data catalog 1976

INTEL

Intel was organized in 1968 to exploit the rapidly growing technology of Integrated Electronics, from whence the corporation derives its name. During its brief history it has become the world's largest supplier of MOS circuits, and is in the top ten
producers of all semiconductor devices.
This data catalog covers most Intel standard component, memory system and microcomputer development system products. For a list of other Intel literature, see page 12-10.

On the cover

1. The 8080A 8-bit, N -Channel microprocessor has become the first industry standard MPU. The full MCS-80 family is detailed in Section 8, including the M8080A, which operates over the full $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.
2. Intel memory leadership continues in 1976 with the 211560 ns 1 K RAM and 2116 16K Dynamic RAM (Section 2) and 2708 8K erasable and electrically reprogrammable Read-Only-Memory (Section 3)
3. The Intellec MDS, with In-Circuit-Emulator (ICE) allows quick design and debug of microcomputer systems. See Section 10 for a full description.
4. Intel's 2416 16K CCD Serial Memory makes practical megabit single card memories such as shown here. See Section 4 for details of the device, Section 6 for complete memory systems.
5. Intel delivers complete microcomputer support software manuals and training. See Section 10 for details.
6.

 \title{

1976
 \title{ \section*{1976 data catalog}

 data catalog}}

READ ONLY MEMORIES
inteJ
RANDOM ACCESS MEMORIES

SERIAL MEMORIES

MEMORY SYSTEMS

SERIES 3000 BIPOLAR MICROCOMPUTER SYSTEM

DEVELOPMENT SYSTEMS AND SOFTWARE
 10

 TIMEKEEPING CIRCUITS 11

1101A	256×1 MOS RAM
1101A1	256×1 MOS RAM
1103	1024×1 Dynamic MOS RAM
1103-1	1024×1 Dynamic MOS RAM
1103A	1024×1 Dynamic MOS RAM
1103A-1	1024×1 Dynamic MOS RAM
1103A-2	1024×1 Dynamic MOS RAM
1302	256×8 MOS ROM
1402A	Quad 256-Bit Dynamic Shift Register
1403A	Dual 512-Bit Dynamic Shift Register
1404A	1024-Bit Dynamic Shift Register
1405A	512-Bit Dynamic Recirculating Shift Register
1702A	256×8 MOS Erasable PROM
1702AL	256×8 MOS Erasable PROM
1702A-2	256×8 MOS Erasable PROM
1702AL-2	256×8 MOS Erasable PROM
1702A-6	256×8 MOS Erasable PROM
2101	256×4 MOS RAM
2101-1	256×4 MOS RAM
2101-2	256×4 MOS RAM
2101A	256×4 MOS RAM
2101A-2	256×4 MOS RAM
2101A-4	256×4 MOS RAM
2102A	1024×1 MOS RAM
2102A-2	1024×1 MOS RAM
2102A-4	1024×1 MOS RAM
2102A-6	1024×1 MOS RAM
2102AL	1024×1 MOS RAM
2102AL-2	1024×1 MOS RAM
2102AL-4	1024×1 MOS RAM
M2102A-4	1024×1 MOS RAM, Military Temperature
M2102A-6	1024×1 MOS RAM, Military Temperature
2104	4096×1 Dynamic MOS RAM
2104-2	4096×1 Dynamic MOS RAM
2104-4	4096×1 Dynamic MOS RAM
2107A	4096×1 Dynamic MOS RAM
2107A-1	4096×1 Dynamic MOS RAM
2107A-4	4096×1 Dynamic MOS RAM
2107A-5	4096×1 Dynamic MOS RAM
2107B	4096×1 Dynamic MOS RAM
2107B-4	4096×1 Dynamic MOS RAM
2107B-6	4096×1 Dynamic MOS RAM
2111	256×4 MOS RAM
2111-1	256×4 MOS RAM
2111-2	256×4 MOS RAM
2111A	256×4 MOS RAM
2111A-2	256×4 MOS RAM
2111A-4	256×4 MOS RAM
2112	256×4 MOS RAM
2112-2	256×4 MOS RAM
2112A	256×4 MOS RAM
2112A-2	256×4 MOS RAM
2112A-4	256×4 MOS RAM
2115	1024×1 MOS RAM
2115-2	1024×1 MOS RAM
2115L	1024×1 MOS RAM
2116	$16 \mathrm{~K} \times 1$ Dynamic MOS RAM
2125	1024×1 MOS RAM
2125-2	1024×1 MOS RAM
2125L	1024×1 MOS RAM
2308	1024×8 M 0 S ROM
2316A	2048×8 MOS ROM

2401
2405 2416 2704 2708 3001
M3001 3002 M3002 3003 M3003
3101
3101A
M3101
M3101A
3104
3106
3106A
3106-8
3107
3107A
3107-8
3205
3207A
3207A-1
3208A
3212
M3212
3214
M3214
3216
3222
3226
M3216
M3226
3232
3242
3245
3246
3301A
M3301A
3302A
3302A-4
3302AL6
3304A
3304A-4
3304AL6
3322A
3322A-4
3322AL6
3324A
3324A-4
3404
3408A
3601
3601-1
M3601
3602
3602-4

Dual 1024-Bit Dynamic Recirculating Shift Register	4-11
1024-Bit Dynamic Recirculating Shift Register	4-11
16K CCD Serial Memory	4-15
512×8 MOS Erasable PROM	3-23
1024×8 MOS Erasable PROM	3-23
Microprogram Control Unit	9-3
Microprogram Control Unit, Mil Temp	9-10
Central Processing Element	9-13
Central Processing Element, Mil Temp	9-18
Look-Ahead Carry Generator	9-21
Look-Ahead Carry Generator, Mil Temp	9-24
16×4 Schottky RAM	2-87
16×4 Schottky RAM	2-87
16×4 Schottky RAM, Mil Temp	2-91
16×4 Schottky RAM, Mil Temp	2-91
4×4 Schottky RAM	2-93
256×1 Schottky RAM	2-97
256×1 Schottky RAM	2-97
256×1 Schottky RAM	2-97
256×1 Schottky RAM	2-97
256×1 Schottky RAM	2-97
256×1 Schottky RAM	2-97
1 of 8 Binary Decoder	5-3
Quad Bipolar to MOS Level Shifter and Driver	5-7
Quad Bipolar to MOS Level Shifter and Driver	5-11
Hex Sense Amp for MOS Memories	5-13
Multi-Mode Latch Buffer	9-26
Multi-Mode Latch Buffer, Mil Temp	9-31
Interrupt Control Unit	9-34
Interrupt Control Unit, Mil Temp	9-40
Parallel Bi-Directional Bus Driver	9-44
4K Dynamic RAM Refresh Controller	5-19
Parallel Bi-Directional Bus Driver	9-44
Parallel Bi-Directional Bus Driver, Mil Temp	9-47
Parallel Bi-Directional Bus Driver, Mil Temp	9-47
4K Dynamic RAM Address Multiplexer and	5-25
Refresh Counter	
16K Dynamic RAM Address Multiplexer and Refresh Counter	5-29
Quad TTL to MOS Driver for 4K RAMs	5-30
Quad ECL to MOS Driver for 4K RAMs	5-34
256×4 Schottky ROM	3-26
256×4 Schottky ROM, Mil Temp	3-29
512×4 Schottky ROM	3-31
512×4 Schottky ROM	3-31
512×4 Schottky ROM	3-31
512×8 Schottky ROM	3-34
512×8 Schottky ROM	3-34
512×8 Schottky ROM	3-34
512×4 Schottky ROM	3-31
512×4 Schottky ROM	3-31
512×4 Schottky ROM	3-31
512×8 Schottky ROM	3-34
512×8 Schottky ROM	3-34
High Speed 6-Bit Latch	5-3
Hex Sense Amp and Latch for MOS Memories	5-13
256×4 Schottky PROM	3-37
256×4 Schottky PROM	3-37
256×4 Schottky PROM, Mil Temp	3-41
512×4 Schottky PROM	3-43
512×4 Schottky PROM	3-43

3602L-6	512×4 Schottky PROM	3-43
3604	512×8 Schottky PROM	3-46
3604-4	512×8 Schottky PROM	3-46
3604L-6	512×8 Schottky PROM	3-46
3621	256×4 Schottky PROM	3-37
3621-1	256×4 Schottky PROM	3-37
3622	512×4 Schottky PROM	3-43
3622-4	512×4 Schottky PROM	3-43
3622L-6	512×4 Schottky PROM	3-43
3624	512×8 Schottky PROM	3-46
3624-4	512×8 Schottky PROM	3-46
M3604	512×8 Schottky PROM, Mil Temp	3-49
M3604-6	512×8 Schottky PROM, Mil Temp	3-49
3605	1024×4 Schottky PROM	3-52
3605-1	1024. 4 Schottky PROM	3-52
M3624	512×8 Schottky PROM, Mil Temp	3-49
3625	1024×4 Schottky PROM	3-52
3625-1	1024×4 Schottky PROM	3-52
4001	256×8 ROM with 4-Bit I/0 for 4040/4004	7-85
4002	320 Bit RAM with 4-Bit I/0	7-76
4003	10 Bit Serial In-Parallel Out Shift Register	7-18
4004	4-Bit Microprocessor	7-11
4008	Address Latch for 4040/4004	7-59
4009	I/0 Device for 4040/4004	7-59
4040	4-Bit Microprocessor	7-4
4101	256×4 MOS RAM	7-82
4201	4040 Clock Generator	7-53
4265	Programmable I/0 for 4040/4004	7-22
4269	Programmable Keyboard/Display Interface for 4040/4004	7-39
4289	4040/4004 Memory Interface	7-65
4308	1024×8 ROM with 16-Bit I/0 for 4040/4004	7-94
4316A	2048×8 MOS ROM	7-104
4702A	256×8 M 2 S PROM	7-107
5101	256×4 CMOS RAM	2-101
5101-1	256×4 CMOS RAM	2-101
5101-3	256×4 CMOS RAM	2-101
5101-8	256×4 CMOS RAM	2-101
5101L	256×4 CMOS RAM	2-101
5101L-1	256×4 CMOS RAM	2-101
5101L-3	256×4 CMOS RAM	2-101
5234	Quad CMOS to MOS Driver for 4K RAMs	5-38
5235	Quad Low Power TTL to MOS Driver for 4K RAMs	5-42
5235-1	High Speed Quad Low Power TTL to MOS Driver for 4K RAMs	5-42
5244	Quad CCD Driver	5-46
5810A	Single Chip T/S/D Watch Circuit	11-2
8008	8-Bit Central Processor	8-33
8008-1	8 -Bit Central Processor	8-33
8080A	8-Bit Central Processor	8-5
8080A-1	8 -Bit Central Processor	8-12
8080A-2	8-Bit Central Processor	8-16
M8080A	8 -Bit Central Processor, Mil Temp	8-20
8101-2	256×4 MOS RAM	8-54
8101A-4	256×4 MOS RAM	8-57
8102A-4	$1 \mathrm{~K} \times 1$ M 0 S RAM	8-66
8107B-4	$4 \mathrm{~K} \times 1$ Dynamic MOS RAM	8-69
8111-2	256×4 MOS RAM	8-60
8111A-4	256×4 MOS RAM	8-63
8205	One of Eight Decoder	8-89

		PAGE
INTERP 40	4004/4040 Simulator	10-39
INTERP 80	8080 Simulator	10-42
Literature A	ailable	12-10
Literature R		Inside Cover
M2102A-4	1024×1 M 0 S RAM, Mil Temp	2-42
M2102A-6	1024×1 MOS RAM, Mil Temp	2-42
M3001	Microprogram Control Unit, Mil Temp	9-10
M3002	Central Processing Element, Mil Temp	9-18
M3003	Look-Ahead Carry Generator, Mil Temp	9-24
M3101	16×4 Schottky RAM, Mil Temp	2-91
M3101A	16×4 Schottky RAM, Mil Temp	2-91
M3212	Multi-Mode Latch Buffer, Mil Temp	9-31
M3214	Interrupt Control Unit, Mil Temp	9-40
M3216	Parallel Bi-Directional Bus Driver, Mil Temp	p 9-47
M3226	Parallel Bi-Directional Bus Driver, Mil Temp	p 9-47
M3301A	256×4 Schottky ROM, Mil Temp	3-29
M3601	256×4 Schottky PROM, Mil Temp	3-41
M3604	512×8 Schottky PROM, Mil Temp	3-49
M3604-6	512×8 Schottky PROM, Mil Temp	3-49
M3624	512×8 Schottky PROM, Mil Temp	3-49
MAC 8	MCS-8'm Cross-Assembler	10-38
MAC 40	Microcomputer Software Products	10-36
MCS 4/40	Workshop	10-62
MCS-4/40	4040 Prototype Systems	7-110
MAC 40	MCS-40 ${ }^{\text {™ }}$ Cross-Assembler	10-37
MAC 80	MCS-80 ${ }^{\text {™ }}$ Cross-Assembler	10-41
MCS-80	Workshop	10-60
Memory Support Circuit Selector Guide		5-2
Memory System Selector Guide		6-2

Memory System Accessories
Memory System Custom Boards 6-30 6-30 6-26
Memory System Cabinets 6-27
Memory System Chassis 6-28
Memory System Power Supplies
Microcomputer Modules 10-31
Module Conversion Kit 10-33
MOS RAM Selector Guide 2-2
MOS ROM/PROM Selector Guide 3-2
Ordering Information 12-3
Orient Marketing Offices Inside Cover
Packaging Information 12-4
PL/M ${ }^{\text {mM }}$ Cross Compiler 10-43
PL/M ${ }^{\text {™ }}$ Workshop 10-61
PROM Programming Instructions 3-55
ROM Simulators - MDS 10-21
SBC 80/10 OEM Computer System 10-34
Schottky ROM/PROM Cross Reference 3-4
Schottky ROM/PROM Selector Guide 3-3
SDK-80 8080 System Design Kit 10-29
Serial Memory Selector Guide 4-2
Single Board Computer 10-34
Standard Processing Specification 12-8
Training Programs 10-59
Universal PROM Programmer - MDS 10-13
User's Program Library 10-46
4-Bit User's Program Library 10-47
8-Bit User's Program Library 10-49
User's Library Submittal Form 10-57
PAGE

RANDOM ACCESS MEMORIES

STATIC MOS RAMs	
MOS RAM	ECTOR GUIDE
1101A	256×1 MOS RAM
1101A1	256×1 MOS RAM
2101A	256×4 MOS RAM
2101A-2	256×4 MOS RAM
2101A-4	256×4 MOS RAM
2101	256×4 MOS RAM
2101-1	256×4 MOS RAM
2101-2	256×4 MOS RAM
2102A	1024×1 MOS RAM
2102A-2	1024×1 MOS RAM
2102A-4	1024×1 MOS RAM
2102A-6	1024×1 MOS RAM
2102AL	1024×1 MOS RAM
2102AL-2	1024×1 MOS RAM
2102AL-4	1024×1 MOS RAM
M2102A-4	1024×1 MOS RAM, Mil Temp
M2102A-6	1024×1 MOS RAM, Mil Temp
2111A	256×4 MOS RAM
2111A-2	256×4 MOS RAM
2111A-4	256×4 MOS RAM
2111	256×4 MOS RAM
2111-1	256×4 MOS RAM
2111-2	256×4 MOS RAM
2112A	256×4 MOS RAM
2112A-2	256×4 MOS RAM
2112A-4	256×4 MOS RAM
2112	256×4 MOS RAM
2112-2	256×4 MOS RAM
2115	1024×1 MOS RAM
2115-2	1024×1 MOS RAM
2115L	1024×1 MOS RAM
2125	1024×1 MOS RAM
2125-2	1024×1 MOS RAM
2125L	1024×1 MOS RAM

DYNAMIC MOS RAMs

1103	1024×1 Dynamic MOS RAM	2-8
1103-1	1024×1 Dynamic MOS RAM	2-13
1103A	1024×1 Dynamic M0S RAM	2-16
1103A-1	1024×1 Dynamic MOS RAM	2-21
1103A-2	1024×1 Dynamic MOS RAM	2-26
2104	4096×1 Dynamic MOS RAM	2-44
2104-2	4096×1 Dynamic MOS RAM	2-44
2104-4	4096×1 Dynamic MOS RAM	2-44
2107A	4096×1 Dynamic MOS RAM	2-52
2107A-1	4096×1 Dynamic MOS RAM	2-52
2107A-4	4096×1 Dynamic MOS RAM	2-52
2107A-5	4096×1 Dynamic MOS RAM	2-52
2107B	4096×1 Dynamic MOS RAM	2-58
2107B-4	4096×1 Dynamic MOS RAM	2-58
2107B-6	4096×1 Dynamic MOS RAM	2-58
2116	$16 \mathrm{~K} \times 1$ Dynamic MOS RAM	2-86
CMOS RAMs		
5101	256×4 CMOS RAM	2-101
5101-1	256×4 CMOS RAM	2-101
5101-3	256×4 CMOS RAM	2-101
5101-8	256×4 CMOS RAM	2-101
5101L	256×4 CMOS RAM	2-101
5101L-1	256×4 CMOS RAM	2-101
5101L-3	256×4 CMOS RAM	2-101

SCHOTTKY RAMs		
3101	16×4 SAGE	
3101A	16×4 Schottky RAM	$2-87$
M3101	16×4 Schotky RAM, Mil Temp	$2-87$
M3101A	16×4 Schottky RAM, Mil Temp	$2-91$
3104	4×44 Schottky RAM	$2-91$
3106	256×1 Schottky RAM	$2-93$
3106A	256×1 Schottky RAM	$2-97$
3106-8	256×1 Schottky RAM	$2-97$
3107	256×1 Schottky RAM	$2-97$
3107A	256×1 Schottky RAM	$2-97$
3107-8	256×1 Schottky RAM	$2-97$
		$2-97$

PROGRAMMABLE READ ONLY MEMORIES [PROMs]

MOS PROMs
MOS ROM/PROM SELECTOR GUIDE 3-2
1702A 256×8 MOS Erasable PROM 3-9
1702AL 256×8 MOS Erasable PROM 3-13
1702A-2 256×8 MOS Erasable PROM 3-9
1702AL-2 256×8 MOS Erasable PROM 3-13
1702A-6 256×8 MOS Erasable PROM 3-9
$2704 \quad 512 \times 8$ MOS Erasable PROM 3-23
$2708 \quad 1024 \times 8$ MOS Erasable PROM 3-23
PROM PROGRAMMING INSTRUCTIONS 3-55
SCHOTTKY PROMs
SCHOTTKY ROM/PROM SELECTOR GUIDE 3-3
SCHOTTKY PROM CROSS REFERENCE 3-4
$3601 \quad 256 \times 4$ Schottky PROM 3-37
3601-1 256×4 Schottky PROM 3-37
M3601 256×4 Schottky PROM, Mil Temp 3-41
3621 256 x 4 Schottky PROM 3-37
3621-1 256×4 Schottky PROM 3-37
3602512×4 Schottky PROM 3-43
3602-4 512×4 Schottky PROM 3-43
3202L-6 512×4 Schottky PROM 3-43
3622512×4 Schottky PROM 3-43
3622-4 512×4 Schottky PROM 3-43
3622L-6 512×4 Schottky PROM 3-43
$3604 \quad 512 \times 8$ Schottky PROM 3-46
3604-4 512×8 Schottky PROM 3-46
3604L-6 512×8 Schottky PROM 3-46
$3624 \quad 512 \times 8$ Schottky PROM 3-46
3624-4 512×8 Schottky PROM . 3-46
M3604 512×8 Schottky PROM, Mil Temp 3-49
M3604-6 512×8 Schottky PROM, Mil Temp 3-49
$3605 \quad 1024 \times 4$ Schottky PROM 3-52
3605-1 1024×4 Schottky PROM 3-52
M3624 512×8 Schottky PROM, Mil Temp 3-49
$3625 \quad 1024 \times 4$ Schottky PROM 3-52
3625-1 1024×4 Schottky PROM 3-52
PROM PROGRAMMING INSTRUCTIONS 3-55

READ ONLY MEMORIES (ROMs)

MOS ROMs		PAGE
1302	256×8 MOS ROM	$3-5$
2308	1024×8 MOS ROM	$3-16$
$2316 A$	2048×8 MOS ROM	$3-20$

SCHOTTKY ROMs

3301A	256×4 Schottky ROM	$3-26$
M3301A	256×4 Schottky ROM, Mil Temp	$3-29$
3302A	512×4 Schottky ROM	$3-31$
3302A-4	512×4 Schottky ROM	$3-31$
3302AL6	512×4 Schottky ROM	$3-31$
3322A	512×4 Schottky ROM	$3-31$
3322A-4	512×4 Schottky ROM	$3-31$
3322AL6	512×4 Schottky ROM	$3-31$
3304A	512×8 Schottky ROM	$3-34$
3304A-4	512×8 Schottky ROM	$3-34$
3304AL6	512×8 Schottky ROM	$3-34$
3324A	512×8 Schottky ROM	$3-34$
3324A-4	512×8 Schottky ROM	$3-34$

SERIAL MEMORIES

SERIAL MEMORY SELECTOR GUIDE 4-2
1402A Quad 256-Bit Dynamic Shift Register 4-3
1403A Dual 512-Bit Dynamic Shift Register 4-3
1404A 1024-Bit Dynamic Shift Register 4-3
1405A 512-Bit Dynamic Recirculating Shift Register 4-7
2401 Dual 1024-Bit Dynamic Recirculating Shift Reg. 4-11
2405 1024-Bit Dynamic Recirculating Shift Reg. 4-11
2416 16K CCD Serial Memory 4-15

MEMORY SUPPORT CIRCUITS

MEMOR	TOR GUIDE	2
3205	1 of 8 Binary Decoder	5-3
3207A	Quad Bipolar to MOS Level Shifter and Driver	5-7
3207A-1	Quad Bipolar to MOS Level Shifter and Driver	5-11
3208A	Hex Sense Amp for MOS Memories	5-13
3222	4K Dynamic RAM Refresh Controller	5-19
3232	4K Dynamic RAM Address Multiplexer and Refresh Counter	5-25
3242	16K Dynamic RAM Address Multiplexer and Refresh Counter	5-29
3245	Quad TTL to MOS Driver for 4K RAMs	5-30
3246	Quad ECL to MOS Driver for 4K RAMs	5-34
3404	High Speed 6-Bit Latch	5-3
3408A	Hex Sense Amp and Latch for MOS Memories	5-13
5234	Quad CMOS to MOS Driver for 4K RAMs	5-38
5235	Quad Low Power TTL to MOS Driver for 4K RAMs	5-42
5235-1	High Speed Quad Low Power TTL to MOS Driver for 4K RAMs	5-42
5244	Quad CCD Driver	5-46

MEMORY	SYSTEMS	PAGE
MEMORY	SYSTEM SELECTOR GUIDE	$6-2$
in-10	RAM System	$6-4$
in-26	RAM System	$6-6$
in-40	RAM System	$6-8$
in-50	RAM System	$6-10$
in-60	Serial Memory System	$6-12$
in-64	Serial Memory System	$6-14$
in-65	Serial Memory System	$6-16$
in-4711	PDP-11 Add-in	$6-18$
in-4716	Interdata 7/16 and 7/32 Add-in	$6-20$
in-477	CRT Refresh Memory	$6-22$
in-481 \quad Mo08, 8080 RAM Memory	$6-24$	
Memory System Custom Boards	$6-26$	
Memory System Cabinets	$6-27$	
Memory System Chassis	$6-28$	
Memory System Power Supplies	$6-29$	
Memory System Accessories	$6-30$	

MCS-40 ${ }^{\text {TM }}$ MICROCOMPUTER SYSTEM
$4001 \quad 256 \times 8$ ROM with 4-Bit I/O 7-85
$4002 \quad 320$ Bit RAM with 4-Bit I/O 7-76
$4003 \quad 10$-Bit Serial In-Parallel Out Shift Register $\quad 7-18$
4004 4-Bit Microprocessor 7-11

4008 Address Latch for 4040/4004 7-59
$4009 \quad 1 / 0$ Device for 4040/4004 7-59
4040 4-Bit Microprocessor 7-4
$4101 \quad 256 \times 4$ MOS RAM 7-82
$4201 \quad 4040$ Clock Generator 7-53
4265 Programmable I/O for 4040/4004 7-22
4269 Programmable Keyboard/Display Interface for 7-39
Programmable Keyboard/Display Interface for
$4040 / 4004$
4289 4040/4004 Memory Interface 7-65
$4308 \quad 1024 \times 8$ ROM with 16 -Bit I/O for 4040/4004 7-94
4316A 2048×8 MOS ROM 7-104
4702A 256×8 MOS PROM 7-107
MCS-4/40 Workshop

MCS-80 ${ }^{\text {T M MICROCOMPUTER SYSTEM }}$		
8080A	8-Bit Central Processor	8-5
8080A-1	8-Bit Central Processor	8-12
8080A-2	8-Bit Central Processor	8-16
M8080A	8 -Bit Central Processor, Mil Temp	8-20
8224	8080 Clock Generator	8-25
8228,8238	System Controller for 8080	8-29
8008,8008-1	8 -Bit Central Processor	8-33
8702A	256×8 MOS PROM	8-40
8708	$1 \mathrm{~K} \times 8$ MOS PROM	8-43
8302	256×8 MOS ROM	8-46
8308	$1 \mathrm{~K} \times 8$ MOS ROM	8-49
8316A	2K x 8 MOS ROM	8-52
8101-2	256×4 MOS RAM	8-54
8101A-4	256×4 MOS RAM	8-57
8111-2	256×4 MOS RAM	8-60
8111 A-4	256×4 MOS RAM	8-63
8102A-4	$1 \mathrm{~K} \times 1$ MOS RAM	8-66
8107B-4	$4 \mathrm{~K} \times 1$ Dynamic MOS RAM	8-69
8222	Dynamic RAM Refresh Controller	8-74
8212	8-Bit 1/0 Port	8-75

| MCS-80 | TM | MICROCOMPUTER SYSTEM (continued) |
| :--- | :--- | ---: |\quad PAGE

SERIES 3000 BIPOLAR MICROCOMPUTER SYSTEM

3001	Microprogram Control Unit	$9-3$
M3001	Microprogram Control Unit, Mil Temp	$9-10$
3002	Central Processing Element	$9-13$
M3002	Central Processing Element, Mil Temp	$9-18$
3003	Look-Ahead Carry Generator	$9-21$
M3003	Look-Ahead Carry Generator, Mil Temp	$9-24$
3212	Multi-Mode Latch Buffer	$9-26$
M3212	Multi-Mode Latch Buffer, Mil Temp	$9-3$
3214	Interrupt Control Unit	$9-3$
M3214	Interrupt Control Unit, Mil Temp	$9-40$
3216,3226	Parallel Bi-Directional Bus Driver	$9-44$
M3216,M3226	Parallel Bi-Directional Bus Driver, Mil Temp	$9-47$
Series 3000	Workshop	$10-62$

MICROCOMPUTER MODULES

SBC 80/10 OEM Computer System 10-3
imm 4-22 Instruction/Data Storage Module 10-31
imm 4-24 Data Storage Module 10-31
imm 4-42 Central Processor Module 10-31
imm 4-43 Central Processor Module 10-31
imm 4-60 Input/Output Module 10-31
imm 6-26 PROM Memory Module 10-33
imm 6-28 RAM Memory Module 10-33
imm 6-70 Universal Prototype Module 10-33
imm 6-72 Module Extender 10-33
imm 6-76 PROM Programmer Module 10-33
imm 8-60 Input/Output Module (8008) 10-32
imm 8-61 Input/Output Module (8080) 10-32
imm 8-62 Output Module (8008) 10-32
imm 8-63 Output Module (8080) 10-32
imm 8-82 Central Processor Module (8008) 10-32
imm 8-83 Central Processor Module (8080) 10-32

MICROCOMPUTER DEVELOPMENT SYSTEMS

Intellec® MDS-800 10-3
MDS Diskette Operating System 10-8
MDS Universal PROM Programmer 10-13
MDS High Speed Paper Tape Reader 10-14
MDS In Circuit Emulator-ICE-80 10-15
CE-80/MCS-80 Workshop 10-64
MDS In Circuit Emulator-ICE-30 10-18
MDS ROM Simulators 10-21
Intellec 8/MOD 8 10-23
8/MOD/8 High Speed Paper Tape Reader 10-24
Barebones 80 10-25
Intellec 4/MOD 40 10-27
4/MOD/40 High Speed Paper Tape Reader 10-28

MICROCOMPUTER SOFTWARE	PAGE
MAC 40 Microcomputer Software Products	10-36
MCS-40 ${ }^{\text {mm }}$ Cross-Assembler	10-37
INTERP 40 4004/4040 Simulator	10-39
MAC 8 MCS-8™ Cross-Assembler	10-38
INTERP 88008 Simulator	10-40
MAC 80 MCS-80 ${ }^{\text {™ }}$ Cross-Assembler	10-41
INTERP 808080 Simulator	10-42
PL/M ${ }^{\text {™ }} \quad \mathrm{PL} / \mathrm{M}^{\text {™ }}$ Cross Compiler	10-43
PL/M ${ }^{\text {TM }}$ W \quad Workshop	10-61
CROMIS Series 3000 Microprogramming System	10-45
User's Program Library	10-46
4-Bit User's Program Library	10-47
8-Bit User's Program Library	10-49
User's Library Submittal Form	10-57
MICROCOMPUTER KITS	
MCS-4/40 4040 Prototype Systems	7-110
Microcomputer Module Conversion Kit	10-33
SDK-80 8080 System Design Kit	10-29
TIMEKEEPING CIRCUITS	
5810 Single Chip T/S/D Watch Circuit	11-2
GENERAL INFORMATION	
Development Systems	10-2
European Marketing Offices	Inside Cover
Intel Sales Offices	Inside Cover
Intellec Systems	10-2
International Distributors	Inside Cover
Literature Available	12-10
Memory Support Circuit Selector Guide	5-2
Memory System Selector Guide	6-2
Microcomputer Modules	10-31
MOS RAM Selector Guide	2-2
MOS ROM/PROM Selector Guide	3-2
Numerical Index	1-3
Ordering Information	12-3
Orient Marketing Offices	12-13
Packaging Information	12-4
PROM Programming Instructions	3-55
Schottky ROM/PROM Cross Reference	3-4
Serial Memory Selector Guide	4-2
Single Board Computer	10-34
Standard Processing Specification	12-8
Training Programs	10-59
User's Program Library	10-46

Microcomputer Module Conversion Kit10-29
TIMEKEEPING CIRCUITS
5810 Single Chip T/S/D Watch Circuit 11-2
GENERAL INFORMATIONEuropean Marketing OfficesInside Cover
Ins 10-2
International Distributors12-10
Memory Support Circuit Selector Guide 5-2
Mirocompter Modus10-31
MOS RAM Selector Guide 2-2
Numerical Index 1-3
Orien $12-3$
Packaging Information 12-4
Schottky ROM/PROM Cross Reference 3-4
sinial 10-34
Standard Processing Specification10-59
User's Program Library

2

RANDOM ACCESS MEMORIES

RANDOM ACCESS MEMORIES

	Type	No. Of Bits	Description	Organization	Electrical Characteristics Over Temperature				
					Access Time Max.	Cycle Time Max.	Power Dissipation Max.[1] Operating/Standby	Supplies [V]	Page No.
	1101A	256	Static Fully Decoded	256×1	1500ns	1500ns	$685 \mathrm{~mW} / 340 \mathrm{~mW}$	+5,-9	2-4
	1101A1	256	Hi-Speed Static Fully Decoded	256×1	1000ns	1000 ns	$685 \mathrm{~mW} / 340 \mathrm{~mW}$	+5,-9	2-4
	1103	1024	Dynamic Fully Decoded	1024×1	300ns	580ns	$400 \mathrm{~mW} / 67 \mathrm{~mW}$	+16,+19	2-8
	1103-1	1024	Dynamic Fully Decoded	1024×1	150 ns	340ns	$400 \mathrm{~mW} / 76 \mathrm{~mW}$	+19,+22	2-13
	1103A	1024	Dynamic Fully Decoded	1024×1	205ns	580ns	$400 \mathrm{~mW} / 64 \mathrm{~mW}$	+16, +19	2-16
	1103A-1	1024	Dynamic Fully Decoded	1024×1	145ns	340ns	$625 \mathrm{~mW} / 10 \mathrm{~mW}$	+19,+22	2-21
	1103A-2	1024	Dynamic Fully Decoded	1024×1	145ns	400ns	$570 \mathrm{~mW} / 10 \mathrm{~mW}$	+19,+22	2-26
	2101A	1024	Static, Separate 1/O	256×4	350ns	350ns	300 mW	+5	2-30
	2101A-2	1024	Static, Separate 1/O	256×4	250ns	250ns	350 mW	+5	2-30
	2101A-4	1024	Static, Separate 1/O	256×4	450ns	450ns	300 mW	+5	2-30
	2101	1024	Static, Separate I/O	256×4	1000ns	1000ns	350 mW	+5	2-34
	2101-1	1024	Static, Separate I/O	256×4	500ns	500ns	350 mW	+5	2-34
	2101-2	1024	Static, Separate 1/0	256×4	650 ns	650 ns	350 mW	+5	2-34
	2102A	1024	High Speed Static	1024×1	350 ns	350ns	275 mW	+5	2-38
	2102A-2	1024	High Speed Static	1024×1	250ns	250ns	325 mW	+5	2-38
	2102A-4	1024	High Speed Static	1024×1	450ns	450ns	275 mW	+5	2-38
	2102A-6	1024	High Speed Static	1024×1	650ns	650ns	275 mW	+5	2-38
	2102AL	1024	Low Standby Power Static	1024×1	350ns	350ns	$165 \mathrm{~mW} / 35 \mathrm{~mW}$	+5	2-38
	2102AL-2	1024	Low Standby Power Static	1024×1	250ns.	250ns	$325 \mathrm{~mW} / 42 \mathrm{~mW}$	+5	2-38
	2102AL-4	1024	Low Standby Power Static	1024×1	450ns	450ns	$165 \mathrm{~mW} / 35 \mathrm{~mW}$	+5	2-38
	M2102A-4	1024	Static, $\mathrm{TA}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to +125 C	1024×1	450ns	450ns	350 mW	+5	2-42
	M2102A-6	1024	Static, $T_{A}=-55^{\circ} \mathrm{C}$ to +125 C	1024×1	650ns	650ns	350 mW	+5	2-42
	2104	4096	16 Pin Dynamic	4096×1	350ns	500ns	$744 \mathrm{~mW} / 37 \mathrm{~mW}$	+12,+5,-5	2-44
	2104-2	4096	16 Pin Dynamic	4096×1	250ns	375ns	$744 \mathrm{~mW} / 37 \mathrm{~mW}$	+12,+5,-5	2-44
	2104-4	4096	16 Pin Dynamic	4096×1	300 ns	425ns	$756 \mathrm{~mW} / 36 \mathrm{~mW}$	+12,+5,-5	2-44
	2107A	4096	22 Pin Dynamic	4096×1	300ns	700ns	458mW/10mW	+12,+5,-5	2-52
	2107A-1	4096	22 Pin Dynamic	4096×1	280ns	550ns	$516 \mathrm{~mW} / 16 \mathrm{~mW}$	+12,+5,-5	2-52
	2107A-4	4096	22 Pin Dynamic	4096×1	350 ns	840ns	$405 \mathrm{~mW} / 10 \mathrm{~mW}$	+12, +5,-5	2-52
	2107A-5	4096	22 Pin Dynamic	4096×1	420ns	970ns	$376 \mathrm{~mW} / 11 \mathrm{~mW}$	+12, +5,-5	2-52
	2107B	4096	22 Pin Dynamic	4096×1	200ns	400ns	648mW/12mW	+12, +5,-5	2-58
	2107B-4	4096	22 Pin Dynamic	4096×1	270 ns	470ns	$648 \mathrm{~mW} / 13 \mathrm{~mW}$	+12,+5,-5	2-58
	2107B-6	4096	22 Pin Dynamic	4096×1	350ns	800ns	$840 \mathrm{~mW} / 25 \mathrm{~mW}$	+12, $+5,-5$	2-58

[^0]
RANDOM ACCESS MEMORIES (соntinued)

	Type	No. Of Bits	Description	Organization	Electrical Characteristics Over Temperature				
					Access Time Max.	Cycle Time Max.	Power Dissipation Max.[1] Operating/Standby	Supplies [V]	Page No.
	2111A	1024	Static, Common I/O with Output Deselect	256×4	350ns	350ns	300 mW	+5	2-64
	2111A-2	1024	Static, Common I/O with Output Deselect	256×4	250ns	250ns	350 mW	+5	2-64
	2111A-4	1024	Static, Common I/O with Output Deselect	256×4	450ns	450 ns	300 mW	+5	2-64
	2111	1024	Static, Common I/O with Output Deselect	256×4	1000ns	1000ns	350 mW	+5	2-68
	2111-1	1024	Static, Common I/O with Output Deselect	256×4	500ns	500ns	350 mW	+5	2-68
	2111-2	1024	Static, Common I/O with Output Deselect	256×4	650ns	650ns	350 mW	+5	2-68
	2112A	1024	Static, Common I/O without Output Deselect	256×4	350ns	350ns	300 mW	+5	2-72
	2112A-2	1024	Static, Common I/O without Output Deselect	256×4	250ns	250ns	350 mW	+5	2-72
	2112A-4	1024	Static, Common I/O without Output Deselect	256×4	450ns	450ns	300 mW	+5	2-72
	2112	1024	Static, Common I/O without Output Deselect	256×4	1000ns	1000ns	350 mW	+5	2-77
	2112-2	1024	Static, Common I/O without Output Deselect	256×4	650ns	650ns	350 mW	+5	2-77
	2115	1024	Open Collector Static	1024×1	95ns	95 ns	525 mW	+5	2-81
	2115-2	1024	Open Collector Static	1024×1	70 ns	70 ns	625 mW	+5	2-81
	2115L	1024	Low Power Static	1024×1	95ns	95 ns	325 mW	+5	2-81
	2116	16384	16K Dynamic	$16 \mathrm{~K} \times 1$	250ns	375ns	$900 \mathrm{~mW} / 24 \mathrm{~mW}$	+12, +5 ,	2-86
	2125	1024	Three-State Static	1024×1	95 ns	95 ns	525 mW	+5	2-81
	2125-2	1024	Three-State Static	1024×1	70 ns	70 ns	625 mW	+5	2-81
	2125L	1024	Low Power Static	1024×1	95ns	95 ns	325 mW	+5	2-81
	3101	64	Fully Decoded	16×4	60 ns	60 ns	525 mW	+5	2-87
	3101A	64	High Speed Fully Decoded	16×4	35 ns	35 ns	525 mW	+5	2-87
	M3101	64	$\begin{aligned} & \text { Fully Decoded }\left(-55^{\circ} \mathrm{C}\right. \text { to } \\ & \left.+125^{\circ} \mathrm{C}\right) \end{aligned}$	16×4	75ns	75 ns	546 mW	+5	2-91
	M3101A	64	High Speed Fully Decoded ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)	16×4	45ns	45ns	546 mW	+5	2-91
	3104	16	Content Addressable Memory	4×4	30 ns	40ns	625 mW	+5	2-93
	3106	256	High Speed Fully Decoded (With Three-State Output)	256×1	80ns	80ns	650 mW	+5	2-97
	3106A	256	High Speed Fully Decoded (With Three-State Output)	256×1	60ns	70ns	650 mW	+5	2-97
	3106-8	256	High Speed Fully Decoded (With Three-State Output)	256×1	80ns	80ns	650 mW	+5	2-97
	3107	256	High Speed Fully Decoded (With Open Collector Output)	256×1	80ns	80ns	650 mW	+5	2-97
	3107A	256	High Speed Fuly Decoded (With Open Collector Output)	256×1	60 ns	70ns	650 mW	+5	2-97
	3107-8	256	High Speed Fully Decoded (With Open Collector Output)	256×1	60ns	70ns	650 mW	+5	2-97
	5101	1024	Static CMOS RAM	256×4	650ns	650ns	135mW/75uW	+5	2-101
	5101-1	1024	Static CMOS RAM	256×4	450 ns	450 ns	$135 \mathrm{~mW} / 75 \mathrm{uW}$	+5	2-101
	5101-3	1024	Static CMOS RAM	256×4	650 ns	650 ns	$135 \mathrm{~mW} / 1 \mathrm{~mW}$	+5	2-101
	5101-8	1024	Static CMOS RAM	256×4	800ns	800ns	$150 \mathrm{~mW} / 2.5 \mathrm{~mW}$	+5	2-101
	5101L	1024	Static CMOS RAM	256×4	650 ns	650 ns	$135 \mathrm{~mW} / 30 \mathrm{uW}$	+5	2-101
	5101L-1	1024	Static CMOS RAM	256×4	450 ns	450ns	135mW/30uW	+5	2-101
	5101L-3	1024	Static CMOS RAM	256×4	650 ns	650 ns	$135 \mathrm{~mW} / 400 \mathrm{uW}$	+5	2-101

[^1]
256 BIT FULLY DECODED RANDOM ACCESS MEMORY

- Access Time -- Typically Below 650 nsec - 1101A1, 850 nsec-1101A
 - Low Power Standby Mode
 - Low Power Dissipation -- Typically less than $1.5 \mathrm{~mW} / \mathrm{bit}$ during access
 - Directly DTL and TTL Compatible
 - Three-state Output --OR-tie Capability

- Simple Memory Expansion -Chip Select Input Lead
- Fully Decoded --On Chip Address Decode and Sense
- Inputs Protected -- All Inputs Have Protection Against Static Charge
- Ceramic and Plastic Package -16 Pin Dual In-Line Configuration

The 1101 A is an improved version of the 1101 which requires only two power supplies (+5 V and -9 V) for operation. The 1101 A is a direct pin for pin replacement for the 1101.
The Intel ${ }^{\circledR} 1101$ A is a 256 word by 1 bit random access memory element using normally off P-channel MOS devices integrated on a monolithic array. It uses fully dc stable (static) circuitry and therefore requires no clocks to operate.
The 1101 A is designed primarily for small buffer storage applications where high performance, low cost, and ease of interfacing with other standard logic circuits are important design objectives. The unit will directly interface with standard bipolar integrated logic circuits (TTL, DTL, etc.) The data output buffers are capable of driving TTL loads directly. A separate chip select ($\overline{\mathrm{CS}}$) lead allows easy selection of an individual package when outputs are OR-tied.
For applications requiring a faster access time we recommend the 1101 A 1 which is a selection from the 1101A and has a guaranteed maximum access time of $1.0 \mu \mathrm{sec}$.
The Intel 1101A is fabricated with silicon gate technology. This low threshold technology allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.
Intel's silicon gate technology also provides excellent protection against contamination. This permits the use of low cost silicone packaging.

LOGIC SYMBOL

PIN NAMES

$D_{\text {IN }}$	DATA INPUT	CS	CHIP SELECT
$A_{0}-A_{7}$	ADDRESS INPUTS	$D_{\text {OUT }}$	DATA OUTPUT
R/W	READ/WRITE INPUT		

BLOCK DIAGRAM

Absolute Maximum Ratings ${ }^{(1)}$

Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to the Most	
$\quad+0.5 \mathrm{~V}$ to -20 V	
Positive Supply Voltage, V_{CC}	-20 V
Supply Voltages V_{DD} and V_{D} with Respect to V_{CC}	1 WATT

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{D}}=-9 \mathrm{~V} \pm 5 \%$, unless otherwise specified

SYMBOL	TEST	MIN.	TYP. ${ }^{(2)}$	MAX.	UNIT	CONDITIONS
I_{LI}	INPUT LOAD CURRENT (ALL INPUT PINS)		<1.0	500	nA	$\mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {LO }}$	OUTPUT LEAKAGE CURRENT		<1.0	500	nA	$V_{\text {OUT }}=0.0 \mathrm{~V}, \overrightarrow{\mathrm{CS}}=\mathrm{V}_{\text {CC }}-2$
lod	POWER SUPPLY CURRENT, $V_{\text {DD }}$		13	19	mA	$\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right]$
${ }^{\text {DD2 }}$	POWER SUPPLY CURRENT, $V_{\text {DD }}$			25	mA	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \quad$ Continuous
${ }_{\text {D1 }}$	POWER SUPPLY CURRENT, V_{D}		12	18	mA	$\begin{array}{ll}\mathrm{T}_{A}=25^{\circ} \mathrm{C}, & - \text { Operation } \\ \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}\end{array}$
$\mathrm{I}_{\mathrm{D} 2}$	POWER SUPPLY CURRENT, $V_{\text {D }}$			24	mA	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$,
V_{IL}	INPUT "LOW' VOLTAGE	-10		$\mathrm{V}_{C C}-4.5$	V	
$\mathrm{V}_{1 \mathrm{H}^{(3)}}$	INPUT "HIGH" VOLTAGE	$\mathrm{V}_{\mathrm{CC}}-2$		$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
${ }_{\text {IOLI }}$	OUTPUT SINK CURRENT	3.0	8		mA	$\mathrm{V}_{\text {OUT }}=+0.45 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
$\mathrm{l}_{\text {OL2 }}$	OUTPUT SINK CURRENT	2.0			mA	$\mathrm{V}_{\text {OUT }}=+0.45 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$
${ }^{\text {c }}$ c	OUTPUT CLAMP CURRENT		6	13	mA	$\mathrm{V}_{\text {OUT }}=-1.0 \mathrm{~V}$
${ }^{1} \mathrm{OHI}$	OUTPUT SOURCE CURRENT	-3.0	-8		mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
${ }^{1} \mathrm{OH} 2$	OUTPUT SOURCE CURRENT	-2.0	-7		mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$
V_{OL}	OUTPUT "LOW" VOLTAGE			+0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
V_{OH}	OUTPUT "HIGH" VOLTAGE	+3.5	+4.9		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
$\mathrm{C}_{1 \mathrm{~N}}{ }^{(4)}$	INPUT CAPACITANCE (ALL INPUT PINS)		7	10	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$
$\mathrm{COUT}^{\text {(4) }}$	OUTPUT CAPACITANCE		7	10	pF	
$c{ }^{(4)}$	V_{D} POWER SUPPLY CAPACITANCE		20	35	pF	$\left.V_{D}=V_{C C} \quad\right]$

Note 1: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 2: Typical values are at nominal voltages and $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: A TTL driving the 1101A, 1101A1 must have its output high $\geq \mathrm{V}_{\mathrm{CC}}-2$ even if it is loaded by other bipolar gates.
Note 4: This parameter is periodically sampled and is not 100% tested.
A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{D}}=-9 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%$ READ CYCLE

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	
$\mathrm{t}_{\text {RC }}$	Read Cycle	1101 A	1.5		$\mu \mathrm{sec}$	
		1101 A 1	1.0			$\mu \mathrm{sec}$
t_{AC}	Address to Chip	1101 A		$1.2^{(1)}$	$\mu \mathrm{sec}$	
	Select Delay	1101 A 1		$0.7^{(1)}$	$\mu \mathrm{sec}$	
t_{A}	Access Time	1101 A		0.85	1.5	$\mu \mathrm{sec}$
		1101 A 1		0.65	1.0	$\mu \mathrm{sec}$
t_{OH}	Previous Read Data Valid	0.05		$\mu \mathrm{sec}$		

WRITE CYCLE

${ }_{\text {t }}{ }_{\text {c }}$	Write Cycle	0.8	$\mu \mathrm{sec}$
${ }_{\text {w }}{ }_{\text {w }}$	Address to Write Pulse Delay	0.3	$\mu \mathrm{sec}$
${ }_{\text {t }}{ }_{\text {P }}$	Write Pulse Width	0.4	$\mu \mathrm{sec}$
${ }_{\text {t }}$ W	Data Set up Time	0.3	$\mu \mathrm{sec}$
${ }^{\text {D }}$ H	Data Hold Time	0.1	$\mu \mathrm{sec}$

CHIP SELECT AND DESELECT

t_{CW}	Chip Select Pulse Width	0.4	$\mu \mathrm{sec}$	
t_{CS}	Access Time Through Chip Select Input	0.2	0.3	$\mu \mathrm{sec}$
t_{CD}	Chip Deselect Time	0.1	0.3	$\mu \mathrm{sec}$

CONDITIONS OF TEST:

Input pulse amplitudes: 0 to 5 V , Input pulse rise and fall time: 10 nsec . Speed measurements referenced to 1.5 V levels (unless otherwise noted). Output load is 1 TTL gate and $C_{L}=20 \mathrm{pF}$; measurements made at output of TTL gate ($\mathrm{t}_{\mathrm{PD}} \leq 10 \mathrm{nsec}$)

Note 1: Maximum value for $t_{A C}$ measured at minimum read cycle.

Typical D. C. Characteristics

OUTPUT CURRENT VS OUTPUT VOLTAGE

Typical A. C. Characteristics

ACCESS TIME VS. LOAD CAPACITANCE

ACCESS TIME VS.
TEMPERATURE

1101A/1101A1
OPERATING REGION

ACCESS TIME VS. SUPPLY VOLTAGE

1103

FULLY DECODED RANDOM ACCESS 1024 BIT DYNAMIC MEMORY

\author{

- Low Power Dissipation - Dissipates Power Primarily on Selected Chips
 - Access Time - 300 nsec
 - Cycle Time - 580 nsec
 - Refresh Period... 2 milliseconds for 0-70 ${ }^{\circ} \mathrm{C}$ Ambient
 - OR-Tie Capability
}

The Intel ${ }^{\circ} 1103$ is designed primarily for main memory applications where high performance, low cost, and large bit storage are important design objectives.
It is a 1024 word by 1 bit random access memory element using normally off P-channel MOS devices integrated on a monolithic array. It is fully decoded, permitting the use of an 18 pin dual in-line package. It uses dynamic circuițry and primarily dissipates power only during precharge.
Information stored in the memory is non-destructively read. Refreshing of all 1024 bits is accomplished in 32 read cycles and is required every two milliseconds.
A separate cenable (chip enable) lead allows easy selection of an individual package when outputs are OR-tied.
The Intel 1103 is fabricated with silicon gate technology. This low threshold technology allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.
Intel's silicon gate technology also provides excellent protection against contamination. This permits the use of low cost plastic packaging.

PIN CONFIGURATION
LOGIC SYMBOL

PIN NAMES

$D_{\text {IN }}$	DATA INPUT	PRC	PRECHARGE INPUT
$A_{0}-A_{9}$	ADDRESS INPUTS	CE	CHIP ENABLE
R/W	READ/WRITE	$D_{\text {OUT }}$	DATA OUTPUT

Maximum Guaranteed Ratings*

Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Input or Output Voltages with	
Respect to the Most Positive	-25 V to 0.3 V
Supply Voltage, $\mathrm{V}_{B B}$	
Supply Voltages $V_{D D}$ and $V_{S S}$ with Respect to $V_{B B}$	-25 V to 0.3 V
Power Dissipation	1.0 W

*COMMENT:

Stresses above those listed under "Maximum Guaranteed Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{S S}^{(1)}=16 \mathrm{~V} \pm 5 \%,\left(\mathrm{~V}_{B B}-\mathrm{V}_{S S}\right)^{(6)}=3 \mathrm{~V}$ to $4 \mathrm{~V}, \mathrm{~V}_{D D}=0 \mathrm{~V}$ unless otherwise specified

Note 1: The $V_{S S}$ current drain is equal to ($I_{D D}+I_{O H}$) or ($I_{D D}+I_{O L}$).
Note 2: See Supply Current vs. Temperature (p. 3) for guaranteed current at the temperature extremes. These values are taken from a single pulse measurement.
Note 3: The output current when reading a low output is the leakage current of the 1103 plus external noise coupled into the output line from the clocks. $\mathrm{V}_{\text {OL }}$ equals IOL across the load resistor.
Note 4: This value of load resistance is used for measurement purposes. In applications the resistance may range from 100Ω to $1 \mathrm{k} \Omega$.
Note 5: This parameter is periodically sampled and is not 100% tested.
Note 6: ($\mathrm{V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}$) supply should be applied at or before V_{SS}.
Note 7: The maximum values for $V_{I L}$ and the minimum values for $V_{I H}$ are linearly related to temperature between $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. Thus any value in between $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ can be calculated by using a straight-line relationship.
Note 8: The maximum values for $V_{I L}$ (for precharge, cenable \& read/write) may be increased to $V_{S S}-14.2 @ 0^{\circ} \mathrm{C}$ and $V_{S S}-14.5 @ 70^{\circ} \mathrm{C}$ (same values as those specified for the address $\&$ data-in lines) with a 40 ns degradation (worst case) in $t_{A C}, t_{P C}, t_{R C}, t_{W C}, t_{R W C}, t_{A C C 1}$ and $t_{A C C 2}$.

Supply Current vs Temperature

AC Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=16 \pm 5 \%,\left(\mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}\right)=3.0 \mathrm{~V}$ to $4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$ read, Write, and read/write cycle

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
$\mathbf{t}_{\text {REF }}$	TIME BETWEEN REFRESH			2	ms	
$t_{\text {cic }}(1)$	ADDRESS TO CENABLE SET UP TIME	115			ns	
	CENABLE TO ADDRESS HOLD TIME	20			ns	
$\mathrm{tac}_{\mathrm{C}}(1)$	PRECHARGE TO CENABLE DELAY	125			ns	
t ¢	CENABLE TO PRECHARGE DELAY	85			ns	
tor:	PRECHARGE \& CENABLE OVERLAP, LOW	25		75	ns	${ }^{\text {t }} \mathrm{T}=20 \mathrm{~ns}$
toun	PRECHARGE \& CENABLE OVERLAP, HIGH			140	ns	$\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$
tovm	PRECHARGE \& CENABLE OVERLAP, 50\% POINTS	45		95	ns	

READ CYCLE

SYMBOL	TEST	MIN.	TYP.	MAX	UNIT	CONDITIONS
$t_{R C}{ }^{(1)}$	READ CYCLE	480			ns	7
tpov	PRECHARGE TO END OF CENABLE	165		500	ns	
$t_{\text {PO }}$	END OF PRECHARGE TO OUTPUT DELAY			120	ns	
$t_{\text {Accl }}{ }^{(1)}$	ADDRESS TO OUTPUT ACCESS	300			ns	
$t_{\text {ACCI }}{ }^{(1)}$	PRECHARGE TO OUTPUT ACCESS	310			ns	$\left.\begin{array}{l} t_{p_{\text {Cmin }}}+t_{\text {ovLmin }} \\ +t_{\text {Pomax }}+2 t_{T} \end{array}\right\}$

WRITE OR READ/WRITE CYCLE

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
$t_{\text {wc }}{ }^{(1)}$	WRITE CYCLE	580			ns	$\} \quad t_{T}=20 \mathrm{~ns}$
$t_{\text {Rwc }}{ }^{(1)}$	READ/WRITE CYCLE	580			ns	$\int t_{1}$
tpw	PRECHARGE TO READ/WRITE DELAY	165		500	ns	
$t_{\text {wp }}$	READ/WRITE PULSE WIDTH	50			ns	
t_{w}	READ/WRITE SET UP TIME	80			ns	
tow	DATA SET UP TIME	105			ns	
$\mathrm{toH}^{\text {H }}$	DATA HOLD TIME	10			ns	
tpo	END OF PRECHARGE TO OUTPUT DELAY			120	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{LOAD}}=100 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{LOAD}}=100 \Omega \end{aligned}$
t_{CW}	RELATIONSHIP BETWEEN CENABLE AND READ/WRITE			0	ns	$\mathrm{V}_{\mathrm{REF}}=40 \mathrm{mV}$

Note 1: These times will degrade by 40 ns (worst case) if the maximum values for $V_{I L}$ (for precharge, cenable and read/write inputs) go to $\mathrm{V}_{\mathrm{SS}}-14.2 \mathrm{~V} @ 0^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{SS}}-14.5 \mathrm{~V} @ 70^{\circ} \mathrm{C}$ as defined on page 2.
*CAPACITANCE $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	TEST	TYP.	$\begin{gathered} \hline \text { PLASTIC PKG. } \\ \text { MAX. } \end{gathered}$	CERAMIC PKG. MAX.	UNIT	CONDITIONS
$\mathrm{C}_{\text {AD }}$	ADDRESS CAPACITANCE	5	7	12	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
$\mathrm{C}_{\text {PR }}$	PRECHARGE CAPACITANCE	15	18	19.5	pF	$V_{\text {IN }}=V_{\text {SS }}$
$\mathrm{C}_{\text {ce }}$	CENABLE CAPACITANCE	15	18	21	pF	$V_{\text {IN }}=V_{S S} \quad f=1 \mathrm{MHz}$
$\mathrm{C}_{\text {RW }}$	READ/WRITE CAPACITANCE	11	15	19.5	pF	$V_{\text {IN }}=V_{s s} \quad\left\{\begin{array}{l}\text { All Unused } \\ \text { Pins Are }\end{array}\right.$
$\mathrm{C}_{\text {Ini }}$	DATA INPUT CAPACITANCE	4	5	7.5	pF	$\begin{array}{l\|l} \text { CENABLE }=O V & \text { At A.C. } \\ V_{\text {IN }}=V_{S S} & \text { Ground } \end{array}$
$\mathrm{C}_{\text {IN2 }}$	DATA INPUT CAPACITANCE	2	4	6.5	pF	$\begin{aligned} & \text { CENABLE }=V_{S S} \\ & V_{I N}=V_{S S} \end{aligned}$
Cout	DATA OUTPUT CAPACITANCE	2	3	7	pF	$V_{\text {OUT }}=0 \mathrm{~V} \quad J$

[^2]WRITE CYCLE OR READ/WRITE CYCLE

Timing illustrated for minimum cycle.

READ CYCLE

NOTE (1) $V_{\text {DI }}+2 \mathrm{~V}$
NOTE (2)
$V_{S S}-2 V$ IT IS DEFINED AS THE TRANSITIONS BETWEEN THESE TWO POINTS
NOTE $3 \mathrm{t}_{\mathrm{DW}}$ IS REFERENCED TO POINT (1) OF THE RISING EDGE OF CENABLE OR READ/WRITE WHICHEVER OCCURS FIRST NOTE $4 \mathrm{t}_{\mathrm{UH}}$ IS REFERENCED TO POINT (2) OF THE RISING EDGE OF CENABLE OR READ WRITE WHICHEVER OCCURS FIRST

1103-1

The Intel ${ }^{\circledR} 1103-1$ is a high speed 1024 bit dynamic random access memory and is the high speed version of the standard 1103. The DC and AC Characteristics for the $1103-1$ are given in the following three pages. The absolute maximum ratings for the 1103-1 are the same as for the 1103 on page 2-8.

D.C. and Operating Characteristics

$\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $+55^{\circ} \mathrm{C}, \mathrm{V}_{S S}^{1}=19 \mathrm{~V} \pm 5 \%\left(\mathrm{~V}_{B B}-\mathrm{V}_{S S}\right)^{6}=3 \mathrm{~V}$ to $4 \mathrm{~V}, \mathrm{~V}_{D D}=0 \mathrm{~V}$ unless otherwise specified)

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
$\mathrm{ILI}^{\text {I }}$	INPUT LOAD CURRENT (ALL INPUT PINS)			10	$\mu \mathbf{A}$	$\mathbf{V}_{\text {IN }}=\mathbf{O V}$
$l_{\text {LO }}$	OUTPUT LEAKAGE CURRENT			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
I_{BB}	$\mathrm{V}_{\text {BB }}$ SUPPLY CURRENT			100	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {DOI }}{ }^{2}$	SUPPLY CURRENT DURING Tpc		45	60	mA	$\begin{aligned} & \text { ALL ADDRESSES }=0 \mathrm{~V} \\ & \text { PRECHARGE }=0 \mathrm{~V} \\ & \text { CENABLE }=V_{s s} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{DO} 2}{ }^{2}$	SUPPLY CURRENT DURING Tov		50	68.5	mA	$\begin{aligned} & \text { ALL ADDRESSES }=0 \mathrm{~V} \\ & \text { PRECHARGE }=0 \mathrm{~V} \\ & \text { CENABLE }=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{IDO}{ }^{2}$	SUPPLY CURRENT DURING $\mathrm{T}_{\mathrm{POv}}$		8.5	11	mA	$\begin{aligned} & \text { PRECHARGE }=V_{S S} \\ & \text { CENABLE }=0 V \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
IODS^{2}.	SUPPLY CURRENT DURING TCP		3.0	4	mA	$\begin{aligned} & \text { PRECHARGE }=\mathrm{V}_{S S} \\ & \text { CENABLE }=\mathrm{V}_{S S} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$I_{\text {doavg }}^{5}$	AVERAGE SUPPLY CURRENT		20	23	mA	CYCLE TIME $=340 \mathrm{~ns}$ PRECHARGE WIDTH@50\% $105 \mathrm{~ns}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IL }}$	INPUT LOW VOLTAGE	$V_{s s}-20$		$V_{\text {ss }}-18$	V	
$\mathrm{V}_{\text {IH }}$	INPUT HIGH VOLTAGE	$\mathrm{V}_{5 S}-1$		$\mathrm{V}_{S S}+1$	V	
$\mathrm{I}_{\text {OHI }}$	OUTPUT HIGH CURRENT	1150	1300	7000	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{OH} 2}$	OUTPUT HIGH CURRENT	900	1150	7000	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$
$10{ }^{3}$	OUTPUT LOW CURRENT		e Not			$R_{\text {LOAD }}=100 \Omega$
$\mathrm{V}_{\mathrm{OH} 1}$	OUTPUT HIGH VOLTAGE	115	130	700	mV	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,
$\mathrm{V}_{\mathrm{OH} 2}$	OUTPUT HIGH VOLTAGE	90	115	700	mV	$\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$,
VOL^{3}	OUTPUT LOW VOLTAGE		e Note			

Note 1: The $V_{S S}$ current drain is equal to ($I_{D D}+I_{O H}$) or ($I_{D D}+I_{O L}$).
Note 2: See Supply Current vs. Temperature (p. 2-9) for guaranteed current at the temperature extremes. These values are taken from a single pulse measurement.
Note 3: The output current when reading a low output is the leakage current of the 1103 plus external noise coupled into the output line from the clocks. VOL equals IOL across the load resistor.
Note 4: This value of load resistance is used for measurement purposes. In applications the resistance may range from 100Ω to $1 \mathrm{k} \Omega$.
Note 5: This parameter is periodically sampled and is not 100% tested.
Note 6: $\quad\left(V_{B B}-V_{S S}\right)$ supply should be applied at or before $V_{S S}$.

AC Characteristics $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $55^{\circ} \mathrm{C}, \mathrm{V}_{S S}=19 \pm 5 \%, \mathrm{~V}_{B B}-\mathrm{V}_{S S}=3.0 \mathrm{~V}$ to $4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$) read, write, and read/write cycle

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
$\mathbf{t}_{\text {REF }}$	TIME BETWEEN REFRESH			1	ms	
tac_{\wedge}	ADDRESS TO CENABLE SET UP TIME	30			ns	
tc.	CENABLE TO ADDRESS HOLD TIME	10			ns	
tre	PRECHARGE TO CENABLE DELAY	60			ns	
tcp	CENABLE TO PRECHARGE DELAY	40			ns	
tov:	PRECHARGE \& CENABLE OVERLAP, LOW	5		30	ns	$\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$
torn	PRECHARGE \& CENABLE OVERLAP, HIGH			85	ns	${ }^{t_{T}} \mathbf{=}=20 \mathrm{~ns}$
t ovm	PRECHARGE \& CENABLE OVERLAP, 50\% POINTS	25		50	ns	

READ CyCle

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
$t_{\text {RC }}{ }^{(1)}$	READ CYCLE	300			ns	$\mathrm{t}_{\mathrm{T}}=\mathbf{2 0} \mathbf{n s}$
tpov	PRECHARGE TO END OF CENABLE	115		500	ns	
$\mathrm{tpO}{ }^{(1)}$	END OF PRECHARGE TO OUTPUT DELAY			75	ns	$\begin{aligned} & \mathrm{C}_{\text {LOAD }}=50 \mathrm{pF} \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega \\ & \mathrm{~V}_{\text {REF }}=80 \mathrm{mV} \end{aligned}$
$t_{\text {Accl }}{ }^{(1)}$	ADDRESS TO OUTPUT ACCESS	150			ns	$\begin{gathered} t_{A C_{\text {min }}}+t_{\text {OVLmin }}+t_{\text {POMax }}+2 t_{T} \\ C_{\text {LOAD }}=50 \mathrm{pF} \\ R_{L O A D}=100 \Omega \\ V_{R E F}=80 \mathrm{mV} \end{gathered}$
$t_{\text {ACC2 }}{ }^{(1)}$	PRECHARGE TO OUTPUT ACCESS	180			ns	$\begin{gathered} t_{\text {PC min }}+t_{\text {oVLmin }}+t_{\text {POMax }}+2 t_{T} \\ \mathrm{C}_{\text {LOAD }}=50 \mathrm{pF} \\ \mathrm{R}_{\text {LOAD }}=100 \Omega \\ \mathrm{~V}_{\text {REF }}=80 \mathrm{mV} \end{gathered}$

WRITE OR READ/WRITE CYCLE

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
$t_{\text {wc }}$	WRITE CYCLE	340			ns	$\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$
$t_{\text {kwc }}(1)$	READ/WRITE CYCLE	340			ns	
$t_{\text {p }}$	PRECHARGE TO READ/WRITE DELAY	115		500	ns	
$t_{w p}$	READ/WRITE PULSE WIDTH	20			ns	
t_{w}	READ/WRITE SET UP TIME	20			ns	
tow	DATA SET UP TIME	40			ns	
$\mathrm{toH}_{\text {H }}$	DATA HOLD TIME	10			ns	
$\mathrm{tpO}^{(1)}$	END OF PRECHARGE TO OUTPUT DELAY			75	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{LOAD}}=50 \mathrm{pF} \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega \end{aligned}$
$t_{\text {cw }}$	RELATIONSHIP BETWEEN CENABLE AND READ/WRITE			0	ns	$\mathrm{V}_{\text {REF }}=80 \mathrm{mV}$

NOTE 1: These times will degrade by 35 nsec if a $V_{\text {REF }}$ point of 40 mV is chosen instead of the 80 mV point defined in the spec.
*CAPACITANCE $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	TEST	TYP.	$\begin{gathered} \hline \text { PLASTIC PKG. } \\ \text { MAX. } \end{gathered}$	$\begin{aligned} & \text { CERAMIC PKG. } \\ & \text { MAX. } \end{aligned}$	UNIT	CONDITIONS	
$\mathrm{C}_{\text {^0 }}$	ADDRESS CAPACITANCE	5	7	12	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{S S} \quad$]	
$\mathrm{C}_{\text {PR }}$	PRECHARGE CAPACITANCE	15	18	19.5	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	
$\mathrm{C}_{C E}$	CENABLE CAPACITANCE	15	18	21	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$	$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\text {Rw }}$	READ/WRITE CAPACITANCE	11	15	19.5	pF	$\mathrm{V}_{1 N}=\mathrm{V}_{S S}$	$\}$ All Unused
$\mathrm{C}_{\text {INI }}$	DATA INPUT CAPACITANCE	4	5	7.5	pF	$\begin{aligned} & \text { CENABLE }=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$	At A.C. Ground
$\mathrm{Cl}_{\text {IN, }}$	DATA INPUT CAPACITANCE	2	4	6.5	pF	$\begin{aligned} & \text { CENABLE }=V_{s s} \\ & V_{I N}=V_{S S} \end{aligned}$	
Cout	DATA OUTPUT CAPACITANCE	2	3	7	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \quad J$	

[^3]WRITE OR READ/WRITE CYCLE

READ CYCLE

$\left.\begin{array}{l}\text { NOTE (1) } \\ \text { NOTE (2) } \\ V_{\text {DO }}+2 V \\ \text { NO }\end{array}\right] \mathrm{V}_{\mathrm{T}}$ IS DEFINED AS THE TRANSITIONS BETWEEN THESE TWO POINTS
NOTE 3 t $t_{\text {SW }}$ IS REFERENCED TO POINT(1) OF THE RISING EDGE OF CHIP ENABLE OR READ/WRITE WHICHEVER OCCURS FIRST NOTE $4 \mathrm{t}_{\mathrm{DH}}$ IS REFERENCED TO POINT(2) OF THE RISING EDGE OF CHIP ENABLE OR READ/WRITE WHICHEVER OCCURS FIRST

FULLY DECODED RANDOM ACCESS 1024 BIT DYNAMIC MEMORY

* No Precharge Required -- Critical Precharge Timing is Eliminated

- Electrically Equivalent to 1103--Pin-for-Pin/Functionally Compatible
- Fast Access Time--205ns max.
- Low Standby Power Dissipation -- $2 \mu \mathrm{~W} /$ Bit typical

\author{

- Address Registers Incorporated on the Chip
 - Simple Memory Expansion -Chip Enable Input Lead
 - Inputs Protected -- All Inputs Have Protection Against Static Charge
 - Ceramic and Plastic Package--18-Pin DIP
}

The 1103A is a 1024 word by 1 bit dynamic RAM. It is designed primarily for main memory applications where high performance, low cost, and large bit storage are important design objectives. The 1103A is electrically equivalent to the 1103.
1103A systems may be simplified due to the elimination of the precharge clock, its associated circuitry, and critical overlap timing. Only one external clock, CENABLE, is required.
Information stored in the memory is non-destructively read. Refreshing of all 1024 bits is accomplished in 32 read cycles (addressing A_{0} to A_{4}) and is required every two milliseconds. The memory may be used in a. low power standby mode by having cenable at $\mathrm{V}_{\text {SS }}$ potential.
The 1103A is fabricated with silicon gate technology. This low threshold technology allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.

PIN CONFIGURATION

PIN NAMES

DIN	DATA INPUT	NC	NO EXTERNAL CONNECTION REQUIRED (INTERNALLY NOT CONNECTED)
AO-A	ADDRESS INPUTS	CE	CHIP ENABLE
R/W	READ/WRITE	$\overline{\text { DOUT }}$	DATA OUTPUT

BLOCK DIAGRAM

Absolute Maximum Ratings*

Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to the most Positive Supply Voltage, V_{BB} -25 V to 0.3 V
Supply Voltages V_{DD} and V_{SS} with Respect to V_{BB} -25 V to 0.3 V
Power Dissipation 1.0W

*COMMENT.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D. C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{S S}{ }^{[1]}=16 \mathrm{~V} \pm 5 \%,\left(\mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}\right)^{[2]}=3 \mathrm{~V}$ to $4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$ unless otherwise specified.

Symbol	Test	Min.	Typ.	Max.	Unit	Conditions
$I_{L I}$	Input Load Current (All Input Pins)			1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{I}_{\text {LO }}$	Output Leakage Current			1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{B B}$	$V_{B B}$ Supply Current			100	$\mu \mathrm{A}$	
${ }^{\text {DD1 }}$	Supply Current During Cenable On		4	11	mA	Cenable $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
${ }^{\text {DD2 }}$	Supply Current During Cenable Off		0.1	4	mA	Cenable $=\mathrm{V}_{\text {SS }} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I dDAV	Average Supply Current		17	25	mA	Cycle Time $=580 \mathrm{~ns} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{\text {IL }}$.	Input Low Voltage	$V_{D D}-1$		$\mathrm{V}_{\mathrm{DD}}+1$	V	
$V_{1 H}$	Input High Voltage	$\mathrm{V}_{S S}-1$		$\mathrm{V}_{\text {SS }}+1$	V	
$\mathrm{I}_{\mathrm{OH} 1}$	Output High Current	600	1800	4000	$\mu \mathrm{A}$	$-\mathrm{R}_{\text {LOAD }}{ }^{[4]}=100 \Omega$
$\mathrm{I}_{\mathrm{OH} 2}$	Output High Current	500	1500	4000	$\mu \mathrm{A}$	
I_{OL}	Output Low Current	See Note Three				
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage	60	180	400	mV	
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage	50	150	400	mV	
V_{OL}	Output Low Voltage	See Note Three				

NOTES:

1. The $V_{S S}$ current drain is equal to ($I_{D D}+I_{O H}$) or ($I_{D D}+I_{O L}$).
2. ($\mathrm{V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}$) supply should be applied at or before V_{SS}.
3. The output current when reading a low output is the leakage current of the 1103 plus external noise coupled into the output line from the clocks. $V_{\text {OL }}$ equals IOL across the load resistor.
4. This value of load resistance is used for measurement purposes. In applications the resistance may range from 100Ω to $1 \mathrm{k} \Omega$.

Supply Current vs Temperature

Typical Characteristics

AVERAGE I DD VS.
SUPPLY VOLTAGE

$I_{\text {dD }}$ VS. CENABLE

AVERAGE $I_{D D}$ VS.
1103A CYCLE TIME

A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=16 \mathrm{~V} \pm 5 \%,\left(\mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}\right)=3.0 \mathrm{~V}$ to $4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$

READ, WRITE, AND READ/WRITE CYCLE

Symbol	Test	Min.	Max.	Unit	Conditions
${ }^{\text {t }}$ REF	Time Between Refresh		2	ms	
${ }^{\text {t }}$ AC	Address to Cenable Set Up Time	0		ns	
${ }^{\text {t }}$ AH	Address Hold Time	100		ns	
${ }^{\text {t }} \mathrm{CC}$	Cenable Off Time	230		ns	

READ CYCLE

Symbol	Test	Min.	Max.	Unit	Conditions	
t_{RC}	Read Cycle	480		ns	$\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$$\begin{aligned} & t_{A C C}=t_{A C M I N}+ \\ & t_{C O}+t_{T} \end{aligned}$	$\begin{aligned} & C_{\text {LOAD }}=100 \mathrm{pF} \\ & R_{\text {LOAD }}=100 \Omega \\ & V_{\text {REF }}=40 \mathrm{mV} \end{aligned}$
${ }^{\text {t }} \mathrm{CV}$	Cenable on Time	210	500	ns		
${ }^{\text {t }} \mathrm{CO}$	Cenable Output Delay		185	ns		
${ }^{\text {t }}$ ACC	ADDRESS TO OUTPUT ACCESS		205	ns		
${ }^{\text {t }}$ WH	Read/Write Hold Time	30		ns		

WRITE OR READ/WRITE CYCLE

Symbol	Test	Min.	Max.	Unit	Conditions
${ }^{\text {t }}$ WCY	Write Cycle	580		ns	$]_{\mathrm{t}}=20 \mathrm{~ns}$$-\left[\begin{array}{c} C_{\text {LOAD }}=100 \mathrm{pF} ; \mathrm{R}_{\text {LOAD }}=100 \Omega \\ V_{\text {REF }}=40 \mathrm{mV} \end{array}\right.$
. $\mathrm{t}_{\text {RWC }}$	Read/Write Cycle	580		ns	
${ }^{\text {t }} \mathrm{CW}$	Cenable to Read/Write Delay	210	500	ns	
$\mathrm{t}_{\text {W/P }}$	Read/Write Pulse Width	50		ns	
${ }^{\text {t }}$ w	Read/Write Set Up Time	80		ns	
${ }^{\text {t }}$ W	Data Set Up Time	105		ns	
t_{DH}	Data Hold Time	10		ns	
${ }^{\text {t }} \mathrm{CO}$	Output Delay		185	ns	
${ }^{\text {tw }}$ c	Read/Write to Cenable	0		ns	

CAPACITANCE ${ }^{[1]} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Test	Typ. Plastic	Plastic Pkg. Max.	Ceramic Pkg. Max.	Unit	Conditions	
$\mathrm{C}_{\text {AD }}$	Address Capacitance	5	7	12	pF	$V_{\text {IN }}=V_{S S}$	$\mathrm{f}=1 \mathrm{MHz} . \text { All }$ unused pins are at A.C. ground.
$\mathrm{C}_{\text {CE }}$	Cenable Capacitance	22	25	28	pF	$V_{\text {IN }}=V_{S S}$	
$\mathrm{C}_{\text {RW }}$	Read/Write Capacitance	11	15	19.5	pF	$V_{\text {IN }}=V_{S S}$	
$\mathrm{C}_{\text {IN1 }}$	Data Input Capacitance	4	5	7.5	pF	$\begin{aligned} & \text { Cenable }=0 V \\ & V_{I N}=V_{S S} \end{aligned}$	
$\mathrm{C}_{\text {IN2 }}$	Data Input Capacitance	2	4	6.5	pF	Cenable $=\mathrm{V}_{\text {SS }}$	
$\mathrm{C}_{\text {OUT }}$	Data Output Capacitance	2	3	7.0	pF	$\begin{aligned} & V_{\text {IN }}=V_{\text {SS }} \\ & V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	

NOTES: 1. These parameters are periodically sampled and are not 100% tested. They are measured at worst case operating conditions.

WRITE CYCLE OR READ/WRITE CYCLE

Timing illustrated for minimum cycle.

READ CYCLE

NOTES:
(1.) $V_{D D}+2 V ~ V_{T S}-2 V$ is defined as the transition between these two points.
3. tDW is referenced to point • 1 of the rising edge of cenable or Read/Write, whichever occurs first.
4. $t_{D H}$ is referenced to point 2 of the rising edge of Read/Write.

1103A-1

FULLY DECODED RANDOM ACCESS 1024 BIT DYNAMIC MEMORY

High Speed 1103A - Access Time - 145ns/Cycle Time-340ns

*No Precharge Required -- Critical
 Precharge Timing is Eliminated

- Low Standby Power Dissipation -- $0.2 \mu \mathrm{~W} /$ Bit Typical

\author{

- Address Registers Incorporated on the Chip
}
- Simple Memory Expansion -Chip Enable Input Lead
- Inputs Protected -- All Inputs Have Protection Against Static Charge
- Standard 18-Pin Dual In-Line Packages

The Intel ${ }^{\circ} 1103 \mathrm{~A}-1$ is a high speed 1024 bit dynamic random access memory and is the fastest version of the standard 1103A. It is designed primarily for main memory applications where high performance, low cost, and large bit storage are important design objectives.
1103A-1 systems may be simplified due to the elimination of the precharge clock, its associated circuitry, and critical overlap timing. Only one external clock, CENABLE, is required.
Information stored in the memory is non-destructively read. Refreshing of all 1024 bits is accomplished in 32 read cycles (addressing A_{0} to A_{4}) and is required every one millisecond. The memory may be used in a low power standby mode by having cenable at V_{SS} potential.
The 1103A-1 is fabricated with silicon gate technology. This low threshold technology allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.

PIN CONFIGURATION

PIN NAMES

DIN	DATA INPUT	NC	NO EXTERNAL CONNECTION REQUIRED (INTERNALLY NOT CONNECTED)
$A_{0}-A_{9}$	ADDRESS INPUTS	CE	CHIP ENABLE
	R/W	READ/WRITE	$\overline{\text { DOUT }}$

LOGIC SYMBOL

BLOCK DIAGRAM

Absolute Maximum Ratings*

Temperature Under Bias . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to the most Positive Supply Voltage, $\mathrm{V}_{\mathrm{BB}} \ldots \ldots$.

Power Dissipation . $1.0 W$
*COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D. C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}, \mathrm{V}_{S S}{ }^{[1]}=19 \mathrm{~V} \pm 5 \%,\left(V_{B B}-V_{S S}\right)^{[2]}=3 \mathrm{~V}$ to $4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$ unless otherwise specified.

Symbol	Test	Min.	Typ.	Max.	Unit	Conditions
${ }^{\text {LI }}$	Input Load Current (All Input Pins)			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
$I_{\text {Lo }}$	Output Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
I_{BB}	$V_{B B}$ Supply Current			100	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {DD1 }}$	Supply Current During Cenable On		7	11	mA	Cenable $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{DD} 2}$	Supply Current During Cenable Off		0.01	0.5	mA	Cenable $=\mathrm{V}_{\text {SS }} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {DDAV }}$	Average Supply Current		25	33	mA	Cycle Time $=340 \mathrm{~ns} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{\text {IL }}$	Input Low Voltage	$V_{D D}-1$		$V_{D D}+1$	V	
$V_{1 H}$	Input High Voltage	$\mathrm{V}_{S S}{ }^{-1}$		$\mathrm{V}_{\text {SS }}+1$	V	
$\mathrm{I}_{\mathrm{OH} 1}$	Output High Current	1150	1800	7000	$\mu \mathrm{A}$	$-\mathrm{R}_{\text {LOAD }}{ }^{[4]}=100 \Omega$
${ }^{\text {OH2 }}$	Output High Current	900	1600	7000	$\mu \mathrm{A}$	
${ }^{\text {OL }}$	Output Low Current	See Note Three				
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage	115	180	700	mV	
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage	90	160	700	mV	
V_{OL}	Output Low Voltage	See Note Three				

NOTES:

1. The $V_{S S}$ current drain is equal to ($I_{\mathrm{DD}}+I_{\mathrm{OH}}$) or ($I_{\mathrm{DD}}+I_{\mathrm{OL}}$).
2. ($\mathrm{V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}$) supply should be applied at or before V_{SS}.
3. The output current when reading a low output is the leakage current of the 1103 plus external noise coupled into the output line from the clocks.
$V_{\text {OL }}$ equals IOL across the load resistor.
4. This value of load resistance is used for measurement purposes. In applications the resistance may range from 100Ω to $1 \mathrm{k} \Omega$.
A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}, \mathrm{V}_{S S}=19 \mathrm{~V} \pm 5 \%,\left(\mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}\right)=3.0 \mathrm{~V}$ to $4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$.

READ, WRITE, AND READ/WRITE CYCLE

Symbol	Test	Min.	Max.	Unit	Conditions
$\mathrm{t}_{\text {REF }}$	Time Between Refresh		1	ms	
t_{AC}	Address to Cenable Set Up Time	0		ns	
$\mathrm{t}_{\text {AH }}$	Address Hold Time	100		ns	
${ }^{\text {c }} \mathrm{CC}$	Cenable Off Time	120		ns	

READ CYCLE

Symbol	Test	Min.	Max.	Unit	Conditions	
$\mathrm{t}_{\text {RC }}$	Read Cycle	300		ns	$\begin{aligned} & \mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns} \\ & t_{\mathrm{ACC}}=\mathrm{t}_{\mathrm{AC} \mathrm{MIN}}+ \\ & \mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & C_{\text {LOAD }}=50 \mathrm{pF} \\ & R_{\text {LOAD }}=100 \Omega \\ & V_{\text {REF }}=80 \mathrm{mV} \end{aligned}$
${ }^{\text {t }} \mathrm{C}$ V	Cenable on Time	140	500	ns		
${ }^{\text {t }} \mathrm{CO}$	Cenable Output Delay		125	ns		
${ }^{\text {t }}$ ACC	ADDRESS TO OUTPUT ACCESS		145	ns		
${ }^{\text {t }}$ WH	Read/Write Hold Time	30		ns		

WRITE OR READ/WRITE CYCLE

Symbol	Test	Min.	Max.	Unit	Conditions
${ }^{\text {t }}$ WCY	Write Cycle	340		ns	$]-\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$
$\mathrm{t}_{\text {RWC }}$	Read/Write Cycle	340		ns	
${ }^{\text {t }}$ CW	Cenable to Read/Write Delay	140	500	ns	
${ }^{\text {t }}$ W ${ }^{\text {P }}$	Read/Write Pulse Width	20		ns	
${ }^{\text {t }}$ w	Read/Write Set Up Time	20		ns	
${ }^{\text {t }}{ }_{\text {DW }}$	Data Set Up Time	40		ns	
${ }^{\text {t }}$ D ${ }^{\text {c }}$	Data Hold Time	10		ns	
${ }^{\text {t }} \mathrm{CO}$	Output Delay		125	ns	$\left\{\begin{array}{c} C_{\text {LOAD }}=50 \mathrm{pF} ; \mathrm{R}_{\text {LOAD }}=100 \Omega \\ \mathrm{~V}_{\text {REF }}=80 \mathrm{mV} \end{array}\right.$
${ }^{\text {tw }}$ c	Read/Write to Cenable	0		ns	

CAPACITANCE ${ }^{[1]} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Test	Typ. Plasti	Plastic Pk Max.	Ceramic Pkg. Max.	Unit	Conditions	
$C_{\text {AD }}$	Address Capacitance	5	7	12	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	$f=1 \mathrm{MHz} . \text { All }$ unused pins are at A.C. ground.
$\mathrm{C}_{\text {ce }}$	Cenable Capacitance	22	25	28	pF	$V_{1 N}=V_{S S}$	
$\mathrm{C}_{\text {RW }}$	Read/Write Capacitance	11	15	19.5	pF	$V_{\text {IN }}=V_{\text {SS }}$	
$\mathrm{C}_{\text {IN1 }}$	Data Input Capacitance	4	5	7.5	pF	$\begin{aligned} & \text { Cenable }=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$	
$\mathrm{C}_{\text {IN2 }}$	Data Input Capacitance	2	4	6.5	pF	Cenable $=\mathrm{V}_{\text {SS }}$	
$\mathrm{C}_{\text {OUT }}$	Data Output Capacitance	2	3	7.0	pF	$\begin{aligned} & V_{\text {IN }}=V_{\text {SS }} \\ & V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	

NOTES: 1. These parameters are periodically sampled and are not 100% tested. They are measured at worst case operating conditions.

WRITE CYCLE OR READ/WRITE CYCLE

READ CYCLE

NOTES:
(1.) $\left.V_{D D}+2 V\right]$
(2.) $\mathrm{V}_{\mathrm{SS}}-2 \mathrm{~V}$ - t_{T} is defined as the transition between these two points.
3. $t_{D W}$ is referenced to point 1 of the rising edge of cenable or Read/Write, whichever occurs first.
4. t_{DH} is referenced to point 2 of the rising edge of Read/Write.

Supply Current vs Temperature

Typical Characteristics

AVERAGE IDD VS. CYCLE TIME

AVERAGE $I_{D D}$ VS.
SUPPLY VOLTAGE

I DD VS. CENABLE

FULLY DECODED RANDOM ACCESS 1024 BIT DYNAMIC MEMORY

- High Speed 1103A - Access Time - 145ns/Cycle Time-400ns

* No Precharge Required -- Critical
 Precharge Timing is Eliminated

- Low Standby Power Dissipa-tion-- 0.2μ W/Bit Typical

- Address Registers Incorporated on the Chip

- Simple Memory Expansion -Chip Enable Input Lead
- Inputs Protected -- All Inputs Have Protection Against Static Charge
- Standard 18-Pin Dual In-Line Packages

The Intel ${ }^{\circ} 1130 \mathrm{~A}-2$ is a high speed 1024 bit dynamic random access memory and is the 400 ns cycle time version of the standard 1103A. It is designed primarily for main memory applications where high performance, low cost, and large bit storage are important design objectives.
1103A-2 systems may be simplified due to the elimination of the precharge clock, its associated circuitry, and critical overlap timing. Only one external clock, CENABLE, is required.
Information stored in the memory is non-destructively read. Refreshing of all 1024 bits is accomplished in 32 read cycles (addressing A_{0} to A_{4}) and is required every one millisecond. The memory may be used in a low power standby mode by having cenable at $V_{S S}$ potential.
The 1103A-2 is fabricated with silicon gate technology. This low threshold technology allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.

PIN CONFIGURATION

PIN NAMES

DIN	DATA INPUT	NC	NO EXTERNAL CONNECTION REQUIRED (INTERNALLY NOT CONNECTED)
$\mathrm{A}_{0}-\mathrm{A}_{9}$	ADDRESS INPUTS	CE	CHIP ENABLE
R/W	READ/WRITE	$\overline{\text { DOUT }}$	DATA OUTPUT

BLOCK DIAGRAM

Absolute Maximum Ratings*

D. C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}, \mathrm{V}_{S S}{ }^{[1]}=19 \mathrm{~V} \pm 5 \%,\left(V_{B B}-V_{S S}\right)^{[2]}=3 \mathrm{~V}$ to $4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$ unless otherwise specified.

Symbol	Test	Min.	Typ.	Max.	Unit	Conditions
$I_{L I}$	Input Load Current (All Input Pins)			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{I}_{\text {LO }}$	Output Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
I_{BB}	V_{BB} Supply Current			100	$\mu \mathrm{A}$	
${ }^{\text {DD1 }}$	Supply Current During Cenable On		7	11	mA	Cenable $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {DD2 }}$	Supply Current During Cenable Off		0.01	0.5	mA	Cenable $=\mathrm{V}_{S S} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I DDAV	Average Supply Current		22	30	mA	Cycle Time $=400 \mathrm{~ns} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{\text {IL }}$	Input Low Voltage	$V_{D D}{ }^{-1}$		$V_{D D}+1$	V	
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage	$\mathrm{V}_{S S}-1$		$\mathrm{V}_{S S}+1$	V	
$\mathrm{I}_{\mathrm{OH} 1}$	Output High Current	1150	1800	7000	$\mu \mathrm{A}$	$-\mathrm{R}_{\text {LOAD }}{ }^{[4]}=100 \Omega$
$\mathrm{I}_{\mathrm{OH} 2}$	Output High Current	900	1600	7000	$\mu \mathrm{A}$	
I_{OL}	Output Low Current	See Note Three				
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage	115	180	700	mV	
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage	90	160	700	mV	
V_{OL}	Output Low Voltage	See Note Three				

NOTES:

1. The $V_{S S}$ current drain is equal to ($I_{\mathrm{DD}}+I_{\mathrm{OH}}$) or ($I_{\mathrm{DD}}+I_{\mathrm{OL}}$).
2. ($\mathrm{V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}$) supply should be applied at or before V_{SS}.
3. The output current when reading a low output is the leakage current of the 1103 plus external noise coupled into the output line from the clocks. $V_{\text {OL }}$ equals IOL across the load resistor.
4. This value of load resistance is used for measurement purposes. In applications the resistance may range from 100Ω to $1 \mathrm{k} \Omega$.
A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}, \mathrm{V}_{S S}=19 \mathrm{~V} \pm 5 \%,\left(\mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{S S}\right)=3.0 \mathrm{~V}$ to $4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$.
read, write, and read/write cycle
Refer to page 2-23 for definitions.

Symbol	Test	Min.	Max.	Unit	Conditions
$\mathrm{t}_{\text {REF }}$	Time Between Refresh		1	ms	
${ }^{\text {t }}$ AC	Address to Cenable Set Up Time	0		ns	
${ }^{t}$ AH	Address Hold Time	100		ns	
${ }^{\text {t }} \mathrm{CC}$	Cenable Off Time	180		ns	

READ CYCLE

Symbol	Test	Min.	Max.	Unit	Conditions	
t_{RC}	Read Cycle	360		ns	$\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$$\begin{aligned} & t_{\mathrm{ACC}}=\mathrm{t}_{\mathrm{AC} \mathrm{MIN}}+ \\ & \mathrm{t}_{\mathrm{CO}}{ }^{+} \mathrm{t}_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & C_{\text {LOAD }}=50 \mathrm{pF} \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega \\ & \mathrm{~V}_{\text {REF }}=80 \mathrm{mV} \end{aligned}$
${ }^{\text {t }} \mathrm{CV}$	Cenable on Time	140	500	ns		
${ }^{\text {t }} \mathrm{CO}$	Cenable Output Delay		125	ns		
${ }^{t}$ ACC	ADDRESS TO OUTPUT ACCESS		145	ns		
${ }^{\text {t }}$ WH	Read/Write Hold Time	30		ns		

WRITE OR READ/WRITE CYCLE

Symbol	Test	Min.	Max.	Unit	Conditions
${ }^{\text {t }}$ WCY	Write Cycle	400		ns	$]_{\mathrm{T}}=20 \mathrm{~ns}$$-\left[\begin{array}{c} C_{\text {LOAD }}=50 \mathrm{pF}, R_{\text {LOAD }}=100 \Omega \\ V_{\text {REF }}=80 \mathrm{mV} \end{array}\right.$
$\mathrm{t}_{\text {RWC }}$	Read/Write Cycle	400		ns	
${ }^{\text {t }}$ cw	Cenable to Read/Write Delay	140	500	ns	
${ }^{\text {tw }}$ P	Read/Write Pulse Width	20		ns	
${ }_{\text {t }}$ w	Read/Write Set Up Time	20		ns	
${ }^{\text {t }}$ W ${ }_{\text {W }}$	Data Set Up Time	40		ns	
${ }^{\text {t }}$ DH	Data Hold Time	10		ns	
${ }^{\text {t }} \mathrm{CO}$	Output Delay		125	ns	
${ }^{\text {tw }}$ c	Read/Write to Cenable	0		ns	

CAPACITANCE ${ }^{[1]} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Test	Typ. Plastic	Plastic Pk Max.	Ceramic Pkg. Max.	Unit	Conditions	
$C_{\text {AD }}$	Address Capacitance	5	7	12	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	$f=1 \mathrm{MHz} . \text { All }$ unused pins are at A.C. ground.
$\mathrm{C}_{\text {CE }}$	Cenable Capacitance	22	25	28	pF	$V_{\text {IN }}=V_{S S}$	
$\mathrm{C}_{\text {RW }}$	Read/Write Capacitance	11	15	19.5	pF	$V_{\text {IN }}=V_{\text {SS }}$	
$\mathrm{C}_{\text {IN1 }}$	Data Input Capacitance	4	5	7.5	pF	$\begin{aligned} & \text { Cenable }=0 V \\ & V_{I N}=V_{S S} \end{aligned}$	
$\mathrm{C}_{\text {IN2 }}$	Data Input Capacitance	2	4	6.5	pF	Cenable $=V_{\text {SS }}$	
COUT	Data Output Capacitance	2	3	7.0	pF	$\begin{array}{\|l\|} \hline V_{\text {IN }}=V_{\text {SS }} \\ V_{\text {OUT }}=O V \end{array}$	

NOTES: 1. These parameters are periodically sampled and are not 100% tested. They are measured at worst case operating conditions.

Supply Current vs Temperature

Typical Characteristics

AVERAGE $I_{D D}$ VS. CYCLE TIME

AVERAGE $I_{D D}$ VS.
SUPPLY VOLTAGE

$I_{\text {DD }}$ VS. CENABLE

256×4 RAM WITH SEPARATE I/O

$2101 A-2$	250 ns Max.
$2101 A$	350 ns Max.
$2101 A-4$	450 ns Max.

- 256×4 Organization to Meet Needs for Small System Memories

- Single +5V Supply Voltage
- Directly TTL Compatible: All Inputs and Output
- Statis MOS: No Clocks or Refreshing Required
- Simple Memory Expansion: Chip Enable Input

- Inputs Protected: All Inputs Have Protection Against Static Charge
 - Low Cost Packaging: 22 Pin Plastic Dual In-Line Configuration

- Low Power: Typically 150mW
- Three-State Output: OR-Tie Capability
- Output Disable Provided for Ease of Use in Common Data Bus Systems

The Intel® 2101A is a 256 word by 4-bit static random access memory element using N-channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data.
The 2101A is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. Two chip-enables allow easy selection of an individual package when outputs are OR-tied. An output disable is provided so that data inputs and outputs can be tied for common I/O systems. The output disable function eliminates the need for bi-directional logic in a common I/O system.
The Intel® 2101A is fabricated with N -channel silicon gate technology. This technology allows the design and production of high performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or P-channel silicon gate technology.

Intel's silicon gate technology also provides excellent protection against contamination. This permits the use of low cost plastic packaging.

Absolute Maximum Ratings*

Ambient Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin
With Respect to Ground -0.5 V to +7 V
Power Dissipation
1 Watt
*COMMENT:
Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure, to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$I_{\text {LI }}$	Input Current		1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
ILOH	I/O Leakage Current ${ }^{[2]}$		1	10	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.0 \mathrm{~V}$
I LOL	1/O Leakage Current ${ }^{[2]}$		-1	-10	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0.45 \mathrm{~V}$
${ }^{\text {CCC1 }}$	$\begin{array}{lr} \text { Power Supply } \\ \text { Current } \end{array} \quad \frac{2101 \mathrm{~A}, 2101 \mathrm{~A}-4}{2101 \mathrm{~A}-2}$		35	55	mA	$\begin{aligned} & \mathrm{V}_{I N}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current			60	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$
$V_{\text {IL }}$	Input "Low" Voltage	-0.5		+0.8	V	
V_{IH}	Input "High" Voltage	2.0		V_{Cc}	V	
V_{OL}	Output "Low" Voltage			+0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
V OH	Output "High" 2101A, 2101A-2	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
	Voltage $\quad 2101 \mathrm{~A}-4$	2.4			V	$\mathrm{IOH}^{\prime}=-150 \mu \mathrm{~A}$

Typical D. C. Characteristics

NOTES: 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

A.C. Characteristics for 2101A-2 (250 ns Access Time)

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

WRITE CYCLE

A. C. CONDITIONS OF TEST
Input Pulse Levels: $\quad+0.8$ Volt and 2.0 Volts
Input Pulse Rise and Fall Times: 20 nsec
Timing Measurement Reference Level: 1.5 Volt
Output Load: $\quad 1 \mathrm{TTL}$ Gate and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

Capacitance ${ }^{[2]} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Test	Limits (pF)	
	Typ. ${ }^{[1]}$	Max.	
C_{IN}	Input Capacitance (All Input Pins) $V_{I N}=0 \mathrm{~V}$	4	8
$\mathrm{C}_{\text {OUT }}$	Output Capacitance $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$	8	12

Waveforms

READ CYCLE

NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. This parameter is periodically sampled and is not 100% tested.
3. pDF is with respect to the trailing edge of $\overline{\mathrm{CE}}_{1}, C E_{2}$, or $O D$, whichever occurs first.

WRITE CYCLE

4. $O D$ should be tied low for separate I / O operation.

2101A (350 ns Access Time)

A.C. Characteristics

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
t_{RC}	Read Cycle	350			ns	$t_{r}, t_{f}=20 n s$
${ }_{\text {t }}$ A	Access Time			350	ns	
${ }^{\text {t }}$ CO	Chip Enable To Output			240	ns	
${ }^{\text {tod }}$	Output Disable To Output			180	ns	$\begin{aligned} & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \begin{aligned} \text { Load } & =1 \mathrm{TTL} \text { Gate } \\ & \text { and } C_{L}=100 \mathrm{pF} . \end{aligned} \end{aligned}$
$\mathrm{t}_{\mathrm{DF}}{ }^{\text {[2] }}$	Data Output to High Z State	0		150	ns	
${ }^{\text {toH }}$	Previous Read Data Valid after change of Address	40			ns	

WRITE CYCLE

Symbol	Parameter	Min.	$\text { Typ. }{ }^{[1]}$	Max.	Unit	Test Conditions
${ }^{\text {tw }}$ c	Write Cycle	220			ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
${ }^{\text {taw }}$	Write Delay	20			ns	
${ }^{\text {t }}$ W	Chip Enable To Write	200			ns	
tow	Data Setup	200			ns	$\begin{aligned} & \text { Timing } \text { Reference }=1.5 \mathrm{~V} \\ & \text { Load }= 1 \mathrm{TTL} \text { Gate } \\ & \text { and } C_{L}=100 \mathrm{pF} . \end{aligned}$
${ }_{\text {t }}^{\text {D }}$	Data Hold	0			ns	
$t_{\text {WP }}$	Write Pulse	200			ns	
twr	Write Recovery	0			ns	
${ }^{\text {t }}$ DS	Output Disable Setup	20			ns	

2101A-4 (450 ns Access Time)

A.C. Characteristics

READ CYCLE $\quad T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$\mathrm{t}_{\text {RC }}$	Read Cycle	450			ns	$t_{r}, t_{f}=20 n s$
$t_{\text {A }}$	Access Time			450	ns	
${ }^{\text {t }} \mathrm{CO}$	Chip Enable To Output			310	ns	
t_{OL}	Output Disable To Output			250	ns	$\begin{aligned} & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \end{aligned}$
${ }^{t_{D F}}{ }^{[2]}$	Data Output to High Z State	0		200	ns	
${ }^{\text {toH }}$	Previous Read Data Valid after change of Address	40			ns	and $C_{L}=100 \mathrm{pF}$.

WRITE CYCLE

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
${ }_{\text {t }}$ WC	Write Cycle	270			ns	$t_{r}, t_{f}=20 n s$
${ }^{\text {a }}$ W	Write Delay	20			ns	
${ }^{\text {c }}$ W W	Chip Enable To Write	250			ns	
${ }_{\text {t }}$ W	Data Setup	250			ns	$\begin{aligned} & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }= 1 \mathrm{TTL} \text { Gate } \\ & \text { and } C_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$
${ }_{\text {t }}^{\text {DH }}$	Data Hold	0			ns	
${ }_{\text {t }}$ P P	Write Pulse	250			ns	
${ }_{\text {t }}$ WR	Write Recovery	0			ns	
${ }^{t}{ }_{\text {DS }}$	Output Disable Setup	20			ns	

NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. tDF is with respect to the trailing edge of $\mathrm{CE}_{1}, C E_{2}$, or OD , whichever occurs first.

- Inputs Protected - All Inputs Have Protection Against Static Charge
 - Low Cost Packaging - 22 Pin Plastic Dual-In-Line Configuration
 - Low Power - Typically 150 mW
 - Three-State Output - OR-Tie Capability
 - Output Disable Provided for Ease of Use in Common Data Bus Systems

- 256×4 Organization to Meet Needs for Small System Memories
- Access Time - 0.5 to 1μ sec Max.
- Single +5V Supply Voltage
- Directly TTL Compatible - All Inputs and Output
- Static MOS - No Clocks or Refreshing Required
- Simple Memory Expansion - Chip Enable Input

Absolute Maximum Ratings*

Ambient Temperature Under Bias \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin
With Respect to Ground \qquad
Power Dissipation
1 Watt

*COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics for 2101, 2101-1, 2101-2

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
I_{LI}	Input Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0$ to 5.25 V
$\mathrm{I}_{\mathrm{LOH}}$	I/O Leakage Current ${ }^{\text {[2] }}$			15	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=4.0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{LOL}}$	I/O Leakage Current[2]			-50	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CC} 1}$	Power Supply Current		30	60	mA	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$ $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current			70	mA	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$ $\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
V_{IL}	Input "Low" Voltage	-0.5		+0.65	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input "High"Voltage	2.2		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{OL}	Output "Low" Voltage			+0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output "High" Voltage	2.2			V	$\mathrm{I}_{\mathrm{OH}}=-150 \mu \mathrm{~A}$

Typical D. C. Characteristics

NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage
2. Input and Output tied together.

A.C. Characteristics for 2101

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
t_{RC}	Read Cycle	1,000			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$
t_{A}	Access Time			1,000	ns	
t_{CO}	Chip Enable To Output			800	ns	
tod	Output Disable To Output			700	ns	
$\mathrm{t}_{\mathrm{DF}}{ }^{\text {[3] }}$	Data Output to High Z State	0		200	ns	
${ }^{\text {toh }}$	Previous Read Data Valid after change of Address	40			ns	

WRITE CYCLE

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$t_{\text {wc }}$	Write Cycle	1,000			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } C_{L}=100 \mathrm{pF} . \end{aligned}$
$\mathrm{t}_{\text {AW }}$	Write Delay	150			ns	
${ }_{\text {t }}$ W	Chip Enable To Write	900			ns	
$t_{\text {DW }}$	Data Setup	700			ns	
${ }_{\text {t }}$ H	Data Hold	100			ns	
$t_{W P}$	Write Pulse	750			ns	
twr	Write Recovery	50			ns	
${ }^{t}$ DS	Output Disable Setup	200			ns	

A. C. CONDITIONS OF TEST

Input Pulse Levels: $\quad+0.65$ Volt to 2.2 Volt Input Pulse Rise and Fall Times: 20 nsec

Timing Measurement Reference Level: 1.5 Volt
Output Load: $\quad 1$ TTL Gate and $C_{L}=100 \mathrm{pF}$

Waveforms

READ CYCLE

NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. This parameter is periodically sampled and is not 100% tested.
NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. This parameter is periodically sampled and is not 100% tested.
3. $t_{D F}$ is with respect to the trailing edge of $\mathrm{CE}_{1}, \mathrm{CE}_{2}$, or OD, whichever occurs first.

Capacitance ${ }^{[2]} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Test	Limits (pF)	
	Typ. ${ }^{[1]}$	Max.	
C_{IN}	Input Capacitance (All Input Pins) $V_{\text {IN }}=0 \mathrm{~V}$	4	8
$\mathrm{C}_{\text {OUT }}$	Output Capacitance $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	8	12

WRITE CYCLE

4. OD should be tied low for separate I/O operation.

2101-1 (500 ns Access Time)

A.C. Characteristics for 2101-1

READ CYCLE $\quad T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$\mathrm{t}_{\text {RC }}$	Read Cycle	500			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \end{aligned}$
t_{A}	Access Time			500	ns	
t_{CO}	Chip Enable To Output			350	ns	
tob	Output Disable To Output			300	ns	
${ }_{\text {t }}{ }^{\text {[2] }}$	Data Output to High Z State .	0		150	ns	
${ }^{\text {toh }}$	Previous Read Data Valid after change of Address	40			ns	and $C_{L}=100 \mathrm{pF}$.

WRITE CYCLE

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
twc	Write Cycle	500			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$
$\mathrm{t}_{\text {AW }}$	Write Delay	100			ns	
${ }^{\text {t }}$ CW	Chip Enable To Write	400			ns	
tow	Data Setup	280			ns	
${ }^{\text {t }}$ H	Data Hold	100			ns	
twp	Write Pulse	300			ns	
twr	Write Recovery	50			ns	
${ }^{\text {t }}$ DS	Output Disable Setup	150			ns	

2101-2 (650 ns Access Time)

A.C. Characteristics for 2101-2

READ CYCLE $\quad T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
t_{RC}	Read Cycle	650			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } C_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$
${ }^{\text {t }}$ A	Access Time			650	ns	
${ }_{\text {t }}$	Chip Enable To Output			400	ns	
tod	Output Disable To Output			350	ns	
${ }_{\text {t }}{ }^{[2]}$	Data Output to High Z State	0		150	ns	
${ }^{\text {toh }}$	Previous Read Data Valid after change of Address	40			ns	

WRITE CYCLE

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$t_{\text {w }}$	Write Cycle	650			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$
$\mathrm{t}_{\text {AW }}$	Write Delay	150			ns	
${ }^{\text {t }}$ W W	Chip Enable To Write	550			ns	
t ${ }_{\text {W }}$	Data Setup	400			ns	
${ }_{\text {t }}^{\text {D }}$ H	Data Hold	100			ns	
twp	Write Pulse	400			ns	
twr	Write Recovery	50			ns	
${ }^{t}$ DS	Output Disable Setup	150			ns	

NOTES: 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. tDF is with respect to the trailing edge of $\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$, or OD , whichever occurs first.

2102A, 2102AL

1K (1K x 1) STATIC RAM

P/N	Standby Pwr. (mW)	Operating Pwr. (mW)	Access (ns)
2102AL-4	35	174	450
2102AL	35	174	350
2102AL-2	42	342	250
2102A-2	-	342	250
2102A	-	289	350
$2102 A-4$	-	289	450
$2102 A-6$	-	289	650

- Single +5 Volts Supply Voltage
- Directly TTL Compatible: All Inputs and Output
- Standby Power Mode (2102AL)
- Three-State Output: OR-Tie Capability
- Inputs Protected: All Inputs Have Protection Against Static Charge
Low Cost Packaging: 16 Pin Dual-In-Line Configuration

The Intel® 2102A is a high speed 1024 word by one bit static random access memory element using N-channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operated. The data is read out nondestructively and has the same polarity as the input data.
The 2102A is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives. A low standby power version (2102AL) is also available. It has all the same operating characteristics of the 2102A with the added feature of 35 mW maximum power dissipation in standby and 174 m W in operations.

It is directly TTL compatible in all respects: inputs, output, and a single +5 volt supply. A separate chip enable ($\overline{\mathrm{CE}}$) lead allows easy selection of an individual package when outputs are OR-tied.
The Intel® 2102A is fabricated with N -channel silicon gate technology. This technology allows the design and production of high performance easy to use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or P-channel silicon gate technology.

2102A FAMILY

Absolute Maximum Ratings*

Ambient Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7 V
With Respect To Ground
Power Dissipation

*COMMENT:

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D. C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	$\begin{gathered} \text { 2102A, 2102A-4 } \\ \text { 2102AL, 2102AL-4 } \\ \text { Limits } \end{gathered}$			2102A-2, 2102AL-2 Limits			$\begin{array}{\|cc} & \begin{array}{c} \text { 2101A-6 } \\ \text { Limits } \end{array} \\ \text { Min. } & \text { Typ. }{ }^{11]} \\ \hline \end{array}$		Max.	Unit	Test Conditions
I_{LI}	Input Load Current		1	10		1	10		1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current		1	5		1	5		1	5	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{OH}} \end{aligned}$
ILOL	Output Leakage Current		-1	-10		-1	-10		-1	-10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE}}=2.0 \mathrm{~V}, \\ & \mathrm{~V} \text { OUT }=0.4 \mathrm{~V} \end{aligned}$
ICC	Power Supply Current		33	Note 2		45	65		33	55	mA	All Inputs $=5.25 \mathrm{~V}$, Data Out Open, $T_{A}=0^{\circ} \mathrm{C}$
$V_{\text {IL }}$	Input Low Voltage	-0.5		0.8	-0.5		0.8	-0.5		0.65	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0		V_{CC}	2.0		V_{CC}	2.2		V_{CC}	V	
V_{OL}	Output Low Voltage			0.4			0.4			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4			2.4			2.2			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$

Notes: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. The maximum ICC value is 55 mA for the 2102 A and $2102 \mathrm{~A}-4$, and 33 mA for the 2102 AL and 2102AL-4.

Standby Characteristics 2102AL, 2102AL-2, and 2102AL-4

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \text { 2102AL, 2102AL-4 } \\ \text { Limits } \end{gathered}$			$\begin{aligned} & \text { 2102AL-2 } \\ & \text { Limits } \end{aligned}$			Unit	Test Conditions
$V_{\text {PD }}$	$V_{\text {CC }}$ in Standby	1.5			1.5			V	
$\mathrm{V}_{\text {CES }}{ }^{[2]}$	$\overline{\text { CE }}$ Bias in Standby	2.0			2.0			V	$2.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{PD}} \leqslant \mathrm{V}_{\mathrm{CC}}$ Max.
		$\mathrm{V}_{\text {PD }}$			V_{PD}			V	$1.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{PD}}<2.0 \mathrm{~V}$
IPD1	Standby Current		15	23		20	28	mA	All Inputs $=\mathrm{V}_{\mathrm{PD} 1}=1.5 \mathrm{~V}$
IPD 2	Standby Current		20	30		25	38	mA	All Inputs $=\mathrm{V}_{\mathrm{PD} 2}=2.0 \mathrm{~V}$
$t_{C P}$	Chip Deselect to Standby Time	0			0			ns	
$\mathrm{t}_{\mathrm{R}}{ }^{\text {[3] }}$	Standby Recovery Time	$t_{\text {R }}$			t_{RC}			ns	

STANDBY WAVEFORMS

ov

NOTES:

1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
2. Consider the test conditions as shown: If the standby voltage ($V_{P D}$) is between $5.25 \mathrm{~V}\left(V_{C C}\right.$ Max.) and 2.0 V , then $\overline{\mathrm{CE}}$ must be heid at 2.0 V Min. $\left(\mathrm{V}_{1 \mathrm{H}}\right)$. If the standby voltage is less than 2.0 V but greater than 1.5V (VPD Min.), then $\overline{C E}$ and standby voltage must be at least the same value or, if they are different, $\overline{C E}$ must be the more positive of the two.
3. $t_{R}=t_{R C}$ (READ CYCLE TIME).
A. C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

READ CYCLE

	Parameter	$\begin{gathered} \text { 2102A-2, 2102AL-2 } \\ \text { Limits (ns) } \end{gathered}$		2102A, 2102AL Limits (ns)		$\begin{gathered} \text { 2102A-4, 2102AL-4 } \\ \text { Limits (ns) } \end{gathered}$		2102A-6 Limits (ns)	
Symbol		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
t_{RC}	Read Cycle	250		350		450		650	
t_{A}	Access Time		250		350		450		650
t_{CO}	Chip Enable to Output Time		130		180		230		400
tOH_{1}	Previous Read Data Valid with Respect to Address	40		40		40		50	
$\mathrm{t}_{\mathrm{OH} 2}$	Previous Read Data Valid with Respect to Chip Enable	0		0		0		0	

WRITE CYCLE

$t_{\text {WC }}$	Write Cycle	250	350	450	650
$t_{\text {AW }}$	Address to Write Setup Time	20	20	20	200
$t_{\text {WP }}$	Write Pulse Width	180	250	300	400
$t_{\text {WR }}$	Write Recovery Time	0	0	0	50
$t_{\text {DW }}$	Data Setup Time	180	250	300	450
$t_{\text {DH }}$	Data Hold Time	0	0	0	20
$t_{\text {CW }}$	Chip Enable to Write Setup Time	180	250	500	50

Capacitance ${ }^{[2]} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

A.C. CONDITIONS OF TEST

Input Pulse Levels:	0.8 Volt to 2.0 Volt	
Input Rise and Fall Times:	10 nsec	
Timing Measurement	Inputs:	1.5 Volts
Reference Levels	Output:	0.8 and 2.0 Volts
Output Load:	1 TTL	Gate and $C_{L}=100 \mathrm{pF}$

SYMBOL	TEST	LIMITS (pF)	
	TYP.(1)	MAX.	
$C_{\text {IN }}$	INPUT CAPACITANCE (ALL INPUT PINS) $V_{\text {IN }}=0 V$	3	5
$C_{\text {OUT }}$	OUTPUT CAPACITANCE $V_{\text {OUT }}=O V$	7	10

Waveforms

READ CYCLE

WRITE CYCLE

NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. This parameter is periodically sampled and is not 100% tested.

Typical D. C. and A. C. Characteristics

POWER SUPPLY CURRENT VS. AMBIENT TEMPERATURE

VIN LIMITS VS. TEMPERATURE

ACCESS TIME VS.
AMBIENT TEMPERATURE

POWER SUPPLY CURRENT VS. SUPPLY VOLTAGE

OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE

$V_{\text {OL }}$ (VOLTS)

ACCESS TIME VS.
LOAD CAPACITANCE

MILITARY TEMPERATURE RANGE 1 K STATIC RAM

M2102A-4	450 ns Max.
M2102A-6	650 ns Max.

$10 \% V_{\text {Cc }}$ Supply Tolerance
Directly TTL Compatible: All Inputs and Output

- Low Power: 385mW Max.
- Three State Output: OR-Tie Capability
16 Pin Hermetic Dual-In-Line Package

The Intel $®$ M 2102 A is a high speed $1 \mathrm{~K} \times 1$ RAM specified over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The RAM uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data.
The Intel® M2102A is fabricated with N -channel silicon gate technology. This technology allows the design and production of high performance easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or P-channel silicon gate technology.

PIN CONFIGURATION

TRUTH TABLE

$\overline{\text { CE }}$	R/W	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {OUt }}$	MODE
H	x	X	HIGH 2	NOT SELECTED
L	L	L	L	WRITE "0"
L	L	H	H	WRITE " 1 "
L	H	X	Dout	READ

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias . . $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Voltage On Any Pin

$$
\text { With Respect to Ground }-0.6 \mathrm{~V} \text { to }+7 \mathrm{~V}
$$

Power Dissipation 1 Watt

-COMment

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D. C. and Operating Characteristics $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ unless otherwise specified

Symbol	Parameter		Limits			Unit	Test Conditions
			Min.	Typ. ${ }^{1]}$	Max.		
$I_{\text {LI }}$	Input Load Current				10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.5 V
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current				10	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=\mathrm{Min} . \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{OH}}$
ILOL	Output Leakage Current	$\frac{\text { M2102A-4 }}{\text { M2102A-6 }}$			$\frac{-50}{-100}$	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=\mathrm{Min} . \mathrm{V}_{1 H}, \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V}$
ICC1	Power Supply Current			30	60	mA	All Inputs $=5.5 \mathrm{~V}$, Data Out Open, $T_{A}=25^{\circ} \mathrm{C}$
ICC2	Power Supply Current				70	mA	All Inputs $=5.5 \mathrm{~V}$, Data Out Open, $T_{A}=-55^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IL }}$	Input "Low" Voltage	$\begin{aligned} & \hline \text { M2102A-4 } \\ & \hline \text { M2102A-6 } \end{aligned}$	-0.5		0.8	V	
V_{IH}	Input "High" Voltage	$\frac{\text { M2102A-4 }}{\text { M2102A-6 }}$	2.0		$\frac{V_{\mathrm{CC}}}{\mathrm{~V}_{\mathrm{cc}}}$	V	
V_{OL}	Output "Low" Voltage				0.45	V	$\begin{aligned} & \mathrm{M} 2102 \mathrm{~A}-4 \mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA} \\ & \mathrm{M} 2102 \mathrm{~A}-6 \\ & \mathrm{I}_{\mathrm{OL}} \end{aligned}=1.9 \mathrm{~mA}$
V_{OH}	Output "High" Voltage		2.2			V	$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$

NOTE 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ unless otherwise specified

Symbol	Parameter	M2102A-4 Limits (ns)		M2102A-6 Limits (ns)	
		Min.	Max.	Min.	Max.
READ CYCLE					
t_{RC}	Read Cycle	450		650	
t_{A}	Access Time		450		650
t_{CO}	Chip Enable to Output Time		230		400
${ }^{\text {toh }}$	Previous Read Data Valid with Respect to Address	40		50	
${ }^{\text {tohe }}$	Previous Read Data Valid with Respect to Chip Enable	0		0	
WRITE CYCLE					
${ }^{\text {tw }}$ c	Write Cycle	450		650	
$\mathrm{t}_{\text {AW }}$	Address to Write Setup Time	20		200	
$t_{\text {WP }}$	Write Pulse Width	300		400	
$t_{\text {WR }}$	Write Recovery Time	0		50	
$t_{\text {DW }}$	Data Setup Time	300		450	
${ }_{\text {t }}$ H	Data Hold Time	0		100	
${ }^{\text {t }}$ W	Chip Enable to Write Setup Time	300		550	

Capacitance ${ }^{[2]} T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

A.C. CONDITIONS OF TEST

| Input Pulse Levels: | 0.8 Volt to 2.0 Volt |
| :--- | ---: | ---: |
| Input Rise and Fall Times: | 10 nsec |
| Timing Measurement \quad Inputs: | 1.5 Volts |
| Reference Levels \quad Output: | 0.8 and 2.0 Volts |
| Output Load: | 1 TTL Gate and $C_{L}=100 \mathrm{pF}$ |

SYMBOL	TEST	LIMITS (pF)	
		TYP.[1]	MAX.
$\mathrm{C}_{\text {IN }}$	INPUT CAPACITANCE (ALL INPUT PINS) $\mathrm{V}_{I N}=0 \mathrm{~V}$	3	5
$\mathrm{C}_{\text {OUT }}$	oUTPUT CAPACITANCE $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$	7	10

Waveforms

READ CYCLE

WRITE CYCLE

NOT.ES: 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. This parameter is periodically sampled and is not 100% tested.

2104, 2104-2, 2104-4

4096×1 BIT DYNAMIC RAM

	$2104-2$	$2104-4$	2104
Max. Access Time (ns)	250	300	350
Read, Write Cycle (ns)	375	425	500
Read-Modify-Write Cycle (ns)	515	595	700

- Highest Density 4K RAMIndustry Standard 16 Pin Package
 - Low Standby Power
 - All Inputs Including Clocks TTL Compatible
 - Standard Power Supplies +12V, +5V, -5V

- Refresh Period: 2 ms

The Intel ${ }^{\oplus} 2104$ is a 4096 word by 1 bit MOS RAM fabricated with N-channel silicon gate technology for high performance and high functional density. The 2104 uses a single transistor dynamic storage cell and dynamic circuitry to achieve high speed and low power dissipation.
The unique design of the 2104 allows it to be packaged in the industry standard 16 pin dual-in-line package. The 16 pin package provides the highest system bit densities and is compatible with widely available automated handling equipment.
The use of the 16 pin package is made possible by multiplexing the 12 address bits (required to address 1 of 4096 bits) into the 2104 on 6 address input pins. The two 6 bit address words are latched into the 2104 by the two TTL clocks, Row Address Strobe ($\overline{\mathrm{RAS}}$) and Column Address Strobe ($\overline{\mathrm{CAS}}$). Non-critical clock timing requirements allow use of the multiplexing technique while maintaining high performance.

The single transistor dynamic storage cell provides high speed along with low power dissipation. The memory cell requires refreshing for data retention. Refreshing is most easily accomplished by performing a read cycle at each of the 64 row addresses every 2 milliseconds.

Absolute Maximum Ratings*

Temperature Under Bias
$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature...............
All Input or Output Voltages with
Respect to the most Negative
Supply Voltage, V_{BB}
+25 V to -0.3 V
Supply Voltages $V_{D D}, V_{C C}$, and $V_{S S}$ with
Respect to $V_{B B}$
+20 V to -0.3 V
Power Dissipation \cdot-1.25W
*COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics ${ }^{[1]}$

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted.

Symbol	Parameter	Min.	$\begin{aligned} & \text { Limits } \\ & \text { Typ.[2] } \end{aligned}$	Max.	Unit	Conditions
I_{LI}	Input Load Current (any input)			10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL }}$ MIN to $V_{\text {IH MAX }}$
$\|\mathrm{LLO}\|$	Output Leakage Current for high impedance state			10	$\mu \mathrm{A}$	Chip deselected
$I_{\text {DD1 }}{ }^{[3]}$	VDD Supply Current		1	2	mA	$\overline{\mathrm{CAS}}$ and $\overline{\mathrm{RAS}}$ at V_{IH}. Chip deselected.
$I_{\text {DDAV }}{ }^{\text {[3] }}$	Average $V_{D D}$ Current: $\frac{2104-4}{2104,2104-2}$		$\frac{46}{45}$	$\frac{60}{59}$	$\frac{\mathrm{mA}}{\mathrm{~mA}}$	$\begin{aligned} & \text { Cycle time }=\text { Min. } T_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{t}_{\mathrm{RP}}=\text { Min. } \end{aligned}$
$\mathrm{ICC1}^{[4]}$	$V_{\text {CC }}$ Supply Current when deselected			10	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{BB}}{ }^{\text {[3] }}$	Average V_{BB} Current			75	$\mu \mathrm{A}$	
$V_{\text {IL }}$	Input Low Voltage (âny input)	-1.0		0.6	V	
$V_{\text {IH }}$	Input High Voltage (any input)	2.4		$\mathrm{V}_{C C}+1$	V	
V_{OL}	Output Low Voltage	0.0		0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
V OH	Output High Voltage	2.4		V CC	V	$1 \mathrm{OH}=-5.0 \mathrm{~mA}$

A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise noted.

Capacitance ${ }^{[5]} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Test	Plastic And Ceramic Pkg. Typ. Max.	Unit	Conditions
$C_{A D}$	Address Capacitance	10	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$
C_{C}	$\overline{\mathrm{CAS}}, \overline{\mathrm{RAS}}, \overline{\mathrm{CS}}$ Capacitance	7	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$
$\mathrm{C}_{\text {OUT }}$	Data Output Capacitance	8	pF	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{OV}$
C_{IN}	$\mathrm{D}_{\text {IN }}$ and $\overline{\mathrm{WE}}$ Capacitance	10	pF	$\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{SS}}$

Notes: 1. All voltages referenced to $V_{S S}$. The only requirement for the sequence of applying voltages to the device is that $V_{D D}, V_{C C}$, and V_{SS} should never be 0.3 V or more negative than V_{BB}.
2. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal power supply voltages.
3. The IDD current flows to V_{SS}. The I_{BB} current is the sum of all leakage currents.
4. When chip is selected $V_{C C}$ supply current is dependent on output loading; $V_{C C}$ is connected to output buffer only.
5. Capacitance measured with Boonton Meter or effective capacitance calculated from the equation:
$\mathrm{C}=\frac{\mathrm{I} \Delta \mathrm{t}}{\Delta \mathrm{V}}$ with the current equal to a constant 20 mA.
A.C. Characteristics ${ }^{[1]} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted.

READ, WRITE, AND READ MODIFY WRITE CYCLES

Symbol	Parameter	2104		2104-2		2104-4		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {REF }}$	Time Between Refresh		2		2		2	ms
t_{RP}	$\overline{\mathrm{RAS}}$ Precharge Time	150		125		125		ns
$t_{\text {RCL }}{ }^{[2]}$	$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ Leading Edge Lead Time	110	2000	80	2000	90	2000	ns
${ }^{\text {t }}$ AS	Address or $\overline{\mathrm{CS}}$ Set-Up Time	0		0		0		ns
${ }^{t} A H$	Address or $\overline{\mathrm{CS}}$ Hold Time	100		80		80		ns
${ }^{\text {t }}$ AR	$\overline{\mathrm{RAS}}$ to Address Hold Time	250		180		210		ns
$\mathrm{t}_{\mathrm{CRL}}{ }^{\text {[3] }}$	$\widehat{\mathrm{RAS}}$ to $\widehat{\mathrm{CAS}}$ Trailing Edge Lead Time	-50	+50	-40	+40	-50	+50	ns
toff	Output Buffer Turn Off Delay	0	100	0	100	0	100	ns
$\mathrm{t}_{\text {CAC }}{ }^{[4]}$	Access Time From $\overline{\mathrm{CAS}}$		200		150		170	ns
$\mathrm{t}_{\text {RAC }}{ }^{[4]}$	Access Time From $\overline{\mathrm{RAS}}$		350		250		300	ns

READ CYCLE

Symbol	Parameter	2104		2104-2		2104-4		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
${ }^{\text {t }} \mathrm{CrC}^{[5]}$	Random Read or Write Cycle Time	500		375		425		ns
${ }^{\text {t CPW }}$	$\overline{\text { CAS Pulse Width }}$	200	10000	150	10000	170	10000	ns
$t_{\text {RPW }}$	$\overline{\text { RAS Pulse Width }}$	350	10000	250	10000	300	10000	ns
${ }^{\text {tres }}$	$\widehat{\text { RAS }}$ Hold Time	200		150		170		ns
${ }^{\text {t }}$ CSH	$\overline{\text { CAS }}$ Hold Time	350		250		300		ns
${ }^{\text {t }}$ RCH	Read Command Hold Time	80		80		80		ns
$t_{\text {RCS }}$	Read Command Set-Up Time	0		0		0		ns

WRITE CYCLE

Symbol	Parameter	2104		2104-2		2104-4		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CrC}^{\text {c }}}{ }^{[5]}$	Random Read or Write Cycle Time	500		375		425		ns
${ }^{\text {t CPW }}$	$\overline{\text { CAS Pulse Width }}$	200	10000	150	10000	170	10000	ns
tr PW	$\overline{\text { RAS Pulse Width }}$	350	10000	250	10000	300	10000	ns
$\mathrm{t}_{\text {RSH }}$	$\overline{\text { RAS }}$ Hold Time	200		150		170		ns
$\mathrm{t}_{\mathrm{CSH}}$	$\overline{\text { CAS }}$ Hold Time	350		250		300		ns
$\mathrm{t}_{\text {CWL }}$	Write Command to $\overline{\text { CAS }}$ Lead Time	200		150		170		ns
${ }^{\text {W WCH }}$	Write Command Hold Time	150		110		130		ns
$t_{\text {WP }}$	Write Command Pulse Width	200		150		170		ns
t_{DS}	Data In Set-Up Time	0		0		0		ns
tD	Data In Hold Time	200		150		170		ns

Notes:

1. All voltages referenced to V_{SS}.
2. $\overline{C A S}$ must remain at $V_{I H}$ a minimum of $t_{R C L M I N}$ after $\overline{R A S}$ switches to $V_{I L}$. To achieve the minimum guaranteed access time ($\mathrm{t}_{\mathrm{RAC}}$), $\overline{\mathrm{CAS}}$ must switch to $V_{I L}$ at or before $\mathrm{t}_{\mathrm{RCL}}$ of $\mathrm{t}_{\mathrm{RAC}}-\overline{\mathrm{t}_{\mathrm{T}}-\mathrm{t}_{\mathrm{CAC}}}$ as described in the Applications Information on page 2-49.
3. ${ }^{\text {tCRL }}$ is measured from $\overline{R A S}$ to $\overline{\mathrm{CAS}}$.
4. Load $=1$ TTL and 50 pF . See Application Information - Read Cycle section for relations between access time and trCL.
5. The minimum cycle timing does not allow for t T or skews.

2104 FAMILY

Waveforms

WRITE CYCLE

See page 2-48 for NOTES.
A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise noted.

