pro­
vides task communication, synchronization, time references, and
standard interrupt-like control. To do so it incorporates the
operating system design approaches favored in much of the mod­
ern computing literature. Likewise, the internal structures are
highly modular and designed to be as uniform as possible so as to
avoid replicating similar, but nonidentical internal management
routines.

V .. THE RMX MACHINE

B. General Concepts

The abstract machine defined by RMX augments the base
microprocessor by introducing some additional computational
concepts. We define a task to be an independently executable pro­
gram segment. That is, a task embodies the concept of a program
in execution on the processor. RMX permits multiple tasks to be
defined which can run in a parallel, or multiprQgrammed,

2-83

fashion. That is, RMX makes individual tasks runniilg on one
processor appear to be running on separate processors by manag-,
ing the dispatching of the processor to particular tasks. The reg­
isters on the processoneflect the activity or state of the running
task. Other tasks may be ready to execute but for some reason
have not been selected to run yet and so have their processor
states saved elsewhere in the system. From the point of view of the
program that is a task, execution proceeds as though it were the
only one being run by the processor. Only the apparent speed of
execution is affected by the multiprogramming. From the point of
view of the system, every task is always in one of three states; run­
ning, ready" or waiting. The task actually in execution is running.
Any other task which could be running but for the fact that the
system has selected some other task to actually use the processor,
is ready. Tasks which are delayed or stopped for some reason are
waiting, as will be discussed below.

Each task is assigned a priority which determines its relative im­
portance within the system. Whenever a decision must be made as
to which task of those that are ready should be run next, the one
with the highest priority is given preference. Furthermore, in the
spirit of unifying mechanisms, the same priority scheme replaces a
separate mechanism for disabling interrupts. Interrupts from ex­
ternal devices are logically given software priorities. If the ap­
plications system designer deems a particular task as of more im­
portance than responding to'certain interrupts, he can specify this
by simply setting the RMX priority of that task to be higher than
the RMX priority associated with those given hardware inter­
rupts. It is thus possible to maintain a high degree of control over
the responsiveness required Jor various functions.

As mentioned above, tasks may desire to communicate infor­
mation to one another. To this end the RMX machine defines a
message to be some arbitrary data to be sent between tasks. To
mediate the communication of messages it defines an exchange to
be the conceptual link between tasks. An exchange functions
somewhat like a mailbox in that messages are deposited there by
one task and collected by another. Its function is complicated by
the fact that a task may attempt to collect a message at an ex­
change that is empty. In such a case the execution of that task
must be delayed until a message arrives. Tasks that are so delayed
are in the waiting state. We chose this indirect communication
mechanism over one which directly addresses tasks because it per­
mits greater flexibility in the arrangement of receiver and sender
tasks. The anonymity of the receiving task implies that the sender
need know only the interface specification for a function to be
performed via a message to a particular exchange. The task or
tasks which implement that function need not be known and
hence may be conviently changed if desired.

The conventional mechanism used by programs to communi­
cate with external devices is the interrupt. Unfortunately, inter­
rupts are by nature unexpected events and programming with
them tends to be error prone. The essential characteristic of an in­
terrupt is that a parallel, asynchronous activity (the device) wishes
to communicate with another activity (a program). Since this
communication is essentially the same as that desired between
separate software tasks it seems conceptually simpler to use the
same message and exchange mechanism for it. The unification of
all communications functions is analogous to the idea of stand­
ardized I/O found in systems such as UNIX (17). The RMX
machine eliminates interrupts by translatipg them into messages
which indicate that an interrupt has occurred. These messages are
sent to specific exchanges associated with particular interrupts.
Tasks which "service interrupts" do so in RMX by attempting to
receive a message at the appropriate exchange. Thus, prioritized
nested interrupts are easily handled. An advantage of this unfied

PROCEEDINGS OF THE IEEE, VOL. 66, NO, 2, FEBRUARY 1978

treatment of internal and external communication is that hard­
ware interrupts can be completely simulated via another software
task. This facilitates debugging and permits easy modification of
a system by allowing rather arbitrary insertion of tasks into a net­
work of communicating tasks and devices.

Note that with this scheme unexpected interrupts do not cause
particular difficulty. For example, if the servicing task is still busy
with some previous message, the interrupt message will be left at
the exchange and will not affect the task until it is ready for an­
other interrupt; i.e., until it waiis,at the exchange. In an applica­
tion designed to properly handle the actual interrupt rate, the task
will service interrupts quickly enough to always be waiting when
the next one occurs. In this case, response to an interrupt is im­
mediate. Thus this mechanism provides no loss of facility relative
to the usual interrupt scheme but it does make the proper con­
trolling of such events simpler. Multiple occurrences of the same
interrupt which indicate the processor has fallen behind in its ser­
vicing are logged as such by a message which indicates that inter­
rupts may have been lost. These interrupts do not, however, dis­
rupt the running task or complicate programming.

The last concept embodied in the RMX abstract machine is that
of time. The RMX machine defines time in terms of system time
units. It then permits tasks to delay themselves for given periods
of time so that they can synchronize themselves with the outside
world. It also permits tasks to guard against unduly long delays
caused by attempting to collect a message at an empty exchange
by limiting the length of time that they are willing to spend
waiting for some message to arrive.

B. Data Objects and Functions

These concepts are realized in RMX by introducing some new
data objects and instructions. Just as the base processor can deal
directly with such data objects as 8 bit bytes or unsigned integers,
the RMX abstract machine can deal directly with the more com­
plex data objects; task; message, and exchange. Each of these
data objects consists of a series of bytes with a well defined struc­
ture and may be operated upon only by certain instructions. This
is completely analogous, for example, to a machine that permits
direct operations on floating-point data objects which consist of
four bytes with a particular internal structure to represent the
fraction, exponent, and signs. In each case ,there are only certain
instructions that can be used correctly with the object and the in­
ternal structure of the object is not of particular interest to the'
programmer.

The new instructions provided by RMX are; SEND, WAIT, AC­

CEPT, CREATE TASK, DELETE TASK, CREATE EXCHANGE, and
DELETE EXCHANGE. The create instructions accept blocks of free
memory and some creation information to format and initialize
the blocks with the appropriate struc'ture. Each corresponding
delete instruction accepts one of the objects and logically removes
it from the system. The remaining operations are of more direct
interest to the, operation of the RMX machine.

The WAIT instruction has two operands; the address of an ex­
change from which a message is to be collected and the maximum
time (in system units) for which the task is to await the arrival of a
message. The resuit of the operation is the address of the message
which was received. A special message from the system indicates
that the specified amount of time elapsed without the arrival of a
normal message. From the programmer's point of view this in­
struction simply executes and returns the specified res\llt. Actual
execution of the instruction will involve the delaying of task exe­
cution if no message is available, by queueing it in a first-come­
first-served manner at the exchange. Any such delay is not visible

2-84

KAHN: SMALL-SCALE OPERATING SYSTEM FOUNDATION

to the programmer, however. This approach unifies the commun­
ication and timing aspects of the design. It directly provides reli­
ability in the face of lost events due to hardware or software fail­
ure. Tasks can be guaranteed not to be indeterminately delayed
due to such failures and can thus attempt recovery from them. It
also permits tasks to use the same mechanism to delay themselves
for given time intervals by waiting at an exchange at which no
message will ever arrive.

The ACCEPT instruction is an alternate way to receive a mes­
sage. It has a single operand specifying the exchange from which
the message is to be received and immediately returns either the
next message at the exchange or a flag indicating that no message
was available. The task is never delayed to await a message in the
ACCEPT operation.

SEND also has two operands: the address of a message and the
address of an exchange to which the message is to be sent. The in­
struction queues the message in a first-come-first-served manner
at the exchange if there is no task already waiting there. If a task is
waiting at the exchange then the instruction binds the message to
the task and makes the task eligible to execute on the processor.
When the receiving task resumes actual execution the address of
the message will be returned to it as the result of its WAIT instruc­
tion.

VI. THE RMX IMPLEMENTATION

A. Methodology

In this section and the next, we consider some (but certainly not
all) details of the actual implementation of the system as illustra­
tions of the design of such software products. We turn first to the
methodology applied to the effort and then to some samples of
the mechanisms.

To provide the abstract machine just described and meet the
other requirements for the system, RMX was implemented as a
combination of ROM resident code and some RAM resident
tables. Just as a hardware designer uses LSI devices in preference
to more elementary TTL components, we chose to use the
leverage of a high level programming language rather than
elementary assembly code. The system was, therefore, designed
using PLM [14], Intel's high-level implementation language. The
operations described above appear as procedure calls using the
standard PLM calling sequence. The space constraints and a good
level of internal maintainability were achieved by maximizing the
modularity of the design. The broad independent functions of
multiprogramming, communications and control were completely
isolated from the board dependent timing and interrupt handling
functions. As a result, movement of the system to a new member
of the SBC family requires only the reimplementation of these
board dependent functions. In addition, data structure of internal
and user visible objects were generalized so that single algorithms
could deal with any of them. Individual optimizations could have
been made in the local design of many parts of the data structures
to improve their space or time costs slightly. Such optimizations,
however, would have cost considerably more in code space and
code complexity [3).

The module feature of PLM was used to simulate the abstract
data type concept [4],[13) and enforce information hiding [15],
[16). That is, every data structure used by RMX is under the ex­
clusive control of a single module. The modules supply to each
other restricted sets of public procedures and variables. It is only
through these paths that agents outside a module may access the
data structures maintained by the module. The only assumptions
that such outside agents may make about a module and its data
structures are those specified by the definition of the public paths.

SEND. WAIT. ACCEPT

HARDWARE lEVEL
INTERRUPT

MODULE

HARDWARE LEVEL
TIME

MODULE

Fig. 2. Major modules (boxes) and data structures (circles) of RMX.

As a result, so long as these interface specifications are main­
tained, any given data structure may be reorganized by redesign­
ing its controlling module without affecting other parts of the sys­
tem. This approach improves the understandability of the imple­
mentation and facilitates the debugging and maintenance of the
system. Fig. 2 illustrates the general structure of the RMX imple­
mentation.

Finally, the original version of RMX was completely coded in
PLM using the resident PLM compiler of the Intellec® Micro­
computer Development System. This version was functionally
complete but slightly exceeded the space constraints, occupying
about 2.5K bytes of program space. There were a couple of cases
where the language structure of PLM did not permit the direct ex­
pression of the best way to compile the code. For these modules,
it was sufficient to hand optimize the code output by the com­
piler. The original structure of the PLM program was maintained
and the majority of its generated code was used intact. The final
RMX system occupies less than 2K bytes of program space. This
high level language approach coupled with selective manual opti­
mization permitted far quicker and more error free development
than could have been achieved using assembly language.

The approach to handling interrupts did introduce additional
software overhead. For a typical configuration of the hardware,
the realistic minimum interrupt latency would be about 200 jlS.

Using the message mechanism it is about BOO jlS. For the targetted
process control applications, this is entirely acceptable. RMX
does make provision, however, for direct handling of selective in­
terrupts which require better response time without disturbing the
use of the message mechanism for the others. For normal task
communication, the performance is relatively better. For the typ­
ical hardware configuration, the transmission of a message takes
about BOO jlS, which is comparable to the time that would be re-

2·85

quired for any synchronization primitive (e.g., P and Vor en­
queue and dequeue) on such hardware.

B. Engineering for Hardware Dependencies

The two functions which vary most significantly across the SHe
product line are the timing and interrupt facilities. To accom­
modate these variations, the implementation separates the logical
and physical parts of these functions.

The interrupt facilities are split between the module which im­
plements the communications operations and a hardware inter­
rupt handler module. The communications module provides a
special "interrupt send" operation which performs the logical
translation of the interrupt event into a message. This facility is
independent of the interrupt structure of the processor board and
remains the same in any version of RMX. The hardware depend­
ent interrupt module deals directly with the hardware interrupt
structure and invokes the send operation at the logical level. Only
this module need be redesigned when generating an RMX version
for a different SHe board. With this approach we take full advan­
tage of the hardware vectored priority interrupt structure on high
performance products and can simulate this desirable structure at
slightly higher software cost on low performance products.

The same sorts of variations are faced in providing a source for
the system time unit. Again, one module provides all of the
logical time functions associated with providing time delays and
time limits to the user system. This module is independent of the
type, frequency, or location of the physical time source. A sep­
arate module is responsible for clocking the logical level by invok­
ing it once every system time unit. Once again, this permits a con­
sistent definition of time in RMX systems regardless of the sophis­
tication of the available time source, and it limits the amount of
reimplementation that is needed to support new SHe products.

C. Example Data Objects

As an example of the complex data objects defined in the sys­
tem we will consider the task and exchange objects illustrated in
Fig. 3. The task object is 20 bytes long and embodies the execu­
tion state and status of a task. It consists of pointers used to link it
onto various lists of tasks in the system. These lists are used to
queue a task at an exchange, link it to other ready tasks, or keep
track of its maximum delay when waiting. It also contains the
stack pointer of non-running tasks which is sufficient to supply
the remaining task register values when the task next executes.
Finally, the object contains the task priority, some status infor­
mation describing the state of the task, and a pointer to auxiliary
information about the task.

The exchange object is 10 bytes long and implements the mail­
box concept described earlier, primarily by serving as the source
of header information for lists of messages and tasks. Each of
these singly linked lists is addressed with head and tail pointers
located in the exchange object. All exchanges in the system are
also linked together.

The exchange objects are operated upon by the SEND, WAIT,

and ACCEPT instructions of the RMX abstract machine. These in­
structions generally alter the "value" or contents of these com­
plex data objects. The task object is not the direct operand of any
RMX instruction described above. Rather it is indirectly altered as
a side effect of various instructions. JUSt as the user of floating­
point objects on most machines needs to know the length and ex­
istence of instances of the object, but not its internal structure, so
the internal structure of these objects is generally unimportant to
the users.

PROCEEDINGS OF THE IEEE. VOL. 66. NO.2. FEBRUARY 1978

TASK OBJECT

DELAY LINK FORWARD

DELAY LINK BACKWARD

THREAD

DELAY MESSAGE

EXCHANGE ADDRESS

STACK POINTER

PRIORITY I STATUS

NAME POINTER

MARKER

TASK LINK

EXCHANGE OBJECT

MESSAGE HEAD

MESSAGE TAIL

TASK HEAD

TASK TAIL

EXCHANGE LINK

"
,.,

V'
2 BYTES

Fig. 3. Example data objects in RMX.

D. Global Versus Local Optimizations

We have already discussed some aspects of global versus local
optimizations at the overall design level in terms of avoidance of
redundant features. A good example of this tradeoff in the imple­
mentation is provided by the linked list data structures within
RMX. Like many such systems there are a number of singly
linked lists which must be maintained to reflect the status of the
system. Local optimizations on the placement of links within data
structures or in the form of the headers used for the lists would be
guaranteed to save a few bytes of data space across the various
lists. Further, the list insertion, scanning, and deletion algorithms
could be specially tailored to the individual list structures to save
microseconds of execution time for some operations on some
lists. Indeed, anyone such tailored algorithm might well use less
code space than a single more general one.

On the other hand, many of the list operations are in no sense
time critical. Generalizing all the list structures to use a single
form replaces multiple algorithms with one, thus saving code
space. The particular form can be chosen to favor those opera­
tions that are frequent, thus limiting the impact of the generaliza­
tion on the execution speed of the system. Perhaps most impor­
tant, however, is that, by reducing the number of algorithms and
structures used, we decrease the potential number of errors and
improve the maintainability of the resultant product. Since there
are, for example, at least six distinct singly linked structures in the
system, we reduce overall code size and engineering cost by sup­
porting only a single mechanism. We improve product reliability
at the price of a small increase in fixed data space and a small exe­
cution speed penalty of infrequent and nontime-critical opera­
tions.

It is interesting to note as an aside that this is really an example
of software engineering: that is, applying engineering discipline to
software development. Such discipline is highly valued and under­
stood in other engineering fields. Standardized mechanical or
electrical components are virtually always preferred to special
designs; PLA's often replace random logic. Unfortunately, an ap­
preciation of the overall benefits of such structure has been slow
to develop in software engineering. Too often, we have seen
special purpose designs and overly complex structure used in pro-

2·86

KAHN: SMALL-SCALE OPERATING SYSTEM FOUNDATION

grams supposedly to save space or improve speed. The true costs
in development time and reliability of such approaches have often
been underestimated; the true time savings attributed to them
often overestimated. The high percentage of end product cost due
to software is finally forcing a general awareness of these issues.

VII. LSI AND ABSTRACT MACHINES

It seems natural at this point to ask how the abstract machine
view of systems in general and our experience with RMX might be
affected by the continuing development of LSI technology. Once
we view any complex software system as defining a collection of
abstract machines, it becomes obvious that it is simply an engi­
neering decision as to which machines should be committed to
hardware. We are constrained in this choice by the densities of
our solid-state technology, the performance we desire, the ap­
plications that we are attacking, and perhaps most severely, by
our understanding of software systems and of the machine struc­
tures that they require.

We might build an entire final application (e.g., a cash register)
as a very-high-Ievel single-chip machine. The specialization of
such a design would, however, severely limit its application
beyond the one for which it was specifically meant. On the other
hand, we could build exclusively bit slice microprogrammable
machines with utmost generality but which, due to their very low
level of functional integration, would have no technological lever­
age for attacking complex problems. Actually, both these ex­
tremes have their well developed roles and will continue to be
reasonable approaches for high-volume low-cost, and special­
purpose tailored systems, respectively. It is in the middle ground
-the area of the traditional computer-that directions are less
clear.

If the 8080 type processors are generally somewhat less power­
ful than we actually need and as a result we always build operating
systems of some level to support them, perhaps some of these
functions can be integrated into the hardware. That is, if we can
identify a broad range of systems which include essentially the
same abstract machine implemented in software, then that
abstract machine is a good candidate for hardware integration.
The engineering difficulty is in understanding these software
structures well enough to confidently and correctly commit them
to hardware.

Attempting to build all of some very large and complex operat­
ing system onto one or two chips is, no doubt, out of the question
with current technology. On the other hand, the final RMX sys­
tem which we described resides in a small amount of ROM within
the 65K address space of the 8080 processor. Once we view RMX
as an abstract machine, the placement of the code which imple­
ments its functionality becomes immaterial. In particular, we
could build an augmented 8080 type processor directly by defining
the additional instruction codes of RMX as hardware operations
and moving the RMX implementation into microcode on the
chip. The resultant component would indeed be an "RMX ma­
chine" which dealt directly with the complex data objects and
tables described above. It would have the advantage of not using
any of the address space for operating system code. More impor­
tantly, it would not waste bus cycles and memory access time
fetching operating system instructions. Such a machine would
have the same advantages over a conventional one that a machine
with floating-point hardware has over one without it.

Should we then try to build the RMX machine-ignoring for
the moment whether our hardware technology is capable of it
quite yet? Is the simple task model of RMX sufficiently general to
be of use over a wide class of applications? Is the RMX machine
the complete tool that we would like? Clearly, the answer is not a

wholehearted yes. For one example, RMX provides no isolation
or protection of one task from another. Indeed, no solely soft­
ware system can provide such protection at any reasonable cost.
Such isolation would be desirable at the least because it would
limit the damage that one task could do to another due to errors.
The conclusion to be drawn, therefore, is not that this particular
abstract machine should be built in hardware, but rather that
some such machine would provide more of the facilities needed
for building microprocessor applications than do current proces­
sors. Further, the design principles discussed above are the ones
that appear most likely to be fruitful in creating such a machine.

VIII. CONCLUSIONS

In this paper, we have attempted to use a case study of a partic­
. ular small operating system to illustrate both a philosophical ap­
proach to viewing computer systems and some important aspects
of software development methodology. Many of the subtle as­
pects of desiging software to control quasi-parallel activities have
not been discussed in detail, nor have we fully described the im­
plementation. Nevertheless, we hope that this description suggests
the practicality and necessity of disciplined approaches to soft­
ware system design. Until software implementation reaches a level
of engineering commensurate with that applied to other aspects of
computer system design, our products will be very much bound
by software costs. Only discipline and structure within our soft­
ware efforts will ultimately permit microprocessor applications to
reach their full potential.

ACKNOWLEDGMENT

The author acknowledges the effort of codesigner K. Burgett in
the original development of the system. In addition, thanks are
due for the detailed suggestions received from J. Rauner, S.
Fuller, R. Swanson, G. Cox, and J. Crawford, which greatly im­
proved the content and clarity of the paper. The author also
thanks his other colleagues at Intel and the reviewers who con­
tributed to the final form of the paper.

REFERENCES

[11 P. Brinch Hansen, "The nucleus of a multiprogramming system," Commun.
ACM, vol. 13, no. 4, pp. 238-241, Apr. 1970.

[2) -, Operating System Principles. Englewood Cliffs, NJ: Prentice·Hall, 1973.
(3) }~. P. Brooks, Jr., The My/hical Man·Month. Reading, MA: Addison-Wesley,

1975.
[4) W. L. Brown, "Modular programming in PL/M," in. Proc. IEEE Coni. Com­

pUler Software and Applications, Nov. 1977.
(5) K. Burgett and E. F. O'Neil, "An integral real-time executive for microproces­

sors," Computer Design, vol. 16, no. 7, pp. 77-82, July 1977.
(6] E. G. Coffman, Jr., and P. J. Denning, Operating Systems Theory. Englewood

Cliffs, NJ: Prentice·Hall, 1973.
(7) G. W. Cox, "Portability and adaptability in operating system design," Ph.D.

dissertation, Purdue Vniv., Lafayette, IN, Dec. 1975.
(8] P. J. Denning, "Third generation computer systenls," Computing Surveys, vol

3, no. 4, pp. 175-216, Dec. 1971.
19] E. W. Dijkstra, "The structure of the 'THE'·multiprogramming system,"

Commun. ACM, vol. 11, no. 5, pp. 341-346, May 1968.
1101 J. H. Fasel, "Abstract machine hierarchies for programming language imple·

mentation,"Ph.D. dissertation, Purdue Vniv., Lafayette, IN, Dec. 1977.
(11] A. N. Habermann, Introduction to Operating System Design. Chicago, IL:

SRA,1976.
(12] A. N. Habermann, L. Flon, and L. Cooprider, "Modularization and hierarchy

in a family of operating systems," Commun. ACM, vol. 19, no. 5, pp. 266-272,
May 1976.

(13] B. Liskov and S. Zilles, "Programming with abstract data types," SIGPLAN
Notices, vol. 9, no. 4, pp. 50-59, Apr. 1974.

(14] D. D. McCracken, A Guide to PL/M Programming for Microcomputer Appb·
cations. New York: Wiley, 1977.

(15] D. Parnas, .. A technique for software module specification," Commun. ACM,
vol. IS, no. 5, pp. 330-336, May 1972.

(16] -, "On the criteria to be used in decomposing systems into modules," Com·
mun. ACM, vol. 15, no. 12, pp. 1053-1058, Dec. 1972.

(17] D. M. Ritchie and K. Thompson, "The UNIX time·sharing system," Com·
mun. ACM, vol. 17, no. 7, pp. 365-375, July 1974.

[18] RMX/80 System Users Guide. Santa Clara, CA: Intel Corp., 1977.

2-87

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

iCS PRODUCTS

INTRODUCTION

In 1979, Intel introduced the Industrial Control Series - iCS product family. The iCS 80 chassis and the iCS 910, 920
and 930 Signal Conditioning/Termination Strips were the first members of the product family, followed closely by the
introduction of the iSBC 569 Intelligent Digital Controller and the iSBC 941 Industrial Digital I/O Processor. The intro·
duction of these products represents a new type of product offering from Intel - products designed specifically for
the industrial control marketplace.

Publications reprinted in this section include an application note and article reprint on the iCS 80 chassis and termina·
tion strips, and an application note on the iSBC 569 Intelligent Digital Controller.

TABLE OF CONTENTS

AP-52 Using Intel's Industrial Control Series in Control Applications. .. 3-3
AP·60 Closed Loop Control Using the iSBC 569/941 Intelligent Digital Processors 3-61
AR-91 Designing and Assembling Microcomputer Systems Grow Easier 3-123

3-2

inter

© Intel Corporation, t979

APPLICATION
NOTE

3-3

Ap·52

March 1979

9600932

Using Intel's Industrial
Control Series In
Control Applications

3·4

Contents

I. INTRODUCTION.. 3-5

System Description, , , , , , , , , , 3-5
Control Algorithm .. ,., .. " ... " , 3-5
Basic System Configuration. , , , , .. 3-6

II. WIRING INTERFACES 3-7

Analog Terminal Panels , 3-8
Low Voltage Digital Termination

Panels , , , ". ,3-10
High Voltage Digital Termination

Panels, " .. , ... , .. , ... ,., ... 3-13
Final Channel Assignments, , , 3-16

III. SELECTING THE COMPUTER
BOARDS , 3-16

The Industrial Chassis , , " .. 3-19

IV. DETERMINATION OF SOFTWARE
APPROACH 3-21

Assembler ., , 3-22
PL/M , " " 3-22
FORTRAN , 3-23
BASIC .. " 3-23
Final Selection of Language 3-23

V. DEFINING SOFTWARE TASKS 3-23

Oven Control Task . , , , 3-24
CRT Update Task Development 3-27
Parameter Update Task ,3-28
Support Programs , ,3-29

VI. FINALIMPLEMENTATION 3-29

VII. CONCLUSION '" 3-29

APPENDIX A - SELECTED DATA
SHEETS 3-31

APPENDIX B - LADDER DIAGRAM
OF SYSTEM 3-38

APPENDIX C - PROGRAM SOURCE
LISTINGS 3-39

I. INTRODUCTION

The introduction of the single board computer as a
tool for the system designer has opened the way for
many varied application areas to benefit from the
advantages of computer utilization. A problem still
exists, however, because the available I/O con­
figurations have been largely incompatible with the
wiring and packaging techniques required in indus­
trial environments. This problem is overcome by
the utilization of the Intel® iCS™ product family.
The purpose of this application note is to provide a
representative approach to the implementation of a
computerized solution to an industrial control
system.

System Description

This application note will deal with a control
system which will regulate the temperature in each
of four ovens. Each oven will be defined as utiliz­
ing a light bulb for heating. Normal convection will
be used to provide cooling. The internal tempera­
ture will be measured by means of a thermistor in­
stalled in each oven. We will assume that we will be
required to implement some type of operator panel
near the ovens which will allow the status of each
oven to be monitored. This approach is similar to
many common industrial applications which re­
quire a supervisory control station in one area and
a separate operator interaction panel near the

3·5

equipment being controlled. The setpoint and tol­
erances should be input from an external location.

With these facts about our system defined, we can
begin a step by step solution to providing a com­
puterized control system to .operate the ovens. We
will discuss the various equipment trade-offs and
the decisions which will be used to define the hard­
ware/software designs.

Control Algorithm

Before we can begin the design of our system, we
must have a clear idea of the technique we will use
to control the system. Our control system must
maintain the oven temperature within a predefined
and fairly narrow range of the setpoint. Let us
make an assumption that the light bulb will be con­
trolled digitally, meaning that the bulb must either
be turned fully on or it must be turned fully off.
The obvious control technique then becomes turn­
ing the bulb on when the temperature of the oven is
below our lower limit and turning the bulb off
when the temperature is above the higher limit. It
seems reasonable to assume that this technique will
provide a temperature in the oven which varies
sinusoidally with time. This is true because even
though the lamp is turned off, it will continue to
generate heat for a short period of time. Likewise,
when the bulb is turned on, it will not instantly be
able to provide heat to raise the temperature of the

chamber. We would expect to have a system re­
sponse such as is shown in Figure 1. A better
method of control can be devised if we provide
some type of temperature prediction into our con­
trol algorithm. Since this utilizes the rate of
temperature increase or decrease, it will involve a
type of derivative control system. This derivative
control action will tend to dampen the temperature
oscillations which might be encountered if only an
instantaneous on-off control system were utilized.
Figure 2 shows the response with time that we
might expect with this type of control system.

ON-OFF CONTROL

w r-----~1-----~~-------------------
0:
:::>

~
w
"­
:IE
~ r---+------T~-----------------------

TIME

Figure 1. Maximum Effort Current Temperature

DERIVATIVE CONTROL

wr_----------------------------------
0:
:::>

~
0:
W
"­::;
~r_--~~----------------------------

TIME

Figure 2. Maximum Effort Projected Temperature

3·6

The second approach is superior to the first
because the control will provide a much smaller
oscillation of the oven temperature. Other solu­
tions are possible, such as providing a modulated
output to the lamp. However, in an attempt to pro­
vide a simple model upon which to expand our
system solution, we will assume that the second ap­
proach will provide us with an accurate enough
control of the oven temperature.

Having made the decision as to the control tech­
nique, we can proceed with the task of determining
the general system configuration. That is, we can
define the physical system characteristics and the
components to which we must interface the com­
puter system. This approach is identical to that
which would be used in a conventional control
system design.

Basic System Configuration

Based upon the data which we have provided so
far, it is possible to build a block diagram of the
system's major components. The system consists
of four ovens, an operator's panel, a data entry
panel, and the actual control logic. A block dia­
gram for the system is shown in Figure 3. We must
now further define the elements which make up
each of these blocks.

~ OPERATOR

[YY"l I- -+ PANEL

OVEN 1

Ifv~ I-
f- CONTROL -[2;J-b:1

~
1- 4-1 CRT

Figure 3. Application Block Diagram

Each oven must consist of a heating element, which
we have already defined as being a light bulb, and a
temperature sensing element which we have said
will be a thermistor. Each heating element will be
switched on or off by applying or removing a
source of 115 V AC. The thermistor temperature
can be sensed by using the thermistor in a voltage

divider circuit. We can then measure the voltage
across a fixed resistor to obtain an analog signal
which is proportional to the oven temperature. We
will determine the required value of the fixed
resistor at a later time.

The operator's panel should be designed to provide
the work floor operator with basic information as
to the status of each oven. It should also allow
some method by which he can inhibit the operation
of any oven should it become necessary for charg­
ing or servicing the oven. We can then define the
basic elements which should make up the opera­
tor's control panel. Each oven should have associ­
ated with it the following controls and indicators:

1. Oven ON/OFF Switch - This switch will allow
the operator to inhibit the oven operation by
turning the appropriate oven switch to OFF.

2. Oven RUNNING Indicator - This indicator
will provide a visual indication that the oven is
activated and that the temperature is being con­
trolled.

3. Oven IN TOLERANCE Indicator - This indi­
cator will turn on when the oven temperature
falls within the allowable bandwidth around the
set point for that oven.

4. Oven ALARM Indicator - This indicator is the
complement of the in tolerance lamp. It will be
turned on when the oven is activated and the
temperature does not lie within the desired
bandwidth.

5. Oven CAUTION Indicator - It may be neces­
sary to alert the operator to a potential oven
temperature control problem before it actually
occurs and sets off the alarm indicator. Since we
have defined our control algorithm as utilizing a
type of derivative control, we can project the
oven temperature ahead in time. We will turn
the oven caution indicator on when we predict
that the oven temperature will lie outside of the
desired bandwidth in a predetermined future
time period.

We have now defined the operator interface which
we will utilize to control and monitor the oven
processes.

At this point, we will make a decision that the in­
terface used to input the setpoints will utilize a
CRT terminal. Though the decision may seem to be
completely arbitrary, we will see later that CRT ter­
minals provide an extremely useful device for
allowing an operator to communicate with the sys­
tem. Once the decision has been made, we have no

3·7

further requirements to consider hardware design
for this terminal, as the entire operation can be
handled in the software development which will be
considered later.

A common technique for documenting a system is
the ladder diagram. At this time, we can construct
a ladder for our control system. Unlike conven­
tional design techniques, our ladder diagram need
only be concerned with the actual drive and sensing
circuits since the logic required to drive the various
outputs will be defined using software. This results
in a considerable simplification of the design pro­
cess. A ladder diagram for a typical oven is shown
in Figure 4. We can defer the implementation of
the control algorithm until we begin to develop the
software portion of our control system. It is now
possible to complete the external hardware design
and to implement the system wiring package.

15 N

)--------{OV1
EAO

+---I---l0N 1 E94

"ON"

21)--------{

+---I-_T.,OL 1 ESO 22)---------{

"ALARM"

HEATER

15 10_IWIRE LABELS) N

Figure 4. Ladder Diagram of One Oven

II. WIRING INTERFACES

A major pitfall in utilizing a computer for control
systems has traditionally been the requirement for
the design engineer to expend a considerable
amount of his time in designing interfaces to con­
nect the physical wiring to the computer system.
The introduction of Intel's product line of termina­
tion panels has essentially eliminated the require-

ment of designing interfaces and allows more engi­
neering time to be spent providing a solution to the
application~ Before we continue with the specific
design, we should spend some time discussing the
various types of termination panels available and
the general characteristics of each panel.

Analog Termination Panels

The Intel® iCS 91O™ Analog Termination Panel
has been designed to provide a simple means of ter­
minating the analog wiring and of providing an
interface to the control system input/output. All
wiring is terminated utilizing pressure type screw
barrier blocks. Termination blocks have been pro­
vided to allow the termination of up to 32 single­
ended or 16 differential channels of analog input.
For use in a differential input environment, such as
we will be using, the terminator blocks provide wir­
ing terminations compatible with shielded cable in­
puts in that provision has been made to accept the
shield of each input signal. The shield is then car­
ried through the on-board circuits to the analog-to­
digital converter. Provision has been made on the
board for the mounting of commonly used circuits
for signal conditioning. The available signal condi-

~ I- I- I­+ I + I + I + I ~ ~ ~ w
»»»»Ee:2!!:
M M N N ~ ~ 0 0 ~ ~ 0 0
(.)OCJoooOCJCJootJ
<C<C«<C<t<C<C<C<c<c<c<c cccccccccccc

tioning circuits provide for installation of current
termination resistors and the installation of a single
pole low pass filter network. The basic barrier
assignments for the iCS 910 termination panel are
shown in Figure 5. The possible circuit networks
for this panel are illustrated in Figure 6. A com­
plete description of the analog termination panel
can be found in the iCS 910 Analog Signal Condi­
tioning/Termination Panel Hardware Reference
Manual (manual order number 9800800A).

The functions of the analog termination panel will
become more clear as we develop the actual config­
uration required to support our oven application.
Referring to the ladder diagram (Figure 4) we see
that a fixed resistor is necessary to provide the volt­
age divider network to sense the oven temperature.
The current termination resistor (Rc) on the
iCS 910 board can be used to provide a convenient
mounting location for this component (refer to
iCS 910 circuit schematic, Figure 6). At this point,
we must make a design decision regarding the uti­
lization of a low pass filter for our analog circuits.
Since the oven temperatures are not expected to ex­
hibit rapid fluctuations with time, the use of a low
pass filter will not adversely effect the temperature

I~~ ~!@ffi~~ ffi ~ ~ ~ ~ Ilffi@l!ijffiffiffiffi ffi ~ ffi ffi ffil
~'--"--......-......______ '--v--"'--.--"'~---""--

8 9 10 11 12 13 14 15

Jl Cj p J2 Cjp J3

Figure 5. iCS 910™ Analog Terminator Panel Assignments

DIFFERENTIAL
CHANNEL

SINGLE
ENDED

A

SINGLE
ENDED

B

RET

Figure 6. Typical Circuit on Analog Terminator

+v

R.

-v

3·8

Cc

C.

sensing. Indeed, the use of a low pass filter should
contribute to spurious signal rejection should the
analog cables pick up external noise signals. Calcu­
latiens will show that the use of a filter network
consisting of 11 K ohm series resistors and a 2.2 p.F
capacitor will provide the filter characteristics
shown in Figure 7.

0.8 -z
~
~ 0.6

>

0.4

0.2

0.1 10

FREQUENCY (Hz)

100

Figure 7. Single Pole Filter Characteristics

1000

Based upon our requirements and using the circuit
schematic of Figure 6, we can provide the circuit
interfaces required by our ladder diagram (Figure
4) by configuring the channels of the iCS 910 ter­
minator as shown in Figure 8. This results in a sim­
ple two-wire per oven analog interface. The termi­
nator board is designed to connect to the various
analog I/O boards by means of a standard ribbon

t- I­+ I + I + I + I ~ w ~ w
>:»»»>O&:l:oa::
M M N N _ _ 0 0 ; ; ~ Q
ouououuuoooo
c(c::CCC<Cc:(c:'(c:(ct<Cc;«<
QCCCOOOcccoo

1~~~~~~~~~[ij~~1 p

Figure 9. Analog Terminator Wiring

J1

cable which is supplied with the terminator panel.
The actual selection of the appropriate analog
board will be deferred until later. We will define
that oven number 1 will correspond to the differen­
tial analog channel 0; oven 2 will correspond with
channell; oven 3 will correspond with channel 2;
and oven 4 will use channel 3. This leaves 12 analog
differential channels available for future expan­
sion. The channel selection just made was a purely
arbitrary choice.

11 kn

Rc
30k!1

RE
11 ku

CA
2.2J.tF

Figure 8. Analog Circuit for Oven Application

TO AID
BOARD

The wiring to the iCS 910 terminator panel can
then be made essentially as shown in Figure 9.
Clearly, the use of the ttrminator panel greatly
simplified the connection between the control sys-

I~~~~~~~~~~~~II~~~~~~~~~~~~I
______ '----'~"---' -..,...........'-.,.-.-'~""--v--'

8 9 10 11 12 13 14 15

Cj p J2 Cjp J3 Cj

3-9

tern and the physical devices which are to be moni­
tored or controlled. Figure 10 shows the placement
of the components onto the board.

Figure 10. Analog Terminator Component Locations

Low Voltage Digital Termination Panels

Looking again at our ladder diagram for an oven
control system (Figure 4), we see the need to pro­
vide a second type of interface signal. This is to
provide the switching for the various indicator
lamps used on the operator's control panel. Tradi­
tionally, this interface has been handled by using
electromechanical relays. The coils would bedriven
by the low voltage control system and the relay
contacts were used to drive the external indicators.
Modern technology provides us with a solid state
device to perform the same function, the optical
isolator. We can use these devices to provide a
highly reliably and low cost alternative to the relay
interface. The Intel® iCS 920™ Digital Signal Con­
ditioning/Terminator Panel provides us with a
convenient vehicle for mounting the optical
isolator circuits and for terminating the wiring
associated with the indicator devices.

The iCS 920 panel is designed to be used by those
interface circuits which incorporate operating volt­
ages less than 50 volts and which generally use cur­
rents which are smaller than 300 rnA. These limits
are given only for a general guideline since a wide
variety of optical isolators and drivers are available
for use on the board. Some of the devices are
capable of handling greater voltages or currents. A
representative list of available devices and com­
plete details of the termination panel are available
in the iCS 920 Digital Signal Conditioning/Termi­
nation Panel Hardware Reference Manual (manual
order number 9800801A).

3-10

The digital panel provides terminations for up to
24 digital channels, each of which can be con­
figured as either an input or an output channel ac­
cording to the specific application requirements.
As with the analog termination panel, all wire ter­
minations are made using pressure type barrier
strips which will accept up to 16 gauge wire. The 24
digital channels correspond with those input/out­
put channels assigned to the standard Intel I/O
configurations used on the single board computers
and 110 expansion boards. We will dwell more on
this subject later when we define the addresses
associated with each circuit which we desire to in­
corporate into the termination panel.

Since the digital channels can be configured· into
either an input or an output mode, it is wise to dis­
cuss each configuration so that a clear understand­
ing of the board can be obtained, even though our
application example will only use the output mode
with this board.

Figure 11 provides a schematic of the panel when it
is configured for a digital input mode. To set up a
channel to operate as an input, it is necessary to
add at least two jumpers to the wire-wrap jumper
posts. As can be seen, pins 6 and 4 must be con­
nected together as well as pins 3 and 5. If the board
is to provide a visual LED indication of the channel
status, an additional jumper should be installed
between pins 1 and 2 of the jumper posts. If this is
done, be certain to take into account the additional
current requirements when calculating the required
input resistors. Two resistor mounting locations
are provided to allow installation of selected com­
ponents to handle the current limit through the
optical isolator (Rx) and the threshold voltage for
turn-on of the device (Ry). A complete and de­
tailed procedure for selecting these resistors based
upon the input voltages is provided in the iCS 920
hardware reference manual mentioned earlier. Pro­
vision has also been made on the termination panel
for the installation of a diode (CR) to protect
against reverse bias applicatio~.

The components have been placed on the board ar­
ranged in groups of two channels. This eases the
task of finding various components or of locating
the holes for installing the required components.
This layout is illustrated in Figure 12. It is impor­
tant to take note of the physical placement of the
optical isolator chips in the 20-pin socket. This in­
stallation location must be followed rigorously
when using a channel in an input mode. Also take
note that provisions are provided for mounting two
sizes of resistors in location (Rx). This will accom-

mod ate the power dissipation requirements which
will be encountered in various application situa­
tions. Referring again to Figure 12, note that the
upper half of the layout represents odd channels
and the lower portion of the layout is used for even
channel component mounting.

+5V

lIon

Rx 1--..

R, c.

560kn

Figure 11. iCg 920™ Digital Terminator Input
Configuration

CPU
INPUT
PORT

When the iCS 920 panel is used in this input mode,
it corresponds to the utilization of a relay coil to
sense some external contact closure. The resistors
can be thought of as selecting the coil's operating
voltage and the diode provides the same transient

protection function as when installed on an electro­
mechanical relay. Finally, the optical isolator out­
put corresponds to the contacts associated with the
relay coil. As we will see later, this approach pro­
vides us with an unlimited number of contacts per
relay coil.

The oven application requires a contact for driving
the indicator lamps associated with each oven. If
we define the driving voltage to be 24 volts DC, we
will find that the voltage and current requirements
fall within the limits specified for using the iCS 920
Digital Signal Conditioning/Termination Panel.
Let us examine in more detail how this can be ac­
complished.

We will select an industrial indicator assembly
which utilizes a full voltage 24-volt lamp. Typical
lamps would be type 387. This will require a drive
of 40 mA at 28 volts. Our switching device must be
capable of driving this load. The analogy used
earlier to compare the optical isolator with a relay
in an input mode holds true when we utilize the
devices in an output configuration. If we examine
the data sheet for the current switching character­
istics of a typical optical isolator, say the TIL 113
(Appendix A), we can see that the current and volt­
age requirements fall well within the allowable
ratings of the device. We have selected the relay
contact characteristics! We need not concern our­
selves with the selection of current limitation
resistors (coil voltage ratings) since this circuitry is
provided on the terminator panel when a circuit is

o

8
o 0 0 G-l,,--_R_X --'~

o
o
o
o o

Figure 12. Digital Terminator Input Parts Layout

o 0

o 0 _ .-.-0.. 0
r::l~ W G--------O!:]--

~ Rx ~

3·11

configured in an output mode. If we refer to Figure
13, we can see the on-board schematic for the out­
put drive mode of operation. Two jumpers must be
installed for each output channel. The first, be­
tween pins 1 and 2, is used to enable the LED chan­
nel status indica,tor. The second, between pins 3
and 4, actually connects the computer generated
drive signal to the input of the optical isolator
(analogous to connecting the relay coil to the driv­
ing line). Provision has been made on the circuit
board for only one optional component in the out­
put mode; this is the resistor (Rz). This component
has the effect of increasing the response time of the
switching device. Because our indicator lamps are
not time critical, we will choose to omit the instal­
lation of this component.

