743-3300
LI |
A4
WO (
4 . 143687
Ja. - .!

alifornia 9408
n. (408) -

unnyvale, C
Admi
.

N,

101S
Cust. Service (408) 743-3325
A

o P - ” Y L
AVa® (v" -¢~.M
. Q

&
icat
1175 Bordeaux Drive,
‘qll Sales (408) 743-3355
r\ o S

ppl
Manual

<% . > I .\}. : 4 Vs
P bk s Sy

[} < 2 L3 &
b 1 §
TR » \ o
; 3 2
| 3 % 4
| - Nl 1N
| » N
he G 2 .
-] 3 \
1 5 '). s
g 7 L~ 3
r L7 v v
4] 4 L 3 : e -
> £ 3
{ A £) llmjw. gt ﬂ(y
s =
3 AL Yo, ow ?
e h SR,
e s S A g} ; 3

The material in this Application Note is for informational purposes only and is subject to change
without notice. Intel Corporation has made an effort to verify that the material in this document
is correct. However, Intel Corporation does not assume any responsibility for errors that may
appear in this document.

The following are trademarks of Intel Corporation and may be used only to describe Intel
products:

ICE INSITE INTEL
INTELLEC LIBRARY MANAGER MCS
MEGACHASSIS MICROMAP MULTIBUS
PROMPT UPI uSCOPE
RMX/80 iSBC iCs
INTELVISION FSP MULTIMODULE

and the combination of ICE, MCS, RMX, and iCS and a numerical suffix.

PREFACE

Since Intel introduced the iSBC 80/10 Single Board Computer in early 1976, the family of Intel OEM Microcomputer
Systems has grown rapidly. Original equipment manufacturers and volume end-users alike have responded to the con-
cept originated by Intel of having all the functions of a computer — central processing unit, memory, input-output and
system expansion capability — present on one printed circuit board.

The capabilities of a single board computer have been enhanced by the creation of the industry-standard MULTIBUS
system bus. System expansion boards have been introduced for memory, serial /O and parallel I/O expansion, as well
as analog /0, DMA controllers and peripheral controllers. A unique feature of the MULTIBUS architecture, however, is
its capability to support multiple single board computers. This capability permits sophisticated multiprocessing con-
figurations using standard off-the-shelf 8-bit and 16-bit single board computers. Powerful software tools like the
RMX/80 Real-Time Multitasking Executive, the FORTRAN run-time package and the resident BASIC interpreter also
are key members of the iSBC product family. They provide users with the tools for quick implementations of simple or
complex systems. The recently introduced iCS product line provides chassis and signal conditioning/termination
strips as well as board level products which were developed specifically for industrial users.

This application manual is divided into three sections: iSBC Hardware, iSBC Software and iCS Products. It contains all
of the current application notes, reliability reports, magazine articles and professional journal reprints on the products
of the Intel iSBC product family. We have compiled all of this information into a single publication for your conven-
ience. Please contact us with your questions, comments, and suggestions on how we may provide you with useful in-
formation on our products.

INTEL CORPORATION

OEM Microcomputer Systems
Applications Engineering
Hillsboro, Oregon 97123

FUNCTIONAL INDEX

iSBC HARDWARE

AP-26

AP-28A

AP-43

AP-53

RR-17

RR-23

AR-48

AR-55

AR-65

AR-69

iSBC 80/10A-SYSTEM 80/10 Single

Board Computer Applications......... 1-3
Intel MULTIBUS Interfacing........... 145
Using the iSBC 957 Execution Vehicle

for Executing 8086 Program Code. 1-79
Using the iSBC 544 Intelligent
Communications Controller........... 1-111
Intel iISBC 80/10 Single Board
Computer.............oovvuinienn. 1-175
Intel iISBC 86/12A Single Board
Computer...........oivvininnnnn. 1-187
Reduce your pC-based system design

time by using single board

MiCroCOMPUterscovuvununn 1-195
Design Motivations for Multiple

Processing Microcomputer

Systemsl 1-207
Triple-bus Architecture on a single

board microcomputer................ 1-217

Dual-port RAM Hikes Throughput in
Input-Output Controller Board........ 1-225

AR-72

16-bit Single Board Computer
Maintains 8-bit Family Ties............ 1-233

iSBC SOFTWARE

AP-33 RMX/80 Real-Time Multitasking

Executivel 2-3
AP-47 Using FORTRAN-80 for iSBC

Applications............. ... ol 233
AR-41 An Integral Real-Time Executive for

Microcomputers 2-73

A Small-Scale Operating System

Foundation for Microprocessor

Applications.l 2-81
iCS PRODUCTS
AP-52 Using Intel’s Industrial Control Series

in Control Applications............... 33
AP-60 Closed Loop Control Using the iSBC

569/941 Intelligent Digital

Processors..........covviiiiiiinnn, 3-61
AR-91 Designing and Assembling Micro-

computer Systems Grows Easier....... 3-123
Related Intel Publications..................... 3-127
Technical Literature List...................... 3-129

SBC Hardware

1

iSBC HARDWARE

INTRODUCTION

The current hardware products available in the iSBC product line include six single board computers and over 30 ex-
pansion boards and accessories. Each Intel single board computer provides all the resources of a full computer (i.e.,
CPU, read/write memory, read only, parallel I/O and serial 1/0) on a single printed circuit board. The iSBC 655 and iSBC
660 chassis extend these capabilities into low cost, fully packaged RETMA rack-mountable computers. The Intel
single board computers are supported by a complete line of memory, parallel and serial /0, digital /0 and analog /0O
expansion boards, and peripheral and DMA controllers, all of which are compatible with the industry-standard micro-
computer bus — the Intel MULTIBUS system bus.

This section contains application notes and magazine articles covering the architectural features of the iSBC product

family, the iSBC 80/10A, iSBC 80/30, and iSBC 86/12A Single Board Computers, and the iSBC 544 Intelligent Slave
Board. In addition, reliability reports for the iISBC 80/10A and iSBC 86/12A boards are included.

TABLE OF CONTENTS

AP-26 iSBC 80/10A-SYSTEM 80/10 Single Board Computer Applications............cooiiiiiiiiiiininnnn, 1-3
AP-28A Intel MULTIBUS Interfacing. ccuiiti ittt it et it s it te et neenaenneaneanennnn 1-45
AP-43 Using the iSBC 957 Execution Vehicle for Executing 8086 ProgramCode..............coviiiiiennnn.. 1-79
AP-53 Using the iSBC 544 Intelligent Communications Controller. it iiiieenn.. 1111
RR-17 Intel SBC 80/10 Single Board CompPUEEr.\ ittt ittt e eie et ie s iieseetaeneaennneennesnn 1-175
RR-23 Intel iSBC 86/12A Single Board COmMPUer.ottt it i e iit e ins e cinesaens 1-187
AR-48 Reduce your uC-based system design time by using single board microcomputers.................... 1-195
AR-55 Design Motivations for Multiple Processing Microcomputer Systems..............coiiiiiiinnenn... 1-207
AR-65 Triple-bus architecture on a single board microcomputer. ittt 1-217
AR-69 Dual-port RAM Hikes Throughput Input-Output ControllerBoard.c.civiiiiiiiiinnennnnn. 1-225
AR-72 16-bit Single Board Computer Maintains 8-bit Family Ties.......... ... i, 1-233

intel® rI:(F;l_brll._:ICATmN AP-26
2O
é@é\é
o s
/ 60 .
¥ o8
ST
N s
QO QQ\Q Q\\ a""‘bi'» o
QN W

0000000

iSBC 80/10A-SYSTEM 80/10
Single Board Computer
Applications

1-4

Contents

INTRODUCTIONcciivivinnnnnnn 1-5
OVERVIEW.cciiiiiinnnnnnnnnennnns 1-5
SBC CONFIGURATION OPTIONS........ 1-7
Serial I/OOptionsovveiinnnnnn. 1-7
Parallel I/OOptionsccovvvennn.. 1-8
BusInterfacing...............coovieii... 1-8
APPLICATIONSciiiiiiiiiiieennnns 1-10
Instrumentation..............ooiiieieann. 1-10
Communicationovieernnennnnn 1-15
ProcessControlcovveviiiennnnn. 1-23
I/0 DeviceController 1-27
CONCLUSIONoiiiitiiiiinrennnannns 1-31
APPENDIX A — iSBC 80/10A

SCHEMATICScoiiiiiiiiineennnnns 1-33

INTRODUCTION

The recent entry of the single board computer into
the broad field of electronic applications is sub-
stantiating the billing as a “super component”.
Single board computers provide a solution to
several problems that have not been solved by the
use of conventional computers: cost, size, and
design specialization.

Many potential microcomputer applications have
been overlooked because of the design tasks
required to build a microcomputer system. These
tasks traditionally include interfacing of the system
clock, read/write memory, I/O ports and drivers,
serial communications interface, bus control logic
and drivers. Intel’s iSBC 80/10A enables the design
engineer to concentrate on the application of
microcomputers, rather than on implementation
details.

This application note begins with an overview of
the Intel® iSBC 80/10A. Readers who are familiar
with the iSBC 80/10A may choose to skip to the
applications section, which describes the following
typical iSBC 80/10A applications:

e The iSBC 80/10A used for instrumentation
control of a Fluke 8375 Digital Multimeter.

e The iSBC 80/10A used as a SCADA Terminal
in a communication application.

e The iSBC 80/10A used for temperature moni-
toring in a process control application.

e The iSBC 80/10A used as an interrupt driven
device controller for a Centronics printer.

Each example shows the user program and hard-
ware required for the application. The program
listings are interspersed with the text describing
the application. Both 8080 Macro Assembly
Language and Intel’s PL/M-80 are used in the
examples.

The software was developed on an Intel® Micro-
computer Development System (MDS). The MDS
provided the tools necessary to edit, assemble or
compile, link and locate the application software.
Hardware development was facilitated by the use
of Intel’s In-Circuit Emulator (ICE 80). For further
information regarding the Microcomputer Develop-
ment System, the reader is referred to the publica-
tions listed at the beginning of this application
note.

OVERVIEW

The iSBC 80/10A is a member of Intel’s complete
line of OEM computer systems which take full
advantage of Intel’s LSI technology to provide
economical, self-contained computer based solu-
tions for OEM applications. The iSBC 80/10A is a
complete computer system on a single 6.75-by-12
inch printed circuit card. A block diagram of the
iSBC 80/10A is shown in Figure 1.

Intel’s powerful 8-bit n-channel MOS 8080A CPU,
fabricated on a single LSI chip, is the central pro-
cessor for the iSBC 80/10A. The 8080A contains
six 8-bit general purpose registers and an accumu-
lator. The six general purpose registers may be
addressed individually or in pairs, providing both
single and double precision operators.

COMPATIBLE
DEVICE TTY
m SERIAL mmﬁﬁ USER DESIGNATED
CONTROL DATA DATA CONTROL PERIPHERALS
INTERFACE INTER- INTER- INTERFACE
FACE FACE
1 48 PROGRAMMABLE
PARALLEL 1/0 LINES
RS 232C Ty TR
INTERFACE INTERFACE CINE
DRIVER/TERMINATOR
\ / INTERFACE
\ / JUMPER 2 INTERRUPT
SELECTABLE ~ REQUEST
LINES 8080A I
8K x 8 PROGRAMMABLE cru
x
ROM/PROM COMMUNICATIONS }— PROGRAMMABLE Kx8
MEMORY INTERFACE PERIPHERAL RAM
(SOCKETS) (USART) INTERFACE MEMORY
2 INTERRUPT SBC.80/10A
ADDRESS BUS Eav LINES BUSN_ MEMORY
DATA BUS AND
CONTROL BUS 1/0
EXPANSION

1. Interrupts originating from the Programmable Communications Interface and Programmable Peripheral Interface are jumper selectable.

Figure 1. iSBC 80/10A Block Diagram

1-5

The 8080A has a 16-bit program counter which
allows direct addressing of up to 64K bytes of
memory. An external stack, located within any
portion of read/write memory, may be used as a
last in/first out stack to store the contents of the
program counter, flags, accumulator and all of the
six general purpose registers. A 16-bit stack pointer
addresses the external stack. This provides sub-
routine nesting that is bounded only by memory
size.

The iSBC 80/10A contains 1K bytes of read/
write memory using Intel’s low power static RAM.
All on board RAM read and write operations are
performed at maximum processor speed. Four
sockets for up to 8K bytes of non-volatile read-
only memory are provided on the board. Read-
only memory may be added in 1K byte increments
(up to 4K total) using Intel® 8708 erasable and
electrically reprogrammable ROMs (EPROMs)
or Intel 8308 masked ROMs. Optionally, if more
than 4K bytes are required, read only memory may
be added in 2K byte increments (up to 8K total)
using Intel® 2716 EPROMs or 2316E masked
ROMs. All on-board ROM or EPROM read opera-
tions are performed at maximum processor speed.

The iSBC 80/10A contains 48 programmable para-
llel 1/O lines implemented using two Intel® 8255
Programmable Peripheral Interfaces. The system
software is used to configure the I/O lines in any
combination of unidirectional input/output, and
bidirectional ports indicated in Table I. Therefore,
the I/O interface may be customized to meet
specific peripheral requirements. To support the
large number of possible I/O configurations,
sockets are provided for interchangeable I/O line
drivers and terminators. Hence, the I/O interface

provides the appropriate combination of optional
line drivers and terminators to allow the required
sink current, polarity, and drive/termination
characteristics for each application. The 48 pro-
grammable I/O lines and signal ground lines are
brought out to two 50-pin edge connectors that
mate with flat, round, or woven cable.

A programmable communications interface using
Intel’s 8251 Universal Synchronous/Asynchronous
Receiver/Transmitter (USART) is contained on the
iSBC 80/10A. A jumper selectable baud rate
generator provides the 8251 with all common
communication frequencies. The 8251 can be pro-
grammed by the user’s system software to select
the desired asynchronous or synchronous serial
data transmission technique (including IBM Bi-
sync). The mode of operation (synchronous or
asynchronous), data format, control character
format, parity, and asynchronous transmission
rate are all under program control. The 8251 pro-
vides full duplex, double buffered transmission and
receive capability. Parity, overrun, and framing
error detection circuits are all incorporated in the
8251. The inclusion of jumper selectable TTY or
EIA RS232C compatible interfaces on the board,
in conjunction with the 8251, provide a direct
interface to teletypes, CRTs, asynchronous and
synchronous modems, and other RS232C com-
patible devices. The RS232C or TTY command
lines, serial data lines, and signal ground lines are
brought out to a 25-pin edge connector that mates
with RS232C compatible flat, round, or woven
cable.

Interrupt requests may originate from six sources.
Two from the 8255’s, two from the 8251 and two
from user designated peripheral devices.

TABLE 1 INPUT/OUTPUT PORT MODES OF OPERATION
MODE OF OPERATION
UNIDIRECTIONAL
INPUT OUTPUT
PORT | NO. OF LINES LATCHED & LATCRED & | B'D'RECTIONAL | CONTROL
UNLATCHED | STROBED | LATCHED | STROBED

1 8 X X X X X
2 8 X X X X
3 8 X X x1
4 8 X X
5 8 X X
6 4 X X

4 X X

1. Note: Port 3 must be used as a control port when either Port 1 or Port 2 are used as a latched and strobed input or a latched and

strobed output or Port 1 is used as a bidirectional port.

1-6

The 8255’s can generate interrupts when a byte of
information is ready to be transferred to the CPU
(i.e., input buffer full) or a byte of information has
been transferred to a peripheral device (i.e., output
buffer is empty).

The 8251 can generate interrupts when a character
is ready to be transferred to the CPU (i.e., receive
channel buffer is full) or a character is ready to be
transmitted (i.e., transmit channel data buffer is
empty).

The user designated peripheral devices can generate
two interrupts: one via the system bus and the
other via the I/O edge connector.

The two interrupts from the 8255’s and the two
interrupts from the 8251 are all individually mask-
able under program control. The six interrupt
request lines share a single CPU interrupt level.
When an interrupt request is recognized, a RE-
START 7 instruction is generated. The processor
responds by suspending program execution and
making a subroutine call to a user defined interrupt
service routine originating at location 38 (Hexa-
decimal).

iSBC 80/10A memory and I/O capacity may be
increased by adding standard Intel memory and
I/O boards. Modular expandable backplanes and
card cages, each with a four-board capacity, are
available to support multi-board systems.

The development cycle of iSBC 80/10A based
products may be significantly reduced using the
Intellec Microcomputer Development System. The
resident macro-assembler, PL/M-80 compiler, text
editor, and system monitor greatly simplify the
design, development, and debug of user designed
iSBC 80/10A system software. A diskette-based
system allows programs to be loaded, assembled,
edited, and executed faster than using conventional
paper tape, card, or cassette peripherals. A unique
In-Circuit Emulator (ICE 80) provides the capa-
bility of developing and debugging software
directly on the iSBC 80/10A.

iSBC CONFIGURATION OPTIONS

The iSBC 80/10 provides the user with a powerful
and flexible I/O capability for both parallel and
serial transfers. This section discusses the user
programmable and jumper-selectable options, and
bus interfacing.

SERIAL I/O OPTIONS
The serial I/O interface, using Intel’s 8251 USART,

provides a serial data communications channel that
can be programmed to operate with most of the

1-7

current serial data transmission protocols. There
are three general areas of serial I/O options:

1. choice of interface type, RS232C or current
loop,

baud rate and program-selectable mode
options,

3. choice of an interrupt mechanism.

The user has the choice, through jumper connec-
tions, of configuring the serial 1/O logic to present
either an RS232C or a 20 mA current loop inter-
face to an external device. If an RS232C interface
is used, the 8251 can assume the role of a ‘“‘data
set” or a ‘‘data processing terminal”. This enables
the serial interface to be connected to different
devices such as modems and computer terminals.

There are two factors which enter into the choice
of baud rate. They are the actual clock frequency
used to drive the transmit/receive clocks on the
8251 and the baud rate factor selected by a pro-
grammable mode instruction control word output
by the processor to the 8251. The baud rate factor
is used to effectively divide the 8251 transmit and
receive clocks by 1, 16 or 64. During normal oper-
ation a factor of 16 is selected for asynchronous
transmissions from 9.6K to 300 baud. A factor of
64 must be used to achieve a baud rate of 110. The
baud rate factor is only applicable to asynchronous
transmission, as all synchronous transmission is
done with an implied factor of one.

Before beginning serial I/O operations, the 8251
must be program-initialized to support the desired
mode of operation. The CPU initializes the 8251
by issuing a set of control bytes to the USART
device. These control words specify:

e synchronous or asynchronous operation
baud rate factor

character length

number of stop bits

eveni/odd parity

parity/no parity

Refer to the iSBC 80/10 and iSBC 80/10A Single
Board Computer Hardware Reference Manual or
the “8251 Application Note” for details on the
control words used to direct the operation of the
8251.

The serial I/O logic can be configured with differ-
ent forms of interrupt request mechanisms. By
connecting a jumper, the user can allow the 8251°s
Receiver Ready output to generate an interrupt
request. The Receiver Ready output goes high
whenever the Receiver Enable bit of the command

word has been set and the 8251 contains a charac-
ter that is ready to be input to the CPU. The user
can also choose to have the 8251’s Transmitter
Ready or Transmitter Empty output activate the
interrupt request. The Transmitter Empty goes
high when the 8251 has no characters to transmit.
Transmitter Ready is high when the 8251 is ready
to accept a character from the CPU. Both Trans-
mitter Empty and Transmitter Ready are enabled
by setting the Transmit Enable bit of the command
word. Upon receiving an interrupt, the program
can determine the actual condition which is
responsible for the interrupt by reading the status
of the 8251 device.

PARALLEL I/O OPTIONS

The parallel I/O interface consists of six 8-bit I/O
ports implemented with two Intel 8255 Program-
mable Peripheral Interface devices. Eight lines
already have a bidirectional driver and termination
network permanently installed. The remaining 40
lines are uncommitted. Sockets are provided for
the installation of active driver networks or passive
termination networks as required to meet the
specific needs of the user system.

The primary considerations in determining how to
use each of the six I/O ports are:

1. choice of operating mode,

2. direction of data flow (input, output or
bidirectional),

3. selection of interrupt mechanism,

choice of driver/termination networks for
the port’s data path.

Operating Modes. There are three basic operating
modes that can be selected by the system software.
The modes of operation will be described here in
general terms, leaving it to the reader to obtain
details from the iSBC 80/10 and iSBC 80/10A4
Single Board Computer Hardware Reference
Manual or the “8255 Application Note.”

Mode 0 is a basic input/output functional con-
figuration which provides simple input and out-
put operations. No ‘“‘handshaking” is required,
data is simply written to or read from a specified
port. The outputs are latched and the inputs are
unlatched.

Mode 1 is a strobed input/output functional
configuration which provides a means for trans-
ferring I/O data to or from a specified port in
conjunction with strobes or handshaking signals.
The outputs are latched and are accompanied by

an output control line which indicates that the
processor has loaded the output port with a data
byte. The input data is latched when accompa-
nied by its externally operated control signal.

Mode 2 is a strobed bidirectional bus input/
output functional configuration which provides
a means for communicating with a peripheral
device or structure on a single 8-bit bus for both
transmitting and receiving data. Handshaking
signals are provided to maintain proper bus flow
discipline in a manner similar to mode 1.

Data Flow Direction. In addition to the choice of
operating mode, the user may also specify the
direction of data flow, input or output from the
8255’s. At the time of RESET, the 8255’ are

~ configured into the input mode until altered by a

control word directed to the control word register.
When an output mode control word is received,
all of the data bits are set to the low output state.

Interrupt Mechanism.. When the 8255 is pro-
grammed to operate in mode 1 or mode 2, control
signals are provided that can be used as interrupt
request inputs to the CPU. The interrupt request
signals, generated from one of the ports (port C),
can be inhibited or enabled by setting or resetting
the associated interrupt enable flip-flop, using the
bit set/reset function of port C. This function
allows the programmer to mask the interrupts from

" specific I/O devices without affecting any other

device in the interrupt structure.