READ MODIFY WRITE CYCLE

Symbol	Parameter	2104		2104-2		2104-4		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {RMW }}$	Read Modify Write Cycle Time	700		515		595		ns
$\mathrm{t}_{\text {CRW }}$	RMW Cycle $\overline{\text { CAS }}$ Width	400	10000	290	10000	340	10000	ns
trRW	RMW Cycle $\overline{\text { RAS }}$ Width	550	10000	390	10000	470	10000	ns
$t_{\text {RWH }}$	RMW Cycle $\overline{\text { RAS }}$ Hold Time	200		150		170		ns
$\mathrm{t}_{\text {cWh }}$	RMW Cycle $\overline{\text { CAS }}$ Hold Time	550		390		470		ns
${ }^{\text {c }}$ CWL	Write Command to $\overline{\text { CAS }}$ Lead Time	200		150		170		ns
twp	Write Command Pulse Width	200		150		170		ns
$\mathrm{t}_{\text {RCS }}$	Read Command Set-Up Time	0		0		0		ns
$\mathrm{t}_{\text {MOD }}$	Modify Time	0		0		0		ns
$t_{\text {DS }}$	Data In Set-Up Time	0		0		0		ns
${ }^{\text {t }}$ H	Data In Hold Time	200		150		170		ns

Waveforms

READ MODIFY WRITE CYCLE

Notes: 1,2. $V_{\text {IHMIN }}$ and $V_{\text {ILMAX }}$ are reference levels for measuring timing of input signals.
3,4. $V_{\text {OHMIN }}$ and VOLMAX are reference levels for measuring timing of DOUT.
5. If $\overline{W E}$ goes low while $\overline{C A S}$ is low, DOUT could go to either $V_{O L}$ or $V_{O H}$ after $\mathrm{t}_{\mathrm{CAC}}$. DOUT will go to V_{OH} as shown on page 4 (Write Cycle Waveforms) if $\overline{W E}$ goes low before $\overline{C A S}$ goes low. In a Read-Modify-Write cycle, DOUT is data read and does not change during the Modify-Write portion of the cycle.
6. For minimum cycle timing, tCRL must be -0 to +40 ns for $2104-2$ and -0 to +50 ns for 2104 and 2104-4.

TYPICAL IDD AV VS. CYCLE TIME

IDD AV VS. TEMPERATURE

TYPICAL ACCESS TIME VS. TEMPERATURE

Applications

ADDRESSING

Two externally applied negative going TTL clocks, Row Address Strobe ($\overline{\mathrm{RAS}}$), and Column Address Strobe ($\overline{\mathrm{CAS}}$), are used to strobe the two sets of 6 addresses into internal address buffer registers. The first clock, $\overline{\mathrm{RAS}}$, strobes in the six low order addresses ($\mathrm{A}_{0}-\mathrm{A}_{5}$) which selects one of 64 rows and begins the timing which enables the column sense amplifiers. The second clock, $\overline{\mathrm{CAS}}$, strobes in the six high order addresses $\left(\mathrm{A}_{6}-\mathrm{A}_{11}\right)$ to select one of 64 column sense amplifiers and Chip Select ($\overline{\mathrm{CS}}$) which enables the data out buffer.

An address map of the 2104 is shown below. Address " 0 " corresponds to all addresses at V_{IL}. Note that data is stored in half of the memory as a logic inversion of the data presented at the input pin as shown. This inversion is completely transparent to the user (i.e., data stored in memory as a " 1 " or " 0 " at the input will when subsequently accessed, appear as a " 1 " or " 0 " respectively at the output).

2104 Address Map

DATA CYCLES/TIMING

A memory cycle begins with addresses stable and a negative transition of RAS. See the waveforms on page 4. It is not necessary to know whether a Read or Write cycle is to be performed until CAS becomes valid.
Note that Chip Select ($\overline{\mathrm{CS}}$) does not have to be valid until the second clock, $\overline{C A S}$. It is, therefore, possible to start a memory cycle before it is known which device must be selected. This can result in a significant improvement in system access time since the decode time for chip select does not enter into the calculation for access time.

Both the $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ clocks are TTL compatible and do not require level shifting and driving at high voltage MOS levels. Buffers internal to the 2104 convert the TTL level signals to MOS levels inside the device. Therefore, the delay associated with external TTL-MOS level converters is not added to the 2104 system access time.

READ CYCLE

A Read cycle is performed by maintaining Write Enable ($\overline{\mathrm{WE}}$) high during $\overline{\mathrm{CAS}}$. The output pin of a selected device will unconditionally go to a high impedance state immediately following the leading edge of CAS and remain in this state until valid data appears at the output at access time. The selected output data is internally latched and will remain valid until a subsequent $\overline{\mathrm{CAS}}$ is given to the device by a Read, Write, Read-Modify-Write or Refresh cycle. Data-out goes to a high impedance state for all nonselected devices.

Device access time, $t_{A C c}$, is the longer of two calculated intervals:

$$
\text { 1. } t_{A C C}=t_{\mathrm{RAC}} \quad O R \quad \text { 2. } \mathrm{t}_{\mathrm{ACC}}=\mathrm{t}_{\mathrm{RCL}}+\mathrm{t}_{\mathrm{T}}+\mathrm{t}_{\mathrm{CAC}}
$$

Access time from $\overline{\text { RAS }}, \mathrm{t}_{\text {Rac }}$, and access time from $\overline{\mathrm{CAS}}$, $t_{\text {cac }}$, are device parameters. Row to column address strobe lead time, $\mathrm{t}_{\mathrm{RCL}}$, and transition time, t_{T}, are system dependent timing parameters. For example, substituting the device parameters of the 2104-4 and assuming a TTL level transition time of 5 ns yields:

$$
\begin{aligned}
& \text { 3. } t_{\mathrm{ACC}}=t_{\mathrm{RAC}}=300 \mathrm{~ns} \text { for } 90 \mathrm{nsec} \leqslant t_{\mathrm{RCL}} \leqslant 125 \mathrm{nsec} \\
& \text { OR }
\end{aligned}
$$

4. $t_{A C C}=t_{R C L}+t_{T}+t_{C A C}=t_{R C L}+175 n s$ for $t_{R C L}>125 n s$.

Note that if $90 \mathrm{nsec} \leqslant \mathrm{t}_{\mathrm{RcL}} \leqslant 125 \mathrm{nsec}$, device access time is determined by equation 3 and is equal to $t_{R A C}$. If $t_{R C L}>125$ nsec, access time is determined by equation 4 . This 35 ns interval (shown in the $t_{\text {RCL }}$ inequality in equation 3) in which the falling edge of $\overline{\mathrm{CAS}}$ can occur without affecting access time is provided to allow for system timing skew in the generation of CAS. This allowance for a $t_{\text {RCL }}$ skew is designed in at the device level to allow minimum access times to be achieved in practical system designs.

WRITE CYCLE

A Write Cycle is performed by bringing Write Enable ($\overline{\mathrm{WE}}$) low before or during $\overline{\mathrm{CAS}}$. If Write Enable goes low at or before $\overline{C A S}$ goes low, the input data must be valid at or before the falling edge of $\overline{\mathrm{CAS}}$. Dout will go to V_{OH} as shown
on page 4 (Write Cycle) if $\overline{\mathrm{WE}}$ goes low before $\overline{\mathrm{CAS}}$ goes low. If Write Enable goes low after CAS, data in must be valid at or before the falling edge of $\overline{\mathrm{WE}}$. Data out goes to a high impedance state following the leading edge of CAS. If $\overline{\text { WE }}$ goes low while $\overline{\mathrm{CAS}}$ is low, $\mathrm{D}_{\text {out }}$ could go to either $\mathrm{V}_{\text {oL }}$ or $\mathrm{V}_{\text {он }}$ after $\mathrm{t}_{\mathrm{cac}}$.

READ-MODIFY-WRITE CYCLE

A Read-Modify-Write Cycle is performed by bringing Write Enable ($\overline{\mathrm{WE}}$) low after access time, $\mathrm{t}_{\text {Acc }}$, with $\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}$ low. Data in must be valid at or before the falling edge of $\overline{\text { WE. }}$ In a read-modify-write cycle $\mathrm{D}_{\text {out }}$ is data read and does not change during the modify-write portion of the cycle.

$\overline{C A S}$ ONLY (DESELECT) CYCLE

In some applications, it is desirable to be able to deselect all memory devices without running a regular memory cycle. This may be accomplished with the 2104 by performing a $\overline{\text { CAS }}$ Only Cycle. Receipt of a $\overline{\text { CAS }}$ without a $\overline{\text { RAS }}$ deselects the 2104 and forces the Data Output to the high-impedance state. This places the 2104 in its lowest power, standby condition as will be discussed in the POWER DISSIPATION section below. The cycle timing and CAS timing should be just as if a nomal $\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ cycle was being performed.

CHIP SELECTION/DESELECTION

The 2104 is selected by driving $\overline{\mathrm{CS}}$ low during a Read, Write, or Read-Modify-Write cycle. A device is deselected by 1) driving $\overline{\text { CS }}$ high during a Read, Write, or Read-Modify-Write cycle or 2) performing a $\overline{\mathrm{CAS}}$ Only cycle independent of the state of $\overline{C S}$.

REFRESH CYCLES

Each of the 64 rows internal to the 2104 must be refreshed every 2 msec to maintain data. Any data cycle (Read, Write, Read-Modify-Write) refreshes the entire selected row (defined by the low order row addresses). The refresh operation is independent of the state of chip select. It is evident, of course, that if a Write or Read-Modify-Write cycle is used to refresh a row, the device should be deselected ($\overline{\mathrm{CS}}$ high) if it is desired not to change the state of the selected cell.

$\overline{\text { RAS }} / \overline{C A S}$ TIMING

The device clocks, $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$, contol operation of the 2104. The timing of each clock and the timing relationships of the two clocks must be understood by the user in order to obtain maximum performance in a memory system.

The $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ have minimum pulse widths as defined by $t_{\text {Rpw }}$ and $t_{\text {cpw }}$ respectively. These minimum pulse widths must be maintained for proper device operation and data integrity. A cycle, once begun by driving $\overline{\text { RAS }}$ and/or CAS low, must not be ended or aborted prior to fulfilling the minimum clock signal pulse width(s). A new cycle must not begin until the minimum precharge time, t_{R}, has been met.
The timing relationship of the leading edges of $\overline{\text { RAS }}$ and $\overline{C A S}$ is defined by $\mathrm{t}_{\mathrm{RCL}}$ and is discussed in the READ CYCLE section above. The trailing edge relationship is defined by $\mathrm{t}_{\text {RSH }}, \mathrm{t}_{\mathrm{csh}}$, and $\mathrm{t}_{\mathrm{crL}}$. The first two parameters define the
minimum time during a memory cycle that $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are both low (minimum hold times). Both the minimum clock widths and hold times must be met for proper operation.
For example, using $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$ and the 2104-4 device parameters: $\mathrm{t}_{\text {RCL }}=90 \mathrm{~ns}, \mathrm{t}_{\text {Rpw }}=300 \mathrm{nsec}$, and $\mathrm{t}_{\text {cpw }}=$ 170 nsec ; the trailing edge of $\overline{\mathrm{CAS}}$ would occur at time (t) where:

$$
\begin{aligned}
\mathrm{t} & =\mathrm{t}_{\mathrm{RcL}}+\mathrm{t}_{\mathrm{T}}+\mathrm{t}_{\mathrm{cpw}}=90 \mathrm{~ns}+5 \mathrm{~ns}+170 \mathrm{~ns} \\
& =265 \mathrm{~ns}
\end{aligned}
$$

however, $\mathrm{t}_{\text {csh }}=300 \mathrm{~ns}$, and, therefore, $\mathrm{t}_{\mathrm{cpw}}$ would need to be lengthened such that:

$$
\mathrm{t}_{\mathrm{cpw}}(\text { actual })=170 \mathrm{~ns}+(300 \mathrm{~ns}-265 \mathrm{~ns})=205 \mathrm{~ns}
$$

in order to meet the minimum $\mathrm{t}_{\mathrm{csh}}$ requirement.
The third parameter, $\mathrm{t}_{\text {cRL }}$, defines the lead (-) or lag (+) time allowable for $\overline{\mathrm{CAS}}$ with respect to $\overline{\mathrm{RAS}}$. If all minimum timing requirements for $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are met, the $\overline{\mathrm{CAS}}$ trailing edge may lead the $\overline{\text { RAS }}$ trailing edge by up to 10 ns or lag by up to 70 ns . In a memory cycle with all minimum timing specifications used, $\overline{\mathrm{CAS}}$ may lag $\overline{\mathrm{RAS}}$ but cannot lead $\overline{\text { RAS }}$ since $\mathrm{t}_{\text {cSH }}$ would be violated if $\overline{\mathrm{CAS}}$ led $\overline{\mathrm{RAS}}$.

POWER DISSIPATION

Operating

The power dissipation of a continuously operating 2104 device is the sum of $V_{D D} \times I_{\text {DDAV }}$ and $V_{B B} \times\left.\right|_{\text {BB }}$. For a cycle time of 425 ns (including a t_{RP} of 125 ns) the typical power dissipation is 552 mW .
Typical power supply current waveforms versus time are shown below for both a $\overline{\text { RAS }} / \overline{\text { CAS }}$ cycle and a $\overline{\text { CAS }}$ only cycle. It is evident from examination of the current waveforms that the major portion of the device power dissipation is the $V_{D D} \times I_{\text {DDAV }}$ component. Since the average value of $I_{D D}$ is used to compute the power dissipation and $I_{D D}$ is high only while $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are low, minimum $\overline{\mathrm{RAS}}$ and CAS pulse widths are preferred even with long cycle times to minimize power dissipation.

STANDBY-REFRESH ONLY

The standby power-refresh only is calculated by the following equation:
5. $P_{\text {REF }}=P_{O P} \times\left(64 \frac{t_{\mathrm{CYC}}}{t_{\text {REF }}}\right)+P_{\mathrm{SB}}\left(1-64 \frac{\mathrm{t}_{\mathrm{CYC}}}{t_{\mathrm{REF}}}\right)$

Where: $P_{\text {REF }}=$ Standby power-refresh only.
$\mathrm{P}_{\mathrm{OP}}=$ Power dissipation-continuous operation.
$\mathrm{t}_{\mathrm{CyC}}=$ Cycle time for a Refresh cycle.
$\mathrm{t}_{\text {REF }}=$ Time between refresh.
$\mathrm{P}_{\mathrm{SB}}=$ Standby power dissipation.
The standby power dissipation P_{SB} is given by:

$$
\text { 6. } \mathrm{P}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{DD}} \times \mathrm{I}_{\mathrm{DD} 1}+\mathrm{V}_{\mathrm{BB}} \times \mathrm{I}_{\mathrm{BB}} \text {. }
$$

For example, in the 2104-4, the typical power dissipated in a standby-refresh only mode with the device deselected ($\overline{\mathrm{CS}}$ high) is 19 mW . If the device is selected ($\overline{\mathrm{CS}}$ low) during a refresh cycle, the typical power dissipated is 31 mW . This is the result of the internal output buffer circuitry being turned on. Since needless power is dissipated for this condition, it is recommended that the device be deselected during standby-refresh only operation.

Note that when calculating the standby power for a 2104 memory system it is not necessary to include the power
dissipated by TTL to MOS level converters. These converters are incorporated internally to the 2104 and are included in the previous power calculations.

SYSTEM LAYOUT AND DECOUPLING

A two sided memory array layout is shown below.
Decoupling is indicated by a " D " for $V_{D D}$ to $V_{S S}$ and " B " for $V_{B B}$ to $V_{\text {SS. }} I_{D D}$ and $I_{\text {BB }}$ current surges at $\overline{R A S}$ and $\overline{C A S}$ make adequate decoupling of these supplies important. It is recommended that $1.0 \mu \mathrm{~F}$ high frequency, low inductance capacitors be used between $\mathrm{V}_{\text {DD }}$ and $\mathrm{V}_{\text {SS }}$ on double sided boards. $0.1 \mu \mathrm{~F}$ capacitors can be used between V_{BB} and $\mathrm{V}_{\text {SS }} . \mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\text {SS }}$ decoupling is indicated by a " C " and $0.1 \mu \mathrm{~F}$ capacitors are recommended. For each 36 devices a $100 \mu \mathrm{~F}$ tantalum or equivalent capacitor should be placed from $V_{D D}$ to $V_{\text {ss }}$ near the array. An equal or slightly smaller bulk capacitor should be placed between V_{BB} and V_{SS} on the memory card.
Note that all power lines (including V_{SS}) are grided both horizontally and vertically at each memory device. This minimizes the power distribution impedance and enhances the effect of the decoupling capacitors.

Two Sided Layout for 16K x 8 Memory

4096×1 BIT DYNAMIC RAM

Product	$2107 \mathrm{~A}-1$	2107 A	$2107 \mathrm{~A}-4$	$2107 \mathrm{~A}-5$
Access Time	280 ns	300 ns	350 ns	420 ns

```
- Low Cost Per Bit
- Low Standby Power
- Easy System Interface
- Only One High Voltage
    Input Signal-Chip Enable
- Low Level Address, Data,
    Write Enable, Chip
    Select Inputs
- Low Cost Per Bit
- Low Standby Power
- Easy System Interface
- Only One High Voltage Input Signal-Chip Enable
- Low Level Address, Data, Write Enable, Chip Select Inputs
```

- Address Registers Incorporated on the Chip
- Simple Memory Expansion: Chip Select Input Lead
- Fully Decoded: On Chip Address Decode
- Output is Three State and TTL Compatible
- Ceramic and Plastic 22-Pin DIPs

The Intel 2107A is a 4096 word by 1 bit dynamic n-channel MOS RAM. It was designed for memory applications where very low cost and large bit storage are important design objectives. The 2107A uses dynamic circuitry which reduces the operation and standby power dissipation.

Reading information from the memory is non-destructive. Refreshing is accomplished by performing one read cycle on each of the 64 row addresses. Each row address must be refreshed every two milliseconds. The memory is refreshed whether Chip Select is a logic one or a logic zero.

The 2107A is fabricated with n-channel silicon gate technology. This technology allows the design and production of high performance, easy to use MOS circuits and provides a higher functional density on a monolithic chip than other MOS technologies.

Absolute Maximum Ratings*

Temperature Under Bias . . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Power Dissipation . 1.OW
*COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{B B}[1]=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise notes.

Symbol	Parameter	Limits			Unit	Conditions
		Min.	Typ. ${ }^{[2]}$	Max.		
I_{L}	Input Load Current (all inputs except CE)		. 01	10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL MIN }}$ to $V_{\text {IH MAX }}$
ILC	Input Load Current		. 01	10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL MIN }}$ to $V_{\text {IH MAX }}$
$\mid \mathrm{L}$ Lo \mid	Output Leakage Current for high impedance state		. 01	10	$\mu \mathrm{A}$	$\begin{aligned} & C E=-1 \mathrm{~V} \text { to }+.8 \mathrm{~V} \text { or } \overline{\mathrm{CS}}=3.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \end{aligned}$
IDD1	VDD Supply Current during CE off[3]		. 1	100	$\mu \mathrm{A}$	$\mathrm{CE}=-1 \mathrm{~V}$ to +.8 V
IDD2	$V_{D D}$ Supply Current during CE on ${ }^{[5]}$		14	22	mA	$C E=V_{1 H C}, T_{A}=25^{\circ} \mathrm{C}$
IDDAV	Average $V_{D D}$ Supply Current	(See Table 1)				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Fig. 1,3
ICC1	VCC Supply Current during CE off		. 01	10	$\mu \mathrm{A}$	$C E=-1 \mathrm{~V}$ to +.8 V
ICC2	VCC Supply Current during CE on		5	10	mA	$C E=V_{1 H C}, T_{A}=25^{\circ} \mathrm{C}$
IcCaV	Average V_{CC} Supply Current	(See Table 1)				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Fig. 2,4
$I_{B B}$	$V_{B B}$ Supply Current		1	100	$\mu \mathrm{A}$	
$V_{\text {IL }}$	Input Low Voltage[4]	-1.0		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage ${ }^{\text {4 }}$]	3.5		$\mathrm{V}_{\mathrm{cc}}+1$	V	
$V_{\text {ILC }}$	CE Input Low Voltage[4]	-1.0		+1.0	V	
$\mathrm{V}_{1} \mathrm{HC}$	CE Input High Voltage	$V_{D D}-1$		$\mathrm{V}_{\mathrm{DD}}+1$	V	
Vol	Output Low Voltage ${ }^{[4]}$	0.0		0.45	V	$\mathrm{IOL}^{\text {a }}=1.7 \mathrm{~mA}$, Fig. 6
VOH	Output High Voltage ${ }^{[4]}$	2.4		Vcc	V	$\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$, Fig. 5

NOTES:

1. The only requirement for the sequence of applying voltage to the device is that $V_{D D}, V_{C C}$, and $V_{S S}$ should never be 3 V or more negative than V_{BB}.
2. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal power supply voltages.
3. The IDD and ICC currents flow to $V_{S S}$. The $I_{B B}$ current is the sum of all leakage currents.
4. Referenced to $V_{S S}$ unless otherwise noted.
5. For 2107A-4 and 2107A-5 IDD2 is 25 mA max.
A. C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, V_{B B}=-5 \mathrm{~V} \pm 5 \%$,

READ, WRITE, AND READ MODIFY/WRITE CYCLE $V_{S S}=0 \mathrm{~V}$, unless otherwise noted.

Symbol	Parameters	2107A		2107A-1		2107A-4		2107A-5		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {REF }}{ }^{[1]}$	Time Between Refresh		2		1		2		2	ms
$\mathrm{t}_{\text {AC }}$	Address to CE Set Up Time	0		0		0		0		ns
${ }^{\text {t }}$ A	Address Hold Time	100		100		100		100		ns
${ }_{\text {t }}$	CE Off Time	180		100		200		250		ns
${ }_{\text {t }}$	CE Transition Time		50		50		50		50	ns
${ }^{\text {t }}$ CF	CE Off to Output High Impedance State	0		0		0		0		ns

READ CYCLE

Symbol	Parameters	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {RCY }}{ }^{[2]}$	Read Cycle Time	500		420		570		690		ns
$\mathrm{t}_{\text {CER }}$	CE On Time During Read	280	3000	280	3000	330	3000	400	300	ns
$\mathrm{t}_{\text {CO }}$	CE Output Delay		280		260		330		400	ns
$\mathrm{t}_{\text {ACC }}{ }^{[3]}$	Address to Output Access		300		280		350		420	ns
$\mathrm{t}_{\text {WL }}$	CE to $\overline{\text { WE Low }}$	0		0		0		0		ns
$\mathrm{t}_{\text {WC }}$	$\bar{W} \bar{W}$ to CE on	0		0		0		0		ns

WRITE CYCLE

Symbol	Parameters	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
$\mathrm{twCr}^{\text {[2] }}$	Write Cycle Time	700		550		840		970		ns
tcew	CE Width During Write	480	3000	410	3000	600	3000	680	3000	ns
t_{w}	$\overline{W E}$ to CE Off	340		250		400		450		ns
${ }^{\text {c }}$ CW	CE to $\overline{\mathrm{WE}}$ High	300		250		-		-		ns
$\mathrm{t}_{\text {DW }}$	DIN to $\overline{W E}$ Set Up	0		0		0		0		ns
$t_{C D}{ }^{[4]}$	CE to $\mathrm{D}_{\text {IN }}$ Set Up		50		50		50		50	ns
t_{DH}	DIN Hold Time	0		0		0		0		ns
$t_{\text {WP }}$	$\overline{\text { WE }}$ Pulse Width	150		150		200		200		ns
${ }^{\text {WWW }}{ }^{\text {[5] }}$	$\overline{\text { WE Wait }}$	0		0		170		200		ns
twc	$\overline{W E}$ to CE On	0		0		0		0		ns

Capacitance ${ }^{[6]} \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Test	Plastic And Ceramic Pkg. Typ. Max.	Unit	Conditions
$C_{\text {AD }}$	Address Capacitance, $\overline{\mathrm{CS}}, \overline{\mathrm{WE}}, \mathrm{D}_{\text {IN }}$	36	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
$\mathrm{C}_{\text {CE }}$	CE Capacitance	1725	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
Cout	Data Output Capacitance	36	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Notes: 1. For plastic 2107A-4 and 2107A-5 tREF $=1 \mathrm{mS}$.
2. $\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$
3. $C_{L O A D}=50 \mathrm{pf} ;$ Load $=1 \mathrm{TTL} ;$ Ref $=2.0 \mathrm{~V}$ for high, 0.8 V for low; $\mathrm{t}_{\mathrm{ACC}}=\mathrm{t}_{\mathrm{AC}}+\mathrm{t}_{\mathrm{CO}}+1 \mathrm{t}$.
4. ${ }^{t} C D$ applies only when $t w>t^{\prime} C E W-50 n s$.
5. The 2107A and $2107 \mathrm{~A}-1$ should not be operated with twW in the 50 to 170 ns range.
6. Capacitance measured with Boonton Meter or effective capacitance calculated from the equation $C=\frac{1 \Delta t}{\Delta V}$ with the current equal to a constant 20 mA .

D.C. Characteristics

FIGURE 1
Idd AVERAGE VS. TEMPERATURE

FIGURE 3
TYPICAL Idd AVERAGE VS. CYCLE TIME

FIGURE 6
TYPICAL IOL VS. VOL

FIGURE 2
Icc AVERAGE VS. TEMPERATURE

FIGURE 4
TYPICAL Icc AVERAGE VS. CYCLE TIME

FIGURE 7
TYPICAL REFRESH VS. TEMPERATURE

FIGURE 5
TYPICAL I_{OH} VS. V_{OH}

Table 1. IDDAV and ICCAV Characteristics.

Product	IDDAV(Typ)	IDDAV(Max)	ICCAV(Typ)	IccAV (Max)	Cycle	tcew
$2107 A$	23 mA	34 mA	6 mA	10 mA	700 ns	480 ns
$2107 \mathrm{~A}-1$	28 mA	38 mA	8 mA	12 mA	550 ns	410 ns
$2107 \mathrm{~A}-4$	22 mA	33 mA	5 mA	9 mA	840 ns	600 ns
$2107 A-5$	18 mA	28 mA	4 mA	8 mA	970 ns	680 ns

Read Modify Write Cycle

Symbol	Parameters	2107A		2107A-1		2107A-4		2107A-5		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{RWC}}{ }^{[1]}$	Read Modify Write (RMW) Cycle Time	840		670		970		1140		ns
$\mathrm{t}_{\text {CRW }}{ }^{[2]}$	CE Width During RMW	620	3000	530	3000	730	3000	850	3000	ns
twc	$\overline{\mathrm{WE}}$ to CE on	0		0		0		0		ns
t_{W}	$\overline{W E}$ to CE off	340		250		400		450		ns
twP	$\overline{\text { WE Pulse Width }}$	150		150		200		200		ns
tow	DIN to WE Set Up	0		0		0		0		ns
${ }_{\text {t }}{ }_{\text {d }}$	DIN Hold Time	0		0		0		0		ns
${ }^{\text {c }} \mathrm{CO}$	CE to Output Delay		280		260		330		400	ns
$\mathrm{t}_{\mathrm{ACC}^{[3]}}$	Access Time		300		280		350		420	ns
twD	$\overline{\text { DOUT }}$ Valid After $\overline{\mathrm{WE}}$	0		0		0		0		ns

Notes: 1. $\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$
2. $t^{t} C R W-t^{W}=t^{\prime} C O$
3. $C_{L O A D}=50 \mathrm{pf} ;$ Load $=$ One TTL Gate; Ref $=2.0 \mathrm{~V}$ for High, 0.8 V for low; $\mathrm{t}_{\mathrm{ACC}}=\mathrm{t}_{\mathrm{AC}}{ }^{+\mathrm{t}_{\mathrm{t}} \mathrm{CO}+1 \mathrm{TTL},}$

NOTES:

[^4]
Read and Refresh Cycle ${ }^{[1]}$

Write Cycle

NOTES: 1. For Refresh cycle row and column addresses must be stable before tac and remain stable for entire taH period.
2. $V_{S S}+1.5 \mathrm{~V}$ is the reference level for measuring timing of the addresses, $\overline{C S}, \overline{W E}$, and $D_{I N}$.
3. $V_{S S}+3.0 \mathrm{~V}$ is the reference level for measuring timing of the addresses, $\overline{C S}, \overline{W E}$, and $D_{I N}$.
4. $V_{S S}+2.0 \mathrm{~V}$ is the reference level for measuring timing of $\mathbf{C E}$.
5. $V_{D D}-2 V$ is the reference level for measuring timing of $C E$.
6. $V_{S S}+2.0 \mathrm{~V}$ is the reference level for measuring the timing of $\overline{D_{O U T}}$.

4096 BIT DYNAMIC RAM

	2107 B	$2107 \mathrm{~B}-4$	$2107 \mathrm{~B}-6$
Access Time	200 ns	270 ns	350 ns
Read,Write Cycle	400 ns	470 ns	800 ns
RMW Cycle	520 ns	590 ns	960 ns

- Low Cost Per Bit
- Low Standby Power
- Easy System Interface
- Only One High Voltage Input Signal - Chip Enable
- TTL Compatible - All Address, Data, Write Enable, Chip Select Inputs
- Refresh Period - 2 ms for 2107B, 2107B-4, 1ms for 2107B-6
- Address Registers Incorporated on the Chip
- Simple Memory Expansion - Chip Select Input Lead
- Fully Decoded - On Chip Address Decode
- Output is Three State and TTL Compatible
- Industry Standard 22-Pin Configuration

The Intel ${ }^{\top} 2107$ B is a 4096 word by 1 bit dynamic n-channel MOS RAM. It was designed for memory applications where very low cost and large bit storage are important design objectives. The 2107 B uses dynamic circuitry which reduces the standby power dissipation.

Reading information from the memory is non-destructive. Refreshing is most easily accomplished by performing one read cycle on each of the 64 row addresses. Each row address must be refreshed every two milliseconds. The memory is refreshed whether Chip Select is a logic one or a logic zero.

The 2107B is fabricated with n-channel silicon gate technology. This technology allows the design and production of high performance, easy to use MOS circuits and provides a higher functional density on a monolithic chip than other MOS technologies. The 2107B uses a single transistor cell to achieve high speed and low cost. It is a replacement for the 2107A.

PIN CONFIGURATION

Absolute Maximum Ratings*

Temperature Under Bias . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to the most Negative Supply Voltage, $V_{B B}$ +25 V to -0.3 V

Power Dissipation 1.25 W

* COMMENT:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for ex tended periods may affect device reliability.

D.C. and Operating Characteristics

Symbol	Parameter	Limits			Unit	Conditions
		Min.	Typ. [2]	Max.		
I_{L}	Input Load Current (all inputs except CE)		. 01	10	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {IL MIN }} \text { to } V_{\text {IH MAX }} \\ & C E=V_{\text {ILC }} \text { or } V_{\text {IHC }} \end{aligned}$
ILC	Input Load Current		. 01	2	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL MIN }}$ to $V_{\text {IH MAX }}$
HLOI	Output Leakage Current for high impedance state		. 01	10	$\mu \mathrm{A}$	$\begin{aligned} & C E=V_{I L C} \text { or } \overline{C S}=V_{I H} \\ & V_{O}=0 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \end{aligned}$
${ }^{\text {DD1 }}$	$V_{D D}$ Supply Current during CE off[3]		110	$200{ }^{[5]}$	$\mu \mathrm{A}$	$C E=-1 V$ to +.6 V
${ }^{\text {IDD2 }}$	$V_{D D}$ Supply Current during CE on			60	mA	$C E=V_{I H C}, \overline{C S}=V_{I L}$
IDDAV	Average V ${ }_{\text {DD }}$ Current		38	54	mA	$\begin{aligned} \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{T}_{\mathrm{A}}= & 25^{\circ} \mathrm{C} ; \text { Min cycle time, } \\ & \text { Min } \mathrm{t}_{\mathrm{CE}} \end{aligned}$
$\mathrm{ICCl}^{[4]}$	$\mathrm{V}_{\text {CC }}$ Supply Current during CE off		. 01	10	$\mu \mathrm{A}$	$C E=V_{\text {ILC }}$ or $\overline{C S}=V_{\text {IH }}$
$\mathrm{I}_{\text {BB }}$	$V_{\text {BB }}$ Supply Current		5	100	$\mu \mathrm{A}$	
$V_{\text {IL }}$	Input Low Voltage	-1.0		0.6	V	$\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.4		$\mathrm{V}_{\mathrm{cc}}+1$	V	$\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$
$\mathrm{V}_{\text {ILC }}$	CE Input Low Voltage	-1.0		+1.0	V	
$\mathrm{V}_{\text {IHC }}$	CE Input High Voltage	$\mathrm{V}_{\mathrm{DD}}{ }^{-1}$		$\mathrm{V}_{\mathrm{DD}}+1$	V	
V_{OL}	Output Low Voltage	0.0		0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4		V_{CC}	V	$\mathrm{IOH}=-2.0 \mathrm{~mA}$

NOTES:

1. The only requirement for the sequence of applying voltage to the device is that $V_{D D}, V_{C C}$, and $V_{S S}$ should never be .3 V or more negative than V_{BB}.
2. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal power supply voltages.
3. The IDD and ICC currents flow to $V_{S S}$. The $I_{B B}$ current is the sum of all leakage currents.
4. During CE on $V_{C C}$ supply current is dependent on output loading, V_{CC} is connected to output buffer only.
5. Maximum IDD1 for $2107 \mathrm{~B}-6$ is $250 \mu \mathrm{~A}$.

A. C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%$,

READ, WRITE, AND READ MODIFY/WRITE CYCLE $V_{S S}=0 \mathrm{~V}$, unless otherwise noted.

Symbol	Parameter	2107B		2107B-4		2107B-6		Units	Note
		Min.	Max.	Min.	Max.	Min.	Max.		
$\mathrm{t}_{\text {REF }}$	Time Between Refresh		2		2		1	ms	
t_{AC}	Address to CE Set Up Time	0		0		10		ns	3
${ }^{\text {t }}$ A	Address Hold Time	100		100		100		ns	
t_{CC}	CE Off Time	130		130		380		ns	
${ }^{\text {t }}$	CE Transition Time	10	40	10	40	10	40	ns	
${ }^{\text {t }}$ CF	CE Off to Output High Impedance State	0		0		0		ns	

READ CYCLE

Symbol	Parameter	2107B		2107B-4		2107B-6		Units	Note
		Min.	Max.	Min.	Max.	Min.	Max.		
t_{Cr}	Cycle Time	400		470		800		ns	4
${ }_{\text {t }}^{\text {CE }}$	CE On Time	230	4000	300	4000	380	4000	ns	
t_{CO}	CE Output Delay		180		250		320	ns	5
$t_{\text {ACC }}$	Address to Output Access		200		270		350	ns	6
twL	CE to $\overline{W E}$	0		0		0		ns	
twc	$\overline{\text { WE }}$ to CE On	0		0		0		ns	

WRITE CYCLE

Symbol	Parameter	2107B		2107B-4		2107B-6		Units	Note
		Min.	Max.	Min.	Max.	Min.	Max.		
$\mathrm{t}_{\mathrm{C}} \mathrm{Y}$	Cycle Time	400		470		800		ns	4
${ }^{\text {t }}$ E	CE On Time	230	4000	300	4000	380	4000	ns	
tw	$\overline{W E}$ to CE Off	150		150		200		ns	
${ }^{\text {c }}$ W	CE to $\overline{W E}$	150		150		150		ns	
tow	DIN to $\overline{W E}$ Set Up	0		0		0		ns	1
tDH	DIN Hold Time	0		0		0		ns	
twp	$\overline{\text { WE Pulse Width }}$	50		50		100		ns	

Capacitance ${ }^{|2|} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Test		And Pkg. Max.	Unit	Conditions
$C_{\text {AD }}$	Address Capacitance, $\overline{\text { CS }}$	4	6	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
$\mathrm{C}_{\text {CE }}$	CE Capacitance	17	25	pF	$V_{\text {IN }}=V_{\text {SS }}$
Cout	Data Output Capacitance	5	7	pF	$V_{\text {OUT }}=0 V$
$\mathrm{ClN}_{1 \mathrm{~N}}$	$\mathrm{D}_{\text {IN }}$ and $\overline{\text { WE }}$ Capacitance	8	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$

Notes: 1. If $\overline{W E}$ is low before CE goes high then DIN must be valid when CE goes high.
2. Capacitance measured with Boonton Meter or effective capacitance calculated from the equation.
$C=\frac{I \Delta t}{\Delta V}$ with the current equal to a constant 20 mA .
3. $t_{A C}$ is measured from end of address transition.
4. $\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$
5. $C_{\text {LOAD }}=50 \mathrm{pF}$, Load $=$ One TTL Gate, Ref $=2.0 \mathrm{~V}$.
6. $t_{A C C}=t_{A C}+t_{C O}+1 t_{T}$

Read and Refresh Cycle ${ }^{[1]}$

Write Cycle

NOTES: 1. For Refresh cycle row and column addresses must be stable before $t_{A C}$ and remain stable for entire tAH period.
2. $V_{I L} M A X$ is the reference level for measuring timing of the addresses, $\overline{C S}, \overline{W E}$, and $D_{I N}$.
3. $V_{I H}$ MIN is the reference level for measuring timing of the addresses, $\overline{C S}, \overline{W E}$, and $D_{I N}$.
4. $V_{S S}+2.0 \mathrm{~V}$ is the reference level for measuring timing of $C E$.
5. $V_{D D}-2 V$ is the reference level for measuring timing of $C E$.
6. $V_{S S}+2.0 \mathrm{~V}$ is the reference level for measuring the timing of $\overline{D_{O U T}}$.
7. During CE high typically 0.5 mA will be drawn from any address pin which is switched from low to high.

Read Modify Write Cycle ${ }^{[1]}$

Symbol	Parameter	2107B		2107B-4		2107B-6		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {RWC }}$	Read Modify Write (RMW) Cycle Time	520		590		960		ns
$\mathrm{t}_{\text {CRW }}$	CE Width During RMW	350	4000	420	4000	540	3000	ns
twc	$\overline{\mathrm{WE}}$ to CE on	0		0		0		ns
${ }_{\text {tw }}$	$\overline{W E}$ to CE off	150		150		200		ns
twP	WE Pulse Width	50		50		100		ns
tow	$\mathrm{D}_{\text {IN }}$ to $\overline{W E}$ Set Up	0		0		0		ns
t_{DH}	$\mathrm{D}_{\text {IN }}$ Hold Time	0		0		0		ns
t_{CO}	CE to Output Delay		180		250		320	ns
$t_{\text {ACC }}$	Access Time $\left(t_{\mathrm{ACC}}=\mathrm{t}_{\mathrm{AC}}+\mathrm{t}_{\mathrm{CO}}+1 \mathrm{t}_{\mathrm{T}}\right)$		200		270		350	ns

NOTES: 1. Minimum cycle timing is based on $\mathrm{t} T$ of 20 ns .
2. $V_{I L} M A X$ is the reference level for measuring timing of the addresses, $\overline{C S}, \overline{W E}$, and $D_{I N}$
3. $V_{I H} M I N$ is the reference level for measuring timing of the addresses, $\overline{C S}, \overline{W E}$, and $D_{I N}$.
4. $\mathrm{V}_{\mathrm{SS}}+2.0 \mathrm{~V}$ is the reference level for measuring timing of $C E$.
5. $V_{D D}-2 V$ is the reference level for measuring timing of $C E$.
6. $\mathcal{V}_{S S}+2.0 \mathrm{~V}$ is the reference level for measuring the timing of $\overline{D_{O U T}} . C_{L O A D}=50 \mathrm{pF}$. Load $=$ One TTL Gate.
7. WE must be at $V_{I H}$ until end of $t^{C O}$.
8. During CE high typically 0.5 mA will be drawn from any address pin which is switched from low to high.

Typical Characteristics

Fig. 1. IDD AV VS. TEMPERATURE

Fig. 3. IDD2 VS. TEMPERATURE

Fig. 2. TYPICAL IDD AVERAGE VS. CYCLE TIME

Fig. 4. TYPICAL VIL MAX VS. CE RISE TIME

Typical Current Transients vs. Time

256×4 RAM WITH COMMON I/O AND OUTPUT DISABLE

$2111 A-2$	250 ns Max.
$2111 A$	350 ns Max.
$2111 A-4$	450 ns Max.

- Inputs Protected: All İnputs Have Protection Against Static Charge
- Low Cost Packaging: 18 Pin Plastic Dual In-Line Configuration
- Low Power: Typically 150mW
- Three-State Output: OR-Tie Capability

The Intel® 2111A is a 256 word by 4-bit static random access memory element using N-channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.
The 2111A is designed for memory applications in small systems where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. Separate chip enable ($\overline{\mathrm{CE}}$) leads allow easy selection of an individual package when outputs are OR-tied.
The Intel® 2111A is fabricated with N -channel silicon gate technology. This technology allows the design and production of high performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or P-channel silicon gate technology.
Intel's silicon gate technology also provides excellent protection against contamination. This permits the use of low cost plastic packaging.
CIN CONFIGURATION
Absolute Maximum Ratings*Ambient Temperature Under Bias
\qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature

\qquad
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin
With Respect to Ground -0.5 V to +7 V
Power Dissipation 1 Watt

*COMMENT:

Stresses above those listed under 'Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ.[1]	Max.	Unit	Test Conditions
$I_{\text {LI }}$	Input Load Current		1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
$\mathrm{I}_{\mathrm{LOH}}$	I/O Leakage Current		1	10	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}_{1}=\overline{\mathrm{CE}}_{2}=2.2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=4.0 \mathrm{~V}$
ILOL	I/O Leakage Current		-1	-10	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}_{1}=\overline{\mathrm{CE}}_{2}=2.2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=0.45 \mathrm{~V}$
ICC1	Power Supply 2111A, 2111A-4		35	55	mA	$\begin{aligned} & \mathrm{V}_{I N}=5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
	Current 2111A-2		45	65		
ICC	Power Supply 2111A, 2111A-4			60	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V} \\ & \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$
	Current 2111A-2			70		
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.5		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0		V_{CC}	V	
V_{OL}	Output Low Voltage			0.45	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
VOH	Output High 2111A, 2111A-2	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
	Voltage $2111 \mathrm{~A}-4$	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-150 \mu \mathrm{~A}$

OUTPUT SINK CURRENT VS.
OUTPUT VOLTAGE

NOTE: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

A.C. Characteristics for 2111A-2 (250ns Access Time)

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$t_{\text {R }}$	Read Cycle	250			ns	$t_{r}, t_{f}=20 n s$
t_{A}	Access Time			250	ns	
${ }^{\text {t }} \mathrm{CO}$	Chip Enable To Output			180	ns	
${ }^{\text {tob }}$	Output Disable To Output			130	ns	```Timing Reference = 1.5V Load = 1 TTL Gate and}\mp@subsup{C}{L}{}=100\textrm{pF}```
$\mathrm{t}_{\mathrm{DF}}{ }^{[3]}$	Data Output to High Z State	0		180	ns	
${ }^{\text {toH }}$	Previous Read Data Valid after change of Address	40			ns	

WRITE CYCLE

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$t_{\text {wc }}$	Write Cycle	170			ns	$t_{r}, t_{f}=20 n s$
$\mathrm{t}_{\text {AW }}$	Write Delay	20			ns	
${ }^{\text {t }}$ W	Chip Enable To Write	150			ns	
$t_{\text {DW }}$	Data Setup	150			ns	$\begin{aligned} & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \text { and } C_{L}=100 \mathrm{pF} . \end{aligned}$
${ }^{\text {t }}$ H	Data Hold	0			ns	
twp	Write Pulse	150			ns	
twr	Write Recovery	0			ns	
${ }^{\text {D }}$ DS	Output Disable Setup	20			ns	

A. C. CONDITIONS OF TEST $\begin{array}{lrr}\text { Input Pulse Levels: } \quad 0.8 \text { Volt and } & 2.0 \text { Volt } \\ \text { Input Pulse Rise and Fall Times: } & 20 \mathrm{nsec} \\ \text { Timing Measurement Reference Level: } & 1.5 \text { Volt } \\ \text { Output Load: } \quad 1 \text { TTL Gate and } C_{L}=100 \text { pF }\end{array}$

Waveforms

READ CYCLE
Capacitance ${ }^{[2]} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Test	Limits (pF)	
		Typ. ${ }^{[1]}$	Max.
C_{IN}	Input Capacitance (All Input Pins) $V_{I N}=0 \mathrm{~V}$	4	8
$\mathrm{C}_{\text {OUT }}$	Output Capacitance $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$	10	15

WRITE CYCLE

NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. This parameter is periodically sampled and is not 100% tested.
3. tDF is with respect to the trailing edge of $\overline{C E}_{1}, \overline{\mathrm{CE}}_{2}$, or OD , whichever occurs first.

2111A (350 ns Access Time)

A.C. Characteristics

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$\mathrm{t}_{\text {RC }}$	Read Cycle	350			ns	$t_{r}, t_{f}=20 n s$
${ }_{t}$ A	Access Time			350	ns	
${ }^{t} \mathrm{CO}$	Chip Enable To Output			240	ns	
${ }^{\text {tod }}$	Output Disabie To Output			180	ns	$\begin{aligned} & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \text { and } C_{L}=100 \mathrm{pF} . \end{aligned}$
$\mathrm{t}_{\mathrm{DF}}{ }^{\text {[2] }}$	Data Output to High Z State	0		150	ns	
${ }^{\text {toh }}$	Previous Read Data Valid after change of Address	40			ns	

WRITE CYCLE

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
${ }_{\text {t }}$ c	Write Cycle	220			ns	$t_{r}, t_{f}=20 n s$
${ }^{\text {a }}$ W	Write Delay	20			ns	
${ }_{\text {t }}$ W	Chip Enable To Write	200			ns	
${ }_{\text {t }}$ W	Data Setup	200			ns	Timing Reference $=1.5 \mathrm{~V}$ Load $=1$ TTL Gate and $C_{L}=100 \mathrm{pF}$.
${ }^{\text {t }}$ D ${ }^{\text {ch }}$	Data Hold	0			ns	
${ }_{\text {t }}$ P	Write Pulse	200			ns	
${ }^{\text {twR }}$	Write Recovery	0			ns	
${ }^{t}$ DS	Output Disable Setup	20			ns	

2111A-4 (450 ns Access Time)

A.C. Characteristics

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{(1]}$	Max.	Unit	Test Conditions
t_{RC}	Read Cycle	450			ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
$t_{\text {A }}$	Access Time			450	ns	
${ }^{\text {t }}$ CO	Chip Enable To Output			310	ns	
${ }^{\text {tod }}$	Output Disable To Output			250	ns	```Timing Reference = 1.5V Load = 1 TTL Gate and C}\mp@subsup{C}{L}{}=100pF```
$\mathrm{t}_{\mathrm{DF}}{ }^{\text {[2] }}$	Data Output to High Z State	0		200	ns	
${ }^{\text {toh }}$	Previous Read Data Valid after change of Address	40			ns	

WRITE CYCLE

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
twc	Write Cycle	270			ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 n s$
${ }^{\text {taw }}$	Write Delay	20			ns	
${ }^{\text {c }}$ W	Chip Enable To Write	250			ns	
tow	Data Setup	250			ns	Timing Reference $=1.5 \mathrm{~V}$ Load $=1$ TTL Gate and $C_{L}=100 \mathrm{pF}$.
${ }_{\text {t }}{ }_{\text {H }}$	Data Hold	0			ns	
${ }_{\text {t }}$ P P	Write Pulse	250			ns	
twr	Write Recovery	0			ns	
${ }^{\text {t }}$ DS	Output Disable Setup	20			ns	

NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. tDF is with respect to the trailing edge of $\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$, or OD , whichever occurs first.

2111, 2111-1, 2111-2

 \title{1024 BIT (256 x 4) STATIC MOS RAM
 \title{
1024 BIT (256 x 4) STATIC MOS RAM WITH COMMON I/O AND OUTPUT DISABLE
} WITH COMMON I/O AND OUTPUT DISABLE
}

- Organization 256 Words by 4 Bits
- Common Data Input and Output
- Single +5V Supply Voltage
- Directly TTL Compatible - All Inputs and Output
- Static MOS - No Clocks or Refreshing Required

- Access Time - 0.5 to $1 \mu \mathrm{sec}$ Max.
 - Simple Memory Expansion - Chip Enable Input

- Fully Decoded - On Chip Address Decode

- Inputs Protected - All Inputs Have
- Low Cost Packaging - 18 Pin Plastic Dual-In-Line Configuration
- Low Power - Typically 150 mW
- Three-State Output - OR-Tie Capability

The Intel 2111 is a 256 word by 4 bit static random access memory element using normally off N -channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.
The 2111 is designed for memory applications in small systems where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. Separate chip enable ($\overline{\mathrm{CE}}$) leads allow easy selection of an individual package when outputs are OR-tied.
The Intel 2111 is fabricated with N -channel silicon gate technology. This technology allows the design and production of high performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or P -channel silicon gate technology.
Intel's silicon gate technology also provides excellent protection against contamination. This permits the use of low cost silicone packaging.

Absolute Maximum Ratings*

Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin
With Respect to Ground -0.5 V to +7 V
Power Dissipation . 1 Watt

*COMMENT:

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics for 2111, 2111-1, 2111-2

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. [1]	Max.	Unit	Test Conditions
$I_{L I}$	Input Load Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
$\mathrm{I}_{\mathrm{LOH}}$	I/O Leakage Current			15	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}_{1}=\overline{\mathrm{CE}}_{2}=2.2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=4.0 \mathrm{~V}$
$\mathrm{I}_{\text {LOL }}$	I/O Leakage Current			-50	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}_{1}=\overline{\mathrm{CE}}_{2}=2.2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=0.45 \mathrm{~V}$
${ }^{\text {CCC1 }}$	Power Supply Current		30	60	mA	$\begin{aligned} & \mathrm{V}_{I N}=5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current			70	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V} \\ & \mathrm{I}_{1 / 0}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$
$V_{\text {IL }}$	Input Low Voltage	-0.5		+0.65	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.2		$\mathrm{V}_{\text {cc }}$	V	
V_{OL}	Output Low Voltage			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
V OH	Output High Voltage	2.2			V	$\mathrm{l}_{\mathrm{OH}}=-150 \mu \mathrm{~A}$

NOTE: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

A.C. Characteristics for 2111

READ CYCLE $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
t_{RC}	Read Cycle	1,000			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$
$t_{\text {A }}$	Access Time			1,000	ns	
t_{CO}	Chip Enable To Output			800	ns	
$t_{O D}$	Output Disable To Output			700	ns	
$\mathrm{t}_{\mathrm{DF}}{ }^{[3]}$	Data Output to High Z State	0		200	ns	
${ }^{\text {toH }}$	Previous Read Data Valid after change of Address	40			ns	

WRITE CYCLE

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
${ }_{\text {tw }}$	Write Cycle	1,000			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$
${ }_{\text {taw }}$	Write Delay	150			ns	
${ }^{\text {c }}$ CW	Chip Enable To Write	900			ns	
tow	Data Setup	700			ns	
${ }_{\text {t }}$ H	Data Hold	100			ns	
${ }^{\text {twP }}$	Write Pulse	750			ns	
${ }^{\text {twr }}$	Write Recovery	50			ns	
t_{DS}	Output Disable Setup	200			ns	

A. C. CONDITIONS OF TEST

 Input Pulse Levels: $\quad+0.65$ Volt to 2.2 Volt Input Pulse Rise and Fall Times: 20 nsec Timing Measurement Reference Level: 1.5 Volt Output Load:1 TTL Gate and $C_{L}=100 \mathrm{pF}$

Waveforms

READ CYCLE

NOTES: 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. This parameter is periodically sampled and is not 100% tested.
3. tDF is with respect to the trailing edge of $\overline{\mathrm{CE}}, \overline{\mathrm{CE}}{ }_{2}$, or OD , whichever occurs first.

2111-1 (500 ns Access Time)

A.C. Characteristics for 2111-1

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$\mathrm{t}_{\text {RC }}$	Read Cycle	500			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$
$t_{\text {A }}$	Access Time			500	ns	
${ }^{\text {t }}$ CO	Chip Enable To Output			350	ns	
tod	Output Disable To Output			300	ns	
$\mathrm{t}_{\mathrm{DF}}{ }^{\text {[2] }}$	Data Output to High Z State	0		150	ns	
${ }^{\text {tor }}$	Previous Read Data Valid after change of Address	40			ns	

WRITE CYCLE

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
twc	Write Cycle	500			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$
$\mathrm{t}_{\text {AW }}$	Write Delay	100			ns	
${ }^{\text {t }}$ CW	Chip Enable To Write	400			ns	
tow	Data Setup	280			ns	
${ }_{\text {t }}$ H	Data Hold	100			ns	
twp	Write Pulse	300			ns	
twr	Write Recovery	50			ns	
${ }^{t}$ DS	Output Disable Setup	150			ns	

2111-2 (650 ns Access Time)

A.C. Characteristics for 2111-2

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
t_{RC}	Read Cycle	650			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$
${ }^{\text {t }}$ A	Access Time			650	ns	
t_{CO}	Chip Enable To Output			400	ns	
${ }_{\text {tod }}$	Output Disable To Output			350	ns	
${ }^{\text {t }}{ }^{\text {[2] }}$	Data Output to High Z State	0		150	ns	
${ }^{\text {O }} \mathrm{OH}$	Previous Read Data Valid after change of Address	40			ns	

WRITE CYCLE

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
twc	Write Cycle	650			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } C_{L}=100 \mathrm{pF} . \end{aligned}$
${ }^{\text {taw }}$	Write Delay	150			ns	
${ }^{\text {t }}$ CW	Chip Enable To Write	550			ns	
tow	Data Setup	400			ns	
${ }_{\text {t }}$ (${ }_{\text {c }}$	Data Hold	100			ns	
twp	Write Pulse	400			ns	
twr	Write Recovery	50			ns	
${ }^{t}$ DS	Output Disable Setup	150			ns	

NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. tDF is with respect to the trailing edge of $\overline{C E}_{1}, \overline{C E_{2}}$, or $O D$, whichever occurs first.

256×4 RAM WITH COMMON DATA I/O

$2112 A-2$	250 ns Max.
$2112 A$	350 ns Max.
$2112 A-4$	450 ns Max.

- Single +5 V Supply Voltage
- Directly TTL Compatible: All Inputs and Outputs
- Static MOS: No Clocks or Refreshing Required
- Simple Memory Expansion: Chip Enable Input
- Fully Decoded: On Chip Address Decode
> - Inputs Protected: All Inputs Have Protection Against Static Charge
> - Low Cost Packaging: 16 Pin Plastic Dual In-Line Configuration
> - Low Power: Typically 150mW
> - Three-State Output: OR-Tie Capability

The Intel© 2112A is a 256 word by 4-bit static random access memory element using N-channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.
The 2112A is designed for memory applications in small systems where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. A separate chip enable ($\overline{\mathrm{CE}}$) lead allows easy selection of an individual package when outputs are OR-tied.
The Intel ${ }^{\otimes} 2112 \mathrm{~A}$ is fabricated with N -channel silicon gate technology. This technology allows the design and production of high performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or P-channel silicon gate technology.

Absolute Maximum Ratings*

Ambient Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin
With Respect to Ground -0.5 V to +7 V
Power Dissipation
1 Watt
*COMMENT:
Stresses above those listed under 'Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{1]}$	Max.	Unit	Test Conditions
$I_{\text {LI }}$	Input Current		1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0$ to 5.25 V
$\mathrm{I}_{\mathrm{LOH}}$	I/O Leakage Current		1	10	$\mu \mathrm{A}$	$\overline{C E}=2.0 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=4.0 \mathrm{~V}$
ILOL	1/O Leakage Current		-1	-10	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=0.45 \mathrm{~V}$
ICC1	Power Supply $\quad \begin{array}{l}\text { 2112A, 2112A-4 } \\ \text { Current }\end{array}$ 2112A-2		35	55	mA	$\begin{aligned} & V_{I N}=5.25 \mathrm{~V}, I_{I / O}=0 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{CC2}}$	Power Supply $\begin{aligned} & \text { 2112A, 2112A-4 } \\ & \text { Current }\end{aligned} \quad 2112 \mathrm{~A}-2$			60	mA	$\begin{aligned} & V_{I N}=5.25 \mathrm{~V}, \mathrm{I}_{I / O}=0 \mathrm{~mA} \\ & T_{A^{\prime}}=0^{\circ} \mathrm{C} \end{aligned}$
$V_{\text {IL }}$	Input "Low" Voltage	-0.5		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	2.0		V_{cc}	V	
V_{OL}	Output "Low" Voltage			+0.45	V	$\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$
V OH	Output "High" 2112A, 2112A-2	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
	Voltage 2112A-4	2.4			V	$\mathrm{IOH}^{\prime}=-150 \mu \mathrm{~A}$

A.C. Characteristics for 2112A-2

READ CYCLE $\quad T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	Read Cycle	250			ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
${ }^{t}$ A	Access Time			250	ns	
${ }^{\text {t }} \mathrm{CO}$	Chip Enable To Output Time			180	ns	Timing Reference $=1.5 \mathrm{~V}$ Load = 1 TTL Gate
${ }^{\text {t }}$ CD	Chip Enable To Output Disable Time	0		120	ns	
${ }^{\text {toH }}$	Previous Read Data Valid After Change of Address	40			ns	and $C_{L}=100 p F$.

READ CYCLE WAVEFORMS

[2]
Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Test	Limits (pF)	
		Typ.[1]	Max.
C_{IN}	Input Capacitance (All Input Pins) $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	4	8
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	I/O Capacitance $\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$	10	15

NOTES:

1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. This parameter is periodically sampled and is not 100% tested.
A.C. Characteristics for 2112A-2 (Continued)

WRITE CYCLE \#1 $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
${ }^{\text {W WCO }}$	Write Cycle	200			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } C_{L}=100 \mathrm{pF} . \end{aligned}$
$\mathrm{t}_{\text {AW }}$ 1	Address To Write Setup Time	20			ns	
${ }^{\text {t }}$ DW1	Write Setup Time	180			ns	
twP1	Write Pulse Width	180			ns	
${ }^{\text {t }} \mathrm{CS} 1$	Chip Enable Setup Time	0			ns	
${ }_{\text {t }}$	Chip Enable Hold Time	0			ns	
${ }^{\text {twR1 }}$	Write Recovery Time	0			ns	
${ }^{\text {t }}$ H1	Data Hold Time	0			ns	
${ }^{\text {t }}$ W1	Chip Enable To Write Setup Time	180			ns	

WRITE CYCLE \#2 $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
twC2	Write Cycle	320			ns	$t_{r}, t_{f}=20 n s$ Timing Reference $=1.5 \mathrm{~V}$ Load $=1$ TTL Gate and $C_{L}=100 p F$.
$\mathrm{t}_{\text {AW2 }}$	Address To Write Setup Time	20			ns	
t DW2	Write Setup Time	180			ns	
twD2	Write To Output Disable Time	120			ns	
$\mathrm{t}_{\mathrm{CS} 2}$	Chip Enable Setup Time	0			ns	
${ }_{\text {th32 }}$	Chip Enable Hold Time	0			ns	
twR2	Write Recovery Time	0			ns	
$\mathrm{t}_{\text {DH2 }}$	Data Hold Time	0			ns	

Write Cycle Waveforms

WRITE CYCLE \#1

WRITE CYCLE \#2

NOTE: 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

A.C. Characteristics for 2112A

READ CYCLE $\quad T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$\mathrm{t}_{\text {RC }}$	Read Cycle	350			ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
t_{A}	Access Time			350	ns	
${ }^{\text {t }} \mathrm{CO}$	Chip Enable To Output Time			240	ns	Timing Reference $=1.5 \mathrm{~V}$Load $=1$ TTL Gate
${ }^{\text {t }}$ CD	Chip Enable To Output Disable Time	0		200	ns	
${ }^{\text {toH }}$	Previous Read Data Valid After Change of Address	40			ns	and $C_{L}=100 \mathrm{pF}$.

WRITE CYCLE \#1 $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
twC1	Write Cycle	270			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } C_{L}=100 \mathrm{pF} . \end{aligned}$
$t_{\text {taw } 1}$	Address To Write Setup Time	20			ns	
${ }^{\text {t }}$ WW1	Write Setup Time	250			ns	
twP1	Write Pulse Width	250			ns	
${ }^{\text {t }} \mathrm{CS} 1$	Chip Enable Setup Time	0			ns	
${ }^{\text {t }} \mathrm{CH} 1$	Chip Enable Hold Time	0			ns	
twR1	Write Recovery Time	0			ns	
${ }^{\text {toH1 }}$	Data Hold Time	0			ns	
${ }^{\text {c }}$ CW1	Chip Enable to Write Setup Time	250			ns	

WRITE CYCLE \#2 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
twC2	Write Cycle	470			ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
$\mathrm{t}_{\text {AW2 }}$	Address To Write Setup Time	20			ns	
${ }_{\text {t }}{ }^{\text {dW2 }}$	Write Setup Time	250			ns	$\begin{gathered} \text { Timing Reference }=1.5 \mathrm{~V} \\ \text { Load }=1 \mathrm{TTL} \text { Gate } \\ \text { and } C_{L}=100 \mathrm{pF} . \end{gathered}$
tWD2	Write To Output Disable Time	200			ns	
$\mathrm{t}_{\mathrm{CS} 2}$	Chip Enable Setup Time	0			ns	
${ }^{\text {t }} \mathrm{CH} 2$	Chip Enable Hold Time	0			ns	
$t_{\text {WR2 }}$	Write Recovery Time	0			ns	
${ }^{\text {t }} \mathrm{H} 2$	Data Hold Time	0			ns	

NOTE: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

A.C. Characteristics for 2112A-4

READ CYCLE $\quad T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
t_{RC}	Read Cycle	450			ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
t_{A}	Access Time			450	ns	
${ }^{\text {t }} \mathrm{CO}$	Chip Enable To Output Time			310	ns	Timing Reference $=1.5 \mathrm{~V}$ Load $=1$ TTL Gate
${ }^{\text {t }} \mathrm{CD}$	Chip Enable To Output Disable Time	0		260	ns	
${ }^{\text {toh }}$	Previous Read Data Valid After Change of Address	40			ns	and $C_{L}=100 \mathrm{pF}$.

WRITE CYCLE \#1 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
twC1	Write Cycle	320			ns	$\begin{aligned} & t_{r}, t_{f}=20 \mathrm{~ns} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \text { TTL Gate } \\ & \quad \text { and } C_{L}=100 \mathrm{pF} . \end{aligned}$
${ }_{\text {taw } 1}$	Address To Write Setup Time	20			ns	
${ }^{\text {t }}$ WW1	Write Setup Time	300			ns	
${ }^{\text {t WP1 }}$	Write Pulse Width	300			ns	
${ }^{\text {c }} \mathrm{CS} 1$	Chip Enable Setup Time	0			ns	
${ }^{\text {t }} \mathrm{CH} 1$	Chip Enable Hold Time	0			ns	
tWR1	Write Recovery Time	0			ns	
${ }^{\text {t }}$ D ${ }^{\text {c }}$	Data Hold Time	0			ns	
${ }^{\text {t }} \mathrm{CW} 1$	Chip Enable to Write Setup Time	300			ns	

WRITE CYCLE \#2 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
${ }_{\text {t }}$ C2 2	Write Cycle	580			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$
$\mathrm{t}_{\text {AW2 }}$	Address To Write Setup Time	20			ns	
tow2	Write Setup Time	300			ns	
twD2	Write To Output Disable Time	260			ns	
${ }^{\text {c CS2 }}$	Chip Enable Setup Time	0			ns	
${ }_{\text {t }}$	Chip Enable Hold Time	0			ns	
twR2	Write Recovery Time	0			ns	
${ }_{\text {toH2 }}$	Data Hold Time	0			ns	

NOTE: 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

1024 BIT (256 x 4) STATIC MOS RAM WITH COMMON DATA I/O

- Organization 256 Words by 4 Bits
- Common Data Input and Output
- Single +5V Supply Voltage
- Directly TTL Compatible:

All Inputs and Output

- Static MOS: No Clocks or Refreshing Required
- Access Time: 0.65 to $1 \mu \mathrm{sec}$ Max.
- Simple Memory Expansion: Chip Enable Input

Fully Decoded: On Chip Address Decode

- Inputs Protected: All Inputs Have Protection Against Static Charge
- Low Cost Packaging: 16 Pin Plastic Dual In-Line Configuration
- Low Power: Typically 150mW
- Three-State Output: OR-Tie Capability

The Intel® 2112 is a 256 word by 4 -bit static random access memory element using normally off N -channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out non-destructively and has the same polarity as the input data. Common input/output pins are provided.
The 2112 is designed for memory applications in small systems where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. A separate chip enable ($\overline{\mathrm{CE}}$) lead allows easy selection of an individual package when outputs are OR-tied.

The Intel ${ }^{\circledR} 2112$ is fabricated with N -channel silicon gate technology. This technology allows the design and production of high performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or P-channel silicon gate technology.
Intel's silicon gate technology also provides excellent protection against contamination. This permits the use of low cost silicone packaging.

PIN CONFIGURATION

LOGIC SYMBOL

PIN NAMES

$A_{0} \cdot A_{7}$	ADDRESS INPUTS
R / W	READ/WRITE INPUT
$\overline{C E}$	CHIP ENABLE INPUT
$\mathrm{I} / \mathrm{O}_{1}-1 / \mathrm{O}_{4}$	DATA INPUT/OUTPUT
V_{cc}	POWER $(+5 \mathrm{~V})$

BLOCK DIAGRAM

Absolute Maximum Ratings*

Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin
With Respect to Ground -0.5 V to +7 V
Power Dissipation . 1 Watt
*COMMENT:
Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics for 2112, 2112-2

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
I_{LI}	Input Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0$ to 5.25 V
$\mathrm{I}_{\mathrm{LOH}}$	I / O Leakage Current			15	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=4.0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{LOL}}$	I/O Leakage Current			-50	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CC} 1}$	Power Supply Current		30	60	mA	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}$ $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current			70	mA	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}$ $\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
V_{IL}	Input "Low" Voltage	-0.5		+0.65	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input "High" Voltage	2.2		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{OL}	Output "Low" Voltage			+0.45	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output "High" Voltage	2.2			V	$\mathrm{I}_{\mathrm{OH}}=-150 \mu \mathrm{~A}$

A.C. Characteristics for 2112

READ CYCLE $\quad T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
t_{RC}	Read Cycle	1,000			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$
$t_{\text {A }}$	Access Time			1,000	ns	
${ }_{\text {t }} \mathrm{CO}$	Chip Enable To Output Time			800	ns	
t_{CD}	Chip Enable To Output Disable Time	0		200	ns	
${ }^{\text {toH }}$	Previous Read Data Valid After Change of Address	40			ns	

READ CYCLE WAVEFORMS

[2]
Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Test	Limits (pF)	
		Typ. ${ }^{[1]}$	Max.
C_{IN}	Input Capacitance (All Input Pins) $V_{I N}=0 \mathrm{~V}$	4	8
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	I/O Capacitance $\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}$	10	15

NOTES:

1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. This parameter is periodically sampled and is not 100% tested.

A.C. Characteristics for 2112 (Continued)

WRITE CYCLE \#1 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
${ }^{\text {t }}$ WC1	Write Cycle	850			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } C_{L}=100 \mathrm{pF} . \end{aligned}$
${ }^{\text {taw }}$ 1	Address To Write Setup Time	150			ns	
${ }^{\text {t DW1 }}$	Write Setup Time	650			ns	
tWP1	Write Pulse Width	650			ns	
${ }^{\text {t }} \mathrm{C}$ S 1	Chip Enable Setup Time	0			ns	
${ }^{\text {t }} \mathrm{CH} 1$	Chip Enable Hold Time	0			ns	
twR1	Write Recovery Time	50			ns	
${ }^{\text {t }}$ D 1	Data Hold Time	100			ns	
${ }^{t} \mathrm{CW1}$	Chip Enable To Write Setup Time	650			ns	

WRITE CYCLE \#2 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\text {CC }}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
${ }_{\text {t }}$ WC2	Write Cycle	1050			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } C_{L}=100 \mathrm{pF} . \end{aligned}$
$\mathrm{t}_{\text {AW2 }}$	Address To Write Setup Time	150			ns	
$t_{\text {DW2 }}$	Write Setup Time	650			ns	
tWD2	Write To Output Disable Time	200			ns	
${ }^{\text {t }}$ CS2	Chip Enable Setup Time	0			ns	
${ }^{\text {t }} \mathrm{CH} 2$	Chip Enable Hold Time	0			ns	
$t_{\text {WR2 }}$	Write Recovery Time	50			ns	
$\mathrm{t}_{\text {DH2 }}$	Data Hold Time	100			ns	

Write Cycle Waveforms

WRITE CYCLE \#1

WRITE CYCLE \#2

NOTE: 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

2112-2 (650 ns Access Time)

A.C. Characteristics for 2112-2

READ CYCLE $\quad T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{1]}$	Max.	Unit	Test Conditions
t_{RC}	Read Cycle	650			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } C_{L}=100 \mathrm{pF} . \end{aligned}$
t_{A}	Access Time			650	ns	
${ }^{\text {t }} \mathrm{CO}$	Chip Enable To Output Time			500	ns	
${ }^{\text {t }}$ CD	Chip Enable To Output Disable Time	0		150	ns	
${ }^{\text {toh }}$	Previous Read Data Valid After Change of Address	40			ns	

WRITE CYCLE \#1 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
twC1	Write Cycle	500			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \quad \text { and } C_{L}=100 \mathrm{pF} . \end{aligned}$
${ }^{\text {taw }} 1$	Address To Write Setup Time	100			ns	
$t_{\text {DW1 }}$	Write Setup Time	280			ns	
twP1	Write Pulse Width	350			ns	
$\mathrm{t}_{\mathrm{CS} 1}$	Chip Enable Setup Time	0			ns	
${ }^{\text {t }} \mathrm{CH} 1$	Chip Enable Hold Time	0			ns	
tWR1	Write Recovery Time	50			ns	
toh1	Data Hold Time	50			ns	
${ }^{\text {c }}$ W 1	Chip Enable to Write Setup Time	350			ns	

WRITE CYCLE \#2 $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Typ. ${ }^{\text {[1] }}$	Max.	Unit	Test Conditions
${ }^{\text {twC2 }}$	Write Cycle	650			ns	$\begin{aligned} & \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{IN}}=+0.65 \mathrm{~V} \text { to }+2.2 \mathrm{~V} \\ & \text { Timing Reference }=1.5 \mathrm{~V} \\ & \text { Load }=1 \mathrm{TTL} \text { Gate } \\ & \text { and } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$
$\mathrm{t}_{\text {AW2 }}$	Address To Write Setup Time	100			ns	
t ${ }_{\text {DW2 }}$	Write Setup Time	280			ns	
${ }_{\text {twD2 }}$	Write To Output Disable Time	200			ns	
$\mathrm{t}_{\text {cs2 }}$	Chip Enable Setup Time	0			ns	
${ }_{\text {t }}$	Chip Enable Hold Time	0			ns	
tWR2	Write Recovery Time	50			ns	
$\mathrm{t}_{\text {DH2 }}$	Data Hold Time	50			ns	

NOTE: 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

1024 X 1 HIGH SPEED STATIC RAM

	$2115-2$,	2115,	2115 L,
	$2125-2$	2125	2125 L
Typ. TAA (ns)	55	75	75
Typ. I $\mathrm{CC}(\mathrm{mA})$	80	75	50

Fully Pin Compatible to 93415
 (2115) and 93425 (2125)
 - Low Operating Power Dissipation:
 Typical 0.2mW/bit (2115L, 2125L)
 - TTL Inputs and Output

Single +5V Supply

- Uncommitted Collector* (2115) and Three-State (2125) Output
- Non-Inverting Data Output
- Standard 16 Pin Dual In-Line Package

The Intel ${ }^{\circledR} 2115$ and 2125 family are fully static read/write random access memories organized as 1024 words by 1 bit. These RAMs are designed for buffer control storage and high performance main memory applications. They are compatible with TTL logic families in all respects: inputs, output, and a single +5 V supply. Both uncommitted collector* and three-state output are available.
The 2115 and 2125 family offers high performance, low power dissipation, and system cost savings. Fast system speed is achieved by using the 2115-2 and 2125-2. The 2115L and 2125L gives low system power dissipation, only $0.2 \mathrm{~mW} / \mathrm{bit}$ typical. The 2115 and 2125 are ideal for slower performance systems where cost is a prime factor.
The 2115 and 2125 family is fabricated with N-channel MOS silicon gate technology. This technology allows the design and production of high speed MOS RAMs which are compatible to the performance of bipolar RAMs, but offering the advantage of lower power dissipation and cost.
*The 2115 is a MOS device and the output is actually an uncommitted drain.

PIN CONFIGURATION

PIN NAMES

CS	CHIP SELECT
A_{0} TO A_{9}	ADDRESS INPUTS
WE	WRITE ENABLE
DIN 2	DATA INPUT
$D_{\text {OUT }}$	DATA OUTPUT

Absolute Maximum Ratings*
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Temperature Under Bias . $-10^{\circ} \mathrm{C}$ to
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output or Supply Voltages . -0.5 to +7 Volts
All Input Voltages . -0.5 to +5.5 Volts
D.C. Output Current . 20mA

*COMMENT:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics ${ }^{[1]}$
 [1]
 $V_{C C}=5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Symbol	Test	Min.	Typ.	Max.	Unit	Conditions	
$\mathrm{V}_{\text {OL1 }}$	2115-2 Output Low Voltage			0.45	V	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	
$\mathrm{V}_{\text {OL2 }}$	2115, 2115L Output Low Voltage			0.45	V	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	
$\mathrm{V}_{\text {OL3 }}$	2125 Family Output Low Voltage			0.45	V	$\mathrm{lOL}^{\prime}=7 \mathrm{~mA}$	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.1			V		
$V_{\text {IL }}$	Input Low Voltage			0.8	V		
IIL	Input Low Current		-1	-40	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
I_{IH}	Input High Current		1	40	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max} ., \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$	
ICEX	2115 Family Output Leakage Current		10	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$	
\|loff		2125 Family Output Current (High Z)		10	50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} / 2.4 \mathrm{~V}$
los ${ }^{[2]}$	2125 Family Current Short Circuit to Ground			-100	mA	$\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$	
V_{OH}	2125 Family Output High Voltage	2.4			V	$\mathrm{IOH}=-3.2 \mathrm{~mA}$	
$I_{\text {CCL }}$	2115L, 2125L Power Supply Current		50	65	mA	All Inputs Grounded, Output Open	
ICC1	2115, 2125, Power Supply Current		75	100	mA	All Inputs Grounded, Output Open	
$\mathrm{I}_{\mathrm{CC} 2}$	2115-2, 2125-2 Power Supply Current		80	125	mA	All Inputs Grounded, Output Open	

Notes:

1. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are:

$$
\begin{aligned}
& \theta_{\mathrm{JA}}\left(@ 400 \mathrm{fPM} \text { air flow) }=45^{\circ} \mathrm{C} / \mathrm{W}\right. \\
& \theta_{\mathrm{JA}}(\text { still air })=60^{\circ} \mathrm{C} / \mathrm{W} \\
& \theta_{\mathrm{JC}}=25^{\circ} \mathrm{C} / \mathrm{W} .
\end{aligned}
$$

2. Duration of short circuit current should not exceed 1 second.

2115 Family A.C. Characteristics ${ }^{[1]} V_{C C}=5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ READ CYCLE

Symbol	Test	Min.	$\begin{gathered} 2115-2 \\ \text { Limits } \\ \text { Typ. } \end{gathered}$	Max.	Min.	2115 Limits Typ.	Max.	Min.	2115L Limits Typ.		Units
$t_{\text {ACS }}$	Chip Select Time	5		40	5		45	5		50	ns
$t_{\text {RCS }}$	Chip Select Recovery Time			40			40			40	ns
$t_{\text {AA }}$	Address Access Time		55	70		75	95		75	95	ns
${ }^{\text {toh }}$	Previous Read Data Valid After Change of Address	10			10			10			ns

WRITE CYCLE

Symbol	Test	Min. Typ. Max.	Min. Typ. Max.	Min. Typ. Max.	Units
tws	Write Enable Time	40	40	40	ns
twR	Write Recovery Time	5	5	5 50	ns
t_{W}	Write Pulse Width	50	50	50	ns
${ }^{\text {t WSD }}$	Data Set-Up Time Prior to Write	5	5	15	ns
tWHD	Data Hold Time After Write	5	5	15	ns
twSA	Address Set-Up Time	15	30	30	ns
tWHA	Address Hold Time	5	5	15	ns
twscs	Chip Select Set-Up Time	5	5	15	ns
twhes	Chip Select Hold Time	5	5	15	ns

TEST CONDITIONS

READ CYCLE

PROPAGATION DELAY FROM CHIP SELECT

WRITE CYCLE

(ALL ABOVE MEASUREMENTS REFERENCED TO 1.5V)

2125 Family A.C. Characteristics ${ }^{[1]} V_{C C}=5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

 READ CYCLE

WRITE CYCLE

TEST CONDITIONS

READ CYCLE

PROPAGATION DELAY FROM CHIP SELECT

WRITE CYCLE

2125 FAMILY WRITE ENABLE TO HIGH Z DELAY

LOAD 1

2125 FAMILY PROPAGATION DELAY FROM CHIP SELECT TO HIGH Z

(All t $2 \times X \times$ parameters are measured at a delta of 0.5 V from the logic level and using Load 1.)

2115/2125 FAMILY CAPACITANCE* $V_{C C}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Test	2115 Family Limits Typ. Max.		2125 Family Limits Typ.	Max.	Units	Test Conditions
C_{1}	Input Capacitance	3	5	3	5	pF	All Inputs $=0 \mathrm{~V}$, Output Open
C_{O}	Output Capacitance	5	8	5	8	pF	$\overline{\mathrm{CS}}=5 \mathrm{~V}$, All other inputs $=0 \mathrm{~V}$, Output Open

*This parameter is periodically sampled and is not 100% tested.

Typical Characteristics

ICc VS. TEMPERATURE

Icc VS. Vcc

ACCESS TIME VS. CAPACITANCE

16,384-BIT DYNAMIC MOS RANDOM ACCESS MEMORY

The Intel® 2116 is a $16 \mathrm{~K} \times 1$ dynamic N -Channel MOS RAM fabricated with Intel's highly reliable silicon gate technology and packaged in a standard 16 pin DIP. It uses a single transistor cell for low cost, low power, high speed and high packing density. Two clocks, $\overline{\text { CAS }}$ and $\overline{\text { RAS }}$, multiplex the address inputs with non-critical timing requirements.

The industry standard pin configuration of the 2116 will enable systems using the 2104 type 4K RAMs to be easily upgraded to 16 K capabilities.
The 2116 family offers identical power dissipation, access and cycle times to those of the 2104, 2104-2, and 2104-4. All input and output levels of the 2116 are TTL compatible. The output is three-state.

EXPECTED CHARACTERISTICS

Ambient Temperature Range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Nominal $V_{D D}$: 12 V
Nominal $\mathrm{V}_{\mathrm{CC}}:+5 \mathrm{~V}$
Nominal V_{BB} : -5 V
Nominal $\mathrm{V}_{\text {SS }}$: OV
$\mathrm{V}_{\text {IL }}$ Range: -1.0 V to 0.8 V
$\mathrm{V}_{\text {IH }}$ Range: 2.4 to $\mathrm{V}_{\mathrm{DD}}+1 \mathrm{~V}$
Maximum V_{OL} : 0.4 V
Minimum $\mathrm{V}_{\mathrm{OH}}: 2.4 \mathrm{~V}$
Maximum Operating Power: $<900 \mathrm{~mW}$
Maximum Standby Power: 24 mW
Maximum Access Times: 250, 300, 350ns
Minimum Cycle Times: $375,425,500 \mathrm{~ns}$
Maximum Refresh Time: 2ms

PIN CONFIGURATION

LOGIC SYMBOL

BLOCK DIAGRAM

PIN NAMES

$\mathrm{A}_{0} \cdot \mathrm{~A}_{6}$	ADDRESS INPUTS	$\overline{\text { WE }}$	WRITE ENABLE
CAS	COLUMN ADDRESS STROBE	$\mathrm{V}_{\text {BB }}$	POWER $(-5 \mathrm{~V})$
D_{IN}	DATA IN	V_{CC}	POWER $(+5 \mathrm{~V})$
$\mathrm{D}_{\text {OUT }}$	DATA OUT		V_{DD}
PAS	POWER $(+12 \mathrm{~V})$		

HIGH SPEED FULLY DECODED 64 BIT MEMORY

- Fast Access Time -- $\mathbf{3 5}$ nsec. max. over 0-75 ${ }^{\circ}$ C Temperature Range. (3101A)
- Simple Memory Expansion through Chip Select Input--17 nsec. max. over 0-75 ${ }^{\circ}$ C Temperature Range. (3101A)
- DTL and TTL Compatible --Low Input Load Current: 0.25 mA . max.
- OR-Tie Capability -Open Collector Outputs.
- Fully Decoded -- on Chip Address Decode and Buffer.
- Minimum Line Reflection -- Low Voltage Diode Input Clamp.
- Ceramic and Plastic Package -16 Pin Dual In-Line Configuration.

The Intel 3101 and 3101A are high speed fully decoded 64 bit random access memories, organized 16 words by 4 bits. Their high speed makes them ideal in scratch pad applications. An unselected chip will not generate noise at its output during writing of a selected chip. The output is held high on an unselected chip regardless of the state of the read/write signal.
The use of Schottky barrier diode clamped transistors to obtain fast switching speeds results in higher performance than equivalent devices with gold diffusion processes.
The Intel 3101 and 3101A are packaged in either hermetically sealed 16 pin ceramic packages, or in low cost silicone packages, and their performance is specified over a temperature range from $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.
The storage cells are addressed through an on chip 1 of 16 binary decoder using four input address leads. A separate Chip Select lead allows easy selection of an individual package when outputs are OR-tied.
In addition to the address leads and the Chip Select lead, there is a write input which allows data presented at the data leads to be entered at the addressed storage cells.

Absolute Maximum Ratings*

\(\left.$$
\begin{array}{llr}\text { Temperature Under Bias: } & \begin{array}{l}\text { Ceramic } \\
\text { Plastic }\end{array} & \begin{array}{r}-65^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}\end{array}
$$

Storage Temperature \& -65^{\circ} \mathrm{C} to+160^{\circ} \mathrm{C}\end{array}\right\}\)| -0.5 to +7 Volts | |
| :--- | ---: |
| All Output or Supply Voltages | -1.0 to +5.5 Volts |
| All Input Voltages | 100 mA |

*COMMENT:

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	TEST CONDITIONS
$I_{\text {FA }}$	ADDRESS INPUT LOAD CURRENT		-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0.45 \mathrm{~V}$
${ }^{\text {FD }}$	DATA INPUT LOAD CURRENT		-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {FW }}$	WRITE INPUT LOAD CURRENT		-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=0.45 \mathrm{~V}$
$I_{\text {FS }}$	CHIP SELECT INPUT LOAD CURRENT		-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.45 \mathrm{~V}$
$I_{\text {RA }}$	ADDRESS INPUT LEAKAGE CURRENT		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=5.25 \mathrm{~V}$
$\mathrm{I}_{\text {RD }}$	DATA INPUT LEAKAGE CURRENT		10	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=5.25 \mathrm{~V}$
$I_{\text {RW }}$	WRITE INPUT LEAKAGE CURRENT		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=5.25 \mathrm{~V}$
$\mathrm{I}_{\text {RS }}$	CHIP SELECT INPUT LEAKAGE CURRENT		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5.25 \mathrm{~V}$
$V_{C A}$	ADDRESS INPUT CLAMP VOLTAGE		-1.0	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-5.0 \mathrm{~mA}$
$V_{C D}$	DATA INPUT CLAMP VOLTAGE		-1.0	V	$\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-5.0 \mathrm{~mA}$
V_{cw}	WRITE INPUT CLAMP VOLTAGE		-1.0	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{W}}=-5.0 \mathrm{~mA}$
$V_{\text {cS }}$	CHIP SELECT INPUT CLAMP VOLTAGE		-1.0	V	$\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-5.0 \mathrm{~mA}$
V_{OL}	OUTPUT '"LOW' VOLTAGE		0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$ Memory Stores "Low"
${ }_{\text {CEX }}$	OUTPUT LEAKAGE CURRENT		100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CEX}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=2.5 \mathrm{~V} \end{aligned}$
${ }^{\text {c }}$ C	POWER SUPPLY CURRENT		105	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$	INPUT "LOW" VOLTAGE		0.85	V	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$
V_{IH}	INPUT "HIGH" VOLTAGE	2.0		V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Typical Characteristics

OUTPUT CURRENT
VS. OUTPUT "LOW" VOLTAGE

INPUT CURRENT VS. INPUT VOLTAGE

INPUT THRESHOLD VOLTAGE
VS. AMBIENT TEMPERATURE

Switching Characteristics

Conditions of Test:

Input Pulse amplitudes:
2.5 V

Input Pulse rise and fall times of 5 nanoseconds between 1 volt and 2 volts
Speed measurements are made at 1.5 volt levels Output loading is 15 mA and 30 pF

15 mA Test Load

Address to Output Delay
$A_{0}, A_{1}, A_{2}, A_{3}$

CHIP SELECT INPUT

Chip Select to Output Delay
$A_{0}, A_{1}, A_{2}, A_{3}$

CHIP SELECT INPUT
$O_{1}, o_{2}, o_{3}, o_{4}$

WRITE CYCLE
$A_{0}, A_{1}, A_{2}, A_{3}$,

(See Note 1)
*Outputs of unselected chips remain high during write cycle.

NOTE 1: $\quad t_{\text {SR }}$ is associated with a read cycle following a write cycle and does not affect the access time.
A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V} \pm 5 \%$

READ CYCLE					
SYMBOL	PARAMETER	3101A		3101	
		LIMITS (ns)		LIMits (ns)	
		MIN.	MAX.	MIN.	MAX.
${ }^{\text {t }}{ }^{+}$, ${ }^{\text {s }}$ -	Chip Select to Output Delay	5	17	5	42
${ }^{t} A_{-1}{ }^{t} A^{+}$	Address to Output Delay	10	35	10	60

CAPACITANCE ${ }^{(2)} \quad T_{A}=25^{\circ} \mathrm{C}$

$C_{I N}$	INPUT CAPACITANCE (All Pins)	10 pF maximum
$\mathrm{C}_{\text {OUT }}$	OUTPUT CAPACITANCE	12 pF maximum

WRITE CYCLE					
SYMBOL	TEST	3101A		3101	
		LIMITS (ns)		LIMITS (ns)	
		MIN.	MAX.	MIN.	MAX.
${ }^{\text {t }}$ SR	Sense Amplifier Recovery Time		35		50
${ }^{\text {t }}$ WP	Write Pulse Width	25		40	
tow	Data-Write Overlap Time	25		40	
twr	Write Recovery Time	0		5	

NOTE 2: This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, V_{\text {bias }}$ $=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$, and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.

Typical A.C. Characteristics

HIGH SPEED FULLY DECODED 64 BIT MEMORY

\author{

- Military Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 - Fast Access Time-45ns Maximum (M3101A)
}
- OR-Tie Capability Open Collector Outputs
- Standard Packaging-16 Pin Dual In-Line Lead Configuration

The M3101 and M3101A are military temperature range RAMs, organized as 16 words by 4 -bits. Their high speed makes them ideal in scratch pad and small buffer memory applications. The M3101 and M3101A are fabricated with using Schottky barrier diode clamped transistors which results in higher speed performance than equivalent devices made with a gold diffusion process.

ABSOLUTE MAXIMUM RATINGS*
 Ambient Temperature Under Bias $\ldots 15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Voltage On Any Pin
 With Respect to Ground -0.5 V to +7 V
 Power Dissipation 1 Watt
 *COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D. C. and Operating Characteristics $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
$I_{\text {FA }}$	Address Input Load Current		-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {FD }}$	Data Input Load Current		-0.25	mA	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {FW }}$	Write Input Load Current		-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=0.45 \mathrm{~V}$
$I_{\text {F }}$	Chip Select Input Load Current		-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.45 \mathrm{~V}$
$I_{\text {RA }}$	Address Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=5.25 \mathrm{~V}$
I_{RD}	Data Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=5.25 \mathrm{~V}$
$\mathrm{I}_{\text {RW }}$	Write Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=5.25 \mathrm{~V}$
$\mathrm{I}_{\text {RS }}$	Chip Select Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5.25 \mathrm{~V}$
$V_{C A}$	Address Input Clamp Voltage		-1.0	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-5.0 \mathrm{~mA}$
$V_{C D}$	Data Input Clamp Voltage		-1.0	V	$\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-5.0 \mathrm{~mA}$
V_{CW}	Write Input Clamp Voltage		-1.0	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{W}}=-5.0 \mathrm{~mA}$
$\mathrm{V}_{\text {CS }}$	Chip Select Input Clamp Voltage		-1.0	V	$\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-5.0 \mathrm{~mA}$
V_{OL}	Output "Low" Voltage		0.45	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \\ & \text { Memory Stores "Low" } \\ & \hline \end{aligned}$
ICEX	Output Leakage Current		100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {CEX }}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2.5 \mathrm{~V}$
I_{CC}	Power Supply Current		105	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$
$V_{\text {IL }}$	Input "Low" Voltage		0.80	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	2.1		V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

READ CYCLE					
SYMBOL	PARAMETER	3101A		3101	
		LIMITS (ns)		LIMITS (ns)	
		MIN.	MAX.	MIN.	MAX.
${ }^{\text {t }}$ + $+{ }^{\text {ts }}$ S	Chip Select to Output Delay	5	25	5	55
${ }^{t} A_{-},{ }^{\text {t }}$ +	Address to Output Delay	10	45	10	75

CAPACITANCE ${ }^{(1)} \quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$\mathrm{C}_{\text {IN }}$	INPUT CAPACITANCE (All Pins)	10 pF maximum
$\mathrm{C}_{\text {OUT }}$	OUTPUT CAPACITANCE	12 pF maximum

Conditions of Test:

Input Pulse amplitudes: 2.5V
Input Pulse rise and fall times of 5 nanoseconds between 1 volt and 2 volts
Speed measurements are made at 1.5 volt levels Output loading is 10 mA and 30 pF

10 mA Test Load

write cycle

*Outputs of unselected chips remain high during write cycle.

NOTE 2: $\quad{ }^{t} S R$ is associated with a read cycle following a write cycle and does not affect the access time.

HIGH SPEED 16 BIT CONTENT ADDRESSABLE MEMORY

- Organization-4 Words $x 4$ Bits
- Max. Delay of 30 nsec Over $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ Temperature
- Open Collector Outputs-OR Tie Capability
- High Current Sinking Capability 15 mA max.

- Low Input Load Current 0.25 mA max.
 - DTL \& TTL Compatible
 - Bit Enable Input-Bit Masking
 - Standard 24 Pin Dual In-Line

The Intel ${ }^{\circ} 3104$ is a high speed 16 bit Content Addressable Memory (CAM). It is a linear select 4 word by 4 bit array which is designed to compare data on its inputs with data already stored in its memory and
to indicate a match when these data are identical. This equality search is performed on all bits in parallel. The 3104 can also be used as a read/write RAM with linear selection addressing.

PIN CONFIGURATION

-DATA IN and DATA OUT are of the same logic levels. For a chip that is not selected, the data output is

LOGIC SYMBOL
 at a high level.

Absolute Maximum Ratings*

Temperature Under Bias	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Output or Supply Voltages	-0.5 to +7 Volts
All Input Voltages	-1.0 to +5.5 Volts
Output Currents	100 mA

*COMMENT:

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$; unless otherwise specified.

SYMBOL	PARAMETER	LIMIT			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
${ }^{\prime}$ FA	ADDRESS INPUT LOAD CURRENT			-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \mathrm{~V}_{\mathrm{A}}=.45 \mathrm{~V}$
${ }^{\prime} \mathrm{FE}$	BIT ENABLE INPUT LOAD CURRENT			-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \mathrm{~V}_{\mathrm{E}}=.45 \mathrm{~V}$
${ }^{\prime}$ FW	WRITE ENABLE INPUT LOAD CURRENT			-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \mathrm{~V}_{\mathrm{W}}=.45 \mathrm{~V}$
${ }^{\prime} \mathrm{FD}$	DATA INPUT LOAD CURRENT			-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \mathrm{~V}_{\mathrm{D}}=.45 \mathrm{~V}$
${ }^{\prime} \mathrm{RA}$	ADDRESS INPUT LEAKAGE CURRENT			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \mathrm{~V}_{\mathrm{A}}=5.25 \mathrm{~V}$
${ }^{\prime}$ RE	BIT ENABLE INPUT LEAKAGE CURRENT			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \mathrm{~V}_{\mathrm{E}}=5.25 \mathrm{~V}$
'RW	WRITE ENABLE INPUT LEAKAGE CURRENT			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \mathrm{~V}_{\mathrm{W}}=5.25 \mathrm{~V}$
${ }^{\text {I RD }}$	DATA INPUT LEAKAGE CURRENT			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \mathrm{~V}_{\mathrm{D}}=5.25 \mathrm{~V}$
${ }^{1}$ CEX	OUTPUT LEAKAGE CURRENT (ALL OUTPUTS)			50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V} \mathrm{~V}_{\text {CEX }}=5.25 \mathrm{~V}$
V_{OL}	OUTPUT "LOW" VOLTAGE (ALL OUTPUTS)			0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$
$V_{\text {IL }}$	INPUT 'LOW' VOLTAGE (ALL INPUTS)			0.85	V	$V_{C C}=5 \mathrm{~V}$
$\mathrm{V}_{1 \mathrm{H}}$	INPUT "HIGH" VOLTAGE (ALL INPUTS)	2.0			V	$\mathrm{V}_{C C}=5 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	POWER SUPPLY CURRENT			125	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ OUTPUTS HIGH
$\mathrm{C}_{1 \mathrm{~N}^{* *}}$	INPUT CAPACITANCE		5		pF	$\begin{aligned} & V_{\text {IN }}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0.0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {OUT }}{ }^{* *}$	OUTPUT CAPACITANCE		8		pF	$\begin{aligned} & V_{O U T}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0.0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$

**This parameter is periodically sampled and is not 100% tested.

Typical D.C. Characteristics

INPUT THRESHOLD VOLTAGE VS. TEMPERATURE

OUTPUT CURRENT VS. OUTPUT "LOW" VOLTAGE

Switching Characteristics

Cónditions of Test:

Input Pulse amplitudes • 2.5 V
Input pulse rise and fall times of 5 nanoseconds between 1 volt and 2 volts
Speed measurements are made at 1.5 volt levels Output loading is 15 mA and 30 pF

15 mA Test Load

A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$; unless otherwise specified.

SYMBOL	PARAMETER	LIMITS		UNIT	
		MIN.	TYP. ${ }^{(1)}$		UNIT
$\mathrm{t}_{\text {EM }}$	BIT ENABLE INPUT TO MATCH OUTPUT DELAY		15	30	ns
$\mathrm{t}_{\text {DM }}$	DATA INPUT TO MATCH OUTPUT DELAY		16	30	ns
$\mathrm{t}_{\text {AO }}$	ADDRESS INPUT TO OUTPUT DELAY		14	30	ns
t_{WP}	WRITE ENABLE PULSE WIDTH	40	25		ns
t_{WO}	WRITE ENABLE TO OUTPUT DELAY		-	40	ns
t_{s}	SET-UP TIME ON DATA INPUT		-	40	ns
t_{R}	RELEASE TIME ON DATA INPUT	0	-		ns

Note 1. Typical values are at nominal voltages and $T_{A}=25^{\circ} \mathrm{C}$.

Typical A.C. Characteristics

Bit enable input to match output DELAY VS. TEMPERATURE

ADDRESS INPUT TO DATA OUTPUT DELAY VS. TEMPERATURE

DATA INPUT TO MATCH OUTPUT DELAY VS. TEMPERATURE

WRITE ENABLE PULSE WIDTH VS. TEMPERATURE

HIGH SPEED FULLY DECODED 256 BIT RAM

- Fast Access Time-60 nsec max. over 0° to $75^{\circ} \mathrm{C}$ Temperature Range and $\pm 5 \%$ Supply Voltage Tolerance - - 3106A and 3107A
- Fully Decoded-On Chip Address Decode and Buffer
- DTL and TTL Compatible-Low Input Load Current: 0.25mA max.
- Open Collector (3107A, 3107, 3107-8) or Three State (3106A, 3106, 3106-8) Output

- Simple Memory Expansion through 3 Chip Select Inputs

- Minimum Line Reflection-Low Voltage Diode Input Clamp
- Standard Packaging --16 Pin DIP

The Intel ${ }^{\circledR} 3106$ A and 3107A family are high speed, fully decoded, 256 bit read/write random access memories. Their organization is 256 words by 1 -bit. These devices are designed for high speed scratch pad, buffer, and distributed main memory applications. The 3106A and 3107A are higher speed versions of the 3106 and 3107. The 3106-8 and 3107-8 are ideal for slower performance systems where low system cost is a prime factor.
All devices feature three chip-select inputs. The 3106A, 3106, and 3106-8 have a three-state output and the 3107A, 3107, and $3107-8$ provide the user with the popular open collector output. On-chip address decoding and the high speed chipselect facilitate easy memory expansion.
The use of Schottky barrier diode clamped transistors to obtain fast switching speeds results in higher performance than equivalent devices made with a gold diffusion process. The performance of these devices is specified over a temperature range from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

The 3106 and 3107 families are compatible with TTL and DTL logic circuits.

Absolute Maximum Ratings*

Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Output or Supply Voltages	-0.5 to +7 Volts
All Input Voltages	-1.0 to +5.5 Volts
Output Currents	100 mA

*COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devic̣e. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D. C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP. ${ }^{\text {(1) }}$	MAX.		
I_{F}	INPUT LOAD CURRENT ALL INPUTS			-0.25	mA	$\begin{aligned} & V_{\text {cc }}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=0.45 \mathrm{~V} \end{aligned}$
I_{R}	INPUT LEAKAGE CURRENT, ALL INPUTS			10	$\mu \mathrm{A}$	$\begin{aligned} & V_{c \mathrm{C}}=4.75 \mathrm{~V} \\ & V_{\mathrm{R}}=5.25 \mathrm{~V} \end{aligned}$
V_{C}	INPUT CLAMP VOLTAGE, ALL INPUTS			-1.0	v	$\begin{aligned} & V_{c \mathrm{c}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{IN}}=-5.0 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	OUTPUT LOW voltage			0.45	v	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {cex }}$	OUTPUT LEAKAGE CURRENT			100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {CEX }}=5.25 \mathrm{~V}$
I_{cc}	POWER SUPPLY CURRENT		90	130	mA	$v_{c c}=5.25 \mathrm{~V}$ ALL INPUTS OPEN
$\mathrm{V}_{\text {IL }}$	INPUT LOW VOLTAGE			0.85	V	
$\mathrm{V}_{\text {IH }}$	INPUT HIGH VOLTAGE	2.0			V	$V_{c c}=5.0 \mathrm{~V}$
3106A, 3106, 3106-8 ONLY						
$\|10\|$	OUTPUT LEAKAGE FOR high impedance state			100	$\mu \mathrm{A}$	$\begin{aligned} & V_{c c}=5.25 \mathrm{~V} \\ & V_{0}=0.45 \mathrm{~V} / 5.25 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {sc }}$	OUTPUT SHORT CIRCUIT CURRENT	-15		-65	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OH }}$	OUTPUT HIGH VOLTAGE	2.4			V	$\begin{aligned} & \mathrm{I}_{\mathrm{o}}=3.2 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V} \end{aligned}$

(1) Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltages.
A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

3106A, 3106, 3106-8 ONLY

SYMBOL	TEST	MIN.	MAX.
${ }^{\text {t}}$ ON	TIME OUTPUT REACHES LOW IMPEDANCE STATE AFTER CHIP ENABLED	0	
tOFF	TIME OUTPUT REACHES HIGH IMPEDANCE STATE AFTER CHIP DISABLED	20	

*This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, V_{\text {bias }}=2 \mathrm{~V}, V_{C C}=0 \mathrm{~V}$, and $T_{A}=25^{\circ} \mathrm{C}$.

WRITE CYCLE					
SYMBOL	TEST		LIMITS (ns)		
			MIN.	TYP.	MAX.
tWP	WRITE ENABLE	3106A,3107A	50	35	
	PULSE WIDTH	3106,3107	60	45	
		3106-8,3107-8	80	70	
${ }^{\text {t }}$ SR	TIME INPUT DAT THE OUTPUT FO WRITE COMMAN tWP \geqslant MIN. LIMIT	A APPEARS AT LOWING A		10	25

CAPACITANCE, $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$

SYMBOL	TEST	PACKAGE	LIMITS (pF)	
			TYP.	MAX
$\mathrm{C}_{1 \mathrm{~N}}$ *	INPUT CAPACITANCE	PLASTIC	6	8
	ALL DEVICES	CERDIP	-7	10
$\mathrm{C}_{\text {OUT }}{ }^{*}$	OUTPUT	PLASTIC	8	11
	CAPACITANCE ALL DEVICES	CERDIP	9	13

Conditions of Test:

Input Pulse amplitudes: 2.5 V
Input Pulse rise and fall times: 5 nanoseconds between 1 volt and 2 volts
Measurements made at 1.5 volt level

Waveforms

WRITE CYCLE

1024 BIT (256 x 4) STATIC CMOS RAM

P/N	Typ. Current @ 2V $(\mu \mathrm{A})$	Typ. Standby Current $(\mu \mathrm{A})$	Max Access (ns)
5101 L	0.14	0.2	650
$5101 \mathrm{~L}-1$	0.9	1.5	450
$5101 \mathrm{~L}-3$	0.7	1.0	650
$5101-1$	-	1.5	450
5101	-	0.2	650
$5101-3$	-	1.0	650
$5101-8$	-	10.0	800

The Intel® 5101 and 5101L are ultra-low power 1024 bit (256 words $\times 4$-bits) static RAMs fabricated with an advanced ionimplanted silicon gate CMOS technology. The devices have two chip enable inputs. Minimum standby current is drawn by these devices when CE_{2} is at a low level. When deselected the 5101 draws from the single 5 volt supply only 15 microamps. These devices are ideally suited for low power applications where battery operation or battery backup for non-volatility are required.

The 5101 uses fully DC stable (static) circuitry; it is not necessary to pulse chip select for each address transition. The data is read out non-destructively and has the same polarity as the input data. All inputs and outputs are directly TTL compatible. The 5101 has separate data input and data output terminals. An output disable function is provided so that the data inputs and outputs may be wire OR-ed for use in common data I/O systems.
The 5101 L is identical to the 5101 with the additional feature of guaranteed data retention at a power supply voltage as low as 2.0 volts.
A pin compatible N-channel static RAM, the Intel@ 2101 A , is also available for low cost applications where a 256×4 organization is needed.

The Intel ion-implanted, silicon gate, complementary MOS (CMOS) allows the design and production of ultra-low power, high performance memories.

Absolute Maximum Ratings *

Ambient Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Voltage On Any Pin

With Respect to Ground -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Maximum Power Supply Voltage +7.0 V
Power Dissipation
1 Watt

*COMMENT:

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D. C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	5101 (Except 5101-8) and 5101L Family Limits			Min.	Typ. ${ }^{11]}$	Max.	Units	Test Conditions
$\mathrm{I}_{\mathrm{LI}}{ }^{\text {[2] }}$	Input Current		5			5		nA	
$\mid{ }_{\text {LOO }}{ }^{[2]}$	Output Leakage Current			1			2	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE1}}=2.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OUT}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\mathrm{I}_{\mathrm{CC} 1}$	Operating Current		9	22		11	25	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}, \text { Except } \\ & \mathrm{CE} 1 \leqslant 0.65 \mathrm{~V}, \\ & \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\mathrm{CC} 2}$	Operating Current		13	27		15	30	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.2 \mathrm{~V}, \text { Except } \\ & \mathrm{CE} 1 \leqslant 0.65 \mathrm{~V}, \\ & \text { Outputs Open } \end{aligned}$
$\mathrm{ICCL1}^{\text {[2] }}$	5101 and 5101-1 Standby Current			15			-	$\mu \mathrm{A}$	$\begin{aligned} & C E 2 \leqslant 0.2 V \\ & V_{C C}=5 \mathrm{~V} \pm 5 \% \end{aligned}$
$\mathrm{ICCL2}^{[2]}$	5101-3 Standby Current		1	200			-	$\mu \mathrm{A}$	$\begin{aligned} & C E 2 \leqslant 0.2 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V} \pm 5 \% \end{aligned}$
$\mathrm{ICCL3}^{[2]}$	5101-8 Standby Current			-		10	50	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{CE} 2 \leqslant 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{ICCL4}^{[2]}$	5101-8 Standby Current			-			500	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{CE} 2 \leqslant 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \\ & T_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3		0.65	-0.3		0.65	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.2		V_{Cc}	2.2		V_{Cc}	V	
V_{OL}	Output Low Voltage			0.4			0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
V OH	Output High Voltage	2.4			2.4			V	$\mathrm{IOH}=1.0 \mathrm{~mA}$

Low $V_{C C}$ Data Retention Characteristics (For 5101L, 5101L-1, and 5101L-3) $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions	
$V_{\text {DR }}$	$\mathrm{V}_{\text {CC }}$ for Data Retention	2.0			V	CE2 $\leqslant 0.2 \mathrm{~V}$	
ICCDR1	5101L or 5101L-1 Data Retention Current		0.14	15	$\mu \mathrm{A}$		$V_{D R}=2.0 \mathrm{~V}$
ICCDR2	5101 L-3 Data Retention Current		0.7	200	$\mu \mathrm{A}$		$V_{D R}=2.0 \mathrm{~V}$
${ }^{\text {t }}$ CDR	Chip Deselect to Data Retention Time	0			ns		
t_{R}	Operation Recovery Time	$\mathrm{t}_{\mathrm{RC}}{ }^{[3]}$			ns		

NOTES: 1. Typical values are $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage. 2. Current through all inputs and outputs included in $\mathrm{I} C C L$ measurement. 3. $\mathrm{t}_{\mathrm{RC}}=$ Read Cycle Time.

Low Vcc Data Retention Waveform

Typical ICCDR Vs. Temperature

A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

read cycle

Symbol	Parameter	5101-1, 5101L-1 Limits (ns)		5101, 5101-3, 5101L and 5101L-3 Limits (ns)		$\begin{aligned} & 5101-8 \\ & \text { Limits (ns) } \end{aligned}$	
$t_{\text {RC }}$	Read Cycle	450		650		800	
$t_{\text {A }}$	Access Time		450		650		800
tcon	Chip Enable ($\overline{\mathrm{CE} 1}$) to Output		400		600		800
$\mathrm{t}_{\mathrm{CO} 2}$	Chip Enable (CE 2) to Output		500		700		850
tob	Output Disable to Output		250		350		450
$t_{\text {dF }}$	Data Output to High Z State	0	130	0	150	0	200
tOH_{1}	Previous Read Data Valid with Respect to Address Change	0		0		0	
tOH_{2}	Previous Read Data Valid with Respect to Chip Enable	0		0		0	

WRITE CYCLE

twc	Write Cycle	450	650	800
${ }^{\text {taw }}$	Write Delay	130	150	200
tcw1	Chip Enable ($\overline{\mathrm{CE} 1}$) to Write	350	550	650
$\mathrm{t}_{\mathrm{CW} 2}$	Chip Enable (CE 2) to Write	350	550	650
tow	Data Setup	250	400	450
${ }_{\text {t }}$ H	Data Hold	50	100	100
twp	Write Pulse	250	400	450
twR	Write Recovery	50	50	100
$t_{\text {DS }}$	Output Disable Setup	130	150	200

A. C. CONDITIONS OF TEST

Input Pulse Levels: $\quad+0.65$ Volt to 2.2 Volt Input Pulse Rise and Fall Times: 20 nsec Timing Measurement Reference Level: 1.5 Volt Output Load: $\quad 1$ TTL Gate and $C_{L}=100 \mathrm{pF}$

Capacitance ${ }^{[2]} T_{A}=25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$

Symbol	Test	Limits (pF)	
		Typ.	Max.
$\mathrm{C}_{\text {IN }}$	Input Capacitance (All Input Pins) $V_{I N}=0 V$	4	8
$\mathrm{C}_{\text {OUT }}$	Output Capacitance $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	8	12

Waveforms

READ CYCLE

WRITE CYCLE

NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. This parameter is periodically sampled and is not 100% tested.
3. OD may be tied low for separate I/O operation.
4. During the write cycle, OD is "high" for common I/O and "don't care" for separate I/O operation.

READ ONLY MEMORIES

MOS ROM AND PROM FAMILY

	Type	No Of Bits	Organization	Output[1]	$\begin{gathered} \text { Maximum } \\ \text { Access } \\ \text { (ns) } \end{gathered}$	Maximum Power Dissipation (mW)	Operating Temperature Range (${ }^{\circ} \mathrm{C}$)	Power Supply (V)	Page No.
	1302	2048	256×8	T.S.	1 us	885	0 to 70	$\begin{array}{r} 5 \mathrm{~V} \pm 5 \% \\ -9 \mathrm{~V} \pm 5 \% \end{array}$	3-5
	2308	8192	1024×8	T.S.	450	775	0 to 70	$\begin{aligned} & 5 V \pm 5 \% \\ & 12 V \pm 5 \% \\ & -5 V \pm 5 \% \end{aligned}$	3-16
	2316A	16384	2048×8	T.S.	850	515	0 to 70	$5 \mathrm{~V} \pm 5 \%$	3-20
	1702A	2048	256×8	T.S.	1 us	885	0 to 70	$\begin{gathered} 5 V \pm 5 \% \\ -9 V \pm 5 \% \end{gathered}$	3-9
	1702AL	2048	256×8	T.S.	1 us	221	0 to 70	$\begin{gathered} 5 V \pm 5 \% \\ -9 V \pm 5 \% \end{gathered}$	3-13
	1702A-2	2048	256×8	T.S.	650	959	0 to 70	$\begin{aligned} & 5 V \pm 5 \% \\ & -9 V \pm 5 \% \end{aligned}$	3-9
	1702AL-2	2048	256×8	T.S.	650	221	0 to 70	$\begin{gathered} 5 \mathrm{~V} \pm 5 \% \\ -9 \mathrm{~V} \pm 5 \% \end{gathered}$	3-13
	1702A-6	2048	256×8	T.S.	1.5 us	885	0 to 70	$\begin{gathered} 5 V \pm 5 \% \\ -9 V \pm 5 \% \end{gathered}$	3-9
	2704	4096	512×8	T.S.	450	800	0 to 70	$\begin{array}{r} 5 \mathrm{~V} \pm 5 \% \\ 12 \mathrm{~V} \pm 5 \% \\ -5 \mathrm{~V} \pm 5 \% \end{array}$	3-23
	2708	8192	1024×8	T.S.	450	800	0 to 70	$\begin{array}{r} 5 \mathrm{~V} \pm 5 \% \\ 12 \mathrm{~V} \pm 5 \% \\ -5 \mathrm{~V} \pm 5 \% \end{array}$	3-23

Note 1: O.C. and T.S. are open collector and three-state output respectively.

BIPOLAR ROM AND PROM FAMILY

	Type	No. Of Bits	Organization	Output [1]	Maximum Access (ns)	Maximum Power Dissipation [2] (mW)	Operating Temperature Range (${ }^{\circ} \mathrm{C}$)	Power Supply (V)	Page No.
swOY प甘רOdIG. X Y $\perp 1 O H O S$	3301A	1024	256×4	O.C.	45	657	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-26
	M3301A	1024	256×4	O.c.	60	657	-55 to 125	$5 \mathrm{~V} \pm 5 \%$	3-29
	3302A	2048	512×4	O.C.	70	735	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-31
	3302A-4	2048	512×4	O.C.	90	735	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-31
	3302AL6	2048	512×4	O.C.	90	580/240	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-31
	3322A	2048	512×4	T.S.	70	735	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-31
	3322A-4	2048	512×4	T.S.	90	735	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-31
	3322AL6	2048	512×4	T.S.	90	580/240	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-31
	3304A	4096	512×8	O.C.	70	998	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-34
	3304A-4	4096	512×8	O.C.	90	998	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-34
	3304AL6	4096	512×8	O.C.	90	735/240	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-34
	3324A	4096	512×8	T.S.	70	998	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-34
	3324A-4	4096	512×8	T.S.	90	998	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-34
SCHOTTKY BIPOLAR PROMs	3601	1024	256×4	O.C.	70	685	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-37
	3601-1	1024	256×4	O.C.	50	685	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-37
	M3601	1024	256×4	O.C.	90	685	-55 to 125	$5 \mathrm{~V} \pm 5 \%$	3-41
	3621	1024	256×4	T.S.	70	685	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-37
	3621-1	1024	256×4	T.S.	50	685	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-37
	3602	2048	512×4	O.C.	70	735	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-43
	3602-4	2048	512×4	O.C.	90	735	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-43
	3602L-6	2048	512×4	O.C.	90	580/240	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-43
	3622	2048	512×4	T.S.	70	735	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-43
	3622-4	2048	512×4	T.S.	90	735	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-43
	3622L-6	2048	512×4	T.S.	90	580/240	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-43
	3604	4096	512×8	O.C.	70	998	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-46
	3604-4	4096	512×8	O.C.	90	998	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-46
	3604L-6	4096	512×8	O.c.	90	735/240	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-46
	3624	4096	512×8	T.S.	70	998	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-46
	3624-4	4096	512×8	T.S.	90	998	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-46
	M3604	4096	512×8	O.C.	90	1045	-55 to 125	$5 \mathrm{~V} \pm 10 \%$	3-49
	M3604-6	4096	512×8	O.C.	120	770/250	-30 to 125	$5 \mathrm{~V} \pm 5 \%$	3-49
	3605	4096	1024×4	O.C.	50	787	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-52
	3605-1	4096	1024×4	O.C.	70	787	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-52
	M3624	4096	512×8	T.S.	90	1045	-55 to 125	$5 \mathrm{~V} \pm 10 \%$	3-49
	3625.	4096	1024×4	T.S.	70	787	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-52
	3625-1	4096	1024×4	T.S.	50	787	0 to 75	$5 \mathrm{~V} \pm 5 \%$	3-52
Note 1: O.C. and T.S. are open collector and three-state output respectively. Note 2: The "L" series devices have a low power dissipation option.						ROM and PROM	Programming Instruc		3-55

BIPOLAR PROM CROSS REFERENCE

Part Number	Prefix and Manufacturer	Organization	Intel Part Number	
			Direct Replacement	For Nèw Designs ${ }^{[1]}$
1024-5	HPROM-Harris	256×4	3621	
1024A-2	HPROM-Harris	256×4	M3601	
1024A-5	HPROM-Harris	256×4	3601	
27S10C	AMD	256×4	3601	
27S10M	AMD	256×4	M3601	
27S11C	AMD	256×4	3621	
27S11M	AMD	256×4	M3621	
5300	MMI	256×4	M3601	
5300-1	MMI	256×4	M3601	
5340	MMI	512×8	M3604	
5341-1	MMI	512×8	M3624	
54S387	SN-TI	256×4	M3601	
545387	DM-National	256×4	M3601	
5603AC	IM-Intersil	256×4	3601	
5603AM	IM-Intersil	256×4	M3601	
5604C	IM-Intersil	512×4	3602	
5605C	IM-Intersil	512×8	3604	
5623C	IM-Intersil	256×4	3621	
5624C	IM-Intersil	512×4	3622	
5625 C	IM-Intersil	512×8	3624	
6300	MMI	256×4	3601	
6300-1	MMI	256×4	$3601-1$	
6301	MMI	256×4	3621	
6301-1	MMI	256×4	3621	
6305	MMI	512×4	3602	
6305-1	MMI	512×4	3602	
6306	MMI	512×4	3622	
6306-1.	MMI	512×4	3622	
6340	MMI	512×8	3604	
6341-1	MMI	512×8	3624	
6350	MMI	1024×4		3605
6351	MMI	1024×4		3625

Part Number	Prefix and Manufacturer	Organization	Intel Part Number	
			Direct Replacement	For New Designs[1]
745287	SN-TI	256×4	3621-1	
745287	DM-National	256×4	3621-1	
745387	SN-TI	256×4	3601-1	
748387	DM-National	256×4	3601-1	
7573	DM-National	256×4	M3601	
7610-2	HM-Harris	256×4		M3601
7610.5	HM-Harris	256×4	3601-1	
7611-5	HM-Harris	256×4	3621-1	
7620-5	HM-Harris	512×4	3602	
7621-5	HM-Harris	512×4	3622	
7640-2	HM-Harris	512×8		M3604
7640-5	HM-Harris	512×8	3604	
7641-2	HM-Harris	512×8		M3624
7641-5	HM-Harris	512×8	3624	
$7642 \cdot 5$	HM-Harris	1024×4	3605	
7643-5	HM-Harris	1024×4	3625	
82S115	N-Signetics	512×8		3624
$82 S 115$	S-Signetics	512×8	M3624	
$82 S 126$	N-Signetics	256×4	3601-1	
$82 S 126$	S-Signetics	256×4		M3601
$82 \mathrm{S129}$	N-Signetics	256×4	3621-1	
$82 \mathrm{S130}$	N-Signetics	512×4		3602
82S131	N -Signetcis	512×4		3622
8573	DM-National	256×4	3601	
8574	DM-National	256×4	3621	
93416C	Fairchild	256×4	3601	
93416M	Fairchild	256×4		M3601
93426C	Fairchild	256×4	3621	
93436C	Fairchild	512×4		3602
93438 C	Fairchild	512×8		3604
93438M	Fairchild	512×8		M3604
93446 C	Fairchild	512×4		3622
93448C	Fairchild	512×8		3624
93448M	Fairchild	512×8		M3624

Note 1. The Intel ${ }^{\text {© P }}$ PROMs have the same pin configuration and differ only in access time from the PROMs in the first column. The exceptions are the 6350, 6351 and 82 S 115 which have different pin configurations.

2048 BIT MASK PROGRAMMABLE READ ONLY MEMORY

\author{

- Fully Decoded, 256x8 Organization
 - Inputs and Outputs DTL and TTL Compatible
 - Three-state Output --OR-tie Capability
}

The Intel ${ }^{\oplus} 1302$ is a fully decoded 256 word by 8 -bit metal mask ROM. It is ideal for large volume production runs of systems initially using the 1702A erasable and electrically programmable ROM. The 1302 has the same pinning as the 1602A/1702A.
The 1302 is entirely static - no clocks are required. Inputs and outputs of the 1302 are DTL and TTL compatible. The output is three-state for OR-tie capability. A separate chip select input allows easy memory expansion. The 1302 is packaged in a 24 pin dual-in-line hermetically sealed ceramic package.
The 1302 is fabricated with p-channel silicon gate technology. This low threshold allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.

PIN CONFIGURATION

BLOCK DIAGRAM

NOTE: LOGIC 1 AT INPUT AND OUTPUT IS A HIGH AND LOGIC O IS LOW.

Absolute Maximum Ratings *

Ambient Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Soldering Temperature of Leads (10 sec)	$+300^{\circ} \mathrm{C}$
Power Dissipation	2 Watts
Input Voltages and Supply	
Voltages with respect to V_{cc}	+ +0.5 V to -20 V

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

READ OPERATION

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}^{(1)}=-9 \mathrm{~V} \pm 5 \%$, unless otherwise noted.

SYMBOL	TEST	MIN.	TYP(2)	MAX.	UNIT	CONDITIONS
${ }_{\text {LI }}$	Address and Chip Select Input Load Current			1	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=0.0 \mathrm{~V}$
ILO	Output Leakage Current			1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2$
IDDO	Power Supply Current		5	10	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
IDD1	Power Supply Current		35	50	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
IDD2	Power Supply Current		32	46	mA	$\begin{aligned} & \overline{\overline{C S}}=0.0 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
'DD3	Power Supply Current		38.5	60	mA	$\left.\begin{array}{l}\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2 \\ \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\end{array}\right\}$Continuous Operation
$\mathrm{I}_{\text {cF1 }}$	Output Clamp Current		8	14	mA	$\mathrm{V}_{\text {OUT }}=-1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{CF} 2}$	Output Clamp Current			13	mA	$\mathrm{V}_{\text {OUT }}=-1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{GG}	Gate Supply Current			1	$\mu \mathrm{A}$	
$V_{\text {IL1 }}$	Input Low Voltage for TTL Interface	-1.0		0.65	V	
VIL2	Input Low Voltage for MOS Interface	V_{DD}	,	$\mathrm{V}_{\mathrm{cc}}-6$	V	
V_{IH}	Address and Chip Select Input High Voltage	$\mathrm{V}_{\mathrm{cc}}{ }^{-2}$		$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
I_{OL}	Output Sink Current	1.6	4		mA	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$
IOH	Output Source Current	-2.0			mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
V_{OL}	Output Low Voltage		-. 7	0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
V_{OH}	Output High Voltage	3.5	4.5		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$

Note 1. $\bigvee_{G G}$ may be clocked to reduce power dissipation. In this mode average IDD increases in proportion to $V_{G G}$ duty cycle.
Note 2. Typical values are at nominal voltages and $T_{A}=25^{\circ} \mathrm{C}$.

A.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 5 \%$ unless otherwise noted

SYMBOL	TEST	MINIMUM	TYPICAL	MAXIMUM	UNIT
Freq.	Repetition Rate			1	MHz
t_{OH}	Previous read data valid			100	ns
$\mathrm{t}_{\text {ACC }}$	Address to output delay		. 700	1	$\mu \mathrm{s}$
${ }^{\text {t }}$ DVGG	Clocked VGG set up	1			$\mu \mathrm{s}$
${ }^{\text {t }}$ cs	Chip select delay			200	ns
${ }^{\mathrm{t}} \mathrm{CO}$	Output delay from $\overline{\mathrm{CS}}$			500	ns
${ }^{\text {t }}$ OD	Output deselect			300	ns
${ }^{\text {tohC }}$	Data out hold in clocked V_{GG} mode (Note 1)			5	$\mu \mathrm{s}$

Note 1. The output will remain valid for toHC as long as clocked $V_{G G}$ is at $V_{C C}$. An address change may occur as soon as the output is sensed (clocked $V_{G G}$ may still be at $V_{C C}$). Data becomes invalid for the old address when clocked $V_{G G}$ is returned to $V_{G G}$.

Capacitance ${ }^{*} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	TEST	MINIMUM	TYPICAL	MAXIMUM	UNIT	CONDITIONS	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	10	pF	$\left.\begin{array}{l} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{CS}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{CC}} \end{array}\right]$	All unused pins are at A.C. ground
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		5	10	pF		
$\mathrm{C}_{\mathrm{V}_{\mathrm{GG}}}$	V_{GG} Capacitance (Clocked V_{GG} Mode)			30	pF		

*This parameter is periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test:
Input pulse amplitudes: 0 to $4 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}} \leq 50 \mathrm{~ns}$ Output load is 1 TTL gate; measurements made at output of TTL gate ($\mathrm{t}_{\mathrm{PD}} \leq 15 \mathrm{~ns}$)
A) Constant $V_{G G}$ Operation

Typical Characteristics

AVERAGE CURRENT VS. DUTY CYCLE FOR CLOCKED VGG

2K (256 x 8) UV ERASABLE PROM

$1702 A-2$	0.65 us Max.
$1702 A$	1.0 us Max.
$1702 A-6$	1.5 us Max.

- Fast Access Time: Max. 650 ns

 (1702A-2)- Fast Programming: 2 Minutes for all 2048 Bits
- All 2048 Bits Guaranteed* Programmable: 100\% Factory Tested

- Static MOS: No Clocks Required
 - Inputs and Outputs DTL and TTL Compatible
 - Three-State Output: OR-tie Capability

The 1702A is a 256 word by 8 -bit electrically programmable ROM ideally suited for uses where fast turnaround and pattern experimentation are important. The 1702A undergoes complete programming and functional testing prior to shipment, thus insuring 100\% programmability.
Initially all 2048 bits of the 1702A are in the " 0 " state (output low). Information is introduced by selectively programming " 1 "s (output high) in the proper bit location. The 1702A is packaged in a 24 pin dual in-line package with a transparent lid. The transparent lid allows the user to expose the 1702A to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device.
The circuitry of the 1702 A is completely static. No clocks are required. Access times from 650 ns to $1.5 \mu \mathrm{~s}$ are available. A 1702AL family is available (see 1702AL data sheets for specifications) for those systems requiring lower power dissipation than the 1702A.
A pin-for-pin metal mask programmed ROM, the Intel 1302, is also available for large volume production runs of systems initially using the 1702A.
The 1702A is fabricated with silicon gate technology. This low threshold technology allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.
*Intel's liability shall be limited to replacing any unit which fails to program as desired.

- THIS PIN IS THE DATA INPUT LEAD DURING PROGRAMMING

PIN NAMES

$A_{0}-A_{7}$	Address Inputs
$\overline{C S}$	Chip Select Input
$D_{\text {OUT1 }}-D_{\text {OUT8 }}$	Data Outputs

block diagram

NOTE: In the read mode a logic 1 at the address inputs and data outputs is a high and logic 0 is a low.
U.S. Patent No. 3660819

PIN CONNECTIONS

The external lead connections to the 1702A differ, depending on whether the device is being programmed or used in read mode (see following table). In the programming mode, the data inputs 1-8 are pins 4-11 respectively. The programming voltages and timing are shown in the ROM and PROM Programming instructions section, pages 3-57.

MODE	$\begin{gathered} 12 \\ \left(\mathrm{~V}_{\mathrm{cc}}\right) \end{gathered}$	$\begin{gathered} 13 \\ \text { (Program) } \end{gathered}$	$\frac{14}{(\overline{\mathrm{CS}})}$	$\begin{gathered} 15 \\ \left(V_{B B}\right) \end{gathered}$	$\begin{gathered} 16 \\ \left(\mathrm{~V}_{\mathrm{GG}}\right) \end{gathered}$	$\begin{gathered} 22 \\ \left(\mathrm{~V}_{\mathrm{cc}}\right) \end{gathered}$	$\begin{gathered} 23 \\ \left(\mathrm{~V}_{\mathrm{cc}}\right) \end{gathered}$	$\begin{gathered} 24 \\ \left(V_{D D}\right) \end{gathered}$
Read	V_{cc}	V_{cc}	GND	$\mathrm{V}_{\text {CC }}$	V_{GG}	V_{Cc}	V_{cc}	V_{DD}
Programming	GND	Program Pulse	GND	$V_{B B}$	Pulsed V_{GG}	GND	GND	Pulsed $V_{\text {DD }}$

Absolute Maximum Ratings*

Ambient Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Soldering Temperature of Leads (10 sec) $+300^{\circ} \mathrm{C}$
Power Dissipation . 2 Watts
Read Operation: Input Voltages and Supply
Voltages with respect to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ to -20 V
Program Operation: Input Voltages and Supply
Voltages with respect to V_{CC}
$-48 \mathrm{~V}$

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.
D.C. and Operating Characteristics READ OPERATION
$T_{A}=0^{\circ} C$ to $70^{\circ} \mathrm{C}, V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{D D}=-9 V \pm 5 \%, V_{G G}=-9 V \pm 5 \%$, unless otherwise noted.