CPU OUTPUT
PORT

+5V

110 II 220U

Figure 13. iCS 920™ Digital Terminator ()utput Circuit

Figure 14 provides a drawing showin~~the location
of the components on the iCS 920 panel when it is
utilized as an output switch. Again note the place-

°
°

8

ment of the optical isolators in the 20-pin sockets.
Alsonote the jumper arrangement used to provide
the required output circuitry.

Again referring to Figure 13, we see that an alter­
native to using the optical isolator for a switch
exists. Provision has been made' on the panel for
the installation of high powerbufferldriver chips
such as the TI 75462. This device provides the same
coill contact characteristics as our optical isolator;
however, no isolation between the input and out­
put is provided. In certain applications, this con­
figuration may be desirable and can be imple­
mented by connecting jumpers 1 and 3 together,
then placing a jumper block in the isolator socket
location. The oven application will not use this
mode because of the many advantages which isola­
tion can provide.

Prior to actually installing the components onto
the iCS 920 panel, it is Iiecessary to assign the
lamps to definite channel addresses. This involves
making some additional assumptions and design
configuration decisions. If we consider the total
number of digital inputs and outputs which are re­
quired to handle all four ovens (including the as yet
unconsidered switch and heater signals), we see
that a total of 24 channels will be required. "These
will be broken out as shown below:

No. of
Channels

o
o

o

16
4
4

Type

DC
AC
AC

o
o

Function

Oven indicator lamps
Oven heaters
Oven RUN switches

"'0 __ 0 0 0

G--f.I}-0

o
o

Figure 14. Digital Terminator Output Configuration

3·12

We have indicated that the 16 indicator lamps can
be handled using the iCS 920 panel. An examina­
tion of the data sheets for the various Intel single
board computers and expansion boards provides us
with the fact that a common characteristic of most
boards is the use of at least one Intel 8255 Pro­
grammable Peripheral Interface. This provides us
with at least 24 I/O lines with which to work on
each single board computer. We can then assume
that we will not require an I/O expansion board to
implement our application. Ideally, we can handle
our total requirements with one parallel interface.

The various Intel parallel ports are brought off of
the computer and expansion boards using edge
connectors. These edge connectors are then con­
nected to the termination panels using a standrd
ribbon cable assembly, effectively providing an ex­
tension of the I/O ports out to the termination
panels. The 24 channels are grouped into three I/O
ports (each consisting of 8 channels or bits) which
are then called port A, port B, and port C. When
connected to the iCS 920 panel, these ports and
their bit assignments will be as shown in Figure 15.

At this point, we seem to be in a dilemma since we
would like to use all 24 channels and we have used
only 16 of them on our panel while we have utilized
the edge connector of the interface. It would be
desirable to have some technique to extend the
other 8 channels to a high voltage terminator
panel. It might be well to interrupt our channel
assignments at this time to jump ahead and con­
sider the features of the iCS product line which will
enable us to accomplish our interface desires. We
will then consider the interface of the high voltage
signals to our control system before returning to
the problem of assigning port locations to our
li~s. .

+ + +

High Voltage Digital Termination Panels

The Intel® iCS 930™ AC Signal Conditioning/
Termination Panel is designed to interface up to 16
AC signals (up to 280 volts at 3 amps) or high cur­
rent DC signals (up to 50 volts at 3 amps) to the
parallel ports of the Intel single board computers
or I/O expansion modules. The barrier strip termi­
nations on this panel are designed to easily handle
the 14 gauge wire commonly found in applications
requiring the use of the AC terminator.

Solid state relays are used to provide the interface
between the computer I/O ports and the physical
plant devices. These devices make the utilization of
the panel a simple task once a ladder diagram of
the required circuits has been drawn. As we have
previously mentioned and as is clear from looking
at Figure 4, we shall need to utilize eight of the
available circuits, four for input and four for out­
put. The implementation of each signal type re­
quires only that we insert the correct type of solid
state relay into the appropriate socket.

First,. consider the input configuration which is
required to sense the position of the oven RUN
switches. Figure 16 shows the circuit schematic
when used in the input mode. W~can see that the
output signal will turn on when the input power is
applied. Like the digital termination panel, each
circuit's status is indicated by means of an LED in­
dicator installed on the board. The input circuit is
protected by a socketed 3-amp fuse which may be
replaced without the need to solder any compo­
nents. The solid state relay used for this configura­
tion should be a type lACS which is available from
either Opto-22 or Motorola. Complete details of
available relays and their uses on the board are
available in the iCS 930 AC Signal Conditioning/

+ + +

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1'0 7 6 5 4 3

PORTa PORTe PORTA

p 9 m
- +
~

EXT5V
POWER

Figure 15. iCS 920™ Digital Terminator Port Assignment

3·13

Termination Pane/Hardware Reference Manua/
(manual order number 9800802A). Keep in mind
the fact that although this application note repre­
sents the solid state relays as being actual relays and
contacts, they in fact are solid state and contain no
moving parts.

+5V

SOLID STATE
RELAY r-+--tI4H--+

3.3K

Figure 16. iCS 930™ AC Terminator Input Circuit

The output configuration is utilized to turn the
heater elements (the light bulbs) on and off. Figure
17 provides Us with a schematic of the output cir­
cuitry. In this case, we will insert a solid state relay
of type OAC5 which will handle up to 140 volts
RMS at 3 amps. In some cases, it might be desir­
able to add certain components to the terminator
panel when using it in the output mode. Two possi­
ble circuit configurations are possible. The first
and perhaps the most common will consist of in­
stalling a MOY (metal oxide varistor) across the
solid state relay contacts. This will be required
when the load being driven is inductive in order to
prevent the transients generated by the load from
damaging the triac in the SSR (solid state relay).
Since the SSRs utilize zero voltage switching and
the load in our ovens is resistive rather than induc­
tive, our application will not necessitate the instal­
lation of this device. The second possibility for ad­
ditional circuitry also involves driving inductive
loads. When the load is highly inductive, a possi­
bility exists that reliable operation of the SSR may
not occur because of incorrect values for the dv/dt
(a complete description of this phenomenon is
available in various publications available from the
manufacturers of the solid state relay devices).
Provision has been made for installation of an ex­
ternal snubber network should this be required.
Again, our oven control system will not require this
type of circuitry.' Figure 18 is provided for refer­
ence should the reader desire to see the location of
the additional components on the panel. It should
be noted that the component placement does not

3·14

allow the installation of the MOY and the snubber
simultaneously.

+5V

Figure 17. iCS 930™ AC Terminator Output Circuit

+

mm
~ /

~ MOV Rs

SOLID
STATE

~~.
RELAY

®

0 ~
Figure 18. AC Terminator Component Locations

We can now get back to the task of assigning ad­
dresses to the various digital channels. The iCS 930
panel has three connector options for connecting it
to the computer's I/O ports. The standard con­
figuration utilizes connector J2 to attach the rib­
bon cable assembly. When this is done, the com­
puter ports A and B will correspond to the 16 chan­
nels on the terminator panel (Figure 19). If we look
at the termination panel, we will see that there is a
provision for the user installation of two additional
ribbon connector sockets onto the board. These
are used in order to utilize the computer port C. If
connector J3 is installed and utilized instead of J2,
the channel assignments will be as shown in Figure
20. In a similar manner, connector J 1 can be in­
stalled and utilized to provide connections between
the computer port C and the other eight SSR posi­
tions. If we choose the 16 lines required for driving

the indicator lamps from the iCS 920 panel to be
ports A and B, then it seems reasonable to assign
the eight remaining lines required on the iCS 930 to
port C. A feature of utilizing standard ribbon cable
assemblies is the ability to easily add ribbon plug
connectors to the cable. This will result in an
assembly transferring ports A, Band C to the iCS
920 panel (however, port C is not used) and which
continues the port C signals to the iCS 930 panel.

PORT a

Figure 19. iCS 930™ AC Terminator Port Assignments

AVAILABLE FOR
J1 CONNECTOR

Figure 20. iCS 930™ AC Terminator Port Assignments

a:
w

8
J:

N(NEUTRAL) ---ll--l---+---+---.
10(POWER)

PORTC

J1

J2

Individual channel assignments can now be made,
grouping the inputs and outputs together in groups
of four (this is done because of a requirement of
the single board computers to share terminator and
driver component packages in groups of four). Fig­
ure 21 provides a drawing showing the channel
assignments and the physical wiring locations
which will be used to connect the oven heaters and
switches.

PORTA

PORTC

J3

AVAILABLE FOR
J3 CONNECTOR

~

EXT5V
POWER

~

EXT5V
POWER

~

EXT5V
POWER

Figure 21. iCS 930™ AC Terminator Application Configuration

3·15

Final Channel Assignments

The only task remaining before we have completed
our task of assigning channel numbers and physical
wire and component locations is to assign these
channels on the iCS 920 digital termination panel.
Since we have already determined that we will uti­
lize ports A and B, this becomes a simple matter,
requiring only an arbitrary assignment of lamp
locations using these port bits. The assignments
made for one oven can be seen in Figure 22. The
entire ladder diagram of the system can now be
completed along with port assignments for all sig­
nals used. The completed diagram can be found in
Appendix B. Note how the port assignments have
been shown to the side of the ladder element repre­
senting that interface device.

The method used to define a port assignments
needs to be clarified since it may not be apparent
why a channel of port A was given the address of
E80. To begin, we have already indicated that each
port consisted of eight channels or bits. We will
number these bits from 0 to 7. Since it is possible to
have many input/output devices connected to the
computer, the possibility exists of having multiple
devices which incorporate internally ports A, B,
and C. The computer has been designed to support
up to 256 of these ports so we have numbered them
using the hexidecimal numbering system. The pos­
sible port numbers can then range from 00 to FF. It
will be found that a common characteristic of most
single board computers is the use of assigning the
port addresses of E8, E9, and EA to the on-board
8255 parallel peripheral interface. Therefore, the

0.
:IE

" 0. ...
:IE :s :IE

II:

Z ~ 0
0 0
l- I-

WIRE 115

E\ E\
+ + +

first channel of port A would be defined as having
an address of E80; the second channel of port B
would be E91, and so forth.

III. SELECTING THE COMPUTER BOARDS

To this point we have delayed the selection of the
boards which will be required to provide the com­
puterized control system. The Intel OEM Micro­
computer Systems Configuration Guide has been
designed to simplify the task of selecting the re­
quired system. Our first task is to enter all known
information describing our desired system into the
project configuration worksheets. These work­
sheets can then be used to actually select a board
configuration which meets our particular require­
ments. The effort required to accomplish the entry
of data is reduced to a minimum through the use of
predefined digital and analog configuration work­
sheets. Our requirement of having a total of 24
parallel data lines, consisting of a mix of high and
low level interfaces, can be met by the 24-bit
AC/DC combination. Our assignments of re­
quirements for the terminator panels can be made
and is shown in Figure 23. It can clearly be seen
from the worksheets, that our required interface
with the computer digital data will consist of one
24-bit wide connector (had we not used port C
assignments, the use of 16-bit wide connectors
would have sufficed). This means that our selected
single board computer or 110 expansion board
must provide at least one edge connector having 24
110 bits on it.

0.
:IE

0. " ... :IE
Z :s Q ... I- 0 ::> I-

" " 1!:
0 0
l- I-

E8\
E\

+ + +

M!~101~~ ~
7 8 5 4 3 2 1 0 7 6 5 4 3

PORTB PORTe

g

Figure 22. Digitsl Panel Application Configuration

3·16

2 1 0 7 6 5 4

PORTA

§

3 2 1 0

m
- +

EXT5V
POWER

DIGITAL CONFIGURATION WORKSHEET
PROJECT ____________ __

This worksheet will provide the required digital interface configuration
data which is required to complete the Project Configuration Worksheet.

Enter Number of Channels

Enter # of Discrete AC Outputs (115-230 VAC) ~ (A)
Enter # of Discrete AC Inputs (115-230 VAC) ~ (B)
Enter # of Discrete DC Outputs (Current > 300 MA) .•......•..............•..... ~ (C)
Enter # of Discrete DC Outputs (Current < 300 MA) --11IL (D)
Enter # of Discrete DC Inputs0.-. (E)

Compute the Number of ICS 920'· and ICS 930'· Termination Panels

First compute the number of Parallel I/O ports (8-bits each port) required
on your iSBC'· board. Round all computations up to the nearest whole
integer unless instructed otherwise!

Compute # of iCS 930 Interface Output Ports «A+C)/8) .•....................... ~ (F)
Compute # of iCS 930 Interface Input Ports (B/8) --L (G)
Compute # of iCS 930 Termination Panels «F+G)/2)•..•................•. --L (H)
Compute # of iCS 920 Interface Output Ports (0/8) -L (J)
Compute /I of iCS 920 Interface Input Ports (E/8) , ~ (K)
Compute # of iCS 920 Termination Panels «J+K)/3) --L.... (L)

Optimization of Digital I/O Port Usage for Minimum I/O Configuration

Compute # of iCS 930 Output "Overflow Channels" DO NOT ROUND OFF)
(A+C)/8 •.••..•.••.....•.••••.........•..•....•..... QUOTIENT ~(M)

(Overflow Channels) REMAINDER ...•..•...... ~ (N)
Compute # of ICS 930 Input Overflow Channels (DO NOT ROUND OFF)
(B/8).; .. QUOTIENT + (P)

REMAINDER•...... -=:I..- (R)
Compute # of iCS 920 Output Overflow Channels (DO NOT ROUND OFF)
(0/8) .. QUOTIENT ~ (S)

REMAINDER0.... (T)
Compute # of iCS 920 Input Overflow Channels (DO NOT ROUND OFF)
(E/8) ••.....•.....•..........••........•.•..•....... QUOTIENT•... ~ (V)

REMAINDER ••....•...... -CL.(W)
Compute 8-Bit Input Ports Required (P+V) ~ (X)
Compute 8-Bit Output Ports Required (M +S) -L (V)
Compute 4-Bit Output Ports Required «N+T)/4) (ROUND UP) --L.... (Z)
Compute 4~Bit Input Ports Required «R+W)/4) (ROUND UP)•........•...... --L.... (AA)
Compute 8-Bit Port C Requirements «Z +AA)/2)' (ROl:JND UP) --1- (BB)
Total I/O Parallel Ports Required (X+V+BB) -->2- (CC)
Total # of 24 Channel Parallel I/O iSBC Board Edge Connectors
(CC/3) (ROUND UP TO INTEGER) .•..•.....•............•........•............ -L (DO)

Compute Power Requirements for the Termination Boards
(DO NOT ROUND OFF)

Compute +5V for iCS 920 Board Outputs (.061 x D)9M (EE)
Compute +5V for iCS 920 Board Inputs (.023 x E)•.•.•.•.•...... ---.0. (FF)
Compute +5V for iCS 930 Board Outputs «.020 x (A+C))•................ .:CZfQ.(GG)
Compute +5V for iCS 930 Board Inputs (.\)12x B) ~ (HH)
Compute iq; 920 Power Requirements (EE+FF) ~ (JJ)
Compute iCS 930 Power Requirements (GG+HH)•.......... "JU (KK)

Enter the appropriate data into the Project Configuration Worksheet as shown
below:

PROJECT CONFIGURATION WORKSHEET
EQUIPMENT PARAMETERS:

Figure 23. Digital Configuration Worksheet

3-17

The required power requirements of the termina­
tion panels can be calculated using the data pro­
vided in the digital configuration worksheet. The
information regarding the necessary connectors
and the power requirements should then be
transferred to the project configuration worksheet
(Figure 24).

PROJECT CONFIGURATION WORKSHEET

Figure 24.

A similar technique is used to configure the analog
signals using the standard analog configuration
worksheet as shown in Figure 25. It can be seen
that our application will require a single cable con­
nection to a differential input edge connector of an
analog input board. The power requirements can
be calculated from the current requirements to
drive the thermistors and the sensing resistors. The
data is entered into the appropriate columns of the
configuration tables and then transferred to the
project configuration worksheet.

ANALOG CONFIGURA nON WORKsHEET
PROJECT O\EU <XlIJ!!'dl.ep.

Ente, Number 01 Channels

EnleffolSingktEl'IdedHlgl'ILevf/lAnalogChanneiS.
Enle.'oIOlllerenllaIHlghLavaIMalogChanneil.
Enle"01 Oll'.rentlal Low LItVlII An.'ogChannela.,
Enler.oIAnal090ulpulVoltageCMnnell
Enter_oIAnalogOuIPUrCurrentChannell ..•

...... :::::::::::::::::.±:::
........... -D-(C}

.............•.....•..•... -'1.-(0)
................. -O.-(E)

Compultl the Number of Isac" Board Edge Conneclort
UnlessolhelWlaenOlad,roul'ldallcompul;lllOnstOlf1onslltlargntlnteger!

g::~::: ~~~ ~:: ~\~:!I~:,ego~~~:,;~~~e;:~.~. !AIlS)... . ,.' + I~:
g::~~::~:I~~~~~~~:,~:;~:,:~~,I~'!~~Hi::: ::::::::::::::::::: ±f(~l

~~:::~~':"~:~ ~D~~~~:~o~~/,~;~~J.:::. : :::: :::::::::::: :::::::: :::::: ::::: ±~~:
Enter Larger 01 (K) or(l)...... ----l-IMI

PI.ce the .pproprl.te ute Inlo the Project Conllgur.Uon Workshe" .. shown
belOW:

PRO.ECT CO'*KJURATlON WORKSHEET

Flgur~ 25.

The only remaining physical element of our control
system which we have not defined is the CRT ter­
minal which will be used for setpoint entry and
modification. Communications with a terminal re­
quires that we provide a serial RS232C port in our
control system. This port requirement is entered

3·18

onto the worksheet and the system requirements
are totaled as shown in Figure 26.

PROJECT CONFIGURATION WORKSHEET

Figure 26.

We must now choose the Intel iSBC boards which
will provide a solution to our system requirements.
This is done by referencing the summary of key
iSBC configuration parameters to find boards
whi~h provide the necessary characteristics. Our
first task is to choose a single board computer
which meets as many of our needs as is practical,
while providing performance characteristics ade­
quate to our needs.

Our first requirement for having support for a
single RS232C serial communications channel can
be seen to be met by a variety of possible boards.
Among the possible boards meeting this require­
ment are:

iSBC 86/12TM iSBC 80/lONM
iSBC SO120™ iSBC S0I20-4TM
iSBC SO/30™

We must look further before a final choice can be
made. Again, it can be seen that all candidates also
meet the requirement of providing a minimum of
one 24-bit wide digital I/O connector. Our decision
must be based upon parameters which are not
necessarily related to the input or output capabili­
ties. Even though we have not yet developed our
software package for our control system, we can
safely make some assumptions regarding the com­
pleted software package and thus define additional
requirements which will enable us to select our·
desired computer board. The software, task will be
considerably simplified if we write our programs in
a high level language and if we use available drivers
for our input and output where they ar:eavailable.
As we will see, the utilization of PL/M and
RMX/SO™ real-time executive and drivers will
make this programming task much less demanding
of our time. The trade-off is that these software
tools take larger amounts of memory than if we
were to write our entire application program in
assembly language. Let us make an initial estimate
that our system will require about SK of EPROM
and in the neighborhood of 2K of RAM.

Entering this data on the configuration worksheet
(Figure 27) enables us to narrow our choice by
eliminating the iSBC 80/10A since it does not have
sufficient RAM on board.

PROJECT CONFIGURATION WORKSHEET
EOUIPMENT PARAMETERS:

L ... ~,":,,,,

Figure 27.

Since our application is not likely to require exten­
sive math handling capabilities or high speed capa­
bilities, we probably do not need the power found
in the iSBC 86/12; so we will remove this product
from consideration.

We are now faced with selecting either the iSBC
80120 board or the 80/30 board for our processor.
Each has certain advantages and disadvantages for
use in our application. Let's compare these two
boards, considering first the iSBC 80120, then the
iSBC 80/30.

iSBC 80120 board advantages - Slightly lower
cost, greater number of 110 lines available.

iSBC 80/30 board advantages - Faster proces­
sor, dual ported memory, able to utilize UPI
modules.

If the system were to operate in a stand-alone en­
vironment and we could be certain that significant
expansion would not take place, we would prob­
ably choose the iSBC 80120 computer for our ap­
plication. If we consider that the system might
become a part of a much larger system by future
expansions and additions, we should remember
that the use of the UPI modules on the iSBC 80/30
computer provides considerable power through
multiprocessing capabilities. The dual ported
memory can also provide us with the ability to use
more sophisticated inter-board communication
protocol should the need arise. For the purposes of
this application note, we will assume the system is
being designed for expansion and we will select the
iSBC 80/30 computer.

A good design practice is to provide an extra mar­
gin of available memory in the hardware design.
Our anticipated RAM memory will use about 2K
bytes. The computer will provide us with 4K bytes
so we have a considerable margin. This is not true
when we look at the amount of EPROM available
on the board. Our 8K requirement is identical to

3·19

the amount of memory available to us on the
board. We should consider the use of an expansion
EPROM board or the prospect of having to spend
a considerable amount of time reworking our pro­
gram to get it to fit if we find that we have exceeded
our estimates. We will select the option of adding a
memory expansion board (it can be deleted if we
find that our software requirements are less than
estimated).

The computer selection and the memory expansion
board data can now be entered onto the configura­
tion worksheet as shown in Figure 28. If needed,
the addition of the memory expansion board will
allow our EPROM requirements to grow up to 16K
bytes.

PROJECT CONFIGURATION WORKSHEET

Figure 28.

The only requirement which we have not met is to
assign a board to handle the analog input needs of
our temperature sensing circuit. The analog voltage
can be calculated and will be found to lie in the
neighborhood of 4.6 volts at room temperature.
This value will increase toward 5 volts as the
temperature of the oven increases. Since we have
no requirement for any analog output capabilities,
we will choose the Intel® iSBC 71 pM Analog Input
Board to sense the voltage level. This board can be
configured to handle a 5-volt full scale input and
will provide a resolution of 12 bits. (If an oven re­
quiring a wiqe range of temperatures and greater
resolution were required, we would have to recon­
figure our temperature sensor to provide a wider
voltage spread over operating temperatures. For
purposes of simplicity and clarity we will assume
that our tempenlture resolution is adequate.)

The configuration worksheet can be filled in to
reflect the selection of the analog converter and the
total power requirements for the system can be
computed as has been done in Figure 29. We now
need to select a chassis and power supply in order
to complete the application hardware design phase.

The Industrial Chassis

Before the boards can be operated together to form
a control system, a means of allowing communica-

PROJECT CONFIGURATION WORKSHEET
EQUIPMENT PARAMETERS:

MDT!
DI·DIII,,,,tolll.JHrt
$ISI.gltl"ldl"llul
lO·tu,,""IOutP'U1
VO·V~1111 Oul~ul

Figure 29.

tion between the boards and of distributing power
among the boards must be found. This require­
ment is met by specifying a chassis into which the
boards will be mounted. The Intel® iCS 80™ In­
dustrial Chassis provides an environment for oper­
ating the boards which is specifically designed to
operate in an industrial area. "

The chassis has been designed to facilitate mount­
ing into either a standard 19-inch RETMA cabinet
or it may be rear-panel mounted into an enclosure
such as may be found in applications requiring the
use of a NEMA electrical enclosure. The card chas­
sis has been mounted in such a manner as to hold
the single board computers and expansion modules
vertically, facilitating maximum cooling of the
boards. Fans are provided to aid the normal con­
vection cooling process. Card racks may be in­
stalled into the iCS 80 chassis to expand the card
support capability to a maximum of 12 card slots in
groups of four. Either an iSBC 635 or 640 power
supply can be mounted into the industrial chassis
to provide power up to 4 or 12 boards capability,
respectively.

IMHGRATlDW AVAILABLE ~
SYSI!M I SLOTS HW(.,nIUILl

-1n $V

2..0 ·ct

3·20

moe
nmMCOIT I I I J

Our application design requires the installation of a
three board solution, so we will choose the iCS 80
chassis with one iSBC 635™ power supply. We will
choose to mount our control system in a standard
NEMA 12 enclosure to protect the unit from the
industrial environment. We should refer to the iCS
80 Industrial System Site Planning and Installation
Guide (manual order number 9800798) for com­
plete details for selecting appropriate enclosures
and installation instructions.

The + 5 volt power needed to support the various
termination panels and to supply a reference volt­
age for the thermistors is available from a barrier
strip located on the lower front of the iCS 80
chassis (Figure 30). Our wiring can be routed to
this barrier strip for those circuits requiring either
5-voit DC or the system logic common. A fuse
holder is provided and a fuse should be installed
for system protection. We will install a 2-amp fuse
into the holder (our maximum power requirement
for external circuitry should be 1.22 amps accord­
ing to Figure 26).

CUT JUMPER TO ENABLE FUSE

Figure 30. Industrial Chassis DC Power Strip

The remaining terms required in our ladder dia­
gram (Appendix B) consist of a high voltage
neutral and a source of switched high voltage
power for the heater lamps. Both of these terms are
available from the iCS 80 industrial chassis. It is
desirable to utilize the same switched power for
both the computer system and our external signals,
so that we can provide protection to operators
when one portion of the system is shut down. A
common source will insure that all portions of the
system are inactivated if repair is being done. The
iCS 80 chassis incorporates a heavy duty industrial
key-lock switch for its power switching. The out­
puts of this switch are available to the user at a ter­
minal barrier strip located on a fold-out panel on
the rear of the chassis assembly (refer to Figure 31).
We can see that our neutral wire should be con­
nected to terminal 5 (filtered AC low) and the wire
for the AC high, wire #10 on the ladder diagram,
should be connected to terminal 9. This will pro­
vide us with a switched, fused, and filtered power
source for our external wiring.

J: J:

" " i i
0 0

0
z
" II)

iii
II) ..
J:
u

~
0 ...
0 ..

FILTEREDAC
LOW

~
0 ...
0 ..

As we will be installing the chassis into a NEMA
enclosure, we will not want to use a standard power
cord since this would involve the additional ex­
pense of installing a duplex outlet in the cabinet.
The power wiring can be installed directly onto the
power barrier strip by placing the AC hot wire on
barrier number 1, the neutral wire onto barrier
number 4, and the ground onto barrier number 3.

The hardware implementation of the system can
now be considered to be complete. Before the sys­
tem can function as a control for the oven temper­
atures, we must define the relationships between
the various pieces of the oven system and we must
also define the operator interface with the CRT ter­
minal. Thus, we begin the software phase of our
design.

IV . DETERMINATION OF SOFTWARE
APPROACH

The task of providing the relationships between the
various system components falls into the category
of writing the software. Before we actually begin to
develop this software, we will define certain guide­
lines which can be used to organize and simplify
the task.

Let us consider the general environment under
which our programs will operate. We find that we
have essentially two choices in this area. First, we
can consider the entire process as a sequential set of
predefined operations in which we must perform
each operation before moving to the next until
finally we complete the sequence and begin again.
(This is analogous to using a single stepper switch
to design our control system.) Since each oven is in­
dependent of the others, we can not afford to use