Driver/Termination Networks. Depending on the
direction of data flow, the user will select the
appropriate TTL line drivers and Intel terminators
that are compatible with the 1/O driver/terminator
sockets on the iSBC 80/10A. The list of suitable
line drivers includes those with inverting, non-
inverting, and open collector characteristics.
There are two types of terminators: a 220-ohm/
330-ohm divider or a 1K ohm pull-up.

BUS INTERFACING

The system bus interface logic consists of three
general groups of circuitry:

1. gates that accept the various bus control
signals, the interrupt request lines, and the
ready indications, and then apply these
signals to the CPU logic elements,

the system bus drivers,

the failsafe circuitry which generates an
acknowledgment during interrupt sequences
and during those cycles in which an ac-

knowledgment is not returned because a
non-existent device was inadvertently ad-
dressed.

Bus Interface Signals. The following paragraphs
describe portions of the system bus interfacing
logic relevant to interfacing a user device to the
iSBC 80/10A. (Note: Whenever a signal is active-
low, its mnemonic is followed by a slash; for
example, MRDC/ means that the level on that line
will be low when the memory read command
is true.)

BCLK/ — Bus clock; used to synchronize bus
control circuits on all master modules. BCLK/
has a frequency of 9.216 MHz. BCLK/ may
be slowed, stopped or single stepped, if
desired.

INIT/ — Initialization signal; resets the entire
system to a known internal state.

BPRN — Bus priority input signal; indicates to
the iSBC 80/10A that a higher priority mas-
ter module is requesting use of the system
bus. BPRN suspends the processing activity
and drivers of the iSBC 80/10A until the sig-
nal goes low.

BUSY/ — Bus busy signai; indicates that the bus
is currently in use. BUSY/ prevents all other
master modules from gaining control of the
bus. BUSY/ is driven by the HLDA/ output
from the iSBC 80/10A in response to a
BPRN input. It indicates that the bus is
available.

MRDC/ — Memory read command; indicates
that the address of a memory location has
been placed on the system address lines and
specifies that the contents of the addressed
location are to be read and placed on the sys-
tem data bus.

MWTC/ — Memory write command; indicates
that the address of a memory location has
been placed on the system address lines and
that a data word has been placed on the
system data bus. MWTC/ specifies that the
data word is to be written into the addressed
memory location.

IORC/ — I/O read command; indicates that the
address of an input port has been placed on
the system address bus and that the data at
that input port is to be read and placed on the
system data bus.

IOWC/ — 1/O write command; indicates that the
address of an output port has been placed on
the system address bus and that the contents

19

of the system data bus are to be output to
the addressed port.

XACK/ — Transfer acknowledge signal; the
required response of an external memory
location or I/O port which indicates that the
specified read/write operation has been com-
pleted (that is, data has been placed on, or
accepted from, the system data bus lines).

AACK/ — An advance acknowledge, in response
to a memory read or write command, that
allows the memory to complete the specified
operation without requiring the CPU to wait.

CCLK/ — Constant clock; provides a clock signal
of constant frequency (9.216 MHz) for use by
optional memory and 1/O expansion boards.
The same signal is used to drive both CCLK/
and BCLK/.

INTR1/ — Externally generated interrupt re-
quest.

ADRO/—ADRF/ — 16 Address lines; used to
transmit the address of the memory location
or I/O port to be accessed. ADRF/ is the most
significant bit.

DATO/—DAT7/ — Bidirectional data lines; used
to transmit/receive information to/from a
memory location or I/O port. DAT7/ is the
most significant bit.

Bus Acknowledges. Further distinction between
transfer acknowledge (XACK/) and advance
acknowledge (AACK/) is required. All external
memory and I/O transfer requests must return
XACK/ to the iSBC 80/10A (even if AACK/ is also
returned). XACK/ indicates that data has been
placed on (read command) or accepted from (write
command) the system data bus lines. AACK/ is an
advance acknowledge in response to a memory or
I/O port command. It has been provided because
the 8080A samples the ready line before valid data
is required on the bus. If this condition is properly
anticipated, AACK/ can be returned before the
data is actually read, thus allowing an earlier opera-
tion to be completed. AACK/ should be used only
with a thorough understanding of the additional
information provided in the iSBC 80/10 and
iSBC 80/10A Single Board Computer Hardware
Reference Manual. DMA Transfers. An external
device can make DMA transfers to or from RAM
expansion boards. The transfer is coordinated
with the iSBC 80/10A by means of two bus
signals: bus priority input (BPRN) and bus busy
(BUSY/). The first step in making a DMA transfer
is to obtain control of the system bus. This is

achieved by asserting BRPN to the iSBC 80/10A
and then waiting until the iSBC 80/10A returns
BUSY/, indicating that it has relinquished control
of the system bus. When this step is completed the
external device may proceed with its DMA trans-
fers until it is finished. At that time BPRN should
be removed to allow the iSBC 80/10A to regain
control of the system bus. It should be noted
that the iSBC 80/10A is placed in a hold state
when it does not have control of the system
bus.

APPLICATIONS

The iSBC 80/10A may be applied to a wide variety
of applications. Specific applications in four areas
are presented in this application note. They are
presented to illustrate a broad spectrum of single
board computer capabilities and to demonstrate
the use of various system features.

INSTRUMENTATION

Microprocessors have been used in instrumentation
for many tasks ranging from handling simple inter-
face functions to control of the analog to digital
conversion process. The use of a single board com-
puter can further serve in the application of
instruments themselves to laboratory or process
control environments. It is quite often necessary in
these applications to control instrumentation
remotely. A number of rather expensive minicom-
puter-controlled solutions now exist on the market
as automatic test equipment (ATE) systems. The
iSBC 80/10A presents itself as a cost effective solu-
tion in situations where the larger ATE systems are
beyond economic justification.

The iSBC 80/10A can be the sole CPU element
in the system, providing instrumentation control
and computational capability; or it can supple-
ment a larger host CPU by handling distributed
processing requirements.

Instrumentation Control Application Example

Most instruments such as DVMs, counters, data
loggers, synthesizers, etc., have optional data out-
put units (DOUs) and/or remote control units
(RCUs). It is particularly time consuming to inter-
face each instrument’s DOU/RCU with custom-
digital logic. Until the recent IEEE-488 interface
standard, there was little in common from one
interface to the next. The parallel I/O lines of the
iSBC 80/10A provide a common interface element
that can be adapted to a majority of the DOUs and
RCUs available today by means of software.

1-10

FLUKE 8375

DOU iSBC 80/10A

PORT 4 (A)

V

PORT 5 (B)

DATA

DIGIT
SELECT

-
(——

GROUP =2
8255

CONTROL

Figure 2. Interface Block Diagram

This instrumentation control application shows
how the iSBC 80/10A has been used to control and
read the data from the data output unit (DOU) of
a Fluke 8375 Digital Multimeter.

Interfacing the iSBC 80/10A to the Fluke 8375
DOU has been accomplished through the use of
three parallel I/O ports shown in Figure 2. An 8-bit
port has been used to read input data from the
Fluke 8375 DOU. Another 8-bit port has been
used to control the multiplexing of data from the
DOU to the iSBC 80/10A. And, an 8-bit port has
been used to provide the required control and
monitoring of the following DOU functions:
busy flag, sample sync flag, timeout enable, exter-
nal trigger and trigger inhibit.

The following listing contains a complete program
to provide the necessary interface control func-
tions as well as an exercise program. The program
listing is interspersed with text that is used to
clarify the elements of the program.

; INSTRUMENTATION CONTROL APPLICATION
FLUKE 8375 DIGITAL MULTIMETER
; DATA OUTPUT UNIT (DOU) CONTROLLER

xNoMEWN - O

The CSEG directs the ISIS-II 8080 Assembler to
generate a relocatable code segment. Relocatable
code can later be placed at any memory address by
Intel’s LOCATE program. This lets you write your
program without worrying about the application’s
final memory configuration.

CSEG

Equate Table. The following table is used to give
symbolic names to the binary I/O port addresses.
The names used later in the program increase
readability.

ALl

155
16 ; EQUATE TABLE
175

5
18 CWR EQU OEBH ; 8255 #2 CONTROL WORD REGISTER
19 DATIN EQU OEBH ; DECADE PAIR DATA INPUT PORT
20 STB EQU OE9H ; STROBE OUTPUT PORT

21 FLG EQU OEAH 3 FLAG INPUT PORT

22 TRG EQU OEAH 3 TRIGGER QUTPUT PORT

233
24

The exercise program uses some of the subroutines
provided in the iSBC 80/10A System Monitor
PROMs. The addresses of the subroutines are
included in the equate table.

25
26 ;

3
27 GETCH EQU 0220H ; GET CONSOLE INPUT, MASK OFF PARITY
28 Co EQU O1E8H ; CONSOLE OUTPUT
29 CROUT EQU O01F3H ; PRINT <CR><LF>
g? NMOUT ~ EQU 02C2H ; DISPLAY BYTE IN ACCUM

i

32

The use of the iSBC 80/10A parallel I/O ports
requires that the mode of operation be defined for
each port. This is typically done by an initializa-
tion subroutine executed when the iSBC 80/10A
is powered up or reset.

8255 Control Word. When the opcode field (bit 7)
of a control word directed to an 8255 is equal to
one, the control word is interpreted as a mode
definition control word. The mode definition
control word format is shown below:

CONTROL WORD
Io,l nsl D5|D4|03102Ln, Dy
—_—
GROUP B
PORT C (LOWER — PC3-PCo)
1=INPUT
0=0UTPUT
PORT B
1= INPUT
0=0UTPUT

MODE SELECTION
0=MODE 0
1=MODE 1

GROUP A

PORT C (UPPER — PC7~PCy)
1=INPUT
0=0UTPUT

PORT A
1=INPUT
0=0UTPUT

MODE SELECTION
00 = MODE 0
01=MODE 1
1X = MODE 2

1=MODE SET

Observing the schematic for the iSBC 80/10A —
Fluke 8375 DOU (Figure 3), it can be seen that the
8255 #2 should be configured through the use of
the mode control word as:

Port 4 (A) Mode O Input

Port 5 (B) Mode O Output

Port 6 (C) Bits PC2—PCO Output
Port 6 (C) Bits PC5—-PC4 Input

The following mode control word is used:

[or]os o5 0a]03]02] 01 00 |

Port C Bits PCg—PC2 Output =0

Port B Output = 0

Port B Mode 0 =0

Port C Bits PC4—PCs Input = 1

Port A Input = 1

Port A Mode = 00

Opcode Mode Set = 1

Mode Control Word = 1001 1000 Binary = 98H

3
34 ;
35 ;
37 INIT:
38

39

40 ;

41

##¢ 8255 42 INITIALIZATION SUBROUTINE

MVL
ouT

.3 LD MODE CONTROL WORD

A, 100110008
CWR 3 OUTPUT TO 8255#2 CNTL WD REG

This coding loads the mode control word into the
8255 #2 control word register. Additional initial-
ization code is required to set the strobe and
trigger output ports to an inactive state. The sche-
matic shows that inverting drivers have been used
for both the strobes and the trigger. When a com-
mand is issued to place port 5 (B) into the output
mode, bits PB7—PB0 are set to the low output
state. Because the low outputs are then inverted
and used as strobes to the Fluke 8375, they must
then be disabled. The initialization subroutine
concludes by disabling the strobes and trigger. The
strobes are signals to the DOU which enable its
drivers to send data to the iSBC 80/10A. The trig-
ger is a signal to the DOU that the Fluke 8375
should take a reading.

MVI
ouT
ouT
RET

A,OFFH 3 LD MASK TO:

DISABLE STROBES

TRG DISABLE TRIGGER

External Trigger Control. Two subroutines are
implemented to enable and disable the external
trigger mode of the instrument. These subroutines
use the bit set/reset capability of the 8255 to inde-
pendently set or reset three control lines of the
Fluke 8375 DOU.

When the opcode field (bit 7) of an 8255 control
word equals zero, the control word is a port 6 (C)
bit set/reset command word.

The bit set/reset control word format is shown
below:

CONTROL WORD

REERRRRN
=

SET/RESET FLAG

0=RESET BIT
1=SETBIT

BIT SELECT

03D, D4 PORT CBIT

BIT O
BIT1
BIT2
BIT 3
BIT4
BITS
BIT6
BIT?7

OP CODE

0=BIT SET/RESET

NOT USED SET TO 000

-2 220000
—-200--00
s0m0m0=0

The following example demonstrates how the port
6 (C) bit set/reset control word is constructed to
disable the Fluke 8375 external trigger. Note from
the schematic (Figure 3) that port 6 (C) bit O con-
trols the inhibit external trigger line.

B e]

SetBit=1

Bit Select = 000 (Binary)

Not Used = 000 (Binary)

Bit Set/Reset Opcode = 0

The control word for set Port C bit 0 is 0000 0001 Binary = 01H

50

515

52 ; ##% ENABLE EXTERNAL TRIGGER SUBROUTINE ###

533

54 ETRIG:

55 MVL A,000000008 ; LD RESET BIT O CONTROL WORD
56 ouT CAR ; OUTPUT TO 8255#2 CNTL WD REG
57 RET

58

gg ; ##% DISABLE EXTERNAL TRIGGER SUBROUTINE ###%

0 ;

61 DTRIG:

62 MVI A,00000001B ; LD SET BIT 0 CONTROL WORD
63 OUT CWR ; OUTPUT TO 8255#2 CNTL WD REG
6l RET

65 ;

66

Subroutines to enable and disable the timeouts are
written in an analogous fashion. The timeout
enable line is controlled by port 6 (C) bit 2.

67

69 ; *## ENABLE TIMEOUTS SUBROUTINE ###

70 ;

71 EPOS:

72 MVI 4,000001018 ; LD SET BIT 2 CONTROL WORD
73 out CR ; OUTPUT TO 8255#2 CNTL WD REG
74 RET

7

76 ; *%# DISABLE TIMEOUTS SUBROUTINE *##

73

78 DPOS:

112

79 MVI A,000001008 ; LD RESET BIT 2 CONTROL WORD
80 ouT CWR 3 OUTPUT TO 8255#2 CNTL WD REG
31 RET

32 ;

83

Obtaining Readings. The Fluke 8375 DOU allows
readings to be taken in one of two modes. The
first, a triggered mode, assumes that the external
triggering has not been inhibited and requires the
positive edge of a pulse with a minimum width of
1 microsecond on the trigger input. Setting and
resetting the port 6 (C) bit 1 produces the 8375
external trigger. After a reading is triggered the
8375 busy flag is tested until the not busy state is
reached. At that time the reading that was
triggered can be read by the iSBC 80/10A. The
last statement in this routine jumps to TKDATA
which reads the data from the DOU and then
executes the return.

84

85 3
86 ; ##* SUBROUTINE TO TAKE EXTERNALLY TRIGGERED READING ###
87 ;
88 TRGR:
39 MVI A,000000108 ; LD RESET BIT 1 CONTROL WORD
90 ouT CWR ;3 OUTPUT TO 8255#2 CNTL WD REG
91 INR A 3 MODIFY CONTROL WORD TO SET BIT 1
92 ouT CWR ; OUTPUT TO 8255#2 CNTL WD REG
93 TWT:
94 IN FLG ; INPUT THE BUSY FLAG
95 ANI 001000008 ;3 TEST PORT < BIT 5
96 JNZ TWT 5 LOOP UNTIL NOT BUSY
JMP TKDATA ; GO READ DATA FROM DOU AND RETURN

The second method for reading the Fluke 8375 is
to rely on the sample rate set from the front panel
controls and to wait until a full transition of the
busy flag is observed. This guarantees that a previ-
ous reading is not mistakenly interpreted as a new
reading.

100

101 ;

102 ; ### SUBROUTINE TO OSTAIN NEXT READING #¥#

103

104 NXTRD:

105 N FLG ; INPUT THE BUSY FLAG

106 ANT 001000008 3 TEST PORT C BIT 5

107 Jz NXTRD ; LOOP UNTIL BUSY WITH NEXT READING
108 NXTWT:

109 N FLG ; INPUT THE BUSY FLAG

110 ANI 001000008 ; TEST PORT C BIT 5

m JNZ. NXTWT ; LOOP UNTIL NOT BUSY

12 Jup TKDATA ; GO READ DATA FROM DOU AND RETURN

[

1y

Notice that the loops beginning at NXTWT in the
above program segment and at TWT in the previous
program segment are identical. This suggests the
possibility of some obvious code optimization that
is omitted here for the sake of clarity.

There is one subroutine remaining to complete full
utilization of the Fluke 8375 DOU capabilities. It
is the subroutine to take data from the 8375 DOU.
The schematic (Figure 3) shows that port 5 (B) bits
PB4 —-PBO are used to enable the DOU drivers. Data
from the DOU includes:

e 5 decades of digits
e encoded range and overrange

e function: Volts DC, Volts AC, Ohms, Kil-
ohms
e modifiers: Filter, Ext. Ref., Remote
e overload
e trigger
The function of this subroutine is to read five

bytes of data from the 8375 DOU and place them
in a RAM buffer on the iSBC 80/10A.

15

16 ;

117 ; #4# SUBROUTINE TO TAKE DATA FROM 8375 DOU ###
18 ;

119 TKDATA:

120 LXI H, RDBUF ; LD BUFFER POINTER
121 MVI A,OEFH ; SETUP FIRST STROBE

122 K0

123 oV B,A ; SAVE CURRENT STROBE

124 ouT STB ; STROBE DECADE PAIR

125 N DATIN 3 READ DATA

126 Hov M,A 3 PLACE DATA INTO SBC 80/10 RAM
127 INX H ; INCREMENT BUFFER POINTER

128 Hov A,B 3 RESTORE STROBE

129 RRC i ROTATE TO NEXT STROBE POSITION
130 Jc €0 ; LOOP UNTIL BIT O STROBE DONE
131 ouT STB ; DISABLE ALL STROBES

132 RET

133

134

This completes the software required to service the
Fluke 8375 DOU. The following code consists of a
routine to display the data from the interface on
the console output device and a short executive
program to allow exercising of the driver sub-
routines.

The display subroutine takes 5 bytes of data from
the RAM buffer in which the reading has been
stored and prints them, 2 ASCII characters per
8-bit byte, on the console.

135
136 ;
1137 ; ##4 SUBROUTINE TO DISPLAY READING BUFFER ON CONSOLE ###
;
139 DISPLAY:
140 LXI H, RDBUF ; LD BUFFER POINTER
i MVI D,5 ; INITIALIZE COUNTER®
142 DISPO:
w3 Hov AM ; LD NEXT BYTE FROM BUFFER
144 CALL NMOUT ; CALL SBC 80/10 MONITOR SUBROUTINE
145 ; TO DISPLAY ACCUMULATOR CONTENTS
146 INX i ; INCREMENT BUFFER POINTER
47 DCR D ; DECREMENT COUNTER
48 JNZ DISPO ; LOOP FOR 5 DISPLAY BYTES
149 RET
150 ;
151

Operator Interface. The short executive program
provides a tool for the purposes of exercising the

8375 DOU driver subroutines. The executive begins -

by calling the initialization subroutine and then
continues on to prompt the operator with a >’ on
the console. At that point the operator may enter
one of the following characters, causing the pro-
gram to execute the specified subroutine:

SUBR DESCRIPTION
T ETRIG Enable external trigger
I DTRIG Disables external trigger
E EPOS Enable programmed timeouts
D DPOS Disable programmed timeouts
N NXTRD Next reading
S TRGR Trigger and get a reading
X DISPLAY Display reading buffer

After the operator has entered a command charac-
ter, the program obtains the address of the sub-
routine to be executed and proceeds to set up a
return address on the stack. This technique allows
a load program counter instruction (PCHL) to be
used to enter the subroutine and a return instruc-
tion (RET) to resume execution of the executive.

152

153

154 ; ##4 SIMPLE EXECUTIVE EXERCISE PROGRAM #¢#

155

156 START:

157 LXI SP,STACK ; SETUP STACK POINTER

158 CALL INIT ; INITIALIZE THE SBC 80/10 8255#2
159 EXEC:

160 CALL ~ CROUT ; EXEC ENTRY POINT - PRINT <CRX<LF>
161 ML c," i C LOADED WITH PROMPT CHARACTER

162 CALL CO ; CONSOLE OUTPUT

163 CALL GETCH 3 GET CMND CHAR, MASK OFF PARITY

164 CALL €O 3 PRINT THE CHARACTER ON THE CONSOLE
165 MoV A,C ; PUT CHARACTER BACK INTO THE ACCUM
166 LXI 8,NCHDS i C CONTAINS LOOP AND INDEX COUNT
167 1 H,CTAB i HL POINTS TO CMND TABLE

168 EXECO:

169 cip] ; COMPARE TABLE ENTRY AND CHARACTER
170 Jz EXEC1 i BRANCH IF FQUAL - CMND RECOGNIZED
171 INX H i ELSE, INCREMENT TABLE POINTER

172 DCR c 3 DECREMENT LOOP COUNT

173 JINZ EXECO i BRANCH IF NOT AT TABLE END

174 JHP EXEC ; ELSE, CMND ILLEGAL - IGNORE IT

175 EXECY

176 LXI H,CADR ; LD ADR OF TABLE OF CMND SUBRS

177 DAD 8 ; ADD WHAT IS LEFT OF LOOP COUNT

178 DAD B ; - EACH ENTRY IN CADR IS 2 BYTES
179 MoV AM ; GET LSP OF ADR OF TABLE ENTRY TO A
180 INX H ; POINT TO NXT BYTE IN TABLE

131 MoV H,M i GET MSP OF ADR OF TABLE ENTRY TO H
182 MoV L,A ; PUT LSP OF ADR OF TABLE ENTRY TO L
183 LXI D,EXEC ; SETUP RETURN ADR ON THE STACK

184 PUSH D

185 PCHL ; NEXT INSTR COMES FROM CMND SUBR
186 ;

187

The command and address tables as well as the
reading buffer follow to complete the application
software.