Symbol	Test	1702A, 1702A-6 Limits			1702A-2 Limits			Unit	Conditions
		Min.	Typ. ${ }^{[1]}$	Max.	Min.	Typ. ${ }^{[1]}$	Max.		
$I_{\text {LI }}$	Address and Chip Select Input Load Current			1			1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}$
ILO	Output Leakage Current			1			1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathbf{I H 2}}$
$\mathrm{I}_{\mathrm{DD1} 1}{ }^{[1]}$	Power Supply Current		35	50		40	60	mA	$\begin{aligned} & \overline{\overline{C S}}=\mathrm{V}_{1 \mathrm{H} 2}, I_{\mathrm{OL}}=0.0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { Continuous } \end{aligned}$
IDD2	Power Supply Current		32	46		37	55	mA	$\begin{aligned} & \overline{\mathrm{CS}}=0.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { Continuous } \end{aligned}$
IDD3	Power Supply Current		38	60		43	65	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{H} 2}, \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \text { Continuous } \end{aligned}$
$I_{\text {CF1 }}$	Output Clamp Current		8	14		7	13	mA	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=-1.0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \text { Continuous } \end{aligned}$
ICF2	Output Clamp Current		7	13		6	12	mA	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=-1.0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, Continuous } \end{aligned}$
IGG	Gate Supply Current			1			1	$\mu \mathrm{A}$	
VIL1	Input Low Voltage for TTL Interface	-1		0.65	-1		0.65	V	
VIL2	Input Low Voltage for MOS Interface	VDD		$\mathrm{V}_{\mathrm{Cc}}{ }^{-6}$	V_{DD}		$\mathrm{V}_{\mathrm{CC}}{ }^{-6}$	V	
$\mathrm{V}_{1 \mathrm{H} 1}$	Addr. Input High Voltage	$\mathrm{V}_{\text {cc- }}-2$		$\mathrm{V}_{\text {cc }}+0.3$	$\mathrm{V}_{\mathrm{cc}}-2$		$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
$\mathrm{V}_{1 \mathrm{H} 2}$	Chip Sel. Input High Volt.	$\mathrm{V}_{\mathrm{CC}}-2$		$\mathrm{V}_{\mathrm{CC}}+0.3$	$\mathrm{V}_{\text {CC }}$-1.5		$\mathrm{V}_{\mathrm{CC}}{ }^{+0.3}$	V	
lOL	Output Sink Current	1.6	4		1.6	4		mA	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$
IOH	Output Source Current	-2.0			-2.0			mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
V_{OL}	Output Low Voltage		-3	0.45		-3	0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
V_{OH}	Output High Voltage	3.5	4.5		3.5	4.5		V	$\mathrm{IOH}=-200 \mu \mathrm{~A}$

Note 1: Typical values are at nominal voltages and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

A.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 5 \%$ unless otherwise noted

Symbol	Test	1702A Limits	$\begin{aligned} & \text { 1702A-2 } \\ & \text { Limits } \end{aligned}$	$\begin{aligned} & \text { 1702A-6 } \\ & \text { Limits } \end{aligned}$	Unit
		Min. Max.	Min. Max.	Min. Max.	
Freq.	Repetition Rate	1	1.6	0.66	MHz
t_{OH}	Previous Read Data Valid	0.1	0.1	0.1	$\mu \mathrm{s}$
${ }_{\text {t }}^{\text {ACC }}$	Address to Output Delay	1	0.65	1.5	$\mu \mathrm{s}$
${ }^{\text {ches }}$	Chip Select Delay	0.1	0.3	0.6	$\mu \mathrm{s}$
${ }^{\text {t }} \mathrm{CO}$	Output Delay From $\overline{\mathrm{CS}}$	0.9	0.35	0.9	$\mu \mathrm{s}$
tod	Output Deselect	0.3	0.3	0.3	$\mu \mathrm{s}$

Capacitance * $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	TEST	TYPICAL	MAXIMUM	UNIT	CONDITIONS
C_{IN}	Input Capacitance	8	15	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}$ $\mathrm{V}_{\mathrm{OUT}}$
Output Capacitance	10	15	AlI unused pins V_{GG}		

*This parameter is periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test:
Input pulse amplitudes: 0 to $4 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}} \leq 50 \mathrm{~ns}$ Output load is 1 TTL gate; measurements made at output of $T T L$ gate ($t_{\text {PD }} \leqslant 15 \mathrm{~ns}$), $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
A) READ OPERATION

B) DESELECTION OF DATA OUTPUT IN OR-TIE OPERATION

Typical Characteristics

ACCESS TIME VS. LOAD CAPACITANCE

OUTPUT CURRENT VS. TEMPERATURE

IDD CURRENT VS. TEMPERATURE

ACCESS TIME VS. TEMPERATURE

2K (256 x 8) UV ERASABLE LOW POWER PROM

Part No.	MAXIMUM	
ACCESS $(\mu \mathrm{s})$	tDVGG $(\mu \mathrm{s})$	
1702AL	1.0	0.4

- Clocked Vgg Mode for Low Power Dissipation

- Fast Programming: 2 Minutes for all 2048 Bits

- All 2048 Bits Guaranteed* Programmable: 100\% Factory Tested

- Inputs and Outputs DTL and TTL Compatible
 - Three-State Output: OR-tie Capability

The 1702 AL is a 256 word by 8 bit electrically programmable ROM and is the same chip as the industry standard 1702A. The programming and erasing specifications are identical to the 1702 A . The 1702 AL operates with the V_{GG} clocked to reduce the power dissipation.

Initially all 2048 bits of the 1702AL are in the " 0 " state (output low). Information is introduced by selectively programming " 1 "s (output high) in the proper bit location. The 1702AL is packaged in a 24 pin dual in-line package with a transparent lid. The transparent lid allows the user to expose the 1702AL to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device.

The 1702AL is fabricated with silicon gate technology. This low threshold technology allows the design and production of high performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.
*Intel's liability shall be limited to replacing any unit which fails to program as desired.

PIN CONFIGURATION

-THIS PIN IS THE DATA INPUT LEAD DURING PROGRAMMING

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address Inputs
CS	Chip Select Input
$\mathrm{D}_{\text {OUT1 }}-$ D OUT8	Data Outputs

BLOCK DIAGRAM

NOTE: In the read mode a logic 1 at the address inputs and data outputs is a high and logic 0 is a low.
U.S. Patent No. 3660819

PIN CONNECTIONS

The external lead connections to the 1702AL differ, depending on whether the device is being programmed or used in read mode (see following table). In the programming mode, the data inputs 1-8 are pins 4-11 respectively. The programming voltages and timing are shown in the ROM and PROM Programming Instructions section, pages 3-57.

PIN	12 $\left(\mathrm{~V}_{\mathbf{C C}}\right)$	13 $($ Program $)$	14 (CS)	15 $\left(\mathrm{~V}_{\mathrm{BB}}\right)$	16 $\left(\mathrm{~V}_{\mathrm{GG}}\right)$	22 $\left(\mathrm{~V}_{\mathrm{CC}}\right)$	23 $\left(\mathrm{~V}_{\mathrm{CC}}\right)$	24 $\left(\mathrm{~V}_{\mathrm{DD}}\right)$
Read	V_{CC}	V_{CC}	GND	V_{CC}	Clocked V_{GG}	V_{CC}	V_{CC}	V_{DD}
Programming	GND	Program Pulse	GND	V_{BB}	Pulsed V_{GG}	GND	GND	Pulsed V_{DD}

Absolute Maximum Ratings*

D.C. and Operating Characteristics READ OPERATION

Symbol	Test	1702AL Limits			1702AL-2 Limits			Unit	Conditions
		Min.	Typ. [2]	Max.	Min.	Typ. [2]	Max.		
I_{LI}	Address and Chip Select Input Load Current			1			1	$\mu \mathrm{A}$	$V_{\text {IN }}=0.0 \mathrm{~V}$
ILO	Output Leakage Current			1			1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{V}_{\text {CC }}-2$
$\mathrm{IDDO1}^{[1]}$	Power Supply Current		7	10		7	10	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \overline{C S}=\mathrm{V}_{1 H}, \mathrm{~V}_{G G}=\mathrm{V}_{\mathrm{CC}}$
IDDO2	Power Supply Current			15			15	mA	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \quad \mathrm{l}_{\mathrm{OL}}=0.0 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{DD} 1}{ }^{\text {[1] }}$	Power Supply Current		35	50		35	50	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2, \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { Continuous } \end{aligned}$
IDD2	Power Supply Current		32	46		32	46	mA	$\begin{aligned} & \overline{\mathrm{CS}}=0.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { Continuous } \end{aligned}$
IDD3	Power Supply Current		38	60		38	60	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2, \mathrm{IOL}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \text { Continuous } \end{aligned}$
ICF1	Output Clamp Current		8	14		5.5	8	mA	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=-1.0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \text { Continuous } \end{aligned}$
ICF2	Output Clamp Current		7	13		5	7	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=-1.0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { Continuous } \end{aligned}$
I_{GG}	Gate Supply Current			1			1	$\mu \mathrm{A}$	
$V_{\text {ILI }}$	Input Low Voltage for TTL Interface	-1		0.65	-1		0.65	V	
$V_{\text {IL2 }}$	Input Low Voltage for MOS Interface	$V_{\text {DD }}$		$\mathrm{V}_{\mathrm{cc}}{ }^{-6}$	V_{DD}		$\mathrm{V}_{\mathrm{cc}}{ }^{-6}$	V	
V_{IH}	Address and Chip Select Input High Voltage	$\mathrm{V}_{\mathrm{cc}}-2$		$\mathrm{V}_{\mathrm{CC}}+0.3$	$\mathrm{V}_{\mathrm{cc}}-2$		$\mathrm{V}_{\mathrm{CC}}{ }^{+0.3}$	V	
loL	Output Sink Current	1.6	4		1.6	4		mA	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$
IOH	Output Source Current	-2.0			-2.0			mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
V_{OL}	Output Low Voltage		-3	0.45		-3	0.45	V	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
V_{OH}	Output High Voltage	3.5	4.5		3.5	4.5		V	$\mathrm{lOH}=-200 \mu \mathrm{~A}$

NOTES: 1. The 1702AL is operated with the $V_{G G}$ clocked to obtain low power dissipation. The average IDD will vary between IDDO and IDD1 (at $25^{\circ} \mathrm{C}$) depending on the V_{GG} duty cycle (see curve opposite). 2. Typical values are at nominal voltage and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Typical Characteristics

A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%$ unless otherwise noted

Symbol	Test	$\begin{gathered} \text { 1702AL } \\ \text { Limits } \\ \text { Min. Max. } \end{gathered}$	$\begin{gathered} \text { 1702AL-2 } \\ \text { Limits } \\ \text { Min. Max. } \end{gathered}$	Unit
Freq.	Repetition Rate	1	1.6	MHz
$t_{\text {ACC }}$	Address to output delay	1	0.65	$\mu \mathrm{s}$
${ }^{t_{D V}}{ }_{\text {GG }}$	Clocked VGG set up	0.4	0.3	$\mu \mathrm{s}$
t_{CS}	Chip select delay	0.1	0.3	$\mu \mathrm{s}$
${ }^{\text {t }} \mathrm{CO}$	Output delay from $\overline{\mathbf{C S}}$	0.9	0.35	$\mu \mathrm{s}$
${ }^{\text {tod }}$	Output deselect	0.3	0.3	$\mu \mathrm{s}$
$\mathrm{tOHC}^{\text {chen }}$	Data out hold in clocked V_{GG} mode	5	5	$\mu \mathrm{s}$

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	TEST	TYPICAL	MAXIMUM	UNIT	CONDITIONS	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	8	15	pF	$\left.\begin{array}{l} \frac{\mathrm{V}_{\mathrm{N}}}{}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{CS}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{CC}} \end{array}\right]$	All unused pins are at A.C. ground
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	10	15	pF		
$\mathrm{C}_{\mathrm{V}_{G G}}$	$V_{G G}$ Capacitance (Note 1)		30	pF		

*This parameter is periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test:

Input pulse amplitudes: 0 to $4 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}} \leqslant 50 \mathrm{~ns}$
Output load is 1 TTL gate; measurements made at output of $T T L$ gate ($t_{P D} \leqslant 15 \mathrm{~ns}$), $C_{L}=15 \mathrm{pF}$

A. READ OPERATION

B. DESELECTION OF DATA OUTPUT IN OR-TIE OPERATION

8192 BIT STATIC MOS READ ONLY MEMORY

- Fast Access Time: 450 ns
- Standard Power Supplies: $+12 \mathrm{~V}, \pm 5 \mathrm{~V}$
- TTL Compatible: All Inputs and Outputs
- Programmable Chip Select Input for Easy Memory Expansion
- Three-State Output: OR-Tie Capability
- Fully Decoded: On Chip Address Decode
- Inputs Protected: All Inputs Have Protection Against Static Charge
Pin Compatible to 2708 PROM

The Intel 2308 is a 8192 bit static MOS read only memory organized as 1024 words by 8 -bits. This ROM i, designed for memory applications where high performance, large bit storage, and simple interfacing are important design objectives.
The inputs and outputs are TTL compatible. The chip select input (CS2/ $\overline{\operatorname{CS} 2}$) is programmable. An active high or low level chip select input can be defined by the designer and the desired chip select logic level is fixed at Intel during the masking process. The programmable chip select input, as well as OR-tie compatibility on the outputs, facilitates easy memory expansion. The pin compatible UV erasable 2708 PROM is available for initial system prototyping.
The 2308 read only memory is fabricated with N -channel silicon gate technology. This technology provides the designer with high performance, easy-to-use MOS circuits.

PIN CONFIGURATION

BLOCK DIAGRAM

NOTE 1. The CS2/CS2 LOGIC LEVELS MUST BE SPECIFIED BY THE USER AS EITHER A LOGIC 1 ($V_{I H}$) OR LOGIC $0\left(V_{\text {IL }}\right)$. A LOGIC O SHOULD BE SPECIFIED IN ORDER TO BE COMPATIBLE WITH THE 2708.

Absolute Maximum Ratings*

Ambient Temperature Under Bias $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Voltage On Any Pin With Respect

To $V_{B B}$ -0.3 V to 20 V
Power Dissipation 1.0 Watt

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{D D}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{B B}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ Unless Otherwise Specified.

Symbol	Parameter		Limits			Unit

NOTE 1: Typical values for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage
D.C. OUTPUT CHARACTERISTICS

D.C. OUTPUT CHARACTERISTICS

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{B B}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, Unless Otherwise Specified.

Symbol	Parameter	Limits ${ }^{\text {[2] }}$		Unit
		Typ.	Max.	
${ }^{\text {t }}$ ACC	Address to Output Delay Time	200	450	ns
${ }^{\text {c }} \mathrm{CO}_{1}$	Chip Select 1 to Output Delay Time	85	160	ns
tCO_{2}	Chip Select 2 to Output Delay Time	125	220	ns
${ }^{\text {t }}$ F	Chip Deselect to Output Data Float Time	125	220	ns

NOTE 2: Refer to conditions of Test for A.C. Characteristics. Add 50 nanoseconds (worst case) to specified values at $V_{O H}=3.7 \mathrm{~V} @ I_{O H}=-1 \mathrm{~mA}, C_{L}=100 \mathrm{pF}$.

CONDITIONS OF TEST FOR A.C. CHARACTERISTICS

Output Load 1 TTL Gate, and C CoAd $=100 \mathrm{pF}$ Input Pulse Levels 65 V to 3.3 V Input Pulse Rise and Fall Times 20 nsec Timing Measurement Reference Level

$$
2.4 \mathrm{~V} \mathrm{~V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{OH}} ; 0.8 \mathrm{~V} \mathrm{~V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{OL}}
$$

CAPACITANCE* $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{BB}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$, $V_{C C}$ and all other pins tied to $V_{S S}$.

Symbol	Test	Limits	
		Typ.	Max.
C_{IN}	Input Capacitance		6 pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		12 pF

*This parameter is periodically sampled and is not 100% tested.

Typical Characteristics (Nominal supply voltages unless otherwise noted.)

16,384 BIT STATIC MOS READ ONLY MEMORY

\author{

- Single +5 Volts Power Supply Voltage
 - Guaranteed 850ns Access Time
 - Directly TTL Compatible-All Inputs and Outputs
 - Three Programmable Chip Select Inputs for Easy Memory Expansion
}

The Intel 2316A is a 16,384 bit static MOS read only memory organized as 2048 words by 8 bits. This ROM is designed for memory applications where high performance, large bit storage, and simple interfacing are important design objectives.

The inputs and outputs are fully TTL compatible. This device operates with a single +5 V power supply. The three chip select inputs are programmable. Any combination of active high or low level chip select inputs can be defined by the designer and the desired chip select logic level is fixed during the masking process. These three programmable chip select inputs, as well as OR-tie compatibility on the outputs, facilitates easy memory expansion.
The 2316A read only memory is fabricated with N -channel silicon gate technology. This technology provides the designer with high performance, easy-to-use MOS circuits. Only a single +5 V power supply is needed and all devices are directly TTL compatible.

PIN CONFIGURATION

PIN NAMES

$\mathrm{A}_{0} \cdot \mathrm{~A}_{10}$	ADDRESS INPUTS
$\mathrm{O}_{1} \cdot \mathrm{O}_{8}$	DATA OUTPUTS
$\mathrm{CS}_{1} \cdot \mathrm{CS}_{3}$	PROGRAMMABLE CHIP SELECT INPUTS

Absolute Maximum Ratings*

Ambient Temperature Under Bias
. $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin With Respect
To Ground
-0.5 V to +7 V
Power Dissipation \qquad 1.0 Watt
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP. ${ }^{(1)}$	MAX.		
$I_{L I}$	Input Load Current (All Input Pins)		1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
I LOH	Output Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{CS}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.0 \mathrm{~V}$
ILOL	Output Leakage Current			-20	$\mu \mathrm{A}$	$\mathrm{CS}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V}$
ICc	Power Supply Current		40	98	mA	All inputs 5.25V Data Out Open
$V_{\text {IL }}$	Input "Low" Voltage	-0.5		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	2.0		$\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$	V	
V_{OL}	Output "Low" Voltage			0.45	V	$\mathrm{IOL}=2.0 \mathrm{~mA}$
VOH	Output "High" Voltage	2.2			V	$\mathrm{IOH}^{\text {O }}=-100 \mu \mathrm{~A}$

(1) Typical values for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

Typical D.C. Characteristics

OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE

OUTPUT SOURCE CURRENT VS. OUTPUT VOLTAGE

A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

SYMBOL	PARAMETER		LIMITS		
		MIN.	TYP. ${ }^{(1)}$	MAX.	
t_{A}	UNIT				
t_{CO}	Address to Output Delay Time		400	850	nS
t_{DF}	Chip Select to Output Enable Delay Time			300	nS

CONDITIONS OF TEST FOR

A.C. CHARACTERISTICS

Output Load . . . 1 TTL Gate, and $C_{\text {LOAD }}=100 \mathrm{pF}$ Input Pulse Levels 0.8 to 2.0 V Input Pulse Rise and Fall Times . (10\% to 90%) 20 nS Timing Measurement Reference Level

Input . 1.5 V
Output 0.45 V to 2.2 V

A.C. Waveforms

SYMBOL	TEST	LIMITS	
		TYP.	MAX.
$\mathrm{C}_{\text {IN }}$	All Pins Except Pin Under Test Tied to AC Ground	4 pF	10 pF
Cout	All Pins Except Pin Under Test Tied to AC Ground	8 pF	15 pF

(2) This parameter is periodically sampled and is not 100% tested.

Typical A.C. Characteristics

CAPACITANCE

8K AND 4K UV ERASABLE PROM

- 2708 1024x8 Organization
 - 2704 512x8 Organization

Fast Programming Typ. 100 sec . For All 8K Bits
- Low Power During Programming
- Access Time- 450 ns Max.
- Standard Power Supplies $+12 \mathrm{~V},+5 \mathrm{~V},-5 \mathrm{~V}$

- Static-No Clocks Required
 - Inputs and Outputs TTL Compatible During Both Read and Program Modes
 - Three-State Output-OR-Tie Capability

The Intel 2708/2704 are high speed 8192/4096 bit erasable and electrically reprogrammable ROM's (EPROM) ideally suited where fast turn around and pattern experimentation are important requirements.

The $2708 / 2704$ are packaged in a 24 pin dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the devices.
A pin for pin mask programmed ROM, the Intel 2308, is available for large volume production runs of systems initially using the 2708.

The 2708/2704 is fabricated with the time proven N -channel silicon gate technology.

PIN NAMES

$A_{0} \cdot A_{9}$	ADDRESS INPUTS
$O_{1} \cdot O_{8}$	DATA OUTPUTS
$\overline{\operatorname{CS}} / \mathrm{WE}$	CHIP SELECT/WRITE ENABLE INPUT

PIN CONNECTION DURING READ OR PROGRAM

MODE	PIN NUMBER							
	$9 \cdot 11,13-17$	12	18	19	20	21	24	
READ	$\mathrm{D}_{\mathrm{OUT}}$	V_{SS}	V_{SS}	V_{DD}	V_{IL}	V_{BB}	V_{CC}	
PROGRAM	D_{IN}	V_{SS}	Pulsed $\mathrm{V}_{\mathrm{IHP}}$	V_{DD}	$\mathrm{V}_{\mathrm{IHW}}$	V_{BB}	V_{CC}	

PROGRAMMING

The programming specifications are in the ROM and PROM Programming Instructions (see page 3-59).

Absolute Maximum Ratings*

Temperature Under Bias
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{D D}$ With Respect to $V_{B B} . ~+20 V ~ t o ~-0.3 V$
$V_{C C}$ and $V_{S S}$ With Respect to $V_{B B} \ldots \ldots+15 V$ to $-0.3 V$
All Input or Output Voltages With Respect
to $V_{B B}$ During Read . +15 V to -0.3V
$\overline{\mathrm{CS}} / \mathrm{WE}$ Input With Respect to V_{BB}
During Programming . +20V to -0.3V

Power Dissipation

READ OPERATION

D.C. and Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Noted.

Symbol	Parameter	Min.	Typ. $\left.{ }^{\prime} 1\right]$	Max.	Unit
I_{LI}	Address and Chip Select Input Sink Current		1	10	$\mu \mathrm{~A}$

NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltages.
2. The total power dissipation of the $2704 / 2708$ is specified at 800 mW . It is not calculable by summing the various currents (IDD, ICC, and $I_{B B}$) multiplied by their respective voltages since current paths exist between the various power supplies and $V_{S S}$. The IDD, ICC, and IBB currents should be used to determine power supply capacity only.

Typical D.C. Characteristics

MAXIMUM JUNCTION TEMPERATURE VS. AMBIENT TEMPERATURE

RANGE OF SUPPLY CURRENTS VS. TEMPERATURE

OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, Unless Otherwise Noted.

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{ACC}}$	Address to Output Delay		280	450	ns
t_{CO}	Chip Select to Output Delay		60	120	ns
t_{DF}	Chip De-Select to Output Float	0		120	ns
t_{OH}	Address to Output Hold	0			ns

Capacitance ${ }^{[1]} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Parameter	Typ.	Max.	Unit	Conditions
C_{IN}	Input Capacitance	4	6	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	8	12	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note 1. This parameter is periodically sampled and not 100% tested.

A.C. Test Conditions:

Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$
Input Rise and Fall Times: $\leqslant 20 \mathrm{~ns}$
Timing Measurement Reference Levels: 0.8 V and 2.8 V for inputs; 0.8 V and 2.4 V for outputs Input Pulse Levels: 0.65 V to 3.0 V

Waveforms

Typical A.C. Characteristics

ACCESS TIME VS. LOAD CAPACITANCE

HIGH SPEED FULLY DECODED 1024 BIT READ ONLY MEMORY

- Fast Access Time--45 nsec Maximum over Temperature and Supply Voltage Variation.
- Low Power Dissipation -$0.5 \mathrm{~mW} /$ bit typical.
- DTL and TTL Compatible -- Input Loading is . 25 mA max. -Outputs sink 15 mA .
- OR-Tie Capability -- Open Collector Outputs
- Simple Memory Expansion -2 Chip Select Input Leads.
- Fully Decoded -- on Chip Address Decode and Buffer.
- Minimum Line Reflection -- Low Voltage Diode Input Clamp.
- Standard Packaging -- 16 Pin Dual In-Line Lead Configuration.

The 3301A is a fully decoded 1024 bit read only memory organized as 256 words by 4 bits. It is a higher speed version of the 3301 and is a direct pin for pin replacement of the 3301. Its performance is specified over the complete ambient temperature range of $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ and a V_{Cc} supply voltage range of $5 \mathrm{~V} \pm 5 \%$. The 3301 A is programmed at the final step of processing which allows fast turnaround.
The OR tie capability and the 2 chip select inputs of the 3301A allow easy memory expansion into larger word and bit lengths.
The 3301A is mask programmed to customized patterns. Ideal applications are in microprogramming and table look up.
The 3301A is manufactured using Schottky barrier diode clamped transistors which allows higher switching speeds than those devices made with conventional gold diffusion process.

Absolute Maximum Ratings*

Temperature Under Bias Storage Temperature Output or Supply Voltages All Input Voltages Output Currents
-65° to $+125^{\circ} \mathrm{C}$
-65° to $+160^{\circ} \mathrm{C}$
-0.5 V to 7 Volts -1.1 to 5.5 V 100 mA

*COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D. C. Characteristics: All Limits Apply for $V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP. ${ }^{(1)}$	MAX.		
$I_{\text {FA }}$	ADDRESS INPUT LOAD CURRENT			-0.25	mA	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V}, \\ & V_{A}=0.45 \mathrm{~V} \end{aligned}$
$I_{\text {FS }}$	CHIP SELECT INPUT LOAD CURRENT			-0.25	mA	$\begin{aligned} & V_{\mathrm{cC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=0.45 \mathrm{~V} \end{aligned}$
$I_{\text {RA }}$	ADDRESS INPUT LEAKAGE CURRENT			40	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V}, \\ & V_{A}=5.25 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {RS }}$	CHIP SELECT INPUT LEAKAGE CURRENT			40	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & V_{\mathrm{S}}=5.25 \mathrm{~V} \end{aligned}$
$V_{C A}$	ADDRESS INPUT CLAMP VOLTAGE			-1.0	V	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, \\ & I_{A}=-5.0 \mathrm{~mA} \end{aligned}$
V_{CS}	CHIP SELECT INPUT CLAMP VOLTAGE			-1.0	V	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, \\ & I_{\mathrm{S}}=-5.0 \mathrm{~mA} \end{aligned}$
$V_{\text {OL }}$	OUTPUT LOW vOLTAGE			0.45	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {CEX }}$	OUTPUT LEAKAGE CURRENT			100	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V}, \\ & V_{C E}=5.25 \mathrm{~V} \end{aligned}$
$I_{\text {cc }}$	POWER SUPPLY CURRENT		90	125	mA	$\begin{aligned} & V_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AO} \rightarrow V_{A 7}=0 \mathrm{~V}}=\mathrm{V}_{\mathrm{S}_{0}}=\mathrm{V}_{\mathrm{S}_{1}}=0 \mathrm{~V} \end{aligned}$
$V_{\text {IL }}$	INPUT "LOW" VOLTAGE			0.85	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$V_{1 H}$	INPUT "HIGH" voltage	2.0			V	$V_{c C}=5.0 \mathrm{~V}$

Note 1: Typical values are at $25^{\circ} \mathrm{C}$ and at nominal voltage.

Switching Characteristics

A. C. Characteristics $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMIT		UNIT	CONDITIONS
		TYP.	MAX.		
$\begin{aligned} & \mathrm{t}_{\mathrm{A}++}, \mathrm{t}_{\mathrm{A}--} \\ & \mathrm{t}_{\mathrm{A}+,}, \mathrm{t}_{\mathrm{A}-+} \end{aligned}$	Address to Output Delay	25	45	ns	lines must be at ground potential to
${ }^{\text {t }}$ S++ ${ }^{\text {, }} \mathrm{s}$--	Chip Select to Output Delay	13	20	ns	

NOTE 1: Typical values are at $25^{\circ} \mathrm{C}$ and at nominal voltage.
Capacitance ${ }^{(2)} T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMIT				UNIT	TEST CONDITIONS
		PLASTIC		CERDIP			
		TYP.	MAX.	TYP.	MAX.		
$\mathrm{C}_{\text {INA }}$	Address Input Capacitance	5	8	6	10	pF	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{INA}}=2.5 \mathrm{~V} \end{aligned}$
$\mathrm{C}_{\text {INS }}$	Chip Select Input Capacitance	5	8	5	10	pF	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{\text {INS }}=2.5 \mathrm{~V} \end{aligned}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	7	10	8	12	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V} \end{aligned}$

NOTE 2: This parameter is only periodically sampled and is not 100% tested.

Conditions of Test:

Input pulse amplitudes - 2.5 V
Input pulse rise and fall times of
5 nanoseconds between 1 volt and 2 volts Speed measurements are made at 1.5 volt levels Output loading is 15 mA and 30 pF Frequency of test -2.5 MHz

15 mA TEST LOAD

ADDRESS TO OUTPUT DELAY

CHIP SELECT TO OUTPUT DELAY

HIGH SPEED 1024 BIT READ ONLY MEMORY

- Military Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Fast Access Time-60 nsec Maximum
- OR-Tie Capability Open Collector Outputs
- Standard Packaging - 16 Pin Hermetic Dual In-Line Configuration

The M3301A is a military temperature range ROM, organized as 256 words by 4 -bits. It is mask programmed to customized patterns. Initial circuit prototyping can be performed before going into volume production by using the pin compatible M3601 PROM.

PIN CONFIGURATION

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS*
Temperature Under Bias $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Output or Supply Voltages -0.5 V to 7 Volts All Input Voltages -1.3 to 5.5V Output Currents . 100́mA

*COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

D.C. and Operating Characteristics

All limits apply for $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Limits			Unit	Test Conditions
		Min.	Typ. [1]	Max.		
IFA	Address Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0.45 \mathrm{~V}$
IFS	Chip Select Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.45 \mathrm{~V}$
$I_{\text {RA }}$	Address Input Leakage Current			40	$\mu \mathrm{A}$	$V_{C C}=5.25 V, V_{A}=5.25 V$
IRS	Chip Select Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5.25 \mathrm{~V}$
$V_{C A}$	Address Input Clamp Voltage		-0.7	-1.2	V	$V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-5.0 \mathrm{~mA}$
V CS	Chip Select Input Clamp Voltage		-0.7	-1.2	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{IS}=-5.0 \mathrm{~mA}$
V CS	Output Low Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
ICEX	Output Leakage Current			100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \end{aligned}$
${ }^{1} \mathrm{CC}$	Power Supply Current		90	125	mA	$\begin{aligned} & V_{\mathrm{A} O} \rightarrow \mathrm{~V}_{\mathrm{A} 7}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S} 0}=\mathrm{V}_{\mathrm{S} 1}=0 \mathrm{~V} \end{aligned}$
$V_{\text {IL }}$	Input "Low" Voltage			0.80	V	$V_{C C}=5.0 \mathrm{~V}$
$V_{\text {IH }}$	Input "High' Voltage	2.1			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

[^5]A. C. Characteristics $\quad V_{C C}=+5 \mathrm{~V} \pm 5 \%, T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MAX. LIMIT	UNIT	CONDITIONS
$\begin{aligned} & \mathrm{t}_{\mathrm{A}++}, \mathrm{t}_{\mathrm{A}--} \\ & \mathrm{t}_{\mathrm{A}+-,} \mathrm{t}_{\mathrm{A}-+} \end{aligned}$	Address to Output Delay	60	ns	Both C.S. lines must be at ground potential to activate the ROM.
${ }^{\text {S }}$ ++, $\mathrm{t}_{\text {S }--}$	Chip Select to Output Delay	30	ns	

Capacitance ${ }^{(1)} T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS		UNIT	TEST CONDITIONS	
		TYP.	MAX.			
$\mathrm{C}_{\text {INA }}$	Address Input Capacitance	4	10	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$V_{\text {IN }}=2.5 \mathrm{~V}$
$\mathrm{C}_{\text {INS }}$	Chip-Select Input Capacitance	6	10	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	7	12	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$

NOTE 1: This parameter is only periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test:

Input pulse amplitudes - 2.5V Input pulse rise and fall times of 5 nanoseconds between 1 volt and 2 volts Speed measurements are made at 1.5 volt levels Output loading is 10 mA and 30 pF Frequency of test -2.5 MHz

10 mA TEST LOAD

Waveforms

ADDRESS TO OUTPUT DELAY

CHIP SELECT TO OUTPUT DELAY

HIGH SPEED 2048 BIT READ ONLY MEMORY

- Fast Access Time-70ns (3302A, 3322A) Over Temperature and Supply Voltage Variation
- Low Standby Power Dissipation (3302AL6) - 115μ W/bit
- Fully Decoded-on Chip Address Decode and Buffer
- DTL and TTL CompatibleInput Loading is 0.25 mA max Output Sink is 15 mA
- Open Collector (3302A, 3302A-4, 3302AL6) and Three State (3322A, 3322A-4, 3322AL6) Outputs
- Simple Memory Expansion - Single Chip Select Input Lead
- Standard Packaging-16 Pin Dual In-Line Lead Configuration

The 3302A and 3322A device families are high density 2048 bit (512 words by 4 -bit) ROMs. Electrical performance is specified over the complete ambient temperature range $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ and V_{CC} supply voltage range of $5 \mathrm{~V} \pm 5 \%$. The 3302 A and 3322A ROM families are pin compatible with the Intel ${ }^{\circledR} 3602$ and 3622 PROM families. Consequently initial circuit prototyping can be performed using the pin compatible PROMs.

The 3302A-4 and 3322A-4 are ideal for slower performance systems ($>90 \mathrm{~ns}$) where low system cost is a prime factor. For those systems requiring low power dissipation, one should consider the 3302AL6/3322AL6. Not only does the 3302AL6/ 3322AL6 dissipate 20% less active power than the $3302 / 3322$, but it also has an added low standby power dissipation feature. Whenever the 3302AL6/3322AL6 is deselected, power dissipation is reduced by 70%.

The 3302A and 3322A device families are manufactured using Schottky barrier diode clamped transistors which results in higher speed performance than equivalent devices made with gold diffusion process.

Absolute Maximum Ratings*

Temperature Under Bias

- $65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Output or Supply Voltages -0.5 V to 7 Volts
All Input Voltages -1.6 V to 5.5 V
Output Currents 100 mA

*COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D. C. Characteristics: All Limits Apply for $V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Unit	Test Conaitions
		Min.	Typ. ${ }^{\text {11] }}$	Max.		
$I_{\text {FA }}$	Address Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {FS }}$	Chip Select Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.45 \mathrm{~V}$
$I_{\text {RA }}$	Address Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=5.25 \mathrm{~V}$
$I_{\text {RS }}$	Chip Select Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5.25 \mathrm{~V}$
$V_{C A}$	Address Input Clamp Voltage		-0.9	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-10 \mathrm{~mA}$
$\mathrm{V}_{\text {CS }}$	Chip Select Input Clamp Voltage		-0.9	-1.5	\checkmark	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$
ICEX	Output Leakage Current			100	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=5.25 \mathrm{~V}$
${ }^{\text {ICC1 }}$	Power Supply Current (3302, 3302-4, 3322, 3322-4)			140	mA	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V}, V_{A D} \longrightarrow V_{A B}=0 \mathrm{~V} \\ & \overline{C S}=0 \mathrm{~V} \end{aligned}$
'cc2	Power Supply Current (3302L-6, 3322L-6)			110	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \overline{\mathrm{CS}}=0.45 \mathrm{~V} \end{aligned}$
				45	mA	$\overline{\overline{C S}}=2.4 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$	Input "Low" Voltage			0.85	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$V_{\text {IH }}$	Input "High" Voltage	2.0			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

3322A, 3322A-4, 3322AL6 ONLY

Symbol	Parameter	Min.	Typ. ${ }^{11]}$	Max.	Unit	Test Conditions
$I_{\mathrm{O}} \mathrm{I}$	Output Leakage for High Impedance Stage			40	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}$ or 0.45 V, $\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \overline{\mathrm{CS}}=2.4 \mathrm{~V}$
$\mathrm{I}_{\mathrm{SC}}{ }^{\text {[2] }}$	Output Short Circuit Current	-15	-25	-60	mA	$\mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$

NOTES: 1. Typical values are at $25^{\circ} \mathrm{C}$ and at nominal voltage.
2. Unmeasured outputs are open during this test.
A. C. Characteristics $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MAX. LIMIT			UNIT	CONDITIONS
		$\begin{aligned} & 3302 A \\ & 3322 A \end{aligned}$	$\left.\begin{array}{\|l\|} 3302 A-4 \\ 3322 A-4 \end{array} \right\rvert\,$	$\begin{aligned} & \text { 3302AL6 } \\ & \text { 3322AL6 } \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{A}++}, \mathrm{t}_{\mathrm{A}--} \\ & \mathrm{t}_{\mathrm{A}+-,}, \mathrm{t}_{\mathrm{A}-+} \\ & \hline \end{aligned}$	Address to Output Delay	70	90	90	ns	$\overline{\mathrm{CS}}=\mathrm{V}_{\text {IL }}$ to Select the
$\mathrm{t}_{\text {S }++}$	Chip Select to Output Delay	30	30	30	ns	ROM
t_{5}.	Chip Select to Output Delay	30	30	120	ns	

Capacitance ${ }^{(1)} T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

SYMBOL	PARAMETER	LIMITS		UNIT	TEST CONDITIONS	
		TYP.	MAX.			
$\mathrm{C}_{\text {INA }}$	Address Input Capacitance	4	10	pF	$V_{C C}=5 \mathrm{~V}$	$V_{\text {IN }}=2.5 \mathrm{~V}$
$C_{\text {INS }}$	Chip-Select Input Capacitance	6	10	pF	$V_{C C}=5 \mathrm{~V}$	$V_{\text {IN }}=2.5 \mathrm{~V}$
Cout	Output Capacitance	7	12	pF	$V_{C C}=5 \mathrm{~V}$	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$

NOTE 1: This parameter is on'y periodica'ly samp'ed and is not 100° o tested.

Switching Characteristics

Conditions of Test:
Input pulse amplitudes 2.5 V
Input pulse rise and fall times of
5 nanoseconds between 1 volt and 2 volts
Speed measurements are made at 1.5 volt levels
Output loading is 15 mA and 30 pF
Frequency of test $\cdot 2.5 \mathrm{MHz}$

15 mA TEST LOAD

Waveforms

ADDRESS TO OUTPUT DELAY

HIGH SPEED 4096 BIT READ ONLY MEMORY

Abstract

- Fast Access Time-70ns (3304A, 3324A) Over Temperature and Supply Voltage Variation - Low Standby Power Dissipation (3304AL6)-60 μ W/bit - Fully Decoded-on Chip Address Decode and Buffer - DTL and TTL CompatibleInput Loading is 0.25 mA max Output Sink is 15 mA

- Open Collector (3304A, 3304A-4, 3304AL6) and Three State (3324A, 3324A-4) Outputs
- Simple Memory Expansion-4 Chip Select Input Leads
- Standard Packaging-24 Pin Dual In-Line Lead Configuration

The 3304A and 3324A device families are high density 4096 bit (512 words by 8 -bit) ROMs. Electrical performance is specified over the complete ambient temperature range of $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ and V_{CC} supply voltage range of $5 \mathrm{~V} \pm 5 \%$. The 3304 A and 3324A ROM families are pin compatible with the Intel 3604 and 3624 PROM families. Consequently initial circuit prototyping can be performed using the pin compatible PROMs.

The 3304A-4 and 3324A-4 are ideal for slower performance systems ($>90 \mathrm{~ns}$) where low system cost is a prime factor. For those systems requiring low power dissipation, one should consider the 3304AL6. Not only does the 3304AL6 dissipate 20\% less active power than the 3304A, but is also has an added low standby power dissipation feature. Whenever the 3304AL6 is deselected, power dissipation is reduced by 70%.
The 3304A and 3324A device families are manufactured using Schottky barrier diode clamped transistors which results in higher speed performance than equivalent devices made with gold diffusion process.

Mode/Pin Connection	Pin 22	Pin 24
$\begin{array}{ll} \hline \text { Read: } & \\ & 3304 \mathrm{~A}, 3304 \mathrm{~A}-4 \\ & 3324 \mathrm{~A}, 3324 \mathrm{~A}-4 \\ \hline \end{array}$	No Connect or 5 V	5 V
3304AL6	+5V	No Connect
Standby Power: 3304AL6	Power dissipation is automatically reduced whenever the 3304A L6 is deselected.	

$\mathrm{A}_{0}-\mathrm{A}_{8}$	ADDRESS INPUTS
$\mathrm{CS}_{1}-\mathrm{CS}_{2}$	
$\mathrm{CS}_{3}-\mathrm{CS}_{4}$	
$\mathrm{O}_{1}-\mathrm{O}_{8}$	DATP SELECT INPUTS

[1] To select the ROM $\overline{\mathrm{CS}}_{1}=\overline{\mathrm{CS}}_{2}=0$ and $C S_{3}=C S_{4}=1$.

LOGIC SYMBOL

Absolute Maximum Ratings*

Temperature Under Bias	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Output or Supply Voltages	-0.5V to 7 Volts
All Input Voltages	-1.6 V to 5.5 V
Output Currents	100 mA

*COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D. C. Characteristics: All Limits Apply for $V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Parameter	Limits				Test Conditions
		Min.	Typ. ${ }^{\text {[1] }}$	Max.	Unit	
$\mathrm{I}_{\text {FA }}$	Address Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {FS }}$	Chip Select Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {RA }}$	Address Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=5.25 \mathrm{~V}$
IRS	Chip Select Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{S}=5.25 \mathrm{~V}$
V_{CA}	Address Input Clamp Voltage		-0.9	-1.5	V	$V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{A}=-10 \mathrm{~mA}$
$\mathrm{V}_{\text {CS }}$	Chip Select Input Clamp Voltage		-0.9	-1.5	V	$\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{S}=-10 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$
ICEX	Output Leakage Current			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=5.25 \mathrm{~V}$
${ }^{\text {l CC1 }}$	Power Supply Current (3304A, 3304A-4)			190	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{AO}} \rightarrow \mathrm{~V}_{\mathrm{AB}}=0 \mathrm{~V}, \\ & \mathrm{CS}_{1}=\mathrm{CS}_{2}=0 \mathrm{~V}, \mathrm{CS}_{3}=\mathrm{CS}_{4}=5.25 \mathrm{~V} \end{aligned}$
ICC2	Power Supply Current (3324A, 3324A-4)			190	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}_{1}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{AO} \rightarrow \mathrm{~V}_{\mathrm{A} 8}=0 \mathrm{~V},} \\ & \mathrm{CS}_{1}=\mathrm{CS}_{2}=0 \mathrm{~V}, \mathrm{CS}_{3}=\mathrm{CS}_{4}=5.25 \mathrm{~V} \end{aligned}$
${ }^{\text {cc }}$	Power Supply Current (3304AL6) Active			140	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 2}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 1}=\text { Open } \\ & \mathrm{CS}_{1}=\mathrm{CS}_{2}=0.45 \mathrm{~V}, \mathrm{CS}_{3}=\mathrm{CS}_{4}=2.4 \mathrm{~V} \end{aligned}$
	Standby			45	mA	$\overline{\mathrm{CS}}_{1}=\overline{\mathrm{CS}}_{2}=2.5 \mathrm{~V}$
$V_{\text {IL }}$	Input "Low" Voltage			0.85	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
V_{IH}	Input "High" Voltage	2.0			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

3324A, 3324A-4 ONLY

Symbol	Parameter	Min.	Typ. [1]	Max.	Unit	Test Conditions
$\mathrm{I}_{\mathrm{O}} \mathrm{I}$	Output Leakage for High Impedance Stage			100	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}$ or 0.45 V, $\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \overline{\mathrm{CS}}_{1}=\overline{\mathrm{CS}}_{2}=2.4 \mathrm{~V}$
$\mathrm{I}_{\mathrm{SC}}{ }^{[2]}$	Output Short Circuit Current	-15	-25	-60	mA	$\mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$

NOTES: 1. Typical values are at $25^{\circ} \mathrm{C}$ and at nominal voltage.
2. Unmeasured outputs are open during this test.
A. C. Characteristics $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MAX. LIMIT			UNIT	CONDITIONS
		$\begin{aligned} & 3304 A \\ & 3324 A \end{aligned}$	$\begin{array}{\|l\|} \hline 3304 \mathrm{~A}-4 \\ 3324 \mathrm{~A} \end{array}$	3304AL6		
$\begin{aligned} & \mathrm{t}_{\mathrm{A}++}, \mathrm{t}_{\mathrm{A}--} \\ & \mathrm{t}_{\mathrm{A}+,-}, \mathrm{t}_{\mathrm{A}-+} \end{aligned}$	Address to Output Delay	70	90	90	ns	$\overline{C S}=V_{I L}$ to Select the PROM
${ }_{\text {t }}^{\text {+ }+}$	Chip Select to Output Delay	30	30	30	ns	
$\mathrm{t}_{\text {S }}$--	Chip Select to Output Delay	30	30	120	ns	

Capacitance ${ }^{(1)} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

SYMBOL	PARAMETER	LIMITS		UNIT	TEST CONDITIONS	
		TYP.	MAX.			
CINA	Address Input Capacitance	4	10	pF	$V_{C C}=5 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
$C_{\text {INS }}$	Chip-Select Input Capacitance	6	10	pF	$V_{C C}=5 \mathrm{~V}$	$V_{\text {IN }}=2.5 \mathrm{~V}$
Cout	Output Capacitance	7	15	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$

NOTE 1: This parameter is only periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test:
Input pulse amplitudes - 2.5 V
Input pulse rise and fall times of
5 nanoseconds between 1 volt and 2 volts
Speed measurements are made at 1.5 volt levels
Output loading is 15 mA and 30 pF
Frequency of test -2.5 MHz

15 mA TEST LOAD

Waveforms

ADDRESS TO OUTPUT DELAY

CHIP SELECT TO OUTPUT DELAY

256×4 HIGH SPEED RAM

$3601-1,3621-1$	50 ns Max.
3601,3621	70 ns Max.

- Low Power Dissipation: $0.5 \mathrm{~mW} / \mathrm{Bit}$ Typical
 - Open Collector (3601) and Three-State Outputs (3621)

The Intel® $3601 / 3621$ is a 1024 bit PROM ideally suited for uses where fast turnaround and pattern experimentations are important, such as in prototypes or in small productions volume systems. The 3601 is manufactured with all outputs low, and logic high output levels can be electrically programmed in selected bit locations. The 3621 has its outputs initially high and logic low output levels are programmed. The same address inputs are used for both programming and reading.
A higher system performance is achieved by using the $3601-1$ or $3621-1$. These PROMs give a 25% system speed improvement over the 3601 or 3621.
The 3601/3621 is manufactured with the highly reliable polycrystalline silicon fuse and the fast switching Schottky barrier diode technology.

PIN CONFIGURATION

NOTE 1. DURING PROGRAMMING, THE PROGRAM PULSE MAY BE APPLIED TO EITHER $\overline{C S}_{1}$ OR CS_{2} FOR THE 3621 FAMILY. THE PROGRAM PULSE
APPLIED TO $\overline{\mathrm{CS}}_{\mathbf{2}}$ FOR THE 3601 FAMILY.

PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{7}$	ADDRESS INPUTS
$\overline{\mathrm{CS}}_{1}-\overline{\mathrm{CS}}_{2}$	CHIP SELECT INPUTS
$\mathrm{O}_{1}-\mathrm{O}_{4}$	DATA OUTPUTS

NOTE 1. DURING PRPLIED TO EITHER CS

LOGIC SYMBOL

LOGIC SYMBOL

Absolute Maximum Ratings*

Temperature Under Bias
Storage Temperature
Output or Supply Voltages
All Input Voltages
Output Currents
Programming Only:
Output or $V_{C C}$ Voltages
$\overline{\mathrm{CS}}_{2}$ Voltage
CS_{2} Current
VCC Current
$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ -0.5 V to 7 Volts -1.6 V to 5.5 V 100 mA

3601 3621
10.25 V 13 V $15.5 \mathrm{~V} \quad 15.5 \mathrm{~V}$ $100 \mathrm{~mA} \quad 150 \mathrm{~mA}$ $500 \mathrm{~mA} \quad 600 \mathrm{~mA}$

*COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D. C. Characteristics: All Limits Apply for $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Unless Otherwise Specified.

Symbol	Parameter	Limits			Unit	Test Conditions
		Min.	Typ. [1]	Max.		
$I_{\text {FA }}$	Address Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0.45 \mathrm{~V}$
$I_{\text {FS }}$	Chip Select Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.45 \mathrm{~V}$
$I_{\text {RA }}$	Address Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=5.25 \mathrm{~V}$
IRS	Chip Select Input Leakage Current	,		40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5.25 \mathrm{~V}$
$V_{C A}$	Address Input Clamp Voltage		-0.9	-1.5	V	$\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-10 \mathrm{~mA}$
$\mathrm{V}_{\text {cs }}$	Chip Select Input Clamp Voltage		-0.9	-1.5	V	$\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
V_{OL}	Output Low Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$
ICC	Power Supply Current		90	130	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{AD}} \rightarrow \mathrm{~V}_{\mathrm{AT}}=0 \mathrm{~V} \\ & \mathrm{CS}_{1}=\overline{\mathrm{CS}}_{2}=0 \mathrm{~V} \end{aligned}$
$V_{\text {IL }}$	Input "Low" Voltage			0.85	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	2.0			V	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$

FOR 3621, 3621-1 ONLY

Symbol	Parameter	Limits			Unit	Test Conditions
		Min.	Typ. [1]	Max.		
10	Output Leakage for High Impedance Stage			40	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{O}}=5.25 \mathrm{~V} \text { or } 0.45 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \overline{\mathrm{CS}_{1}}=\overline{\mathrm{CS}_{2}}=2.4 \mathrm{~V} \end{aligned}$
$\mathrm{ISC}^{[2]}$	Output Short Circuit Current			-60	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \end{aligned}$
V_{OH}	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$

NOTES: 1. Typical values are at $25^{\circ} \mathrm{C}$ and at nominal voltage.
2. Unmeasured outputs are open during this test.
A. C. Characteristics $V_{C C}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MAXIMUM LIMITS			UNIT	CONDITIONS
		$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{A}++}, \mathrm{t}_{\mathrm{A}--} \\ & \mathrm{t}_{\mathrm{A}+-}, \mathrm{t}_{\mathrm{A}-+} \end{aligned}$	3601-1 and 3621-1 Address to Output Delay	50	50	50	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{A}++}, \mathrm{t}_{\mathrm{A}--} \\ & \mathrm{t}_{\mathrm{A}+-,}, \mathrm{t}_{\mathrm{A}-+} \end{aligned}$	3601 and 3621 Address to Output Delay	70	60	70	ns	Both C.S. lines must be at ground potential to activate
$\mathrm{t}_{\mathrm{S}_{+},}, \mathrm{t}_{\text {S-- }}$	Chip Select to Output Delay	25	25	25	ns	

Capacitance ${ }^{(1)} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS		UNIT	TEST CONDITIONS	
		TYP.	MAX.			
$C_{\text {INA }}$	Address Input Capacitance	4	10	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
Cins	Chip-Select Input Capacitance	6	10	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{V}_{1 \mathrm{~N}}=2.5 \mathrm{~V}$
Cout	Output Capacitance	7	12	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$

NOTE 1: This parameter is only periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test:

Input pulse amplitudes - 2.5 V
Input pulse rise and fall times of
5 nanoseconds between 1 volt and 2 volts
Speed measurements are made at 1.5 volt levels Output loading is 15 mA and 30 pF
Frequency of test -2.5 MHz

Waveforms

ADDRESS TO OUTPUT DELAY

15 mA TEST LOAD

CHIP SELECT TO OUTPUT DELAY

Typical D. C. Characteristics

Typical A. C. Characteristics

HIGH SPEED ELECTRICALLY PROGRAMMABLE 1024 BIT READ ONLY MEMORY

- Military Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 - Fast Access Time- 90 nsec Maximum

- Fast Programming - 1 ms/bit Typically

- Open Collector Outputs
- Standard Packaging - 16 Pin Hermetic Dual In-Line Lead Configuration

The M3601 is a military temperature range PROM, organized as 256 words by 4 -bits. The PROM is manufactured with all outputs low and logic output high levels can be electrically programmed in selected bit locations. The M3601 is pin compatible with the Intel metal mask ROM M3301A.

PIN CONFIGURATION

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Output or Supply Voltages	-0.5V to 7 Volts
All Input Voltages	-1.3 to 5.5V
Output Currents .	100 mA
Programming Only:	
Output or V_{CC} Voltages	10.25 V
CS_{2} Voltage	15.25 V
$V_{\text {cc }}$ Current.	500 mA
CS_{2} Current	100 mA

*COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

D.C. and Operating Characteristics

All limits apply for $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	/ Parameter	Limits			Unit	Test Conditions
		Min.	Typ. [1]	Max.		
IFA	Address Input Load Current		-0.05	-0.25	mA	$V_{C C}=5.25 V, V_{A}=0.45 \mathrm{~V}$
IFS	Chip Select Input Load Current		-0.05	-0.25	mA	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{S}=0.45 \mathrm{~V}$
IRA	Address Input Leakage Current			40	$\mu \mathrm{A}$	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=5.25 \mathrm{~V}$
IRS	Chip Select Input Leakage Current			40	$\mu \mathrm{A}$	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5.25 \mathrm{~V}$
$V_{C A}$	Address Input Clamp Voltage		-0.7	-1.2	V	$V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-5.0 \mathrm{~mA}$
V_{CS}	Chip Select Input Clamp Voltage		-0.7	-1.2	V	$V_{C C}=4.75 \mathrm{~V}, I_{S}=-5.0 \mathrm{~mA}$
$\mathrm{V}_{\text {CS }}$	Output Low Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{IOL}=10 \mathrm{~mA}$
ICEX	Output Leakage Current			100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \end{aligned}$
${ }^{\text {ICC }}$	Power Supply Current		90	130	mA	$\begin{aligned} & V_{\mathrm{AO}} \rightarrow \mathrm{~V}_{\mathrm{A} 7}=0 \mathrm{~V} \\ & V_{\mathrm{S} 0}=V_{\mathrm{S} 1}=0 \mathrm{~V} \end{aligned}$
$V_{\text {IL }}$	Input "Low" Voltage			0.80	V	$V_{C C}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	2.1			\checkmark	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

[^6]A. C. Characteristics $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MAX. LIMIT	UNIT	CONDITIONS
t_{A++}, t_{A--} t_{A+-}, t_{A-+}	Address to Output Delay	90	$n s$	Both C.S. lines must be at ground potential
$t_{S++} t_{S--}$	Chip Select to Output Delay	35	$n s$	

Capacitance ${ }^{(1)} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS		UNIT	TEST CONDITIONS	
		TYP.	MAX.			
$C_{\text {INA }}$	Address Input Capacitance	4	10	pF	$V_{C C}=5 \mathrm{~V}$	$\mathrm{V}_{1 \mathrm{~N}}=2.5 \mathrm{~V}$
$\mathrm{C}_{\text {INS }}$	Chip-Select Input Capacitance	6	10	pF	$V_{C C}=5 \mathrm{~V}$	$V_{\text {IN }}=2.5 \mathrm{~V}$
Cout	Output Capacitance	7	12	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$

NOTE 1: This parameter is only periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test:

Input pulse amplitudes - 2.5V
Input pulse rise and fall times of
5 nanoseconds between 1 volt and 2 volts
Speed measurements are made at 1.5 volt levels Output loading is 10 mA and 30 pF Frequency of test -2.5 MHz

10 mA TEST LOAD

Waveforms

ADDRESS TO OUTPUT DELAY

CHIP SELECT TO OUTPUT DELAY

HIGH SPEED ELECTRICALLY PROGRAMMABLE 2048 BIT READ ONLY MEMORY

\author{

- Fast Access Time-70ns (3602, 3622)
 - Low Standby Power Dissipation (3602L-6, 3622L-6) - 115μ W/bit
 - Open Collector (3602, 3602-4, 3602L-6) or Three-State (3622, 3622-4, 3622L-6) Outputs
}

The 3602 and 3622 device families are high density 2048 bit (512 words by 4 -bits) PROMs suitable for uses where fast turnaround and pattern experimentation are important such as in prototypes or in small production volume systems. For those systems requiring low power dissipation, one should consider the $3602 \mathrm{~L}-6$ or $3622 \mathrm{~L}-6$. Both the $3602 \mathrm{~L}-6$ and $3622 \mathrm{~L}-6$ have a low standby power dissipation feature. Whenever these two devices are deselected, power dissipation is reduced substantially over the active power dissipation. The 3602-4 and 3622-4 are ideal for slower performance systems ($>90 \mathrm{~ns}$) where low system cost is a prime factor.

The PROMs are pin compatible with the Intel metal mask ROMs 3302A, 3302A-4, 3302AL6, 3322A, 3322A-4 and 3322AL6. The ROMs offer system cost savings over the PROMs when in large volume production.
The PROMs are manufactured with all outputs high and logic low levels can be electrically programmed in selected bit locations.
The 3602 and 3622 device families are monolithic, high speed, Schottky clamped TTL arrays with polycrystalline silicon fuses. The Schottky barrier diode clamped transistors allow faster switching speeds than those devices made with the conventional gold diffusion processes.

PIN CONFIGURATION

LOGIC SYMBOL

Absolute Maximum Ratings*

Temperature Under Bias	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Output or Supply Voltages	-0.5V to 7 Volts
All Input Voltages	-1.6 V to 5.6 V
Output Currents	100 mA
Programming Only:	
Output or V_{CC} Voltages	13 V
$\overline{\mathrm{CS}}$ Voltage	15.5 V
$\mathrm{V}_{\text {cc }}$ Current	600mA
$\overline{\text { CS }}$ Current	150 mA

*COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D. C. Characteristics: All Limits Apply for $V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min.	Typ. ${ }^{[1]}$	Max.		
$I_{\text {FA }}$	Address Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0.45 \mathrm{~V}$
$I_{\text {f }}$	Chip Select Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.45 \mathrm{~V}$
$I_{\text {RA }}$	Address Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=5.25 \mathrm{~V}$
$I_{\text {RS }}$	Chip Select Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5.25 \mathrm{~V}$
$\mathrm{V}_{\text {CA }}$	Address Input Clamp Voltage		-0.9	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-10 \mathrm{~mA}$
$\mathrm{V}_{\text {cs }}$	Chip Select Input Clamp Voltage		-0.9	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
V_{OL}	Output Low Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$
ICEX	Output Leakage Current			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{C E}=5.25 \mathrm{~V}$
${ }^{\text {ICC1 }}$	Power Supply Current (3602, 3602-4, 3622, 3622-4)			140	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5: 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{AO}} \rightarrow \mathrm{~V}_{\mathrm{AB}}=0 \mathrm{~V} \\ & \mathrm{CS}=0 \mathrm{~V} \end{aligned}$
${ }^{\text {c CC2 }}$	Power Supply Current (3602L-6, 3622L-6) \qquad Standby			110	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \overline{\mathrm{CS}}=0.45 \mathrm{~V} \\ & \hline \overline{\mathrm{CS}}=2.4 \mathrm{~V} \end{aligned}$
$V_{\text {IL }}$	Input "Low" Voltage			0.85	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
V_{IH}	Input "High" Voltage	2.0			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

3622, 3622-4, 3622L-6 ONLY

Symbol	Parameter	Min.	Typ. [1]	Max.	Unit	Test Conditions
$I_{\mathrm{O}} \mathrm{I}$	Output Leakage for High Impedance Stage			40	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}$ or 0.45 V, $\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \overline{\mathrm{CS}}=2.4 \mathrm{~V}$
$\mathrm{I}_{\mathrm{SC}}{ }^{[2]}$	Output Short Circuit Current	-15	-25	-60	mA	$\mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$

NOTES: 1. Typical values are at $25^{\circ} \mathrm{C}$ and at nominal voltage.
2. Unmeasured outputs are open during this test.
A. C. Characteristics $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MAX. LIMIT			UNIT	CONDITIONS
		$\begin{aligned} & 3602 \\ & 3622 \end{aligned}$	$\begin{aligned} & \hline 3602-4 \\ & 3622 \cdot 4 \end{aligned}$	$\begin{aligned} & \hline 3602 \mathrm{~L}-6 \\ & 3622 \mathrm{~L}-6 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{A}++}, \mathrm{t}_{\mathrm{A}--} \\ & \mathrm{t}_{\mathrm{A}+-,}, \mathrm{t}_{\mathrm{A}-+} \end{aligned}$	Address to Output Delay	70	90	90	ns	$\overline{\mathrm{CS}}=\mathrm{V}_{\text {IL }}$ to Select the PROM
$\mathrm{t}_{\text {S }++}$	Chip Select to Output Delay	30	30	30	ns	
$\mathrm{t}_{\text {S }}$--	Chip Select to Output Delay	30	30	120	ns	

Capacitance ${ }^{(1)} T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

SYMBOL	PARAMETER	LIMITS		UNIT	TEST CONDITIONS
		TYP.	MAX.		
$C_{\text {INA }}$	Address Input Capacitance	4	10	pF	$V_{C C}=5 \mathrm{~V}$
$C_{\text {INS }}$	Chip-Select Input Capacitance	6	10	pF	$V_{I N}=2.5 \mathrm{~V}$
$C_{\text {OUT }}$	Output Capacitance	7	12	pF	$V_{C C}=5 \mathrm{~V}$

NOTE 1: This parameter is only periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test:

Input pulse amplitudes - 2.5 V
Input pulse rise and fall times of 5 nanoseconds between 1 volt and 2 volts
Speed measurements are made at 1.5 volt levels Output loading is 15 mA and 30 pF
Frequency of test -2.5 MHz

15 mA TEST LOAD

Waveforms

ADDRESS TO OUTPUT DELAY

intel

 3604, 3604-4, 3604L-6, 3624, 3624-4
HIGH SPEED ELECTRICALLY PROGRAMMABLE 4096 BIT READ ONLY MEMORY

> - Fast Access Time - 70 ns (3604, 3624)
> - Low Standby Power Dissipation (3604L-6)- 60μ W/bit
> - Open Collector (3604, 3604-4, 3604L-6) or Three-State (3624, 3624-4) Outputs
> - Fast Programming $1 \mathrm{~ms} /$ bit Typically
> - Polycrystalline Silicon Fuse
> - Standard Packaging-24 Pin Dual In-Line Configuration

The 3604 and 3624 device families are high density 4096 bit (512 words by 8 -bits) PROMs suitable for uses where fast turnaround and pattern experimentation are important such as in prototypes or in small production volume systems. For those systems requiring low power dissipation, one should consider the 3604L-6. The 3604L-6 has a low standby power dissipation feature. Whenever the $3604 \mathrm{~L}-6$ is deselected, power dissipation is reduced substantially over the active power dissipation. The $3604-4$ and $3624-4$ are ideal for slower performance systems ($>90 \mathrm{~ns}$) where low system cost is a prime factor.
The PROMs are pin compatible with the respective Intel metal mask ROMs 3304A, 3304A-4, 3304AL6, 3324, and 3324-4. The ROMs offer system cost savings over the PROMs when in large volume production.
The PROMs are manufactured with all outputs high. Logic low levels can be electrically programmed in selected bit locations.
The 3604 and 3624 device families are monolithic, high speed, Schottky clamped TTL arrays with polycrystalline silicon fuses. The Schottky barrier diode clamped transistors allow faster switching speeds than those devices made with the conventional gold diffusion processes.

Mode/Pin Connection		Pin 22	Pin 24
Read:	$3604,3604-4$, $3624,3624-4$	No Connect or 5V	5 V
	$3604 \mathrm{~L}-6$	+5 V	No Connect
Program:	$3604,3604-4$, $3624,3624-4$	Pulsed 12.5V	Pulsed 12.5V
	$3604 \mathrm{~L}-6$	Pulsed 12.5V	Pulsed 12.5V
Standby Power:	Power dissipation is automatically re- 3604L-6 deselected.		

PIN NAMES
$\left.\begin{array}{|ll|}\hline \mathrm{A}_{0}-\mathrm{A}_{8} & \text { ADDRESS INPUTS } \\ \hline \mathrm{CS}_{1}-\overline{\mathrm{CS}}_{2} \\ \mathrm{CS}_{3}-\mathrm{CS}_{4}\end{array}\right]-$ CHIP SELECT INPUTS $\left.{ }^{[1]}\right]\left(\begin{array}{ll} \\ \hline \mathrm{O}_{1}-\mathrm{O}_{8} & \text { DATA OUTPUTS } \\ \hline\end{array}\right.$
[1] To select the PROM $\overline{\mathrm{CS}}_{1}=\overline{\mathrm{CS}}_{2}=0$ and $\mathrm{CS}_{3}=\mathrm{CS}_{4}=1$.
PIN CONFIGURATION

A, 4 ,	24	$]^{\mathrm{vcc}} \mathrm{l}$
$A_{4} \square^{2}$	23	$\square a_{1}$ imse)
${ }^{5} \mathrm{C}^{3}$	2	$\mathrm{l}^{\mathrm{cc} 2}$
A, \square^{4}	21	$\square \mathrm{cs}^{\text {c }}$
A, ${ }^{\text {a }}$	20	$]^{\mathrm{cs}}$,
$A_{2} \mathrm{C}^{\text {a }}$	19	$\square \mathrm{cs}$,
A, \square,	16	$\square \mathrm{cs}$,
ussel $A_{0} \mathrm{~d}^{\text {a }}$	17]o, (mss)
usal 0, 0 ,	16]o,
0,810	15	$\square 0_{0}$
0,01	14	$\square \mathrm{O}_{5}$
and ${ }^{12}$	13].

LOGIC SYMBOL

Absolute Maximum Ratings*

Temperature Under Bias	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Output or Supply Voltages	-0.5 V to 7 Volts
All Input Voltages	-1.6 to 5.5 V
Output Currents	100 mA
Programming Only:	
Output or V_{CC} Voltages	13 V
CS_{1} Voltage	15.5 V
$V_{\text {cc }}$ Current	600 mA
$\overline{\mathrm{CS}}_{1}$ Current	150 mA

*COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D. C. Characteristics: All Limits Apply for $V_{C C}=+5.0 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Parameter	Limits				Test Conditions
		Min.	Typ. ${ }^{[1]}$	Max.	Unit	
$I_{\text {FA }}$	Address Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{C \mathrm{C}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {FS }}$	Chip Select Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.45 \mathrm{~V}$
I_{RA}	Address Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=5.25 \mathrm{~V}$
I_{RS}	Chip Select Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{S}=5.25 \mathrm{~V}$
$\mathrm{V}_{\text {CA }}$	Address Input Clamp Voltage		-0.9	-1.5	V	$\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-10 \mathrm{~mA}$
V_{CS}	Chip Select Input Clamp Voltage		-0.9	-1.5	V	$\mathrm{V}_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=15 \mathrm{~mA}$
$I_{\text {CEX }}$	Output Leakage Current			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=5.25 \mathrm{~V}$
${ }^{\text {ICC1 }}$	Power Supply Current (3604, 3604-4)			190	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}_{1}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{AO}} \rightarrow \mathrm{~V}_{\mathrm{AB}}=0 \mathrm{~V}, \\ & \mathrm{CS}_{1}=\mathrm{CS}_{2}=0 \mathrm{~V}, \mathrm{CS}_{3}=\mathrm{CS}_{4}=5.25 \mathrm{~V} \end{aligned}$
${ }^{\text {ICC2 }}$	Power Supply Current (3624, 3624-4)			190	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}_{1}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{AO} \rightarrow \mathrm{~V}_{\mathrm{A} 8}=0 \mathrm{~V},} \\ & \mathrm{CS}_{1}=\mathrm{CS}_{2}=0 \mathrm{~V}, \mathrm{CS}_{3}=\mathrm{CS}_{4}=5.25 \mathrm{~V} \end{aligned}$
${ }^{\text {cc }}$	Power Supply Current (3604L-6) Active			140	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 2}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\text { Open } \\ & \mathrm{CS}_{1}=\overline{\mathrm{CS}}_{2}=0.45 \mathrm{~V}, \mathrm{CS}_{3}=\mathrm{CS}_{4}=2.4 \mathrm{~V} \end{aligned}$
	Standby			45	mA	$\overline{\mathrm{CS}}_{1}=\overline{\mathrm{CS}}_{2}=2.5 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$	Input "Low" Voltage			0.85	V	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	2.0			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

3624, 3624-4 ONLY

Symbol	Parameter	Min.	Typ. [1]	Max.	Unit	Test Conditions
$\mathrm{I}_{\mathrm{O}} \mathrm{I}$	Output Leakage for High Impedance Stage			100	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}$ or 0.45 V, $\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \overline{\mathrm{CS}}_{1}=\overline{\mathrm{CS}}_{2}=2.4 \mathrm{~V}$
$\mathrm{I}_{\mathrm{SC}}{ }^{[2]}$	Output Short Circuit Current	-15	-25	-60	mA	$\mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$

NOTES: 1. Typical values are at $25^{\circ} \mathrm{C}$ and at nominal voltage.
2. Unmeasured outputs are open during this test.
A. C. Characteristics $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MAX. LIMIT			UNIT	CONDITIONS
		$\begin{aligned} & 3604 \\ & 3624 \end{aligned}$	$\begin{aligned} & 3604-4 \\ & 3624-4 \end{aligned}$	3604L-6		
$\begin{aligned} & \mathrm{t}_{\mathrm{A}++}, \mathrm{t}_{\mathrm{A}--} \\ & \mathrm{t}_{\mathrm{A}+-,}, \mathrm{t}_{\mathrm{A}-+} \end{aligned}$	Address to Output Delay	70	90	90	ns	$\overline{\mathrm{CS}}_{1}=\overline{\mathrm{CS}}_{2}=\mathrm{V}_{1 \mathrm{LL}}$ and $\mathrm{CS}_{3}=$
${ }_{\text {t }}^{\text {+ }+}$	Chip Select to Output Delay	30	30	30	ns	$\mathrm{CS}_{4}=\mathrm{V}_{1 H}$ to Select the
${ }_{\text {ts }}$ -	Chip Select to Output Delay	30	30	120	ns	PROM.

Capacitance ${ }^{(1)} T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

SYMBOL	PARAMETER	LIMITS		UNIT	TEST CONDITIONS	
		TYP.	MAX.			
$\mathrm{CinA}_{\text {IN }}$	Address Input Capacitance	4	10	pF	$V_{C C}=5 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
Cins	Chip-Select Input Capacitance	6	10	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{V}_{1 \mathrm{~N}}=2.5 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	7	15	pF	$V_{C C}=5 \mathrm{~V}$	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$

NOTE 1: This parameter is only periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test:

Input pulse amplitudes - 2.5V
Input pulse rise and fall times of
5 nanoseconds between 1 volt and 2 volts
Speed measurements are made at 1.5 volt levels
Output loading is 15 mA and 30 pF
Frequency of test -2.5 MHz

15 mA TEST LOAD

Waveforms

ADDRESS TO OUTPUT DELAY

CHIP SELECT TO OUTPUT DELAY

HIGH SPEED ELECTRICALLY PROGRAMMABLE 4096 BIT READ ONLY MEMORY

\author{

- Military Temperature Range
 - Fast Access Time-90 ns (M3604, M3624)
 - Low Standby Power Dissipation (M3604-6)-60 μ W/bit
 - Open Collector (M3604, M3604-6) or Three-State (M3624) Outputs
}

The M3604, M3604-6, and M3624 are high density 4096 bit (512 words by 8 -bits) PROMs suitable for uses where fast turnaround and pattern experimentation are important such as in prototypes or in small production volume systems. The M3604/M3624 are specified over the full temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the M3604-6 over the extended temperature range of $-30^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. For those systems requiring low power dissipation, one should consider the M3604-6. The M3604-6 has a low standby power dissipation feature. Whenever the M3604-6 is deselected, power dissipation is reduced substantially over the active power dissipation.

The PROMs are manufactured with all outputs high. Logic low levels can be electrically programmed in selected bit locations. The M3604 and M3624 device families are monolithic, high speed, Schottky clamped TTL arrays with polycrystalline silicon fuses.

Mode/Pin Connection		Pin 22	Pin 24
Read:	$\begin{aligned} & \text { M3604, } \\ & \text { M3624 } \end{aligned}$	No Connect or 5V	5 V
	M3604-6	+5V	No Connect
Program:	$\begin{aligned} & \hline \text { M3604, } \\ & \text { M3624 } \end{aligned}$	Pulsed 12.5 V	Pulsed 12.5V
	M3604-6	Pulsed 12.5V	Pulsed 12.5V
Standby Power:	M3604-6	Power dissipation is automatically reduced whenever the M3604-6 is deselected.	

MD3604:	Open Collector - 4K
MD3604-6:	Open Collector - Low Standby Power 4K
MD3624:	Three State $-4 K$

PIN CONFIGURATION

LOGIC SYMBOL

Absolute Maximum Ratings*

Temperature Under Bias	$-65^{\circ} \mathrm{C}$ to +135 C
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Output or Supply Voltages	-0.5V to 7 Volts
All Input Voltages	-1.6 V to 5.6 V
Output Currents	100 mA
Programming Only:	
Output or V_{CC} Voltages	13V
CS_{1} Voltage	15.5 V
V_{Cc} Current	600mA
$\overline{\mathrm{CS}}_{1}$ Current	150 mA

*COMMENT

Stresses above those listed under "Absolute Maximum Rating' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for $\mathrm{M} 3604, \mathrm{M} 3624$ $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for M3604-6

Symbol	Parameter	Limits				Test Conditions
		Min.	Typ. [1]	Max.	Unit	
$I_{\text {FA }}$	Address Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{A}}=0.45 \mathrm{~V}$
$I_{\text {FS }}$	Chip Select Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{S}}=0.45 \mathrm{~V}$
$I_{\text {RA }}$	Address Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{A}}=$ Max
$\mathrm{I}_{\text {RS }}$	Chip Select Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{S}}=$ Max
$\mathrm{V}_{\text {CA }}$	Address Input Clamp Voltage		-0.9	-1.5	V	$V_{C C}=\operatorname{Min}, I_{A}=-10 \mathrm{~mA}$
$\mathrm{V}_{\text {cs }}$	Chip Select Input Clamp Voltage		-0.9	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
VOL	Output Low Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
ICEX	Output Leakage Current			100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {CE }}=$ Max
${ }^{\text {cca }}$	Power Supply Current (M3604)			190	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=\mathrm{Max}, \mathrm{~V}_{\mathrm{AO}} \rightarrow \mathrm{~V}_{\mathrm{AB}}=0 \mathrm{~V}, \\ & \mathrm{CS}_{1}=\mathrm{CS}_{2}=0 \mathrm{~V}, \mathrm{CS}_{3}=\mathrm{CS}_{4}=5.5 \mathrm{~V} \end{aligned}$
ICC2	Power Supply Current (M3624)			190	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=\mathrm{Max}, \mathrm{~V}_{\mathrm{AO}} \rightarrow \mathrm{~V}_{\mathrm{A} 8}=0 \mathrm{~V} \\ & \mathrm{CS}_{1}=\overline{\mathrm{CS}}_{2}=0 \mathrm{~V}, \mathrm{CS}_{3}=\mathrm{CS}_{4}=5.5 \mathrm{~V} \end{aligned}$
Icc	Power Supply Current (M3604-6) Active			140	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 2}=\text { Max, } \mathrm{V}_{\mathrm{CC} 1}=\text { Open } \\ & \mathrm{CS}_{1}=\mathrm{CS}_{2}=0.45 \mathrm{~V}, \mathrm{CS}_{3}=\mathrm{CS}_{4}=2.4 \mathrm{~V} \end{aligned}$
	Standby			45	mA	$\overline{\mathrm{CS}}_{1}=\overline{\mathrm{CS}}_{2}=2.5 \mathrm{~V}$
$V_{\text {IL }}$	Input "Low" Voltage			0.8	V	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	2.0			V	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

M3624 ONLY

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$I_{\mathrm{O}} \mathrm{I}$	Output Leakage for High Impedance Stage			100	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{O}}=$ Max or 0.45 V, $\mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CS}}_{1}=\overline{\mathrm{CS}}_{2}=2.4 \mathrm{~V}$
$\mathrm{I}_{\mathrm{SC}}{ }^{\text {[2] }}$	Output Short Circuit Current	-15	-25	-60	mA	$\mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

NOTES: 1. Typical values are at $25^{\circ} \mathrm{C}$ and at nominal voltage.
2. Unmeasured outputs are open during this test.

A. C. Characteristics $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for $\mathrm{M} 3604, \mathrm{M} 3624$

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for M3604-6

SYMBOL	PARAMETER	MAX. LIMIT		UNIT	CONDITIONS
		$\begin{aligned} & \text { M3604 } \\ & \text { M3624 } \end{aligned}$	M3604-6		
$\begin{aligned} & \mathrm{t}_{\mathrm{A}++}, \mathrm{t}_{\mathrm{A}--} \\ & \mathrm{t}_{\mathrm{A}+-}, \mathrm{t}_{\mathrm{A}-+} \end{aligned}$	Address to Output Delay	90	120	ns	$\overline{\mathrm{CS}}_{1}=\overline{\mathrm{CS}}_{2}=\mathrm{V}_{1 \mathrm{~L}}$ and
${ }^{\text {t }}$ + +	Chip Select to Output Delay	45	45	ns	$\mathrm{CS}_{3}=\mathrm{CS}_{4}=\mathrm{V}_{1 \mathrm{H}}$ to
${ }^{\text {t }}$ S--	Chip Select to Output Delay	45	160	ns	Select the PROM

Capacitance ${ }^{(1)} T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

SYMBOL	PARAMETER	LIMITS		UNIT	TEST CONDITIONS	
		TYP.	MAX.			
CINA	Address Input Capacitance	4	10	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
$\mathrm{C}_{\text {INS }}$	Chip-Select Input Capacitance	6	10	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$V_{\text {IN }}=2.5 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	7	15	pF	$V_{C C}=5 \mathrm{~V}$	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$

NOTE 1: This parameter is only periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test:
Input pulse amplitudes -2.5 V
Input pulse rise and fall times of
5 nanoseconds between 1 volt and 2 volts
Speed measurements are made at 1.5 volt levels
Output loading is 10 mA and 30 pF
Frequency of test -2.5 MHz

10 mA TEST LOAD

Waveforms

ADDRESS TO OUTPUT DELAY

CHIP SELECT TO OUTPUT DELAY

HIGH SPEED 1K x 4 PROM

$3605-1,3625-1$	50 ns Max.
3605,3625	70 ns Max.

- Fast Access Time: 35ns Typically
Low Power Dissipation:
$0.14 \mathrm{~mW} / \mathrm{bit}$ Typically
Fast Programming: 1 ms/bit Typically

- Open Collector (3605) and

 Three-State (3625) Outputs- Hermetic 18 Pin DIP

The $3605 / 3625$ is a high density 4096 bit PROM suitable for uses where fast turnaround and pattern experimentation are important such as in prototypes or in small production volume systems. The PROMs are manufactured with all outputs high and logic low levels can be electrically programmed in selected bit locations.
The $3605 / 3625$ is a monolithic, high speed, Schottky clamped TTL memory array with polycrystalline silicon fuses. The Schottky barrier diode clamped transistors allow faster switching speeds than those devices made with the conventional gold diffusion processes.

PIN CONFIGURATION

PIN NAMES

$\mathrm{A}_{0} \cdot \mathrm{~A}_{9}$	ADDRESS INPUTS
$\overline{\mathrm{CS}}$	CHIP SELECT INPUT
$\mathrm{O}_{1} \cdot \mathrm{O}_{4}$	OUTPUTS

BLOCK DIAGRAM

Absolute Maximum Ratings*

Temperature Under Bias	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Output or Supply Voltages	-0.5V to 7 Volts
All Input Voltages	-1V to 5.5V
Output Currents	100 mA
Programming Only:	
Output or $\mathrm{V}_{\text {CC }}$ Voltages	13 V
$\overline{\mathrm{CS}}_{1}$ Voltage	15.5V
$V_{\text {cc }}$ Current	600mA
$\overline{\mathrm{CS}}_{1}$ Current	150 mA

*COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D. C. Characteristics: All Limits Apply for $\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Parameter	Limits				Test Conditions
		Min.	Typ. ${ }^{11]}$	Max.	Unit	
$\mathrm{I}_{\text {FA }}$	Address Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {FS }}$	Chip Select Input Load Current		-0.05	-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.45 \mathrm{~V}$
$I_{\text {RA }}$	Address Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=5.25 \mathrm{~V}$
IRS	Chip Select Input Leakage Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5.25 \mathrm{~V}$
$V_{C A}$	Address Input Clamp Voltage		-0.9	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=-10 \mathrm{~mA}$
V_{cs}	Chip Select Input Clamp Voltage		-0.9	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=15 \mathrm{~mA}$
$I_{\text {cex }}$	3605 Output Leakage Current			100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=5.25 \mathrm{~V}$
ICC	Power Supply Current		110	150	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{AO}} \rightarrow \mathrm{~V}_{\mathrm{A} 9}=0 \mathrm{~V}, \\ & \mathrm{CS}_{1}=\mathrm{CS}_{2}=0 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input "Low" Voltage			0.85	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{1 H}$	Input "High" Voltage	2.0			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

3625, 3625-1 ONLY

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$\mathrm{I}_{\mathrm{O}} \mathrm{I}$	Output Leakage for High Impedance Stage			100	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}$ or 0.45 V, $\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \overline{\mathrm{CS}}_{1}=\overline{\mathrm{CS}}_{2}=2.4 \mathrm{~V}$
$\mathrm{I}_{\mathrm{SC}}{ }^{[2]}$	Output Short Circuit Current	-15	-25	-60	mA	$\mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-2.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$

NOTES: 1. Typical values are at $25^{\circ} \mathrm{C}$ and at nominal voltage.
2. Unmeasured outputs are open during this test.
A. C. Characteristics $\mathrm{V}_{\mathrm{cC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Parameter	Max. Limits		Unit	Conditions
		$\begin{aligned} & 3605-1 \\ & 3625-1 \end{aligned}$	$\begin{aligned} & 3605 \\ & 3625 \end{aligned}$		
$\begin{aligned} & t_{\mathrm{A}++}, \mathrm{t}_{\mathrm{A}--} \\ & \mathrm{t}_{\mathrm{A}+-}, \mathrm{t}_{\mathrm{A}-+} \end{aligned}$	Address to Output Delay	50	70	ns	$\begin{aligned} & \overline{\mathrm{CS}}_{1}=\overline{\mathrm{CS}}_{2}=\mathrm{V}_{1 \mathrm{~L}} \\ & \text { to select the } \\ & \text { PROM. } \end{aligned}$
${ }_{\text {t }}^{\text {+ }+}$	Chip Select to Output Delay	25	30	ns	
$\mathrm{t}_{\text {S-- }}$	Chip Select to Output Delay	25	30	ns	

Capacitance ${ }^{(1)} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

SYMBOL	PARAMETER	LIMITS		UNIT	TEST CONDITIONS	
		TYP.	MAX.			
$\mathrm{C}_{\text {INA }}$	Address Input Capacitance	4	10	pF	$V_{C C}=5 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
$\mathrm{C}_{\text {INS }}$	Chip-Select Input Capacitance	6	10	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	7	12	pF	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$

NOTE 1: This parameter is only periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test:

Input pulse amplitudes - 2.5 V Input pulse rise and fall times of

5 nanoseconds between 1 volt and 2 volts
Speed measurements are made at 1.5 volt levels Output loading is 15 mA and 30 pF Frequency of test -2.5 MHz

15mA TEST LOAD

Waveforms

ADDRESS TO OUTPUT DELAY

CHIP SELECT TO OUTPUT DELAY

I. ROM and PROM Truth Table Format

Programming information should be sent in the form of computer punched cards or punched paper tape. When using the 7600C or MCS programmers, punched paper tape should be used. In all cases, a printout of the truth table should be accompanied with the order.
The following general format is applicable to the programming information sent to Intel:

1. A data field should start with the most significant bit and end with the least significant bit.
2. The data field should consist of P^{\prime} s and N 's. A P is to indicate a high level output (most positive) and an N a low level output (most negative). If the programming information is sent on a punched paper tape, then a start character, B, and an end character, F, must be used in the data field.

A. PUNCHED CARD FORMAT

An 80 column Hollerith card (preferably interpreted) punched by an IBM 026 or 029 keypunch should be submitted. The first card will be a title card. The format is as follows:

2. For a \mathbf{N} words $\mathbf{x} 4$ bit organization only, cards 2

and the following cards should be punched as shown:
Each card specifies the 4 bit output of 14 words.

3. For a \mathbf{N} words $\mathbf{x} \mathbf{8}$-bit organization only, cards $\mathbf{2}$ and the following cards should be punched as shown. Each card specifies the 8 -bit output of 8 words.

		L NUMBER ATING THE E NUMBER		

B. PAPER TAPE FORMAT

The paper tape which should be used is $1^{\prime \prime}$ wide paper tape using 7 or 8 bit ASCII code, such as a model 33 ASR teletype produces.

BPNF Format

The format requirements are as follows:

1. All word fields are to be punched in consecutive order, starting with word field \emptyset (all addresses low). There must be exactly N word fields for the $\mathrm{N} \times 8$ or $\mathrm{N} \times 4$ ROM organization.
2. Each word field must begin with the start character B and end with the stop character F. There must be exactly 8 or 4 data characters between the B and F for the $N \times 8$ or $N \times 4$ organization respectively.
NO OTHER CHARACTERS, SUCH AS RUBOUTS, ARE ALLOWED ANYWHERE IN A WORD FIELD. If in preparing a tape, an error is made, the entire word field, including the B and F must be rubbed out. Within the word field, a P results in a high level output, and an N results in a low level output.
3. Preceding the first word field and following the last word field, there must be a leader/trailer length of at least $\mathbf{2 5}$ characters. This should consist of rubout punches (letter key for Telex tapes)
4. Between word fields, comments not containing B's or F's may be inserted. Carriage return and line feed characters should be inserted (as a "comment") just before each word field (or at least between every four word fields). When these carriage returns, etc. are inserted, the tape may be easily listed on the teletype for purposes of error checking. The customer may also find it helpful to insert the word number (as a comment) at least every four word fields.
5. Included in the tape before the leader should be the customer's complete Telex or TWX number and if more than one pattern is being transmitted, the ROM pattern number.
6. MSB and LSB are the most and least significant bit of the device outputs. Refer to the data sheet for the pin numbers.

Example of BPNF 256×8 format ($\mathrm{N}=\mathbf{2 5 6}$):

Trailer: Rubout Key for TWX and Letter Key for Telex (at least 25 frames).

Example of 512×4 format $(N=512)$:

Trailer: Rubout Key for TWX and Letter Key for Telex lat least 25 frames).

II. MOS PROM ERASING PROCEDURE

The 1702A, 1702AL, 2704, and 2708 is erased by exposure to high intensity short wave ultraviolet light at a wavelength of 2537A. The recommended integrated dose (i.e., VV intensity x exposure time) is $6 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$ for the $1702 \mathrm{~A} / 1702 \mathrm{AL}$ and $10 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$ for the $2704 / 2708$. An example of an ultraviolet source which can erase the 1702A/1702AL in 10 to 20 minutes or the $2704 / 2708$ in 20 to 30 minutes is the Model S52 short wave ultraviolet lamp. The lamp should be used without short wave filters and the PROM should be placed about one inch away from the lamp tubes.

Two manufacturers of the S52 are Ultra-Violet Products, Inc. (San Gabriel, Calif.) and Product Specialties, Inc. (Issaquah, Washington).

III. MOS PROM PROGRAMMING INSTRUCTIONS

A. 1702A and 1702AL Family

Initially, all 2048 bits of the PROM are in the " 0 " state (output low). Information is introduced by selectively programming " 1 "s (output high) in the proper bit locations.
Word address selection is done by the same decoding circuitry used in the READ mode. All 8 address bits must be in the binary complement state when pulsed $V_{C C}$ and $V_{G G}$ move to their negative levels. The addresses must be held in their binary complement state for a minimum of $25 \mu \mathrm{sec}$ after V_{DD} and V_{GG} have moved to their negative levels. The addresses must then make the transition to their true state a minimum of $10 \mu \mathrm{sec}$ before the program pulse is applied. The addresses should be programmed in the sequence 0 through 255 for a minimum of 32 times. The eight output terminals are used as data inputs to determine the information pattern in the eight bits of each word. A low data input level (-48 V) will program a " 1 " and a high data input level (ground) will leave a " 0 ". All eight bits of one word are programmed simultaneously by setting the desired bit information patterns on the data input terminals.
During the programming, $V_{G G}, V_{D D}$ and the Program Pulse are pulsed signals. See page 2 of the data sheet for required pin connections during programming.

1702A, 1702AL

D.C. and Operating Characteristics for Programming Operation

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=0 \mathrm{~V}, \mathrm{~V}_{B B}=+12 \mathrm{~V} \pm 10 \%, \overline{\mathrm{CS}}=0 \mathrm{~V}$ unless otherwise noted

Symbol	Test	Min.	Typ.	Max.	Unit	Conditions
$I_{\text {LI1P }}$	Address and Data Input Load Current			10	mA	$\mathrm{~V}_{\mathrm{IN}}=-48 \mathrm{~V}$
$\mathrm{I}_{\mathrm{LI2P}}$	Program and V_{GG} Load Current			10	mA	$\mathrm{~V}_{\mathrm{IN}}=-48 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BB}}{ }^{[1]}$	V_{BB} Supply Load Current		10		mA	
$\mathrm{I}_{\mathrm{DDP}}{ }^{[2]}$	Peak IDD Supply Load Current		200		mA	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{PROG}}=-48 \mathrm{~V}$, $\mathrm{V}_{\mathrm{GG}}=-35 \mathrm{~V}$
$\mathrm{~V}_{\text {IHP }}$	Input High Voltage			0.3	V	
$\mathrm{~V}_{\text {IL1P }}$	Pulsed Data Input Low Voltage	-46		-48	V	
$\mathrm{~V}_{\text {IL2P }}$	Address Input Low Voltage	-40		-48	V	
$\mathrm{~V}_{\text {IL3P }}$	Pulsed Input Low V_{DD} and Program Voltage	-46		-48	V	
$\mathrm{~V}_{\text {IL4P }}$	Pulsed Input Low V_{GG} Voltage	-35		-40	V	

Notes: 1. The V_{BB} supply must be limited to 100 mA max. current to prevent damage to the device.
2. IDDP flows only during $V_{D D}, V_{G G}$ on time. IDDP should not be allowed to exceed 300 mA for greater than $100 \mu \mathrm{sec}$. Average power supply current IDDP is typically 40 mA at 20% duty cycle.

1702A, 1702AL

A.C. Characteristics for Programming Operation

$T_{\text {AMBIENT }}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=+12 \mathrm{~V} \pm 10 \%, \overline{\mathrm{CS}}=0 \mathrm{~V}$ unless otherwise noted

Symbol	Test	Min.	Typ.	Max.	Unit	Conditions
	Duty Cycle (VD, V_{GG})			20	\%	
$\mathrm{t}_{\phi} \mathrm{PW}$	Program Pulse Width		2	3	ms	$\begin{aligned} & V_{G G}=-35 V \\ & V_{\mathrm{DD}}=V_{\mathrm{PROG}}=-48 \mathrm{~V} \end{aligned}$
t DW	Data Set-Up Time	25			$\mu \mathrm{s}$	
t_{DH}	Data Hold Time	10			$\mu \mathrm{s}$,
tVw	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{GG}}$ Set-Up	100			$\mu \mathrm{s}$	
t_{VD}	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{GG}}$ Hold	10		100	$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{ACW}}$	Address Complement Set-Up	25			$\mu \mathrm{s}$	
${ }^{\text {t }}$ ACH	Address Complement Hold	25			$\mu \mathrm{s}$	
$\mathrm{t}_{\text {ATW }}$	Address True Set-Up	10			$\mu \mathrm{s}$	
${ }^{\text {t }}$ ATH	Address True Hold	10			$\mu \mathrm{s}$	

PROGRAM WAVEFORMS

Conditions of Test:
Input pulse rise and fall times $\leq 1 \mu \mathrm{sec}$
$\overline{\mathrm{CS}}=\mathrm{OV}$

B. $2708 / 2704$ Family

Initially, and after each erasure, all bits of the $2708 / 2704$ are in the " 1 " state (Output High). Information is introduced by selectively programming " 0 " into the desired bit locations. A programmed " 0 " can only be changed to a " 1 " by UV erasure.
The circuit is set up for programming operation by raising the $\overline{C S} / W E$ input ($\operatorname{Pin} 20$) to +12 V . The word address is selected in the same manner as in the read mode. Data to be programmed are presented, 8 -bits in parallel, to the data output lines $\left(\mathrm{O}_{1}-\mathrm{O}_{8}\right)$. Logic levels for address and data lines and the supply voltages are the same as for the read mode. After address and data set up one program pulse per address is applied to the program input (Pin 18). One pass through all addresses is defined as a program loop. The number of loops (N) required is a function of the program pulse width (t_{pW}) according to $\mathrm{N} \times \mathrm{t}_{\mathrm{pW}} \geqslant 100 \mathrm{~ms}$.
The width of the program puise is from 0.1 to 1 ms . The number of loops (N) is from a minimum of 100 ($\mathrm{t}_{\mathrm{PW}}=1 \mathrm{~ms}$) to greater than 1000 (tpW $=0.1 \mathrm{~ms}$). There must be N successive loops through all 1024 addresses. It is not permitted to apply N program pulses to an address and then change to the next address to be programmed. Caution should be observed regarding the end of a program sequence. The $\overline{\mathrm{CS}} / \mathrm{WE}$ falling edge transition must occur before the first address transition when changing from a program to a read cycle. The program pin should also be pulled down to $V_{\text {ILP }}$ with an active instead of a passive device. This pin will source a small amount of current ($I_{\text {IPL }}$) when $\overline{C S} / W E$ is at $V_{I H W}(12 \mathrm{~V})$ and the program pulse is at $V_{\text {ILP }}$.

Programming Examples (Using $N \times t_{\text {PW }} \geqslant 100 \mathrm{~ms}$)

Example 1: All 8096 bits are to be programmed with a 0.5 ms program pulse width.
The minimum number of program loops is 200. One program loop consists of words 0 to 1023.
Example 2: Words 0 to 100 and 500 to 600 are to be programmed. All other bits are "don't care". The program pulse width is 0.75 ms .
The minimum number of program loops is 133 . One program loop consists of words 0 to 1023 . The data entered into the "don't care" bits should be all 1's.
Example 3: Same requirements as example 2 but the PROM is now to be updated to include data for words 750 to 770.
The minimum number of program loops is 133 . One program loop consists of words 0 to 1023 . The data entered into the "don't care" bits should be all 1's. Addresses 0 to 100 and 500 to 600 must be re-programmed with their original data pattern.

2704, 2708

PROGRAM CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Noted.

D.C. Programming Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
I_{LI}	Address and $\overline{\mathrm{CS}} / \mathrm{WE}$ Input Sink Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V}$
IIPL	Program Pulse Source Current			3	mA	
IIPH	Program Pulse Sink Current			20	mA	
IDD	$V_{\text {DD }}$ Supply Current		50	65	mA	Worst Case Supply Currents: All Inputs High $\overline{C S} / W E=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
I_{CC}	$V_{\text {CC }}$ Supply Current		6	10	mA	
$\mathrm{I}_{\text {BB }}$	V_{BB} Supply Current		30	45	mA	
$V_{\text {IL }}$	Input Low Level (except Program)	$V_{\text {SS }}$		0.65	V	
V_{IH}	Input High Level for all Addresses and Data	3.0		$\mathrm{V}_{C C}+1$	V	
$\mathrm{V}_{\text {IHW }}$	$\overline{\text { CS }}$ WE Input High Level	11.4		12.6	V	Referenced to $\mathrm{V}_{\text {SS }}$
VIHP	Program Pulse High Level	25		27	V	Referenced to $\mathrm{V}_{\text {SS }}$
$V_{\text {ILP }}$	Program Pulse Low Level	$\mathrm{V}_{\text {SS }}$		1	V	$\mathrm{V}_{\text {IHP }}-\mathrm{V}_{\text {ILP }}=25 \mathrm{~V}$ min.

A.C. Programming Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Units
$t_{\text {AS }}$	Address Setup Time	10			$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{CSS}}$	$\overline{\mathrm{CS}} /$ WE Setup Time	10			$\mu \mathrm{~s}$
t_{DS}	Data Setup Time	10			$\mu \mathrm{~s}$
t_{AH}	Address Hold Time	1			$\mu \mathrm{~s}$
t_{CH}	$\overline{\mathrm{CS}} / W E$ Hold Time	.5			$\mu \mathrm{~s}$
t_{DH}	Data Hold Time	1			$\mu \mathrm{~s}$
t_{DF}	Chip Deselect to Output Float Delay	0		120	ns
. $\mathrm{t}_{\mathrm{DPR}}$	Program To Read Delay			10	$\mu \mathrm{~s}$
t_{PW}	Program Pulse Width	.1		1.0	ms
$\mathrm{t}_{\text {PR }}$	Program Pulse Rise Time	.5		2.0	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {PF }}$	Program Pulse Fall Time	.5		2.0	$\mu \mathrm{~s}$

NOTE: Intel's standard product warranty applies only to devices programmed to specifications described herein.

2704, 2708

Programming Waveforms

NOTE 1. THE $\overline{C S}$ WE TRANSITION MUST OCCUR AFTER THE PROGRAM PULSE TRANSITION AND BEFORE THE ADDRESS TRANSITION.
NOTE 2. NUMBERS IN () INDICATE MINIMUM TIMING IN μ S UNLESS OTHERWISE SPECIFIED.

IV. BIPOLAR PROM PROGRAMMING INSTRUCTIONS

A. Programming the 3601 (or 3601-1)

The 3601 may be programmed using the basic circuit of Figure 1. Address inputs are at standard TTL levels. Only one output may be programmed at a time. The output to be programmed must be connected to $V_{C C}$ through a 300Ω resistor. This will force the proper programming current $(3-6 \mathrm{~mA})$ into the output when the V_{CC} supply is later raised to 10 V . All other outputs must be held at a TTL low level (0.4 V).

The programming pulse generator produces a series of pulses to the $3601 \mathrm{~V}_{\mathrm{CC}}$ and CS_{2} leads. V_{CC} is pulsed from a low of $4.5 \pm .25 \mathrm{~V}$ to a high of $10 \pm .25 \mathrm{~V}$, while CS_{2} is pulsed from a low of ground (TTL logic 0) to a high of $15 \pm 0.5 \mathrm{~V}$. It is important to accuractly maintain these voltage levels, otherwise, improper programming may result. The pulses applied must maintain a duty cycle of $50 \pm 10 \%$ and start with an initial width of $1(\pm 10 \%) \mu \mathrm{s}$, and increase linearly over a period of approximately 100 ms to a maximum width of $8(\pm 10 \%) \mu \mathrm{s}$. Typical devices have their fuse blown within 1 ms , but occasionally a fuse may take up to 400 ms . During the application of the program pulse, current to CS_{2} must be limited to 100 mA . The output of the 3601 is sensed when $\overline{\mathrm{CS}}_{2}$ is at a TTL low level output. A programmed bit will have a TTL high output. After a fuse is blown, the $V_{C C}$ and $\overline{\mathrm{CS}}_{2}$ pulse trains must be applied for another $500 \mu \mathrm{~s}$. The characteristics of the pulse train are shown in Figure 2.

Figure 1. 3601 Programming.
Figure 2. Pulses During Programming.

B. Programming the $\mathbf{3 6 2 1}, \mathbf{2 K}$, and 4 K Bipolar PROM Families

The Intel ${ }^{\circledR} 3621,2 \mathrm{~K}$ and 4 K bipolar PROMs families are programmed using the basic circuit of Figure 1 . Initially all bits are in a logic 1 (high) state. Only one output may be programmed at a time. The programming current ($5 \mathrm{~mA} \pm 10 \%$) is forced into the output to be programmed by a current source. The current should be clamped to V_{CC} by a silicon diode. All other outputs must be allowed to float such that the outputs are allowed to rise one diode above $\mathrm{V}_{\mathrm{CC}}(12.5 \mathrm{~V})$.

For simplicity of the programming description, reference will be made only to V_{CC}, however, this term includes both the $\mathrm{V}_{\mathrm{CC} 1}$ and $\mathrm{V}_{\mathrm{CC} 2}$ of the 4 K PROM. There is only one V_{CC} for the 3621 and 2 K PROMs. Programming pulses must be applied to both $V_{C C}$ and $\overline{\mathrm{CS}}$. A series of pulses is applied to the V_{CC} and $\overline{\mathrm{CS}}_{1}$ (or $\overline{\mathrm{CS}}_{2}$ for the 3621) leads as shown in Figure 2a and 2 b respectively. The pulse applied must maintain a duty cycle of $50 \pm 10 \%$ and start with an initial width of $1(\pm 10 \%) \mu \mathrm{s}$, and increase linearly over a period of approximately 100 ms to a maximum of $8(\pm 10 \%) \mu \mathrm{s}$. Typical devices have their fuse blown within 1 ms , but occasionally a fuse may take up to 400 ms . During the application of the program pulse, the V_{CC} current must be limited to 600 mA and the $\overline{\mathrm{CS}}_{1}$ current to 150 mA . A programmed bit will have a TTL low level. After a fuse is blown, the V_{CC} and $\overline{\mathrm{CS}}_{1}$ pulse trains must be applied (the pulse width still linearly increasing to a maximum of $8 \mu \mathrm{~s}$) for another $500 \mu \mathrm{~s}$.

Figure 1. 3621, 2 K , and 4 K Bipolar PROM Family Programmer.

IV. UNIVERSAL PROM PROGRAMMER

Available from Intel MCS Department.

- PROM Programming peripheral capable of programming the following Intel PROMs: 1702A, 2704, 2708, 3601, 3604, 3624, 8702A, 8704A, and 8708 families.
- Personality cards used for specific Intel PROM programming requirements.
- Zero insertion force sockets for both 16-pin and 24-pin PROMs.
- Flexible power source for system logic and programming pulse generation.
- PROM programming verification facility.
- Stand alone or rack mountable.
- Fully compatible with the Intellec ${ }^{\oplus}$ MDS Microcomputer Development System.

The Universal PROM Programmer is capable of programming and verifying the following Intel ${ }^{\circledR}$ PROMs: 1702A, 2704, $2708,3601,3604,3624,8702 \mathrm{~A}, 8704$, and 8708 families. It is a peripheral device which interfaces with a suitable control device such as the Intellec ${ }^{\circledR}$ MDS microcomputer development system. The control device transfers commands, memory addresses, control information and data to the PROM Programmer enabling it to program or read a particular PROM.

The Universal PROM Programmer consists of a controller module, two personality card sockets, front panel, power supplies, chassis, and when used with the Intellec MDS a suitable interconnection cable.

An Intel ${ }^{\circledR} 4040$ based intelligent controller monitors the interface to the control device and supervises the command generation and data transfer interface between the selected PROM personality card and the control device. The 4040 CPU operates in conjunction with a fixed central control program residing in an Intel ${ }^{\circledR} 4001$ ROM. Each Intel ${ }^{\circledR}$ PROM to be programmed is driven by a unique personality card which contains the appropriate pulse generation functions and driver circuitry. Hence, programming and verifying any Intel ${ }^{\circledR}$ PROM may be accomplished by selecting and plugging in the appropriate personality card option. The front panel contains a power-on switch and indicator, reset switch, and two zero-force insertion sockets (one 16 -pin and one 24 -pin or two 24 -pin). A central power supply provides regulated power for system logic and ± 40 and +70 volts for PROM programming pulse generation.

When used with the Intellec ${ }^{\circledR}$ MDS PROM programming commands are initiated from the Intellec ${ }^{\circledR}$ MDS system console and are implemented by programs in the Intellec ${ }^{\circledR}$ MDS. The desired PROM image is loaded into Intellec ${ }^{\circledR}$ MDS RAM through a user selected input medium (e.g., TTY, diskette drive, high speed paper tape reader). Next, the PROM programming command is issued specifying the location of the programming data, the socket option, the "nibble" option (upper or lower four bits of an 8-bit RAM data byte), and PROM starting address. The PROM programming algorithm programs each specified PROM location, compares the resulting PROM word with the source data, and regenerates program pulses when necessary. The Intellec ${ }^{\circledR}$ MDS system monitor contains a compare feature which allows specified sections of programmed PROM to be compared with MDS resident RAM. A transfer feature which can be used to copy the contents of a PROM to MDS RAM for PROM duplication is also included.

The Universal PROM Programmer may be used as a table top unit or mounted in a standard 19" RETMA cabinet.

4

SERIAL MEMORIES

SERIAL MEMORIES

	Type	No. Of Bits	Description	Electrical Characteristics Over Temperature						
				Data Rep. Rate		PowerDissipationMax.[1]	Input Output Levels	Clock Levels	Supplles[V]	PageNo.
				Min.	Max.					
SILICON GATE MOS	1402A	1024	Quad 256-Bit Dynamic	10kHz	5 MHz	500 mW	TTL	MOS/TTL	5, -5 or 5, -9	4-3
	1403A	1024	Dual 512-Bit Dynamic	10 kHz	5 MHz	500 mW	TTL	MOS/TTL	5, -5 or 5, -9	4-3
	1404A	1024	1024-Bit Dynamic	10kHz	5 MHz	500 mW	TTL	MOS/TTL	5, -5 or 5, -9	4-3
	1405A	512	Dynamic Recirculating	10 kHz	2 MHz	400 mW	TTL	MOS/TTL	5, -5, or 5, -9	4-7
	2401	2048	Dual 1024-Bit Dynamic Recirculating	25 kHz	1 MHz	350 mW	TTL	TTL	+5	4-11
	2405	1024	1024-Bit Dynamic Recirculating	25 kHz	1 MHz	350 mW	TTL	TTL	+5	4-11
	2416	16,384	CCD Serial Memory	125 kHz	2MHz	300 mW	TTL	MOS	+12, -5	4-15

Note: Power Dissipation calculated with maximum power supply current and nominal supply voltages.

1024 BIT DYNAMIC SHIFT REGISTER

- Guaranteed 5 MHz Operation over Temperature Range
- Low Power Dissipation --. 1 mW/bit at 1 MHz
- DTL, TTL Compatible
- Low Clock Capacitance -- 140 pF
- Low Clock Leakage -- $\leq 1 \mu \mathrm{~A}$
- Inputs Protected Against Static Charge
- Standard Packaging -- 8 Lead Metal Can, 16 Pin Ceramic Dual In-Line
- Three Standard Configurations -Quad 256 Bit -- 1402A, Dual 512 Bit -- 1403A, Single 1024 Bit -1404A

The $1402 \mathrm{~A} / 1403 \mathrm{~A} / 1404 \mathrm{~A}$ are direct pin for pin replacements for the $1402 / 1403 / 1404$. Due to "on chip" multiplexing the data rate is twice the clock rate. Data is shifted one bit on each clock pulse (both ϕ_{1} and ϕ_{2}).
The $1402 \mathrm{~A} / 1403 \mathrm{~A} / 1404 \mathrm{~A}$ family is ideally suited for usage in low cost serial memories or delay line applications. A high speed data rate of 5 MHz is easily obtained at the power supplies of +5 V and -5 V . The $1402 \mathrm{~A} / 3 \mathrm{~A} / 4 \mathrm{~A}$ are capable of operating at the power supply voltages of $+5 \mathrm{~V},-9 \mathrm{~V}$ as well as $+5 \mathrm{~V},-5 \mathrm{~V}$.

The input to the shift register can be driven directly by standard bipolar integrated circuits (TTL, DTL, etc.). The design of the output stage provides driving capability for both MOS and bipolar IC's.

Use of low threshold silicon gate technology allows high speed (5 MHz guaranteed) while reducing power dissipation by a factor of two and clock input capacitance by a factor of three compared to equivalent products manufactured by conventional technologies.

PIN CONFIGURATION

C1402A/P1402A

M1403A

M1404A

Absolute Maximum Ratings ${ }^{\text {(1) }}$

Temperature Under Bias
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Power Dissipation ${ }^{(2)}$
1 Watt

Data and Clock Input Voltages and Supply Voltages with respect to $\mathrm{V}_{\mathrm{CC}} \quad+0.5 \mathrm{~V}$ to -20 V
D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise specified
$V_{D D}=-5 V \pm 5 \%$ or $-9 V \pm 5 \%$

SYMBOL	TEST	MIN. TYP ${ }^{(3)}$	MAX.	UNIT	CONDITIONS
I_{LI}	Input Load Current	< 10	500	nA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{L}	Output Leakage Current	<10	1000	nA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
ILC	Clock Leakage Current	10	1000	nA	Max. $\mathrm{V}_{\text {ILC }}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IL }}$	Input "Low" Voltage	$\mathrm{V}_{\mathrm{CC}}-10$	$\mathrm{V}_{\mathrm{CC}}-4.2$	V	
V_{IH}	Input "High" Voltage	$\mathrm{V}_{C C^{-1.5}}$	$\mathrm{V}_{\mathrm{CC}}+.3$	V	

$V_{D D}=-5 V \pm 5 \%$

${ }^{\text {IDD1 }}$	Power Supply Current	40	50	mA	$\left.\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right] \begin{array}{l}\text { Output at Logic " } 0 \text { ", } \\ 5 \mathrm{MHz} \text { Data Rate, } \\ -33 \% \text { Duty Cycle, } \\ \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}\end{array}\right]$Continuous Operation, $\mathrm{V}_{\mathrm{ILC}}=\mathrm{V}_{\mathrm{CC}}-17 \mathrm{~V}$
$V_{\text {ILC }}$	Clock Input Low Voltage	$\mathrm{V}_{\mathrm{CC}}-17$	$\mathrm{V}_{\mathrm{CC}}{ }^{15}$	V	
$\mathrm{V}_{\text {IHC }}$	Clock Input High Voltage	$\mathrm{V}_{\mathrm{CC}}{ }^{-1}$	$\mathrm{V}_{\mathrm{cc}}{ }^{+3}$	V	
V_{OL}	Output Low Voltage	-. 3	0.5	V	$\mathrm{R}_{\mathrm{LI}_{1}}=3 \mathrm{~K}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage Driving TTL	$2.4 \quad 3.5$		V	$\mathrm{R}_{\mathrm{L} 1}=3 \mathrm{~K}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage Driving MOS	$\mathrm{V}_{\mathrm{CC}}{ }^{-1.4} \quad \mathrm{~V}_{\mathrm{cc}}{ }^{-1}$		V	$\begin{aligned} & \mathrm{R}_{\mathrm{L} 2}=4.7 \mathrm{~K} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \text { (See p. } 6 \text { for connection) } \end{aligned}$

$V_{D D}=-9 V \pm 5 \%$

\begin{tabular}{|c|c|c|c|c|c|}
\hline IDD3

$\mathrm{I}_{\text {DD4 }}$ \& Power Supply Current \& 30 \& 40

45 \& mA \& $$
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\left[\begin{array}{l}
\text { Output at Logic " } 0^{\prime \prime}, \\
3 \mathrm{MHz} \text { Data Rate, } \\
\\
-26 \% \text { Duty Cycle, } \\
\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}
\end{array}\right] \begin{array}{l}
\text { Continuous Operation, } \\
\mathrm{V}_{\mathrm{ILC}}=\mathrm{V}_{\mathrm{CC}}-14.7 \mathrm{~V}
\end{array},
\end{aligned}
$$

\hline $V_{\text {ILC }}$ \& Clock Input Low Voltage \& $V_{C C}-14.7$ \& $\mathrm{V}_{\mathrm{CC}}-12.6$ \& V \&

\hline $\mathrm{V}_{\mathrm{IHC}}$ \& Clock Input High Voltage \& $\mathrm{V}_{\mathrm{cc}}{ }^{-1}$ \& $\mathrm{V}_{\mathrm{CC}}{ }^{+.3}$ \& V \&

\hline V_{OL} \& Output Low Voltage \& -. 3 \& 0.5 \& V \& $\mathrm{R}_{\mathrm{L} 1}=4.7 \mathrm{~K}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$

\hline $\mathrm{V}_{\mathrm{OH} 1}$ \& Output High Voltage Driving TTL \& $2.4 \quad 3.5$ \& \& V \& $\mathrm{R}_{\mathrm{L} 1}=4.7 \mathrm{~K}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$

\hline $\mathrm{V}_{\mathrm{OH} 2}$ \& Output High Voltage Driving MOS \& $\mathrm{V}_{\mathrm{Cc}}{ }^{-1.4} \quad \mathrm{~V}_{\mathrm{cc}}{ }^{-1}$ \& \& V \& $\left.\left.\begin{array}{l}R_{\mathrm{L} 2}=6.2 \mathrm{~K} \text { to } \mathrm{V}_{\mathrm{DD}} \\ \mathrm{R}_{\mathrm{L} 3}=3.9 \mathrm{~K} \text { to } \mathrm{V}_{\mathrm{CC}}\end{array}\right] \begin{array}{l}\text { (See } \mathrm{p} .6 \text { for } \\ \text { connection) }\end{array}\right]$

\hline
\end{tabular}

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 2: The 1 watt dissipation is not to be construed as an operating rating (see note 1). For operating at elevated temperatures the device must be derated based as shown on page 3. When operating at $V_{D D}=-5 V \pm 5 \%$ the maximum duty cycle is 33% and at $V_{D D}=-9 V+5 \%$ the maximum duty cycle is 26%. In applications the duty cycle should be a minimum to reduce power dissipation. Duty cycle $=$ [${ }_{\phi} \boldsymbol{P}$ PW $\left.+1 / 2\left(t_{R}+t_{F}\right)\right] x$ clock rate.
Note 3: Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and at nominal voltages.
A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$

SYMBOL	TEST	$\begin{aligned} & V_{D D}=-5 \mathrm{~V} \pm 5 \% \\ & \text { (Test Load 1) } \end{aligned}$		$\begin{aligned} & V_{D D}=-9 V \pm 5 \% \\ & \text { (Test Load 2) } \end{aligned}$		UNIT
		MIN.	MAX.	MIN.	MAX.	
Frequency	Clock Rep Rate		2.5		1.5	MHz
Frequency	Data Rep Rate	Note 1	5.0	Note 1	3.0	MHz
${ }_{\phi}{ }_{\text {PW }}$	Clock Pulse Width	. 130	10	. 170	10	$\mu \mathrm{sec}$
${ }_{\phi}{ }^{\text {D }}$	Clock Pulse Delay	10	Note 1	10	Note 1	nsec
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Clock Pulse Transition		1000		1000	$\cdot \mathrm{nsec}$
t_{D} W	Data Write Time (Set Up)	30		60		nsec
${ }^{\text {DH }}$	Data To Clock Hold Time	20		20		nsec
${ }^{\text {t }}+{ }^{+} \mathrm{t}_{\mathrm{A}}$ -	Clock To Data Out Delay		90		110	nsec

CAPACITANCE ${ }^{(2)} V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{D D}=--5 \mathrm{~V} \pm 5 \%$ or $-9 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	TEST	TYP.	MAX.	CONDITIONS
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5 pF	10 pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	5 pF	10 pF	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}$
C_{ϕ}	Clock Capacitance	110 pF	1 MHz	
$\mathrm{C}_{\phi 1 \phi 2}$	Clock to Clock Capacitance	11 pF	140 pF	$\mathrm{V}_{\phi}=\mathrm{V}_{\mathrm{CC}}$

Note 1: See page 5 for guaranteed curve. Note 2: This parameter is periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test

Input rise and fall times: 10 nsec Output load is 1 TTL gate

Timing Diagram

$V_{D D}=-5 V \pm 5 \%$

TEST LOAD 2

$v_{D D}=-9 \mathrm{~V} \pm 5 \%$

[^7]
Typical Characteristics

512 BIT DYNAMIC RECIRCULATING SHIFT REGISTER

\author{

- High Frequency Operation -2 MHz Guaranteed over Temperature.
 - DTL, TTL Compatible
 - Write/Recirculate and Read Controls Incorporated on the Chip
 - Low Power Dissipation--. 3 mW/bit at 1 MHz
 - Low Clock Capacitance--85 pF
}
- Low Clock Leakage -≤ 1 uA at -17 V
- Simple Two Dimensional Memory Matrix Organization --2 Chip Select Controls
- Inputs Protected Against Static Charge
- Standard Packaging --10 Lead Low Profile TO-99

The 1405 A is a 512 bit dynamic recirculating shift register and is a direct pin replacement for the 1405 . The 1405 A is capable of operating at power supply voltages of $+5 \mathrm{~V},-9 \mathrm{~V}$ as well as $+5 \mathrm{~V},-5 \mathrm{~V}$. A high speed recirculating data rate of 2 MHz over the temperature is easily obtained at the $+5,-5$ power supplies.

Write/recirculate and read controls eliminate the need for external logic elements when recirculating data. In addition, any number of devices can be combined to form a multi-dimensional memory array. For this purpose two chip select controls have been provided.

These registers can be driven directly by standard bipolar integrated circuits (TTL, DTL, etc.) or by MOS circuits. The design of the output stage provides driving capability for both MOS and bipolar IC's as well as ORtieing of shift registers. The 1405A is ideally suited for usage in low cost memories or delay line applications.

Use of low threshold silicon gate technology allows high speed (2 MHz guaranteed) while reducing power dissipation by a factor of two and clock input capacitance by a factor of three over equivalent products manufactured by conventional technologies.

PIN CONFIGURATION

LOGIC DIAGRAM

PIN	W/R (2)	CS1 (1)	CS2 (9)	READ (8)
WRITE RECIRCULATE READ	1	1	1	1 or 0

Note 1: Either W/R, CS1, or CS2 must be a. " 0 " during Recirculation. A logic 1 is defined as a high input and a logic 0 as a low input.

Maximum Guaranteed Ratings*

Temperature Under Bias
Storage Temperature
Power Dissipation ${ }^{(1)}$
Data and Clock Input Voltages and Supply Voltages with respect to V_{cc}
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ 600 mW
+.3 V to -20 V

* COMMENT:

Stresses above those listed under "Maximum Guaranteed Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise specified
$V_{D D}=-5 \mathrm{~V} \pm 5 \%$

SYMBoL	TEST	Min.	TYP. ${ }^{(2)}$	MAX.	UNIT	CONDITIONS
ILI	INPUT LOAD CURRENT		10	1000	nA	$V_{\text {IN }}=V_{\text {IH }}$ to $V_{\text {IL }}$
ILO	OUTPUT LEAKAGE CURRENT		10	1000	nA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
ILC	CLOCK LEAKAGE CURRENT		10	1000	nA	$\mathrm{V}_{\text {ILC }}=\mathrm{V}_{\text {CC }}{ }^{-17 \mathrm{~V}}$
IDD1	POWER SUPPLY CURRENT		25	40	mA	$\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right]$Output at Logic " 0 ", 2 MHz Data Rate, 40% Duty Cycle, Continuous Operation,
IDD2	POWER SUPPLY CURRENT			45	mA	$T_{C}=0{ }^{\circ} \mathrm{C} \quad \mathrm{V}_{\text {ILC }}=\mathrm{V}_{\text {CC }}-17 \mathrm{~V}$
$\mathrm{V}_{1 L C 1}$	CLOCK INPUT LOW VOLTAGE	$\mathrm{V}_{\mathrm{cc}}{ }^{-17}$		$\mathrm{V}_{\mathrm{cc}}{ }^{-14.5}$	V	
$\mathrm{V}_{\text {IHC }}$	CLOCK INPUT HIGH VOLTAGE	$\mathrm{V}_{\mathrm{cc}}-1$		$\mathrm{V}_{\mathrm{cc}}+.3$	V	
$\mathrm{V}_{1 \mathrm{~L}}$	INPUT "LOW" VOLTAGE	$\mathrm{V}_{\mathrm{cc}}{ }^{-10}$		$\mathrm{VCC}^{-4.2}$	V	
$\mathrm{V}_{1 \mathrm{H} 1}$	INPUT "HIGH" VOLTAGE	$\mathrm{v}_{\mathrm{CC}}-1.5$		$\mathrm{V}_{\mathrm{CC}}+.3$	V	
V_{OL}	OUTPUT LOW VOLTAGE		-. 3	0.5	V	$\mathrm{R}_{\mathrm{L} 1}=3 \mathrm{~K}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
V_{OH}	OUTPUT HIGH VOLTAGE DRIVING TTL	2.4	3.5		V	$\mathrm{R}_{\mathrm{L} 1}=3 \mathrm{~K}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{IOH}^{=}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OH1 }}$	OUTPUT HIGH VOLTAGE DRIVING MOS	$\mathrm{V}_{\mathrm{CC}}-1.4$	$\mathrm{V}_{\mathrm{cc}}{ }^{-1}$		V	$\begin{aligned} & \mathrm{R}_{\mathrm{L2}}=5.6 \mathrm{~K} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \quad \text { (see p. } 6 \text { for connection) } \end{aligned}$

$V_{D D}=-9 V \pm 5 \%$

$I_{L 1}$	INPUT LOAD CURRENT	10	1000	nA	$V_{1 N}=V_{1 H}$ to $V_{I L}$
ILO	OUTPUT LEAKAGE CURRENT	10	1000	$n \mathrm{~A}$	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
ILC	CLOCK LEAKAGE CURRENT	10	1000	nA	$\mathrm{V}_{\text {ILC }}=\mathrm{V}_{\text {CC }}{ }^{-14.7 \mathrm{~V}}$
IDD3	POWER SUPPLY CURRENT	20	31	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} 7$Output at Logic " 0 ", 1.5 MHz Data Rate, -36% Duty Cycle, Continuous Operation,
IDD4	POWER SUPPLY CURRENT		36	mA	$T_{C}=0^{\circ} \mathrm{C} \quad \mathrm{V}_{1 L C}=V_{C C}-14.7 \mathrm{~V}$
$V_{1 L C 2}$	CLOCK INPUT LOW VOLTAGE	$\mathrm{V}_{\mathrm{CC}}{ }^{-14.7}$	$\mathrm{V}_{\mathrm{cc}}{ }^{-12.6}$	V	
$V_{1 H C}$	CLOCK INPUT HIGH VOLTAGE	$V_{C c}-1$	$\mathrm{V}_{\mathrm{CC}}+.3$	V	
$V_{1 L}$	INPUT 'LOW' VOLTAGE	$\mathrm{V}_{\mathrm{cc}}{ }^{-10}$	$\mathrm{V}_{\mathrm{CC}}{ }^{-4.2}$	V	
$\mathrm{V}_{1 \mathrm{H} 2}$	INPUT "HIGH" VOLTAGE	$\mathrm{V}_{\mathrm{CC}}-1.5$	$\mathrm{V}_{\mathrm{cc}}{ }^{+} .3$	V	
V_{OL}	OUTPUT LOW VOLTAGE	-. 3	0.5	V	$\mathrm{R}_{\mathrm{L} 1}=5.6 \mathrm{~K}$ to $\mathrm{V}_{\mathrm{DD}} \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
V OH	OUTPUT HIGH VOLTAGE DRIVING TTL	2.4		V	$R_{\text {L1 }}=5.6 \mathrm{~K}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 1}$	OUTPUT HIGH VOLTAGE DRIVING MOS	$V_{C C-}-1.4 \quad V_{c c}{ }^{-1}$		V	$R_{L 2}=6.2 \mathrm{~K}$ to V_{DD} (See p. 6 for $R_{\text {L3 }}=3.9 \mathrm{~K}$ to V_{CC} connection)

Note 1: For operating at elevated temperatures the device must be derated based as shown on page 3. In applications the duty cycle should be a minimum to reduce power dissipation. Duty cycle $=\left[t_{\phi P W}+1 / 2\left(t_{R}+t_{F}\right)\right] \times$ clock rate.
Note 2: Typical values are at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ and at nominal voltages.
A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} ; 1 \mathrm{TTL}$ Load

SYMBOL	TEST	$\begin{gathered} V_{D D}=-5 V \pm 5 \% \\ V_{I L C}=V_{C C}-14.5 \text { to } V_{C C}-17 \\ R_{L}=3 \mathrm{~K} \end{gathered}$		$\begin{gathered} V_{D D}=-9 V \pm 5 \% \\ V_{\text {ILC }}=V_{C C}-12.6 \text { to } V_{C C-}-14.7 \\ R_{L}=5.6 \mathrm{~K} \end{gathered}$		UNIT
		MIN.	MAX.	MIN.	MAX.	
Frequency	CLOCK DATA REP RATE	200 Hz @ $25^{\circ} \mathrm{C}^{(1)}$	2	200 Hz @ $25^{\circ} \mathrm{C}^{(1)}$	1.5	MHz
${ }^{\text {t }}$ ¢ PW W	CLOCK PULSE WIDTH	0.200	10	. 240	10	$\mu \mathrm{sec}$
${ }^{t} \phi \mathrm{D}$	CLOCK PULSE DELAY	30	Note 1	30	Note 1	nsec
Duty Cycle ${ }^{(2)}$	CLOCK DUTY CYCLE		40		36	\%
${ }^{t_{R} ; t_{F}}$	CLOCK PULSE TRANSITION		1		1	$\mu \mathrm{sec}$
${ }^{\text {t }}$ DW	DATA WRITE (SETUP) TIME	100		100		nsec
${ }^{\text {t }}$ DH	DATA TO CLOCK HOLD TIME	20		20		nsec
${ }^{t} A^{+}{ }^{t}{ }^{\text {A }}$	CLOCK TO DATA OUT DELAY		250		250	nsec
$\begin{aligned} & \mathrm{t}_{\mathrm{R}-} ; \mathrm{t}_{\mathrm{CS}-;} \\ & \mathrm{t}_{\mathrm{WR}-} \end{aligned}$	CLOCK TO "READ" OR "CHIP SELECT" OR "WRITE/ RECIRCULATE" TIMING	0		0		nsec
$\begin{aligned} & \mathrm{t}_{\mathrm{R}+} ; \mathrm{t}_{\mathrm{CS}+} ; \\ & { }^{\mathrm{t}} \mathrm{WR+} \end{aligned}$	CLOCK TO "READ" OR "CHIP SELECT" OR 'WRITE/ RECIRCULATE" TIMING	0		0		nsec

CAPACITANCE ${ }^{(3)} V_{C C}=5 \mathrm{~V} \pm 5 \%, V_{D D}=-5 \mathrm{~V} \pm 5 \%$ or $-9 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	TEST	TYP.	MAX.	CONDITIONS
$\mathrm{CIN}^{\text {I }}$	INPUT CAPACITANCE	3	5 pF	$V_{\text {IN }}=V_{\text {CC }}$
$\mathrm{C}_{\text {OUT }}$	OUTPUT CAPACITANCE	2	5 pF	$V_{O U T}=V_{C C} V_{f=1}=1 \mathrm{MHz}$
C_{ϕ}	CLOCK CAPACITANCE	75	85 pF	$v_{\phi}=\mathrm{V}_{\text {CC }}$
$\mathrm{C}_{\phi_{1}-\phi_{2}}$	CLOCK TO CLOCK CAPACITANCE	6	10 pF	$\mathrm{V}_{\phi}=\mathrm{V}_{\mathrm{CC}}$

Note 1: See curve of Min Data Rate, and Max Clock Delay vs. Temp. on page 5. Note 2: Duty Cycle $=\left[t^{2} \phi\right.$ PW $\left.+1 / 2\left(t_{R}+t_{F}\right)\right] \times$ clock rate. Note 3: This parameter is periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test
Input rise and fall times: 10 nsec
Timing Diagram

Typical Characteristics

POWER DISSIPATION/BIT VS. SUPPLY VOLTAGE

MINIMUM OPERATING DATA RATE OR MAXIMUM CLOCK PULSE DELAY VS TEMPERATURE

I dD CURRENT VS. DATA RATE

POWER DISSIPATION/BIT VS. CLOCK AMPLITUDE

MAXIMUM DATA RATE VS. CLOCK AMPLITUDE

DTL/TTL/MOS Interfaces

2048/1024 BIT DYNAMIC RECIRCULATING SHIFT REGISTERS

\author{

- Single Supply Voltage -- +5 Volts
 - Fully TTL Compatible -- Inputs, Outputs and Clock
 - Single Phase Clock
 - Guaranteed 1 MHz Operation with 100 pF Load, over Temperature Range
 - Low Power Dissipation -$120 \mu \mathrm{w} /$ bit typically at 1 MHz
}
- Low Clock Capacitance --7 pF
- Write/Recirculate and Chip Select Logic Incorporated on Chip
- Standard Configurations -Dual 1024 Bit -- 2401 Single 1024 Bit-- 2405

The 2401/2405 are 2048/1024 bit dynamic recirculating shift registers. They are directly TTL compatible in all respects: inputs, outputs, clock and a single +5 volt power supply.

Write/recirculate controls are provided to eliminate the need for external logic elements when recirculating data.
Two chip select inputs have been provided to allow easy selection of an individual package when outputs of several devices have been "OR-tied". A separate internal "pullup" resistor (R_{L}) is provided which can be externally connected to the output pin to achieve full signal swing.

This Intel shift register family is fabricated with N -channel silicon gate technology. This technology provides the designer with high performance, easy to use MOS circuits. Only a single +5 V power supply is needed and all devices are directly TTL compatible, including clocks.