FILTERED. FUSED.
& SWITCHED

110VAC

• 0

~~~a 
e!~gl: 
::!::)~u 
u.u.cnC 

FILTERED. FUSED. 
& SWITCHED 

AC HIGH 

ICS·SO AC POWER PICKUPS 
(115 VAC CONFIGURATION) 
(2311 V/I£ COHFIGUAATIONI 

Figure 31. Industrial Chassis AC Power Strip 

3·21 



this approach since we could get tied up,waiting for 
something to happen in a particular oven and 
would have to ignore the other ovens. The designer 
familiar with relay design will probably be think­
ing, at this point, that we should use a separate 
sequential operation for each oven or device to be 
controlled. Indeed, this is exactly what we can do 
with our software by using what is known as a real­
time executive. This tool will allocate the com­
puter's resources in such a manner as to provide us 
with the capability of having independent software 
programs or tasks operating at what appears to be 
the same time. We will make our first assumption 
that our software will be written using such a tool 
and we will specify that we will operate under 
Intel's RMX/SO Real-Time Multi-Tasking Execu­
tive. We will discuss more detail of this software 
tool as we develop our programs. 

Next, we must consider the language which we will 
use to actually define our required operation. We 
have many alternatives from which to choose. Let 
us look at several of the alternatives in some detail. 

Assembler 

Assembler language is probably the most basic tool 
with which we can program a computer. It is con­
sidered to be the most efficient user of program 
memory and processor time. These features are 
made possible because each assembler instruction 
line is converted directly into a corresponding 
machine instruction. From a programming stand­
point, assembler language is the most difficult to 
use since any task must be defined by subdividing 
that task into a multitude of smaller operations 
compatible with the available instructions of the 
computer. To use this language, we must be famil­
iar with the architecture of each computer with 
which we desire to operate. The use of the language 
is somewhat simplified through the use of an Intel 
supplied assembler which converts the assembler 
code into machine instructions and provides list­
ings of the operations which have been entered. A 
complete description of the Intel SOSO/SOS5 As­
sembler Language is available in the 8080/8085 
Assembly Language Programming Manual (man­
ual order number 9S00301B). 

The user should consider this programming tool 
when his application requires the minimum 
amount of memory (such as might be required for 
very large volume designs where memory cost is a 
factor) or where a highly time dependent routine 

3·22 

must be defined. Our oven application does not fall 
into either of these categories, so we will choose 
not to use this language in our instance. 

PL/M 

Intel's PL/M language offers an efficient, struc­
tured, . high level systems programming language .. 
Before proceeding, let us be clear on the benefits of 
using a high level language. First, the use.of high 
level languages results in reduced development time 
and cost. High level languages provide the ability 
to program in a natural algorithmic language. In 
addition, they eliminate the need to manage regis­
ter usage or to allocate memory. Second, high level 
languages provide improved product reliability 
because programs tend to be written in structured 
formats and result in a minimum of extraneous 
branches which might cause testing problems. 
Finally, their use produces programs which are bet­
ter documented and are easier to maintain. 
On the other hand, high level languages do not op­
timize the code segments as well as can be done by 
an experienced assembly language programmer. As 
a result, most compilers (routines which convert 
the high level languages into machine executable 
code) use more program storage than those written 
by the assembly language programmer. Different 
languages and compilers require different amounts 
of memory for the same task. 

PLiM-SO is probably one of the most efficient high 
level languages for use on microcomputers. It has 
been determined that PL/M-SO users can expect to 
use between 1.1 to slightly more than 2 times as 
much program memory as would be used for the 
same task written in assembly language. For this 
reason, we must place the use of this language high 
upon our list of possible languages in this applica­
tion~ 

A glance at the PL/M-80 Programming Manual 
(manual order number 9S-26SB) indicates that the 
language is highly structured and seems to lend 
itself very welI to handle logical type operations. It 
seems to have the greatest weakness in its math 
handling capabilities in that it does not support 
negative numbers or ,fractions. It is reasonable to 
assume that the oven application can be handled 
entirely with positive integer numbers so this 
limitation will not unduly hamper our use of this 
language. We will keep these features in mind when 
making a final decision. 



FORTRAN 

Int~I's FORTRAN-SO provides the full subset of 
ANSI FORTRAN 77. In many cases FORTRAN­
SO has features that exceed the specifications for 
both the subset and the full versions of FORTRAN 
77. Most of the power of this language lies in its 
ability to easily handle complex mathematical ex­
pressions. Obviously, it does not have any limita­
tions regarding fractions or sign of the numbers in­
volved. It should be used when the application re­
quires the use of mathematical computations. The 
power of the language, however, means that the 
use of the language will take a heavy toll of mem­
ory allocation. A complete description of the FOR­
TRAN version supported by Intel and its use on the 
iSBC computers can be found in the FORTRAN-
80 Programming Manual (order number 9SOO4S1 A) 
and in the ISIS-II FORTRAN-80 Compiler Opera­
tor's Manual (order number 9S004S0). 

It is unlikely that the magnitude of mathematical 
routines required to control the temperature of our 
ovens will be complex enough to justify the use of 
FORTRAN. Keep in mind that, if such a situation 
were encountered, it is feasible to use a combina­
tion of programming languages to create our final 
module. 

BASIC 

Certaintly the most well known high level program­
ming language today is BASIC. It offers a quick 
way of applying the computational capabilities of 
the computer to a wide range of applications. The 
Intel RMX/SO BASIC-SO is an interpreter designed 
to operate with Intel's single board computers and 
contains extended disk handling capabilities. As an 
interpreter, it differs from other high level lan­
guages in that it results in a relatively slower oper­
ating solution to an application. It is also not possi­
ble to use BASIC to generate multiple independent 
tasks which can compete for computer resources. 

For these reasons, we cannot consider the use of 
BASIC for a solution to our application. 

Final Selection of Language 

From the above discussion, it seems clear that our 
choice for the application being demonstrated is to 
use PL/M-80 as our programming language. 

With this in mind, we can begin the task of actually 
generating the code which will complte our applica­
tion and provide an operating control system. 

3·23 

V. DEFINING SOFTWARE TASKS 

The software implementation can begin as soon as 
we have broken our control functions into inde­
pendent "tasks". We can then handle each task 
separately as though it were the only thing which 
had to be done by the control system. In the event 
that we find that one of our tasks must communi­
cate with or be interlocked with another, we will 
handle this need through the use of "exchanges". 
The' 'exchange" can be thought of as a mailbox in­
to which messages are deposited and picked up by 
the various tasks. These messages convey the neces­
sary information between the otherwise independ­
ent programs. When all tasks have been coded, we 
will combine them using the facilities of RMX/SO. 

Our oven application can be broken down into 
three functional areas or tasks. These are: 

1. The Control Task which will be used to actually 
sense the oven temperature and to provide the 
required responses to the heaters and the indi­
cator lamps. 

2. The CRT Update Task will be used to provide a 
"snapshot" of the system operations to a per­
son viewing the CRT terminal. 

3. The Parameter Update Task will be used to ex­
amine and update the oven setpoints and toler­
ances. 

The choice of these three tasks has been essentially 
arbitrary in nature. Certainly, other choices and 
groupings of functions could easily have been 
made. We will use these choices for our example 
and will proceed with our development accord­
ingly. 

We have two other supporting tasks which must be 
included in our system. Fortunately, these tasks are 
predefined and fully supported within RMX/SO's 
libraries; thus we need not write these functions. 
The two supporting tasks are: 

4. A Terminal Handler Task to support the actual 
interface to the CRT terminal. It provides echo 
of input characters and signals when data is 
ready to be read. It will output messages to the 
terminal and signal when all characters re­
quested have been sent. 

5. An Analog 110 Driver Task to request and han­
dle the handshaking which is required to 
communicate with the analog input board. It 
will signal us when data has been input and is 
available for use by our user written tasks. 



We can proceed with the implementation of each 
of our three tasks which we have defined. The first 
step with each will be to develop a flowchart which 
shows the required operations to implement that 
task. This flowchart will show any intertask com­
munications or exchanges that may be required 
with other tasks. The flowchart can then be coded 
using the facilities provided by our programming 
language. 

Oven Control Task 

The sequence of operations required to perform 
the control task can be defined using the flowchart 
shown in Figure 32. Let us examine the required 
steps in more detail. . 

An arbitrary decision has been made to only sam­
ple and control the ovens once each second. This 
will allow some time for the system to respond once 
a heater output has been set. The first step in our 
control task is to wait for one second to elapse. 

Our next subtask shOllld be to read the status of the 
various oven control switches on the operator's 
control panel. This item could wait until a later 
time, but there is no harm in handling it at this 
time. 

Next, we see a block indicating the input of data 
regarding the current oven temperatures. This oven 
temperature data will certainly be used by the task 
handling the snapshot display on the CRT sQwe 
must give some consideration to the validity of the 
data. While we are in the process of gettirig the 
data and converting it to engineering units (next 
step), there will be periods during which the stored 
temperature data does not reflect the actual oven 
temperature. An example might be when we are ac­
tually moving the 16 bits of the temperature since 
we can only move data 8 bits at a time. During this 
period,· we would not want another task to use the 
data and since each task is going to operate inde­
pendent of others, we must provide some type of 
lockout of the data while we are operating on the 
temperatures (an alternative would be to have each 
task get its own temperature from the AID con­
verter and convert it to engineering units, but this 
would seem to waste memory and computer time). 
We can provide this lockout by creating an ex­
change to communicate with other tasks. If we 
make a message available in this exchange when the 
data is valid and cause no messages to be available 
when the data is nonvalid, we can effectively lock 
out tasks from using the data when it is in the pro­
cess of being updated. This is done by requiring 

3-24 

those tasks to test for the presence of a message at 
the exchange before they get the temperature data. 
If no message is present, they must wait until one is 
placed into the exchange before proceeding. Just 
before we update the temperatures we will fetch the 
message from the exchange, leaving it empty while· 
we work on the data. later we will again restore the 
message when the update is complete. 

Figure 32. Control Task Flowchart 



The number obtained from the analog converter 
provides us with a value which is proportional to 
the temperature of the oven. Our next step is to 
convert this number into engineering units. Unfor­
tunately, the voltage and temperature are not 
related in a linear fashion since the thermistor is a 
nonlinear device. We will have to develop a tech­
nique to obtain a corrected value. For the purposes 
of this application note and in an attempt to keep 
the application as simple as possible, we have 
chosen to utilize a single table look-up to perform 
this conversion. Alternatives might have been to 
utilize FORTRAN routines to mathematically per­
form the conversion or to have separate tables for 
each oven. Once the conversion has been made, we 
must return a message to the data lockout exchange 
to allow other tasks access to the data. 

Because we must deal with four ovens, the opera­
tionsrelated to each individual oven must be per­
formed four times, once for each. This is easily 
handled as we will see, since PUM is a block struc­
tured language. Our flowchart need only remind us 
that the operations need be dohe four times. 

The next step has been defined as performing some 
digital filtering of the temperature by averaging the 
current temperature with the temperature of one 
second ago. This filtered value· will be··used to per­
form subsequent computations and to make future 
decisions. 

We have defined earlier in our definition of the 
control algorithm that we would use a derivative 
control. We have chosen to project the tempera­
ture ahead for a period of 10 and 30 seconds. We 
must calculate the rate of change and the 
temperatures in 10 and 30 seconds so that this data 
will be available when needed. 

Now that the calculations have been made to deter­
mine numeric values required for the decision mak­
ing process, we must begin the process of determin­
ing the status of each indicator and oven heater. A 
test will be made of the oven run switch and if it is 
found to be turned off, we will turn off all indi­
cators and the oven heater associated with that 
oven. If the switch is found to be turned on, we will 
set the status of the "in tolerance", "caution", 
and "alarm" indicators according to our oven con­
trol algorithm. The oven heater will be turned on 
or off according to the projected temperature in 30 
seconds. 

Rather than output the individual oven indicator 
and heater data four times (once for each oven), we 

3·25 

will perform the computations associated with 
making the decision four times (this saves code 
since we can use the same program steps with only 
pointers being exchanged). At the end of this time, 
a single operation will output the data to all ovens 
and indicators at the same time. Outputting to a 
computer port will actually cause the device to turn 
on or off according to whether the output bit is a 
one or zero. 

We will then return to the beginning of our task to 
wait until another second elapses before we again 
perform the indicated functions. 

Control Task Source Coding - The coding of our 
tasks is a straightforward procedure once we have 
prepared a flowchart. Since we are using PL/M-SO 
and RMX/SO, the coding sequence for a task will 
be as follows: 

I. Define any variables or structures which will be 
used in the module. This involves providing in­
formation defining variables as being either an S 
or 16-bit variable and declaring if that variable 
is to be a part of the task being coded or is to be 
found in some other task. If any arrays or struc­
tures are to be used, they must also be defined. 
Finally, if any program locations are to be used, 
they must be declared. 

2. The task must be initialized. That is to say that 
any assumptions which will be made as to initial 
data values in subsequent instructions must be 
initially forced to this initial value. 

3. The actual task must be coded to match the 
operations called out in the flowchart. 

We will look at some examples of this coding pro­
cess using the control task flowchart. The complete 
listing of this module and all modules actually used 
to provide the oven control system can be found in 
Appendix C. 

At first glance, it would seem that the listing is ex­
tremely complex, but as we will see it is made up of 
straightforward pieces. The listing is made up of 
three parts as we have mentioned above when de­
fining the steps required to generate a program. 
The first part (line numbers 1 through 50) is used to 
define parameters, variables, and external ele­
ments. The general types of elements making up 
this portion fall into typical categories. The first 
general category consists of DECLARE state­
ments. Examples of typical lines will help explain 
their meanings (when actually developing the pro­
gram, this first section was created piecemeal by 



making an entry when it was found that a need for 
that term existed as the execution code in sections 
two and three were written). 

Examples of the "declare" statement are shown 
below. For example, on line 11 we find: 

II I Declare (n,k) byte; 

This means that the variables "n" and "k" are be­
ing defined as terms which represent numbers or 
data which is one byte or 8 bits wide. The" 11" is 
the program line number, and the "1" indicates 
that we are in the first level of nesting. 

We can also see the use of the "literal" expressions 
such as used in line 4. The expression: 

4 I DECLARE FALSE LITERALLY 'OOH'; 

means that we are creating a new instruction called 
"false" and that its meaning is to be interpreted by 
the compiler as being equivalent to the value of 
zero. 

Rather than dwell on the declaration, let us move 
on to the coding process which was used to gener­
ate the actual program. Keep in mind that the use 
of PL/M-80 requires that all terms used be de­
clared in the program module. Refer to the PLIM-
80 Programming Manual (order number 98oo268B) 
for a full description of the PLiM language. 

Program Initialization - The initialization portion 
of the program can be found on lines 51 through 59 
of the control task program listing. This section is 
used to initialize data and to provide known entry 
conditions before we enter the repetitive program 
loop. This code is only executed when the system is 
reset or when the power is turned on. The control 
task requires two types of initializations; one to in­
itialize the computer's output port and the other to 
set up the AID converter. The requirements for 
each can be found in the RMX/80 User's Guide 
and the iSBC 80130 Single Board Computer Hard­
ware Reference Manual (order number 9800611A). 
Actual instruction examples are given in these 
manuals for the initialization operations. 

Program Body - The program which actually pro­
vides the control operations can be found on lines 
60 through 126 of the program listing for the con­
trol task. It has been divided into sections which 
correspond directly to the flowchart that was 
prepared earlier. Most instructions in PL/M-80 
language follow closely the English structure which 
describes what is being done. The exceptions gener­
ally follow definite predefined formats. The for-

3-26 

mat such as used on line 61 to wait for one second 
to elapse is an example of one such exception. Any 
time we desire to wait for a definite time period, we 
use an instruction of the form: 

MSG$PTR= RQWAIT (.DUMMY$EXCH, TIME DELAY); 

Whatever time delay we wish to use is expressed in 
increments of 50 msec time periods. Our example 
requires a time delay of one second so we will use 
the delay notation of 1.0/0.050 = 20 time units (this 
command is actually calling upon the RMX/80 ex­
ecutive to handle the delay). 

The oven enable switch data has been defined by us 
to be routed by the hardware to the computer port 
"EA" which converts to a decimal number, 234. If 
we define an internal memory location for this data 
and call it BLOCKO, then we can get the oven 
switch data by using an input statement. Since the 
data sense is inverted through the hardware, we can 
provide meaningful internal data if the signal is re­
inverted as it is loaded into memory. The instruc­
tion on line 62 of the control task listing performs 
this task. 

Weare now ready to get the analog data from the 
AID converter. Our flowchart shows that we must 
lock out the other tasks from access to the tempera­
ture data during this time period, so we must first 
remove the enable message from the exchange in 
which it is stored. Messages are removed from an 
exchange by using an instruction of the form: 

STORAGE=RQWAIT (EXCHANGE NAME,O) 

Line 63 of the program listing means that we will 
get a message from our storage exchange which is 
called "Temp$lockout$exch" and store it in a 
memory storage area called "Lockout". Now, no 
other task can get a message from this exchange 
since it is empty, so it is permissible to operate on 
the temperature data. (Note how similar this com­
mand is to the one used to wait for a delay. Indeed, 
this is the same request for RMX/80, but it re­
quests a time delay of zero.) 

During the initialization, we built a message defin­
ing the characteristics of the analog signals and of 
the analog conversion board which we are using. 
Remember that we have indicated that the task of 
getting this data from the board is provided to us by 
one of RMX/80's predefined drivers. All that is 
necessary at this time is to inform that driver of our 
desire to get data, then wait until it has done its job 
and the data is available for us. The actual com­
munication between our applications task and the 
analog driver is done using the idea of an exchange 
similar to that we have used to lockout the data. 



We will send a message to the analog driver telling 
it what we want it to do, then we will wait until it 
sends a message back to one of our exchanges tell­
ing us that it is done. The format for sending a 
message to an exchange always follows the form: 

CALL RQSEND (EXCHANGE NAME, MESSAGE NAME); 

Line 64 of the listing shows that we have requested 
the input of the analog data since we have sent our 
message, Convert, to the analog driver's exchange 
which is called RQAIEX. We will wait until the 
operation is complete by using the line of code 
shown on the listing line 65. This is the same opera­
tion type that we used to get our message back pro­
viding a lockout earlier. The program will wait un­
til a message is available before continuing. 

The data must now be converted into engineering 
units. We earlier indicated that we would use a 
table lookup to perform the linearization, so we 
have included this table as a part of our program at 
line 50. The offset into the table corresponding to 
our temperature must be determined so that the 
correct value can be stored.· Because we have four 
ovens, we will perform the operation four times 
with the data each time corresponding to the ap­
propriate oven. These operations can be followed 
on lines 77 through 81 of the listing. 

Lines 67 through 76 are used to establish an offset 
to be applied to the analog temperature data when 
the system is running. This program is only de­
signed to be used during the start-up operations 
and is activated when a message containing a cali­
bration request and current temperature is sent to 
its exchange. 

The temperature lockout must be reIUOved to 
enable other taSks to use this data. This is done on 
line 82 by sending the message back to the ex­
change used for intertask lockout communications. 

The remainder of the program follows the flow­
chart and the operations can be followed using a 
flowchart and the listing. Each element of the flow­
chart corresponds to a block of code on the listing. 

CRT Update Task Development 

Earlier, we stated that the CRT update task would 
be used to allow the operator to view a "snapshot" 
of the four ovens. Let us turn our attention to 
developing the software which is required to ac­
complish this. We can begin by defining the ele­
ments which we feel should be displayed, then 
defining the format to actually be used with the 
CRT terminal. 

3·27 

Obviously, we need to provide the current tempera­
ture of each oven on our display screen. If we dis­
play the actual temperature, it seems reasonable to 
assume that we should also show the set point so 
that a determination can be made as to how well 
the system is performing. The control algorithm 
has been defined to use an allowable range to deter­
mine system outputs, so it would seen wise to also 
show this parameter. Finally, we should inform the 
viewer of the status of the oven so that he will real­
ize that the reason an oven temperature is low is 
because the oven is off rather than an oven mal­
function. Other items could be added if desired by 
the system designer:. depending upon the total sys­
tem requirements or the characteristics of the 
users. 

We can now prepare a drawing of the CRT display 
to generate a layout of our desired characters and 
to generate an aesthetic display for viewing during 
operation. This drawing can be found in Figure 33. 

Several techniques are available to output the re­
quired displays to the terminal. A decision must be 
made as to the frequency of screen updates; will we 
constantly refresh the data or do it only at certain 
intervals of time? If the terminal has the ability to 
disable the cursor, it makes sense to update data 
continuously. If the cursor cannot be disabled, its 
movement tends to be distracting, so the updates 
should be kept to a minimum. The terminal used 
for the application note did not have a disable 
feature, so we will make the decision to only up­
date the screen once each second. 

OVEN STATUS DISPLAY 

OVEN·' OVEN·2 QVEN·3 OVEN·4 

TEMPERATURE XXX.X XXX.X XXX.X XXX.X DEGREES 

SETPOINT XXX.X XXX.X xxx.x XXX.X DEGREES 

TOLERANCE XXX.X XXx.x XXX.X XXX.X DEGREES 

STATUS XXXXXXX XXXXXXX xxxxxxx xxxxxxx 

TYPE ESCAPE TO ADJUST SETPOINTS. 

Figure 33. CRT Status Display Layout 

The decision to delay updates leads us to make 
another decision regarding the. screen updates. If 
we only update a line which has data which has 
changed since the last upoate, the cursor move­
ments will be kept at a minimum since it is unlikely 
that all parameters will ever change each second. 



A flowchart can now be prepared showing the steps 
required to implement the CRT update task. This 
flowchart is shown in Figure 34. The coding of the 
program to support this task can be found in Ap­
pendix C. The development is identical with that 
which we described in the sections regarding the 
control task. Again, the software is divided into 
three parts, the declaration statements from lines 1 
to 81, the initialization on lines 82 to 87, and the 
actual task code on lines 88 to 207. 

UPDATE 
TOLERANCE 
IF CHANGED 

OR NEW 

Figure 34. CRT Status Flowchart 

A technique to exit from the CRT update mode 
and to get into a mode which will allow modifica­
tion of the parameters has been introduced into the 
program and the display format. This is in the 
form of a message on the botton of the screen re­
questing the entry of an escape character to adjust 
setpoints. The software has been written in such a 

3·28 

manner as to test for a character inut from the key­
board and if one is found corresponding to that 
character, the update task will allow the parameter 
update task to take control of the terminal (lines 
190 to 204 of the listing). 

Parameter Update Task 

The parameter update task is used to actually allow 
the modification of the setpoints and the tolerances 
associated with each oven. A second use of the task 
is to provide a tool for establishing the zero offset 
associated with each analog channel so that an off­
set into the temperature linearization table can be 
computed by the control task. 

Figure 35 shows the flowchart which describes the 
steps required to perform these operations. When 
the task has been completed, we will return to the 
CRT update task. 

Figure 35. Parameter Update Flowchart 



The program code for this task can be found in Ap­
pendix C and again follows the formats which we 
have discussed earlier. No attempt will be made in 
this document to provide a narrative of the listing 
since it follows the flowchart in development. 

Support Programs 

Three subprograms (procedures) have been written 
which provide functions which are common to the 
three tasks. This has been done to minimize repeat­
ing code segments thus saving as much memory as 
possible. These three subprograms support: 

1. Conversion of a decimal string from the termi­
nal into a binary number. This program is called 
ASC$2$BINARY and can be found in Appen­
dix C. 

2. Storage for common variables used by more 
than one task. These variables could easily have 
been included in other tasks but a purely arbi­
trary decision was made to include them in a 
separate module. 

3. Conversion of binary numbers into a decimal 
string suitable for output to the terminal. This 
program is called DEC$REP and is found in 
Appendix C. 

We now have completed the coding of the software 
to support our oven application. We must finish by 
combining all the software together to form a 
single loadable module. 

3·29 

VI. FINAL IMPLEMENTATION 

When all code was linked and loaded to form an 
executable program module, it was found that the 
system required 9,041 bytes of EPROM and 1,735 
bytes of RAM. These values fall within our hard­
ware capabilities and will rquire that we program 
and insert nine EPROMs into the EPROM expan­
sion card. 

The system can now be tested and installed to con­
trol the ovens of our application. The actual system 
described in this application note has been con­
structed and tested. It has been found to control 
the oven temperatures of four ovens and performs 
as we anticipated when we developed our control 
strategy earlier in this application note. 

VII. CONCLUSION 

We have shown how Intel's single board com­
puters, industrial chassis, termination panels, and 
software can be configured to provide a solution to 
a typical control application. We have seen how the 
development of a solution to a control problem can 
proceed along a predetermined and logical path. 
Truly, the utilization of the microprocessors can 
lead to optimum and cost effective solutions to 
control applications. 





APPENDIX A 
SELECTED DATA SHEETS 

3-31 



TYPES TIL113, TIL119 
o PTO-COUPLERS 

BULLETIN NO. DL·S 7312032. NOVEMBER 1973 

mechanical data 

• Gallium Arsenide Diode Infrared Source Optically Coupled 
to a Silicon N-P-N Darlington-Connected Phototransistor 

• High Direct-Current Transfer Ratio ... 300% Minimum at 10 mA 

• Base Lead Provided for Conventional Transistor Biasing 

• High-Voltage Electrical Isolation ... 1500-Volt Rating 

• Plastic Dual-In-Line Package 

• Typical Applications Include Remote Terminal Isolation, 
SCR and Triac Triggers, Mechanical Relays;'and 
Pulse Transformers 

The package consists of a gallium arsenide infrared·emitting diode and an n·p-n silicon darlington-connected 
phototransistor mounted on a 6-lead frame encapsulated within an electrically nonconductive plastic compound. The 

. case will withstand soldering temperature with no deformation and device performance characteristics remain stable 
when operated in high humidity conditions. Unit weight is approximately 0.52 grams. 

NOTES: 
B. Leads are within 0,005 radius of true position 

(TP) at the gauge plane with maximum material 
condition and unit installed. 

b. All dimensions are in inches unless otherwise 
noted. 

c. Pin 1 Identified bV index dot. 
d. Terminal connections: 

1. Anode } Infrared..emlttlng 
2. Cathode diode 
3. No internal connection 

4_ Emitter } 
5. Collector . 
6. Base (For TIL 119, make Phototransistor 

no external connection) 

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted) 

Input-to-Output Voltage . . • . . . 
Collector-Base Voltage (TI L 113) . . . 
Collector-Emitter Voltage (See Note 1) 
Emitter-Collector Voltage 
Emitter-Base Voltage (TI L 113). . . . 
Input-Diode Reverse Voltage . . . . .. 
Input-Diode Continuous Forward Current at (or below) 25°C Free-Air Temperature (See Note 2) 
Continuous Power Dissipation at (or below) 25°C Free·Air Temperature: 

Infrared-Emitting Diode (See Note 3) . . . . . . 
Phototransistor (See Note 4) ........ . 
Total (Infrared-Emitting Diode plus ~hototransistor. See Note 5) 

Storage Temperature Range ......... . 
Lead Temperature 1/16 Inch from Case for 10 Seconds .. 

I 

NOTES: 1. This value applies when the bas.-emitter diode is open-circuited. 
2. Derate linearly to 100°C free·air temperature at the rate of 1.33 mAl C. 
3. Derate linearly to 100°C free-air temperature at the rate of 2 mW/oC. 
4. Derate linearly to 100°C free-air temperature at the rate of 2 mWfC. 
5. Derate linearly to 100°C free-air temperature at the rate of 3.33 mW/oC. 

TEXAS INSTRUMENTS 
INCORPORATED ' 

PoaT OFFICE BOX 5012 • OALLAS. TEXAS 75222 

Reprinted with permission from Texas Instruments, March, 1979. All rights reserved. 

3-32 

±1.5 kV 
30V 
30 V 
7V 
7V 
3V 

100mA 

150mW 
l&OmW 
250mW 

_55°C to 150°C 
260°C 



TYPES TIL113, TIL119 
OPTO-COUPLERS 

electrical characteristics at 25° C free-air temperature 

PARAMETER TEST CONDITIONSt 

Collector-Base 
VIBRICBO Breakdown Voltage 

IC= 10llA, IE = 0, IF = 0 

VIBRICEO 
Collector-Emitter 

Breakdown Voltage 
IC= 1 rnA, IB = 0, IF = 0 

Emitter-Base 
VIBRIEBO Breakdown Voltage 

IE = 10llA, IC = 0, IF = 0 

VIBRIECO 
Emitter-Collector 

Breakdown Voltage 
IE = 10 IlA, IF = 0 

On-State VCE = 1 V, IB = 0, IF = lOrnA 
IClonl 

Collector Current VCE - 2V, IF = lOrnA 

Off·State 
ICloffi 

Collector Current 
VCE = 10 V, IB = 0, IF = 0 

Transistor Static 

hFE Forward Current VCE = 1 V, IC= lOrnA, IF = 0 

Transfer Ratio 

VF 
Input Diode Static 

IF = 10 rnA 
Forward Voltage 

Collector-Emitter IC = 125 rnA, IB = 0, IF - 50 rnA 
VCEI,atl 

Saturation Voltage Ic-l0rnA, IF -lOrnA 

Input-ta-Output 
V in-out = ± 1.5 kV. See Note 6 '10 Internal Resistance 

Cio 
I nput-ta-Output 

Capacitance 
Vin-out = 0, f = 1 MHz, See Note 6 

TIL 113 TIL119 

MIN TVP MAX MIN TVP MAX 
UNIT 

30 V , 

30 30 V 

7 V 

7 V 

30 100 
rnA 

30 160 

100 100 nA 

15,000 

1.5 1.5 V 

1 
V 

1 

lOll lOll n 

1 1.3 1 1.3 pF 

NOTE 6: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together, 

tAeferences to the base are not applicable to the TIL 119. 

switching characteristics at 25°C free-air temperature 

PARAMETER TEST CONDITIONS 
TIL113 TlLl19 

MIN TVP MAX MIN TVP MAX 

t, Rise Time VCC-15V, IClonl - 125 rnA, 50 

tf Fall Time RL = lOOn, See Figure 1 50 

t, Rise Time VCC - 10 V, IClonl - 2.5 rnA, 50 

tf Fall Time RL=100n, See Figure 1 50 
L---. 

PARAMETER MEASUREMENT INFORMATION 
i---l47n 

..L I I11III 'VV'r-O INPUT 

-= I ,/,/ I 
I I 

I 
I '-c-I-.--o OUTPUT 

- L ___ ~ 
RL=100n 

TEST CIRCUIT 

Adjust amplitude of input pulse for: 

INPUT o-.J 

OUTPUT 

IClonl = 125 rnA ITlL1131 
IClonl = 2.5 rnA ITI L 1191. 

L 

90% 

VOLTAGE WAVEFORMS 

UNIT 

Il' 

Il' 

NOTES; a. The input waveform is supplied by a generator with the following characteristics: Zout = 50 n. tr " 15 ns, dutv cvcle ~ 1 %, 

tw = 100 f.ls. 
b. The output waveform is monitored on an oscilloscope with the following characteristics: tr :to; '2 ns, Rin ;<I: 1 Mfl, Cin c;; 20 pF. 

FIGURE l-SWITCHING TIMES 

TEXAS INSTRUMENTS 
INCORPORATED 

POST OFFICE BOX 5012 • DALLAS. TEXAS 75222 

3-33 



120 

100 

<{ 
E 
.!. 80 
c: 

~ 
::l 
() 60 
c; 
1:> 
~ 
(5 40 
() 
I 

9 
20 

0 
0 

400 

<{ 200 
E 
.!. 
c: 
f 100 :; 
() 

70 c; 
1:> 
~ 
(5 40 
() 
I 

9 
20 

10 

TYPES TIL113, TIL119 
OPTO-COUPLERS 

TYPICAL CHARACTERISTICS 
TlL113 

COLLECTOR CURRENT 
vs 

COLLECTOR·EMITTER VOLTAGE 

la = 0 
TA = 25°C 
See Note 7 

0.4 0.8 1.2 1.6 2.0 2.4 

VCE-Collector-Emitter Voltage-V 

FIGURE 2 

TIL 113 

COLLECTOR CURRENT 
vs 

INPUT-DIODE FORWARD CURRENT 

VCE = 1 V 
la = 0 
TA = 25°C 

<{ 

1 
V -

/' 
c: 
f 
:; 
() 

c; 
1:> 
~ 
(5 
() 

/ 

/ 
~ 
!!! 
2 

/ 
V 

0 
I 
i" 
.2 

/ 9 

2 4 7 10 20 40 70100 

IF-Forward Current-rnA 

FIGURE 4 

200 

180 

160 
<{ 
E 140 I ... 
c: 

~ 120 
::l 
() 

100 ~ 

~ 80 ~ 
(5 
() 60 I 

Tll119 

COLLECTOR CURRENT 
vs 

COLLECTOR·EMITTER VOLTAGE 

I ~;/fr I II \,oJ:~"'?'/ I: 1-(), 
}~~~:rC ,~ «'I>-

IIF = 30 mAl: ,1'6 01- ~ \()/ 
i I {s>U'-~'k-'~,L 

IF = 40 rnA rl" ~vO! 
IF ~ 50 rnA I /V', ?~1-VU'--

/ ........ 

I 
9 

40 

20 

0 

1000 

100 

10 

0.1 

0.01 

j 18 = 0 
TA = 25°C 

If see, Notj 7 

o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

VCE-Collector·Emitter Voltage-V 

FIGURE 3 

OFF·STATE COLLECTOR CURRENT 
vs 

FREE·AIR TEMPERATURE 

VCE=l lOV 

/ la = 0 
-IF =0 

V 
/ 

/ 
L 

/ 
0.001 

o 
V 

25 50 75 100 125 

T A-Free-Air Temperature-°c 

FIGURE 5 

NOTE 7: Pulse operation of input diode is required for operation beyond limits shown by dotted line, 

TEXAS INSTRUMENTS 
INCORPORATED 

,,"OST OFFICE BO)( 5012 • DALLAS. TEXAS 75222 

3-34 



TYPES TIL113. TIL119 
OPTO-COUPLERS 

<IJ 
Cl 

~ a 
> 
cU 

.Q Oil) 

~N 
5 11 

a~ 
~ ... 
<IJ '" ~ <IJ 

'E .2 

~> 
.9 .9 
U <IJ 

.!!! > 
0'';' 
u~ 
I Q) 

~c:: 
.; 
UJ 
U 
> 

1.6 

1.4 

1.2 

1.0 

0_8 

0.6 

0.4 

0.2 

o 

TYPICAL CHARACTERISTICS 

Tll113 

RELATIVE COLLECTOR-EMITTER 
SATURATION VOLTAGE 

vs 
FREE-AIR TEMPERATURE 

Ic=125mA 
t- IS = 0 

IF = 50 mA 

---r--

o 
';::; 

'" c:: 

25,000 

~ 20, 000 

c 
'" .= c 15,000 

~ 
::> 

U 

~ 10,000 
~ 
o 

LL 
U .;::; 

'" o 
UJ 
LL 
L: 

5,000 

o 

TIL 113 

TRANSISTOR STATIC FORWARD 
CURRENT TRANSFER RATIO 

vs 
COLLECTOR CURRENT 

'"' VCE = 1 V 
f-- IF = 0 

1\ TA = 25°C 

V \ 

/ 

iL 
/ 

-75 -50 -25 0 25 50 75 100 125 0_1 0.4 4 10 40 100 400 1000 

TA-Free-Air Temperature-OC Ic-Collector Current-mA 

FIGURE 6 

160 

140 

<l: 120 
E 
.!. 100 c 

~ 
::> 80 U 

'2 
'" ~ 60 
0 

LL 
I 40 LL 

20 

0 

INPUT DIODE FORWARD 
CONDUCTION CHARACTERISTICS 

See Notle 8 
J J J 

TA = 25°C H / 
/ 

/11 

TA = 70°C I, / 
/j 

~ ~ TA = _55°C 
I I 

o 0,2 0.4 0.6 0,8 1.0 1.2 1.4 1,6 1.8 2.0 

VF-Forward Voltage-V 

FIGURE 8 

FIGURE 7 

NOTE 8: This parameter was measured using pulse techniques. tw :::: 1 ms, duty cycle ~ 2%. 

TEXAS INSTRUMENTS 
INCORPORATED 

POST OFFICE BOX 5012 • DALLAS, T(!XAS 75222 

3-35 

PIIINTED IN U.S A 

T: (onnot onume any rupon'lbilily for on1 cirtuih ,hown 
or reprt!!"' thol they Oft frte hom poltnt infringe,,"!n'. 

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY I 
IN ORDER TO IMPROVE DEIIGN AND TO IUPPLY THE BElT PRODU(1 POIII 



OPT022 

1/0 Module Detail 
Electrical Specifications 

... 

ACINPUT MODEL MODEL MODEL MODEL MODEL MODEL DC INPUT MODEL MODEL 
MODULES IAC5 IAC15 IAC24 IACS-A IAC1S-A IAC24-A MODULES IDC5 IDC15 
AC INPUT LINE 95 to 18010 INPUT LINE 10-32 VDC VOLTAGE 130VAC 280VAC VOLTAGE 
INPUT CURRENT lOrna INPUT CURRENT 32 rna al32V AT RATED LINE 
ISOLATION ISOLATION INPUT 2500 Volt RMS INPUT TO OUTPUT 2500 Volt RMS TO OUTPUT 
INPUT ALLOWED 1.5 rna CAPACITANCE 
FOR NO OUTPUT INPUT TO OUTPUT 8 PI 

TURN ON TIME 20 Millisecond Maximum INPUT ALLOWED 2ma FOR NO OUTPUT 

TURN OFF TIME 20 Millisecond Maximum TURN ON TIME 5 Millisecond Max 

OUTPUT TRANST. 30 Volts DC TURN OFF TIME 5 Millisecond Max BREAKDOWN 

OUTPUT CURRENT 25 ma OUTPUT TRANST. 30 Volts DC BREAKDOWN 
OUTPUT LEAKAGE 100 Microamp Maximum OUTPUT CURRENT 25 rna 3OVDC, NO. INPUT 
OUTPUT VOLTAGE 

.4 Volts at 25 ma Load OUTPUT LEAKAGE 100 Microamps Max DROP 30 VDC NO INPUT 
LOGIC SUPPLY 4.5 to 12to 20 to 4.5 to 12to 20 to OUTPUT VOLTAGE .4 Volt at 25 ma VOLTAGE DC BV 18V 30V BV 18V 30V DROP 
LOGIC SUPPLY 12ma 15ma 18ma 12ma 15ma 18ma LOGIC SUPPLY 4.5 to 12to 
CURRENT VOLTAGE BV 18V 

LOGIC SUPPLY 12ma 15ma ACOUTPUT MODEL MODEL' MODEL MODEL MODEL MODEL CURRENT 
MODULES OAC5 OAC1S OAC24 OAC5-A OAC15-A OAC24-A 

LINE VOLTAGE 12to 24 to DC OUTPUT MODEL MODEL 
140VAC 280VAC MODULES ODC5 ODC1S 

CURRENT RATING 3 Amps<D LOAD VOLTAGE BOV 
RATING DC 

I-CYCLE SURGE 55 Amps Peak OUTPUT CURRENT 3 Amps<D 
RATING 

SIGNAL INPUT 220 lK 2.2K 220 lK 2.2K OFF STATE 1 rna Max RESISTANPE Ohm Ohm Ohm Ohm Ohm Ohm LEAKAGE 
SIGNAL PICKUP 3V 9V laV 3V 9V 18V ISOLATION 2500 V RMS VOLTS DC 8VAld.' lBVAld.' 32VAld.' 8VAld.' lBVAld.' 32VAld.' INPUT TO OUTPUT 
SIGNAL DROPOUT 1 Volt SIGNAL PICK UP 3V 9V 
VOLTS DC VOLTAGE 8VAld.' 18VAld.' 
PEAK REPETITIVE 400V • 500 Volts SIGNAL DROP 1 Volt VOLTAGE O!JTVOLTAGE 
MAXIMUM I.BV SIGNAL INPUT 220 lK 
CONTACT DROP RESISTANCE Ohm Ohm 
OFF STATE 

5maRMS 1 SECOND SURGE 5 Amps LEAKAGE 
MINIMUM 

20ma LOAD CURR!=NT TURN ON TIME 500 Microsecond 

ISOLATION 
INPUT TO OUTPUT 2500 Volts RMS TURN OFF TIME 2.5 Millisecond 

CAPACITANCE • Allowed 

MODEL 
IDC24 

20 to 
30V 

18ma 

MODEL 
ODC24 

18V 
28V Aid.' 

2.2K 
Ohm 

INPUT TO OUTPUT 8 PI <DDerate .033 Amps per degree C from 20' C 
STATIC 200 VoltslMicrosecond Min DVIDT 
COMMUTATING Built in snubber (will commutate 
DV/DT .5 power factor loads) 

5842 Researc!lDrive, Huntington Beach, California 92649 (714) 892-3313 

Reprinted with permission from OPTO 22, March, 1979: All rights reserved. 

3-36 



High Voltage DC Output Modules Fast Switching DC Input Modules 
DC OUTPUT MODEL MODEL MODEL DC INPUT MODEL MODEL MODEL 
MODULES ODC5-A ODCI5-A ODC24-A MODULES IDC5-B IDCI5-B IDC24-B 
LOAD VOLTAGE 200V INPUT LINE 

4-16 VDC RATING DC VOLTAGE 
OUTPUT CURRENT 

1 Amps INPUT CURRENT 14maatSV 
RATING 
OFF STATE 

2 rna Max 
iSOLATION INPUT 

2S00 Volt RMS 
LEAKAGE TO OUTPUT 

iSOLATION 
2S00 V RMS 

CAPACITANCE 
8P1 

INPUT TO OUTPUT INPUT to OUTPUT 
SIGNAL PICK UP 3V 9V 18V INPUT ALLOWED 1 Volt 
VOLTAGE 8V Ald~ 18V Ald~ 28V Ald~ FOR NO OUTPUT 

SIGNAL DROP 
Wolt TURN ON TIME SO Microsecond Max 

OUT VOLTAGE 
SIGNAL INPUT 220 lK 2.2K TURN OFF TIME 100 Microsecond Max 
RESISTANCE Ohm Ohm Ohm 

1 SECOND SURGE SAmps 
OUT TRANSISTOR 30 Volts DC 
BREAKDOWN 

TURN ON TIME sao Microsecond OUTPUT CURRENT 2Sma 

TURN OFF TIME 2.S Millisecond OUTPUT LEAKAGE 100 Microamps Max 
30 VDC NO INPUT 

·Allowed OUTPUT VOLTAGE .4 Volt at 2S rna 
DROP 
LOGIC SUPPLY 4.Sto 12to 20 to 
VOLTAGE 6V 18V 30V 

LOGIC SUPPLY 12ma 
CURRENT 

---- ~---- - ~--- - - - -- -

Data Sheet 718 

3-37 



D 

c 

w 
W 
CD 

B 

A 

........ 

4 

1 rN 

f'b 
'§b0~'ob , - ~ --

: .,,~ .. 
, OJ-<> 

lC580 

115 VACll30 VAt 

]Joe 32-C 

H-++-<E--------< 

XIO -t5 C 21l 

4 

3 

lno o 
t2d 
t'-d 

(::J3-B 

-L-JZ-B 

Y 
N 

3 

~JOtS C 2'1 

l(te t!; C l't 

E9~ JH 32 t 
, 

"ON 

-j f---o--7)----7 >---v-'I 

1. 

1. 

"113 t5 C 2'1 MO CH.ilI 

~J' 

XIIlI t!:j C 2'1 

-.n: J::~. 
)----7)-----, T 

-B JB-Cm 
)----7 

~~-. -c -39,,(, 

g~ T 

~~ 
G~ 

gl~-A 
-c :JU·c 

~o~ T 

D 

c 
~ Ig 
tI'l 
~ 

0> 
'"'''';I >"';1 
~~ 
~O 
3:: X 
0= '"l 
rIl 

B I~ 
>-l 
tI'l 
3:: 

A 



APPENDIX C 
PROGRAM SOURCE LISTINGS 

USING INTEL'S INDUSTRIAL CONTROL SERIES IN CONTROL APPLICATIONS 

1 

2 

3 
4 
5 
6 
7 

8 

9 

] " 

11 
l.~ 

13 
III 
15 
16 
17 
18 
19 
20 
21 
22 
23 

1 

1 
1 
] 

I 
1 

1 

1 

I 

1 
1 
1 
1 
1 
1 
1 
] 

1 
1 
1 
] 

1 

$TITLE ('CONTROL TASK') 
I*************************~*************************** 
* This task handles the control and monitoring of * 
* four oven chambers. * 
**********************************************i******1 
CCN'l'ROLS'l'ASK$MODULE: 
Do; 
DECLARE EXCHlINGE$DESCR I P'l'OR L I'['ERALLY 'S'l'FWC'l'URE ( 

MESSAGE$HEAD ADDRESS, 
MESSAGE$TAIL ADDRESS, 
TASK$HEAD ADDRESS, 
TASK$TAIL ADDRESS, 
EXCHANGE$LINK ADDRESS) '; 

DECLARE TRUE LITERALLY 'OFFH'; 
DECLARE FALSE LITERALLY '00H'; 
DECLARE BOOLEAN LITERALLY 'BYTE'; 
DECLARE FOREVER LITERALLY 'WHILE I'; 
DECL~RE MSG$HDR LITERALLY , 

LINK ADDRESS, 
LENGTH ADDRESS, 
TYPE BYTE, 
HOME$EX ADDRESS, 
RESP$EX ADDRESS'; 

DECLARE MSGSDESCRIPTOR LITERALLY 'STRUCTURE ( 
MSG$HDR, 
REMAINDER(l) BYTE)'; 

1* AIMSG.ELT - ANALOG INPUT REQUEST MESSAGE FORMAT *1 
DECLARE AIMSG LITERALLY 'STRUCTURE ( 

MSG$HDR, 
STATUS I\DDRESS, 
BASE$PTR ADDRESS, 
CHANNEL$GAIN ADDRESS, 
ARRAY$PTR ADDRESS, 
COUNT ADDRESS, 
ACTUAL$COUNT ADDRESS) '; 

1* AJTYP.ELT - ANALOG INPUT MESSAGE TYPES */ 
DECLARE AIREP LITERALLY '30', 

AISQS LITERALLY '31', 
AISQV LITERALLY '32', 
ArRAN LITERALLY '33'; 

Declare (n,k) byte; 
Declare (MSG$PTR,LOCKOUT) address; 

Declare (BLOCK0,BLOCKI,BLOCK2,BLOCK3) byte external; 
Declare TOLERANCE(4) address external; 
Declare TEMP(4) address external; 
Declare SETPOIN'J'(4) ."ddress external; 
Declere T$AVERAGE(4) address; 
Declare T$LAST(4) address; 
Declare TSLAST$AVERAGE(4) address; 
Declare TSt5(4) 2ddress; 
Declare T$tle(~) address; 
Declare STATUS(4) byte external; 

Declare CRT$DISPLAY$LOCK(5) address external; 

3·39 



24 1 
25 1 
26 1 
27 1 
28 1 
29 ] 
30 1 
3] 1 
~2 1 

33 1 

34 1 

35 2 
3f) ? 
37 1 

38 2 
39 2 
40 1 

4.1 2 
112 2 
4.1 1 

44 1 

45 1 

46 1 

47 

48 1 

49 .1 
51'1 1 

Declare TEMP$CALIBRATE(5) address external; 
Declare DlIMMY$EXCH(5) address external; 
Declare TEMP$LOCKOUTSEXCH(5) address external; 
Declare RQAIEX(5) aridress externalj 
Declare A$D$EXCH(5) address external; 
Declare CONSTANT$LOCKOUT$EXCH(5) address external; 
Declare rRT$STATUS$EXCH(5) ad~ress external; 

Declare ALARM$MSG structure (MSG$HDR); 
Declare CONVERT ai$msg; 
/* This term is used to convey initial temperatures */ 
Declare CALSTEMP based MSG$PTR structure ( 

MSG$HDR, 
CAL address ); 

RQWAIT: 
Proc~dure (EXCH,MESSAGE) address external; 
Declare (EXCH,MESSAGE) adriress; 

end RQWATT; 
RQSEND: 

Procedure (EXCH,MESSAGE) external; 
Declar~ (EXCH,MESSAGE) address; 

end RQSEND; 
RQACPT: 

Procedure (EXCH) address external; 
Declare EXCH adriress; 

end HQACPT; 
Declare OVEN$IN$TOL(4) byte data ( 

01H,02H,0~H,08H ); 
Declare OVEN$CAUTION(4) byte data ( 

10H,2rH,40H,80H ); 
Declare OVEN$DANGER(4) byte data ( 

01H,02H,04H,08H ); 
Declare OVEN$ON$MASK(4) byte data ( 

01H,02H,04H,08H ); 
Declare OVEN$HEATER(4) byte datA 

l0Il,?0H,4C'H,80H ); 
Declare OVEN$RUN(4) byte data 

l0H,20H,40H,BAH ); 
Declare OFFSET(4) address; 
Declare TABLE(255) address d~ta ( 

200,201,202,201,204,205,206,207,208,209, 
209,210,211,212,213,214,2]5,216,217,218, 
219,220,221,222,223,224,225,226,227,228, 
229,230,231,232,233,235,236,237,238,239, 
240,241,24j,244,245,247,248,249,25e,251, 
252,254,256,25 7 ,258,259,260,251,263,265, 
266,267,268,269,270,?71,273,274,276,278, 
279,280,282,284,285,287,2n8,289,290,291, 
293,295,296,298,299,300,302,304,305,307, 
30R,309,310,3J2,?14,31S,318,320,322,]24, 
326,328,330,3J2,334,336,338,34C,342,34~, 
3~6,3~RI35C,352,354,356,?58,360,362,36~, 
366,3~8,370,372,374,376,378,380,3R2,3B5, 
38n,390,392,395,39P,~r0,~02,4C5,407,410, 

t121415/418,~20,423,426/~28,430,t33,436, 
439,441,444,~47,r51,454,457,~60,463f'GG, 

3·40 



51 } 

52 2 
53 2 
5LJ 2 
55 2 
5f) 2 
57 2 
58 2 
59 2 
60 2 

6} .., 
-' 

G2 1 

fi3 3 

6i1 3 
liS 3 

66 3 
67 3 

1)9 " .. / (I) 4 

71 5 
72 5 
73 " 7t: 5 
75 5 
76 ,., 

77 3 
78 " 
80 t, 
81 I! 

82 ., 

" 7 r , " 7 :.< , IJ 7 r; f " e V , "(1" , ,,() 8 , " S 2 , t] 9 <) , :: (' ( , l~ (: t , 
51"1 , 51 1 , 5] 5 , ~ 1 'J , ~ 2.3 , ~ 2"7, ')::: 1 , S 3 5 , :, l' P , : Ii 5 , 
550,55S,55C,5G5,57P,5 7 5,5Cr,S8S,5SC,505, 
G (l (J , G ~\ 5 , r, 1 (' , fi 1 5 , I) 20 , G? 5 , (j J (j , 1i:1 5 , r; /I ~; , G t! 5 f 

G50,G5S,6~0,f)65,G70,fi75,680,G85,G90,695, 

7Ve,705,71r,715,72V,725,710,735,74V,745, 
75e,r00,000,r0e,000,0A0,0r0,r0v,~pr,000, 

00r,r0~,rC0,000,0rr,000,E0G,rrr,0~e,000, 

000,000,000,000,000,OC0,e00,00P,000,000, 
000,r0r,r00,000,0C0,~00 ); 

/* Initialization of control task */ 
C ON'l'ROL$'rASK: 
Procecure public; 

Output(235)=81H; 
CONVERT.BASE$PTR=0F700H; 
CONVERT.LENGTH=2l; 
CONVERT.TYPE=AISQS; 
CONVERT.RESPSEX=.A$D$EXCH; 
CONVERT.CHANNEL$GAIN=0; 
CONVERT.ARRAY$PTR=.TEMP; 
CONVER'f. COUNT=4; 
Do forevet; 

/* Wait Eor one second to elapse */ 
MSGSPTR=RQWAIT (.DUMMYSEXCH,2r); 

/* Bring in dete from switches */ 
BLOCK0=NOT INPUT(2J~); 

/* Lockout temperature storage areas for update */ 
LOCKOUT=RQWAIT (.TEMP$LOCKDU?$EXCH,0); 

/* Get raw data from analog converter */ 
Call RQSEND (.RQAIEX,.CONVERT); 
MSG SPTR=RQWAIT ( • A$D$EXCH, (1) ; 

/* Temperature c~librate prOCedU[A */ 
MSG$PTR=RQACP'I' (.'l'EMP$CALIBRATE); 
[f MSG$p'rR <> Cl 
then 00; 

k=r, ; 
Do wh1le (TABLE(k)<>CALTEMP.CAL AND 

k<255) ; 
k=k+l; 

end; 
Do n=0 to 3; 

OFFSET(n}=(TEMP(n)/15)-k; 