188

189 ;

190 ; COMMAND AND ADDRESS TABLES

191 ;

192 CTAB:

193 DB " XSNDELT'

194 NCMDS EQU 3-CTAB ;3 NUMBER OF VALID COMMANDS

195 5

196 CADR:

197 Do 0

198 DA ETRIG

199 DA DTRIG

200 DA EPOS

201 DA DPOS

202 DA NXTRD

203 DA TRGR

204 DA DISPLAY

205 5

206 ; READING BUFFER AND STACK SPACE

207 5

203 RDBUF:

209 DS 5 3 READING BUFFER

210 ;

21

212

213 END START ; TRANSFER ADDRESS IS TO START
SUMMARY/CONCLUSIONS

This instrumentation control application has been
presented to demonstrate the simple techniques
used to apply the iSBC 80/10A to the task of inter-
facing instrumentation. A natural extension of this
example would include the control of the Fluke
8375 RCU, as well as the control of many addi-
tional instruments to build a small ATE system.

BUSY FLAG
SAMPLE SYNC
FLAG

TIMEOUTS
ENABLE

EXTERNAL
TRIGGER

EXTERNAL
TRIGGER
INHIBIT

OVERLOAD

TRIGGER

POLARITY
FILTER
EXT.REF

REMOTE

VOLTS DC
VOLTS AC
OHMS

KILOHMS

RANGE

OVER
RANGE

FIRST
DECADE

b
SECOND
DECADE .

THIRD

DECADE
c

b
FOURTH
DECADE

FIFTH

DECADE
c

Figure 3. Interface Schematic

FLUKE 8375 DOU 1SBC 80/10A —_—_———
o [
(DATA QUTPUT UNIT) vee SL
1K :, I PORT 6 (C)
S | UPPER
R 28 (42.29) N
T PCs
N 1231) 2:27) |
PCs
Ao |
7437
N 22) w221) | pe
b 2
N (23) (42:23) 1 pc, PORT6 (C)
v LOWER
2n 92 25) |
P PCo
217) |
213) I
(215) I
222) |
218) |
— D |
(2 20)
> '
:D (2.16) |
La— !
E (214)
2 26) I
:D 126) |
8255
— | GROUP 2
24)
— > !
(2:12) |
e——
210 l
(135) |
(1:36) I
(133) |
N) |
,_r-\» (131 I
B
(132) |
A A |
— ’“I’
(1.25) 211) | p
4
127
,_:D | PORT 5 (8]
- 129)
— 23) |
(128) P83
— 1> |
(130)
)——D: 19) 1129) | s
< l)—‘— 2
(121
— D> I
,_D (123) |
—— 27)
(122) By
— 1>
:D (124 |
113) 25)
:D (115) i
— A |
:D (117 Vee » |
7 < <
(116) w3333l
. (52 35) 1 o
: | \’Pum w23n | P:onrum
‘6
19; (J2 39) [L
F— T PA5
:D aam 241 |
— PAa
(110) |
— 11> o
12y L
| 33 3 |
13 (J249) oA
3
— I l
e (42 47) L
PU—
a5
— |
(14) J2.43)
:D T PAQ

COMMUNICATION

A diverse range of single board computer applica-
tions exists in the field of communication. The
increase in distributed processing generates require-
ments for self-contained computers to control
elements of a communication system, increasing
both the throughput and reliability.

There are many situations that necessitate monitor-
ing and controlling a system from a remote site.
Typical examples are systems that cover large geo-
graphic areas or systems in dangerous environments
for human operators. If the object system, which
provides the actual parallel inputs and outputs to
the plant, is far from the controlling system, you
can lower costs by reducing the number of inter-
connecting wires via the addition of multiplexers
to both systems. In the extreme (and often desira-
ble) case of reducing the interconnects to an
absolute minimum, all communication between the
systems takes place on a single serial data link. If
large distances are involved, this link can be stand-
ard telephone wires. For moderate distances, the
link can be a single twisted pair. In either case, the
equipment used to interface the object system to
the serial link is called a supervisory control and
data acquisition (SCADA) terminal.

The decision to replace a multitude of intercon-
nects with a SCADA terminal is largely economic.
Cables and their associated drivers and receivers
can represent a significant part of the total cost of
a factory automation project, particularly if an
electrically noisy environment requires the use of
shielded cables. Any potential savings in cabling
must, of course, compensate for the additional cost
incurred by adding the SCADA terminal to the
system.

Communication Application Example

A SCADA terminal demonstrates an industrial com-
munication application of the iSBC 80/10A. The
Intel® 8251 USART provides the serial communi-
cation link and the two Intel 8255 Programmable
Parallel 1/O devices provide 48 parallel lines for the
object system. A block diagram of a SCADA
terminal is shown in Figure 4.

The task of the software in this SCADA terminal
example is two-fold. First, it must continually scan
its parallel inputs, transmitting the status of those
lines in a bit serial mode using the USART. And
second, it receives bit serial data from the USART
which is to be used to update the parallel outputs.
Thus, a major portion of the software deals with

1-15

iSBC 80/10A

<—
—

PARALLEL
ouTPUT

SERIAL
INPUT

S —

PARALLEL
INPUT

SERIAL
QUTPUT

-

Figure 4. SCADA Terminal Block Diagram

the communications protocol on the serial data
lines.

Communications Protocol. A communication pro-
tocol is an agreement between communications
users that defines the record formats used for data
transmissions. The protocol selected for this
SCADA terminal application provides the follow-
ing features:

1. A readable character set to simplify the
human interface.

Error detection by means of a checksum.

Each record specifies the number of data
bytes in the record and the initial port
number.

Despite its value for human interface, the ASCII
character set has problems representing 8-bit
binary values, since the high-order bit is not used.
Therefore, each binary value is treated as two 4-bit
hexadecimal values. Because hexadecimal numbers
fall in the range 0—9 and A—F, they can be repre-
sented as ASCII characters. However, this repre-
sentation requires twice as many bytes as a pure
binary format.

Record Format. The information encoded into the
ASCII hexadecimal format is grouped to form
records. Each record has a record mark to flag the
beginning of the record, a number of ports specifi-
fication (record length), destination output start
port number, the data field itself, and a checksum.

The record format described below is according to
the fields in the record.

Record mark field: Byte O

The ASCII code for a colon (:) is used to signal
the start of a record.

Number of ports field: Byte 1

The number of data bytes in the record is repre-
sented by a single ASCII hexadecimal digit in this
field. This corresponds to the number of 8-bit

ports to which data will be output by the
SCADA terminal in a parallel fashion. The maxi-
mum number of data bytes in a record is 15 (F
in hexadecimal). A record length of zero is a
special case and can be reserved for control
information.

Port address field: Byte 2

The single ASCII hexadecimal digit in byte 2
gives the port number of the initial output port.
The first data byte is output to the port indi-
cated by the port address; successive bytes are
output in successive port locations on the iSBC
80/10A or on expansion I/O boards.

Data field: Bytes 3 to 3+2*(number of ports)-1

An 8-bit binary value is represented by two
bytes containing the ASCII characters 0—9 or
A—F, which represent a hexadecimal value
between 0 and FF (0 and 255 decimal). The
high-order digit is in the first byte of each pair.

Checksum field: Bytes 3+2*(number of ports) to

3+2*(number of ports)+1

The checksum field contains the ASCII hexa-
decimal representation of the two’s complement
of the 8-bit sum of the 8-bit bytes that result
from converting each pair of ASCII hexadecimal
digits to one byte of binary, from the number of
ports field (the number of ports and port ad-
dress constitute a pair) to and including the last
byte of the data field. Therefore, the sum of all
the ASCII pairs in a record after converting to
binary, from the number of ports field to and
including the checksum field, is zero.

Sample Hexadecimal format:

:303A178FF0

=

Design Approach Using a State Diagram. Before
proceeding to examine the software used to imple-
ment the SCADA terminal, consider how the prob-
lem might have been approached with TTL logic
rather than a microcomputer. The design would
likely have been formulated with a state diagram to
specify the transitions of a sequential state ma-
chine. The sequential-circuit operations would
include decoding the serial input records and

Checksum Field
Data Field

Starting Port Address
Number of Ports

Record Mark

1-16

encoding the serial output records. An examination
of the serial input record state diagram (Figure 5)
is useful in understanding some of the procedures
encountered later.

INIT

LHAC/PO

Figure 5. State Diagram

Notes: HAC = Hexadecimal ASCII character
LHAC = Last Hexadecimal ASCII character
PO = Parallel output

The receipt of an invalid HAC will cause a return
to state 0.

The receipt of a colon at any time will produce a
transition to state 1.

STATE DESCRIPTION
0 = record mark state
1 = number of ports state
2 start port number state
3 = high-order half of data byte state
4 = low-order half of data byte state

State O is entered at the time of initialization. All
state transitions occur when the next character is
received. States 1, 2, and 3 are entered with the
input of a colon (:), the number of ports and start
port number, respectively. States 3 and 4 will cycle
as required until all the high and low-order pairs of
data have been input. The transition from state 4
to state 0 occurs when the last data byte has been
received. If the checksum is correct, the parallel
output latches are loaded with the data field of
the record.

There are many references to the states contained
in this diagram during the discussion of the soft-
ware procedures. Thus, the state diagram is used as
a “flowchart” for the software. As in the other
examples in this application note, a textual descrip-
tion accompanies each segment of code. Intel’s
high-level programming language, PL/M-80, has
been used to show the capability to program in a
natural, algorithmic language which eliminates the
need to manage register usage or memory alloca-
tion.

SCADA Terminal Program. The program begins
with a comment, that is followed by the program
segment label “SCADA”. With resident PL/M-80,
all programs are considered to be labelled blocks,
or modules. This means that all PL/M programs
must begin with a LABEL and a DO statement and
end with an END statement.

/*
INDUSTRIAL COMMUNICATION APPLICATION

SCADA TERMINAL

All variables used in the program must be declared
before they can be referred to by their identifiers.
This is done by means of a DECLARE statement.
In addition to the declaration of variables, macros
are declared using the reserved word LITERALLY.
These macros are expanded at compile time by
textual substitution.

2 1 DECLARE
SRL$INSSTATE BYTE,
RLINPRT BYTE,

IN:

SRL
PRL$IN
PRLINSTRT$PRT BYTE,
PRLINNMBSPRTS BYTE,
SRLINPRLOUTBFR(3) BYTE,

CNT BYTE,
STATE BYTE,

PRLOUTPRT$0 LITERALLY *OESH',
PRLOUTPRT$1 LITERALLY 'OEAH',
PRLOUTPRT$2 LITERALLY 'OEBH',

SRLOUTSTATE BYTE,
SRLOUTPRT BYTE,
SRLOUTCNT BYTE,
PRLOUTSTATE BYTE,
PRLOUTSTRT$PRT BYTE,
PRLOUTNMBSPRTS BYTE,
SRLOUTPRLSINSBFR(4) BYTE,

PRLINPRT$0 LITERALLY 'OE4H',
PRLINPRT$1 LITERALLY 'OE6H',
PRLINPRT$2 LITERALLY 'OE9H',

USART$CMD LITERALLY 'OEDH',
USART$IN LITERALLY 'OECH',
USART$OUT LITERALLY 'OECH',
USART$STATUS LITERALLY 'QEDH',
USART$MODE$INSTR LITERALLY 'OCFH',
USARTCMDINSTR LITERALLY '025H',

TXRDY LITERALLY '001H',
RXRDY LITERALLY '002H',
PPICWR1 LITERALLY 'OETH',
PPICWR2 LITERALLY 'OEBH',
PPICWD1 LITERALLY '08OH',
PPICWD2 LITERALLY '09BH',

TRUE LITERALLY 'OFFH',
FALSE LITERALLY 'OOCH',

FOREVER LITERALLY 'WHILE TRUE',

NEXT$BYTE BYTE,
CHECKSUM BYTE;

8251 and 8255 Initialization. The INIT procedure
sets up the 8251 and 8255’s and initializes several
variables. Interrupts are disabled to insure that no
interrupts are serviced during the execution of the
INIT procedure.

3 1 INIT: PROCEDURE;

DISABLE;

The serial input and serial output state counters are
set to state 0. Port number O is the parallel input
start port and 3 ports of data are input from the
parallel ports for serial transmission.

SRLINSTATE =
SRLOUTSTATE

PRL$INSSTRT$PRT
PRL$INSNMBSPRTS =

@ owm
[XINENTN

The Intel 8251 USART must be set up by loading
it with mode and command instructions.

The mode instruction format is shown below:

T T T T
|D7|D5|D5|D4|03|DZID1ID,|
L L L 1

T Lo

BAUD RATE FACTOR

00 = SYN MODE
01 = ASYN X1

10 > ASYN X16
11 = ASYN X64

CHARACTER LENGTH

00 »5BITS
01 =6BITS
10 =78BITS
11->8BITS

PARITY CONTROL

X0 =NOPARITY
01 =0DD PARITY
11 = EVENPARITY

FRAMING CONTROL

00 =»NOT VALID
01=1STOPBIT
10 = 1% STOP BITS
11 ~2STOPBITS

SVN NO — ASYN (Dq Dg #00)
/

YES
(0109=0)

SYN CONTROL

X0 INTERNAL SYN

X1 EXTERNAL SYN

0 X DOUBLE SYN CHAR
1X SINGLE SYN CHAR

The 8251 characteristics required by this SCADA
terminal application include 9600 baud transmis-
sion and 8-bit characters. The parallel inputs of the
8255’ are periodically scanned. The scanning
frequency is determined by the baud rate and
number of ports of data being transmitted. For
example, the transmission of 3 ports of data
requires 11 characters. At a baud rate of 9600 the
approximate scan rate is 100 Hz.

The following 8251 mode instruction is used:

Clofofofn]r]n]of
=

Instruction = 1100 1110 Binary = CEH

Baud Rate Factor = 10
Character Length = 11
Parity Control = 00

Framing Control = 11

After the mode instruction is sent to the 8251, a
command instruction is required to complete the
8251 initialization.

The command instruction format is shown below:

D7 Dg

|Eu[m

Ds Dy D3 Dy Dy Dy

RTS DTR

ER [SBRK} RxE

TxEN]

L

‘TRANSMIT ENABLE
1= ENABLE
0= DISABLE

DATA TERMINAL
READY
“HIGH"” WILL FORCE
DTR QUTPUT TO ZERO

RECEIVE ENABLE
1=ENABLE RxRDY
0 = DISABLE RxRDY

SEND BREAK

CHARACTER
1=FORCES TxD “LOW"
0=NORMAL OPERATION

ERROR RESET
1=RESET ALL ERROR
FLAGS (PE, OE, FE)

REQUEST TO SEND
“HIGH"” WILL FORCE
RTS OUTPUT TO ZERO

INTERNAL RESET
“HIGH” RETURNS 8251
TO MODE INSTRUCTION
FORMAT

ENTER HUNT MODE
1= ENABLE SEARCH FOR
SYN CHARACTERS

The command instruction enables the transmit and
receive functions of the 8251.

The following command instruction is used:

Donannon

Transmit Enable = 1

Data Terminal Ready =0

Receive Enable = 1

Send Break Character = 0

Error Reset = 0

Request to Send = 1

[l'lﬂr

Internal Reset = 0

Enter Hunt Mode = 0

Instruction = 0010 0101 Binary = 25H

Output instructions send the initialization com-
mands to the 8251. Note that previously declared
macros are used to literally replace the mnemonics
in the following lines of code.

OUTPUT(USART$CMD) = USART$MODE$INSTR;
OQUTPUT(USART$CMD) = USART$CMD$INSTR;

Initialization of the 8255’s is then done to set up
the following configurations:

8255 #1
Port 1 (A) Mode O Output
Port 2 (B) Mode 0 Output
Port 3 (C) ModeO Output
8255 #2
Port 4 (A) Mode O Input
Port 5 (B) Mode 0 Input
Port 6 (C) Mode O Input

The following command instruction is used for the
8255 #1:

FEEEEEER
] Port C Bits PC3—PCq Output = 0

Port B Qutput =0

Port B Mode 0 = 0

Port C Bits PC7—PC4 Output =0

Port A Output = 0

Port A Mode = 00

Qpcode Mode Set = 1

Mode Control Word = 1000 0000 Binary = 80H

The following command instruction is used for the
8255 #2:

|D7] Ds|D5|°4J DJiDZIDI lDo]
Port C Bits PC3—PCQ Input =1

Port B Input = 1

Port B Mode 0 =0

Port C Bits PC7—PC4 Input = 1

Port A Input =1

Port A Mode = 00

Opcode Mode Set = 1

Mode Control Word = 1001 1011 Binary = 9BH

The 8255 initialization commands are given in a
similar manner to the 8251 commands,

1m 2
12 2

QUTPUT(PPICWR1) = PPICWD1;
OUTPUT(PPICWR2) = PPICWD2;

The INIT procedure concludes by enabling inter-
rupts.

ENABLE;

w2 END INIT;

Conversion Procedures. Two conversion procedures
are required in the program. The first procedure
produces a hexadecimal ASCII character from a
4-bit binary value. A typed procedure has been
used which returns a value of the type byte. It is
called by using its name in an expression.

CHAR$CONV: PROCEDURE (CHAR) BYTE;
DECLARE CHAR BYTE;

CHAR = CHAR + '0';
IF CHAR > '9' THEN

CHAR = CHAR + T7;
RETURN CHAR;

>
[Y OF XY VI PR,

END CHAR$CONV;

The second procedure produces a 4-bit binary
value from a hexadecimal ASCII character. Because
this procedure is used only when a hexadecimal
ASCII character is expected, an illegal character
(i.e., not a 0—9 or A—F) causes the serial input
state counter to indicate state 0. This procedure is
also typed. The NMB$CONV procedure emphatic-
ally illustrates the point that PL/M-80 performs
unsigned arithmetic. Note that when the ASCII
value for a zero is subtracted from the digit,
NUM = NUM - ‘0’; a positive number is always
produced, even if the value of NUM is less than ‘0’.

NMB$CONV: PROCEDURE (NMB) BYTE;
DECLARE NMB BYTE;

NMB = NMB - '0';
IF NMB > 9 THEN
DO

"IF (NMB > 16) AND (NMB < 23) THEN
NMB = NI H

ELSE
29 SRL$INSSTATE = 0;
30 ND;
3 RETURN NMB;
32 END NMB$CONV;

Parallel Input Procedure. A parallel input proce-
dure is used to input data bytes from the 8255’s.
The data bytes are then transmitted by the bit
serial output device. This procedure also computes
the checksum for the serial output record. The
checksum, TEMP?2, is initialized to contain the
parallel input number of ports and the start port,
shifted to fit within a single byte. Each cycle of the
iterative DO block adds the next data byte to the
checksum and places the input data into the
SRLSOUTSPRLSINSBFR array until the loop is
complete. The checksum is then computed as the
two’s complement of the accumulated sum and
also stored in the serial input parallel output
buffer.

119

33 1 PARALLEL$IN: PROCEDURE;
w2 DECLARE (TEMP1,TEMP2) BYTE;
B2 TEMP2 = PRL$INSNMBSPRTS # 16 + PRLSIN$STRT$PRT;
¥ 2 DO PRL$INSSTATE = PRLSINSSTRT$PRT TO
PRLSIN$SSTRT$PRT + PRL$INSNMBSPRTS - 1;

373 DO CASE PRL$INSSTATE;

/* PRL IN PRT O */
BN} TEMP1 = INPUT(PRLINPRT$O0);

/* PRL IN PRT 1 #/
39 4 TEMP1 = INPUT(PRLSINPRT$1);

/% PRL IN PRT 2 */
40 4 TEMP1 = INPUT(PRL$INSPRTS2);
woou END;
43 SRLSOUTSPRLSINSBFR(PRLSINSSTATE) = TEMP1;
433 TEMP2 = TEMP2 + TEMP1;
4y 3 END;
2 SRLOUTPRLSINSBFR(PRLSINSSTRTSPRT + PRLSINSNMBSPRTS) = -TEMP2;
2 END PARALLEL$IN;

Parallel Qutput Procedure. When a complete serial
input record has been received and the checksum is
correct, the transition from state 4 to state O is
accompanied by the parallel output of the data
from the data field of the serial input record. The
parallel output starting port and the number of
ports of data is contained in the input record and
is thus used in directing the parallel output opera-
tion. An iterative DO block increments the
PRLSOUTSSTATE index variable through the
required ports and a DO CASE block selectively
executes one of the OUTPUT statements for each
cycle of the loop.

PARALLEL$OUT: PROCEDURE;

u 2 DECLARE TEMP BYTE;
4 2 DO PRLOUTSTATE = PRLSOUT$STRT$PRT TO
PRL$OUTSSTRTSPRT + PRLSOUT$NMBSPRTS - 1;
50 3 TEMP = SRLINPRLOUTSBFR(PRLSOUT$STATE) ;
513 DO CASE PRLOUTSTATE;
/* PRL QUT PRT 0 */
52 4 OUTPUT(PRLOUTPRT$0) = TEMP;
/% PRL QUT PRT 1 */
53 4 OUTPUT(PRLOUTPRT$1) = TEMP;
/* PRL OUT PRT 2 */
sS4 4 OUTPUT(PRLOUTPRT$2) = TEMP;
55 4 END;
56 END;
51 2 END PARALLEL$OUT;

Serial Input and Output Procedures. The next two
procedures contain the software implementations
of the state diagram described previously. The
processing during each state of the first procedure,
the serial character input procedure, is described
in the following text.

The procedure begins by reading a character from
the 8251 and then converts the character into a
4-bit binary value using the number conversion
procedure. The DO CASE block is the mechanism
by which a program segment is selected to examine

the input character, provide the required outputs,
and to specify the transition to the next state.

58 1 SERIAL$CHARSIN: PROCEDURE;

59 2 DECLARE (CHAR,TEMP) BYTE;

60 2 CHAR = INPUT(USART$IN) AND O7FH;
61 2 TEMP = NMB$CONV(CHAR);

62 2 DO CASE SRLINSTATE;

State O is entered through the initialization proc-
ess, at the completion of the processing of a serial
input record, or when an invalid character has been
received. The serial input state will remain O until a
colon (:) is received, at which time a transition to
state 1 is specified.

/% SRL IN STATE O = RECORD MARK */

IF = ':' THEN
SRL$1N$STATE =1

o
b
Ersw

The parallel output number of ports is obtained,
the counter initialized, and a transition to state 2 is
specified from state 1.

s /% SRL IN STATE 1 = NMB PRIS %/
7 3 H

68 i PRLOUTNMBSPRTS = TEMP;

69 4 SRL$INSCNT = TEMP;

70 4 SRL$INSSTATE = 2;

mn o4 END;

In state 2 the parallel output starting port number
is obtained, the serial input port is initialized, the
checksum is set to contain the parallel output
number of ports and starting port, and a transition
to state 3 is specified.