PIN CONFIGURATIONS
LOGIC DIAGRAM

* DASH LINES INDICATE NECESSARY EXTERNAL PRINTED CIRCUIT BOARD CONNECTIONS FOR PROPER OPERATION OF THE 2405. (SEE APPLICATION SECTION)

PIN NAMES				
IN	DATA INPUT	OUT	DATA OUTPUT	
W/R	WRITE/RECIRCULATE	R_{L}	INTERNAL LOAD	
$\overline{C S}_{X}, \overline{C S}_{Y}$	CONTROL CHIPSELECT INPUT	N.C.	RESISTOR	

TRUTH TABLE

FUNCTION	PIN SYMBOL		
	W/R	$\overline{\mathrm{CS}} \mathrm{X}$	$\overline{\mathrm{CS}}_{Y}$
WRITE MODE	H	L	L
RECIRCULATE	L	\times	\times
	\times	H	\times
	\times	\times	H
READ MODE	\times	L	L

Absolute Maximum Ratings*

Ambient Temperature Under Bias: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature: $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation: 1w
Voltage on Any Pin with Respect to Ground: $\quad-0.5 \mathrm{~V}$ to +7 V
*COMMENT:
Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D. C. Characteristics

$T_{A}=0^{\circ}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN.	TYP. ${ }^{11]}$	MAX.		
I_{LI}	input leakage			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V}$
ILO	OUTPUT LEAKAGE			100	$\mu \mathrm{A}$	$V_{\text {OUT }}=5.25 \mathrm{~V}$
${ }_{\text {Icc }}$	POWER SUPPLY CURRENT		$\begin{aligned} & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 70 \\ & 80 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \quad \begin{array}{l} \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} ; \\ -80 \% \text { DUTY } \\ \mathrm{CYCLE} \end{array} \\ & \hline \end{aligned}$
V_{1}	INPUT HIGH LEVEL VOLTAGE (ALL INPUTS)	2.2		5.25	v	
$\mathrm{V}_{\text {LI }}$	INPUT LOW LEVEL VOLTAGE (ALL INPUTS)	-0.3		0.65	v	
V_{OH}	OUTPUT HIGH LEVEL voltage	2.4		v_{cc}	v	$\begin{aligned} \mathrm{I}_{\mathrm{OH}} & =-1 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{L}} & =1.5 \mathrm{~K} \pm 5 \% \text { ohms }, \\ & \text { external } \end{aligned}$
V_{OL}	OUTPUT LOW LEVEL VOLTAGE	0		0.45	v	$\begin{aligned} \mathrm{l}_{\mathrm{OL}} & =5.0 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{L}}= & 1.5 \mathrm{~K} \pm 5 \% \text { ohms, } \\ & \text { external }[2] \end{aligned}$

NOTES: 1. Typical values are at $25^{\circ} \mathrm{C}$ and at nominal voltage.
2. The following was used to calculate IOL.
$\mathrm{I}_{\mathrm{OL}}=\frac{\mathrm{V}_{\mathrm{CC}}(\text { max. })-\mathrm{V}_{\mathrm{OL}}(\text { max. })}{\mathrm{R}_{\mathrm{L}}(\text { min. })}+\mathrm{I}_{\mathrm{LI}}(\mathrm{TTL}$ device $)=\frac{5.25-0.45}{1.425}+1.6=4.97 \mathrm{~mA}$.
Also note that the internal load resistor, $R_{L 1}$, has a value ranging from 500 ohms minimum to 2,200 ohms maximum. The internal load resistor can be used when driving from one $2401 / 2405$ to another $2401 / 2405$ or to other MOS inputs.

POWER SUPPLY CURRENT (I IC)
EFFECTIVE INPUT CHARACTERISTIC

VS. DATA REP RATE

A. C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN.	TYP.	MAX.		
FREQ. MAX.	MAX. DATA REP. RATE			1	MHz	
FREQ. MIN.	MIN. DATA REP. RATE	$\begin{gathered} 1 \\ 25[1] \end{gathered}$			$\begin{aligned} & \mathrm{KHz} \\ & \mathrm{KHz} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{t}_{\phi \text { PW }}$	CLOCK PULSE WIDTH	0.80		10	$\mu \mathrm{s}$	
$\mathrm{t}_{\phi \mathrm{D}}$	CLOCK PULSE DELAY	$\begin{aligned} & 0.20 \\ & 0.20 \end{aligned}$		$\begin{array}{r} 1000 \\ 40 \end{array}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$
t_{r}, t_{f}	CLOCK RISE AND FALL TIME			50	ns	
$\mathrm{t}_{\text {w }}$	WRITE TIME	200			ns	
t_{H}	HOLD TIME	150			ns	
t_{A}	ACCESS TIME FROM CLOCK OR CHIP SELECT		250	500	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}= 1.5 \mathrm{~K} \pm 5 \% \text { ohm }, \\ & \mathrm{EXTERNAL} \\ & \mathrm{C}_{\mathrm{L}}= 100 \mathrm{pF} \\ & \text { ONE TTL LOAD } \end{aligned}$

NOTE: 1. 100 kHz in plastic (P) package.
Capacitance $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP.	MAX.		
$\mathrm{C}_{\text {IN }}$	DATA, W/R \& CS INPUT CAPACITANCE		4	7	pF	ALL PINS AT AC GROUND; 250 mV PEAK TO PEAK, 1 MHz
$\mathrm{C}_{\text {OUt }}$	OUTPUT CAPACITANCE		10	14	pF	
C_{ϕ}	CLOCK CAPACITANCE		4	7	pF	

Waveforms

D. C. Characteristics

A. C. Characteristics

ACCESS TIME VS. LOAD CAPACITANCE

Typical Application Of TTL Compatible Shift Registers

NOTE (1): The 2401/2405 is directly compatible device to device. An external $1.5 \mathrm{~K} \Omega \pm 5 \%$ load resistor is recommended for driving one TTL load with the 2401/2405 output.

16,384 BIT CCD SERIAL MEMORY

- Organization: 64 Recirculating Shift Registers of 256 Bits Each

- Avg. Latency Time Under 100μ s
 - Max. Serial Data Transfer Rate -2 mega bits/sec.
 - Address Registers Incorporated on Chip

- Standard Power Supplies $+12 \mathrm{~V},-5 \mathrm{~V}$

Open Drain Output
 - Combined Read/Write Cycles Allowed
 - Compatible to Intel® 5244 CCD Driver

The Intel 2416 is a 16,384 bit CCD serial memory designed for low-cost memory applications requiring average latency times to under $100 \mu \mathrm{~s}$. To achieve low latency time the memory was organized in the form of 64 independent recirculating shift registers of 256 bits each. Any one of the 64 shift registers can be accessed by applying an appropriate 6 -bit address input.

The shift registers recirculate data automatically as long as the four-phase CCD clocks ($\phi_{1} \ldots \phi_{4}$) are continuously applied and no write command is given. A one-bit shift is initiated in all 64 registers following a low-to-high transition of either ϕ_{2} or ϕ_{4}. After the shift operation the contents of the 64 registers at the bit location involved are available for non-destructive reading, and/or for modification. I/O functions are accomplished in a manner similar to that of a 64-bit dynamic RAM. At the next shift cycle, the contents of the 64 accessible bits (whether modified or not) are transferred forward into the respective registers and the contents of the next bit of each register become accessible. No I/O function can be performed during the shift operation itself.

The Intel 2416 generates and uses an internal reference voltage which requires some time to stabilize after the power supplies and four phase clocks have been turned on. No I/O functions should be performed until the four-phase CCD clocks have executed at least 4000 shift cycles with power supplies at operating voltages. After this start-up period, no special action is needed to keep the internal reference voltage stable.
The 2416 is fabricated using Intel's advanced high voltage N -channel Silicon Gate MOS process.

Absolute Maximum Ratings*

Temperature Under Bias . - $10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Power Dissipation . $1.0 W$

*COMMENT:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}{ }^{[1]}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
${ }_{1} \mathrm{LI}$	Input Leakage Current		1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
ILO	Output Leakage Current		1	10	$\mu \mathrm{A}$	$\mathrm{CE}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{IOL}^{\text {l }}$	Output Low Current	3			mA	$\mathrm{V}_{\mathrm{OL}}=.45 \mathrm{~V}$
IOH	Output High Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=+5 \mathrm{~V}$
IDDAV1	Average VDD Supply Current for Shift Cycles Only			Note 2	mA	
$\mathrm{I}_{\text {DDAV2 }}{ }^{\text {[3] }}$	Average $\mathrm{V}_{\text {DD }}$ Supply Current	,	15	25	mA	
I_{BB}	Average $\mathrm{V}_{\text {BB }}$ Supply Current		100	200	$\mu \mathrm{A}$	
$V_{\text {IL }}$	Input Low Voltage, All Inputs Except $\phi_{1} \ldots \phi_{4}$	-1.0		0.8	V	
$\mathrm{V}_{1 \mathrm{H} 1}$	Input High Voltage, All Inputs Except $D_{I N}$ and $\phi_{1} \ldots \phi_{4}$	$\mathrm{V}_{\text {DD }}{ }^{-1}$		$\mathrm{V}_{\mathrm{DD}}+1$	v	
$\mathrm{V}_{\text {IHD }}$	DIN Input High Voltage	3.5		$\mathrm{V}_{\mathrm{DD}}+1$	V	
$\mathrm{V}_{\text {ILC }}{ }^{\text {[4] }}$	$\phi_{1} \ldots \phi_{4}$ Input Low Voltage dc	-2.0		0.6	V	
$V_{\text {ILCT }}$	$\phi_{1} \ldots \phi_{4}$ Input Low Voltage w/Coupling	-2.0[5]		$1.2{ }^{\text {[6] }}$	V	
$\mathrm{V}_{\text {IHC1 }}$	ϕ_{1} and ϕ_{3} Input High Voltage dc	$\mathrm{V}_{\text {DD }}{ }^{-1}$		$\mathrm{V}_{\mathrm{DD}}+2$	V	
$\mathrm{V}_{\text {IHCT1 }}$	ϕ_{1} and ϕ_{3} Input High Voltage w/Coupling	$V_{\text {DD }}{ }^{1.6}$ [6]		$\mathrm{V}_{\mathrm{DD}+{ }^{[5]}}$	V	
$\mathrm{V}_{1 \mathrm{HC2}}$	ϕ_{2} and ϕ_{4} Input High Voltage dc	$\mathrm{V}_{\text {DD }} 0.6$		$\mathrm{V}_{\text {DD }}+2$	V	
$\mathrm{V}_{\text {IHCT2 }}$	ϕ_{2} and ϕ_{4} Input High Voltage w/Coupling	$\mathrm{V}_{\mathrm{DD}-1.2}{ }^{[6]}$		$\mathrm{V}_{\mathrm{DD}+2}{ }^{[5]}$	V	
tPWT	Cross Coupling Voltage Pulse Width			Note 7	ns	Pulse width measured at 0.8 V and $\mathrm{V}_{\mathrm{DD}}-1.2 \mathrm{~V}\left(\phi_{1}\right.$ and $\left.\phi_{3}\right)$ or $\mathrm{V}_{\mathrm{DD}}-0.8 \mathrm{~V}\left(\phi_{2}\right.$ and $\left.\phi_{4}\right)$

Notes: 1. The only requirement for the sequence of applying voltage to the device is that V_{DD} and V_{SS} should never be 0.3 V more negative than V_{BB}.
2. For shift only mode $I_{D D}=2.0 \mathrm{~mA}+\frac{15 \mathrm{~mA}}{\mathrm{t}_{\phi / 2}(\text { in } \mu \mathrm{s})}$
3. IDDAV2 is for combined shift and data I/O cycles.
4. The difference in the low level reference voltages between all four clock phases must not exceed 0.5 volts.
5. These voltage levels with coupling are with in the specified dc range and are not, therefore, subject to tpWT restrictions.
6. These voltage levels with coupling are outside specified dc ranges and must be restricted to tpWT pulse widths.
7. The maximum clock cross coupled pulse width is the sum of the clock transition time (t_{T}) plus 20 ns .

$\phi_{1} \ldots \phi_{4}$ CROSS-COUPLING

A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise specified. SHIFT ONLY CYCLES

Symbol	Parameter	Min.	Max.	Unit	Conditions
$\mathrm{t}_{\phi} / 2$	Half Clock Period for $\phi_{1} \ldots . \phi_{4}$	750 [1]	10,000	ns	${ }^{\mathrm{t}} \mathrm{T}^{\mathbf{~}=40 \mathrm{nsec}}$ $\bar{D}_{\text {OUt }}$ TEST LOAD
tPT	ϕ_{2} On to ϕ_{1} On Time, ϕ_{4} On to ϕ_{3} On Time	200		ns	
${ }^{\text {t }}$ D	ϕ_{1} to ϕ_{4} Overlap, ϕ_{3} to ϕ_{2} Overlap	30		ns	
${ }^{\text {t }}$ T	ϕ_{4} to ϕ_{1} Hold Time, ϕ_{2} to ϕ_{3} Hold Time	40		ns	
${ }^{\text {T }}$ P	ϕ_{1} Off to ϕ_{4} On, ϕ_{3} Off to ϕ_{2} On	320		ns	
${ }^{\text {t }}$ T	Transition Times for $\phi_{1} \ldots \phi_{4}$	30	200	ns	

Note: 1. The 750 ns Half Clock Period will be met for $30 \mathrm{~ns} \leqslant \mathrm{t}_{\mathrm{T}} \leqslant 40 \mathrm{~ns}$. Values of $\mathrm{t}_{\mathrm{T}}>40 \mathrm{~ns}$ lengthen $\mathrm{t}_{\phi / 2}$.
WAVEFORMS (Numbers in parentheses are for minimum cycle timing in ns)

Note: 2. +2.0 V and $V_{D D}-2.0 \mathrm{~V}$ are the reference low and high level respectively for measuring the timing of $\phi_{1}, \phi_{2}, \phi_{3}$ and ϕ_{4}.

A.C. Characteristics

SHIFT-READ-READ-..-READ-SHIFT CYCLE

Symbol	Parameter	Min.	Max.	Unit	Conditions
$\mathrm{t}_{\mathrm{RC}} \mathrm{C}$	READ Cycle Time	460		ns	$\begin{array}{ll}=40 \mathrm{~ns} \\ 1 & \\ \\ & \\ & \overline{\text { D}}_{\text {OUT }} \text { TEST LOAD }\end{array}$
tPT	ϕ_{2} On to ϕ_{1} On Time, ϕ_{4} On to ϕ_{3} On Time	200		ns	
${ }^{\text {t }}$ TD	ϕ_{1} to ϕ_{4} Overlap, ϕ_{3} to ϕ_{2} Overlap	30		ns	
${ }^{\text {t }}$ T T	ϕ_{4} to ϕ_{1} Hold Time, ϕ_{2} to ϕ_{3} Hold Time.	40		ns	
${ }^{t_{\phi / 2}}$	Half Clock Period for $\phi_{1} \ldots \phi_{4}$		10,000	ns	
t	Transition Times for $\phi_{1} \ldots \phi_{4}$	30	200	ns	DEVICE UNDER TEST
${ }^{\mathrm{t}}$ 1 1	Transition Times for Inputs Other Than $\phi_{1} \ldots \phi_{4}$		100	ns	
${ }^{\text {t }}$ [ϕ_{1} or ϕ_{3} Off to CE On	280		ns	
${ }^{\text {t }} \mathrm{SC}$	CS to CE Set-Up Time	0		ns	
${ }^{\text {t }} \mathrm{AC}$	Address to CD Set-Up Time	0		ns	
${ }^{\text {t }} \mathrm{AH}$	Address Hold Time	240		ns	
${ }^{\text {t }} \mathrm{CS}$	CE to CS Hold Time	0		ns	
${ }^{\text {t }} \mathrm{C}$	CE Off Time	140		ns	
${ }^{t} \mathrm{CP}$	CE Off to ϕ_{2} or ϕ_{4} On	40		ns	
tCER	CE On Time.	280		ns	
${ }^{t} \mathrm{CF}$	CE Off to Output High Impedance State	0		ns	
${ }^{\text {t }} \mathrm{CO}$	CE to $\bar{D}_{\text {OUT }}$ Valid	250		ins	

WAVEFORMS ${ }^{[1]}$ (Numbers in parentheses are for minimum cycle timing in ns)

NOTES:

1. WE must be continuously low during the READ cycle.
2. When CE is off, the 2416 output level is determined by the external output termination.
3. +2.0 V and $\mathrm{V}_{D D^{-}}-2.0 \mathrm{~V}$ are the reference low and high level respectively for measuring the timing of $\phi_{1} \ldots \phi_{4}, C E, C S$ and addresses.
4. +0.8 V is the reference level for measuring the timing of $\overline{\mathrm{D}}_{\mathrm{OUT}}$.

A.C. Characteristics

SHIFT-WRITE-WRITE-..-WRITE-SHIFT CYCLE

Symbol	Parameter	Min.	Max.	Unit		Conditions
tWCY	WRITE Cycle Time	460		ns	$\overline{\mathrm{D}}_{\text {OUt }}$ TEST LOAD	
tPT	ϕ_{2} On to ϕ_{1} On Time, ϕ_{4} On to ϕ_{3} On Time	200		ns		
${ }^{\text {t }}$ D	ϕ_{1} to ϕ_{4} Overlap, ϕ_{3} to ϕ_{2} Overlap	30		ns		
${ }^{\text {t }}$ T T	ϕ_{4} to ϕ_{1} Hold Time, ϕ_{2} to ϕ_{3} Hold Time	40		ns		
${ }^{\text {t }}$ / $/ 2$	Half Clock Period for $\phi_{1} \ldots \phi_{4}$		10,000	ns		
${ }^{\text {T }}$ T	Transition Times for $\phi_{1} \ldots \phi_{4}$	30	200	ns		
tT1	Transition Times for Inputs Other Than $\phi_{1} \ldots \phi_{4}$		100	ns	DEVICE UNDER TEST	
${ }^{\text {t }}$ T	ϕ_{1} or ϕ_{3} Off to CE On	280		ns		
${ }^{\text {t }}$ S	CS to CE Set-Up Time	0		ns		
${ }^{t} \mathrm{AC}$	Address to CE Set-Up Time	0		ns		
${ }^{\text {t }}$ A H	Address Hold Time	240		ns		
${ }^{\text {t }} \mathrm{CS}$	CE to CS Hold Time	0		ns		
${ }^{\text {t }} \mathrm{C}$	CE Off Time	140		ns		
${ }^{t} \mathrm{CP}$	CE Off to ϕ_{2} or ϕ_{4} On	40		ns		
${ }^{\text {t CEW }}$	CE On Time	280[1]		ns		
${ }^{\text {t }} \mathrm{CW}$	CE to WE Set-Up Time	100[1]		ns		
${ }^{\text {t }}$ DW	DIN to WE Set-Up	0		ns		
tWP	WE Pulse Width	100[1]		ns		
twC	WE Off to CE Off	0[1]		ns		
${ }^{\text {t }}$ H	Din Hold Time	0		ns		

Note: 1. The minimum ${ }^{t} \mathrm{CW}$, twP and twC times with appropriate transitions do not necessarily add up to the minimum t CEW. This allows the user flexibility in setting the WE Pulse Width edges without affecting either tCEW or the WRITE Cycle Time, tWCY.

WAVEFORMS (Numbers in parentheses are for minimum cycle timing in ns)

[^8]$3 .+1.5 \mathrm{~V}$ and +3.0 V are the reference low and high level respectively for measuring the timing of D_{IN}.
A.C. Characteristics SHIFT-RMW-RMW- . . -RMW-SHIFT CYCLE

Symbol	Parameter	Min.	Max.	Unit	Conditions
trwC	READ-MODIFY-WRITE Cycle Time	620		ns	$\begin{aligned} & \mathrm{t} \mathrm{~T}=40 \mathrm{~ns} \\ & \mathrm{t} \mathrm{~T}_{1}=20 \mathrm{~ns} \end{aligned}$
${ }_{\text {tPT }}$	ϕ_{2} On to ϕ_{1} On Time, ϕ_{4} On to ϕ_{3} On Time	200		ns	
ttD	ϕ_{1} to ϕ_{4} Overlap, ϕ_{3} to ϕ_{2} Overlap	30		ns	
${ }^{\text {t }}$ T	ϕ_{4} to ϕ_{1} Hold Time, ϕ_{2} to ϕ_{3} Hold Time	40		ns	
$\mathrm{t}_{\text {¢ } / 2}$	Half Clock Period for $\phi_{1} \ldots \phi_{4}$		10,000	ns	
${ }_{\text {t }}$	Transition Times for $\phi_{1} \ldots \phi_{4}$	30	200	ns	
${ }^{\text {t }} 1$	Transition Times for Inputs Other Than $\phi_{1} \ldots \phi_{4}$		100	ns	
${ }_{\text {t }}$ C	ϕ_{1} or ϕ_{3} Off to CE On	280		ns	
${ }^{\text {t }} \mathrm{t}$	CS to CE Set-Up Time	0		ns	DEVICE UNDER 0 TEST
${ }^{t} A C$	Address to CE Set-Up Time	0		ns	
${ }^{\text {t }}$ AH	Address Hold Time	240		ns	
${ }^{\text {t }}$ CS	CE to CS Hold Time	0		ns	
${ }^{\text {t }} \mathrm{C}$	CE Off Time	140		ns	
${ }^{\text {t }}$ CP	CE Off to ϕ_{2} or ϕ_{4} On	40		ns	
terw	CE On Time	440[1]		ns	
${ }^{\text {t }} \mathrm{CO}$	CE On to $\overline{\text { D }}$ OUT Valid	250		ns	
tow	DIN to WE Set-Up Time	0		ns	
twp	WE Pulse Width	100[1]		ns	
twe	WE Off to CE Off	0		ns	
tD ${ }^{\text {d }}$	DIN Hold Time	0		ns	
tWD	CE On to WE On	300[1]		ns	
twF	WE to $\bar{D}_{\text {OUT }}$ Undefined	0		ns	

Note: 1. The minimum tWD and twP times with appropriate transitions do not necessarily add up to the minimum tCRW. This allows the user flexibility in setting the WE Pulse Width edges without affecting either ${ }^{\text {t CRW }}$ or the READ-MODIFY-WRITE Cycle Time, tRWC.

3. The parameter tCF is the same as in the Shift-Read-Shift Cycle on page 4.
4. +2.0 V and $V_{D D}-2.0 \mathrm{~V}$ are the reference low and high level respectively for measuring the timing of $\phi_{1} \ldots \phi_{4}, C E, C S, W E$, and addresses.
5. +1.5 V and +3.0 V are the reference low and high level respectively for measuring the timing of $\mathrm{D}_{\text {IN }}$.
6. +0.8 V is the reference level for measuring the timing of $\overline{\mathrm{D}}_{\mathrm{OUT}}$.

A.C. Characteristics

Symbol	Parameter	Typ.	Max.	Unit	Conditions
$\mathrm{C}_{\text {IN }}$	Address, $\mathrm{D}_{\text {IN }}, \mathrm{CS}, \mathrm{CE}$, WE Capacitance	4	6	pF	$V_{\text {IN }}=V_{\text {SS }}$
$\mathrm{C}_{\text {OUT }}$	$\overline{\mathrm{D}}_{\text {OUT }}$ Capacitance	3	5	pF	$V_{\text {OUT }}=V_{\text {SS }}$
$\mathrm{C}_{\phi 1}{ }^{[1]}, \mathrm{C}_{\phi 3}{ }^{[2]}$	ϕ_{1}, ϕ_{3} Input Capacitance	350	500	pF	$\mathrm{V}_{\phi}=\mathrm{V}_{S S}$
$\mathrm{C}_{\phi 2}{ }^{[1]}, \mathrm{C}_{\phi 4}{ }^{[2]}$	ϕ_{2}, ϕ_{4} Input Capacitance	480	700	pF	$\mathrm{V}_{\phi}=\mathrm{V}_{\text {SS }}$
$\mathrm{C}_{\phi 1}{ }^{-12}$	Clock ϕ_{1} To Clock $\dot{\phi}_{2}$ Capacitance	120	175	pF	$\mathrm{V}_{\phi}=\mathrm{V}_{\text {SS }}$
$\mathrm{C}_{\phi 1}{ }^{\text {¢ }} 4$	Clock ϕ_{1} To Clock ϕ_{4} Capacitance	150	200	pF	$\mathrm{V}_{\phi}=\mathrm{V}_{\text {SS }}$
$\mathrm{C}_{\phi 3}{ }^{\text {¢ }}$ 2	Clock ϕ_{3} To Clock ϕ_{2} Capacitance	150	200	pF	$\mathrm{V}_{\phi}=\mathrm{V}_{S S}$
$\mathrm{C}_{\phi 3}{ }^{\text {¢ }}$ 4	Clock ϕ_{3} To Clock ϕ_{4} Capacitance	120	175	pF	$\mathrm{V}_{\phi}=\mathrm{V}_{\text {SS }}$

Notes: 1. This parameter is periodically sampled and is not 100% tested.
2. The $\mathrm{C}_{\phi 1} \ldots \mathrm{C}_{\phi 4}$ input clock capacitance includes the clock to clock capacitance. The equivalent input capacitance is given below.

Four-Phase Clock Inputs

The four-phase clock inputs are internally connected to long electrodes used for several thin-oxide gates, resulting in high capacitance to the substrate on the clock inputs. In addition, considerable cross-coupling between adjacent clock exists due to the overlapping structure of the electrodes. The figure to the right shows the circuit equivalent of the clock inputs, indicating maximum capacitance values.
The equivalent circuit suggests two opposed clock driver requirements:

1. Ability to drive high-capacitance loads quickly.
2. Ability to suppress cross-coupled current transients.

The first requirement could ordinarily be met rather easily, if it weren't for the fact that the cross-coupled current, I, is proportional to the rate of change of the voltage, i.e., $I=C \frac{d v}{d t}$. For the quiescent driver to hold the coupled voltage to a minimum, the driver must have very low output impedance. However, when this driver becomes active the low output impedance increases the slope of the transitions which in turn increases coupling currents to the other drivers. This suggests that a driver have a controlled output transition time and a low output impedance characteristic in the quiescent state (high or low level). The Intel ${ }^{\circledR} 5244$ meets these requirements.

$\xrightarrow{2}$

5244 - CCD Clock Driver

The Intel ${ }^{\circledR} 5244$ is a CMOS implemented fully TTL input compatible high voltage MOS driver, designed especially for the four phase clock inputs of the 2416. The device features very low DC power dissipation from a single +12 V supply with output characteristics directly compatible with the 2416 clock input requirements.
The 5244 uses internal circuitry to control the cross-coupled voltage transients between the clock phases generated by the 2416. This internal circuitry limits the transition time to a specified range so that excessively fast transitions (<30ns) do not occur on the clock line. The entire operation is transparent to the user.

The 5244 is designed to drive four 2416s, but can drive fewer devices when loaded with additional capacitance to prevent a speedup in the transition times. Additional information on this and other aspects of the 5244 can be found on the 5244 data sheet.

Application Information

The Intel ${ }^{\circledR} 2416$ is a charge coupled device (CCD) containing 16,384 bits of dynamic shift register storage available in a standard 18 pin plastic package. To minimize latency time (access time to any given bit in the device), the 2416 has been organized as 64 registers containing 256 bits each and, therefore, any bit can be accessed with a maximum of 255 shift operations. Since the minimum shift cycle requires 750 ns , the maximum latency time for the 2416 is less than $200 \mu \mathrm{sec}$.
Access to the 64 recirculating registers is performed in a random access mode. A six bit address selects one of the 64 registers for read, write, or read/modify/write operations. These random access operations are performed between shift operations, and can be performed in any number or sequence as long as the basic shift frequency is maintained.

Because of substrate leakage currents the charge coupled storage mechanism is dynamic in nature. To satisfy the refresh requirements of the 2416, one shift operation must be performed every ten microseconds. A shift operation is completed on the falling edge of clock phase ϕ_{1} or ϕ_{3} and random access cycles may occur only between (1) the falling edge of ϕ_{1} and the rising edge of ϕ_{4} or (2) the falling edge of ϕ_{3} and the rising edge of ϕ_{2}. This refresh requirement limits the number of random access cycles between successive shift operations to a maximum of 16 .

Random access operations are performed in a manner which is very similar to any random access memory (RAM). All random access cycles are initiated with the rising edge and terminated with the falling edge of CE (Chip Enable). Read operations are performed when WE (Write Enable) remains low throughout a CE cycle. Data is strobed into the memory whenever WE is strobed high during a CE cycle as illustrated in the appropriate timing diagrams. CS (Chip Select) controls only the input and output circuits and is only effective when CE is high.

Typical Current Transients vs. Time

The oscilloscope photos in Figures 1 and 2 show typical $I_{D D}$ current transients during shift and I/O cycles. The typical $I_{B B}$ current during a shift cycle is shown in Figure 3.

Figure 1. ${ }^{\text {DD }}$ transient current during shift cycles.
$I_{D D}$ scale: $10 \mathrm{~mA} / \mathrm{div}$.

Figure 2. ${ }^{\prime}$ DD transient current during I/O cycles. IDD scale: $10 \mathrm{~mA} / \mathrm{div}$.

Figure 3. IBB transient current during a shift cycle. ${ }^{\prime} \mathrm{BB}^{\text {scale: }} \mathbf{5 0 \mathrm { mA } / \text { div. }}$

5

MEMORY SUPPORT CIRCUITS

MEMORY SUPPORT CIRCUITS

	Type	Description	Electrical Characteristics Over Temperature		Supplies [V]	Page No.
			Input to Output Delay Maximum	Power Dissipation[1] Maximum		
	3205	1 of 8 Binary Decoder	18ns	350 mW	+5	5-3
	3207A	Quad Bipolar to MOS Level Shifter and Driver	25ns	900 mW	+5,+16,+19	5-7
	3207A-1	Quad Bipolar to MOS Level Shifter and Driver	25ns	1040 mW	+5,+19,+22	5-11
	3208A	Hex Sense Amp for MOS Memories	20ns	600 mW	+5	5-13
	3222	4K Dynamic RAM Refresh Controller	-	600 mW	+5	5-19
	3232	4K Dynamic RAM Address Multiplexer and Refresh Counter	20 ns	675 mW	+5	5-25
	3242	16K Dynamic RAM Address Multiplexer and Refresh Counter	20 ns	--	+5	5-29
	3245	Quad TTL to MOS Driver for 4K RAMs	32ns	388mW	+12,+5	5-30
	3246	Quad ECL to MOS Driver for 4K RAMs	30ns	186 mW	-5.2, $+5,+12$	5-34
	3404	High Speed 6-Bit Latch	12ns	375 mW	+5	5-3
	3408A	Hex Sense Amp and Latch for MOS Memories	25 ns	625 mW	+5	5-13
$\begin{aligned} & 0 \\ & \sum_{0}^{0} \end{aligned}$	5234	Quad CMOS to MOS Driver for 4K RAMs	20 ns	120 mW	12	5-38
	5235	Quad Low Power TTL to MOS Driver for 4K RAMs	125ns	240 mW	12	5-42
	5235-1	High Speed Quad Low Power TTL to MOS Driver for 4K RAMs	95ns	240 mW	12	5-42
	5244	Quad CCD Driver	90ns	1260 mW	12	5-46

Note 1: Power Dissipation calculated with maximum power supply current and nominal supply voltages.

3205 HIGH SPEED 1 OUT OF 8 BINARY DECODER 3404 HIGH SPEED 6-BIT LATCH

\author{

- 18ns Max. Delay Over $0^{\circ} \mathrm{C}$ to 75° C Temperature: 3205
 - 12ns Max. Data to Output Delay Over $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ Temperature: 3404
 Directly Compatible With DTL and TTL Logic Circuits
}

3205
The 3205 decoder can be used for expansion of systems which utilize memory components with active low chip select input. When the 3205 is enabled, one of its eight outputs goes "low", thus a single row of a memory system is selected. The 3 chip enable inputs on the 3205 allow easy memory expansion. For very large memory systems, 3205 decoders can be cascaded such that each decoder can drive 8 other decoders for arbitrary memory expansions.

3404

The Intel 3404 contains six high speed latches organized as independent 4 -bit and 2-bit latches. They are designed for use as memory data registers, address registers, or other storage elements. The latches act as high speed inverters when the "Write" input is "low".
The Intel 3404 is packaged in a standard 16-pin dual-in-line package; and its performance is specified over the temperature range of $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, ambient. The use of Schottky barrier diode clamped transistors to obtain fast switching speeds results in higher performance than equivalent devices made with a gold diffusion process.

PIN CONFIGURATION

3404

Absolute Maximum Ratings*

Temperature Under Bias:	Ceramic Plastic	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$	
All Output or Supply Voltages	-0.5 to +7 Volts	
All Input Voltages	-1.0 to +5.5 Volts	
Output Currents	125 mA	

*COMMENT
Stresses abobe those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V} \pm 5 \%$

3205, 3404

SYMBOL	PARAMETER	LIMIT		UNIT	TEST CONDITIONS
		MIN.	MAX.		
I_{F}	INPUT LOAD CURRENT		-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0.45 \mathrm{~V}$
$I_{\text {R }}$	INPUT LEAKAGE CURRENT		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=5.25 \mathrm{~V}$
V_{C}	INPUT FORWARD CLAMP VOLTAGE		-1.0	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~mA}$
V_{OL}	OUTPUT "LOW" VOLTAGE		0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10.0 \mathrm{~mA}$
V_{OH}	OUTPUT HIGH VOLTAGE	2.4		V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-1.5 \mathrm{~mA}$
$\mathrm{V}_{\text {IL }}$	INPUT "LOW" VOLTAGE		0.85	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {IH }}$	INPUT "HIGH" VOLTAGE	2.0		V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
I_{sc}	OUTPUT HIGH SHORT CIRCUIT CURRENT	-40	-120	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{V}_{0 x}$	OUTPUT "LOW" VOLTAGE @ HIGH CURRENT		0.8	V	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{ox}}=40 \mathrm{~mA}$

3205 ONLY

I_{CC}	POWER SUPPLY CURRENT		70	mA	$\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$

3404 ONLY

I_{CC}	POWER SUPPLY CURRENT		75	mA	$\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
$\mathrm{I}_{\text {FW1 }}$	WRITE ENABLE LOAD CURRENT PIN 7		-1.00	mA	$\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {FW2 }}$	WRITE ENABLE LOAD CURRENT PIN 15		-0.50	mA	$\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{W}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {RW }}$	WRITE ENABLE LEAKAGE CURRENT		10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=5.25 \mathrm{~V}$

Typical Characteristics

OUTPUT CURRENT VS. OUTPUT "LOW" VOLTAGE

OUTPUT CURRENT VS. OUTPUT "HIGH" VOLTAGE

DATA TRANSFER FUNCTION

3205 - HIGH SPEED 1 OUT OF 8 BINARY DECODER Switching Characteristics

CONDITIONS OF TEST:

Input pulse amplitudes: 2.5 V
Input rise and fall times: 5 nsec between 1 V and 2 V

Measurements are made at 1.5 V

TEST WAVEFORMS
ADDRESS OR ENABLE INPUT PULSE

OUTPUT

A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

SYMBOL	PARAMETER	MAX. LIMIT	UNIT	TEST CONDITIONS
t_{++}	ADDRESS OR ENABLE TO OUTPUT DELAY	18	ns	
t_{-+}		18	ns	
t_{+}		18	ns	
$\mathrm{t}_{\text {-- }}$		18	ns	
$\mathrm{C}_{\text {IN }}{ }^{(1)}$	INPUT CAPACITANCE \quad P3205	$\frac{4 \text { (typ.) }}{5 \text { (typ.) }}$	$\frac{\mathrm{pF}}{\mathrm{pF}}$	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C C}=0 \mathrm{~V} \\ & V_{B I A S}=2.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$

1. This parameter is periodically sampled and is not 100% tested.

Typical Characteristics

3404-6-BIT LATCH Switching Characteristics

CONDITIONS OF TEST:
Input pulse amplitudes: 2.5 V
Input rise and fall times: 5 nsec between 1V and 2 V

Measurements are made at 1.5 V
TEST LOAD:

A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$; unless otherwise specified.

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
$t_{+-, t-+}$	DATA TO OUTPUT DELAY			12	ns	
t_-.t_+	WRITE ENABLE TO OUTPUT DELAY			17	ns	
${ }^{\text {t }}$ SET UP	TIME DATA MUST BE PRESENT BEFORE RISING EDGE OF WRITE ENABLE	12			ns	
${ }^{\text {t HOLD }}$	TIME DATA MUST REMAIN AFTER RISING EDGE OF WRITE ENABLE	8			ns	
${ }^{\text {t }}$ WP	WRITE ENABLE PULSE WIDTH	15			ns	
$\mathrm{C}_{\text {IND }}{ }^{(3)}$	DATA INPUT CAPACITANCE		4		pF	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BIAS}}=2.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$
			5		pF	
$\mathrm{C}_{\text {INW }}{ }^{(3)}$	WRITE ENABLE CAPACITANCE $\frac{\text { P3404 }}{\text { C3404 }}$		7		pF	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BIAS}}=2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
			8		pF	

NOTE 3: This parameter is periodically sampled and is not 100% tested.

Typical Characteristics

QUAD BIPOLAR-TO-MOS LEVEL SHIFTER AND DRIVER

- Easy to Use--Operates from Standard Bipolar and MOS Supplies
- Minimum Line Reflection -- Input and Output Clamp Diodes
- High Input Breakdown Voltage-19 Volts
- CerDIP Package -- 16 Pin DIP

The 3207A is a Quad Bipolar-to-MOS level shifter and driver which accepts TTL and DTL input signals, and provides high output current and voltage suitable for driving MOS circuits. It is particularly suitable for driving the 1103 and 1103A memory chips. The circuit operates from a 5 volt TTL power supply, and $V_{S S}$ and $V_{B B}$ power supplies from the 1103 and 1103A.

The device features two common enable inputs per pair of devices which permits some logic to be done at their inputs, such as cenable and precharge decoding for the 1103 and 1103A.

For the TTL inputs a logic " 1 " is $V_{I H}$ and a logic " 0 " is $V_{I L}$. The 3207A outputs correspond to a logic " 1 " as $V_{O L}$ and a logic " 0 " as $V_{O H}$ for driving MOS inputs.

The 3207A is packaged in a hermetically sealed 16 pin ceramic dual-in-line package. The device performance is specified over the same temperature range as the 1103 and 1103 A , i.e. from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

PIN CONFIGURATION

Absolute Maximum Ratings*

Temperature Under Bias $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature. $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ All Input Voltages and $V_{\text {SS }} \ldots \ldots . .$. Supply Voltage $\mathrm{V}_{\mathrm{CC}} \ldots . .$. All Outputs and Supply Voltage
V_{BB} with respect to GND -1.0 to +25 V
Power Dissipation at $25^{\circ} \mathrm{C}$. 2 Watts ${ }^{(1)}$

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1) Refer to the graph of Junction Temperature versus Total Power Dissipation on page 5-10 for other temperatures,
D. C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=16 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}=3.0 \mathrm{~V}$ to 4.0 V

SYMBOL	TEST	$\text { MIN. }{ }^{\text {LIMIT }} \text { MAX. }$	UNIT	CONDITIONS
$I_{\text {FD }}$	dATA InPUT LOAD CURRENT	-0.25	mA	$\begin{aligned} & V_{D}=.45 \mathrm{~V}, V_{C C}=5.25 \mathrm{~V}, A l l \text { Other Inputs } \\ & \text { at } 5.25 \mathrm{~V}, \mathrm{~V}_{S S}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=19 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {FE }}$	ENABLE INPUT LOAD CURRENT	-0.50	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{E}}=.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \text { All Other Inputs } \\ & \text { at } 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=19 \mathrm{~V} \end{aligned}$
I_{RD}	DATA INPUT LEAKAGE CURRENT	20	$\mu \mathrm{A}$	$\begin{aligned} & V_{D}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \text { All Other Inputs } \\ & \text { Grounded, } \mathrm{V}_{\mathrm{SS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=19 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {RE }}$	ENABLE INPUT LEAKAGE CURRENT	20	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{E}}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \text { All Other Inputs } \\ & \text { Grounded, } \mathrm{V}_{\mathrm{SS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=19 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	OUTPUT "LOW" VOLTAGE	$\begin{aligned} & .8 \\ & .7 \\ & .6 \end{aligned}$	$\begin{aligned} & \mathrm{V}\left(0^{\circ} \mathrm{C}\right) \\ & \mathrm{V}\left(25^{\circ} \mathrm{C}\right) \\ & \mathrm{V}\left(70^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=19 \mathrm{~V} \\ & \text { All Inputs at } 2.0 \mathrm{~V} \end{aligned}$
V_{OH} (MIN.)	OUTPUT "HIGH" VOLTAGE	$\begin{aligned} & v_{\mathrm{vS}^{-.7}} \\ & \mathrm{v}_{\mathrm{SS}}-.6 \\ & v_{\mathrm{SS}}-.5 \end{aligned}$	$\mathrm{V}\left(0^{\circ} \mathrm{C}\right)$ $V\left(25^{\circ} \mathrm{C}\right)$ $V\left(70^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=19 \mathrm{~V} \\ & \text { All Inputs at } 0.85 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{OH}}($ MAX. $)$.	$\mathrm{V}_{\mathrm{SS}}+1.0$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=19 \mathrm{~V} \end{aligned}$
${ }^{1} \mathrm{OL}$	OUTPUT SINK CURRENT	100	mA	$\begin{aligned} & V_{O}=4 \mathrm{~V}, V_{C C}=5.0 \mathrm{~V}, V_{S S}=16 \mathrm{~V}, \\ & V_{B B}=19 \mathrm{~V}, V_{E}=V_{D}=2.0 \mathrm{~V} \end{aligned}$
${ }^{1} \mathrm{OH}$	OUTPUT SOURCE CURRENT	-100	mA	$\begin{aligned} & V_{O}=V_{S S}-4 V, V_{C C}=5.0 \mathrm{~V}, V_{S S}=16 \mathrm{~V} \\ & V_{B B}=19 \mathrm{~V}, V_{E}=V_{D}=0.85 \mathrm{~V} \end{aligned}$
$V_{1 L}$	INPUT "LOW" VOLTAGE	1.0	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=19 \mathrm{~V}$
$V_{1 H}$	INPUT "HIGH" VOLTAGE	2.0	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=19 \mathrm{~V}$
$\mathrm{Cin}_{\text {I }}$	INPUT CAPACITANCE	8(Typical)	pF	$\mathrm{V}_{\mathrm{BIAS}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$

POWER SUPPLY CURRENT DRAIN:
All Outputs "Low"

Symbol	Parameter	Min. Max.	Unit	Conditions
${ }^{\text {I Cc }}$	Current from V_{CC}	83	mA	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=16.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=20.8 \mathrm{~V}$ All Inputs Open
'ss	Current from $\mathrm{V}_{\text {SS }}$	250	$\mu \mathrm{A}$	
${ }^{\text {B }}$ B	Current from V_{BB}	21	mA	
$\mathrm{P}_{\text {Total }}$	Total Power Dissipation	900	mW	

All Outputs "High"

I^{CC}	Current from V_{CC}	33	mA
$\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=16.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=20.8 \mathrm{~V}$			

Standby Condition with $\mathrm{V}_{\mathbf{C C}}=\mathbf{0}, \mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{BB}}$

${ }^{\text {'cc }}$	Current from V_{CC}	0	mA	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=16.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=16.8 \mathrm{~V}$
'ss	Current from $\mathrm{V}_{\text {SS }}$	250	$\mu \mathrm{A}$	
${ }^{\text {BB }}$	Current from V_{BB}	250	$\mu \mathrm{A}$	
${ }^{\text {PTOTAL }}$	Total Power Dissipation	10	mW	

Switching Characteristics

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=16 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=\mathrm{V}_{\mathrm{SS}}+3$ to $4 \mathrm{~V}, \mathrm{f}=2 \mathrm{MHz}, 50 \%$ Duty Cycle

SYMBOL	TEST	LIMITS (ns)				
			pF MAX.		pF MAX.	DELAY DIFFERENTIAL ${ }^{(1)}$ $C_{L}=200 \mathrm{pF}$ MAX.
t_{+}	INPUT TO OUTPUT DELAY	5	15	5	15	5
$\mathrm{t}_{\text {- }}+$	INPUT TO OUTPUT DELAY	5	25	5	25	10
t_{r}	OUTPUT RISE TIME	5	20	5	30	10
t_{f}	OUTPUT FALL TIME	5	20	10	30	10
t_{D}	DELAY + RISE OR FALL TIME	10	35	20	45	10

(1) This is defined as the maximum skew between any output in the same package, eg., all the input to output delays for the t_{-+}parameter are within a maximum of 10 nsec of each other in the same package.

Waveforms

Typical Characteristics

SWITCHING TIME VS. AMBIENT TEMPERATURE

SWITCHING TIME VS. LOAD CAPACITANCE

Power and Switching Characteristics

POWER CONSUMED IN CHARGING AND DISCHARGING LOAD CAPACITANCE OVER OV TO 16V INTERVAL

JUNCTION TEMPERATURE VS. TOTAL POWER DISSIPATION OF THE CIRCUIT

NO LOAD D.C. POWER DISSIPATION VS.
OPERATING DUTY CYCLE

SWITCHING DUTY CYCLE (\%)
wORST CASELOAD CAPACITANCE ON EACH OUTPUT VS FREQUENCY OF SWITCHING

3207A-1

QUAD BIPOLAR-TO-MOS LEVEL SHIFTER AND DRIVER

- Power Supply Voltage Compatible with the High Voltage 1103-1

- 1103-1 Memory Compatible at Output

The Intel 3207A-1 is the high voltage version of the standard 3207A, and is compatible with the 1103-1. The 3207A-1 has all the same features as the standard 3207A. The absolute maximum ratings and pin configuration are repeated below for convenience, while the DC and AC characteristics appear below and on the next page.

PIN CONFIGURATION

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage Temperature	$65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Input Voltages	-1.0 to +21 Volts
Supply Voltage VCC	-1.0 to +7.0 Volts
All Outputs and Supply	and $V_{\text {SS }}$
with respect to GND.	-1.0 to +25 Volts
Power Dissipation at 25	2 Watts

comment:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D. C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=19 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{B B}-\mathrm{V}_{S S}=3.0 \mathrm{~V}$ to 4.0 V

SYMBOL	TEST	$\text { MIN. }{ }^{\text {LIMIT }} \text { MAX. }$	UNIT	CONDITIONS
$I_{F D}$	DATA INPUT LOAD CURRENT	-0.25	$m A$	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \text { All Other Inputs } \\ & \text { at } 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=23 \mathrm{~V} \end{aligned}$
$I_{\text {FE }}$	ENABLE INPUT LOAD CURRENT	-0.50	mA	$\begin{aligned} & V_{E}=.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \text { All Other Inputs } \\ & \text { at } 5.25 \mathrm{~V}, \mathrm{~V}_{S S}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=23 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {RD }}$	DATA INPUT LEAKAGE CURRENT	20	$\mu \mathrm{A}$	$V_{\dot{D}}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, All Other Inputs Grounded, $\mathrm{V}_{\mathrm{SS}}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=23 \mathrm{~V}$
$I_{\text {RE }}$	ENABLE INPUT LEAKAGE CURRENT	20	$\mu \mathrm{A}$	$V_{E}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, All Other Inputs Grounded, $\mathrm{V}_{\mathrm{SS}}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=23 \mathrm{~V}$
V_{OL}	OUTPUT "LOW" VOLTAGE	$\begin{aligned} & 0.8 \\ & 0.7 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}\left(0^{\circ} \mathrm{C}\right) \\ & \mathrm{V}\left(25^{\circ} \mathrm{C}\right) \\ & \mathrm{V}\left(55^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=23 \mathrm{~V} \end{aligned}$ All Inputs at 2.0 V
$\mathrm{V}_{\mathrm{OH}}(\mathrm{MIN}$.	OUTPUT "HIGH" VOLTAGE	$\begin{aligned} & v_{S S}-0.7 \\ & v_{S S}-0.6 \\ & v_{S S}-0.5 \\ & v^{2} \end{aligned}$	$\begin{aligned} & V\left(0^{\circ} \mathrm{C}\right) \\ & V\left(25^{\circ} \mathrm{C}\right) \\ & V\left(55^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=23 \mathrm{~V} \\ & \text { All inputs at } 0.85 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{OH}}(\mathrm{MAX}$.		$\mathrm{V}_{S S}+1.0$	V	$\begin{aligned} & I_{O H}=5 \mathrm{~mA}, V_{C C}=5.0 \mathrm{~V} \\ & V_{S S}=19 \mathrm{~V}, V_{B B}=23 \mathrm{~V} \end{aligned}$
${ }^{\prime} \mathrm{OL}$	OUTPUT SINK CURRENT	100	mA	$\begin{aligned} & V_{O}=4 \mathrm{~V}, V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{S S}=19 \mathrm{~V}, \\ & V_{B B}=23 \mathrm{~V}, V_{E}=V_{D}=2.0 \mathrm{~V} \end{aligned}$
${ }^{1} \mathrm{OH}$	OUTPUT SOURCE CURRENT	-100	mA	$\begin{aligned} & V_{O}=V_{S S}-4 V, V_{C C}=5.0 \mathrm{~V}, V_{S S}=19 \mathrm{~V} \\ & V_{B B}=23 V, V_{E}=V_{D}=0.85 \mathrm{~V} \end{aligned}$
$V_{\text {IL }}$	INPUT 'LOW' VOLTAGE	1.0	V	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{S S}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=23 \mathrm{~V}$
$\mathrm{V}_{1 H}$	INPUT "HIGH" VOLTAGE	2.0	V	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{S S}=19 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=23 \mathrm{~V}$
$\mathrm{Cl}_{1 \mathrm{~N}}$	INPUT CAPACITANCE	8(Typical)	pF	$\mathrm{v}_{\text {BIAS }}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$

D.C. Characteristics (Continued) $T_{A}=0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=19 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{SS}}=3.0 \mathrm{~V}$ to 4.0 V

POWER SUPPLY CURRENT DRAIN: All Outputs "Low"

Symbol	Parameter	Min. Max.	Unit	Conditions
${ }^{1} \mathrm{CC}$	Current from $\mathrm{V}_{\text {CC }}$	83	mA	$V_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=24 \mathrm{~V}$ All Inputs Open
${ }^{\text {I SS }}$	Current from $\mathrm{V}_{\text {SS }}$	250	$\mu \mathrm{A}$	
${ }^{\text {I BB }}$	Current from V_{BB}	25	mA	
${ }^{\text {P TOTAL }}$	Total Power Dissipation	1040	mW	

All Outputs "High"

${ }^{1} \mathrm{CC}$	Current from V_{CC}	33	mA	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=24 \mathrm{~V}$ All Inputs Grounded
${ }^{\text {ISS }}$	Current from V_{SS}	250	$\mu \mathrm{A}$	
${ }^{\text {IBB }}$	Current from V_{BB}	5	mA	
$\mathrm{P}_{\text {TOTAL }}$	Total Power Dissipation	297	mW	

Standby Condition with $\mathrm{V}_{\mathrm{CC}}=\mathbf{O V}, \mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{BB}}$

${ }^{1} \mathrm{CC}$	Current from $V_{\text {CC }}$	0	mA	$V_{C C}=0 \mathrm{~V}, \mathrm{~V}_{S S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=20 \mathrm{~V}$
${ }^{\text {'SS }}$	Current from $\mathrm{V}_{\text {SS }}$	500	$\mu \mathrm{A}$	
${ }^{\text {I BB }}$	Current from V_{BB}	500	$\mu \mathrm{A}$	
$\mathrm{P}_{\text {TOTAL }}$	Total Power Dissipation	15	mW	

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=19 \mathrm{~V} . \pm 5 \%, V_{B B}=V_{S S}+3$ to $4 \mathrm{~V}, \mathrm{f}=2 \mathrm{MHz}, 50 \%$ Duty Cycle

SYMBOL	TEST	LIMITS (ns)				
			pF MAX.		pF MAX.	DELAY DIFFERENTIAL ${ }^{(1)}$ $\begin{gathered} C_{L}=200 \mathrm{pF} \\ \text { MAX. } \end{gathered}$
t_{+}	INPUT TO OUTPUT DELAY	5	15	5	15	5
t_{-+}	INPUT TO OUTPUT DELAY	5	25	5	25	10
t_{r}	OUTPUT RISE TIME	5	20	5	30	10
t_{f}	OUTPUT FALL TIME	5	25	10	35	10
t_{D}	DELAY + RISE OR FALL TIME	10	35	20	45	10

(1) This is defined as the maximum skew between any output in the same package, eg., all the input to output delays for the t_{-+}parameter are within a maximum of 10 nsec of each other in the same package.

Waveforms

HEX BIPOLAR SENSE AMPLIFIERS FOR MOS CIRCUITS 3208A HEX SENSE AMPLIFIER 3408A HEX SENSE AMPLIFIER WITH LATCHES

\author{

- High Speed-20 nsec. max.
 - Wire-OR CapabilityOpen Collector Output..3208A Three-State Output 3408A
 - Single 5 V Power Supply
 - Input Level Compatible with 1103 Output
}
- Two Enable Inputs
- Minimum Line Reflection Low Voltage Diode Input Clamp
- Plastic 18 Pin Dual In-Line Package
- Schottky TTL

The Intel 3208A is a high speed hex sense amplifier designed to sense the output signals of the 1103 memory. The device features two separate enable inputs each controlling the output state of three sense amplifiers, and a common voltage reference input. OR-tie capability is available with the 3208 A open collector TTL compatible output.
The 3408A is a hex sense amplifier with a latch circuit connected to each amplifier. The sensed data may be stored in the latches through application of a write pulse. The 3408A has three-state TTL outputs, hence in the non-enabled state the outputs float allowing wire-OR memory expansion. The latches may be bypassed by grounding the write input pin. Under this condition, the 3408A functions as a hex sense amplifier.
The 3208A and 3408A operate from a single +5 volt power supply. Device performance is specified over the complete ambient temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and over a V_{CC} supply voltage range of 5 volts $\pm 5 \%$. The 3208A and 3408A are packaged in an 18 pin plastic dual in-line package.

Absolute Maximum Ratings*

*Comment:
Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at this or at any other condition above those indicated in the operational sections of this specification is not implied.
D. C. Characteristics for $3208 \mathrm{~A} \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
$I_{\text {fe }}$	INPUT LOAD CURRENT ON ENABLE INPUT			-0.25	mA	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{F}=0.45 \mathrm{~V} \end{aligned}$
$I_{\text {RE }}$	INPUT LEAKAGE CURRENT ON ENABLE INPUT			20	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & V_{R}=5.25 \mathrm{~V} \end{aligned}$
V_{IH}	INPUT "HIGH" VOLTAGE ON ENABLE INPUT	2.0			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$V_{\text {IL }}$	INPUT "LOW"' VOLTAGE ON ENABLE INPUT			0.85	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	OUTPUT "LOW" VOLTAGE			0.45	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \end{aligned}$
'CEX	OUTPUT LEAKAGE CURRENT			100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CEX}}=5.25 \mathrm{~V} \end{aligned}$
$I_{\text {REF }}$	INPUT CURRENT ON REFERENCE INPUT			-150	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{REF}}=100 \mathrm{mV} \end{aligned}$
Is	INPUT CURRENT ON SENSE AMP INPUT			-25	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=100 \mathrm{mV} \end{aligned}$
V_{SH}	INPUT "HIGH" VOLTAGE FOR SENSE AMP INPUT	$V_{\text {REF }}$			mV	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \text { to } 5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{REF}}=100 \text { to } 200 \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\text {SL }}$	INPUT "LOW" VOLTAGE FOR SENSE AMP INPUT			$\begin{aligned} & V_{\text {REF }} \\ & -50 \end{aligned}$	mV	$\begin{aligned} & V_{\mathrm{CC}}=4.75 \text { to } 5.25 \mathrm{~V} \\ & V_{\text {REF }}=100 \text { to } 200 \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\text {REF }}$	OPERATING RANGE OF REFERENCE VOLTAGE	100		200	mV	$\mathrm{V}_{\mathrm{CC}}=4.75$ to 5.25 V
${ }^{1} \mathrm{cc}$	POWER SUPPLY CURRENT			120	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
V_{C}	INPUT CLAMP VOLTAGE ON ALL INPUTS			-1.0	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {SD }}$	SENSE INPUT CLAMP DIODE VOLTAGE			1.0	V	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~mA} \end{aligned}$

3208A TRUTH TABLE

INPUTS		OUTPUT
Sense Amp	Enable	
$<V_{\text {REF }}-50 \mathrm{mV}$	L	L
$>\mathrm{V}_{\text {REF }}$	L	H
X	H	H

D. C. Characteristics for $3408 \mathrm{~A} \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
$I_{\text {FE }}$	INPUT LOAD CURRENT ON ENABLE INPUT			-0.25	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{F}}=0.45 \mathrm{~V} \end{aligned}$
I_{RE}	INPUT LEAKAGE CURRENT ON ENABLE INPUT			20	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=5.25 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {FW }}$	INPUT LOAD CURRENT ON WRITE INPUT			-0.25	mA	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{F}=0.45 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {RW }}$	INPUT LEAKAGE CURRENT ON WRITE INPUT			20	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=5.25 \mathrm{~V} \end{aligned}$
V_{IH}	INPUT "HIGH" VOLTAGE ON ENABLE AND WRITE INPUT	2.0			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$V_{\text {IL }}$	INPUT "LOW" VOLTAGE ON ENABLE AND WRITE INPUT			0.85	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
V_{OL}	OUTPUT "LOW" VOLTAGE			0.45	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \end{aligned}$
V_{OH}	OUTPUT "HIGH" VOLTAGE	2.4			V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-1.5 \mathrm{~mA} \end{aligned}$
$\|10\|$	OUTPUT LEAKAGE CURRENT FOR HIGH IMPEDANCE STATE			100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.25 \mathrm{~V} \end{aligned}$
I_{sc}	OUTPUT SHORT CIRCUIT CURRENT	-40		-100	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {REF }}$	INPUT CURRENT ON REFERENCE INPUT			-150	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{\text {REF }}=100 \mathrm{mV} \end{aligned}$
I_{s}	INPUT CURRENT ON SENSE INPUT			-25	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{S}=100 \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\text {SH }}$	INPUT "HIGH" VOLTAGE FOR SENSE AMP INPUT	$\mathrm{V}_{\text {REF }}$			mV	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \text { to } 5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{REF}}=100 \text { to } 200 \mathrm{mV} \end{aligned}$
V_{SL}	INPUT "LOW" VOLTAGE FOR SENSE AMP INPUT			$\begin{aligned} & \mathrm{V}_{\mathrm{REF}} \\ & -60 \end{aligned}$	mV	$\begin{aligned} & V_{C C}=4.75 \text { to } 5.25 \mathrm{~V} \\ & V_{\text {REF }}=100 \text { to } 200 \mathrm{mV} \end{aligned}$
$V_{\text {REF }}$	OPERATING RANGE OF REFERENCE VOLTAGE	100		200	mV	$\mathrm{V}_{\mathrm{CC}}=4.75$ to 5.25 V
${ }^{\text {cc }}$	POWER SUPPLY CURRENT			125	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
V_{C}	INPUT CLAMP VOLTAGE ON ALL INPUTS			-1.0	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~V} \end{aligned}$
$V_{S D}$	SENSE INPUT CLAMP DIODE VOLTAGE			1.0	V	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~mA} \end{aligned}$

3408A TRUTH TABLE

INPUTS			OUTPUT
Sense Amp	Enable	Write	
$<\mathrm{V}_{\text {REF }}-60 \mathrm{mV}$	L	L	L
$>\mathrm{V}_{\text {REF }}$	L	L	H
X	L	H	Previous Data Stored
X	H	X	High Z^{*}

*The output of the 3408A is three-state, hence when not enabled the output is a high impedance.

Typical D. C. Characteristics for 3208A/3408A

SENSE AND REFERENCE INPUT CURRENT Vs. AMBIENT TEMPERATURE

OUTPUT CURRENT VS. OUTPUT "LOW" VOLTAGE

SENSE THRESHOLD VS. REFERENCE INPUT VOLTAGE

OUTPUT CURRENT VS. OUTPUT "HIGH" VOLTAGE

A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

3208A

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
${ }^{\text {t }}$ -	SENSE AMP INPUT TO OUTPUT DELAY			20	ns	$\begin{aligned} & \text { D.C. } \text { LOAD }=10 \mathrm{~mA} \\ & C_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$
t_{E}	ENABLE INPUT TO OUTPUT DELAY			20	ns	$\begin{aligned} & \text { D.C. } \text { LOAD }=10 \mathrm{~mA} \\ & C_{L}=30 \mathrm{pF} \end{aligned}$
${ }^{\text {t }}$ E+				25		

3408A

t_{WP}	WRITE PULSE WIDTH	30		ns	D.C. LOAD $=10 \mathrm{~mA}$ $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	
$\mathrm{t}_{\mathrm{s}}-$	SENSE AMP INPUT TO OUTPUT DELAY			25	ns	D.C. LOAD $=10 \mathrm{~mA}$ $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
$\mathrm{t}_{\mathrm{E}-}$	ENABLE INPUT TO OUTPUT DELAY, LATCH STORES "LOW"'			20	ns	D.C. LOAD $=10 \mathrm{~mA}$ $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
$\mathrm{t}_{\mathrm{E}+}$	ENABLE INPUT TO OUTPUT DELAY, LATCH STORES "HIGH"		25	ns	D.C. LOAD $=10 \mathrm{~mA}$ $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	

Capacitance ${ }^{(1)} T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

SYMBOL	TEST	LIMITS	
		TYP.	MAX.
C_{O}	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=2.0 \mathrm{~V}$	8	12
$\mathrm{C}_{\text {INE }}$	ENABLE INPUT $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=2.0 \mathrm{~V}$	6	10
$\mathrm{C}_{\text {INS }}$	SENSE INPUT $V_{C C}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=0 \mathrm{~V}$	6	10

(1) This parameter is periodically sampled and is not 100% tested.

Waveforms

3208A/3408A

Switching Characteristics conditions of test

- Input Pulse amplitude: 2.5 V for all TTL compatible inputs and 2.5 V through a resistor network as shown below for sense input.
- Input Pulse rise and fall times: 5 ns .
- Speed measurements are made at 1.5 V for all TTL compatible inputs and outputs, and for sense input, see network and waveforms below. $V_{\text {REF }}$ is set at 150 mV .

10 mA TEST LOAD

3408A ONLY

Typical A. C. Characteristics

3408A WRITE PULSE WIDTH VS.
AMBIENT TEMPERATURE

ENABLE INPUT TO OUTPUT DELAY VS. AMBIENT TEMPERATURE

SENSE INPUT TO OUTPUT DELAY
VS. REFERENCE INPUT VOLTAGE

REFRESH CONTROLLER FOR 4K DYNAMIC RANDOM ACCESS MEMORIES

\author{

- Ideal for use in 2107A, 2107B Systems
 - Simplifies System Design
 - Reduces Package Count
 - Standard 22-Pin DIP
}

\author{

- Adjustable Refresh Timing Oscillator
 - 6-Bit Address Multiplexer
 - 6-Bit Refresh Address Counter
 - Refresh Cycle Controller
}

The Intel ${ }^{(83} 3222$ is a refresh controller for dynamic RAMs requiring refresh of up to 6 input addresses (or 4 K bits for 64×64 organization). The device contains an accurate refresh timer (whose frequency can be set by an external resistor and capacitor), plus all necessary control and I/O circuitry to provide for the refresh requirements of dynamic RAMs. The chip's high performance makes it especially suitable for use with high speed N-channel RAMs like the Intel® 2107B. The 3222 is well suited for asynchronous dynamic memory systems.
The 3222 operates from a single +5 volt power supply and is specified for operation over a $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ ambient temperature range. It is fabricated by means of Intel's highly reliable Schottky bipolar process.

PIN CONFIGURATION

PIN NAMES

$A_{0} \cdot A_{5}$	ADDRESS INPUTS	$\overline{0}_{0} \cdot \overline{0}_{5}$	ADDRESS OUTPUTS
$\overline{\text { ACK }}$	ACKNOWLEDGE OUTPUT	$\overline{\text { 人 }}$	INTERNAL REFRESH REQUEST LATCH OUTPUT
BUSY	BUSY INPUT	$\overline{\text { REFON }}$	REFRESH ON OUTPUT
CYREO	CYCLE REQUEST INPUT	REFREQ	REFRESH REQUEST INPUT
		RxCx	RC TIE POINT.
		STARTCY	START CYCLE OUTPUT
		V cc	+5V SUPPLY

BLOCK DIAGRAM

Absolute Maximum Ratings*

Temperature Under Bias -65° to $+125^{\circ} \mathrm{C}$
Storage Temperature -65° to $+160^{\circ} \mathrm{C}$
All Input, Output or Supply Voltages -0.5 V to +7 V
All Input Voltages -1.0 V to +5.5 V
Output Currents . 100 mA
Power Dissipation . 1 W
*COMMENT
Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device is a stress rating only and functional operation of the device
at these or at any other condition above those indicated in the operational sections of this specification is not implied.
D.C. Characteristics All Limits Apply for $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Symbol	Parameter	Limits			Unit	Test Conditions
		Min.	Typ. ${ }^{\text {[1] }}$	Max.		
$\mathrm{I}_{\text {FB }}$	Input Load Current $\overline{\text { BUSY }}$		0.40	1	mA	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {FO }}$	Input Load Current All Other Inputs		0.05	0.25	mA	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$
I_{RB}	Input Leakage Current $\overline{\text { BUSY }}$		<1	50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
I_{RO}	Input Leakage Current All Other Inputs		<1	20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V}$
$V_{\text {CLAMP }}$	Input Clamp Voltage	,	-0.76	-1	V	$\mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~mA}$
$\mathrm{V}_{\text {IL }}$	Input "Low" Voltage			0.8	V	
V_{IH}	Input "High" Voltage	2.0			V	
I_{CC}	Power Supply Current		91	120	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
I_{Sc}	Output High Short Circuit Current		-48	-70	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.32	0.45	V	$\mathrm{l}_{\mathrm{OL}}=5 \mathrm{~mA}$
V_{OH}	Output High Voltage ($\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{5}$)	2.6	3.1		V	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (All Other Outputs)	2.4	3.0		V	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \end{aligned}$

Note 1: Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal power supply voltages.

Capacitance ${ }^{[2]}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Test	Limits (pF)		Conditions
		Typ.	Max.	
$\mathrm{C}_{\text {IN }}$ (Address)	Input Capacitance	5	10	$\mathrm{V}_{\text {bias }}=2.0 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$ ($\overline{\mathrm{CYREQ}}$)	Input Capacitance	6	10	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$ ($\overline{\mathrm{BUSY}}$)	Input Capacitance	20	30	$\mathrm{f}=1 \mathrm{MHz}$

Note 2: This parameter is periodically sampled and is not 100% tested. Conditions of Test:Input pulse amplitude: 3 V , Input rise and fall times: 5 ns between 1 V and 2 V . Measurements are made at 1.5 V .

Symbol	Parameter	Min.	Typ. ${ }^{1}$	Max.	Unit	Conditions
$\mathrm{t}_{\text {AA }}$	Address In to Address Out		7	12	ns	$\overline{\text { BUSY }}=\mathrm{V}_{1 H}$
$t_{\text {BAM }}$	$\overline{\text { BUSY }}$ In to Address Out		21	28	ns	
$t_{\text {BAR }}$	$\overline{\text { BUSY }}$ In to Counter Out		18	27	ns	
t_{BK}	$\overline{\text { BUSY }}$ In to $\overline{A C K}$ Out		14	20	ns	$\overline{\text { REFREQ }}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{CYREQ}}=\mathrm{V}_{\mathrm{IL}}$
$t_{\text {BR }}$	$\overline{\text { BUSY }}$ In to $\overline{\text { REFON }}$ Out		15	24	ns	
t_{BS}	$\overline{\text { BUSY }}$ In to STARTCY Out	4	7	14	ns	$\widehat{\text { CYREQ }}=\mathrm{V}_{\mathrm{IL}}$
$t_{\text {HOLD }}$	BUSY Hold Time	50			ns	External Delay between STARTCY and $\overline{B U S Y}$
t_{RH}	$\overline{\text { CYREQ or }} \overline{\text { REFREQ }}$ Hold Time	0			ns	External Delay after $\overline{\mathrm{BUSY}}$
$t_{\text {RR }}$	$\overline{\text { REFREQ }}$ to $\overline{\text { REFON }}$		18	26	ns	$\overline{\mathrm{CYREQ}}$ and $\overline{\mathrm{BUSY}}=\mathrm{V}_{I H}$, No priority contention between $\overline{\text { REFREO }}$ and $\overline{\text { CYREQ }}$
$t_{\text {RRC }}$	$\overline{\text { REFREQ to REFON }}$		33	45	ns	$\overline{\text { BUSY }}=\mathrm{V}_{1 H}$
$\mathrm{t}_{\text {RS }}$	$\overline{\text { CYREO }}$ or REFREO In to STARTCY Out	9	14	21	ns	$\overline{\overline{B U S Y}}=\mathrm{V}_{\mathrm{IH}}$
${ }^{\text {t }}$ Stup	$\overline{\text { BUSY }}$ Setup Time	120			ns	$\overline{\text { BUSY }}=\mathrm{V}_{\text {IL }}$ During Refresh

Note 1: Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal power supply voltages.
A. SYSTEM MEMORY CYCLE WITH MEMORY NOT BUSY

B. SYSTEM MEMORY CYCLE WITH MEMORY BUSY (FOLLOWING REFRESH CYCLE)

(Numbers in parentheses are minimum values in ns unless otherwise specified.)

C. REFRESH MEMORY CYCLE WITH MEMORY NOT BUSY
D. REFRESH MEMORY CYCLE WITH MEMORY BUSY (FOLLOWING SYSTEM CYCLE) Elampa Some
(Numbers in parentheses are minimum values in ns unless otherwise specified.)

E. TYPICAL APPLICATION OF 3222 REFRESH CONTROLLER IN A 2107B SYSTEM

F. USE OF 3222 FOR REFRESH TIMING AND CONTROL IN A 2104 SYSTEM

PIN NAMES AND FUNCTIONS

Pin No.	Pin Name	Function
1	$\overline{\mathrm{Q}}$	Output of the internal Refresh Re- quest latch. This pin may be con- nected to the Refresh Request input (REFREQ) directly for asynchro- nous sequential mode refresh or indirectly through control logic for burst mode or synchronous mode refresh (see text).
2	$\overline{R E F R E Q}$	Refresh Request input (active when low). The request is honored only if the memory is not presently execut- ing a cycle (BUSY high) and if a system cycle request did not occur first.
$\overline{\mathrm{CYREQ}}$	System Memory Cycle Request in- put (active when low). The request is honored only if the memory is not	
presently executing a cycle (BUSY		
high) and if a refresh request did not		
occur first.		

4. STARTCY Output signal indicating to external circuitry that a memory cycle (system or refresh) is to begin. See text for timing considerations for a refresh cycle.

5-7 $\quad \mathrm{A}_{0}-\mathrm{A}_{5}$
15-17

8-10 $\quad \overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{5}$

11 GROUND
18 BUSY

19 REFON
$20 \quad \overline{\mathrm{ACK}}$
Low order system address inputs. These addresses are multiplexed to the address output pins $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{5}\right)$ during a system cycle.

Low order memory address outputs. During a system cycle these outputs give the low order ($\mathrm{A}_{0}-\mathrm{A}_{5}$) address of a memory access. During a refresh cycle these outputs give the refresh address (generated internal to the 3222).

Ground.
An externally generated signal which the 3222 monitors to determine memory system status. If $\overline{B U S Y}$ is high the memory is not busy and a system or refresh cycle may begin. If $\overline{B U S Y}$ is low the memory is being accessed for a data I/O or refresh cycle and no other cycle may begin.

The 3222 output which when low indicates the memory system is either ready to begin or is in a refresh cycle (Refresh On).

The 3222 output which when low in- dicates the memory system is either ready to begin or is in a system cycle (system cycle request accepted and acknowledged).

Pin No.	Pin Name	Function
21	RX/CX	Connection point for the RC net- work which determines the refresh period for sequential refresh mode. (See Refresh Control section).
22	VCC	+5 volt supply.

FUNCTIONAL DESCRIPTION

The Intel ${ }^{\circledR} 3222$ performs the four basic functions of a refresh controller by:

1. Providing a refresh timing oscillator.
2. Generating six bit refresh addresses.
3. Multiplexing refresh and system addresses to the six low order address inputs ($\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{5}$).
4. Providing control signals for both refresh and memory cycle accesses.
As shown in the pin configuration figure, the 3222 has as inputs the six low order $\left(\mathrm{A}_{0}-\mathrm{A}_{5}\right)$ system addresses. These addresses are internally multiplexed with six internally generated refresh addresses. The output of these multiplexers provide the six low order addresses to the memory array.
The block diagram shows the four main circuit categories of the 3222. An explanation of the workings of each of these categories is given in the Device Operation section from a users point of view.

DEVICE OPERATION

Operation of the Intel® 3222 Refresh Controller is most easily explained by considering five conditions presented by the three input control lines Cycle Request (CYREQ), Refresh Request (REFREQ), and System Busy ($\overline{\mathrm{BUSY}}$). These conditions are:

1. System memory cycle request - memory not busy ($\overline{B U S Y}=\mathrm{High}$)
2. System memory cycle request - memory busy ($\overline{B U S Y}=$ Low)
3. Refresh cycle request - memory not busy (BUSY $=$ High)
4. Refresh cycle request - memory busy ($\overline{\mathrm{BUSY}}=\mathrm{LOW}$)
5. Simultaneous system memory cycle and refresh cycle requests.
Condition 5 is actually a subset of the four previous conditions and is included for completeness.
As is implied in the five conditions, the response of the 3222 to both refresh and memory cycles is dependent on the state of the $\overline{B U S Y}$ input. The $\overline{B U S Y}$ signal is generated externally to the 3222 and, when low, defines the time when the memory is performing a cycle (refresh or memory access). It is important to assure that $\overline{B U S Y}$ is low for the entire memory cycle time. Interference may occur in asynchronous memory systems if the $\overline{B U S Y}$ input goes high prematurely. (An asynchronous memory system is one in which the refresh and memory cycle requests occur independent of each other.)

System Memory Cycle Request - Memory Not Busy

This section details operation of the 3222 when the memory is not busy and a request for a system memory cycle is made (See Figure A for timing sequences). The request for a memory cycle is made by the $\overline{C Y R E Q}$ input going low. The Start Cycle output STARTCY goes low at $t_{\text {RS }}$ after CYREQ. STARTCY is used for two purposes:

1. To set the external $\overline{B U S Y}$ latch. (See Figure E.)
2. To initiate memory system timing (after appropriate delay).

The required delay time depends on system configuration and associated delay paths for both Chip Enable (2107B input signal) and system addresses.
The low going $\overline{B U S Y}$ input causes the internally generated Start Cycle output to go high and the Acknowledge output $\overline{A C K}$ to go low (after $t_{B K}$ time). The Acknowledge output confirms that the requested system memory cycle has been accepted by the 3222. Note that the cycle request input may be returned to the high state when the $\overline{B U S Y}$ input goes low. However, at the designer's discretion, the cycle request line may remain low until "just prior" to $\overline{B U S Y}$ returning high. (If $\overline{B U S Y}$ goes high before CYREQ goes high, another memory access may inadvertently be started.)
When the memory is not busy and a cycle request has been made, the low order system address delay through the 3222 is $t_{A A}$ nsec. When the 3222 is not busy, the low order system addresses $\left(\mathrm{A}_{0}-\mathrm{A}_{5}\right)$ are gated through to the output $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{5}\right)$ independent of any other input.

System Memory Cycle Request - Memory Busy

The major differences between a system memory cycle request when the system is busy and when it is not busy (as previously described) are:

1. The Start Cycle output $\overline{\text { STARTCY }}$ does not go low until $t_{B S}$ after the rising edge of the BUSY input. (Even though the CYREQ input is low.)
2. Output addresses $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{5}$ change at or before t_{AA} time if the previous cycle was a system cycle request and change at or before $t_{\text {BAM }}$ if the previous cycle was a Refresh Cycle request. (Note that the longer delay is after a refresh cycle.) See Figure B for definition of terms.
Note that for a system memory cycle following a refresh cycle, the refresh on output $\overline{\text { REFON }}$ goes high at or before $t_{B R}$ relative to $\overline{B U S Y}$ going high. Since the Acknowledge output $\overline{A C K}$ can not go low until after $t_{\text {HOLD }}$ there is no ambiguity between $\overline{R E F O N}$ and $\overline{A C K}$. The memory is always defined as being in a refresh cycle, system cycle or no cycle.

Refresh Cycle - Memory Not Busy

Operation of the 3222 for a refresh request with the memory not busy (see Figure C) is similar to a system cycle request under the same condition. A refresh cycle is initiated by the Refresh Request input ($\overline{R E F R E Q}$) going low. This low going input causes both the Start Cycle output, $\overline{\text { STARTCY, }}$, and Refresh On output, $\overline{\text { REFON, to go low at t }}$
and trRC (or trR) time respectively. The low going edge of $\overline{S T A R T C Y}$ is used to set the external BUSY latch low. As in the previous two cases, the BUSY input must remain low for the entire cycle required by the memory. As in the previous two cases, the low going $\overline{B U S Y}$ drives the $\overline{S T A R T C Y}$ output high.

Refresh Cycle - Memory Busy

For this condition, it is assumed that the previous cycle was a system access cycle. Timing conditions for this operation are shown in Figure D. Here, the STARTCY input goes low $t_{B S}$ after $\overline{B U S Y}$ returns high from the previous cycle. As before, $\overline{R E F O N}$ goes low $t_{B R}$ after $\overline{B U S Y}$ goes high. After $t_{\text {HOLD }}$, relative to STARTCY, $\overline{B U S Y}$ again goes low and places the low order refresh addresses on the address outputs $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{5}\right)$ after $\mathrm{t}_{\mathrm{BAR}}$ time. Internal refresh timing is performed in a manner identical to that described in Refresh Cycle-Memory Not Busy section.

Simultaneous Refresh and Memory System Cycle Request
The simultaneous request for a refresh and memory system access is almost a certainty in asynchronous systems. It is, therefore, necessary to have circuitry in any refresh controller capable of resolving the attendent ambiguity with minimum additional delay. The Intel ${ }^{\circledR} 3222$ Refresh Controller has just such a circuit. (All timing parameters specified for asynchronous operation assume that a refresh and memory system request can occur at the same time.) A latch internal to the 3222 decides which signal ($\overline{\text { CYREQ }}$ or REFREQ) it will accept if both occur simultaneously, and conditions the other control circuits appropriately. If a refresh cycle was accepted, $\overline{\text { REFON }}$ will go low at the appropriate time. If a memory system access was accepted then $\overline{A C K}$ will go low at the appropriate time.

Refresh Control

The 3222 controls both burst and distributed refresh modes. The burst refresh mode requires that $\overline{R E F R E Q}$ be generated externally to the 3222 since refresh is completed in 64 consecutive cycles every 2 ms . A system requiring distributed refresh timing, however can be controlled either by the 3222 or by external circuitry. If refresh timing is to be controlled by the 3222 the output \bar{Q} is tied to the $\overline{\text { REFRE }} \bar{Q}$ input. Timing is controlled by an oscillator internal to the 3222. The desired refresh timing interval is determined by:

1. $\frac{t_{\text {REF }}}{r}=.63 R_{x} C_{x}$

Where:
$t_{\text {REF }}=$ the total time between refreshes (e.g. 2 msec) in msec.
$r=$ the number of rows to be refreshed on the memory device (for the 2107B $r=64$).
$\mathrm{R}_{\mathrm{X}}=$ external timing resistance in $\mathrm{K} \Omega$ (3 K to 10 K)
$\mathrm{C}_{\mathrm{x}}=$ external timing capacitance in $\mu \mathrm{f} .(0.005 \mu \mathrm{f}$ to $0.02 \mu \mathrm{f})$
The 3222's oscillator stability is guaranteed to be $\pm 2 \%$ for a given part and $\pm 6 \%$ from part to part, both over the ranges $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$.
Figure F shows how the 3222 may be used to control refresh in a 2104 system.

ADDRESS MULTIPLEXER AND REFRESH COUNTER FOR 4K DYNAMIC RAMs

- Ideal For 2104

Simplifies System Design
Reduces Package Count
Standard 24-Pin DIP

- Address Input to Output Delay: 9ns Maximum Driving 15pF, 25ns Maximum Driving 250pF
- Suitable For Either Distributed Or Burst Refresh

- Single Power Supply:

 +5 Volts $\pm 10 \%$The Intel® 3232 contains an address multiplexer and refresh counter for multiplexed address dynamic RAMs requiring refresh of up to 6 input addresses (or 4 K bits for 64×64 organization). It multiplexes twelve bits of system supplied address to six output address pins. The device also contains a 6 bit refresh counter which is externally controlled so that either distributed or burst refresh may be used. The high performance of the 3232 makes it especially suitable for use with high speed N -channel RAMs like the 2104.

The 3232 operates from a single +5 volt power supply and is specified for operation over a 0 to $+75^{\circ} \mathrm{C}$ ambient temperature range.

PIN CONFIGURATION

NOTE: A_{0} THROUGH A_{5} ARE ROW ADDRESSES
A_{6} THROUGH A_{11} ARE COLUMN ADDRESSES.

TRUTH TABLE AND DEFINITIONS:

REFRESH ENABLE	ROW ENABLE	OUTPUT H
X	REFRESH ADDRESS (FROM INTERNAL COUNTER)	
L	H	ROW ADDRESS (A A THROUGH $_{5}$)
L	L	COLUMN ADDRESS $\left(A_{6}\right.$ THROUGH $\left.A_{11}\right)$

$\overline{\text { COUNT - ADVANCES INTERNAL REFRESH COUNTER. }}$
ZERO DETECT - INDICATESA ZERO IN THE REFRESH ADDRESS
(USED IN BURST REFRESH MODE).

LOGIC DIAGRAM

Absolute Maximum Ratings*

Temperature Under Bias	-65° to $+125^{\circ} \mathrm{C}$
Storage Temperature	-65° to $+160^{\circ} \mathrm{C}$
All Input, Output, or	
Supply Voltages	0.5 V to +7 Volts
Output Currents	100mA
Power Dissipation	.. 1W

*COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

All Limits Apply for $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		TYP.(1)	MAX.			
I_{F}	Input Load Current		-0.04	-0.25	mA	$\mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
I_{R}	Input Leakage Current		0	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0			V	
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage			0.8	V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage		0.25	0.40	V	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{5}\right)$	2.8	4.0		V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH} 1}$	Output High Voltage (Zero Detect) $)$	2.4	3.3		V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$
I_{CC}	Power Supply Current		100	150	mA	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

Note 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

A.C. Characteristics

All Limits Apply for $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$, Load $=1 \mathrm{TTL}, \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$, Unless Otherwise Specified.

SYMBOL	PARAMETER	MIN.	TYP(${ }^{(1)}$	MAX.	UNIT	CONDITIONS
t_{AO}	Address Input to Output Delay		6	9	ns	Refresh Enable $=$ Low $^{(1)(2)}$
$\mathrm{t}_{\mathrm{AOI}}$	Address Input to Output Delay		16	25	ns	Refresh Enable = Low
too	Row Enable to Output Delay	7	12	18	ns	Refresh Enable $=$ Low $^{(1)}{ }^{(2)}$
tool	Row Enable to Output Delay	12	28	41	ns	Refresh Enable = Low
t_{E}	Refresh Enable to Output Delay	7	14	20	ns	Note 1, 2
$\mathrm{t}_{\text {EOI }}$	Refresh Enable to Output Delay	12	30	45	ns	
t_{c}	$\overline{\text { Count }}$ to Output	15	40	60	ns	Refresh Enable $=\mathrm{High}^{(1)(2)}$
$\mathrm{tcO}_{\text {col }}$	$\overline{\text { Count }}$ to Output	20	55	80	ns	Refresh Enable $=$ High
f_{c}	Counting Frequency	5			MHz	
$\mathrm{t}_{\text {cpw }}$	$\overline{\text { Count Pulse Width }}$	35			ns	
t_{cz}	$\overline{\text { Count to } \overline{\text { Zero }} \overline{\text { Detect }} \text {)}}$			70	ns	Note 2

Note 1: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
2: $C_{L}=15 \mathrm{pF}$
A.C. TIMING WAVEFORMS (Typically used with 2104)

NORMAL CYCLE

REFRESH CYCLE

PIN NAMES AND FUNCTIONS		
Pin. No.	Pin Name	Function

DEVICE OPERATION

The Intel ${ }^{\circledR} 3232$ Address Multiplexer/Refresh Counter performs the following functions:

1. Row, Column and Refresh Address multiplexing
2. Address counting for burst or distributed refresh.

These functions are controlled by two signals: Refresh Enable and Row Enable, both of which are active high TTL
inputs. The truth table on page 1 shows the levels required to multiplex to the output:

1. Refresh addresses (from internal counter)
2. Row addresses (A_{0} through A_{5})
3. Column addresses (A_{6} through A_{11})

Burst Refresh Mode

When refresh is requested, the refresh enable input is high. This input is ANDed with the 6 outputs of the internal 6 bit counter. At each. Count pulse the counter increments by one, sequencing the outputs ($\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{5}$) through all 64 row addresses. When the counter sequences to all zeros, the Zero Detect output goes low signaling the end of the refresh sequence. Due to counter decoding spikes, the Zero Detect output is valid only after $t_{c z}$ following the low going edge of Count.

Distributed Refresh Mode

In the distributed refresh mode, one row is selected for refresh each ($t_{\text {REFRESH }} / n$) time where $n=$ number of rows in the device and $t_{\text {REFRESH }}$ is the specified refresh rate for the device. For the $2104, \mathrm{t}_{\text {Refresh }}=2 \mathrm{msec}$ and $\mathrm{n}=64$, therefore one row is refreshed each $31 \mu \mathrm{sec}$. Following the refresh cycle at row n_{x}, the Count input is pulsed, advancing the refresh address by one row so that the next refresh cycle will be performed on row n_{x+1}. The Count input may be pulsed following each refresh cycle or within the refresh cycle after the specified memory device address hold time.

Row and Column Address

All twelve system address lines are applied to the inputs of the 3232. When Refresh Enable is low and Row Enable is high, input addresses $A_{0}-A_{5}$ are gated to the outputs and applied to the driven memories. Conversely, when Row Enable is low (with Refresh Enable still low), input addresses $\mathrm{A}_{6}-\mathrm{A}_{11}$ are gated to the outputs and applied to the driven memories.
Figure 1 shows a typical connection between the 3232 and the 2104 4K dynamic RAM. When the memory devices are driven directly by the 3232, the address applied to the memory devices is the inverse of the address at the 3232 inputs due to the inverted outputs of the 3232. This should be remembered when checking out the memory system.

Figure 1. Typical Connection of 3232 and 2104 Memories.

ADDRESS MULTIPLEXER AND REFRESH COUNTER FOR 16K DYNAMIC RAMs

- Ideal For 2116
- Simplifies System Design

Reduces Package Count

- Standard 28-Pin DIP
- Suitable For Either Distributed Or Burst Refresh
> - Single Power Supply: +5 Volts $\pm 10 \%$
> - Address Input to Output Delay: 9ns Maximum Driving 15 pF, 25ns Maximum Driving 250pF

The Intel® 3242 is an address multiplexer and refresh counter for multiplexed address dynamic RAMs requiring refresh of 64 or 128 cycles. It multiplexes 14 bits of system supplied address to 7 output address pins. The device also contains a 7 bit refresh counter which is externally controlled so that either distributed or burst refresh may be used. The high performance of the 3242 makes it especially suitable for use with high speed N-channel RAMs like the 2116.
The 3242 operates from a single +5 volt power supply and is specified for operation over a 0 to $+75^{\circ} \mathrm{C}$ ambient temperature range.

PIN CONFIGURATION

NOTE: A_{0} THROUGH A_{6} ARE ROW ADDRESSES. A_{7} THROUGH A_{13} ARE COLUMN ADDRESSES.

TRUTH TABLE AND DEFINITIONS:

REFRESH ENABLE	ROW ENABLE	OUTPUT
H	X	REFRESH ADDRESS (FROM INTERNAL COUNTER)
L	H	ROW ADDRESS $\left(\mathrm{A}_{0}\right.$ THROUGH $\left.\mathrm{A}_{6}\right)$
L	L	COLUMN ADDRESS $\left(\mathrm{A}_{7}\right.$ THROUGH $\left.\mathrm{A}_{13}\right)$

COUNT - ADVANCES INTERNAL REFRESH COUNTER. ZERO DETECT - INDICATES ZERO IN THE FIRST 6 SIGNIFICANT REFRESH COUNTER BITS (USED IN BURST REFRESH MODE)

LOGIC DIAGRAM

QUAD TTL-TO-MOS DRIVER

For 4K N-Channel MOS RAMs

Fully Compatible With 4K RAMs Without Requiring Extra Supply Or External Devices

- High Speed, 32 nsec Max. Delay + Transition Time
- Low Power - 75mW Typical Per Channel

High Density - Four Drivers in One Package

- TTL \& DTL Compatible Inputs
- CerDIP Package - 16 Pin DIP
- Only +5 and +12 Volt Supplies Required

The Intel ${ }^{\circledR} 3245$ is a Quad Bipolar-to-MOS driver which accepts TTL and DTL input signals. It provides high output current and voltage suitable for driving the clock inputs of N-channel MOS memories such as the 2107B. The circuit operates from two power supplies which are 5 and 12 volts. Input and output clamp diodes minimize line reflections.
The device features two common enable inputs, a refresh select input, and a clock control input for simplified system designs. The internal gating structure of the 3245 eliminates gating delays and minimizes package count.
The 3245 is fabricated by means of Intel's highly reliable Schottky bipolar process and is specified for operation over a 0 to $+75^{\circ} \mathrm{C}$ ambient temperature range.

Absolute Maximum Ratings*

Temperature Under Bias	
Storage Temperature.	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage, VCC	-0.5 to +7 V
Supply Voltage, VDD	-0.5 to +14V
All Input Voltages	-1.0 to VDD
Outputs for Clock Driver	-1.0 to $V_{D D}+1 \mathrm{~V}$
Power Dissipation at 25°	

"COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
$I_{\text {FD }}$	Input Load Current, $\overline{1}_{1}, \bar{T}_{2}, \bar{T}_{3}, \bar{T}_{4}$		-0.25	mA	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$
$I_{\text {fe }}$	Input Load Current, $\overline{\mathrm{R}}, \overline{\mathrm{C}}, \overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2}$		-1.0	mA	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$
$I_{\text {RD }}$	Data Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.0 \mathrm{~V}$
$\mathrm{I}_{\text {RE }}$	Enable Input Leakage Current		40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.0 \mathrm{~V}$
V_{OL}	Output Low Voltage		0.45	V	$\mathrm{l}_{\mathrm{OL}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}$
		-1.0		V	$\mathrm{I}_{\mathrm{OL}}=-5 \mathrm{~mA}$
VOH	Output High Voltage	$\mathrm{V}_{\mathrm{DD}}-0.50$		V	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
			$\mathrm{V}_{\text {DD }}+1.0$	V	$\mathrm{IOH}=5 \mathrm{~mA}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage, All Inputs		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage, All Inputs	2		V	

POWER SUPPLY CURRENT DRAIN AND POWER DISSIPATION

Symbol	Parameter	Typ.	Max.	Unit	Test Conditions - Input states to ensure the following output states:	Additional Test Conditions
ICC	Current from V CC	23	30	mA	High	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{D D}=12.6 \mathrm{~V} \end{aligned}$
IDD	Current from V ${ }_{\text {DD }}$	19	26	mA		
$\mathrm{P}_{\mathrm{D} 1}$	Power Dissipation	365	485	mW		
	Power Per Channel	91	121	mW		
ICc	Current from VCc	29	39	mA	Low	
IDD	Current from VDD	12	15	mA		
$\mathrm{P}_{\mathrm{D} 2}$	Power Dissipation	300	388	mW		
	Power Per Channel	75	97	mW		

A.C. Characteristics $T_{A}=0^{\circ}$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.[1]	Typ.[2,4]	Max.[3]	Unit	Test Conditions
t_{++}	Input to Output Delay	5	11		ns	$R_{\text {SERIES }}=0$
t_{DR}	Delay Plus Rise Time		20	32	ns	$R_{\text {SERIES }}=0$
t_{+-}	Input to Output Delay	3	7		ns	$R_{\text {SERIES }}=0$
t_{DF}	Delay Plus Fall Time		18	32	ns	$R_{\text {SERIES }}=0$
t_{T}	Output Transition Time	10	17	25	ns	$R_{\text {SERIES }}=20 \Omega$
t_{DR}	Delay Plus Rise Time		27	38	ns	$R_{\text {SERIES }}=20 \Omega$
t_{DF}	Delay Plus Fall Time		25	38	ns	$R_{\text {SERIES }}=20 \Omega$

NOTES:
$\left.\begin{array}{l}\text { 1. } C_{L}=150 \mathrm{pF} \\ \text { 2. } C_{L}=200 \mathrm{pF} \\ \text { 3. } C_{L}=250 \mathrm{pF}\end{array}\right] \quad \begin{aligned} & \text { These values represent a range of } \\ & \text { total stray plus clock capacitance } \\ & \text { for nine } 4 \mathrm{~K} R \mathrm{RAMs.}\end{aligned}$
4. Typical values are measured at $25^{\circ} \mathrm{C}$.

Capacitance ${ }^{*} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Test	Typ.	Max.	Unit
C_{IN}	Input Capacitance, $\bar{\Gamma}_{1}, \overline{\bar{I}_{2}}, \bar{I}_{3}, \bar{I}_{4}$	5	8	pF
C_{IN}	Input Capacitance, $\overline{\mathrm{R}}, \overline{\mathrm{C}}, \overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2}$	8	12	pF

*This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, \mathrm{V}_{\text {bias }}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

A.C. CONDITIONS OF TEST

Input Pulse Amplitudes: 3.0V
Input Pulse Rise and Fall Times: 5 ns between 1 volt and 2 volts
Measurement Points: See Waveforms

Waveforms

Typical Characteristics

INPUT TO OUTPUT DELAY
VS. LOAD CAPACITANCE

DELAY PLUS TRANSITION TIME VS. LOAD CAPACITANCE

Typical System

Below is an example of a $64 \mathrm{~K} \times 18$ bit memory system (each card is $16 \mathrm{~K} \times 18$) employing the 3245 quad high voltage driver for the chip enable inputs. A single 3245 package drives $16 \mathrm{~K} \times 9$ bits. A_{0} through A_{11} are $2107 B$ addresses.

QUAD ECL-TO-MOS DRIVER

For 4K N-Channel MOS RAMs

- Fully Compatible With 4K RAMs Without Requiring Extra Supply Or External Devices.

- High Speed, 30 nsec Max. Delay + Rise Time
- 10K ECL Compatible Inputs
- High Density - Four Drivers In One Package
- CerDIP Package - 16 Pin DIP

The Intel ${ }^{\circledR} 3246$ is a Quad Bipolar-to-MOS driver which accepts ECL input signals. It provides high output current and voltage suitable for driving the clock inputs of N -channel MOS memories such as the 2107 or 2105 . The circuit operates from three power supplies which are $5,-5.2$, and 12 volts. Input and output clamp diodes minimize line reflections.
The device features a common enable input, a refresh select input, and a clock control input for simplified system designs. The internal gating structure of the 3246 eliminates gating delays and minimizes package count.
The 3246 is fabricated by means of Intel's Schottky Bipolar technology to assure high performance over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ ambient temperature range.

Final Data Sheet Information Will Be Available In Second Quarter 1976.

Absolute Maximum Ratings*

Temperature Under Bias	$-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage, V_{CC}.	-0.5 to +7 V
Supply Voltage, VDD	-0.5 to +14V
Supply Voltage, VEE.	-7.0 to +0.5 V
All Input Voltages	V_{EE} to +0.5 V
Outputs for Clock Driver	-1.0 to $V_{D D}+1 \mathrm{~V}$
Power Dissipation at $25^{\circ} \mathrm{C}$	

"COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Typ ${ }^{11]}$	Max.	Unit	Test Conditions
$I_{\text {FD }}$	Input Load Current, $\overline{I_{1}}, \overline{I_{2}}, \overline{I_{3}}, \overline{I_{4}}$		0.3	0.5	mA	$\mathrm{V}_{\mathrm{F}}=-0.8 \mathrm{~V}$
$\mathrm{I}_{\text {FE }}$	Input Load Current, $\overline{\mathrm{R}}, \overline{\mathrm{C}}, \overline{\mathrm{E}}$		1.0	2.0	mA	$V_{F}=-0.8 \mathrm{~V}$
$V_{\text {OL }}$	Output Low Voltage		0.2	0.45	V	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}, \mathrm{~V}_{1 H}=-1.025 \mathrm{~V}$
		-0.5			V	$\mathrm{IOL}^{\text {O }}=-1 \mathrm{~mA}$
$\mathrm{VOH}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{V}_{\mathrm{DD}}-0.5$	$\mathrm{V}_{\mathrm{DD}}-0.2$		V	$\mathrm{IOH}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=-1.520 \mathrm{~V}$
			V_{DD}	$\mathrm{V}_{\mathrm{DD}}+0.5$	V	$\mathrm{IOH}=5 \mathrm{~mA}$
$V_{\text {IL }}$	Input Low Voltage, All Inputs			-1.520	V	
$V_{1 H}$	Input High Voltage, All Inputs	-1.025			V	

POWER SUPPLY CURRENT DRAIN AND POWER DISSIPATION

Symbol	Parameter	Typ.[1]	Max.	Unit	Test Conditions - Input states to ensure the following output states:	Additional Test Conditions
I_{CC}	Current from V_{CC}	20	27	mA		
I_{DD}	Current from V_{DD}	23	31	mA	High	
I_{EE}	Current from V_{EE}	-35	-42	mA		
$\mathrm{P}_{\mathrm{D} 1}$	Power Dissipation	586	762	mW		$V_{\mathrm{CC}}=5.25 \mathrm{~V}$
	Power Per Channel	146	190	mW		$\mathrm{~V}_{\mathrm{DD}}=12.6 \mathrm{~V}$
I_{CC}	Current from V_{CC}	17	24	mA		$\mathrm{~V}_{\mathrm{EE}}=-5.46 \mathrm{~V}$
I_{DD}	Current from V_{DD}	14	22	mA		
I_{EE}	Current from V_{EE}	-29	-36	mA		
$\mathrm{P}_{\mathrm{D} 2}$	Power Dissipation	424	600	mW		

Note: 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal power supply voltages.
A.C. Characteristics $T_{A}=0^{\circ}$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min. ${ }^{11]}$	Typ. [2,4]	Max. ${ }^{[3]}$	Unit	Test Conditions
t-+	Input to Output Delay	8	12		ns	$\mathrm{R}_{\text {SERIES }}=0$
$t_{\text {DR }}$	Delay Plus Rise Time		18	30	ns	$\mathrm{R}_{\text {SERIES }}=0$
t_{+-}	Input to Output Delay	8	13		ns	$\mathrm{R}_{\text {SERIES }}=0$
$t_{\text {dF }}$	Delay Plus Fall Time		25	35	ns	$\mathrm{R}_{\text {SERIES }}=0$
${ }_{\text {t }}$	Output Rise Time	10	13	23	ns	$\mathrm{R}_{\text {SERIES }}=20 \Omega$
$t_{\text {DR }}$	Delay Plus Rise Time		23	34	ns	$\mathrm{R}_{\text {SERIES }}=20 \Omega$
${ }^{\text {t }}$ DF	Delay Plus Fall Time		30	40	ns	$\mathrm{R}_{\text {SERIES }}=20 \Omega$

NOTES: 1. $C_{L}=150 \mathrm{pF} \quad$ These values represent a range of
2. $\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF} \quad$ total stray plus clock capacitance
3. $\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \quad$ for nine 4 K RAMs.
4. Typical values are measured at $25^{\circ} \mathrm{C}$.

Capacitance* $T_{A}=25^{\circ} \mathrm{C}$

Symbol	Test	Typ.	Max.	Unit
$\mathrm{C}_{I N}$	Input Capacitance, $\bar{T}_{1}, \bar{T}_{2}, \overline{T_{3}}, \overline{T_{4}}, \overline{\mathrm{R}}$	4	7	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance, $\overline{\mathrm{C}}, \overline{\mathrm{E}}$	8	12	pF

*This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, V_{\text {bias }}=-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$, and $T_{A}=25^{\circ} \mathrm{C}$.

A.C. CONDITIONS OF TEST

Input Pulse Amplitudes: 0.8 V
Input Pulse Rise and Fall Times: 5 ns (between 10\% and 90\% Points) Measurement Points: See Waveforms

Waveforms

Typical Characteristics

Typical System

Below is an example of a $64 \mathrm{~K} \times 18$ bit memory system (each card is $16 \mathrm{~K} \times 18$) employing the 3246 quad high voltage driver for the chip enable inputs. A single 3246 package drives $16 \mathrm{~K} \times 9$ bits. A_{0} through A_{11} are $2107 B$ addresses.

QUAD CMOS-TO-MOS DRIVER

For 4K N-Channel MOS RAMs

\author{

- CMOS Technology for Very Low Power: Suitable for Battery Backup
 - High Density: Four Drivers in One Package
}
- Internal Gating Structure Minimizes Package Count CMOS Compatible Inputs
- CerDIP Package: 16 Pin DIP
- Only One Power Supply Required, +12 V ($\pm 10 \%$)

The Intel® 5234 is a Quad CMOS-to-MOS driver which accepts CMOS input signals. It provides high output current and voltage suitable for driving the clock inputs of N -channel MOS memories such as the 2107A or 2107B. The circuit operates from a single 12 volt power supply.
The device features two common enable inputs, a refresh select input, and a clock control input for simplified system design. The Intel ion-implanted, silicon gate, Complementary MOS (CMOS) process allows the design and production of very low power drivers.

Absolute Maximum Ratings*

Temperature Under Bias $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Supply Voltage, VDD -0.5 to +14 V
All Input Voltages - 0.5 to ($\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$)
Outputs for Clock Driver -0.5 to ($\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$)
Power Dissipation at $25^{\circ} \mathrm{C}$. 1W
"COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=12 \mathrm{~V} \pm 10 \%$.

Symbol	Parameter	Min.	Typ. ${ }^{11]}$	Max.	Unit	Test Conditions
$\left\|I_{\text {LI }}\right\|$	Input Load Current			0.1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to V_{DD}
VOL	Output Low Voltage		0.15	0.4	V	$\mathrm{l}_{\mathrm{OL}}=5 \mathrm{~mA}$
		-1.0	-0.15			$\mathrm{l}_{\mathrm{OL}}=-5 \mathrm{~mA}$
V_{OH}	Output High Voltage	$\mathrm{V}_{\text {DD }}-0.4$	$V_{D D}-0.15$		V	$\mathrm{IOH}=-5 \mathrm{~mA}$
			$\mathrm{V}_{\mathrm{DD}}+15$	$\mathrm{V}_{D D^{+}}+5$		$\mathrm{lOH}=5 \mathrm{~mA}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage, All Inputs			2.0	V	
V_{IH}	Input High Voltage, All Inputs	$\mathrm{V}_{\text {DD }}-2.0$			V	
IDD	Supply Current		0.1	100	$\mu \mathrm{A}$	$V_{D D}=13.2 \mathrm{~V}, \mathrm{f}=0$
IDD1	Supply Current		13	20	mA	$\begin{aligned} & V_{D D}=13.2 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ & C_{L}=0,(\text { See Figure } 1) \end{aligned}$

Note 1: Typical values are at $25^{\circ} \mathrm{C}$ and nominal voltage.

Typical Characteristics

FIGURE 1

POWER SUPPLY CURRENT VS. FREQUENCY
(ALL 4 CHANNELS SWITCHING)

INPUT TO OUTPUT DELAY
VS. LOAD CAPACITANCE

DELAY PLUS TRANSITION TIME VS. LOAD CAPACITANCE

A.C. Characteristics $T_{A}=0^{\circ}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%$.

Symbol	Parameter	Min. ${ }^{11]}$	Typ.[2,4]	Max. ${ }^{[3]}$	Unit
t_{-+}	Input to Output Delay	20	45		ns
t_{DR}	Delay Plus Rise Time		70	100	ns
t_{+-}	Input to Output Delay	20	45		ns
t_{DF}	Delay Plus Fall Time		70	100	ns
t_{T}	Output Transition Time	10	25	40	ns

NOTES

1. $C_{L}=150 \mathrm{pF},{ }_{\text {2. }} C_{L}=200 \mathrm{pF}$

These values represent a range of
3. $C_{L}=250 p F$ for nine 4K RAMs.
4. Typical values are measured at $25^{\circ} \mathrm{C}$.

A.C. CONDITIONS OF TEST

Input Pulse Amplitudes: 0 to $V_{D D}$ Input Pulse Rise and Fall Times: 40 ns between 10% and 90% points

Measurement Points: See Waveforms

Waveforms

Typical System

Below is an example of a $64 \mathrm{~K} \times 18$ bit memory system (each card is $16 \mathrm{~K} \times 18$) employing the 5234 quad high voltage driver for the chip enable inputs. A single 5234 package drives $16 \mathrm{~K} \times 9$ bits. A_{0} through A_{11} are 2107 B addresses.

QUAD TTL-TO-MOS DRIVER

For 4K N-Channel MOS RAMs

\author{

- CMOS Technology for Very Low Power: Suitable for Battery Backup
 - High Density: Four Drivers in One Package
 - Internal Gating Structure Minimizes Package Count
}
- TTL \& DTL Compatible Inputs
- CerDIP Package: 16 Pin DIP
- Only One Power Supply Required, +12 V ($\pm 10 \%$)

The Intel@ 5235 and 5235-1 are Low Power Quad TTL-to-MOS drivers which accept TTL and DTL input levels. They provide high output current and voltage suitable for driving the clock inputs of N -channel MOS memories such as the 2107A or 2107B. The circuit operates from a single 12 volt power supply.
The device features two common enable inputs, a refresh select input, and a clock control input for simplified system design. The $5235-1$ is a selection of the 5235 and is guaranteed for 95 ns maximum delay plus transition time while driving a 250 pF load. The Intel ion-implanted, silicon gate Complementary MOS (CMOS) process allows the design and production of very low power drivers.

Absolute Maximum Ratings*

Temperature Under Bias \qquad
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage, V_{DD}. $\quad-0.5$ to +14 V
All Input Voltages -0.5 to ($\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$)
Outputs for Clock Driver -0.5 to ($\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$)
Power Dissipation at $25^{\circ} \mathrm{C}$ \qquad
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%$.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions	
$\left\|\mathrm{l}_{\text {LI }}\right\|$	Input Load Current		0.1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=50.4 \mathrm{~V}$ or $\geqslant 2.4 \mathrm{~V}$	
V_{OL}	Output Low Voltage		0.15	0.4	V	$\mathrm{lOL}=5 \mathrm{~mA}$	
		-1.0	-0.15		V	$\mathrm{I}_{\mathrm{OL}}=-5 \mathrm{~mA}$	
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{DD}}-0.4$	$\mathrm{V}_{\mathrm{DD}}-0.15$		V	$\mathrm{IOH}=-5 \mathrm{~mA}$	
			$\mathrm{V}_{\mathrm{DD}}+0.15$	$\mathrm{V}_{\text {DD }}+0.5$	V	$\mathrm{IOH}=5 \mathrm{~mA}$	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage, All Inputs			0.8	V		
V_{IH}	Input High Voltage, All Inputs	2.0			V		
IDDO	Supply Current		1.0	2.0	mA	$f=0 \mathrm{MHz}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }} \leqslant 0.4 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \geqslant 2.4 \mathrm{~V}, \\ & C_{L}=0 \mathrm{pf} . \end{aligned}$
IDD1	Supply Current		12	20	mA	$f=1 \mathrm{MHz}$ (See Figure 1)	

Note.1: Typical values are at $25^{\circ} \mathrm{C}$ and nominal voltage.

Typical Characteristics

Figure 1.
POWER SUPPLY CURRENT VS. FREQUENCY (ALL 4 CHANNELS SWITCHING)

Figure 3.
DELAY PLUS TRANSITION TIME
VS. INPUT VOLTAGE

Figure 2. DELAY PLUS TRANSITION TIME VS. LOAD CAPACITANCE

Figure 4. DELAY PLUS TRANSITION TIME VS. INPUT VOLTAGE

A.C. Characteristics $T_{A}=0^{\circ}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%$.

Symbol	Parameter	5235-1			5235			Unit
		Min. ${ }^{[1]}$	Typ. $[2,4]$	Max. ${ }^{[3]}$	Min. ${ }^{[1]}$	Typ.[2,4]	Max. [3]	
t-+	Input to Output Delay	20	55		20	70		ns
t_{DR}	Delay Plus Rise Time		75	95		95	125	ns
t_{+-}	Input to Output Delay	20	55		20	70		ns
t_{DF}	Delay Plus Fall Time		75	95		95	125	ns
${ }^{\text {T }}$	Transition Time	10	20	40	10	25	40	ns

NOTES: 1. $C_{L}=150 \mathrm{pF} \square \quad$ These values represent a range of
2. $C_{L}=200 p F$
3. $C_{L}=250 \mathrm{pF}$ total stray plus clock capacitance
4. Typical values are measured at $25^{\circ} \mathrm{C}$, and nominal voltage.

Capacitance* $T_{A}=25^{\circ} \mathrm{C}$

Symbol	Test	Typ.	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	8	14	pF

*This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, V_{\text {bias }}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$, and $T_{A}=25^{\circ} \mathrm{C}$.

A.C. CONDITIONS OF TEST

Input Pulse Amplitudes: 2.0V
Input Pulse Rise and Fall Times: 5 ns between 0.9 volt and 1.9 volts

Measurement Points: See Waveforms

Waveforms

Typical System

Below is an example of a $64 \mathrm{~K} \times 18$ bit memory system (each card is $16 \mathrm{~K} \times 18$) employing the 5235 quad high voltage driver for the chip enable inputs. A single 5235 package drives $16 \mathrm{~K} \times 9$ bits. A_{0} through A_{11} are 2107 B addresses.

QUAD CCD CLOCK DRIVER

- Internal Circuitry Minimizes CCD Clock Cross-Coupling Voltage Transients
 - Drives Four 2416s
 - Low Standby Power Dissipation: 24mW Typically

- TTL Inputs
- Single +12V Supply
- Standard 16 Pin Dual In-Line Package

The 5244 is a quad clock driver which provides high capacitive drive suitable for driving charge coupled memories. The 5244 features very low D.C. power dissipation from a single 12V supply with output characteristics directly compatible with the 2416 clock input requirements. Internal circuitry controls the cross-coupled voltage transients between the clock phases generated by the 2416 and limits the transition time so that excessively fast transitions do not occur on the clock line.
The 5244 is fabricated using an advanced ion-implanted, silicon gate, CMOS process.

PIN CONFIGURATION

NOTES: 1. BOTH PIN 1 AND 8 MUST BE CONNECTED TO VS. 2. BOTH PIN 9 AND 16 MUST BE CONNECTED TO VDD.

PIN NAMES

$I_{1} \cdot I_{4}$	TTL INPUT
$\bar{\sigma}_{1} \cdot \bar{\sigma}_{4}$	DRIVER OUTPUT
$V_{D D}$	$+12 V$ POWER SUPPLY
NC	NOT CONNECTED
$V_{S S}$	GROUND

VS GROUND

BLOCK DIAGRAM

Absolute Maximum Ratings*

Temperature Under Bias	$-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage with Respect to Vss	-0.5 to +14 V
All Input Voltages	-0.5 to ($\left.\mathrm{V}_{\mathrm{DD}}+1 \mathrm{~V}\right)$
Outputs	$-1 \mathrm{Vto}\left(\mathrm{V}_{\text {DD }}+1\right)$
Power Dissipation	

*COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min.	Typ.	Max.		
$I_{\text {IL }}$	Low Level Input Current	-10	± 0.1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {IL }}$
I_{H}	High Level Input Current	-10	± 0.1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }} \geqslant \mathrm{V}_{\text {IH }}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		+1.2	+0.85	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	+2.0	+1.5		V	
V_{OL}	Output Low Voltage	0	0.03	+0.2	V	$\mathrm{IOL}^{\prime}=5 \mathrm{~mA}$
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{DD}}-0.2$	$\mathrm{V}_{\text {DD }}-.03$	V_{DD}	V	$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$
IDDO	Standby Current		2.0	4.0	mA	$\mathrm{V}_{\text {IN }} \geqslant \mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {IL }}, \mathrm{f}=0 \mathrm{MHz}$
IDD1	Operating Current		75	105	mA	$\mathrm{V}_{\text {IN }} \geqslant \mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {IL }}, f=0.67 \mathrm{MHz}^{[2]}$

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Note 2

Symbol	Parameter	Limits Driving 4 2416's			Units
		Min.	Typ.	Max.	
$V_{\text {OLT }}$	Transient Cross-Coupled Output Low Voltage	-0.8	± 0.5	+0.8	V
$\mathrm{V}_{\text {OHT }}$	Transient Cross-Coupled Output High Voltage	$\mathrm{V}_{\mathrm{DD}}-0.8$	$V_{D D} \pm 0.5$	$\mathrm{V}_{\mathrm{DD}}+0.8$	V
$\mathrm{t}_{\text {PWT }}$	Transient Cross-Coupled Output Pulse Width			Note 1	ns
$\Delta t_{\text {D }}$	Differential Delay of $t_{D L H}$ and $t_{D H L}$ for Drivers in the Same Package			15	ns
$t_{\text {DLH1 }}$	Input Low to Output High Delay Time, ϕ_{1} or ϕ_{3}	30	50		ns
$\mathrm{t}_{\text {DHL1 }}$	Input High to Output Low Delay Time, ϕ_{1} or ϕ_{3}	30	50		ns
$\mathrm{t}_{\text {TLH1 }}$	Output Rise Time, ϕ_{1} or ϕ_{3}	30	50	75	ns
${ }_{\text {T }}$ HL1	Output Fall Time, ϕ_{1} or ϕ_{3}	30	50	75	ns
$\mathrm{t}_{\text {PLH1 }}$	Input to Output Delay Plus Rise Time, ϕ_{1} or ϕ_{3}		100	160	ns
$\mathrm{t}_{\text {PHL1 }}$	Input to Output Delay Plus Fall Time, ϕ_{1} or ϕ_{3}		100	150	ns
${ }^{\text {t }}$ DLH2	Input Low to Output High Delay Time, ϕ_{2} or ϕ_{4}	30	55		ns
${ }^{\text {t DHL2 }}$	Input High to Output Low Delay Time, ϕ_{2} or ϕ_{4}	30	55		ns
$\mathrm{t}_{\text {TLH2 }}$	Output Rise Time, ϕ_{2} or ϕ_{4}	30	55	85	ns
$\mathrm{t}_{\text {THL2 }}$	Output Fall Time, ϕ_{2} or ϕ_{4}	30	55	90	ns
tpLH2	Input to Output Delay Plus Rise Time, ϕ_{2} or ϕ_{4}		110	175	ns
tPHL2	Input to Output Delay Plus Fall Time, ϕ_{2} or ϕ_{4}		110	170	ns

Notes: 1. The maximum tPWT is the sum of the output transition time (rise or fall) plus 5 ns .
2. Output Load $=$ four $\mathbf{2 4 1 6}$ clock inputs or equivalent per Figure 2.

CAPACITANCE* $T_{A}=25^{\circ} \mathrm{C}$

Symbol	Test	Typ.	Max.	Unit	Conditions
C_{IN}	Input Capacitance	8	14	pf	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {bias }}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$

*This parameter is periodically sampled and is not 100% tested.

A.C. Test Conditions

1. TTL Input Levels $=0.4 \mathrm{~V}$ to 2.4 V
2. Output Load $=$ Four 2416 clock inputs or equivalent per Figure 2
3. Cross Coupled Voltage Pulse Width measured at $\pm 0.4 \mathrm{~V}$ and $V_{D D} \pm 0.4 \mathrm{~V}$

Waveforms

A. INPUT TO OUTPUT DELAY

B. 5244 OUTPUT CROSS-COUPLED VOLTAGE (DRIVING FOUR 2416'S)

5244 OUTPUT DRIVING $2416 \phi_{1}$

5244 OUTPUT DRIVING $2416 \phi_{2}$

5244 OUTPUT DRIVING $2416 \phi_{3}$

5244 OUTPUT DRIVING $2416 \phi_{4}$

Typical Characteristics

OUTPUT RISE AND FALL TIME VS. CAPACITANCE

IDD VS. FREQUENCY

Application Information

The 5244 is a TTL to MOS level converter designed to drive very high capacitive loads with no required additional external components. Its primary application is to drive the clock phase inputs of the Intel © 2416, a 16,384 word $x 1$ bit charge coupled device.

DRIVING THE 2416

The 5244 is designed to drive the clock phase inputs of four 2416s and meet or exceed the electrical specifications of these inputs. The 2416 clock specifications of special interest to the system designs are:

1. Clock transition time.
2. Clock to clock voltage coupling.

Clock Transition Control

The 5244 will meet the $\mathrm{min} / \mathrm{max}$ clock transition time requirement of the 2416 when driving four 2416s. However, when driving less than four 2416 s an external capacitor ($\mathrm{C}_{\text {ext }}$) must be added to assure that the minimum clock transition time (30 ns) is adhered to. The maximum clock transition time for the 5244 will not be exceeded if $\mathrm{C}_{\text {ext }}$ is chosen according to the recommendations in Figure 1.

WHERE $\mathrm{C}_{\text {ext }}=(4-\mathrm{N}) \mathrm{C}_{\mathrm{C}}$
WHERE ${ }_{\phi}{ }_{\phi}^{\text {ext }}=$ TYPICAㄴ 2416 INPUT CLOCK CAPACITANCE.
A VALUE FOR C φ_{φ} WITHIN THE RANGE OF 300pF
TO 400pF WILL WORK FOR ALL CLOCKS, $\phi_{1} \ldots \phi_{4}$. $N=$ NUMBER OF 2416s PER 5244 OUTPUT.

Figure 1. External Loading Requirements When Driving
Fewer Than Four 2416s.

Clock to Clock Voltage Coupling

The equivalent circuit of the 2416 clock phase inputs is shown in Figure 2. The magnitude and duration of the cross-coupling are graphically presented in Waveform B and specified in the A.C. Characteristics. Figure 3, on the next page, shows the noise margin between these specifications and the 2416 input requirements.

Figure 2. 2416 Equivalent Capacitance Circuit. (Maximum values shown.)

DRIVING CLOCK (Not to Scale)

Figure 3. Noise Margins Between 5244 Output Specs and $2416 \phi_{1} \ldots \phi_{4}$ Input Requirements.

MEMORY SYSTEMS

MEMORY SYSTEMS

Type	Description	No. of Words (Per Card)	Word Length (Bits)	Access Time	Cycle Time	Supplies (V)	Page
in-10	RAM System	8K	8-18	275 ns	450 ns	$\begin{array}{r} +23.2 \\ +19.7 \\ +5 \end{array}$	6-4
in-26	RAM System	4K	4-10	375 ns	375 ns	+5	6-6
in-40	RAM System	32K	8-18	330 ns	500 ns	+5 -5	6-8
in-50	RAM System	1K	2-10	100 ns	100 ns	+5	6-10
in-60	Serial Memory System	20K	8-10	500 ns	N/A	+5	6-12
in-64	Serial Memory System	88K	1-2	60 ns	N/A	+5	6-14
in-65	Serial Memory System	131K	8-9	550 ns	N/A	+17 +12 +5 -5	6-16
in-4711	PDP-11 Add-in	16K	16-18	150 ns	520 ns	$\begin{array}{r} \text { From } \\ \text { PDP- } 11 \end{array}$	6-18
in-4716	Interdata 7/16 and 7/32 Add-in	16K	17	300 ns	1000 ns	+15 +5 -15	6-20
in-477	CRT Refresh Memory	16K	16	600 ns	850 ns	+12 +5 -5	6-22
in-481	8008, 8080 RAM Memory	16K	8	450 ns	600 ns	+12 +5 -9	6-24

Custom Boards	$6-26$
Cabinets	$6-27$
Chassis	$6-28$
Power Supplies	$6-29$
Accessories	$6-30$

MEMORY SYSTEMS

Intel Memory Systems Division offers standard and custom memory systems ranging from single board assemblies to multi-mega byte systems. Advanced 1 K , 4K RAMS along with 16K CCD Serial memory components are utilized for highest performance and lowest cost.

RANDOM ACCESS MEMORY SYSTEM

The in-10 represents the most economical approach to moderate size, high speed memory systems. The in-10 series of RAM systems is designed to provide high reliability and low price. This series features a basic $4 \mathrm{~K} \times 18$ or $8 \mathrm{~K} \times 9$
configuration consisting of two plug-in boards: A memory board (MU) and a control board (CU). The control board is capable of operating up to 32 K words $\times 18$ bits or 65 K words $\times 9$ bits (8 cards).

in-10 FEATURES:

- Low Cost Memory
- High Reliability
- Modular Expandability
- Module Interchangeability
- Automatic Refresh
- TTL Compatible
- Byte Control (2 Zones Maximum)
- Module Select
- Fast Cycle Time
- Low Power Requirements
- Compact Size
- Field Expandable
- Address Register
- Data Register (Optional)
- Basic System Available As $4 \mathrm{~K} \times 18$ or $8 \mathrm{~K} \times 9$

SPECIFICATIONS

Capacity:

1024, 2048, 4096, 8192 words expandable in cards to $32,768 \times 18$ or $65,536 \times 9$ capacity.
Word Length:
$8,9,10,12,16$ or 18 bits in a single memory card. Longer word lengths can be accommodated by combining memory cards.

Cycle Time: (Read, Write)
in-10A
450 nanoseconds
in-10
in-12
in-14
Access Time: (Read)
in-10A
in-10
in-12
in-14
450 nanoseconds
675 nanoseconds
850 nanoseconds

Dimensions:

Memory Board:
($4 \mathrm{~K} \times 18$ or $8 \mathrm{~K} \times 9$)
8.175 Inches High
10.5 Inches Deep 0.5 InchesMounting Centers

To expand to $32 \mathrm{~K} \times 18$ add 0.5 inches per memory card. Only one control card (CU) is needed for systems up to $32 \mathrm{~K} \times 18$ or $64 \mathrm{~K} \times 9$.

Memory System:
(32K x 18)
8.175 Inches High
10.5 Inches Deep
5.0 Inches Wide

Mating Connector: See page 6-30.
Operational Modes:
Read, Write
Read/Modify/Write (Optional)
Interface Characteristics:
TTL Compatible
Standard Input Lines:
Cycle Initiate
Byte Control
Read/Write
Standard Output Lines:
Data Available
Memory Busy
D.C. Power Requirements:
in-10: Voltage Regulation
$+3.5 \mathrm{~V}$
$\pm 10 \%$
(Stacked on +19.7 V)

$$
\begin{array}{ll}
+19.7 \mathrm{~V} & \pm 5 \% \\
+5.0 \mathrm{~V} & \pm 5 \%
\end{array}
$$

57 Watts (operating $4 \mathrm{~K} \times 18$), 25 Watts standby power (per each additional 4K)
in-10A:
57 Watts (operating $4 \mathrm{~K} \times 18$), 7.5 Watts standby power (per each additional 4K)

in-12 \& 14:	Voltage	Regulation
+3.5 V	$\pm 10 \%$	
(Stacked on $+16.7 \mathrm{~V})$		
	+16.7 V	$\pm 5 \%$
	+5.0 V	
		$\pm 5 \%$

46 Watts (operating $4 \mathrm{~K} \times 18$), 16 Watts standby power (per each additional 4 K)

Environment:
Temperature: $\quad 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ operating ambient
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ nonoperating
Relative Humidity: Up to 90% with no condensation

Altitude: $\quad 0$ to 10,000 feet operating. Up to 50,000 feet nonoperating.

Special Options:

Intel offers this system mounted in a card chassis, or complete system. Options seen below, and others, can be found on pages 26 to 29.

in-Minichassis

RANDOM ACCESS MEMORY SYSTEM

The in-26 is an extremely easy memory system to use. The in-26 is a static memory system designed to meet the high reliability and low cost requirements of random access buffer storage applications. Featuring a complete memory system on a single PC board, this memory board has a maximum capacity of $4 \mathrm{~K} x$ 10 and multiple cards can be used to configure systems up to a maximum
capacity of $65 \mathrm{~K} \times 10$. It can also be provided in smaller capacities by depopulating the memory boards. The compact size of this system makes it ideal for use as buffer storage for various computer peripheral applications. This memory system can be easily modified to interface with the Intel 4 and 8 bit micro processors, 4004, 4040, 8008 and 8080 .

in-26 FEATURES:

- Low Cost Memory
- High Reliability
- Modular Expandability
- Module Interchangeability
- Fast Cycle Time
- Low Power Requirements
- TTL Compatible
- Compact Size
- Field Expandable
- One Power Supply Voltage
- Address Registers
- Single Board System
- Board Select

SPECIFICATIONS

Capacity:

1024, 2048, and 4096 words expandable to 65 K words by the addition of memory cards.

Word Length:
4, 6, 8, 9, 10 bits per card. Longer words can be made by adding additional memory cards.

Cycle Time:

in-26	900 nanoseconds
in-26-1	650 nanoseconds
in-26-2	475 nanoseconds
in-26-3	375 nanoseconds

Access Time:
in-26
in-26-1
in-26-2
in-26-3

900 nanoseconds
650 nanoseconds
475 nanoseconds
375 nanoseconds
Dimensions:
Memory Board:
($4 \mathrm{~K} \times 10$)
8.175 Inches High
6.0 Inches Deep 0.5 InchesMounting Centers
Mating Connector: See page 6-30.
Operational Modes:
Read,Write
Interface Characteristics:
TTL Compatible-Open collector or terminated three-state
Standard Input Lines:
Cycle Initiate
Board Select
Read/Write
Byte Control

EX-26/50 Extender Board

D.C. Power Requirements:

in-26: +5.0 V	$\pm 5 \% ;$	1.25 Amps
	3.0 Amps	Typical

Environment:

Temperature: $\quad 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ operating ambient
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ nonoperating
Relative Humidity: Up to 90% with no condensation

Altitude: $\quad 0$ to 10,000 feet operating. Up to 50,000 feet nonoperating.

Special Options:

Intel also offers the in-26 mounted in a card chassis. This chassis is available in a variety of sizes and can be set up for future expansion of the memory without changing the basic chassis. Options seen below, and others, can be found on pages 26 to 29 .

in-Minichassis

RANDOM ACCESS MEMORY SYSTEM

The in-40 is one of the highest density memory systems now available. The system uses high performance Intel 2107B, a 4K RAM Memory component. Fast cycle and access times are provided along with this high density. The
interchangeable memory unit (MU) allows expansion in increments of 16 K $\times 18$ or $32 \mathrm{~K} \times 9$ with no adjustments. A single control unit (CU) handles up to $128 \mathrm{~K} \times 18$ or $256 \mathrm{~K} \times 9$ making this our lowest cost-per-bit storage available.

in-40 FEATURES:

- Low Cost Memory
- High Reliability
- High Density
- Modular Expandability
- Module Interchangeability
- Automatic Refresh
- Fast Cycle Time
- TTL Compatible
- Low Power Requirements
- Compact Size
- Field Expandable
- Byte Control (2 Zones Maximum)
- Module Select
- Address Register
- Data Register (Optional)
- Basic System Available As $16 \mathrm{~K} \times 18$ or $32 \mathrm{~K} \times 9$

SPECIFICATIONS

Capacity:
4096, 8192, 16,384, 32,768 words expandable in cards to $131,072 \times 18$ or $262,144 \times 9$ capacity.

Word Length:
$8,9,10,12,16$, or 18 bits in a single memory card. Longer word lengths can be accommodated by combining memory cards.
Cycle Time:
in-40
in-42
in-44
500 nanoseconds 550 nanoseconds 875 nanoseconds

Access Time:
in-40 330 nanoseconds
in-42 400 nanoseconds 480 nanoseconds

Dimensions:

Memory Board:
($16 \mathrm{~K} \times 18$ or $32 \mathrm{~K} \times 9$)
8.175 Inches High
10.5 Inches Deep
0.5 InchesMounting Centers
Mating Connector: See page 6-30.
Operational Mode: Read (NDRO), Write
Interface Characteristics:

TTL Compatible

Standard Input Lines:
Cycle Initiate
Byte Control
Read/Write
Standard Output Lines:
Data Available
Memory Busy
D.C. Power Requirements:

MU-40:	Selected	
Voltage	Current (Max.)	Regulation
+12.0 V	1.9 Amps	$\pm 5 \%$
+5.0 V	1.2 Amps	$\pm 5 \%$
-5.0 V	<10.0 Milliamps	$\pm 5 \%$
	Unselected	
Voltage	Current (Max.)	Regulation
+12.0 V	0.142 Amps	$\pm 5 \%$
+5.0 V	1.2 Amps	$\pm 5 \%$
-5.0 V	<10.0 Milliamps	$\pm 5 \%$

D.C. Power Requirements (cont.):

CU-40:

Voltage	Current (Max.)	Regulation
+5.0 V	2.8 Amps	$\pm 5 \%$
-5.0 V	0.32 Amps	$\pm 5 \%$

Environment:
Temperature: $\quad 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ operating ambient
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ nonoperating
Relative Humidity: Up to 90% with no condensation
Altitude: $\quad 0$ to 10,000 feet operating. Up to 50,000 feet nonoperating.