enel; 

enc1; 
/* Convert date into engineering units */ 

Do 11=0 to 3; 

end; 

If «'l'EMP(n)/16)-OFFSET(n) »255 
then TEMP(n)=n; 
else TEMP(n)=TABLE(TEMP(n)/16)-OFFSET(n)); 

/* Re]e~se lockout of temperatures */ 
Cal 1 RQSEND (. TE~\P$LOCKOUT$EXCI-I, LOCKOUT) ; 

/* Compute average tem~er2ture */ 

3-41 



33 3 
84 .1 

1?S t1 

87 5 

88 5 

89 5 
9n 4 
91 S 

92 5 

93 5 

911 t1 
95 4 

96 4 
97 4 

99 5 
IN) 5 

HI 5 

103 6 
104 " 
105 (1 

J06 5 

107 ') 

H!9 6 
1.10 h 
111 6 
ll? 5 

113 '3 

115 h 
111) 6 
1 J7 6 
118 5 

119 5 

121 5 
1/.2 5 
1/.3 4 

1211 5 
125 5 
126 5 

Do n=C' to 3; 
TSAVERAGE(n)=(T$LASTln)+TEMP(n)'/2; 

/* Project temperatures into the future */ 
If T$AVERAGE(n»=T~LASTSAVERAGE(n) 

then do; 
TSt5(n)=I(T$~VERAGE(n)-TSLAST$AVERAGE(n)*5) 

+T$LASTSAVERAGE(n); 
TSt10{n)=({TSAVERAGE(n)-T$LAST$AVERAGEln))*10) 

+T$LASTSAVERAGE(n); 
end; 

else do; 
TSt5(n)=T$LASTSAVERAGE(n)-((T$LASTSAVERAGE(n) 

-TSAVERAGE(n»*5); 
T$t10 (n) =TSLAST$AVERAGE (nJ - (('f$LAST$IWEHAGE (n) 

-TSAVERAGE(n»)*lC); I 

end; 
/* Update stored data */ 

TSLASTSAVERAGE(n)=TSAVERAGE(n); 
T$LAST(n)=TEMP(n); 

/* Test for active oven */ 
MSG$PTR=RQWAIT (.CONSTANTSLOCKOUT$EXCH,0)i 
If (((BLOCK0 AND OVENSON$MASK(n))<>0) 
AND (TEMP(n)<>0)) 
then do; 

STATUS(n)=7; 
BLOCK2=BLOCK7 OR OVEN$RUN(n); 

/* Test for an intolerance condition */ 
If SETPOINT(n)-TOLERANCE(n) < TEMP(n) AND 

SETPOINT(n)+TOLERANCE(n) > TEMP(n) 
t.hen 00; 

STA'l'US(n)=7; 
BLOCKl=BLOCKl OR OVEN$IN$TOL(n); 

end; 
else BLOCKJ=BLOCKI AND NOT OVEN$IN$TOL(n); 

/* Test for a caution condition */ 
If SETPOINT(n)-TOLERANCE(n) > T$t5(n) OR 

SETPOINT(n)+TOLERANCE(n) < T$t5(n} 
then do; 

STATUS(n}=14; 
BLOCKl=BLOCKJ OR OVEN$CAUTION(n); 

enc; 
else BLOCKJ=BLOCKJ AND NOT OVEN$CAUTION(n); 

/* Test for a ~anger condition */ 
If SETPOINT(n)-TOLERANCE(n) > TEMP(n) OR 

SETPOINT(n)+TOLERANCE(n) < TEMP(n) 
then do; 

S'rATUS(n)=21; 
BLOCK2=BLOCK2 OR OVEN$DANGER(n); 

end; 
else BLOCK2=RLOCK2 AND NOT OVEN$DANGER(n); 

/* Han~le control of heater elements */ 
If SETPOINT(n) > T$t10(n) 
then BLOCK3=BLOCKJ OR OVEN$HEATER(n)i 
else ELOCK3=BLOCK3 AND NOT OVENSHEATERln); 

ene; 
else (10; 

/* Turn everything off when operator shuts off oven */ 
BLOCK1=BLOCKI AND NOT CVEN$IN$TOL(n); 
BLOCKl=BLOCKl AND NOT OVEN$CAUTION(n); 
BLOCK3=BLOCK3 AND NOT OVEN$HEATER(n); 

3-42 



127 
1~8 

1<'9 
130 
131 
132 

133 
134 
135 
Dr) 
137 
1 ? fl 

1 

2 
3 
.1 

5 

5 
5 
5 
5 
4 
4 

3 
':l 

:3 
3 
2 
1 

1 
1 
J 
1 

1 

end; 

end; 

BLOCK2=BLOCK2 AND NOT OVEN$DANGER(n); 
BLOCK2=BLOCK2 AND NOT OVEN$HUN(n); 
STATUS(n)=0; 

Call RQSEND(.CONSTANT$LOCKOUT$EXCH,MSG$PTR); 

1* Output data to real world *1 
OUTPUT(?32)=BLOCK1; 
OU~PUT(233)=BLOCK2; 
OUTPUT(234)=RLOCK?; 

end; 
end rONTROL$TASK; 
end CONTROL$TASK$MODULE; 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
~AXIMUM STACK SIZE 
235 LINES READ 
o PROGRAM ERROR(S' 

~941')B 

r,C'54H 
0CHlfiH 

237,:10 
84D 

liD 

END OF PL/M-80 COMPILATION 

$'rI'rLE ( 'CRT PARAM'E'l'ER TASI<') 
1********************************************** 
* This task is used to pxamine and update the * 
* temperature setpoints ane tolerances for * 
* each 0 f the four ovens. * 
*********************'************************1 
UPDJITE!?TASI<: 
Do; 

$Include (:FV:COMMON.ELT) 
DECLARE TRUE LITERALLY '0FFH'; 
DECLARE FALSE LITERALLY 'C0H'; 
DECLARE BOOLEAN LITERALLY 'BYTE'; 
DECLARF. FOREVER Ll'fERALLY 'WHILE 1'; 
~Include (:F0:MSGTYP.ELT) 
DECLARE DATA$TYPE LLTERALLY 'r', 

INT$TYPE LITERALLY 'I', 
MIS5ED$INT$TYPE LITERALLY '2', 
TIMESOUTSTYPE LITERALLY '3', 
FS$REQ£TYPE LITERALLY '~', 
UC$REQ$TYPE LITERALLY'S', 
FS$NAKtTYPE LITERALLY '6', 
CNTRL$C$TYPE LITERALLY '7', 
READSTYPE LTTERALLY '8', 
CLR$RD$TYPE LITERALLY '9', 
LAST$RDSTYPE LITERALLY ']~', 

ALARMSTYPE LITERALLY '11', 
WRITESTYPE LITERALLY '12'; 

$Include (:F0:MSG.ELT) 

3-43 



., 1 
= 

8 1 
= 

9 1 

= 

10 1 = 

11 

= 

= 

= 

12 1 

13 2 

14 2 

15 1 

l() 2 

DECLARE MSG$HDR LITERALLY , 
LINK ADDRESS, 
LENG'fH ADDRESS, 
TYPE BYTE, 
HOMESEX ADDRESS, 
RESP$EX ADDRESS'; 

DECLARE MSG$DESCRIPTOR LITERALLY 'STRUCTURE ( 
MSG$HDR, 
REMAINDER(l) BYTE) '; 

SJnclurie (:F0:THMSG.ELT) 
DECLARE TH$MSG LITEkALLY 'STRUCTURE ( 

MSGHDR, 
S'I'ATUS ADDRESS, 
BUFFER$ADR ADDRESS, 
COUN'r ADDHESS, 
ACTUAL ADDRESS, 
REMAINDER(128) BYTE) '; 

DECLARE MIN$TH$MSG$LENGTH LITERALLY ']7'; 
$Inc1ude (:F~:CHAR.ELT) 

1* SPECIAL ASCII CHARACTERS *1 

DECLJlRF 
NULL 
CONTROLSC 
CONTROLSE 
BELL 
T,' ... B 
LF 
VT 
FF 
CR 
CONTHOL$P 
CONTROL$Q 
CONTROL$R 
CONTROL$S 
CONTROL$X 
CONTROL$? 
ESC 
QUOTE 
LCA 
LCZ 
RUB OUT 

LITEHALLY '0rH', 
LITERALLY '03H', 
LIT8RALLY '05~j', 
LITERALLY '07H', 
LITERALLY ',,·9fl', 
LITERALLY 'CAH', 
LITERALLY '0BH', 
L I'rERII.LLY '~jCH', 
LI'fEHALLY 'f'DJ-l', 
LITERALLY 'HJIl', 
LITERALLY 'J HI' , 
LI'rERALLY '12H', 
LITERALLY '13H', 
LITERALLY 'lGH', 
LI'l'ERALLY 'lAH', 
LITERALLY 'lt~H', 

LITERALLY '22H', 
LITERALLY '51R', 
LITEflALLY '7AH', 
LITERALLY '7FH'; 

$Include (:FV:SYNCH.EXT) 
RQSEND: 

PROCEDURE (EXCHANGE$POINTER,MESSAGE$POINTER) EXTERNAL; 
DECLARE (EXCHANGE$POINTER,MESSAGE$POINTER) ADDRESS; 

END RQSEND; 

RQWAIT: 
PROCEDURE (EXCHANGE$POINTER,DELAY) ADDRESS EXTERNAL; 

DECLARE (EXCHANGE$POINTER,DELAY) ADDRESS; 

3-44 



17 

l8 

19 

20 

21 

22 

23 
24 
25 
2;; 
27 
28 
29 
3(1 
3.1 
32 
33 
34 
3') 
36 

37 

38 
39 

40 

4 I 
42 
113 

44 
45 
46 

47 
~R 

49 
50 

7-

2 

7-

2 

2 
] 

] 

.1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

.1 
1 

.1 

J 
1 
1 

2 
2 
] 

2 
:1 
2 
1 

END RQWAIT; 

RQACPT: 
PROCEDURE (EXCHANGE~POINT~~R) ADDRESS EXTERNALi 

DECLARE EXCHANGE$POINTER ADDRESS; 

END RQACPTi 

RQISND: 
PROCEDURE (IED$PTR) EXTERNAL; 

DECLARE IEDtPTR ADDRESS; 

END RQISND; 
Declare TEMP$CALIBRATE(5) a~~ress external; 
Declare UPDATE$EXCH(5) address external; 
Declare CRT$STATUS$EXCH(5) a~dress external; 
Dec!are COMPSEXCH(5) address uxternal; 
Declare CONSTANT$LnCKOUT$EXCH(SI ad~ress external; 
Declare RQOUTX(S) 2ddress external; 
Declare RQINPX(5) address external; 
Declare WORDS$EXCH(5) address external; 
Declare SETPOINT(4) address external; 
Declare TOLERANCE(!!) address external; 
Declare BUFFER? address; 
Declare MSG$PTR address; 
Declare MSG structure ( 

MSG$HDR, 
s'rATUS i"ldc1ress, 
BUFFER$PTR address, 
COUNT address, 
ACTUAL 8c1dress ); 

Declare CAL$TEMP stru~ture 
MSGSHDR, 
CAL adcress ); 

Declare UPD$MSG ad0ress; 
Declare ENERGIZE based UPD$MSG structure ( 

MSG$HDR, 
STATUS 2eld ress, 
BUFFER$PTR ~ddress, 
COUNT address, 
ACTUAL address I; 

Declare ENABLE$MSG structure 
MSG$HDR ); 

Declare RUFFER(80) byte; 
Declare OVEN byte; 

DEC$HEP; 
Procedure (SQURCE,TARGET) external; 
Declare (SOURCE,TARGET) address; 

end [JEC~HEP; 
ASC$2$BINAHY: 

Proce~ure (SQURCE,TARGET,SlZE) byte external; 
Declare (SDURCE,TARGET) address; 
Declare SIZE byte; 

end ASCS2$BINARY; 
Declare MSG$1(20) byte data ( 

ESC,'E','ENTER OVEN NUMBER-'); 

3-45 



51 

52 

53 

54 

55 
515 
57 
58 
59 

6(1 
61 

62 

63 

64 
155 
66 
67 

68 
69 
70 
71 
72 
73 
74 

76 

77 
78 
79 
80 
81 

82 
83 
84 
85 

87 

89 
90 
91 

1 

1 

1 

1 
1 
1 
1 
1 

2 
3 

3 

3 

3 
3 
3 
3 

3 
3 
3 
3 
3 
3 
3 

3 

3 
3 
3 
:3 
3 

3 
3 
3 
3 

3 

4 
11 
4 

Declare MSG$2(28) byte dat~ 
CR,LF, 
'ENTER NEW SETPOINT-', 
'XXXX.X-' ); 

Declare MSG$3(29) byte data 
CR,LF, 
'ENTER NEW TOLERANCE-', 
'XXXX.X-' ); 

Declare CALMSG(12) byte data 
'TEMPERATURE-' )i 

Declare MSG$4(62) byte data ( 
CR,LF, 
'(STATUS-IS), PARAMETERS-(P), CALIBRATE-(e))', 
CR,LF, 
'ENTER REQUEST-' ); 

Declare WAIT literally 'MSG$PTR='; 
Declare FOR 1 i terall y 'RQWAIT'; 
Declare START literally 'CALL'i 
Declare TASK literally 'HQSEND'i 

UPDATE: 
Procedure public; 

/* Initialize task at start-up time */ 
Do forever; 
MSG.RESP$EX=.COMP$EXCH; 

/* Wait for request to enter tnsk */ 
UPD$MSG=RQWAIT (.UPDATESEXCH,0); 

/* Get desired oven number from operator */ 
RQST$OVEN: 
MSG.BUFFER$PTR=.MSC$li 
MSG. 'l'YPE=WRITE$'l'YPE; 
MSG.COUNT=20; 
Start tas~ (.RQOUTX,.MSG); 
I'ii,it for (.COMP$EXCH,P)i 

/* ••• Input new number */ 
MSG.BUFFER$PTR=.BUFFER; 
MSG.COUNT=255; 
MSG.TYPE=CLR$RD$TYPE; 
Start task (.RQINPX,.MSG); 
tllfdt for (.COMP$EXCH,r,)i 
OVEN=(BUFFER(0) AND 07H)-1; 
If OVEN >3 then go$to RQST$OVEN; 

/* Display request and current setpoint */ 
GET$TEMP: 
Call move (28,.MSG$2,.BUFFER)i 
Call DEC$REP (.SETPOINT(oven) ,.BUFFER+21); 

MSG.TYPE=WRITE$TYPEi 
MSG.COUNT=28; 
St~rt task (.RQOUTX,.MSG); 
Wait for (.COMP$EXCH,~:)i 

/* ... Input new setpoint */ 
MSG.TYPE=CLR$RD$TYPEi 
Start task (.RQINPX,.MSG); 
Woit for (.COMP$EXCH,e); 
If ASC$2$BINARY(.BUFFER,.BUFFER2,1)=0 OR BUFFER2 > 700 
then goSto GETSTEMPi 
If BUFI<'ER2 <> ~l 

then do; 
W~it for (.CONSTANT$LOCKOUT$EXCH,e); 
SETPOINT(oven)=BUFFER2; 
Start task (.CONSTANT$LOCKOUT$EXCH,MSG$PTR); 

3·46 



92 4 

93 3 

94 3 
95 :l 
% 3 
97 3 
98 3 

99 3 
100 3 
101 1 
102 3 

] 04 3 

lr6 4 
107 4 
HW 4 
109 4 

lUI 3 

1.1] 3 
112 3 
113 3 
114 3 

115 3 
116 3 
117 3 
118 3 
119 3 

121 3 

123 3 

125 4 

126 4 
127 4 
128 4 
129 4 
130 4 
131 4 
132 4 
133 4 
134 4 

136 ., 
1.37 4 
138 4 

end; 
/* Display request and ~urrent tolerance */ 

GET$TOL: 
Call move (29,.MSGS3,.BUFFER); 
Call DEC$REP (.TOLERANCE(oven),.BUFFERi22); 
MSG. TYPE=WRITES'l'YPE; 
MSC.COUNT=29; 
StRrt task (.RQOUTX,.MSG); 
Wait for (.COMP$EXCH,0); 

/* ••• Input new toleranre */ 
MSG.TYPE=CLR$RD$TYPEi 
Start task (.RQINPX,.MSG); 
Wait for (.COMP$EXCH,01; 
If ASC$2$BINARYf.BUFFER,.BUFFER2,1)=0 OR BUFFER2 > 7em 
then go$to GET$TOL; 
If BUFFER2 <> 0 
then do; 

end; 

Wait for (.CONRTANT$LOCKOUT$EXCH,@); 
TOLERANCE(oven)=BUFFER2; 
Start task (.CONSTANTSLOCKOUT$EXCH,MSG$PTR); 

/* Ask operator if he is finished*/ 
REQSNEXT: 
MSG. TYPE=WRITE$'rYPE; 
MSG.COUNT=62; 
MSG.BUFFER$PTR=.MSG$4; 
Start task (.RQOUTX,.MSG); 
Wait for (.COMP$EXCH,0); 

/* ••• Get his response */ 
MSG.TYPE=CLR$RD$TYPE; 
MSG.BUFFER$PTR=.BUFFER; 
Start task (.RQINPX,.MSG); 
Wait for (.eOMP$EXCH,0); 
If (BUFFER(0) <>'8' AND BUFFER(0) <>'P' 

AND BUFFER(0) <> 'e') 
then go$to REQSNEXT; 
If BUFFER(VI)='P' 

then go$to RQST$OVENi 
If BUFFER(0)='e' 
then do; 

GE'r$eAL: 
MSG.TYPE=WRITE$TYPE; 
MSG.eOUNT=12; 
MSG.BUFFER$PTR=.eALMSG; 
Start task (.RQOUTX,.MSG); 
Wait for (.COMP$EXCH,0); 
MSG.TYPE=CLR$RD~TYPE; 

MSG.BUFFER$PTR=.BUFFER; 
Start task (.RQINPX,.MSG); 
Wait for (.eOMP$EXCH,f); 
If ASe$2$BINARY(.BUFFER,.BUFFER2,1) =0 

OR BUFFER2>350 OR BUFFER2<2C0 
then go$to GET$e~L; 
CALSTEMP.CAL=BUFFER2; 
Call RQSEND (.TEMP$CALIBRATE,.eAL$TEMP); 

end; 

3-47 



MODULE INFORMATION: 
CODE AREA SIZE 
V~RIABLE AREA SIZE 
MAXIMUM STACK SIZE 
264 LINES READ 

= 03C3H 
007CH 
0004H 

P PROGRAM ERROR(S) 
END OF PL/l'l-80 COMPILATION 

9630 
1240 

4D 

139 3 ENERGIZE.TYPE=100; 
140 3 Start task (.CRT$STATUS$EXCH,UPD$MSG); 

141 3 end; 
142 2 end UPDATE; 
143 1 end UPDATE$TASK; 

1 

2 1 
= 

3 2 
= 

" 2 = 

5 1 

5 2 = 

7 2 

8 1 

9 2 = 
10 2 

II 1 

12 2 
= 

13 2 

lt1 1 

$TITLE('CRT UPDATE TASK') 
j****************************************-******* 
* This task is utilized to update the CRT ter- * 
* mina1 display with the current operating psr- * 
* ameters. It will be entered upon syte~ start- * 
* up, upon operator request, or when a problem * 
* exists with any of the activated ovens. * 
********************************-***************/ 
CRTSDATA$MODULE: 
Do; 
SINCLUDE(:F0:SYNCH.EXT) 
RQSEND: 

PROCEDURE (EXCHANGE$POINTER,MESSAGE$POINTER) EXTERNAL; 
DECLARE (EXCHANGE$POINTER,MESSAGE$POINTER) ADDRESS; 

END RQ8END; 

RQWAIT: 
PROCEDURE (EXCHANGI::$POIN'l'ER, DELAY) ,lI.DDRESS EXTERNAL; 

DECLARE (EXCHANGE$POINTER,DELAY) hDDRESS; 

END RQW"~IT; 

RQACPT: 
PROCEDURE (EXCHANGE$POINTER) ADDRESS EXTERNAL; 

DECLARE EXCHANGE$POINTER ADDRESS; 

END RQACPT; 

RQISND: 
PROCEDURE (IED$PTR) EXTERNAL; 

DECLARE IED$PTR ADDRESS; 

END RQISND; 
SINCLUDE (:FP:MSGTYP.ELT) 
DECLARE DATh$TYPE LITERALLY 

3-48 

'0 ' 
" 



15 

11) 
17 
18 
19 

21 

.1 

1 
1 
1 
1 

1 

1 

= 

= 

22 1 = 

= 

= 

INT$TYPE LITERALLY '1', 
MISSEDSINT$TYPE LITEHALLY '2', 
TIMESOUTSTYPE LITERALLY '3', 
FS$REQ$TYPE LITERALLY '4', 
UC$REQSTYPE LITERALLY'S', 
FS$NAK$TYPE LrTER~LLY '6', 
CNTRL$C$TYPE LITERALLY '7', 
REhD$TYPE LITERALLY '8', 
CLR$RD$TYPE LITERALLY '9', 
LAST$RDSTYPE LITERALLY 'IV', 
ALARM$TYPE LITERALLY 'II', 
WRITE$TYPE LITERALLY '12'; 

$INCLUDE (:F0:EXCH.ELT) 
DECLARE EXCHANGE$DESCRIPTOR LITERALLY 'STRUCTURE ( 

MESSAGE$HEAD ADDRESS, 
MESSAGE$TAIL ADDRESS, 
TASK$HEAD ADDRESS, 
TASK$TAIL ADDRESS, 
EXCHANGESLINK ADDRESS) '; 

$INCLUDE (:F0:COMMON.ELT) 
DECLARE TRUE LITERALLY '0FFH'; 
DECLARE FALSE LITERALLY '00H'; 
DECLARE BOOLEAN LITERALLY 'BYTE'; 
DECLPRE FOREVER LITERALLY 'WHiLE 1'; 
$INCLUDE (:F0:MSG.ELT) 
DECLARE MSG$HDR LITERALLY , 

LINK ADDRESS, 
LENG'!'H ADDRESS, 
TYPE BYTE, 
HONE$EX ADDRESS, 
RESP$EX ADDRESS'; 

DECLARE MSG$DESCRIPTOR LITERALLY 'STRUCTURE ( 
MSG$HDR, 
REMAINDER(l) BYTE) '; 

$INCLUDE (:F0:CHAR.ELT) 

/~ SPECIAL ASCII CHARACTERS */ 

DECLARF: 
NULL LITERALLY 'erH' , 
CONTROL$C LITERALLY '03H' , 
CONTROL$E LITERALLY 'f15H' , 
BELL LITERALLY ',nH' , 
TAR LTTERALLY '~\~nl ' , 
LF LITERALLY 'VlAH' , 

VT LI'fERALLY 'CBH' , 
FF LI'I'ER"LLY '0CH' , 
CR LITERALLY '0DB' , 
CONTROL$P LITERALLY '10H' , 
CONTHOL$Q LI,!'ERALLY , I1H ' , 
CONTROL$R LI'fERALLY '] 2H' , 
CONTROL$S LTTEHALLY 'i 3H ' , 
CONTROL$X LITERALLY '13H' , 
CON'l'ROL$Z LITERALLY 'lAB' , 
ESC LITERALLY 'lBB' , 
QUOTE LITERALLY '22H' , 

3-49 



23 

24 
25 
26 

27 

28 

29 

30 

1 

1 
1 
1 

1 

1 

1 

= 

= 
= 

LCA 
LCZ 
RUBOUT 

LI'fERALLY '1)IH', 
LITERALLY '7AH', 
LITER~.LLY '7FH'; 

$INCLUDE (:F0:THMSG.ELT) 
DECLARE TH$MSG LITERALLY 'STRUCTURE ( 

MSGHDR, 
STATUS ADDRESS, 
BUFFER$ADR ADDRESS, 
COUNT ADDRESS, 
AC'rUJI L ADDRESS, 
REMAINDER(128) BYTE) '; 

DECLARE MINSTH$MSG$LENGTH LITERALLY '17'; 
D~clare HOME ]iteraJ~y '18H,48H'; 
Declare Ll$IMAGE(90) byte data ( 
Home,Lf,Lf,Lf,Lf,Lf, 
'TEMPERATURE ' 

'DEGREES C.' ); 
Declare L2$IMAGE(92) byte data 

Home,LE,Lf,Lf,Lf,Lf,Lf,Lf, 
'SETPOINT ' 

'DEGREES C.' ); 
Declare L3$IMAGE(94) byte data ( 

Home,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf, 
'TOLERANCE ' 

'DEGREES C.' ); 
Declare LASIMAGE(75) byte data ( 

Home,LE,LE,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf, 
'STATUS ' 

OFF 
OFF 
OFF 
OFF ') ; 

Declare CRTSHDR(I68) byte data 
IBH,IISH,' 
'OVEN STATUS DISPLAY', 
Cr,Lf,Lf,' 

'OVEN-l 
'OVEN-2 
'OVEN-.3 
'OVEN-4' , 

3-50 



31 

32 

33 

34 

3.5 

36 

37 
38 

39 

41 

42 

I 

1 

J 

I 

1 

1 

1 
1 

1 

1 

1 

1 

Cr,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,Lf,LE,Lf, 
Lf, 

'TYPE ESCAPE TO ADJUST SETPOINTS' ); 
Declare BELLS(4) byte data 

Bell,Bell,BeU,Be]1 ); 
Declare MESSAGES (35) byte data 

OFF 
OK 

'CJIU'l'ION' , 
, ALARM " 
, , ); 

Declare DISPLAY$PTRl(4) ad~ress data ( 
• WOR!(SBUFF+23, 
• WORK$BUFI"+3 6, 
.WORK$BUFF+49, 
.ltIORK $B UFF+6 2 ); 

Declare DISPLAY$PTR2(4) address data ( 
• WOR!($BUFF+2 5, 
.WORK$BUFF+38, 
.WORKSBUFF+5l, 
• \"fORKSBUFF+64 ); 

Declare DISPLAY$PTR3(4) address ~ata ( 
.WORK$BUFF+27, 
.WORr<$BUF'F+40, 
• ''''ORK$BUFF+53, 
.\~ORK$BUFP+f:i6 ); 

Declare DISPLAY$PTR4(4) address data ( 
.WORKBUFF+3r, 
.WORl<BLJFF+43, 
.WORKBUFF+56, 
.WORI<BUFF+(i9 ); 

Declare MSG$PTR address; 
Declare MSG based MSG$PTR structure ( 

MSGt.HDR, 
COUNT Rodress ); 

Declare STARTER(3) structure 
MSG$HDH ); 

Declare READ structure 
MSG$HDR, 
S'l'A'l'US address, 
BUFFER$PTR address, 
COUNT aeldr-ess, 
ACTUAL address ); 

Declare DISPLAY$TEMP(4) structure ( 
UPPER Roc1ress, 
LO\AJE Rand r ess ); 

Declare DISPLAY$SET(4) structure ( 
LOWER an(!ress, 
UPPER a<'ldress ); 

Declare DISPLAY$TOL(4) structure ( 
LOWER C1cclress, 
UPPER address ); 

3·51 



44 

45 

46 

47 
~8 
119 
50 
51 
52 
53 
54 
55 
Sf) 
57 
58 
59 
60 
61 
62 
63 
64 
65 
6f; 
67 
68 
6 ~~ 
70 
7] 
72 
73 
7/1,. 

75 
76 
77 
78 
79 

iW 
81 

1 

1 
1 
1 
I 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
J 
1 
1 
1 

2 
2 

Declare OVEN$ON(4) byte data ( 
01H,02H,04H,08H ); 

Declare OVEN$CAUTION(4) byte oAta ( 
l0H,2CH,40H,80H ); 

Declare CRT structure 
MSG$HDR, 
STA'rUS i'ddress, 
BUFFER$PTR address, 
COUNT eddress, 
ACTUAL address ); 

Declare CRTLOCK structure (MSGSHDR); 
Declare CRT$DISPLAY$LOCK(5) address external; 

Declare TEMP$LOCKOUT$EXCH(5) address external; 
Declare CONSTANT$LCCKOUTSEXCH(5) address external; 
Declare CRT$EXCH(5) address external; 
Declare CRT$STATUS$EXCH(5) address external; 
Declare DUMMY$EXCH(5) address external; 
Declare READ$BUFFERSEXCH(5) address external; 
Declare UPDATESEXCH(5) address external; 
Declare RQINPX(5) address external: 
Declare RQOUTX(5) 2ddress external; 
Declare RQWAKE(5) address external; 
Declare ROL7EX(5) eddress external; 
Declare RQL6EX(5) address external; 
Declare RQDBUG(5) ~ddress external; 
Declare RQALRM(5) address external; 

Declare TEMP(4) address external; 
Declare DISPSTEMP(~) 2ddress; 
Declare SETPOINT(4) ~ddress external; 
Declare DISP$SETPNT(4) address; 
Declare TOLERANCE(4) address external; 
Declare DISP$TOL(4) address; 
Declare STATU8(4) byte external; 
Declare DISP$STAT(4) byte; 
Declare (BLOCKl,BLOCK2) byte external; 
Declare WORK$BUFF(170) byte; 
Declare BUFFER$A(70) byte; 
Declare (CHANGE,n,ALARM,NEW,BLANKER) byte; 

Declare START literally 'cal.l'; 
Declare TASK literally 'rqsend'; 
Declare WAIT literally 'msgSptr='; 
Declare For literally 'rqwait'; 

DECSHEP: 
Procedure(SOURCE,TARGET) external; 
Declare (SOURCE, TARGET) address; 

end DEC$REP; 

3·52 



82 1 

83 2 
84 2 
85 2 
86 2 
87 2 

88 2 
89 3 
90 3 
91 3 

93 3 

94 3 

96 4 

98 4 
99 4 

1013 4 
101 4 
Hl? 4 
HJ3 4 
] 011 4 
105 <1 

H)7 t. 

108 4 
109 4 
110 4 
III 4 
112 4 

113 3 
114 3 
115 3 
116 4 

118 4 
119 :; 
120 3 

121 3 

1~3 " 124 4 
125 5 
126 5 

127 4 
128 .1 

CR'l'$DATA$TASK: 
Proce~ure publici 
/* Initialize system at start-up time */ 

Start task (.TEMP$LOCKOUT$EXCH,.STARTER(0))i 
Start task (.CONSTANTSLOCKOUTSEXCH,.STARTER(l))i 
STARTER(2).TYPE=100; 
Start task (.rRT$STATUSSEXCH,.STARTER(2)); 
CRT.RESP$EX=.CRTSEXCH; 

/* Perform main CRT wait */ 
Do forever; 

W?it for (.DUMMY$EXCH,10); 
Wait for (.CRT$STATUSSEXCH,0); 
If MSG.TYPE=255 
then ALARM=]; 
else ALARM=0; 

/* Output heading */ 
If (MSG.TYPE=100 OR MSG.TYPE=255) 
then do; 

end; 

If ALARM=0 
then caJl RQSEND(.CRT$DISPLAY$LOCK,.CRTLOCK); 

(R'r. 'rYPE=WRITES'rYPE; 
CRT.COUNT=167; 
CRT.BUFFER$PTR=.WORK$BUFF; 
READ.TYPE=CLR$RDSTYPE; 
R BAD. COUNT=2 55; 
READ.RESPSEX=.READ$BUFFER$EXCH; 
READ.BUFFER$PTR=.BUFFERA; 
If ALARM=0 
then start task (.RQINPX,.READ); 
Call move (82,.CRTSHDR,.WORK$BUFF)i 
Call move (86,.CRTSHDR+R2,.WORK$BUFF+82); 
Start task (.RQOUTX,.CRT)i 
Wait for (.CRT$EXCH,0)i 
NEW=l; 

/* Test for change in temperature of any oven */ 
CHANGE=0i 
Wait for (.TEMPSLOCKOUT$EXCH,0)i 
Do n=0 to 3; 

end; 

If TEMP(n)<>DISP$TEMP(n) 
then CHANGE=l; 

Call move (8,.TEMP,.DISP$TEMP); 
Start task (.TEMP$LOCKOUTSEXCH,MSG$PTR); 

/* When a change exists build new line */ 
If CHANGE OR NEW 
then do; 

C~ll move (90,.Ll$IMAGE,.WORKSBUFF); 
Do n=f' to 3; 

Ca 1] DEC $REP ( • DISP$'rEMP (n) , DISPLA YSP'rR 1 (n) ) ; 
end; 

/* Output new temperature line to CRT */ 
CRT.TYPE=WRITE$TYPE; 

CRT. COUN'l'=87; 

3-53 



129 4 
13~ 4 
111 4 

132 1 
133 3 
134 3 
135 4 

137 4 
138 3 
139 3 

140 3 

11.12 " 143 4 
144 5 
145 5 

]45 4 
147 4 
148 4 
J.il9 4 
J 50 4 
151 II 

152 3 
] 5': 3 
154 3 
155 4 

157 " 158 3 
159 3 

160 3 

162 4 
163 4 
lfi4 5 
HiS 5 

H55 4 
1157 4 
Ing 4 
169 11 
170 11 
171 4 

172 3 
173 3 
174 3 
]75 1\ 

end; 

Start task (.RQOUTX,.CRT); 
Wait for (.CRT$EXCH,0); 

/* Test for change in oven setpoints */ 
CHANGE=0; 
Wait for (.CONSTANT$LOCKOUT$EXCH,0); 
Do n=~ to 3; 

end; 

If SETPOINT(n)<>DISP$SETPNT(n) 
then CHANG E = 1 ; 

Call move (8,.SETPOINT,.DISP$SETPNT); 
Start task (.CONSTANT$LOCKOUT$EXCH,MSG$PTR); 

/* Build new line wilen a change was detected */ 
If CHANGE OR NEW 
then do; 

Call move (92, .L2$IMAGE, .WORKBUFF); 
Do n=0 to J; 

Call nEC$REP(.DISP$SETPNT(n),DISPLAY$PTR2(n»; 
eno; 

/* Output setpoint line */ 
CRT. TYPE=WRITESTYPE; 
CRT.COUNT=89; 

end; 

CRT. BUFFERSPTR=.WCRKBUFF; 
Start t.ask (.RQOUTX,.CRT); 
Wait for (.CRTSEXCH,0); 

/* Test for change in tolerance line */ 
CHANGE=0; 
Wait for (.CONSTANT$LOCKOUT$EXCH,0); 
Do n=0 to 3; 

end; 

If TOLERANCE(n)<>DISP$TOL(n) 
thf!n CHANGE=1; 

Call move (8,.TOLERANCE,.DISP$TOL); 
Start task (.CONSTANT$LOCKOUT$EXCH,MSG$PTR); 

/* When change is found, build new line */ 
If CHANGE OR NEW 
then do; 

CaJ.] move (94, .L3$IMAGE, .WORK$BUFF); 
Do n=0 to 3; 

Call DEC$REP(.DISP$TOL(n) ,DISPLAY$PTR3(n»); 
end; 

/* Output tolerance line */ 
CRT.TYPE=WRITE$TYPE; 

end; 

CR'r. COUWr=91 ; 
CRT.BUFFER$PTR=.WORKBUFF; 
St~rt task (.RQOUTX,.CRT); 
Wait for (.CRT$EXCH,0); 

/* Build status message */ 
CHlINGE=0; 
Wait for (.CONSTANT$LOCKOUT$EXCH,0); 
Do n=0 to 3; 

If STATUS(n)<>DISP$STAT(n) 
then CHANGE=l; 

3-54 



177 4 
178 3 
179 3 

180 3 

182 4 
]83 4 
1811 5 

185 5 
186 4 
.un 4 
188 II 

189 4 

190 3 
191 3 

193 4 

195 5 
196 5 
197 5 
198 4 
199 5 

201 5 
202 5 
203 5 
2134 5 
2 fl5 4 
2011 3 
207 2 
208 1 

end; 
Call move (4,.STATUS,.DISP$STAT); 
Start task (.CONSTANT$LOCKOUT$EXCH,MSG$PTR); 

/* Output to display */ 

n)); 

If CHANGE OR NEW 
then c10; 

end; 

Call move (75,.LllIMAGE,.WORK$BUFF); 
Do n=f1 to 3; 

Call move(7,.MESSAGES+DISP$STAT(n) ,DISPLAY$PTH4( 

end; 
CRT.COUNT=7f:i; 
Start task (.RQOUTX,.CRT); 
Wait for (.CRT$EXCH,0); 

/* test for request to exit this mode */ 
MRG$PTR=RQACPT (.READ$BUFFERSEXCH); 
If ALARM=0 
then do; 

If (MSG$PTR <> 0 and BUFFERA(0) = l8H) 
then (10; 

MSCSPTR=R~~AIT(.CRT$DISPLAY$LOCK,0); 
start task (.UPDATE$EXCH,MRG$PTR); 

end; 
else (lo; 

end; 
ehc; 

end; 

If MSG$P'I'R=0 
then STARTER(2) .TYPE=200; 
else STARTER(2).TYPE=100; 
Start task (.CRT$STATUS$EXCH,.STARTER(2); 
NEW=0; 

en(l CRT$Dl,'rA$TASK; 
end CRT$DA'rA$MODULE; 

MODULE INFORMATION: 
CODE AREA SIZE = 0720H 
VARIABLE AREA SIZE 0189H 
MAXIMUM STACK SIZE 0004H 
3P8 LINES READ 
" PROGRAM ERROR(S) 

END OF PL/M-80 COMPILATION 

lR24D 
3~3D 

4D 

3·55 



1 

2 1 

3 1 

<1 2 
5 2 
I) 2 
7 ? 
8 2 

9 2 
10 2 

11 3 
12 3 
13 2 

14 2 
15 3 
16 :1 

18 4 
19 4 

$TITLE('~SCrI STRING TO FIXED BIN~RY') 
/**************************************************** 
* This program convetts ~n ASCII string into a fix- * 
* ed point binary number. The fixed decimal point * 
* is determined by the parameter passed in SIZE. * 
****************************************************/ 
ASC$2$BINARY$MODULE: 
Do; 
/* SPECIAL ASCII CH~RACTERS */ 
DECLARE 

NULL 
CONTROL$C 
CONTROL$E 
BELL 
TAB 
LF 
V'l' 
FF 
CR 
CONTROL$P 
CON'l'ROL$Q 
CONTROL$R 
CON'l'RCL$S 
CONTROL$X 
CONTROL$Z 
ESC 
QUOTE 
LCA 
LCZ 
RUBOUT 

ASC$?$BINJI.RY: 

LITERALLY 
LITERALLY 
LITERALLY 
LI'rERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LI'l'ERALLY 
LITERALLY 
LITERALLY 
LI'rERALLY 
LI'fERALLY 
LI'l'ERALLY 
LI'fERALLY 
LI'fERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 

'00H' , 
'03H' , 
'(l5H' , 
'07H' , 
'09H' , 
'0AH' , 
'erBH' , 
'0CH' , 
'0DH' , 
'10H' , 
'llH' , 
'12H' , 
'13H' , 
'18H' , 
'lAH' , 
'lBH' , 
'22H' , 
'61H' , 
'71\11' , 
'7FH' ; 

Procedure (SRC$PTR,TRGTSPTR,SIZE~ byte public; 
Declare (SRC$PTR,TRGT$PTR) address; 
Declare (SOURCE based SRC$PTR) (80) byte; 
DeGlare RESULT based TRGT$PTR address; 
Declare (N,SIZE,K,DP,DIGI'fS,VALID) byte; 
Declare POWER(6) oddress data ( 

0,1,]0,100,1000,10000 ); 
/* Find 10c8tion of decimal point */ 

n=0; 
Do while SOURCE(n)<>'.' AND SOURCE(n)<>CR 

AND SOURCE(n)<>LF; 
n=n+l; 

end; 
DP=n; 

/* Provide correct number of digits to right of decimal */ 
Do n=0 to SIZE; 

SOURCE(DP+n)=SOURCE(DP+n+l); 
If SOURCE(DP+n»39H OR SOURCE(DP+n)<30H 
then do k=n to SIZE; 

SQURCE(DP+k)='0'; 
end; 

3-56 



20 3 

21 2 

22 2 
/.3 2 
24 3 

26 :l 
27 2 

29 2 
30 2 

:12 3 
33 3 
3<1 4 

35 4 
3'1 4 
37 4 
32, 3 

39 2 
40 2 
41 1 

end; 
/* Mark end of string */ 

DIGITS=DP+SIZEj 
/* Test for all valid characters */ 

VALID=l; 
Do n=0 to DIGITS; 

If SOURCE(n»39H OR SOURCE(n)<30H 
then VALID=0; 

end; 
IE DIGI'l'S>5 
then VALID=0; 

/* Convert data to binary and store */ 
n=0; 
If VALID=l 
then do; 

end; 

RESULT=0; 
Do while DIGITS> 0; 

RESULT=RESULT+(( 
SOURCE(n) AND 0FH) * POWER{DIGITS)); 

n=n+l; 
DIG I'rS=DIG ITS-l; 

end; 

/* Return to calling program */ 
Return VALID; 

end ASC$2SBINARYj 
end ASC$2$BINARY$MODULE; 

MODULE INFORMATION; 

CODE AREA SIZE 
V~RIABLE AREA SIZE 
MAXIMUM STACK SIZE 
ar LINES READ 
o PROGRAM ERROR{S) 

END OF PL/M-B0 COMPILATION 

0178H 
00['AH 
0004H 

3760 
100 

'1D 

3·57 



1 

2 
3 
.iJ 
5 
fi 
7 
8 
9 

U1 

1 
1 
I 
1 
] 

I 
1 
I 
I 

~TITLE('COMJVjON VARIABLE STORAGE') 
1************************************************** 
* This mo~ulp contains those variables common to * 
* multiple tasks in the oven control application. * 
***************~**********************************I 
VARIARLE$S'l'ORAGE: 
Do; 
Declare SETPOINT(4) address public; 
Dec}are TOLERANCE(~) address public; 
Declare TEMP(4) address public; 
Declare STATUS(4) byte public; 
Declare BLOCKr byte public; 
Declare BLOCKl byte public; 
Declare BLOCK2 byte public; 
Declare BLOCK3 byte public; 
end VARIABLESSTORAGE; 

MODULE INFORMATION: 

CODE AREI'. SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
1f) LINES READ 
, PROGRAM ERROR(S) 

END OF PL/M-S0 COMPILATION 

r!~M'1-' 

0020H 
f'rWVH 

3·58 

0D 
320 

0D 



1 

2 1 

3 2 
4 2 
5 2 
6 2 

7 2 
8 2 

9 2 
Ie 3 
11 3 
12 2 

13 2 
14. 3 
15 3 
Hi 3 

17 2 
18 3 

2(1 3 
21 3 

22 2 
23 2 
24 2 
25 2 
26 1 

~TITLE('WORD TO ASCII CONVERSION') 
/**************************************************** 
* This routine converts a fixed point word in mem- * 
* ory into a 4. digit plus 1 decimal ASCII disp1ay- * 
* able number. Zero blanking is included. * 
****************************************************/ 
DEC$REP$MODULE: 
Do; 

DEC$REP: 
Procedure (SOURCE,TARGET) public; 

Declare (SOURCE,TARGET) address; 
Declare ANSWR(5) byte; 
Declare (DISPLAY basecTARGET) (5) byte; 
Declare NUMBER based SOURCE structure ( 

ELEMENT ocdress ); 
Dec10re N byte; 
Declare CALC(5) address; 

/* Initialize */ 
Do n=0 to 4; 

ANSWR(n)='0'; 
end; 
CALC(0)=NUMBER.ELEMENT; 

/* Convert to ASCII */ 
Do n=l to 5; 

CALC(n)=CALC(n-l)/10; 
ANSWR(5-n)=(CALC(n-l) mod 10) + 3eH; 

end; 
/* Perform zero blanking */ 

00 n=0 to 3; 
If ANSWR(n)<>'0' 
then n=4; 
else ANSWR(n)=' '; 

end; 
/* Format with decimal point */ 

Call move (4,.ANSWR,TARGET); 
DISPLAY(4)='.'; 
OISPLAY(5)=ANSWR(4); 

end DEC$REP; 
end DEC$REP$MOOULE; 

MODULE INFORMATION: 

CODE AREA SIZE 00EEH 2380 
VARIABLE AREA SIZE = 0014H 200 
MAXIMUM STACK SIZE 00r4H 4D 
40 LINES READ 
o PROGRAM ERROR(S) 

END OF PL/M-80 COMPILATION 

3-59 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



inter 

©Intel Corporation 1979 

APPLICATION 
NOTE 

3-61 

AP-60 

November 1979 

9803104 



Closed Loop Control 
Using the iSBC 569/941 
Intelligent Digital 
Processors 

3·62 

Contents 

I. INTRODUCTION .................. 3-63 

Reasons for Intelligent Boards ......... 3-63 
The On-Board Slave Concept ......... 3-63 

II. BASIC UNIVERSAL PERIPHERAL 
INTERFACE DISCUSSIONS ........ 3-64 

Hardware Features .................. 3-64 
Software Interface ................... 3-64 
Standard Universal Peripheral 

Controllers ....................... 3-65 
Industrial Digital Processor ........... 3-66 

III. FUNCTIONS OF THE 
INTELLIGENT DIGITAL 
CONTROLLER ......•............. 3-66 

Input/Output Functions .............. 3-66 

IV. APPLICATION EXAMPLE ......... 3-67 

Mechanical Specifications ............ 3-69 
Interface Requirements ............... 3-70 

Weightbelt Weight. ................ 3-70 
Weightbelt Motor Control .......... 3-71 
Weightbelt Speed Measurement ..... 3-72 
Liquid Flow Control ............... 3-72 
Liquid Flow Measurement .......... 3-73 
Operator Interface ................. 3-74 

Interface Summary .................. 3-74 

V. HARDWARE CONFIGURATION ..•. 3-74 

Controller Interface ................. 3-75 

VI. SOFTWARE CONFIGURATION ..... 3-79 

High Level Programming Languages ... 3-S0 
Fundamental Support Packages ..... 3-S0 

Host/Slave Relationship .............. 3-S0 
RMX/SO BASIC-SO Interpreter ........ 3-S1 
Software Tasks ..................... 3-81 

VII. SOFTWARE DRIVERS .............. 3-81 

Motor Speed Control Processor ....... 3-S1 
Weight Input Processor .............. 3-S5 
Stepper Motor Control Processor ...... 3-S7 

VIII. APPLICATION SOFTWARE ........ 3-90 

Initialization Programs ............... 3-90 
Control Algorithm Programs .......... 3-91 
Master Processor .................... 3-91 

IX. CONCLUSION ............•........ 3-92 

APPENDIX A ........................... 3-95 



I. INTRODUCTION 

The utilization of computers to provide control or 
monitoring functions for industrial processes 
frequently results in complex computer systems. 
Distributing the control and processing intelli­
gence throughout the control network reduces 
significantly the complexity of the system while 
increasing the reliability. The physical areas 
being controlled or monitored by each portion of 
the distributed system will generally consist of a 
relatively small number of I/O functions which 
are related by some control algorithm. 

The Intel iSBC 569 Intelligent Digital Controller 
(IDC) and the iSBC 941 Industrial Digital 
Processor (IDP) are a part of the expanding line of 
Intel products which are oriented toward filling 
the requirements of these systems. This applica­
tion note deals with the use of these devices to 
provide control of a closed loop system using a 
version of the PID control algorithm. 

It is assumed that the reader is familiar with the 
basic concepts required to generate software and 
has had some experience with using a computer. 
This application note will then guide the reader 
through a typical application, explaining in detail 
the decisions which must be made in order to 
effectively utilize a microcomputer to provide a 
control solution. 

The application which has been chosen is 
considered to be typical of the type which lends 
itself to control. The mechanical aspects of the 
application will be explained so that the user not 
familiar with the particular machinery will be able 
to understand the development. It will be seen 
that the techniques used will apply to any other 
specific application. 

The emphasis of the note will be on the use and 
implementation of the hardware and software 
features of the digital processor and controller. 
The actual PID control algorithm will not be 
developed in this application note. 

Reasons for Intelligent Boards 

The advent of microcomputers and the resulting 
trend toward utilizing these devices. to control 
processes has resulted in many cases where the 
overall system performance has deteriorated 
because of the demands placed on the processor. 

3-63 

In these applications, the computer has become 
overburdened with control algorithms, alarm 
detection, communications, and the many other 
tasks required of it. The processor can be inter­
rupted by time dependent tasks to the point where 
other processing tasks can not be completed. 

Presently, Intel provides two I/O expansion 
boards which are capable of handling portions of 
the processing load which formally required 
processor time. These two devices are the iSBC 
544 Intelligent Communications Controller and 
the iSBC 569 Intelligent Digital Controller. Tasks 
which involve communications or parallel digital 
I/O can now be offloaded without requiring 
valuable processor time. These boards can issue 
interrupts to the master or host processor if 
interaction with other processes or devices is 
required. This technique greatly increases system 
throughput by offloading the other bus master 
processors and by minimizing traffic on the 
Multibus system bus. 

In some cases, it will be found that the intelligent 
controller can function to control the process in a 
stand-alone environment, providing a more 
functional, low cost control system. 

The concept of offloading the processor of its 
input/output tasks can be developed on the iSBC 
569 controller through the use of slave processors 
which may be installed on the board to assist the 
host. The result is the ability to provide up to four 
processors on a single intelligent slave I/O board 
by using the concept of slave processors. 

The On-Board Slave Concept 

The utilization of the iSBC 569 controller is 
enhanced through the use of On Board Slave 
processors (OBS). These devices distribute the 
system intelligence and offload the processor on 
the intelligent controller. They can provide 
custom digital interfaces with the various devices 
which may be connected to the I/O ports of the 
controller. The OBS device allows a designer to 
fully specify his control/interface algorithm in the 
peripheral chip without relying on the master 
processor. Three types of OBS compatible devices 
are available from Intel. These are: 1) Industrial 
Processors, 2) Standard UPI devices, and 3) UPI 
8741A for custom applications. By combining the 



devices in various combinations, optimum solu­
tions can be generated for different control 
applications. 

Before proceeding, we should cover the general 
characteristics of the OBS devices available for 
use in conjunction with the iSBC 569 controller. It 
will be seen that careful selection of the proper I/O 
controller chip can reduce significantly the design 
effort required to provide a control solution. 

II. BASIC UNIVERSAL PERIPHERAL 
INTERFACE DISCUSSION 

With the introduction of the Universal Peripheral 
Interface, Intel has expanded the intelligent 
peripheral concept by providing an intelligent 
controller that is fully user programmable. The 
8741A is a complete single-chip microcomputer 
which connects directly to a master processor data 
bus. 

To fully understand the techniques used by the 
UPI 8741A devices, we must have a general 
knowledge of their characteristics. Only then will 
we feel comfortable in implementing a design 
which uses the components. 

Hardware Features 

Each Universal Peripheral Interface has lK bytes 
of program storage plus 64 bytes of RAM memory 
for data storage. It has a powerful, 8-bit CPU with 
a 2.5 fJ.sec cycle time and two interrupts. Over 90 
instructions are provided in its instruction 
set. Most instructions are single byte and single 
cycle and none are more than two bytes long. 
These instructions are optimized for bit manipula­
tion and I/O operations. Special instructions are 
included to allow binary or BCD arithmetic 
operations, table lookup routines, loop counters, 
and N-way branch routines. 

The chip's 8-bit interval timer!event counter can 
be used to generate complex timing sequences for 
control applications or it can count external events 
such as switch closures and position encoder 
pulses. Software timing loops can be simplified or 
eliminated by the interval timer. If enabled, an 
interrupt to the CPU can occur when the timer 
overflows. 

Two 8-bit bidirectional I/O ports are included 
which are TTL compatible. Each of the 16 port 

3-64 

lines can individually function as either input or 
output under software control. 

The UPI microcomputer is fully supported with 
development tools. The combination of device 
features and Intel development support make the 
8741A an ideal component for low-speed periph­
eral control applications. 

Software Interface 

The OBS communicates with the processor on the 
host board by means of data transfers between its 
registers and the host board's data bus. A 
communication protocol has been defined which 
provides a set of rules by which the processors may 
interact with each other. Two types of software 
protocol are currently defined. These are the 
"simple" and the "extended" protocol. Before 
attempting to utilize the OBS devices in 'an 
application, the concepts used for the communica­
tions must be fully understood. 

When used on one of Intel's single board compu­
ters, the communication path is by means of the 
I/O ports on the host board. This means that two 
port addresses, an odd and an even location, are 
assigned to each OBS device. The even numbered 
port is used to transfer "data" between the 
processors. The odd numbered port is used to write 
commands into the OBS and to read its status. 
Each transfer between the' host and the slave 
device consists of the movement of eight bits of 
information. 

Four of the eight bits available in the status 
message have been given predefined functions. 
The bit will be set (logical 1) when the correspond­
ing condition exists within the OBS device and 
will be reset (logical 0) when the condition does not 
exist. The functions of the four bits are: 

Bit-O. Output Buffer Full (OBF). 
This bit indicates that the OBS has placed 
information into the transfer register and 
that the information is available to the host 
processor. It can be read by performing an 
input operation from the even numbered port 
assigned to the particular OBS. When the 
data has been read, the bit will automatically 
be reset to indicate that no data is available. 
As we will see, this is one of the key features 
enabling efficient utilization of the host! 



slave relationships on single board compu­
ters. 

Bit-I. Input Buffer Full (IBF). 
This bit is used to indicate that data has been 
placed into the input transfer register by the 
host device and that it has not yet been read 
by the slave. Data is transferred into the 
input register by means of the host perform­
ing an output to the even n umbered port of the 
OBS. The bit will be reset when the device 
reads the data from the input transfer 
register into its accumulator. Data should 
only be output to the OBS when the IBF bit is 
reset! 

Bit-2. FO Flag. 
Unlike the IBF and the OBF bits which are 
controlled by hardware, the FO bit is control­
led by the device software. The normal 
function of the flag is to provide a lockout to 
prevent the host from sending more data 
until the previous data has been processed or 
the operation is complete. 

Bit-3. Fl is the Command/Data Flag. 
It is automatically set when the host sends 
either a command (odd numbered port) or 
data (even numbered port). A logical 1 
indicates that a command has been sent and 
a logical 0 indicates that data has been 
sent. This bit may also be cleared or toggled 
by the UPI software. 

These bits will provide normal communications 
between the master and slave processors. 

Figure 1 shows the sequence of operations which 
can be used by the host processor to establish 
communications with an OBS using the simple 
protocol. In Figure la, we see that all operations 
are initiated by the host. It will first verify that the 
IBF flag indicates that the input register is empty 
and available for receiving a command. The 
command is then sent to the odd numbered 
port. This command will inform the OBS that is to 
perform some task. The task may involve a 
requirement for more information to be sent to the 
controller and it may involve the controller 
returning some data to the host. Figure Ib shows 
the operations required for receiving data from the 
OBS. 

3·65 

WRITE 
DATA 

DONE 

HOST TO SLAVE 

~ y 
DONE 

StAVE TO HOST 

Figure 1. Simple Protocol 

With these ideas in mind, we can move to a 
discussion of representative versions of the 
devices available for use on the IDC boards. We 
will then look at a typical application to see how 
they can actually be applied to solve a problem. 

Standard Universal Peripheral Controllers 

Intel presently manufactures three UPI control­
lers for non-industrial applications. These are: 

1. 8278 Programmable Keyboard Interface 
2. 8294 Data Encryption Unit 
3. 8295 Dot Matrix Printer Controller 

These devices offer an "off the shelf' solution to 
many applications which might be encountered. 

The Intel 8278 is a general purpose programmable 
keyboard and display interface device. The 
keyboard portion can provide a scanned interface 
to 128-key contact or capacitive-coupled key­
boards. The keys are fully debounced with N-key 
rollover and programmable error generation on 
multiple new key closures. Keyboard entries are 
stored in an 8-character FIFO with overrun status 
indication when more than 8-characters have been 
entered. Key entries set an interrupt request 
output to the master CPU. The display portion of 
the 8278 provides a scanned display interface for 
LED, incandescent, and other popular display 
technologies. Both numeric displays and simple 
indicators may be used. The 8278 has a 16 x 4 



display RAM which can be loaded or interrogated 
by the CPU. Both right entry calculator and left 
entry typewriter display formats are possible. 
Read and write of the display RAM can be done 
with auto-increment of the display RAM address. 

The Intel 8294 Data Encryption Unit is designed to 
encode and decode 64-bit blocks of data using the 
algorithm specified in the Federal Information 
Processing Data Encryption Standard. The DEU 
operates on 64-bit test words using a 56-bit user 
specified key to produce 64-bit cipher words. The 
operation is reversible; if the cipher word is 
operated upon, the original test word is produced. 
Because the 8294 is compatible with the NBS 
encryption standard, it can be used in a variety of 
electronic funds. transfer applications as well as 
other electronic banking and data handling 
applications where data must be encrypted. 

Finally, the Intel 8295 Dot Matrix Printer 
Controller provides an interface to the LRC 7040 
Series dot matrix impact printers. It may also be 
used as an interface to other similar printers. The 
chip may be used in a serial or parallel communica­
tion mode with the host processor. Furthermore, it 
provides internal buffering of up to 40 characters 
and contains a 7 x 7 matrix character generator 
which accommodates 64 ASCII characters. 

Industrial Digital Processor 

Intel produces the iSBC 941 Industrial Digital 
Processor (IDP) which is programmed to handle 
an assortment of typical industrial digital 
interfaces and transducers. The controller can 
function to provide any of the following: 

1. Scan up to 16 inputs for a change of state. 
2. Provide up to 8 gated one-shot outputs. 
3. Provide eight gated outputs with program­

mable pulse widths and periods. 
4. Provide monitoring of up to 8 input lines for 

event sensing or as a programmable divider. 
5. Provide the period measurement of up to 

eight inputs. 
6. Provide a frequency to count conversion of 

one input. 
7. Provide for the control of a stepper motor 

having up to eight phases. 
8. Provide a simplex asynchronous serial 

input. 

3-66 

9. Provide a simplex asynchronous serial 
output. 

In addition to providing one of the above 
functions, the IDP can also handle simple parallel 
1/0 through the unused port inputs or outputs. 

III. FUNCTIONS OF THE INTELLIGENT 
DIGITAL CONTROLLER 

The iSBC 569 Intelligent Digital Controller (IDC) 
is a versatile digital I/O processor. The IDC is 
designed to operate in a system using anyone of 
the following three modes: 

1. Intelligent Slave 
2. Stand-alone System 
3. Limited Bus Master 

Additional power is obtained by the utilization of 
three OBS's to generate up to 48 parallel inputl 
output data lines. 

In the intelligent slave mode, the controller's RAM 
is shared between the on-board 8085A and the 
Multibus users via a dual-port controller. Thus, a 
single bus master can control several intelligent 
slaves using the dual-port RAM as the major 
communications path. Switches are provided on 
the board to allow the user to reserve lK bytes of 
RAM for use by the 569's processor only. This 
reserved memory is not accessible via the M ultibus 
system interface and does not occupy any bus 
address space. 

In the stand-alone mode, the entire system can 
consist of a single IDC, with cables, power supply 
and enclosure. An IDC can be installed at a 
remote site as a completely autonomous system. 

The IDC may also be operated as a limited bus 
master when it is the only bus master in the 
system. Expansion memory and I/O boards may 
be connected to the IDC via the Multibus system 
bus to increase the input/output capabilities. This 
mode could be used to configure one IDC as a bus 
master with additional IDC's as intelligent 
siaves. This mode is not available with any other 
bus masters such as iSBC single board computers, 
disk controllers, or DMA devices. 

Input/Output Functions 

The I/O interface between the iSBC 569 Intelligent 
Digital Controller and the external devices to 



8253-5 
PROGRAMMABLE 

INTERVAL 
TIMER 

2K RAM 
DUAL 
PORT 

CONTROL 

MULTIBUS SYSTEM BUS 

8259A 
PROGRAMMABLE 

INTERRUPT 
CONTROLLER 

8085A 
CPU 

16K 
ROM/PROM 

Figure 2. IDC Functional Block Diagram 

which it is to be connected normally consists of 
various OBS devices. Each of these slaves has the 
ability to provide sixteen individual input and/or 
output lines. In addition, each provides two 
specialized input lines. The IDC is designed to 
accommodate up to three slave devices, so the 
normal I/O configuration of the board will consist 
of 48 digital data lines. If the specialized lines are 
considered, this number could be raised to 
54. Sockets are provided for the insertion of 
drivers or terminators for use on the 48 digital 
lines. The 6 special purpose lines can only be used 
as inputs and are provided with pull-up resistors to 
terminate the input signals. 

The driver/termination socket configuration 
limits the grouping of the 1/0 lines to be in groups 
of four. Any slave data line being used for an input 
must have its output latch placed into a logicall 
state so as to allow the input line to be controlled 
by the external signal. 

3-67 

IV. APPLICATION EXAMPLE 
An example of the iSBC 569 controller in an 
application will help to explain the techniques 
used to implement a control system and to 
interface between the various functional units. 
The application chosen will consist of a typical use 
but will be simple enough to allow the design 
operations to be easily followed. 

Suppose we choose to design a control system 
which will be produced as a subsystem to interface 
with and control a liquid applicator. As we go 
through the steps required to design and imple­
ment such a control system, we will see how the 
various hardware and software tools which are 
available from Intel can be utilized to allow easy 
implementation of the task. 

Before proceeding, we will spend some time to 
insure there is a clear understanding about the 
definition of the liquid applicator. When this 
definition is complete, the design of the control 
subsystem can begin. 



A liquid applicator consists of two functional 
parts: a device to control the flow of a solid 
material, and a device to control the flow of a liquid 
onto the material. We will actually be controlling 
two continuous process loops which are related by 
an input parameter which specifies the percentage 
of liquid to be applied to the dry material. 

Figure 3 shows the components making up a 
typical weighbelt feeder. The operation of the 
feeder is straightforward. The vertical gate is 
adjusted manually to provide a desired gap 
between the conveyor belt and the lower portion of 
the gate. This will result in a nearly level 
distribution of material on the belt when it is 
moving. The weigh belt is connected to a load cell 
to provide information back to the control system 
giving the amount of weight on the belt at any 
instant. If we know the speed of the conveyor, it is 
simple to compute the amount of material flowing 
through the feeder during any time period. This 

flow rate is known as the Mass Flow and is usually 
expressed as pounds per minute. The control of 
the feeder system can be provided by varying the 
belt speed until the desired flow rate has been 
obtained. 

Our control system will be designed to control the 
belt speed and to monitor the weighbelt weight and 
any other parameters which we determine will be 
necessary to control the flow of material. A typical 
control process will require an optimum flow rate 
be established for each material of a different 
density. With a known material flow through the 
feeder, we can go about the process of applying the 
liquid flow to the material in order to complete our 
application example. 

The second loop ofthe example will involve adding 
the liquid to the material coming from the feeder 
mechanism described above. Normally, the 
percentage of material to be applied is fixed by the 