/% SRL IN STATE 2 = STRT PRT #/

72 3 D0;

3 i PRL$OUTS$STRTSPRT = TEMP;

T SRLINPRT = TEMP;

75 4 CHECKSUM = PRLOUT$NMBSPRTS*16 + PRLSOUT$STRT$PRT;
;_6’ : SRLINSTATE = 3;

In state 3 the high-order half of a data byte is
obtained and shifted into the proper position of
the NEXT$BYTE variable. A transition is specified
to state 4.

/% SRL IN STATE 3 = HI ORDER HALF DATA BYTE #/
78 DO;
79
80

81

*NEXTSBYTE = TEMP#16;
SRLTNSSTATE = U;

Errw

State 4 is the final state and requires more process-
ing than the others. First, a whole byte of data is
assembled by adding the low and high-order data
halves, and then testing to determine if the check-
sum has been received. If so, and the checksum is
correct, the parallel output procedure is executed.
Once the entire serial input record has been re-
ceived, a transition is specified to state O whether
the checksum is correct or not. However, if the

1-20

serial input count has not been exhausted, the
assembled byte is placed into the serial input
parallel output buffer and a transition back to state
3 is specified.

/% SRL IN STATE 4 = LO ORDER HALF DATA BYTE */
DO;

82 3 ;
83 4 NEXT$BYTE = NEXT$BYTE + TEMP;
84 i CHECKSUM = CHECKSUM + NEXT$BYTE;
85 4 IF SRLINCNT = O THEN
86 4 D0;
87 5 IF CHECKSUM = O THEN
8 5 CALL PARALLEL$OUT;
89 5 SRLINSTATE = 0;
9 5 D;
ELSE
91 4 DO;
92 5 SRL$IN PRL$0‘JT$BFR(SRL$1N$PNT) = NEXT$BYTE;
93 5 SRLINPRT = SRL$INSPRT + 1;
9 5 SRL$INSCNT = SRLSINSCNT - 1
95 5 RLINSTATE = 3;
9% 5 END;
9T END;
98 3 END; /* END OF CASES #/
9 2 END SERIAL$CHARSIN;

The serial character output procedure is similar to
the serial character input procedure. During state 0
the parallel inputs of the 8255’s are stored in the
serial output parallel input buffer for transmission.

100 1 SERIAL$CHAR$OUT: PROCEDURE;

101 2 DECLARE (CHAR,TEMP) BYTE;
02 2 CHAR = 0;
103 2 DO CASE SRLOUTSTATE;

/* SRL OUT STATE O = RECORD MARK */
043 H
105 4 CHAR = ':';
106 4 CALL PARALLELSIN;
107 4 SRL$OUTSSTATE = 1;
108 4 END;

/% SRL OUT STATE 1 = NMB PRTS #/
109 3 i
10 & "TEMP = PRL$INSNMBSPRTS;
MU SRL$OUTSCNT = TEMP;
m2 4 SRLOUTSTATE = 2;
134 5

/* SRL OUT STATE 2 = STRT PRT #/
My 3 DO;
15 b TEMP = PRLINSTRT$PRT;
16 4 SRLOUTPRT = TEMP;
N7 4 SRL$OUTSSTATE = 3;
18 4 D;

/% SRL OUT STATE 3 = HI ORDER HALF DATA BYTE */
19 3 DO;
120 b TEMP = sun(sanou':sPRLsmsarn(sm.sourspn'r) u;
121 SRLOUTSTATE =
122 4 END;

/% SRL OUT STATE 4 = LO ORDER HALF DATA BYTE #/
123 3 DO;
JET TEMP = sm.sourspkmusarﬂ(sm.sounpn'r) AND OFH;
125 IF SRL$OUTSCNT = O Ti
126 4 SRL$OUTSSTATE = o,

ELSE

127 U4 00;
128 5 SRLSOUT$CNT = SRL$OUT$CNT - 1;
129 5 SRLOUTPRT = SRLSOUT$PRT + 1;
130 5 SRL$SOUT$STATE = 3;
1315 END;
132 4 END;
133 3 END; /* END OF CASES #/
1382 IF CHAR <> ':' THEN
135 2 CHAR = CHARSCONV(TEMP);
136 2 OUTPUT(USART$OUT) = CHAR;
137 2 END SERIAL$CHAR$OUT;

Interrupt Service Routine. The software in this
SCADA terminal application example is interrupt
driven. Interrupts, which occur when the trans-
mitter of the 8251 is ready for another character
or when the receiver has obtained a serial charac-
ter, direct the execution of either the serial input

or output character procedures. The following
procedure is entered when an interrupt occurs.

138 1 USART$INTERRUPT: PROCEDURE INTERRUPT 7;

139 2 DECLARE STATUS BYTE;

1w 2 STATUS = INPUT(USART$STATUS);
w2 IF (STATUS AND TXRDY) = TXRDY THEN
w22 CALL SERIAL$CHAR$OUT;

w32 IF (STATUS AND RXRDY) = RXRDY THEN
we o2 CALL SERIAL$CHARSIN;

ws 2 END USART$INTERRUPT;

Main Program. The function of the main program
is rather simple. It calls the initialization routine
and then loops “FOREVER.” Notice that the
other software is executed only when an interrupt
occurs. Rather than loop idly while waiting for an
interrupt, the “‘main program” could take advan-
tage of excess CPU time by processing some other
task.

JAneER AR,

MAIN$PROGRAM:

[T T Ty y)
ALCI CALL INIT;
wr DO FOREVER;
w2 END;

149 1 END;

1-21

SUMMARY/CONCLUSIONS

Further consideration should be given to error
checking in the implementation of a SCADA termi-
nal. A checksum has been used in this example
which provides some error detection but no
correction.

The industrial communication example in this
application note has shown a SCADA terminal.
Besides providing a convenient forum in which to
explore the use of PL/M in an interrupt-driven
environment, this application provides a realistic
and almost fully-developed tool for the replace-
ment of a multitude of parallel lines. Two such
systems can be connected through the serial lines
to provide a parallel to parallel transmission
scheme as shown in Figure 6.

PARALLEL 1/0

>
(—

SCADA TERMINAL
=2

PARALLEL I/0

SCADA TERMINAL

SERIAL 1/0

Figure 6. Two SCADA Terminals

BIT SERIAL INTERFACE iSBC 80/10A

(435)
SERIAL OUTPUT SERIAL INPUT
33)
SERIAL INPUT SERIAL OUTPUT
GROUP 1
- 8255
PARALLEL INTERFACE sammmmmy 8226 lf_ - _jl
(143) A
outo PAQ
141 N | oa |
ouT1 < k——-—— 1
(J145) A | I
ouT2 PAZ
w1471 N | |
ouT3 ' PA3 |
J139) A PORT 1 (A)f
outa PAg
4137 N | |
ouTs l PAg |
(4135)
ouT 6 4 - PAG |
133) i
ouT 7 PA7 |
Vee 7437 : |
W17
outs <“~., PBy I
ouT9 (K] | ve
d ! |
13 PR |
OouT 10 PB2
W N | |
ouT 11 P83 |
ouTPUT (419) | PORT 2 (8)
LED ouT 12 By |
wran
ouT 13 B |
J113)
ouT X ouT 14 PBg I
1-15)
ouT 15 P87 I
7437 | |
(11-25)
ouT 16 <}a | PCo |
1:29) |
ouT 17 o 1 PC1pORT 3 (C) |
W PPER
ouT 18 40———-———— pcy Y |
117
ouT 19 ¢ PC3 l
o v1:21) A = = =]
uT 20 4
w1-27) N q v |
out 21 5
(4123) -1 | ’?3\22&5’ [
PC
ouT 22 ~N I i |
(131)
ouT 23 PCy |
vee w -
[[% L GROUP 2
$ <3< <2< < 8255
33 :: 232 :; K = = ——
243) 1 9 1 I
INO 0
(J2-45) 1 oA
N1 1
(4247) | pay
IN2
w (4249) L{sa
3 3
J2.41) 1 PMPORTd(AY
ING
(42:39) L Jone
INS 5
w6 4237) [P
(42.35)
N7 : PA7
> Q<& > |
322322 <
> 5535353 S S«
23333333
b R R |
2.5) o
N8 T 80
27)
N X IN9 T P8y
(42.9)
SWITCH IN10 ' PB3
J2:3)
INTT l
INPUT 211) PORT 5 (B)
N2 I *
(2.13)
= IN13 T PBs
(42 15)
IN14 i
217)
IN15 I PB7
> & L S
< < } < § S <
> & <2 > 2 & 2
$$5333s53
J2-25)
IN16 +— o
(223)
N7 "1 pon76 (@
w221} UPPER
IN18 +—rc3
(2.19) N
IN19 +—{rc2
w227 I v
IN20 t
(42 29)
IN21 S [T
(231)
IN22 +—{pce LOWER
1J233)
IN23 +—]Pc7

Figure 7. SCADA Terminal Schematic

1-22

PROCESS CONTROL

Many single board computers have already been
applied in the field of process control. Some of the
common denominators observed in these applica-
tions include the use of A/D and D/A peripheral
boards, process monitoring functions such as
servicing display panels for operator interaction,
and alarm indicators.

Temperature Monitoring Application Example

A temperature monitoring system has been devel-
oped for the purposes of a process control applica-
tion example. The single open loop system utilizes
an A/D converter, a multiplexed display, switches
for operator control, and two alarms. A block dia-
gram of the operator’s panel is shown in Figure 8
and a schematic in Figure 9.

TEMPERATURE MONITORING

iSBC 80/10A OPERATOR'S PANEL

PORT 5 (B)
SWITCH
INPUT

PORT 4 (A)

GROUP =2 7-SEGMENT
8255 DATA

PORT 6 (C)
DIGIT SELECT &
|NDICATORS

Figure 8. Operator’s Panel Block Diagram

Operator’s Panel. The operator’s panel in this
temperature monitoring system contains four
7-segment displays to show the temperature, two
light emitting diodes (LEDs) that indicate alarm-
low and alarm-high conditions, and six switches.
The function of the switches is as follows:

Set Limit — controls whether the current
temperature reading is to be displayed (off) or
if upper/lower limits are to be set (on).

Set Hi Lo — when set limit is “on”, this switch
controls whether the low (off) or high (on)
limit is to be displayed.

Digit Selects — these two switches control the
selection of the digit of the limit which is to
be modified. The four binary positions 00,
01, 10 and 11 correspond to the four 7-
segment digits.

1-23

Leave It — controls whether the digit selected
is to be incremented (off) or maintained at its
current value (on). When this switch is “off™
the digit selected is incremented every 512 ms

until the operator turns the switch “on”.

Enable Alarm — when set limit is “off” and the
current temperature is displayed, this switch
controls whether the action of the alarm indi-
cators is to be enabled (on) or disabled (off).

The simple means used to set upper and lower
temperature limits is similar to setting the time on
a digital wrist watch.

The purpose of the software is to initialize the
system and then to enter an endless loop which
accumulates 16 readings, updates the displayed
reading or handles limit setting, updates the display
latches, waits 4 ms, and obtains an A/D reading.

Temperature Monitoring Program. This application
example has been coded in Intel’s resident PL/M-
80 language.

” PROCESS CONTROL APPLICATION
OPEN LOOP
TEMPERATURE MONITOR
L%
1 TEMPERATURE$MONITOR:
Do;

The declaration statement includes some dimen-
sioned variables with INITIAL attributes. They
provide data strobe positions, a table of bit pat-
terns to convert BCD data to 7-segment data, and
a table of the powers of 10 for binary to BCD
conversions.

DECLARE
READING ADDRESS,
DIGITS(4) BYTE INITIAL (80H,40H,20H,10H),
BCDTOTSEG(11) BYTE INITIAL ('XPH C6H, 5BH, len ,66H,
6DH,7CH,0TH, TFH, 67H,0) ,
TENS(4) ADDRESS INITIAL (1000,100,10.1),
DIGIT$DATA{Y4) BYTE,
NXT$DIGIT BYTE,
UPDATE$COUNT BYTE,
SET$COUNT BYTE,
LIMIT(2) ADDRESS,
ACCUM$RDNG ADDRESS,

CWR LITERALLY 'OEBH',
SLCT LITERALLY 'OEAH',
SEGS LITERALLY 'OESH',
SWTS LITERALLY 'OE9H',
SETUP$PORTS LITERALLY '0824',

SET$LIMIT LITERALLY '001H',
SETHILO LITERALLY '002H',
LEAVE$IT LITERALLY '0O10H',
DIGIT$SLCT LITERALLY ‘OOCH'
ENABLE$ALARM LITERALLY '020H',
SET$ALARM$LO LITERALLY '001H',
SET$ALARM$HI LITERALLY '0O3H',
RESET$ALARM$LO LITERALLY 'OOOH',
RESET$ALARM$HI LITERALLY '002H',

TRUE LITERALLY 'OFFH',
FOREVER LITERALLY 'WHILE TRUE';

The analog to digital conversion procedure has
been coded in assembly language and is not in-
cluded in this application note. It is declared as an
external typed procedure with no arguments and
returns a value of the type address. The value
returned is the current temperature. The ATOD
procedure is linked later in a step to produce an
absolute load module of the entire program.

3 1
4 2

ATOD: PROCEDURE ADDRESS EXTERNAL;

END ATOD;

Bit set/reset functions of the 8255 have been used
to control the alarm-low and high output bits. Use
of this function allows individual bits to be con-
trolled without affecting others of port C which
are concurrently selecting the digit to be multi-
plexed on the display.

RESET$ALARMS: PROCEDURE;

1

2 QUTPUT(CWR) = RESET$ALARMSLO;
2 OUTPUT(CWR) = RESET$ALARMSHI;
2

x ~o w

END RESET$ALARMS;

The following procedure is used to initialize the
8255 and several program variables.

INIT: PROCEDURE;

OUTPUT(CWR) = SETUP$PORTS;
CALL RESET$ALARMS;
NXT$DIGIT = 0;
UPDATE$COUNT = 0
SET$COUNT = T;

READING = 0;

ACCUM$RDNG = 0;

LIMIT(0) = 0000;

LIMIT(1) = 9999;

END INIT;

[SJE.VE.NY 'R NE FENYNY CY NN

A multiplexed display is controlled by the soft-
ware. Two ports of an 8255 are required for this
function shown in Figure 9. The first output port
holds the data which drives the four 7-segment dis-
plays in parallel. The second output port contains
four strobes, each going to a separate common
cathode of one of the 7-segment displays.

The update display procedure begins by blanking
7-segment data in the output port. This step avoids
shadows that would be produced if the data for
the next digit position were loaded prior to up-
dating the strobe. The strobe is then advanced,
retaining the alarm bits that occupy other bits of
the same output port. Note that an output con-
figured 8255 port can be read with an 8080A
INPUT instruction to determine the currently
latched output data. The BCD data is obtained
from the next digit position of the DIGITSDATA
array and used as a subscript into a table of
BCDTO7SEG data. The 7-segment data is also

1-24

output to the 8255 port in the same statement.

The procedure concludes by advancing the
NXTS3$DIGIT pointer.

20 1 DISPLAY$UPDATE: PROCEDURE;

21 2 OUTPUT(SEGS) = 0;

22 2 OUTPUT(SLCT) = (DIGITS(NXT$DIGIT) OR (INPUT(SLCT) AND 03H));

23 2 OUTPUT(SEGS) = BCDTO7SEG(DIGIT$DATA(NXT$DIGIT));

2h 2 NXT$DIGIT = (NXT$DIGIT+1) AND O3H;

5 2 END DISPLAY$UPDATE;

Binary to BCD Conversion. Binary data from the
A/D converter must be converted to BCD before it
can be used by the DISPLAYSUPDATE procedure
to show the current temperature reading. The
BINTOBCD procedure performs this conversion
operation.

BINTOBCD: PROCEDURE;
DECLARE (BCD,I) BYTE;
DO 1=0TO03;

217
2

29

1
2
2
3 BCD = 03
30 3 DO WHILE READING >= TENS(I);
31U
3
y
3
3
2

READING = READING - TENS(I);
BCD = BCD + 1;

33
34
33
36

END;
DIGIT$DATA(I) = BCD;
END;

END BINTOBCD;

BCD to Binary Conversion. The reverse conversion
process is also needed. That is, BCD data must be
converted to binary. This procedure is used to take
limits, which are set by manipulating BCD digits,
and convert them to binary data for use in testing
against current temperature readings. Based vari-
ables have been used in this procedure to allow
access to the actual variables used as arguments in
the calling program.

37 1 BCDTOBIN: PROCEDURE (BCD$ARRAY$ADR,BINSDATA$ADR) ;

B 2 DECLARE

(BCD$ARRAY$ADR, BINSDATASADR) ADDRESS,

(BCD$ARRAY BASED BCD$ARRAYS$ADR) (4) BYTE,

(BINSDATA BASED BINSDATA$ADR) ADDRESS,
9 2 BIN$DATA = 0;
B 2 D0 I=07T03;

/% BINSDATA = BINSDATA*10 + BCD$ARRAY(I) %/

43 BINSDATA = SHL(BIN$DATA,1) + SHL(BIN$DATA,3) + BCDSARRAY(I);
2 3 END;
43 2 END BCDTOBIN;

Updating the Display. The UPDATE procedure is
entered each time 16 readings have been taken
from the A/D converter. The UPDATE$SCOUNT is
reset and the operator switches are input to control
the execution path through the procedure. The
accumulated reading, which is the total of 16 A/D
readings, is divided by 16 to obtain an average
reading. Then the accumulated reading is zeroed.

LU | UPDATE: PROCEDURE;

45 2 DECLARE (SWTFLG,HILO,DIGIT) BYTE;
e 2 UPDATE$COUNT = 15;

472 SWT$FLG = INPUT(SWTS);

48 2 READING = SHR(ACCUMS$RDNG,4);

4 2 ACCUMS$RDNG = 0;

Setting Limits. If the set limit switch is ON, the
limits are to be dealt with instead of testing and
displaying the current temperature reading. The
alarms are reset during limit setting. The specified
limit is converted to BCD and then the Leave-It
switch is tested to see if the digit selected is to be
incremented or held constant.

50 2 IF (SWT$FLG AND SET$LIMIT) = SET$LIMIT THEN
51 2 H

52 3 CALL RESET$ALARMS;

53 3 HI$LO = SHR((SWT$FLG.AND SETHISLO),1);

sS4 3 READING = LIMIT(HI$LO);

55 3 CALL BINTOBCD;

56 3 IF (SWT$FLG AND LEAVE$IT) <> LEAVESIT THEN

Another counter is used to control digit incre-
menting. Its purpose is to control the rate at which
the selected digit is to be incremented. The major
loop in the program has a 4-millisecond delay.
Thus, 16 A/D conversions require a period of
64 ms which provides an update frequency of 16
readings per second. This is too fast to accurately
select a desired digit which is being incremented.
SET$COUNT insures eight update periods (512
ms) between each increment. After the digit has
been incremented, the BCD limit value is con-
verted back to binary to set the respective limit.
This concludes the action taken when setting
limits.

57T 3 DO;
84 IF SET$COUNT = O THEN
59 4 Do;
60 5 SET$COUNT = T;
61 5 DIGIT = SHR((SWT$FLG AND DIGIT$SLCT),2);
62 5 IF DIGIT$DATA(DIGIT) = 9 THEN
63 5 DIGIT$DATA(DIGIT) = 0;
ELSE
64 5 DIGIT$DATA(DIGIT) = DIGIT$DATA(DIGIT) + 1;
65 5 CALL BCDTOBIN(.DIGIT$DATA, .LIMIT(HI$LO));
6 5 END;
£
67 4 SET$COUNT = SET$COUNT - 1;
68 4 H
69 3 END;

Testing the Averaged Reading. If the set limit
switch is OFF, then the averaged reading is to be
tested and displayed. The averaged reading is con-
verted to BCD and then a test is performed to
determine whether the reading is to be compared
with the upper and lower limits.

ELSE
70 2 DO;
7 3 CALL BINTOBCD;
72 3 IF (SWT$FLG AND ENABLESALARM) = ENABLE$ALARM THEN

1-25

The reading is compared with both the upper and
lower limits if the alarms have been enabled. The
results of the tests are used to set and reset the
corresponding alarm output bits.

73 3 no;

T4 4 IF READING < LIMIT(O) THEN

7% 4 OUTPUT(CWR) = SET$ALARM$LO;
ELSE

76 4 OUTPUT(CWR) = RESET$ALARMS$LO;

7 4 IF READING > LIMIT(1) THEN

8 U OUTPUT(CWR) = SET$ALARMS$HI;

ELSE
OUTPUT(CAR) = RESET$ALARMS$HI;

79
80

==

If the alarms are not enabled, both the alarms are
reset to the “off” condition.

ELSE
81 3 CALL RESET$ALARMS;
82 3 END;

83 2 END UPDATE;

Main Program. The main program is shown below.
Its purpose is to initialize the system and then to
cycle, continuously executing the code previously
described.

o

MAIN$PROGRAM:

RRERRASELIRE)

8y

CALL INIT;

@
o

DO FOREVER;
86
87
88

ACCUM$RDNG = ACCUM$RDNG + READING;

IF UPDATE$COUNT = O THEN
CALL UPDATE;

ELSE
89 UPDATE$COUNT = UPDATE$COUNT - 1;
90
92

93

CALL DISPLAY$UPDATE;
CALL TIME(0);
READING = ATOD;

LT N Y VR NY RN

END;

o
=

END;

SUMMARY/CONCLUSIONS

The goal of this application example is to demon-
strate some of the common functions required for
process control systems. Rather than show a small
portion of a larger, more complex problem, this
example was chosen because it presents a complete
solution to a smaller problem. In summary, refresh-
ing a multiplexed display was shown. Conversion
procedures for binary to BCD and BCD to binary
were used. A simple technique, in terms of hard-
ware requirements, was used to enter lower and
upper test values. And, limits testing was done,
providing alarm indicators.