Refresh:
The need for refresh cycles is self determined by the CU-40. For normally configured CU's, at the end of the refresh time out interval the CU either initiates a special refresh cycle or steals the next cycle for refresh if a regular memory cycle is in progress. An optional CU-40 configuration allows external control of refreshing to the extent that automatic cycle stealing is inhibited. At the end of the refresh time out, the CU asserts a refresh request signal that indicates a refresh cycle is required. At the user's discretion, a refresh grant signal is issued which then initiates a refresh cycle.

Special Options:

Intel offers the in-40 in a card chassis designed for mounting in $19^{\prime \prime}$ and $24^{\prime \prime}$ relay racks. UT-40 socket cards allow easy wire wrapping of custom interfaces in the card chassis. See pages 26 to 29 for more accessory information.
Another option is the in-41E Euroboard. Intel's Euroboard dimensions are 160 mm high $\times 233.4 \mathrm{~mm}$ deep $\times 12.7 \mathrm{~mm}$ wide. See your local Intel representative for additional specifications.

RANDOM ACCESS MEMORY SYSTEM

The in-50 is designed to meet the needs of control memory, disk controllers, scratch pad and signal processing applications. The in-50 provides the fastest access and cycle times possible in a TTL compatible memory system. Utilizing Bipolar technology and solid-state integrated circuitry, this memory pro-
vides high reliability and performance at low costs. This memory system features a basic size of 1024 words by 10 bits per memory card. It can be expanded to any word or bit length by the use of additional memory cards. Each system includes all address and data registers.

in-50 FEATURES:

- Low Cost Memory
- High Reliability
- Modular Expandability
- Module Interchangeability
- Fast Cycle Time
- Low Power Requirements
- Compact Size
- Field Expandable
- One Power Supply Voltage
- Fully Buffered System
- Module Select
- Address Registers
- Data Registers
- Single Board System
- Open Collector Outputs
- TTL Compatible

SPECIFICATIONS

Capacity:
256, 512 and 1024 words per memory card. Larger sizes are feasible by the addition of memory cards.

Word Length:
$2,4,6,7,8,9,10$ bits per card. Longer words can be accomplished by the use of additional memory cards.

Cycle Time:
in-50
in-52
100 nanoseconds
150 nanoseconds
Access Time:
in-50
in-52
100 nanoseconds 150 nanoseconds

Dimensions:
Memory Board: $\quad 8.175$ Inches High
($1 \mathrm{~K} \times 10$)
6.0 Inches Deep
0.5 Inches-

Mounting Centers
Mating Connector: See page 6-30.

Operational Modes:

Read (NDRO), Write
Interface Characteristics:
TTL Compatible
Standard Input Lines:
Cycle Request
Read/Write
Standard Output Lines:
Data Available
D.C. Power Requirement: $+5.0 \mathrm{~V} \pm 5 \% \quad 5.5 \mathrm{Amps}$ per memory card

Environment:

Temperature: $\quad 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ operating ambient
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ nonoperating
Relative Humidity: Up to 90% with no condensation
Altitude: $\quad 0$ to 10,000 feet operating. Up to 50,000 feet nonoperating.

Special Options:

The in-50 is available in various word and bit lengths. The card chassis is completely wire wrapped with I/O connectors for mounting in $19^{\prime \prime}$ relay racks. It can also be equipped with a power supply that is also mountable in a $19^{\prime \prime}$ relay rack. Options seen below, and others, can be found on pages 26 to 29 .

in-Unichassis

EX-26/50 Extender Board

UT-26/50
Series Interface Board

in-60

SERIAL MEMORY SYSTEM

The in-60 is designed to meet the high reliability and low cost requirements of large volume storage and CRT refresh applications. The in-60 features the use of a single voltage power supply and MOS N-channel silicon gate technology. This system is available as a self-con-
tained 20,000 words by 10 bits memory unit, or is expandable to virtually any size in either word or bit length by the use of additional memory cards. The in-60 is designed for replacement of small fixed head disks and for CRT refresh applications.

in-60 FEATURES:

- Low Cost Memory
- High Reliability
- Modular Expandability
- Module Interchangeability
- Field Expandable
- One Power Supply Voltage
- Compact Size
- Adjustable Clocking
- Fully Buffered
- Single Phase Clocking
- TTL Compatible
- Single Board System

SPECIFICATIONS

Capacity:

Up to 20,000 words per memory card. Larger sizes are capable by the addition of memory cards.

Word Length:
$6,7,8,9,10$ bits per memory card. Longer words are made by combining memory cards.

Clock Rate: $\quad 1$ megaHertz to 25 kiloHertz
Access Time: $\quad 500$ Nanoseconds
Dimensions:
8.175 Inches High 10.5 Inches Deep
0.5 InchesMounting Centers
Mating Connector: See page 6-30.

Interface Characteristics:

TTL Compatible
Data Input:
Up to 10 lines, single ended
Data Output:
Up to 10 lines, single ended
Data Input Control:
1 line (clock), single ended
D.C. Power Requirement:

$$
+5.0 \mathrm{~V} \quad \pm 5 \% \text { at } 7.0 \mathrm{Amps} \text { (Max.) }
$$

in-CHS-II

UT-10/40

Series Interface Board

Environment:
Temperature: $\quad 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ operating ambient
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ nonoperating
Relative Humidity: Up to 90% with no condensation
Altitude: $\quad 0$ to 10,000 feet operating. Up to 50,000 feet nonoperating.

Special Options:

Intel also offers the in-60 mounted in a card chassis wire-wrapped to the size ordered. This chassis can be mounted in a $19^{\prime \prime}$ relay rack. A power supply is also available for this system that will mount below the memory chassis. The power unit is modular and can supply up to a full card chassis of memory. A blower assembly is also available for this system. This blower assembly draws air from the front, back, or below to properly cool the memory card chassis. Options seen below, and others, can be found on pages 26 to 29 .

in-Unichassis

SERIAL MEMORY SYSTEM

The in-64 is designed to meet the high reliability and low cost requirements of large volume storage and CRT refresh applications. The in-64 features the use of a single power supply and MOS N -channel silicon gate technology. This system is available as a self-contained

88 K words, with 1 bit or 2 bits per word depending on your requirements. It can be expanded to virtually any size, in either word or bit length, by the use of additional memory cards. The in-64 features a compact size, high reliability and ease of expansion.

in-64 FEATURES:

- Low Cost Memory
- High Reliability
- Modular Expandability
- Field Expandable
- One Power Supply Voltage
- Compact Size
- Adjustable Clocking
- Fully Buffered
- TTL Compatible
- Single Board System
- Single Phase Clocking

SPECIFICATIONS

Capacity:
Up to 88,000 words per memory card. Larger sizes are feasible by the addition of memory cards.

Word Length:

in-64
1 or 2 bits per memory card

Longer words are made possible by combining memory cards.

Clock Rate:
in-64: $\quad 10 \mathrm{MHz}$ to 200 KHz
Access Time:
in-64
60 nanoseconds
Dimensions:
8.175 Inches High
10.5 Inches Deep
0.5 InchesMounting Centers
Mating Connector: See page 6-30.
Interface Characteristics:
TTL Compatible
Data Input:
in-64 2 lines, single ended
Data Output:
in-64 4 lines, single ended (2 Data Out, +2 Data Out)

Data Input Control:
2 lines (clock), single ended (Collect/Recirculate, Clock)

in-Unichassis

UT-10/40
Series Interface Board

in-65

CCD MEMORY SYSTEM

The in-65 is a very economical CCD memory system designed around the Intel 2416. This product is best described and utilized as a Block-Oriented Random Access Memory. The system can be used to randomly address blocks of data and then transfer data sequentially within the data block at a very high data rate.

The system consists of three board types: The memory unit (MU-65), the control unit (CU-65), and the buffer unit (BU-65). The memory unit has a maximum capacity of $1,179,648$ bits and is
configured as $128 \mathrm{~K} \times 8$ or $128 \mathrm{~K} \times 9$ bits. The 9th bit can be either a data or parity bit. The CU-65 provides all interface, timing and control logic for up to $8 \mathrm{MU}-65$'s. The BU-65 is synchronized to the CU-65 and provides for word length expansion.

The large capacity, high performance characteristics and economy of the in-65 make it ideally suited for disc and drum replacement, magnetic tape loop replacement and large CRT refresh applications.

SPECIFICATIONS

Capacity:
Basic MU-65 capacity is 131,072 words. The system is expandable in cards to $1,048,576$ words while using only one CU-65.

Word Length:
Basic word length is 8 or 9 bits, and is expandable in multiples of 8 or 9 bits by addition of BU-65's to a maximum of 72 bits.

Shift Rate:
825 ns when seeking new random address $10 \mu \mathrm{sec}$ when in standby for data retention

Data Transfer Rate:
$10 \mu \mathrm{sec}$ to 550 nsec (per 9 bit byte or word)
16.4 megahertz (serial transfer) for one MU-65

Dimensions:

All cards (MU-65,
CU-65, BU-65)

Operational Modes:
Read (NDRO) Serial bits, paralleled bytes or words
Write Serial bits, paralleled bytes or words

Interface Characteristics:
TTL Compatible, Asynchronous
D.C. Power Requirements:

MU-65 (max)	Operating (max shift rate)	Standby or min. shift rate	
$+17 V$ DC	$\pm 5 \%$	at 2.8 amps	0.4 amps

```
CU-65 (max)
    +5V DC }\pm5% at 5.0 amps
    -5V DC }\pm5% at 0.4 amp
```

BU-65 (max)

$+5 V D C$	$\pm 5 \%$	at 3.0 amps
$-5 V D C$	$+5 \%$	at 0.3 amps

Environment:
Temperature: $\quad 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ operating ambient
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ nonoperating
Relative Humidity: Up to 90% with no condensation

0 to 10,000 feet operating Up to 50,000 feet non-operating

Special Options:

Intel offers a broad line of accessories designed specifically for use with the in-65. This includes backplanes, custom interface card, chassis, power supplies and cooling units. These units are available for $19^{\prime \prime}$ and $24^{\prime \prime}$ standard racks.
in-4711

PDP-11 ADD-IN SEMICONDUCTOR MEMORY

The Intel in-4711 is designed for use in all models and configurations of the DEC PDP-11 ${ }^{\text {® }}$ computer family able to accommodate a "Hex Height" memory card and its associated options. It utilizes the Intel 2107B 4K dynamic RAM component. The $16 \mathrm{~K} \times 16$ (18 bit optional) memory and all refresh and control circuitry are contained on a single PC card. Power conversion can be done either with a separate "Quad Height" DC to DC PC regulator card that provides power for up to four in-4711's or with an on-board DC to DC converter for each in-4711-1. The in-4711 and in-4711-1 can be used in a system with 8 K core modules, with compatability with 16 K core modules available for volume requirements.

Active power consumption at 30 watts is less than half that of the core memory it replaces. This allows wider operating margin on the power supply as well as a cooler running overall system. The system is $3-5$ times more dense than core.
Read and write cycle times of 520 nanoseconds allow significant speed improvement. Interleave operation with two memories is possible for maximum throughput.

Quick address select changes are possible through the use of on-board DIP switches.

Write access time of 150 nanoseconds frees up the unibus at least 50 nanoseconds faster. Byte operation is also standard.

in-4711 FEATURES:

- Low Cost Memory
- Fast Cycle Time
- Low Power Requirements
- High Reliability
- Module Interchangeability
- Modular Expandability
- Compact Size
- Byte Operation
- Address Select Switches
- Two Way Interleave (16K Boundaries)
- Compatible with both DEC PDP-110 Memory Management and Byte Parity Options

SPECIFICATIONS

Capacity:
8 K and 16K words per board

$\frac{\text { Word Length: }}{16 \text { or } 18 \text { bits }}$	
$\frac{\text { Cycle Time: }}{}$	
Read 520 nanoseconds Write 520 nanoseconds	

Access Time:
Read
Write
450 nanoseconds 150 nanoseconds

Dimensions:

Memory Board (Hex)
15.4 Inches High
8.4 Inches Deep 0.375 Inches Wide
*DC/DC Converter Board (Quad)
10.875 Inches High
0.84 Inches Deep
0.375 Inches Wide

Operational Modes:
Read Word
Write Word
Read Byte
Write Byte
*Converts 8 K core voltages
to the required in-4711 voltages.

Interface Characteristics: (Unibus Compatible)
TTL Compatible
Standard Input Controls:
Cycle Initiate (MSYN)
Byte Select (CO)
Read/Write (CI)
Address Lines (AO-A17)
Data Lines (DO-D15)
Slave Sync (SSYN) Initialize (INIT)
D.C. Power Requirements:
17.5 Watts Typical
29.4 Watts Max.

Environment:
Temperature: $\quad 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ operating ambient $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ nonoperating
Relative Humidity: Up to 90% with no condensation
Altitude: $\quad 0$ to 10,000 feet operating. Up to 50,000 feet nonoperating.

Special Options:

16K core compatibility available on a custom basis for volume requirements.

7/16 ADD-IN SEMICONDUCTOR MEMORY

The Intel in-4716 is designed to be plug-to-plug compatible with the Interdata ${ }^{\text {® }}$ MODEL 7/16 BASIC Minicomputer. The in-4716 consists of one printed circuit card which contains a 16 K word by 17 bit memory storage area, plus all control, refresh and interface logic needed to operate the memory unit.
The Intel 2107B 4K dynamic RAM is utilized in the in-4716, thereby providing
non-destructive data read out, high density and high reliability all at a very attractive price.
The worst case active power consumption for the in-4716 is 36 watts which is less than half that of the core memory it replaces. This allows wider operating margins on the power supply, as well as a cooler running overall system.

in-4716 FEATURES:

- Low Cost Memory
- Fast Cycle Time
- Low Power Requirements
- High Reliability
- Module Interchangeability
- Modular Expandability
- Compact Size
- Single Board System
- Byte Operation
- Address Select Switches

SPECIFICATIONS

Capacity:

8192, 12288 \& 16384 words. Expandable to 32768 words by addition of a second memory card.
Word Length:
17 bits (including parity)
Cycle Time:
Access Time:
One Microsecond

Dimensions:

Memory Board
($16 \mathrm{~K} \times 17$)
14.88 Inches High
15.38 Inches Deep
0.40 Inches Wide

Operational Mode:
Clear/Write
Read/Restore
Refresh
Interface Characteristics:
TTL Compatible
Data Input:
Memory Data 00-16 (MD000-160) 17 lines 16 lines data, 1 line (16) parity
Data Output:
Memory Strobe 00-16 (MS000-160) 17 lines
16 lines data, 1 line (16) parity
Address Input:
Memory address 00-14 (MA000-140) 15 lines
Control Signals:
All control lines are single-ended
Standard Input Lines:
Enable ϕ
Access Control ϕ
Early Read ϕ
Temperature Sensing A
Standard Output Lines:
Request ϕ
Access Control ϕ (to other devices)
Temperature Sensing B
D.C. Power Requirement:

Selected Unselected
Voltage Current (Max.) Current (Max.)
$+15.0 \mathrm{~V} \quad 1.3 \mathrm{Amps} \quad 0.2 \mathrm{Amps}$
$+5.0 \mathrm{~V} \quad 3.0 \mathrm{Amps} \quad 3.0 \mathrm{Amps}$
-15.0V 85.0 Milliamps 85.0 Milliamps
Regulation

$$
\begin{aligned}
& \pm 5 \% \\
& \pm 5 \% \\
& \pm 5 \%
\end{aligned}
$$

Environment:

$$
\begin{aligned}
& \text { Temperature: } \quad 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \text { operating } \\
& \text { ambient } \\
& -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { non- } \\
& \text { operating } \\
& \text { Relative Humidity: Up to } 90 \% \text { with no con- } \\
& \text { densation } \\
& \text { Altitude: } \quad 0 \text { to } 10,000 \text { feet operating } \\
& \text { Up to } 50,000 \text { feet non- } \\
& \text { operating }
\end{aligned}
$$

Refresh:
Refresh cycles are requested by the memory which time out intervals of 30 microseconds, $\pm 10 \%$ (i.e., $1 / 64$ th of the memory retention time).
The Refresh cycle is initiated after the memory sends a Request signal to the processor. The next enable pulse is used to initiate a Refresh cycle, and the following ERO (Early Read signal) generates the cycle. A Refresh cycle is identical to a bus cycle, except that all memory chips on the memory card are enabled at the same time.

The in-477 memory card is designed for storage and retrieval of digital video image data. Each card has a capacity of 256 K ($K=1024$) bits, which will drive a 512×512 CRT display. Cards may be operated in parallel to create a gray scale or multi-color displays. The card may be operated in a single bit per cycle serial mode, or a sixteen bit parallel mode. The card contains a sixteen bit parallel-to-serial register with external clocking and loading, to permit a serial bit read out at higher speeds than the normal card cycle time. Refreshing of the data in the n-channel MOS RAM's
is normally achieved by sequential scanning of the memory for display refresh purposes. For special applications, the card can be refreshed externally at a rate of 64 times every 2 millisec, rather than 256 times every 2 millisec during the normal display refresh scan. This is accomplished by refreshing one row in all 64 RAM's on the card at once. A clear memory mode allows setting all memory locations to either a one or zero state in a simplified manner, if desired for initialize, reset, erase or other purposes.

in-477 FEATURES:

- Low cost 2107 4K RAM utilized
- Customer controlled refresh
- Paralleled and serial word and single bit modes of operation
- Allows RANDOM INSTANTANEOUS up dating of data
- Single boards can be used for character/graphic displays
- Multiple boards can be used for Gray scale and color displays
- Designed for use with 512×512 CRT MATRIX
- Simplified clear/erase memory mode
- Multiple speeds available by selecting 2107 components

SPECIFICATIONS

Capacity:	
256 K bits, organized as $16 \mathrm{~K} \times 16$, or 256 K $\times 1$	
Cycle Time:	850 nanoseconds
Access Time:	600 nanoseconds
Retention Time:	Two milliseconds
Dimensions:	
Memory Board	15.0 Inches High 15.0 Inches Deep 0.5 InchesMounting Centers
Mating Connectors:	
Contact Factory	
Operational Mode:	
Write Word (Parallel 16 bit data word transfer)	
Read Word (Parallel 16 bit data word transfer)	
Write Bit (Single bit data transfer)	
Read Bit (Single bit data transfer)	
Read Word (Serial 16 bit data word transfer)	
Clear Set	
Interface Characteristics:	
Address Input:	18 lines (TTL)
Data Input/Output:	
16 lines for parallel word modes, 1 line for serial word mode, plus 1 line for single bit modes, all open collector, bidirectional lines	
Serial Output (High Speed):	
Control Input Lines:	
Clock enable	
Write enable	
Word/Bit select	
Mode enable	
Card select	
Write time gate	
Clear memory enable	
Shift register load	
Serial shift clock	

256 K bits, organized as $16 \mathrm{~K} \times 16$, or 256 K $\times 1$

Cycle Time: $\quad 850$ nanoseconds
Access Time: 600 nanoseconds
Retention Time: Two milliseconds
Dimensions:
Memory Board

Mating Connectors:
Contact Factory
Operational Mode:
Write Word (Parallel 16 bit data word transfer)
Read Word (Parallel 16 bit data word transfer)
Write Bit (Single bit data transfer)
Read Bit (Single bit data transfer)
Read Word (Serial 16 bit data word transfer)
Clear Set
Interface Characteristics:
Address Input:
18 lines (TTL)
Data Input/Output:
16 lines for parallel word modes, 1 line for
serial word mode, plus 1 line for single bit modes, all open collector, bidirectional lines lutput (High Speed)
line, TIL active pullup/pull down
Clock enable
Write enable
Word/Bit select
Mode enable
Card select
Write time gate
Clear memory enable
Serial shift clock
D.C. Power Requirement:

	Selected	
Voltage	Current (Max.)	Regulation
+5.0 V	3.00 Amps	$\pm 5 \%$
+12.0 V	1.50 Amps	$\pm 5 \%$
-5.0 V	0.05 Amps	$\pm 5 \%$

Environment:
Temperature: $\quad 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ operating ambient
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ nonoperating
Relative Humidity: Up to 90% with no condensation
Altitude:
Up to 10,000 feet operating Up to 50,000 feet nonoperating

Interface Voltages:

TTL Levels for all inputs and outputs

Special Options:

Access and cycle times of 280 nanoseconds and 450 nanoseconds respectively can be provided on a custom basis for volume requirements. (Note: these times allow 25 nanoseconds address settling time prior to starting a memory cycle.)

16K x 8 MICROPROCESSOR COMPATIBLE MEMORY SYSTEM

The in- 481 is a $16 \mathrm{~K} \times 8$ Random Access Memory that utilizes the Intel 2107B 4K Dynamic RAM chip. The memory and all refresh and control circuitry are on one PC board. The in-481 is expandable to a maximum of $64 \mathrm{~K} \times 8$ by the use of four memory cards. The in-481 card is designed to interface directly with the IMM8-82 and the IMM8-83 CPU cards. Since the characteristics of these two cards are governed by either the 8008 or the 8080 microprocessors, it is also possible to use the in-481 with any CPU using these devices. The physical size of the in-481 is the same as the IMM Series. The address, data $1 / 0$, and power pin-outs are the same as the IMM6-28.

Applications*

8008
When using the in-481 in an 8008 or

8008-1 microprocessor based system, the access and cycle times are such that WAIT states need not be entered. All refresh, write and read cycle requests are synchronized to specific CPU states and requests. This means that the in-481 is totally transparent to the CPU. During normal CPU operation all refreshing is done during the T_{1} state of the 8008; during a HALT or HOLD state the memory refresh is synchronized to the ϕ_{1} clock and occurs every $7.5 \mu \mathrm{sec}$. It should be noted, that a power-up reset circuit initializes all control circuitry on the in-481.

8080

When using the in-481 in an 8080 microprocessor based system, the memory components used are faster in both cycle and access times in order to minimize the total number of WAIT cycle requests. All refresh, read and write cycle requests are again synchronized to specific CPU states or requests. Because of the $2.0 \mu \mathrm{sec}$ instruction cycle time of the 8080, a single WAIT state or a possible double WAIT state is required during memory refresh. A memory refresh is initiated once every $31 \mu \mathrm{sec}$ and it is synchronized to the positive edge of SYNC during the T_{1} state. Normally a single WAIT state between T_{2} and T_{3} states is required if the memory is in the
*While the in-481 and in-481-1 are designed to work with the IMM8-82 and IMM8-83, they are not intended for use in the INTELLEC 8/MOD8 or INTELLEC 8/MOD80 since the current requirements of the in-481 and in-481-1 exceed the 60 mA capacity of the INTELLEC +12 V power supply.

in-481 FEATURES:

- IMM8-82 and IMM8-83 Compatible
- Automatic Refresh
- Modular Expandability
- Module Interchangeability
- Very High Density
- Board Select
- On Board 4K Address Select
- On Board 4K Enable/Disable
- Input and Output Data Registers
- Low Standby Power

Applications (Continued)

process of performing a read operation. If, however, a write cycle had been initiated during T_{3} of the previous subcycle a double WAIT state is requested by the in-481. During the HOLD and HALT states, the refresh requests are synchronized to the ϕ_{1} clock and they occur with a period of $25 \mu \mathrm{sec}$. It should be noted again that the power-up reset circuit initializes all control circuitry.
DMA
A DMA option is made possible in both 8008 and 8080 systems by means of the HOLD features. The HOLD ACK signal in both the IMM8-82 and IMM8-83 frees the control lines of the in-481 and the in-481-1. This signal is also used by the in-481 to disable the MEM READ CYCLE control input thereby enabling DMA control of the memory. Since refresh is synchronized to the ϕ_{1} clock, and since additional state lines are brought out from the in-481, an access control circuit can be implemented to perform DMA. After completion of DMA, the HOLD and WAIT requests to the CPU card are disabled, and memory operation proceds as normal.

SPECIFICATIONS

Dimensions:

8.00 inches $\times 6.18$ inches with 0.5 inch mounting centers.

Capacity:

$16 \mathrm{~K} \times 8$ expandable to $64 \mathrm{~K} \times 8$ by use of four memory cards

Cycle Time:

$$
\begin{array}{lr}
\hline \text { in-481 } & 1100 \text { nanoseconds } \\
\text { in-481-1 } & 600 \text { nanoseconds }
\end{array}
$$

Access Time:
in-481

650 nanoseconds
in-481-1 450 nanoseconds

Power:

$$
\begin{array}{ll}
+5 \mathrm{~V} & 1.0 \mathrm{~A} \\
+12 \mathrm{~V} & 0.9 \mathrm{~A} \\
-9 \mathrm{~V}^{*} & 30 \mathrm{~mA}
\end{array}
$$

* (-gV is zenered to -5 V ; optional -5 VDC at 5 mA)

Operational Modes:
Read (NDRO)
Write
Environment:
Temperature: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ operating ambient $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ non-operating
Relative
Humidity:
Up to 90% with no condensation
Altitude: 0 to 10,000 feet operating
Up to 50,000 feet non-operating
Connector Type:

Amp	1-67878-0
Winchester	HW50D0111
Viking	3VH50/ICN5
Sylvania	7900-0281-X

PIN NO.	8008	8080
1		
2		
3	GND	GND
4	GND	GND
5	WAIT ACK	WAIT ACK
6	T	CLK B
7	DMA READ	DMA READ
8	PWR RESET	PWR RESET
9	- $\overline{W E}$	- WE
10	NC	¢2
11	MAD 0	MAD 0
12	MAD 1	MAD 1
13	MAD 2	MAD 2
14	MAD 3	MAD 3
15	MAD 4	MAD 4
16	MAD 5	MAD 5
17	MAD 6	MAD 6
18	MAD 7	MAD 7
19	MAD 8	MAD 8
20	MAD 9	MAD 9
21	WAIT REO	WAIT REQ
22		
23	MDI 0	MDI 0
24	DB 0	DB 0
25	MDI 1	MDI 1
26	DB 1	DB 1
27	MDI 3	MDI 3
28	DB 3	DB 3
29	MDI 2	MDI 2
30	DB 2	DB 2
31	MDI 5	MDI 5
32	DB 5	DB 5
33	MDI 4	MDI 4
34	DB 4	DB 4

PIN NO.	8008	8080
35	MDI 7	MDI 7
36	DB7 ${ }^{\text {a }}$	DB7
37	MDI 6	MDI 6
38	DB6	DB 6
39	SYS ENC	SYS ENC
40		
41	ADD ENA	ADD ENA
42	ADD ENB	ADD ENB
43	-9V	-9v
44	-9V	-9V
45	OMA READ ENABLE	DMA READ ENABLE
46	HOLD ACR	HOLD ACK
47		
48		
49	+12V	+12V
50	+12V	+12V
51		
52		
53		
54		
55		
56		
57		
58		
59	MAD 13	MAD 13
60	MAD 12	MAD 12
61		
62		
63	$\overline{M A 14}$	$\overline{\text { MA } 14}$
64		
65	MAD 15	MAD 15
66	MAD 14	MAD 14
67	$\overline{\text { DB IN }}$	MEM READ CYC
68	$\overline{\text { MA } 15}$	MA 15
69		

PIN NO.	8008	8080
70		
71	- $\overline{\text { READ }}$	- AEAD
72		HALTACK
73	$\frac{\text { HALT ACK }}{\text { SYNCA }}$	$\frac{\text { HALT ACK }}{\text { DMA } 22 \text { DISABLE }}$
74	SYNCA	DMA ¢2 DISABLE
75 76		
77		
78		
79		
80		
81		
82		
83		
84		
85	- $\overline{\mathrm{REF}}$	- $\overline{\mathrm{REF}}$
86		
87	- $\overline{\text { BUSY }}$	- Busy
88	- ENREF	- ENREF
89		
90		
91	GND	GND
92	GND	GND
93		
94	MAD 11	MAD 11
95	$\mathrm{R} / \overline{\mathrm{W}}$	R/W
96	MAD 10	MAD 10
97		
98	$\phi 1$	$\phi 1$
99	+5	+5
100	+5	+5

CUSTOM MEMORY CARDS

The following are examples of custom memory systems that have been designed exclusively for various OEM customers. These cards vary greatly in size, configuration and usage. Each card was designed to meet the individual needs of an OEM customer. In each case, our staff met the particular electrical, mechanical and environmental constraints placed on the card. In each case our staff's background and knowledge of semiconductor memories produced smooth production flow, reliable products and ontime deliveries that met the specifications.

Intel's custom board capabilities are not limited to 4 K RAM components. Custom boards have been designed around almost every serial, RAM, ROM and PROM component manufactured by Intel. When Intel plans a new component, Memory Systems is enlisted to design a system and evaluate the prototypes long before the component is announced. A custom board customer can beat his competition to the delivery of a new system by using the first experienced systems designers with that component: Intel Memory Systems.
$8 \mathrm{~K} \times 18$ Memory System with on-board byte control logic and external timing and refresh control. Card is designed to replace an expensive core memory used with a customdesigned processor.

16K x 8 Two Card Microprocessor (Intel 8080) Compatible Memory System. A single timing and control card operates up to four memory cards thus reducing overall memory systems cost.
$16 \mathrm{~K} \times 16$ RAM Memory System. Another cost effective use of our 4 K chip design for a CRT type application.

$4 \mathrm{~K} \times 12$ to $4 \mathrm{~K} \times 16$ RAM Memory System with external timing and control. Used to replace an expensive core memory in an intelligent terminal CRT display.

MEMORY CABINETS

The in-Series Memory Cards are available as individual units or in complete systems. Intel features a number of memory cabinets that can accommodate a variety of memory capacities. Cabinets are designed to allow customers maxi-
mum freedom in specifying memory configurations. These cabinets contain power supplies, cooling and interface connections. The following photographs show the various types that are available for off-the-shelf delivery.
in-CAB-BHB Memory
Cabinet features a capacity of up to $262 \mathrm{~K} \times 27$ bits. It has ample space for power supplies, and has optional battery back-up capability, including batteries, for a 1 hour back-up support. This cabinet is $80^{\prime \prime}$ high by $30^{\prime \prime}$ deep and is $19^{\prime \prime}$ wide. Accessible from both the front and rear, it contains its own cooling fans and is mounted with casters for easy movement.

in-CAB-HB Memory Cabinet can accommodate up to 96 MU-10/MU40 series cards. This memory cabinet is $72^{\prime \prime}$ high, $19^{\prime \prime}$ wide and $30^{\prime \prime}$ deep. It is designed to be freestanding and contains room for cooling fans, power supplies and interface cabling. The memory size can vary from $32 \mathrm{~K} \times 144$ to $256 \mathrm{~K} \times 18$ bits. All power supplies are mounted on slides for easy access.
in-CAB-SHB Memory Cabinet features a capacity of up to $96 \mathrm{~K} \times 63$ bits or $388 \mathrm{~K} \times 16$ bits, including power supplies and cooling. This cabinet is $70^{\prime \prime}$ high by $36^{\prime \prime}$ deep and is $19^{\prime \prime}$ wide. It is accessible from both front and rear and is mounted on casters. It has room in the rear for additional interface logic chassis.

CARD CHASSIS

The in-Series Memory Systems are designed in modular form for ease of conversion into a variety of sizes and configurations. These standard chassis were designed to accommodate spe-
cific customer applications. These are shown in the following photographs. Our Intel sales representative can help you with your particular application.

The in-Jumbochassis is designed for memory systems that may be mounted in a $24^{\prime \prime}$ cabinet. With integral power supplies and fan assemblies, it measures only $14^{\prime \prime} \mathrm{H}$ $\times 24^{\prime \prime} \mathrm{W} \times 24^{\prime \prime}$ D. Forty-three card slots are available to house thousands of combinations of standardsized Intel memory cards. For example, a $128 \mathrm{~K} \times 18$ or $256 \mathrm{~K} \times 9$ in-10 system, or a $512 \mathrm{~K} \times 18$ or $1024 \mathrm{~K} \times 9$ in-40 system can be housed with seven $1 / \mathrm{O}$ slots left over for address and data buffers or for other custom logic.

POWER SUPPLIES

The in-Series Memory Systems are designed in modular form allowing conversion into a variety of sizes and configurations. To accommodate these various memory sizes, Intel has designed standard power supply modules for use in
configuring these systems. The following photographs show standard power supply modules that are available. Contact your Intel Memory Systems representative for the one that fits your particular application.

The in-SPS Power Supply. This power system is designed to supply both large and small amounts of +5.0 Volts. This power system is especially suited for use with the in-26/in-50/in-60/in-62 Memory Cards. It is a rack mountable chassis, and includes an on/off switch on the front panel.
 rack mountable.

ACCESSORIES

The in-Series is available in card chassis, and with modular power supplies that can be mounted alongside, below, or behind the memory
cards. Other accessories like extender boards, interface boards and fan assemblies are also available and listed below.

in-Series Fan Assembly

This fan assembly is designed for mounting in a 19" relay rack. Used for blowing air, or drawing air, upward through the in-series card chassis, this unit can receive air from the front, rear or underneath, and send adequate air flow through up to 4 card chassis stacked upon each other.

UT 10/40

Series Interface Board

This board is designed for use in assembling custom interfaces to use with in-10/40 series memory systems. The interface board can be used with I.C. sockets, with up to 18 pins, and can be wirewrapped for quick interface connections. This I/O board plugs directly into the in-10/40 series connector slots. 2 slots are available to accommodate up to 40 pin sockets.

in-Series Extender Board

This extender board is designed to provide the user with full access to any in-series memory card. The extender board plugs directly into the back panel connector and allows full view of any of the in-series cards.

in-Series

Interface Connector

This unique connector scheme is designed to provide inexpensive, yet reliable, interconnections to the inSeries memory systems. It fits over the in-Series back panel wire wrap pins and forms a tight interconnection. The connector is then fitted with flat cable for connection to other parts of the system in which it is being used.

Memory Board Mating Connectors Are:

Amp	$1-67878-0$
Winchester	HW50DO111
Viking	3VH50/ICN5
Sylvania	$7900-0281-X$

MCS-40 ${ }^{\text {TM }}$ MICROCOMPUTER SYSTEM

MCS-40"' MICROCOMPUTER SYSTEM

Type	Group	Description	Page No.
4040	CPU	Central Processor Unit	$7-4$
4004	CPU	Central Processor Unit	$7-11$
4003	I/O	10-Bit Shift Register	$7-18$
4265	I/O	Programmable General Purpose I/O	$7-22$
4269	I/O	Programmable Keyboard/Display Device	$7-39$
4201	Peripherals	Clock Generator	$7-53$
$4008 / 4009$	Peripherals	Standard Memory Interface Component Pair	$7-59$
4289	Peripherals	Standard Memory Interface	$7-65$
4002	RAMs	$320-$ Bit RAM/4 Output Lines	$7-76$
4101	RAMs	256×4 NMOS RAM	$7-82$
4001	ROMs	256×8 ROM/4 I/O Lines	$7-85$
4308	ROMs	1024×8 ROM/16 I/O Lines	$7-94$
$4316 A$	ROMs	2048×8 ROM	$7-104$
$4702 A$	PROMs	256×8 Erasable PROM	$7-107$
MCS-4/40	Kits	Prototype Systems	$7-110$

MCS-40" MICROCOMPUTER SYSTEM

The MCS-40 microcomputer family (the expanded MCS-4 family) is the world's largest selling family of microcomputers. This family of components has been in use for a wide variety of computer and control applications since 1971. The MCS-40 is a system which provides its users with an advanced generation of components geared for random logic replacement and all designs which require the unique advantage of a general purpose computer. The MCS-40 comes with a comprehensive product development program consisting of hardware and software development aids and a large network of regional application engineers to draw upon.
The 4004 and 4040 are complete 4-bit parallel central processing units (CPUs). The 4040 has a complete instruction set of 60 instructions, including Arithmetic, Interrupt, Logical Operations, I/O Instructions, Register Instructions, ROM Bank Switching, Register Bank Switching, Interrupt Disable and Enable. The 4004 has a total of 46 instructions all of which are part of the 4040 instruction set and are mutually compatible.

SINGLE CHIP 4-BIT P-CHANNEL MICROPROCESSOR

Functionally and Electrically Upward Compatible to 4004 CPU

14 Additional Instructions (60 total) Including Logical Operations and Read Program Memory

- Interrupt Capability
- Single Step Operation
- 8K Byte Memory Addressing Capability
- 24 Index Registers
- Subroutine Nesting to 7 Levels
- Standard Operating Temperature Range of 0° to $70^{\circ} \mathrm{C}$
- Also Available With - $\mathbf{4 0}{ }^{\circ}$ to $+85^{\circ} \mathrm{C}$ Operating Range

The Intel® 4040 is a complete 4-bit parallel central processing unit (CPU). The CPU can directly address 4K eight bit instruction words or 8 K with a bank switch. Seven levels of subroutine nesting, including interrupt, and 24 randomly accessable index registers (24×4) are provided as convenient facilities for the designer. The index registers may be used for addressing or for scratch pad memory for storing computation results. The interrupt feature permits a normal program sequence to be interrupted, with normal program execution continuing after the interrupt service routine is completed. Provisions have also been made to permit single-stepping the CPU using the STOP and ACKNOWLEDGE signals.
The 4040 is an enhanced version of the 4004 and as such retains all the functional capability of that device. It will execute all the 4004 instructions, and is also electrically compatible with all components used with a 4004 CPU.

Pin Description

$D_{0}-D_{3}$

BIDIRECTIONAL DATA BUS. All address and data communication between the processor and the RAM and ROM chips occurs on these 4 lines.

STP

STOP input. A logic " 1 " level on this input causes the processor to enter the STOP mode.

STPA

STOP ACKNOWLEDGE output. This signal is present when the processor is in the stopped state. Output is "open drain" requiring pull-down resistor to $V_{D D}$.

INT

INTERRUPT input. A logic " 1 " level at this input causes the processor to enter the INTERRUPT mode.

INTA

INTERRUPT ACKNOWLEDGE output. This signal acknowledges receipt of an INTERRUPT signal and prevents additional INTERRUPTS from entering the processor. It remains active until cleared by the execution of the new BRANCH BACK and SRC (BBS) instruction. The output is "open drain" requiring a pull-down resistor to $V_{D D}$.

RESET

RESET input. A logic " 1 " level at this input clears all flag and status registers and forces the program counter to zero. To completely clear all address and index registers, RESET must be applied for 96 clock cycles (12 machine cycles).

TEST

TEST input. The logical state of this signal may be tested with the JCN instruction.

SYNC

SYNC output. Synchronization signal generated by the processor and sent to ROM and RAM chips. It indicates the beginning of an instruction cycle.

CM-RAM \mathbf{O}_{0} - CM-RAM ${ }_{3}$

CM-RAM outputs. These are bank selection signals for the 4002 RAM chips in the system.

CM-ROM ${ }_{0}$ - CM-ROM 1
CM-ROM outputs. These are bank selection signals for program ROM chips in the system.

CY

CARRY output. The state of the carry flip-flop is present on this output and updated each X_{1} time. Output is "open-drain" requiring pull down resistor to $V_{D D}$.

ϕ_{1}, ϕ_{2}	Two phase clock inputs
$\mathrm{V}_{\text {SS }}$	Most positive voltage
V_{DD}	$\mathrm{V}_{\mathrm{SS}}-15 \mathrm{~V} \pm 5 \%$ - Main supply voltage
${ }^{*} \mathrm{~V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{SS}}-15 \mathrm{~V} \pm 5 \%$ - Timing supply voltage
${ }^{*}{ }^{*} \mathrm{~V}_{\mathrm{DD}_{2}}$	- Output buffer supply
	voltage

[^9]
Instruction Set Format

A. Machine Instructions

- 1 word instruction -8 -bits requiring 8 clock periods (1 instruction cycle)
- 2 word instruction -16 -bits requiring 16 clock periods (2 instruction cycles)

Each instruction is divided into two 4-bit fields. The upper 4-bits is the OPR field containing the operation code. The lower 4-bits is the OPA field containing the modifier. For two word instructions, the second word contains address information or data.

The upper 4-bits (OPR) will always be fetched before the lower 4-bits (OPA) during M_{1} and M_{2} times respectively.

Table I. Machine Instruction Format.

B. Input/Output and RAM Instructions and Accumulator Group Instructions

In these instructions (which are all single word) the OPR contains a 4-bit code which identifies either the I/O instruction or the accumulator group instruction and the OPA contains a 4-bit code which identifies the operation to be performed. Table II illustrates the contents of each 4-bit field.

Table II. I/O and Accumulator Group Instruction Formats.

4040 Instruction Set

Summary of Processor Instructions

*Two Cycle Instructions

Mnemonic	Description	Instruction Code							
		OPR				OPA			
		D_{3}	D_{2}	D_{1}	D_{0}	D_{3}	D_{2}	D_{1}	D_{0}
	machine group								
NOP	No Operation	0	0	0	0	0	0	0	0
HLT	Halt	0	0	0	0	0	0	0	1
BBS	Branch Back and SRC	0	0	0	0	0	0	1	0
LCR	Command Register to Accumulator	0	0	0	0	0	0	1	1
OR4	Logical OR, Index Register 4 and Accumulator	0	0	0	0	0	1	0	0
OR5	Logical OR, Index Register 5 and Accumulator	0	0	0	0	0	1	0	1
AN6	Logical AND, Index Register 6 and Accumulator	0	0	0	0	0	1	1	0
AN7	Logical AND, Index Register 7 and Accumulator	0	0	0	0	0	1	1	1
DBO	Designate ROM Bank 0	0	0	0	0	1	0	0	0
DB1	Designate ROM Bank 1	0	0	0	0	1	0	0	1
SB0	Select Index Register Bank 0	0	0	0	0	1	0	1	0
SB1	Select Index Register Bank 1	0	-	0	0	1	,	1	1
EIN	Enable Interrupt	0	0	0	0	1	1	0	0
DIN	Disable Interrupt	0	0	0	0	1	1	0	1
RPM	Read Program Memory, Half-Byte per Instruction	0	0	0	0	1	1	1	0
*JCN	Jump Conditional to Address	0	0	0	1	C_{1}	C_{2}	C_{3}	C_{4}
	$\begin{aligned} & A_{2} A_{2} A_{2} A_{2} A_{1} A_{1} A_{1} A_{1} \\ & \text { Condition Code, } C_{1} C_{2} C_{3} C_{4} \end{aligned}$	A_{2}	A_{2}	A_{2}	A_{2}	A_{1}	A_{1}	A_{1}	A_{1}
* FIM	Fetch Immediate, ROM Data $\mathrm{D}_{2} \mathrm{D}_{1}$ to Index Register Pair RRR	$\begin{gathered} 0 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{D}_{2} \end{gathered}$	R D_{1}	R D_{1}	R D_{1}	0 D_{1}
SRC	Send Register Control	0	0	1	-	R	R	R	1
FIN	Fetch Indirect, Data from ROM to Index Register Pair RRR	0	0	1	1	R	R	R	0
JIN	Jump Indirect to Address in Register Pair RRR	0	0	1	1	R	R	R	1
*JUN	Jump Unconditional to Address	0	1	0	0	A_{3}	A_{3}	A_{3}	A_{3}
	$A_{3} A_{2} A_{1}$	A_{2}	A_{2}	A_{2}	A_{2}	A_{1}	A_{1}	A_{1}	A_{1}
*JMS	Jump to Subroutine at Address	0	1	0	1	A_{3}	A_{3}	A_{3}	A_{3}
	$\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1}$	A_{2}	A_{2}	A_{2}	A_{2}	A_{1}	A_{1}	A_{1}	A_{1}
INC	Increment Register RRRR	0	1	1	0	R	R	R	R
*ISZ	Increment Register RRRR. Go to	0	1	1	1	R	R	R	R
	Address $A_{2} A_{1}$ if result is not zero, otherwise go to next instruction	A_{2}	A_{2}	A_{2}	A_{2}	A_{1}	A_{1}	A_{1}	A_{1}
ADD	Add Register RRRR to Accumulator with Carry	1	0	0	0	R	R	R	R
SUB	Subtract Register RRRR from Accumulator with Borrow	1	0	0	1	R	R	R	R
LD	Load Contents of Register RRRR to Accumulator	1	0	1	0	R	R	R	R
XCH	Exchange Contents of Register RRRR and Accumulator	1	0	1	1	R	R	R	R
BBL	Branch Back and Load Data DDDD to Accumulator	1	1	0	0	D	D	D	D
LDM	Load Data DDDD to Accumulator	1	1	0	1	D	D	D	D

Mnemonic

NOTES:
(1) The condition code is assigned as follows:

$C_{1}=1$	Invert jump condition
$C_{1}=0$	Not invert jump condition
$C_{2}=1$	Jump if accumulator is zero
$C_{3}=1$	Jump if carry/link is a 1
$C_{4}=1$	Jump if test signal is a 0

(2) RRR is the address of 1 of 8 index register pairs in the CPU.
(3) RRRR is the address of 1 of 16 index registers in the CPU.
(4) Each RAM chip has 4 registers, each with twenty 4-bit characters subdivided into 16 main memory characters and 4 status characters. Chip number, RAM register and main memory character are addressed by an SRC instruction. For the selected chip and register, however, status character locations are selected by the instruction code (OPA).

Absolute Maximum Ratings*

Ambient Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Voltages and Supply Voltage with respect to Vss	+0.5V to -20V
Power Dissipation	

Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Voltages and Supply Voltage
Power Dissipation ... 1.0 Watt
*COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{S S}-\mathrm{V}_{D D}=15 \mathrm{~V} \pm 5 \% ; \mathrm{t}_{\phi \mathrm{PW}}=\mathrm{t}_{\phi \mathrm{D} 1}=400 \mathrm{nsec} ; \mathrm{t}_{\phi \mathrm{D} 2}=150 \mathrm{nsec} ; 4040 \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{D D 2}=V_{D D}$; Logic " 0 " is defined as the more positive voltage ($\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}$); Logic " 1 " is defined as the more negative voltage ($\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OL}}$): Unless Otherwise specified.

SUPPLY CURRENT

Symbol	Parameter	Min.	Limit Typ.	Max.	Unit	Test Conditions
$I_{\text {SB }}$	Standby Supply Current ($\mathrm{V}_{\mathrm{DD} 1}+\mathrm{V}_{\mathrm{DD} 2}$)		3	5	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {DD }}=\mathrm{V}_{S S}$
IDD (total)	Supply Current ($\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{DD} 1}+\mathrm{V}_{\mathrm{DD} 2}$)		40	60	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

INPUT CHARACTERISTICS

I_{LI}	Input Leakage Current		10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage (Except Clocks)	$\mathrm{V}_{\mathrm{SS}}-1.5$	$\mathrm{~V}_{\mathrm{SS}}+.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage (Except Clocks)	V_{DD}		
$\mathrm{V}_{\mathrm{ILO}}$	Input Low Voltage	V_{DD}	$\mathrm{V}_{\mathrm{SS}}-5.5$	V
$\mathrm{~V}_{\mathrm{IHC}}$	Input High Voltage Clocks	$\mathrm{V}_{\mathrm{SS}}-4.2$	V	4040 TEST and INT inputs
$\mathrm{V}_{\mathrm{ILC}}$	Input Low Voltage Clocks	$\mathrm{V}_{\mathrm{SS}}-1.5$	$\mathrm{~V}_{\mathrm{SS}}+.3$	V

OUTPUT CHARACTERISTICS

ILO	Data Bus Output Leakage Current			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=-12 \mathrm{~V}$
V OH	Output High Voltage	$\mathrm{V}_{S S}-.5 \mathrm{~V}$	$\mathrm{V}_{\text {SS }}$		V	Capacitive Load
loL	Data Lines Sinking Current	8	15		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$
loL	CM-ROM Sinking Current	6.5	12		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$
loL	CM-RAM Sinking Current	2.5	6		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$
V_{OL}	Output Low Voltage, Data Bus, CM, SYNC	$\mathrm{V}_{\text {SS }}-12$		$\mathrm{V}_{\text {SS }}-6.5$	V	$\mathrm{l}_{\mathrm{OL}}=0.5 \mathrm{~mA}$
$\mathrm{R}_{\text {OH }}$	Output Resistance, Data Line " 0 " Level		150	250	Ω	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$
R_{OH}	CM-ROM Output Resistance, Data Line " 0 " Level		320	600	Ω	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$
R_{OH}	CM-RAM Output Resistance, Data Line " 0 " Level		1.1	1.8	k Ω	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$
R_{OH}	INTA, CY, STPA Output Resistance " 0 " Level		1.1	1.8	k Ω	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }} .5 \mathrm{~V}$

CAPACITANCE

C_{ϕ}	Clock Capacitance	17	25	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
$\mathrm{C}_{\text {DB }}$	Data Bus Capacitance	7	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
Cout	Output Capacitance		10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$

Typical D.C. Characteristics

A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Limit Typ.	Max.	Unit	Conditions
${ }^{t_{C} Y}$	Clock Period	1.35		2.0	$\mu \mathrm{sec}$	
t $\phi_{\text {R }}$	Clock Rise Time			50	ns	
$\mathrm{t} \phi_{\mathrm{F}}$	Clock Fall Times			50	ns	
$t \phi_{\text {PW }}$	Clock Width	380		480	ns	
$t \phi_{\text {D1 }}$	Clock Delay ϕ_{1} to ϕ_{2}	400		550	ns	
$t \phi_{\text {D } 2}$	Clock Delay ϕ_{2} to ϕ_{1}	150			ns	
t_{W}	Data-In, CM, SYNC Write Time	350	100		ns	
$t_{\text {WRPM }}$	Data-In Write Time-RPM Instruction	350	100		ns	
$t_{H}{ }^{[1,3]}$	Data-In, CM, SYNC Hold Time	40	20		ns	
thRPM	Data-In Hold Time-RPM Instruction	40	20		ns	
$\mathrm{t}_{\mathrm{H}}{ }^{\text {[3] }}$	Data Bus Hold Time During $X_{2}-X_{3}$ Transition.	150			ns	
$\mathrm{tas}^{\text {[2] }}$	Set Time (Reference)	0			ns	
$\mathrm{t}_{\mathrm{ACC}}{ }^{[5]}$	Data-Out Access Time Data Lines Data Lines SYNC CM-ROM CM-RAM		150	$\begin{aligned} & 930 \\ & 700 \\ & 930 \\ & 930 \\ & 930 \end{aligned}$	ns ns ns ns ns	$\mathrm{C}_{\text {OUT }}=$ 500pF Data Lines 200pF Data Lines ${ }^{[4]}$ 500pF SYNC 160pF CM-ROM 50pF CM-RAM
${ }^{\text {toH }}$	Data-Out Hold Time	50	150		ns	$\mathrm{C}_{\text {OUT }}=20 \mathrm{pF}$
${ }^{\text {t }}$ DEL	CY, STPACK, INTACK Delay			2.0	$\mu \mathrm{sec}$	

NOTES: 1. t_{H} measured with $t_{\phi R}=10 \mathrm{nsec}$.
2. tA CC is Data Bus, SYNC and CM-line output access time referred to the ϕ_{2} trailing edge which clocks these lines out. $t_{O S}$ is the same output access time referred to the leading edge of the next ϕ_{2} clock pulse.
3. All MCS-40 components which may transmit instruction or data to the 4040 at X_{2} always enter a float state until the 4040 takes over the data bus at X_{3} time. Therefore the t_{H} requirement is always insured since each component contributes $10 \mu \mathrm{~A}$ of leakage current and 10 pF of capacitance which guarantees that the data bus cannot change faster than $1 \mathrm{~V} / \mu \mathrm{s}$.
4. CDATA BUS $=200 \mathrm{pF}$ if 4008 and 4009 or 4289 is used.
5. The 4040 accumulator is gated out at X_{1} time at ϕ_{1} leading edge, and the $t_{A C C}$ is $930 \mathrm{nsec}+t_{\phi D 2}$.

Figure 1. Timing Diagram.

Figure 2. Timing Detail.

SINGLE CHIP 4-BIT P-CHANNEL MICROPROCESSOR

- 4-Bit Parallel CPU With 46 Instructions

- Instruction Set Includes Conditional Branching, Jump to Subroutine and Indirect Fetching
- Binary and Decimal Arithmetic Modes
- 10.8 Microsecond Instruction Cycle
- CPU Directly Compatible With MCS-40 ROMs and RAMs
- Easy Expansion-One CPU can Directly Drive up to 32,768 Bits of ROM and up to 5120 Bits of RAM
- Standard Operating Temperature Range of 0° to $70^{\circ} \mathrm{C}$
- Also Available With -40 to $+85^{\circ} \mathrm{C}$ Operating Range

The Intel® 4004 is a complete 4-bit parallel central processing unit (CPU). The 4004 easily interfaces with keyboards, switches, displays, A-D converters, printers and other peripheral equipment.

The CPU can directly address 4 K 8 -bit instruction words of program memory and 5120 bits of data storage RAN. Sixteen index registers are provided for temporary data storage. Up to 164 -bit input ports and 164 -bit output ports may also be directly addressed.
The 4004 is fabricated with P -channel silicon gate MOS technology.

Pin Description

$D_{0}-D_{3}$

BIDIRECTIONAL DATA BUS. All address and data communication between the processor and the RAM and ROM chips occurs on these 4 lines.

RESET

RESET input. A logic " 1 " level at this input clears all flags and status registers and forces the program counter to zero. To completely clear all address and index registers, RESET must be applied for 64 clock cycles (8 machine cycles).

TEST

TEST input. The logical state of this signal may be tested with the JCN instruction.

SYNC

SYNC output. Synchronization signal generated by the processor and set to the ROM and RAM chips. It indicates the beginning of an instruction cycle.

CM-ROM

CM-ROM output. This is the ROM selection signal sent out by the processor when data is required from program memory.

CM-RAM ${ }_{0}$ - CM-RAM 3

CM-RAM outputs. These are the bank selection signals for the 4002 RAM chips in the system.
ϕ_{1}, ϕ_{2}
Two phase clock inputs.

Vss

Most positive voltage.
VDD
VSS $-15 \pm 5 \%$ main supply voltage.

Instruction Set Format

A. Machine Instructions

- 1 word instruction - 8 -bits requiring 8 clock periods (instruction cycle).
- 2 word instruction - 16 -bits requiring 16 clock periods (2 instruction cycles).

Each instruction is divided into two four-bit fields. The upper 4-bits is the OPR field containing the operation code. The lower 4 -bits is the OPA field containing the modifier. For two word instructions, the second word contains address information or data.

The upper 4-bits (OPR) will always be fetched before the lower 4-bits (OPA) during M_{1} and M_{2} times respectively.

ONE WORD INSTRUCTIONS

OR

TWO WORD INSTRUCTIONS

Table I. Machine Instruction Format

B. Input/Output and RAM Instructions and Accumulator Group Instructions

In these instructions (which are all single word) the OPR contains a 4-bit code which identifies either the I/O instruction or the accumulator group instruction and the OPA contains a 4-bit code which identifies the operation to be performed. Table II illustrates the contents of each 4-bit field.

Table II. I/O and Accumulator Group Instruction Formats

Those instructions preceded by an asterisk (*) are 2 word instructions that occupy 2 successive locations in ROM] MACHINE INSTRUCTIONS (Logic $1=$ Low Voltage $=$ Negative Voltage (VD); Logic $0=$ High Voltage $=\left(V_{S S}\right)$

MNEMONIC	$\begin{gathered} \text { OPR } \\ \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0} \\ \hline \end{gathered}$	$\begin{gathered} \text { OPA } \\ \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0} \\ \hline \end{gathered}$	description of operation
NOP	0000	0000	No operation.
$\cdot \mathrm{JCN}$	$\begin{array}{cccc} 0 & 0 & 0 & 1 \\ A_{2} & A_{2} & A_{2} & A_{2} \end{array}$	$\begin{aligned} & c_{1} c_{2} c_{3} C_{4} \\ & A_{1} A_{1} A_{1} A_{1} \\ & \hline \end{aligned}$	Jump to ROM address $A_{2} A_{2} A_{2} A_{2}, A_{1} A_{1} A_{1} A_{1}$ (within the same ROM that contains this JCN instruction) if condition $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}{ }^{(1)}$ is true, otherwise skip (go to the next instruction in sequence).
-FIM	$\begin{array}{cccc} 0 & 0 & 1 & 0 \\ \mathrm{D}_{2} & \mathrm{D}_{2} & \mathrm{D}_{2} & \mathrm{D}_{2} \\ \hline \end{array}$	$\begin{array}{llll} \mathrm{R} & \mathrm{R} & \mathrm{R} & 0 \\ \mathrm{D}_{1} & \mathrm{D}_{1} & D_{1} & D_{1} \end{array}$	Fetch immediate (direct) from ROM Data D_{2}, D_{1} to index register pair location RRR. ${ }^{(2)}$
SRC	0010	R R R 1	Send register control. Send the address (contents of index register pair RRR) to ROM and RAM at X_{2} and X_{3} time in the Instruction Cycle.
FIN	0011	R R R 0	Fetch indirect from ROM. Send contents of index register pair location 0 out as an address. Data fetched is placed into register pair location RRR.
JIN	0011	R R R 1	Jump indirect. Send contents of register pair RRR out as an address at A_{1} and A_{2} time in the Instruction $C_{y c l e}$.
-Jun	$\begin{array}{cccc} 0 & 1 & 0 & 0 \\ A_{2} A_{2} & A_{2} & A_{2} \\ \hline \end{array}$	$\begin{aligned} & A_{3} A_{3} A_{3} A_{3} \\ & A_{1} A_{1} A_{1} A_{1} \\ & \hline \end{aligned}$	Jump unconditional to ROM address A_{3}, A_{2}, A_{1}.
$\cdot \mathrm{Jms}$	$\begin{array}{cccc} 0 & 1 & 0 & 1 \\ A_{2} & A_{2} & A_{2} & A_{2} \end{array}$	$\begin{aligned} & A_{3} A_{3} A_{3} A_{3} \\ & A_{1} A_{1} A_{1} A_{1} \end{aligned}$	Jump to subroutine ROM address A_{3}, A_{2}, A_{1}, save old address. (Up 1 level in stack.)
INC	0110	R R R R	Increment contents of register RRRR. ${ }^{(3)}$
-ISZ	$\begin{array}{cccc} 0 & 1 & 1 & 1 \\ A_{2} & A_{2} & A_{2} & A_{2} \end{array}$	$\begin{array}{llll} \text { R } & \text { R } & \text { R } \\ A_{1} & A_{1} & A_{1} & A_{1} \\ \hline \end{array}$	Increment contents of register RRRR. Go to ROM address $\mathrm{A}_{2}, \mathrm{~A}_{1}$ (within the same ROM that contains this ISZ instruction) if result $\neq 0$, otherwise skip (go to the next instruction in sequence).
ADD	1000	R R R R	Add contents of register RRRR to accumulator with carry.
sub	1001	R R R R	Subtract contents of register RRRR to accumulator with borrow.
LD	1010	R R R R	Load contents of register RRRR to accumulator.
$\times \mathrm{CH}$	1011	R R R f	Exchange contents of index register RRRR and accumulator.
B8L	1100	D D D D	Branch back (down 1 level in stack) and load data DDDD to accumulator.
LDM	1101	D D D D	Load data DDDD to accumulator.

NPUT/OUTPUT AND RAM INSTRUCTIONS for the following devices: 4001, 4002, 4008, 4009, and 4289*

NOTES: ${ }^{(1)}{ }^{\text {The }}$ condition code is assigned as follows
$\begin{array}{lllll}\mathrm{C}_{1}=1 & \text { Invert jump condition } & \mathrm{C}_{2}=1 & \text { Jump if accumulator is zero } & \mathrm{C}_{4}=1\end{array} \quad$ Jump if test signal is a 0
$2_{\text {RRR }}$ is the
$\left.{ }^{(3)}\right)_{\text {RRRR }}$ is the address of 1 of 16 index registers in the CPU.
${ }^{(4)}$ Each RAM chip has 4 registers, each with twenty 4 -bit characters subdivided into 16 main memory characters and 4 status characters, Chatus character locations are selected by the instruction code (OPA).

The RAM's and ROM's operated on in the I/O and RAM instructions have been previously selected by the last SRC instruction executed.)

MNEMONIC WRM	$\begin{gathered} \text { OPR } \\ \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0} \end{gathered}$				$\begin{gathered} \text { OPA } \\ \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0} \end{gathered}$				DESCRIPTION OF OPERATION
	1	1	1	0	0	0	0	0	Write the contents of the accumulator into the previously selected RAM main memory character.
WMP	1	1	1	0	0	0	0		Write the contents of the accumulator into the previously selected RAM output port.
WRR	1	1	1	0	0	0	1	0	Write the contents of the accumulator into the previously selected ROM output port. (1/O Lines)
WPM	1	1	1	0	0	0	1	1	Write the contents of the accumulator into the previously selected half byte of read/write program memory (for use with 4008/4009 or 4289)
WR $\phi^{(4)}$	1	1	1	0	0	1	0	0	Write the contents of the accumulator into the previously selected RAM status character 0 .
WR1 ${ }^{(4)}$	1	1	1	0	0	1	0	1	Write the contents of the accumulator into the previously selected RAM status character 1.
WR2 ${ }^{(4)}$	1	1	1	0	0	1	1	0	Write the contents of the accumulator into the previousty selected RAM status character 2.
WR3 $^{(4)}$	1	1	1	0	0	1	1	1	Write the contents of the accumulator into the previously selected RAM status character 3.
SBM	1	1	1	0	1	0	0	0	Subtract the previously selected RAM main memory character from accumulator with borrow.
RDM	1	1	1	0	1	0	0	1	Read the previously selected RAM main memory character into the accumulator.
RDR	1	1	1	0	1	0	1	0	Read the contents of the previousty selected ROM input port into the accumulator. (1/O Lines)
ADM	1	1	1	0	1	0	1	1	Add the previously selected RAM main memory character to accumulator with carry.
RD $\phi^{(4)}$	1	1	1	0	1	1	0	0	Read the previously selected RAM status character 0 into accumulator.
ROI ${ }^{(4)}$	1	1	1	0	1	1	0	1	Read the previously selected RAM status character 1 into accumulator.
RO2 ${ }^{(4)}$	1	1	1	0	1	1	1	0	Read the previously selected RAM status character 2 into accumulator.
RD3 ${ }^{(4)}$	1	1	1	0	1	1	1	1	Read the previously selected RAM status character 3 into accumulator.

*For explanation of 4265 and $42691 / \mathrm{O}$ instructions, see the 4265 and 4269 data sheets.

CLB	1	1	1	1		0	0	0	Clear both. (Accumulator and carry)
CLC	1	1	1	1	0	0	0	1	Clear carry.
IAC	1	1	1	1	0	0	1	0	Increment accumulator.
CMC	1	1	1	1	0	0	1	1	Complement carry.
CMA	1	1	1	1	0	1	0	0	Complement accumulator.
RAL	1	1	1	1	0	1	0	1	Rotate left. (Accumulator and carry)
RAR	1	1	1	1		1	1	0	Rotate right. (Accumulator and carry)
TCC	1	1	1	1		1	1	1	Transmit carry to accumulator and clear carry.
DAC	1	1	1	1		0	0	0	Decrement accumulator.
TCS	1	1	1	1		0	0	1	Transter carry subtract and clear carry.
STC	1	1	1	1	1	0	1	0	Set carry.
DAA	1	1	1	1	1	0	1	1	Decimal adjust accumulator.
KBP	1	1	1	1	1	1	0	0	Keyboard process. Converts the contents of the accumulator from a one out of four code to a binary code.
DCL	1	1	1	1	1	1	0		Designate command line.

Absolute Maximum Ratings*

Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Voltages and Supply Voltage
with respect to Vss +0.5 V to -20 V
Power Dissipation .. 1.0 Watt
*COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{S S}-\mathrm{V}_{D D}=15 \mathrm{~V} \pm 5 \% ; \mathrm{t}_{\phi \mathrm{PW}}=\mathrm{t}_{\phi} \mathrm{D} 1=400 \mathrm{nsec} ;$ logic " $O^{\prime \prime}$ is defined as the more positive voltage $\left(\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}\right)$; logic " 1 " is defined as the more negative voltage ($\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OL}}$); Unless Otherwise Specified.

SUPPLY CURRENT

Symbol	Parameter	Min.	Limit Typ.	Max.	Unit	Test Conditions.
IDD	Average Supply Current		30	40	mA	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

INPUT CHARACTERISTICS

I_{LI}	Input Leakage Current		10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage (Except Clocks)	$\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{DD}}$		
$\mathrm{V}_{\mathrm{IL}}-1.5$	Input Low Voltage (Except Clocks)	V_{DD}	$\mathrm{V}_{\mathrm{SS}}+.3$	V
$\mathrm{~V}_{\mathrm{ILO}}$	Input Low Voltage	$\mathrm{V}_{\mathrm{SD}}-5.5$	V	
$\mathrm{~V}_{\mathrm{IHC}}$	Input High Voltage Clocks	$\mathrm{V}_{\mathrm{SS}}-1.5$	$\mathrm{~V}_{\mathrm{SS}}-4.2$	V
$\mathrm{~V}_{\mathrm{ILC}}$	Input Low Voltage Clocks	V_{DD}	$\mathrm{V}_{\mathrm{SS}}+.3$	V

OUTPUT CHARACTERISTICS

lo	Data Bus Output Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=-12 \mathrm{~V}$
V_{OH}	Output High Voltage	$\mathrm{V}_{\text {SS }}-.5 \mathrm{~V} \quad \mathrm{~V}_{\text {SS }}$		V	Capacitance Load
l OL	Data Lines Sinking Current	$8 \quad 15$		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$
loL	CM-ROM Sinking Current	6.512		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$
lOL	CM-RAM Sinking Current	2.56		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$
V_{OL}	Output Low Voltage, Data Bus, CM, SYNC	$\mathrm{V}_{\text {SS }}-12$	$\mathrm{V}_{\text {SS }}-6.5$	V	$\mathrm{l}_{\mathrm{OL}}=0.5 \mathrm{~mA}$
R_{OH}	Output Resistance, Data Line " 0 " Level	150	250	Ω	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$
R_{OH}	CM-ROM Output Resistance, Data Line "0' Level	320	600	Ω	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$
R_{OH}	CM-RAM Output Resistance, Data Line " 0 " Level	1.1	1.8	$k \Omega$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$

CAPACITANCE

C_{ϕ}	Clock Capacitance	14	20	pF	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{SS}}$
C_{DB}	Data Bus Capacitance	7	10	pF	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\text {SS }}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		10	pF	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{SS}}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	10	pF	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{SS}}$	

Typical D.C. Characteristics

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, V_{S S}-V_{D D}=15 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Limit Typ.	Max.	Unit	Test Conditions
t_{CY}	Clock Period	1.35		2.0	$\mu \mathrm{sec}$	
$\mathrm{t}_{\phi \mathrm{R}}$	Clock Rise Time			50	ns	
$\mathrm{t}_{\boldsymbol{\phi} F}$	Clock Fall Times			50	ns	
$\mathrm{t}_{\phi \text { PW }}$	Clock Width	380		480	ns	
$\mathrm{t}_{\phi \text { D } 1}$	Clock Delay ϕ_{1} to ϕ_{2}	400		550	ns	
$\mathrm{t}_{\phi \text { D } 2}$	Clock Delay ϕ_{2} to ϕ_{1}	150			ns	
${ }_{\text {t }}$ w	Data-In, CM, SYNC Write Time	350	100		ns	
$t_{H}[1,3]$	Data-In, CM, SYNC Hold Time	40	20		ns	
$\mathrm{tH}^{[3]}$	Data Bus Hold Time During $\mathrm{M}_{2}-\mathrm{X}_{1}$ and and $X_{2}-X_{3}$ Transition.	150			ns	
$\mathrm{tos}^{[2]}$	Set Time (Reference)	0			ns	
$t_{\text {AcC }}$	Data-Out Access Time					$\mathrm{C}_{\text {OUT }}=$
	Data Lines			930	ns	500pF Data Lines
	Data Lines			700	ns	200pF Data Lines ${ }^{\text {[4] }}$
	SYNC			930	ns	500pF SYNC
	CM-ROM			930	ns	160pF CM-ROM
	CM-RAM			930	ns	50pF CM-RAM
${ }^{\text {tor }}$	Data-Out Hold Time	50	150		ns	$\mathrm{COUT}^{\text {O }}$ 20pF

Notes: 1. t_{H} measured with $t_{\phi R}=10$ nsec.
2. TACC is Data Bus, SYNC and CM-line output access time referred to the ϕ_{2} trailing edge which clocks these lines out. tOS is the same output access time referred to the leading edge of the next ϕ_{2} clock pulse.
3. All MCS-40 components which may transmit instruction or data to the 4004 at M_{2} and X_{2} always enter a float state until the 4004 takes over the data bus at X_{1} and X_{3} time. Therefore the t_{H} requirement is always insured since each component contributes $10 \mu \mathrm{~A}$ of leakage current and 10 pF of capacitance which guarantees that the data bus cannot change faster than $1 \mathrm{~V} / \mu \mathrm{s}$.
4. CDATA $^{\text {BUS }}=\mathbf{2 0 0} \mathrm{pF}$ if 4008 and 4009 or 4289 is used.

Figure 1. Timing Diagram.

Figure 2. Timing Detail.

intlel 4003

10 BIT SHIFT REGISTER/OUTPUT EXPANDER

- 10 Bit Serial-In/Parallel Out
 - Serial-Out Capability for Additional I/O Expansion
 - 16 Pin Dual-In-Line Package

The 4003 is a 10 bit serial-in, parallel-out, serial-out shift register with enable logic. The 4003 is used to expand the number of ROM and RAM I/O ports to communicate with peripheral devices such as keyboards, printers, displays, readers, teletypewriters, etc.

The 4003 is a single phase static shift register; however, the clock pulse (CP) maximum width is limited to 10 msec . Data-in and $C P$ can be simultaneous. To avoid race conditions, $C P$ is internally delayed.

Pin Description

Pin No.	Designation	Description of Function
1	CP	The clock pulse input. A "0" $\left(V_{S S}\right)$ to " 1 " $\left./ V_{D D}\right)$ transition will shift data in.
2	DATA IN	Serial data input line. 3
0_{0}	Parallel data output lines, when enabled. Each pin may be made	
	TTL compatible with a 5.6K pull-down resistor to $V_{D D}$.	

4	0_{1}	
6	O_{2}	
7	O_{3}	
8	O_{4}	
9	0_{5}	
10	0_{6}	
11	0_{7}	
12	0_{8}	
13	0_{9}	
5	$\mathrm{V}_{\text {ss }}$	Most positive supply voltage.
14	$V_{\text {DD }}$	Main supply voltage value must be $V_{S S}-15.0 \mathrm{~V} \pm 5 \%(-10 \mathrm{v}$ for TTL operation)
15	Serial out	Serial data output.
16	E	Enable, when $E=" 1 "\left(V_{D D}\right)$ the output lines contain valid data. When $E=" 0$ " (VSS $)$ the output lines are at $\mathrm{V}_{\text {SS }}$.

Functional Description

The 4003 is designed to be typically appended to an MCS-40 I/O port. This can be the I/O port of a 4001, 4002, 4289, 4308, or a 4265. One I/O line is assigned to be the Enable (E), another the Clock (CP), and still another the Serial Data-Input. For example, to access the 4003 a subroutine of sequential outputs consisting of Data, clock pulse on, Enable - followed by an output of clock pulse off and Enable, will serially load the 4003.

Data is loaded serially and is available in parallel on 10 output lines which are accessed through enable logic. When enabled ($E=1--V_{D D}$), the shift register contents are read out; when not enabled ($E=0-V_{S S}$), the parallel-out lines are at Logic " 0 " ($V_{\text {SS }}$). The serial-out line is not affected by the enable logic to allow longer word cascading.

Data is also available serially permitting an indefinite number of similar devices to be cascaded together to provide shift register length multiples of 10 .

The data shifting is controlled by the CP signal. An internal power-on-clear circuit will clear the shift register (outputs $=0$ or V_{SS}) between the application of the supply voltage and the first CP signal.

The 4003 output buffers are useful for multiple key depression rejection when a 4003 is used in conjunction with a keyboard. In this mode if up to three output lines are connected together, the state of the output is high (Logic " 0 " or $V_{S S}$) if at least one line is high.

Another typical application of the 4003 is for Keyboard or Display Scanning where a single bit of Logic " 1 " is shifted through the 4003 and is used to activate the various digits, keyboard rows, etc.

Absolute Maximum Ratings*

Ambient Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Voltages and Supply Voltage with respect to Vss	+0.5 V to -20V
Power Dissipation	1.0 W

-COMMENT:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{S S}-\mathrm{V}_{D D}=15 \mathrm{~V} \pm 5 \% ; \mathrm{t}_{\phi \mathrm{PW}}=\mathrm{t}_{\phi \mathrm{D} 1}=400$ nsec, $\mathrm{t}_{\phi \mathrm{D} 2}=150$ nsec, unless otherwise specified. Logic " 0 " is defined as the more positive voltage ($\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}$), Logic " 1 " is defined as the more negative voltage ($\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OL}}$).

SUPPLY CURRENT

Symbol	Parameter	Min.	Limit Typ.[1]	Max.	Unit	Test Conditions
IDD	Average Supply Current		5.0	8.5	mA	$\begin{aligned} & t_{W L}=t_{W H}=8 \mu \mathrm{sec} ; \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$

I/O INPUT CHARACTERISTICS

I_{LI}	Input Leakage Current		10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}-1.5$	$\mathrm{~V}_{\mathrm{SS}}+.3$	
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	V_{DD}		

I/O OUTPUT CHARACTERISTICS

IOL	Parallel Out Pins Sinking Current, "1" Level	0.6	1.0		mA	$V_{\text {OUT }}=0 V$. For TTL compatibility a $5.6 \mathrm{~K} \Omega$ ($\pm 10 \%$) resistor between output and $V_{D D}$ should be added.[2]
$\mathrm{IOL}^{\text {l }}$	Serial Out Sinking Current, "1" Level	1.0	2.0		mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{VOL}^{\text {OL }}$	Output Low Voltage	$\mathrm{V}_{\text {SS }}-11$	$\mathrm{V}_{S S}-7.5$	$\mathrm{V}_{\text {SS }}-6.5$	V	$\mathrm{IOL}=10 \mu \mathrm{~A}$
$\mathrm{ROH}^{\text {O }}$	Parallel-Out Pins Output Resistance " 0 " Level		400	750	Ω	$\mathrm{V}_{\text {OUT }}=-0.5 \mathrm{~V}$
R_{OH}	Serial Out Output Resistance " 0 " Level		650	1200	Ω	$V_{\text {OUT }}=-0.5 \mathrm{~V}$

Notes: 1. Typical values are to $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and Nominal Supply Voltages.
2. For TTL compatibility on the I / O lines the supply voltages should be $V_{D D}=-10 \mathrm{~V} \pm 5 \% ; V_{S S}=+5 \mathrm{~V} \pm 5 \%$.

CAPACITANCE

$f=1 \mathrm{MHz} ; \mathrm{V}_{I N}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; Unmeasured Pins Grounded.

Symbol	Test	Typ.	Max.	Unit
C_{IN}	Input Capacitance	5	10	pF

Typical D.C. Characteristics

POWER SUPPLY CURRENT
VS. TEMPERATURE

OUTPUT CURRENT VS. OUTPUT VOLTAGE

A.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=-15 \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}$

Symbol	Parameter	Min.	Limit Typ.	Max.	Unit	Test Conditions
twi	CP Low Width	6		10,000	$\mu \mathrm{sec}$	
${ }_{\text {W }}^{\text {W }}$ [${ }^{[1]}$	CP High Width	6			$\mu \mathrm{sec}$	
${ }^{\text {t }}$ CD	Clock-On to Data-Off Time	3			$\mu \mathrm{sec}$	
${ }^{\text {t }{ }_{\text {d }} \text { [2] }}$	CP to Data Set Delay			250	nsec	
$\mathrm{t}_{\mathrm{d} 1}$	CP to Data Out Delay	250		1750	nsec	
$\mathrm{t}_{\mathrm{d} 2}$	Enable to Data Out Delay			350	nsec	$\mathrm{C}_{\text {OUT }}=20 \mathrm{pF}$
$\mathrm{t}_{\mathrm{d} 3}$	CP to Serial Out Delay	200		1250	nsec	$\mathrm{C}_{\text {OUT }}=20 \mathrm{pF}$
$\mathrm{t}_{\mathrm{d} 4}$	Enable to Data Out Delay			1.0	$\mu \mathrm{sec}$	$\mathrm{C}_{\text {OUT }}=20 \mathrm{pF}$

Notes: 1. tWH can be any time greater than $6 \mu \mathrm{sec}$.
2. Data can occur prior to CP.

Timing Diagram

PROGRAMMABLE GENERAL PURPOSE I/O DEVICE

- Multi-Mode 14 Operating Modes
- 16 Lines of I/O Capability
- Bit Set/Reset
- Multiplexable Outputs
- Eight Bit Transfer Mode
- Interfaces to 8080 Peripherals
- Synchronous and Asynchronous Interface

- Strobed Buffer Inputs and Outputs

- TTL Interface
- Up to Eight 4265s Per System
- Interface to Standard RAMs
- 28 Pin Dual-In-Line Package
- Standard Operating Temperature Range of 0° to $70^{\circ} \mathrm{C}$ (-40° to $+85^{\circ} \mathrm{C}$ Operating Range to be Available First Quarter 1976)

Abstract

The 4265 is a general purpose I/O device designed to interface with the MCS-40"u microcomputer family. This device provides four software programmable 4-bit I/O ports which can be configured to allow any one of fourteen unique operating modes for interfacing to data memory or a variety of user peripheral devices. A single MCS-40 system can accomodate up to four 4265 s (one per CM-RAM) without external logic or up to eight 4265 s with one external decoder. The 4265 resides on the MCS-40 data bus and uses the same selection procedure as 4002 RAM device. A valid compare selects the 4265 for MCS-40 I/O commands. As in the case of the 4002 or any MCS-40 peripheral circuit, selection occurs only when the proper SRC code and the CM signal are present simultaneously. The 4265 provides an extremely flexible, general purpose I/O system capable of handling 4-or 8-bit input or output data. One of fourteen basic operating modes can be selected (software programmable) as described below. Port Z is TTL compatible with any TTL device. Ports W, X, and Y are low-power TTL compatible.

PIN CONFIGURATION

Pin Description

Pin No.	Designation	Function
2-5	DO-D3	Bi-directional data bus. All ad- dress, instruction and data com- munication between processor and I/O ports are transferred on this port.
6	RESET	A negative level (VDD) applied to this pin clears all storage ele- ments, places the 4265 in the Reset Mode and deselects the device.
7	CM	Command input driven by a CM- RAM output of the processor. Used for decoding SRC, RDM, WRM, WMP, SBM, ADM, WRO-3 and RDO-3.
-10	$\phi 1-\phi 2$	Non-overlapping clock signals which determine timing.

Pin No.	Designation	Function
8	SYNC	Synchronization signal generated by the processor; indicates the beginning of an instruction.
24-27	W3-W0	Four programmable 1/O ports
20-23	X3-X0	having different functional des-
16-19	Y3-Y0	ignation depending on 4265
11-14	Z3-Z0	mode of operation. A data bus " 1 " negative true ($V_{D D}$) will appear on a port as a " 1 " positive true $\left(V_{S S}\right)$. These ports are TTL compatible.
28	$V_{D D}$	Main power supply pin. Value must be $\mathrm{V}_{\mathrm{SS}}-15 \mathrm{~V} \pm 5 \%$.
15	$V_{\text {DD1 }}$	Supply voltage for 1/O ports.
1	$V_{\text {SS }}$	Most positive supply voltage
$28=$ TOTAL PINS		I/O ports).

4265 HARDWARE BLOCK DIAGRAM

4265 PROGRAMMABLE MODES

OPERATING MODES

- Mode 1 - 8-Bit Asynchronous I/O Port (Bidirectional) 4-Bit Input Port (Unbuffered)
- Mode 2 - 8-Bit Asynchronous I/O Port (Bidirectional) 4-Bit Output Port
- Mode 3 - 8-Bit Synchronous I/O Port (Bidirectional) 4-Bit Synchronous Output Port
- Mode 4 - Four 4-Bit Output Ports
- Mode 5 - Three 4-Bit Output Ports

One 4-Bit Input Port (Unbuffered)
Mode 6 - Two 4-Bit Output Ports
Two 4-Bit Input.Ports (Unbuffered)

- Mode 7 - One 4-Bit Output Port

Three 4-Bit Input Ports (Unbuffered)

- Mode 8 - Three 4-Bit Synchronous Output Ports
- Mode 9 - Two 4-Bit Synchronous Output Ports One 4-Bit Asynchronous Input Port

OPERATING MODES

- Mode 10 - One 4-Bit Synchronous Output Port Two 4-Bit Asynchronous Input Ports
- Mode 11 - Three 4-Bit Asynchronous Input Ports
- Mode 12 - 8-Bit Address Port

4-Bit Synchronous I/O Port (Bidirectional)
2 Device Selection Control Signals

- Mode 13 - 8-Bit Address Port

4-Bit Asynchronous I/O Port (Bidirectional)
CONTROL AND OPERATING MODE

- Mode $0-\begin{aligned} & \text { Four 4-Bit Input Ports (Unbuffered) } \\ & \text { Resets I/O Buffers }\end{aligned}$
CONTROL MODES
- Mode 14 - Disables all output buffers, allowing another 4265 to be multiplexed at the port level.
- Mode 15 - Enables output buffers, previous mode restored.

4265 MODE DIAGRAM

MODE 5

MODE 7

* UNBUFFERED INPUT PORTS.
**THE LINES ON THESE PORTS ARE SUBJECT TO THE BIT SET COMMAND.

Functional Description

Control Functions: Two types of operations are possible with the 4265. The device (once selected) can be programmed to one of fourteen basic operating modes. This is accomplished by executing a WMP instruction which sends the 4 -bit content of the CPU's Accumulator to the 4265 where it is decoded and used to logically configure the device. A second Control operation makes use of the WRM instruction to select Qne of eight output lines (Port Y or Z) and perform a SET or RESET operation on that line. This is accomplished by interpreting the 4-bit Accumulator value as follows: The upper three bits select one of eight output latches; the least significant bit determines whether a SET or RESET operation is to be performed.

Data Transfer Functions: The remaining eleven instructions provide four WRITE operations (WRO, WR1, WR2, WR3) and seven READ operations (RD0, RD1, RD2, RD3, ADM, SBM, RDM). These allow data in 4-bit or 8-bit format to be transmitted between the 4265 and external I/O devices or memory devices (all transfers between processor and 4265 are 4-bit transfers).

The sixteen lines of the 4265 are grouped into four ports, four bits each referred to as $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z . The ports can be interrogated by a RDO-3 corresponding to ports W - Z respectively. This means that even when a port is designated as a control port or an output port, the state of the port can be inputted by a RDO-3 instruction (except in modes 12 and 13). The WRO-3 instruction will load the ports W - Z designated outputs. When a port is specifically designated as an input port, it will not respond to an output type instruction (WRO-3, WRM, etc.). See specific mode selection for details.

When port Y or Z is designated an output, regardless of the mode, then it will respond to the Bit Set command. The Bit Set Command allows the user to set the polarity of a single bit without affecting any other bit. This is particularly useful when the output port of interest drives control lines
tied to the user system. The user can selectively alter the bit polarity. To alter a bit, the MCS-40 WRM command is utilized.

The 4265 is selected via the CM-RAM line and an appropriate MCS $-40^{\text {TM }}$ SRC command. The upper two bits of data at X2 of an SRC instruction with the CM-RAM signal are compared with an address code internal to the 4265 . One standard code is available, a code of 2 . This allows one 4265 per CM-RAM or up to four per system without additional logic. By using one external decoder and the ability of the DCL (Designate Command Line) instruction to code the CM-RAM lines, up to eight 4265 s can be used in a system. Other peripheral devices can share a CM-RAM line with the 4265 (except Mode 12 and 13). For example, a CM-RAM line can contain three 4002 RAMs and one 4265.

The operating modes of the 4265 are selected under program control by the processor. When a 4265 is designed into a specific application, one functional mode is selected. With the possible exception of RESET, ENABLE, and DISABLE, a functional change in mode should not be initiated by the software once the part is designed into a specific application. Since mode selection is done with software, the system's "power up" software routine should sequentially establish the mode of each 4265 prior to "main body" program initiation. The mode selection is accomplished with the accumulator operand of the WMP command.

MODE DEFINITION AND TIMING

Detailed Description of Operating Modes

Table 1 provides a listing of the basic operating modes and the appropriate port configuration as determined by the Accumulator value sent to the 4265 during execution of the WMP instruction. A description of each mode is found in the following sections.

Table 1. Detailed Description of 4265 Operating Modes.

Mode	Port W	Port X	Port Y	Port 2			
0	Input port, unbuffered	Input port, unbuffered	Input port, unbuffered	Input port, unbuffered			
1	Bi-directional; Outputs enabled by signal Z0; When enabled output assumes value loaded by WRO.	Bi-directional; Outputs enabled by signal ZO; When enabled output assumes value loaded by WR 1.	Unbuffered input port	Bit 0 Asynchronous input used to enable data out on Ports W, X.	Bit 1 Asynchronous input used to load data to Port W, X input buffers.	Bit 2 Output signal which is normally at $V_{S S}$. Goes to $V_{D D 1}$ on execution of $W R$. Returns to $V_{S S}$ on trailing edge of ZO .	Bit 3 Output signal which is normally at $V_{\text {Ss }}$. Goes to $\mathrm{V}_{\mathrm{DD} 1}$ on trailing edge of $\mathbf{Z 1}$ and remains at V_{DD} until execution of RD1.
2	Bi-directional; Output enabled by signal Z0; When enabled output assumes value loaded by WRO.	Bi-directional; Outputs enabled by signal ZO ; When enabled output assumes value loaded by WR 1.	Buffered output port				
3	Bi-directional; Outputs enabled during WR 1 cycle. Output assumes value loaded by WRO.	Bi-directional; Outputs enabled during WR 1 cycle. Output assumes value loaded by WR 1 .	Buffered output port	Synchronous output. Normally at V_{SS}; goes to $\mathrm{V}_{\mathrm{DD} 1}$ during execution of WR 1.	Synchronous output. Normally at V_{SS}; goes to $\mathrm{V}_{\mathrm{DD} 1}$ during RD1 instructions.	Synchronous output. Normally at $V_{\text {SS }}$ goes to VDD1 during WR2 instructions.	Unassigned. Line is an output and can be set with WRM. Normally at $V_{\text {SS }}$ after mode 3 set.
4	Buffered output port	Buffered output port	Buffered output port	Buffered output port			
5	Unbuffered input port	Buffered output port	Buffered output port	Buffered output port			
6	Unbuffered input port	Unbuffered input port	Buffered output port	Buffered output port			
7	Unbuffered input port	Unbuffered input port	Unbuffered input port	Buffered output port			
8	Buffered output port	Buffered output port	Buffered output port	Output signal normally at $\mathrm{V}_{\text {SSi }}$ goes to $\mathrm{V}_{\mathrm{DD},}$ during WRO.	Output signal nor- mally at $V_{\text {Si }}$ goes to $V_{\text {DD1 }}$ during WR 1.	Output signal nor- mally at $V_{\text {Ss }}$ goes to $V_{D D 1}$ during WR2.	Unassigned output. Normally at $\mathrm{V}_{\text {SS }}$ after mode 8 set.
9	Buffered input port, loaded by signal $\mathbf{Z O}$.	Buffered output port	Buffered output port	Input signal used to load Port W asynchronously.	Output signal normally at V_{SS}; goes to $V_{D D 1}$ during WR 1.	Output signal normally at $\mathrm{V}_{\text {ss }}$ goes to $\mathrm{V}_{\mathrm{DD} 1}$ during WR2.	Uhassigned output. Normally at $\mathrm{V}_{\text {SS }}$ after mode 9 set.
10	Buffered input port, loaded by signal $Z 0$.	Buffered input port, loaded by signal $\mathrm{Z1}$.	Buffered output port	Input signal used to load Port W asynchronously.	Input signal used load Port X asynchronously.	Output signal normally at V_{SS}; goes to $V_{D D 1}$ during WR2.	Unassigned output. Normally at V_{SS} after mode 10 set.
11	Buffered input port, loaded by signal ZO .	Buffered input port, loaded by signal $\mathrm{Z1}$.	Buffered input port, loaded by signal $\mathrm{Z2}$.	Input signal used to load Port W asynchronously.	Input signal used to load Port X asynchronously.	Input signal used to load Port Y asynchronously.	Unassigned output. Normally at $\mathrm{V}_{\text {SS }}$ after mode 11 set.
12	Buffered output port, loaded by SRC in-structions-contains upper 4-bits of SRC data.	Buffered output port, loaded by SRC in-structions-contains lower 4-bits of SRC data.	Bi-directional; Outputs enabled at any WR instruction; input port unbuffered.	Output signal normally at V_{SS}; goes to V_{DD} during any WR instruction.	Output signal normally at $V_{\text {SS }}$ goes to $\mathrm{V}_{\mathrm{DD} 1}$ during any RD instruction.	Output signal which is loaded with address bit corresponding to WR or RD operation.	Output signal which is loaded with address bit corresponding to WR or RD operation.
13	Buffered output port, loaded by SRC in-structions-contains upper 4-bits of SRC data.	Buffered output port, loaded by SRC in-structions-contains lower 4bits of SRC data.	Bi-directional;Outputs enabled by signal Z0; Inputs loaded by signal Z 1 .	Asynchronous input used to enable data out on Port Y.	Asynchronous input used to load data to Port Y input buffers.	Output signal normally at V_{SS}; goes to $V_{D D 1}$ on execution of WR instruction. Returns to $V_{\text {SS }}$ on trailing edge of $Z 0$.	Output signal normally at V_{SS}; goes to $V_{D D 1}$ on trailing edge of Z 1 and re mains at $V_{D D 1}$ until execution of RD instruction.
14	All outputs disabled, data saved.						
15	Previous information restored.						

a. Reset Mode - Mode 0

WMP Operand - 0000
Mode Description: The Reset Mode provides for a programmable reset. Reset will clear all I/O buffers; however, reset will not clear the chip select flip-flop. Hence, the 4265 will remain selected and enabled after a programmable reset. A negative 1 level ($V_{D D}$) on the RESET pin will cause a response similar to the Reset Mode. The only difference is that the 4265 will be enabled but deselected.

Port Description: Ports $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z are unbuffered input. Hence, they can be read with RDO-3, transferring the state of the port lines into the accumulator. A positive " 1 " ($V_{\text {SS }}$) will appear in the accumulator as a negative true " 1 " ($V_{D D}$). Port Y will also respond to the RDM, SBM and ADM instructions.
b. 8-Bit Asynchronous I/O Mode with Input - Mode 1

WMP Operand - 0001
Mode Description: The 8-bit I/O mode is used to transfer bi-directional data bytes between the MCS-40' ${ }^{\text {m }}$ and the peripheral circuits. Four control lines (Port Z) allow an asynchronous information transfer. Two signals are associated with the input function and two with the output function. Port Y is defined as an unbuffered input.

Port Description

Port W, X These two ports are combined to transfer 8 -bits of I/O under asynchronous control of Port Z. Port W will be loaded
with a WRO and Port X will be loaded with WR1. The WR1 will initiate the write "handshake" on Port Z. When the two ports are interrogated, a sequential RD0 and RD1 will cause the IA line to be deactivated.

Port $Y \quad$ This port is an unbuffered input, interrogated with an RD2, RDM, ADM or SBM instruction.

Port Z

Output acknowledge to the 4265 from the users logic. This signal is activated by the users logic (made negative) in response to the OI signal. The OA signal will enable the 4265 output buffer onto Ports W and X. It should be sufficiently long to allow the transfer.

Output initiate from the 4265.

This signal will be generated when Port X has been loaded via a WR1. Port W and Port X should be loaded in the WROWR1 sequence. When the OI signal is active, the external device will request data with the OA. The trailing edge of OA will cause the 4265 to remove the OI . If no OA response is received, OI will be active until the next WRO, where it will be removed until the next WR1.

Figure 1. 4265 Mode 0 Timing.

Z1 II Input initiate to the 4265 from the users logic. The signal will be used as a strobe signal to latch the 8 -bit contents of the Port W, X lines into the respective buffers. Data is transferred on the negative to the positive transition. This transition will cause the IA signal to be set.

Z3 IA Output from the 4265.
The IA signal will transition to the positive state when an RD1 command is executed. This indicates that the processor has interrogated Port W, X buffer. The processor should read the data in the sequence of RDO followed by an RD1.
c. 8-Bit Asynchronous I/O Mode with Output - Mode 2

WMP Operand - 0010
Mode Description: Same as for Mode 1, except Port Y is a buffered output port.
Port Description: Port W, X, Z; same as for Mode 1. Port Y : This port is a buffered output port which can be loaded with a WR2 instruction and can be read by an RD2, RDM, ADM, and SBM.

Figure 2. 4265 Modes 1 and 2 Timing.

d. 8-Bit Synchronous I/O Mode with Output - Mode 3
 WMP Operand - 0011

Mode Description: This mode is functionally similar to Modes 1 and 2 in terms of its byte transfer feature. However, the transfer control is synchronous. Port W, X are buffered outputs or unbuffered inputs, depending on the direction of transfer. Port Z provides the synchronous strobe control. Port Y is a buffered output port.

Port Description

Port W, X These two ports are combined to transfer bi-directional 8-bit information under synchronous control. Output data should be loaded into Ports W, X with the WROWR1 sequence. The input of information should be sequentially read with an RD0 followed by an RD1.

Port $\mathrm{Y} \quad$ This port is a 4-bit output port. Information is valid during the output strobe of a WR2 command. The output strobe is the $Z 2$ line of the Z port. This port may also be read with an RD2, RDM, ADM and SBM.

Port Z

ZO OS Output strobe from 4265.
This line is valid during a WR1 command. Information from the output buffers of Ports W and X is present at Ports W and X output lines only during the signal.
Z1 IS Input strobe from 4265.
This line is valid during an RDO command. Information is taken off the Port W, X lines and is latched in the Port W , X buffers. The RDO will read the information pertaining to Port W. RD1 will input information pertaining to Port X . The ports must be read by RDO followed by an RD1. Data will be latched in the W and X Ports with the RDO. Information should be valid at the trailing edge of IS.

Z2 YS Port Y strobe from the 4265.
This line is valid during a WR2 command. Information will be valid at the Port Y output buffer during this strobe.

This line is not used. It can be bit set/ reset under program control.

Figure 3. $\mathbf{4 2 6 5}$ Mode 3 Timing.

e. Four Port Programmable I/O Modes - Modes 4-7

WMP Operand - 0100-0111
Mode Description: These modes consist of four combinations of static buffered outputs and unbuffered inputs. When combined with the Reset Mode, all combinations of inputs and outputs on four ports are possible.

Port Description: The following five modes have static buffered outputs (0) or unbuffered inputs (I).

WMP	Port:	W	X	Y	Z
0100		0	0	0	0
0101		1	0	0	0
0110		1	1	0	0
0111		1	1	1	0
0000 (reset mode)		1	1	1	1

Those ports of Y and Z designated outputs are subject to bit set/reset capability. All output buffers may be read with the respective RDx (RDO-RD3). Port Y will respond to RDM, ADM and SBM in addition to RD2.

Figure 4. 4265 Modes 4-7 Timing.
f. Three Port Programmable I/O Mode with Synchronous Output and Asynchronous Input Port - Modes 8-11
WMP Operand - 1000-1011
Mode Description: Each 4-bit port can be configured as a buffered input or buffered output port and each has its own control line for synchronizing data transfers. As an example, if in Mode 8, when the processor executes a WRO instruction, 4-bits of data are transferred to the Port W output buffer and subsequently to the Port W output lines. Output Strobe $\mathbf{Z O}$ serves as a data valid signal which can be used by external logic to latch the data. In Mode 11, Input Strobe $Z 0$ is used to latch the 4-bit data appearing on the Port W lines into the Port W input buffer. The Input Strobe is user generated.

Port Description: The following five modes have synchronous outputs (0) or asynchronous inputs (1):

WMP	Port:	W	X	Y	Z0	Z1	Z2	Z3
1000		0	0	0	W	W	W	X
1001		I	0	0	R	W	W	X
1010		I	I	0	R	R	W	X
1011		I	I	I	R	R	R	X

Where: $R=$ injut strobe independent of instruction executed
$\mathrm{W}=$ output strobe (WRO-2) from 4265
$X=$ not used
Port Y will respond to RDM, SBM and ADM in the same way as an RD2. Z3 is unused and may be bit set/reset. All output buffers may also be read with the respective RDx.

Figure 5. 4265 Modes 8-11 Timing.
g. 4-Bit I/O with 8-Bit SRC Address and 4-Bit Synchronous Control Port - Mode 12

WMP Operand - 1100
Mode Description: In this mode, the most recent 8 -bit SRC operand is displayed on Port W and X. The 4265 will treat all SRC instructions as being valid as long as the CM-RAM line for this 4265 has been selected by an appropriate DCL (Designate Command Line) instruction. Ports W and X will change each time they receive an SRC and CM-RAM. The 4 bit data port (Port Y) will perform bidirectional synchronous I/O. The port output buffer may be loaded with a WRO-3 and the port input buffer will be read with RDO-RD3, RDM, SBM or ADM. The control port will provide mutually exclusive input or output strobes depending on the current instruction. Two of the control lines may be used for device selection. This mode can be used to interface up to 1 K of external storage (RAM-2111, 4101,5101) or a multitude of external I/O devices. Once this mode is programmed, all SRC values will not be treated as 4265 selection or deselection instructions.

Port Description

Port W, X This port will display the most recent SRC and will be altered with each SRC when selected. Otherwise, the output is static.

Port $\mathrm{Y} \quad$ This is a bi-directional data port that will latch data with a RDO-RD3, RDM, ADM, and SBM. The port will output data with a WRO-WR3.

Port Z

ZO OS Output strobe from 4265.
Active during WRO-WR3. Data will be valid during this strobe.

Input strobe from 4265.
Active during RD0-RD3, RDM, SBM, and ADM. The leading edge of this strobe will cause the user to provide valid data to be latched by Port Y by the trailing edge of IS.

Z2, Z3 2-bit address port used for memory or device selection.
Both lines will be preset to 00 by selection of this mode. They will retain the value of the previous RDx or WRx instruction so that each selection can respond to RDM, SBM and ADM. If, for example an I/O sequence consists of an RD3 followed by an ADM, Z3 and Z2 will be at 11 state by the RD3 and remain in that state for the ADM command. If the third I/O command is a WRO, the $Z 3$ and $Z 2$ will be placed to the 00 state.

Effect of RDx and WRx Instructions:
Z3 Z2
$00 \quad$ RDO, WRO
01 RD1, WR1
10 RD2, WR2
11 RD3, WR3
No Change RDM, ADM, SBM
(Positive True)

Figure 6. 4265 Mode 12 Timing.
h. 4-Bit I/O Mode with 8-Bit Address Port and 4-Bit Asynchronous Control Port - Mode 13

WMP Operand - 1101
Mode Description: This mode is functionally similar to Mode 12. Port W, X are loaded with the SRC value. Port Y is a bi-directional data port. Port Z is a 4 -bit asynchronous control port similar to Mode 1 and 2.

Port Description
Port W, X Same as Mode 12.
Port $\mathrm{Y} \quad \mathrm{Bi}$-directional port similar to Port W and Port X in mode 1.

Port Z

ZO OA* Output acknowledge to 4265.
Z2 $\mathrm{Ol}^{*} \quad$ Output initiate from 4265, active during WRx.

Z1 II* Input initiate to 4265.
Z3 IA* Input acknowledge from 4265 active during RDx, RDM, ADM or SBM.
*Refer to Mode 1, Port Z. Note that in mode 13, Port Z controls data transmission in Port Y, not Ports W and X.

i. Disable/Enable

WMP Operands 1110 and 1111 do not cause mode change; they disable or enable the 4265 GP I/O.

WMP 1110 - chip disable:
a. All output buffers are disabled - I/O lines are in floating conditions.
b. The 4265's status (mode, chip select FF, data buffers) is not changed. Hence:

1. Previous buffered inputs can be read by the CPU from designated ports (a disabled 4265 cannot have its input buffers loaded).
2. Data on unbuffered inputs can be read directly from external lines.
3. Previous buffered outputs can be changed on designated ports.
4. Bit set/reset can be initiated.
5. Any mode change can be initiated.
6. The chip can be deselected by an SRC or by a RESET signal.

WMP 1111 - chip enable:
Restoration of normal operation, according to existing mode.

Note: When the 4265 is transferred from reset mode to any other mode, the chip is automatically enabled, so that no programmed enabling is required after reset.

Figure 7. 4265 Mode 13 Timing.

An unselected 4265 can have its input buffers loaded by a user generated strobe if it is in a buffered input mode. A disabled 4265 cannot have its input buffers loaded. Execution of a RDx instruction will result in transfer of the contents of the appropriate input or output buffer for a previously buffered port regardless of whether the 4265 is enabled. If the input was previously unbuffered and the 4265 is disabled, the contents of the port I/O lines will be transferred to the CPU with an RDx. DISABLE and ENABLE do not cause a change from a previously designated mode.

4265 States After Reset and Mode Change

A reset 4265 is automatically enabled and is in Mode 0. If reset occurs by means of external RESET signal, the 4265 will also be deselected. Any mode change which changes Port Z to a control port will reset the Port Z output buffers to their "off" state (V_{SS}). Z_{2} and Z_{3} in mode 12 are an exception in that these lines go to an inactive state of $\mathrm{V}_{\mathrm{DD} 1}$. Note that Port Z is a control port in all modes except modes 47 and RESET mode. Any mode change which leaves Port Z in a non-control port will leave Port Z output buffers in their previous state.

Bit Set/Reset Operation

This function is performed by decoding the accumulator operand of the WRM instruction. This function can be used in any output port of the programmed configurations and allows individual bit control on Ports Y and Z . Decoding of the WRM operand is as follows:

D3	D2	D 1	D 0

Care should be taken when bit setting and resetting control bits of Port Z as these bits will also be changing as a function of their synchronous or asynchronous control functions.

4265 I/O Instructions

Table 2 provides a summary of MCS-40 I/O instructions used with the 4265.

Table 2. 4265 I/O Instruction.

$\begin{aligned} & \hline \text { Hex } \\ & \text { Code } \\ & \hline \end{aligned}$	NEMON						$\begin{gathered} \hline \mathrm{OPA} \\ { }_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{I} \end{gathered}$		DESCRIPTION OF OPERATION		
Mode Independent Operations											
EO	WRM	1	11		0	0	00		The port Y or port Z bit designated by $\mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1}$ of the accumulator is set or reset according to $D_{0}(1=$ set, $0=$ reset $)$. ${ }^{[1]}$		
E1	WMP	1	1			0	0	1	Sets the mode of the 4265 to the value contained in the accumulator. ${ }^{[2]}$		
Mode Dependent Operations											
2 -	SRC		0				R R		Mode 1-3 For modes 0-11, RRR are used bits of first reg depending on	Mode 0, 4-11 the contents of register pair to select the 4265 chip (first two ister will contain 10 or 11 , chip address)	$\begin{gathered} \text { Mode } \\ 12 \text { and } 13 \\ \left(\text { RRR }_{\text {evenen }}\right) \\ \text { Port } \left.^{2}\right) \\ \left(\text { RRR }_{\text {odd d }}\right) \\ \text { Port }^{2} \\ \hline \end{gathered}$
E4	WRO	1	1			0	10		(ACC) \rightarrow Port W	$\begin{gathered} (\mathrm{ACC}) \rightarrow \\ \text { Port W} \\ {[1]} \\ \hline \end{gathered}$	$\begin{gathered} \text { (ACC) } \rightarrow \underset{\text { Port Y }}{ } \end{gathered}$
E5	WR1	1	1			0	10		(ACC) \rightarrow Port X	(ACC) \rightarrow Port ${ }^{[1]}$	$(\mathrm{ACC}) \rightarrow$ $\text { Port } Y$
E6	WR2		1			0	11		$\begin{aligned} & (\mathrm{ACC}) \rightarrow{ }^{(1)} \\ & \text { Port } \mathrm{Y}^{[1]} \end{aligned}$	$\begin{aligned} & (\mathrm{ACC}) \rightarrow \boldsymbol{P}^{[1]} \\ & \text { Port } \mathrm{Y}^{[1]} \end{aligned}$	$\begin{gathered} (\mathrm{ACC}) \rightarrow \\ \text { Port Y } \\ \hline \end{gathered}$
E7	WR3	1	1			0	11		-	$\begin{aligned} & (\text { ACC }) \rightarrow \\ & \text { Port Z } \\ & \text { (1,3) } \end{aligned}$	$\underset{\text { Port } Y}{(\mathrm{ACCC}) \rightarrow}$
EC	RDO		1	10		1	10	0	$\begin{aligned} & \text { (Port W) } \rightarrow \\ & \text { ACC } \end{aligned}$	$\begin{aligned} & \text { (Port W) } \rightarrow \\ & \text { ACC } \end{aligned}$	$\begin{gathered} \text { (Port } \mathrm{Y}) \rightarrow \\ \text { ACC } \\ \hline \end{gathered}$
ED	RD1	1	1			1	10		$\begin{gathered} \text { (Port X) } \rightarrow \\ \text { ACC } \\ \hline \end{gathered}$	$\begin{aligned} & (\text { Port X) } \rightarrow \\ & \text { ACC } \end{aligned}$	$\begin{gathered} \text { (Port Y) } \rightarrow \\ \text { ACC } \\ \hline \end{gathered}$
EE	RD2	1	1			1	11		$\begin{aligned} & \text { (Port Y) } \rightarrow \\ & \text { ACC } \end{aligned}$	$\begin{aligned} & \text { (Port Y) } \rightarrow \\ & \text { ACC } \\ & \hline \end{aligned}$	$\begin{gathered} \text { (Port Y) } \rightarrow \\ \text { ACC } \end{gathered}$
EF	RD3		1	10		1	11		$\begin{aligned} & (\text { Port Z) } \rightarrow \\ & \text { ACC } \end{aligned}$	$\begin{aligned} & (\text { Port Z }) \rightarrow \\ & \text { ACC }) \end{aligned}$	$\begin{aligned} & \text { (Port Y) } \rightarrow \\ & \text { ACC } \end{aligned}$
E9	RDM		1			1			$\begin{aligned} & \text { (Port Y) } \rightarrow \\ & \text { ACC } \end{aligned}$	$\begin{gathered} \hline \text { (Port Y) } \rightarrow \\ \text { ACC } \\ \hline \end{gathered}$	$\begin{aligned} & (\text { Port Y) } \rightarrow \\ & \text { ACC } \end{aligned}$
EB	ADM	1	1	0		1	0	1	$\begin{gathered} \text { (Port } \mathrm{Y})+(\mathrm{ACC}) \\ +C Y \rightarrow A C C \\ \hline \end{gathered}$	$\begin{array}{r} \text { (Port } \mathrm{Y})+\mathrm{ACC} \\ +\mathrm{CY} \rightarrow \mathrm{ACC} \\ \hline \end{array}$	$\begin{array}{r} (\text { Port } Y)+A C C \\ +C Y \rightarrow A C C \\ \hline \end{array}$
E8	SBM	1	1			1	00		$\begin{gathered} (\mathrm{ACC})-(\text { Port } Y) \\ -\mathrm{CY} \rightarrow \mathrm{ACC} \end{gathered}$	$\begin{gathered} (A C C)-(\text { Port Y) } \\ -C Y \rightarrow A C C \end{gathered}$	$\begin{gathered} \text { (ACC) - (Port Y) } \\ -C Y \rightarrow A C C \end{gathered}$

NOTES:

1. Action if Port is designated as Output Port; otherwise, no action.
2. WMP 1110 disables all I/O ports. WMP 1111 enables all I/O ports. In both cases, the mode is not changed.
3. No action in Modes 8-11.

Absolute Maximum Ratings*

Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Voltages and Supply Voltage
with respect to Vss +0.5 V to -20 V
Power Dissipation ... 1.0 Watt
*COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{S S}-\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 5 \% ; \mathrm{t}_{\phi} \mathrm{PW}=\mathrm{t}_{\phi \mathrm{D} 1}=400 \mathrm{nsec} ; \mathrm{t}_{\phi \mathrm{D} 2}=150 \mathrm{nsec} ; \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{S S}-5 \mathrm{~V}$; Logic " $0^{\prime \prime}$ is defined as the more positive voltage ($\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}$); Logic " 1 " is defined as the more negative voltage ($\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OH}}$); Unless Otherwise Specified.
SUPPLY CURRENT

Symbol	Parameter	Limits				
		Min.	Typ.	Max.	Unit	Test Conditions
IDD			35		mA	$\mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

INPUT CHARACTERISTICS

$I_{\text {LI }}$	Input Leakage Current			10	$\mu \mathrm{~A}$	
$\mathrm{~V}_{\mathrm{IHD}}$	Data Bus Inputs	$\mathrm{V}_{\mathrm{SS}}-1.5$		$\mathrm{~V}_{\mathrm{SS}}+.3$	V	
$\mathrm{~V}_{\text {IHIO }}$	I / O Port Inputs	$\mathrm{V}_{\mathrm{SS}}-1.5$		$\mathrm{~V}_{\mathrm{SS}}+.3$	V	
$\mathrm{~V}_{\text {ILD }}$	Data Bus Inputs	V_{DD}		$\mathrm{V}_{\mathrm{SS}}-5.5$	V	
$\mathrm{~V}_{\text {ILIO }}$	I / O Port Inputs	V_{DD}		$\mathrm{V}_{\mathrm{SS}}-4.2$	V	
$\mathrm{~V}_{\text {ILR }}$	Reset Input	V_{DD}		$\mathrm{V}_{\mathrm{SS}}-4.2$	V	
$\mathrm{~V}_{\text {IHR }}$	Reset Input	$\mathrm{V}_{\mathrm{SS}}-1.5$		$\mathrm{~V}_{\mathrm{SS}}+.3$	V	

OUTPUT CHARACTERISTICS

$V_{\text {OHD }}$	Data Bus Outputs	$\mathrm{V}_{\text {SS }}-.5$	$\mathrm{V}_{\text {SS }}$		V	
$\mathrm{V}_{\text {OHIO }}$	I/O Port Outputs	$\mathrm{V}_{\text {SS }}-.5$			V	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$
$V_{\text {OLD }}$	Data Bus Outputs	$\mathrm{V}_{S S}-12$		$\mathrm{V}_{\text {SS }}-6.5$		
V OLIO	I/O Port W, X, Y Outputs			$\mathrm{V}_{\mathrm{DD} 1}+.45$		$\mathrm{IOL}=400 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OLZ }}$	I/O Port Z Outputs			$\mathrm{V}_{\mathrm{DD} 1}+.45$		$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{S S}-\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 5 \%$.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
t_{Cr}	Clock Period	1.35		2.0	$\mu \mathrm{sec}$	
$t \phi_{\mathrm{R}}$	Clock Rise Time			50	ns	
t $\phi_{\text {F }}$	Clock Fall Time			50	ns	
$t \phi_{\text {PW }}$	Clock Width	380		480	ns	
$t \phi_{\mathrm{D} 1}$	Clock Delay ϕ_{1} to ϕ_{2}	400		550	ns	
$t \phi_{\text {D2 }}$	Clock Delay ϕ_{2} to ϕ_{1}	150			ns	
tw	Data-In, CM, SYNC Write Time	350	100		ns	
$\mathrm{t}_{\mathrm{H}}{ }^{(1,3]}$	Data-In, CM, SYNC Hold Time	40	20		ns	
$\mathrm{tos}^{[2]}$	Set Time (Reference)	0			ns	
$\mathrm{t}_{\mathrm{ACC}}$	Data-Out Access Time Data Lines SYNC CM-ROM CM-RAM		.	$\begin{aligned} & 930 \\ & 930 \\ & 930 \\ & 930 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	Cout $=$ 500pF Data Lines 500pF SYNC 160pF CM-ROM 50pF CM-RAM
t_{OH}	Data-Out Hold Time	50	150		ns	$\mathrm{C}_{\text {OUT }}=20 \mathrm{pF}$

I/O Ports ${ }^{[4]}$

t_{1}	Output Settling Time		350		ns	Output Ports
$\mathrm{t}_{2 \mathrm{~A}}$	Output Settling Time		400		ns	Bidirectional I/O Ports (Asyn- chronous)
$\mathrm{t}_{2 \mathrm{~B}}$	Output Hold Time		400		ns	Bidirectional I/O Ports (Asynchronous)
$\mathrm{t}_{3 \mathrm{~A}}$	Output Settling Time		400		ns	Bidirectional I/O Ports (Synchronous)

Notes: 1. t_{H} measured with $t_{\phi R}=10$ nsec.
2. TACC is Data Bus, SYNC and CM-line output access time referred to the ϕ_{2} trailing edge which clocks these lines out. tos is the same output access time referred to the leading edge of the next ϕ_{2} clock pulse.
3. All MCS-40 components which may transmit instruction or data to 4004/4040 at M_{2} and X_{2} always enter a float state until the $4004 / 4040$ takes over the data bus at X_{1} and X_{3} time. Therefore the t_{H} requirement is always insured since each component contributes $10 \mu \mathrm{~A}$ of leakage current and 10 pF of capacitance which guarantees that the data bus cannot change faster than $1 \mathrm{~V} / \mu \mathrm{s}$.
4. For CDATA BUS $=500 \mathrm{pF}, \mathrm{CPORTS}^{W}, X, Y=100 \mathrm{pF}$; CPORT $Z=50 \mathrm{pF}$.

Figure 9. Timing Diagram.

Figure 10. Timing Detail.

ORTS W, X, Y INPUT

Figure 11. 4265 I/O Timing Diagram.

PROGRAMMABLE KEYBOARD DISPLAY DEVICE

(Samples Available 1st Quarter, 1976)

Display Features:

- Programmable to Interface to Individually Scanned Displays or Burrough's Self-Scan* Drive (16, 18, or 20 Characters)
- Two 16×4 Display Registers Recirculated Synchronously with Keyboard Scan Lines to Give Automatic Display Refresh
- Display Registers Loadable and Readable Selectively or Sequentially
- 40 Pin Dual In-Line Package
- Standard Operating Temperature Range of 0° to $70^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $+85^{\circ} \mathrm{C}$ Operating Range to be Available Second Quarter 1976)

The 4269 has two separate and distinct sections: the keyboard section and the display section. The keyboard section can interface to a range of devices from a matrix of toggle or thumb switches such as found on an instrument panel up to a full typewriter style keyboard. The display section can interface to a range of devices from an array of individual LED indicators up to a gas discharge alphanumeric display.
The 4269 Programmable Keyboard Display (PKD) relieves the 4004 or 4040 CPU from continuously scanning a switch array or refreshing a display under software control. This greatly expands the CPU throughput. The 4269 can scan up to an 8×8 keyboard or sensor matrix (or a $2 \times 8 \times 8$ keyboard with the use of the shift or control key input). The display portion can continuously refresh either a single 16×8 alphanumeric display; a single 8×8 alphanumeric display; a dual 16×4 digit display; a single 32×4 digit display; a $16 \times 6,18 \times 6$ or 20×6 alphanumeric gas discharge display such as the Burroughs Self-Scan*; or an array of 128 indicators.
*Self-Scan is a registered trademark of the Burroughs Corporation.
PINCONFIGURATION
RESET
VYNC

Pin Description

Pin No. Designation Function

37-40	D0-D3
5-6	$\phi_{1}-\phi_{2}$
2	RESET
1	$\mathrm{V}_{\text {SS }}$
26	$V_{\text {DD }}$
3	SYNC
4	CM
17-24	S0-S7
25	RS
12-15	A0-A3
7-10	B0-B3

34-28 R0-R7 These pins are the return sense inputs which are connected to the 8 drive lines via the scanned key or sensor matrix. They are pulled to a low state (V_{DD}) in the sensor mode, pulsed low (V_{DD}) in the scanned keyboard mode, and pulled high upon switch closure. They are floating in the encoded keyboard mode.
35 SHIFT

16 INT
Bi-directional data bus. All address, instruction and data communication between the CPU and the PKD are transmitted on these 4 pins.

Non-overlapping clock signals which are used to generate the basic chip timing.
RESET input. A low level ($V_{D D}$) applied to this input resets the PKD.
Most positive supply voltage.
Main power supply pin. Value must be $\mathrm{V}_{\text {SS }}-15 \mathrm{~V} \pm 5 \%$.
Synchronization input signal driven by SYNC output of the CPU.
Command input driven by a CMRAM output of processor.
These pins are scan outputs which are used for driving either the key switch or sensor matrix and/or for strobing the display digits. Each line is mutually exclusive, active high (V_{SS}), open drain.
The RS pin is toggled for each complete scan of the S drive. This allows for the scan of 16 digits of display data. $\mathrm{RS}=\mathrm{V}_{\text {SS }}$ for the last 8 digits. This line is open drain.
These two ports provide two 16×4 recirculating display register outputs which are synchronized to the S drive scan. In the gas discharge display mode, A3 is reset and A2 is the clock to the gas discharge display. The 16,18 , or 20 recirculating data characters (6 bits wide) are not synchronized with the S drive scan in the gas discharge mode. drive lines via the scanned key or

This is the shift input. It is active high (V_{SS}). This pin is functional only in the scanned keyboard mode.
This output is used to indicate when a keyboard or sensor character has been entered into the buffer. It is active low ($\mathrm{V}_{\mathrm{DDI}}$), open-sourced and may be "OR" -ed with other 4040 interrupt inputs.

Pin No. Designation Function

$11 \quad V_{\text {DDI }} \quad$ Supply voltage for display register ports A and B and INT.
36
S/C
This pin is the control key input from the keyboard in the scanned mode. In encoded keyboard mode, this pin can be used to input the strobe pulse from an external keyboard encoder.

Functional Description

General

The 4269 Programmable Keyboard/Display (PKD) device provides an intelligent interface between an MCS-40 CPU and the keyboard and display portions of an MCS-40 design. The 4269's functions thus allow the use of sophisticated keyboards and displays without placing a large load on the CPU.
The MCS-40 data bus will provide the path for information transfer between the PKD and the 4040 or 4004 CPU. The PKD can be programmed to operate in one of three input modes and one of four output modes as defined by an instruction from the CPU. The modes are:
Input
Sensor, Scanned
Keyboard, Scanned
Encoded Keyboard
Output
Individually Scanned Display Drive
Self-Scan Drive: 16 Characters
18 Characters
20 Characters
The 4269 resides on a CM-RAM line of an MCS-40 system and has a fixed RAM address, \#1. Hence, there can be up to four PKD per system without additional logic, one per CMRAM. The PKD can be accessed with the MCS-40 I/O instruction set to interrogate the keyboard buffer FIFO/sensor RAM and load or read the display registers.
The following is a list of the major keyboard features of the 4269:

1. Switch matrix, organized as an 8×8 scanned matrix with shift or control inputs allowing for up to 128 key inputs.
2. Two key roll over; N-key roll over capability if provided by encoded keyboards.
3. Eight character first-in-first-out (FIFO) character buffer (or RAM in the Sensor Mode).
4. External interrupt line to indicate when a character has been entered in the buffer.
5. Fixed key bounce delay of approximately 11 msec in the scanned keyboard mode @ 740 kHz MCS-40 clocks.
6. Status buffer to indicate the number of characters in the keyboard FIFO and keyboard character over-entry.
7. Sensor matrix interface with up to 64 intersections.

The 4269's major display features are:

1. Two 16×4 display registers which are recirculated synchronously with keyboard scan lines (at a scan frequency of 180 Hz). This allows for a free standing, scanned readout composed of individual displays.
2. Capability to drive 16,18 , or 20 character gas discharge displays directly via a 20×6 display register.
3. Registers are loadable and readable selectively or sequentially.

Mode Selection

The CPU communicates with the 4269 PKD by first selecting it with an SRC (Send Register Control) instruction. The first two bits of the index register pair referenced by the SRC contain 01, the binary address of the 4269 on the CM-RAM line. The 4269 is disabled until it is addressed by a first SRC. After the first SRC, a WRO instruction is used to set the keyboard and display modes of the 4269 PKD. The CPU's accumulator will contain the information used for setting the PKD modes. The definition of a WRO as used for a 4269 is given below:

Mnemonic Instruction Code WRO 11100100

Set the input mode and output mode of the 4269 according to the value contained in the accumulator as follows:
$\mathrm{D}_{3} \mathrm{D}_{2}$
0
0
0 1 Individual, Scanned Displays $\begin{array}{ll}1 & \text { Gas Discharge, } 20 \text { Characters } \\ 1 & 0 \\ 1 & \text { Gas Discharge, } 18 \text { Characters } \\ 1 & \text { Gas Discharge, } 16 \text { Characters }\end{array}$
$\mathrm{D}_{1} \mathrm{D}_{0}$
00 Sensor, Scanned
01 Scanned Keyboard
10 Encoded Keyboard, Not Scanned
11 Not Used
After the 4269 has been reset by the external RESET signal, the keyboard input mode is set to scanned keyboard mode and the display output mode is set to gas discharge, 16 character mode. Thus, if these modes are the desired input and output modes, it is not necessary to execute the WRO mode setting instruction.

Internal Display Registers and Pointer

The 4269 has two 16x4 display registers referred to as Display Register A and Display Register B. These two registers can be operated in the individual, scanned display mode as:

1. Two 16×4 hexadecimal displays;
2. One 32×4 hexadecimal display;
3. One 8×8 alphanumeric display;
4. One 16×8 alphanumeric display; or
5. An array of 128 indicators.

In the gas discharge modes, the A and B registers are combined and operated as a $6 \times 16,6 \times 18$ or 6×20 register. For a given 6-bit character, the least significant 4-bits will be located in a 4-bit B register location and the two most significant bits in D_{1} and D_{0} of the corresponding A register location.
For operations on the display registers, the 4269 PKD maintains an internal display register pointer which points to a 4-bit character in the A or B display register.
For the individual, scanned display mode, CPU I/O instructions can be addressed to either Display Register A
or Display Register B, according to the register selected by an SRC instruction preceding the I/O instruction. The internal display register pointer can then be set or incremented for addressing characters in either the A or B register.
For gas discharge modes, the internal pointer can be automatically incremented, in an alternating pattern between registers A and B. The alternation pattern is A_{0}, B_{0}, A_{1}, B_{1}, etc.
In the individual, scanned display mode, the 4-bit characters of Display Register A are outputted on the $A_{0}-A_{3}$ lines. The 4-bit characters of Display Register B are outputted on the $B_{0}-B_{3}$ lines. In the gas discharge modes, the $A_{0}-A_{1}$ and $B_{0}-B_{3}$ lines output the 6 -bit character. The A_{2} line serves as the clock to the gas discharge display and the A_{3} line as the reset to the display.

Synchronization of Scan and Return Lines

In the scanned keyboard and scanned sensor modes a logical one is shifted through a field of zeros in eight Scan(S) lines. Each S Scan line can be used to source a row of eight keys or sensors. All rows of the contact keyboard or sensor matrix will be OR-tied to the eight Return (R) lines. Thus, since only one row will be enabled due to the synchronized ones in the Scan lines, each row of the keyboard or sensor matrix can be read into the Return lines and stored in the Keyboard FIFO/Sensor RAM at the proper RAM location. The 4269 will control all of these operations automatically once it is set to the appropriate keyboard mode.
The Scan Lines are also used in the individual, scanned display mode to select one of eight display characters. The display character itself will be outputted on the $\mathrm{A}_{0}-\mathrm{A}_{3}$ or $\mathrm{B}_{0^{-}}$ B_{3} output lines. The RS output line, which is toggled for each complete scan of the Slines, allows one of sixteen A or B register display characters to be addressed. Again, the 4269 will automatically control the operation of the S and RS lines to continuously read out the characters in the 4269's internal A and B Display Registers and thus continuously refresh the actual display devices.
Note that the Scan lines can be used with both the keyboard and display interfaces since both functions require the same function, i.e., a synchronized shifting of a logical one through a field of zeros.

Software Operation

The WRO operates on the 4269 PKD completely independent of mode as it actually sets the mode as has already been described. The WR3 is mode independent except for a blanking code and operates as shown below:

WR3

Clears the keyboard/display logic and fills the display RAM with all blanks. The display outputs are also blanked. (Blank code is all logical "1"s for individual, scanned display mode and hex 20 for the gas discharge modes.)

MODE SPECIFIC OPERATIONS

Individual, Scanned Display Mode

The instructions which are used in the individual, scanned display mode are described below:

Mnemonic Instruction Code
 SRC 0010 RRR1

The contents of the register pair RRR are used to select the 4269. An SRC is interpreted for individual, scanned display mode as follows:
RRR $_{\text {even }} \quad$ RRR $_{\text {odd }}$
$D_{3} D_{2} D_{1} D_{0} \quad D_{3} D_{2} D_{1} D_{0}$
$0100 \quad \mathrm{n}_{3} \mathrm{n}_{2} \mathrm{n}_{1} \mathrm{n}_{0}$
Selects one of 16 display register characters of Display Register A with the A output lines outputting display characters synchronized with the S Scan lines.
$0101 n_{3} n_{2} n_{1} n_{0}$ Selects one of 16 display register characters of Display Register B with the B output lines outputting display characters synchronized with the S Scan lines.
$0110 \quad n_{3} n_{2} n_{1} n_{0}$ Selects one of 16 display register characters of Register A with Register A output lines being placed at $V_{s s}$ level.
$0111 n_{3} n_{2} n_{1} n_{0}$ Selects one of 16 display register characters of Register B with Register B output lines being placed at $V_{S S}$ level.

WR1 11100101
Resets the internal display register pointer to 0 and forces display memory to blank state. Upper two bits of ACC select length of display as follows:
D_{3}
0 Display B is 16 nibbles deep.
1 Display B is 8 nibbles deep.
D_{2}
0 Display A is 16 nibbles deep.
1 Display A is 8 nibbles deep.

WRM 11100000

Loads the contents of the register addressed by the internal display register pointer with the contents of ACC; then advances the displayed data by one digit in relation to the scan line timing and increments the display register pointer.

RDM 11101001

Loads ACC with the contents of the register addressed by the display register pointer and then increments the display register pointer.

WMP 11100001

Loads the contents of the register addressed by the display register pointer with the contents of ACC.

RD3 11101111

Loads ACC with the contents of the display register pointed to by the display register pointer.

ADM 11101011

Adds the contents of the display register pointed to by the display register pointer to the accumulator with carry.

SBM 11101000

Substracts the contents of the display register pointed to by the display register pointer from the accumulator with borrow.

NOTES:

1. If Display A or B is set to 8 nibbles deep, each digit of the display will have double the ON duty-cycle that it would have in the 16 nibble deep setting (360 Hz scan cycle vs. 180 Hz for 16 nibble deep).
2. External resetting initializes the Display A and Display B configurations to 16 nibbles deep.
3. The displayed nibbles in the 8 deep configuration will be from the least significant 8 characters of the display register. The remaining eight words remain available for random data storage by the CPU.
4. The internal display register pointer will increment through all 16 register words, regardless of the display length (8 or 16) for WRM/RDM instructions unless the pointer is reset by an appropriate SRC instruction. In the WRM case, the Display Register A or B'sentire contents (used and unused portions) will be rotated.
5. An interface to a 32×4 hexadecimal display requires only that software recognize the A and B Display registers as the upper and lower halves of a single display.
6. An interface to a 16×8 alphanumeric display requires that software load the upper and lower 4-bits in the A and B registers in an appropriate alternating pattern. SRC instructions will have to proceed each load or read instruction to select the A or B half of the character.
7. If the LSD of a 16 character display is assigned to be the 15 th character scanned ($S_{7}=V_{S S}$ and $R S=V_{S S}$), and the MSD, the first character (\#0) scanned ($\mathrm{S}_{0}=\mathrm{V}_{\text {SS }}$ and $R S=\mathrm{V}_{\mathrm{DD}}$), and if loading is started at display register character 0 , successive WRM instructions will shift the display data from the LSD to the MSD as in a calculator. Note that data will then be read back MSD to LSD with the RDM instruction, starting at register 0.

Gas Discharge Modes

The instructions which are used in the gas discharge display modes are described below.