Figure 3. A Welghbelt Feeder 

3-68 



formula or mix design ofthe product which we are 
manufacturing. However, since the flow rate 
through the weigh belt feeder can and does vary 
(our first control loop will not always be able to 
exactly control the flow due to many conditions 
beyond our control), the liquid setpoint will 
constantly be changing as a function of the actual 
mass flow and the liquid percentage. 

Figure 4 shows the liquid application piping 
diagram for the liquid portion of the control 
system. The items with which we will be directly 
concerned are the liquid flow meter and the control 
valve. The other components, while requiring 
consideration in an actual implementation, will be 
ignored in this aplication note for the sake of 
clarity. Let us consider the details of each control 
loop in more depth before we attempt to design the 
control system. 

Mechanical Specifications 

In subsequent portions involving development of 
the control system, we will be constantly referring 
to data regarding the mechanical specifications of 
the liquid applicator system. Therefore, we will 

establish a set of theoretical technical specifica­
tions for our system. Later, we will see how close 
the control system can come to providing a control 
which meets or exceeds these parameters. These 
specifications will be broken down into two sets of 
data, one for physical parameters over which we 
have no control, and a second for the desired 
control characteristics. 

The physical data provides information on the 
mechanical design and will be used for guidelines 
in selecting interface equipment and in preparing 
software algorithms. The physical data is: 

Operating Belt Speed -
1.1 to 180 feet per minute. Adjusted by a 
variable speed motor directly coupled to the 
belt pulley mechanism. 

Feed Output Rates -
Adjustable over a 10:1 range with a maxi­
mum output of 960 pounds per minute. 

Feeder Belt Characteristics -
The belt will be 9 inches wide by 2 feet in 
length when installed. The belt pulley rollers 
will have a radius of 4.5 inches. 

FLOW 
VALVE FLOW CONTROL 

THREE-WAY METER { VALVE { 

r----FRO- M -----l~~ 
W~~'b~~LT~ X{ Xt 

LIQUID 
SUPPLY 

TANK 

m MAIN AUXILIARY U STRAINER STRAINER 

MIXERS { 

STRAINER 

PRESSURE RELIEF 
VALVE 

Figure 4. Liquid Flow Diagram 

3·69 

CHECK 
VALVE 



Feeder Weight Sensor -
The weigh belt feeder will incorporate a strain 
gauge load cell to measure the weight on the 
belt. Its linearity shall provide 0.1% of full 

. scale range. 

Liquid Flow Rates -
The liquid flow rates shall vary between 10.0 
and 120.0 pounds per minute. 

The desired operating characteristics of our 
control system will provide the following general 
responses: 

Feeder Accuracy -
1 % of full scale over a 10: 1 range. The feeder 
will maintain the set feed rate within 1 % of 
full scale over anyone minute period. The 
minimum sample must be at least one pound. 

Liquid Accuracy -
1 % of full scale over the operating range. 
Must be able to track mass flow variations 
within the above limits. 

These specifications will provide guidelines for 
the decisions which we will later make in 
providing a micro-computer control solution to the 
weigh belt feeder application. 

Interface Requirements 

A logical place to begin the consideration of the 
control system design is to examine the interface 
requirements and define the characteristics of the 
interfaces which will be required to implement the 
control. We will consider each element of the 
physical system separately. 

Weighbelt Weight 

The weighbelt weight will be sensed using a lever 
system connected to a load cell integral to the 
mechanical unit. The output of a strain gauge 
load cell is a low level (approximately 20 millivolts 
at full scale) analog output. Obviously, this signal 
must be somehow converted into a digital level 
before we can use its information to compute the 
actual mass flow across our weigh belt feeder. Our 
design process must define the characteristics of 
the digital signal so that the appropriate analog to 
digital converter system can be chosen. The 
design path can take any of several equally valid 
approaches, any of which will provide a func­
tional control system. For the purposes of this 

application note, we will assume that the design 
path will utilize the Intel iSBC 569 Intelligent 
Digital Processor. 

This assumption requires us to utilize only signals 
which can be generated or interpreted using the 
computer board and its associated OBS's. We will 
not be capable of handling an analog signal. 
Since some type of signal conditioning would be 
required of the low level analog voltage anyway, 
this does not impose any serious restrictions on 
our design. Indeed, it will cause us to consider a 
technique which provides excellent noise rejection 
characteristics. We will. assume that a voltage to 
frequency converter (V IF) will be installed near 
the load cell and the frequency will then be 
transmited over a pair of wires to our digital 
interface. Commercially available converters 
provide a frequency output which varies between 0 
and 10 kilohertz. With this in mind, we can 
continue with the development of the interfaces 
required in the application. 

The load cell transducer will incorporate a local 
unit which generates a pulse train whose fre­
quency is proportional to the weight.upon the load 
cell. This mechanical arrangement is typical of 
many gravimetric feeder systems in use .today. 

For purposes of this application, it will be assumed 
that the system will be calibrated such that a 
weight of 10.00 pounds on the weigh belt will 
produce a pulse train frequency of 10 khz. No 
weight on the belt will generate a frequency ofless 
than 30 hertz. The accuracy of the pulse output 
will be guaranteed to be proportional to the weight 
within 0.05%. Again, this is typical of devices 
available and in general use in similar applica, 
tions. 

3-70 

The characteristics we have described above fall 
within the performance range of the iSBC 941 
processor when operated in its frequency to count 
mode. If we assume a sample rate of 200 msec 
(this value should provide an adequate control 
characteristic since it is unlikely that the 
mechanical equipment can respond rapidly 
enough to warrant a faster control and sample 
time), the frequency count read by the iSBC 941 
counter will range between 6 and 2000. System 
accuracy of reading the belt weight will thus 
exceed 0.1% of the full scale weight reading. 



We will discuss the electrical and programming 
interfaces in subsequent sections of the applica­
tion note. 

Weighbelt Motor Control 

The flow on the weighbelt will be controlled by 
changing the speed of the belt movement. Since 
the weighbelt is mechanically designed to main­
tain a constant bed level, the amount of material 
flowing will thus be adjusted. 

The belt speed has traditionally been adjusted 
using either SCR controllers or by using variable 
transmissions between the motor and the con­
veyor belt. The increased utilization and develop­
ment of stepper motors is leading toward greater 
use of direct stepper motor drives. This is the mode 
which will be utilized for this application. 

The manufacturer's specifications for the weigh­
belt indicate that the following requirements exist 
for driving the device: 

REQUIRED TORQUE - 149 LB-IN-IN 
REQUIRED MAX SPEED - 2.54 REV/SEC. 

Referring to typical manufacturer specification 
sheets for stepper motors, we find the torque vs. 
speed characteristics shown in Figure 5. Our 
application requires 2.54 revolutions/sec which 
translates to 508 steps per second when the 
stepper is used in a 1.8 degree per step mode. We 
can see that the requirements fall well within the 
capabilities of the particular motor. 

400 

320 

240 

160 

80 

~ V 

100 200 

i--

i"-t---

300 400 500 

SPEED (STEPS PER SEC) 

'" 
600 

Figure 5. Stepper Motor Torque/Speed 

\ 
\ 

700 

3-71 

At this point, we have four routes which may be 
pursued to actually interface with the motor. These 
are: 

1. Utilize the iSBC 941 stepper mode to drive 
the stepper motor directly. 

2. Utilize the iSBC 941 frequency generation 
mode to drive a standard stepper translator. 

3. Utilize parallel outputs to provide a digital 
output to a stepper translater. 

4. Utilize a 4-20 mao current signal to a stepper 
translator. 

Three of the above modes use a translator to drive 
the motor. If possible, we should strive to 
eliminate the cost of this intermediate device. 

Again, we will refer to the published motor 
specification sheets. For our typical motor, the 
data is shown in Figure 6. The requirement for 
providing in excess of six amperes per winding 
exceeds the capabilities of the output drivers 
which can be installed on the iCS 930 termination 
board. We will be forced to either design a custom 
high power driver board or to use a translator 
module. To keep the application as simple as 
possible, we will choose the latter. 

ELECTRICAL RATINGS 1.8 DEGREE STEPPING MOTOR 

Motor Time for DC Amperes Resistance Inductance 
Type One Step Volts Per Winding Ohms MIllihenries 

Ourtype 1.7 msec 2.3 6.1 0.37 2.4 

Figure 6. Stepper Electrical Ratings 

We have three choices left when the decision has 
been made to use a translator module. The use of a 
current output mode will necessitate the use of an 
external analog board. This is undesirable, both 
from the standpoint of interboard communication 
requirements, and from a cost effective basis. 

The use of a parallel output would commit many of 
our output data ports and would require the 
installation of UPI modules or iSBC 941 modules 
to get the parallel output drivers. In addition, 
parallel digital input is not a common option of 
commercially available translators. 



This leaves us with the use of a variable frequency 
output to provide stepping information to the 
translator module. This is a normal operational 
mode of the iSBC 941 processor and the required 
508 hertz is within the normal output range of the 
device. 

A definite advantage of our decision to use a 
stepper motor drive for the weighbelt is that we do 
not have to maintain accurate feedback and 
control algorithms to maintain the conveyor 
speed. Only a simple check need be made to verify 
that the conveyor has not stalled. The stepper 
motor will inherently maintain a speed propor· 
tional to the frequency rate. 

The actual electrical and programming interfaces 
will be discussed in subsequent sections of this 
application note. 

Weighbelt Speed Measurement 

We have mentioned that a control system using a 
stepper motor for speed control can operate 
effectively in an open loop configuration. How­
ever, since a faulty component could result in 
failure of the motor to run, we must verify that the 
belt is indeed moving. This is easily accomplished 
by adding a magnetic sensor to the weighbelt 
rollers and counting the pulses generated as the 
device operates. 

Typical magnetic sensors and ring magnets for 
installation on the weighbelt will provide us with 
ten pulses per revolution of a belt pulley. Since the 
pulley is operating at a maximum speed of 2.54 
revolutions per second, we will receive between 0 
and 25.4 counts per second. Using our sample 
period of 200 milliseconds, this means that we will 
count between 0 and 5 counts during each time 
interval. Our decision to use a stepper control loop 
rather than a conventional closed loop seems 
justified as we would obtain rather poor control 
with feedback having this poor of resolution. 

We must make a decision to determine how the 
speed will be sensed by the control board. An 
obvious choice would be the use of an iSBC 941 
processor operating in the period measurement 
mode. This would require using our third socket 
on the iSBC 569 host board and would leave us 
without the ability to use an additional device to 
support the liquid control loop. We should seek an 
alternative solution. 

The iSBC 569 controller board provides an 8253 
programmable interval timer. A first approach 
might be to attempt to configure one of these 
counters to provide an event counting mode and 
read the belt speed from the counter. However, 
this is not possible since we would be required to 
zero the counter after each reading and the 
counter does not load the preset count until a clock 
pulse is present. We would have no ability to 
distinguish between no belt motion and the belt 
motion which is the same as the previous reading! 

An alternative approach is to create a software 
counter by routing the belt movement pulse to one 
of our interrupts and creating a program which 
will increment a counter. Each time a count is 
sensed, the software will increment a memory 
location by an increment which corresponds to the 
speed represented by one count. 

Again, we will delay the discussion of the 
electrical and programming interfaces until 
subsequent sections of this application note. 

Liquid Flow Control 

The design of a control system to provide control 
of flow through a liquiQ. valve is an integral part of 
the liquid pipe and plumbing design. To optimize 
the system operation and provide a system at the 
minimum cost, the integration of control and 
mechanical design must be made. 

3·72 

Several possibilities exist when making a decision 
as to which control valve to use in adjusting the 
liquid flow rate. The actual selection of the 
physical valve mechanism should be based upon 
the characteristics of the liquid flow. This 
decision is outside of the scope of this application 
note and will not be pursued. However, the valve 
actuator is a device which becomes an integral 
part of the control system and its selection is a 
function of the control system design. 

Figure 7 shows the common control valve types 
which are used to vary the flow rate of liquids. 
The automatic control system we are designing 
precludes the use of a manual valve, so we must 
make our selection between the air actuated and 
the motorized control valve. 

Classical control design has utilized air actuated 
valves almost exclusively. This type of actuator 
incorporates an intermediate transducer to 



PROPORTIONAL CONTROL VALVES 
I 

AIR ACTUATED VALVES 
I 

MANUAL 
I 

MOTORIZED VALVES 

FLOW 

;11' 
SUPPLY AIR 

4-20 MA 0-10 KHZ 

CONTROL 
AIR 

I I 
SYNCHRONOUS STEPPER 

Figure 7. Control Valve Family 

convert the signal generated by the control system 
into a variable air pressure. This air is used to 
drive a pneumatic control actuator. Two types of 
electrical to pneumatic transducers are in com­
mon use. The most prevalent converts a 4 to 20 
milliampere control signal into a proportional air 
signal. The second type will accept a 0 to 10 khz 
pulse train and convert this to an air output. 

Both of the above systems provide excellent 
electrical noise immunity and give reliable 
operation in industrial environments. They do, 
however, have disadvantages. A supply of air 
must be present at the control devices and this air 
must be maintained such that it is free from water 
and oil. In many cases, this presents costly 
installation and maintenance considerations. 
The use of computerized control systems has led to 
a recent concept of eliminating the intermediate 
conversion and using instead a digitally control­
led actuator. 
A stepper motor can be connected to the actuator 

of the control valve to provide a simple and 
economical control path. The control outputs 
from the PID control loop can be sent to the iSBC 
941 processor's command queue and the controller 
will handle the motor movements. 

The electrical and programming interfaces of this 
interface will be fully discussed in subsequent 
sections. 

Liquid Flow Measurement 

The use of a liquid control valve to vary the liquid 
flow cannot in i,tself provide an accurate control 
loop. Because the flow rate through a fixed valve 
will vary with material densities, temperatures, 
and pressures, we must provide some type of 
feedback into our control algorithm. Thus, a 
flowmeter must be inserted into the liquid flow 
and its output returned to the system. 

The control system designer can choose from 
several types of flow meters depending upon his 
requirements. Figure 8 shows many of the more 

MAGNETIC OVAL FLOWMETER 
WOBBLE METER 

TURBINE 

4-20 MA 
0,5% ACCURACY 

0-500 PPS 
3% ACCURACY 

Figure 8. Flow Meter Classifications 

3-73 

30-1000 PPS PULSE 
0.5 % ACCURACY 



standard classifications of flow meters. Our 
selection of the meter must take into account the 
type of electrical interface available from the 
meters. In our attempt to maintain a digital 
system which does not require additional support 
boards, we will reject the use of a magnetic 
flowmeter because this type of meter provides an 
analog type of output which would require the 
addition of another board into our control 
system. The wobble meter prov.ides a digital pulse 
type output but its accuracy tends to discourage its 
use in a refined control loop. We will utilize the 
turbine meter for our liquid flow application. 

The output of a turbine meter is a low voltage, low 
current AC signal whose frequency is proportion­
al to the liquid flow rate. The manufacturers of 
the meters provide pre-amplifiers which convert 
the signal into 10 volt peak to peak square waves 
which are equivalent in frequenacy to the AC 
pulses. The operating frequency ranges typically 
from 100 to 1200 pulses per second. 

It is desirable to measure the flow rate using a 
single iSBC 569 controller. If we consider that a 
200 millisecond control interval will be used, the 
flow will result in a reading of between 20 and 240 
pulses per sample period. These readings could be 
performed using an iSBC 941 processor, but we do 
not have the socket available for a fourth module, 
so we must consider utilizing another interrupt 
driven software counter as was done with the belt 
speed. 

All control and monitoring equipment for our 
liquid control application has now been defined in 
such a manner as to be compatible with the 
utilization of a single iSBC 569 controller 
board. The actual interfaces to perform the 
interconnections and to provide control instruc­
tions can soon be considered. 

Operator Interface 

Finally, we must define the data communications 
which must take place between the controller, 
other system tasks, and the operator. Let us first 
consider the system control variables and the data 
which, if generated by the control process, might 
be useful to the remainder of the control system. 

The first variable which comes to mind is the 
liquid flow setpoint. If we consider the entire 

3-74 

control system, this parameter will be found to be 
actually expressed as a percentage of the total 
output material. For example, if we assume the 
recipe required the final product to consist of 5% 
liquid by weight, we would require that our control 
system add the correct amount ofliquid to perform 
this task. 

To allow maximum flexibility of the control 
system, we should allow selection of various 
density materials onto the weigh belt. A host 
processor with computational capabilities can 
calculate the optimum gravimetric feeder flow rate 
for the materials being combined. 

The control system can provide an integration 
function to allow totalization of the amount of 
material which has been transferred through the 
system. A capability of outputting the amount of 
material which has passed over the weighbelt and 
the amount of liquid added will be included. 

The implications of the parameter storage and 
generation will be dealt with later when the 
host/slave relationships ofthe iSBC 569 controller 
are discussed. 

Interface Summary 

We have defined the required interfaces which will 
be needed to perform our control task. These can 
be grouped into external and internal interfaces. 
The external interfaces are those which connect to 
physical pieces of external equipment. 

These are summarized in Figure 9. The internal 
interface relates to the data which is to be passed 
between the iSBC 569 Intelligent Slave board and 
other boards which may be present on the 
MULTIBUS system bus. These data areas are 
shown in Figure 10. 

v. HARDWARE CONFIGURATION 

We have now defined the various components 
which we will utilize on the controller board to 
support the physical control and monitor hard­
ware. Our next task is to provide an interface 
between the controllers and the equipment which 
we are to control. In so doing, we will define the 
hardware I/O assignments for the iSBC 941 
processors and for the counters which we will be 
utilizing. The following paragraphs will deal 
with the optimization of this configuration. 



•••• DEViCE········· •••• SIGNAL TYPE' •••••• •••• BOARD ELEMENT' ••••••• 
iSBC 941 10 VDC PULSE 

10 VDC PULSE 
110 VAC PULSE 

iSBC 941 
WEIGHBEL T MOTOR 
WEIGH BEL T WEIGHT 
WEIGHBEL T SPEED 
LIQUID VALVE 
LIQUID FLOW 

5 VDC MUL TIPHASE 
10 VDC PULSE 

8259A INTERRUPT 
iSBC 941 
8259A INTERRUPT 

Figure 9. Control/Monitor Signals 

••• INPUTS···················· OUTPUTS···· 
GRAVIMETRIC FLOW ACCUMULATED SOLIDS 
LIQUID PERCENTAGE ACCUMULATED LIQUID 

Figure 10. Communication Signals 

Controller Interface 

Good design practice dictates that we should 
provide optical isolation between the controller 
and the external equipment when designing for an 
industrial environment. The optical isolation is 
included if we utilize the Intel iCS series of signal 
conditioning/termination boards. We find that 
we have two types of digital termination panels 
available, one for low current, low voltage 
applications and second for higher current and 
voltage uses. If we base our choice on the data 
provided by Figure 8, we will lean toward using the 
iCS 930 panel for our interface. This board can 
handle a mixture of signal levels and will support 
up to sixteen individual lines, providing almost 
double our needs. 

Even a cursory glance at the iSBC 569 controller 
will provide the knowledge that three edge 
connectors are utilized to bring the OBS signals 
from the board. This would indicate that the 
simplest (and most costly) solution is to use three 
termination panels. Obviously, we should investi­
gate further before making such a decision. Three 
possibilities are readily apparent. First, we might 

Socket 1 Socket 2 

Port 

10 Weight In 
11 
12 
13 
14 
15 
16 
17 
20 Conv. Mtr. 
21 
22 
23 
24 
25 
26 
27 

perform some type of re-routing of data lines on 
the board so as to use only one connector. Second, 
we can use more than one connector on the ribbon 
cable and perform a parallel connection of the 
various lines and choose them so that no 
duplication of lines results. Finally, we can use 
some scheme of connecting three cables to the 
board and use the optional Port C connectors on 
the termination panel. 

The schematic drawings of the IDC indicate that 
only six of the OBS I/O lines of each processor 
socket are broken by wire wrap jumper posts. All 
of the lines so configured are on the Port 2 data 
lines. Unless we decide to cut etch and add 
soldered wires, we will not be able to configure our 
board with this technique. Some further ipvesti­
gation is in order before we can make a decision. 
The use of a parallel output technique using 
multiple connectors on a single cable seems to 
present a feasible approach if we can work out an 
assignment of I/O which will not cause conflicts. 
We will begin by building a trial port assignment 
table in which we will assign the required 
functions to input/output ports. We will group the 
inputs and outputs into groups of four to handle 
the terminator/driver arrangement which is built 
into the board. This table is shown in Figure 
11. We obviously have a small problem. We have 

Socket 3 Direction 

In 
In 
In 
In 

Out 
Out 
Out 
Out 

Valve Ph. 1 Out 
Valve Ph. 2 Out 
Valve Ph. 3 Out 
Valve Ph. 4 Out 

Figure 11. UP!'" Socket to Terminator Initial ASSignments 

3·75 



not yet shown the signals from the conveyor speed 
and the liquid flow into the on-board interrupt 
counters. The schematics show that these signals 
are brought onto the board on the edge connectors 
but the locations correspond to Port C lines which 
do not exist on the iCS 930! We have available 
input lines on the Port 1 connectors but there is no 
provision to break the signal on the board to route 
it to the counter interrupts. 

Ifwe move on to the third alternative, we find that 
the interconnection paths caused by tieing 
various lines together cause even greater prob­
lems. Either some fact must have been over­
looked, or we must consider the use of more than 

r-------, A3, 

~:--L-_OC 

one terminator board. 

Figure 11 indicates that three lines are available 
on the Port 2 data lines which go to jumper posts 
and which could be used ifthey were not part of an 
output driver of Port 20. If some technique can be 
found to use these "output" lines as inputs, our 
problem will be solved. The use of an open 
collector driver can provide us with the ability to 
use the line as an input so long as the drivers are 
turned off! This should be no problem as we can 
force the outputs to this state either through the 
appropriate jumpering of inputs or by outputting 
data to the OBS 1 ports corresponding to these 
bits. The resulting electrical configuration can be 
seen in Figure 12. 

J1 

RIBBON CABLE 

--------------- P2 BO 

OUTPUT ~ BELT 
'~MOTOR 

B1 

MUST BE 
LOW TO ALLOW 
USE AS INPUTS 

INPUT "". r::::---, BELT --'~L-_):;o":c-+---7 >--+-:.:.::,;::..:...-------7'~ SPEED 

AVAILABLE AS 
OUTPUT 

IUPI1-:::::~~~~~S 
USED TO GENERATE 

220 MSEC 
TIME PULSE 

THESE SIGNALS 

IN~~~~~~isE~~~ J~LT .L-_---t--~ 
SPEED AND LIQUID 

FLOW RATE 

B2 
INPUT ~ Q 

_.--1-_):JO~C--+---7 )---+--f--"-:c.,=.'----7.~ L~L:SW 

OUTPUT r.r-~-., 
~---+---7 )---+--f---j----<i-7 I SPARE 

--.....,r--1-_ L. ___ .J 

J2 

r--Ais--' , -7-1 -----7 
, I 
I I \, 

I 7 )------' 
I 
I 

: 1 
I 

L _____ J 1 >-----------' 

FIgure 12. Port AssIgnments 20-23 

3-76 

ICS 930 
TERMINATOR 



Let us examine the implications of performing 
this interconnection. The physical layout of the 
board and the use of the terminator/driver sockets 
causes the I/O lines to be grouped into sets of four 
data lines. W e must choose which of the three iSBC 
941 modules will be responsible for supporting 
each of the lines. In Figure 12, we can see that the 
belt motor is driven by OBS Socket 1, Bit 20. This 
requirement has placed output drivers onto data 
Bits 21, 22 and 23. Our requirement is to provide 
two signals which can be routed to the counter 
inputs so we must place a terminator .into either 
socket AlD or A16. We have arbitrarily chosen to 
use socket AlD. The use of the terminators in 
parallel with the drivers will not create a proplem 
so long as those lines which are used as inputs 

have the driver in the high impedence state. This 
is done by requiring that the output Bits 21 and 22 
of the device placed into socket 1 are driven 
low. Finally, we see that the remaining Bit 23 may 
be used as a general purpose output line if it 
becomes required. 

The wiring configurations for the remammg 
connector groupings are shown in Figures 13, 14 
and 15. In Figure 13, we see the assignments 
which can be used for Bits 10, 11, 12 and 13. We 
have earlier defined that an iSBC 941 processor 
would be used in a high speed frequency counting 
mode to determine the weigh belt weight. This 
device will be placed into socket 2. The use of this 
mode precludes the use of any general purpose 

RIBBON CABLE 

r 
10 

SLAVE I 

J1 ~P2 AO 

- - - - -_~!-I ---)7 >_-'I::.:.NPt'u:.:T _______ -7~ W~~I~~~LT 
I 

FREQUENCY 
TO WEIGHT 
CONVERTER 

MUST BE 
HIGH TO 

ALLOW INPUTS 

MUST BE 
LOW IF A14 

IS USED 

SPARE 
OUTPUTS 

0 

SLAVE 
1 

11 

12 

13 

I 
I 

: 
l) OUTPUT r.r-~-., -+-, ----7 )---1--..:..:.+-'------7 I SPARE 
I ~---~ 

I 
I 
I 
I 
I 

L 

A1 I 

-.-l---'\7 > __ t-_-t-_O_UT""1P~U-T--7""-!'-~2- ~ SPARE 
I 7~L ___ ~ 
I 

_____ -.Jl-l---)7 >-__ t-_-t-_---i_O_U_TP_U...,T.....,,)-[= ~ = J SPARE 

J2 r------, ICS 930 
TERMINATOR 

10t----l-----~----7 

J3 

) 

~-"""'1 r-------' 

>--1--.....,,) >------' 

>-i-------7) )--------' 

Figure 13. Port Assignments 10-13 

3-77 



input/output operations of the processor if we 
desire to maintain maximum accuracy of the 
frequency measurement. We will arbitrarily 
choose to use Bit 10 as the location of the 
frequency count input. This will necessitate 
installing a terminator into the socket correspond­
ing to the processor input. If required, we can 
install open collector drivers into socket A14 and 
use the remaining three bits for general purpose 
outputs. If this is done, care must be taken to 
assure that Bit 10 of the device which is placed into 
socket 3 is placed into a low state as was done in 
the preceding example. 

functions. These four bits may be used as inputs 
or outputs as required by the application. For 
example, we have ignored the fact that actual 
control loops incorporate solenoids for flow 
control routing. The unused bits can be used to 
perform these tasks. 

Figure 15 shows the interconnections for the 
remaining group of bits. There are several 
features shown on this drawing which should be 
discussed in some detail. Let us first consider the 
remaining function which we must implement. 
This is the control for the liquid valve stepper 
motor. An iSBC 941 IDP operating in the stepper 
mode will provide the necessary control functions 
to drive the motor. Since all four of this group's 

The interconnection scheme for Ports 14 through 
17 can be seen in Figure 14. Note that no ports of 
this group are dedicated to our defined control 

ABLE AVAIL 
FO 

INPUT OR 
R 

~ 
I->--

,. 

15 

SLAVE 
0 

16 

17 

,. 

15 

SLAVE 
1 

16 

17 

,. 

15 

SLAVE 
2 

16 

17 

r-

I 
I 
I 

I 
I 
I 
I 

I 
I 
I 
L 

i 
: 
I 
I 
I 
I 

I 
I 
I 

L 

r 

I 
I 
I 

I 
I 
I 

I 
I 
I 

L 

RIBBON CABLE 

J1 --------------- P2 A4 

- - - - ----11>-.--"'7 >--t--------~~---i SPARE 
I 7 ~L ___ ~ 

I 
I "" ~_~5_, 
: 7 >----+-----,r-------7~L---lsPARE 

A2 I A6 

III '\'\....;---1 SPARE 7 ~L ___ .J 

I 
I '\ ,,-_r-e!-, ______ J 7 >----+----1f--+--~/""'L ___ J SPARE 

------, '\. ICS9JO 
·1 7 TERMINATOR 

I 

! 1 >---+---~ 
A9 I 

! 1 >----t---+---1 

I 

______ : 1 )---+---1---1-----1 

JJ ------1 1 
I 

-t-! ---)7 f------' 
A15 

AVAILABLE 
AS 

ORIVER 
OR 

TERMINATOR 

I 

! ) 
I 

-+:---)~ f---------~ ______ J 

Figure 14. Port ASSignments 14-17 

3·78 



data lines are committed to drive the four phases of 
the stepper motor, there are no other functions 
available. 

An important feature of the iSBC 941 processor is 
illustrated in Figure 12. This is the ability to 
enable the processor to generate an interrupt at 
some point in its operation. We have earlier 
indicated that we will use the processor in socket 2 
(the frequency counter) to provide us with a 200 
msec time reference. When the iSBC 941 proces­
sor is enabled with an ENFLAG command and is 
operating in the frequency count mode, it will 
generate an interrupt on its output line, Port 
25. Figure 15 shows how this interrupt can be 
connected to the host board's internal interrupt 
input structures. 

The hardware configuration has been defined 
through Figure 14. The actual implementation 
can be handled through the use of the various 
wire-wrap jumpers on the IDC. Drivers and 
terminators can be installed as indicated in the 
preceding discussion. 

VI. SOFTWARE CONFIGURATION 

As with most computer controlled systems, the 
actual implementation of the task is handled with 
software. In older designs and in many mini­
computer systems, this task has become formid­
able and has resulted in cost over-runs and 
schedule delays. Intel provides many tools for use 
by the designer to prevent this type of problem and 
to assist him in easily creating a workable and well 

RIBBON CABLE 

J1 ~'-P2 84 

SLAVE 
o 

H ----- -1 > '>--_O'-'U'-iTrPU=-T'--______ ~~ P'i.t..~VEE, 

I 1 85 

~ _-,-I __ j"" ' __ +-_O_U~Tt-PU-T ____ ___j~ VALVE 
~~ ,.,r ODC5 PHASE 2 
18 I I 

I A4 I 86 

I I '\ OUTPUT '" r:::::-, I-t--~I- -1-1---7"" '>---+---+----''-'--1r'---''''.~ P~~W3 
I I 
I I 87 

t--t----t- --I-I--j "-_-t-__ t-_--t-0_U_T_PU_T,~>_EJ VALVE 
" ODC5 PHASE 4 

IUPIO-~==~.J L.. ______ .J J2 

~------l > les 930 
TERMINATOR 

SLAVE 
1 

I I 

I I > 0--1--- I >---t--~ 
44 43 I 1 

42 I A11 I > 
261-t--~1- -./-I----~ )---f----+----+ 

I I 
I I 

_~==2=7[1----f~--_____ 1 > 
'UPI1 J3 

STEP SWITCH 
CONTROLLER 

70 

26H-~ 

7438 

27H---~LL-L.J~-;----j >-----------' 
~======~ L ____ .?.:..J 

Figure 15. Port ASSignments 24-27 

3-79 



documented software configuration. Let us look at 
some of these tools in more detail and consider how 
their use will help us to write our programs easily 
and quickly. 

High Level Programming Languages 

A valuable tool, which Intel provides the designer 
of small control systems, is the ability to program 
even the smallest systems using a high level 
programming language, PL/M-80. This language 
offers relatively efficient and structured, program­
ming capabilities. It has been determined that 
PL/M -80 users can expect to use between 1.1 to 
slightly more than 2 times as much program 
memory as would be used for the same task written 
in assembly language. At the same time, the 
programmer's time to code a task will be consider­
ably less than ifhe were to use assembly language. 

The PL/M-80 Programming Manual indicates 
that the language is highly structured and lends 
itself very well to handle logical type operations. 
Its weakness in handling complex mathematical 
computations is compensated by the ability to 
combine the user application software with 
packaged Intel support software. 

Fundamental Support Packages 

The Intel 8080/8085 Fundamental Support Pack­
age (FSP) provides a package of application 
subroutines and functions which can be called 
from programs written in either assembly lan­
guage, PL/M-80, or in FORTRAN-80. It uses a 
standard set of data structures and a unified status 
and error reporting scheme. Nine major groups of 
operations are fully supported by this package. 
These are: 

1. A primitive fast string handling and integer 
arithmetic capability without error report­
ing. 

2. A binary integer arithmetic package which 
performs operations on both signed and 
unsigned integers of various lengths in 
binary representation. 

3. The floating-point arithmetic package 
which provides operations on floating point 
numbers in four formats: single precision, 
single-precision extended, double precision, 
and double-precision extended. 

4. The decimal arithmetic routines which 
perform integer and fixed point computa­
tions on numbers which are stored as 
strings of ASCII characters. 

5. A string handling section which contains 
routines to transform strings and to extract 
and insert substrings. A routine for scan­
ning of general input and one for formatting 
of general output are included. 

6. Routines for number conversion, for numer­
ic I/O transformation of data from one 
format to another, input scanning of 
numeric strings, and formatting of numeric 
strings for output are also available. 

7. The floating point transcendental function 
section provides trigonometric, exponential, 
and other transcendental functions. 

8. The statistics routines compute the mean, 
variance, and standard deviation of one 
group of statistical data, and the covariance 
and correlation factor of two groups of data. 

9. Finally, the PID procedures provide the user 
with a version of the classical Proportional, 
Integral, Derivative control algorithm. 

Clearly, the use of the FSP support programs 
enhance the logical PL/M-80 program operations. 

Host/Slave Relationship 

Before we proceed with our development, we 
should take some time to examine the relationship 
between our iSBC 569 IDC and other controllers 
which may be installed in the system. The 
utilization of intelligent slave boards provides the 
capability to develop control concepts to an 
extremely high level if certain guidelines are 
followed. We will therefore assume that the 
control solution which we are developing will be 
but a part of an over all control concept which 
utilizes multiple controllers sharing common 
resources. 

This concept allows us to develop control algo­
rithms for each sub-process within our overall 
control system. This development can provide 
independent design and implementation of each 
process. A host processor can be used to provide 
any required inter-process communication tasks 
and to provide the operator interface. We have 
previously indicated that the operator interface 
will provide some means to adjust the weighbeIt 

3·80 



feeder setpoints and the liquid ratio. It should also 
allow the operator to display the current status of 
the process. Since these operator interface func­
tions are but a part of the overall control functions, 
the interface should be programmed such that 
maximum flexibility can be gained through its 
use. Fortunately, such an interface is available 
using Intel's RMX/SO BASIC-SO. 

RMX/SO BASIC-SO Interpreter 

The RMX/SO BASIC-SO Interpreter is a high level 
language interpreter with extended disk capabili­
ties. It operates on iSBC SO Single Board Compu­
ters and allows the interpretation of BASIC-SO 
source code into an internally executable form. 
Many other features are available and many 
configurations are possible depending upon the 
exact system requirements (refer to the BASIC-80 
Reference Manual, 9S0075S). 

Maximum utilization of the operator interface 
with a minimum of development time can be 
achieved with the preconfigured version of the 
software/hardware package. This will provide us 
with complete disk 110 capabilities and the ability 
to easily program and maintain any programs 
which may become necessary to implement the 
interface. The actual implementation of the 
interface will be done later, after we have defined 
the control task. 

Software Tasks 

The task of preparing the software can be broken 
down into three major groupings or tasks. These 
are defined to be: 

Prepare the Software Drivers. 
This involves defining the relationships 
between the control algorithm parameters 
and the input/output hardware devices and 
creating software to implement these defini­
tions. 

Prepare the Control Algorithm. 
This will involve developing a control 
algorithm which defines the relationships 
between the various system parameters. This 

3-81 

algorithm will draw heavily upon the re­
sources of the FSP programs and the soft­
ware drivers which relate the parameters to 
the physical hardware. 

Finally, the operator interface must be defined 
which will relate the parameters used in the 
control scheme to other controllers and to the 
operator. This will allow the control task to 
interact in such a manner as to provide a 
meaningful element of the overall control 
concept. 

VII. SOFTWARE DRIVERS 

Before developing the actual control algorithm, we 
must create the drivers which communicate with 
the three iSBC 941 processors in their assigned 
operating modes. We will define two driver 
sections for each processor, one to handle the 
initialization, and a second to provide the ongoing 
communications as required by the control 
algorithm program. 

Motor Speed Control Processor 

The first processor which we will discuss is to be 
located in slave socket number 0 and will be'used to 
produce a variable frequency output. Let us 
consider in some detail how this can be accom­
plished using an iSBC 941 Processor. First, 
consider the task of initializing the device to the 
primary function operating mode, FREQ. 

Referring to the iSBC 941 Industrial Digital 
Processor User's Guide, we find that the initializa­
tion requires the sequence of commands and data 
shown in Figure 16. We will identify the meaning 
of each of these terms and create a software 

Description Command/Data 

Request INIT C 
FREQ Select D 
Scale Factor D 
Output Enable D 
Initial State D 
P20 Delay D 
P20 Period D 
Request PAUSE C 

Figure 16. FREQ Initialization 



program which will handle the required initializa­
tion of the processor. The purpose and use of the 
various commands to the processor are well 
defined in the user's guide and will not be repeated 
here. 

The first byte of data, which must be sent 
following the initialization command, is the data 
byte signifying that the operational mode is to be 
the frequency output. This is defined in the 
manual as being equal to the data byte "OB5H" or 
"035H" as expressed in the hexadecimal number­
ing system. The choice of values to be sent is 
dependent upon our desire to utilize the internal or 
external time reference period for the operations. 
If we utilize the internal time reference, our 
minimum increment or resolution of operations 
will be 86.72 microseconds. 

To determine if this speed is adequate for our 
frequency generator, we must consider the impact 
that this resolution has on the output. A 550 hertz 
signal has a period of 1.82 milliseconds. If we 
increase this period by the 86.72 microsecond time 
reference, we find that the next increment in the 
frequency generators output will be approximately 
372 hertz. This resolution is certainly not ade­
quate to meet the motor control requirements! We 
should consider using the external clock to provide 
the time reference. One of the 8253 Interval 
Timers on the iSBC 569 board can be used to 
generate a reference time. If we arbitrarily choose 
to use a 10 microsecond reference to the IDP, we 
find that the worst case resolution for the 550 hertz 
signal becomes about 4 hertz. This is certainly 
within our requirements of motor control. The 
primary function signal should then be sent as a 
"OB5H". 

The second byte is used to establish a scale factor 
for the processor. This scale factor is used to 
generate the basic time increment which can be 
used to establish the frequency output; that is, the 
minimum time increment which can be used to 
establish a period or pulse width will be the scale 
factor times the reference time period. 

In our case, because of the wide frequency output 
range, we cannot specify the scale factor at 
initialization (later data will show the need for 

multiple scale factor ranges). We will then only 
need to send some arbitrary value at initialization 
to allow the processor to complete its initialization 
sequence. 

The Output Enable data byte is used to select 
which of the Port 2 output bits are to be used to 
generate the output signals. The hardware 
configuration established earlier placed the output 
onto Bit 0 of the port, so this data byte shall be 
specified as a byte having only Bit 0 set to a logical 
one or equal to 01H. 

The Initial Output parameter specifies whether 
each bit selected as an output by the output enable 
byte is to be initially set to a logical one or zero 
when the processor is first enabled. For this 
application, it really does not matter, but we will 
arbitrarily pick the state to be equal to zero. The 
byte will be defined as being set to OOH. 

The Delay parameter is used to define the 
waveform which will be generated and specifies 
the number of time increments which must elapse 
before the waveform will change states. Rather 
than to constantly vary the delay to maintain a 
square wave output, we can choose an arbitrary 
value of one time increment before changing 
state. The output will have a varying duty cycle as 
the frequency changes. This should cause no 
problems for the translator driving the weigh belt 
motor. The byte will be defined as being set to a 
value of 01H. 

Finally, the Period of the waveform must be 
chosen. Again, this parameter will be changed 
according to the desired frequency, so only an 
arbitrary value need be sent. Indeed, since this is 
the last parameter, the value could be omitted 
entirely by sending the PAUSE command in its 
place. 

The initial data definition can be defined using 
PL/M-80 language conventions as a block of six 
bytes as shown in Figure 17. 

The actual communications between the host 
processor on the iSBC 569 board and the IDP 
utilizes the protocol explained in previous sections 
of this note. The status register of the IDP will be 
tested for the bit signifying that the input buffer 

3-82 



22 
23 
24 
25 
26 
27 

34 

1* DECLARATION OF iSBC 941 #0 INITIALIZATION DATA *1 
DECLARE FREQ LITERALLY 'OB5H'; 
DECLARE SF LITERALLY 'OOOH'; 
DECLARE OUTPUT$ENABLEO LITERALLY '001 H'; 
DECLARE INITIAL$STATE LlTERALLY'OOOH'; 
DECLARE DELAY LlTERALLY'001H'; 
DECLARE PERIOD LITERALLY 'OOOH'; 

f* DECLARATION OF iSBC 941 PRIMARY DATA *1 
DECLARE INIT$0$TABLE(6) BYTE DATA ( 

FREQ, 
SF, 
OUTPUT$ENABLEO, 
INITIAL$STATE, 
DELAY, 
PERIOD ); 

Figure 17, Initial FREQ Data Field 

full is not set, This will indicate that the device is 
ready to accept either a command or a data 
byte, The command to request a primary function 
will be sent, At this point, the processor will be 
expecting a series of data bytes as specified by the 

function being selected. A "Do Loop" can be used 
to effectively transmit this data to the device, The 
program to perform this function is illustrated in 
Figure 18, 

1* REQUEST PRIMARY FUNCTION *1 
44 2 DO WHILE ( (INPUT (UPI$O$STATUS) AND IBF) < > 0); 
45 3 END; 
46 2 OUTPUT (UPI$O$COMMAND) = INITPF; 

1* LOAD INITIAL PARAMETERS *1 
47 2 DO 1=0 TO 5; 
48 3 DO WHILE ( (INPUT (UPI$O$STATUS) AND IBF) < > 0); 
49 4 END; 
50 3 OUTPUT (UPI$O$DATA)=INIT$O$TABLE(I); 
51 3 END; 

1* TERMINATE PARAMETER LOADING *1 
52 2 DO WHILE ( (INPUT (UPI$O$STATUS) AND IBF) < > 0); 
53 3 END; 
54 2 OUTPUT (UPI$O$COMMAND)=PAUSE; 

f* START FREQUENCY FUNCTION *1 
55 2 DO WHILE ( (INPUT UPI$O$STATUS) AND IBF) < > 0); 
56 3 END; 
57 2 OUTPUT (UPI$O$COMMAND)=LOOP; 

Figure 18. lOP Initialization 

3·83 



When all required data parameters have been sent, 
the data portion of the initialization is terminated 
by sending a PAUSE command as shown in 
Figure 18. Note how, in each case before data or a 
command is sent, we wait until the input buffer is 
empty. Finally, the initialization is completed 
when we have sent the LOOP command. The 
processor will now be generating an output 
frequency as specified by the parameters. 

Remember that, according to our earlier discus­
sion and as we have shown in Figure 12, the 
unused output ports should be set to a logical low 
condition to allow the use ofthose lines as inputs to 
carry additional data into the controller. This 
should be done as a part of the initialization 
process. The secondary utility command, CLRP2 
is used for this purpose. This process is illustrated 
in Figure 19. 

We should next direct our attention to establishing 
a software interface which will take the desired 

weigh belt speed term and convert it to a frequency 
output suitable to drive the motor translator. We 
know that this will involve selecting a particular 
scale factor and period term which will generate 
the correct waveform. Previously, we established 
that, for a maximum frequency of 550 hertz, we 
need to establish a period of 1.82 milliseconds. 
Many combinations of Scale Factor and Period 
parameter will generate this time interval. Ideally, 
the smallest increment of change can be estab­
lished by setting a constant period and modifying 
the scale factor. If we make some calculations, we 
will find that the fact that the scale factor is a byte 
value (giving us a range of between 0 and 255) 
limits the frequency range which can be produced 
using anyone value for a period. It seems that we 
will be forced to vary both the period and the scale 
factor as a function of the desired frequency. 

In Figure 20, we ha ve plotted the frequency output 
for various values of Scale Factor and Period. Our 

1* SET UNUSED SITS TO ALLOW EXPANSION *1 

220 

210 

190 

160 

'50 

~ 140 

'20 

110 

100 

90 

80 

70 

60 
0 

59 2 
59 3 

DO WHILE ((INPUT UPI$O$STATUS) AND ISF) < > 0); 
END; 

60 2 OUTPUT (UPI$0$COMMAND)=CLRP2; 

61 2 
62 3 

DO WHILE ( (INPUT (UPI$O$STATUS) AND ISF) < > 0); 
END 

63 2 OUTPUT (UPI$O$DATA)=INITIAL$OUTPUT; 

Figure 19. Secondary Utility Command 

\ \ I' I 
" I 

II '\ \ 

\ \ \ \ ~ CLOCK 10llsec 

\1 \, ' 

\ \ I I I \' \ 
I I \ \ \ 

\ \ I I I I I I 
II \ \ \ 

\ \ I \ \ \ \ \ 

\' \ \ \ \ \ \ \ \ \ \ \ ,\ \' \ 

\ \ \ \ " 
\' \ '\-0 \~ 
\~-o '\\ \~ \~o 
~,~\"O Ii:), \<1' 