GROUP =2
8255

<
aQ
| o
—_
AAA
VWA~
AA
W

iSBC 80/10A

X-LOGIC

OPERATOR'S PANEL

Figure 9. Operator’'s Panel Schematic

r 1K
| R 1171 wn
PBg -———— ENABLE ALARM
| | 2.11)
| P8 [— LEAVE IT
| | (12:3)
| PORTS(®) | | 02:9) DIGIT SELECT:
[PB2 l
| PBY f— 27) SET HI/LO
| | (32:5)
pBo |+ SET LIMITS
l | —
I |
| | - vee
| | < < < < S
| , $ 3 2 3 3 3 3 3w
| | 7437 260
| e I ‘y> (42:35) A K
| | (12:37
| PAg —‘-—————b ! AV @
[| N (239 [
PAs > MY N
| B A &
B Rty I ©
| I
| paz | {} add A Q)
| pay | 1’> (s245) A -
| | $
| oao |+ N 6243) . 8
Vv M
| |
| | Cl13 12 1 6 5 3 4 10
| | A [c D [3 F G Dp
| I 7
[| =
| | 7437 '
N (233
| 7 >
| I
| | 22
| |
N 4231
| Fee Vv
| |
| | 22
| I
(52:29) |
| 3 {} =
| | ‘
| PoRTR(E) | | 2.9
| |
N 227
| rea | D TIL313
| |
| | L ve
l l N (223) § T
: ect | > 1 ALARM HI
|
: pC ! N 225) ALARM LO
o ; 1 g f
2

1-26

1/0 DEVICE CONTROLLER

Peripheral processors have become common ele-
ments in computer systems of all sizes and capa-
bilities. The purpose of such a processor is to
relieve a central processor from the burden of
handling 1/O devices. In effect, it is a form of
distributed processing. The iSBC 80/10A can be
used as a peripheral processor and/or as an [/O
device controller. In such a capacity it can signifi-
cantly reduce the amount of hardware required to
interface peripherals. Because the iSBC 80/10A
controls only I/O, it is of little consequence that
it must do a great deal of detail work that other-
wise wastes the processing capability of a larger
central processor.

Consider the activity of producing a listing on a
line printer. The overhead in maintaining a pro-
gram in the queue of a central processor which is
producing data for a line printer can seriously
impact system throughput. If, however, the pro-
gram were to send the list to a disk file and then
command a peripheral processor to take care of the
printing, a significant improvement in system
performance may be achieved. Printers represent
one example of a large number of I/O devices that
can be controlled by an iSBC 80/10A. Other
devices include cassettes, magnetic tape drives,
paper tape readers and punches, etc.

Character Printer Controller Application Example

The control of a Centronics 306 character printer
is used as an I/O device controller application
example. This example shows the interrupt capa-
bility of mode 1 8255 operation. A block diagram
of the printer controller is shown in Figure 10 and
a schematic in Figure 11.

Table 2. Printer Software Control Block

CENTRONICS

iSBC 80/10A PRINTER

PORT 1 (A)

DATA

PORT 3 (C)
< M conTroL

Figure 10. Printer Controller Block Diagram

When the mode | or mode 2 configuration is used,
software is generally required to support interrupts
used in conjunction with handshaking operations.
Software routines written for an interrupt driven
environment tend to be more complex than status
driven routines. The added complexity is because
interrupt-driven systems are constructed such that
other software tasks are run while the I/O transac-
tion is in progress. A software routine that controls
a peripheral device is generally referred to as a
device driver. One method of implementing an
interrupt-driven device driver is to partition the
device driver into a “command processor” and an
“interrupt service routine.” The command proces-
sor is the module that validates and initiates user
program requests to the device driver. A common
method of passing information between the various
software programs is to have the requesting routine
provide a device control block in memory, The
device control block used in this application
example is shown in Table 2.

NAME POSITION DEFINITION
Status Byte 0 A 1-byte field which defines the completion status of an 1/0.
00 = Good completion
01 = Error — command already in progress.
Buffer Address Byte 1,2 Pointer to the start of the data to print.
Character Count Byte 3 Count of the number of characters to print.
Character Byte 4 The number of characters transferred.
Transferred Count
Completion Byte 5, 6 Address of a user supplied routine which will be called after the 1/0 has been
Address performed.

1-27

The command processor validates the transaction
and initiates the operation described by the control
block. Control is then returned to the requester
so that other processing may proceed. The inter-
rupt service routine processes the remainder of the
transaction.

Interrupt Service Routine Requirements. The
interrupt service routine requires the following
functions:

1. The state of the machine (registers, status,
etc.) must be saved so that it may be re-
stored after the interrupt is processed.

The source of the interrupt must be deter-
mined. The hardware may support a register
which indicates the interrupting device, or
the software may poll the device status
registers.

Data must be passed to or from the device.

Control must be passed to the requesting
routine at the completion of the I/O.

The state of the machine must be restored
before returning to the interrupted program.

Printer Controller Program. The software for this
application has been coded using Intel® 8080
Macro Assembly Language.

I/0 DEVICE CONTROLLER APPLICATION
INTERRUPT DRIVEN

0
1
2
3
L
5
6
7 CHARACTER PRINTER
8

9

The following program equates are used to allow
symbolic reference to the 8255 ports. Group #1
8255 on the iSBC 80/10A has been used because

it will support mode 1 operation.

10 ;

11 jeeens

125 PROGRAM EQUATES

13 jHsuns

14 PORTA EQU OE4H ; 8255 PORT A

15 PORTB EQU VESH ; 8255 PORT B

16 PORTC EQU OE6H 3 8255 PORT C

17 CWR EQU OETH ; 8255 CONTROL WORD REGISTER

An initialization control word sent to the control
word register of the 8255 will set up the desired
configuration.

185

19 jHsEen

20 ;

21 ; INITIALIZATION CONTROL WORD

22 ;

23 ; USED TO CONFIGURE THE 8255 AS FOLLOWS:
24 ;

25 ; PORT A - OUTPUT MODE 1

26 ; PORT B - INPUT MODE O (NOT USED)
27 ; PORT C LOWER - OUTPUT

28 5

29 jesrsn

30 ICW EQ 101010108 ; INITIALIZATION CONTROL WORD
31 jeeass

1-28

The bit set/reset capability of the 8255 is used to
control the strobe to the printer and to enable/
disable interrupts from the 8255.

32 ; SET/RESET CONTROL WORDS

33 jEenen

34 STBON EQU 000000018 3 SET STROBE

35 STBOF EQU 000000008 3 RESET STROBE

36 jaekus

37 8255 ENABLE/DISABLE INTERRUPT CONTROL WORDS
33 jHenns .

39 IEN EQU 00001101B ; ENABLE INTERRUPTS
40 IDN EQU 000011008 ; DISABLE INTERRUPTS
41 gesnne

Device status, control block, and completion
equates are shown below.

u2 5 DEVICE SIATUS EQUATES

43 jawsen

4L LPBSY EQU 080H ; BUFFER FULL (LINE PRINTER BUSY)
45 INTRA EQU 08H 3 INTERRUPT REQUEST

4p jeenen

u7 5 CONTROL BLOCK EQUATES

43 jEeres

49 CBST EQU 00H ;3 STATUS BYTE

50 CBUF EQU 01H 3 BUFFER ADDRESS

51 CBCC EQU 03H 3 CHARACTER COUNT

52 CBCT EQU OUH ;3 CHARACTER TRANSFERED COUNT

53 CBCMP EQU 05H ;3 COMPLETION SERVICE ADDRESS

Sl jeenne

55 3 COMPLETION STATUS EQUATES

56 jeREeE

57 STGD EQU 00H 3 GOOD COMPLETION

58 STE1 EQU 0 3 ERROR - COMMAND ALREADY IN PROGRESS
59 ;#wswr

There are two origin statements in this program.
The first origin at 38 hexadecimal is the entry
point used when an interrupt is generated by the
8255. A jump instruction to the printer interrupt
routine is stored at that location. The second
origin at 3000 hexadecimal is the address where
the rest of the code will be located.

60 RESTART 7 ENTRY POINT
61 ;eenun

62 ORG 0038H

63 JMP PINT

blf jununn

65 ; PROGRAM ORIGIN

66 ;esees

67 ORG 30004

68 jenuws

An initialization subroutine issues the mode con-
trol word to the 8255 control word register after
reset of the device. The printer strobe must then be
disabled.

INITIALIZATION ROUTINE

H
7
723 A,H,L REGISTERS MODIFIED
735
Th jakswe
75 INIT
76 MVI A,ICH ; GET MODE CONTROL WORD
77 ouT CWR ; OUTPUT TO CONTROL WORD REGISTER
78 MVI A,STBON ; GET SET DATA STROBE CONTROL WORD
79 out CWR ; SET DATA STROBE (LOW TRUE SIGNAL)
80 RET ; RETURN TO CALLER

The command processor is started by the user
routine through a subroutine call to PSTRT, with
the address of the control block in the D and E
registers. The command processor insures that an
I/O operation is not already in progress, starts the
I/0, enables interrupts, and returns to the caller so
that other processing may proceed.

The flowchart and listing for the command proces-
sor are shown below.

SET
COMMAND ERROR
IN PROGRESS
CLEAR POST TO
cT USER

ENABLE
PROCESSOR
INTERRUPTS

[

RETURN

ENABLE PROCESSOR INTERRUPTS
RETURN TO CALLER

82
83 jeeuss
8y ;
gs H COMMAND PROCESSOR
6
87 : INPUTS: CONTROL BLOCK ADDRESS IN D AND E REGISTERS
88
89 : OUTPUTS: START I/0 OR ERROR STATUS IN CONTROL BLOCK
90
91 : A,H,L REGISTERS MODIFIED
2 3
83 LI
94 PSTRT:
LDA PIPRG+1 ; GET PRINT IN PROGRESS BLOCK ADDRESS
ANA A 3 SEE IF ZERO (PRINT IN PROGRESS)
; IF BLOCK ADDRESS NOT EQUAL TO ZERO THEN
;3 PRINT IN PROGRESS
JNZ PSTE 3 IF YES - BRANCH TO ERROR
XCHG
SHLD PIPRG ; SAVE CONTROL BLOCK ADDRESS
XCHG
LXI H,CBCT ; GET INDEX TO CT
DAD D ; COMPUTE ADDRESS OF CT
MVL M,00H - ; CLEAR CT
CALL PDATA ; START I/0

ERROR - TRANSACTION ALREADY IN PROGRESS

MVI
JMP

A,STE1
POST

; GET ERROR STATUS CODE
; PASS CONTROL TO COMPLETION ROUTINE

Interrupt Processing. When the 8255 generates an
interrupt, the interrupt request is serviced by the
8080A CPU. The CPU disables processor interrupts
and then executes the instruction at location 38
hexadecimal, which is a jump to the interrupt
service routine. The interrupt service routine saves
the processor state and polls the 8255 to determine
the source of the interrupt. Once the interrupting
device is identified, the printer output data routine

1-29

is called. After the entire buffer has been printed,
the interrupt service routine passes control to the
user-supplied completion routine. Before returning
from the interrupt, the state of the processor is
restored.

There are a number of error conditions which may
occur, such as an interrupt from a device that does
not have an active control block, or an interrupt
when polling establishes that no device requires
service. Neither of these errors should occur, but if
they do, the driver should perform in a consistent
fashion. The recovery routines implemented to
handle these interrupt error conditions are deter-
mined by the environment of the particular appli-
cation.

The flowchart and listing for the printer interrupt
service routine are shown below.

INT7

SAVE
REGISTERS

YES

DISABLE 8255
INT ENABLE
PROCESSOR
INTERRUPTS

1/0 1IN
PROGRESS?,

POLL
OTHERS &
PROCESS

ERROR

)

RESTORE
REGISTERS

1

ENABLE
PROCESSOR
INTERRUPTS

RETURN

116

117 jeeeen

18 ; PRINTER INTERRUPT SERVICE ROUTINE

19 ; ALL REGISTERS SAVED AND RESTORED

120 jussss

121 PINT:

122 PUSH PSW ; SAVE PSW

123 PUSH B ; SAVE REGISTER PAIR B AND C
24 PUSH D 3 SAVE REGISTER PAIR D AND E
125 USH H ; SAVE REGISTER PAIR H AND L
126 jeunns

POLL INTERRUPT SOURCE - SEE OF 8255

N PORTC ; GET STATUS OF DEVICE
130 ANI INTRA ; SEE IF INT
131 Jz PPOLL ; NO -BRANCH TO POLL OTHER DEVICES IF ANY
132 MVL A,IDN ; GET 3255 INT DISABLE CONTROL WORD
133 OUT CWR ; DISABLE DEVICE INTERRUPTS
134 EL ; ENABLE PROCESSOR INTERRUPIS
135 LHLD PIPRG ; GET CONTROL BLOCK ADDRESS
136 XRA A ; CLEAR A REG
137 cHp H ; SEE IF PRINT IN PROGRESS
138 Jz PIERT ; NO - BRANCH TO ERROR ROUTINE
139 XCHG

CALL PDATA ; PRINT DATA
RESTORE REGISTERS AND RETURN FROM INTERRUPT

POP H ;3 RESTORE REGISTER PAIR H AND L
POP D + RESTORE REGISTER PAIR D AND E
POP B ; RESTORE REGISTER PAIR B AND C
POP PSW ; RESTORE PSW AND A

EI 3 ENABLE PROCESSOR INTERRUPTS
RET ; RETURN TO INTERRUPTED PROCESS

POLL OTHER DEVICES IF ANY
IF NO OTHER DIVICES TO POLL - USER SUPPLIED ERROR
RECOVERY ROUTINE.

157 JMp PRTN ; RETURN

158 jeenen

159 5 ERROR - INTERRUPT FROM IDLE DEVICE

160 ; USER SUPPLIED ERROR RECOVERY ROUTINE
161 jHesun

162 PIER1

163 JMP PRTN 3 RETURN

164

The printer output data routine places a character
in the output buffer of the 8255. Data in the
control block is used to direct the transfer of a
character. A data strobe signal is then generated
through the use of the port C bit set/reset feature.

The flowchart and listing for the printer output
data routine are shown below.

1

YES
DISABLE '
PROCESSOR No
INTERRUPTS
ENABLE 8256
INTERRUPTS UPDATE
cT
I
YES
NO
GOOD COMP
GET CHAR l
l STORE
OUTPUT STATUS
CHARACTER
GENERATE
STROBE
J POST TO
USER

RETURN

165

166 jHenns

167 5

‘28 H PRINTER OUTPUT DATA ROUTINE

169 ;

:;(‘) H CONTROL BLOCK ADDRESS IN D AND E REG

172 jevans

173 PDATA:

174 N PORTC ; GET STATUS OF DEVICE

175 ANI LPBSY ; SEE IF BUSY (BUFFER FULL)
176 Jz PD10 3 IF BUSY ~ BRANCH

177 LXI H,CBCT ; GEI INDEX TO CT

178 DAD 0 ; COMPUTER ADDRESS OF CT

179 MOV AM ; GET CT

180 INR L] 3 INC CT

181 DCX. H 3 DEC TO CC

182 CMP M ; SEE IF EQUAL

183 JZ PCOMP ; IF EQUAL - DONE GO TELL USER
134 LXI H,CBUF ; GET INDEX TO BUFFER ADDRESS
185 DAD D ; COMPUTE ADDRESS OF BUFFER ADDRESS
186 PUSH D 3 SAVE D AND E REGISTERS

187 MoV EM ; GET LSB OF BUFFER ADDRESS
138 INX H 3 INC TO NEXT BYTE

189 MOV 0,M 3 GET BUFFER MSB

190 MVI H,00H ; CLEAR H REG

191 MoV L,A 3 GET CT

192 DAD D 3 COMPUTER CHARACTER ADDRESS
193 MOV AM 3 GET CHARACTER

194 ouT PORTA ; OUTPUT CHARACTER TO PRINTER
195 MVI A,STBOF ; RESET DATA STROBE (LOW TRUE SIGNAL)
196 ouT Cwi

197 INR 3 GENERATE SET CONTROL WORD

A
198 ouT CWR : SET DATA STROBE
5

199 POP D ; RESTORE CONTROL BLOCK ADDRESS
200 JMP PDATA ; LOOP UNTIL BUSY
201

If the printer is busy at the time the printer output
routine is called, a printer busy routine is executed.
The printer busy routine disables the processor
interrupts, enables the 8255 interrupts and then
enables the processor interrupts on its return to
the caller.

202
203 jeenes

204 ; PRINTER BUSY - RETURN

205 jeeere

206 PD10:

207 DI ; DISABLE INTERRUPTS

208 MVI A,IEN ; ENABLE DEVICE INTERRUPTS
209 out CWR 3 SET INTERRUPT ENABLE
210 RET i RETURN TO CALLER

When the printer output routine has exhausted the
data from the buffer, a good status code is posted
to the user. The command in progress flag is also
cleared.

211 jeaens
212 ; POST GOOD COMPLETION TO USER

213 jaeenx

214 PCOMP

215 MVI A,STGD 5 GET GOOD STATUS CODE

216 CALL POST 7 POST TO USER

17 XRA A ; CLEAR A REG

213 STA PIPRG+1 ; CLEAR COMMAND IN PROGRESS ADDRESS
219 RET ;3 RETURN TO CALLER

220

The post to user completion routine obtains the
completion address from the device control block
and passes control to the user routine.

221

220 jaesse

223 ;

224 5 POST TO USER COMPLETION ROUTINE

225

226 : INPUTS: STATUS CODE IN A REG

227 CONTROL BLOCK ADDRESS IN D AND E REG
228 ; OUTPUTS: PASSES CONTROL TO USER COMPLETION ADDRES
229 5 SPECIFIED IN CONTROL BLOCK

230 ; WITH CONTROL BLOCK ADDRESS IN D AND E RE
231 ;

232 3 A,H,L,B,C REG MODIFIED

233

23U jeeens

1-30

235 POST:
236 XCHG

237 MoV M,A. ; UPDATE STATUS
238 XCHG
239 LXI H,CBCMP ; GET INDEX TO COMPLETION ADDRESS
2u0 DAD D ; COMPUTE ADDRESS
24 MOV C,M ; GET LSB OF COMFLETION ADDRESS
2u2 INX H ; INC TO NEXT BYTE
243 MOV B,M 5 GET MSB OF COMPLETION ADDRESS
2u4 PUSH B ; PUSH ADDRESS Oi STACK
245 RET ; PASS CONTROL TO USER ROUTINE
246 jeanes
247 DATA AND TABLES
2ug jEewas
249 ORG 3D00H
250 PIPRG: DW [3 IN PROGRESS CONTROL BLOCK ADDRESS
251 ; IF DATA = O NO CONTROL BLOCK IN PROGRESS
252 5 IF DATA <> O CONTROL BLUCK IN PROGRESS
253 jaunen
254 ; END OF MODE ONE EXAMPLE
255 ;#wnns
256 END
SUMMARY/CONCLUSIONS

The iSBC 80/10A has the capability to function in
the capacity of a peripheral processor and/or a
device controller. This capability is provided in
part by the interrupt support logic accompanying
the parallel 1/O ports. This application example
shows how the iSBC 80/10A requires only an inter-

connect to the device to be controlled.

iSBC 80/10A CENTRONICS 306
r | 7437
| . (J1-33)
|
(0135)
croup =1 o | D
8255 | (41:37)
| s P>
| Pha | D (4139)
| PORT 1 (A) oran DATA
| PA3
| I (3145)
| PAZ —|—>A
l | (J1-41)
PAY —I—DA
I (4143)
| PAg
| |
| |
| I 7437
(4125) R
| pCo —I—I >o DATA STROBE
| ll Ve
|
PORT 3 (C) |
| 1K
| I (1-23) _
| pCs —+ ACKNLG
| ACKA | |
L_____|

Figure 11. Printer Controller Schematic

CONCLUSION

The purpose of this application note has been to
expose the reader to a broad spectrum of potential
applications of the Intel iSBC 80/10A and System
80/10 products. Applications have been presented
in the areas of instrumentation, communication,
process control and I/O device control. The exam-
ples were limited to short problems that could be
completely described.

Intel’s PL/M-80 and 8080 Macro Assembly Lan-
guage were both used in the examples. Instead of
using only assembly language, it was felt that
PL/M-80 should also be shown. Coding in an
algorithmic language is generally more natural than
assembly language and provides these added bene-
fits: reduced program development time and cost,
improved product reliability, and easier program
maintenance.

While the task of actually configuring the SBC
80/10 for the applications has not been described
in this note, detailed instructions are contained in
the tables of Chapter 4 in theiSBC 80/10 and iSBC
80/10A Single Board Computer Hardware Refer-
ence Manual.

The Intel iSBC 80/10A has been designed to pro-
vide users with subsystems that have processing
power, memory storage, parallel and serial pro-
grammable I/O interfaces. A design goal of the
iSBC 80/10A was to minimize the requirements
for customized interface hardware in user applica-
tions. This application note has demonstrated the
achievement of this goal. The net effect is to
reduce the number of tedious design tasks, thus
allowing the systems designer to concentrate on
systems integration and other problems unique
to his job.

1-31

APPENDIX A
iSBC 80/10A SCHEMATICS

1-33

ye-1

.

r———r'ZE.l
conrenn-g TIBL
B——f 228

o
o
3
k] R
£y
CS
5
- k
4701 IOROYIN/
57a1 Prom RDYIN/
Z/A1 RAaM RDYIN/
714504
Aa7
15 <R30k Ss Y
oy w24 ot
AACK ° o e 4 9 Ad a4y
XA(.K/ 231 5qA0) 5V oy AR &
14500 . Fasd !
14804 P55 31 e N
2 Ao pegl
)2 See 8 . L
Jasoe 1430%%
DuLDA 53 OLOA. o
S
Y]
hr3
0]
e 62 64 s
o T
Tor L—o—o0—0— o2-56 B
ol 3 129}
zr
) :
MOTES: UNLESS OTHERWISE SPECIFIED;

1. THIS COCUMENT REFLECTS ARTWORK REV ‘D’ —

2. RESISTOR VALUES ARE IN OHMS 1/dW 5% . IL?_a%_—MYu_e_Z

=. CAPACGITOR VALUES ARE IN MICROFARADS 1SV 10%. E— i»

4. ON I AND J2,EVEN PINS ARE GREDND e O
A3 THRU All,2123~26 ARE SHOWN; FOR 31 ccrx /] (2.216 MKE)
CLARITY. ACTUAL COMPONENTS™ARE v BCLK/ (9.2iGMH2)
CUSTOMER INSTALLED.