Mnemonic Instruction Code SRC 0010 RRR1

The contents of the register pair RRR are used to select the 4269. An SRC is interpreted for gas discharge modes as follows:
RRR $_{\text {even }} \quad$ RRR $_{\text {odd }}$
$\mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0} \quad \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$
$0100 \quad n_{3} n_{2} n_{1} n_{0}$
Selects the nth display register character of Display Register A with display outputs continuing to output the contents of Display Registers A and B .
$0101 \quad n_{3} n_{2} n_{3} n_{0}$
Selects the nth display register character of Display Register B with the display outputs continuing to output the contents of Display Registers A and B .
$0110 \quad n_{3} n_{2} n_{1} n_{0}$
Selects the nth display register character of Display Register A and blanks the A and B display output (with hex 20).
$0111 n_{3} n_{2} n_{1} n_{0}$ Selects the nth display register character of Display Register B and blanks the A and B display output (with hex 20).

WR1

Resets the internal display register pointer to Display Register A position 0 and forces the Display Registers to the blank code.

Note: A WR1 should follow a WRO which changes the display mode.

WRM 11100000

Loads the contents of the display register location addressed by the internal display register pointer with the contents of ACC; then advances the displayed data by one digit in relation to the scan line timing, and increments the display register pointer. The display register pointer alternates between the A and B registers.

RDM 11101001

Loads ACC with the contents of the display register location addressed by the display register pointer and then increments the display register pointer. The display register pointer alternates between the A and B registers.

WMP 11100001

Loads the contents of the display register location addressed by the display register pointer with the contents of ACC.

RD3 11101111

Loads ACC with the contents of the display register location pointed to by the display register pointer.

ADM 11101011

Adds the contents of the display register pointed to by the display register pointer to the accumulator with carry.

SBM 11101000

Subtracts the contents of the display register pointed to by the display register pointer from the accumulator with borrow.

NOTES:

1. The alternation pattern of the display register pointer is Display Register A position 0, Display Register B position 0, Display Register A position 1, etc.
2. The upper two (four) gas discharge characters, 16-17 (16-19), can be addressed only by incrementing the internal display register pointer above 15 by a WRM or RDM instruction in 18 (20) character gas discharge mode. If the internal display register pointer has been incremented above 15, then these characters can be read or written by a RD3 or WMP instruction.
3. Successive WRM commands will shift the output data (see gas discharge display output format below) one character forward in relation to the reset pulse. This will cause a wraparound shift left on the self-scan display. Hence, starting at register 0 and loading the display RAM will give a rightjustified display - MSD first.

Figure 1. Gas Discharge Display Output Format.
4. RDM will not cause any display shifting. The read order is MSD to LSD with the MSD stored in display register 0 .

Scanned Sensor Mode

The instructions which are used in the scanned sensor mode are described below:

Mnemonic	Instruction Code	
SRC	$0010 \quad$ RRR1	

The contents of the register pair RRR are used to select the 4269. An SRC is interpreted for scanned sensor mode as follows:

RRR $_{\text {even }} \quad$ RRR $_{\text {odd }}$
$D_{3} D_{2} D_{1} D_{0} \quad D_{3} D_{2} D_{1} D_{0}$
$01 \times \times n_{3} n_{2} n_{1} \times n_{3}-n_{1}$ indicates an 8 -bit sensor group to be read.

WR2 11100110

Clears the FIFO/RAM logic and the INT line.

RD1 11101110

Loads into ACC the upper 4 bits of the 8-bit sensor RAM group previously addressed by an SRC instruction.

RD2 11101110

Loads into ACC the lower 4 bits of the 8 -bit sensor RAM group previously addressed by an SRC instruction.

NOTES:

1. In this mode, the 4269 PKD will continuously input the 64 matrix intersections of the sensor into the FIFO/Sensor RAM, which is organized as a 64-bit RAM.
2. The INT line will become active ($\mathrm{V}_{\mathrm{DDI}}$) and remain active whenever at least one intersection remains a logical one in the Sensor RAM.
3. The sensor group number set by the SRC is loaded into the internal display register pointer. Display mode instructions which change the internal display register pointer thus change the sensor group address.

Scanned Keyboard and Encoded Keyboard Modes

The instructions which are used in the scanned keyboard and encoded keyboard modes are described below:

Mnemonic Instruction Code
 SRC 0010 RRR1

The contents of the register pair RRR are used to select the 4269. An SRC is interpreted as follows for scanned and encoded keyboard modes:

RRR $_{\text {even }} \quad$ RRR $_{\text {odd }}$
$D_{3} D_{2} D_{1} D_{0} \quad D_{3} D_{2} D_{1} D_{0}$
$01 \times \times \times \times \times \times$ SRC used only to select 4269.

WR2 11100110
Clears FIFO/RAM logic, the status buffer, and the INT line.

RD1 11101101
Reads the first nibble of the current FIFO register position

RD2

11101110
Reads the second nibble of the current FIFO register position. FIFO register position is incremented to the next position.

RDO 11101100

Loads ACC with the FIFO status.

NOTES:

1. The 4 -bit FIFO status contains the number of valid characters $(0-8)$ in the keyboard FIFO. However, in the event of an overrun, i.e., more than 8 characters entered, the 4 -bit status will be set to a value of 15 . The first eight characters entered prior to the overrun character will remain in the FIFO until cleared.
2. When a character is entered in the FIFO, the INT output pin will go to $V_{D D I}$. When a character is read, the INT will change from $\mathrm{V}_{\text {DDI }}$ to V_{SS} (open) and back to $V_{D D 1}$ until the FIFO has been emptied. If a ninth character is inputted to the PKD before one complete character has been removed, the overrun status will be set. This will cause the INT line to remain active ($V_{D D 1}$) even after all characters have been accessed. Overrun status can only be cleared by a WR2 or WR3 command (although the first eight FIFO characters can be read). This condition allows the user to detect an overrun condition if it occurs between the time the status buffer is checked and the time all characters have been read. It should be noted that an RD2 must be initiated after an RD1 to advance to the next FIFO word even if the second nibble is not desired.
3. For a 16-key Keyboard, successive RD2 instructions will be adequate for inputting the key code.

DESIGN CONSIDERATIONS

Display Modes

General Remarks

Each Display A and Display B output is capable of driving one standard TTL load. This is done by using a $V_{S S}=+5, V_{D D}=-10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD} 1}=G N D$. The $\mathrm{V}_{\mathrm{DD} 1}$ pin allows the PKD to interface to a variety of commercially available display arrays via a specified circuit. Gas discharge, phosphorescent, LED, and incandescent displays can all be used with a 4269 . The interface requirements are determined by the selected display device. Current into each of the Display A and Display B output lines should not exceed 1.6 mA .
The two 16×4 Display Registers A and B provide information in hexadecimal positive logic conventions. Hence, a 0000, negative logic $V_{\text {SS }}$ on the data bus, will be 0000 (positive logic $V_{\text {DD1 }}$) at the A and B display output. (The above is equivalent to one level inversion between the data outputs of the PKD and the CPU accumulator.)

Individual, Scanned Display Mode

The digit selection is achieved by using the eight scan lines, $\mathrm{S}_{0}-\mathrm{S}_{7}$, and the display select line RS. The RS output is used to multiplex the eight scan strobes to give sixteen separate strobes for up to 16 digits of display. It should be noted that the LSD output position of both Display Registers A and B is gated out coincidently with S_{0} time of the scan register. Following digit positions are also coincident. This feature allows an interface to 8×8 or 16×8 displays. For the first eight display digit positions, the RS output is at open drain. The remaining eight of the 16 digit positions are output sequentially with RS at $\mathrm{V}_{\text {SS }}$. Sufficient active on-time $\left(\mathrm{V}_{\text {SS }}\right)$ is allowed at the scan strobe line $\left(\mathrm{S}_{0}-\mathrm{S}_{7}\right)$ to illuminate the displayed digit. Sufficient time is also allowed between segments to extinguish segment and prevent overlapped illumination. If the 8 digit mode is selected with the WR1 instruction, the LSD will be gated out every S_{0} time - not every other time.

Gas Discharge Modes (Self-Scan)

An approximate $100 \mu \mathrm{sec}$ period, 50% duty cycle clock will be provided to the gas discharge display. A reset pulse - one clock period long - will be generated every 111th clock period for the 16/18 digit displays or every 139th clock period for 20 digit displays. Character periods are either seven clock periods long (for 16 or 20 character displays) or six clock periods long (for 18 character displays). For either case, character data is valid for the first five clock periods of the character period. Character 0 (left-most digit) starts upon the rising edge of the reset signal. The blank code is $A_{1}=V_{\text {SS }}$ and $A_{0}, B_{3}-B_{0}=V_{D D 1}$, with A_{3} and A_{2} providing reset and clock functions respectively. For the 18 character gas discharge display mode, the data outputs are blank for the 108th, 109th, and 110th clock periods.
For an aesthetic display transistor, the display register outputs can be placed into the blank mode (all outputs to $V_{S S}$) via an SRC during the loading of the display register. The outputs can then be unblanked via another SRC when the display register has been completely loaded.

Keyboard Modes

Scanned Sensor Mode

The sensor interface consists of two groups of eight lines, the scan strobe lines ($\mathrm{S}_{0}-\mathrm{S}_{7}$) and the return sense lines ($\mathrm{R}_{0}-\mathrm{R}_{7}$). Each scan strobe is used to enable eight return lines, giving 64 total sense strobes for each complete scan. When in the sensor mode, the two key rollover and debounce logic is inhibited. This allows multiple valid intersection connections to be inputted. The SHIFT and CONTROL inputs are ignored in this mode.

Each sensor intersection will have a RAM location reserved. The designer should group the sensors in common groups of 4. This mode is intended to be used to scan a matrix of electronic intersections or mechanical contacts. Debouncing is to be performed under software control. The INT line will remain active ($\mathrm{V}_{\mathrm{DDI}}$) whenever a valid intersection has been detected. The scan strobe cycle is the same pattern of a logical $1\left(\mathrm{~V}_{\text {ss }}\right)$ shifted in a field of zeros. The sense return lines are read out by RD1/RD2 instructions as shown in Figure 2.

Figure 2. Sense Return.

Scanned Keyboard Mode

a. Key Depression Detection

These conditions can occur during the keyboard interrogation by the PKD (see timing diagram below).

1. Simultaneous Key Depression

Two or more keys depressed within one complete single depression scan (approximately 11 ms) is defined as a simultaneous key depression. If this condition occurs, the PKD continues to scan the keyboard and waits until one key remains depressed. It then treats the remaining key as a single key depression, as described below.
2. Single Key Depression

When any single key (non-simultaneous) is depressed, an internal counter is started. The key code is also stored internally in a PKD temporary register with a code given by the values of the Scan and Return Lines. The PKD will then make four more complete scans of all keys. If no other keys are depressed during the fourth complete scan and the original key detected is still depressed at the end of the fourth scan, the key code is defined as a single key depression. The key code is then entered into the FIFO along with the value of the SHIFT and Control (S/C) input signals. If eight characters are already in the FIFO, the character will not be entered and the overrun will be set. When a character is entered in the FIFO, the INT line is activated to a logical " 1 " ($V_{\text {DDI }}$). If on the fourth complete scan the original key depressed is no longer depressed, the key is ignored as if it had never been depressed. This delay of four scan times, or approximately 11 ms , thus provides the debounce function for the keyboard.

Figure 3. Keyboard Debounce and 2-Key Rollover Timing.

3. Two Key Rollover

The two key rollover operates as follows:
If a second key is depressed after a first key has been accepted by the PKD as a single key depression but the first key has not been released, then the second key will be treated as a new original depression after the first key has been released.
If a second key is depressed after a first key has been accepted by the PKD as a single key depression and the second key is released before the first key is released, the second key will be ignored.
b. Key Matrix Encoding

The keyboard matrix hardware configuration and associated matrix encoding is shown in Figures 4, 5, and 6.

Figure 4. Hardware Configuration.

		$\begin{gathered} \mathbf{R}_{\mathbf{0}} \\ 000 \end{gathered}$	$\begin{gathered} R_{1} \\ 001 \end{gathered}$	$\begin{gathered} \mathrm{R}_{2} \\ 010 \end{gathered}$	$\begin{gathered} R_{3} \\ 011 \end{gathered}$	$\begin{gathered} R_{4} \\ 100 \end{gathered}$	$\begin{gathered} R_{5} \\ 101 \end{gathered}$	$\begin{gathered} R_{6} \\ 110 \end{gathered}$	$\begin{gathered} \mathrm{R}_{7} \\ 111 \end{gathered}$	SHIFT	S/C
S_{0}	000	0	1	2	3	4	5	6	7	x	X
S_{1}	001	8	9	10	11	12	13	14	15	X	X
S_{2}	010	16	17	18	19	20	21	22	23	X	x
S_{3}	011	24	25	26	27	28	29	30	31	x	x
S_{4}	100	32	33	34	35	36	37	38	39	x	x
S_{5}	101	40	41	42	43	44	45	46	47	X	X
S_{6}	110	48	49	50	51	52	53	54	55	X	X
S_{7}	111	56	57	58	59	60	61	62	63	X	X

Figure 5. Matrix Configuration.
c. Expansion to 128 Key Scan

The basic mechanism of the PKD for scanning a 64 key matrix can be expanded to interface to a 128 key matrix. Note that the CONTROL (S/C) and SHIFT inputs cannot be used to directly encode 256 keys since the single key depression logic operates with the 6-bit matrix position
code only. However, if full debounce and 2 key roll over control between two 64 key matrices is not necessary, then a configuration such as shown in Figure 7 may be used to add a seventh bit to the 6-bit matrix via the SHIFT or S/C input of the PKD. Alternately, two 4269 PKDs can be used for interfacing to the 128 keys.

Figure 7. 128 Scanned Input Keys.

Encoded Keyboard Mode

Data Format

In the encoded keyboard mode, the eight return lines are directly loaded into the PKD's keyboard FIFO. For encoded keyboards using less than eight encoded bits, the remaining bits can be any desired signal, such as a multiplex signal between two keyboards or a special key flag.

HARDWARE DESCRIPTION

The following is a description of the major hardware elements of the 4269. Refer to the hardware block diagram shown in Figure 8.

MCS-40 Data Bus/Control Line Interface

The 4269 PKD resides on the MCS-40 data and timing bus. As such it derives its basic timing from the ϕ_{1} and ϕ_{2} clock signals. Synchronization and chip select information are provided by the SYNC and CM-RAM lines respectively. The Data Bus provides the 4269 with control commands and routes Keyboard/Display data between the 4269 and CPU Accumulator.

Display Registers

The 4269 is provided with RAM storage which is utilized to implement an automatically refreshed display: The display RAM (Display Registers A and B) can be configured in several different organizations under program control, including two 16×4 hexadecimal displays, one 32×4 hexadecimal display, a single 8 or 16 alphanumeric display, a single 16, 18, or 20 character gas discharge alphanumeric display, or a 128 matrix array of indicators. The display RAM output is available on $\mathrm{A}_{0}-\mathrm{A}_{3}$ for Display Register A outputs and $B_{0}-B_{3}$ lines for Display Register B outputs. The $V_{D D 1}$ line provides a separate negative supply reference for the A and B outputs (and INT).

S/R Counters and Debounce Logic

The S/R counters are two modulo 8 counters used to provide a unique 6-bit code for each of the 64 intersections provided by a matrix of eight Scan (S) Driver and eight Return (R) sense lines. The R counter is counted eight times for each S count. When keys, contacts, or controls are arranged in the matrix, each matrix intersection is examined for closure between the corresponding S and R line. If the 4269 is in the Scanned Keyboard Mode, an approximate 11 msec debounce time will be used to ascertain the validity of the connection. The valid 6 -bit code, along with the SHIFT and S/C (control) line, is placed in the FIFO for retrieval by the CPU.

Scan Counter and Scan F/F

For each increment of the modulo 8 S counter, the Scan Counter is advanced. The register shifts a logical 1 ($\mathrm{V}_{\text {sS }}$) in a field of logical zeros (open drain). The non-overlapping one is successively moved from S_{0} through S_{7} and around again. For each complete sequence of shifts, the scan flipflop is toggled. This flip-flop's initial value, after RESET, is open drain.

Key Return Multiplexer

The return multiplexer selects one of the 8 return lines coming from the key array. The selection code is provided by the modulo 8 R counter. When in the Scanned Sensor Mode, all 8 R lines are entered for each scan line, and pass directly to the Sensor RAM (FIFO).

FIFO and Sensor RAM

This block is a dual function RAM of 64 bits. The RAM can serve as a keyboard character FIFO for eight 8 -bit characters or as a sensor RAM to store the status of 64 intersections.

Figure 8. 4269 Hardware Block Diagram.

Absolute Maximum Ratings*

*COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. and Operating Characteristics

$T_{A}=0^{\circ}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{S S}-\mathrm{V}_{D D}=15 \mathrm{~V} \pm 5 \% ; \mathrm{t}_{\phi \mathrm{PW}}=\mathrm{t}_{\phi \mathrm{D} 1}=400 \mathrm{nsec} ; \mathrm{t}_{\phi \mathrm{D} 2}=150$ nsec; Logic " 0 " is defined as the more positive voltage ($\mathrm{V}_{I H}, \mathrm{~V}_{\mathrm{OH}}$); Logic " 1 " is defined as the more negative voltage ($\mathrm{V}_{I L}, V_{O L}$); Unless Otherwise Specified.

Symbol	Parameter	Limits			Unit	Test Condition
		Min.	Typ.	Max.		
$I_{\text {LI }}$	Input Leakage Current			10	$\mu \mathrm{A}$	$V_{\text {IL }}=V_{\text {DD }}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage (Except Clocks)	$\mathrm{V}_{\text {SS }}-1.5$		$\mathrm{V}_{\mathrm{SS}}+3$	V	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (Except Clocks)	V_{DD}		$\mathrm{V}_{\text {SS }}-5.5$	V	
$\mathrm{V}_{\text {IHC }}$	Input High Voltage Clocks	$\mathrm{V}_{\text {SS }}-1.5$		$\mathrm{V}_{\text {SS }}+3$	V	
V ILC	Input Low Voltage Clocks	$V_{D D}$		$\mathrm{V}_{\text {SS }}-13.4$	V	
ILO	Data Bus Output Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=-12 \mathrm{~V}$
lOL	Data Bus Sinking Current	8	15		mA	$V_{\text {OUT }}=V_{\text {SS }}$
IOL	$\mathrm{A}_{0-3} / \mathrm{B}_{0-3}$ Sinking Current		2.5		mA	$\begin{aligned} & V_{D D 1}=V_{S S}-5 \mathrm{~V}, \\ & V_{O U T}=V_{D D 1}+.4 \mathrm{~V} \end{aligned}$
IOL	Interrupt Sinking Current		150		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD1 }}+.5 \mathrm{~V}$
R_{OH}	Data Bus Output Resistance		150	250	Ω	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$
R_{OH}	$\mathrm{A}_{0-3} / \mathrm{B}_{0-3}$ Output Resistance		4		k Ω	$V_{\text {OUT }}=V_{\text {SS }}-2.6 \mathrm{~V}$
R_{OH}	S_{0-7} Output Resistance		250		Ω	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-1 \mathrm{~V}$
R_{OH}	RS Output Resistance		350		Ω	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-1 \mathrm{~V}$

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{S S}-\mathrm{V}_{D D}=15 \mathrm{~V} \pm 5 \%$.

Symbol	Parameter	Limits			Unit	Test Condition
		Min.	Typ.	Max.		
$\mathrm{t}_{\mathrm{C} Y}$	Clock Period	1.3		2	$\mu \mathrm{sec}$	
$\mathrm{t}_{\phi} \mathrm{R}$	Clock Rise Time			50	nsec	
$\mathrm{t}_{\phi} \mathrm{F}$	Clock Fall Time			50	nsec	
$\mathrm{t}_{\phi} \mathrm{PW}$	Clock Width	380		480	nsec	
$\mathrm{t}_{\phi \text { D } 1}$	Clock Delay ϕ_{1} to ϕ_{2}	400		550	nsec	
$\mathrm{t}_{\phi \text { D } 2}$	Clock Delay ϕ_{2} to ϕ_{1}	150			nsec	
${ }_{\text {t }}$ W	Data-In, CM, SYNC Write Time	350	100		nsec	
$\mathrm{t}_{\mathrm{H}^{[1,2]}}$	Data-In, CM, SYNC Hold Time	40	20		nsec	
$\mathrm{tos}^{[3]}$	Set Time (Reference)	0			nsec	
${ }^{\text {t }}$ ACC	Data Bus Access Time			930	nsec	
$\mathrm{tOH}^{\text {O}}$	Data Bus Hold Time	50			nsec	
trisk	Return Line Pull-Down Time		5		$\mu \mathrm{s}$	$C=100 \mathrm{pF} ; \text { Scanned }$ Keyboard Mode
$\mathrm{t}_{\text {RTSN }}$	Return Line Pull-Down Time		30		$\mu \mathrm{s}$	$C=100 \mathrm{pF} ;$ Sensor Mode

Capacitance

Symbol	Parameter	Limits			Unit	Test Condition
		Min.	Typ.	Max.		
$\mathrm{C}_{\text {¢ }}$	Clock Capacitance		8		pF	$V_{\text {IN }}=V_{\text {SS }}$
$\mathrm{C}_{\text {DB }}$	Data Bus Capacitance		14	20	pF	$V_{\text {IN }}=V_{S S}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
COUT	Output Capacitance			10	pF	$V_{\text {IN }}=V_{S S}$

Notes: 1. t_{H} measured with $\mathrm{t}_{\phi \mathrm{R}}=10 \mathrm{nsec}$.
2. All MCS-40 components which may transmit instruction on data to a 4004 or 4040 at M_{2} and X_{2} always enter a float state until the $4004 / 4040$ takes over the data bus at X_{1} and X_{3} time. Therefore the t_{H} requirement is always insured since each component contributes $10 \mu \mathrm{~A}$ of leakage current and 10 pF of capacitance which guarantees that the data bus cannot change faster than $1 \mathrm{~V} / \mu \mathrm{s}$.
3. ${ }^{t} A C C$ is Data Bus, SYNC and CM-line output access time referred to the ϕ_{2} trailing edge which clocks these lines out. tOS in the same output access time referred to the leading edge of the next ϕ_{2} clock pulse.

Figure 11. Data Blanking Detail - Individual Display Mode.

Figure 12. Gas Discharge (Self-Scan) Mode Timing - 16 or 20 Character Mode.

Figure 13. Gas Discharge (Self-Scan) Mode Timing - 18 Character Mode.

Figure 9. Individually Scanned Display Mode Timing.

Figure 10. Detailed Timing of Strobe and Return Lines for Keyboard, Sensor, and Individual Scanned Display Modes.

CLOCK GENERATOR

- Complete Clock Requirements for MCS-40™ Systems
- Crystal Controlled Oscillator (XTAL External)
MOS and TTL Level Clock Outputs
- Provides MCS-40 Reset Function Signal
- Standard Operating Temperature Range of 0° to $70^{\circ} \mathrm{C}$
- Also Available with -40° to $+85^{\circ} \mathrm{C}$ Operating Range

The 4201 is a CMOS integrated circuit designed to fill the clock requirements of the MCS-40 microcomputer family. The 4201 contains a crystal controlled oscillator (XTAL external), clock generation circuitry, and both MOS and TTL level clock driver circuits.

The 4201 also performs the power on reset function required by MCS-40 components and provides the logic necessary to implement the single-step function of the 4040 central processor unit.

PIN CONFIGURATION

	4201	
GND	$1{ }_{16}$	${ }^{\text {¢ }}{ }^{2 T}$
${ }_{14}{ }_{14}$	215	V_{cc}
O_{2}	314	\square_{1}
V_{DD}	413	口reset
MODEC	$5 \quad 12$	Dresetin
N. OPEN	$6 \quad 11$	$\square \mathrm{stop}$
\times_{1} -	710	- Аск
${ }^{2}$	$8 \quad 9$]n.closed

BLOCK DIAGRAM

Pin Description

Pin No.	Designation	Description of Function
1	GND	Circuit ground potential. This pin can be left floating for low power application. MOS clock output will be operative, TTL clock outputs will not.
2	$\phi 1 T$.	Phase 1 TTL level clock output. Positive true.
3	$\phi 2$	Phase 2 MOS level clock output. Directly drives all MCS 40 components.
4	$V_{D D}$	Main Power Supply Pin. $V_{D D}=V_{C C}-15 V \pm 5 \% .$
5	MODE	Counter mode control pin. Determines whether counter divides basic frequency by 8 or 7 . Mode $1=V_{C C} \Rightarrow \div 7$ Mode $2=V_{D D} \Rightarrow \div 8$
6	N. OPEN	Input of single step circuitry to which normally open contact of SPDT switch is connected.
7	$\times 1$	External Crystal Connection. This pin may be driven by an external frequency source. X2 should be left unconnected.
8	X2	External Crystal Connection.

Pin No.	Designation	Description of Function
9	N. CLOSED	Input of single step circuitry to which normally closed contact of SPDT switch is connected.
10	ACK	Acknowledge input to single step circuitry normally connected to stop acknowledge output of 4040 .
11	STOP	Stop output of singlc step cir cuitry normally connected to stop input of 4040 . A SPDT toggle switch may be inserted in this line for RUN/HALT control.
12	RESET IN	Input to which RC network is connected to provide poweron reset timing.
13	RESET	Reset signal output which directly connects to all MCS-40 reset inputs. This signal is active low.
14	$\phi 1$	Phase 1 MOS level clock out put. Directly drives all MCS 40 clock inputs.
15	V_{CC}	Circuit reference potential most positive supply voltage.
16	$\phi 2 T$	Phase 2 TTL level clock out put. Positive true.

Functional Description

The 4201 consists of the following functional blocks:

CR YSTAL OSCILLATOR

The oscillator is a simple series mode crystal-type circuit consisting of two inverters biased in the active region, and a series crystal element.

PROGRAMMABLE SHIFT REGISTER

The shift register in the 4201 divides the master clock and generates the proper states for generating the desired twophase clock. The circuit is a seven bit dynamic device which circulates a logical " 1 " through a field of zeroes. The output of the various states are then combined to provide the proper clock waveforms. This provides a divide by 7 function.

In order to maintain the proper clock timing over the full operating frequency range of the MCS-40 ${ }^{\text {TM }}$ system, the shift register is programmable (using mode pin) as either a 7 bit or

4201 Shift Register Modes.

4 bit device. When in the 4 bit mode the clock is divided by 2 and then by 4 to provide a divide by 8 function. The relationship between the phases is equal; that is, ϕ_{1} pulse width, ϕ_{2} pulse width, ϕ_{1} to ϕ_{2} and ϕ_{2} to ϕ_{1} times are all equal.

PHASE DECODER

A simple gate complex is used to decode the shift register outputs to provide phase 1 and phase 2 clock waveforms. This circuitry is controlled by the mode input to achieve the two sets of timing discussed in the previous section.

OUTPUT BUFFERS

There are two sets of output buffers for the 2 phase clock. One set is the MOS level drivers designed to directly drive a full complement of MSC-40 components. The second set provides TTL compatible outputs which can drive one standard TTL load.

RESET CIRCUIT

The reset circuit is simply a level detector and driver stage. An external RC network connected between $V_{D D}$ and $V_{S S}$ at the reset input pin of the 4201 provides the required power-on delay.
To generate a reset, the $V_{D D}$ supply must reach its full voltage level before the $\mathrm{V}_{\text {SS }}$ supply turns on.

SINGLE STEP CONTROL

The 4201 contains the necessary circuitry for allowing the 4040 CPU to execute instructions one at a time. Using the stop input and stop acknowledge output of the 4040, the 4201 generates a pulse that allows the 4040 to perform only one instruction. The stop command can be provided by a SPDT pushbutton directly since debouncing is provided by the 4201. A SPST toggle switch, in series with the STOP line, provides the Run/Halt feature.

Absolute Maximum Ratings*

Storage Temperature \qquad $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Ambient
Operating Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Ambient
Maximum Positive Voltage VCC +.5 V
Maximum Negative Voltage VDD $-.3 V$
Maximum Power Dissipation 1.0W
Maximum Supply Voltage $V_{C C}-V_{D D}$. 17V[1]
Maximum Supply Voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DD}} \ldots$. 17V[2]
Notes: 1. CLOAD, ϕ_{1} and $\phi_{2} \geqslant 100 \mathrm{pF}$.
2. $C_{\text {LOAD }}, \phi_{1}$ and $\phi_{2}=0 ; R=68 \Omega, V_{D D}$ Pin to $V_{D D} ;$ Bypass Capacitor at $V_{D D}$ Pin.

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.
D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 5 \% ; G N D=V_{C C}-5 \mathrm{~V} \pm 5 \%$.

Symbol	Parameter	Limit		Units	Conditions
		Min.	Max.		
$I_{\text {LI }}$	Input Leakage Current		10	$\mu \mathrm{A}$	$V_{I L}=V_{D D}$ All inputs except X_{1}, X_{2}, N. Open, N. Closed
V_{IH}	Input High Voltage	$V_{C C}-1.5$	$\mathrm{V}_{\mathrm{CC}}+.5$	V	All inputs except X_{1}, X_{2}, Reset
$V_{\text {IL }}$	Input Low Voltage	V_{DD}	$\mathrm{V}_{\mathrm{cc}}-13$	V	All inputs except X_{1}, X_{2}, Reset
V_{OL}	Output Low Voltage	V_{DD}	$\mathrm{V}_{\mathrm{Cc}}-13.4$	V	Capacitance load only
V_{OH}	Output High Voltage	$\mathrm{V}_{\text {CC }}-1.5$	V Cc	V	Capacitance load only
V_{OL}	$\phi_{1 \mathrm{~T}}, \phi_{2 T}$		GND +. 5	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
V_{OH}	$\phi_{1 \mathrm{~T}}, \phi_{2 \mathrm{~T}}$	$\mathrm{V}_{\mathrm{cc}}-.75$		V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
IOL	ϕ_{1}, ϕ_{2} Sink Current	400		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$; Pulse Width $\leqslant 1 \mu \mathrm{sec}$
loL	$\phi_{1 T}, \phi_{2 T}$ Sink Current	15		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
lOL	Reset Sink Current	6		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {cc }}$
loL	Stop Sink Current	1		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{IOH}^{\text {I }}$	ϕ_{1}, ϕ_{2} Source Current	180		mA	$V_{\text {OUT }}=V_{\text {DD }}$
IOH	$\phi_{17}, \phi_{2 T}$ Source Current	8		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$
IOH	Reset Source Current	6		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$
IOH	Stop Source Current	1		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$
IDD	Average Supply Current		20	mA	$5.185 \mathrm{MHz} \mathrm{Crystal}, \mathrm{C}_{\text {LOAD }} \phi_{1}$ and $\phi_{2}=20 \mathrm{pF}$
$V_{\text {IL }}$	Reset Input Low Voltage	VDD	$\mathrm{V}_{\mathrm{cc}}-11$	V	
$\mathrm{V}_{\text {IH }}$	Reset Input High Voltage	$\mathrm{V}_{\mathrm{cc}}-6.5$	$\mathrm{V}_{\mathrm{cc}}+.5$	V	
R_{1}	Pull Up Resistance on N. Open, N. Closed	20	120	$\mathrm{K} \Omega$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$

Capacitance $\mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Limit		Units	Conditions
		Min.	Max.		
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF	All Inputs except X_{1}, X_{2}
COUT	ϕ_{1}, ϕ_{2} Output Capacitance		40	pF	\because
COUT	$\phi_{1 T}, \phi_{2 T}$ Output Capacitance		10	pF	
COUT	Stop Reset Output Capacitance		5	pF	

XTAL Specifications

XTAL Capacitance Requirements: $\mathbf{2 0 - 3 0} \mathrm{pF}$
A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 5 \% ; \mathrm{G}=\mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Limit			Units	Conditions
		Min.	Typ.	Max.		
${ }^{\text {t }} \mathrm{CY}$	Clock Period		$\mathrm{t}_{\text {XTAL }}$ * 7		ns	
$\mathrm{t}_{\phi} \mathrm{PW}$	Clock Pulse Width	(2/7) $\mathrm{c}_{\mathrm{CY}}-10$	(2/7) t_{CY}	(2/7) $\mathrm{t}_{\mathrm{cr}}+10$	ns	
$\mathrm{t}_{\phi \text { D1 }}$	Clock Delay from ϕ_{1} to ϕ_{2}	(2/7) $\mathrm{tcy}_{\mathrm{CY}} \mathbf{1 0}$	(2/7) t_{cY}	(2/7) $\mathrm{t}_{\mathrm{CY}}+10$	ns	
$\mathrm{t}_{\phi \text { D } 2}$	Clock Delay from ϕ_{2} to ϕ_{1}	(1/7) $\mathrm{t}_{\mathrm{CY}}-10$	(1/7) ter	(1/7) $\mathrm{t}_{\mathrm{CY}}+10$	ns	-
${ }_{\text {t }}^{\text {c }}$ Y	Clock Period		$\mathrm{t}_{\text {XTAL }}$ * 8		ns	
$\mathrm{t}_{\text {¢ }}$ PW	Clock Pulse Width	(1/4) $\mathrm{t}_{\mathrm{CY}}-10$	$(1 / 4) \mathrm{t}_{\mathrm{Cr}}$	(1/4) $\mathrm{t}_{\mathrm{cY}}+10$	ns	
$\mathrm{t}_{\phi \mathrm{D} 1}$	Clock Delay from ϕ_{1} to ϕ_{2}	(1/4) $\mathrm{tcy}_{\mathrm{c}}-10$	$(1 / 4) t_{c r}$	(1/4) $\mathrm{t}_{\mathrm{CY}}+10$	ns	de $=$
$\mathrm{t}_{\phi \text { D } 2}$	Clock Delay from ϕ_{2} to ϕ_{1}	(1/4) tcy^{-10}	$(1 / 4) \mathrm{t}_{\mathrm{c}} \mathrm{r}$	(1/4) $\mathrm{t}_{\mathrm{CY}}+10$	ns	\square
$\mathrm{t}_{\phi \mathrm{D} 3}$	TTL Clk to MOS Clk Skew ${ }^{11]}$	0		40	ns	
$\mathrm{t}_{\phi r}, \mathrm{t}_{\phi f}$	Clock Rise and Fall Time			50	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}=\phi_{1}, \phi_{2} ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text { on } \phi_{1 \mathrm{~T}}, \phi_{2 \mathrm{~T}} \end{aligned}$
${ }^{\text {D }}$	Delay from Acknowledge to Stop			1	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$

Note: 1. See waveforms section for phase relationships between $\phi_{1}, \phi_{1} T, \phi_{2}$, and $\phi_{2} T$.
2. Proper system operation of all members of the MCS-40' "component family is guaranteed with the 4201 Clock Generator at $1.35 \mu \mathrm{sec} \leqslant \mathrm{t}_{\mathrm{C}} \mathrm{Y} \leqslant 2 \mu \mathrm{sec}$.

Typical Characteristics

IDD CURRENT VS. LOAD CAPACITANCE

CLOCK GENERATOR

 IMPLEMENTATION

Power Supply Voltages

The purpose of $R_{D D}$ is both to limit ϕ_{1} and ϕ_{2} rise times and to drop $V_{D D}$ at the 4201 pin. Values for $R_{D D}$ as a function of ϕ_{1}, ϕ_{2} load capacitance are:

$$
\begin{aligned}
& \text { For } C_{L O A D}<50 p F ; \text { use } R_{D D}=100 \Omega \text {. } \\
& \text { For } 50 \mathrm{pF}<C_{\text {LOAD }}<100 p F \text {; use } R_{D D}=68 \Omega \text {. } \\
& \text { For } 100 \mathrm{pF}<C_{\text {LOAD }}<300 \mathrm{pF} \text {; use } R_{D D}=27 \Omega \text {. } \\
& \text { For } C_{\text {LOAD }}>300 \mathrm{pF} \text {; use } R_{D D}=10 \Omega \text {. }
\end{aligned}
$$

All 4201 functions requiring the $V_{D D}$ voltage should use the pin $V_{D D}$ or node (B) on the 4201 side of resistor $R_{D D}$.
Operation is guaranteed with $\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 5 \%$. During system power-up or during power supply glitching, the maximum magnitude of ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DD}}$) must be limited to 17 volts. With $V_{C C}=+5 \mathrm{~V}, V_{D D}=-10 \mathrm{~V}$, bypass capacitor C 1 of $1 \mu \mathrm{~F}$ and $C 2$ of $.1 \mu \mathrm{~F}$ in parallel from $V_{C C}$ to $G N D$ and $V_{D D}$ to GND provide excellent bypassing.

Single-Supply Systems (+15 V or -15 V)

Recommended 4201 circuit modifications for single supply systems are:

1. The $1 \mu \mathrm{~F}$ capacitor C 1 should be between V_{DD} and V_{CC}.
2. Other capacitors shown as being grounded should be connected to V_{CC}.
3. Reset $R-C$ should be connected to $V_{C C}$.
4. The current limiting resistor $R_{D D}$ is still needed in the $V_{D D}$ line.

Crystals

Either $\div 7$ or $\div 8$ Modes may be used. Mode equals $V_{C C}$ for $\div 7$, Mode equals $V_{D D}$ for $\div 8$. The XTAL range should be between $500 \mathrm{kHz}(4 \mathrm{MHz}$ XTAL, $\div 8 \mathrm{MODE})$ and 740 kHz (5.185 MHz XTAL, $\div 7$ MODE). These XTAL may be found as standard products from CTS Knights or Crystek.

The XTAL terminals, X1 and X2, should each be tied to 20pF capacitors C3 and C4 to GND. Exact values of C3 and C4 should be selected such that total capacitance values seen at X_{1} and X_{2} inputs, including lead and board capacitance, are $20-30 \mathrm{pF}$ allowing proper oscillation start up following a Reset.

Reset Network

The Reset input has $V_{I L}=V_{C C}-11$ Volts and $V_{I H}=V_{C C}$ -6.5 Volts, with about 1 Volt of hysteresis (Schmitt circuit).
Node (A) must be tied to GND or $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$; and R_{R} and C_{R} selected, such that the negative $V_{D D}$ transition moves the Reset input below $\mathrm{V}_{\text {IL }}$.
Tying node (A) to GND and making C_{R} very large, i.e. $>1 \mu \mathrm{~F}$, will allow the greatest freedom in $V_{C C}$ and $V_{D D}$ rise times during turn-on. Tying node (A) to GND will also cause Reset after a $V_{D D}$ glitch to GND.

The purpose of R_{S} at 510Ω or $1 \mathrm{k} \Omega$, is to limit Reset input fall time on manual Reset, so that the Reset input does not fall below $V_{D D}$.

TTL Clock Outputs

If $\phi_{1 T}$ and $\phi_{2 T}$ are used, GND pin should be tied to logic ground. $\phi_{1 T}$ and $\phi_{2 T}$ levels will be equal to $V_{C C}$ and the GND pin level.

Unused Functions

If any of the 4201 functions listed below are not used, it is recommended that the pins be connected as described below:

1. $\phi_{1 T}, \phi_{2 T}-$ Tie GND, $\phi_{1 T}, \phi_{2 T}$ to VCC.
2. Single Step - Tie NO to $V_{C C}$

NC to Node (B) (VD pin of 4201)
STOP ACK to $V_{C C}$
STOP left open
3. Reset - Tie RESET IN to V_{CC} RESET OUT to $V_{C C}$

Waveforms

4008/4009

STANDARD MEMORY AND I/O INTERFACE SET

\author{

- Direct Interface to Standard Memories
 - Allows Write Program Memory
}

The standard memory and I/O interface set (4008/4009) provides the complete control functions performed by the 4001 or 4308 in MCS-40™ systems. The 4008/4009 are completely compatible with other members of the MCS-40 family. All activity is still under control of the CPU. One set of $4008 / 4009$ and several TTL decoders is sufficient to interface to 4 K words of program memory, sixteen four-bit input ports and sixteen four-bit output ports.

PIN CONFIGURATIONS

4008 BLOCK DIAGRAM

4009 BLOCK DIAGRAM

Pin Description

4008		
Pin No.	Designation/ Type of Logic	
1-4	$\mathrm{D}_{0}-\mathrm{D}_{3} /$ Neg .	Bidirectional data bus. All address, instruction and data communication between processor and the PROGRAM MEMORY or I/O ports is transmitted on these 4 pins.
7-8	$\phi_{1}-\phi_{2} /$ Neg.	Non-overlapping clock signals which are used to generate the basic chip timing.
6	SYNC/Neg.	Synchronization input signal driven by SYNC output of processor.
5	CM-ROM/Neg.	Command input driven by CM-ROM output of processor. Used for decoding SRC and I/O instructions.
23-16	$\mathrm{A}_{0}-\mathrm{A}_{7} /$ Pos.	Address output buffers. The demultiplexed address values generated by the 4289 from the address data supplied by the processor at A_{1} and A_{2}.
15-13, 11	$\mathrm{C}_{0}-\mathrm{C}_{3} /$ Pos.	Chip select output buffers. The address data generated by the processor at A_{3}, or during an SRC are transferred here.
9	F/L/Neg.	Output signal generated by the 4008 to indicate which halfbyte of PROGRAM MEMORY is to be operated on.
10	W/Pos.	Output signal, active low, generated by the 4008 when the processor executes a WPM instruction.
12	$V_{S S}$	Most positive supply voltage.
24	$V_{D D}$	Main power supply pin. Value must be $\mathrm{V}_{\mathrm{SS}}-15 \mathrm{~V} \pm 5 \%$.

4009
Designation/
Pin No. Type of Logic Description of Function
23-20 $\quad D_{0}-D_{3} /$ Neg. Bidirectional data bus. All address, instruction and data communication between processor and the PROGRAM MEMORY or I/O ports is transmitted on these 4 pins.

5-8, 1-4 $\quad D_{1}^{\prime}-D_{8}^{\prime} /$ Pos. The eight bits of instruction from the program memory are transferred on these 4009 pins (most significant bit is D 8).
14-13
$9 \quad$ IN/Neg. Output signal, active low, generated by the 4289 when the processor executes an RDR instruction.

10 OUT/Neg. Output signal, active low ($V_{D D}$), generated by the 4009 when the processor executes a WRR instruction.

19-16 $\quad \mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{3} /$ Pos. Bidirectional I/O data bus. Data to and from I/O ports or data to write PROGRAM MEMORY are transferred via these pins. Main power supply pin. Value must be $\mathrm{V}_{\mathrm{SS}}-15 \mathrm{~V} \pm 5 \%$. Most positive supply voltage.

Functional Description

The 4008 is the address latch chip which interfaces the 4004 or 4040 to standard PROMs, ROMs and RAMs used for program memory. The 4008 latches the low order eight bits of the program address sent out by the CPU during A1 and A2 time. During A3 time it latches the high order four bits of the program address from the CPU. The low-order eight bits of the program address are then presented at pins AO through A7 and the high-order four bit (also referred to as page number) are presented at pins C0 through C3. These four bits must be decoded externally and one page of program memory is selected.

The 4009 then transfers the eight bit instruction from program memory to the CPU four bits at a time at M. 1 and M2. The command signal sent by the CPU activates the 4009 and initiates this transfer.

When the CPU executes an SRC (Send Register Control) instruction, the 4008 responds by storing the I/O address in its eight bit SRC register. The content of this SRC register is always transferred to the address lines (A0 through A7) and the chip select lines (C 0 through C 3) at X 1 time. The appropriate I/O port is then selected by decoding the chip select lines. The IN and OUT lines of the 4009 indicate whether an input or output operation will occur.
The 4009 is primarily an instruction and I/O transfer device. When the CPU executes an RDR (Read ROM Port) instruction, the 4009 will send an input strobe (pin 9) to enable the selected input port. It also enables $1 / O$ input buffers to transfer the input data from the I/O bus to the data
bus. When the 4009 interprets a WRR (Write ROM Port) instruction, it transfers output data from the CPU to the I/O bus and sends an output strobe (pin 10) to enable the selected output port.

The WPM (Write Program Memory) instruction is used in conjunction with the 4008/4009 to write data into the RAM program memory. When an instruction is to be stored in RAM program memory, it is written in two four-bit segments. The F/L signal from the 4008 keeps track of which half is being written. When the CPU executes a WPM instruction, the chip select lines of the 4008 are jammed with "1111". In the system design this should be designated as the RAM channel. The W line on the 4008 is also activated by the WPM instruction. The previously selected SRC address on line A0 through A7 of the 4008 becomes the address of the RAM word being written. By appropriately decoding the chip select lines, the W line, and F/L, the write strobes can be generated for the memory.

The F/L line is initially high (Vss) when power comes on. It then pulses low (VDD) when every second WPM is executed. A high (Vss) on the F/L lines means that the first four bits (OPR) are being written, and a low means that the last four bits (OPA) are being written. The 4009 transfers the segment of the instruction to the I/O bus at X2 of the WPM instruction. The SRC address sent to RAM is only 8 bits. When more than one page of RAM (256 bytes) is being written, an output port must be used to supply additional address lines for higher order addresses.

Absolute Maximum Ratings*

Ambient Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Voltages and Supply Voltage with respect to Vss	+0.5 V to -20V
Power Dissipation	1.0 Watt

Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Voltages and Supply Voltage
Power Dissipation .. 1.0 Watt
*COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

4008/4009

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 5 \% ; \mathrm{t}_{\phi \mathrm{PW}}=\mathrm{t}_{\phi \mathrm{D} 1}=400 \mathrm{nsec} ; \mathrm{t}_{\phi \mathrm{D} 2}=150 \mathrm{nsec}$; Logic " 0 " is defined as the more positive voltage ($\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}$); Logic " 1 " is defined as the more negative voltage ($\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OL}}$); Unless Otherwise Specified.
SUPPLY CURRENT

Symbol	Parameter	 Min. Limit Typ.	Max.	Unit	Test Conditions
IDD	Average Supply Current (4008 only)	10	20	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
IDD	Average Supply Current (4009 only)	13	30	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

INPUT CHARACTERISTICS-ALL INPUTS EXCEPT I/O PINS

I_{LI}	Input Leakage Current		10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage (Except Clocks)	$\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{DD}}$		
V_{IL}	Input Low Voltage (Except Clocks)	$\mathrm{V}_{\mathrm{SS}}+.3$	V	
$\mathrm{~V}_{\mathrm{IHC}}$	Input High Voltage Clocks	V_{DD}	$\mathrm{V}_{\mathrm{SS}}-5.5$	V
$\mathrm{~V}_{\mathrm{ILC}}$	Input Low Voltage Clocks	$\mathrm{V}_{\mathrm{SS}}-1.5$	$\mathrm{~V}_{\mathrm{SS}}+.3$	V

OUTPUT CHARACTERISTICS-ALL OUTPUTS EXCEPT I/O PINS

I/O INPUT CHARACTERISTICS

I_{LI}	Input Leakage Current		10	$\mu \mathrm{~A}$	
$\mathrm{~V}_{\mathrm{IH}}[4]$	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}-1.5$	$\mathrm{~V}_{\mathrm{SS}}+.3$	V	
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage (4009 only)	V_{DD}	$\mathrm{V}_{\mathrm{SS}}-4.2$	V	

I/O OUTPUT CHARACTERISTICS

V_{OH}	Output High Voltage	$\mathrm{V}_{\text {SS }} . .5 \mathrm{~V}$		V	I ${ }_{\text {OUT }}=0$
R_{OH}	I/O Output "0' Resistance (4009 only)	. 25	1.0	k Ω	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5$
$\mathrm{IOL}^{\text {l }}$	I/O Output "1" Sink Current (4009 only)	512		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$
$\mathrm{IOL}^{\text {l }}$	I/O Output " 1 " Sink Current (4009 only)	1.6		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-4.85 \mathrm{~V}$
$\mathrm{I}_{\text {CF }}$	I/O Output " 1 " Clamp Current (4009 only)		16	mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-6 \mathrm{~V}$

CAPACITANCE

C_{ϕ}	Clock Capacitance	8	15	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
C_{DB}	Data Bus Capacitance	7	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance (4008 only)	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	
$\mathrm{C}_{\text {IN }}$	Input Capacitance (4009 only)	15	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	

Notes: 1. The address lines will drive a TTL load if a 470Ω resistor is connected in series between the address output and the TTL input.
2. A $6.8 \mathrm{k} \Omega$ resistor must be connected between Pin W and VDD for TTL capability.
3. Resistors in series with TTL inputs may be required to limit current into VDD or VSS from TTL input clamp diodes.
4. $T \mathrm{TL} \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ will ensure $4009 \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{SS}}-1.5$ via the 4009 latch. Refer to Figure 3.

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{S S}-\mathrm{V}_{D D}=15 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Limit			Unit	Test Conditions
		Min.	Typ.	Max.		
${ }^{\text {t }}$ CY	Clock Period	1.35		2.0	$\mu \mathrm{sec}$	
$\underline{t} \phi_{R}$	Clock Rise Time			50	ns	
t ϕ_{F}	Clock Fall Times			50	ns	
t $\phi_{\text {PW }}$	Clock Width	380		480	ns	
t $\phi_{\text {D } 1}$	Clock Delay ϕ_{1} to ϕ_{2}	400		500	ns	
$\underline{t} \phi_{\mathrm{D} 2}$	Clock Delay ϕ_{2} to ϕ_{1}	150			ns	
tw	Data-In, CM, SYNC Write Time	350	100		ns	
$\mathrm{tH}^{[1,3]}$	Data-In, CM, SYNC Hold Time	40	20		ns	
$\mathrm{tOS}^{\text {[2] }}$	Set Time (Reference)	0			ns	
${ }^{\text {tacc }}$	Data-Out Access Time Data Lines SYNC CM-ROM CM-RAM			$\begin{aligned} & 930 \\ & 930 \\ & 930 \\ & 930 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	```COUT = 500 pF Data Lines 500pF SYNC 160pF CM-ROM 50pF CM-RAM```
$\mathrm{tOH}^{\text {r }}$	Data-Out Hold Time	50	150		ns	$\mathrm{C}_{\text {OUT }}=20 \mathrm{pF}$
${ }^{\text {t }}$ 1	Address to Output Delay at A_{1}, X_{1} (4008)			580	ns	$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$
${ }^{\text {ta }}$	Address to Output Delay A_{2} (4008)			580	ns	$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$
t_{CS}	Chip Select Output Delay at A_{3} (4008)			300	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\text {tw }}$	W Output Delay (4008)			600	ns	$C_{L}=100 \mathrm{pF}$
${ }_{\text {t }}{ }^{\text {d }}$	F/L Output Delay (4008)	0.1		1	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
twi	Data In Write Time (4009)	470			ns	$C_{L}=200 \mathrm{pF}$ on data bus
t_{D}	I/O Output Delay (4009)			1.0	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$
${ }_{\text {ts1 }}$	IN Strobe Delay (4009)			450	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\text {ts }}$ 2	OUT Strobe Delay (4009)			1.0	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Notes: 1. t_{H} measured with $\mathrm{t}_{\phi \mathrm{R}}=10 \mathrm{nsec}$.
2. tACC is Data Bus, SYNC and CM-line output access time referred to the ϕ_{2} trailing edge which clocks these lines out. tOS is the same output access time referred to the leading edge of the next ϕ_{2} clock pulse.
3. All MCS-40 components which may transmit instruction or data to $4004 / 4040$ at M_{2} and X_{2} always enter a float state until the 4004/4040 takes over the data bus at X_{1} and X_{3} time. Therefore the t_{H} requirement is always insured since each component contributes $10 \mu \mathrm{~A}$ of leakage current and 10 pF of capacitance which guarantees that the data bus cannot change faster than $1 \mathrm{~V} / \mu \mathrm{s}$.

Timing Diagram

Figure 1. 4008 and 4009 Timing Diagram.

Figure 2. MCS-40 Timing Detail.

EXPLANATION:
WITH $V_{S S}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}=-10 \mathrm{~V}$, AN EXTERNAL TTL INPUTTING TO THE 4289 ON THE I/O LINE, RAISES THE I/O LINE TO 2.4V. THE Q1-RA INVERTER TURNS "OFF" AND Q2 PULLLS THE I/O LINE TO VSS. A LOW TTL SIGNAL OVERRIDES Q2. IF THE TTL OUTPUT GOES TO THE THIRD STATE, THE EXTERNAL I/O LINES REMAIN HIGH THROUGH 22. THE PURPOSE OF THIS CIRCUIT IS TO REMOVE RESISTORS TO $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}$ ON TTL OUTPUTS, AS R1 DOES ON 4001/4308 INPUT PORTS.

Figure 3. 4009 I/O Latch.

STANDARD MEMORY INTERFACE

- 40 Pin Dual In-Line Package
- Standard Operating
Temperature Range of
0° to $70^{\circ} \mathrm{C}$
- Also Available With
-40° to $+85^{\circ} \mathrm{C}$ Operating
Range

The 4289 standard memory interface and I/O interface enables the CPU devices to utilize standard memory components as program data memory. Notably, PROMs (4702A), RAMs (2102) and ROMs can be arranged in a memory array to facilitate system development. Programs generated using the 4289 interface can be committed to MCS-40™ ROMs (4308 and 4001) with no change to software.
The 4289 also contains a 4 bit bi-directional I/O port and necessary steering logic to multiplex a host of I/O sources to the CPU. The Read and Write Program Memory instruction allows the user to store data and modify program memory. The device directly addresses 4 K of program memory. The address is obtained sequentially during A1-A3 states of an instruction cycle. The eight bit instruction is presented to the CPU during M_{1} and M_{2} states of the instruction cycle via the four bit data bus.
The 4289 stores the SRC instruction operand as an I/O address and responds to the ROM I/O instructions (WRR and RDR) by reading or writing data to and from the processor and 4289 I/O bus.

PIN CONFIGURATION

$\mathrm{D}_{0} 1$		40	$\mathrm{v}_{\text {oo }}$
$\mathrm{D}_{1} \square_{2}$		39	$1 / \%_{0}$
$\mathrm{D}_{2} \square_{3}$		${ }_{8}$	$\square 1 / 0$,
$\mathrm{D}_{3} \square_{4}$		37	$1{ }^{2}$
OPRO		36	$1 / 0_{3}$
1			
1		35	V_{DO}
OPR2 \square^{7}		34	$\square c_{3}$
OPR3 \square_{8}		${ }_{3}$	$\square \mathrm{c}_{2}$
OPAO \square		32	c_{1}
OPA1 \square_{10}		31	c_{0}
OPA2 \square_{11}	4289	30	$\mathrm{A}^{\text {a }}$
OPA3 \square_{12}		29	A_{6}
$0 . \square_{13}$		28	$\square^{A_{5}}$
$0_{2} \square_{14}$		27	A_{4}
SYNc \square_{15}		26	$\square A_{3}$
cm \square_{16}		25	$\square A_{2}$
Reset ${ }^{17}$		24	A_{1}
in ${ }_{18}$		${ }^{23}$	
out \square^{19}		22	F/L
$\mathrm{v}_{\text {ss }} \square^{20}$		21	PM

Pin Description

Pin No.	Designation/ Type of Logic	Description of Function
1-4	$\mathrm{D}_{0}-\mathrm{D}_{3} / \mathrm{Neg}$.	Bidirectional data bus. All address, instruction and data communication between processor and the PROGRAM MEMORY or I/O ports is transmitted on these 4 pins.
5-8	$\mathrm{OPR}_{0}-\mathrm{OPR}_{3} /$ Pos .	The high order 4 bits (OPR) of the instruction or data (RPM) from the PROGRAM MEMORY are transferred to the 4289 on these pins.
9-12	$\mathrm{OPA}_{0}-\mathrm{OPA}_{3} /$ Pos .	The low order 4 bits (OPA) of the instruction or data (RPM) are transferred to the 4289 on these pins.
13-14	$\phi_{1}-\phi_{2} /$ Neg.	Non-overlapping clock signals which are used to generate the basic chip timing.
15	SYNC/Neg.	Synchronization input signal driven by SYNC output of processor.

CM/Neg.

RESET/Neg.

IN/Neg.

OUT/Neg.

VSS
PM/Neg.

F/L/Neg.
$\mathrm{A}_{0}-\mathrm{A}_{7} /$ Pos.
$\mathrm{C}_{0}-\mathrm{C}_{3} /$ Pos.
$V_{D D 1}$
$\mathrm{I} / \mathrm{O}_{3}-\mathrm{I} / \mathrm{O}_{0} /$ Pos.
Bidirectional I/O data port. Data to and from I/O devices or data to write PROGRAM MEMORY are transferred via these pins.

Main power supply pin. Value must be $\mathrm{V}_{\mathrm{SS}}-15 \mathrm{~V} \pm 5 \%$.

Functional Description

The 4289 enables the 4 bit CPU chip (4004 or 4040) to interface to standard memory components. This allows construction of prototype or small volume systems using electrically programmable ROMs or RAMs in place of 4001 or 4308 mask programmable ROMs. Since 4001s or 4308s also contain up to 16 mask programmable I/O ports, the 4289 has provisions for directly addressing 16 channels of 4 bit I/O ports. In its role as a Memory and I/O interface device, the 4289 provides three different types of operation, namely:
a. Interface to Program Memory for instruction fetch operations.
b. Interface to Input/Output ports for storing or fetching data using WRR, RDR instruction.
c. Interface to R/W Program Memory for program alteration using WPM, RPM instructions. This feature may also be used for storing or fetching data, thus allowing the use of standard R/W RAM for data storage via the 4289.
These three basic operations will be discussed in detail in the following paragraphs.

Instruction Execution

The contents of the data bus at A_{1}, A_{2}, and A_{3} are latched by the 4289 and transferred to the address and chip select output buffers. The low order address at A_{1} is transferred to $A_{0}-A_{3}$ outputs, the middle order address at A_{2} is transferred to $A_{4}-A_{7}$ outputs and the high order address at A_{3} is transferred to $\mathrm{C}_{0}-\mathrm{C}_{3}$ outputs. These 12 output lines provide the necessary address and chip select signals to interface to a $4 \mathrm{~K} \times 8$ bit Program Memory.

The 8 bit word selected by $A_{0}-A_{7}$ and $C_{0}-C_{3}$ is transferred to the processor via the $\mathrm{OPR}_{0-3}, \mathrm{OPA}_{0-3}$ input lines and the data output buffer. The high order bits (OPR) are transferred at M_{1} and the low order 4 bits (OPA) are transferred at M_{2}.

The 4289 has been designed to work equally well with either the 4004 or 4040 processor elements. Since the 4040 is provided with two CM-ROM controls which allow it to directly address up to $8 \mathrm{~K} \times 8$ bits of Program Memory ($4 \mathrm{~K} \times 8$ bits selected by each CM-ROM control), two 4289s would be required for full memory capability. In this case, one 4289 would be controlled by CM-ROMo and the other by CMROM1. The 4289 which receives $C M$ at $A 3$ would be enabled to transfer data at M_{1} and M_{2}.

It should be noted that the two CM-ROM controls permit the simultaneous use of 4001, 4308, and 4289 in the same system. The ROM's 4001 and 4308 can be mixed and assigned to one CM-ROM control line while a single 4289 can be assigned to the other. However, within one CM-ROM control line, 4289, 4001, and 4308 cannot be mixed, since the 4289 does respond to a full 4 K of memory by its design and thus would overlap program memory address with the 4001 or 4308.

I/O Port Operation

When the processor executes an I/O port instruction (WRR or RDR), a previously selected I/O port (via an SRC instruction) is enabled to receive or transmit 4 bits of data. In
the case of WRR, the selected output port receives the 4 bit contents of the processor accumulator, and in the case of RDR, the selected input port transmits 4 bits of data to the processor accumulator. The 4 bit value sent out at X_{2} time of the SRC instruction is used as the port address. Since the 4289 is capable of addressing 164 bit I/O ports, it must therefore be capable of storing the SRC address sent by the processor and presenting that address to the external I/O port selection logic for WRR or RDR instructions which follow. To accomplish this, the 4289 behaves as follows:
a. When the processor executes an SRC instruction, the 4289 stores the address sent out by the processor at X_{2} and X_{3}. The contents of the upper 4-bits of the SRC register are transferred during every X_{1} time to the chip select lines and are available for subsequent I/O instructions' port selection.
b. When the processor then executes a WRR instruction, the 4289 latches the data sent out by the processor at X_{2} and transfers this data to the I/O output buffer. This buffer is enabled during X_{3} and transmits the data to the selected output port. So that external port logic may be enabled to receive the data, the 4289 generates the OUT strobe signal.
c. When the processor executes an RDR instruction, the 4289 generates the IN strobe. This enables the selected input port to transmit its data to the I/O bus, where it is latched by the 4289 and transferred to the processor at X_{2}.
Note that in a system using ROMs, the 4 bit port number is decoded by the ROM chip itself. Where a 4289 is used, the 4 bit port number outputted at the chip select lines $\mathrm{C}_{0}-\mathrm{C}_{3}$ must be externally decoded to select the appropriate I/O device.

Read/Write Program Memory Operations

If the 4289 is used in conjunction with the 4040 , both the WRITE and READ PROGRAM MEMORY (WPM/RPM) functions are directly available (only the WPM is available for 4004 systems). To accomplish these operations, the following are required:
a. A program memory address.
b. The proper control signals.
c. A means of transmitting the data to be stored or fetched.
The 4289 provides all of these as described below.

Program Memory Address

The address for an RPM or WPM operation is provided by the 8 bit contents of the SRC register. Note that the RPM or WPM instruction must have been preceded by an SRC instruction which loaded an 8-bit address into the 4289's SRC register. This 8-bit address is the full address of an 8-bit word in one Read/Write Program Memory page (256 bytes). If more than one page of Read/Write Program Memory is desired, these pages must be selected by external logic controlled via other output ports of the system. At X_{1} of every instruction cycle the 8 bit value contained in the SRC register is transferred to the address output buffers $A_{0}-A_{7}$. This address will select 1 out of 256 program memory words.

During execution of WPM or RPM, the 4289 does not transfer the high order 4 bits of the SRC register to $\mathrm{C}_{0}-\mathrm{C}_{3}$.

Instead, it forces all 4 chip select output buffers to a logic " 1 " state (positive true logic or V_{SS}). This forcing of $\mathrm{C}_{0}-\mathrm{C}_{3}$ to all "1s" can be used to indicate the execution of a WPM or RPM instruction. The PM output signal is also generated whenever a proper memory operation (WPM or RPM) is being performed. If only one page of R/W memory is required, the 1111 condition on $\mathrm{C}_{0}-\mathrm{C}_{3}$ or the PM signal can be used to enable that page. If more than one page is required, an additional output port of the system along with external logic will be necessary to provide the 1 out of 16 page select function.

Since the program memory is organized as 8 bit words, and since RPM and WPM are transmitting only 4 bit words, it is also necessary to specify either the upper or lower halfbyte of program memory.

This is done automatically by a FIRST/LAST flip-flop and output signal in the 4289. The state of this flip-flop is used to generate the control signal F / L which determines the proper half-byte of program memory. If F / L is a logic " 1 " state ($V_{D D}$), OPR is selected. When F / L is a logic " 0 " $\left(V_{S S}\right)$, OPA is selected. The user can directly reset the FIRST/LAST flipflop to logic " 0 " (V_{SS}) in the 4289 by applying a RESET signal.

Starting from a "reset" condition the FIRST/LAST flipflop automatically toggles after executing either an RPM or WPM instruction. Hence, odd numbered program memory operations select OPA and even numbered program memory operations select OPR (starting with \#1 from reset). Alternate WPM and RPM instructions should be used with care since this can cause an out of sequence with the F/L line.

The OUT strobe signal is generated only during WRR and WPM instructions. Hence, the combination of the PM signal (or $\mathrm{C}_{0}-\mathrm{C}_{3}=1111$) and the OUT signal can be used as a WRITE ENABLE for R/W program memory.

Program Memory Data Paths

When the processor executes the WPM instruction, the 4289 latches the data sent out at X2 by the processor and transfers it via the I/O output buffers to the I/O port. The I/O port must be connected to the data input pins of the R/W memory chips. (Refer to Figure 2 which follows.)

If the processor (4040) executes the RPM instruction, then the entire 8 bit program memory word is transferred to the $\mathrm{OPR}_{0}-\mathrm{OPR}_{3}$ and $\mathrm{OPA}_{0}-\mathrm{OPA}_{3}$ inputs of the 4289. Depending on the state of the F/L signal, either the OPA or the OPR half-byte is automatically selected by the 4289.

Data Storage

If Read/Write Memory is interfaced to via a 4289 and is used for data storage only, the data is accessed via the WPM and RPM instructions just as Read/Write Program Memory would be accessed. The only difference that the chip select lines $\mathrm{C}_{0}-\mathrm{C}_{3}$ are never used to select the Read/Write Memory in an instruction fetch operation. The PM pulse would be used to select the Read/Write data memory.

Nóte that the RAM instructions RDM, WRM, WRO-WR3, RD0-RD3, SBM and ADM cannot be used to access this type of data Read/Write memory.

4008/4009 and 4289 Differences

The functional differences between a 4289 and a 4008/4009 Standard Memory Interface component pair are as follows:

1. The PM pulse of the 4289 (negative logic) is inverted in comparison with the W pulse of the 4008 (positive logic).
2. The W pulse of the 4008 begins in X2 and ends in X3. The 4289's PM pulse begins in X1 and ends in A1.
3. The OUT strobe of the 4289 goes to logical $1\left(\mathrm{~V}_{\mathrm{DD}}\right)$ for the WRR instructions and the WPM instructions. The OUT strobe of the 4009 goes to logical $1\left(\mathrm{~V}_{\mathrm{DD}}\right)$ for the WRR instruction only.

4289 Applications

The 4289 can be used to form systems of widely varying complexity. Simple systems containing only one page (256 x 8) of PROGRAM MEMORY and few I/O ports, or more complex systems requiring as many as 32 pages ($8 \mathrm{~K} \times 8$) of memory and 32 I/O ports can readily be implemented. Several examples will be described here.

1. Basic PROM Microcomputer System (Figure 1). This system contains:
a. $1 \mathrm{~K} \times 8$ bits of PROGRAM MEMORY (4702A PROM)
b. 1280 bits of DATA MEMORY (4002 RAM) organized as 16 20-character registers
c. 4 RAM output ports (4002)
d. $4 \mathrm{I} / \mathrm{O}$ ports.

This system uses a 32051 out of 8 decoder to decode the input port addressed by the CPU. Two chip select signals (C_{0} and C_{1}) are combined with the IN signal, which is activated low to indicate an input operation, to select one of four input ports. The 3205 enables one DM 7098 threestate buffer.

In a similar manner, one 3205 and the OUT signal, which is activated to indicate an output operation, are used to select one of four output ports.
2. Standard PROM and RAM Memory System (Figure 2). This system again contains 4 pages of PROM storage but, in addition, has one page of RAM storage which can be used for either PROGRAM or DATA storage by using the WPM/RPM instructions. (The RPM instruction is valid only with the 4040.) The RAM storage has been implemented with two 4101's (256×4 static RAM). Notice that separate WRITE ENABLE signals must be generated for the upper and lower half-bytes of RAM.
Note that the inputs to the 4101 RAMs are connected to the 4289 I/O port while their outputs are connected directly to the OPR-OPA lines.

The 4101 RAMs can be chip selected through their active low chip select lines in either of two cases:

1. By an address decode of 4 when the RAMs are addressed as Program Memory for instruction fetch.
2. By the PM signal when addressed as a RAM read or write via an RPM or WPM instruction. For write operations, the TTL logic shown selects one of the

Figure 2. PROM and RAM System.

Figure 3. Two Memory Bank System.
two 4101 Read/Write lines according to the F / L signal of the 4289.
The TTL buffers are placed on the data bus to facilitate the compatability between the NMOS RAMs and the PMOS PROMS. The inverters limit the negative excursion of the PROM outputs which may damage the RAMs. The TTL pullup is required to ensure the $\mathrm{V}_{1 H}$ threshold level.
3. Two Memory Bank System (Figure 3). Two 4289s are used in this 4040 system giving addressability to a full 8 K bytes of PROM memory. In this case each 4289 is controlled from a separate CM-ROM control signal. The CM-ROM 0 and CM-ROM 1 lines are generated by the 4040. This system cannot be implemented with the 4004.

4289, 4702A System Considerations

1. When utilizing the 4289 with more than six 4702As,a TTL buffer as shown in Figure 4 should be inserted in series with the OPR, OPA lines to achieve maximum clock rate. The buffer may be inverting or noninverting.
However, use of a $5.1 \mathrm{~K} \Omega$ resistor on the 4702 A output to $V_{\text {SS }}$ will allow up to $6 \times 4702 A$ s to be used without TTL buffers and still achieve maximum clock rate.
2. 4702 A access times to meet MCS- 40 at $\mathrm{t}_{\mathrm{CY}}=1.35 \mu \mathrm{sec}$ are guaranteed with pure capacitive load of 75 pF and with load of 240 pF plus a TTL buffer on the 4702A output.
To operate with more than $6 \times 4702 \mathrm{~A}$ without TTL buffer, the limiting specification is tco and this increases $5 \mathrm{nsec} / \mathrm{pF}$ for capacitance above 75 pF ; MCS-40 t_{CY} must be increased $2.5 \mathrm{~ns} / \mathrm{pF}$.

Figure 4. 4289 and 4702A Block Diagram.

Absolute Maximum Ratings*

Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Voltages and Supply Voltage
with respect to Vss +0.5 V to -20 V
Power Dissipation ... 1. 0 Watt
'COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{S S}-V_{D D}=15 \mathrm{~V} \pm 5 \% ; \mathrm{t}_{\phi \mathrm{PW}}=\mathrm{t}_{\phi \mathrm{D} 1}=400 \mathrm{nsec} ; \mathrm{t}_{\phi \mathrm{D} 2}=150 \mathrm{nsec} ; 4289 \mathrm{~V}_{D D 1}=V_{S S}-5 \mathrm{~V}$. Logic " $0^{\prime \prime}$ is defined as the more positive voltage ($\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}$); Logic " 1 " is defined as the more negative voltage ($\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OL}}$); Unless Otherwise Specified.

SUPPLY CURRENT

	Parameter	Limit Typ.			Max.	Unit
Symbol	Test Conditions					
$I_{D D}$	Average Supply Current		30	40	mA	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

INPUT CHARACTERISTICS-ALL INPUTS EXCEPT I/O PINS

I_{LI}	Input Leakage Current		10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage (Except Clocks)	$\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{DD}}$		
V_{IL}	Input Low Voltage (Except Clocks)	$\mathrm{V}_{\mathrm{SS}}-1.5$	$\mathrm{~V}_{\mathrm{SS}}+3$	V
$\mathrm{~V}_{\mathrm{ILO}}$	Input Low Voltage	$\mathrm{V}_{\mathrm{DD}}-5.5$	V	
$\mathrm{~V}_{\mathrm{IHC}}$	Input High Voltage Clocks	$\mathrm{V}_{\mathrm{SS}}-1.5$	$\mathrm{~V}_{\mathrm{SS}}-4.2$	V
$\mathrm{~V}_{\mathrm{ILC}}$	Input Low Voltage Clocks	V_{DD}	$\mathrm{V}_{\mathrm{SS}}+.3$	V

OUTPUT CHARACTERISTICS-ALL OUTPUTS EXCEPT I/O PINS

ILO	Data Bus Output Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=-12 \mathrm{~V}$
V_{OH}	Output High Voltage	$\mathrm{V}_{S S}-.5 \mathrm{~V} \quad \mathrm{~V}_{\text {SS }}$		V	Capacitive Load
IOL	Data Lines Sinking Current	$8 \quad 15$		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$
$\mathrm{IOL}^{[1]}$	Address Line Sinking Current	713		mA	$\begin{aligned} & V_{O U T}=V_{S S}, \\ & V_{D D 1}=V_{D D} \end{aligned}$
$\mathrm{IOL}^{\text {coin }}$	In, Out, F/L, PM Sinking Current, Chip Select	1.64		mA	$\begin{aligned} & V_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}}-4.85 \\ & \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$
$\mathrm{V}_{\mathrm{OL}}{ }^{[2]}$	Chip Select Output Low Voltage		$\mathrm{V}_{\mathrm{DD} 1}+.5$	V	$\mathrm{I}_{\mathrm{OL}}=.4 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage, Data Bus, CM, SYNC	$\mathrm{V}_{\text {SS }}-12$	$\mathrm{V}_{\text {SS }}-6.5$	V	$\mathrm{I}_{\mathrm{OL}}=0.5 \mathrm{~mA}$
R_{OH}	Output Resistance, Data Line "0' Level	150	250	Ω	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$
R_{OH}	Address, Chip Select Output Resistance, "0" Level	. 6	1.2	$\mathrm{k} \Omega$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$

I/O INPUT CHARACTERISTICS

I_{LI}	Input Leakage Current		10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IH}}{ }^{[3]}$	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}-1.5$	$\mathrm{~V}_{\mathrm{SS}}+.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	V_{DD}	$\mathrm{V}_{\mathrm{SS}}-4.2$	V

I/O OUTPUT CHARACTERISTICS

VOH	Output High Voltage	$\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$		V	$\mathrm{I}_{\text {OUT }}=0$
R_{OH}	I/O Output "0' Resistance	. 25	1.0	$k \Omega$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-5$
IOL	I/O Output "1" Sink Current	512		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5$
Lol	I/O Output "1" Sink Current	1.64		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-4.85 \mathrm{~V}$
ICF	I/O Output "1" Clamp Current		10	mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-6 \mathrm{~V}$

Notes: 1. The address lines will drive a TTL load if a 470Ω resistor is connected in series between the address output and the TTL input.
2. 4289 Address $\left(A_{0}-A_{7}\right)$ Outputs are also tied to $V_{D D 1}$ but are tested with capacitive load only.
3. $\mathrm{TTL} \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ will ensure $4289 \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{SS}}-1.5 \mathrm{~V}$ via the 4289 latch. Refer to Figure 5.

D.C. and Operating Characteristics (Continued)

CAPACITANCE

Symbol	Parameter	Min. \quadLimit Typ.	Max.	Unit	Test Conditions
C_{ϕ}	Clock Capacitance	14	20	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
$\mathrm{C}_{\text {DB }}$	Data Bus Capacitance	7	10	pF	$V_{\text {IN }}=V_{\text {SS }}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		15	pF	$V_{\text {IN }}=V_{\text {SS }}$
COUT	Output Capacitance		10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$

EXPLANATION:
WITH $V_{S S}=+5 \mathrm{~V}$ and $V_{D D}=-10 \mathrm{~V}$, AN EXTERNAL TTL INPUTTING TO THE 4289 ON THE I/O LINE, RAISES THE I/O LINE TO 2.4V. THE O1-RA INVERTER TURNS "OFF"' AND 22 PULLS THE I/O LINE TO VSS. A LOW TATE THE EXTERNAL IO LINES REMAIN HIGH THROUGH O2 THIRD STATE, THE EXTERNAL I/O LINES REMAIN HIGH THROUGH 02.
THE PURPOSE OF THIS CIRCUIT IS TO REMOVE RESISTORS TO $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}$ ON TTL OUTPUTS, AS R R_{1} DOES ON 4001/4308 INPUT PORTS.

Figure 5. $4289 \mathrm{I} / \mathrm{O}$ Latch.

A.C. Characteristics

Symbol	Parameter	Min.	Limit Typ.	Max.	Unit	Test Conditions
${ }^{\mathrm{t}_{\mathrm{C}} \mathrm{Y}}$	Clock Period	1.35		2.0	$\mu \mathrm{sec}$	
t $\phi_{\text {R }}$	Clock Rise Time			50	ns	
$\underline{t} \phi_{F}$	Clock Fall Time			50	ns	
$t \phi_{\text {PW }}$	Clock Width	380		480	ns	
$t \phi_{\text {D1 }}$	Clock Delay ϕ_{1} to ϕ_{2}	400		550	ns	
$t \phi_{\mathrm{D} 2}$	Clock Delay ϕ_{2} to ϕ_{1}	150			ns	
t_{W}	Data-In, CM, SYNC Write Time	350	100		ns	
$\mathrm{t}_{\mathrm{H}^{[1,3]}}$	Data-In, CM, SYNC Hold Time	40	20		ns	
$\mathrm{tos}^{[2]}$	Set Time (Reference)	0			ns	
${ }^{\text {t }}$ ACC	Data-Out Access Time Data Lines SYNC CM-ROM CM-RAM			$\begin{aligned} & 930 \\ & 930 \\ & 930 \\ & 930 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	```COUT = 500pF Data Lines 500pF SYNC 160pF CM-ROM 50pF CM-RAM```
t_{OH}	Data-Out Hold Time	50	150		ns	$\mathrm{C}_{\text {OUT }}=20 \mathrm{pF}$
$t_{A 1}{ }^{\text {[4] }}$	ϕ_{1} to Output Delay A_{1}		400	1000	ns	$\mathrm{C}_{L}=250 \mathrm{pF} ; \mathrm{A}_{0} \cdot \mathrm{~A}_{3}$
$t_{\text {TA1 }}{ }^{[4]}$	Data Bus to Output Delay A_{1}		500	700	ns	$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} ; \mathrm{A}_{0}-\mathrm{A}_{3}$
$t_{A 2}{ }^{[4]}$	ϕ_{1} to Output Delay A_{2}		400	580	ns	$C_{L}=250 \mathrm{pF} ; A_{4}-A_{7}$
$t_{\text {TA2 }}{ }^{[4]}$	Data Bus to Output Delay A_{2}		500	700	ns	$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} ; \mathrm{A}_{4}-\mathrm{A}_{7}$
$\mathrm{t}_{\mathrm{CS}}{ }^{[4,5]}$	ϕ_{1} to Chip Select Output Delay A_{3}		150	350	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{t}_{\mathrm{TC}}{ }^{[4,5]}$	Data Bus to Chip Select Output Delay A_{3}		250	350	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
twID	OPR to Data Bus Delay		250	350	ns	$\mathrm{C}_{\text {OUT }}=20 \mathrm{pF}$, Data Bus
${ }^{\text {tsRC }}$	Output Delay at X_{1} Time		400	700	ns	$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$
${ }_{\text {ts }} 1$	IN Strobe Delay Time			500	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
${ }^{\text {t }}$ S 2	OUT Strobe Delay Time, Falling			500	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{t}_{\text {FD }}$	F/L and PM Delay Time		300	500	ns	$C_{L}=100 \mathrm{pF}$
${ }^{\text {tw, }}$ / $/ 0$	I/O Input Write Time	400	250		ns	
$\mathrm{t}_{\mathrm{H}, 1 / \mathrm{O}}$	I/O Input Hold Time	40	0		ns	
${ }^{\text {t }} \mathrm{D}, 1 / \mathrm{O}$	I/O Output Delay Time		400	1000	ns	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$
$t_{\text {WI }}$	Data In Write Time	350			ns	$\mathrm{C}_{\text {OUT }}=200 \mathrm{pF}$, Data Bus

Notes: 1. t_{H} measured with $t_{\phi R}=10 \mathrm{nsec}$.
2. TACC is Data Bus, SYNC and CM-line output access time referred to the ϕ_{2} trailing edge which clocks these lines out. toS is the same output access time referred to the leading edge of the next ϕ_{2} clock pulse.
3. All MCS-40 components which may transmit instruction or data to $4004 / 4040$ at M_{2} and X_{2} always enter a float state until the 4004/4040 takes over the data bus at X_{1} and X_{3} time. Therefore the t_{H} requirement is always insured since each component contributes $10 \mu \mathrm{~A}$ of leakage current and 10 pF of capacitance which guarantees that the data bus cannot change faster than $1 \mathrm{~V} / \mu \mathrm{s}$.
4. $\mathrm{t}_{\mathrm{A}}, \mathrm{t}_{\mathrm{A} 2}, \mathrm{t}_{\mathrm{C}}$ apply if Data Bus is valid before ϕ_{1} trailing edge. $\mathrm{t}_{\mathrm{T}}, \mathrm{t} T \mathrm{C}$ apply if Data Bus becomes valid after ϕ_{1} trailing edge.
5. Measured at output of 3205 decoder.

Figure 6. MCS-40 Timing Detail.

Figure 7. MCS-40 Timing Diagram for 4289.

320 BIT RAM AND 4 BIT OUTPUT PORT

\author{

- Four Registers of 204 Bit Characters
 - Direct Interface to MCS-40™ 4 Bit Bus
 - Output Port Low-Power TTL Compatible
}

The 4002 performs two distinct functions. As a RAM it stores 320 bits arranged in 4 registers of twenty 4 bit characters each (16 main memory characters and 4 status characters). As a vehicle of communication with peripheral devices, it is provided with 4 output lines and associated control logic to perform output operations. The 4002 is a PMOS device and is compatible with all MCS-40 ${ }^{\text {rw }}$ components.
The 4002 is available in two options, the 4002-1 and 4002-2. Along with an external pin connected to either $\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{S S}$, a two bit chip selection address is provided allowing a maximum of 1280 bits of 4002 RAM on a single MCS- 40 CM-RAM line. Thus, the four CM-RAM lines give a maximum of 5120 bits of 4002 RAM in an MCS-40 system.

PIN CONFIGURATION

BLOCK DIAGRAM

Pin Description

Pin No.	Designation	Description of Function
1-4	$\mathrm{D}_{0}-\mathrm{D}_{3}$	Bidirectional data bus. All address, instruction and data communication between processor and the RAM MEMORY or the output port is transmitted on these 4 pins.
5	$\mathrm{V}_{\text {SS }}$	Most positive supply voltage.
6-7	$\phi_{1}-\phi_{2}$	Non-overlapping clock signals which are used to generate the basic chip timing.
8	SYNC	Synchronization input signal driven by SYNC output of processor.
9	RESET	RESET input. A logic negative level ($V_{D D}$) applied to the chip will cause a clear of all output and control static flip-flops and will clear the RAM array. To completely clear the memory, RESET must be applied for at least 32 instruction cycles (256 clock periods) to allow the internal refresh counter to scan the memory. During RESET the data bus output buffers are inhibited (floating condition).

10 Po The chip number for a 4002 is assigned as follows:

SRC ADDRESS (RRR EVEN)

Chip No.	4002 Option	P_{0}	$D_{3} D_{2}$	
0	$4002-1$	$V_{S S}$	0	0
1	$4002-1$	$V_{D D}$	0	1
2	$4002-2$	$V_{S S}$	1	0
3	$4002-2$	$V_{D D}$	1	1

11 CM Command input driven by CM-RAM output of processor. Used for enabling the device during the decoding SRC and instructions.
12 VDD Main power supply pin. Value must be $V_{S S}-15 \mathrm{~V} \pm 5 \%$.
13-16 $\quad O_{3}-0_{0}$

Four bit output port used for transferring data from the CPU to the users system. The outputs are buffered and data remains stable after the port has been loaded. This port can be made low power TTL compatible by placing a 12 K pull-down resistor to $V_{D D}$ on each pin.

Functional Description

The twenty 4 bit characters for each 4002 register are arranged as follows:

1. 16 characters addressable by an SRC instruction. Four 16 character registers constitute the "main" memory.
2. 4 characters addressable by specific RAM instructions. Four 4 character registers constitute the "status character" memory.

The status character location (0 through 3) as well as the operation to be performed on it are selected by the OPA portion of the I/O and RAM instructions.

The RAM Registers Locations, Status Characters, and Output Port are select and accessed with a corresponding RAM Instruction.

There can be up to four RAMS per RAM Bank (CM-RAM). There can be four RAM banks per system without decoding or 8 with decoding.

Bank switching is accomplished by the CPU after receiving a "DCL" (designated command line) instruction. Prior to execution of the DCL instruction the desired CM-RAM code has been stored in the accumulator (for example through an LDM instruction). During DCL the CM-RAM code is transferred from the accumulator to the CM-RAM register. The RAM bank is then selected starting with the next instruction.

If no DCL is executed prior to SRC, the CM-RAM ${ }_{0}$ will automatically be activated at the X_{2} state of the instruction cycle provided that RESET was applied at least once to the system (most likely at the start-up time).

Instruction Execution

An SRC (Send Register Control) instruction is executed to select a RAM and a character within that RAM (for a RAM read or write instruction) prior to the succeeding RAM or I/O instruction's execution.

The eight bits of the register pair addressed by the SRC instruction are interpreted as follows:
a. The first four bits sent out at X_{2} time select one out of four chips and one out of four registers. The two higher order bits ($\mathrm{D}_{3}, \mathrm{D}_{2}$) select the chip and the two lower order bits (D_{1}, D_{0}) select the register.
b. The second 4-bits (X_{3} time) select one 4-bit character out of 16. The address is stored in the address register of the selected chip (second 4 bits are not used for status character reads or writes or for I/O output instructions).

The following RAM and I/O output instructions are executed by the 4002.

1. RDM Read RAM character

The content of the previously selected RAM main memory character is transferred to the accumulator. The 4 bit data in memory is unaffected.
2. RDO-3 Read RAM status characters 0-3

The 4 bits of status characters $0-3$ for the previously selected RAM register are transferred to the accumulator.
3. WRM Write accumulator into RAM character

The accumulator content is written into the previously selected RAM main memory character location.
4. WRO-3 Write accumulator into RAM status characters 0-3
The content of the accumulator is written into the RAM status characters $0-3$ of the previously selected RAM register.
5. WMP Write memory port

The content of the accumulator is transferred to the RAM output port of the previously selected RAM chip. The data is available on the output pins until a new WMP is executed on the same RAM chip. The content of the ACC and the carry/link are unaffected. (The LSB bit of the accumulator appears on O_{0}, Pin 16 of the 4002 .)
6. ADM Add from memory with carry

The content of the previously selected RAM main memory character is added to the accumulator with carry. The RAM character is unaffected.
7. SBM Subtract from memory with borrow

The content of the previously selected RAM character is subtracted from the accumulator with borrow. The RAM character is unaffected.

Timing Considerations

Presence of CM-RAM during X_{2} tells 4002's that an SRC instruction was received. For a given combination of data at X_{2} on D_{2}, D_{3}, only the chip with the proper option and P_{0} state will be ready for the I/O or RAM operation that follows.

When an I/O or RAM instruction is received by the CPU, the CPU will activate one CM-RAM line during M_{2}, in time for the 4002's to receive the OPA (2nd part of the instruction), which will specify the I/O or RAM operation to be performed.

In the I/O mode of operation, the selected 4002 chip (by SRC), after receiving the OPA of an I/O instruction (CM-RAM activated at M_{2}), will decode the instruction.

If the instruction is WMP, the data present on the data bus during $X_{2} \cdot \phi_{2}$ will set the output flip-flops associated with the I/O pins. That information will be available until next WMP for peripheral devices control.

In the RAM mode, the operation is as follows: When the CPU receives an SRC instruction, it will send out the content of the designated index register pair during X_{2} and X_{3} and will activate one CM-RAM line at X_{2} for the previously selected RAM bank.

All RAM mode instructions will be executed during the X_{2} and X_{3}. The instruction decoding is performed during the M_{2} time when the OPA portion of the instruction is decoded. The CM-RAM of the selected Bank is enabled at that time.

Absolute Maximum Ratings*

Ambient Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Voltages and Supply Voltage with respect to Vss	+0.5 V to -20V
Power Dissipation	1.0 Watt

*COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{S S}-V_{D D}=15 \mathrm{~V} \pm 5 \% ; \mathrm{t}_{\phi \mathrm{PW}}=\mathrm{t}_{\phi \mathrm{D} 1}=400 \mathrm{nsec} ; \mathrm{t}_{\phi \mathrm{D} 2}=150 \mathrm{nsec}$. Logic " 0 " is defined as the more positive voltage ($\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}$); Logic " 1 " is defined as the more negative voltage ($\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OL}}$); Unless otherwise specified.

SUPPLY CURRENT

Symbol	Parameter	Limit				
IDD	Average Supply Current	Min.	Typ.	Max.	Unit	Test Conditions

INPUT CHARACTERISTICS

I_{LI}	Input Leakage Current		10	$\mu \mathrm{~A}$
$V_{I H}$	Input High Voltage (Except Clocks)	$V_{I L}=V_{D D}$		
$V_{I L}$	Input Low Voltage (Except Clocks)	$V_{S S}-1.5$	$V_{S S}+.3$	V
$V_{\text {IHC }}$	Input High Voltage Clocks	$V_{D D}$	$V_{S S}-5.5$	V
$V_{\text {ILC }}$	Input Low Voltage Clocks	$V_{D D}$	$V_{S S}+.3$	V

OUTPUT CHARACTERISTICS - ALL OUTPUTS EXCEPT I/O PINS

ILO	Data Bus Output Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=-12 \mathrm{~V}$
V_{OH}	Output High Voltage	$\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$	$V_{S S}$		V	Capacitive Load
lOL	Data Lines Sinking Current	8	15		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$
V_{OL}	Output Low Voltage, Data Bus, CM, SYNC	$\mathrm{V}_{\mathrm{SS}}-12$		$\mathrm{V}_{\text {SS }}$-6.5	V	$\mathrm{I}_{\mathrm{OL}}=0.5 \mathrm{~mA}$
R_{OH}	Output Resistance, Data Line " 0 " Level		150	250	Ω	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$

I/O OUTPUT CHARACTERISTICS

VOH	Output High Voltage	$\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$		V	lout $=0$
R_{OH}	1/O Output "0' Resistance	1.2	2	$k \Omega$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$
l OL	I/O Output "1" Sink Current	2.5 5		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$
$\mathrm{loL}^{[1]}$	I/O Output " 1 " Sink Current	0.8 3		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-4.85 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	I/O Output Low Voltage	$\mathrm{V}_{\text {SS }}-12$	$\mathrm{V}_{\text {SS }}-6.5$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$

CAPACITANCE

C_{ϕ}	Clock Capacitance	8	15	pF	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{SS}}$
C_{DB}	Data Bus Capacitance	7	10	pF	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{SS}}$
C_{IN}	Input Capacitance		10	pF	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{SS}}$
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance		10	pF	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{SS}}$

Note: 1. For TTL compatibility, use $12 \mathrm{k} \Omega$ external resistor to $V_{D D}$.

Typical D.C. Characteristics

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{S S}-\mathrm{V}_{D D}=15 \mathrm{~V} \pm 5 \%$.

| Symbol | Limit
 Typ. | Max. | Unit | Test Conditions |
| :--- | :--- | ---: | ---: | ---: | :--- |
| $t_{C Y}$ | Clock Period | 1.35 | 2.0 | $\mu \mathrm{sec}$ |

Notes: 1. t_{H} measured with $\mathrm{t}_{\phi \mathrm{R}}=10 \mathrm{nsec}$.
2. TACC is Data Bus, SYNC and CM-line output access time referred to the ϕ_{2} trailing edge which clocks these lines out. toS is the same output access time referred to the leading edge of the next ϕ_{2} clock pulse.
3. All MCS-40 components which may transmit instruction or data to $4004 / 4040$ at M_{2} and X_{2} always enter a float state until the $4004 / 4040$ takes over the data bus at X_{1} and X_{3} time. Therefore the t_{H} requirement is always insured since each component contributes $10 \mu \mathrm{~A}$ of leakage current and 10 pF of capacitance which guarantees that the data bus cannot change faster than $1 \mathrm{~V} / \mu \mathrm{s}$.

Figure 1. Timing Diagram.

Figure 2. Timing Detail.

1024 BIT (256 x 4) STATIC MOS RAM WITH SEPARATE I/O

- 256×4 Organization to Meet Needs for Small System Memories

- Access Time: $1 \mu \mathrm{sec}$ Max.
- Single +5V Supply Voltage
- Directly TTL Compatible: All Inputs and Outputs

- Statis MOS: No Clocks or Refreshing Required

- Simple Memory Expansion: Chip Enable Input
- Compatible with the 4289
- Inputs Protected: All Inputs Have Protection Against Static Charge
- Low Cost Packaging: 22 Pin Plastic Dual-In-Line Configuration
- Low Power: Typically 150mW
- Three-State Output: OR-Tie Capability
Output Disable Provided for Ease of Use in Common Data Bus Systems

The Intel ${ }^{\circledR} 4101$ is a 256 word by 4 bit static random access memory element using normally off N -channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data.
The 4101 is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. Two chip-enables allow easy selection of an individual package when outputs are OR-tied. An output disable is provided so that data inputs and outputs can be tied for common I/O systems. Output disable is then used to eliminate any bi-directional logic.
The Intel® 4101 is fabricated with N -channel silicon gate technology. This technology allows the design and production of high performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or P-channel silicon gate technology.

Intel's silicon gate technology also provides excellent protection against contamination. This permits the use of low cost plastic packaging.

PIN CONFIGURATION

LOGIC SYMBOL

PIN NAMES

$D_{\text {IN }}$	DATA INPUT	OD	OUTPUT DISABLE
$A_{0}-A_{7}$	ADDRESS INPUTS	$D_{\text {OUT }}$	DATA OUTPUT
RW	READ WRITE INPUT	$V_{C C}$	POWER (+5 V)
CEI. CE2	CHIP ENABLE		

BLOCK DIAGRAM

Absolute Maximum Ratings*

Ambient Temperature Under Bias \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Voltage On Any Pin With Respect to Ground -0.5 V to +7 V
Power Dissipation . 1 Watt

*COMMENT:

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
I_{LI}	Input Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0$ to 5.25 V
$\mathrm{I}_{\mathrm{LOH}}$	I/O Leakage Current ${ }^{\text {[2] }}$			15	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.0 \mathrm{~V}$
ILOL	I/O Leakage Current ${ }^{\text {[2] }}$			-50	$\mu \mathrm{A}$	$\overline{C E}_{1}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CC} 1}$	Power Supply Current		30	60	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current			70	mA	$\begin{aligned} & \mathrm{V}_{I N}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & T_{A}=0^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input "Low" Voltage	-0.5		+0.65	V	
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	2.2		V_{CC}	V	
V_{OL}	Output "Low" Voltage			+0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
V OH	Output "High" Voltage	2.2			V	$\mathrm{I}_{\mathrm{OH}}=-150 \mu \mathrm{~A}$

Typical D.C. Characteristics

OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE

NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. Input and Output tied together.

A.C. Characteristics

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

WRITE CYCLE

A. C. CONDITIONS OF TEST
Input Pulse Levels: $\quad+0.65$ Volt to 2.2 Volt

Capacitance ${ }^{[2]} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Test	Limits (pF)	
	Typ. ${ }^{[1]}$	Max.	
C_{IN}	Input Capacitance (All Input Pins) $V_{I N}=0 V$	4	8
$\mathrm{C}_{\text {OUT }}$	Output Capacitance $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$	8	12

Waveforms

READ CYCLE

NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. This parameter is periodically sampled and is not 100% tested.
3. tDF is with respect to the trailing edge of $\overline{C E}_{1}, C E_{2}$. or OD, whichever occurs first.

WRITE CYCLE

4. OD should be tied low for separate I/O operation.

4001

256 x 8 MASK PROGRAMMABLE ROM AND 4 BIT I/O PORT

Direct Interface to MCS-40 ${ }^{\text {TM }}$ 4 Bit Data Bus
 I/O Port Low-Power TTL Compatible
 - 16 Pin Dual In-Line Package

- Standard Operating Temperature Range of 0° to $70^{\circ} \mathrm{C}$
- Also Available With -40° to $+85^{\circ} \mathrm{C}$ Operating Range

The 4001 performs two basic and distinct functions. As a ROM it stores 256×8 words of program or data tables; as a vehicle of communication with peripheral devices it is provided with $4 I / O$ pins and associated control logic to perform input and output operations. The 4001 is a PMOS device, compatible with all other MCS-40T4 devices.

PIN CONFIGURATION
BLOCK DIAGRAM

Pin Description

Pin No.	Designation/ Type of Logic	Description of Function
1-4	$\mathrm{D}_{0}-\mathrm{D}_{3} /$ Neg .	Bidirectional data bus. All address and data communication between the processor and ROM is handled by these lines.
5	$V_{S S}$	Most positive supply voltage.
6-7	$\phi 1, \phi 2 /$ Neg.	Non-overlapped clock signals which determine device timing.
8	SYNC/Neg.	System synchronization signal generated by processor.
9	RESET/Neg.	Reset input. A negative level ($V_{D D}$) on this pin will clear internal flip-flops and buffers. The input buffers are not cleared by this signal.
10	CL/Neg.	Clear input for I/O lines. A negative level on this pin will clear the I/O buffers. This pin may be driven by a TTL output and a 1 K pull-up to $\mathrm{V}_{\text {SS }}$.
11	CM-ROM/Neg.	Chip enable generated by the processor.
12	VDD	Main supply voltage value. Must be $\mathrm{V}_{\mathrm{SS}}-15.0 \mathrm{~V} \pm 5 \%$.
13-16	$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{3} /$ Neg .	A single I/O port consisting of 4 bidirectional and selectable lines.

Functional Description

Address and data are transferred in and out by time multiplexing on 4 data bus lines. Timing is internally generated using two clock signals, ϕ_{1} and ϕ_{2}, and a SYNC signal supplied by the CPU. Addresses are received from the CPU on three time periods following SYNC, and select 1 out of 256 words and 1 out of 16 ROM's. For that purpose, each ROM is identified as $\# 0,1,2$, through 15 , by metal option. A Command ROM Line (CM-ROM) is also provided and it is used to select a ROM bank (group of 16 ROM's).

During the two time periods of the instruction cycle (M_{1} \& M_{2}) following the addressing time, information is transferred from the ROM to the data bus lines.

A second mode of operation of the ROM is as an Input/ Output control device. In that mode a ROM chip will route information to and from data bus lines in and out of $4 \mathrm{I} / \mathrm{O}$ external lines. Each chip has the capability to identify itself for an I/O port operation, recognize an I/O port instruction and decide whether it is an Input or an Output operation and execute the instruction. An external signal (CL) will asynchronously clear the output register during normal operation.

All internal flip flops (including the output register) will be reset when the RESET line goes low ($V_{D D}$).

I/O Options

Each I/O pin on each ROM can be uniquely chosen to be either an input or output line by metal option. Also each input or output can either be inverted or direct. When the pin is chosen as an input it may have an on-chip resistor connected to either V_{DD} or $\mathrm{V}_{S S}$.

Instruction Execution

The 4001 responds to the following instructions.

1. SRC Instruction (Send address to ROM and RAM)

When the CPU executes an SRC instruction it will send out 8 bits of data during X_{2} and X_{3} and will activate the CM-ROM and one CM-RAM line at X_{2}. Data at X_{2}, (representing the contents of the first register of the register pair addressed by the SRC instruction) with simultaneous presence of CM-ROM, is interpreted by the 4001 as the chip number of the unit that should later perform an I/O operation. Data at X_{3} is ignored.

2. WRR - Write ROM Port

The content of the accumulator is transferred to the ROM output port of the previously selected ROM chip. The data is available on the output pins until a new WRR is executed on the same chip. The ACC content and carry/link are unaffected. (The LSB bit of the accumulator appears on $\mathrm{I} / \mathrm{O}_{0}$.) No operation is performed on I/O lines coded as inputs.

3. RDR - Read ROM Port

The data present at the input lines of the previously selected ROM chip is transferred to the accumulator.
If the I/O option has both inputs and outputs within the same 4 I/O lines, the user can choose to have either " 0 " or " 1 " transferred to the accumulator for those I/O pins coded as outputs, when an RDR instruction is executed. For example, given a port with the I/O lines coded with 2 inputs and 2 outputs, when RDR is executed, the transfer is as shown below:

(ACC)

Timing Consideration

In the ROM mode of operation the 4001 will receive an 8 bit address during A_{1} and A_{2} times of the instruction cycle and a chip number, together with CM-ROM, during A_{3} time. When CM-ROM is present, only the chip whose metal option code matches the chip number code sent during A_{3} is allowed to send data out during the following two cycles: M_{1} and M_{2}. The activity of the 4001 in the ROM mode ends at M_{2}.

The 4001 can have a chip number via the metal option from 0-15.

In the I/O mode of operation, the selected 4001 (by SRC), after receiving RDR will transfer the information present at its I/O pins to the data bus at X_{2}. If the instruction received was WRR, the data present on the data bus at $X_{2} \cdot \phi_{2}$ will be latched on the output flip-flops associated with the I/O lines.

Ordering Information

When ordering a 4001, the following information must be specified:

1. Chip number
2. All the metal options for each I / O pin.
3. ROM pattern to be stored in each of the 256 locations.
A blank customer truth table is available upon request from Intel. A copy of this table is shown and blank copy can be found following the detailed 4001 characteristics.
EXAMPLES - DESIRED OPTION/CONNECTIONS RE-
QUIRED
4. Non-inverting output (negative logic output) - 1 and 3 are connected.
5. Inverting output (positive logic output) - 1 and 4 are connected.
6. Non-inverting input (no input resistor - negative logic input) - only 5 is connected.
7. Inverting input (input resistor to V_{SS} - positive logic input) $-2,6,7$, and 9 are connected.
8. Non-inverting input (input resistor to $V_{D D}$ - negative logic input) - 2, 7, 8, and 10 are connected.
9. If inputs and outputs are mixed on the same port, the pins used as the outputs must have the internal resistor connected to either VDD or VSS (8 and 9 or 8 and 10 must be connected). This is necessary for testing purposes. For example, if there are two inverting inputs (with no input resistor) and 2 non-inverting outputs the
connection would be made as follows:
Inputs - 2 and 6 are connected
Outputs -1,3,8 and 9 are connected or
$1,3,8$ and 10 are connected
If the pins on a port are all inputs or all outputs, the internal resistors do not have to be connected.

It should be noted that all internal logic and processing is performed in negative logic, i.e., " 1 " equals $V_{D D}$ and " 0 " equals VSS. For positive logic conversion, the inverted options should be selected.

TTL compatibility is obtained by $V_{D D}=-10 \mathrm{~V} \pm 5 \%$ and $V_{S S}=5 \mathrm{~V} \pm 5 \%$. An external 12 K resistor should be used on all outputs to insure the logic " 0 " state (V_{OL}).

4001 Available Metal Option for Each I/O Pin.

Absolute Maximum Ratings*

```
Ambient Temperature Under Bias ................. 0}
Storage Temperature ........................... - 55 % C to + 125*' C
Input Voltages and Supply Voltage
    with respect to Vss ........................................ V to -20V
```


*COMMENT:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{S S}-\mathrm{V}_{D D}=15 \mathrm{~V} \pm 5 \% ; \mathrm{t}_{\phi \mathrm{PW}}=\mathrm{t}_{\phi \mathrm{D} 1}=400 \mathrm{nsec} ; \mathrm{t}_{\phi \mathrm{D} 2}=150 \mathrm{nsec}$; Logic " 0 " is defined as the more positive voltage ($\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}$); Logic " 1 " is defined as the more negative voltage ($\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OL}}$); Unless Otherwise Specified.

SUPPLY CURRENT

Symbol	Parameter	Min.	Limit Typ.	Max.	Unit	Test Conditions
IDD	Average Supply Current		15	30	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
INPUT CHARACTERISTICS - ALL INPUTS EXCEPT I/O PINS						
I_{LI}	Input Leakage Current			10	$\mu \mathrm{A}$	$V_{\text {IL }}=V_{\text {DD }}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage (Except Clocks)	$\mathrm{V}_{\text {SS }}$-1.5		$\mathrm{V}_{\text {SS }}+.3$	V	
$V_{\text {IL }}$	Input Low Voltage (Except Clocks)	$V_{\text {DD }}$		$\mathrm{V}_{\text {SS }}-5.5$	V	
VIHC	Input High Voltage Clocks	$\mathrm{V}_{\text {SS }}-1.5$		$\mathrm{V}_{\text {SS }}+.3$	V	
VILC	Input Low Voltage Clocks	$V_{D D}$		$\mathrm{V}_{\text {SS }}$-13.4	V	
OUTPUT CHARACTERISTICS - ALL OUTPUTS EXCEPT I/O PINS						

I_{LO}	Data Bus Output Leakage Current		10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=-12 \mathrm{~V}$	
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{V}_{\mathrm{SS}}-.5 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{SS}}$		V	Capacitive Load
I_{OL}	Data Lines Sinking Current	8	15		mA	$\mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}}$
V_{OL}	Output Low Voltage, Data Bus, CM, SYNC	$\mathrm{V}_{\mathrm{SS}}-12$		$\mathrm{~V}_{\mathrm{SS}}-6.5$	V	$\mathrm{I}_{\mathrm{OL}}=0.5 \mathrm{~mA}$
R_{OH}	Output Resistance, Data Line "O" Level		150	250	Ω	$\mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}}-.5 \mathrm{~V}$

I/O INPUT CHARACTERISTICS

$I_{\text {LI }}$	Input Leakage Current	10			$\mu \mathrm{A}$	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	$\mathrm{V}_{\text {SS }} 1.5$		$\mathrm{V}_{\mathrm{ss}}+.3$	V	
$V_{\text {IL }}$	Input Low Voltage, Inverting Input	$V_{\text {DD }}$		$V_{S S}-4.2$	V	
$V_{\text {IL }}$	Input Low Voltage, Non-inverting Input	$V_{D D}$		$\mathrm{V}_{\text {Ss }}-6.5$	V	
$\mathrm{V}_{\text {IL }}$	CL Input Low Voltage	$V_{D D}$		$\mathrm{V}_{\text {SS }}-4.2$	V	
R_{1}	Input Resistance, if Used	10	18	35	k Ω	R_{1} tied to V_{SS}; $V_{I N}=V_{S S}-3 V$
$\mathrm{R}_{1}{ }^{[1]}$	Input Resistance, if Used	15	25	40	$k \Omega$	R_{1} tied to V_{DD}; $V_{I N}=V_{S S}-3 V$

I/O OUTPUT CHARACTERISTICS

V_{OH}	Output High Voltage	$\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$		V	IOUT $=0$
R_{OH}	I/O Output "0" Resistance	1.2	2	k Ω	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$
IOL	1/O Output "1" Sink Current	2.55		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$
$\mathrm{IOL}^{[2]}$	1/O Output "1" Sink Current	0.8 3		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-4.85 \mathrm{~V}$
V_{OL}	I/O Output Low Voltage	$\mathrm{V}_{S S}-12$	$\mathrm{V}_{\text {SS }}-6.5$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$

CAPACITANCE

C_{ϕ}	Clock Capacitance	8	15	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$
C_{DB}	Data Bus Capacitance	9.5	15	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$
C_{IN}	Input Capacitance		10	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	10	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	

Notes: 1. R_{1} is large signal equivalent resistance to $\left(\mathrm{V}_{\mathrm{SS}^{-1}}\right) \mathrm{V}$.
2. For TTL compatibility, use $12 k \Omega$ external resistor to $V_{D D}$.

Typical D.C. Characteristics

OUTPUT CURRENT VS. OUTPUT VOLTAGE

A.C. Characteristics $\quad T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Limit Typ.	Max.	Unit	Conditions
$\mathrm{t}_{\mathrm{C}} \mathrm{Y}$	Clock Period	1.35		2.0	$\mu \mathrm{sec}$	
t ϕ_{R}	Clock Rise Time			50	ns	
$\mathrm{t} \phi_{\mathrm{F}}$	Clock Fall Times			50	ns	
$t \phi_{\text {PW }}$	Clock Width	380		480	ns	
$t \phi_{\text {D } 1}$	Clock Delay ϕ_{1} to ϕ_{2}	400		550	ns	
$t \phi_{\text {D2 }}$	Clock Delay ϕ_{2} to ϕ_{1}	150			ns	
${ }_{\text {t }}$ W	Data-In, CM, SYNC Write Time	350	100		ns	
$\mathrm{t}_{\mathrm{H}}{ }^{[1,3]}$	Data-In, CM, SYNC Hold Time	40	20		ns	
$\mathrm{tos}^{[2]}$	Set Time (Reference)	0			ns	
${ }^{\text {t }}$ ACC	Data-Out Access Time Data Lines SYNC CM-ROM CM-RAM			$\begin{aligned} & 930 \\ & 930 \\ & 930 \\ & 930 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	CoUT $=$ 500pF Data Lines 500pF SYNC 160pF CM-ROM 50pF CM-RAM
${ }^{\text {toH }}$	Data-Out Hold Time	50	150		ns	$\mathrm{C}_{\text {OUT }}=20 \mathrm{pF}$
$\mathrm{t}_{\text {IS }}$	I/O Input Set-Time	50			ns	
$t_{1 H}$	I/O Input Hold-Time	100			ns	
${ }^{\text {D }}$	I/O Output Delay			1500	ns	$\mathrm{C}_{\text {OUT }}=100 \mathrm{pF}$
$\mathrm{t}^{\text {c }}$ [4]	I/O Output Lines Delay on Clear			1500	ns	$\mathrm{C}_{\text {OUT }}=100 \mathrm{pF}$

Notes: 1. t_{H} measured with $t_{\phi R}=10 \mathrm{nsec}$.
2. TACC is Data Bus, SYNC and CM-line output access time referred to the ϕ_{2} trailing edge which clocks these lines out. toS is the same output access time referred to the leading edge of the next ϕ_{2} clock pulse.
3. All MCS-40 components which may transmit instruction or data to $4004 / 4040$ at M_{2} and X_{2} always enter a float state until the 4004/4040 takes over the data bus at X_{1} and X_{3} time. Therefore the t_{H} requirement is always insured since each component contributes $10 \mu \mathrm{~A}$ of leakage current and 10 pF of capacitance which guarantees that the data bus cannot change faster than $1 \mathrm{~V} / \mu \mathrm{s}$.
4. CL on the 4001 is used to asynchronously clear the output flip-flops associated with the I / O lines.

Figure 1. Timing Diagram

Figure 2. Timing Detail

Programming Instructions

To insure optimum handling of ROM programs and avoid delays, programs should be specified in the following format.

Paper Tape Format*

A $1^{\prime \prime}$ wide paper tape using 8 bit ASCII code, such as a model 33ASR teletype produces:
A. Preamble

1. Preceding the first word field and following the last word field, there should be a leader/trailer length of at least 25 characters. This should consist of rubout punches.
2. Included in the tape before the leader, and preceded by another leader, should be the customer's complete telex or twx number and if more than one pattern is being transmitted, the ROM pattern number.
3. The first ROM pattern preamble field is the device type number or ROM number. The field should be framed by an " 1 " and "-"
14001-

This should be followed by the chip select information encoded in decimal (two digits), and enclosed by " C " and ' S ", as in
"ChhS"
The valid select digits for the 4001 are $0-15$

"COS" - "C15S"

Finally, the I/O options would be specified on a port-by-port basis with the connections to be made separated by commas, and enclosed in parentheses:
"(n1, n2, n3 . . .)".
where ($\mathrm{n} 1, \mathrm{n} 2 \ldots$) are the option numbers associated with one I/O line. Hence, for a 4001 there will be four bracketed collections of I/O options.

Each I/O pin has a series of 10 possible connections. These connections are consecutively numbered from 1-10. It is these numbers that should be in parentheses for each I/O pin.

Example: "()" indicates no connection
"(1)" indicates only \#1
" $(2,5,7)$ " indicates connections \#2, 5 and 7.

I/O options should be placed on the tape sequentially for the 4001 from I/O0-I/O3(4). Always avoid illegal combinations.
*NOTE: Cards may also be submitted.

B. ROM Code

The format requirements are as follows:

1. All word fields are to be punched in consecutive order, starting with word field 0 (all addresses low). There must be exactly N word fields for the $N \times 8$ ROM organization.
2. Each word field must begin with the start character B and end with the stop character F. There must be exactly 8 data characters between the B and F . Within the word field, a P results in a high level output ($V_{S S}$ or logic 0 for MCS-40 CPUs) and a N results in a low level output ($V_{D D}$ or logic 1 for MCS-40 CPUs).

Example of 256×8 format ($\mathrm{N}=256$):
Starl Character

3. Between word fields, comments not containing B's or F's may be inserted. Carriage return and line feed characters should be inserted (as a "comment") just before each word field (or at least between every four word fields). When these carriage returns, etc., are inserted, the tape may be easily listed on the teletype for purposes of error checking. It may be helpful to insert the word number (as a comment) at least every four word fields.
4. Within the ROM pattern words a character, " X ", may be used. Where " P " and " N " indicate a " 0 " and " 1 " setting respectively, an " X " will indicate a single bit - "Don't Care" setting. This allows the optimum default bit values to be selected by Intel. The bit value will be fixed to allow for testing. The values will be specified to the user on the Verification Listing tape.
In the place of a standard BPNF word, a "B* n " word may be used. This indicates that the data in the last BPNF word encountered is to be repeated for the next n words ($1 \leq n \leq 1023$). Note that if a repeat count of 4 is given in word position 10, then words $10,11,12$, and 13 will be repeats of word 9 (except for Don't Care bits which might conceivably have different assigned values).
To indicate that an entire block (such as the remainder of a ROM) is not used (i.e., Don't Care), a word of Don't Care data can be followed by the remaining word count in a repeat count form.

All custom 4001 ROM orders must be submitted on this form. Programming information should be sent in the form of computer punched cards or punched paper tape per the formats designated on this order form. Additional forms are available from Intel.

MARKING

The marking as shown at the right must contain the Intel logo, the product type (P4001), the 4 -digit Intel pattern number (PPPP), a date code (XXXX), and the 2-digit chip number (DD). An optional customer identification number may be substituted for the chip number (ZZ). Optional Customer Number (maximum 6 characters or spaces).
\qquad

MASK OPTION SPECIFICATIONS

A. CHIP NUMBER

\qquad
(Must be specified-any number from 0 through 15-DD).
B. I/O OPTION - Specify the connection numbers for each I/O pin (next page). Examples of some of the possible I/O options are shown below:

EXAMPLES - DESIRED OPTION/CON. NECTIONS REQUIRED

1. Non-inverting output - 1 and 3 are connected.
2. Inverting output - 1 and 4 are connected.
3. Non-inverting input (no input resistor) - only 5 is connected.
4. Inverting input (input resistor to V_{SS}) - 2, 6, 7, and 9 are connected.
5. Non-inverting input linput resistor to $V_{D D}$ - 2, 7, 8, and 10 are connected.
6. If inputs and outputs are mixed on the same port, the pins used as the outputs must have the internal resistor connected to either $V_{D D}$ or $V_{\text {SS }} 18$ and 9 or 8 and 10 must be connected). This is necessary for testing purposes. For example, if there are two inverting inputs (with no input resistor) and two non-inverting outputs, the connection would be made as follows:

Inputs - 2 and 6 are connected Outputs - 1, 3, 8, and 9 are connected or
1, 3, 8, and 10 are connected
If the pins on a port are all inputs or all outputs, the internal resistors do not have to be connected.
C. 4001 CUSTOM ROM PATTERN Programming information should be sent in the form of computer punched cards or punched paper tape. In either case, a printout of the truth table must accompany the order. Based on the particular customer pattern, the characters should be written as a " P " for a high level output $=\mathrm{V}_{\mathrm{SS}}$ (negative logic " 0 ") or an " N " for a low level output $=V_{D D}$ (negative logic " 1 ").

Note that:

NOP = BPPPP PPPPF $=00000000$

4001 //O Options

I/O (PIN 16)

CONNECTIONS DESIRED (LIST NUMBERS \& CIRCLE CONNECTIONS ON SCHEMATIC) \qquad
a. For $T^{2} L$ compatibility on the I/O lines the supply voltages should be $V_{D D}=-10 \mathrm{~V} \pm 5 \%, \quad V_{S S}=+5 \mathrm{~V} \pm 5 \%$
b. If non-inverting input option is used, $V_{I L}=-6.5$ Volts maximum (not TTL).

$1 / O_{2}$ (PIN 14)
CONNECTIONS DESIRED (LIST NUMBERS \& CIRCLE CONNECTIONS ON SCHEMATIC) \qquad
a. For $T^{2} L$ compatibility on the I / O lines the supply voltages should be
$V_{D D}=-10 \mathrm{~V} \pm 5 \% . V_{S S}=+5 \mathrm{~V} \pm 5 \%$
b. If non-inverting input option is used, $V_{1 L}=-6.5$ Volts maximum (not TTL)

I/O (PIN 15)

CONNECTIONS DESIRED (LIST NUMBERS \& CIRCLE CONNECTIONS ON SCHEMATIC) \qquad
a. For $T^{2} L$ compatibility on the $1 / O$ lines the supply voltages should be $V_{D D}=-10 \mathrm{~V} \pm 5 \% . V_{S S}=+5 \mathrm{~V} \pm 5 \%$
b. If non inverting input option is used, $V_{1 L}=-6.5$ Volts maximum (not TTL).

I/O (PIN 13)

CONNECTIONS DESIRED (LIST NUMBERS \& CIRCLE CONNECTIONS ON SCHEMATIC) \qquad
a. For $T^{2} L$ compatibility on the $I^{\prime} O$ lines the supply voltages should be
$V_{D D}=-10 \mathrm{~V} \cdot 5 \% . \quad V_{S S}=+5 \mathrm{~V}+5 \%$
b. If non inverting input option is used, $V_{I L}=-6.5 \mathrm{Volts}$ maximum (not TTL).

4308

1024×8 MASK PROGRAMMABLE ROM AND FOUR 4-BIT I/O PORTS

- Direct Interface to MCS-40™ 4-Bit Data Bus
- Equivalent to Four 4001 ROMs
- Four Independent 4-Bit I/O Ports
- Input I/O Buffer Storage with an Optional Strobe
- I/O Ports Low-Power TTL Compatible
- 28 Pin Dual In-Line Package
- Standard Operating Temperature Range of 0° to $70^{\circ} \mathrm{C}$
- Also Available With -40ㅇ to $+85^{\circ} \mathrm{C}$ Operating Range

The 4308 is a 1024×8 bit word ROM memory with four I/O ports. It is designed for the MCS-40w system and is operationally compatible with all existing MCS-40 elements. The 4308 is functionally identical to four 4001 chips. The 4308 has 16 I/O lines arranged in four groups of four lines.

PIN CONFIGURATION

Pin Description

Pin No.	Designation/ Type of Logic	Description of Function
1	$\mathrm{V}_{\text {SS }}$	Most positive supply voltage.
2-5	$\mathrm{I} / 01_{3}-\mathrm{I} / \mathrm{O} 1_{0} /$ Neg.	Four I/O ports consisting of 4
14-17	$\mathrm{I} / \mathrm{O2}_{3} \mathrm{I} / \mathrm{O} 2_{0} / \mathrm{Neg}$.	bidirectional and selectable
18-21	$\mathrm{I} / \mathrm{OH}_{3}-1 / \mathrm{OH}_{0} / \mathrm{Neg}$.	lines.
24-27	$1 / \mathrm{OO}_{3}-1 / \mathrm{OO}_{0} / \mathrm{Neg}$.	
6-9	$\mathrm{D}_{0}-\mathrm{D}_{3} / \mathrm{Neg}$.	Bi-directional data bus. All information between processor and device is transmitted to these four pins.
10, 23	$\phi 1, \phi 2 /$ Neg.	Non-overlapped clock signals which determine device timing.
11	SYNC/Neg.	System synchronization signal generated by processor.
12	CM-ROM/Neg.	Chip enable generated by the processor.
13	RESET/Neg.	Reset input. A negative level ($V_{D D}$) on this pin will clear internal flip-flops and buffers. The input buffers are not cleared by this signal.
22	CLR/LD/Neg.	Clear/Load input. This pin is a dual function pin. It may be selected as a common Clear for those pins selected as output pins or as a Load for those pins selected as input pins. This pin should be designated for one purpose only per 4308, either Clear or Load.

As a Load, a positive $\left(\mathrm{V}_{\mathrm{SS}}\right)$ to negative (V_{DD}) transition will cause the I/O data to be placed in the input latch. A negative to positive transition will cause the data to be latched. The I/O pin state may be altered without changing the contents of the latch when the line is positive.

As a Clear, a negative level ($V_{D D}$) on this line will cause the designated output latches to clear and remain cleared until a positive level (V_{SS}) is placed on the line. This line may be driven by a TTL output with a 1 K pullup resistor to $V_{\text {SS }}$.

Main supply voltage. Value must be $\mathrm{V}_{\mathrm{SS}}-15 \mathrm{~V} \pm 5 \%$.

Functional Description

The 4308 ROM program memory is arrayed 1024×8 bit words. For the program memory mode of operation, the A1 -A3 time periods of the instruction cycle are used to address the ROM contents. The 4308 decodes the first ten bits of the address to select 1 out of the 1024 words, 8 bits wide. The remaining two bits select a particular 4308, which has one of four possible metal option chip select addresses. Instruction information is available in two 4-bit segments during M_{1} and M_{2} time periods. A 4004 system can accommodate up to four 4308's while a 4040 system can utilize up to eight devices.

A second mode of operation of the ROM is as an Input/ Output control device. In that mode a ROM chip will route information to and from data bus lines in and out of $41 / \mathrm{O}$ external lines. Each chip has the capability to identify itself for an I/O port operation, recognize an I/O port instruction and decide whether it is an Input or an Output operation and execute the instruction.

All internal flip flops (including the output register) will be reset when the RESET line goes low (negative voltage).

Each of the four I/O ports of a 4308 are program selectable. Each of the four lines can be specified as either inputs or outputs via a metal mask option. A complete description of the I/O option capabilities are given below. The 4308 has an input storage buffer for utilization with those I/O pins designated as inputs. A common strobe line (CLR/LD line) allows the asynchronous loading of data from the I/O lines. The same CLR/LD strobe line can also serve as a clear to the I/O output port buffers when designated. This CLR/LD line is common to all ports on a 4308 and when toggled, will effect those I/O lines connected by the metal mask option. For an input line, if the CLR/LD strobe line is left unconnected, or if it is pulled to ($V_{D D}$), then the output of the buffer will follow the input.

NOTE: Since the 4308 is compatible with all components of the MCS-40 system, 4308 and 4001 can be mixed on one memory bank as long as the chip select addresses are mutually exclusive.

The following table shows the chip number relationship between 4308 and 4001.

| 4308 | | | 4001 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Page No. | Chip No. | | Page No. | Chip No. |
| $0-3$ | (0) | | $0-15$ | $0-15$ |
| $4-7$ | (1) | | | |
| $8-11$ | (2) | | | |
| $12-15$ | (3) | | | |

INSTRUCTION EXECUTION

The 4308 responds to the following instructions.

1. SRC Instruction (Send address to ROM and RAM)

When the CPU executes an SRC instruction it will send out 8 bits of data during X_{2} and X_{3} and will activate the CM-ROM and one CM-RAM line at X_{2}. Data at X_{2} (representing the contents of the first register of the register pair addressed by the SRC instruction), with simultaneous presence of CM-ROM, is interpreted by the 4308 as the chip number of the unit that should later perform an I/O operation. Data at X_{3} is ignored. After an SRC only one CM-ROM and CM-RAM device will be selected.
2. WRR - Write ROM Port

The content of the accumulator is transferred to the ROM output port of the previously selected ROM chip. The data is available on the output pins until a new WRR is executed on the same chip. The ACC content and carry/link are unaffected. (The LSB bit of the accumulator appears on $\mathrm{I} / \mathrm{O}_{0}$.) No operation is performed on I/O lines coded as inputs.

3. RDR - Read ROM Port

The data present at the input lines of the previously selected ROM chip is transferred to the accumulator.
If the I/O option has both inputs and outputs within the same 4 I/O lines, the user can choose to have either " 0 " or " 1 " transferred to the accumulator for those I/O pins coded as outputs, when an RDR instruction is executed. For example, given a port with the I/O lines coded with 2 inputs and 2 outputs, when RDR is executed the transfer is as shown below:

Timing Considerations

At the beginning of each instruction sequence, a SYNC pulse is generated externally to synchronize the processor with the various components of the system. This pulse, along with the clock inputs ϕ_{1} and ϕ_{2}, is used in the 4308 as an input to a timing register.

During time A_{1}, A_{2}, and A_{3}, the address is sequentially accepted from the data bus and decoded. During time A_{3}, the CM-ROM line will be active, and if the 2 highest order bits of the address sent at A_{3} match the metal preprogrammed chip select option, the ROM will respond to the current address.

At time M_{1} and M_{2}, the instruction OPR, OPA will be placed on the data bus for the processor.

After the SRC or Send Register Control instruction, which is used to designate a set of $4 \mathrm{I} / \mathrm{O}$ lines (1 port) on a particular ROM which are to be used for subsequent ROM I/O opera-
tions, is executed by the processor, the processor sends a 4 bit code to the ROM during X_{2}, and CM-ROM goes to a " 1 " ($V_{D D}$). The first two bits $\left(D_{3}, D_{2}\right)$ of this code select a group of 1 out of 4 possible 4308, and the last two bits select a particular port (1 of 4 ports). This port remains selected until the next SRC instruction is executed.

In both the RDR and WRR operations, the CM-ROM line will become active during time M_{2}, and if the ROM has a previously selected I/O port, it will respond to the I/O in two ways. For a WRR accumulator, data will be transferred to an internal ROM selected output port flip-flops during X_{2}. Data will be available on the I/O line from time $X_{3} \cdot \overline{\phi_{2}}$. The data will remain on the bus until a new WRR occurs, a reset occurs, or a clear (CLR/LD line) is generated. The RDR instruction will transfer information from the input port flip-flops of a previously selected port. Prior to RDR instruction, the user should insure that the input flip-flops have been loaded via the CLR/LD strobe if the load strobe is specified. If the load strobe is not specified, information on the input lines will be loaded into the accumulator at the time of the RDR.

I/O OPTIONS

The 4308 offers the following options on its I/O pins:

1. Input or output.
2. Inverted or direct (for input and output).
3. On-chip resistor connected to either $V_{S S}$ or $V_{D D}$ for input pins.
4. Asynchronous loading of input buffers via the CLR/LD signal.
5. Clear signal for any or all output ports via the CLR/LD signal.

Referring to the block diagram of the single I/O pin shown below which illustrates the various options available on a 4308 , it should be noted that certain pin combinations are mutually exclusive and should not be specified together. There are also certain invalid combinations. The following combinations should be avoided:

8,9
5,6
3,4
10,11 - Both on a single pin and within a single 4308.
Examples of some common desired option/connections are:
a. 1/O pin inputs*
non-inverting $\quad 11,2,5,7,9$ (TTL) $-2,5,7,8$
inverting $\quad 11,2,6,7,9$ (TTL) $-2,6,7,8$
b. I/O pin outputs
non-inverting inverting
3, 1 (10 optional)
4, 1 (10 optional)

Other combinations exist and should be used with caution.
*Option 11 need not be specified if an unbuffered input is desired. This is equivalent to a 4001 input.

NOTE: The 4308 has the following enhancements over the 4001 as far as I/O options are concerned:

1. The capability of clearing any or all outputs with the CLR/LD signal.
2. TTL compatibility of both the inverting and noninverting input paths for input ports.
3. The capability to select the LD option and have the input buffer become an input flip-flop and to have the CLR/LD signal become an asynchronous clock for loading data.

For TTL compatibility on the I/O lines, the supply voltage should be $V_{D D}=-10 \mathrm{~V} \pm 5 \%, V_{S S}=+5 \mathrm{~V} \pm 5 \%$. External pullup is required for outputs.

Figure 1. $4308 \mathrm{I} / \mathrm{O}$ Pin Options.