~~~\O \'cr " o ;,\ .... \ \ 
,.D\ \' \

\ \ \ " "
\ \ " "

'" \ "~I 'II ' ,

" " " '",-"" '... '
" '... '.......

100 200 300 400 SOO
FAf;:O._(Hz)

Figure 20. Frequency Vs. Parameters

3·84

intent is to maintain the highest resolution
possible for the desired output range of 50 to 550
hertz. Choosing four period base parameters will
provide us with acceptable waveform generation
characteristics. We will choose the data sets of
Figure 21 based upon the data shown in Figure 20.

the mathematical calculations required to deter­
mine the corresponding scale factor.

The principles above can be expanded into a
complete interface package to offload the host
processor of the need to generate the frequency
waveform to the translator of the weighbelt
motor. The complete program for the processor
can be found in Appendix A.

The Period can be determined by examining the
desired frequency range. The scale factor can be
calculated from the equation:

Weight Input Processor
SF = 10,000 I ((FREQUENCY) x (PERIOD))

Again, the PL/M-80 language program to imple­
ment the interface between the host and the IDP is
easily constructed. For example, Figure 22

. provides the· code which will be required to
determine the appropriate Period parameter and
also illustrates the use ofFSP programs to handle

The second use of an iSBC 941 Processor is to
provide the capability of converting the high
frequency inputs from the weight sensor of the
weigh belt into a digital value equivalent to the
actual weight on the belt. This frequency to digital
conversion can be easily accomplished by the use
of the Primary Function, FCOUNT.

Frequency Period Scale Factor Resolution

. 50 to 165 Hz. 9 221 to 67 3 Hz.
166 to 225 Hz 5 121 to 89 3 Hz.
226 to 285 Hz. 3 147 to 117 3 Hz.
286 to 550 Hz. 2 175 to 91 6 Hz.

Figure 21. FREQ Output Ranges

i* COMPUTATION OF FREQUENCY RANGE *I
57 3 IF FREQ < 285

THEN DO;
59 4 IF FREQ < 226

THEN DO;
61 5 IF FREQ < 166

THEN RANGE = 9;
63 5 ELSE RANGE = 5;
64 5 END;
65 4 ELSE RANGE = 3:

66 4 END;
67 3 ELSE RANGE = 2;

1* LOAD MATH ACCUMULATOR WITH 100.000 *1
68 3 CALL MQULD4 (.IR •. HUNDRED$K);

1* TEST FOR MOTOR SHUTDOWN *1
69 3 IF FREQ >1

THEN DO;

1* DIVIDE BY FREQUENCY *1
71 4 CALL MQUDV2 (.IR,.FREQ);

1* DIVIDE BY RANGE FACTOR *1
72 4 CALL MQUDV1 (.IR,.RANGE);

1* GET TWO'S COMPLEMENT FOR iSBC 941 SCALE FACTOR *1
73 4 CALL MQUST1 (.IR,.FREQA);
74 4 FREQA=NOT (FREQA + 1);
75 4 END;

Figure 22. Period and Scale Factor Computations

3-85

The FCOUNT Primary Function is selected by
sending the INITPF command followed by four
parameters. The process is identical to that which
'Vas used in the previous example when we
established the FREQ function. In this case, the
sequence is described in the manual as is shown in
Figure 23.

Description Command/Data

Request INIT C
Select FCOUNT D
Input Select D
Output Enable D
Sampling Interval 0
Request PAUSE C

Figure 23. FCOUNT Initialization

Let us examine the derivation of the terms which
must make up the data table which will be
transmitted to the processor in order to initialize
it. The FCOUNT function does not allow the use
of an external clock so we have no option as to
which command will be sent to select this
function. It is defined to be equal to 33H. This
becomes the first element ofthe byte array used to
contain the initial data.

The Input Select parameter describes which of the
Port 1 inputs are to be measured. If we refer to
Figure 13, we can see that a hardware assignment
of Port 10 has been made for this function. This
assignment corresponds to bit 0 of the parameter
being set to a value of 1. The byte value for this
parameter then becomes 01H.

The Output Enable byte is used to enable an output
port corresponding with the input to change states
when the Sampling Interval time has elapsed. Our
system has a requirement to operate the control
algorithm once each 200 milliseconds and we have
previously indicated that the frequency counter
would be used to establish this time interval. If the
output is enabled and connected to an interrupt
line, it will provide our system with the required
pacer clock. The output bit from Port 20 will then
be enabled to provide the interrupt. The para­
meter for this byte will be set to the same value as
the Input Select and becomes OlH.

The Sampling Interval will establish the time
interval to be used when sampling the input
frequency. This time interval should be set to 200

milliseconds for our application. The parameter is
then calculated from the equation:

INTERVAL = (SAMPLE PERIOD) / (0.02222)
OR

INTERVAL = (0.200) / (0.02222) = 9

The correct sampling interval for our control
system should be set to a value of 09H.

A similar procedure can be used to send this data
to the processor. The actual code used to imple­
ment the system can be found in Appendix
A. Note that the unused bits of the device have
been set to a predetermined value as was indicated
by our hardware design of Figure 13.

Once the processor has been initiated and is
performing its function, we need only wait until
the device signals us that the 200 millisecond time
interval has passed and that it is ready with the
belt weight. When this interrupt occurs, we will
read the data and perform our control functions.
An interface must be established between the
control algorithm and the processor which
enables it to receive a value which represents the
actual weight.

The total count received by the processor is
available as a sixteen bit count made up of two
eight bit bytes. The use of the Secondary Utility
Commands, Read FCOUNT Measurements
(RDFCO-RDFCF) allow the two bytes to be
transferred into the host processor. We are using
the first counter so we will use the corresponding
commands, RDFCO and RDFCl. An example of
the procedure to read one ofthe count bytes can be
seen in Figure 24.

The counter can be commanded to begin its next
sample period by issuing a LOOP command to the
processor. The two data bytes can be combined to
form a 16-bit word and the resultant value divided
by 2 to form a weight value. The division by two to
obtain weight is required since the count range
from 0 to 2000 corresponds to a weight of between 0
and 10.00 pounds; thus, each count has a value of
0.005 pounds. The integer numbers used in the
control algorithm are fixed point with an implied
scale factor of 100. The division by two provides a
result which meets the criteria.

3-86

1* GET INPUT COUNT LOW BYTE *1
106 2
107 3

DO WHILE ((INPUT (UPI1STATUS) AND IBF) < > 0);
END;

10B 2 OUTPUT (UPI1COMMAND) = RDFCO;

109 2
110 3

DO WHILE ((INPUT1STATUS) AND OBF) = 0);
END;

111 2 LCOUNT = INPUT (UPI1DATA);

Figure 24. FCOUNT Read Procedure

Appendix A provides the complete listing of the
code which was used to interface with the
processor assigned to the primary function,
FCOUNT.

Stepper Motor Control Processor

The third example of utilizing the iSBC 941
Processor in an industrial application is provided
by the processor installed into OBS socket 2. This
device is used to drive a stepper motor which, in
turn, controls the liquid valve position. Again, we
will break the discussion into an initialization and
an interface operational mode.

We find that the User's Guide indicates that
initialization to the STEPPER Primary Function
is performed by sending the IN IT command
followed by up to 21 data bytes. Figure 25
provides the table which shows the necessary
p arameters for this mode.

The technique used to place the processor into the
desired function is the same as we have seen with
the two other processors so we will not spend time
dealing with the communications sequence. In­
stead, we will examine the techniques which can
be used to determine the values of the initializa­
tion parameter bytes.

STEPPER is requested by sending a data byte of
either 17H or 97H following the INIT command.
Remember that the significance of setting bit 7 of
the data high is to request that an external clock
be used by the processor. There is no reason to use
an external clock for our application, so we can
choose a function request byte of 17H.

The· remainder of the data is used to define the
waveforms which are necessary to drive the
stepper motor. We will derive the values for these
parameters by beginning with the manufacturer's
data sheet and moving until we have determined
the correct value for each byte of data.

The motor chosen for this application utilizes four
phases to drive the shaft. The data sheet provided

3·87

Description Command/Data

Request INIT C
Select STEPPER D
Select Scale Factor D
Output Enable D
Output Polarity D
Common Period D
P20TRAN1 D
P20TRAN2 D
P21TRAN1 D
P21TRAN2 D
P22TRAN1 D
P22TRAN2 D
P23TRAN1 D
P23TRAN2 D
P24TRAN1 D
P24TRAN2 D
P25TRAN1 D
P25TRAN2 D
P26TRAN1 D
P26TRAN2 D
P27TRAN1 D
P27TRAN2 D
Request PAUSE C

Figure 25. STEPPER Function Initialization

information for both a Four-Step Input Sequence
(1.8 degrees per step) and for an Eight-Step Input
Sequence (0.9 degrees per step). We will use the 1.8
degree step angles for our example and applica­
tion. The data provided by the manufacturer is
shown in Figure 26. The first task is to con vert the
switch state diagram into a desired waveform for
each of the four phases. This has been done in
Figure 27.

Beginning with Scale Factor, let us determine the
required data parameters which will yield a
stepper controller compatible with our motor. The
Scale Factor will provide the minimum time
period for one step to take place. The minimum
time which we can specify is a function of both the
motor characteristics and of the TRP for the
primary function, STEPPER. The minimum TRP
is determined by referencing the IDP User's Guide
for the desired function. In this case, it is found to
be 325 + (13 x B) where B is the number of phases

DC STEPPING CIRCUIT

EIGHT-STEP INPUT SEQUENCE

STEP SW1 SW2 SW3 SW4

1 ON OFF ON OFF

2 ON OFF OFF OFF

FOUR-STEP INPUT SEQUENCE 3 ON OFF OFF ON

STEP SW1 SW2 SW3 SW4 4 OFF OFF OFF ON

1 ON OFF ON OFF 5 OFF ON OFF ON

2 ON OFF OFF ON 6 OFF ON OFF OFF

3 OFF ON OFF ON 7 OFF ON ON OFF

4 OFF ON ON OFF 8 OFF OFF ON OFF

5 ON OFF ON OFF 1 ON OFF ON OFF

Figure 26. STEPPER Motor Input Sequence

PHASE 1

STEP
o

STEP
1

STEP STEP
2 3

STEP
o

STEP
1

----------., r----------
I I
I I L _________

,..---------,
PHASE 2

I I _________ J L _______ _

----, r--------,
PHASE 3

I I I
I I I L ________ 01 Lo ___ _

r--------., r----
PHASE 4 I I I

I I I ----.. .._------

Figure 27. STEPPER Motor Waveforms

which are used. The result will be expressed in
terms of processor cycles and can be converted
into time by multiplying by 2.71 microseconds per
cycle. This works out to be:

325 +- (13 x 4) = 377 PROCESSOR CYCLES
OR

377 x 2.71 = 1.021 MILLISECONDS

Now, let's examine the minimum time which can
be utilized r-" :he stepper motor. This is given in
the manufactuer's data sheets as being 2.86 milli­
seconds for the motor which we have chosen to

3-88

use. This value must be used to compute the Scale
Factor for this application. The Scale Factor is
computed by dividing the minimum step time by
86.72 microseconds or:

SF=2.86 MILLISECONDS/86.72 MICROSECONDS=33

This number is entered into the processor using
two's complement which becomes equal to ODFH.

The Output Enable is used to specify which of the
eight possible control outputs are to be used to
control the motor phases. The motor phase
assignments to I/O ports was made in Figure 15
and indicates that Ports 24 through 27 will be
enabled for the primary function. Setting the
corresponding bits provides a parameter to be sent
to the processor of OFOH.

The rest of the parameters deal with providing a
definition of the waveforms generated in Figure 26
to the processor. The following paragraphs deal
with the operations required to convert the
graphic representation into data parameters.

Each phase must be initialized to an initial output
state which corresponds to the signal level shown
for Step 0 of Figure 27. A "I" will be placed into
the bit corresponding to each of the port's output
bits which are to be in a logical one state upon

reaching step O. We see that Bits 24 and 26 are set
corresponding to phase 1 and 3. The data byte for
Initial Output is thus defined to be 050H.

The Period parameter for a stepper motor function
corresponds to the number of steps which are
defined in the motor's step sequence. Our example
uses a four step sequence so the Common Period
will be set to a value of 04H.

The remainder of the initialization parameters
define the transitions of each of the phases. This
involves the examination of the waveform and
noting the points at which the output level
changes. This data can be input to allow the
device to accurately produce the control wave­
forms for any stepper motor control mode. Weare
not using the first four output bits so the transition
definitions for these outputs is meaningless and
will be output as zeroes. The waveform for output
Port 24 shows a transition at steps 1 and 3. The
parameter for the first transition of Port 24,
P24TRANl is defined to be OOH. Likewise, the
second transition, P24TRAN2 is set to a value of
02H.

The technique used above can be continued to
define the constants, P25TRANl and P25TRAN2
as being the same as for Port 24 or OOH and 02H
respectively.

The transitions for the phases driven from Port 26
and 27 can be seen to occur at steps 1 and 3 so the
data for those parameters can easily be seen to be
set to OlH and 03H for each port.

The initialization table can be sent to the
processor using the same techniques as were used

for the processors discussed previously. The
complete program for the initialization can be
found in Appendix A.

A driver must next be prepared which will be used
to provide the interface between the control
algorithm and the IDP processor which supports
the stepper motor. When the STEPPER primary
function is used, a queue is utilized for supporting
the step commands to the motor. Each command
to the stepper consists of a data byte signifying the
step rate to be used and a data byte which provides
the signed magnitude of the number of steps to be
moved. Using the motor to control a flow control
valve allows us to use a constant step rate, but
some type of program must be prepared which will
convert the signed two's complement repref)enta­
tion of the position from the control algorithm to a
signed magnitude format.

The number conversion is easily done and the
PL/M -80 programming code to perform the format
change is shown in Figure 28.

The data queue allows up to six movement
commands to be present and waiting to be
serviced by the IDP. If the processor is behind in
its operations and cannot accept a seventh
request, the host must wait until one of the
requests in the queue has been serviced. The
queue status bits can be tested to determine ifroom
exists for another command and the "queue not
empty" bit can be tested to verify that all
requested movements have been completed.
Normal operation of our motor should be such that
the queue is not allowed to fill to its maximum
capacity.

141 3
1* SUPPORT CONVERSION TO SIGNED MAGNITUDE NUMBER *1

IF POSITION> 127

143 4

144 4
145 4

THEN DO;

1* GET MAGNITUDE OF MOVEMENT *I
POSITION = 256 - POSITION;

1* SET SIGN FOR CCW ROTATION *1
POSITION = POSITION OR REVERSE;

END;

Figure 28. Number Format Conversion

3·89

The code which is required to test the queue and to
send a stepper movement request is shown in
Figure 29. The complete code can be seen in
Appendix A.

VIII. APPLICATION SOFTWARE

Having developed the software which is required
to support the Industrial Digital Processors, we
can now devote our time to the task of implement­
ing the application software and of handling any
programs which are required to support functions
unique to the host iSBC 569 board. This software
can be grouped into two general categories,
initialization programs, and control algorithm
programs.

Initialization Programs

The initialization of the iSBC 569 involves setting
up the required configuration of interrupt hand­
ling and ofthe devices which are installed into the
slave sockets. For the purposes of this applica­
tion, we will include some system diagnostic
capabilities within the process. These routines
will be executed each time a RESET or a POWER­
UP occurs. Only the highlights of the code used
will be presented in detail; however, the complete
listings of the initialization programs can be
found in Appendix A by referring to the BCKGND
Program listing.

A unique feature of using the iSBC 941 processors
is their ability to provide, upon request, an

identification code. The initiation diagnostic
program takes advantage of this fact by interro­
gating each processor and verifying that the
correct ID code is returned. If any of the proces­
sors have failed catastrophically or if the internal
data bus ofthe host board has failed, the program
will provide an indication of this fact.

Each of the slave processors has, associated with
it, an individual hardware reset line which is
under the control of the host. A reset or power up
condition will cause the control lines to reset to the
state which hold each sla ve in a reset state. Before
any slave can be used, it's associated reset line
must be de-activated. This is done by sending a
logical one to the corresponding bit of the Reset
Latch. Other bits ofthe Reset Latch can,be used to
illuminate the on-board LED or to generate an
interrupt to another board on the Multibus data
bus.

A special PL/M-80 command is utilized to disable
the reset interrupts of the 8085A host processor.
Execution of this command will allow all servic­
able interrupts to enter via the 8259A Interrupt
Controller. The command which will mask off the
unused interrupt structure is shown in Figure 30.

The initialization process must also initialize the
FSP Integer Record. This will allow the use ofthe
math support routines which will be required to
support the control algorithm.

1* VERIFY THAT QUEUE SPACE IS AVAILABLE *1
146 3
147 4

148 3
149 4
150 3

151 3
152 4
153 3

34

DO WHILE ((INPUT (UPI2STATUS) AND QF) < > 0);
END;

1* REQUEST DESIRED STEP RATE *1
DO WHILE ((INPUT (UPI2STATUS) AND IBF) < > 0);
END
OUT'PUT (UPI2DATA) ~ STEP$RATE;

1* REQUEST STEPPER MOVEMENT *1
DO WHILE ((INPUT (UPI2STATUS) AND IBF) < > 0);
END;
OUTPUT (UPI$DATA) ~ POSITION;

Figure 29. STEPPER Movement Request

1* MASK OUT THE RESET INTERRUPTS OF THE PROCESSOR *1
CALL S$MASK (MASKS);

Figure 30. PL/M-80 Sim Instruction

3-90

Control Algorithm Programs

The program which actually handles the control
algorithm for the two loops can be found in
Appendix A, MAIN$CONTROL. The flow of the
program is straightforward and can easily be
followed by reading the listing. The operations
are primarily handled by the use of repeated calls
to the FSP integer math routines and to the
processor interface modules which we have
previously generated.

It is beyond the scope of this application note to
dwell upon the techniques which were used to
generate the PID control routine; this aspect will
be covered in a future application note.

Limits were placed upon the control outputs so
that the signals to the processors would not exceed
the physical limits of the external devices. For
example, the frequency range is limited to range
between 0 and 550 to correspond with the
operating range of the weigh belt as we have
defined it. The limits upon the liquid control valve
have been set at plus and minus 10 steps since this
is the maximum distance which the stepper motor
can travel in anyone 200 millisecond time period;
increasing the possible count could result in filling
the queue. This could cause the 200 millisecond
time to be extended if we had to wait for the queue
to empty.

Master Processor

A complete control solution to the weighbelt feeder
and the liquid applicator has now been developed.
The process ill stand alone and resides entirely
upon a single board. It can operate without
requiring any access from the MULTI BUS bus,
thus freeing the bus for other control, monitoring
or supervisory duties.

The system developed for this application note
requires a setpoint for the mass flow and a liquid
ratio be provided to the control system. This
information would normally be supplied by some
type of bus master device. We have chosen to use
the pre-configured RMX/SO BASIC-SO Interpreter
to perform this task. A simple program needs to
be prepared which will allow adjustment of the
setpoints and monitoring of the operation of the
control system.

Using BASIC will provide full disk 110 capabil­
ities to the operator. Communicating with the

system through a CRT terminal, he can write and
execute programs which use the resources of the
system disk or of any of the con trollers which may
be present on the bus.

Two programs are required to perform this
task. Since they are written in BASIC, they may
easily be modified or expanded if the need should
ever arise. Indeed, other programs could be
written to perform other tasks, such as optimizing
the control parameters.

In both programs, the parameters involved with
the control operation are accessed by using the
PEEK and POKE instructions. Remember that
the iSBC 569 controller allows the on-board
memory to be made available to other devices on
the bus through the dual port mechanism. In our
application, this has been done by jumpering the
board such that the on-board memory beginning
at location SOOOH can be accessed on the bus at
location 2000H. This mapping was done since the
memory locations at 2000H are not used by BASIC
unless requested to do so. A byte of data which is
at location S27EH on the controller can be read by
performing a PEEK of location 227EH. Some of
the memory assignments for the controller have
been shown in Figure 31.

3·91

MOD MAINCONTROLMODULE

829 FH
8233H
825 FH
OODCH
ODE 6H
827AH
ODE 8H
8280H
8285H
8288H
OOEFH
01ADH
81 F 7H
825DH
8268H
ODE 4H
8277H
827CH
ODE 9H
8282H
8287H
828AH
3FOOH
8209H
825EH
OOD4H
OOE5H
8278H
827EH
OOEAH
8284H
OOEBH
OOEDH
OOF 1 H

SYM MEMORY
SYM PRLO
SYM CONSTANT$1
SYM BOUNDS2
SYM TIMEINTERVAL
SYM LlOUIDFLOW
SYM DISTREV
SYM MASS FLOW
SYM LlOUIDVALVE
SYM DUMMY
SYM ZERO
SYM PIDRUN
SYM IR
SYM LlOCOUNT
SYM CONSTANTS2
SYM CONTROL 1
SYM BEL TSPEED
SYM MASSSETPOINT
SYM CONVLENGTH
SYM BELTCONTROL
SYM SYSTEMRUNNING
SYM ICW
SYM JUMPTABLE
SYM PRCV
SYM BELTCOUNT
SYM BOUNDS1
SYM CONTROL2
SYM BEL TWEIGHT
SYM SETPOINT
SYM SIX
SYM LlOUIDRATIO
SYM ERRORFIELD
SYM THOUSAND
SYM INITIATION

Figure 31. Selected Memory Location Assignments

The first program involves setting up the two
control parameters and handling the control flag
which causes the process to start and to stop. This
program can be found in Figure 32.

10 REM THIS PROGRAM IS USED TO INPUT SETPOINTS
15 REM TO THE LIQUID CONTROL SYSTEM.
20 POKE 02287H,0
25 INPUT "ENTER MASS SETPOINT-";MS
26 IF MS > 1200 THEN 25
30 MS=CINT(MSx10/60)
35 H=INT(MS/256)
40 L=CINT(MS-Hx256)
45 POKE 0227EH,L
50 POKE 0227FH,H
55 INPUT "PERCENT L1QUID-";LR
60 LR=CINT(LR)
65 IF LR > 127 THEN 55
70 POKE 02284H,LR
75 POKE 02287H,1
80 RUN "STATUS"

Figure 32. Basic Program for Parameter Initialization

PROGRAM NAME: STATUS

10 I=PEEK(02!!7EH)
20 H=PEEK(0227FH)
30 MS=((256xH)+L)x60/10
40 L=PEEK(02278H)
50 H=PEEK(02279H)
60 WT=((256xH)+L)/100
70 L=PEEK(022890H)
80 H=PEEK(02281 H)
90 AM=((256xH)+L)x60/10

100 MT=PEEK(02294H)
110 LR=(PEEK(02284H))/1 00
120 LS=AMxLR
130 L=PEEK(0227AH)
140 H=PEEK(0227BH)
150 LF=((256xH)+L)/100

Upon completion of the initialization program, a
second program provides a display of the system
operation. This program could have been an
optional program which is only called when the
operator desires to view the system operation. A
program which provides a snapshot ofthe system
operation is shown in Figure 33. Again, the
program is interactive with the operator and can
easily be modified at any time to reformat or
display additional information.

IX. CONCLUSION

The purpose of this application note has been to
demonstrate some of the techniques which can be
used to provide a control system design solution
using an intelligent slave concept. This has been
done and the system has been constructed and has
been found to operate as the design specified. The
Intelligent Slave Concept does provide a single
board solution to distributed control and certainly
off-loads the master processor of control duties.

160 PRINT "MASS SETPOINT","WEIGHT","ACTUAL MASS","MOTION"
170 PRINT MS,WT,AM,MT
180 PRINT "LIQUID RATIO","L1QUID SET","L1QUID FLOW"
190 PRINT LR,Ls,LF
200 Z=PEEK(02285H)
210 IF Z < 128 THEN 230
220 Z=256-Z
225 Z=O-Z
230 L=PEEK(02282H)
231 H=PEEK(02283H)
232 BS=((256xH)+L)x60/200
239 PRINT "STEPPER";Z, "BEL T";BS
240 PRINT""
250 PRINT""
260 FOR N=O to 1000
270 NEXT N
280 GO TO 10

Figure 33. Basic Snapshot Program

3·92

This frees the master to provide supervisory
control and human interface duties.