[> AdL 42,16 MAY BE SLBSTITUTED WITH as
A haLsiza. 2n2222

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

ge-t

ADE@

TZoL f
5
=5
MEM RI
l AN MEM W/
= AD) =
o a1l The, 4,__31“‘,‘ /0| ® oM DM
11 am : logf' | 2 Toft— 3 TioafZ ' s=cu
)) 2
3 PR 7 (L i3 Tl ;e 2
a7 I‘O«E 1as 110.'—"-‘ 3RS Toa® oM
sliA4 oD 8i1A-4 oD 8niad
Hw A e Ass 1o W e
I CE = B &
— 3= " S
Loc. 30gd Lec 3med Loc 3Fga
pes) Lars
| . LIalh? =e
2 2 —1 P z
B i3 IRy
- =3 e =3
2 o 2 (-
#4 I Aav Tiof M2
oD 8NIA- 200 BiiA4
Sz A0 Hw Al
L M S Fo
€ CE
€ =
s,
P2 i
TZD! =3 <
2 L 2 3%
, L 1Y
FLal £ i o .|
= vy
. e 3
rome___apsy | T
AR C wdlakd
7acS00
oL

ADR D []ases

RAMRDYIN/ (708 T788

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

9€-1

=
z
2
TZoa s
@
hl
e
ADR S V2V -8V
f f-s*m Lo @
o\ 2
L G|
2 3
s
@
2 FLY
oe} ::ﬂ A
(<3
DMG
2 ZZen
3
;;I—
St 2z
% szos oMa
ADEA A Bep
al rpe
2 q 291500 Az Tzpl
Ze 2 Lo g
2
' L Sle> 8216
ADEE 21e0) ez 0 o, oBd
41302 a2 L 10Joe, 3
PGS ol !
3 papaT
3o, Iy 2
ou 8oARD % ‘e E
141500 \/ d AR
® V MEM CMOY/. bope
~arso0 §OA52 Zna
2
£2Za1 RAMEDYIN/ A5 0 L Y
Be. ;ﬁ A 4
21085 o, Do s
Aa3 = D8y Dotz &
PN elpp o Ho s
om,
740304 5 TES
. A43 T IlS
TZB MEMR/ 28 MEM_FD
M S04 18500
a4’ PROM RDY 1N/
TZea
ADREF Z_7n8

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

€1

74500

Za1 osc

Reg
AAAaLTD

<
RJAIT
2d

10 . 4 u‘mSaD
2L S ey TomDYIN/ TZCa.
37 csys
SR8 csas
BAUD RPATE _CL¥

' r -
INE231A
2 45 e sV
I
e Ttk &> 22 nzv
. = Y 240 S| RECEIVED DATA
- 24 a0 1) T1] DATA SET ROV
= H +2 = CLR T END
A Sl -12V e AM—ZE TTV T« RET
¥ 256N |
= - ~—AN—{i5]
-2y 2V PR CATA CARRIER RET
I3
cumssisane [1—8 &
[N "
[+1zv AR
! 1 Rl L Z + oa 3 AL INT S/ oA
' 250 Rl — 17 7also2
[w +Sv 3% = b I
o 2.aK eV -0 2 a5 <ty Tl ?
p—— I3
W R [E3 N |o'—-[{\‘_-'d. . 0% BlSues eyv(: L o
RECENE LT RYReman L A2 Sjree 1R 1 2
TRANSMITTED DATA [L2, =5 z 2 Zas
P v |sle
Tx CLk /DATA TeRML ROv (T3} e ol ‘ 2
' ! = = OB
REQ TO senD (7] = Leare N
] R3
=3 G] TIY RD CONTROL
ero R4 e a7 -\zv-—t\/v\»—% TTY RD CONTROL RET
L Qo= 5
2K Jenzoo? 2w
10W/
Al BZTTLY
TELET

o] ADRO

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

8¢e-1

Eg
ADRL
RESET
2/
TZA Tow/
cS2/
sy ——
TZns oed
[
3
4
5
I3
b oBY PO
v
in
Rey 9 g2 @
L ™ {> T 5]
| \
a1 15 b
] 5> |>
{as]] — &3]
2 @ [
[l —— C
Vo ' N H
1= 2
= : . =
. fe —— I
L S5 s [=
] T a—!ﬁ'
= =
[
219 nef— A =) |
ess i {33] - [z5)
0 e]
o PORT £4 | 4 < . [—@
a> 5 = e TS5/ N =
N L '
ST . TaLso2 v o T ———@I
L—2dwe v x {z5] [l
— [=] = =] [
i PoRTEG) Ja E] " i o
& m : s &
. LS z =
25l 5 T o« — ot
o Vf 48 ! :
poRTEs| 3T — o 49£;-—— o
ol =] e el
. e izl ae |, =)
o o s 3 3
-5y
- B ot tawaw g’ = B> @)
TR TOT o] e
I T
2y A l +zv o
-+ [cr41 25,21 [
C252= 85,65 czgfsl P
o1 A P
3 ‘[:)S Y
ce3*L ®w = " =
22 T-o' DU— S |
eV L S |
b
+5v [
[
e Ismiospa e L
T 3 30-88.60,6T ro. o] . L (2] ~'-|:‘/‘\T:ucg"£c:;l
o .ot + W] X8
\
1 J N |
= =] 2 Gl

781 STATUS STROBE
02 o2 (BovO)

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

6€-1

EXT INTR @/

EXT TR 1/
BPRA

ra °,
SZAL i i A 9
4 2 DI 10RDYIN/
2N Ry p— ¥,
27a1 eam eoving ——I2d

MOTES: UMLESS OTHERWISE SPECIFIED:

1
2
3.

¥

T/

D

=
E
S

o &
O gz

«-—)b
EORIOURNRUbLN=T
5

e

T~
=

SUBL

INT ACK/

TY

TUIS DOCUMEUT REFLECTY ARTWORK °REVAT,

REJSTOR VALUEN ARE IN OHMS 1/a W, +5%.

CAPACITOR VALUES ARE IN NICEDFARADS,25V,+80 -20%.
Ou 31 AUD J2 EVEM PINS ARE GROUMD.

A3 THRU AIILZ1,23 THEU 20 ARE SHOWU FOR CLARITY.
ALTUAL COMPOUEMTS ARE CUSTOMER INSTALLED.

[E= 41,42 t14 MAY BE SUBSTITUTED WITH A TALSI3B.

o3 38!
5708
ADRO Z7aB %ﬁ'? 08
o Us
3
é 77c8 IAZ0A
&
2[S EZDE»
8
Spzke 388
aneE
D@ (E0BD) S7a8
P
Wloz ta2fl—sT Ades s
IR EEAe
£50 oepr>—(EQ ADR S/
—=d4C3 ASZ
—2den BTzl '
) 10
RSy
. B2 ADR &/
o 08 AR 1/
Les Aoy
1>4Eu 8220
g 082 [S—Z3) Aoe 8/
i3 oe3fd ADR S/
o1 F 3 ; ADR A/
L 050 {ZE) ADR B/
ey —RHDA s aso
2 8097 EU_ 8220
1
N
Al A1 o EBZ&@ADE cs
741802 14304 B £ R3] AapR D/
240 B~ Je 45 Fjon 814N Ade E/
1 {0 T W®Bof=—@a) ADR F/
ht——'ﬁaéi} a?i’f‘l '
Ly 31
2091 3
u{% DATA AQ/
i
1 le
o Aa1 Y
274500 74304 8097 27
IlDus" 1 10 10 21
! DATA &7/
MEDC 7
1oeE]
P§% 1owcC /
ADV MEM
/
zgg’s'rz P3x 67
FRP ot ’
ADY. T ’
BUsY/ 08

U</ (9.210 MK

Qs
wmeeee

cc
T3] BOUC/ (2216MAZ)
pi

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

ov-1L

4

-—— =
SeUBBN-B

pe
R
|
2
3
ZoL S
5
©
7
8
aDR 9
= o
5A0 GND!
1 " 5|
2 o 0
5,’ 3 az9 J)
Z)| & BiozA.
]
) o]
)| 7
15) 02| 15)
Id'i 14}
lew_ce
3 13
ADY MEM W, 4 P———m
ZAl |
4 z
k-3 3
5 a3
ES
6
DM 7
i ry-g
BDR C 7|2 > RPS eP4
TZD1 - ADR D 31A! 12K 12K
ADRE Y N4 5 sV
4 v "
L2 0 bfe 16 Le
TZBI MEMR/ 54 Sdez Aal
g 74L300 *dE1 3205
P2:30
28 afsspl
o | ARA
ADRF ZAM RDY 1N/
hrd Xy

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

-l

o 3 ¢5v66

+12V +5V
T T T
" _55?/%«; caez @ox
0, \,62 s . N
0
7I91&71‘
ATR ¢ =
1
2
3
a4
701 2
3
7
S
ADR 'S 3 +5
h ea 1o fz1 PrOM 2 al9 Jo1 PeOM 3
90 _lA? o1 % 7132 o1 l%
5]|% sead2i =113 aes 4200 <112 e 13
3| 2870835 £708 3 gics |3
4 1
il
I
7
Z
oM
i
Z
il i TANY
5
o
oM 7.
LeiBV
’P3
S Sk
FOR. A]
B 7]
c 5
; o d
ZpL 741502
3, 3205 Lo f—
F i EV 0B, 0L, DBRY |
ATR E 2Js8) I 08%
741502 DBy DLy gt !
3 ,,embg.; 25 2
2
OU BOARD 5 ﬁf? .:’1_1 3
141500 400§ o
T7C8 RAM RDY N/ ! eIl > IS _m
101op, 9
2 Dpre 4
4 00z
5741504 1074300 L 1‘_] 5
225 = 3| 826 0031z ®
g A=
781 MEMR/ oo Oiig pa7l
“has L5 cs ortn! =
[}

JUMPER TABLE
2716 | 66-67 [69-70] 74 -75] 77-18

2708 | 65-66 |68 -69[73-74[76-78

T T A3 | A24 | A25 A2 |

2716 |0- TFF |1000-ITFF|800- FFF |1800-IF

2708 |0 -3FF JACO-7FF |600-BFF [c00-FFF|

PROM RDY IN/
7C8

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

r4al"

74300
TZa1 AV TOW/ 2 1314300
TZAL I0R/ 12|Masy TORDY W/ TZCB
es 1/
cses 8
Rbe 2
3
5
o 7
a
ADR 6 ———]
e A4l
41304
1L
s1* o B
v
93516 *'° €A
T
sl |2[
iZar 03C T Z8) T1Y T

3, o33 10
o A— 24
0 Q22 3 RECEWED DNTA
27 a LY —11) DATA SET READY
L Tt Al o o7 1":ﬂ|cm\e TO ¥ND
= LM 1488 W
33 9 80 -2y 1oy =S 7 TTY T« RETURN
CHASSIS GND [T}—0 o—l i
= +12V - —{TE) OATA CABRIER. BETLRM
15
-y ° 741502 2%
+12v 240K © z"‘ T 2 et T N/ 7708
] £
250,\'W Rt A3 as] nj §|5
TTV Ry ax Lazs o 3% =
BECENVE CIK/ TTY Ry RET (2] a8 o8
1
TRANSINTTED DATA] zzs
Ty, CLIX /DATA TERML ROY(TE] ES I" 3 b4
' a
REQ TO SEAD E L,’> 1o i
GMD mg T T 33087 23
67 47,12V J
= =57 o4 dﬂr RD COMTROL
N 27K a 12V = ——{IG) TTY R (ONTROL RET
' Tow/ -
AL @2(TTLY 25 2907 47,2W
1ZAL REXET 2ok
7o ADR @

+SV

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

ev-L

1781 REIET
TZAl IOR/
TZAl 1OW/
701 csz2/
Z7D1 CSi/
o
1
z
3
1/D4 a
5
3
7

PI

-sv (&

[}

33

o
SR oson-8h

+12v
”ZVE +1 E 51,47,-[
59 15V T 20065 TC25.27,29.31
%7 10% | ol K
N r 1
el
-lzv@_r - -tev
+58v
[= TCLB42021 T
o2 ‘é‘%g&i‘au&e‘, G
GUD 15y é. 8. blo. &7 ;

1/B1 STATUS STROBE

[FHENENE

003
R
i3
|

=5
N 5l

AN

~

RORT Elo

ﬁlﬂ
BES
&
N&_
Bl | B P
34

(h

s

i

o>

H-Bks

3

T

E

S5
BIAd

a

EHS

B HHH

741302

r
I3
IS

z

03

B

[0

1344
—q

22 0%

B H W _H_BH

o
®

8 J7 2>
1 I
P
|
O
.]
{33
11 ZJJI
s |
7 2 25{
73
2 AID " 1
=
& {1
= val
{1
1 Ll T
g = 33)
4]
5|
of 1 =]
o
AZI s
B> k=3
(2]
= (1)
Al <)
B I=]
= ey
{0
T 55/ IZ jo}-3

B_H_H_4

T/o Dp (8080)

T ACK/ OR
TIME OUT ACK/
LR

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

intal

APPLICATION
NOTE

AP-28A

January 1979

© |ntel Corporation, 1979.

98005878

Intel® MULTIBUS™
Interfacing

Contents
I. INTRODUCTIONccvvvunnnnn 1-47
II. MULTIBUS™ SYSTEM BUS
DESCRIPTION..........co0vvvvvnnnn 1-47
OVEIVIEW .« oo et iiiiiiieeeeinnnenennns 1-47
MULTIBUS™ Signal Descriptions 1-47
Operating Characteristics 1-51
MULTIBUS™ Slave Interface Circuit
Elementsoovviiiiiiianeennn 1-60
III. MULTIBUS™ SLAVE DESIGN
EXAMPLE.......ccciiiiiiiinennanns 1-62
Functional/Programming
Characteristicsooveuveeneennnn 1-62
Theory of Operation 1-63
IV. SUMMARYciiiiiiininnnnnnnnns 1-66

APPENDIX A — MULTIBUS™ PIN
ASSIGNMENTScoiiiiiiiiiinnnnnns 1-67

APPENDIX B — BUS TIMING
SPECIFICATIONSc.ccoiiiiinnnnnn 1-69

APPENDIX C — BUS DRIVERS,

RECEIVERS, AND TERMINATIONS...... 1-711

APPENDIX D — BUS POWER SUPPLY
SPECIFICATIONScoiivinnen 1-73

APPENDIX E — MECHANICAL
SPECIFICATIONScoiviiiinnennn 1-74

APPENDIX F — MULTIBUS™ SLAVE
DESIGN EXAMPLE SCHEMATIC
8/16-BITVERSIONccooviinen 1-75

APPENDIX G — MULTIBUS™ SLAVE
DESIGN EXAMPLE SCHEMATIC
8-BITVERSIONccciiviinninne, 1-71

I. INTRODUCTION

A significant measure of the power and flexibility
of the Intel OEM Computer Product Line can be
attributed to the design of the Intel MULTIBUS
system bus. The bus structure provides a common
element for communication between a wide
variety of system modules which include: Single
Board Computers, memory, digital, and analog
I/0 expansion boards, and peripheral controllers.

The purpose of this application note is to help you
develop a working knowledge of the Intel MULTI-
BUS specification. This knowledgeis essential for
configuring a system containing multiple mod-
ules. Another purpose is to provide you with the
information necessary to design a bus interface for
a slave module. One of the tools that will beused to
achieve this goal is the complete description of a
MULTIBUS slave design example. Other portions
of this application note provide an in depth
examination of the bus signals, operating charac-
teristics, and bus interface circuits.

This application note was originally written in
1977. Since 1977, the MULTIBUS specification
has been significantly expanded to cover opera-
tion with both 8 and 16-bit system modules and
with an auxiliary power bus. This application
note now contains information on these new
MULTIBUS specification features.

In addition, a detailed MULTIBUS specification
has also been published which provides the user
with further information concerning MULTIBUS
interfacing. The MULTIBUS specification and
other useful documents are listed in the overleaf of
this note under Related Intel Publications.

II. MULTIBUS™ SYSTEM BUS
DESCRIPTION

Overview

The Intel MULTIBUS signal lines can be grouped
in the following categories: 20 address lines, 16
bidirectional data lines, 8 multilevel interrupt
lines, and several bus control, timing and power
supply lines. The address and data lines are
driven by three-state devices, while the interrupt
and some other control lines are open-collector
driven.

Modules that use the MULTIBUS system bus have
a master-slave relationship. A bus master module
can drive the command and address lines: it can
control the bus. A Single Board Computer is an
example of a bus master. A bus slave cannot

1-47

control the bus. Memory and I/0 expansion
boards are examples of bus slaves. The MULTI-
BUS architecture provides for both 8 and 16-bit
bus masters and slaves.

Notice that a system may have a number of bus
masters. Bus arbitration results when more than
one master requests control of the bus at the same
time. A bus clock is usually provided by one of the
bus masters and may be derived independently
from the processor clock. The bus clock provides a
timing reference for resolving bus contention
among multiple requests from bus masters. For
example, a processor and a DMA (direct memory
access) module may both request control of the
bus. This feature allows different speed masters to
share resources on the same bus. Actual transfers
via the bus, however, proceed asynchronously
with respect to the bus clock. Thus, the transfer
speed is dependent on the transmitting and
receiving devices only. The bus design prevents
slow master modules from being handicapped in
their attempts to gain control of the bus, but does
not restrict the speed at which faster modules can
transfer data via the same bus. Once a bus request
is granted, single or multiple read/write transfers
can proceed. The most obvious applications for the
master-slave capabilities of the bus are multi-
processor configurations and high-speed direct-
memory-access (DMA) operations. However, the
master-slave capabilities of the bus are by no
means limited to these two applications.

MULTIBUS™ Signal Descriptions

This section defines the signal lines that comprise
the Intel MULTIBUS system bus. These signals
are contained on either the P1 or P2 connector of
boards compatible with the MULTIBUS specifi-
cation. The P1 signal lines contain the address,
data, bus control, bus exchange, interrupt and
power supply lines. The P2signal lines contain the
optional auxiliary signal lines. Most signals on
the bus are active-low. For example, a low level on
a control signal on the busindicates active, while a
low level on an address or data signal on the bus
represents logic “1” value.

NOTE

In this application note, a signal will be
designated active-low by placing a slash (/)
after the mnemonic for the signal.

Appendix A contains a pin assignment list of the
following signals:

MULTIBUS P1 Signal Lines —

Initialization Signal Line

INIT/

Initialization signal; resets the entire system to
a known internal state. INIT/ may be driven by
one of the bus masters or by an external source
such as a front panel reset switch.

Address and Inhibit Lines

ADRO/ - ADR13/

20 address lines; used to transmit the address of
the memory location or I/0 port to be accessed.
The lines are labeled ADRO/ through ADR9/,
ADRA/ through ADRF/ and ADR10/ through
ADR13/. ADR13/ is the most significant bit.
8-bit masters use 16 address lines (ADRO/ -
ADRF/) for memory addressing and 8 address
lines (ADRO/ - ADR7/) for 1/0 port selection.
16-bit masters use all twenty address lines for
memory addressing and 12 address lines
(ADRO/ - ADRBY/) for 1/0 port selection. Thus,
8-bit masters may address 64K bytes of memory
and 256 1/0 devices while 16-bit masters may
address 1 megabyte of memory and 4096 1/0
devices. (The 8086 CPU actually permits 16
address bits to be used to specify I/0 devices,
the MULTIBUS specification, however, states
that only the low order 12 address bits can be
used to specify I/0 ports.) In a 16-bit system,
the ADRO/ line is used to indicate whether alow
(even) byte or a high (odd) byte of memory or
1/0 space is being accessed in a word oriented
memory or I/0 device.

BHEN/

Byte High Enable; the address control line
which is used to specify that data will be trans-
ferred on the high byte (DAT8/ - DATF/) of the
MULTIBUS data lines. With current iSBC
boards, this signal effectively specifies that a
word (two byte) transfer is to be performed. This
signal is used only in systems which incorporate
sixteen bit memory or I/0 modules.

INH1/

Inhibit RAM signal, prevents RAM memory
devices from responding to the memory address
on the system address bus. INH1/ effectively
allows ROM memory devices to override RAM
devices when ROM and RAM memory are

1-48

assigned the same memory addresses. INH1/
may also be used to allow memory mapped 1/0
devices to override RAM memory.

INH2/

Inhibit ROM signal; prevents ROM memory
devices from responding to the memory address
on the system address bus. INH2/ effectively
allows auxiliary ROM (e.g., a bootstrap pro-
gram) to override ROM devices when ROM and
auxiliary ROM memory are assigned the same
memory addresses. INH2/ may also be used to
allow memory mapped 1/0 devices to override
ROM memory.

Data Lines

DATO/ - DATF/

16 bidirectional data lines; used to transmit or
receive information to or from a memory loca-
tion or I/0 port. DATF/ being the most signifi-
cant bit. In 8-bit systems, only lines DATO/ -
DAT7/ are used (DAT7/ being the most signi-
ficant bit). In 16-bit systems, either 8 or 16 lines
may be used for data transmission.

Bus Priority Resolution Lines

BCLK/

Bus clock; the negative edge (high to low) of
BCLK/ is used to synchronize bus priority re-
solution circuits. BCLK/ is asynchronous to the
CPU clock. It has a 100 ns minimum period and
a 35% to 65% duty cycle. BCLK/ may be slowed,
stopped, or single stepped for debugging.

CCLK/

Constant clock; a bus signal which provides a
clock signal of constant frequency for unspeci-
fied general use by modules on the system bus.
CCLK/ has a minimum period of 100 ns and a
35% to 65% duty cycle.

BPRN/

Bus priority in signal; indicates to a particular
master module that no higher priority module
is requesting use of the system bus. BPRN/ is
synchronized with BCLK/. This signal is not
bused on the backplane. -

BPRO/

Bus priority out signal; used with serial (daisy
chain) bus priority resolution schemes. BPRO/
is passed to the BPRN/ input of the master
module with the next lower bus priority. BPRO/
is synchronized with BCLK/. This signal is not
bused on the backplane.