Absolute Maximum Ratings*

*COMMENT.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{S S}-V_{D D}=15 \mathrm{~V} \pm 5 \% ; \mathrm{t}_{\phi} \mathrm{PW}=\mathrm{t}_{\phi \mathrm{D} 1}=400 \mathrm{nsec} ; \mathrm{t}_{\phi \mathrm{D} 2}=150 \mathrm{nsec}$; Logic " 0 " is defined as the more positive voltage ($\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}$); Logic " 1 " is defined as the more negative voltage ($\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OL}}$); Unless Otherwise Specified.
SUPPLY CURRENT

Symbol	Parameter	Min.	Limit Typ.	Max.	Unit	Test Conditions
IDD	Average Supply Current		20	40	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
INPUT CHARACTERISTICS (ALL INPUTS EXCEPT I/O PINS)						
$I_{\text {LI }}$	Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\mathrm{DD}}$
V_{IH}	Input High Voltage (Except Clocks)	$\mathrm{V}_{\text {SS }}-1.5$		$\mathrm{V}_{\text {SS }}+.3$	V	
$V_{\text {IL }}$	Input Low Voltage (Except Clocks)	$V_{D D}$		$V_{S S}-5.5$	V	
$V_{\text {ILO }}$	Input Low Voltage	$V_{\text {DD }}$		$\mathrm{V}_{\text {SS }}-4.2$	V	CLR/LD pin
$\mathrm{V}_{\text {IHC }}$	Input High Voltage Clocks	$\mathrm{V}_{\text {SS }} 1.5$		$\mathrm{V}_{\text {SS }}+.3$	V	
VILC	Input Low Voltage Clocks	$V_{D D}$		$\mathrm{V}_{\text {SS }}$-13.4	V	

OUTPUT CHARACTERISTICS - ALL OUTPUTS EXCEPT I/O PINS

ILO	Data Bus Output Leakage Current	10			$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=-12 \mathrm{~V}$
V_{OH}	Output High Voltage	$\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$	$\mathrm{V}_{\text {SS }}$		V	Capacitive Load
$\mathrm{IOL}^{\text {l }}$	Data Lines Sinking Current	8	15		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$
VOL	Output Low Voltage, Data Bus, CM, SYNC	$\mathrm{V}_{\text {SS }}-12$		$\mathrm{V}_{\text {SS }}-6.5$	V	$\mathrm{I}_{\mathrm{OL}}=0.5 \mathrm{~mA}$
R_{OH}	Output Resistance, Data Line " 0 ' Level		200	300	Ω	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-.5 \mathrm{~V}$

I/O INPUT CHARACTERISTICS

I_{LI}	Input Leakage Current		10	$\mu \mathrm{~A}$	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}-1.5$	$\mathrm{~V}_{\mathrm{SS}}+3$	V	
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	V_{DD}	$\mathrm{V}_{\mathrm{SS}}-4.2$	V	
$\mathrm{~V}_{\mathrm{IL}}$	CLR/LD Input Low Voltage	V_{DD}	$\mathrm{V}_{\mathrm{SS}}-4.2$	V	
R_{I}	Input Resistance, if Used	10	18	35	$\mathrm{k} \Omega$
$R_{1}[1]$	Input Resistance, if Used			R_{I} tied to $V_{S S} ;$ $V_{I N}=V_{S S}-3 \mathrm{~V}$	

I/O OUTPUT CHARACTERISTICS

V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{SS}}-.5 \mathrm{~V}$	V	$\mathrm{I}_{\mathrm{OUT}}=0$	
R_{OH}	I/O Output " $0^{\prime \prime}$ Resistance		1.2	2	$\mathrm{k} \Omega$
I_{OL}	I/O Output " 1 " Sink Current	2.5	5	$\mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}}-.5 \mathrm{~V}$	
$\mathrm{I}_{\mathrm{OL}}{ }^{[2]}$	I/O Output "1" Sink Current	0.8	3	mA	$\mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}}-.5 \mathrm{~V}$
I_{CF}	I/O Output "1" Clamp Current		mA	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}}-4.85 \mathrm{~V}$	
$\mathrm{~V}_{\mathrm{OL}}$	I/O Output Low Voltage		mA	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}}-6 \mathrm{~V} ;$ $T_{\mathrm{A}}=70^{\circ} \mathrm{C}$	

Notes: 1. R_{I} is large signal equivalent resistance to $\left(\mathrm{V}_{\mathrm{SS}}-12\right) \mathrm{V}$.
2. For TTL compatability, use $12 \mathrm{k} \Omega$ external resistor to $V_{D D}$.

D.C. and Operating Characteristics

CAPACITANCE

Symbol	Parameter	Limit Min. Typ.	Max.	Unit	Test Conditions
C_{ϕ}	Clock Capacitance	14	20	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
C_{DB}	Data Bus Capacitance	7	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$
$\mathrm{Cin}^{\text {N }}$	Input Capacitance		10	pF	$V_{\text {IN }}=V_{S S}$
Cout	Output Capacitance		10	pF	$V_{\text {IN }}=V_{\text {SS }}$

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Limit Typ.	Max.	Unit	Test Conditions
${ }^{\text {t }} \mathrm{C}$	Clock Period	1.35		2.0	$\mu \mathrm{sec}$	
$t \phi_{\mathrm{R}}$	Clock Rise Time			50	ns	
$t \phi_{F}$	Clock Fall Time			50	ns	
t $\phi_{\text {PW }}$	Clock Width	380		480	ns	
t $\phi_{\text {D } 1}$	Clock Delay ϕ_{1} to ϕ_{2}	400		550	ns	
$\mathrm{t} \phi_{\mathrm{D} 2}$	Clock Delay ϕ_{2} to ϕ_{1}	150			ns	
${ }^{\text {W }}$ W	Data-In, CM, SYNC Write Time	350	100		ns	
$\mathrm{t}_{\mathrm{H}}[1,3]$	Data-In, CM, SYNC Hold Time	40	20		ns	
$\mathrm{tos}^{[2]}$	Set Time (Reference)	0			ns	
${ }^{\text {t }}$ ACC	Data-Out Access Time Data Lines SYNC CM-ROM CM-RAM			$\begin{aligned} & 930 \\ & 930 \\ & 930 \\ & 930 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \text { COUT }= \\ & \text { 500pF Data Lines[4] } \\ & \text { 500pF SYNC } \\ & 160 \mathrm{pF} \text { CM-ROM } \\ & \text { 50pF CM-RAM } \end{aligned}$
${ }^{\text {toh }}$	Data-Out Hold Time	50	150		ns	$\mathrm{C}_{\text {OUT }}=20 \mathrm{pF}$
${ }_{\text {t }}$ IS	I/O Input Set-Time	50			ns	
${ }_{\text {t }} \mathrm{H}$	I/O Input Hold-Time	100			ns	
tpW I/O	C/L Pulse-Width	1000	400		ns	
${ }^{t} \mathrm{~W} \mathrm{C} / \mathrm{L}$	C/L Write Time	350	200		ns	
$\mathrm{t}_{\mathrm{H}} \mathrm{C} / \mathrm{L}$	C/L Hold Time	100			ns	
${ }^{\text {b }}$	I/O Output Delay			1500	ns	$\mathrm{C}_{\text {OUT }}=100 \mathrm{pF}$
${ }_{4}{ }^{[5]}$	I/O Output Delay on C/L		750	1500	ns	$\mathrm{C}_{\text {OUT }}=100 \mathrm{pF}$
${ }^{\text {t }}$ ¢ ${ }^{2} \mathrm{~F}^{[6]}$	Data In Write Time with Respect to ϕ_{2}	-30	-60		ns	

Notes: 1. t_{H} measured with $t_{\phi R}=10$ nsec.
2. TACC is Data Bus, SYNC and CM-line output access time referred to the ϕ_{2} trailing edge which clocks these lines out. toS is the same output access time referred to the leading edge of the next ϕ_{2} clock pulse.
3. All MCS -40 components which may transmit instruction or data to $4004 / 4040$ at M_{2} and X_{2} always enter a float state until the $4004 / 4040$ takes over the data bus at X_{1} and X_{3} time. Therefore the t_{H} requirement is always insured since each component contributes $10 \mu \mathrm{~A}$ of leakage current and 10 pF of capacitance which guarantees that the data bus cannot change faster than $1 \mathrm{~V} / \mu \mathrm{s}$.
4. $t_{A C C}, 4308$ is guaranteed with $t_{\phi D 2}=200 \mathrm{nsec}$.
5. C / L Clears output buffer when low. C/L enters data into input buffer when low. C/L rising edge latches input buffer. Port Option 10 and 11 are mutually exclusive on any 4308.
6. Data Bus Inputs are guaranteed valid before ϕ_{2} falling edge by $4004,4040 \mathrm{t}_{\mathrm{ACC}}$. If $\mathrm{t}_{\mathrm{PW}} \mathbf{\phi} 2$ is widened, then t_{CY} is increased and Data Bus Inputs remain valid before ϕ_{2} falling edge. Thus, $\mathrm{t} W \phi 2 \mathrm{~F}$ is not a system constraint.

Figure 2. Timing Diagram.

Figure 3. Timing Detail.

Programming Instruction

To insure optimum handling of ROM programs and avoid delays, programs should be specified in the following format.

Paper Tape Format*

A $1^{\prime \prime}$ wide paper tape using 8 bit ASCII code, such as a model 33ASR teletype produces:

A. Preamble

1. Preceding the first word field and following the last word field, there should be a leader/trailer length of at least 25 characters. This should consist of rubout punches.
2. Included in the tape before the leader, and preceded by another leader, should be the customer's complete telex or twx number and if more than one pattern is being transmitted, the ROM pattern number.
3. The first ROM pattern preamble field is the device type number or ROM number. The field should be framed by an " I " and "-"

$$
14308 \text { - }
$$

This should be followed by the chip select information encoded in decimal (two digits), and enclosed by " C " and " S ", as in
"ChhS"

The valid select digits for the 4308 are $0-3$
"'COS" - "C3S"

Finally, the I/O options would be specified on a port-by-port basis with the connections to be made separated by commas, and enclosed in parentheses:
"(n1, n2, n3 . . .)".
where ($\mathrm{n} 1, \mathrm{n} 2$. . .) are the option numbers associated with one I/O line. Hence, for the 4308 there will be sixteen bracketed collections of I/O options.
Each I/O pin has a series of 11 possible connections. These connections are consecutively numbered from 1-11. It is these numbers that should be in parentheses for each I/O pin.
Example: "()" indicates no connection
"(1)" indicates only \#1
" $(2,5,7)$)" indicates connections \#2, 5 and 7.

I/O options should be placed on the tape sequentially for the 4308 , from $\mathrm{I} / \mathrm{OO}_{0}-\mathrm{I} / \mathrm{O}_{3}(16)$. Always avoid illegal combinations.
B. ROM Code

The format requirements are as follows:

1. All word fields are to be punched in consecutive order, starting with word field 0 (all addresses low). There must be exactly N word fields for the $N \times 8$ ROM organization.
2. Each word field must begin with the start character B and end with the stop character F. There must be exactly 8 data characters between the B and F. Within the word field, a P results in a high level output (V_{SS} or logic 0 for MCS-40 CPUs) and a N results in a low level output (V_{DD} or logic 1 for MCS-40 CPUs).

Example of 256×8 format ($\mathrm{N}=256$):
Start Character

3. Between word fields, comments not containing B's or F's may be inserted. Carriage return and line feed characters should be inserted (as a "comment") just before each word field (or at least between every four word fields). When these carriage returns, etc., are inserted, the tape may be easily listed on the teletype for purposes of error checking. It may be helpful to insert the word number (as a comment) at least every four word fields.
4. Within the ROM pattern words a character, " X ", may be used. Where " P " and " N " indicate a " 0 " and " 1 " setting respectively, an " X " will indicate a single bit - "Don't Care" setting. This allows the optimum default bit values to be selected by Intel. The bit value will be fixed to allow for testing. The, values will be specified to the user on the Verification Listing tape.
In the place of a standard BPNF word, a " $\mathrm{B}^{*} \mathrm{nF}$ " word may be used. This indicates that the data in the last BPNF word encountered is to be repeated for the next n words ($1 \leq \mathrm{n} \leq 1023$). Note that if a repeat count of 4 is given in word position 10, then words $10,11,12$, and 13 will be repeats of word 9 (except for Don't Care bits which might conceivably have different assigned values).

To indicate that an entire block (such as the remainder of a ROM) is not used (i.e., Don't Care), a word of Don't Care data can be followed by the remaining word count in a repeat count form.
*NOTE: Cards may also be submitted.

CUSTOMER

All custom 4308 ROM orders must be submitted on this form. Programming information should be sent in the form of computer punched cards or punched paper tape per the formats designated on this order form. Additional forms are available from Intel.

MARKING

The marking as shown at the right must contain the Intel logo, the product type (P 4308), the 4 -digit Intel pattern number (PPPP), a date code ($X X X X$), and the 2-digit chip number (DD). An optional customer identification number may be substituted for the chip number (ZZ). Optional Customer Number (maximum 6 characters or spaces).

CUSTOMER NUMBER

\qquad

MASK OPTION SPECIFICATION

A. CHIP NUMBER \qquad (Must be specified).
B. I/O OPTION - Specify the connection numbers for each I/O pin. See table below.
C. 4308 CUSTOM ROM PATTERN - Programming information should be sent in the form of computer punched cards
or punched paper tape. In either case, a printout of the truth table must accompany the order. Based on the particular customer pattern, the characters should be written as a "P" for a high level output $=V_{S S}$ (negative logic " 0 ") or an " N " for a low level output = VDD (negative logic " 1 ").

Note that: $\mathrm{NOP}=$ BPPPP PPPPF $=00000000$

PIN		OPTION										
$1 / 00_{0}$	27	1	2	3	4	5	6	7	8	9	10	11
$1 / 00_{1}$	26	1	2	3	4	5	6	7	8	9	10	11
$1 / \mathrm{O} 0_{2}$	25	1	2	3	4	5	6	7	8	9	10	11
$1 / \mathrm{OH}_{3}$	24	1	2	3	4	5	6	7	8	9	10	11
I/O 10	5	1	2	3	4	5	6	7	8	9	10	11
I/O 11	4	1	2	3	4	5	6	7	8	9	10	11
I/O 12	3	1	2	3	4	5	6	7	8	9	10	11
I/O 13	2	1	2	3	4	5	6	7	8	9	10	11
$1 / \mathrm{O} 20$	17	1	2	3	4	5	6	7	8	9	10	11
$1 / \mathrm{O} 21$	16	1	2	3	4	5	6	7	8	9	10	11
$1 / \mathrm{O} 22$	15	1	2	3	4	5	6	7	8	9	10	11
$1 / 023$	14	1	2	3	4	5	6	7	8	9	10	11
$1 / 03_{0}$	21	1	2	3	4	5	6	7	8	9	10	11
$1 / 03_{1}$	20	1	2	3	4	5	6	7	8	9	10	11
$1 / 03_{2}$	19	1	2	3	4	5	6	7	8	9	10	11
$1 / 03_{3}$	18	1	2	3	4	5	6	7	8	9	10	11

NOTE: Options 10 and 11 cannot both be specified.

16,384 BIT STATIC MOS READ ONLY MEMORY

Organization: 2048 Words x 8 Bits Access Time: 850 ns Max.

- Single +5 Volts Power Supply Voltage
- Directly TTL Compatible - All Inputs and Outputs
- Low Power Dissipation of 31.4μ W/Bit Maximum
- Three Programmable Chip Select Inputs for Easy Memory Expansion
- Three-State Output - OR-Tie Capability
- Fully Decoded - On Chip Address Decode
- Inputs Protected - All Inputs Have Protection Against Static Charge
- Interface to 4004/4040 CPU Via 4008/4009 or 4289 Standard Memory Interface

The Intel ${ }^{\circledR} 4316$ A is a 16,384 -bit static MOS read only memory organized as 2048 words by 8 bits. This ROM is designed for microcomputer memory applications where high performance, large bit storage, and simple interfacing are important design objectives. It can be used in MCS-40 systems via the 4008/4009 or 4289 Standard Memory Interface component.
The inputs and outputs are fully TTL compatible. This device operates with a single +5 V power supply. The three chip select inputs are programmable. Any combination of active high or low level chip select inputs can be defined and the desired chip select code is fixed during the masking process. These three programmable chip select inputs, as well as OR-tie compatibility on the outputs, facilitate easy memory expansion.
The 4316A read only memory is fabricated with N-channel silicon gate technology. This technology provides the designer with high performance, easy-to-use MOS circuits. Only a single +5 V power supply is needed and all devices are directly TTL compatible.

PIN CONFIGURATION

PIN NAMES

$A_{0} \cdot A_{10}$	ADDRESS INPUTS
$O_{1} \cdot O_{8}$	DATA OUTPUTS
$C S_{1} \cdot C S_{3}$	PROGRAMMABLE CHIP SELECT INPUTS

```
Absolute Maximum Ratings*
```

Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin With Respect
To Ground
-0.5 V to +7 V
Power Dissipation . 1.0 Watt
"COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device. reliability.

D.C. and Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP. ${ }^{(1)}$	MAX.		
$I_{L I}$	Input Load Current (All Input Pins)			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
ILOH	Output Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{CS}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.0 \mathrm{~V}$
ILOL	Output Leakage Current			-20	$\mu \mathrm{A}$	$\mathrm{CS}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V}$
Icc	Power Supply Current		40	98	mA	All inputs 5.25V Data Out Open
$V_{\text {IL }}$	Input "Low" Voltage	-0.5		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	2.0		$\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$	V	
$\mathrm{V}_{\text {OL }}$	Output "Low" Voltage			0.45	V	$\mathrm{I}_{\text {OL }}=2.0 \mathrm{~mA}$
VOH	Output "High" Voltage	2.2			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$

(1) Typical values for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

A.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

SYMBOL	PARAMETER		LIMITS		
		MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
t_{A}	Address to Output Delay Time		400	850	
t_{CO}	Chip Select to Output Enable Delay Time			300	nS
t_{DF}	Chip Deselect to Output Data Float Delay Time	0		300	nS

CONDITIONS OF TEST FOR

A.C. CHARACTERISTICS

Output Load . . . 1 TTL Gate, and $C_{\text {LOAD }}=100 \mathrm{pF}$ Input Pulse Levels 0.8 to 2.0 V Input Pulse Rise and Fall Times . (10\% to 90\%) 20 nS Timing Measurement Reference Level

```
Input
    ... . . . . 1.5V
    Output . . . . . . . . . . . . . . . 0.45V to 2.2V
```

Capacitance ${ }^{(2)} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

SYMBOL	TEST	LIMITS	
		TYP.	MAX.
$C_{\text {IN }}$	All Pins Except Pin Under Test Tied to AC Ground	4 pF	10 pF
C OUT	All Pins Except Pin Under Test Tied to AC Ground	8 pF	15 pF

(2) This parameter is periodically sampled and is not 100% tested.

Waveforms

REPROGRAMMABLE 2K PROM

- Access Time: 1.7 usec Max.
 - Fast Programming: 2 Minutes for all 2048 Bits
 - Ultraviolet Erasable and Electronically Reprogrammable
 - Fully Decoded, 256 x 8 Organization

- Static MOS: No Clocks Required

- Inputs and Outputs TTL Compatible
- Three-State Output: OR-Tie
Capability Capability
- Simple Memory Expansion Chip Select Input Lead

The 4702A is a 256 word by 8 bit electrically programmable ROM ideally suited for microcomputer system development where fast turn-around and pattern experimentation are important. The 4702A undergoes complete programming and functional testing on each bit position prior to shipment, thus insuring 100% programmability.
The 4702A is packaged in a 24 pin dual-in-line package with a transparent quartz lid. The transparent quartz lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device. This procedure can be repeated as many times as required.

The circuitry of the 4702A is entirely static; no clocks are required.
A pin-for pin metal mask programmed ROM, the Intel® 1302A, is ideal for large volume production runs of systems initially using the 4702A.

The 4702A is fabricated with silicon gate technology. This low threshold technology allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.

*THIS PIN IS THE DATA INPUT LEAD DURING PROGRAMMING.
PIN NAMES

$A_{0} \cdot A_{7}$	ADDRESS INPUTS
$\overline{\mathbf{C S}}$	CHIP SELECT INPUT
$\mathbf{D O _ { 1 }} \cdot$ DO $_{2}$	DATA OUTPUTS

Pin Connections

The external lead connections to the 4702A differ, depending on whether the device is being programmed (1) or used in read mode. (See following table.)

Absolute Maximum Ratings*

Ambient Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature -65	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Soldering Temperature of Leads ($10 \mathrm{sec} \mathrm{)}$	$+300^{\circ} \mathrm{C}$
Power Dissipation	2 Watts
Read Operation: Input Voltages and Supply	
Voltages with respect to V_{CC}. +	. +0.5 V to -20 V
Program Operation: Input Voltages and Supply	pply
Voltages with respect to V_{CC}	-48V

READ OPERATION

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-10 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{G G}=-10 \mathrm{~V} \pm 5 \%$, unless otherwise noted.

SYMBOL	TEST	MIN.	TYP.	2) MAX.	UNIT	CONDITIONS	
'LI	Address and Chip Select Input Load Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}$	
ILO	Output Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2$	
'too	Power Supply Current		6	14	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{CC}}, \overline{\overline{C S}}=\mathrm{V}_{\mathrm{CC}}-2 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	
${ }^{\text {DOD }}$	Power Supply Current		39	54	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	Continuous Operation
IDD2	Power Supply Current		36	50	mA	$\begin{aligned} & \overline{\mathrm{CS}}=0.0 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	
IoD3	Power Supply Current		43	63	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$	
$\mathrm{I}_{\text {cF } 1}$	Output Clamp Current		8	14	m. ${ }^{\text {a }}$	$\mathrm{V}_{\text {OUT }}=-1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	
$\mathrm{I}_{\text {CF2 }}$	Output Clamp Current			13	mA	$\mathrm{V}_{\text {OUT }}=-1.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	
I_{GG}	Gate Supply Current			10	$\mu \mathrm{A}$		
$V_{1 L 1}$	Input Low Voltage for TTL Interface	-1.0		0.65	V		
VIL2	Input Low Voltage for MOS Interface	$V_{D D}$		$\mathrm{V}_{\mathrm{cc}}-6$	V		
$V_{1 H}$	Address and Chip Select Input High Voltage	$\mathrm{V}_{\mathrm{CC}}{ }^{-2}$		$V_{C C}+0.3$	V		
I_{OL}	Output Sink Current	1.6	4		mA	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$	
V_{OL}	Output Low Voltage		-. 7	0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	
V_{OH}	Output High Voltage	3.5			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	

Note 1: In the programming mode, the data inputs 1-8 are pins 4-11 respectively. $\overline{\mathrm{CS}}=\mathrm{GND}$.
Note 2: Typical values are at nominal voltages and $T_{A}=25^{\circ} \mathrm{C}$.

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-10 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-10 \mathrm{~V} \pm 5 \%$ unless otherwise noted

SYMBOL	TEST	MINIMUM	TYPICAL	MAXIMUM	UNIT
Freq.	Repetition Rate			1	MHz
t_{OH}	Previous read data valid			100	ns
$\mathrm{t}_{\mathrm{ACC}}$	Address to output delay			1.7	$\mu \mathrm{ss}$
t_{CS}	Chip select delay			800	ns
t_{CO}	Output delay from $\overline{\mathrm{CS}}$			900	ns
t_{OD}	Output deselect			300	ns

Capacitance* $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	TEST	MINIMUM	TYPICAL	MAXIMUM	UNIT	CONDITIONS		
C_{IN}	Input Capacitance		8	15	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}$ $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}$ $\mathrm{V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{CC}}$		AlI
:---								
unused pins								
are at $\mathrm{A} . \mathrm{C}$.								
ground								

* This parameter is periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test:
Input pulse amplitudes: 0 to 4 V ; $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}} \leqslant 50 \mathrm{~ns}$.
a) For output load $=1 \mathrm{TTL}$ gate; measurements made at output of $T T L$ gate ($t_{\text {PD }} \leqslant 15 \mathrm{~ns}$)
b) For pure capacitive load of 75 pf .

MCS 4/40" PROTOTYPE SYSTEMS

Abstract

Intel distributors are now stocking two MCS-40 systems which may be used to prototype products and will make low volume manufacturing more economical. Additional prototype systems will be offered as newer microcomputer components are developed.

| System Number | System Composition
 MCS-4 System A
 Prototype system for
 Each system includes: |
| :--- | :---: | :--- |
| | Quantity | Microcomputer with C4004 CPU.

MCS-80 ${ }^{\text {TM }}$ MICROCOMPUTER SYSTEM

Type	Group	Description	Page No.
8080A	CPU	Central Processor	8-5
8080A-1	CPU	Central Processor ($1.3 \mu \mathrm{~s}$)	8.12
8080A-2	CPU	Central Processor (1.5 $\mu \mathrm{s}$)	8.16
M8080A	CPU	Central Processor (-55° to $+125^{\circ} \mathrm{C}$)	8.20
8224	CPU	Clock Generator	8.25
8228/8238	CPU	System Controller	8.29
8008, 8008-1	CPU	Eight-Bit Microprocessor	8.33
8702A	ROMs	Erasable PROM (256×8)	8.40
8708	ROMs	Erasable $1 \mathrm{~K} \times 8$ PROM	8.43
8302	ROMs	Mask ROM (256×8)	8-46
8308	ROMs	Mask ROM ($1 \mathrm{~K} \times 8$)	8.49
8316A	ROMs	Mask ROM ($2 \mathrm{~K} \times 8$)	8-52
$8101-2$	RAMs	Static RAM (256×4)	8.54
$8101 \mathrm{~A}-4$	RAMs	Static RAM (256×4) 450 ns	$8-57$
$8111-2$	RAMs	Static RAM (256×4)	8-60
8111A-4	RAMs	Static RAM (256×4) 450 ns	8-63
8102A-4	RAMs	Static RAM ($1 \mathrm{~K} \times 1$) 450 ns	8-66
8107B-4	RAMs	Dynamic RAM ($4 \mathrm{~K} \times 1$)	8.69
8222	RAMs	Dynamic RAM Refresh Controller	8-74
8212	1/0	8-Bit I/O Port	8.75
8255	1/0	Programmable Peripheral Interface	8-79
8251	1/0	Programmable Communication Interface	8.85
8205	Peripherals	One of Eight Decoder	8-89
8214	Peripherals	Priority Interrupt Control Unit	8.92
8216/8226	Peripherals	4-Bit Bi-Directional Bus Driver	8-96
8253	Peripherals	Programmable Interval Timer	8-100
8257	Peripherals	Programmable DMA Controller	8-102
8259	Peripherals	Programmable Interrupt Controller	8-104

MCS-80 ${ }^{\text {TM }}$ MICROCOMPUTER SYSTEM

MCS-80 ${ }^{7 M}$ components form complete systems with many optional configurations. They eliminate the problems of hardwired design by integrating control and processing functions in LSI blocks that interface with one another through a standard system bus.

The systems building blocks include:

- The basic CPU Group, which defines and drives the bus-the 8080A CPU, 8224 Clock Generator and 8228 System Controller.
- Three CPU options for higher speed and extended temperature range applications.
- Twelve I/O and peripherals options, five of which are programmable LSI devices that control and communicate with external equipment in software selectable modes.
- Memory options, including 8 K erasable PROMs, 16 K ROMs, low power 1 K CMOS RAMs, and low cost 4K RAMs-all with industry standard configurations for ease of use and economy.

8080A CHIP PHOTOGRAPH WITH SECTIONAL DIVISIONS

SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

The 8080A is functionally and electrically compatible with the Intel ${ }^{\circledR} 8080$.

- TTL Drive Capability
 - 2μ S Instruction Cycle
 - Powerful Problem Solving Instruction Set

- Six General Purpose Registers and an Accumulator
- Sixteen Bit Program Counter for Directly Addressing up to 64 K Bytes of Memory
- Sixteen Bit Stack Pointer and Stack Manipulation Instructions for Rapid Switching of the Program Environment
- Decimal, Binary and Double Precision Arithmetic
- Ability to Provide Priority Vectored Interrupts
- 512 Directly Addressed I/O Ports

The Intel ${ }^{\circledR}$ 8080A is a complete 8 -bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using Intel's n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications. The 8080A contains six 8-bit general purpose working registers and an accumulator. The six general purpose registers may be addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set or reset four testable flags. A fifth flag provides decimal arithmetic operation.
The 8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/ retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers. The sixteen bit stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting. This microprocessor has been designed to simplify systems design. Separate 16 -line address and 8 -line bi-directional data busses are used to facilitate easy interface to memory and I/O. Signals to control the interface to memory and I/O are provided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides the ability to suspend processor operation and force the address and data busses into a high impedance state. This permits ORtying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

8080A FUNCTIONAL PIN DEFINITION

The following describes the function of all of the 8080A $1 / O$ pins. Several of the descriptions refer to internal timing periods.

$\mathrm{A}_{15} \cdot \mathrm{~A}_{0}$ (output three-state)

ADDRESS BUS; the address bus provides the address to memory (up to 64 K 8 -bit words) or denotes the I/O device number for up to 256 input and 256 output devices. A_{0} is the least significant address bit.

$D_{7}-D_{0}$ (input/output three-state)

DATA BUS; the data bus provides bi-directional communication between the CPU, memory, and I/O devices for instructions and data transfers. Also, during the first clock cycle of each machine cycle, the 8080A outputs a status word on the data bus that describes the current machine cycle. D_{0} is the least significant bit.

SYNC (output)

SYNCHRONIZING SIGNAL; the SYNC pin provides a signal to indicate the beginning of each machine cycle.

DBIN (output)

DATA BUS IN; the DBIN signal indicates to external circuits that the data bus is in the input mode. This signal should be used to enable the gating of data onto the 8080A data bus from memory or I/O.

READY (input)

READY; the READY signal indicates to the 8080A that valid memory or input data is available on the 8080A data bus. This signal is used to synchronize the CPU with slower memory or I/O devices. If after sending an address out the 8080A does not receive a READY input, the 8080A will enter a WAIT state for as long as the READY line is low. READY can also be used to single step the CPU.

WAIT (output)

WAIT; the WAIT signal acknowledges that the CPU is in a WAIT state.

$\overline{W R}$ (output)

WRITE; the $\overline{W R}$ signal is used for memory WRITE or I/O output control. The data on the data bus is stable while the $\overline{W R}$ signal is active low ($\overline{W R}=0$).
HOLD (input)
HOLD; the HOLD signal requests the CPU to enter the HOLD state. The HOLD state allows an external device to gain control of the 8080A address and data bus as soon as the 8080A has completed its use of these buses for the current machine cycle. It is recognized under the following conditions:

- the CPU is in the HALT state.
- the CPU is in the T2 or TW state and the READY signal is active. As a result of entering the HOLD state the CPU ADDRESS BUS ($A_{15} \cdot A_{0}$) and DATA BUS ($D_{7}-D_{0}$) will be in their high impedance state. The CPU acknowledges its state with the HOLD ACKNOWLEDGE (HLDA) pin.

HLDA (output)

HOLD ACKNOWLEDGE; the HLDA signal appears in response to the HOLD signal and indicates that the data and address bus

Pin Configuration
will go to the high impedance state. The HLDA signal begins at:

- T3 for READ memory or input.
- The Clock Period following T3 for WRITE memory or OUT. PUT operation.
In either case, the HLDA signal appears after the rising edge of ϕ_{1} and high impedance occurs after the rising edge of ϕ_{2}.

INTE (output)

INTERRUPT ENABLE; indicates the content of the internal interrupt enable flip/flop. This flip/flop may be set or reset by the Enable and Disable Interrupt instructions and inhibits interrupts from being accepted by the CPU when it is reset. It is automatically reset (disabling further interrupts) at time T1 of the instruction fetch cycle (M1) when an interrupt is accepted and is also reset by the RESET signal.

INT (input)

INTERRUPT REQUEST; the CPU recognizes an interrupt request on this line at the end of the current instruction or while halted. If the CPU is in the HOLD state or if the Interrupt Enable flip/flop is reset it will not honor the request.

RESET (input) [1]

RESET; while the RESET signal is activated, the content of the program counter is cleared. After RESET, the program will start at location 0 in memory. The INTE and HLDA flip/flops are also reset. Note that the flags, accumulator, stack pointer, and registers are not cleared.

[^10]
8080 A

ABSOLUTE MAXIMUM RATINGS*

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Noted.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Condition
VILC	Clock Input Low Voltage	$\mathrm{V}_{\mathrm{SS}}-1$		$\mathrm{V}_{\text {SS }}+0.8$	V	$\begin{aligned} \mathrm{I}_{\mathrm{OL}} & =1.9 \mathrm{~mA} \text { on all outputs, } \\ \mathrm{I}_{\mathrm{OH}} & =-150 \mu \mathrm{~A} . \end{aligned}$
$\mathrm{V}_{\text {IHC }}$	Clock Input High Voltage	9.0		$\mathrm{V}_{\mathrm{DD}}+1$	V	
$V_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\text {SS }}-1$		$\mathrm{V}_{\text {SS }}+0.8$	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	3.3		$\mathrm{V}_{\mathrm{CC}}+1$	V	
V_{OL}	Output Low Voltage			0.45	V	
V_{OH}	Output High Voltage	3.7			V	
$\mathrm{I}_{\text {DD (}} \mathrm{AV}$)	Avg. Power Supply Current (V_{DD})		40	70	mA	Operation$\mathrm{T}_{\mathrm{CY}}=.48 \mu \mathrm{sec}$
$\operatorname{ICC}(A V)$	Avg. Power Supply Current (V_{CC})		60	80	mA	
$I_{B B}(A V)$	Avg. Power Supply Current (V_{BB})		. 01	1	mA	
I_{IL}	Input Leakage			± 10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{SS}} \leqslant \mathrm{~V}_{\mathrm{CLOCK}} \leqslant \mathrm{~V}_{\mathrm{DD}} \end{aligned}$
I_{CL}	Clock Leakage			± 10	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{DL}}{ }^{\text {[2] }}$	Data Bus Leakage in Input Mode			$\begin{aligned} & -100 \\ & -2.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{SS}}+0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}+0.8 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{CC}} \end{aligned}$
$I_{\text {FL }}$	Address and Data Bus Leakage During HOLD			$\begin{array}{r} +10 \\ -100 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {ADDR/DATA }}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\text {ADDR/DATA }}=\mathrm{V}_{\mathrm{SS}}+0.45 \mathrm{~V} \end{aligned}$

CAPACITANCE

$T_{A}=25^{\circ} \mathrm{C} \quad V_{C C}=V_{D D}=V_{S S}=0 V, V_{B B}=-5 \mathrm{~V}$

Symbol	Parameter	Typ.	Max.	Unit	Test Condition
C_{ϕ}	Clock Capacitance	17	25	pf	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	6	10	pf	

NOTES:

1. The RESET signal must be active for a minimum of 3 clock cycles.
2. When DBIN is high and $V_{I N}>V_{I H}$ an internal active pull up will be switched onto the Data Bus.
3. ΔI supply $/ \Delta T_{A}=-0.45 \% /{ }^{\circ} C$.

A.C. CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Noted

Symbol	Parameter	Min.	Max.	Unit	Test Condition
$\mathrm{t}_{\mathrm{CY}}{ }^{\text {[3] }}$	Clock Period	0.48	2.0	$\mu \mathrm{sec}$	$\begin{aligned} & -\mathrm{C}_{\mathrm{L}}=100 \mathrm{pf} \\ & -\mathrm{C}_{\mathrm{L}}=50 \mathrm{pf} \end{aligned}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Clock Rise and Fall Time	0	50	nsec	
$\mathrm{t}_{\phi 1}$	ϕ_{1} Pulse Width	60		nsec	
$\mathrm{t}_{\phi 2}$	ϕ_{2} Pulse Width	220		nsec	
$t_{\text {D1 }}$	Delay ϕ_{1} to ϕ_{2}	0		n sec	
$\mathrm{t}_{\mathrm{D} 2}$	Delay ϕ_{2} to ϕ_{1}	70		nsec	
${ }^{\text {t }}$ 3	Delay ϕ_{1} to ϕ_{2} Leading Edges	80		nsec	
$t_{\text {DA }}[2]$	Address Output Delay From ϕ_{2}		200	nsec	
$\mathrm{t}_{\mathrm{DD}}{ }^{[2]}$	Data Output Delay From ϕ_{2}		220	nsec	
$t_{D C}{ }^{[2]}$	Signal Output Delay From ϕ_{1}, or ϕ_{2} (SYNC, $\overline{W R}$, WAIT, HLDA)		120	nsec	
$t_{\text {DF }}[2]$	DBIN Delay From ϕ_{2}	25	140	nsec	
$t_{D 1}{ }^{[1]}$	Delay for Input Bus to Enter Input Mode		${ }^{\text {t }}$ DF	nsec	
${ }_{\text {t }}$ S1	Data Setup Time During ϕ_{1} and DBIN	30		nsec	

TIMING WAVEFORMS ${ }^{[14]}$
(Note: Timing measurements are made at the following reference voltages: CLOCK " 1 " $=8.0 \mathrm{~V}$ $" 0 "=1.0 \mathrm{~V}$; INPUTS " 1 " = $3.3 \mathrm{~V}, " 0 "=0.8 \mathrm{~V}$; OUTPUTS " 1 " = $2.0 \mathrm{~V}, " 0 "=0.8 \mathrm{~V}$.)

inte
A.C. CHARACTERISTICS (Continued)
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Noted

Symbol	Parameter	Min.	Max.	Unit	Test Condition
$\mathrm{t}_{\text {DS2 }}$	Data Setup Time to ϕ_{2} During DBIN	150		nsec	$C_{L}=50 p f$
$t_{D H}{ }^{[1]}$	Data Hold Time From ϕ_{2} During DBIN	[1]		nsec	
$\mathrm{t}_{\text {IE }}$ [2]	INTE Output Delay From ϕ_{2}		200	nsec	
$\mathrm{t}_{\text {RS }}$	READY Setup Time During ϕ_{2}	120		nsec	
t_{HS}	HOLD Setup Time to ϕ_{2}	140		nsec	
$t_{\text {IS }}$	INT Setup Time During ϕ_{2} (During ϕ_{1} in Halt Mode)	120		nsec	
t_{H}	Hold Time From ϕ_{2} (READY, INT, HOLD)	0		nsec	
$\mathrm{t}_{\text {FD }}$	Delay to Float During Hold (Address and Data Bus)		120	nsec	
$\mathrm{t}_{\text {AW }}{ }^{\text {[2] }}$	Address Stable Prior to $\overline{\mathrm{WR}}$	[5]		nsec	$C_{L}=100 \mathrm{pf}:$ Address, Data $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pf}: \overline{\mathrm{WR}}, \mathrm{HLDA}$, DBIN
$t_{\text {DW }}{ }^{[2]}$	Output Data Stable Prior to $\overline{W R}$	[6]		nsec	
${ }_{\mathrm{T}_{W} \mathrm{D}^{[2]}}$	Output Data Stable From $\overline{\text { WR }}$	[7]		nsec	
$t_{\text {ta }}{ }^{[2]}$	Address Stable From $\overline{W R}$	[7]		nsec	
$\mathrm{t}_{\mathrm{HF}}{ }^{\text {[2] }}$	HLDA to Float Delay	[8]		nsec	
${ }^{W_{W F}{ }^{[2]}}$	$\overline{\mathrm{WR}}$ to Float Delay	[9]		nsec	
$\mathrm{taH}^{[2]}$	Address Hold Time After DBIN During HLDA	-20		nsec	

1. Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured. $t_{D H}=50 \mathrm{~ns}$ or tDF, whichever is less.
2. Load Circuit.

3. $t_{C Y}=t_{D} 3+t_{r \phi 2}+t_{\phi 2}+t_{f \phi 2}+t_{D 2}+t_{r \phi 1} \geqslant 480 \mathrm{~ns}$.

TYPICAL \triangle OUTPUT DELAY VS. \triangle CAPACITANCE

4. The following are relevant when interfacing the 8080 A to devices having $\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}$:
a) Maximum output rise time from .8 V to $3.3 \mathrm{~V}=100 \mathrm{~ns} @ C_{L}=$ SPEC.
b) Output delay when measured to $3.0 \mathrm{~V}=\mathrm{SPEC}+60 \mathrm{~ns} @ \mathrm{C}_{\mathrm{L}}=\mathrm{SPEC}$.
c) If $C_{L} \neq$ SPEC, add $.6 \mathrm{~ns} / \mathrm{pF}$ if $C_{L}>$ C $_{\text {SPEC }}$, subtract $.3 \mathrm{~ns} / \mathrm{pF}$ (from modified delay) if $C_{L}<$ C SPEC .
5. $t^{t} A W=2 t_{C Y}{ }^{-t} \mathrm{D}_{3}-\mathrm{t}_{\mathrm{r} \phi 2}-140 \mathrm{nsec}$.
6. $t_{D W}=t_{C Y}{ }^{-t} \mathrm{D} 3^{-t^{\prime} \phi 2-170 \mathrm{nsec} .}$
7. If not HLDA, tWD $=$ tWA $=t_{D} 3+t_{r \phi 2}+10 \mathrm{~ns}$. If $H L D A, t W D=t W A=t W F$.
8. $t_{H F}=t_{D 3}+t_{\mathrm{r} \phi} 2-50 \mathrm{~ns}$.
9. $\mathrm{t}_{\mathrm{WF}}=\mathrm{t}_{\mathrm{D} 3}+\mathrm{t}_{\mathrm{r} \phi 2}-10 \mathrm{~ns}$
10. Data in must be stable for this period during DBIN $\cdot \mathrm{T}_{3}$. Both tDS1 and tDS2 must be satisfied.
11. Ready signal must be stable for this period during T_{2} or T_{W}. (Must be externally synchronized.)
12. Hold signal must be stable for this period during T_{2} or T_{W} when entering hold mode, and during T_{3}, T_{4}, T_{5} and TWH when in hold mode. (External synchronization is not required.)
13. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized on the following instruction. (External synchronization is not required.)
14. This timing diagram shows timing relationships only; it does not represent any specific machine cycie.

INSTRUCTION SET

The accumulator group instructions include arithmetic and logical operators with direct, indirect, and immediate addressing modes.

Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, indirect, and immediate addressing modes.
The ability to branch to different portions of the program is provided with jump, jump conditional, and computed jumps. Also the ability to call to and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.

Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the 8080A. The ability to
increment and decrement memory, the six general registers and the accumulator is provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.
Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the 8080A instruction set.

The following special instruction group completes the 8080A instruction set: the NOP instruction, HALT to stop processor execution and the DAA instructions provide decimal arithmetic capability. STC allows the carry flag to be directly set, and the CMC instruction allows it to be complemented. CMA complements the contents of the accumulator and XCHG exchanges the contents of two 16 -bit register pairs directly.

Data and Instruction Formats

Data in the 8080A is stored in the form of 8-bit binary integers. All data transfers to the system data bus will be in the same format.

$$
\frac{D_{7}}{D_{7}} \mathrm{D}_{6} \mathrm{D}_{5} \quad \mathrm{D}_{4} \quad \mathrm{D}_{3} \quad D_{2} \quad D_{1} \quad D_{0}
$$

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored in successive words in program memory. The instruction formats then depend on the particular operation executed.

One Byte Instructions

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Two Byte Instructions

| D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |D_{0},

Three Byte Instructions

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

LOW ADDRESS OR OPERAND 1
HIGH ADDRESS OR OPERAND 2
OP CODE
OPERAND

OP CODE

TYPICAL INSTRUCTIONS

Register to register, memory reference, arithmetic or logical, rotate, return, push, pop, enable or disable Interrupt instructions

Immediate mode or I/O instructions

Jump, call or direct load and store instructions

For the 8080A a logic " 1 " is defined as a high level and a logic " 0 " is defined as a low level.

INSTRUCTION SET

Summary of Processor Instructions

NOTES: 1. DDD or SSS - $000 \mathrm{~B}-001 \mathrm{C}-010 \mathrm{D}-011 \mathrm{E}-100 \mathrm{H}-101 \mathrm{~L}-110$ Memory - 111 A .
2. Two possible cycle times, ($5 / 11$) indicate instruction cycles dependent on condition flags.

SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

The 8080A is functionally and electrically compatible with the Intel ${ }^{\circledR} 8080$.

- TTL Drive Capability

- 1.3μ s Instruction Cycle
- Powerful Problem Solving Instruction Set
- Six General Purpose Registers and an Accumulator
- Sixteen Bit Program Counter for Directly Addressing up to 64K Bytes of Memory

- Sixteen Bit Stack Pointer and Stack Manipulation Instructions for Rapid Switching of the Program Environment

- Decimal,Binary and Double Precision Arithmetic
- Ability to Provide Priority Vectored Interrupts
- 512 Directly Addressed I/O Ports

The Intel ${ }^{\oplus}$ 8080A is a complete 8 -bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using Intel's n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications. The 8080A contains six 8 -bit general purpose working registers and an accumulator. The six general purpose registers may be addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set or reset four testable flags. A fifth flag provides decimal arithmetic operation.
The 8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/ retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers. The sixteen bit stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting. This microprocessor has been designed to simplify systems design. Separate 16 -line address and 8 -line bi-directional data busses are used to facilitate easy interface to memory and I/O. Signals to control the interface to memory and I/O are provided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides the ability to suspend processor operation and force the address and data busses into a high impedance state. This permits ORtying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

8080A-1

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
All Input or Output Voltages	
With Respect to $\mathrm{V}_{B B}$	-0.3 V to +20 V
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\text {SS }}$ With Respect to V_{BB}	-0.3V to +20 V
Power Dissipation	1.5W

Abstract

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Noted.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Condition
$V_{\text {ILC }}$	Clock Input Low Voltage	$\mathrm{V}_{\mathrm{SS}}-1$		$\mathrm{V}_{\text {SS }}+0.8$	V	$\begin{aligned} \mathrm{I}_{\mathrm{OL}} & =1.9 \mathrm{~mA} \text { on all outputs, } \\ \mathrm{I}_{\mathrm{OH}} & =150 \mu \mathrm{~A} . \end{aligned}$
$\mathrm{V}_{\text {IHC }}$	Clock Input High Voltage	9.0		$\mathrm{V}_{\mathrm{DD}}+1$	V	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\text {SS }}$-1		$\mathrm{V}_{\text {SS }}+0.8$	V	
V_{IH}	Input High Voltage	3.3		$\mathrm{V}_{\mathrm{CC}}+1$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage			0.45	V	
V_{OH}	Output High Voltage	3.7			V	
IDD (AV)	Avg. Power Supply Current (V_{DD})		40	70	mA	Operation$T_{C Y}=.32 \mu \mathrm{sec}$
$\operatorname{lcC}(A V)$	Avg. Power Supply Current (V_{CC})		60	80	mA	
$I_{B B}(A V)$	Avg. Power Supply Current ($\mathrm{VBB}^{\text {) }}$. 01	1	mA	
$I_{\text {IL }}$	Input Leakage			± 10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{SS}} \leqslant \mathrm{~V}_{\mathrm{CLOCK}} \leqslant \mathrm{~V}_{\mathrm{DD}} \end{aligned}$
I_{CL}	Clock Leakage			± 10	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{DL}}{ }^{[2]}$	Data Bus Leakage in Input Mode			$\begin{aligned} & -100 \\ & -2.0 \end{aligned}$	$\begin{array}{r} \mu \mathrm{A} \\ \mathrm{~mA} \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{SS}}+0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}+0.8 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{CC}} \end{aligned}$
$I_{\text {FL }}$	Address and Data Bus Leakage During HOLD			$\begin{array}{r} +10 \\ -100 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {ADDR/DATA }}=V_{C C} \\ & V_{\text {ADDR/DATA }}=V_{S S}+0.45 \mathrm{~V} \end{aligned}$

CAPACITANCE

$T_{A}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}$

Symbol	Parameter	Typ.	Max.	Unit	Test Condition
C_{ϕ}	Clock Capacitance	17	25	pf	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
C_{IN}	Input Capacitance	6	10	pf	
$\mathrm{C}_{\text {OUT }}$	Ontput Capacitance	10	20	pf	

NOTES:

1. The RESET signal must be active for a minimum of 3 clock cycles.
2. When DBIN is high and $V_{I N}>V_{I H}$ an internal active pull up will be switched onto the Data Bus.
3. ΔI supply $/ \Delta T_{A}=-0.45 \% /{ }^{\circ} C$.

TYPICAL SUPPLY CURRENT VS. TEMPERATURE, NORMALIZED. [3]

DATA BUS CHARACTERISTIC DURING DBIN

8080A-1

A.C. CHARACTERISTICS

CAUTION: When operating the 80804-1 at or near full speed, care must be taken to assure precise timing compatibility between 80804-1, 8224 and 8228.
$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{B B}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Noted

Symbol	Parameter	Min.	Max.	Unit	Test Condition
$\mathrm{t}_{\mathrm{CY}}{ }^{[3]}$	Clock Period	. 32	2.0	$\mu \mathrm{sec}$	$\begin{aligned} & -c_{L}=50 \mathrm{pf} \\ & -\mathrm{C}_{\mathrm{L}}=50 \mathrm{pf} \end{aligned}$
t_{r}, t_{f}	Clock Rise and Fall Time	0	25	nsec	
$\mathrm{t}_{\phi 1}$	ϕ_{1} Pulse Width	50		nsec	
$\mathrm{t}_{\phi 2}$	ϕ_{2} Pulse Width	145		nsec	
$t_{\text {D1 }}$	Delay ϕ_{1} to ϕ_{2}	0		nsec	
$t_{\text {D2 }}$	Delay ϕ_{2} to ϕ_{1}	60		nsec	
$t_{\text {D }}$	Delay ϕ_{1} to ϕ_{2} Leading Edges	60		nsec	
$t_{D A}[2]$	Address Output Delay From ϕ_{2}		150	nsec	
$t_{D D}[2]$	Data Output Delay From ϕ_{2}		180	nsec	
$\mathrm{t}_{\mathrm{DC}}{ }^{[2]}$	Signal Output Delay From ϕ_{1}, or ϕ_{2} (SYNC, $\left.\overline{W R}, W A 1 T, H L D A\right) ~$		110	nsec	
t_{DF} [2]	DBIN Delay From ϕ_{2}	25	130	nsec	
$t_{D 1}{ }^{[1]}$	Delay for Input Bus to Enter Input Mode		${ }^{\text {t }}$ DF	nsec	
${ }_{\text {t }}$ S 1	Data Setup Time During ϕ_{1} and DBIN	10		nsec	

TIMING WAVEFORMS ${ }^{[14]}$
(Note: Timing measurements are made at the following reference voltages: CLOCK " 1 " $=8.0 \mathrm{~V}$ $" 0 "=1.0 \mathrm{~V}$; INPUTS " 1 " = $3.3 \mathrm{~V}, " 0$ " $=0.8 \mathrm{~V}$; OUTPUTS " 1 " $=2.0 \mathrm{~V}, " 0 "=0.8 \mathrm{~V}$.)

inte

A.C. CHARACTERISTICS (Continued)

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{B B}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, Unless Otherwise Noted

Symbol	Parameter	Min.	Max.	Unit	Test Condition
${ }^{\text {t }}$ D 2	Data Setup Time to ϕ_{2} During DBIN	120		nsec	$C_{L}=50 \mathrm{pf}$
$\mathrm{t}_{\mathrm{DH}}{ }^{[1]}$	Data Hold Time From ϕ_{2} During DBIN	[1]		nsec	
$\mathrm{t}_{\text {IE }}$ [2]	INTE Output Delay From ϕ_{2}		200	nsec	
$\mathrm{t}_{\text {RS }}$	READY Setup Time During ϕ_{2}	90		nsec	
t_{HS}	HOLD Setup Time to ϕ_{2}	120		nsec	
$\mathrm{t}_{\text {IS }}$	INT Setup Time During ϕ_{2} (During ϕ_{1} in Halt Mode)	100		nsec	
t_{H}	Hold Time From ϕ_{2} (READY, INT, HOLD)	0		insec	
${ }^{\text {t }}$ FD	Delay to Float During Hold (Address and Data Bus)		120	nsec	
${ }^{t_{A W}}{ }^{[2]}$	Address Stable Prior to $\overline{W R}$	[5]		nsec	$C_{L}=50 \mathrm{pf}:$ Address, Data $C_{L}=50 \mathrm{pf}: \overline{W R}, ~ H L D A, ~ D B I N$
$\mathrm{t}_{\text {DW }}{ }^{[2]}$	Output Data Stable Prior to $\bar{W} \mathrm{R}$	[6]		nsec	
${ }_{W_{W D}{ }^{[2]}}$	Output Data Stable From $\overline{W R}$	[7]		nsec	
${ }_{\text {twA }}{ }^{[2]}$	Address Stable From $\overline{W R}$	[7]		nsec	
$\mathrm{t}_{\mathrm{HF}}{ }^{[2]}$	HLDA to Float Delay	[8]		nsec	
$\mathrm{t}_{W}{ }^{\text {[2] }}$	$\overline{W R}$ to Float Delay	[9]		nsec	
$\mathrm{t}_{\mathrm{AH}}{ }^{[2]}$	Address Hold Time After DBIN During HLDA	-20		nsec	

NOTES:

1. Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured. $t_{D H}=50$ ns or $t_{D F}$, whichever is less.
2. Load Circuit.

3. $t_{C Y}=t_{D 3}+t_{r \phi 2}+t_{\phi 2}+t_{f \phi 2}+t_{D 2}+t_{r \phi 1} \geqslant 320 \mathrm{~ns}$.

TYPICAL \triangle OUTPUT DELAY VS. \triangle CAPACITANCE

4. The following are relevant when interfacing the 8080 A to devices having $\mathrm{V}_{1 H}=3.3 \mathrm{~V}$:
a) Maximum output rise time from .8 V to $3.3 \mathrm{~V}=100 \mathrm{~ns} @ C_{L}=\mathrm{SPEC}$.
b) Output delay when measured to $3.0 \mathrm{~V}=\mathrm{SPEC}+60 \mathrm{~ns}$ @ $C_{L}=\mathrm{SPEC}$.
c) If $C_{L} \neq$ SPEC, add . $6 \mathrm{~ns} / \mathrm{pF}$ if $\mathrm{C}_{\mathrm{L}}>\mathrm{C}_{\text {SPEC }}$, subtract . $3 \mathrm{~ns} / \mathrm{pF}$ (from modified delay) if $\mathrm{C}_{\mathrm{L}}<\mathrm{C}_{\mathrm{SPEC}}$.

6. $\mathrm{t}_{\mathrm{DW}}=\mathrm{t}_{\mathrm{CY}}{ }^{-\mathrm{t}_{\mathrm{D}}} 3-\mathrm{t}_{\mathrm{r}}^{\mathrm{L}} 2 \mathbf{2}-150 \mathrm{nsec}$.
7. If not HLDA, $\mathrm{t}^{2} \mathrm{WD}=\mathrm{t} W A=\mathrm{t}_{\mathrm{D}}+\mathrm{t}_{\mathrm{r} \phi 2}+10 \mathrm{~ns}$. If $\mathrm{HLDA}, \mathrm{t} W D=\mathrm{t} W A=\mathrm{t} W \mathrm{~F}$.
8. $\mathrm{t}_{\mathrm{HF}}=\mathrm{t}_{\mathrm{D}} 3+\mathrm{t}_{\mathrm{r} \phi 2}-50 \mathrm{~ns}$.
9. ${ }^{2} W F=t_{D}+t_{\mathrm{r}}^{\mathrm{\phi}} \mathbf{2}-10 \mathrm{~ns}$
10. Data in must be stable for this period during DBIN $\cdot T_{3}$. Both $\mathrm{t}_{\mathrm{DS} 1}$ and tDS2 must be satisfied.
11. Ready signal must be stable for this period during T_{2} or T_{W}. (Must be externally synchronized.)
12. Hold signal must be stable for this period during T_{2} or T_{W} when entering hold mode, and during T_{3}, T_{4}, T_{5} and TWH when in hold mode. (External synchronization is not required.)
13. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized on the following instruction. (External synchronization is not required.)
14. This timing diagram shows timing relationships only; it does not represent any specific machine cycle.

SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

- TTL Drive Capability
- 1.5μ s Instruction Cycle
- Powerful Problem Solving Instruction Set
- Six General Purpose Registers and an Accumulator
- Sixteen Bit Program Counter for Directly Addressing up to 64K Bytes of Memory
- Sixteen Bit Stack Pointer and Stack Manipulation Instructions for Rapid Switching of the Program Environment
- Decimal,Binary and Double
- Ability to Provide Priority Vectored Interrupts
- 512 Directly Addressed I/O Ports

The Intel ${ }^{\oplus}$ 8080A is a complete 8-bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using Intel's n -channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications. The 8080A contains six 8 -bit general purpose working registers and an accumulator. The six general purpose registers may be addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set or reset four testable flags. A fifth flag provides decimal arithmetic operation.
The 8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/ retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers. The sixteen bit stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting. This microprocessor has been designed to simplify systems design. Separate 16 -line address and 8 -line bi-directional data busses are used to facilitate easy interface to memory and I/O. Signals to control the interface to memory and I/O are provided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides the ability to suspend processor operation and force the address and data busses into a high impedance state. This permits ORtying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Input or Output Voltages
With Respect to $V_{B B}$
-0.3 V to +20 V
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}$ and V_{SS} With Respect to $\mathrm{V}_{\mathrm{BB}} \quad-0.3 \mathrm{~V}$ to +20 V
Power Dissipation . 1.5W

Abstract

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Noted.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Condition
VILC	Clock Input Low Voltage	$\mathrm{V}_{S S}-1$		$\mathrm{V}_{\text {SS }}+0.8$	V	
$\mathrm{V}_{\text {IHC }}$	Clock Input High Voltage	9.0		$V_{D D}+1$	V	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\mathrm{SS}}-1$		$\mathrm{V}_{\text {SS }}+0.8$	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	3.3		$\mathrm{V}_{\mathrm{CC}}+1$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage			0.45	V	
V_{OH}	Output High Voltage	3.7			V	
IDD (AV)	Avg. Power Supply Current ($\mathrm{V}_{\text {DD }}$)		40	70	mA	Operation$T_{C Y}=.38 \mu \mathrm{sec}$
$\operatorname{ICC}(A V)$	Avg. Power Supply Current (V_{CC})		60	80	mA	
$I_{B B}(A V)$	Avg. Power Supply Current ($\mathrm{V}_{\text {BB }}$)		. 01	1	mA	
$I_{\text {IL }}$	Input Leakage			± 10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{SS}} \leqslant \mathrm{~V}_{\mathrm{CLOCK}} \leqslant \mathrm{~V}_{\mathrm{DD}} \end{aligned}$
${ }^{\text {che }}$	Clock Leakage			± 10	$\mu \mathrm{A}$	
${ }^{\text {DL }}{ }^{[2]}$	Data Bus Leakage in Input Mode			$\begin{aligned} & -100 \\ & -2.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{SS}}+0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}+0.8 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{CC}} \end{aligned}$
$I_{\text {fl }}$	Address and Data Bus Leakage During HOLD			$\begin{array}{r} +10 \\ -100 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {ADDR/DATA }}=V_{C C} \\ & V_{\text {ADDR/DATA }}=V_{S S}+0.45 \mathrm{~V} \end{aligned}$

CAPACITANCE

$T_{A}=25^{\circ} C \quad V_{C C}=V_{D D}=V_{S S}=0 V, V_{B B}=-5 V$

Symbol	Parameter	Typ.	Max.	Unit	Test Condition
C_{ϕ}	Clock Capacitance	17	25	pf	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
C_{IN}	Input Capacitance	6	10	pf	Unmeasured Pins
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	10	20	pf	Returned to V_{SS}

NOTES:

1. The RESET signal must be active for a minimum of 3 clock cycles.
2. When DBIN is high and $V_{I N}>V_{I H}$ an internal active pull up will be switched onto the Data Bus.
3. ΔI supply $/ \Delta T_{A}=-0.45 \% /{ }^{\circ} \mathrm{C}$.

TYPICAL SUPPLY CURRENT VS. TEMPERATURE, NORMALIZED. [3]

DATA BUS CHARACTERISTIC DURING DBIN

8080A-2

A.C. CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, Unless Otherwise Noted

Symbol	Parameter	Min.	Max.	Unit	Test Condition
$\mathrm{t}_{\mathrm{CY}}{ }^{[3]}$	Clock Period	. 38	2.0	$\mu \mathrm{sec}$	$\begin{aligned} & -c_{L}=100 \mathrm{pf} \\ & -C_{L}=50 \mathrm{pf} \end{aligned}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Clock Rise and Fall Time	0	50	nsec	
$t_{\text {¢ }} 1$	ϕ_{1} Pulse Width	60		nsec	
$\mathrm{t}_{\phi 2}$	ϕ_{2} Pulse Width	175		nsec	
$t_{\text {D1 }}$	Delay ϕ_{1} to ϕ_{2}	0		nsec	
$t_{\text {D2 }}$	Delay ϕ_{2} to ϕ_{1}	70		nsec	
$t_{\text {D } 3}$.	Delay ϕ_{1} to ϕ_{2} Leading Edges	70		nsec	
$t_{D A}[2]$	Address Output Delay From ϕ_{2}		175	nsec	
$t_{D D}[2]$	Data Output Delay From ϕ_{2}		200	nsec	
${ }^{t_{D C}{ }^{[2]}}$	Signal Output Delay From ϕ_{1}, or ϕ_{2} (SYNC, $\overline{\text { WR }}$,WAIT, HLDA)		120	nsec	
$t_{\text {DF }}[2]$	DBIN Delay From ϕ_{2}	25	140	nsec	
$t_{D 1}{ }^{[1]}$	Delay for Input Bus to Enter Input Mode		${ }^{\text {t }}$ F	nsec	
${ }_{\text {t }}$ S1	Data Setup Time During ϕ_{1} and DBIN	20		nsec	

TIMING WAVEFORMS
[14]
(Note: Timing measurements are made at the following reference voltages: CLOCK " 1 " $=8.0 \mathrm{~V}$ $" 0 "=1.0 \mathrm{~V}$; INPUTS " 1 " = $=3.3 \mathrm{~V}, " 0 "=0.8 \mathrm{~V}$; OUTPUTS " 1 " = $2.0 \mathrm{~V}, " 0 "=0.8 \mathrm{~V}$.)

inte

8-18.
A.C. CHARACTERISTICS (Continued)
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Noted

NOTES:

1. Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured. ${ }^{\text {t }} \mathrm{DH}^{\prime}=50$ ns or tDF. whichever is less.
2. Load Circuit.

3. $t_{C Y}=t_{D}+t_{\mathrm{r} \phi 2}+t_{\phi 2}+t_{\mathrm{f} \phi 2}+t_{\mathrm{D} 2}+t_{\mathrm{r} \phi 1}>380 \mathrm{~ns}$.

4. The following are relevant when interfacing the 8080 A to devices having $\mathrm{V}_{1 \mathrm{H}}=3.3 \mathrm{~V}$:
a) Maximum output rise time from .8 V to $3.3 \mathrm{~V}=100 \mathrm{~ns} @ \mathrm{C}_{\mathrm{L}}=\mathrm{SPEC}$.
b) Output delay when measured to $3.0 \mathrm{~V}=\mathrm{SPEC}+60 \mathrm{~ns}$ @ $\mathrm{C}_{\mathrm{L}}=\mathrm{SPEC}$.
c) If $\mathrm{C}_{\mathrm{L}} \neq \mathrm{SPEC}$, add $.6 \mathrm{~ns} / \mathrm{pF}$ if $\mathrm{C}_{\mathrm{L}}>\mathrm{C}_{\text {SPEC }}$, subtract $.3 \mathrm{~ns} / \mathrm{pF}$ (from modified delay) if $\mathrm{C}_{\mathrm{L}}<\mathrm{C}_{\mathrm{SPEC}}$.
5. $t_{A W}=2 \mathrm{t}_{\mathrm{CY}}-\mathrm{t}_{\mathrm{D} 3}-\mathrm{t}_{\mathrm{r} \phi 2}-130 \mathrm{nsec}$.

6. $\mathrm{t}_{\mathrm{HF}}=\mathrm{t}_{\mathrm{D}} 3+\mathrm{t}_{\mathrm{r} \phi 2}-50 \mathrm{~ns}$.
7. $\mathrm{t}_{\mathrm{W}}=\mathrm{t}_{\mathrm{D} 3}+\mathrm{t}_{\mathrm{r} \phi 2}-10 \mathrm{~ns}$
8. Data in must be stable for this period during DBIN $\cdot T_{3}$. Both t DS1 and t DS 2 must be satisfied.
9. Ready signal must be stable for this period during T_{2} or T_{W}. (Must be externally synchronized.)
10. Hold signal must be stable for this period during T_{2} or T_{W} when entering hold mode, and during T_{3}, T_{4}, T_{5} and TWH when in hold mode. (External synchronization is not required.)
11. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized on the following instruction. (External synchronization is not required.)
12. This timing diagram shows timing relationships only; it does not represent any specific machine cycle.

SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

\author{

- Full Military Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
}
- $\pm 10 \%$ Power Supply Tolerance
- 2μ Instruction Cycle
- Powerful Problem Solving Instruction Set
- Six General Purpose Registers and an Accumulator

- Sixteen Bit Program Counter for Directly Addressing up to 64K Bytes of Memory

- Sixteen Bit Stack Pointer and Stack Manipulation Instructions for Rapid Switching of the Program Environment
- Decimal,Binary and Double Precision Arithmetic
- Ability to Provide Priority Vectored Interrupts
- 512 Directly Addressed I/O Ports
- TTL Drive Capability

The Inte ${ }^{(®)}$ M8080A is a complete 8 -bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using Intel's n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications. The M8080A contains six 8-bit general purpose working registers and an accumulator. The six general purpose registers may be addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set or reset four testable flags. A fifth flag provides decimal arithmetic operation.
The M8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/ retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers. The sixteen bit stack pointer controls the addressing of this external stack. This stack gives the M8080A the ability to easily handle multiple level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting. This microprocessor has been designed to simplify systems design. Separate 16 -line address and 8 -line bi-directional data busses are used to facilitate easy interface to memory and I/O. Signals to control the interface to memory and I/O are provided directly by the M8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides the ability to suspend processor operation and force the address and data busses into a high impedance state. This permits ORtying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Input or Output Voltages	
With Respect to V_{BB}	-0.3V to +20V
$\mathrm{V}_{C C}, \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{S S}$ With Respect to V_{BB}	-0.3V to +20V
Power Dissipation	1.7 W

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Input or Output Voltages
With Respect to $V_{B B} \ldots . .$.
$V_{C C}, V_{D D}$ and $V_{S S}$ With Respect to $V_{B B} \quad-0.3 V$ to +20 V
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. CHARACTERISTICS
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Noted.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Condition
VILC	Clock Input Low Voltage	$\mathrm{V}_{\text {SS }}-1$		$\mathrm{V}_{\text {SS }}+0.8$	V	$\begin{aligned} \mathrm{I}_{\mathrm{OL}} & =1.9 \mathrm{~mA} \text { on all outputs, } \\ \mathrm{I}_{\mathrm{OH}} & =150 \mu \mathrm{~A} . \end{aligned}$
$\mathrm{V}_{\text {IHC }}$	Clock Input High Voltage	8.5		$\mathrm{V}_{\mathrm{DD}}+1$	V	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\text {SS }}-1$		$\mathrm{V}_{\text {SS }}+0.8$	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	3.0		$\mathrm{V}_{\mathrm{CC}}+1$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage			0.45	V	
V_{OH}	Output High Voltage	3.7			V	
IDD (AV)	Avg. Power Supply Current (V_{DD})		50	80	mA	Operation$\mathrm{T}_{\mathrm{CY}}=.48 \mu \mathrm{sec}$
ICC (AV)	Avg. Power Supply Current (V_{CC})		60	100	mA	
$I_{B B}(A V)$	Avg. Power Supply Current (V_{BB})		. 01	1	mA	
$1 / L$	Input Leakage			± 10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{v}_{\mathrm{SS}} \leqslant \mathrm{v}_{\mathrm{IN}} \leqslant \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{SS}} \leqslant \mathrm{~V}_{\mathrm{CLOCK}} \leqslant \mathrm{v}_{\mathrm{DD}} \\ & \mathrm{v}_{\mathrm{SS}} \leqslant \mathrm{v}_{\mathrm{IN}} \leqslant \mathrm{v}_{\mathrm{SS}}+0.8 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{SS}}+0.8 \mathrm{~V} \leqslant \mathrm{v}_{\mathrm{IN}} \leqslant \dot{v}_{\mathrm{CC}} \end{aligned}$
I_{CL}	Clock Leakage			± 10	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{DL}}{ }^{\text {[2] }}$	Data Bus Leakage in Input Mode			$\begin{aligned} & -100 \\ & -2.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	
$I_{\text {fl }}$	Address and Data Bus Leakage During HOLD			$\begin{array}{r} +10 \\ -100 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {ADDR/DATA }}=V_{C C} \\ & V_{\text {ADDR/DATA }}=V_{S S}+0.45 \mathrm{~V} \end{aligned}$

CAPACITANCE

$T_{A}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}$

Symbol	Parameter	Typ.	Max.	Unit	Test Condition
$\mathrm{C}_{\text {¢ }}$	Clock Capacitance	17	25	pf	$f_{c}=1 \mathrm{MHz}$ Unmeasured Pins Returned to $V_{S S}$
$\mathrm{C}_{\text {IN }}$	Ińput Capacitance	6	10	pf	
Cout	Output Capacitance	10	20	pf	

NOTES:

1. The RESET signal must be active for a minimum of 3 clock cycles.
2. When DBIN is high and $V_{I N}>V_{I H}$ an internal active pull up will be switched onto the Data Bus.
3. ΔI supply $/ \Delta T_{A}=-0.45 \% /{ }^{\circ} \mathrm{C}$.

TYPICAL SUPPLY CURRENT VS. TEMPERATURE, NORMALIZED. [3]

DATA BUS CHARACTERISTIC DURING DBIN

A.C. CHARACTERISTICS

$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Noted.

Symbol	Parameter	Min.	Max.	Unit	Test Condition
${ }^{1} \mathrm{CY}{ }^{(3)}$	Clock Period	0.48	2.0	$\mu \mathrm{sec}$	
t_{r}, t_{f}	Clock Rise and Fall Time	0	50	n sec	
$\mathrm{t}_{\boldsymbol{\phi} 1}$	ϕ_{1} Pulse Width	60		nsec	
$t_{\text {¢ } 2}$	ϕ_{2} Pulse Width	220		nsec	
${ }^{\text {t } 11}$	Delay ϕ_{1} to ϕ_{2}	0		n sec	
${ }^{\text {t }}$ 2	Delay ϕ_{2} to ϕ_{1}	80		n sec	
${ }_{\text {t }}$ 3	Delay ϕ_{1} to ϕ_{2} Leading Edges	80		nsec	
$t_{\text {DA }}{ }^{[2]}$	Address Output Delay From ϕ_{2}		200	n sec	
$t_{D D}{ }^{[2]}$	Data Output Delay From ϕ_{2}		220	n sec	
$t_{D C}{ }^{[2]}$	Signal Output Delay From ϕ_{1}, or ϕ_{2} (SYNC, $\overline{W R}$, WAIT, HLDA)		140	nsec	
$t_{\text {DF }}[2]$	DBIN Delay From ϕ_{2}	25	150	n sec	
${ }_{t_{D 1}}{ }^{11]}$	Delay for Input Bus to Enter Input Mode		${ }^{t}$ DF	nsec	
${ }^{\text {toS1 }}$	Data Setup Time During ϕ_{1} and DBIN	30		nsec	

TIMING WAVEFORMS ${ }^{[14]}$
(Note: Timing measurements are made at the following reference voltages: CLOCK " 1 " $=7.0 \mathrm{~V}$, $" 0 "=1.0 \mathrm{~V}$; INPUTS " 1 " = $3.0 \mathrm{~V}, " 0 "=0.8 \mathrm{~V}$; OUTPUTS " $1 "=2.0 \mathrm{~V},{ }^{\prime \prime} 0 "=0.8 \mathrm{~V}$.)

INTE
A.C. CHARACTERISTICS (Continued)
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Noted.

Symbol	Parameter	Min.	Max.	Unit	Test Condition
${ }_{\text {t }}$ D2	Data Setup Time to ϕ_{2} During DBIN	130		nsec	$C_{L}=50 \mathrm{pf}$
${ }^{\text {t }}{ }^{\text {[}}$ [1]	Data Hold Time From ϕ_{2} During DBIN	50		nsec	
$\mathrm{t}_{\text {IE }}$ [2]	INTE Output Delay From ϕ_{2}		200	n sec	
$\mathrm{t}_{\text {RS }}$	READY Setup Time During ϕ_{2}	120		nsec	
$t_{\text {HS }}$	HOLD Setup Time to ϕ_{2}	140		nsec	
$\mathrm{t}_{\text {IS }}$	INT Setup Time During ϕ_{2} (During ϕ_{1} in Halt Mode)	120		nsec	
t_{H}	Hold Time From ϕ_{2} (READY, INT, HOLD)	0		nsec	
$\mathrm{t}_{\text {FD }}$	Delay to Float During Hold (Address and Data Bus)		130	nsec	
$\mathrm{t}_{\text {AW }}{ }^{[2]}$	Address Stable Prior to $\overline{\mathrm{WR}}$	[5]		n sec	$-C_{L}=50 \mathrm{pf}$
$\mathrm{t}_{\text {DW }}{ }^{[2]}$	Output Data Stable Prior to $\overline{W R}$	[6]		nsec	
$\mathrm{two}^{[2]}$	Output Data Stable From WR	[7]		nsec	
$\mathrm{tWA}^{[2]}$	Address Stable From WR	[7]		nsec	
$\mathrm{t}_{\mathrm{HF}}{ }^{\text {[2] }}$	HLDA to Float Delay	[8]		nsec	
$t_{W F}{ }^{[2]}$	$\overline{\text { WR }}$ to Float Delay	[9]		nsec	
$t_{A H}{ }^{[2]}$	Address Hold Time After DBIN During HLDA	-20		nsec	

NOTES:

1. Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured. ${ }^{{ }^{D} D H}=50 \mathrm{~ns}$ or t_{DF}, whichever is less.

2. $t_{C Y}=t_{D}+t_{r \phi 2}+t_{\phi 2}+t_{\phi \phi 2}+t_{D 2}+t_{r \phi 1} \geqslant 480 \mathrm{~ns}$.

TYPICAL \triangle OUTPUT DELAY VS. \triangle CAPACITANCE

4. The following are relevant when interfacing the M8080A to devices having $\mathrm{V}_{1 \mathrm{H}}=3.3 \mathrm{~V}$: a) Maximum output rise time from 8 V to $3.3 \mathrm{~V}=100 \mathrm{~ns} @ \mathrm{C}_{\mathrm{L}}=\mathrm{SPEC}$.
b) Output delay when measured to $3.0 \mathrm{~V}=\mathrm{SPEC}+60 \mathrm{~ns} @ \mathrm{C}_{\mathrm{L}}=\mathrm{SPEC}$.
c) If $C_{L} \neq \operatorname{SPEC}$, add $.6 \mathrm{~ns} / \mathrm{pF}$ if $\mathrm{C}_{\mathrm{L}}>\mathrm{C}_{\text {SPEC }}$, subtract $.3 \mathrm{~ns} / \mathrm{pF}$ (frommodified delay) if $\mathrm{C}_{\mathrm{L}}<\mathrm{C}_{S P E C}$.
5. $t_{A W}=2 t^{t} \mathrm{CY}^{-1} \mathrm{D} 3-\mathrm{t}_{\mathrm{r} \varphi} 2-140 \mathrm{nsec}$.
6. $\mathrm{t} W=\mathrm{t}_{\mathrm{CY}}{ }^{-1} \mathrm{D} 3-\mathrm{t}_{\mathrm{r} \phi} \mathrm{C}^{-170 \mathrm{nsec} \text {. }}$

8. $\mathrm{t}_{\mathrm{HF}}=\mathrm{t}_{\mathrm{D}} 3+\mathrm{t}_{\mathrm{r}}^{\mathrm{C} 2} \mathbf{- 5 0 \mathrm { ns }}$.
9. $\mathrm{t}_{\mathrm{W}}=\mathrm{t}_{\mathrm{D} 3}+\mathrm{t}_{\mathrm{r} \phi 2}-10 \mathrm{~ns}$
10. Data in must be stable for this period during DBIN $\cdot T_{3}$. Both $\mathrm{t}_{\mathrm{DS} 1}$ and $\mathrm{t}_{\mathrm{DS} 2}$ must be satisfied.

1. Ready signal must be stable for this period during T_{2} or T_{W}. (Must be externally synchronized.)
2. Hold signal must be stable for this period during T_{2} or T_{W} when entering hold mode, and during T_{3}, T_{4}, T_{5} and TWH when in hold mode. External synchronization is not required.!
3. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized on the following instruction. (External synchronization is not required.)
4. This timing diagram shows timing relationships only: it does not represent any specific machine cycle.

OTHER INTEL MCS-80 MILITARY TEMP PRODUCTS

AVAILABLE NOW
 M8080A
 M8102A-4
 M5101
 M8216
 M8316A

COMING SOON
M8224
M8228
M8212
M8251
M8255
M8214
M8702A
M8708

Military Microcomputer System

CLOCK GENERATOR AND DRIVER FOR 8080A CPU

Single Chip Clock Generator/Driver for 8080A CPU
- Power-Up Reset for CPU
- Ready Synchronizing Flip-Flop
- Advanced Status Strobe

- Oscillator Output for External System Timing
- Crystal Controlled for Stable System Operation
- Reduces System Package Count

The 8224 is a single chip clock generator/driver for the 8080A CPU. It is controlled by a crystal, selected by the designer, to meet a variety of system speed requirements.
Also included are circuits to provide power-up reset, advance status strobe and synchronization of ready.
The 8224 provides the designer with a significant reduction of packages used to generate clocks and timing for 8080A.

苍

$\overline{\text { RESIN }}$	RESET INPUT
RESET	RESET OUTPUT
RDYIN	READY INPUT
READY	READY OUTPUT
SYNC	SYNC INPUT
$\overline{\text { STSTB }}$	STATUS STB (ACTIVE LOW)
ϕ_{1}	8080 CLOCKS
ϕ_{2}	

XTAL 1	CONNECTIONS FOR CRYSTAL
XTAL 2	
TANK	USED WITH OVERTONE XTAL
OSC	OSCILLATOR OUTPUT
ϕ_{2} (TTL)	ϕ_{2} CLK (TTL LEVEL)
V_{CC}	+5 V
$\mathrm{~V}_{\mathrm{DD}}$	+12 V
GND	OV

8224

Absolute Maximum Ratings*	
Temperature Under Bias.	$-0^{\circ} \mathrm{C}$ to 70°
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Supply Voltage, VCC	-0.5 V to +7V
Supply Voltage, VDD	-0.5 V to +13.5 V
Input Voltage	-1.5 V to +7 V
Output Current.	. 100 mA

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%$.

Symbol	Parameter	Limits			Units	Test Conditions
		Min.	Typ.	Max.		
I_{F}	Input Current Loading			-. 25	mA	$\mathrm{V}_{\mathrm{F}}=.45 \mathrm{~V}$
I_{R}	Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
V_{C}	Input Forward Clamp Voltage			1.0	V	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
$V_{\text {IL }}$	Input "Low" Voltage			. 8	V	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
$\mathrm{V}_{1 \mathrm{H}}$	Input "High" Voltage	$\begin{aligned} & 2.6 \\ & 2.0 \end{aligned}$			V	Reset Input All Other Inputs
$\mathrm{V}_{\text {IH }}-\mathrm{V}_{\text {IL }}$	RESIN Input Hysteresis	. 25			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
V_{OL}	Output "Low" Voltage			$\begin{aligned} & .45 \\ & .45 \end{aligned}$	V V	(ϕ_{1}, ϕ_{2}), Ready, Reset, STSTB $\mathrm{IOL}_{\mathrm{OL}}=2.5 \mathrm{~mA}$ All Other Outputs $\mathrm{IOL}_{\mathrm{OL}}=15 \mathrm{~mA}$
V_{OH}	Output "High" Voltage ϕ_{1}, ϕ_{2} READY, RESET All Other Outputs	$\begin{aligned} & 9.4 \\ & 3.6 \\ & 2.4 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{Isc}^{[1]}$	Output Short Circuit Current (All Low Voltage Outputs Only)	-10		-60	mA	$\begin{aligned} & V_{O}=0 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V} \end{aligned}$
ICC	Power Supply Current			115	mA	
IDD	Power Supply Current			12	mA	

Note: 1. Caution, ϕ_{1} and ϕ_{2} output drivers do not have short circuit protection

CRYSTAL REQUIREMENTS

Tolerance: $.005 \%$ at $0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
Resonance: Series (Fundamental)*
Load Capacitance: 20-35pF
Equivalent Resistance: 75-20 ohms
Power Dissipation (Min): 4mW
*With tank circuit use 3rd overtone mode.

A.C. Characteristics

$V_{C C}=+5.0 \mathrm{~V} \pm 5 \% ; V_{D D}=+12.0 \mathrm{~V} \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Limits			Units	Test Conditions
		Min.	Typ.	Max.		
$\mathrm{t}_{\text {¢ } 1}$	ϕ_{1} Pulse Width	$\frac{2 \mathrm{tcy}}{9}-20 \mathrm{~ns}$			ns	$C_{L}=20 \mathrm{pF}$ to 50 pF
$t_{\text {¢ } 2}$	ϕ_{2} Pulse Width	$\frac{5 t c y}{9}-35 \mathrm{~ns}$				
$t_{\text {d } 1}$	ϕ_{1} to ϕ_{2} Delay	0				
$t_{\text {D2 }}$	ϕ_{2} to ϕ_{1} Delay	$\frac{2 \mathrm{tcy}}{9}-14 \mathrm{~ns}$				
$t_{\text {D }}$	ϕ_{1} to ϕ_{2} Delay	$\frac{2 \mathrm{tcy}}{9}$		$\frac{2 \mathrm{tcy}}{9}+20 \mathrm{~ns}$		
t_{R}	ϕ_{1} and ϕ_{2} Rise Time			20		
t_{F}	ϕ_{1} and ϕ_{2} Fall Time			20		
${ }_{\text {t }}^{\text {¢ } 22}$	ϕ_{2} to ϕ_{2} (TTL) Delay	-5		+15	ns	$\begin{aligned} & \phi_{2} \text { TTL,CL }=30 \\ & R_{1}=300 \Omega \\ & R_{2}=600 \Omega \\ & \hline \end{aligned}$
	ϕ_{2} to STSTB Delay	$\frac{6 \mathrm{tcy}}{9}-30 \mathrm{~ns}$		$\frac{6 \mathrm{tcy}}{9}$		$\begin{aligned} & \overline{\text { STSTB }, C L=15 p F ~} \\ & R_{1}=2 K \\ & R_{2}=4 K \end{aligned}$
${ }_{\text {tpw }}$	STSTB Pulse Width	$\frac{\text { tcy }}{9}-15 \mathrm{~ns}$				
${ }^{\text {t }}$ DRS	RDYIN Setup Time to Status Strobe	$50 \mathrm{~ns}-\frac{4 \mathrm{tcy}}{9}$				
$t_{\text {DRH }}$	RDYIN Hold Time After STSTB	$\frac{4 \mathrm{tcy}}{9}$				
${ }^{\text {t }}$ D	RDYIN or RESIN to ϕ_{2} Delay.	$\frac{4 \text { tcy }}{9}-25 n s$				Ready \& Reset $\begin{aligned} & C L=10 \mathrm{pF} \\ & \mathrm{R}_{1}=2 \mathrm{~K} \\ & \mathrm{R}_{2}=4 \mathrm{~K} \end{aligned}$
${ }^{\text {t }}$ LLK	CLK Period		$\frac{\mathrm{tcy}}{9}$			
$\mathrm{f}_{\text {max }}$	Maximum Oscillating Frequency	27			MHz	
$\mathrm{C}_{\text {in }}$	Input Capacitance			8	pF	$\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \\ & V_{D D}=+12 \mathrm{~V} \\ & V_{B I A S}=2.5 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$

8224

WAVEFORMS

VOLTAGE MEASUREMENT POINTS: ϕ_{1}, ϕ_{2} Logic " 0 " $=1.0 \mathrm{~V}$, Logic " $1 "=8.0 \mathrm{~V}$. All other signals measured at 1.5 V .

EXAMPLE:

A.C. Characteristics (For $\mathrm{t}_{\mathrm{CY}}=488.28 \mathrm{~ns}$)
$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%$.

Symbol	Parameter	Limits			Units	Test Conditions
		Min.	Typ.	Max.		
$\mathrm{t}_{\boldsymbol{\phi} 1}$	ϕ_{1} Pulse Width	89			ns	$\mathrm{t}_{\mathrm{CY}}=488.28 \mathrm{~ns}$
$\mathrm{t}_{\phi 2}$	ϕ_{2} Pulse Width	236			ns	
$\mathrm{t}_{\mathrm{D} 1}$	Delay ϕ_{1} to ϕ_{2}	0			ns	
$t_{\text {D2 }}$	Delay ϕ_{2} to ϕ_{1}	95			ns	$\phi_{1} \& \phi_{2}$ Loaded to$C_{L}=20 \text { to } 50 \mathrm{pF}$
${ }_{\text {t }}{ }^{\text {3 }}$	Delay ϕ_{1} to ϕ_{2} Leading Edges	109		129	ns	
t_{r}	Output Rise Time			20	ns	
t_{f}	Output Fall Time			20		
${ }_{\text {t }}^{\text {DSS }}$	ϕ_{2} to STSTB Delay	296		326	ns	
${ }^{\text {t }}$ D ${ }^{\text {2 }}$	ϕ_{2} to ϕ_{2} (TTL) Delay	-5		+15	ns	
$t_{\text {PW }}$	Status Strobe Pulse Width	40			ns	Ready \& Reset Loaded to $2 \mathrm{~mA} / 10 \mathrm{pF}$
${ }^{\text {t DRS }}$	RDYIN Setup Time to STSTB	-167			ns	
$t_{\text {DRH }}$	RDYIN Hold Time after STSTB	217			ns	All measurements referenced to 1.5 V unless specified otherwise.
${ }^{\text {t }}$ DR	READY or RESET to ϕ_{2} Delay	- 192			ns	
$\mathrm{f}_{\text {MAX }}$	Oscillator Frequency			18.432	MHz	

8228/8238

SYSTEM CONTROLLER AND BUS DRIVER FOR 8080A CPU

\author{

- Single Chip System Control for MCSㄹ-80 Systems
 - Built-in Bi-Directional Bus Driver for Data Bus Isolation
 - Allows the use of Multiple Byte Instructions (e.g. CALL) for Interrupt Acknowledge
}
User Selected Single Level Interrupt Vector (RST 7)
- 28 Pin Dual In-Line Package
- Reduces System Package Count
- *8238 Has Advanced IOW/MEMW For Large System Timing Control

The 8228 is a single chip system controller and bus driver for MCS-80. It generates all signals required to directly interface MCS-80 family RAM, ROM, and I/O components.
A bi-directional bus driver is included to provide high system TTL fan-out. It also provides isolation of the 8080 data bus from memory and I/O. This allows for the optimization of control signals, enabling the systems deisgner to use slower memory and I/O. The isolation of the bus driver also provides for enhanced system noise immunity.
A user selected single level interrupt vector (RST 7) is provided to simplify real time, interrupt driven, small system requirements. The 8228 also generates the correct control signals to allow the use of multiple byte instructions (e.g., CALL) in response to an INTERRUPT ACKNOWLEDGE by the 8080A. This feature permits large, interrupt driven systems to have an unlimited number of interrupt levels.
The 8228 is designed to support a wide variety of system bus structures and also reduce system package count for cost effective, reliable, design of the MCS-80 systems.

PIN CONFIGURATION

8228/8238 BLOCK DIAGRAM

PIN NAMES

D7-D0	DATA BUS (8080 SIDE)	INTA	INTERRUPT ACKNOWLEDGE
DB7.DB0	DATA BUS (SYSTEM SIDE)	HLDA	HLDA (FROM 8080)
$\overline{\text { IOR }}$	I/O READ	WR	WR (FROM 8080)
I/OW	I/O WRITE	BUSEN	BUS ENABLE INPUT
MEMR	MEMORY READ	STSTB	STATUS STROBE (FROM 8224)
MEMW	MEMORY WRITE	$V_{\text {cc }}$	+5V
DBIN	DBIN (FROM 8080)	GND	0 VOLTS

8228, 8238

Absolute Maximum Ratings*	
Temperature Under Bias.	$-0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Supply Voltage, $\mathrm{V}_{\text {cc }}$	-0.5 V to +7 V
Input Voltage.	-1.5 V to +7 V
Output Current.	.100m

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$.

Symbol	Parameter	Limits			Unit	Test Conditions
		Min.	Typ. [1]	Max.		
V_{C}	Input Clamp Voltage, All Inputs		. 75	-1.0	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$; $\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
I_{F}	Input Load Current, $\overline{\text { STSTB }}$			500	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{F}=0.45 \mathrm{~V} \end{aligned}$
	D_{2} \& D_{6}			750	$\mu \mathrm{A}$	
	$\begin{aligned} & D_{0}, D_{1}, D_{4}, D_{5}, \\ & \& D_{7}, \end{aligned}$			250	$\mu \mathrm{A}$	
	All Other Inputs			250	$\mu \mathrm{A}$	
I_{R}	Input Leakage Current $\overline{\text { STSTB }}$			100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=5.25 \mathrm{~V} \end{aligned}$
	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$			20	$\mu \mathrm{A}$	
	All Other Inputs			100	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {TH }}$	Input Threshold Voltage, All Inputs	0.8		2.0	V	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
I_{cc}	Power Supply Current		140	190	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage, $\mathrm{D}_{0}-\mathrm{D}_{7}$. 45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$
	All Other Outputs			. 45	V	$\mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$
V_{OH}	Output High Voltage, $D_{0}-D_{7}$	3.6	3.8		V	$V_{C C}=4.75 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$
	All Other Outputs	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$
los	Short Circuit Current, All Outputs	15		90	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Io(off)	Off State Output Current, All Control Outputs			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.25$
				-100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=.45 \mathrm{~V}$
IINT	INTA Current			5	mA	(See Figure below)

[^11]
WAVEFORMS

VOLTAGE MEASUREMENT POINTS: $D_{0}-D_{7}$ (when outputs) Logic " 0 " $=0.8 \mathrm{~V}$, Logic " 1 " $=3.0 \mathrm{~V}$. All other signals measured at 1.5 V .
*ADVANCED $\overline{I O W} / \overline{M E M W}$ FOR 8238 ONLY.
A.C. Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$.

Symbol	Parameter	Limits		Units	Condition
		Min.	Max.		
$t_{\text {PW }}$	Width of Status Strobe	22		ns	
${ }_{\text {tss }}$	Setup Time, Status Inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$	8		ns	
${ }_{\text {t }}^{\text {SH }}$	Hold Time, Status Inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$	5		ns	
${ }_{\text {t }}^{\text {D }}$ c	Delay from STSTB to any Control Signal	20	60	ns	$C_{L}=100 \mathrm{pF}$
$\mathrm{t}_{\text {RR }}$	Delay from DBIN to Control Outputs		30	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$t_{\text {RE }}$	Delay from DBIN to Enable/Disable 8080 Bus		45	ns	$C_{L}=25 \mathrm{pF}$
$t_{\text {RD }}$	Delay from System Bus to 8080 Bus during Read		30	ns	$C_{L}=25 \mathrm{pF}$
twr	Delay from $\overline{W R}$ to Control Outputs	5	45	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
twe	Delay to Enable System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ after $\overline{\text { STSTB }}$		30	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
twD	Delay from 8080 Bus $D_{0}-D_{7}$ to System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ during Write	5	40	ns	$C_{L}=100 \mathrm{pF}$
t_{E}	Delay from System Bus Enable to System Bus $\mathrm{DB}_{0}-\mathrm{DB}_{7}$		30	ns	$C_{L}=100 \mathrm{pF}$
t_{HD}	HLDA to Read Status Outputs		25	ns	
${ }_{t}{ }_{\text {D }}$	Setup Time, System Bus Inputs to HLDA	10		ns	
${ }^{\text {t }}$ H	Hold Time, System Bus Inputs to HLDA	20		ns	$C_{L}=100 \mathrm{pF}$

Capacitance This parameter is periodically sampled and not 100% tested.

Symbol	Parameter	Limits			Unit
		Min.	Typ.[1]	Max.	
$\mathrm{CiN}^{\text {N }}$	Input Capacitance		8	12	pF
Cout	Output Capacitance Control Signals		7	15	pF
I/O	I/O Capacitance (D or DB)		8	15	pF

TEST CONDITIONS: $\mathrm{V}_{B I A S}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$.

Note 2: For $D_{0}-D_{7}: R_{1}=4 K \Omega, R_{2}=\infty \Omega$, $C_{L}=25 p F$. For all other outputs: $R_{1}=500 \Omega, R_{2}=1 \mathrm{~K} \Omega, C_{L}=100 \mathrm{pF}$.

INTA Test Circuit (for RST 7)

CPU Standard Interface

```
- Instruction Cycle Time -
    12.5 \mus with 8008-1 or 20 }\mu\textrm{s
    with }800
- Directly addresses 16K x }
    bits of memory (RAM, ROM,
    or S.R.)
■ Interrupt Capability
```

- 48 Instructions, Data Oriented
- Address stack contains eight 14-bit registers (including program counter) which permit nesting of subroutines up to seven levels

The 8008 is a single chip MOS 8-bit parallel central processor unit for the MCS-8 microcomputer system.
This CPU contains six 8 -bit data registers, an 8 -bit accumulator, two 8 -bit temporary registers, four flag bits (carry, zero, sign, parity), and an 8 -bit parallel binary arithmetic unit which implements addition, subtraction, and logical operations. A memory stack containing a 14 -bit program counter and seven 14 -bit words is used internally to store program and subroutine addresses. The 14 -bit address permits the direct addressing of 16 K words of memory (any mix of RAM, ROM or S.R.).
The instruction set of the 8008 consists of 48 instructions including data manipulation, binary arithmetic, and jump to subroutine.

The normal program flow of the 8008 may be interrupted through the use of the INTERRUPT control line. This allows the servicing of slow I/O peripheral devices while also executing the main program.
The READY command line synchronizes the 8008 to the memory cycle allowing any type or speed of semiconductor memory to be used.

8008 PHOTOMICROGRAPH

8008, 8008-1

8008 FUNCTIONAL PIN DESCRIPTION

$D_{0}-D_{7}$

BI-DIRECTIONAL DATA BUS. All address and data communication between the processor and the program memory, data memory, and I/O devices occurs on these 8 lines. Cycle control information is also available.

INT

INTERRUPT input. A logic " 1 " level at this input causes the processor to enter the INTERRUPT mode.

READY
READY input. This command line is used to synchronize the 8008 to the memory cycle allowing any speed memory to be used.

SYNC

SYNC output. Synchronization signal generated by the processor. It indicates the beginning of a machine cycle.
ϕ_{1}, ϕ_{2}
Two phase clock inputs.
$\mathbf{S}_{\mathbf{0}}, \mathbf{S}_{1}, \mathbf{S}_{\mathbf{2}}$
MACHINE STATE OUTPUTS. The processor controls the use of the data bus and determines whether it will be sending or receiving data. State signals S_{0}, S_{1}, and S_{2}, along with SYNC inform the peripheral circuitry of the state of the processor.
$V_{D D}-9 V \pm 5 \%$

BASIC INSTRUCTION SET

Data and Instruction Formats

Data in the 8008 is stored in the form of 8 -bit binary integers. All data transfers to the system data bus will be in the same format.

$$
\frac{D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}}{\text { DATA WORD }}
$$

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored in successive words in program memory. The instruction formats then depend on the particular operation executed.

One Byte Instructions		TYPICAL INSTRUCTIONS
	OP CODE	Register to register, memory reference. I/O arithmetic or logical, rotate or
Two Byte Instructions		return instructions
$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$	OP CODE	
	OPERAND	Immediate mode instructions
Three Byte Instructions		
	OP CODE	
$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{O}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$	LOW ADDRESS	JUMP or CALL instructions
$\times \times \quad \times \quad \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \quad \mathrm{D}_{1} \quad \mathrm{D}_{0}$	HIGH ADDRESS*	-For the third byte of this instruction, D_{6} and D_{7} are "don't care" bits.

For the MCS $-8^{\text {TM }}$ a logic " 1 " is defined as a high level and a logic " 0 " is defined as a low level.
Index Register Instructions
The load instructions do not affect the flag flip-flops. The increment and decrement instructions affect all flip-
flops except the carry.

MNEMONIC (1) MOV r_{1}, r_{2}	MINIMUM STATES REQUIRED (5)	INSTRUCTION CODE							DESCRIPTION OF OPERATION
		$D_{7} D_{6}$	$\mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3}$			$\mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$			
		11	D	D	D	S	S	S	Load index register r_{1} with the content of index register r_{2}.
(2) MOV r, M	(8)	11	D	D	D	1	1	1	Load index register r with the content of memory register M.
Mov M, r	(7)	11	1	1	1	S	S	S	Load memory register M with the content of index register r.
(3) MVI r	(8)	$\begin{array}{ll} \hline 0 & 0 \\ B & B \end{array}$	D			1		0	Load index register r with data B . . . B.
MVI M	(9)	$\begin{array}{ll} \hline 0 & 0 \\ B & B \\ \hline \end{array}$	1		1 B	B	1	B	Load memory register M with data B . . B.
INR r	(5)	00	D	D	D	0	0	0	Increment the content of index register $r(r \neq A)$.
DCR r	(5)	00	D	D	D	0	0	1	Decrement the content of index register $r(r \neq A)$.

Accumulator Group Instructions

The result of the ALU instructions affect all of the flag flip-flops. The rotate instructions affect only the carry flip-flop.

ADD r	(5)	1	0	0	0	0	S	S	S	Add the content of index register r, memory register M, or data B . . B to the accumulator. An overflow (carry) sets the carry flip-flop. Add the content of index register r, memory register M, or data B . . . B from the accumulator with carry. An overflow (carry) sets the carry flip.flop. Subtract the content of index register r, memory register M, or data B . . B from the accumulator. An underflow (borrow) sets the carry flip-flop. Subtract the content of index register r, memory register M, or data data B . . B from the accumulator with borrow. An underflow (borrow) sets the carry flip-flop.			
ADD M	(8)	1	0	0	0	0	1	1	1				
ADI	(8)		O										
ADC r	(5)	1	0	0	0	1	S	S	S				
ADC M	(8)	1	0	0	0	1	1	1	1				
ACl	(8)		O										
SUB r	(5)	1	0	0	1	0	S	S	S				
SUB M	(8)	1	0	0	1	0	1	1	1				
SUI	(8)		O										
SBB r	(5)	1	0	0	1	1	S	S	S				
SBB M	(8)	1	0	0	1.	1	1	1	1				
SBI	(8)		O										

BASIC INSTRUCTION SET

MNEMONIC	MINIMUM STATES REQUIRED (5)	$\mathrm{D}_{7} \mathrm{D}_{6}$	INSTRUCTION CODE						DESCRIPTION OF OPERATION
				D_{4}	D_{3}		D_{1}		
ANA I		10	1	0	0	S	S	S	Compute the logical AND of the content of index register r. memory register M , or data $\mathrm{B} \ldots \mathrm{B}$ with the accumulator.
ANA M	(8)	10	1	0	0	1	1	1	
ANI	(8)	$\begin{array}{ll} 0 & 0 \\ B & B \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 8 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & B \end{aligned}$	1			
XRA	(5)	10	1	0	1	S	S	S	Compute the EXCLUSIVE OR of the content of index register
XRA M	(8)	10	1	0	1	1	1	1	r, memory register M, or data B . . B with the accumulator.
XRI	(8)	$\begin{array}{ll} 0 & 0 \\ B & B \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & B \\ & \hline \end{aligned}$		$\begin{array}{r} 1 \\ B \\ \hline \end{array}$	1			
ORA ${ }^{\text {r }}$	(5)	10	1	1	0	S	S	S	Compute the INCLUSIVE OR of the content of index register
ORA M	(8)	10	1	1	0	1	1	1	r, memory register m, or data B . . B with the accumulator .
ORI	(8)	$\begin{array}{ll}\text { O } & 0 \\ \text { B } & \text { B }\end{array}$	1		O	1			
CMP r	(5)	10	1	1	1	S	S	S	Compare the content of index register r , memory register M ,
CMP M	(8)	10	1	1	1	1	1		or data B . . B with the accumulator. The content of the
CPI	(8)	$\begin{array}{ll} 0 & 0 \\ B & B \end{array}$	1	1	$\begin{aligned} & 1 \\ & B \end{aligned}$	1	0	1 0	accumulator is unchanged.
RLC	(5)	00	0	0	0	0	1	0	Rotate the content of the accumulator left.
RRC	(5)	00	0	0	1	0	1	0	Rotate the content of the accumulator right.
RAL	(5)	00	0	1	0	0	1	0	Rotate the content of the accumulator left through the carry.
RAR	(5)	00	0	1	1	0	1	0	Rotate the content of the accumulator right through the carry.

Program Counter and Stack Control Instructions

(4) JMP	(11)	$\begin{array}{ll} 001 \\ B_{2} & B_{2} \\ \times \quad \mathrm{X} \end{array}$	$\begin{array}{llll} \hline x & X & X \\ B_{2} & B_{2} & B_{2} \\ B_{3} & B_{3} & B_{3} \\ \hline \end{array}$	$\begin{array}{\|ccc} 1 & 0 & 0 \\ B_{2} & B_{2} & B_{2} \\ B_{3} & B_{3} & B_{3} \\ \hline \end{array}$	Unconditionany jump to memory address $\mathrm{B}_{3} \ldots \mathrm{~B}_{3} \mathrm{~B}_{2} \ldots \mathrm{~B}_{2}$.
(5) JNC, JNZ, JP, JPO	(9 or 11)	$\begin{array}{ll} 0 & 1 \\ \mathrm{~B}_{2} & \mathrm{~B}_{2} \\ \mathrm{X} & \mathrm{X} \end{array}$	$\begin{array}{lll} 0 & C_{4} & C_{3} \\ B_{2} & B_{2} & B_{2} \\ B_{3} & B_{3} & B_{3} \\ \hline \end{array}$	$\begin{array}{lll} 0 & 0 & 0 \\ B_{2} & B_{2} & B_{2} \\ B_{3} & B_{3} & B_{3} \end{array}$	Jump to memory address $\mathrm{B}_{3} \ldots \mathrm{~B}_{3} \mathrm{~B}_{2} \ldots \mathrm{~B}_{2}$ if the condition flip-flop is false. Otherwise, execute the next in :-ruction in sequence.
$\begin{aligned} & \text { JC, JZ JPE } \end{aligned}$	(9 or 11)	$\begin{array}{ll} 00 & 1 \\ B_{2} & B_{2} \\ \times \quad \times \\ \hline \end{array}$	$\begin{array}{lll} \hline 1 & C_{4} & C_{3} \\ B_{2} & B_{2} & B_{2} \\ B_{3} & B_{3} & B_{3} \\ \hline \end{array}$	$\left.\begin{array}{lll} 0 & 0 & 0 \\ B_{2} & B_{2} & B_{2} \\ B_{3} & B_{3} & B_{3} \end{array} \right\rvert\,$	Jump to memory address $\mathrm{B}_{3} \ldots \mathrm{~B}_{3} \mathrm{~B}_{2} \ldots \mathrm{~B}_{2}$ It the condition flip-flop is true. Otherwise, execute the next instructicn in sequence.
CALL	(11)	$\begin{array}{ll} \hline 0 & 1 \\ B_{2} & B_{2} \\ \times & \mathrm{X} \end{array}$	$\begin{array}{lll} x & \times & x \\ B_{2} & B_{2} & B_{2} \\ B_{3} & B_{3} & B_{3} \end{array}$	$\begin{array}{lll} 1 & 1 & 0 \\ B_{2} & B_{2} & B_{2} \\ B_{3} & B_{3} & B_{3} \end{array}$	Unconditionally call the subroutine at memory address $\mathrm{B}_{3} \ldots$ $\mathrm{B}_{3} \mathrm{~B}_{2} \ldots \mathrm{~B}_{2}$. Save the current address (up one level in the stack).
CNC, CNZ. CP, CPO	(9 or 11)	$\begin{array}{ll} \hline 0 & 1 \\ B_{2} & B_{2} \\ \mathrm{x} & \mathrm{X} \end{array}$	O_{2} C_{4} C_{3} B_{2} $\mathrm{~B}_{2}$ $\mathrm{~B}_{2}$ $\mathrm{~B}_{3}$ $\mathrm{~B}_{3}$ $\mathrm{~B}_{3}$	$\begin{array}{lll} 0 & 1 & 0 \\ B_{2} & B_{2} & B_{2} \\ B_{3} & B_{3} & B_{3} \end{array}$	Call the subroutine at memory address $\mathrm{B}_{3} \ldots \mathrm{~B}_{3} \mathrm{~B}_{2} \ldots \mathrm{~B}_{2}$ if the condition flip-flop is false, and save the current address (up one level in the stack.) Otherwise, execute the next instruction in sequence.
CC, CZ, CM, CP'E	(9 or 11)	$\begin{array}{ll} \hline 0 \quad 1 \\ \mathrm{~B}_{2} \mathrm{~B}_{2} \\ \mathrm{X} \end{array}$	$\begin{array}{lll} 1 & C_{4} & C_{3} \\ B_{2} & B_{2} & B_{2} \\ B_{3} & B_{3} & B_{3} \\ \hline \end{array}$	$\begin{array}{lll} 0 & 1 & 0 \\ B_{2} & B_{2} & B_{2} \\ B_{3} & B_{3} & B_{3} \end{array}$	Call the subroutine at memory address $\mathrm{B}_{3} \ldots \mathrm{~B}_{3} \mathrm{~B}_{2} \ldots \mathrm{~B}_{2}$ if the condition flip-flop is true, and save the current address (up one level in the stack). Otherwise, execute the next instruction in sequence.
RET	(5)	00	$\times \times \times$	$\begin{array}{lll}11 & 1\end{array}$	Unconditionally return (down one level in the stack).
RNC, RNZ, RP, RPO	(3 or 5)	00	$0 \mathrm{C}_{4} \mathrm{C}_{3}$	$\begin{array}{lll}0 & 1 & 1 .\end{array}$	Return (down one level in the stack) if the condition flip-flop is false. Otherwise, execute the next instruction in sequence.
RC, RZ RM, RPE	(3 or 5)	00	$1 \mathrm{C}_{4} \mathrm{C}_{3}$	$0 \begin{array}{lll}0 & 1\end{array}$	Return (down one level in the stack) if the condition flip-flop is true. Otherwise, execute the next instruction in sequence.
RST	(5)	00	A A A	1001	Call the subroutine at memory address AAAOOO (up one level in the sta

Input/Output Instructions

IN	(8)	0	1	0	0	M	$M M 1$	Read the content of the selected input port (MMM) into the accumulator.
OUT	(6)	0	1	R R M M M 1	Write the content of the accumulator into the selected output port (RRMMM, RR $\neq 00$).			

Machine Instruction

HLT	(4)	0	0	0	0	0	0	0	\times	Enter the STOPPED state and remain there until interrupted.

NOTES:
(1) \quad SSS $=$ Source Index Register \quad These registers, r_{i}, are designated A(accumulator-000)

DDD $=$ Destination Index Register $5 \mathrm{~B}(001), \mathrm{C}(010), \mathrm{D}(011), \mathrm{E}(100), \mathrm{H}(101), \mathrm{L}(110)$.
(2) Memory registers are addressed by the contents of registers H \& L .
(3) Additional bytes of instruction are designated by BBBBBBBB.
(4) $X=$ "Don't Care".
(5) Flag flip-flops are defined by $\mathrm{C}_{4} \mathrm{C}_{3}$: carry (00 -overflow or underflow), zero (01 -result is zero), sign (10 -MSB of result is " 1 "),
parity (11-parity is even).

8008, 8008-1

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature	$00^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
\quad Under Bias	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	
Input Voltages and Supply	
Voltage With Respect	+0.5 to -20 V
to V_{CC}	$1.0 \mathrm{~W} @ 25^{\circ} \mathrm{C}$

*COMMENT
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied.

D.C. AND OPERATING CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%$ unless otherwise specified. Logic " 1 " is defined as the more positive level ($\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}}$). Logic " 0 " is defined as the more negative level ($\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OL}}$).

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
IDD	AVERAGE SUPPLY CURRENTOUTPUTS LOADED*		30	60	mA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{L}	INPUT LEAKAGE CURRENT			10	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$
$V_{\text {IL }}$	INPUT LOW VOLTAGE (INCLUDING CLOCKS)	$V_{D D}$		$V_{c c}{ }^{-4.2}$	V	
V_{IH}	INPUT HIGH VOLTAGE (INCLUDING CLOCKS)	$\mathrm{V}_{\mathrm{cc}}{ }^{-1.5}$		$\mathrm{V}_{\mathrm{cc}}+0.3$	V	
V_{OL}	OUTPUT LOW VOLTAGE			0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=0.44 \mathrm{~mA} \\ & \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF} \end{aligned}$
V_{OH}	OUTPUT HIGH VOLTAGE	$V_{c c}{ }^{-1.5}$			V	$\mathrm{I}_{\mathrm{OH}}=0.2 \mathrm{~mA}$

*Measurements are made while the 8008 is executing a typical sequence of instructions. The test load is selected such that at $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=0.44 \mathrm{~mA}$ on each output.

A.C. CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%$. All measurements are referenced to 1.5 V levels.

SYMBOL	PARAMETER	$\frac{8008}{\text { LIMITS }}$		8008-1 LIMITS		UNIT	TEST CONDITIONS
		MIN.	MAX.	MIN.	MAX.		
${ }^{\text {t }}$ CY	CLOCK PERIOD	2	3	1.25	3	$\mu \mathrm{s}$	$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}=50 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	CLOCK RISE AND FALL TIMES		50		50	ns	
${ }^{t^{\prime}{ }_{1}}$	PULSE WIDTH OF ϕ_{1}	. 70		. 35		$\mu \mathrm{s}$	
${ }^{\text {t }}$ ¢ 2	PULSE W/IDTH OF ϕ_{2}	. 55		. 35		$\mu \mathrm{s}$	
${ }^{t}{ }_{\text {D1 }}$	CLOCK DELAY FROM FALLING EDGE OF ϕ_{1} TO FALLING EDGE OF ϕ_{2}	. 90	1.1		1.1	$\mu \mathrm{s}$	
${ }^{\text {t }}$ 2	CLOCK DELAY FROM ϕ_{2} TO ϕ_{1}	. 40		. 35		$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{D} 3}$	CLOCK DELAY FROM ϕ_{1} TO ϕ_{2}	. 20		. 20		$\mu \mathrm{s}$	
t_{DD}	DATA OUT DELAY		1.0		1.0	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
${ }^{\text {t }}{ }_{\text {OH }}$	HOLD TIME FOR DATA BUS OUT	. 10		. 10		$\mu \mathrm{s}$	
$t_{\text {IH }}$	HOLD TIME FOR DATA IN	[1]		[1]		$\mu \mathrm{s}$	
${ }^{\text {t }}$ SD	SYNC OUT DELAY		. 70		. 70	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
${ }^{\text {t }}$ S1	STATE OUT DELAY (ALL STATES EXCEPT T1 AND T11) ${ }^{[2]}$		1.1		1.1	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
${ }^{t}$ s2	STATE OUT DELAY (STATES T1 AND T1I)		1.0		1.0	$\mu \mathrm{s}$	$C_{L}=100 \mathrm{pF}$
${ }^{\text {t }}$ WW	PULSE WIDTH OF READY DURING ϕ_{22} TO ENTER T3 STATE	. 35		. 35		$\mu \mathrm{s}$	
${ }^{\text {t }}$ RD	READY DELAY TO ENTER WAIT STATE	. 20		. 20		$\mu \mathrm{s}$	

[^12]
8008, 8008-1

TIMING DIAGRAM

Notes: 1. READY line must be at " 0 " prior to ϕ_{22} of T_{2} to guarantee entry into the WAIT state.
2. INTERRUPT line must not change levels within 200 ns (max.) of falling edge of ϕ_{1}.

TYPICAL D.C. CHARACTERISTICS

TYPICAL A.C. CHARACTERISTICS

CAPACITANCE $f=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; Unmeasured Pins Grounded

SYMBOL	TEST	LIMIT (pF)	
		TYP.	MAX.
$C_{I N}$	INPUT CAPACITANCE	5	10
$C_{\text {DB }}$	DATA BUS I/O CAPACITANCE	5	10
$C_{\text {OUT }}$	OUTPUT CAPACITANCE	5	10

2048 BIT ERASABLE AND ELECTRICALLY REPROGRAMMABLE READ ONLY MEMORY

- Access Time - $1.3 \mu \mathrm{sec}$ Max.
- Fast Programming - 2 Minutes for All 2048 Bits
- Fully Decoded, 256×8 Organization
- Static MOS - No Clocks Required
- Inputs and Outputs TTL Compatible
- Three-State Output - OR-Tie Capability
- Simple Memory Expansion Chip Select Input Lead

The 8702A is a 256 word by 8 bit electrically programmable ROM ideally suited for microcomputer system development where fast turn-around and pattern experimentation are important. The 8702A undergoes complete programming and functional testing on each bit position prior to shipment, thus insuring 100% programmability.
The 8702A is packaged in a 24 pin dual-in line package with a transparent quartz lid. The transparent quartz lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device. This procedure can be repeated as many times as required.
The circuitry of the 8702A is entirely static; no clocks are required.
A pin-for-pin metal mask programmed ROM, the Intel 8302, is ideal for large volume production runs of systems initially using the 8702A.
The 8702A is fabricated with silicon gate technology. This low threshold technology allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.

*THIS PIN IS THE DATA INPUT LEAD DURING PROGRAMMING.
PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{7}$	ADDRESS INPUTS
CS	CHIP SELECT INPUT
$\mathrm{DO}_{1}-\mathrm{DO}_{2}$	DATA OUTPUTS

PIN CONNECTIONS

The external lead connections to the 8702 A differ, depending on whether the device is being programmed (1) or used in read mode. (See following table.)

ABSOLUTE MAXIMUM RATINGS*

```
Ambient Temperature Under Bias . . . . . . . 0 }\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to + }7\mp@subsup{0}{}{\circ}\textrm{C
Storage Temperature . . . . . . . . . . . - }6\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ to + }12\mp@subsup{5}{}{\circ}\textrm{C
Soldering Temperature of Leads (10 sec) . . . . . . . +300 }\mp@subsup{}{}{\circ}\textrm{C
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . 2 Watts
Read Operation: Input Voltages and Supply
    Voltages with respect to V VC . . . . . . . . . +0.5V to -20V
Program Operation: Input Voltages and Supply
    Voltages with respect to }\mp@subsup{V}{CC}{
    -48V
```


*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

READ OPERATION

D.C. AND OPERATING CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{D D}=-9 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{G G}^{(2)}=-9 \mathrm{~V} \pm 5 \%$, unless otherwise noted.

SYMBOL	TEST	MIN.	TYP(3)	MAX.	UNIT	CONDITIONS
${ }_{L}{ }^{\prime}$	Address and Chip Select Input Load Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}$
ILO	Output Leakage Current			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.0 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{V}_{\text {CC }}-2$
Iodo	Power Supply Current		5	10	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
IDD1	Power Supply Current		35	50	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
IDD2	Power Supply Current		32	46	mA	$\begin{aligned} & \overline{\mathrm{C} \bar{S}}=0.0 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
IDD3	Power Supply Current		38.5	60	mA	$\left.\begin{array}{l}\overline{\overline{C S}}=\mathrm{V}_{\mathrm{CC}}-2 \\ \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\end{array}\right\}$Continuous Operation
ICF 1	Output Clamp Current		8	14	mA	$\mathrm{V}_{\text {OUT }}=-1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
$\mathrm{ICF2}$	Output Clamp Current			13	mA	$\mathrm{V}_{\text {OUT }}=-1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{GG}	Gate Supply Current			10	$\mu \mathrm{A}$	
$V_{\text {ILI }}$	Input Low Voltage for TTL Interface	-1.0		0.65	V	
VIL2	Input Low Voltage for MOS Interface	$V_{D D}$	V	$\mathrm{V}_{\mathrm{CC}}-6$	V	
$V_{1 H}$	Address and Chip Select Input High Voltage	$\mathrm{V}_{\mathrm{CC}}{ }^{-2}$		$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
${ }_{\mathrm{OL}}$	Output Sink Current	1.6	4		mA	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$
V_{OL}	Output Low Voltage		-. 7	0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
V_{OH}	Output High Voltage	3.5			V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$

[^13]
A.C. CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 5 \%$ unless otherwise noted

SYMBOL	TEST	MINIMUM	TYPICAL	MAXIMUM	UNIT
Freq.	Repetition Rate			1	MHz
${ }^{\mathrm{t}_{\mathrm{OH}}}$	Previous read data valid			100	ns
${ }^{\text {t }}$ ACC	Address to output delay			1.3	$\mu \mathrm{s}$
${ }^{t_{\text {DVGG }}}$	Clocked V_{GG} set up	1.0			$\mu \mathrm{s}$
${ }^{\text {t }} \mathrm{CS}$	Chip select delay			400	ns
${ }^{t} \mathrm{co}$	Output delay from $\overline{\mathrm{CS}}$			900	ns
${ }^{\text {tob }}$	Output deselect			400	ns
${ }^{\text {tohC }}$	Data out hold in clocked V_{GG} mode (Note 1)			5	$\mu \mathrm{s}$

Note 1. The output will remain valid for $\mathrm{t}_{\mathrm{O}} \mathrm{HC}$ as long as clocked V_{GG} is at V_{CC}. An address change may occur as soon as the output is sensed (clocked $V_{G G}$ may still be at $V_{C C}$). Data becomes invalid for the old address when clocked $V_{G G}$ is returned to $V_{G G}$.

CAPACITANCE* $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	TEST	MINIMUM	TYPICAL	MAXIMUM	UNIT	CONDITIONS	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		8	15	pF	$\left.\begin{array}{l} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{CS}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{CC}} \end{array}\right]$	All unused pins are at A.C. ground
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		10	15	pF		
$\mathrm{C}_{\mathrm{V}_{\mathrm{GG}}}$	$V_{G G}$ Capacitance (Clocked V_{GG} Mode)			30	pF		

*This parameter is periodically sampled and is not 100% tested.

SWITCHING CHARACTERISTICS

Conditions of Test:

Input pulse amplitudes: 0 to $4 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}} \leq 50 \mathrm{~ns}$ Output load is 1 TTL gate; measurements made at output of TTL gate ($\mathrm{t}_{\mathrm{PD}} \leq 15 \mathrm{~ns}$)
A) Constant $V_{G G}$ Operation

B) Clocked $V_{G G}$ Operation

V_{oL}
NOTE 1: The output will remain valid for toHC as long as clocked V_{GG} is at VCC. An address change may occur as soon as the output is sensed (clocked V_{GG} may still be at V_{CC}). Data becomes invalid for the old address when clocked $V_{G G}$ is returned to $V_{G G}$.
NOTE 2: if $\overline{C S}$ makes a transition from $V_{I L}$ to $V_{I H}$ while clocked $V_{G G}$ is at $V_{G G}$, then deselection of output occurs at toD as shown in static operation with constant V_{GG}.

8708

8192/4096 BIT ERASABLE AND ELECTRICALLY REPROGRAMMABLE READ ONLY MEMORY

- 87081024×8 Organization

Fast Programming -
Typ. 100 sec. For All 8K Bits
- Low Power During Programming
- Access Time-450 ns
- Standard Power Supplies $+12 \mathrm{~V}, \pm 5 \mathrm{~V}$

The Intel ${ }^{\complement} 8708$ is a high speed 8192 bit erasable and electrically reprogrammable ROM's (EPROM) ideally suited where fast turn around and pattern experimentation are important requirements.
The 8708 is packaged in a 24 pin dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the devices.
A pin for pin mask programmed ROM, the Intel ${ }^{\bigcirc} 8308$, is available for large volume production runs of systems initially using the 8708.

The 8708 is fabricated with the time proven N -channel silicon gate technology.

PIN CONFIGURATIONS

BLOCK DIAGRAM

Absolute Maximum Ratings*

Temperature Under Bias $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to $V_{B B}$
(except Program) . +15 V to -0.3V
Program Input to $V_{B B}$

$$
+35 \mathrm{~V} \text { to }-0.3 \mathrm{~V}
$$

Supply Voltages $V_{C C}$ and $V_{S S}$ with Respect to $V_{B B}$ +15 V to -0.3 V
$V_{D D}$ with Respect to $V_{B B}$ +20 V to -0.3 V
Power Dissipation 1.5 W

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

READ OPERATION

D.C. and Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Noted.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Conditions
$I_{\text {LI }}$	Address and Chip Select Input Load Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V}$
ILO	Output Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}, \overline{\mathrm{CS}} / \mathrm{WE}=5 \mathrm{~V}$
IDD	$\mathrm{V}_{\text {DD }}$ Supply Current		50	65	mA	Worst Case Supply Currents: All Inputs High $\overline{\mathrm{CS}} / W E=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
${ }^{\text {cC }}$	$\mathrm{V}_{\text {CC }}$ Supply Current		6	10	mA	
I_{BB}	$\mathrm{V}_{\text {BB }}$ Supply Current		30	45	mA	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\text {SS }}$		0.65	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	3.0		$\mathrm{V}_{\mathrm{CC}}{ }^{+1}$	V	
V_{OL}	Output Low Voltage			0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage	3.7			V	$\mathrm{IOH}^{\text {a }}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$
P_{D}	Power Dissipation			800	mW	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$

NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltages.
2. The program input (Pin 18) may be tied to V_{SS} or V_{CC} during the read mode.

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{B B}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}$, Unless Otherwise Noted.

Symbol	Parameter	Min.	Typ.	Max.	Unit
$t_{\text {ACC }}$	Address to Output Delay		280	450	ns
$\mathrm{t}_{\overline{\mathrm{CO}}}$	Chip Select to Output Delay			120	ns
t_{DF}	Chip De-Select to Output Float	0		120	ns
t_{OH}	Address to Output Hold	0			ns

Capacitance ${ }^{[1]} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Parameter	Typ.	Max.	Unit	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance	4	6	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	8	12	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note 1. This parameter is periodically sampled and not 100% tested.

A.C. Test Conditions:

Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$
Input Rise and Fall Times: $\leqslant 20 \mathrm{~ns}$
Timing Measurement Reference Levels: 0.8 V and 2.8 V for inputs; 0.8 V and 2.4 V for outputs Input Pulse Levels: 0.65 V to 3.0 V

Waveforms

8302

2048 BIT MASK PROGRAMMABLE READ ONLY MEMORY

- Access Time - $1 \mu \mathrm{sec}$ Max.
- Fully Decoded, 256×8 Organization
- Inputs and Outputs TTL Compatible
- Three-State Output - OR-Tie Capability
- Static MOS - No Clocks Required
- Simple Memory Expansion - Chip Select Input Lead
- 24-Pin Dual-In-Line Hermetically Sealed Ceramic Package

The Intel ${ }^{\circledR} 8302$ is a fully decoded 256 word by 8 bit metal mask ROM. It is ideal for large volume production runs of microcomputer systems initially using the 8702A erasable and electrically programmable ROM. The 8302 has the same pinning as the 8702A.
The 8302 is entirely static - no clocks are required. Inputs and outputs of the 8302 are TTL compatible. The output is three-state for OR-tie capability. A separate chip select input allows easy memory expansion. The 8302 is packaged in a 24 pin dual-in-line hermetically sealed ceramic package.
The 8302 is fabricated with p-channel silicon gate technology. This low threshold allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.

PIN NAMES

$A_{0} \cdot A_{7}$	ADDRESS INPUTS
$\overline{C S}$	CHIP SELECT INPUT
$\mathrm{DO}_{1} \cdot \mathrm{DO}_{8}$	DATA OUTPUTS

8302

Absolute Maximum Ratings*

Storage TemperatureSoldering Temperature of LeaPower DissipationInput Voltages and SupplyVoltages with respect to V_{C}

Abstract

*COMMENT Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

READ OPERATION

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{D D}=-9 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{G G}^{(1)}=-9 \mathrm{~V} \pm 5 \%$, unless otherwise noted.

SYMBOL	TEST	MIN.	TYP! ${ }^{(2)}$	MAX.	UNIT	CONDITIONS
${ }_{\text {LI }}$	Address and Chip Select Input Load Current			1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}$
ILO	Output Leakage Current			1	$\mu \mathrm{A}$	$V_{\text {OUT }}=0.0 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2$
IDDO	Power Supply Current		5	10	mA	$\begin{aligned} & \mathrm{V}_{G G}=\mathrm{V}_{C C}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$
IDD1	Power Supply Current		35	50	mA	$\begin{aligned} & \hline \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
${ }^{\text {DD2 }}$	Power Supply Current		32	46	mA	$\begin{aligned} & \overline{\mathrm{CS}}=0.0 \\ & \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ Continuous
IDD3	Power Supply Current		38.5	60	mA	$\left.\begin{array}{l}\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-2 \\ \mathrm{I}_{\mathrm{OL}}=0.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\end{array}\right\}$Continuous Operation
$\mathrm{I}_{\text {cF1 }}$	Output Clamp Current		8	14	mA	$\mathrm{V}_{\text {OUT }}=-1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
${ }_{\text {CFF2 }}$	Output Clamp Current			13	mA	$\mathrm{V}_{\text {OUT }}=-1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{GG}	Gate Supply Current			1	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {IL } 1}$	Input Low Voltage for TTL Interface	-1.0		0.65		
$V_{\text {IL2 }}$	Input Low Voltage for MOS Interface	V_{DD}		$\mathrm{V}_{\mathrm{cc}}-6$	V	
$V_{1 H}$	Address and Chip Select Input High Voltage	$V_{C C}{ }^{-2}$		$v_{C C}+0.3$	V	
${ }^{\text {OL }}$	Output Sink Current	1.6	4		mA	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$
$\mathrm{IOH}^{\text {O }}$	Output Source Current	-2.0			mA	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
V_{OL}	Output Low Voltage		-. 7	0.45	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
V_{OH}	Output High Voltage	3.5	4.5		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$

Note 1. $\quad V_{G G}$ may be clocked to reduce power dissipation. In this mode average ${ }^{\prime} D D$ increases in proportion to $V_{G G}$ duty cycle.
Note 2. Typical values are at nominal voltages and $T_{A}=25^{\circ} \mathrm{C}$.

8302

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-9 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-9 \mathrm{~V} \pm 5 \%$ unless otherwise noted

SYMBOL		MINIMUM	TYPICAL	MAXIMUM	UNIT
Freq.	Repetition Rate			1	MHz
t_{OH}	Previous read data valid			100	ns
$\mathrm{t}_{\mathrm{ACC}}$	Address to output delay		.700	1	$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{DVGG}}$	Clocked V_{GG} set up	1			$\mu \mathrm{~s}$
t_{CS}	Chip select delay			200	ns
t_{CO}	Output delay from $\overline{\mathrm{CS}}$			500	ns
t_{OD}	Output deselect			$\mathbf{3 0 0}$	ns
$\mathrm{t}_{\mathrm{OHC}}$	Data out hold in clocked V_{GG} mode (Note 1)			5	$\mu \mathrm{~s}$

Note 1. The output will remain valid for toHC as long as clocked $V_{G G}$ is at $V_{C C}$. An address change may occur as soon as the output is sensed (clocked $V_{G G}$ may still be at $V_{C C}$). Data becomes invalid for the old address when clocked $V_{G G}$ is returned to $V_{G G}$.
Capacitance ${ }^{*} T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	TEST	MINIMUM	TYPICAL	MAXIMUM	UNIT	CONDITIONS	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	10	pF	$\left.\begin{array}{l} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{CS}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{CC}} \end{array}\right]$	All unused pins are at A.C. ground
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		5	10	pF		
$\mathrm{C}_{\mathrm{V}_{\text {GG }}}$	V_{GG} Capacitance (Clocked VGG Mode)			30	pF		

*This parameter is periodically sampled and is not 100% tested.

Switching Characteristics

Conditions of Test:
Input pulse amplitudes: 0 to $4 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}} \leq 50 \mathrm{~ns}$ Output load is 1 TTL gate; measurements made at output of TTL gate ($\mathrm{t}_{\mathrm{PD}} \leq 15 \mathrm{~ns}$)
A) Constant $V_{G G}$ Operation

NOTE 1: The output will remain valid for t OHC as tong as clocked V_{GG} is at VCC. An address change may occur as soon as the output is sensed (clocked $V_{G G}$ may still be at V_{CC}). Data becomes invalid for the old address when clocked $V_{G G}$ is returned to V_{GG}.
NOTE 2: If CS makes a transition from $V_{I L}$ to $V_{1 H}$ while clocked $V_{G G}$ is at $V_{G G}$. then deselection of output occurs at tOD as shown in static operation with constant $V_{G G}$.

8308

8192 BIT STATIC MOS READ ONLY MEMORY Organization-- 1024 Words x 8 Bits

- Fast Access - 450 ns
- Directly Compatible with 8080 CPU at Maximum Processor Speed
- Two Chip Select Inputs for Easy Memory Expansion
- Directly TTL Compatible - All Inputs
and Outputs

- Three State Output - OR-Tie Capability

- Fully Decoded
- Standard Power Supplies +12 V DC, $\pm 5 \mathrm{~V}$ DC

The Intel ${ }^{\circledR} 8308$ is an 8,192 bit static MOS mask programmable Read Only Memory organized as 1024 words by 8 -bits. This ROM is designed for 8080 microcomputer system applications where high performance, large bit storage, and simple interfacing are important design objectives. The inputs and outputs are fully TTL compatible.
A pin for pin compatible electrically programmed erasable ROM, the Intel ${ }^{\circledR} 8708$, is available for system development and small quantity production use.
Two Chip Selects are provided $-\overline{\mathrm{CS}}_{1}$ which is negative true, and $\mathrm{CS}_{2} / \overline{\mathrm{CS}}_{2}$ which may be programmed either negative or positive true at the mask level.
The 8308 read only memory is fabricated with N -channel silicon gate technology. This technology provides the designer with high performance, easy-to-use MOS circuits.