Certainly, this concept can be expanded to
encompass a broad variety of complex control

3·93

situations. At the same time, there is no reason
why the Intelligent Slave board could not be used
to provide a single board solution to a simple
control application where no interaction with
other processes is required.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIX A

3·95

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE BACKGROUNDMODULE
OBJECT MODULE PLACED IN :Fl:BCKGND.OBJ
COMPILER INVOKED BY: PLM80 :Fl:BCKGND.PLM DEBUG PAGEWIDTH(72) TITLE('BA

-CKGROUND PROGRAM')

1

2
3
4

5
6
7

8
9

10

11

12
13
14
15

16
17
18
19
20

21
22

23

24

25
26

1
1
1

1
J.
1

1
1
1

1

1
1
1
1

1
1
1
1
1

1
1

1

]

1

1**
* THIS IS THE MAIN BACKGROUND OPERATING *
* PROGRAM FOR THE PID CONTROL SYSTEM. *
**1

BACKGROUND$MODULE: DO;

1* DECLARATION OF BOARD liD
DECLARE UPI$0SSTATUS
DECLARE UPISl$STATUS
DECLARE UPI2STATUS

DECLARE UPI$0SCOMMAND
DECLARE UPIICOMMAND
DECLARE UPI$2SCOMMAND

ASSIGNMENTS *1
LITERALLY
LITERALLY
LITERALLY

LITERALLY
LITERALLY
LITERALLY

'0E5H' ;
'0E7H';
'0E9H';

'0E5H' ;
'0E7H' ;
'0E9H';

DECLARE UPI0DATA
DECLARE UPIIDATA
DECLARE UPI2DATA

LITERALLY '0E4H';
LITERALLY '0E6H';
LITERALLY '0E8H';

DECLARE RESETSLATCHSADR LITERALLY '0EAH';

1* DECLARATION OF RAM TEST PARAMETERS *1
DECLARE BEGIN$RAM LITERALLY '8000H';
DECLARE END$RAM LITERALLY '8500H';
DECLARE ZERO$PATTERN LITERALLY '000H';
DECLARE ONES$PATTERN LITERALLY '0FFH';

1* DECLARATION OF RESET LATCH
DECLARE RESETUPI0
DECLARE RESET$UPISI
DECLARE RESETUPI2
DECLARE LIGHT$LED
DECLARE MULTI$INTR

BIT ASSIGNMENTS *1
LITERALLY '00000001B';
LITERALLY '00000010B';
LITERALLY '00000100B';
LITERALLY '00001000B';
LITERALLY '00010000B';

1* DECLARATION OF ISBC 941 STATUS BITS *1
DECLARE IBF LITERALLY '00000010B';
DECLARE OBF LITERALLY '00000001B';

1* DECLARATION OF ISBC 9~1 COMMANDS *1
DECLARE IDEN LITERALLY '0008';

1* DECLARATION OF ISBC 941 IDENTIFICATION CODE *1
DECLARE SBC9~1 LITERALLY '41H';

1* DECLARATION OF MEMORY TEST ADDRESS REGISTER *1
DECLARE I ADDRESS AT (87FEH);
DECLARE MEMLOC BASED I BYTE;

1* DECLARATION OF RESET MASKS FOR 8085 PROCESSOR *1

3·96

27

28
29
30

31

32

33

34

35
36
37
38

39
40
41
42

43

44
45
46
47
48
49
50

5i
52
53
54
55
56
57

1

1
2
2

1

2

1

1

1
2
2
3

2
2
3
2

1

1
2
1
1
2
1
2

1
2
1
1
2
1
2

DECLARE MASKS BYTE DATA (00FH);

/* DECLARATION OF PL/M-80 SIM INSTRUCTION */
S$MASK: PROCEDURE (MASK) EXTERNAL;

DECLARE MASK BYTE;
END S$MASK;

/* DECLARATION OF INITIATION TASK */
INITIATION:

PROCEDURE EXTERNAL;
END INITIATION;

/* CLEAR ISBC 941 DEVICES USING ON-BOARD RESET */
OUTPUT (RESET$LATCH$ADR) = 0;

/* MASK OUT THE RESET INTERRUPTS OF THE PROCESSOR */
CALL S$MASK (MASKS);

/* TEST MEMURY RAM LOCATIONS */
DO I = BEGIN$RAM TO END$RAM;

MEMLOC = ZERO$PATTERN;

END;

DO WHILE MEMLOC <> ZERO$PATTERN;
END;

MEMLOC = ONES$PATTERN;
DO WHILE MEMLOC <> ONES$PATTERN;
END;

/* RELEASE 941 LOCKOUT/RESET
OUTPUT (RESET$LATCH$ADR)

BITS */
RESETUPI0 OR
RESETUPIl OR
RESETUPI2 OR
MULTI$INTR;

/* VERIFY THAT SBC941 PROCESSOR IS IN SOCKET 0 */
DO WHILE (INPUT (UPI0STATUS) AND IEF) <> 0);
END;
OUTPUT (UPI0COMMAND) = IDEN;
DO WHILE (INPUT (UPI0STATUS) AND OBF) = 0);
END;
DO WHILE (INPUT (UPI0DATA) <> SBC941);
END;

/* VERIFY THAT SBC941 PROCESSOR IS IN SOCKET 1 */
DO WHILE ((INPUT (UPI1STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI1COMMAND) = IDEN;
DO WHILE ((INPUT (UPI1STATUS) AND OSF) 0);
END;
DO WHILE (INPUT (UPI1DATA) <> SBC941);
END;

3·97

58
59
60
61
62
63
64

65

66

67
68
69

70

1
2
1

1
2
1
2

1

1

1
2
2

1

/* VERIFY THAT SBC941 PROCESSOR IS IN SOCKET 2 */
DO WHILE ((INPUT (UPI2STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI2COMMAND) = IDEN;
DO WHILE «(INPUT (UPI2STATUS) AND OBF) 0);
END;
DO WHILE (INPUT (UPI2DATA) <> SBC941);
END;

/* START-UP TEST OK- TURN OFF LED */
OUTPUT (RESET$LATCH$ADR) = RESETUPI0 OR

RESE'l'UPIl OR
RESE'l'UPI2 OR
LIGHT$LED OR
MULTI$INTRj

/* INITIATE THE CONTROL DEVICES */
CALL INITIATION;

/* PERFORM BACKGROUND TASKS */
DO WHILE 1;

HALT;
END;

END BACKGROUND$MODULE;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
128 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-80 COMPILATION

00D4H
0000H
0002H

3·98

212D
0D
2D

1

2

3
tJ

5

6
7

8

9
10

11

12
13

14

15
16

17

18
19

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE MAINCONTROLMODULE
OBJECT MODULE PLACED IN :Fl:CNTTSK.OBJ
COMPILER INVOKED BY: PLM80 :Fl:CNTTSK.PLM DEBUG

1

2
2

1

2
2

1

2
2

1

2
2

1

2
2

1

2
2

$INTVECTOR(4,3Fe0H)
$PAGEWIDTH (72)
$TITLE('MAIN CONTROL')
/**
* MAIN$CONTROL$TASK *
* THIS TASK IS USED TO CONTROL THE TWO PID CONTROL *
* LOOPS. ONE LOOP CONTROLS THE SPEED OF A CONVEYOR *
* WHILE THE SECOND CONTROLS THE FLOW OF A LIQUID. *
* THE TASK OPERATES EACH 200 MSEC. *
* *
******** VERSION 1.1 *******************************/

MAIN$CONTROL$MODULE: DO;

/* DECLARATION OF PID RECORD SET-UP TASK */
UQPSET:

PROCEDURE (PR$PTR,ERRORSFLD$PTR,PRIV$PTR) EXTERNAL

DECLARE (PR$PTR,ERROR$FLD$PTR,PRIV$PTR) ADDRESS;
END UQPSET;

/* DECLARATION OF PID CONTROL BITS */
UQPSCT:

PROCEDURE (PR$PTR,CONTROL$PTR) EXTERNAL;
DECLARE (PR$PTR,CONTROL$PTR) ADDRESS;
END UQPSCT;

/* PROCEDURE TO SET UP PIO CONSTANTS */
UQPSCN:

PROCEDURE (PR$PTR,CONSTANT$PTR) EXTERNAL;
DECLARE (PR$PTR,CONSTANT$PTR) ADDRESS;
END UQPSCN;

/* DEFINE THE DEFAULT ERROR HANDLER */
UQPSBD:

PROCEDURE (PR$PTR,BOUNO$PTR) EXTERNAL;
DECLARE (PR$PTR,BOUND$PTR) ADDRESS;
END UQPSBD;

/* PROCEDURE TO CHANGE THE TIME IN'fERVAL * /
UQPSTI:

PROCEDURE (PR$PTR,TIME$INTERVAL$PTR) EXTERNAL;
DECLARE (PR$PTR,TIME$INTERVAL$PTR) ADDRESS;
END UQPSTI;

/* DECLARATION OF THE PID CONTROL PROGRAM */
UQPPID:

PROCEDURE (PRPTR,IRPTR) EXTERNAL;
DECLARE (PRPTR,IRPTR) ADDRESS;
END UQPPID;

3-99

20

21

22

23

24

25

26

27
28

29

30
31

32

33

34

35

36

37

38

39

40

41

1

2

1

2

1

2

1

2
2

1

2
2

1

2

1

2

1

2

1

2

1

2

1* DECLARATION OF WEIGHBELT SPEED INTERFACE *1
V-:EIGHBELT$SPEED:

PROCEDURE BYTE EXTERNAL;
END WEIGHBELT$SPEED;

It DECLARATION OF WEIGHBELT WEIGHT INTERFACE *1
WEIGHBELT$WEIGHT:

PROCEDURE ADDRESS EXTERNAL;
END WEIGHBELT$WEIGHT;

1* DECLARATION OF LIQUID FLOW RATE INTERFACE *1
LIQUID$FLOW$RATE:

PROCEDURE ADDRESS EXTERNAL;
END LIQUID$FLOW$RATE;

1* DECLARATION OF WEIGHBELT MOTOR DRIVE INTERFACE *1
WEIGHBELT$MOTOR$DRIVE:

PROCEDURE (SPEED) EXTERNAL;
DECLARE SPEED ADDRESS;
END WEIGHBELT$MOTOR$DRIVE;

1* DECLARATION OF LIQUID VALVE INTERFACE *1
LIQUID$VALVE$POSITION:

PROCEDURE (POSITION) EXTERNAL;
DECLARE POSITION BYTE;
END LIQUID$VALVE$POSITION;

1* DECLARATION OF PROCESSOR 0 INITIALIZATION MODULE *1
PROCESSOR0INITIALIZATION:

PROCEDURE EXTERNAL;
END PROCESSOR0INITIALIZATION;

1* DECLARATION OF PROCESSOR 1 INITIALIZATION MODULE *1
PROCESSOR1INITIALIZATION:

PROCEDURE EXTERNAL;
END PROCESSOR1INITIALIZATION;

1* DECLARATION OF PROCESSOR 2 INITIALIZATION MODULE *1
PROCESSOR2INITIALIZATION:

PROCEDURE EXTERNAL;
END PROCESSOR2INITIALIZATION;

1* DECLARATION OF PIT COUNTER 1 INITIALIZATION *1
COUNTER1INITIALIZATION:

PROCEDURE EXTERNALj
END COUNTER1INITIALIZATIONj

1* DECLARATION OF PIT COUNTER 2 INITIALIZATION *1
COUNTER2INITIALIZATION:

PROCEDURE EXTERNAL;
END COUNTER2INITIALIZATIONj

3·100

42 1
43 2
44 2
45 1

46 2
47 2

48 1
49 2
50 2
51 1
52 2
53 2

54 1
55 2
56 2
57 1
58 2
59 2

60 1
61. 2
62 2
63 1
64 2
65 2

66 1
67 2
68 2

69 1
70 2
71 2

72 1
73 2
74 2

75 1
76 2
77 2
78 1
79 2
80 2

/* DECLARATION OF FSP UNSIGNED LOAD PROCEDURES */
MQULDl: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;

DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQULD1;

MQULD2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;

DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQULD2;

/* DECLARATION OF FSP UNSIGNED MULTIPLY PROCEDURE */
MQUMLl: PROCEDURE (IR$PTR, VALUE$PTR) EXTERNAL;

DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQUML1;

MQUML2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;
DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQUML2;

/* DECLARATION OF FSP UNSIGNED DIVIDE PROCEDURE */
MQUDV1: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;

DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQUDV1;

MQUDV2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;
DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQUDV2;

/* DECLARATION OF FSP SIGNED DIVIDE PROCEDURE */
MQSDV1: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;

DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQSDV1;

MQSDV2: PROCEDURE (IR$PTR, VALUE$p'rR) EXTERNAL;
DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQSDV2;

/* DECLARTATION OF FSP SIGNED STORE PROCEDURE */
MQSST2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;

DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQSST2;

/* DECLARATION OF FSP SIGNED LOAD PROCEDURE */
MQSLD2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;

DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQSLD2;

/* DECLARATION OF FSP SIGNED SUBTRACT PROCEDURE */
MQSSB2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;

DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQSSB2i

/* DECLARATION OF FSP UNSIGNED STORE PROCEDURE */
MQUST1: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;

DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQUST1i

MQUST2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;
DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQUST2;

3-101

81
82
83

84
85
86
87

88
89
90
91
92
93

94
95
96
97
98
99

100
101
HJ2

un

104
105

106

107

1
2
2

1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1

1
1
1

1

1
1

1

1

/* DECLARATION OF FSP SIGNED MULTIPLY PROCEDURE */
MQSMLl: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;

DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQSMLl;

$EJECT
/**
* DATA STORAGE AREAS FOR THE PID CONTROL *
**/

/* DEFINITION OF LIMITATION CONSTANTS */
DECLARE MAX$MOTOR$SPEED LITERALLY '55~';
DECLARE MIN$MOTOR$SPEED LITERALLY '0';
DECLARE MAX$VALVE$MOVEMENT LITERALLY 'IP';
DECLARE MIN$VALVE$MOVEMENT LITERALLY '-10';

/* DEFINITION OF PIO PARAMETER
DECLARE FEEDER$C0
DECLARE FEEDER$Cl
DECLARE FEEDER$C2
DECLARE FEEDER$C3
DECLARE FEEDER$TIME$INTERVAL
DECLARE FEEDER$SCALE$FACTOR

DECLARE LIQUID$C0
DECLARE LIQUID$Cl
DECLARE LIQUID$C2
DECLARE LIQUID$C3
DECLARE LIQUID$TIME$INTERVAL
DECLARE LIQUID$SCALE$FACTOR

COEFFICIENTS */
LITERALLY '1';
LI'rERALLY '1';
LITERALLY '1';
LITERALLY '1';
LITERALLY '1';
LITERALLY '1';

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

, 1 ' ;
, 1 ' ;
, l' ;
, l' ;
, 1 ' ;
, 10' ;

/* DEFINITION OF RESET LATCH
DECLARE RESET$LATCH$ADR
DECLARE INDICATOR$ON
DECLARE INDICATOR$OFF

PARAMETERS */
LITERALLY '0EAH';
LITERALLY '07H';
LITERALLY '0FH';

/* RESERVE 18 BYTES FOR THE INTEGER RECORD */
DECLARE IR (18) BYTE PUBLIC;

/* RESERVE 42 BYTES FOR EACH PID RECORD */
DECLARE PRCV (42) BYTE;
DECLARE PRLQ (42) BYTE;

/* RESERVE SPACE FOR COUNTER DATA */
DECLARE (LIQ$COUNT,BELT$COUNT) BYTE PUBLIC;

/* RESERVE
DECLARE

C0
Cl
C2
C3
DT
S

12 BY'fES FOR EACH CONSTANT ARRAY */
CONSTANTSI STRUCTURE (
ADDRESS,
ADDRESS,
ADDRESS,
ADDRESS,
ADDRESS,
ADDRESS);

3-102

108

109

110

III
112

113

114

115

116

117

118

119

120

121

122

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

DECLARE CONSTANTS2 STRUCTURE (
C0 ADDRESS,
Cl ADDRESS,
C2 ADDRESS,
C3 ADDRESS,
DT ADDRESS,
S ADDRESS);

/* RESERVE 8 BYTES FOR EACH BOUNDS ARRAY */
DECLARE BOUNDS1 (4) ADDRESS DATA (

000H,
000H,
MAX$MOTOR$SPEED,
MIN$MOTOR$SPEED);

DECLARE BOUNDS2 (4) ADDRESS DATA (
0fil0D,
000D,
MAX$VALVE$MOVEMENT,
MIN$VALVE$MOVEMENT);

/* RESERVE 1 BYTE FOR EACH CONTROL BYTE */
DECLARE CONTROLI BYTE DATA (073H);
DECLARE CONTROL2 BYTE DATA (053H);

/* DECLARE TIME INTERVAL */
DECLARE TIME$INTERVAL ADDRESS DATA (1);

/* RESERVE SPACE FOR THE CURRENT BELT SPEED */
DECLARE EELT$SPEED BYTE;

/* RESERVE SPACE FOR THE CURRENT BELT WEIGHT */
DECLARE BELTSWEIGHT ADDRESS;

/~ RESERVE SPACE FOR THE LIQUID FLOW */
DECLARE LIQUID$FLOW ADDRESS;

/* RESERVE SPACE FOR THE EFFECTIVE SETPOINT */
DECLARE MASS$SETPOINT ADDRESS;

/* RESERVE SPACE FOR THE DESIRED SETPOINT */
DECLARE SET$POINT ADDRESS;

/* RESERVE SPACE FOR THE DISTANCE OF BELT PER REVOLUTION
*/

DECLARE DIST$REV BYTE DATA (100);

/* DEFINE THE CONVEYOR LENGTH */
DECLARE CONV$LENGTH BYTE DATA (200);

/* DEFINE THE CONSTANT SIX */
DECLARE SIX BYTE DATA (6);

/* RESERVE STORAGE FOR ACTUAL CURRENT MASS FLOW */
DECLARE MASS$FLOW ADDRESS;

3-103

123

124

125

126

127
] 28

129

130

13]

132

133
134
135

13fi
137
138

139

140

141
142

1

1

1

1

1
1

1

1

1

1

1
1
1

1
1
1

1

2

2
2

/* RESERVE SPACE FOR BELT CONTROL OUTPUT */
DECLARE BELT$CONTROL ADDRESS;

/* RESERVE SPACE FOR LIQUID RATIO */
DECLARE LIQUID$RATIO BYTE;

/* RESERVE SPACE FOR LIQUID CONTROL OUTPUT */
DECLARE LIQUID$VALVE ADDRESS;

/* RESERVE SPACE FOR RUN/HALT CONTROL */
DECLARE SYSTEM$RUNNING BYTE PUBLIC;

/* RESERVE SPACE FOR ERROR FIELD */
DECLARE ERROR$FIELD ADDRESS DATA (0F800H);
DECLARE DUMMY ADDRESS;

/* RESERVE SPACE FOR PIC ICW BYTE */
DECLARE ICW BYTE;

/* DEFINE CONSTANT 1000 */
DECLARE THOUSAND ADDRESS DATA (1000);

/* DEFINE CONSTANT 0 */
DECLARE ZERO ADDRESS DATA (0);

/* DEFINE INTERRUPT JUMP TABLE */
DECLARE JUMP$TABLE BYTE AT (3F00H);

/* DECLARATION OF PIC ADDRESSES ON ISBC 569 BOARD */
DECLARE PIC$ICW1$PTR LITERALLY '0ECH';
DECLARE PIC$ICW2$PTR LITERALLY '0EDH';
DECLARE PICINTMASK$PTR LITERALLY '0EDH';

/* DECLARATION OF PIC CONSTANTS */
DECLARE CLRLOWBITS LITERALLY '0E0H';
DECLARE INTERVAL$4 LITERALLY '016H';
DECLARE INTERRUPT$MASK LITERALLY '0F4H';

$EJECT
/***
* INITIALIZE PROGRAM AT START-UP OF SYSTEM *
* THIS PROCEDURE IS CALLED AT START-UP *
***/

INITIATION: PROCEDURE PUBLIC;

/* DISABLE THE INTERRUPTS */
DISABLE;

/* INITIALIZE PID RECORD */
CALL UQPSET (.PRCV,.ERROR$FIELD,.DUMMY);
CALL UQPSET (.PRLQ,.ERROR$FIELD,.DUMMY);

3·104

143
144

145
146
147
148
149
J. 50

151
152
153
154
155
156

157
158
159

160
161

162
163

164
165

166

167

168

169

170

171

172

2
2

2
2
2
2
2
2

2
2
2
2
2
2

2
2
2

2
2

2
2

2
2

2

2

2

2

2

2

2

/* INITIALIZE THE CONTROL BITS */
CALL UQPSCT (.PRCV,.CONTROLl);
CALL UQPSCT (.PRLQ,.CONTROL2);

/* SET UP THE PIO CONSTANTS */
CONSTANTSl.C0 FEEDER$C0;
CONSTANTSl.Cl FEEDER$Cl;
CONSTANTSJ.C2 FEEDER$C2;
CONSTANTSl.C3 FEEDER$C3;
CONSTANTS 1. DT FEEDER $T IME $INTERVl>.L ;
CONSTANTS1.S FEEDER$SCALE$FACTOR;

CONSTANTS2.C0
CONS rl'ANTS 2. C 1
CONSTANTS 2. C2
CONSTMJTS2. C3
CONSTANTS2.DT
CONSTAN'I'S2. S

LIQUID$C0;
LIQUIO$Cl;
LIQUID$C2;
LIQUIO$C3;
LIQUID$TIME$INTERVAL;
LIQUIO$SCALE$FACTOR;

/* CLEAR SETPOINTS */
SETPOINT = 0;
LIQUID$RATIO = 0;
SYSTEM$RUNNING = 0;

/* INITIALIZE THE CONSTANTS */
CALL UQPSCN (.PRCV,.CONSTANTS1);
CALL UQPSCN (.PRLQ,.CONSTANTS2);

/* INITIALIZE THE BOUNDS */
CALL UQPSBD (.PRCV,.BOUNDSl);
CALL UQPSBD (.PRLQ,.BOUNDS2);

/* SET THE TIME INTERVAL */
CALL UQPSTI (. PRCV,. TIME$INTERVAL) ;
CALL UQPSTI (.PRLQ, .TIME$INTERVAL);

/* INITIALIZE PROCESSOR 0 */
CALL PROCESSOR0INITIALIZATION;

/* INITIALIZE PROCESSOR 1 */
CALL PROCESSORlINITIALIZATION;

/* INITIALIZE PROCESSOR 2 */
CALL PROCESSOR2INITIALIZATION;

/* INITIALIZE COUNTER 1 */
CALL COUNTERlINITIALIZATION;

/* INITIALIZE COUNTER 2 */
CALL COUNTER2INITIALIZATION;

/* INITIALIZE INTERRUPT CONTROLLER */
ICW = (LOW (.JUMP$TABLE) AND

CLRLOWBITS) OR
INTERVAL$4 ;

OUTPUT (PIC$ICWl$PTR) = ICW;

3-105

173
174

175

176

177

178

179

180

181

182

183

185

186
187
188
189
190
191

192
193

194

195

2
2

2

2

2

2

1

2

2

2

2

2

2
2
2
2
2
2

2
2

2

2

ICW = HIGH (.JUMP$TABLE);
OUTPUT (PIC$ICW2$PTR) = ICW;

/* SET INTERRUPT MASKS */
OUTPUT (PICINTMASK$PTR)

/* ENABLE INTERRUPTS */
ENABLE;

/* RETURN TO MAIN PROGRAM */
RETURN;

END INITLl>TION;

INTERRUPT$MASK;

$EJECT
/***
* THIS IS THE PID CONTROL ROUTINE. IT IS ENTERED *
* EACH 200 MILLISECONDS THROUGH AN INTERRUPT GEN- *
* ERATED BY THE FREQUENCY COUNTER UPI AND SENT TO *
* mTERHUPT 3. *
***/

PIDRUN: PROCEDURE INTERRUPT 3 PUBLIC;

/* TURN THE LED INDICATOR ON */
OUTPUT (RESET$LATCH$ADR) = INDICATOR$ON;

/* GET WEIGHBELT WEIGHT */
BELT$WEIGHT=WEIGHBELT$WEIGHT;

/* GET LIQUID FLmv RATE * /
LIQUID$FLOW=LIQUID$FLOW$RATE;

/* CONTROL START-STOP RAMP */
IF SYSTEM$RUNNING

THEN MASS$SETPOINT=SETPOINT;
ELSE MASS$SETPOINT=0;

/* DETER1ViINE ACTUAL MASS FLOW ON WEIGHBELT */
CALL MQULD2(.IR,.BELT$CONTROL);
CALL MQUML2(.IR,.BELT$WEIGHT);
CALL MQUMLl(.IR,.DIST$REV);
CALL MQUDVl(.IR,.CONV$LENGTH);
CALL MQSDV2(.IR,.THOUSAND);
CALL MQSST2(.IR,.MASS$FLOW);

/* COMPUTE ERROR SIGNAL ON WEIGHBELT */
CALL MQSLD2(.IR,.MASS$SETPOINT);
CALL MQSSB2(.IR,.MASS$FLOW);

/* HANDLE PID BELT CONTROL ALGORITHM */
CALL UQPPID(.PRCV,.IR);

/* STORE OUTPUT SIGNAL */
CALL MQUST2(.IR,.BELT$CONTROL);

3-106

196
197
198

199

201

202

203

204

205

206

207

208
209
210

2
2
2

2

2

2

2

2

2

2

2

2
2
1

/* COMPUTE LIQUID SETPOINT */
CALL MQSLD2 (. IR, .MASS$FLOW);
CALL MQSML1(.IR,.LIQUID$RATIO);
CALL MQSML1(.IR,.SIX);

/* VERIFY THAT WEIGHBELT IS MOVING */
IF WEIGHBELT$SPEED = e
THEN CALL MQULD2(.IR,.ZERO);

/* COMPUTE LIQUID ERROR */
CALL MQSSB2 (. IR,. LIQUID$FLOW);

/* HANDLE PID LIQUID CONTROL */
CALL UQPPID(.PRLQ,.IR)i

/* STORE OUTPUT SIGNAL */
CALL MQUST1(.IR,.LIQUID$VALVE)i

/* OUTPUT WEIGHBELT CONTROL SIGNAL */
CALL WEIGHBELT$MOTOR$DRIVE (BELT$CONTROL);

/* OUTPUT FLOW CONTROL SIGNAL */
CALL LIQUID$VALVE$POSITION (LIQUID$VALVE);

/* SEND END OF INTERRUPT TO 8259 CONTROLLER */
OUTPUT(0ECH)=020H;

/* TURN THE LED INDICATOR OFF */
OUTPUT (RESET$LATCH$ADR) INDICATOR$OFFi

/* RETURN FROM CONTROL TASK */
RETURN;
END PIDRUN;

END;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
465 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-80 COMPILATION

01C1H
0094H
000AH

3-107

4l19D
148D

10D

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE PROCESSORINITIALIZATIONMODULE
OBJECT MODULE PLACED IN :Fl:SBC941.0BJ
COMPILER INVOKED BY: PLM80 :Fl:SBC941.PLM DEBUG PAGEWIDTH(72) TITLE('PR

-OCESSOR INITIALIZATION')

1

2
3
4

5
6
7

8
9

10

11
12
13
14
15
16
17
18

19
20
21

22
23
24
25
26
27
28

1
1

1
1
1

1
1
1

1
1
1
1
1
1
1
1

1
1
1.

1
1
1
1
1
1
1

/**
* THIS PROGRAM IS USED TO INITIALIZE THE ISBC *
* 941 PROCESSOR INSTALLED IN SOCKET 0. THE *
* DEVICE WILL OPERATE IN THE FREQUENCY OUTPUT *
* MODE. *
**/

PROCESSOR$INITIALIZATION$MODULE: DO;

/* DECLARATION OF ADDRESSES */
DECLARE UPI0STATUS LITERALLY '0E5H';
DECLARE UPI 0COMMAND LITERALLY '0E5H';
DECLARE UPI0DATA LITERALLY '0E4H';

DECLARE UPIISTATUS
DECLARE UPIICOMMAND
DECLARE UPI$ISDATA

DECLARE UPI2STATUS
DECLARE UPIS2$COMMAND
DECLARE UPI2DATA

/* DECLARATION OF ISBC 941
DECLARE SETPI
DECLARE CLRPI
DECLARE CLRP2
DECLARE PAUSE
DECLARE LOOP
DECLARE INI'rPF
DECLARE PACIFY
DECLARE ENFLAG

/* DECLARATION OF ISBC 941
DECLARE RFC
DECLARE IBF
DECLARE QF'

/* DECLARATION OF ISBC 941
DECLARE FREQ
DECLARE SF
DECLARE OUTPUT$ENABLE0
DECLARE INITIAL$STATE
DECLARE DELAY
DECLARE PERIOD
DECLARE INITIAL$OUTPUT

3-108

LITERALLY '0E7H';
LITERALLY '0E7H';
LITERALLY '0E6H';

LITERALLY '0E9H';
LITERALLY '0E9H';
LITERALLY '0E8H';

COMMANDS */
LITERALLY '00BH';
LITERALLY '00DH';
LITERALLY '00EH';
LITERALLY '005H';
LITERALLY '004H';
LITERALLY '002H';
LITERALLY '001H';
LITERALLY '006H';

STATUS BITS */
LITERALLY '080H';
LITERALLY '002H';
LITERALLY '010H';

#0 INITIALIZATION
LITERALLY '0B5H';
LITERALLY '000H';
LITERALLY '001H';
LITERALLY '000H';
LITERALLY '001H';
LITERALLY '000H';
LITERALLY '00EH';

DATA */

29
30
31

32

33

34

35

36

37
38

39
40
41
42
43

44
45
46

47
48
49
50
51

52
53
54

1
]

1

1

1

1

1

1

2
2

2
3
4
3
3

2
3
2

2
3
4
3
3

2
3
2

/* DECLARATION OF INTERVAL
DECLARE PIT0MODE
DECLARE PIT0INTERVAL
DECLARE PITS0$MODE$WRD

DeCLARE PIT$0SCOUNT

TIMER PARAMETERS */
LITERALLY '016H'j
LITERALLY '00EH'j
LITERALLY '0E3H'j

LITERALLY '0E0H'j

/* DECLARATION OF COUNTER LOCATIONS */
DECLARE (LIQ$COUNT,BELT$COUNT) BYTE EXTERNALj

/* DECLARATION OF ISBC 941 PRIMARY DATA */
DECLARE INIT0TABLE (6) BYTE DATA (

FREQ,
SF,
OUTPUTSENABLE0,
INITIAL$STATE,
DELAY,
PERIOD) j

/* DECLARATION OF MISC PARAMETERS */
DEC LARE I BYT E j

/***
* INITIALIZATION PROGRAM BODY *
***/

PROCESSOR0INITIALIZATION: PROCEDURE PUBLICj

/* INITIALIZE COUNTER 0 FOR 10 MICROSECONDS */
OUTPUT(PIT0MODE$WRD)=PITS0$MODEj
OUTPUT(PIT$0SCOUNT)=PITS0$INTERVALj

/* VERIFY THAT PROCESSOR IS RESET */
DO WHILE ((INPUT(UPI0STATUS) AND RFC) = 0)j

DO WHILE ((INPUT(UPI0STATUS) AND IBF) <> e)j
END;
OUTPUT (UPI0COMMAND)=PACIFYj

END;

/* REQUEST PRIMARY FUNCTION */
DO WHILE ((INPUT(UPI0STATUS) AND IBF) <> 0)j
END;
OUTPUT(UPI0COMMAND)= INITPF;

/* LOAD INITIAL PARAMETERS */
DO 1=0 TO 5;

END;

DO WHILE ((INPUT(UPI0STATUS) AND IBF) <> 0);
ENDj
OUTPUT(UPIS0SDATA)=INIT$0STABLE(I);

/* TERMINATE PARAMETER LOADING */
DO WHILE ((INPUT(UPI0STATUS) AND IBF) <> 0)j
ENDj
OUTPUT (U PI $ 0$COMMAND) =PA USE;

3-109

55
56
57

58
59
60

61
62
li3

64

65

66
67
68
69
70

71

72

73
74
75
76
77

2
3
2

2
3
2

2
3
2

2

2

1
1
1
1
1

1

1

2
3
4
3
3

/* START FREQUENCY FUNCTION */
DO WHILE (INPUT(UPI0STATUS) AND IBF) <>0);
END;
OUTPUT (UPI0COMMAND)=LOOP;

/* SET UNUSED BITS TO ALLOW EXPANSION */

DO WHILE «INPUT(UPI0STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI0COMMAND)=CLRP2;

DO WHILE «INPUT(UPI0STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI0DATA)=INITIAL$OUTPUT;

/* RETURN TO CALLING PROGRAM */
RETURN;

END PROCESSOR0INITIALIZATION;

$EJECT
/**
* THIS PROCEDURE IS USED TO INITIALIZE THE ISBC *
* 941 PROCESSOR INSTALLED IN SOCKET 1. THE DE- *
* VICE WILL OPERATE IN THE FCOUNT, HIGH FRE- *
* QUENCY INPUT MODE. *
**/

/* DEFINE INITIALIZATION PARAMETERS */
DECLARE FCOUNT LITERALLY '033H';
DECLARE INPUT$SELECT LITERALLY '001H';
DECLARE OUTPUT$ENABLE$1 LITERALLY '001H';
DECLARE SAMPLING$INTERVAL LITERALLY '009H';
DECLARE INITIAL$STATE$1 LITERALLY '0EIH';

/* DECLARE PARAMETER INITIALIZATION TA8LE */
DECLARE INITITABLE(4) BYTE DATA (

FCOUNT,
INPUT$SELECT,
OUTPUT$ENABLE$I,
SAMPLING$INTERVA.L);

/**
* INITIALIZATION BODY *
**/

PROCESSORIINITIALIZATION: PROCEDURE PUBLIC;

/* VERIFY THAT PROCESSOR IS RESET */
DO WHILE «INPUT(UPIISTATUS) AND RFC) = 0);

DO WHILE «INPUT(UPIlSTATUS) AND IBF) <> 0);
END;
OUTPUT (UPIICOMMAND)=PACIFY;

END;

3·110

78
79
80

81
82
83
84
85

86
87
88

89
90
91
92
93
94

95
96
97

98

99

100
101
102
103
104
105
106
107
108
109
110

2
3
2

2
3
4
3
3

2
3
2

2
3
2
2
3
2

2
3
2

2

2

1
1
1
1
1
1
1
1
1
1
1

/* REQUEST PRIMARY FUNCTION */
DO WHILE «INPU'r(UPI1STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI1COMMAND)=INITPF;

/* LOAD INITIAL PARAMETERS */
DO I=0 TO 3;

DO WHILE «INPUT(UPIlSTATUS) AND IBF) <> 0);
END;
OUTPUT (UPI1DATA)=INIT1TABLE (I);

END;

/* TERI'l!INATE PARAMETER LOADING */
DO WHILE «INPUT(UPI1STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI1COMMAND)=PAUSE;

/* SET UNUSED BITS HIGH FOR SPARE ENABLES */
DO WHILE «INPUT{UPI1STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI1COMMAND) =SETP1;
DO WHILE «INPUT(UPI1STATUS) AND IBF)/<> 0);
END; _ .
OUTPUT (UPI1DATA)=INITIAL$STATE$1;

/* START FREQUENCY COUNT OPERATION */
DO WHILE ({INPUT(UPI1STATUS) AND IBF) <> 0);
END;
OUTPUT (UPIS1$COMMAND)=LOOP;

/* RETURN TO CALLING PROGRAM */
RETURN;

END PROCESSOR$1SINITIALIZATION;

$EJECT
/**
* THIS PROCEDURE IS USED TO INITIALIZE THE ISBC *
* 941 INSTALLED IN SOCKET 2. THE DEVICE WILL BE *
* OPERATED AS A STEPPER MOTOR DRIVER. *
**/

/* DEFINE INITIALIZATION PARAMETERS */
DECLARE STEPPER LITERALLY 1017HI;
DECLARE SCALE$FACTOR LITERALLY 10DFHI;
DECLARE OUTPUT$ENABLE$2 LITERALLY 10F0H I ;
DECLARE OUTPUT$POLARITY LITERALLY 1050HI;
DECLARE COMMON$PERIOD LITERALLY 1004HI;
DECLARE P20$TRAN1 LITERALLY 1000HI;
DECLARE P20$TRAN2 LITERALLY 1000HI;
DECLARE P21$TRAN1 LITERALLY 1000H I;
DECLARE P21$TRAN2 LITERALLY 1000HI;
DECLARE P22$TRAN1 LITERALLY 1000HI;
DECLARE P22$TRAN2 LITERALLY 1000HI;

3·111

III 1
112 1
113 1
114 1
115 1
116 1
117 1
118 1
119 1
120 1

121 1

122 1

123 1

124 2
125 3
126 4
127 3
128 3

129 2
130 3
131 2

/*

DECLARE P23$TRANI LITERALLY '00r1lH' ;
DECLARE P23$TRAN2 LITERALLY '00!:'1H' ;
DECLARE P24$TRANI LITERALLY '000H' ;
DECLARE P24$TRAN2 LITERALLY '002H';
DECLARE P25$TRANI LITERALLY '00!:'1H';
DECLARE P25$TRAN2 LITERALLY '002H';
DECLARE P26$TRANI LITERALLY '001H';
DECLARE P26$TRAN2 LITERALLY '003H' ;
DECLARE P27$TRANI LITERALLY '001H' ;
DECLARE P27$TRAN2 LI'rERALLY '003H';

DECLARE CLRLOWPORT LITERALLY '00FH' ;

DECLARE PARAMETER INITIALIZATION TABLE */
DECLARE INIT2TABLE(21) BYTE DATA (

STEPPER,
SCALE$FACTOR,
OUTPUT$ENABLE$2,
OUTPUT$POLARITY,
COMMON$PERIOD,
P20 $TRAN 1,
P21O$TRAN2,
P21$TRANl,
P21$TRAN2,
P22$TRAN 1,
P22$TRAN2,
P23$TRAN 1,
P23$TRAN2,
P24 $TRAN 1,
P24$TRAN2,
P25$TRANl,
P25$TRAN2,
P26 $TRAN 1,
P215$TRAN2,
P27$TRANl,
P27$TRAN2);

/**
* INITIALIZATION BODY *
*************~**********************************/

PROCESSOR2INITIALIZATION: PROCEDURE PUBLIC;

/* VERIFY THAT PROCESSOR IS RESET */
DO WHILE ({INPUT{UPI2STATUS) AND RFC) = 10);

DO WHILE ((INPUT{UPI2STATUS) AND IBF) <> 0);
END; .
OUTPUT (UPI2COMMAND)=PACIFY;

. END;

/* REQUEST PRIMARY FUNCTION */
DO WHILE «INPUT(UPI2STATUS) AND IBF) <> 0);
END;
OU'l'PUT (UPI2COMMAND)=INITPF;

3-112

132
133
134
135
136

137
138
139

140
141
142

143
144
145
146
147
H8

149

J.50

151

152

153

154

2
3
4
3
3

2
3
2

2
3
2

2
3
2
2
3
2

2

2

1

2

2

2

/* LOAD INITIAL PARAMETERS */
DO 1=0 TO 20;

DO WHILE ((INPUT(UPI2STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI2DATA)=INIT2TABLE (I);

END;

/* TERMINATE PARAMETER LOADING */
DO WHILE ((INPUT(UPI2STATUS) AND IBF) <> 0);
END;
OUTPUT(UPI2COMMAND)=PAUSE;

/* START STEPPER CONTROLLER OPERATION */
DO WHILE ((INPUT(UPI2STATUS) AND IBF) <> 0);
END;
OUTPUT(UPI$2SCOMMAND)=LOOP;

/* SET UNUSED BITS LOW TO ENABLE GENERAL FUNCTIONS */
DO WHILE ((INPUT(UPI2STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI 2COMl'1AND) =CLRPl;
DO WHILE ((INPUT(UPI2STATUS) AND IBF) <> e);
END;
OUTPUT (UPI2DATA)=CLRLOWPORT;

/* RETURN TO CALLING PROGRAl'1 */
RETURN;

END PROCESSOR2INITIALIZATION;

$EJECT
/***
* THIS PROCEDURE IS USED TO INITIALIZE COUNTER *
* 1 TO PERFORM AS AN EIGHT BIT BINARY COUNTER *
* WHICH WILL BE USED TO MEASURE THE BELT SPEED.*
***/

COUNTERSl$INITIALIZATION: PROCEDURE PUBLIC;

/* INITIALIZE COUNTER 1 FOR EIGHT BIT COUNTING */
LIQSCOUNT = 0;

/* RETURN TO CALLING PROGRAM */
RETURN;

END COUNTERlINITIALIZATION;

$EJECT
/***
* THIS PROCEDURE IS USED TO INITIALIZE COUNTER *
* 2 TO PERFORl'1 AS AN EIGHT BIT BINARY COUNTER *
* WHICH WILL BE USED TO MEASURE THE LIQUID *
* FLOW THROUGH THE METER. *
***/

3-113

155 1 COUNTER2INITIALIZATION: PROCEDURE PUBLIC;

/* INITIALIZE COUNTER 2 FOR EIGHT BIT COUNTING
156 2 BELT$COUNT = 0 ;

/* RETURN TO CALLING PROGRAM */
157 2 RETURN;

158 2 END COUNTER2INITIALIZATION;
159 1 END PROCESSOR$INITIALIZATION$MODULE;

$EJECT

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXHWM STACK SIZE =
329 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-80 COMPILATION

0201H
0001H
0000H

3-114

513D
1D
0D

*/

ISIS-II PL/M-8fJ V3.1 COMPILATION OF MODULE PROCESSORINTERFACEMODULE
OBJECT MODULE PLACED IN :Fl:0PR941.0BJ
COMPILER INVOKED BY: PLM80 :Fl:0PR941.PLM DEBUG

1

2 1
3 1
4 1

5 1
6 1
7 1

8 1
9 1

10 1

11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
213 1
21 1

22 1
23 1
24 1
25 1
26 1

27 1
28 2
29 2
30 1
31 2
32 2

$INTVECTOR(4,3F0~H)
$PAGEWIDTH(72)
$TITLE('PROCESSOR INTERFACE')
/**
* THESE PROGRAMS PROVIDE THE OPERATING INTER- *
* r'ACE BETWEEN 'l'HE APPLICATION PROGRAM AND *
* THE ISBC 941 PROCESSORS OR COUNTERS. *
**/

PROCESSOR$INTERFACE$MODULE: DO;