BUSY/

Bus busy signal; an open collector line driven
by the bus master currently in control toindicate
that the bus is currently in use. BUSY/ prevents
all other master modules from gaining control
of the bus. BUSY/ is synchronized with BCLK/.

BREQ/

Bus request signal; used with a parallel bus
priority network to indicate that a particular
master module requires use of the bus for one
or more data transfers. BREQ/ is synchronized
with BCLK/. This signal is not bused on the
backplane.

CBRQ/

Common bus request, an open-collector line
which is driven by all potential bus masters
and is used to inform the current bus master
that another master wishes to use the bus. If
CBRQ is high, it indicates to the bus master
that no other master is requesting the bus, and
therefore, the present bus master can retain the
bus. This saves the bus exchange overhead for
the current master.

Information Transfer Protocol Lines

A bus master provides separate read/write
command signals for memory and 1/0 devices:
MRDC/, MWTC/, IORC/ and IOWC/, as ex-
plained below. When a read/write command is
active, the address signals must be stabilized at all
slaves on the bus. For this reason, the protocol
requires that a bus master must issue address
signals (and data signals for a write operation) at
least 50 ns ahead of issuing aread/write command
to the bus, initiating the data transfer. The bus
master must keep address signals unchanged until
at least 50 ns after the read/write command is
turned off, terminating the data transfer.

Abusslave must provide an acknowledge signal to

1-49

the bus master in response to a read or write
command signal.

MRDC/

Memory read command; indicates that the
address of a memory location has been placed
on the system address lines and specifies that
the contents (8 or 16 bits) of the addressed
location are to be read and placed on the system
data bus. MRDC/ is asynchronous with respect
to BCLK/.

MWTC/

Memory write command; indicates that the
address of a memory location has been placed
on the system address lines and that data (8 or
16 bits) has been placed on the system data bus.
MWTC/ specifies that the data is to be written
into the addressed memory location. MWTC/ is
asynchronous with respect to BCLK/.

IORC/

1/0 read command; indicates that the address
of an input port has been placed on the system
address bus and that the data (8 or 16 bits) at
that input port is to be read and placed on the
system data bus. IORC/ is asynchronous with
respect to BCLK/.

IOWC/

1/0 write command,; indicates that the address
of an output port has been placed on the system
address bus and that the contents of the system
data bus (8 or 16 bits) are to be output to the
address port. IOWC/ is asynchronous with
respect to BCLK/.

XACK/

Transfer acknowledge signal; the required
response of a slave board which indicates that
the specified read/write operation has been
completed. That is, data has been placed on, or
accepted from, the system data bus lines.
XACK/ is asynchronous with respect to BCLK/.

Asynchronous Interrupt Lines

INTO/ - INT7/

8 Multi-level, parallel interrupt request lines;

used with a parallel interrupt resolution net-
work. INTO/ has the highest priority, while
INT7/ has lowest priority. Interrupt lines
should be driven with open collector drivers.

INTA/

Interrupt acknowledge; an interrupt acknowl-
edge line (INTA/), driven by the bus master,
requests the transfer of interrupt information
onto the bus from slave priority interrupt con-
trollers (8259s or 8259As). The specific informa-
tion timed onto the bus depends upon the
implementation of the interrupt scheme. In
general, the leading edge of INTA/ indicates
that the address bus is active while the trailing
edge indicates that data is present on the data
lines. '

MULTIBUS P2 Signal Lines — The signals
contained on the MULTIBUS P2 auxiliary con-
nector are used primarily by optional power
back-up circuitry for memory protection. P2
signals are not bused on the backplane, and
therefore, require a separate connector for each
board using the P2 signals. Present iSBC boards
have a slot in the card edge and should be used
with a keyed P2 edge connector. Use of the P2
signal lines is optional.

ACLO

AC Low; this signal generated by the power
supply goes high when the AC line voltage
drops below a certain voltage (e.g., 103v AC in
115v AC line voltage systems) indicating D.C.
power will fail in 3 msec. ACLO goes low when
all D.C. voltages return to approximately 95%
of the regulated value. This line must be pulled
up by the optional standby power source, if one
is used.

PFIN/

Power fail interrupt; this signal interrupts the
processor when a power failure occurs, it is
driven by external power fail circuitry. ’

PFSN/

Power fail sense; this line is the output of a
latch which indicates that a power failure has
occurred. It is reset by PFSR/. The power fail

1-50

sense latch is part of external power fail cir-
cuitry and must be powered by the standby
power source.

PFSR/

Power fail sense reset; this line is used to reset
the power fail sense latch (PFSN/).

MPRO/

Memory protect; prevents memory operation
during period of uncertain DC power, by in-
hibiting memory requests. MPRO/ is driven
by external power fail circuitry.

ALE

Address latch enable; generated by the CPU
(8085 or 8086) to provide an auxiliary address
latch.

HALT/
Halt; indicates that the master CPU is halted.

AUX RESET/

Auxiliary Reset; this externally generated sig-
nal initiates a power-up sequence.

WAIT/

Bus master wait state; this signal indicates
that the processor is in a wait state.

Reserved — Several P1 and P2 connector bus
pins are unused. However, they should be regard-
ed as reserved for dedicated use in future Intel
products.

Power Supplies — The power supply bus pins
are detailed in Appendix A which contains the
pin assignment of signals on the MULTIBUS
backplane.

It is the designer’s responsibility to provide
adequate bulk decoupling on the board to avoid
current surges on the power supply lines. Itis also
recommended that you provide high frequency

decoupling for the logic on your board. Values of
22uF for +6v and +12v pins and 10uF for -5v and
-12v pins are typical on iSBC boards.

Operating Characteristics

Beyond the definition of the MULTIBUS signals
themselves, it is important to examine the
operating characteristics of the bus. The AC
requirements outline the timing of the bus signals
and in particular, define the relationships between
the various bus signals. Onthe other hand, the DC
requirements specify the bus driver character-
istics, maximum bus loading per board, and the
pull-up/down resistors.

The AC requirements are best presented by a
discussion of the relevant timing diagrams.
Appendix B contains a list of the MULTIBUS
timing specifications. The following sections will
discuss data transfers, inhibit operations, inter-
rupt operations, MULTIBUS multi-master opera-
tion and power fail considerations.

Data Transfers — Data transfers on the MULTI-
BUS system bus occur with a maximum band-
width of 5 MHz for single or multiple read/write
transfers. Due to bus arbitration and memory
access time, a typical maximum transfer rate is
often on the order of 2 MHz.

Read Data

Figure 1 shows the read operation AC timing
diagram. The address must be stable (tAg) for a
minimum of 50 ns before command (IORC/ or
MRDC/). This time is typically used by the bus
interface to decode the address and thus provide
the required device selects. The device selects
establish the data paths on the user system in
anticipation of the strobe signal (command)
which will follow. The minimum command pulse
width is 100 ns. The address must remain stable
for at least 50 ns following the command (t A).
Valid data should not be driven onto the bus prior
to command, and must not be removed until the
command is cleared. The XACK/ signal, which is
a response indicating the specified read/write
operation has been completed, must coincide or
follow both the read access and valid data (tjyxp,)-
XACK/ must be held until the command is cleared

(tXAH)

1-61

I0RC/

or
MRDC/
MASTER
S50NS MIN—»| |1, tAH—>| |=-50NS MIN T
l As an>| | SLAVE
ADDRESS X STABLE X
LINES. ADDRESS
{XACK t
| -— <~ ' XAH»|
I ONS MIN | GN?NS
AX
XACK/ PASSIVE
toxt stave
oNsmm-’l | IDHR |=-65NS MAX MASER
DAEA X STABLE DATA x
Figure 1. Read AC Timing
Write Data

The write operation AC timing diagram is shown
in Figure 2. During a write data transfer, valid
data must be presented simultaneously with a
stable address. Thus, the write data setup time
(tpg) has the same requirement as the address
setup time (tAg). The requirement for stable data
both before and after command (IOWC/ or
MWTC/) enables the bus interface circuitry to
latch data on either the leading or trailing edge of

command.
- tcmp >
100NS MIN

50NS M|N->| tAs ,<— —»’ tAH |<—50Ns MIN

u STABLE ADDRESS X

5ONS MIN-»] tDS |- —>JoHw|<-s0ns MiN

DATA
LINES

XACK/

lowc/
of
MWTC/

ADDRESS

MASTER
LINES T0

SLAVE

STABLE
WRITE DATA

< 'XACK < AH->
ONS MIN é’éwg
s PASSIVE

Figure 2. Write AC Timing

Data Byte Swapping in 16-bit Systems

A 16-bit master may transfer data on the MULTI-
BUS data lines using 8-bit or 16-bit paths
depending on whether a byte or word (2 byte)
operation has been specified. (A word transfer
specified with an odd I/0 or memory address will
actually be executed as two single byte transfers.)
An 8-bit master may only perform byte transfers
on the MULTIBUS data lines DATO0/ - DAT7/.

In order to maintain compatibility with older
8-bit masters and slaves, a byte swapping buffer
is included in all new 16-bit masters and 16-bit
slaves. In the iSBC product line, all byte transfers
will take place on the low 8 data lines DATO/ -
DAT7/. Figure 3 contains a example of 8/16-bit

data driver logic for 16-bit master and slave
systems. In the 8/16-bit system, there are three
sets of buffers; the lower byte buffer which
accesses DATO0/ - DAT7/, the upper byte buffer
which accesses DAT8/ - DATF/, and the swap
byte buffer which accesses the MULTIBUS data
lines DAT0/ - DAT7/ and transfers the data
to/from the on-board data bus lines D8 - DF.

Figure 4 summarizes the 8 and 16-bit data paths
used for three types of MULTIBUS transfers. Two
signals control the data transfers.

Byte High Enable (BHEN/) active indicates that
the bus is operating in sixteen bit mode, and
Address Bit 0 (ADRO0/) defines an even or odd byte
transfer address.

On the first type of transfer, BHEN/ is inactive,
and ADRQO/ is inactive indicating the transfer of
an even eight bit byte. The transfer takes place
across data lines DATO/ - DAT7/.

On the second type of transfer, BHEN/ is inactive,
and ADRO/ is active indicating the transfer of a
high (odd) byte. On this type of transfer, the odd
(high) byte is transferred through the Swap Byte
Buffer to DATO0/ - DAT7/. This makes eight bit
and sixteen bit systems compatible.

BUFFERED
BHEN/
ADRO

AEN/

SWAP
BYTE
BUFFER

USER BUS LOWER MULTIBUS
BY"I;E
BUFFER
8287 DATO/-DAT?7/
DmD7‘--------’ A B
+
OE T
DIRECTION

&

A4

8287

I DATO0/
DATF/

OE . T

08-DF 4

74500 SWAP

BYTE/

74832

74504 74532

L

8287

4
¥ DAT8/-DATF/

OE

BUFFER

Figure 3. 8/16-Bit Data Drivers

16-BIT DEVICE MULTIBUS BHEN/ ADRO/ MULTIBUS DEVICE
. TRANSFER BYTE
DATA PATH TRANSFERRED
DATO/ - DAT7/
H H 8-BIT, EVEN
DATO/ - DAT7/
DATS8/ - DATF/
DATO/ - DAT7/
|
| H L 8-BIT, oDD
: DATO/ - DAT7/
DATO/ - DAT7/
L H 16-BIT, EVEN
DATO/ - DATF/ AND
obD
DATS8/ - DATF/

Figure 4. 8/16-Bit Device Transfer Operation

1-62

The third type of transfer is a 16 bit (word)
transfer. This is indicated by BHEN/ being
active, and ADRO/ being inactive. On this type of
transfer, the low (even) byte is transferred on
DATO/ - DAT7/ and the high (odd) byte is
transferred on DAT8/ - DATF/.

Note that the condition when both BHEN/ and
ADRO/ are active is not used with present iSBC
boards. This condition could be used to transfer a
high odd byte of data on DAT8/ - DATF/, thus
eliminating the need for the swap byte buffer.
However, this is not a recommended transfer type,
because it eliminates the capability of communi-
cating with 8-bit modules.

Inhibit Operations — Bus inhibit operations are
required by certain bootstrap and memory mapped
I/0 configurations. The purpose of the inhibit
operation is to allow a combination of RAM, ROM,
or memory mapped I/0 to occupy the same
memory address space. In the case of a bootstrap,
it may be desirable to have both ROM and RAM
memory occupy the same address space, selecting
ROM instead of RAM for low order memory only
when the system is reset. A system designed to use

memory mapped 170, which has actual memory
occupying the memory mapped I/0 address
space, may need to inhibit RAM or ROM memory
to perform its functions.

There are two essential requirements for a success-
ful inhibit operation. The first is that the inhibit
signal must be asserted as soon as possible, within
a maximum of 100 ns (tC]), after stable address.
The second requirement for a successful inhibit
operation is that the acknowledge must be delayed
(tXACKB) to allow the inhibited slave to ter-
minate any irreversible timing operations in-
itiated by detection of a valid command prior to its
inhibit.

This situation may arise because a command can
be asserted within 50 ns after stable address (tpoS)
and yet inhibit is not required until 100 ns (t{p)
after stable address. The acknowledge delay time
(tXACKB) is a function of the cycle time of the
inhibited slave memory. Inhibiting the iSBC 016
RAM board, for example, requires a minimum of
1.5 usec. Less time is typically needed to inhibit
other memory modules. For example, theiSBC 104
board requires 475 ns.

Figure 5 depicts a situation in which both RAM

ADDRESS/

=

DATA/

|

[

—

COMMAND/ / |

DRIVER
ENABLE/

/

L

| RAM XACK IF NOT INHIBITED

SLAVE A
(RAM) XACK/ K

'XACKA

D T\"TI \/j

1.\

DRIVER
ENABLE/

'xacks ‘\—v—*—>|

XACK/
SLAVE B f |
(PROM) 1D |

—
j |
-

INH1/ \

LOCAL
SELECT/

Figure 5. Inhibit Timing

and PROM memory have the same memory
addresses. In this case, PROM inhibits RAM,
producing the effect of PROM overriding RAM.
After address is stable, local selects are generated
‘for both the PROM and the RAM. The PROM local
select produces the INH1/ signal which then
removes the RAM local select and its driver enable.
Because the slave RAM has been inhibited after it
had already begun its cycle, the PROM XACK/
must be delayed (tXACKB) until after the latest
possible acknowledgement from the RAM

(tXACKA)-

Interrupt Operations — The MULTIBUS inter-
rupt lines INTO0/ - INT7/ are used by a MULTI-
BUS master to receive interrupts from bus slaves,
other bus masters or external logic such as power
fail logic. A bus master may also contain internal
interrupt sources which do not require the bus
interrupt lines to interrupt the master. There are
two interrupt implementation schemes used by
bus interrupts, Non Bus Vectored Interrupts and
Bus Vectored Interrupts. Non Bus Vectored
Interrupts do not convey interrupt vector address
information on the bus. Bus Vectored Interrupts
are interrupts from slave Priority Interrupt Con-
trollers (PICs) which do convey interrupt vector

address information on the bus.

Non Bus Vectored Interrupts

Non Bus Vectored Interrupts are those interrupts
whose interrupt vector address is generated by the
bus master and do not require the MULTIBUS
address lines for transfer of the interrupt vector
address. The interrupt vector address is generated
by the interrupt controller on the master and
transferred to the processor over thelocal bus. The
source of the interrupt can be on the master module
or on other bus modules, in which case the bus
modules use the MULTIBUS interrupt request
lines (INTO0/ - INT7/) to generate their interrupt
requests to the bus master. When an interrupt
request lineis activated, the bus master performs it
own interrupt operation and processes the inter-
rupt. Figure 6 shows an example of Non Bus
Vectored Interrupt implementation.

Bus Vectored Interrupts

Bus Vectored Interrupts (Figure 7) are those inter-
rupts which transfer the interrupt vector address
along the MULTIBUS address lines from the
slave to the bus master using the INTA/ command
signal for synchronization.

BUS MASTER

MASTER CPU

INTX/ I

REMOVED BY BUS
MASTER COMMAND

TO SLAVE
\I

DATA BUS SLAVE

INTA/ iNTR/

BUS SLAVE

BUS
L INTERRUPT
A STROBE
= >

PROGRAMMABLE INTERRUPT
CONTROLLER

INTERRUPT

INTERRUPT

INTERRUPT
STROBE

7 6 5 a 3 2 1 0

I0RC/
OR
1owC/

FROM
MASTER

10RC/

FROM OR
MASTER 10WC/

INTO/

INT1/

INT2/

MULTIBUS
INTERRUPT
LINES

INT3/
.

INT7/

Figure 6. Non Bus Vectored Interrupt Implementation

1-564

BUS MASTER

MASTER CPU

DATA INTR/

BUS
4
INT

PROGRAMMABLE INTERRUPT
CONTROLLER

DAT0/-7/ 0:7
-

INTA/

INTERRUPT ACKNOWLEDGE (INTA/)

BUS SLAVE

INTERRUPT
STROBE

INTERRUPT
(IORRC/

FROM 0
MASTER 1owc/)

7 6 5 4 3 2 1.0

PROGRAMMABLE INTERRUPT
CONTROLLER

INT DAT0/-7/
>

INTERRUPT REQUEST (INTx/)

INTERRUPT CODE (ADR8/ - ADRA/)

INTERRUPT VECTOR ADDRESS (DATA BUS)

INTR/

L

MULTIBUS TIMING

INTA/

[S R

ADR8/A X

INTR X ADDRESS

—

DATO0/-7

X RESTART # N

XACK/

*
BUS LOCK/

L

/

* NON MULTIBUS SIGNAL

Figure 7. Bus Vectored Interrupt Logic (With 2 INTA/ Timing Diagram)

When an interrupt request from the MULTIBUS
interrupt lines INT0/ - INT7/ occurs, the interrupt
control logic on the bus master interrupts its
processor. The processor on the bus master
generates an INTA/ command which freezes the
state of the interrupt logic on the MULTIBUS
slaves for priority resolution. The bus master also
locks (retains the bus between bus cycles) the
MULTIBUS control lines to guarantee itself
consecutive bus cycles. After the first INTA/
command, the bus master’s interrupt control logic
puts an interrupt code on to the MULTIBUS
address lines ADR8/ - ADRA/. Theinterrupt code
is the address of the highest priority active inter-
rupt request line. At this pointintheBus Vectored

1-556

Interrupt procedure, two different sequences could
take place. The difference occurs, because the
MULTIBUS specification can support masters
which generate one additional INTA/ (8086
masters) or two additional INTA/s (8080A and
8085 masters).

Ifthe bus master generates one additional INTA/,
this second INTA/ causes the bus slave interrupt
control logic to transmit an interrupt vector 8-bit
pointer on the MULTIBUS data lines. The vector
pointer is used by the bus master to determine the
memory address of the interrupt service routine.

If the bus master generates two additional
INTA/s, these two INTA/ commands allow the

bus slave to put a two byte interrupt vector address
on to the MULTIBUS data lines (one byte for each
INTA/). The interrupt vector address is used by
the bus master to service the interrupt.

The MULTIBUS specification provides for only
one type of Bus Vectored Interrupt operation in a
given system. Slave boards which have an 8259
interrupt controller are only capable of 3 INTA/
operation (2 additional INTA/s after the first
INTA/). Slave boards with the 8259A interrupt
controller are capable of either 2 INTA/ or 3
INTA/ operation. All slave boards in a given
system must operatein the same way (2 INTA/s or
3 INTA/s) if Bus Vectored Interrupts are to be
used. However, the MULTIBUS specification
does provide for Bus Vectored Interrupts and Non
Bus Vectored Interrupts in the same system.

MULTIBUS Multi-Master Operation — The
MULTIBUS system bus can accommodate several
bus masters on the same system, each one taking
control of the bus as it needs to affect data trans-
fers. The bus masters request bus control through
a bus exchange sequence.

Two bus exchange priority resolution techniques
are discussed, a serial technique and a parallel
technique. Figures 8 and 9 illustrate these two
techniques. The bus exchange operation dis-
cussed later is the same for both techniques.

Serial Priority Technique

Serial priority resolution is accomplished with a
daisy chain technique (see Figure 8). The priority
input (BPRN/) of the highest priority master is
tied to ground. The priority output (BPRO/) of the

highest priority master is then connected to the
priority input (BPRN/) of the next lower priority
master, and so on. Any master generating a bus
request will set its BPRO/ signal high to the next
lower priority master. Any master seeing a high
signal on its BPRN/ line will sets its BPRO/ line
high, thus passing down priority information to
lower priority masters. In this implementation,
the bus request line (BREQ/) is not used outside of
the individual masters. A limited number of
masters can be accommodated by this technique,
due to gate delays through the daisy chain. Using
the current Intel MULTIBUS controller chip on
the master boards up to 3 masters may be accom-
modated if a BCLK/ period of 100 ns is used. If
more bus masters arerequired, either BCLK/ must
be slowed or a parallel priority technique used.

Parallel Priority Technique

In the parallel priority technique, the priority is
resolved in a priority resolution circuit in which
the highest priority BREQ/ input is encoded with
a priority encoder chip (74148). This coded valueis
then decoded with a priority decoder chip (74S138)
to activate the appropriate BPRN/ line. The
BPRO/ lines are not used in the parallel priority
scheme. However, since the MULTIBUS back-
plane contains a trace from the BPRN/ signal of
one card slot to the BPRO/ signal of the adjacent
lower card slot, the BPRO/ must be disconnected
from the bus on the board or the backplane trace
must be cut. A practical limit of sixteen masters
can be accommodated using the parallel priority
technique due to physical bus length limitations.
Figure 9 contains the schematic for a typical
parallel resolution network. Note that the parallel
priority resolution network must be externally
supplied.