/* DECLARATION OF ADDRESSES */
DECLARE UPI0STATUS LITERALLY '0E5H';
DECLARE UPIfIlCOMMAND LITERALLY '0E 5H' ;
DECLARE UPI0DATA LITERALLY '0E4H';

DECLARE UPI$l $STATUS LITERALLY '0E7H';
DECLARE UPIlCOMMAND LITERALLY 'filE 7H ' ;
DECLARE UPIlDATA LITERALLY '0E6H';

DECLARE UPI2STATUS LITERALLY 'eE9H';
DECLARE UPI2COMMAND LITERALLY '0E9H';
DECLARE lIPI2DATA LITERALLY '0E8H';

/* DECLARATION OF ISBC 941 COMMANDS */
DECLARE SE'l'Pl LITERALLY '00BH' ;
DECLARE CLRPI LITERALLY '00DH' ;
DECLARE CLRP2 LI'rERALLY '00EH' ;
DECLARE RDFCIlJ LITERALLY '042H' ;
DECLARE RDfei LITERALLY '043H';
DECLARE PAUSE LITERALLY '005H';
PECLARE LOOP LITERALLY '1304H';
DECLARE INITPF LITERALLY 'fJ02H';
DECLARE PACIFY LITERALLY '001H';
DECLARE ENFLAG LITERALLY 'fJfJ6H' ;
DECLARE SETOE LITERALLY '071H';

/* DECLARATION OF ISBC 941 STATUS BITS */
DECLARE RFC LITERALLY '080H';
DECLARE IBF LITERALLY '0e2H' ;
DECLARE OBF LITERALLY '001H';
DECLARE QF LITERALLY '010H' ;
DECLARE QNE LITERALLY '020H' ;

/* DEFINE THE MATH ROUTINES USED BY MODULES */
MQULD4: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;

DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQULD4;

MQUDV2 : PROCEDURE (IR$PTR, VALUE$PTR) EXTERNAL;
DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQUDV2;

3·115

33
34
35
36
37
38

39

40

41

42

43
44

45
46

47
48

49

51
52
53

1
2
2
1
2
2

1

1

1

2

2
2

2
2

2
2

2

3
4
3

MQUDV1: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL;
DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQUDV1;

MQUST1: PROCEDURE (IR$PTR, VALUE$p'rR) EXTERNAL;
DECLARE (IR$PTR,VALUE$PTR) ADDRESS;
END MQUST1;

/* DEFINE THE MATH ACCUMULATOR STORAGE AREA */
DECLARE IR(18) BYTE EXTERNAL;

/* DEFINE THE COUNTER LOCATIONS */
DECLARE (LIQ$COUNT,BELT$COUNT) BYTE EXTERNAL;

$EJECT
/**
* THIS PROGRAM IS USED TO GENERATE A FREQUENCY *
* OUTPUT USING THE ISBC 941 MODULE INSTALLED IN *
* SOCKET NUMBER 0. TO PROVIDE MAXIMUM RESOLU- *
* TION, FOUR PERIODS WILL BE USED. THE FHEQUEN-*
* CY RANGES CORHESPONDING TO EACH PERIOD ARE: *
* RANGE FREQ RESOLUTION *
* 1 50 TO 165HZ 2 HZ *
* 2 166 TO 225 HZ 3 HZ *
* 3 226 TO 285 HZ 3 HZ *
* 4 286 TO 550 HZ 6 HZ *
* THE SCALE FACTOR IS COMPUTED BY THE FORMULA: *
* SF=100000/«FREQ)*(RANGE FACTOR)) *
**/

WEIGHBELT$MOTOR$DRIVE: PROCEDURE (FHEQ) PUBLIC;

/* DECLARATION OF CONSTANT, 100,000 */
DEC.LARE HUNDRED$K (4) BYTE DATA (

0A0H,086H,001H,000H);

/* DECLARATION OF ISBC941 PORT ENABLES */
DECLARE ENABLE$FREQ LITERALLY '01H';
DECLARE DISABLE$FREQ LITERALLY '00H';

/* DECLARATION OF ISBC 941 MEMORY LOCATION COMMANDS */
DECLARE WRRM$55 LITERALLY '055H';
DECLARE WRRM$74 LITERALLY '074H';

/* DECLARATION OF VARIABLES USED IN COMPUTATIONS */
DECLARE (RANGE,FREQA) BYTE;
DECLARE FREQ ADDRESS;

/* BEGIN COMPUTATION OF OUTPUT FOR FREQ > 48 HZ. */
IF FREQ > 49
THEN DOi

/* ENABLE FREQUENCY OUTPUT */
DO WHILE «INPUT(UPI0STATUS) AND IBF) <> 0);
END;
OUTPUT (UPIS0$COMMAND) = SETOE;

3·116

54 3
55 4
56 3

57 3

59 4

61 5

63 5
64 5
65 4

66 4
67 3

68 3

69 3

71 4

72 4

73
74
75

76
77
78
79

80
81
82

83
84
85

86
87
88

4
4
4

3
4
4
4

3
4
3

3
4
3

3
4
3

DO WHILE «INPUT(UPI0STATUS) AND IBF) <> 0);
END;
OUTPUT(UPI0DATA) = ENABLE$FREQ;

/* COMPUTATION OF FREQUENCY RANGE */
IF FREQ < 285
THEN DO;

END;

IF FREQ < 226
THEN DO;

END;

IF FREQ < 166
THEN RANGE = 9;
ELSE RANGE = 5;

ELSE RANGE = 3;

ELSE RANGE = 2;

/* LOAD MATH ACCUMULATOR WITH 100,000 */
CALL MQULD4 (.IR,.HUNDRED$K);

/* TEST FOR MOTOR SHUTDOWN */
IF FREQ > 1
THEN DO;

/* DIVIDE BY FREQUENCY */
CALL MQUDV2 (.IR,.FREQ);

/* DIVIDE BY RNAGE FACTOR */
CALL MQUDV1 (.IR,.RANGE);

/* GET TWO'S COMPLEMENT FOR ISBC 941 SCALE FACTOR */
CALL MQUST1 (.IR,.FREQA);
FREQA = NOT (FREQA + 1);

END;

/* ADJUST FOR MOTOR STOP SIGNAL */
ELSE DO;

FREQA
RANGE

END;

000H;
0FFH;

/* SEND NEW SCALE FACTOR TO DEVICE */
DO WHILE «(INPUT(UPI0STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI0COMMAND) = WRRM$55;

DO WHILE ((INPUT(UPI0STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI0DATA) = FREQA;

/* SEND NEW PERIOD TO DEVICE */
DO WHILE «(INPUT(UPI0STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI0COMMAND) = WRRM$74;

3-117

89
90
91

92

93

94
95
96

97

98
99

100

101

102

103

104
105

106
107
108

109
110
III

3
4
3

3

2

3
4
3

3

4
3

3

2

2

1

2
2

2
3
2

2
3
2

DO WHILE ((INPUT(UPI0STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI0DATA) = RANGE;

/* END OF FREQUENCY OUTPUT MODE */
END;

/* HANDLE FREQUENCIES < 50 HZ. */
ELSE DO;

/* DISABLE FREQUENCY OUTPUT GENERATION */
DO t HILE ((INPUT (UPI $0 $STATUS) AND IBF) <> 0);
END;
OUTPUT(UPI0COMMAND) = SETOE;

DO WHILE ((INPUT(UPI0STATUS) AND IBF) <> 0);

END;
OUTPUT (UPI0DATA) = DISABLE$FREQ;

/* END OF ALTERNATE FREQUENCY OUTPUT */
END;

/* RETURN TO CALLING PROGRAM */
RETURN;

END WEIGHBELT$MOTOR$DRIVE;

$EJECT
/***
* THIS PROGRAM GETS THE WEIGHBELT WEIGHT FROM THE *
* NUMBER 1 ISBC941 PROCESSOR. THE WEIGHT WILL BE *
* RECEIVED AS A COUNT WHICH RANGES BETWEEN 0 AND *
* 2000, CORRESPONDING TO A WEIGHT BETWEEN 0.E AND *
* le.00 POUNDS. EACH COUNT RECEIVED HAS A VALUE *
* OF 0.005 POUNDS. *
***/

WEIGHBELTSWEIGHT: PROCEDURE ADDRESS PUBLIC;

/* DECLARATIONS OF VARIABLES USED IN THE PROCEDURE * /
DECLARE (LCOUNT,HCOUNT) BYTE;
DECLARE WEIGHT ADDRESS;

/* GET INPUT COUNT LOW BYTE */
DO WHILE ((INPUT(UPIlSTATUS) AND IBF) <> 0);
END;
OUTPUT (UP!Sl$COMMAND) = RDFCeJj

DO WHILE ((INPUT(UPIlSTATUS) AND OSF)
END;
LCOUNT = INPUT(UPIlDATA);

3,118

o) ;

112
113
114

115
116
117

118
119
120

121
122
123

124

125

126

127

128

129

130

131
132

133

134

2
3
2

2
3
2

2
3
2

2
2
2

2

2

2

1

2

2

2

2
2

2

2

/* GET INPUT COUNT HIGH BYTE */
DO WHILE ((INPUT(UPIlSTATUS) AND IBF) <> 0);
END;
OUTPUT (UPIlCOMMAND) = RDFC1;

DO WHILE ((INPUT(UPIlSTATUS) AND OBF)
END;
HCOUNT = INPUT(UPIlDATA);

/* START NEXT WEIGHT SAMPLE PERIOD */

0) ;

DO WHILE ((INPUT(UPIlSTATUS) AND IBF) <> 0);
END;
OUTPUT (UPIlCOMMAND) = LOOP;

/* CONVERT WEIGHT TO AN ADDRESS VALUE * /
\oI/E IGHT HCOUNT;
WEIGHT SHL(WEIGHT,8);
WEIGHT WEIGHT + LCOUNT;

/* DIVIDE BY TWO TO CONVERT TO POUNDS */
WEIGHT = SHR(WEIGHT,l);

/* RETURN THE WEIGHTBELT WEIGHT */
RETURN WEIGHT;

END WEIGHBELT$WEIGHT;

$EJECT
/**
* THIS PROCEDURE TRANFERS THE WEIGHBELT SPEED TO *
* THE CALLING PROGRAM AND CLEARS THE COUNTER FOR *
* THE NEXT TEST. THE SPEED RESOLUTION PROVIDES *
* ONLY FIVE SPEED RANGES. *
**/

WEIGHBELT$SPEED: PROCEDURE BYTE PUBLIC;

/* DECLARATIONS OF VARIABLES USED BY THE PROCEDURE */
DECLARE SPEED BYTE;

/* LATCH COUNTER BEFORE READING SPEED */
DISABLE;

/* GET COUNTER VALUE FROM COUNTER */
SPEED = BELT$COUNT;

/* CLEAR COUNTER FOR NEXT OPERATION */
BELT$COUNT 0;
ENABLE;

/* RETURN DATA TO CALLING ROUTINE */
RETURN SPEED;

END WEIGHBELTSSPEEDj

3·119

135

136

137
138

139

141

143

144
145

146
147

148
149
150

151
152
153
154

155

156

1

2

2
2

2

3

4

4
4

3
4

3
4
3

3
4
3
3

2

2

$EJECT
/***
* THIS PROCEDURE PROVIDES COMMANDS TO THE STEPPER *
* MOTOR TO OPERATE THE CONTROL VALVE. IT WILL COM-*
* PUTE THE SIGNED MAGNITUDE REPRESENTATION FROM *
* THE TWO'S COMPLIMENT INPUT AND WILL ISSUE THE *
* APPROPRIATE STEP INCREMENT AND bIRECTION. A *
* FIXED STEP RATE OF 100 STEPS PER SECOND WILL BE *
* USED BY THE CONTROL DEVICE. *
***/

LIQUID$VALVE$POSITION: PROCEDURE (POSITION) PUBLIC;

/* DECLARATIONS OF VARIABLES USED BY THE PROCEDURE */
DECLARE POSITION BYTE;

/* DEFINITIONS OF TERMS USED IN COMPUTATIONS */
DECLARE STEP$RATE LITERALLY '005Hl;
DECLARE REVERSE LITERALLY '080H';

/* IF NO MOVEMENT, SKIP OPERATIONS */
IF POSITION <> 0
THEN DO;

/* SUPPORT CONVERSION TO SIGNED MAGNITUDE NUMBER */
IF POSITION > 127
THEN DO;

/* GET MAGNI.TUDE OF MOVEMENT */
POSITION = 256 - POSITION;

/* SET SIGN FOR CCW ROTATION */
POSITION = POSITION OR REVERSE;

END;

/* VERIFY THAT QUEUE SPACE IS AVAILABLE */
DO WHILE «INPUT(UPI2STATUS) AND QF) <> 0);
END;

/* REQUEST DESIRED STEP RATE */
DO WHILE «INPUT(UPI2STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI2DATA) = STEP$RATE;

/* REQUEST STEPPER MOVEMENT */
DO WHILE ((INPUT(UPI2STATUS) AND IBF) <> 0);
END;
OUTPUT (UPI2DATA) = POSITION;

END;

/* RETURN TO CALLING PROGRAM */
RETURN;

END LIQUID$VALVE$POSITION;

3·120

157

158
159

160

161

162
163

164
165
166
167
168

169

1713

171

172

173

1

2
2

2

2

2
2

2
2
2
2
2

2

2

1

2

2

$EJECT
/***
* THIS PROCEDURE TRANSFERS THE LIQUID FLOW Rll.TE FROM *
* THE FLOW COUNTER TO THE CALLING PROGRAM. AFTER *
* READING, THE FLO\", COUNTER WILL BE RESET TO FACILI- *
* TATE THE NEXT READING. THE LIQUID FLOW COUNT WILL *
* VARY BETWEEN 20 AND 240 PULSES IN EACH 200 MILLI- *
* SECOND SAMPLE INTERVAL. THIS WILL CORRESPOND TO *
* THE ACTUAL LIQUID FLOW RATE OF 10 '1'0 120 POUNDS *
* PER MINUTE. *
***/

LIQUID$FLOW$RATE: PROCEDURE ADDRESS PUBLIC;

/* DECLARATION OF VARIABLES USED BY THE PROGRAM */
DECLARE TEMP BYTE;
DECLARE (FLOW,TTWO,TSXTN,T$THRTWO) ADDRESS;

/* LATCH COUNTER BEFORE READING FLOW */
DISABLE;

/* GET FLOW RATE VALUE FROM COUNTER */
TEMP = LIQ$COUNT;

/* CLEAR COUNTER FOR NEXT OPERATION */
LIQ$COUNT = 0;
ENABLE;

/* CONVERT TO POUNDS PER MINUTE */
FLOW = TEMP;
T$TWO = SHL(FLOW,I);
T$SXTN = SHL(T$TWO,3);
T$THRTWO = SHL(TSSXTN,I);
FLOW = T$'1'WO + T$SXTN + T$THRTWO;

/* RETURN FLOW RATE TO CALLING PROGRAM */
RETURN FLOW;

END LIQUID$FLOW$RATE;

$EJEq
/**
* COUN'rER FOR LIQUID FLOW RATE FROM LIQUID *
* FLOW METER. COUNT PULSE vHLL GENERATE AN *
* INTERRUPT AT LEVEL 1. *
**/

LIQ$CNT: PROCEDURE INTERRUPT 1 PUBLIC;

/* INCREMENT FLOW COUNT */
LIQ$COUNT = LIQ$COUNT + 1;

/* SEND END OF INTERRUPT */
OUTPUT (0ECH) = 020H;

3-121

174

175

176

177

178

179

1813
181

2

2

1

2

2

2

2
1

/* RETURN */
RETURN;

END LIQ$CNT;

$EJECT
/**
* THIS PROCEDURE WILL PROVIDE AN EVENT COUN-*
* TER TO HANDLE THE BELT MOTION DETECTOR. *
* IT WILL OPERATE BY DIRECTING THE MOTION *
* PULSE TO INTERRUPT 2. *
**/

BELT$CN'r: PROCEDURE INTERRUPT 111 PUBLIC;

/* INCREMENT BELT MOVEMENT */
BELT$COUNT = BELT$COUNT + 1;

/* SEND END OF INTERRUPT */
OUTPUT (Q1ECH) = Q120H;

/* RETURN */
RETURN;

END BELT$CNT;
END PROCESSOR$INTERFACE$MODULE;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
4130 LINES READ
13 PROGRAM ERROR(S)

END OF PL/M-80 COMPILATION

0251H
011113H
Q10Q18H

3·122

593D
19D

.8D

ARTICLE
REPRINT

3·123

AR·91

Designing and Assembling
Microcomputer Systems Grows Easier
Although a single data bus standard yet eludes the microcomputer industry. numer­
ous manufacturers of single-board computer and supplementary boards have cast a
hardware vote for the Multibus. Intel's microcomputer backplane which they origina­
ted in 1976. With a steady eye on the control industry market. Intel has designed a
home to accommodate Multibus compatible equipment. the iCS-80 industrial chas­
sis. It promises to significantly reduce the time and cost of assembling the housing
and interface parts of a microcomputer-based control system. In thiS article. besides
taking the first look at Intel's new chassis and signal conditioning panels. we've put
together a comprehensive list of Multibus compatible equipment.

MICHAEL J. McGOWAN. Control Engineering

After the development of single-board
computers nearly three years ago. ven­
dors moved quickly to seize a fraction of
the market. It seemed at first that every­
thing from memories to analog 110
boards had become available. With an
astonishing suddenness, companies
sprang up in Silicon Valley. Texas, New
Jersey, and along the forested roadside
of Rt. 128 outside of Boston. Late that
year, we counted well over a hundred
companies anxious to make their for­
tune seiling the control engineer every­
thing from one or two interface boards
to complete microprocessor systems.

Then the pleasant dream became a
nightmare. From power supply require­
ments to backplane pinouts. little was
compatible. Even such an obvious thing
as board size differed from vendor to
vendor and many a hope for an ideal
system was crushed in a pragmatic
search for whatever would fit together.

Seven months ago in our June 1978
issue we noted that the number of mi­
crocomputer system manufacturers
had dwindled to about 60 and since
then, we find still fewer. Some. no doubt.
were forced out for lack of reliability.
though most. despite remarkably ta­
lented engineering. starved as the mar­
ket saturated.

Large scale integration of microcom­
puter components has more than
doubled the memory size of single­
board computers. Sixteen bit word
lengths will become commonplace in
the next year as microcomputer perfor­
mance begins to rival the mini­
computer's and the lines of distinc­
tion between micros and minis fades.

The fight for a standard data bus
drags on with leaders in the struggle but
no winner. On the offensive. Pro-Log
and Mostek jOintly introduced the STD
bus last autumn in an attempt to gain a
greater market share by espousing de­
centralized system architectures. Their
philosophy argues economics: the user
should pay only for essential functions
by selecting small, specialized boards

and not squander funds on a general
purpose board with extra features.

Still. Intel. favoring more densely
packed and versatile boards. continues
to dominate the market while the Multi­
bus retains its popularity. Today more
30 manufacturers produce over one
hundred different boards based on that
bus structure alone. Not that Intel enjoys
the strict fidelity of its outside vendors;
Digital Equipment Corporation. for in­
stance. boasts some 17 companies
providing boards to mate with the
LSI-11 and LSI-112.

FOUR
FANS
TO
IMPROVE
COOLING

SIGNAL
CONDITIONING
TERMINATION
PANELS

3·124

But perhaps alone among its compet­
itors. Intel has recognized that the ma­
jOrity of ItS boards are being used in
industrial applications and that the con­
trol system designer needs more than
components.

An industrial chassis
A microcomputer system designer must
choose components that are electro­
mechanically compatible. To that end.
Intel is introducing the iCS-80 industrial
chassis and termination panels. It
makes all Multibus-compatible CPU

MUL TlBUS Compatible
Boards and Vendors

ADAC Corp.

Advanced Micro Computers

Ampex

Analog Devices

Augat

Burr-Brown

Computer Marketing

Data Translation

Datacube

Datel Systems

Electronic Solutions

Garry Manufacturing

HT Instruments

Hal Communications

Heurikon

IDEAS

Intel

Interphase

Matrox Electronic Systems

Megalogic

Micro Memories

Micro Networks

MicroTec

Micro/Tel

Monolithic Systems

Motorola

MUPRO

National Semiconductor

North Star Compu ters

Pertec (ICOMI

Relational Memory Systems

Systems, Computp.rs and I ntertaces

1 homas Engineering Cu.

Vector Electronic

XEDAX

ZIA Tech

•
•

•
•
• •
•
•
•

• •
•
• •• • • •

•

• •

•

• • • • •

•
•

3-125

••

•
•
•
••

•
•

•
•

•

~

"0
~ ~

~ '" CD 0
CD

00 " 00 u
"12
UJ ~

UJ l!l
UJ c

•

•

"E
'" o

CD

2 e c:
o
U "E
"E '"
'" 0 o CD
.0 £
it; '" ~ :;;

•

•
••

•
•

•

•

•

•

•
• • • •

• • • •

• •
•

•
•

• • • •
•

•••• •
•
•

• •• •

•
• •

•
•

• •• • •

• • •

•
•

and peripheral boards readily usable.
The advantage of the ICS-80 is that

most of the interconnflction and me­
chanical details for assembling a
microcomputer-based control system
have already been worked out.

The iCS-80 stands 15.75 inches high
and can be mounted in a stardard
RETMA 19 inch rack, or in a NEMA cabi­
net secure from the industrial environ­
ment. The minimum layout consists of a
four-slot Multibus card cage with provi­
sions for adding two more cages to a
maximum of twelve cards. The cages fit
vertically, like records in a rack, to aid
convection cooling and permit front ac­
cess for insertion and maintenance.

On the right side of the chassis is
room for either a 14 or 30 ampere power
supply, the choice dictated by the ap­
plication. The system will operate on
either 115 or 230 volts with a range of 47
to 63 Hertz specified in anticipation of
international service.

Cooling is assisted by four fans­
three for the card cages and one for the
power supply section. The intention
here is to make the installation of addi­
tional fans unnecessary even after the
system has expanded. The fans are ex­
pected to provide adequate cooling for
most applications so'supplementary air
conditioning can be eliminated or at
least minimized.

Signal conditioni.,g
Three signal conditioning panels have
been developed by Intel to simplify con­
nections between the processing cards
and the outside world. The principle is
neatness, and with that follows reliabil­
ity. Flat ribbon cables connect the sig­
nal conditioners tothe processor cards,
a safeguard from "which wire is which"
and screwdriver slips in the vicinity of
expensive boards. Field connections to
the external ihputs and outputs are
made (presumably by electricians with
big hands and reputations for being
less than delicate) through rugged,
screw-type barrier strips that aocept
wire as heavy as 14 AWG. The panels
can mount either on RETMA cabinet
brackets, NEMA wall spacers, or on the
iCS-80 chassis itself.

Each signal conditioning card gives
the user a variety of options. The iCS-910
analog Signal conditioning/termination
panel accepts up to 16 differential or 32
single ended input chaf1ners. The four
2-wire analog output channels might be
connected to 4 to 20 mA current loops.

The digital signal conditioning termi­
nation panel, iCS-920, handles 24 two­
wire input or output channels with sig­
nals up to 55 V, 300 mAo Inputs can be
diode protected, and pads are pro­
vided for current limiters or voltage di­
viders. Optoisolators may be inserted in

Vendors of Multlcompatible Boards

ADAC Corp.
Woburn, MA
617/935-6668

Advanced Micro Computers
Santa Clara, CA
408/732-2400

Ampex
EI Segundo, CA
714/973-2970

Analog Devices
Norwood, MA
617/329-4700

Augat
Attleboro, MA
617/222-2202

Burr-Brown
Tucson, AZ
602/655-8000

Computer Marketing
Waltham, MA
617/894-7000

Data Translation
Natick, MA
617/655-5300

Datacube
Reading, MA
617/944-4600

Datel Systems
Canton, MA
617/828-8000

Electronic Solutions
San Diego, CA
714/292-0242

Garry Manufacturing
New Brunswick, NJ
212/267-6844

HT Instruments
Marina Del Rey, CA
312/822-4296

Hal Communications
Urbana,IL
217/367-7373

Heurikon
Madison, WI
60al255-9075

ID~AS
Se'ltsville, MD
30ii937-3600

Intel
Aloha, OR
503/642-2563

Interphase
Dallas, TX
214/238-0971

the DIP sockets for high voltage isola­
tion or jumpers may be used instead
when the input is TTL. Similarly, output
sockets accept jumpers for direct TTL
output, DIP optoisolators for transient
suppression, or integrated circuit (open
collector) drivers for high voltage' to
high current outputs. Activity on each
channel is indicated by LEOs.

The ac signal conditioning/(solidas)
termination panel, iCS-930, will actually
work with ac or dc on its 16 channels.
The user supplies optoisolators for input
isolation and optically-isolated solid

3-126

Matrox ElectroniC Systems
Montreal, Quebec
514/735-1182

Megalogic
Brookville, OH
513/833-5222

Micro Memories
Chatsworth, CA
213/998-0070

Micro Networks
Worcester, MA
617/852-5400

MicroTec
Sunnyvale, CA
408/733-2919

MicroiTel
St. Louis, MO
314/569-3450

Monolithic Systems
Englewood, CO
303/770-7400

Motorola
Austin, TX
512/928-6572

MUPRO
Sunnyvale, CA
408/737-0500

National Semiconductor
Santa Clara, CA
408/737-5262

North Star Computers
Berkeley, CA
415/549-0858

Pertec (ICOM)
Chatsworth, CA
213/998-1800

Relational Memory Systems
San Jose, CA
4081248-6356

Systems, Computers and Interfaces
Waltham, MA
617/899-2359

Thomas Engineering Co.
Concord, GA
415/686-3041

Vector Electronic
Sylmar, CA
213/365-9661

XEDAX
Alameda, CA
415/521-6600

ZIA Tech
Cupertino, CA
408/996-7082

state relays for output isolation. Mount­
ing pads for customer-supplied MOVs
or snubber networks are included. As
before, a fuse gives overload protection
and LEOs indicate channel activity.

The advantage of all this is that by
plugging in some components and per­
haps inserting a few resistors and capa­
citors, the interface units can be tailored
to a particular application. Since many
mechanical and electrical connection
problems have already been solved, a
customized unit can be built with mini­
mum effort. 0

DOCUMJ:NTATION

RELATED INTEL PUBLICATIONS

System 80/10 Microcomputer Hardware Reference Manual, 98-00316B

iSBC 80/10 and iSBC 80/10A Single Board Computer Hardware Reference Manual, 9800230F

iSBC 80P and ISBC 80P10 Prototyping Package User's Guide, 9800223D

iSBC 80/20 and iSBC 80/20-4 Single Board Computer Hardware Reference Manual, 98-317C

ISBC 80/30 Hardware Reference Manual, 9800611A

iSBC 86/12 Single Board Computer Hardware Reference Manual, 9800645A

iSBC 544 Intelligent Communications Controller Board Hardware Reference Manual, 9800616B

iSBC 569 Intelligent Digital Controller Board Hardware Reference Manual, 9800845

ISBC 941 Industrial Digital Processor User's Guide, 9803077·02

iCS 80 Industrial Chassis Hardware Reference Manual, 9800799A

iSBC 310 High Speed Mathematics Unit Hardware Reference Manual, 9800410A

iSBC 957 Intellec-iSBC 86/12 Interface and Execution Package User's Guide, 9800743A

Intel MULTIBUS Specification, 9800683

MCS-80 User's Manual, 98-153D

MCS·85 User's Manual, 98-366C

The 8086 Family User's Manual

UPI-41 User's Manual, 9800504

Introduction to the UPI-41A, AP-41

RMXl80 User's Guide, 9800522C

ISIS-II User's Guide, 98003060

8080/8085 Assembly Language Programming Manual, 9800301C

PUM·80 Programming Manual, 9800268B

ISIS-II PUM·80 Complier Operator's Manual, 9800300

FORTRAN-80 Programming Manual, 9800481A

ISIS·II FORTRAN-80 Compiler Operator's Manual, 9800480B

"How to use FORTRAN with other Intel Languages", Ap·44

BASIC·80 Reference Manual, 9800758

A Guide to Intellec Microcomputer Development Systems by Daniel D. McCracken, 9800558B

8080/8085 Fundamental Support Package (FSP) Reference and Operating Instructions for ISIS·II Users, 9800887-01

8086 Assembly Language Reference Manual, 9800640A

MCS-86 Assembler Operator's Instructions for ISIS-II Users, 9800641A

PUM-86 Programming Manual, 9800466A

ISIS·II PUM·86 Compiler Operator's Manual, 9800478A

ISIS·II 8086 Cross Development Utilities Operator's Manual, 9800639A

3-127

TECHNICAL LITERATURE LIST

3-129

""EMORY COMPONENTS

Memory Design Handbook - 1979
Growing Static RAM Family Album
2115A/2125A Brochure
RR 7 - 2107A/2107B Reliability
RR 8 - Polysillcon fuse Bipolar PROM
RR 11 - 2416 16K CCD Memory
RR 12 - 2708 8K Erasable PROM
RR 14 - 2115/2125 MOS Static RAMS
RR 15 - 2104A
RR 16 - 2116
RR 18 - HMOS Reliability Update
RR 19·2716'- UV Erasable PROM
RR 20·2117 - Reliabilty
AR 20 -:- ·16K RAM

Title

AR 35·2716 - Erasable PROM-16,384 Bits On·Chip
AR 44 - Speedy RAM Runs Cool - 2147
AR 46 - HMOS Scales Traditional Devices
AR 78 - I8.SCC Reprint on Static RAMS
AP 22 - Which Way for 16K
AP 23 - 2104A 4K RAM
AP 30 - App!i.~atlons of 5 Volt EPROM & ROM Family
AP 46 - Error Detecting and Correcting Codes

TELECOM

AR 79 - ISSCC Reprint - 2920
AR 80 - ISSCC Reprint - 2912
AR 81 - Single Chip NMOS Micro·process Signals
AR 88 - First Monolithic PCM Filter

MAGNETICS

Bubble Memory Design Handbook
AR 92 - Megabit Bubble Memory Chip Gets Support from LSI
AFi 96 - Here Comes A Million Bit Chip
A Total System Solution to Magnetics Applications (Technical Paper)

MICROCOMPUTER COMPONENTS

MCS 48 User's Manual
MCS 48 Product Description (98·615)
MCS 48 Applications Handbook
MCS 48 Reference Card (98·412)'
AP 24 - MCS 48 Family (98;413)
AP 40 - Keyboard/Display Scanning ... MCS 48 (98·755)
AP 49 - Serial 1/0 and Math Utilities ... 8049 (98·904)
AP 55A - High Speed Emulator for MCS 48
AP 56 - Designing With Intel's 8022 Micro (98·954)
AR 58 - Micrqcontroller Includes A·D Converter (98·718)
AR 63 - Microcomputer's On·Chip Functions - 8022 (98·780)
AR 102 - Designing Reliable Software for Auto Applications
AR 107 - Use EPROM 1·Chip "Cs as Effective 1·Shot Lab Aids
UPI-41 User's Manual ' .
UPI·41 Reference Card (98-671)
MCS·48 and UPI·41 Assembly Language Programming Manual
MCS-BO User's Manual
RR 10 - 80!!O/8080A Microcomputer
MCS·85 User's Manual
MCS-B5 Product Description (98·365)
8080/8085 Reference Card (98·438)
AP 29 - Using the Intel 8085 Serial I/O Lines (98·684)
8080/8085 Assembly Language Programming Manual
8080/8085 Floating Point Arithmetic Library User's Manual

3·130

Part No.

011100
010100
001710
006540
006560
006700
006720
006740
006750
006760
006771
006775
006780
006900
007300
007320
007330
007370
008300
008500
008550
008560

007375
007380
007385
007400

900020
900500
900515
900520

98·270
201710
121511
202300
203800
203805
203810
203815
203820
203605
203610
207350
207355
98·504

2031QO
98·255
98·153
207100
98·36~
205770
?05785
207715
98·940
98-452

Title

MCS·86 User's Manual
MCS·86 Product Description (98·723)
AR 74 - Get Minicomputer Features at 10 lC Speed with 8086 (98·921)
AR 82 - CPU Brings 6·Bit Performance (98·957)
AP 50 - Debug Strategies for 8089
AP 51 - Design 8086/8088/8089 with 8289
MCS·86 Assembly Macro Language Reference Manual
MCS·86 Assembly Language Reference Guide (98·749)
Peripheral Design Handbook .
Peripherals Product Description
Microcomputers and Peripherals Pocket Guide (98·843)
AR 53 - Micro Interfacing Characteristics (8253) - (98·647)
AR 89 - Powerful 110 Processor Unloads CPU (8089)
AP 15 - 8255 Programmable Peripheral Interface (98·333)
AP 16 - Using the 8251 (98·334)
AP 31 - Using the 8259 (98·658)
AP 32 - 8275 and 8279 (98·576)
AP 35 - Crystals Specifications (98·652)
AP 45 - Using the 8202 Dynamic RAM Controller (98·809)
AP 48 - Direct Memory Access w/8257 DMA Controller
AP 54 - Dot Matrix Printer Controller Using the 8295 (98·816)
AP 59 - Using 8259A Programmable Interrupt Controller

INDUSTRIAL GRADE PRODUCTS

Industrial Environment Brochure
Industrial Grade Product Book

MILITARY COMPONENTS

Military Products Data Catalog

GENERAL DATA CATALOGS

1979 Components Data Catalog
1979 Systems Data Catalog

PROTOTYPE MICROCOMPUTER KITS

SDK·85 User's Manual
SDK·86 Assembly Manual
SDK·86 User's Guide

ICS INDUSTRIAL CONTROL SERIES

iCS 920 Digital Signal Hardware Reference Manual
ICS 80 Industrial System Site Planning Guide
iCS 80 Industrial Chassis Hardware Reference Manual
ISBC 711 Analog Input Board Reference Manual
ISBC 724 Analog Output Board Reference Manual
ISBC 732 Combination Analog Input/Output Board Hardware Reference Manual
ISBC 941 Industrial Digital Processor User's Guide
iCS Product Description (881-02)
ICS Brochure
AP 52 - Intel's Industrial Control Series in Control Applications (9!l·932)

SYSTEMS SOFTWARE

RMXl80 User's Guide
AP 33 - RMXl80 (98·577)
AP 47 - \Jsing FORTRAN·80 for ISBC Applications (98·836)

OEM MICROCOMPUTER SYSTEMS

iSBC 80/04 Hardware Reference Manual
iSBC 80/05 Hardware Reference Manual
iSBC 80/10 and ISBC 80/10A Hardware Reference Manual

3·131

Part No.

98·722
205880
207310
207320
207755
207760
98·640
205900
98·676
205600
205615
207305
207330
207700
207705
207720
207725
207730
207745
207750
207765
207770

206000
206005

004150

010200
506000

98·451
98·697
98·698

98·801
98·798
98·799
98·485
98·486
98·487

98·3077
500115
500110
511040

98·522
511020
452015

98·482
98·483
98·230

AP 26 - iSBC 80/10-System 80/10
RR 17 - iSBC 80/10 Reliability

Title

iSBC 80/20 and iSBC 80/20A Hardware Reference Manual
AR 28 - Control Engineering iSBC 80/20 Description
iSBC 80/30 Hardware Reference Manual
AR 65 - Triple Bus Architecture (iSBC 80/30)
iSBC 957 Intellec iSBC 86/12 User's Guide
AP 43 - Using the iSBC 957 (98·816)
iSBC 86/12 Hardware Reference Manual
AR 72 - 16·Bit Single Board Computer
AR 69 - Dual·Port RAM Hikes Throughput (iSBC 80/30)
iSBC 016 16K RAM Expansion Board Hardware Reference Manual
iSBC 032/048/064 Random Access Memory Boards Hardware Reference Manual
iSBC 094 4K·Byte CMOS RAM/Battery Backup Board Hardware Reference Manual
iSBC 104/108/116 Combination Memory and 110 Expansion Boards Hardware Reference Manual
iSBC 202 Double Density Diskette Controller Hardware Reference Manual
iSBC 204 Flexible Disk Hardware Reference Manual
iSBC 206 Disk Controller Hardware Reference Manual
iSBC 310 High·Speed Mathematics Unit Hardware Reference Manual
iSBC 416 16K PROMIROM Expansion Board Hardware Reference Manual
iSBC 464 PROMIROM Board Hardware Reference Manual
iSBC 501 Direct Memory Access Controller Hardware Reference Manual
iSBC 508 110 Expansion Board Hardware Reference Manual
iSBC 517 Combination 110 Expansion Board Hardware Reference Manual
iSBC 519 Programmable 110 Expansion Board Hardware Reference Manual
iSBC 534 Four·Port Communications Expansion Board Hardware Reference Manual
iSBC 544 Intelligent Communications Controller Board Hardware Reference Manual
iSBC 556 Optically Isolated Programmable 110 Board Hardware Reference Manual
iSBC 569 Intelligent Digital Controller Hardware Reference Manual
iSBC 604/614 Cardcage Hardware Reference Manual
iSBC 635 Power Supply User's Manual
iSBC 640 Power Supply Hardware Reference Manual
iSBC 660 System Chassis Hardware Reference Manual
iSBC 915 GO·NO·GO Diskette Diagnostic and Monitor Program User's Manual
System 80/10 Microcomputer Hardware Reference Manual
System 80/20·4 Microcomputer Hardware Reference Manual
System 80/30 User's Guide
AR 48 - Reduce your Micro·based system design time
AR 55 - Design Motivations for Multiple Processor Micro Systems
AR 64 - Microcomputers - Single Chip or Single Board
AP 28A - MULTIBUS Interfacing (98·587)
Intel Delivers 8·bit/16·bit BM Configuration Envelopes

INTELLEC MICROCOMPUTER DEVELOPMENT SYSTEM

Intellec 800 Operator's Manual
Intellec Reference Manual
Intellec Diagnostic Confidence Test Operator's Manual
Intellec Double Density DOS Hardware Reference Manual
ISIS I DOS Operator's Manual
Diskette Operating System Manual
Paper Tape Reader Guide
Series II Hardware Reference Manual
Series II Model 210 User's Guide
Intellec Series II Functional Description and Specifications (98·606)
Intellec Series II Installation and Service Manual
Intellec Series Hardware Interface Manual
Success Manual for Single·Chip Microcomputer Users
Success Manual for 8086 Users
Microcomputer Development Package Booklet
AR 97 - Minimizing Risk Through Use of Micro Development Systems

3·132

Part No.

511000
509000
98·317
510100
98·611

510140
98·743
511030

98·3075
510160
510150
98·279
98·488
98·449
98·277
98·420
98·568
98·567
98·410
98·265
98·643
98·294
98·278
98·388
98·385
98·450
98·616
98·489
98·845
98·708
98·298
98·803
98·505
98·350
98·316
98·484
98·710
510110
510120
510130
511010
501100

98·129
98·132
98·386
98·422
98·206
98·212
98·016
98·556
98·557
404010
98·559
98·555
402050
402100
404000
451130

Title

SOFTWARE

iCIS Cobol Language Reference Manual
iCIS Cobol Packet Reference Card (9S·929)
2920 Assembly Language Manual
2920 Simulator User's Guide
FORTRAN·SO Programming Manual
FORTRAN·SO Reference Card (9S·547)
AR 73 - S080 gets a "full blown" FORTRAN (98·844)
PUM Programming Manual
AR 59 - Modular Programming in PUM
PUM 86 Programming Manual
BASIC·80 Reference Manual
BASIC·80 Reference Guide (98·774)
AR 61 - Microprocessor Software Development Tools
AR 98 - Software Development Package for 8086 System Designers
ISIS II FORTRAN·80 Compiler Operator's Manual

"ISIS II PUM Compiler Operator's Manual
ISIS II PUM 86 Compiler Operator's Manual
ISIS II 8085 Macro Assembler Operator's Manual
ISIS II System User's Guide
ISIS II Reference Card (98·841)
ISIS II CREDIT User's Guide
CREDIT CRT·Based Text Editor Pocket Reference (98·903)
MCS·S6 Assembly Language Converter Operating Instructions for ISIS II Users
MCS-86 Assembly Operation Instructions for ISIS II Users
MCS-86 Software Development Utilities Operating Instructions for ISIS II Users
ICE·86 Operating Instructions for ISIS II Users
ICE·49 Operating Instructions for ISIS II Users
Multi·ICE Operating Instructions for ISIS II Users
ICIS·COBOL Compiler Operator's Instructions for ISIS II Users
8089 Assembler User's Manual

EMULATORS

ICE·30 Reference Manual
ICE·41 Operator's Manual
ICE·41 Reference Card (98·766)
ICE-48 Operator's Manual
MCS-48 ICE Reference Card (98-653)
ICE-80 Reference Manual
ICE-80 Operator's Manual
ICE-85 Operating Instructions
ICE-85 Brochure
ICE-86 Pocket Reference (98-838)
Multi-ICE Reference Card (98-810)

PROM PROGRAMMERS

Universal PROM Programmer User's Manual
Universal PROM Programmer Reference Manual

PROMPT

PROMPT 48 Microcomputer User's Manual
PROMPT 48 Reference Card (98-404)
PROMPT 80/85 User's Manual

,.SCOPE

,.Scope 820 Operator's Handbook
,.Scope Reference Card (98-582)
,.Scope 8080A Probe Service Manual
,.Scope 8085 Probe Service Manual
,.Scope Console Service Manual

3-133

Part No.

98·927
409100
98·987
98·988
98·481
400600
451125
!:I8·268
451115
9S·466
98·758
400705
451120
451135
98·480
98·300
9S·478
98·292
9!3·306
403350
98·902
407700
98·642
98·641
98·639
98·714
98·632
98·672
98·928
98·938

98-220
98-465
305075
98-464
303925
98-167
98-185
98-463
406215
406310
406505

98-819
98-133

98-402
304850
98-307

98-526
408150
98-592
98-728
98-593

Title

/LScope 820 Micro·Console Key Sequence Guide
AP 42 - Writing Diagnostics for the /LScope (98·753)

ADD·IN/ADD·ON MEMORY SYSTEMS

in-7000/in·7001 Product Description
In·1670 Product Description
in·4011 Product Description
in·5034 Product Description
Series 90 Product Description - CM90
Series 90 Product Description - CM92
Series 90 Configuration Guide
AP 63 - Control and Interleaving BXP Standard Memory Bus

3·134

Part No.

98·826
452005

888200
888210
888220
888230
888240
888250
888790
888510

inter delivers.

3065 Bowers Avenue
Santa Clara, California 95051

Tel : (408) 987-8080, TWX : 910-338-0026, TELEX : 34-6372