HIGHEST
PRIORITY
MASTER

LOWEST
PRIORITY
MASTER

BPRN/

u

BPRO/

BPRN/

BPRO/

BPRN/

[

BPRO/ o

Figure 8. Serial Priority Technique

1-56

NO.1
PRIORITY
(HIGHEST)

BPRN/

BREQ/ Jo——

NO. 2 NO.7 NO.8
PRIORITY PRIORITY PRIORITY
(LOWEST)
BPAN/ BPRN/ BPRN/
LA RN]
BREQ/ D_“ BREQ/ O—— BREQ/ JO—
BUS
PRIORITY
RESOLVER
—of 7 7
—O 6 6
P P
—s RE RY sp—
1 1
OTHER [—o 4 S C a D_l OTHER
MASTER 20 00 MASTER
INPUTS l—o s o 1o s o—’ouwuvs
—oz Ta TR o2p—
—d 1) "E—
o 74148 745138 ¢ fo-

Figure 9. Parallel Priority Technique

MULTIBUS Exchange Operation — A timing
diagram for the MULTIBUS exchange operation
is shown in Figure 10. This implementation
example uses a parallel resolution scheme, how-
ever, the timing would be basically the same for
the serial resolution scheme.

In this example, master A has been assigned a
lower priority than master B. The bus exchange
occurs because master B generates a bus request
during a time when master A has control of the
bus.

The exchange process begins when master B
requires the bus to access some resource such as an
1/0 or memory module while master A controls the
bus. This internal request is synchronized with
the trailing edge (high to low) of BCLK/ to
generate a bus request (BREQ/). The bus priority
resolution circuit changes the BPRN/ signal from
active (low) to inactive (high) for master A and
from inactive to active for master B. Master A
must first complete the current bus command if
one is in operation. After master A completes the
command, it sets BUSY/ inactive on the next
trailing edge of BCLK/. This allows the actual bus
exchange to occur, because master A has relin-
quished control of the bus, and master B has been
granted its BPRN/. During this time, the drivers

1-57

for master A are disabled. Master B must take
control of the bus with the next trailing edge of
BCLK/ to complete the bus exchange. Master B
takes control by activating BUSY/ and enabling
its drivers.

It is possible for master A to retain control of the
bus and prevent master B from getting control.
Master A activates the Bus Override (or Bus Lock)
signal which keeps BUSY/ active allowing con-
trol of the bus to stay with master A. This
guarantees a master consecutive bus cycles for
software or hardware functions which require
exclusive, continuous access to the bus.

Note that in systems with only a single masteritis
necessary to ground the BPRN/ pin of the master,
if slave boards are to be accessed. In single board
systems which use a CPU board capable of Bus
Vectored Interrupt operation, the BPRN/ pin must
also be grounded.

In a single master system bus transfer efficiency
may be gained if the BUS OVERRIDE signal is
kept active continuously. This permits the master
to maintain control of the bus at all times, there-
fore saving the overhead of the master reacquiring
the bus each time it is needed.

The CBRQ/ line may be used by a master in
control of the bus to determine if another master

MASTER A

BCLK/

TRANSFER
REQUEST/

BREQ/

’l 1BCY |-

—>I tgw |-

(Low)

|

(LOW)

|

N

NS
MASTER A BUS
ONBUS EXCHANGE

MASTER B
ON BUS

HIGH IMPEDENCE
STATE

/ o1
BPRN/ /'I
PRIORITY l
"
TRANSFER
HERE REQUEST/ \ %3
MASTERB BREQ/ &Ig
8PRN/ (> I
*NOTE: BUS PRIORITY MUST BE RESOLVED
WITHIN ONE BCLK/ PERIOD.
BUSY/
=
ADDRESS/ ACTIVE STATE \
MASTERA { COMMAND/ AcTiVE
DRIVER
EXCHANGE A
P ENABLE/
SHOWN
HERE

HIGH IMPEDENCE

|<—‘As—>|

/

e,
. \ \
! e |
l

ADDRESS/

HIGH IMPEDENCE
MASTER B

{ AcTIvE |

L e

COMMAND/

DRIVER
ENABLE/

1

Figure 10. Bus Control Exchange Operation

requires the bus. If a master currently in control of
the bus sees the CBRQ/ line inactive, it will
maintain control of the bus between adjacent bus
accesses. Therefore, when a bus accessis required,
the master saves the overhead of reacquiring the
bus. If a current bus master sees the CBRQ/ line
active, it will then relinquish control of the bus
after the current bus access and will contend for
the bus with the other master(s) requiring the bus.
The relative priorities of the masters will deter-
mine which master receives the bus.

1-58

Note that except for the BUSOVERRIDE state, no
single master may keep exclusive control of the
bus. This is true because it is impossible for the
CPU on a master to require continuous access to
the bus. Other lower priority masters will always
be able to gain access to the bus between accesses
of a higher priority master.

Power Fail Considerations — The MULTIBUS
P2 connector signals provide a means of handling
power failures. The circuits required for power

3ms*l

-
AC LINE

115 VAC |

ACLO

|)200 ns MAX

4.75vDC

+5V Vee

PFIN/

0-200 ns

PFSN/

MPRO/

INIT/

POWER DOWN

AN

[——smsmin —>|

POWER UP

Figure 11. Power Fail Timing Sequence

failure detection and handling are optional and
must be supplied by the user. Figure 11 shows
the timing of a power fail sequence.

The power supply monitors the AC power level.
When power drops below an acceptable value, the
power supply raises ACLO which tells the power
faillogic that a minimum of three milliseconds will
elapse before DC power will fall below regulated
voltage levels. The power fail logic sets a sense
latch (PFSN/) and generates an interrupt (PFIN/)
to the processor so the processor can store its
environment. After a 2.5 millisecond timeout, the
memory protect signal (MPROY/) is asserted by the
power fail logic preventing any memory activity.
As power falls, the memory goes on standby
power. Note that the power fail logic must be
powered from the standby source.

As the AC line revives, the logic voltage level is
monitored by the power supply. After power has
been at its operating level for one millisecond
minimum, the power supply sets the signal ACLO
low, beginning the restart sequence. First, the
memory protect line (MPRO/) then the initialize
line (INIT/) become inactive. The bus master now
starts running. The bus master checks the power
fail latch (PFSN/) and, if it finds it set, branches to

1-69

a power up routine which resets thelatch (PFSR/),
restores the environment, and resumes execution.

Note that INIT/ is activated only after DC power
has risen to the regulated voltage levels and must
stay low for five milliseconds minimum before the
system is allowed to restart. Alternatively, INIT/
may be held low through an open collector device
by MPRO/.

How the power failure equipment is configured is
left to the system designer. The backup power
source may be batteries located on the memory
boards or more elaborate facilities located off-
board. The location of the power fail logic
determines which MULTIBUS power fail lines are
used. Pins on the P2 connector have been specified
for the power failure functions for use as needed.

To further clarify the location and use of the power
fail circuitry, an example of a typical power fail
system block diagram is shown in Figure 12. A
single board computer and a slave memory board
are contained in the system. It is desired to power
the memory circuit elements of the memory board
from auxiliary power. The single board computer
will remain on the main power supply. To ac-
complish this, user supplied power fail logic and

SINGLE SLAVE
BOARD MEMORY
COMPUTER BOARD
o
g AN
ool [32|z 2q 34l [l
a w
>z| | & 29 a2 |G (&
<:: as af a ol &5 =
o
£ g g
| Ol 2
own 5015 %)
g 4] [P0 g 28 2
= frd Q.10 b
w &3 sl&ls &3 a
*
FRONT power |* [auxiLiary |*

POWER
SUPPLY

PANEL
SWITCH

FAIL
LOGIC

POWER
SUPPLY

* USER SUPPLIED

Figure 12. Typical Power Fail System Block Diagram

an auxiliary power supply have been included in
the system.

The single board computer is powered from the P1
power lines and accesses the P2 signal lines
PFIN/, PFSN/ and PFSR/ (only the P2 signal
lines used by a particular functional block are
shown on the block diagram). The PFSR/ line is
driven from two sources: a front panel switch and
the single board computer. The front panel switch
is used during normal power-up to reset the power
fail sense latch. The single board computer uses
the PFSR/ line toreset thelatch during a power-up
sequence after a power failure. Current single
board computers must access the PFSN/ and
PFSR/ signals either directly with dedicated
circuitry and a P2 pin connection or through the
parallel I/0 lines with a cable connection from the
parallel I/0 connector to the P2 connector.

The slave memory board uses both the P1 and P2
power lines, the P2 power lines are used (at all
times) to power the memory circuit elements and
other support circuits, the P1 power lines power all
other circuitry. In addition, the MPRO/ line is
input and used to sense when memory contents
should be protected.

The power fail logic contains the power fail sense
latch, and uses the PFSR/ and ACLO lines for
inputs and the PFIN/ PFSN/, and MPRO/ lines
for outputs. The power fail logic must be powered
by the P2 power lines.

1-60

DC Requirements — The drive and load charac-
teristics of the bus signals are listed in Appendix
C. The physical locations of the drivers and loads,
as well as the terminating resistor value for each
bus line, are also specified. Appendix D contains
the MULTIBUS power specifications.

MULTIBUS™ Slave Interface
Circuit Elements

There are three basic elements of a slave bus
interface: address decoders, bus drivers, and
control signal logic. This section discusses each of
these elements in general terms. A description of a
detailed implementation of a slave interface is
presented in a later section of this application note.

Address Decoding — This logic decodes the
appropriate MULTIBUS address bits into RAM
requests, ROM requests, or I/0 selects. Care must
be taken in the design of the address decode logic
to ensure flexibility in the selection of base address
assignments. Without this flexibility, restrictions
may be placed upon various system configura-
tions. Ideally, switches and jumper connections
should be associated with the decode logic to
permit field modification of base address assign-
ments.

The initial step in designing the address decode
portion of a MULTIBUS interface is to determine
the required number of unique address locations.
This decision is influenced by the fact that
address decoding is usually done in two stages.
The first stage decodes the base address, pro-
ducing an enable for the second stage which
generates the actual device selects for the user
logic. A convenient implementation of this two
stage decoding scheme utilizes a pair of decoders
driven by the high order bits of the address for the
first stage and a second decoder for the low order
bits of the address bus. This technique forces the
number of unique address locations to be a power
of two, based at the address decoded by the first
stage. Consider the scheme illustrated in Figure
13.

As shown in Figure 13, the address bits A4- AB are
used to produce switch selected outputs of the first
stage of decoding. The 1 out of 8 binary decoders

have been used. The top decoder decodes address
lines A4 - A7, and the bottom decoder decodes
address lines Ag-AR. Ifonly addresslines Ag- A7
are being used for device selection, asin the case of
1/0 port selection in 8-bit systems, the bottom
decoder may be disabled by setting switch S2 to the
ground position. Address lines A7 and Ag drive
enable inputs E2 or E3 of the decoders. The
address lines Ag - A3 enter the second stage
address decoder to produce 8 user device selects.
The second stage decoder must first be enabled by
an address that corresponds to the switch-selected
base address.

Address decoding must be completed before the
arrival of a command. Since the command may
become active within 50 ns after stable address,
the decode logic should be kept simple with a
minimal number of layers of logic. Furthermore,
the timing is extremely critical in systems which
make use of the inhibit lines.

A linear or unary select scheme in which no binary
encoding of device address (e.g., address bit A
selects device 0, address bit A1 selects device 1,
etc.) is performed is not recommended because the
scheme offers no protection in case multiple

AQ Ag DSo
Aq Aq DSy
A2 A DSy
A3 E2/E3 DSg
8205 824

DECODER 5

- DS

£ DS7

SECOND STAGE USER

DEVICE SELECTS

Agq Ag — o
As Al o SWITCH
Ag Ap — &
A (——o
7 E2E3 [0
——o0
8205 [—o
DECODER
=
74532
Ag Ag o
Ag A9 —2
AA A —3
Ag E2/E3 _O__o/éWITCH
—] s2
8205
DECODER |—o°
= =

= FIRST STAGE BASE
ADDRESS DECODER

Figure 13. Two Stage Decoding Scheme

devices are simultaneously selected, and because
the addressing within such a system is restricted
by the extent of the address space occupied by such
a scheme.

Data Bus Drivers — For user designed logic
which simply receives data from the MULTIBUS
data lines, this portion of the bus interface logic
may only consist of buffers. Buffers are required
to ensure that maximum allowable bus loading is
not exceeded by the user logic.

In systems where the user designed logic must
place data onto the MULTIBUS data lines, three-
state drivers are required. These drivers should be
enabled only when a memory read command
(MRDC/) or an I/0 read command (IORC/) is
present and the module has been addressed.

When both the read and write functions are re-
quired, parallel bidirectional bus drivers (e.g., Intel
8226, 8287, etc.) are used. A note of caution must be
included for the designer who uses this type of
device. A problem may arise if data hold time
requirements must be satisfied for user logic
following write operations. When bus commands
are used to directly produce both the chip select for
the bidirectional bus driver and a strobe to a latch
in the user logic, removal of that signal may not
provide the user’s latch with adequate data hold
time. Depending on the specifics of the user logic,
this problem may be solved by permanently
enabling the data buffer’s receiver circuits and
controlling only the direction of the buffers.

Control Signal Logic — The control signal logic
consists of the circuits that forward the I/0 and
memory read/write commands to their respective
destinations, provide the bus with a transfer
acknowledge response, and drive the system
interrupt lines.

Bus Command Lines

The MULTIBUS information transfer protocol
lines (MRDC/, MWTC/, IORD/. and IOWC/)
should be buffered by devices with very high speed
switching. Because the bus DC requirements
specify that each board may load these lines with
2.0 mA, Schottky devices are recommended. LS
devices are not recommended due to their poor
noise immunity. The commands should be gated

with a signal indicating the base address has been
decoded to generate read and write strobes for the
user logic.

Transfer Acknowledge Generation

The user interface transfer acknowledge genera-
tion logic. provides a transfer acknowledge re-
sponse, XACK/, to notify the bus master that write
data provided by the bus master has been accepted
or that read data it has requested is available on
the MULTIBUS data lines. XACK/ allows the bus
master to conclude its current instruction.

Since XACK/ timing requirements depend on both
the CPU of the bus master and characteristics of
the user logic, a circuitis needed which will provide
arange of easily modified acknowledge responses.

The transfer acknowledge signals must be driven
by three-state drivers which are enabled when the
bus interface is addressed and a command is
present.

Interrupt Signal Lines

The asynchronous interrupt lines must be driven
by open collector devices with a minimum drive of
16 mA.

In a typical Non Bus Vectored Interrupt system,
logic must be provided to assert and latch-up an
interrupt signal. In addition to driving the
MULTIBUS interrupt lines, the latched interrupt
signal would be read by an I/0 operation such as
reading the module’s status. The interrupt signal
would be cleared by writing to the status register.

III. MULTIBUS™ SLAVE DESIGN
EXAMPLE

A MULTIBUS slave design example has been
included in this application note to reinforce the
theory previously discussed. The design example
is of general purpose I/0 slave interface. This
design example could easily be modified to be used
as a slave memory interface by buffering the

address signals and using the appropriate .

MULTIBUS memory commands. In addition, to
help the reader better understand an application
for an I/0 slave interface, two Intel 8255A Parallel
Peripheral Interface (PPI) devices are shown con-
nected to the slave interface.

The design example is shown in both 8/16-bit
version and an 8-bit version. The 8/16-bit version

1-62

is an I/0 interface which will permit a 16-bit
master to perform 8 or 16 bit data transfers. -8-bit
masters may also use the 8/16-bit version of the
design example to perform 8-bit data transfers.

The 8-bit version of the design example may be -
used by both 8 or 16-bit masters, but will only
perform 8-bit data transfers. It does not contain
the circuitry required to perform 16-bit data
transfers.

Both the 8/16-bit version and the 8-bit version of
the design example were implemented on an iISBC
905 prototype board. The schematics for each of
the examples are given in Appendices F and G.

Functional/Programming Characteristics

This section describes the organization of the
slave interface from two points of view, the
functional point of view and the programming
characteristics. First, the principal functions
performed by the hardware are identified and the
general data flow is illustrated. This point of view
is intended as an introduction to the detailed
description provided in the next section; Theory of
Operation. In the second point of view, the
information needed by a programmer to access the
slave is summarized.

Functional Description — The function of this
1/0 slave is to provide the bus interface logic for
general purpose 1/0 functions and for two Intel
8255A Parallel Peripheral Interface (PPI) devices.
Eight device selects (port addresses) are available
for general purpose I/0 functions. One of these
device select lines isused toread and reset the state
of an interrupt status flip-flop, the other seven
device selects are unused in this design. An
additional eight I/0 device port addresses are
used by the two 8255A devices; four I/0 port
addresses per 8255A (three I/0 port address for
the three parallel ports A, B, and C and the fourth
1/0 port address for the device control register).

Figure 14 contains a functional block diagram of
the slave design example. This block diagram
shows the fundamental circuit elements of a bus
slave: bidirectional data bus drivers/receivers,
address decoding logic and bus control logic. Also
shown is the address decoding logic for the low
order four bits, the interrupt logic which is selected
by this decoding logic, and the two 8255A devices.

4 ADDRESS | 2 INTERRUPT]
0EcomNGﬁ>¢ﬂ; LOGIC

CS0/ -
Cs7/

INTERRUPT

REQUEST

8255A
PPl
(2)
>
8
AR/ ADDRESS.
- |
s pp— — T
BASE ADDR SELECT
I0RD/ CONTROL RD/
IOWRT/ LoaGic WRT/
XACK/ BD ENABLE/
e DATA A6
DATO/ - BUS i
DATF/ DRIVERS

UV ON-BOARD DATA BUS DO - DF

Figure 14. MULTIBUS™ Slave Design Example
Functional Block Diagram

Programming Characteristics — The slave
design example provides 16 I/0O port addresses
which may be accessed by user software. The
base address of the 16 contiguous port addresses
is selected by wire wrap connections on the proto-
type board. The wire wrap connections specify
address bits ADR4/ - ADRB/. They allow the
selection of a base address on any 16 byte
boundary. Twelve address bits (ADR0/ - ADRB/)
are used since 16-bit (8086 based) masters use 12
bits to specity I/0 port addresses. If an 8 bit (8080
or 8085 based) master is used with this slave board,
the high order address bits (ADR8/- ADRB/) must
not be used by the decoding circuits; a wire wrap
jumper position (ground position) is provided for
this.

The 16 1/0 port addresses are divided into two
groups of 8 port addresses by decoding address line
ADR3/. Port addresses XX0 - XX7 are used for
general I/0 functions (XX indicates any hexi-
decimal digit combination). Port address XXO0 is
used for accessing the interrupt status flip-flop and

1-63

port addresses XX1 - XX7 are not used in this
example. Port addresses XX8 - XXF are used for
accessing the PPIs. If port addresses XX8 - XXF
are selected, then ADRO0/ is used to specify which
of two PPIs are selected. If the address is even
(XX8, XXA, XXC, or XXE) then one PPl is selected.
If the address is odd (XX9, XXB, XXD, or XXF),
then the other PPI is selected. ADR1/ and ADR2/
are connected directly to the PPIs. Table 1
summarizes the I/0 port addresses of the slave
design example. Note that if a 16-bit master is
used, it is possible to access the slave in a byte or
word mode. If word access is used with port
address XX8, XXA, XXC, or XXE, then 16 bit
transfers will occur between the PPIs and the
master. These 16 bit transfers occur because an
even address has been specified and the MULTI-
BUS BHEN/ signal indicates that a 16-bit
transfer is requested.

Theory of Operation

In the preceding section, each of the slave design
example functional blocks was identified and
briefly explained. This section explains how these
functions are implemented. For detailed circuit
information, refer to the schematics in Appendices
F and G. The schematic in Appendix F is on a
foldout page so that the following text may easily
be related to the schematic.

The discussion of the theory of operation is divided
into five segments, each of which discusses a
different function performed by the MULTIBUS
slave design example. The five segments are:

1. Bus address decoding

2. Data buffers

3. Control signals

4. Interrupt logic

5. PPI operation
Each of these topics are discussed with regard to
the 8/16-bit version of the design example;
followed by a discussion of the circuit elements

which are required by the 8-bit version of the
interface.

Bus Address Decoding — Bus address decoding
is performed by two 8205 1 out of 8 binary decoders.
One decoder (A3) decodes address bits ADR8/ -
ADRB/ and the second decoder (A2) decodes
address bits ADR4/ - ADR7/. The base address

Table 1
SLAVE DESIGN EXAMPLE PORT ADDRESSES

1/0 PORT ADDRESS READ WRITE
BYTE ACCESS

XX0 Bit 0 = Interrupt Status Reset Interrupt Status
XX1 - XX7 Unuséd Unused
XX8 Parallel Port A, Even PPI Parallel Port A, Even PPI
XX9 Parallel Port A, Odd PPI Parallel Port A, Odd PPI
XXA Parallel Port B, Even PPI Parallel Port B, Even PPI
XXB Parallel Port B, Odd PPI Parallel Port B, Odd PPI
XXC Parallel Port C, Even PPI Parallel Port C, Even PPI
XXD Parallel Port C, Odd PPI Parallel Port C, Odd PPI
XXE lllegal Condition Control, Even PPI
XXF lllegal Condition Control, Odd PPI

WORD ACCESS

XX0 Bit 0 = Interrupt Status

XX2 - XX6 Unused)

XX8 Parallel Port A, Even and Odd PPIs
XXA Pérallel Port B, Even and Odd PPIs
XXC Parallel Port C, Even and Odd PPIs
XXE lllegal Condition

Reset Interrupt Status

Unused

iParallel Port A, Even and Odd PPIs
Parallel Port B, Even and Odd PPIs
Parallel Port C, Even and Odd PPIs
Control, Even and Odd PPIs

XX = Any hex digits, assigned by jumpers; XX defines the base address.

selected is determined by the position of wire wrap
jumpers. The outputs of the two decoders are
ANDed together to form the BASE ADR SELECT/
signal. This signal specifies the base address
for a group of 16 I/0 ports. Using the wire wrap
jumper positions shown in the schematic, a base
address of E3 has been selected. Therefore, this
MULTIBUS slave board will respond to I/0 port
addresses in the E30 - E3F range.

If this slave board is to be used with 8-bit MULTI-
BUS masters, the high order address bits must not
be decoded. Therefore, the wire wrap jumper
which selects the output of decoder A3 must be
placed in the top (ground) position (pin 10 of gate
A9 to ground).

The low order 4 address lines (ADRO/ - ADR3/) are
buffered and inverted using 74L.S04 inverters.
These address lines are input to an 8205 for
decoding a chip select for the interrupt logic; the
address lines are also used directly by the PPIs.
LS-Series logic is required for buffering to meet the
MULTIBUS specification for