PIN CONFIGURATION

BLOCK DIAGRAM

PIN NAMES

$A_{0} \cdot A_{9}$	ADDRESS INPUTS
$\mathrm{O}_{1} \cdot \mathrm{O}_{8}$	DATA OUTPUTS
$\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}$	CHIP SELECT INPUTS

Absolute Maximum Ratings*

Ambient Temperature Under Bias $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin With Respect
To $V_{B B}$. $\quad-0.3 \mathrm{~V}$ to 20 V
Power Dissipation 1.0 Watt
*COMMENT
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ Unless Otherwise Specified.

Symbol	Parameter	Limits			Unit	Test Conditions
		Min.	Typ. ${ }^{11]}$	Max.		
$I_{\text {LI }}$	Input Load Current (All Input Pins Except $\overline{\mathrm{CS}}_{1}$)			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0$ to 5.25 V
ILCL	Input Load Current on $\overline{\mathrm{CS}}_{1}$			1.6	mA	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$
ILPC	Input Peak Load Current on $\overline{\mathrm{CS}}_{1}$			4	mA	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ to 3.3 V
ILKC	Input Leakage Current on $\overline{\mathrm{CS}}_{1}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$ to 5.25 V
ILO	Output Leakage Current			10	$\mu \mathrm{A}$	Chip Deselected
$V_{\text {IL }}$	Input "Low" Voltage	$\mathrm{V}_{S S}-1$		0.8 V	V	
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	3.3		$\mathrm{V}_{\mathrm{CC}}+1.0$	V	
V_{OL}	Output "Low" Voltage			0.45	V	$1 \mathrm{OL}=2 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output "High" Voltage	2.4			V	$\mathrm{IOH}=-4 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH} 2}$	Output "High" Voltage	3.7			V	$\mathrm{IOH}^{\text {O }}=-1 \mathrm{~mA}$
I_{CC}	Power Supply Current VCC		. 8	2	mA	
IDD	Power Supply Current VDD		32	60	mA	
I_{BB}	Power Supply Current VBB		$10 \mu \mathrm{~A}$	1	mA	
P_{D}	Power Dissipation			775	mW	

NOTE 1: Typical values for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage
D.C. OUTPUT CHARACTERISTICS

D.C. OUTPUT CHARACTERISTICS

A.C. Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$. Unless Otherwise Specified.

Symbol	Parameter	Limits ${ }^{\text {[2] }}$			Unit
		Min.	Typ.	Max.	
$\mathrm{t}_{\text {ACC }}$	Address to Output Delay Time		200	450	ns
${ }^{\text {c }} \mathrm{CO}_{1}$	Chip Select 1 to Output Delay Time		85	160	ns
$\mathrm{t}_{\mathrm{CO}}^{2}$	Chip Select 2 to Output Delay Time		125	220	ns
$t_{\text {bF }}$	Chip Deselect to Output Data Float Time		125	220	ns

NOTE 2: Refer to conditions of Test for A.C. Characteristics. Add 50 nanoseconds (worst case) to specified values at $\mathrm{V}_{\mathrm{OH}}=3.7 \mathrm{~V}$ @ $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$.

CONDITIONS OF TEST FOR

A.C. CHARACTERISTICS

Output Load 1 TTL Gate, and C COAD $=100 \mathrm{pF}$ Input Pulse Levels 65 V to 3.3V Input Pulse Rise and Fall Times 20 nsec Timing Measurement Reference Level
.................... $2.4 \mathrm{~V} \mathrm{~V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OH}} ; 0.8 \mathrm{~V} \mathrm{~V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OL}}$

CAPACITANCE $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{BB}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$, $V_{C C}$ and all other pins tied to $V_{S S}$.

Symbol	Test	Limits	
		Typ.	Max.
C_{IN}	Input Capacitance		6 pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		12 pF

 8316A

16,384 BIT STATIC MOS READ ONLY MEMORY Organization-2048 Words x 8 Bits Access Time-850 ns max

- Single +5 Volts Power Supply Voltage
 - Directly TTL Compatible - All Inputs and Outputs
 - Low Power Dissipation of $31.4 \mu \mathrm{~W} / \mathrm{Bit}$ Maximum
 - Three Programmable Chip Select Inputs for Easy Memory Expansion

- Three-State Output - OR-Tie Capability

- Fully Decoded - On Chip Address Decode
- Inputs Protected - All Inputs Have Protection Against Static Charge

The Intel 8316 A is a 16,384 -bit static MOS read only memory organized as 2048 words by 8 bits. This ROM is designed for microcomputer memory applications where high performance, large bit storage, and simple interfacing are important design objectives.
The inputs and outputs are fully TTL compatible. This device operates with a single +5 V : power supply. The three chip select inputs are programmable. Any combination of active high or low level chip select inputs can be defined and the desired chip select code is fixed during the masking process. These three programmable chip select inputs, as well as OR-tie compatibility on the outputs, facilitate easy memory expansion.

The 8316A read only memory is fabricated with N -channel silicon gate technology. This technology provides the designer with high performance, easy-to-use MOS circuits. Only a single +5 V power supply is needed and all devices are directly TTL compatible.

PIN CONFIGURATION

PIN NAMES

$A_{0} \cdot A_{10}$	ADDRESS INPUTS
$O_{1} \cdot 0_{8}$	DATA OUTPUTS
$\mathrm{CS}_{1} \cdot \mathrm{CS}_{3}$	PROGRAMMABLE CHIP SELECT INPUTS

BLOCK DIAGRAM

8316A

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin With Respect
To Ground -0.5 V to +7 V
Power Dissipation 1.0 Watt
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP. ${ }^{(1)}$	MAX.		
$I_{L I}$	Input Load Current (All Input Pins)			10	$\mu \mathrm{A}$	$V_{\text {IN }}=0$ to 5.25 V
I LOH	Output Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{CS}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.0 \mathrm{~V}$
I LOL	Output Leakage Current			-20	$\mu \mathrm{A}$	$\mathrm{CS}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V}$
ICC	Power Supply Current		40	98	mA	All inputs 5.25V Data Out Open
$V_{\text {IL }}$	Input "Low" Voltage	-0.5		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	2.0		$\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$	V	
$\mathrm{V}_{\text {OL }}$	Output "Low" Voltage			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
V_{OH}	Output "High" Voltage	2.2			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$

(1) Typical values for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

A.C. CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN.	TYP. ${ }^{(1)}$	MAX.	
$t_{\text {A }}$	Address to Output Delay Time		400	850	nS
${ }^{\text {t }} \mathrm{CO}$	Chip Select to Output Enable Delay Time			300	nS
${ }^{\text {t }}$ DF	Chip Deselect to Output Data Float Delay Time	0		300	nS

CONDITIONS OF TEST FOR

A.C. CHARACTERISTICS

Output Load . . 1 TTL Gate, and $C_{\text {LOAD }}=100 \mathrm{pF}$ Input Pulse Levels 0.8 to 2.0 V Input Pulse Rise and Fall Times . (10\% to 90%) 20 nS Timing Measurement Reference Level

```
Input
1.5 V
Output . . . . . . . . . . . . . . . . 0.45 V to 2.2 V
```

CAPACITANCE ${ }^{(2)} \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathbf{f}=\mathbf{1 M H z}$

SYMBOL	TEST	LIMITS	
		TYP.	MAX.
CIN $^{\text {IN }}$	All Pins Except Pin Under Test Tied to AC Ground	4 pF	10 pF
COUT	All Pins Except Pin Under Test Tied to AC Ground	8 pF	15 pF

(2) This parameter is periodically sampled and is not 100% tested.

8101-2

1024 BIT (256 x 4) STATIC MOS RAM WITH SEPARATE I/O

- 256 x 4 Organization to Meet Needs for Small System Memories
- Access Time - 850 nsec Max.
- Single +5V Supply Voltage
- Directly TTL Compatible - All Inputs and Output
- Static MOS - No Clocks or Refreshing Required
- Simple Memory Expansion - Chip Enable Input
- Inputs Protected - All Inputs Have Protection Against Static Charge
- Low Cost Packaging - 22 Pin Plastic Dual-In-Line Configuration
- Low Power - Typically 150 mW
- Three-State Output - OR-Tie Capability
- Output Disable Provided for Ease of Use in Common Data Bus Systems

The Intel ${ }^{\circledR} 8101-2$ is a 256 word by 4 bit static random access memory element using normally off N-channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data.
The 8101-2 is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. Two chip-enables allow easy selection of an individual package when outputs are OR-tied. An output disable is provided so that data inputs and outputs can be tied for common I/O systems. Output disable is then used to eliminate any bidirectional logic.
The Intel $8101-2$ is fabricated with N -channel silicon gate technology. This technology allows the design and production of high performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or P-channel silicon gate technology.
Intel's silicon gate technology also provides excellent protection against contamination. This permits the use of low cost silicone packaging.

PIN CONFIGURATION

PIN NAMES

O $_{\text {IN }}$	DATA INPUT	OD	OUTPUT DISABLE
$A_{0}-A_{7}$	ADDRESS INPUTS	$D_{\text {OUT }}$	DATA OUTPUT
RNW	READ WRITE INPUT	V $_{\text {CC }}$	POWER (+5V)
CET,	CE2	CHIP ENABLE	

LOGIC SYMBOL

8101-2

Absolute Maximum Ratings*

Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin
With Respect to Ground -0.5 V to +7 V
Power Dissipation . 1 Watt

*COMMENT:

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
$I_{L I}$	Input Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
I LOH	1/O Leakage Current ${ }^{[2]}$			15	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.0 \mathrm{~V}$
ILOL	1/O Leakage Current [2]			-50	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V}$
ICC1	Power Supply Current		30	60	mA	$\begin{aligned} & \mathrm{V}_{I N}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current			70	mA	$\begin{aligned} & \mathrm{V}_{1 N}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$
$V_{\text {IL }}$	Input "Low" Voltage	-0.5		+0.65	V	
$V_{\text {IH }}$	Input "High" Voltage	2.2		$\mathrm{V}_{\text {cc }}$	V	
V_{OL}	Output "Low" Voltage			+0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
V OH	Output "High" Voltage	2.2			V	$\mathrm{I}_{\mathrm{OH}}=-150 \mu \mathrm{~A}$

NOTE: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. Input and Output tied together.

8101-2

A.C. Characteristics

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
$\mathrm{t}_{\mathrm{RCY}}$	Read Cycle	850			ns	
t_{A}	Access Time			850	ns	
t_{CO}	Chip Enable To Output			650	ns	
t_{OD}	Output Disable To Output			550	ns	
$\mathrm{t}_{\mathrm{DF}}[1]$	Data Output to High Z State	0		200	ns	
t_{OH}	Previous Data Read Valid after change of Address	0			ns	

WRITE CYCLE

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
$\mathrm{t}_{\mathrm{WCY}}$	Write Cycle	850			ns	(See below)
$\mathrm{t}_{\text {AW }}$	Write Delay	150			ns	
${ }^{\text {c }}$ W	Chip Enable To Write	750			ns	
$t_{\text {DW }}$	Data Setup	500			ns	
${ }_{\text {t }}^{\text {D }}$	Data Hold	100			ns	
twp	Write Pulse	630			ns	
twr	Write Recovery	50			ns	

A. C. CONDITIONS OF TEST

Input Pulse Levels: +0.65 Volt to 2.2 Volt	Symbol	Test	Limits (pF)	
Input Pulse Rise and Fall Times: 20 nsec			Typ.	Max.
Timing Measurement Reference Level: 1.5 Volt	$\mathrm{Cl}_{\mathrm{IN}}$	Input Capacitance (All Input Pins) $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	4	8
Output Load: $\quad 1$ TTL Gate and $C_{L}=100 \mathrm{pF}$	COUT	Output Capacitance $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	8	12

1024 BIT (256 x 4) STATIC MOS RAM WITH SEPARATE I/O

- 256×4 Organization to Meet Needs
for Small System Memories
- Access Time - 450 nsec Max.
- Single +5 V Supply Voltage
- Directly TTL Compatible - All Inputs and Output
- Static MOS - No Clocks or Refreshing Required
- Simple Memory Expansion - Chip Enable Input
- Inputs Protected - All Inputs Have Protection Against Static Charge
- Low Cost Packaging - 22 Pin Plastic Dual-In-Line Configuration
- Low Power - Typically 150 mW
- Three-State Output - OR-Tie Capability
- Output Disable Provided for Ease of Use in Common Data Bus Systems

The Intel ${ }^{\circledR} 8101 \mathrm{~A}-4$ is a 256 word by 4 bit static random access memory element using normally off N channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data.
The $8101 \mathrm{~A}-4$ is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. Two chip-enables allow easy selection of an individual package when outputs are OR-tied. An output disable is provided so that data inputs and outputs can be tied for common I/O systems. Output disable is then used to eliminate any bidirectional logic.
The Intel ${ }^{\circledR}$ 8101A-4 is fabricated with N -channel silicon gate technology. This technology allows the design and production of high performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or P-channel silicon gate technology.
Intel's silicon gate technology also provides excellent protection against contamination. This permits the use of low cost silicone packaging.

Absolute Maximum Ratings*

Ambient Temperature Un	C to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin	
With Respect to Ground	-0.5 V to +7 V
Power Dissipation	1 Watt

*COMMENT:
Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Test Conditions
I_{LI}	Input Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0$ to 5.25 V
$\mathrm{I}_{\mathrm{LOH}}$	I/O Leakage Current ${ }^{[2]}$			5	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=4.0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{LOL}}$	I/O Leakage Current ${ }^{[2]}$			-10	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CC} 1}$	Power Supply Current		30	55	mA	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$ $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current			60	mA	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$ $\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
V_{IL}	Input "Low" Voltage	-0.5		0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input "High" Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{OL}	Output "Low" Voltage			+0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output "High" Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-150 \mu \mathrm{~A}$

NOTE: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
2. Input and Output tied together.

A.C. Characteristics

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
$\mathrm{t}_{\mathrm{R} C Y}$	Read Cycle	450			ns	(See below)
t_{A}	Access Time			450	ns	
t_{CO}	Chip Enable To Output			310	ns	
tod	Output Disable To Output			250	ns	
$\mathrm{t}_{\mathrm{T}} \mathrm{c}^{[1]}$	Data Output to High Z State	0		200	ns	
${ }^{\text {tor }}$	Previous Data Read Valid after change of Address	40			ns	

WRITE CYCLE

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
twCy	Write Cycle	270			ns	(See below)
$\mathrm{t}_{\text {AW }}$	Write Delay	20			ns	
${ }_{\text {t }}$ W	Chip Enable To Write	250			ns	
tow	Data Setup	250			ns	
${ }_{\text {t }}{ }_{\text {d }}$	Data Hold	0			ns	
$t_{\text {V/JP }}$	Write Pulse	250			ns	
twR	Write Recovery	0			ns	
$t_{\text {DS }}$	Output Disable Setup	20			ns	

A. C. CONDITIONS OF TEST

| Input Pulse Levels: | +0.65 Volt to 2.2 Volt |
| :--- | ---: | ---: |
| Input Pulse Rise and Fall Times: | 20 nsec |
| Timing Measurement Reference Level: | 1.5 Volt |
| Output Load: $\quad 1$ TTL Gate and $C_{L}=$ | 100 pF |

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Test		Limits (pF)	
		Typ.	Max.	
C_{IN}	Input Capacitance (All Input Pins) $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	4	8	
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$	8	12	

Waveforms

read cycle

WRITE CYCLE ${ }^{[2]}$

NOTES: 1. tDF is with respect to the trailing edge of $\overline{C E 1}, C E 2$, or $O D$, whichever occurs first.
2. During the write cycle, $O D$ is a logical 1 for common I/O and "don't care" for separate I/O operation.
3. $O D$ should be tied low for separate I / O operation.

1024 BIT (256 x 4) STATIC MOS RAM WITH COMMON I/O AND OUTPUT DISABLE

- Organization 256 Words by 4 Bits
- Access Time - 850 nsec Max.
- Common Data Input and Output
- Single +5V Supply Voltage
- Directly TTL Compatible - All Inputs and Output
- Static MOS - No Clocks or Refreshing Required
- Simple Memory Expansion - Chip Enable Input
- Fully Decoded - On Chip Address Decode
- Inputs Protected - All Inputs Have Protection Against Static Charge
- Low Cost Packaging - 18 Pin Plastic Dual-In-Line Configuration
- Low Power - Typically 150 mW
- Three-State Output - OR-Tie Capability

The Intel ${ }^{\circ} 8111-2$ is a 256 word by 4 bit static random access memory element using normally off N -channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.
The 8111-2 is designed for memory applications in small systems where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. Separate chip enable ($\overline{\mathrm{CE}}$) leads allow easy selection of an individual package when outputs are OR-tied.
The Intel ${ }^{\circledR}$ 8111-2 is fabricated with N-channel silicon gate technology. This technology allows the design and production of high performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or P -channel silicon gate technology.
Intel's silicon gate technology also provides excellent protection against contamination. This permits the use of low cost silicone packaging.

Absolute Maximum Ratings*

Ambient Temperature Under Bias \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin
With Respect to Ground -0.5 V to +7 V
Power Dissipation
1 Watt

"COMMENT:

Stresses above those listed under "Absolute Maximum Rating"may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. 111	Max.	Unit	Test Conditions
I_{LI}	Input Load Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0$ to 5.25 V
$\mathrm{I}_{\mathrm{LOH}}$	I/O Leakage Current			15	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=4.0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{LOL}}$	I/O Leakage Current			-50	$\mu \mathrm{~A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=0.45 \mathrm{~V}$
I_{CC}	Power Supply Current		30	60	mA	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}$ $I_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current			70	mA	$\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}$ $\mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$
V_{IL}	Input Low Voltage	-0.5		+0.65	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.2		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{OL}	Output Low Voltage			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.2			V	$\mathrm{I}_{\mathrm{OH}}=-150 \mu \mathrm{~A}$

NOTES: 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

A.C. Characteristics

READ CYCLE $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
$t_{\text {RCY }}$	Read Cycle	850			ns	(See below)
t_{A}	Access Time			850	ns	
${ }^{\text {t }}$ CO	Chip Enable To Output			650	ns	
t_{OD}	Output Disable To Output			550	ns	
$\mathrm{t}_{\mathrm{DF}}{ }^{[1]}$	Data Output to High Z State	0		200	ns	
${ }^{\text {toh }}$	Previous Data Read Valid after change of Address	0			ns	

WRITE CYCLE

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
${ }_{\text {t }}^{\text {WCY }}$	Write Cycle	850			ns	(See below)
${ }_{\text {taw }}$	Write Delay	150			ns	
${ }^{\text {t }} \mathrm{CW}$	Chip Enable To Write	750			ns	
$t_{\text {DW }}$	Data Setup	500			ns	
${ }_{\text {t }}$ H	Data Hold	100			ns	
$t_{W P}$	Write Pulse	630			ns	
tWR	Write Recovery	50			ns	

A. C. CONDITIONS OF TEST

Input Pulse Levels: $\quad+0.65$ Volt to 2.2 Volt Input Pulse Rise and Fall Times:
Timing Measurement Reference Level: 1.5 Volt
Output Load: $\quad 1$ TTL Gate and $C_{L}=100 \mathrm{pF}$

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Test	Limits (pF)	
		Typ.	Max.
C_{IN}	Input Capacitance (All Input Pins) $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	4	8
$\mathrm{C}_{\text {OUT }}$	Output Capacitance $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$	10	15

Waveforms

READ CYCLE

WRITE CYCLE

NOTE: 1. TDF is with respect to the trailing edge of $\overline{C E 1}, \overline{C E 2}$, or $O D$, whichever occurs first.

1024 BIT (256 x 4) STATIC MOS RAM WITH COMMON I/O AND OUTPUT DISABLE

- Organization 256 Words by 4 Bits
- Access Time - 450 nsec Max.
- Common Data Input and Output
- Single +5V Supply Voltage
- Directly TTL Compatible - All Inputs and Output
- Static MOS - No Clocks or Refreshing Required
- Simple Memory Expansion - Chip Enable Input
- Fully Decoded - On Chip Address Decode
- Inputs Protected - All Inputs Have Protection Against Static Charge
- Low Cost Packaging - 18 Pin Plastic Dual-In-Line Configuration
- Low Power - Typically 150 mW
- Three-State Output - OR-Tie Capability

The Intel ${ }^{\circledR} 8111 \mathrm{~A}-4$ is a 256 word by 4 bit static random access memory element using normally off N -channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.
The 8111A-4 is designed for memory applications in small systems where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is airectly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. Separate chip enable (CE) leads allow easy selection of an individual package when outputs are OR-tied.
The Intel ${ }^{\circledR}$ 8111A-4 is fabricated with N -channel silicon gate technology. This technology allows the design and production of high performance, easy-to-use MOS circuits and provides/a higher functional density on a monolithic chip than either conventional MOS technology or P-channel silicon gate technology.
Intel's silicon gate technology also provides excellent protection against communication. This permits the use of low cost silicone packaging.

PIN NAMES

$\mathrm{A}_{0} \cdot \mathrm{~A}_{7}$	ADDRESS INPUTS
OD	OUTPUT DISABLE
$\mathrm{R} W$	READ WRITE INPUT
$\overline{C E}_{1}$	CHIP ENABLE 1
$\overline{C E}_{2}$	CHIP ENABLE 2
$\mathrm{I} / \mathrm{O}_{1} \cdot 1 / \mathrm{O}_{4}$	DATA INPUT/OUTPUT

Absolute Maximum Ratings*

Ambient Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin
With Respect to Ground -0.5 V to +7 V
Power Dissipation . 1 Watt

*COMMENT:

> Stresses above those listed under "Absolute Maximum
> Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. -

D.C. and Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ. [1]	Max.	Unit	Test Conditions
I_{LI}	Input Load Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
ILOH	I/O Leakage Current			5	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=4.0 \mathrm{~V}$
ILOL	I/O Leakage Current			-10	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=2.2 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=0.45 \mathrm{~V}$
ICC1	Power Supply Current		30	55	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{I} \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$I_{\text {cc2 }}$	Power Supply Current			60	mA	$\begin{aligned} & \mathrm{V}_{I N}=5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$
$V_{\text {IL }}$	Input Low Voltage	-0.5		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0		V_{CC}	V	
V_{OL}	Output Low Voltage			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-150 \mu \mathrm{~A}$

NOTES: 1. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

A.C. Characteristics

READ CYCLE $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
$\mathrm{t}_{\mathrm{RCY}}$	Read Cycle	450			ns	(See below)
${ }^{\text {t }}$ A	Access Time			450	ns	
tco	Chip Enable To Output			310	ns	
tod	Output Disable To Output			250	ns	
${ }_{\text {t }}{ }^{\text {[1] }}$	Data Output to High Z State	0		200	ns	
${ }^{\text {toh }}$	Previous Data Read Valid after change of Address	40			ns	

WRITE CYCLE

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
twCy	Write Cycle	270			ns	(See below)
$\mathrm{t}_{\text {AW }}$	Write Delay	20			ns	
${ }^{\text {t }}$ W	Chip Enable To Write	250			ns	
tow	Data Setup	250			ns	
t_{DH}	Data Hold	0			ns	
twp	Write Pulse	250			ns	
twR	Write Recovery	0			ns	
${ }^{t}{ }_{\text {D }}$	Output Disable Setup	20			ns	

A. C. CONDITIONS OF TEST

| Input Pulse Levels: $\quad+0.65$ Volt to | 2.2 Volt |
| :--- | ---: | ---: |
| Input Pulse Rise and Fall Times: | 20 nsec |
| Timing Measurement Reference Level: | 1.5 Volt |
| Output Load: $\quad 1$ TTL Gate and $C_{L}=100 \mathrm{pF}$ | |

Waveforms

READ CYCLE

Capacitance $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

Symbol	Test	Limits (pF)	
	Typ.		Max.
$\mathrm{C}_{\text {IN }}$	Input Capacitance (All Input Pins) $V_{I N}=0 V$	4	8
$\mathrm{C}_{\text {OUT }}$	Output Capacitance $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	10	15

NOTE: 1. tDF is with respect to the trailing edge of $\overline{\mathrm{CE1}}, \overline{\mathrm{CE} 2}$, or $O D$, whichever occurs first.

8102A-4

1024 BIT STATIC MOS RAM

- Access Time - 450 ns Max.
- Single +5 Volts Supply Voltage
- Directly TTL Compatible - All Inputs and Output
- Static MOS - No Clocks or Refreshing Required
- Low Power - Typically 150 mW
- Three-State Output - OR-Tie Capability

- Simple Memory Expansion - Chip Enable Input
 - Fully Decoded - On Chip Address Decode
 - Inputs Protected - All Inputs Have Protection Against Static Charge
 - Low Cost Packaging - 16 Pin Plastic Dual-In-Line Configuration

The Intel ${ }^{\circledR}$ 8102A-4 is a 1024 word by one bit static random access memory element using normally off N -channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data.
The 8102A-4 is designed for microcomputer memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives.
It is directly TTL compatible in all respects: inputs, output, and a single +5 volt supply. A separate chip enable ($\overline{\mathrm{CE}})$ lead allows easy selection of an individual package when outputs are OR-tied.
The Intel $8102 \mathrm{~A}-4$ is fabricated with N-channel silicon gate technology. This technology allows the design and production of high performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or P -channel silicon gate technology.
Intel's silicon gate technology also provides excellent protection against contamination. This permits the use of low cost silicone packaging.

PIN CONFIGURATION

LOGIC SYMBOL

PIN NAMES

$D_{\text {IN }}$	DATA INPUT	$\overline{C E}$	CHIP ENABLE
$A_{\sigma}-A_{g}$	ADDRESS INPUTS	$D_{\text {OUT }}$	DATA OUTPUT
R/W	READ $W R$ ITE INPUT	$V_{C C}$	POWER (+5 V)

BLOCK DIAGRAM

8102A-4

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $\quad 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	device. This is a stress rating only and functional opera- tion of the device at these or any other conditions above
Voltage On Any Pin		
With Respect To Ground	-0.5 V to +7 V	those indicated in the operational sections of this specifi- cation is not implied. Exposure to absolute maximum
Power Dissipation	1 Wattrating conditions for extended periods may affect device reliability.	

D.C. AND OPERATING CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP. ${ }^{(1)}$	MAX.		
$I_{\text {LI }}$	INPUT LOAD CURRENT (ALL INPUT PINS)			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
$\mathrm{I}_{\text {LOH }}$	OUTPUT LEAKAGE CURRENT			5	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.4$ to
$\mathrm{I}_{\text {LOL }}$	OUTPUT LEAKAGE CURRENT			-10	$\mu \mathrm{A}$	$\overline{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V}$
${ }^{\text {cCC1 }}$	POWER SUPPLY CURRENT		30	50	mA	ALL INPUTS $=5.25 \mathrm{~V}$ DATA OUT OPEN $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
${ }^{\text {c CC2 }}$	POWER SUPPLY CURRENT			55	mA	ALL INPUTS $=5.25 \mathrm{~V}$ DATA OUT OPEN $T_{A}=0^{\circ} \mathrm{C}$
$V_{\text {IL }}$	INPUT "LOW" VOLTAGE	-0.5		0.8	V	
$V_{\text {IH }}$	INPUT "HIGH" VOLTAGE	2.0		$\mathrm{V}_{\text {cc }}$	V	
V_{OL}	OUTPUT "LOW" VOLTAGE			0.4	V	${ }^{\prime} \mathrm{OL}=2.1 \mathrm{~mA}$
V_{OH}	OUTPUT "HIGH" VOLTAGE	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$

(1) Typical values are for $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$ and nominal supply voltage.

TYPICAL D.C. CHARACTERISTICS

POWER SUPPLY CURRENT VS. AMBIENT TEMPERATURE

POWER SUPPLY CURRENT VS. SUPPLY VOLTAGE

8102A-4

A. C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ unless otherwise specified

Symbol	Parameter	Limits			Unit
		Min.	Typ.[1]	Max.	
READ CYCLE					
t_{RC}	Read Cycle	450			ns
t_{A}	Access Time			450	ns
${ }_{\mathrm{c}}^{\mathrm{CO}}$	Chip Enable to Output Time			230	ns
$\mathrm{t}_{\mathrm{OH} 1}$	Previous Read Data Valid with Respect to Address	40			ns
$\mathrm{t}_{\mathrm{OH} 2}$	Previous Read Data Valid with Respect to Chip Enable	0			ns
WRITE CYCLE					
$t_{\text {w }}$	Write Cycle	450			ns
$t_{\text {AW }}$	Address to Write Setup Time	20			ns
$t_{\text {WP }}$	Write Pulse Width	300			ns
twr	Write Recovery Time	0			ns
$t_{\text {DW }}$	Data Setup Time	300			ns
${ }^{\text {t }}$ H	Data Hold Time	0			ns
${ }^{\text {c }}$ W	Chip Enable to Write Setup Time	300			ns

NOTE: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
A.C. CONDITIONS OF TEST

Input Pulse Levels:	0.8 Volt to 2.0 Volt	
Input Rise and Fall Times:	10 nsec	
Timing Measurement	Inputs:	1.5 Volts
Reference Levels	Output:	0.8 and 2.0 Volts
Output Load:	1 TTL Gate and $C_{L}=100 \mathrm{pF}$	

Waveforms

READ CYCLE

Capacitance ${ }^{[2]} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$

SYMBOL	TEST	LIMITS (pF)	
	TYP.[1]	MAX.	
$C_{\text {IN }}$	INPUT CAPACITANCE (ALL INPUT PINS) $V_{I N}=0 V$	3	5
$C_{\text {OUT }}$	OUTPUT CAPACITANCE $V_{\text {OUT }}=0 V$	7	10

NOTE: | 2. This parameter is periodically sampled |
| :--- |
| and is not 100% tested. |

WRITE CYCLE

8107B-4

FULLY DECODED RANDOM ACCESS 4096 BIT DYNAMIC MEMORY

* Access Time -- 270 ns max.

* Read, Write Cycle Times -- 470 ns max. * Refresh Period -- 2 ms
- Low Cost Per Bit
- Low Standby Power
- Easy System Interface
- Only One High Voltage Input Signal-Chip Enable
- TTL Compatible -- All Address, Data, Write Enable, Chip Select Inputs
- Read-Modify-Write Cycle Time-. 590 ns
- Address Registers Incorporated on the Chip
- Simple Memory Expansion Chip Select Input Lead
- Fully Decoded-On Chip Address Decode
- Output is Three State and TTL Compatible
- Industry Standard 22-Pin Configuration

The Intel $8107 B$ is a 4096 word by 1 bit dynamic n-channel MOS RAM. It was designed for memory applications where very low cost and large bit storage are important design objectives. The 8107B uses dynamic circuitry which reduces the standby power dissipation.

Reading information from the memory is non-destructive. Refreshing is most easily accomplished by performing one read cycle on each of the 64 row addresses. Each row address must be refreshed every two milliseconds. The memory is refreshed whether Chip Select is a logic one or a logic zero.

The 8107 B is fabricated with n -channel silicon gate technology. This technology allows the design and production of high performance, easy to use MOS circuits and provides a higher functional density on a monolithic chip than other MOS technologies. The 8107B uses a single transistor cell to achieve high speed and low cost. It is a replacement for the 8107 B .

BLOCK DIAGRAM

8107B-4

Absolute Maximum Ratings*
Temperature Under Bias $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to the most Negative Supply Voltage, $V_{B B}$ +25 V to -0.3 V
Supply Voltages $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}$, and V_{SS} with Respect to V_{BB} +20 V to -0.3 V
Power Dissipation 1.25W

*COMMENT:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{B B}{ }^{[1]}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted.

Symbol	Parameter	Limits			Unit	Conditions
		Min.	Typ. ${ }^{[2]}$	Max.		
$I_{L I}$	Input Load Current (all inputs except CE)		. 01	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL MIN }}$ to $\mathrm{V}_{\text {IH MAX }}$
ILC	Input Load Current		. 01	10	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {IL MIN }}$ to $V_{\text {IH MAX }}$
Itol	Output Leakage Current for high impedance state		. 01	10	$\mu \mathrm{A}$	$\begin{aligned} & C E=V_{I L C} \text { or } \overline{C S}=V_{I H} \\ & V_{O}=0 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \end{aligned}$
IDD1	$V_{D D}$ Supply Current during CE off[3]		110	200	$\mu \mathrm{A}$	$C E=-1 V$ to +.6 V
IDD2	$V_{D D}$ Supply Current during CE on		80	100	mA	$C E=V_{\text {IHC }}, T_{\text {A }}=25^{\circ} \mathrm{C}$
IDD AV1	Average VDD Current		55	80	mA	$\begin{aligned} & \text { Cycle time }=470 \mathrm{~ns}, \\ & \mathrm{t}_{\mathrm{CE}}=300 \mathrm{~ns} \end{aligned} \quad-\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
IDD AV2	Average V ${ }_{\text {DD }}$ Current		27	40	mA	$\begin{aligned} & \text { Cycle time }=1000 \mathrm{~ns}, \\ & \mathrm{t}_{\mathrm{CE}}=300 \mathrm{~ns} \end{aligned}$
ICCO^{14}	V_{EC} Supply Current during CE off		. 01	10	$\mu \mathrm{A}$	$C E=V_{\text {ILC }}$ or $\overline{C S}=V_{1 H}$
$\mathrm{I}_{\text {BB }}$	V_{BB} Supply Current		5	100	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-1.0		0.6	V	$\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}-$ See Figure 4
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage	2.4		$\mathrm{V}_{\mathrm{cc}}+1$	V	
VILC	CE Input Low Voltage	-1.0		+1.0	V	
$\mathrm{V}_{\text {IHC }}$	CE Input High Voltage	$\mathrm{V}_{\mathrm{DD}}{ }^{-1}$		$\mathrm{V}_{D D^{+1}}$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	0.0		0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4		Vcc	V	$\mathrm{IOH}=-2.0 \mathrm{~mA}$

NOTES:

1. The only requirement for the sequence of applying voltage to the device is that $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}$, and V_{SS} should never be .3 V more negative than V_{BB}.
2. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal power supply voltages.
3. The IDD and ICC currents flow to V_{SS}. The IBB current is the sum of all leakage currents.
4. During CE on V_{CC} supply current is dependent on output loading, V_{CC} is connected to output buffer only.

Read and Refresh Cycle ${ }^{[1]}$ (Numbers in parentheses are for minimum cycle timing in ns)

Write Cycle

NOTES: 1. For Refresh cycle row and column addresses must be stable before $t_{A C}$ and remain stable for entire tAH period.
2. $V_{I L} M A X$ is the reference level for measuring timing of the addresses, $\overline{C S}, \overline{W E}$, and $D_{I N}$.
3. $V_{I H}$ MIN is the reference level for measuring timing of the addresses, $\overline{C S}, \overline{W E}$, and $D_{I N}$.
4. $V_{S S}+2.0 \mathrm{~V}$ is the reference level for measuring timing of $C E$.
5. $V_{D D}-2 V$ is the reference level for measuring timing of $C E$.
6. $V_{S S}+2 . Q . V$ is the reference level for measuring the timing of $\overline{D_{O U T}}$.
7. During CE high typically 0.5 mA will be drawn from any address pin which is switched from low to high.

8107B-4

A.C. Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%$,

READ, WRITE, AND READ MODIFY/WRITE CYCLE $V_{S S}=O V$, unless otherwise noted.

Symbol	Parameter	Min.	Max.	Unit	Conditions
$\mathrm{t}_{\text {REF }}$	Time Between Refresh		2	ms	$t^{\text {AC }}$ is measured from end of address transition
$t_{\text {AC }}$	Address to CE Set Up Time	0		ns	
${ }^{\text {t }}$ A ${ }_{\text {H }}$	Address Hold Time	100		ns	
${ }^{\text {t }} \mathrm{C}$	CE Off Time	130		ns	
${ }_{\text {t }}$	CE Transition Time	10	40	ns	
${ }^{\text {t }} \mathrm{CF}$	CE Off to Output High Impedance State	0		ns	

READ CYCLE

Symbol	Parameter	Min.	Max.	Unit	Conditions
${ }^{\text {t }} \mathrm{CY}$	Cycle Time	470		ns	$\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$
${ }^{\text {t }}$ CE	CE On Time	300	4000	ns	
${ }^{\text {t }}$ O	CE Output Delay		250	ns	$\begin{aligned} & C_{\text {load }}=50 \mathrm{pF}, \text { Load }=\text { One TTL Gate, } \\ & \text { Ref }=2.0 \mathrm{~V} . \\ & t_{\mathrm{ACC}}=\mathrm{t}_{\mathrm{AC}}+\mathrm{t}_{\mathrm{CO}}+1 \mathrm{t}_{\mathrm{T}} \end{aligned}$
${ }^{\text {t }}$ ACC	Address to Output Access		270	ns	
${ }^{\text {tw }}$ L	CE to $\overline{W E}$	0		ns	
twc	$\overline{\mathrm{WE}}$ to CE on	0		ns	

WRITE CYCLE

Symbol	Parameter	Min.	Max.	Unit	Conditions
${ }^{\text {t }}{ }^{\text {cr }}$	Cycle Time	470		ns	$\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$
${ }_{\text {t }}$ E	CE On Time	300	4000	ns	
${ }^{\text {tw }}$	$\overline{\text { WE }}$ to CE Off	150		ns	
${ }^{\text {t }} \mathrm{CW}$	CE to $\overline{\mathrm{WE}}$	150		ns	
${ }_{\text {tow }}{ }^{\text {[2] }}$	DIN to $\overline{W E}$ Set Up	0		ns	
${ }^{\text {t }}$ (${ }_{\text {c }}$	$\mathrm{D}_{\text {IN }}$ Hold Time	0		ns,	
twp	$\overline{\text { WE Pulse Width }}$	50		ns	

Read Modify Write Cycle

Symbol	Parameter	Min.	Max.	Unit	Conditions
$\mathrm{t}_{\text {RWC }}$	Read Modify Write(RMW) Cycle Time	590		ns	$\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$
${ }^{\text {t }}$ CRW	CE Width During RMW	420	4000	ns	
${ }^{\text {t w }}$ c	$\overline{\mathrm{WE}}$ to CE on	0		ns	
${ }^{\text {t }}$ w	$\overline{\text { WE }}$ to CE off	150		ns	$\begin{aligned} & C_{\text {load }}=50 \mathrm{pF}, \text { Load }=\text { One TTL Gate }, \\ & \text { Ref }=2.0 \mathrm{~V} \end{aligned}$
${ }^{\text {twp }}$	$\overline{\text { WE Pulse Width }}$	50		ns	
${ }^{t}$ DW	$\mathrm{D}_{\text {IN }}$ to $\overline{\text { WE }}$ Set Up	0		ns	
${ }^{\text {t }}{ }_{\text {DH }}$	$\mathrm{D}_{\text {IN }}$ Hold Time	0		ns	
${ }^{\text {t }} \mathrm{CO}$	CE to Output Delay		250	ns	
${ }^{\text {t }}$ ACC	Access Time		270	ns	$t_{A C C}=t_{A C}+t_{C O}+1 t_{T}$

Read Modify Write Cycle ${ }^{[1]}$

Symbol	Parameter	Min.	Max.	Unit	Conditions
${ }^{\text {R }}$ RWC	Read Modify Write(RMW) Cycle Time	590		ns	$\mathrm{t}_{\mathrm{T}}=20 \mathrm{~ns}$
${ }^{\text {t }}$ CRW	CE Width During RMW	420	3000	ns	$\begin{aligned} & C_{\text {load }}=50 \mathrm{pF}, \text { Load }=\text { One TTL Gate }, \\ & \text { Ref }=2.0 \mathrm{~V} \end{aligned}$$t_{A C C}=t_{A C}+t_{C O}+1 t_{T}$
${ }^{\text {t }}$ Wc	$\overline{W E}$ to CE on	0		ns	
${ }^{t}$ w	$\overline{\mathrm{WE}}$ to CE off	150		ns	
${ }^{\text {t }}$ WP	$\overline{\text { WE Pulse Width }}$	50		ns	
${ }^{\text {t }}$ DW	$\mathrm{D}_{\text {IN }}$ to $\overline{W E}$ Set Up	0		ns	
${ }^{\text {t }}$ DH	$\mathrm{D}_{\text {IN }}$ Hold Time	0		ns	
${ }^{\text {t }} \mathrm{CO}$	CE to Output Delay		250	ns	
${ }^{\text {t }}$ cc	Access Time		270	ns	

(Numbers in parentheses are for minimum cycle timing in ns.)

NOTES:

1. A.C. characteristics are guaranteed only if cumulative CE on time during $t_{R E F}$ is $\leqslant 65 \%$ of $t_{R E F}$. For continuous Read-Modify-Write operation, ${ }^{\mathrm{C}} \mathrm{CC}$ and $\mathrm{t}_{\mathrm{RWW}}$ should be increased to at least 185 ns and 645 ns , respectively.
2. $V_{I L} M A X$ is the reference level for measuring timing of the addresses, $\overline{C S}, \overline{W E}$, and $D_{I N}$.
3. $V_{I H}$ MIN is the reference level for measuring timing of the addresses, $\overline{C S}, \overline{W E}$, and $D_{I N}$.
4. $\mathrm{V}_{\mathrm{SS}}+2.0 \mathrm{~V}$ is the reference level for measuring timing of $C E$.
5. $V_{D D}-2 V$ is the reference level for measuring timing of $C E$.
6. $V_{\mathrm{SS}}+2.0 \mathrm{~V}$ is the reference level for measuring the timing of $\overline{\mathrm{DOUT}_{\mathrm{OUT}}}$.
7. $\overline{W E}$ must be at $V_{I H}$ until end of $t^{t} C O$.
8. During CE high typically 0.5 mA will be drawn from any address pin which is switched from low to high.

DYNAMIC MEMORY REFRESH CONTROLLER

\author{

- Adjustable Refresh Request Oscillator
 - Ideal for 8107A, 8107B 4K RAM Refresh
}

- Internal Address Multiplexer
 - Up to 6 Row Input Addresses (64 x 64 Organization)

The 8222 is a refresh controller for dynamic RAMs requiring row refresh of up to 6 row input addresses (or 4 K bits for $64 \times$ 64 organization). The device contains an accurate refresh timer (whose frequency can be set by an external resistor and capacitor) plus all necessary control and I/O circuitry to provide for the refresh requirements of dynamic RAMs. The chip's high performance makes it especially suitable for use with high speed N -channel RAMs like the 8107B. The 8222 is designed for large, asynchronously driven, dynamic memory systems.

8212

EIGHT-BIT INPUT/OUTPUT PORT

- Fully Parallel 8-Bit Data Register and Buffer
- Service Request Flip-Flop for Interrupt Generation
- Low Input Load Current .25 mA Max.
- Three State Outputs
- Outputs Sink 15 mA
- 3.65V Output High Voltage for Direct Interface to 8080 CPU or 8008 CPU
- Asynchronous Register Clear
- Replaces Buffers, Latches and Multiplexers in Microcomputer Systems
- Reduces System Package Count

The 8212 input/output port consists of an 8-bit latch with 3-state output buffers along with control and device selection logic. Also included is a service request flip-flop for the generation and control of interrupts to the microprocessor.
The device is multimode in nature. It can be used to implement latches, gated buffers or multiplexers. Thus, all of the principal peripheral and input/output functions of a microcomputer system can be implemented with this device.

Absolute Maximum Ratings*

Temperature Under Bias Plastic . $-65^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
-COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and tunctional operation of the device at these or at any other condition above
All Output or Supply Voltages -0.5 to +7 Volts
All Input Voltages 1.0 to 5.5 Volts
Output Currents . 125 mA those indicated in the operational sections of this specification is not implied.
D.C. Characteristics
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min.	Typ.	Max.		
$\mathrm{I}_{\text {F }}$	Input Load Current ACK, DS $2, C R$, DI_{1}-DI DI_{8} Inputs			-. 25	mA	$\mathrm{V}_{\mathrm{F}}=.45 \mathrm{~V}$
$l_{\text {F }}$	Input Load Current MD Input			-. 75	mA	$\mathrm{V}_{\mathrm{F}}=.45 \mathrm{~V}$
$I_{\text {f }}$	Input Load Current DS, Input			-1.0	mA	$\mathrm{V}_{\mathrm{F}}=.45 \mathrm{~V}$
I_{R}	Input Leakage Current ACK, DS, CR, DI,-DI Inputs			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
I_{R}	Input Leakage Current MO Input			30	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
I_{R}	Input Leakage Current DS, Input			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
$\mathrm{V}_{\text {c }}$	Input Forward Voltage Clamp			-1	V	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
$\mathrm{V}_{\text {It }}$	Input "Low" Voltage			. 85	V	
V_{1+}	Input "High" Voltage	2.0			V	
$V_{\text {oL }}$	Output "Low" Voltage			. 45	V	$\mathrm{l}_{\mathrm{L}}=15 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output "High" Voltage	3.65	4.0		V	$\mathrm{IOH}_{\mathrm{O}}=-1 \mathrm{~mA}$
$\mathrm{l}_{\text {sc }}$	Short Circuit Output Current	-15		-75	mA	$\mathrm{V}_{0}=0 \mathrm{~V}$
10	Output Leakage Current High Impedance State			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=.45 \mathrm{~V} / 5.25 \mathrm{~V}$
lcc	Power Supply Current		90	130	mA	

Timing Diagram

A.C. Characteristics

$\mathrm{T}_{\wedge}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{cC}}=+5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Limits		Unit	Test Conditions
		Min. \quad Typ. \quad Max.			
t_{pw}	Pulse Width	30	ns		
t_{pd}	Data To Output Delay		30	ns	
t_{we}	Write Enable To Output Delay		40	ns	
$\mathrm{t}_{\mathrm{set}}$	Data Setup Time	15		ns	
t_{n}	Data Hold Time	20	40	ns	
t_{r}	Reset To Output Delay		30	ns	
t_{s}	Set To Output Delay		45	ns	
t_{o}	Output Enable/Disable Time		55	ns	
t_{c}	Clear To Output Delay				

CAPACITANCE* $\quad \mathrm{F}=1 \mathrm{MHz} \quad \mathrm{V}_{\mathrm{B} \mid \wedge S}=2.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \quad \mathrm{~T}_{\wedge}=25^{\circ} \mathrm{C}$

Symbol	Test		LIMITS	
		Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	DS, MD Input Capacitance	9 pF	12 pF	
C_{IN}	$\mathrm{DS}_{2}, \mathrm{CK}, \mathrm{ACK}, \mathrm{DI}_{1}-\mathrm{DI}_{8}$ Input Capacitance	5 pF	9 pF	
$\mathrm{C}_{\text {out }}$	$\mathrm{DO}_{1}-\mathrm{DO}_{8}$ Output Capacitance	8 pF	12 pF	

*This parameter is sampled and not 100% tested.

Switching Characteristics

CONDITIONS OF TEST

TEST LOAD
15 mA \& 30pF

8255

PROGRAMMABLE PERIPHERAL INTERFACE

\author{

- 24 Programmable I/O Pins
 - Completely TTL Compatible
 - Fully Compatible with MCS ${ }^{\text {T" }}-8$ and MCS ${ }^{T m}-80$ Microprocessor Families
}

\author{

- Direct Bit Set/Reset Capability Easing Control Application Interface
 - 40 Pin Dual In-Line Package
 - Reduces System Package Count
}

The 8255 is a general purpose programmable I/O device designed for use with both the 8008 and 8080 microprocessors. It has 24 I/O pins which may be individually programmed in two groups of twelve and used in three major modes of operation. In the first mode (Mode 0), each group of twelve I/O pins may be programmed in sets of 4 to be input or output. In Mode 1, the second mode, each group may be programmed to have 8 lines of input or output. Of the remaining four pins three are used for handshaking and interrupt control signals. The third mode of operation (Mode 2) is a Bidirectional Bus mode which uses 8 lines for a bidirectional bus, and five lines, borrowing one from the other group, for handshaking.
Other features of the 8255 include bit set and reset capability and the ability to source 1 mA of current at 1.5 volts. This allows darlington transistors to be directly driven for applications such as printers and high voltage displays.

PIN CONFIGURATION

PIN NAMES

$\mathrm{D}_{7}-\mathrm{D}_{0}$	DATA BUS (BI-DIRECTIONAL)
RESET	RESET INPUT
$\overline{\mathrm{CS}}$	CHIP SELECT
$\overline{\text { RD }}$	READ INPUT
$\overline{\text { WR }}$	WRITE INPUT
$A 0, A 1$	PORT ADDRESS
PA7-PA0	PORT A (BIT)
PB7-PB0	PORT B (BIT)
PC7-PC0	PORT C (BIT)
VCC	+5 VOLTS
GND	$\boxed{\sigma}$ VOLTS

8255 BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin
\quad With Respect to Ground. -0.5 V to +7 V
Power Dissipation 1 Watt

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin
With Respect to Ground -0.5 V to +7 V
Power Dissipation . 1 Watt
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
V_{IL}	Input Low Voltage			.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	2.0			V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage			.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}(-100 \mu \mathrm{~A}$ for D.B. Port)
$\mathrm{I}_{\mathrm{OH}}{ }^{[1]}$	Darlington Drive Current		2.0		mA	$\mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=390 \Omega$
I_{CC}	Power Supply Current		40		mA	

NOTE:

1. Available on 8 pins only.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
C_{IN}	Input Capacitance			10	pF	$\mathrm{fc}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	I/O Capacitance			20	pF	Unmeasured pins returned to V_{SS}.

A.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Condition
twp	Pulse Width of WR			430	ns	
tbw	Time D.B. Stable Before $\overline{W R}$	10			ns	
two	Time D.B. Stable After $\overline{W R}$	65			ns	
$t_{\text {AW }}$	Time Address Stable Before $\overline{W R}$	20			ns	
twa	Time Address Stable After $\overline{W R}$	35			ns	
${ }^{\text {c }}$ W	Time CS Stable Before $\overline{W R}$	20			ns	
twc	Time CS Stable After $\overline{W R}$	35			ns	
$t_{\text {WB }}$	Delay From $\overline{W R}$ To Output			500	ns	
$t_{R P}$	Pulse Width of $\overline{\mathrm{RD}}$	430			ns	
$t_{\text {IR }}$	$\overline{\mathrm{RD}}$ Set-Up Time	50			ns	
$t_{\text {HR }}$	Input Hold Time	50			ns	
$t_{\text {RD }}$	Delay From $\overline{\mathrm{RD}}=0$ To System Bus	350			ns	
${ }_{\text {tob }}$	Delay From $\overline{\mathrm{RD}}=1$ To System Bus	150			ns	
$t_{\text {AR }}$	Time Address Stable Before $\overline{\mathrm{RD}}$	50			ns	
${ }^{t} \mathbf{C R}$	Time $\overline{C S}$ Stable Before $\overline{\mathrm{RD}}$	50			ns	
${ }^{\text {t }}$ AK	Width Of $\overline{\text { ACK }}$ Pulse	500			ns	
$\mathrm{t}_{\text {ST }}$	Width Of $\overline{\text { STB }}$ Pulse	350			ns	
$t_{\text {PS }}$	Set-Up Time For Peripheral	150			ns	
$t_{\text {PH }}$	Hold Time For Peripheral	150			ns	
t_{RA}	Hold Time for $\mathrm{A}_{1}, \mathrm{~A}_{0}$ After $\overline{\mathrm{RD}}=1$	379			ns	
$t_{\text {RC }}$	Hold Time For CS After $\overline{\mathrm{RD}}=1$	5			ns	
$\mathrm{t}_{\text {AD }}$	Time From $\overline{\mathrm{ACK}}=0$ To Output (Mode 2)			500	ns	
$\mathrm{t}_{\text {KD }}$	Time From $\overline{\mathrm{ACK}}=1$ To Output Floating			300	ns	
two	Time From $\overline{W R}=1$ To $\overline{\mathrm{OBF}}=0$			300	ns	
$t_{\text {AO }}$	Time From $\overline{\mathrm{ACK}}=0$ To $\overline{\mathrm{OBF}}=1$			500	ns	
$\mathrm{t}_{\mathbf{S} 1}$	Time From $\overline{\text { STB }}=0$ To IBF			600	ns	
t_{RI}	Time From $\overline{\mathrm{RD}}=1$ To $\mathrm{IBF}=0$			300	ns	

Mode 0 (Basic Input)

Mode 0 (Basic Output)

Mode 1 (Strobed Input)

Mode 1 (Strobed Output)

Mode 2 (Bi-directional)

PROGRAMMABLE COMMUNICATION INTERFACE

- Synchronous and Asynchronous Operation

- Synchronous:

5-8 Bit Characters
Internal or External Character Synchronization
Automatic Sync Insertion

- Asynchronous:

5-8 Bit Characters
Clock Rate - 1,16 or 64 Times Baud Rate
Break Character Generation
1, $11 / 2$, or 2 Stop Bits
False Start Bit Detection

- Baud Rate -DC to 56k Baud (Sync Mode) DC to 9.6 k Baud (Async Mode)
- Full Duplex, Double Buffered, Transmitter and Receiver
- Error Detection - Parity, Overrun, and Framing
- Fully Compatible with $\mathbf{8 0 8 0}$ CPU
- 28-Pin DIP Package
- All Inputs and Outputs Are TTL Compatible
- Single 5 Volt Supply
- Single TTL Clock

The 8251 is a Universal Synchronous/Asynchronous Receiver / Transmitter (USART) Chip designed for data communications in microcomputer systems. The USART is used as a peripheral device and is programmed by the CPU to operate using virtually any serial data transmission technique presently in use (including IBM Bi-Sync). The USART accepts data characters from the CPU in parallel format and then converts them into a continuous serial data stream for transmission. Simultaneously it can receive serial data streams and convert them into parallel data characters for the CPU. The USART will signal the CPU whenever it can accept a new character for transmission or whenever it has received a character for the CPU. The CPU can read the complete status of the USART at any time. These include data transmission errors and control signals such as SYNDET, TxEMPT. The chip is constructed using N -channel silicon gate technology.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin
With Respect to Ground -0.5 V to +7 V
Power Dissipation . 1 Watt
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics:

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
$V_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\text {SS }}{ }^{-.5}$		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0		V_{CC}	V	
V_{OL}	Output Low Voltage			0.45	V	$\mathrm{l} \mathrm{OL}=1.6 \mathrm{~mA}$
VOH	Output High Voltage	2.2			V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}\left(\mathrm{DB}_{0-7}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}(\text { Others }) \end{aligned}$
IDL	Data Bus Leakage			$\begin{array}{r} -50 \\ 10 \end{array}$	$\mu \mathrm{A}$. $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{v}_{\mathrm{OUT}}=.45 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{OUT}}=\mathrm{v}_{\mathrm{CC}} \end{aligned}$
I_{LI}	Input Load Current			10	$\mu \mathrm{A}$	@ 5.5V
ICC	Power Supply Current		45	80		

Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
C_{N}	Input Capacitance			10	pF	$\mathrm{fc}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	I/O Capacitance			20	pF	Unmeasured pins returned to V_{SS}.

A.C. Characteristics:

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
t_{Cl}	Clock Period	. 420		1.35	$\mu \mathrm{s}$	
$\mathrm{t}_{\boldsymbol{\phi}} \mathrm{W}$	Clock Pulse Width	220		300	ns	
t_{R}, t_{F}	Clock Rise and Fall Time	0		50	ns	
${ }_{\text {t }}^{\text {WR }}$	$\overline{\text { WRITE Pulse Width }}$	430			ns	
t_{DS}	Data Set-Up Time for WRITE	200			ns	
${ }^{\text {t }}$ D	Data Hold Time for WRITE	65			ns	
$\mathrm{t}_{\text {AW }}$	Address Stable before WRITE	20			ns	
twA	Address Hold Time for WRITE	35			ns	
$\mathrm{t}_{\text {RD }}$	READ Pulse Width	430			ns	
${ }^{\text {t }}$ D	Data Delay from $\overline{\text { READ }}$			350	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
${ }^{\text {t }}$ D	$\overline{\mathrm{READ}}$ to Data Floating	25		200	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
${ }_{\text {taR1 }}$	Address Stable before $\overline{\text { READ }}$, CE (C/D)	50			ns	
$\mathrm{t}_{\text {RA1 }}$	Address Hold Time for READ, CE	5			ns	
tra2	Address Hold Time for $\overline{\text { READ }}$, C/D	370			ns	
${ }^{\text {t }}$ DTx	TxD Delay from Falling Edge of TxC	1			$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
${ }_{\text {t }}^{\text {SR }} \mathrm{x}$	Rx Data Set-Up Time to Sampling Pulse	2			$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
${ }_{t}{ }_{\text {HRx }}$	Rx Data Hold Time to Sampling Pulse	2			$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\mathrm{f}_{\mathrm{T} \times}$	```Transmitter Input Clock Frequency 1X Baud Rate 16X and 64X Baud Rate```	$\begin{aligned} & \text { DC } \\ & \text { DC } \end{aligned}$		$\begin{gathered} 56 \\ 615 \end{gathered}$	$\begin{aligned} & \mathrm{KHz} \\ & \mathrm{KHz} \end{aligned}$	
f_{Rx}	Receiver Input Clock Frequency 1X Baud Rate 16X and 64X Baud Rate	$\begin{aligned} & \text { DC } \\ & \text { DC } \end{aligned}$		$\begin{gathered} 56 \\ 615 \end{gathered}$	$\begin{aligned} & \mathrm{KHz} \\ & \mathrm{KHz} \end{aligned}$	
${ }^{\text {t }}$ Tx	TxRDY Delay from Center of Data Bit			16	CLK Period	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$t_{\text {Rx }}$	RxRDY Delay from Center of Data Bit	15		20	CLK Period	
$t_{\text {IS }}$	Internal Syndet Delay from Center of Data Bit	20		25	CLK Period	
$\mathrm{t}_{\text {ES }}$	External Syndet Set-Up Time before Falling Edge of RxC			15	CLK Period	

Note: The TxC and RxC frequencies have the following limitation with respect to CLK.
For ASYNC Mode, t_{x} or $\mathrm{t}_{\mathrm{Rx}} \geqslant 4.5 \mathrm{t}_{\mathrm{C}} \mathrm{Y}$ For SYNC Mode, t_{T} or $\mathrm{t}_{\mathrm{Rx}} \geqslant 30 \mathrm{t}_{\mathrm{C}} \mathrm{Y}$

READ AND WRITE TIMING

TRANSMITTER CLOCK AND DATA

RECEIVER CLOCK AND DATA

TX RDY AND RX RDY TIMING (ASYNC MODE)

INTERNAL SYNC DETECT

EXTERNAL SYNC DETECT

8205

HIGH SPEED 1 OUT OF 8 BINARY DECODER

- I/O Port or Memory Selector
- Simple Expansion - Enable Inputs
- High Speed Schottky Bipolar Technology - 18ns Max. Delay
- Directly Compatible with TTL Logic Circuits
- Low Input Load Current - 25 mA max., 1/6 Standard TTL Input Load
- Minimum Line Reflection - Low Voltage Diode Input Clamp
- Outputs Sink 10 mA min.
- 16-Pin Dual-In-Line Ceramic or Plastic Package

The 8205 decoder can be used for expansion of systems which utilize input ports, output ports, and memory components with active low chip select input. When the 8205 is enabled, one of its eight outputs goes "low", thus a single row of a memory system is selected. The 3 chip enable inputs on the 8205 allow easy system expansion. For very large systems, 8205 decoders can be cascaded such that each decoder can drive eight other decoders for arbitrary memory expansions.
The Intel 8205 is packaged in a standard 16 pin dual-in-line package; and its performance is specified over the temperature range of $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, ambient. The use of Schottky barrier diode clamped transistors to obtain fast switching speeds results in higher performance than equivalent devices made with a gold diffusion process.

PIN CONFIGURATION

PIN NAMES

$A_{0} \cdot A_{2}$	ADDRESS INPUTS
$\overline{E_{1}} \cdot \overline{E_{3}}$	ENABLE INPUTS
$\overline{\bar{O}_{0}} \cdot \overline{O_{7}}$	DECODED OUTPUTS

LOGIC SYMBOL

8205

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias:	Ceramic Plastic	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature		$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Output or Supply Voltages	-0.5 to +7 Volts	
All Input Voltages	-1.0 to +5.5 Volts	
Output Currents	125 mA	

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

8205

SYMBOL	PARAMETER	LIMIT		UNIT	TEST CONDITIONS
		MIN.	MAX.		
I_{F}	INPUT LOAD CURRENT		-0.25	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0.45 \mathrm{~V}$
$I_{\text {R }}$	INPUT LEAKAGE CURRENT		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=5.25 \mathrm{~V}$
V_{C}	INPUT FORWARD CLAMP VOLTAGE		-1.0	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~mA}$
V_{OL}	OUTPUT "LOW' VOLTAGE		0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10.0 \mathrm{~mA}$
V_{OH}	OUTPUT HIGH VOLTAGE	2.4		V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1.5 \mathrm{~mA}$
$V_{\text {IL }}$	INPUT 'LOW' VOLTAGE		0.85	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
V_{IH}	INPUT "HIGH" VOLTAGE	2.0		V	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$
I_{sc}	OUTPUT HIGH SHORT CIRCUIT CURRENT	-40	-120	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{V}_{\text {Ox }}$	OUTPUT "LOW" VOLTAGE @ HIGH CURRENT		0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{Ox}}=40 \mathrm{~mA}$
${ }^{\text {cc }}$	POWER SUPPLY CURRENT		70	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$

TYPICAL CHARACTERISTICS

OUTPUT CURRENT VS. OUTPUT "LOW" VOLTAGE

OUTPUT CURRENT VS.
OUTPUT "HIGH" VOLTAGE

DATA TRANSFER FUNCTION

8205

8205 SWITCHING CHARACTERISTICS

CONDITIONS OF TEST:

Input pulse amplitudes: 2.5V
Input rise and fall times: 5 nsec between 1 V and 2 V

Measurements are made at 1.5 V

TEST WAVEFORMS

ADDRESS OR ENABLE INPUT PULSE

OUTPUT

A.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

SYMBOL	PARAMETER	MAX. LIMIT	UNIT	TEST CONDITIONS
t_{++}	ADDRESS OR ENABLE TO OUTPUT DELAY	18	ns	
t_{-+}		18	ns	
t_{+}		18	ns	
$\mathrm{t}_{\text {- }}$		18	ns	
CiN^{11}	INPUT CAPACITANCE $\frac{\text { P8205 }}{\text { C8205 }}$	4(typ.)	pF	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C C}=0 \mathrm{~V} \\ & V_{B I A S}=2.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$

1. This parameter is periodically sampled and is not 100% tested.

TYPICAL CHARACTERISTICS

ADDRESS OR ENABLE TO OUTPUT DELAY VS. AMBIENT TEMPERATURE

PRIORITY INTERRUPT CONTROL UNIT

\author{

- Eight Priority Levels
 - Current Status Register
 - Priority Comparator
}
Fully Expandable
■ High Performance (50ns)
- 24-Pin Dual In-Line Package

The 8214 is an eight level priority interrupt control unit designed to simplify interrupt driven microcomputer systems.
The PICU can accept eight requesting levels; determine the highest priority, compare this priority to a software controlled current status register and issue an interrupt to the system along with vector information to identify the service routine.

The 8214 is fully expandable by the use of open collector interrupt output and vector information. Control signals are also provided to simplify this function.

The PICU is designed to support a wide variety of vectored interrupt structures and reduce package count in interrupt driven microcomputer systems.

PIN CONFIGURATION

PIN NAMES

INPUTS	
$\overline{\mathbf{R}_{0} \cdot \mathbf{R}_{7}}$	REQUEST LEVELS (R, HIGHEST PRIORITY)
$\overline{\mathrm{B}_{0} \cdot \mathrm{~B}_{2}}$	CURRENT STATUS
$\overline{\text { SGS }}$	StATUS GROUP SELECT
ECS	ENABLE CURRENT STATUS
INTE	INTERRUPT ENABLE
$\overline{\text { CLK }}$	CLOCK (INT F.F)
ELR	ENABLE LEVEL READ
ETLG	ENABLE THIS LEVEL GROUP
OUTPUTS:	
$\overline{A_{0} \cdot A_{2}}$ $\overline{I N T}$	
ENLG	ENABLE NEXT LEVEL GROUP

LOGIC DIAGRAM

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . -65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output and Supply Voltages . -0.5V to +7V
All Input Voltages . -1.0V to +5.5V
Output Currents . 100 mA
*COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specifications is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$.

Symbol	Parameter		Limits			Unit	Conditions
			Min.	Typ. [1]	Max.		
V_{C}	Input Clamp Voltage (all inputs)				-1.0	V	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
I_{F}	Input Forward Current:	ETLG input all other inputs		$\begin{aligned} & \hline-.15 \\ & -.08 \end{aligned}$	$\begin{gathered} -0.5 \\ -0.25 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{F}}=0.45 \mathrm{~V}$
I_{R}	Input Reverse Current:	ETLG input all other inputs			$\begin{aligned} & 80 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
$V_{\text {IL }}$	Input LOW Voltage:	all inputs			0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
V_{IH}	Input HIGH Voltage:	all inputs	2.0			V	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
I_{CC}	Power Supply Current			90	130	mA	See Note 2.
V_{OL}	Output LOW Voltage:	all outputs		. 3	. 45	V	$\mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage:	ENLG output	2.4	3.0		V	$\mathrm{IOH}=-1 \mathrm{~mA}$
los	Short Circuit Output Current: ENLG output		-20	-35	-55	mA	$\mathrm{V}_{\mathrm{OS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output Leakage Current: $\overline{\mathrm{INT}}$ and $\overline{\mathrm{A}_{0}} \cdot \overline{\mathrm{~A}_{2}}$				100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CEX }}=5.25 \mathrm{~V}$

NOTES:

1. Typical values are for ${ }^{\top} A=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.
2. $\mathrm{B}_{\mathrm{O}}-\mathrm{B}_{2}, \overline{\mathrm{SGS}}, \mathrm{CLK}, \overline{\mathrm{R}_{0}} \cdot-\bar{R}_{4}$ grounded, all other inputs and all outputs open.

8214

A.C. CHARACTERISTICS AND WAVEFORMS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Limits			Unit
		Min.	Typ. [1]	Max.	
${ }^{\text {t }} \mathrm{C}$	$\overline{\text { CLK }}$ Cycle Time	80	50		ns
$t_{\text {PW }}$	$\overline{\mathrm{CLK}}, \overline{\mathrm{ECS}}, \overline{\text { INT }}$ Pulse Width	25	15		ns
$\mathrm{t}_{\text {ISS }}$	INTE Setup Time to $\overline{\text { CLK }}$	16	12		ns
$\mathrm{t}_{\text {ISH }}$	INTE Hold Time after $\overline{\text { CLK }}$	20	10		ns
$\mathrm{t}_{\text {ETCS }}{ }^{[2]}$	ETLG Setup Time to $\overline{\text { CLK }}$	25	12		ns
$\mathrm{t}_{\mathrm{ETCH}}{ }^{[2]}$	ETLG Hold Time After $\overline{\text { CLK }}$	20	10		ns
$\mathrm{t}_{\text {ECCS }}{ }^{[2]}$	$\overline{\text { ECS }}$ Setup Time to $\overline{C L K}$	80	50		ns
$\mathrm{t}_{\mathrm{ECCH}}{ }^{[3]}$	$\overline{\text { ECS }}$ Hold Time After $\overline{C L K}$	0			ns
$\mathrm{t}_{\mathrm{ECRS}}{ }^{[3]}$	$\overline{\text { ECS }}$ Setup Time to $\overline{C L K}$	110	70		ns
$\mathrm{t}_{\mathrm{ECRH}}{ }^{[3]}$	$\overline{\text { ECS }}$ Hold Time After CLK	0			
$\mathrm{t}_{\text {ECSS }}{ }^{[2]}$	$\overline{\text { ECS }}$ Setup Time to $\overline{C L K}$	75	70		ns
$\mathrm{t}_{\mathrm{ECSH}}{ }^{[2]}$	$\overline{\text { ECS }}$ Hold Time After $\overline{\text { CLK }}$	0			ns
$\mathrm{t}_{\text {DCS }}{ }^{[2]}$	$\overline{\text { SGS }}$ and $\overline{\mathrm{B}_{0}} \cdot \overline{\mathrm{~B}_{2}}$ Setup Time to $\overline{\mathrm{CLK}}$	70	50		ns
$\mathrm{t}_{\mathrm{CHH}^{[2]}}$	$\overline{\mathrm{SGS}}$ and $\overline{\mathrm{B}_{0}} \cdot \overline{\mathrm{~B}_{2}}$ Hold Time After $\overline{\mathrm{CLK}}$	0			ns
$\mathrm{t}_{\mathrm{RCS}}{ }^{[3]}$	$\overline{R_{0}} \cdot \overline{R_{7}}$ Setup Time to $\overline{\text { CLK }}$	90	55		ns
$\mathrm{t}_{\mathrm{RCH}}{ }^{[3]}$	$\overline{R_{0}} \cdot \overline{R_{7}}$ Hold Time After $\overline{C L K}$	0			ns
tics	$\overline{\text { INT S Setup Time to } \overline{C L K}}$	55	35		ns
${ }^{\text {c }}$ C	$\overline{\mathrm{CLK}}$ to $\overline{\text { INT Propagation Delay }}$		15	25	ns
$\mathrm{t}_{\text {RIS }}{ }^{\text {[4] }}$	$\overline{\mathrm{R}_{0}} \cdot \overline{\mathrm{R}_{7}}$ Setup Time to $\overline{\mathrm{INT}}$	10	0		ns
$\mathrm{t}_{\text {RIH }}{ }^{[4]}$	$\overline{\mathrm{R}_{0}} \cdot \overline{\mathrm{R}_{7}}$ Hold Time After $\overline{\mathrm{INT}}$	35	20		ns
$t_{\text {RA }}$	$\overline{R_{0}} \cdot \overline{R_{7}}$ to $\overline{\mathrm{A}_{0}} \cdot \overline{\mathrm{~A}_{2}}$ Propagation Delay		80	100	ns
$t_{\text {ELA }}$	$\overline{\mathrm{ELR}}$ to $\overline{\mathrm{A}_{0}} \cdot \overline{\mathrm{~A}_{2}}$ Propagation Delay		40	55	ns
$t_{\text {ECA }}$	$\overline{\mathrm{ECS}}$ to $\overline{\mathrm{A}_{0}} \cdot \overline{\mathrm{~A}_{2}}$ Propagation Delay		100	120	ns
$t_{\text {ETA }}$	ETLG to $\overline{A_{0}} \cdot \overline{A_{2}}$ Propagation Delay		35	70	ns
$\mathrm{t}_{\text {DECS }}{ }^{[4]}$	$\overline{\text { SGS }}$ and $\overline{\mathrm{B}_{0}} \cdot \overline{\mathrm{~B}_{2}}$ Setup Time to $\overline{\mathrm{ECS}}$	15	10		ns
$\mathrm{t}_{\text {DECH }}{ }^{[4]}$	$\overline{\mathrm{SGS}}$ and $\overline{\mathrm{B}_{0}} \cdot \overline{B_{2}}$ Hold Time After $\overline{\mathrm{ECS}}$	15	10		ns
$t_{\text {REN }}$	$\overline{R_{0}} \cdot \overline{R_{7}}$ to ENLG Propagation Delay		45	70	ns
teten	ETLG to ENLG Propagation Delay		20	25	ns
teCRN	$\overline{\text { ECS }}$ to ENLG Propagation Delay		85	90	ns
$\mathrm{t}_{\text {ECSN }}$	$\overline{\text { ECS }}$ to ENLG Propagation Delay		35	55	ns

CAPACITANCE [5]

Symbol	Parameter	Limits			Unit
		Min.	Typ. ${ }^{[1]}$	Max	
$\mathrm{CiN}_{\text {I }}$	Input Capacitance		5	10	pF
COUT	Output Capacitance		7	12	pF

TEST CONDITIONS: $V_{B I A S}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$
NOTE 5. This parameter is periodically sampled and not 100% tested.

WAVEFORMS

notes:
${ }^{(1)} T_{\text {ypical values are for }} T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$.
${ }^{(2)}$ Required for proper operation if ISE is enabled during next clock pulse.
${ }^{(3)}$ These times are not required for proper operation but for desired change in interrupt flip-flop.
${ }^{(4)}$ Required for new request or status to be properly loaded.

TEST CONDITIONS:

Input pulse amplitude: 2.5 volts.
Input rise and fall times: 5 ns between 1 and 2 volts.
Output loading of 15 mA and 30 pf .
Speed measurements taken at the 1.5 V levels.

8216/8226

4 BIT PARALLEL BIDIRECTIONAL BUS DRIVER

- Data Bus Buffer Driver for $\mathbf{8 0 8 0}$ CPU
- Low Input Load Current - . 25 mA Maximum
- High Output Drive Capability for Driving System Data Bus
- 3.65V Output High Voltage for Direct Interface to 8080 CPU
- Three State Outputs
- Reduces System Package Count

The $8216 / 8226$ is a 4-bit bi-directional bus driver/receiver.
All inputs are low power TTL compatible. For driving MOS, the DO outputs provide a high $3.65 \mathrm{~V} \mathrm{~V}_{\mathrm{OH}}$, and for high capacitance terminated bus structures, the DB outputs provide a high $50 \mathrm{~mA} \mathrm{I}_{\mathrm{OL}}$ capability.
A non-inverting (8216) and an inverting (8226) are available to meet a wide variety of applications for buffering in microcomputer systems.

PIN CONFIGURATION

PIN NAMES

$\mathrm{DB}_{0} \cdot \mathrm{DB}_{3}$	DATA BUS BIIDIRECTIONAL
$\mathrm{DI}_{0} \cdot \mathrm{DI}_{3}$	DATA INPUT
$\mathrm{DO}_{0} \cdot \mathrm{DO}_{3}$	DATA OUTPUT
$\overline{\text { DIEN }}$	DATA IN ENABLE DIRECTION CONTROL
$\overline{\mathrm{CS}}$	CHIP SELECT

CHIP SELECT

LOGIC DIAGRAM
8216

8216, 8226

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output and Supply Voltages . -0.5V to +7V
All Input Voltages . 1.0 V to +5.5V
Output Currents
125 mA
"COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Limits			Unit	Conditions
		Min.	Typ.	Max.		
$\mathrm{I}_{\text {F1 }}$	Input Load Current $\overline{\text { DIEN, }} \overline{\mathrm{CS}}$		-0.15	-. 5	mA	$V_{F}=0.45$
$\mathrm{I}_{\mathrm{F} 2}$	Input Load Current All Other Inputs		-0.08	-. 25	mA	$\mathrm{V}_{\mathrm{F}}=0.45$
$\mathrm{I}_{\mathrm{R} 1}$	Input Leakage Current $\overline{\text { DIEN, }}$, $\overline{C S}$			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{R} 2}$	Input Leakage Current DI Inputs			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
V_{C}	Input Forward Voltage Clamp			-1	V	$I_{C}=-5 m A$
$\mathrm{V}_{\text {IL }}$	Input "Low" Voltage			. 95	V	
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	2.0			V	
$\mid 101$	Output Leakage Current DO (3-State) DB			$\begin{gathered} 20 \\ 100 \end{gathered}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.25 \mathrm{~V}$
$I_{\text {cc }}$	Power Supply Current		95	130	mA	
			85	120	mA	
$\mathrm{V}_{\text {OL1 }}$	Output "Low" Voltage		0.3	. 45	V	DO Outputs $I_{O L}=15 \mathrm{~mA}$ DB Outputs $\mathrm{I}_{\mathrm{OL}}=25 \mathrm{~mA}$
$\mathrm{V}_{\text {OL2 }}$	Output "Low" Voltage		0.5	. 6	V	DB Outputs $\mathrm{l}_{\mathrm{OL}}=55 \mathrm{~mA}$
			0.5	. 6	V	DB Outputs $\mathrm{I}_{\mathrm{OL}}=50 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output "High" Voltage	3.65	4.0		V	DO Outputs $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$
VOH^{2}	Output "High" Voltage	2.4	3.0		V	DB Outputs $\mathrm{IOH}=-10 \mathrm{~mA}$
los	Output Short Circuit Current	$\begin{aligned} & -15 \\ & -30 \end{aligned}$	$\begin{aligned} & -35 \\ & -75 \end{aligned}$	$\begin{gathered} -65 \\ -120 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	DO Outputs $\mathrm{V}_{\mathrm{O}} \cong 0 \mathrm{~V}$, DB Outputs $V_{C C}=5.0 \mathrm{~V}$

NOTE: Typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$.

8216, 8226

WAVEFORMS

A.C. CHARACTERISTICS

$$
\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%
$$

Symbol	Parameter	Limits			Unit	Conditions
		Min.	Typ.[1]	Max.		
TPD1	Input to Output Delay DO Outputs		15	25	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega \\ & \mathrm{R}_{2}=600 \Omega \end{aligned}$
TPD2	Input to Output Delay DB Outputs 8216		20	30	ns	$\begin{aligned} & C_{L}=300 \mathrm{pF}, \mathrm{R}_{1}=90 \Omega \\ & \mathrm{R}_{2}=180 \Omega \end{aligned}$
	8226		16	25	ns	
T_{E}	Output Enable Time		45	65	ns	(Note 2)
			35	54	ns	(Note 3)
$T_{\text {D }}$	Output Disable Time		20	35	ns	(Note 4)

TEST CONDITIONS:

Input pulse amplitude of 2.5 V . Input rise and fall times of 5 ns between 1 and 2 volts. Output loading is 5 mA and 10 pF .
Speed measurements are made at 1.5 volt levels.

Capacitance ${ }^{[5]}$

Symbol	Parameter	Limits			Unit
		Min.	Typ. [1]	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		4	8	pF
Cout1	Output Capacitance		6	10	pF
COUT2	Output Capacitance		13	18	pF

TEST CONDITIONS: $V_{B I A S}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$.
NOTES: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$.
2. DO Outputs, $C_{L}=30 p F, R_{1}=300 / 10 \mathrm{~K} \Omega, R_{2}=180 / 1 \mathrm{~K} \Omega$; $D B$ Outputs, $C_{L}=300 \mathrm{pF}, R_{1}=90 / 10 \mathrm{~K} \Omega, R_{2}=180 / 1 \mathrm{~K} \Omega$.
3. DO Outputs, $C_{L}=30 p F, R_{1}=300 / 10 \mathrm{~K} \Omega, R_{2}=600 / 1 \mathrm{~K} ; D B$ Outputs, $C_{L}=300 \mathrm{pF}, R_{1}=90 / 10 \mathrm{~K} \Omega, R_{2}=180 / 1 \mathrm{~K} \Omega$.
4. DO Outputs, $C_{L}=5 p F, R_{1}=300 / 10 \mathrm{~K} \Omega, R_{2}=600 / 1 \mathrm{~K} \Omega$; $D B$ Outputs, $C_{L}=5 p F, R_{1}=90 / 10 \mathrm{~K} \Omega, R_{2}=180 / 1 \mathrm{~K} \Omega$.
5. This parameter is periodically sampled and not 100% tested.

产
$\stackrel{\text { en }}{z}$

8253

PROGRAMMABLE INTERVAL TIMER

- 3 Independent 16-Bit Counters
 - DC to 3 MHz
 - Programmable Counter Modes

- Count Binary or BCD
- Single +5V Supply
- 24 Pin Dual-in-line Package

The 8253 is a programmable counter/timer chip designed for use as an $\mathbf{8 0 8 0}$ (or 8008) peripheral. It uses nMOS technology with a single +5 V supply and is packaged in a 24 -pin plastic DIP.

It is organized as three independent 16 -bit counters, each with a count rate from $\mathbf{0 H z}$ to 3 MHz . All modes of operation are software programmable by the 8080 .

BLOCK DIAGRAM

8253 PRELIMINARY FUNCTIONAL DESCRIPTION

In Microcomputer-based systems the most common interface is to a mechanical device such as a printer head or stepper motor. All such devices have inherent delays that must be accounted for if accurate and reliable performance is to be achieved. The systems software allows for such delays by programmed timing loops. This type of programming requires significant overhead and maintenance of multiple loops gets extremely complicated.

The 8253 Programmable Interval Timer is a single chip solution to system timing problems. In essence, it is a group of three 16-bit counters that are independent in nature but driven commonly as I/O peripheral ports. Instead of setting up timing loops in the system software, the programmer configures the 8253 to match his requirements. The programmer initializes one of the three counters of the 8253 with the quantity and mode desired then, upon command, the 8253 will count out the delay and interrupt the microcomputer when it has finished its task. It is easy to see that the software overhead is minimal and that multiple delays can be easily maintained by assigned interrupt levels to different counters. Other functions that are non-delay in nature and require counters can also be implemented with the 8253.

- Programmable Baud Rate Generator
- Event Counter
- Binary Rate Multiplier
- Real Time Clock

System Interface

The 8253 is a component of the MCS-80 system and interfaces in the same manner as all other peripherals of the family. It is treated by the systems software as an array of I/O ports; three are counters and the fourth is a control register for programming. The OUT lines of each counter would normally be tied to the interrupt request inputs of the 8259 .

The 8253 represents a significant improvement for solving one of the most common problems in system design and reducing software overhead.

8253 Block Diagram.

8253 System Interface.

PROGRAMMABLE DMA CONTROLLER

- Four Channel DMA Controller
 - Priority DMA Request Logic
 - Channel Inhibit Logic
 - Terminal and Modulo 256/128 Outputs

- Auto Load Mode
- Single TTL Clock ($\phi 2 /$ TTL)
- Single +5V Supply
- Expandable
- 40 Pin Dual-in-Line Package

The 8257 is a Direct Memory Access (DMA) Chip which has four channels for use in 8080 microcomputer systems. Its primary function is to generate, upon a peripheral request, a sequential memory address which will allow the peripheral to access or deposit data directly from or to memory. It uses the Hold feature of the 8080 to acquire the system bus. It also keeps count of the number of DMA cycles for each channel and notifies the peripheral when a programmable terminal count has been reached. Other features that it has are two mode priority logic to resolve the request among the four channels, programmable channel inhibit logic, an early write pulse option, a modulo 256/128 Mark output for sectored data transfers, an automatic load mode, a terminal count status register, and control signal timing generation during DMA cycles. There are three types of DMA cycles: Read DMA Cycle, Write DMA Cycle and Verify DMA Cycle.
The 8257 is a $40-\mathrm{pin}, \mathrm{N}$-channel MOS chip which uses a single +5 V supply and the $\phi 2$ (TTL) clock of the 8080 system. It is designed to work in conjunction with a single 82128 -bit, three-state latch chip. Multiple DMA chips can be used to expand the number of channels with the aid of the 8214 Priority Interrupt Chip.

8257 PRELIMINARY FUNCTIONAL DESCRIPTION

The transfer of data between a mass storage device such as a floppy disk or mag cassette and system RAM memory is often limited by the speed of the microprocessor. Removing the processor during such a transfer and letting an auxillary device manage the transfer in a more efficient manner would greatly improve the speed and make mass storage devices more attractive, even to the small system designer.

The transfer technique is called DMA (Direct Memory Access); in essence the CPU is idled so that it no longer has control of the system bus and a DMA controller takes over to manage the transfer.

The 8257 Programmable DMA Controller is a single chip, four channel device that can efficiently manage DMA activities. Each channel is assigned a priority level so that if multi-DMA activities are required each mass storage device can be serviced, based on its importance in the system. In
operation, a request is made from a peripheral device for access to the system bus. After its priority is accepted a HOLD command is ussued to the CPU, the CPU issues a HLDA and that DMA channel has complete control of the system bus. Transfers can be made in blocks, suspending the processors operation during the entire transfer or, the transfer can be made a few bytes at a time, hidden in the execution states of each instruction cycle, (cycle-stealing).
The modes and priority resolving are maintained by the system software as well as initializing each channel as to the starting address and length of transfer.

The system interface is similar to the other peripherals of the MCS-80 but an additional 8212 is necessary to control the entire address bus. A special control signal BUSEN is connected directly to the 8228 so that the data bus and control bus will be released at the proper time.

System Interface 8257.

[^14]
PROGRAMMABLE INTERRUPT CONTROLLER

- Eight Level Priority Controller
 - Expandable to 64 Levels
 - Programmable Interrupt Modes (Algorithms)

- Individual Request Mask Capability

- Single +5V Supply (No Clocks)
- 28 Pin Dual-in-Line Package

The 8259 handles up to eight vectored priority interrupts for the 8080A CPU. It is cascadable for up to 64 vectored priority interrupts, without additional circuitry. It will be packaged in a 28 -pin plastic DIP, uses nMOS technology and requires a single +5 V supply. Circuitry is static, requiring no clock input.

The 8259 is designed to minimize the software and real time overhead in handling multi-level priority interrupts. It has several modes, permitting optimization for a variety of system requirements.

BLOCK DIAGRAM

8259 PRELIMINARY

FUNCTIONAL DESCRIPTION

In microcomputer systems, the rate at which a peripheral device or devices can be serviced determines the total amount of system tasks that can be assigned to the control of the microprocessor. The higher the throughput the more jobs the microcomputer can do and the more cost effective it becomes. Interrupts have long been accepted as a key to improving system throughput by servicing a peripheral device only when the device has requested it to do so. Efficient managing of the interrupt requests to the CPU will have a significant effect on the overall cost effectiveness of the microcomputer system.

The 8259 Programmable Interrupt Controller is a single-chip device that can manage eight levels of requests and has builtin features for expandability to other 8259s (up to 64 levels). It is programmed by the systems software as an I/O peripheral. A selection of priority algorithms is available to the programmer so that the manner in which the requests are processed by the 8259 can be configured to match his system requirements. The priority assignments and algorithms can be changed or reconfigured dynamically at any time during the main program. This means that the complete interrupt structure can be defined as required, based on the total system environment.

The system interface is the same as other peripheral devices in the MCS-80. A special input is provided ($\overline{\mathrm{SP}}$) to program the 8259 as a slave or master device when expanding to more than eight levels. Basically the master accepts INT inputs from the slaves and issues a composite request to the 8080A; when it receives the INTA from the 8228 it puts the first byte on the CALL on the bus. On subsequent INTAs the interrupting slave puts out the address of the vector.

INTERRUPT REQUESTS
Cascading the $\mathbf{8 2 5 9} \mathbf{2 2}$ Level Controller (Expandable to $\mathbf{6 4}$ levels).

8080
 SYSTEM DESIGN KIT (SDK-80)

The 8080 System Design Kit (SDK-80) is a complete, single board, microcomputer system in kit form. It contains all necessary components, including resistors, caps, crystal and miscellaneous hardware to complete construction. Included is a preprogrammed ROM that contains the system monitor for general software utilities and system diagnostics. See page 10-29 for the full details.

SERIES 3000 BIPOLAR MICROCOMPUTER SYSTEM

SERIES 3000 BIPOLAR MICROCOMPUTER SYSTEM

TYPE	DESCRIPTION	PAGE NO.
3001	Microprogram Control Unit	$9-3$
M3001	Microprogram Control Unit, Mil Temp	$9-10$
3002	Central Processing Element	$9-13$
M3002	Central Processing Element, Mil Temp	$9-18$
3003	Look-Ahead Carry Generator	$9-21$
M3003	Look-Ahead Carry Generator, Mil Temp	$9-24$
3212	Multi-Mode Latch Buffer	$9-26$
M3212	Multi-Mode Latch Buffer, Mil Temp	$9-31$
3214	Interrupt Control Unit	$9-34$
M3214	Interrupt Control Unit, Mil Temp	$9-40$
$3216 / 3226$	Parallel Bi-Directional Bus Driver	$9-44$
M3216/M3226	Parallel Bi-Directional Bus Driver, Mil Temp	$9-47$

Since its introduction, the Series 3000 family of computing elements has found acceptance in a wide range of high performance applications from disk controllers to airborne central processors. The Series 3000 offers the flexibility, performance, and system integration necessary for an effective system solution for both high speed controllers and central processors.

The unique multiple bus structure of the 3002 Central Processing Element (CPE) eliminates the need for input data multiplexers or output latches. It also allows the designer to tailor the CPE's to suit his particular processing requirements. The 3001 Microprogram Control Unit (MCU) addresses up to 512 words of microprogram memory and controls both conditional and unconditional jumps within microprogram memory.

The entire component family has been designed to interconnect directly, minimizing the need for ancillary circuitry. It is available in commercial and military temperature range versions. In addition to the components, Intel has also developed a comprehensive support system to assist the user in writing microprograms, debugging hardware and microcode, and programming PROMs for both prototype and production systems.

Thus, with a complete family of components and a powerful development system, Intel provides a Total System Solution, from development to production.

intel

3001

MICROPROGRAM CONTROL UNIT

The INTEL ${ }^{\circledR} 3001$ Microprogram Control Unit (MCU) controls the sequence in which microinstructions are fetched from the microprogram memory. Its functions include the following:
Maintenance of the microprogram address register.
Selection of the next microinstruction based on the contents of the microprogram address register.
Decoding and testing of data supplied via several input busses to determine the microinstruction execution sequence.
Saving and testing of carry output data from the central processor (CP) array.
Control of carry/shift input data to the CP array.
Control of microprogram interrupts.

High Performance - 85 ns Cycle Time
TTL and DTL Compatible
Fully Buffered Three-State and Open Collector Outputs
Direct Addressing of Standard Bipolar PROM or ROM
512 Microinstruction Addressability
Advanced Organization
9-Bit Microprogram Address Register and Bus
4-Bit Program Latch
Two Flag Registers
Eleven Address Control Functions
Three Jump and Test Latch
Functions
16-way Jump and Test Instruction
Bus Function
Eight Flag Control Functions
PACKAGE CONFIGURATION

Four Flag Input Functions
Four Flag Output Functions
40 Pin DIP

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE ${ }^{(1)}$	
1-4	$\mathrm{PX}_{4}-\mathrm{PX} 7$	Primary Instruction Bus Inputs	active LOW	
		Data on the primary instruction bus is tested by the JPX function to determine the next microprogram address.		
5, 6, 8, 10	$5 X_{0}-\mathrm{SX}_{3}$	Secondary Instruction Bus Inputs	active LOW	
		Data on the secondary instruction bus is synchronously loaded into the PR-latch while the data on the PX-bus is being tested (JPX). During a subsequent cycle, the contents of the PR-latch may be tested by the JPR, JLL, or JRL functions to determine the next microprogram address.		
7,9,11	$\mathrm{PR}_{0}-\mathrm{PR}_{2}$	PR-Latch Outputs	open collector	
		The PR-latch outputs are asynchronously enabled by the JCE function. They can be used to modify microinstructions at the outputs of the microprogram memory or to provide additional control lines.		
$\begin{aligned} & 12,13,15, \\ & 16 \end{aligned}$	$\mathrm{FC}_{0}-\mathrm{FC}_{3}$	Flag Logic Control Inputs The flag logic control inputs are used to cross-switch the flags (C and Z) with the flag logic input (FI) and the flag logic output (FO).		
14	FO	Flag Logic Output	active LOW three-state	
		The outputs of the flags (C and Z) are multiplexed internally to form the common flag logic output. The output may also be forced to a logical 0 or logical 1.		
17	FI	Flag Logic Input	active LOW	
		The flag logic input is demultiplexed internally and applied to the inputs of the flags (C and Z). Note: the flag input data is saved in the F -latch when the clock input (CLK) is low.		
18	ISE	Interrupt Strobe Enable Output The interrupt strobe enable output goes to logical 1 when one of the JZR functions are selected (see Functional Description, page 6). It can be used to provide the strobe signal required by the INTEL 3214 Priority Interrupt Control Unit or other interrupt circuits.		
19	CLK	Clock Input		
20	GND	Ground		
21-24	$A C_{0}-A C_{6}$	Next Address Control Function Inputs All jump functions are selected by these control lines.		
37-39				
25	EN	Enable Input		
		When in the HIGH state, the enable input enables the microprogram address, PR-latch and flag outputs.		
26-29	$M A_{0}-M A_{3}$	Microprogram Column Address Outputs	three-state	
30-34	$\mathrm{MA}_{4}-\mathrm{MA}_{8}$	Microprogram Row Address Outputs	three-state	
35	ERA	Enable Row Address Input		
		When in the LOW state, the enable row address input independently disables the microprogram row address outputs. It can be used with the INTEL 3214 Priority Interrupt Control Unit or other interrupt circuits to facilitate the implementation of priority interrupt systems.		
36	LD	Microprogram Address Load Input		
		When in the active HIGH state, the microprogram address load input inhibits all jump functions and synchronously loads the data on the instruction busses into the microprogram register. However, it does not inhibit the operation of the PR-latch or the generation of the interrupt strobe enable.		
40	VCC	+5 Volt Supply		

NOTE:
(1) Active HIGH unless otherwise specified.

LOGICAL DESCRIPTION

The MCU performs two major control functions. First, it controls the sequence in which microinstructions are fetched from the microprogram memory. For this purpose, the MCU contains a microprogram address register and the associated logic for selecting the next microinstruction address. The second function of the MCU is the control of the two flag flip-flops that are included for interaction with the carry input and carry output logic of the CP array. The logical organization of the MCU is shown in Figure 2.

NEXT ADDRESS LOGIC

The next address logic of the MCU provides a set of conditional and unconditional address control functions. These address control functions are used to implement a jump or jump/test operation as part of every microinstruction. That is to say, each microinstruction typically contains a jump operation field that specifies the address control function, and hence, the next microprogram address.

In order to minimize the pin count of the MCU, and reduce the complexity of the next address logic, the microprogram address space is organized as a two dimensional array or matrix. Each microprogram address corresponds to a unit of the matrix at a particular row and column location. Thus, the 9 bit microprogram address is treated as specifying not one, but two addresses the row address in the upper five bits and the column address in the lower four bits. The address matrix can therefore contain, at most, 32 row addresses and 16 column addresses for a total of 512 microinstructions.

The next address logic of the MCU makes extensive use of this two component addressing scheme. For example, from a particular row or column address, it is possible to jump unconditionally in one operation anywhere in that row or column. It is not possible, however, to jump anywhere in the address matrix. In fact, for a given location in the matrix, there is a fixed subset of microprogram addresses that may be selected as the next address. These
possible jump target addresses are referred to as a jump set. Each type of MCU address control (jump) function has a jump set associated with it. Appendix C illustrates the jump set for each function.

FLAG LOGIC

The flag logic of the MCU provides a set of functions for saving the current value of the carry output of the $C P$ array and for controlling the value of the carry input to the CP array. These two distinct flag control functions are called flag input functions and flag output functions.

The flag logic is comprised of two flip-flops, designated the C-flag and the Z-flag, along with a simple latch, called the F-latch, that indicates the current state of the carry output line of the CP array. The flag logic is used in conjunction with the. carry and shift logic of the CP array to implement a variety of shift/rotate and arithmetic functions.

Figure 2. 3001 Block Diagram

FUNCTIONAL DESCRIPTION

ADDRESS CONTROL FUNCTIONS

The address control functions of the MCU are selected by the seven input lines designated $A C_{0}-A C_{6}$. On the rising edge of the clock, the 9 -bit microprogram address generated by the next address logic is loaded into the microprogram address register. The next microprogram address is delivered to the microprogram memory via the nine output lines designated $M A_{0}-M A_{8}$. The microprogram address outputs are organized into row and column addresses as:

$$
\begin{aligned}
& \frac{M A_{8} M A_{7} M A_{6} M A_{5} M A_{4}}{\text { row address }} \\
& \frac{M A_{3} M A_{2} M A_{1} M A_{0}}{\text { column address }}
\end{aligned}
$$

Each address control function is specified by a unique encoding of the data on the function input lines. From three to five bits of the data specify the particular function while the remaining bits are used to select part of either the row or column address desired. Function code formats are given in Appendix A, "Address Control Function Summary."

The following is a detailed description of each of the eleven address control functions. The symbols shown below are used throughout the description to specify row and column addresses.

Symbol	Meaning row $_{n}$
5-bit next row address where n is the decimal row address.	
col_{n}	4-bit next column address where n is the decimal column address.

UNCONDITIONAL ADDRESS CONTROL (JUMP) FUNCTIONS

The jump functions use the current microprogram address (i.e., the contents of the microprogram address register prior to the rising edge of the clock) and several bits from the address control inputs to generate the next microprogram address.

Mnemonic Function Description
JCC Jump in current column. $\mathrm{AC}_{0}-\mathrm{AC}_{4}$ are used to select 1 of 32 row addresses in the current column, specified by
$M A_{0}-M A_{3}$, as the next address
Jump to zero row. $A C_{0}-A C_{3}$ are used to select 1 of 16 column addresses in row ${ }_{0}$, as the next address.

Jump in current row. $A C_{0}-A C_{3}$ are used to select 1 of 16 addresses in the current row, specified by $\mathrm{MA}_{4}-\mathrm{MA}_{8}$, as the next address.

Jump in current column/ row group and enable PR-latch outputs. $\mathrm{AC}_{0}-$ $A C_{2}$ are used to select 1 of 8 row addresses in the current row group, specified by $\mathrm{MA}_{7}-\mathrm{MA}_{8}$, as the next row address. The current column is specified by $\mathrm{MA}_{0}-\mathrm{MA}_{3}$. The PR-latch outputs are asynchronously enabled.

FLAG CONDITIONAL ADDRESS CONTROL (JUMP/TEST) FUNCTIONS

The jump/test flag functions use the current microprogram address, the contents of the selected flag or latch, and several bits from the address control function to generate the next microprogram address.

Mnemonic	Function Description	Mnemonic	Function Description
JFL	Jump/test F-Latch. $A C_{0}-A C_{3}$ are used to select 1 of 16 row addresses in the current row group, specified by MA_{8}, as the next row address. If the current column group, specified by MA_{3}, is $\mathrm{Col}_{0}-\mathrm{Col}_{7}$, the F -latch is used to select CO_{2} or Col_{3} as the next column address. If	JPR	Jump/test PR-latch. $\mathrm{AC}_{0}-\mathrm{AC}_{2}$ are used to select 1 of 8 row addresses in the current row group, specified by MA_{7} and MA_{8}, as the next row address. The four PR-latch bits are used to select 1 of 16 possible column addresses as the next column address.
	MA_{3} specifies column group $\mathrm{col}_{8}-\mathrm{col}_{15}$, the F-latch is used to select col_{10} or col_{11} as the next column address.	Mnemonic JLL	Function Description Jump/test leftmost PRlatch bits. $A C_{0}-A C_{2}$ are used to select 1 of 8 row addresses in the current
JCF	Jump/test C-flag. $\mathrm{AC}_{0}-\mathrm{AC}_{2}$ are used to select 1 of 8 row addresses in the current		row group, specified by MA_{7} and MA_{8}, as the next row address. PR_{2} and PR_{3} are used to

FUNCTIONAL DESCRIPTION (con't)

select 1 of 4 possible column addresses in Col_{4} through coly as the next column address.
JRL Jump/test rightmost PRlatch bits. $A C_{0}$ and $A C_{1}$ are used to select 1 of 4 . high-order row addresses in the current row group, specified by MA_{7} and MA_{8}, as the next row address. PR_{0} and PR_{1} are used to select 1 of 4 possible column addresses in col_{12} through col_{15} as the next column address.

Jump/test PX-bus and load PR-latch. $A C_{0}$ and $A C_{1}$ are used to select 1 of 4 row addresses in the current row group, specified by $\mathrm{MA}_{6}-\mathrm{MA}_{8}$, as the next row address. $\mathrm{PX}_{4}-$ PX_{7} are used to select 1 of 16 possible column addresses as the next column address. $\mathrm{SX}_{0}{ }^{-}$ $S X_{3}$ data is locked in the PR-latch at the rising edge of the clock.

FLAG CONTROL FUNCTIONS

The flag control functions of the MCU are selected by the four input lines designated $\mathrm{FC}_{0}-\mathrm{FC}_{3}$. Function code formats are given in Appendix B, "Flag Control Function Summary."

The following is a detailed description of each of the eight flag control functions.

FLAG INPUT CONTROL FUNCTIONS

The flag input control functions select which flag or flags will be set to the current value of the flag input (FI) line. Data on FI is stored in the F -latch when the clock is low. The content of the Flatch is loaded into the C and/or Z flag on the rising edge of the clock.

Mnemonic	Function Description SCZ
	Set C-flag and Z-flag to FI. The C-flag and the Z- flag are both set to the value of FI.
STZ	Set Z-flag to FI. The Z- flag is set to the value of FI. The C-flag is unaffected.
STC	Set C-flag to FI. The C- flag is set to the value of FI. The Z flag is unaffected.
HCZ	Hold C-flag and Z-flag. The values in the C-flag and Z-flag are unaffected.

FLAG OUTPUT CONTROL FUNCTIONS

The flag output control functions select the value to which the flag output (FO) line will be forced.

Mnemonic	Function Description FFO FFCForce FO to 0. FO is forced to the value of logical 0.
	Force FO to C. FO is forced to the value of the C-flag.
FFZ	Force FO to Z. FO is forced to the value of the Z-flag.
	Force FO to 1. FO is forced to the value of logical 1.

LOAD AND INTERRUPT STROBE FUNCTIONS

The load function of the MCU is controlled by the input line designated LD. If the LD line is active HIGH at the rising edge of the clock, the data on the primary and secondary instruction busses, $P X_{4}-P X_{7}$ and $S X_{0}-S X_{3}$, is loaded into the microprogram address register. $\mathrm{PX}_{4}-\mathrm{PX}_{7}$ are loaded into $M A_{0}-M A_{3}$ and $S X_{0}-S X_{3}$ are loaded into $\mathrm{MA}_{4}-\mathrm{MA}_{7}$. The high-order bit of the microprogram address register MA_{8} is set to a logical 0 . The bits from the primary instruction bus select 1 of 16 possible column addresses. Likewise, the bits from the secondary instruction bus select 1 of the first 16 row addresses.

The interrupt strobe enable of the MCU is available on the output line designated ISE. The line is placed in the active high state whenever a JZR to col_{15} is selected as the address control function. Customarily, the start of a macroinstruction fetch sequence is situated at row ${ }_{0}$ and col_{15} so that the INTEL 3214 Priority Interrupt Control Unit may be enabled at the beginning of the fetch/execute cycle. The priority interrupt control unit may respond to the interrupt by pulling the enable row address (ERA) input line down to override the selected next row address from the MCU. Then by gating an alternative next row address on to the row address lines of the microprogram memory, the microprogram may be forced to enter an interrupt handling routine. The alternative row address placed on the microprogram memory address lines does not alter the contents of the microprogram address register. Therefore, subsequent jump functions will utilize the row address in the register, and not the alternative row address, to determine the next microprogram address.

Note, the load function always overrides the address control function on $\mathrm{AC}_{0^{-}}$ $A C_{6}$. It does not, however, override the latch enable or load sub-functions of the JCE or JPX instruction, respectively. In addition, it does not inhibit the interrupt strobe enable or any of the flag control functions.

3001

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Output and Supply Voltages . -0.5 V to +7 V
All Input Voltages . $-1.0 \mathrm{~V} \mathrm{to}+5.5 \mathrm{~V}$
Output Currents . $100 ~ m A ~$
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} \quad V_{C C}=5.0 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	MIN	TYP(1)	MAX	UNIT	CONDITIONS
V_{C}	Input Clamp Voltage (All Input Pins)		-0.8	-1.0	V	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
I_{F}	Input Load Current: CLK Input EN Input All Other Inputs		-0.075 -0.05 -0.025	$\begin{aligned} & -0.75 \\ & -0.50 \\ & -0.25 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$V_{F}=0.45 \mathrm{~V}$
I_{R}	Input Leakage Current: CLK EN Input All Other Inputs	*		$\begin{aligned} & 120 \\ & 80 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$V_{R}=5.25 \mathrm{~V}$
$V_{\text {IL }}$	Input Low Voltage			0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
V_{IH}	Input High Voltage	2.0			V	
ICC	Power Supply Current ${ }^{(2)}$		170	240	mA	
V_{OL}	Output Low Voltage (All Output Pins)		0.35	0.45	V	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
V_{OH}	Output High Voltage ($\mathrm{MA}_{0}-\mathrm{MA}_{8}$, ISE, FO)	2.4	3.0		V	$\mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA}$
Ios	Output Short Circuit Current (MA $\mathrm{M}_{0}-\mathrm{MA}_{8}$, ISE, FO)	-15	-28	-60	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
10 (off)	Off-State Output Current: $\begin{aligned} & M A_{0}-M A_{8} \text {, FO } \\ & M A_{0}-M A_{8}, F O, R_{0}-P R_{2} \end{aligned}$			$\begin{array}{r} -100 \\ 100 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & V_{O}=0.45 \mathrm{~V} \\ & V_{\mathrm{O}}=5.25 \mathrm{~V} \end{aligned}$

NOTES:

(1) Typical values are for $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) EN input grounded, all other inputs and outputs open.

NOTE:
(1) Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) $\mathrm{t}_{\mathrm{C}}=\mathrm{t}_{\mathrm{WP}}+\mathrm{t}_{\mathrm{SF}}+\mathrm{t}_{\mathrm{C}} \mathrm{C}$

TEST CONDITIONS:

Input pulse amplitude of 2.5 volts.
Input rise and fall times of 5 ns between 1 volt and 2 volts.
Output load of 10 mA and 50 pF .
Speed measurements are taken at the 1.5 volt level.

TEST LOAD CIRCUIT:

CAPACITANCE ${ }^{(2)} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL		PARAMETER	MIN	TYP
$C_{\text {IN }}$	Input Capacitance:			MAX
	CLK, EN		11	16
	All Other Inputs	5	pF	
	Output Capacitance	6	10	pF
COUT			12	pF

NOTE:
(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, V_{B I A S}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

D.C. AND OPERATING CHARACTERISTICS

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN	TYP(1)	MAX	UNIT	CONDITIONS
V_{c}	Input Clamp Voltage (All Input Pins)		-0.8	-1.2	V	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
I_{F}	Input Load Current: CLK Input EN Input All Other Inputs		$\begin{aligned} & -75 \\ & -50 \\ & -25 \end{aligned}$	$\begin{aligned} & -750 \\ & -500 \\ & -250 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$V_{F}=0.45 \mathrm{~V}$
I_{R}	Input Leakage Current: CLK EN Input All Other Inputs			$\begin{aligned} & 120 \\ & 80 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$V_{R}=5.5 \mathrm{~V}$
$V_{\text {IL }}$	Input Low Voltage			0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
V_{IH}	Input High Voltage	2.0			V	
$I_{\text {cc }}$	Power Supply Current (2)		170	250	mA	
V_{OL}	Output Low Voltage (All Output Pins)		0.35	0.45	V	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
V_{OH}	Output High Voltage (MA MA_{8}, ISE, FO)	2.4	3.0		V	$\mathrm{IOH}=-1 \mathrm{~mA}$
Ios	Output Short Circuit Current ($\mathrm{MA}_{0}-\mathrm{MA}_{8}$, ISE, FO)	-15	-28	-60	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
10 (off)	Off-State Output Current: $\begin{aligned} & M A_{0}-M A_{8}, F O \\ & M A_{0}-M A_{8}, F, O, P R_{0}-P R_{2} \end{aligned}$			$\begin{array}{r} -100 \\ 100 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{O}=0.45 \mathrm{~V} \\ & V_{O}=5.5 \mathrm{~V} \end{aligned}$

[^15]| SYMBOL | PARAMETER | MIN | TYP ${ }^{(1)}$ | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\text {t }} \mathrm{CY}$ | Cycle Time ${ }^{(2)}$ | 95 | 60 | | ns |
| ${ }_{\text {t }}$ W | Clock Pulse Width | 40 | 20 | | ns |
| | Control and Data Input Set-Up Times: | | | | |
| $t_{\text {SF }}$ | LD, $\mathrm{AC}_{0}-\mathrm{AC}_{6}$ | 10 | 0 | | ns |
| $\mathrm{t}_{\text {SK }}$ | $\mathrm{FC}_{0}, \mathrm{FC}_{1}$ | 0 | | | ns |
| ${ }_{\text {t }} \mathrm{X}$ | $\mathrm{SX}_{0}-\mathrm{SX}_{3}, \mathrm{PX}_{4}-\mathrm{PX}_{7}$ | 35 | 25 | | ns |
| $t_{\text {S }}$ | FI | 15 | 5 | | ns |
| | Control and Data Input Hold Times: | | | | |
| t_{HF} | LD, $\mathrm{AC}_{0}-\mathrm{AC}_{6}$ | 5 | 0 | | ns |
| t_{HK} | $\mathrm{FC}_{0}, \mathrm{FC}_{1}$ | 0 | | | ns |
| t_{HX} | $\mathrm{SX}_{0}-\mathrm{SX}_{3}, \mathrm{PX}_{4}-\mathrm{PX}_{7}$ | 25 | 5 | | ns |
| t_{HI} | FI | 22 | 8 | | ns |
| tco | Propagation Delay from Clock Input (CLK) to Outputs ($M A_{0}-\mathrm{MA}_{8}, \mathrm{FO}$) | 10 | 30 | 45 | ns |
| t_{KO} | Propagation Delay from Control Inputs FC_{2} and FC_{3} to Flag Out (FO) | | 16 | 50 | ns |
| t_{FO} | Propagation Delay from Control Inputs $\mathrm{AC}_{0}-\mathrm{AC}_{6}$ to Latch Outputs ($\mathrm{PR}_{0}-\mathrm{PR}_{2}$) | | 26 | 50 | ns |
| teo | Propagation Delay from Enable Inputs EN and ERA to Outputs $\left(M A_{0}-M A_{8}, F O, P R_{0}-P R_{2}\right.$) | | 21 | 35 | ns |
| t_{Fl} | Propagation Delay from Control Inputs $\mathrm{AC}_{0}-\mathrm{AC}_{6}$ to Interrupt Strobe Enable Output (ISE) | | 24 | 40 | ns |

NOTE:

(1) Typical values are for $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) $\mathrm{t}_{\mathrm{C}}=\mathrm{t}_{\mathrm{WP}}+\mathrm{t}_{\mathrm{SF}}+\mathrm{t}_{\mathrm{CO}}$

TEST CONDITIONS:

Input pulse amplitude of 2.5 volts.
Input rise and fall times of 5 ns between 1 volt and 2 volts.
Output load of 10 mA and 50 pF .
Speed measurements are taken at the 1.5 volt level.

TEST LOAD CIRCUIT:

CAPACITANCE ${ }^{(2)} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance: CLK, EN All Other Inputs		$\begin{aligned} & 11 \\ & 5 \end{aligned}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	pF
Cout	Output Capacitance		6	12	pF

NOTE:

(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, V_{B I A S}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

3002

CENTRAL PROCESSING ELEMENT

The INTEL ${ }^{\text {® }} 3002$ Central Processing Element contains all of the circuits that represent a 2 -bit wide slice through the data processing section of a digital computer. To construct a complete central processor for a given word width N , it is simply necessary to connect an array of N/2 CPE's together. When wired together in such an array, a set of CPE's provide the following capabilities:

2's complement arithmetic
Logical AND, OR, NOT and exclusive-OR

Incrementing and decrementing
Shifting left or right
Bit testing and zero detection
Carry look-ahead generation
Multiple data and address busses

High Performance - 100 ns Cycle Time
TTL and DTL Compatible
N -Bit Word Expandable Multi-Bus Organization

3 Input Data Busses
2 Three-State Fully Buffered Output Data Busses

11 General Purpose Registers
Full Function Accumulator
Independent Memory Address Register
Cascade Outputs for Full Carry
Look-Ahead
Versatile Functional Capability
8 Function Groups
Over 40 Useful Functions
Zero Detect and Bit Test
Single Clock
PACKAGE CONFIGURATION

28 Pin DIP

PIN	SYMBOL	NAME AND FUNCTION	TYPE ${ }^{(1)}$
1, 2	$\mathrm{IO}_{0} \mathrm{I}_{1}$	External Bus Inputs	Active LOW
		The external bus inputs provide a separate input port for external input devices.	
3,4	$K_{0}-K_{1}$	Mask Bus Inputs	Active LOW
		The mask bus inputs provide a separate input port for the microprogram memory, to allow mask or constant entry.	
5,6	X, Y	Standard Carry Look-Ahead Cascade Outputs	
		The cascade outputs allow high speed arithmetic operations to be performed when they are used in conjunction with the INTEL 3003 Look-Ahead Carry Generator.	
7	CO	Ripple Carry Output	Active LOW Three-state
		The ripple carry output is only disabled during shift right operations.	
8	RO	Shift Right Output	Active LOW Three-state
		The shift right output is only enabled during shift right operations.	
9	LI	Shift Right Input	Active LOW
10	Cl	Carry Input	Active LOW
11	EA	Memory Address Enable Input	Active LOW
		When in the LOW state, the memory address enable input enables the memory address outputs $\left(A_{0}-A_{1}\right)$.	
12-13	$A_{0}-A_{1}$	Memory Address Bus Outputs	Active LOW Three-state
		The memory address bus outputs are the buffered outputs of the memory address register (MAR).	
14	GND	Ground	
$\begin{aligned} & 15-17, \\ & 24-27, \end{aligned}$	$\mathrm{F}_{0}-\mathrm{F}_{6}$	Micro-Function Bus Inputs	
		The micro-function bus inputs control ALU function and register selection.	
18	CLK	Clock Input	
19-20	$\mathrm{D}_{0}-\mathrm{D}_{1}$	Memory Data Bus Outputs	Active LOW Three-state
		The memory data bus outputs are the buffered outputs of the full function accumulator register (AC).	
21-22	$M_{0}-M_{1}$	Memory Data Bus Inputs	Active LOW
		The memory data bus inputs provide a separate input port for memory data.	
23	ED	Memory Data Enable Input	Active LOW
		When in the LOW state, the memory data enable input enables the memory data outputs ($D_{0}-D_{1}$)	
28	V_{CC}	+5 Volt Supply	

NOTE:

1. Active HIGH, unless otherwise specified.

LOGICAL DESCRIPTION

The CPE provides the arithmetic，logic and register functions of a 2 －bit wide slice through a microprogrammed central processor．Data from external sources such as main memory，is brought into the CPE on one of the three separate in－ put busses．Data being sent out of the CPE to external devices is carried on either of the two output busses．Within the CPE，data is stored in one of eleven scratchpad registers or in the accumula－ tor．Data from the input busses，the registers，or the accumulator is available to the arithmetic／logic section（ALS） under the control of two internal multi－ plexers．Additional inputs and outputs are included for carry propagation， shifting，and micro－function selection． The complete logical organization of the CPE is shown below．

MICRO－FUNCTION BUS AND DECODER

The seven micro－function bus input lines of the CPE，designated $\mathrm{F}_{0}-\mathrm{F}_{6}$ ， are decoded internally to select the ALS function，generate the scratchpad address，and control the A and B multiplexers．

M－BUS AND I－BUS INPUTS

The M －bus inputs are arranged to bring data from an external main memory into the CPE．Data on the M－bus is multiplexed internally for input to the ALS．
The I－bus inputs are arranged to bring data from an external I／O system into the CPE．Data on the I－bus is also mul－ tiplexed internally，although indepen－ dently of the M－bus，for input to the ALS Separation of the two busses per－ mits a relatively lightly loaded memory bus even though a large number of I／O devices are connected to the 1 －bus． Alternatively，the I－bus may be wired to perform a multiple bit shift（e．g．，a byte exchange）by connecting it to one of the output busses．In this case，I／O device data is gated externally onto the M－bus．

SCRATCHPAD

The scratchpad contains eleven registers designated R_{0} through R_{9} and T ．The output of the scratchpad is multiplexed internally for input to ALS．The ALS output is returned for input into the scratchpad．

ACCUMULATOR AND D－BUS

An independent register called the accumulator（AC）is available for storing the result of an ALS operation．The output of the accumulator is multi－ plexed internally for input back to the

ALS and is also available viá a three－ state output buffer on the D－bus outputs．Conventional usage of the D－bus is for data being sent to the external main memory or to external 1／O devices．

A AND B MULTIPLEXERS

The A and B multiplexers select the two inputs to the ALS specified on the micro－function bus．Inputs to the A－ multiplexer include the M －bus，the scratchpad，and the accumulator．The B－multiplexer selects either the I－bus， the accumulator，or the K－bus．The selected B－multiplexer input is always logically ANDed with the data on the K－bus（see below）to provide a flexible masking and bit testing capability．

ALS AND K－bus

The ALS is capable of a variety of arithmetic and logic operations，in－ cluding 2＇s complement addition，in－ crementing，and decrementing，plus logical AND，inclusive－OR，exclusive－ NOR，and logical complement．The result of an ALS operation may be stored in the accumulator or one of the scratchpad registers．Separate left input and right output lines，designated LI and RO，are available for use in right shift operations．Carry input and carry output lines，designated Cl and CO are provided for normal ripple carry propaga－
tion．CO and RO data are brought out via two alternately enabled tri－state buffers． In addition，standard look ahead carry outputs，designated X and Y ，are available for full carry look ahead across any word length．
The ability of the K－bus to mask inputs to the ALS greatly increases the versa－ tility of the CPE．During non－arithmetic operations in which carry propagation has no meaning，the carry circuits are used to perform a word－wise inclusive－ OR of the bits，masked by the K－bus， from the register or bus selected by the function decoder．Thus，the CPE pro－ vides a flexible bit testing capability． The K－bus is also used during arithmetic operations to mask portions of the field being operated upon．An additional function of the K－bus is that of supply－ ing constants to the CPE from the microprogram．

MEMORY ADDRESS REGISTER AND A－BUS

A separate ALS output is also avail－ able to the memory address register （MAR）and to the A－bus via a three－ state output buffer．Conventional usage of the MAR and A－bus is for sending ad－ dresses to an external main memory． The MAR and A－bus may also be used to select an external device when executing I／O operations．

Figure 2． 3002 Block Diagram

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	MIN	$\begin{aligned} & \text { LIMITS } \\ & \text { TYP }{ }^{(1)} \end{aligned}$	MAX	UNIT	CONDITIONS
V_{c}	Input Clamp Voltage (All Input Pins)		-0.8	-1.0	V	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
I_{F}	```Input Load Current: Fo-F IO},\mp@subsup{I}{1}{},\mp@subsup{M}{0}{\prime},\mp@subsup{M}{1}{},L Cl```		$\begin{aligned} & -0.05 \\ & -0.85 \\ & -2.3 \end{aligned}$	$\begin{aligned} & -0.25 \\ & -1.5 \\ & -4.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$V_{F}=0.45 \mathrm{~V}$
I_{R}	$\begin{aligned} & \text { Input Leakage Current: } \\ & \mathrm{F}_{0}-\mathrm{F}_{6}, \mathrm{CLK}, \mathrm{~K}_{0}, \mathrm{~K}_{1}, \mathrm{EA}, \mathrm{ED} \\ & \mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{M}_{0}, \mathrm{M}_{1}, \mathrm{LI} \\ & \mathrm{CI} \end{aligned}$			$\begin{aligned} & 40 \\ & 60 \\ & 180 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$V_{R}=5.25 \mathrm{~V}$
$V_{\text {IL }}$	Input Low Voltage			0.8	V	$\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$
$V_{1 H}$	Input High Voltage	2.0			\checkmark	
ICC	Power Supply Current ${ }^{(2)}$		145	190	mA	
V_{OL}	Output Low Voltage (All Output Pins)		0.3	0.45	V	$\mathrm{IOL}=10 \mathrm{~mA}$
V_{OH}	Output High Voltage (All Output Pins)	2.4	3.0		V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$
Ios	Short Circuit Output Current (All Output Pins)	-15	-25	-60	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
10 (off)	Off State Output Current $A_{0}, A_{1}, D_{0}, D_{1}, C O$ and RO			$\begin{array}{r} -100 \\ 100 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & V_{O}=0.45 \mathrm{~V} \\ & V_{O}=5.25 \mathrm{~V} \end{aligned}$

NOTES:

(1) Typical values are for $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage
(2) CLK input grounded, other inputs open.

A.C. CHARACTERISTICS AND WAVEFORMS

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$.

SYMBOL	PARAMETER	MIN	TYP ${ }^{(1)}$	MAX	UNIT
${ }_{t}{ }_{C}$	Clock Cycle Time ${ }^{(2)}$	100	70		ns
twp	Clock Pulse Width	33	20		ns
t_{FS}	Function Input Set-Up Time (F_{0} through F_{6})	60	40		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{DS}} \\ & \mathrm{t}_{\mathrm{SS}} \end{aligned}$	Data Set-Up Time: $\begin{aligned} & \mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{M}_{0}, \mathrm{M}_{1}, K_{0}, K_{1} \\ & \mathrm{LI}, \mathrm{CI} \end{aligned}$	50 27	30 13		ns
${ }^{\text {t }}$ H	Data and Function Hold Time: F_{0} through F_{6}	5	-2		ns
${ }^{\text {t }}$ D ${ }^{\text {H }}$	$I_{0}, I_{1}, M_{0}, M_{1}, K_{0}, K_{1}$	5	-4		ns
${ }_{\text {t }}^{\text {SH }}$	LI, Cl	15	2		ns
${ }^{\text {t }}$ XF	Propagation Delay to $\mathrm{X}, \mathrm{Y}, \mathrm{RO}$ from: Any Function Input		37	52	ns
${ }_{\text {t }}^{\text {X }}$	Any Data Input		29	42	ns
${ }^{\text {t }}$ ¢ ${ }^{\text {T }}$	Trailing Edge of CLK		40	60	ns
${ }_{\text {t }}^{\text {XL }}$	Leading Edge of CLK	20			ns
${ }^{\text {t }}$ CL	Propagation Delay to CO from: Leading Edge of CLK	20			ns
${ }_{\text {tet }}$	Trailing Edge of CLK		48	70	ns
${ }^{\text {t }}$ CF	Any Function Input		43	65	ns
${ }^{\text {t }}$ CD	Any Data Input		30	55	ns
$t_{\text {cc }}$	Cl (Ripple Carry)		14	25	ns
$t_{D L}$ $t_{\text {DE }}$	Propagation Delay to $A_{0}, A_{1}, D_{0}, D_{1}$ from: Leading Edge of CLK Enable Input ED, EA	5	32 12	50 25	ns

NOTE:
(1) Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) $\mathrm{t}_{\mathrm{CY}}=\mathrm{t}_{\mathrm{DS}}+\mathrm{t}_{\mathrm{DL}}$.

TEST CONDITIONS:

TEST LOAD CIRCUIT:
Input pulse amplitude: 2.5 V
Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 10 mA and 30 pF .
Speed measurements are made at 1.5 volt levels.

CAPACITANCE ${ }^{(2)} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL		PARAMETER	MIN	TYP	MAX
$C_{\text {IN }}$	Input Capacitance	UNIT			
COUT $^{\text {Output Capacitance }}$		5	10	pF	

NOTE:
(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$.

SYMBOL	PARAMETER	MIN	LIMITS TYP ${ }^{(1)}$	MAX	UNIT	CONDITIONS
V_{C}	Input Clamp Voltage (All Input Pins)		-0.8	-1.2	V	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
I_{F}	```Input Load Current: Fo-F6,CLK, K IO, I , M M , M M, LI Cl```		$\begin{aligned} & -0.05 \\ & -0.85 \\ & -2.3 \end{aligned}$	$\begin{aligned} & -0.25 \\ & -1.5 \\ & -4.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$V_{F}=0.45 \mathrm{~V}$
I_{R}	```Input Leakage Current: Fo-F6, CLK, Ko, K1, EA, ED IO, I , M M , M M , LI Cl```			$\begin{aligned} & 40 \\ & 100 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$V_{R}=5.5 \mathrm{~V}$
$V_{\text {IL }}$	Input Low Voltage			0.8	\checkmark	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage	2.0			V	
ICC	Power Supply Current		145	210	mA	
V_{OL}	Output Low Voltage (All Output Pins)		0.3	0.45	V	$\mathrm{IOL}=10 \mathrm{~mA}$
V_{OH}	Output High Voltage (All Output Pins)	2.4	3.0		V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$
Ios	Short Circuit Output Current (All Output Pins)	-15	-25	-60	$m \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
IO (off)	Off State Output Current $A_{0}, A_{1}, D_{0}, D_{1}, C O$ and RO			$\begin{array}{r} -100 \\ 100 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{O}=0.45 \mathrm{~V} \\ & V_{O}=5.5 \mathrm{~V} \end{aligned}$

NOTES:
(1) Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage
(2) CLK input grounded, other inputs open.

A.C. CHARACTERISTICS AND WAVEFORMS

$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$.

SYMBOL	PARAMETER	MIN	TYP ${ }^{(1)}$	MAX	UNIT
${ }^{\text {t }} \mathrm{CY}$	Clock Cycle Time ${ }^{\text {[2] }}$	120	70		ns
twp	Clock Pulse Width	42	20		ns
t_{FS}	Function Input Set-Up Time (F_{0} through F_{6})	70	40		ns
${ }^{t} \mathrm{DS}$ ${ }_{\text {ts }}$	Data Set-Up Time: $I_{0}, I_{1}, M_{0}, M_{1}, K_{0}, K_{1}$ LI, Cl	60 30	30 13	.	ns
${ }^{t_{\text {FH }}}$	Data and Function Hold Time: F_{0} through F_{6}	5	-2		ns
${ }_{\text {t }}$ H	$I_{0}, I_{1}, M_{0}, M_{1}, K_{0}, K_{1}$	5	-4		ns
${ }^{\text {t }} \mathrm{H}$	LI, Cl	15	2		ns
${ }^{\text {t }}$ XF	Propagation Delay to $\mathrm{X}, \mathrm{Y}, \mathrm{RO}$ from: Any Function Input		37	65	ns
${ }_{\text {t }}^{\text {X }}$ (Any Data Input		29	55	ns
${ }^{\text {t }}$ XT	Trailing Edge of CLK		40	75	ns
${ }_{\text {t }}^{\text {XL }}$	Leading Edge of CLK	22			ns
${ }^{\text {t }}$ LL	Propagation Delay to CO from: Leading Edge of CLK	22			ns
$\mathrm{t}_{\text {CT }}$	Trailing Edge of CLK		48	85	ns
${ }^{\text {t }}$ CF	Any Function Input		43	75	ns
${ }^{\text {ct }}$ D	Any Data Input		30	65	ns
${ }_{\text {t }} \mathrm{C}$	Cl (Ripple Carry)		14	30	ns
$t_{D L}$ $t_{\text {DE }}$	Propagation Delay to $A_{0}, A_{1}, D_{0}, D_{1}$ from: Leading Edge of CLK Enable Input ED, EA	5	32 12	60 35	ns

NOTE:
(1) Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) $\mathrm{t}_{\mathrm{CY}}={ }^{\mathrm{t}_{\mathrm{DS}}}+{ }^{t_{D L}}$

TEST CONDITIONS:

Input pulse amplitude: 2.5 V Input rise and fall times of 5 ns between 1 and 2 volts. Output loading is 10 mA and 30 pF .
Speed measurements are made at 1.5 volt levels.

TEST LOAD CIRCUIT:

NOTE:
(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, V_{B I A S}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

3002 WAVEFORMS

3003

LOOK-AHEAD CARRY GENERATOR

The INTEL ${ }^{\circledR} 3003$ Look-Ahead Carry Generator (LCG) is a high speed circuit capable of anticipating a carry across a full 16-bit 3002 Central Processing Array. When used with a larger 3002 CP Array multiple 3003 carry generators provide high speed carry look-ahead capability for any word length.

The LCG accepts eight pairs of active high cascade inputs (X, Y) and an active low carry input and generates active low carries for up to eight groups of binary adders.

High Performance - 10 ns typical propagation delay

Compatible with INTEL 3001 MCU and 3002 CPE

DTL and TTL compatible
Full look-ahead across 8 adders
Low voltage diode input clamp
Expandable
28-pin DIP

PACKAGE CONFIGURATION

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE
$\begin{aligned} & 1,7,8,11 \\ & 18,21,23 \\ & 27 \end{aligned}$	$Y_{0}-Y_{7}$	Standard carry look-ahead inputs	Active HIGH
$\begin{aligned} & 2,5,6,10 \\ & 19,20,24 \\ & 26 \end{aligned}$	$\mathrm{X}_{0}-\mathrm{X}_{7}$	Standard carry look-ahead inputs	Active HIGH
17	C_{n}	Carry input	Active LOW
$\begin{aligned} & 4,9,12 \\ & 13,15,16 \end{aligned}$	$\begin{aligned} & C_{n+1}- \\ & C_{n+8} \end{aligned}$	Carry outputs	Active LOW
3	$E C_{n+8}$	C_{n+8} carry output enable	Active HIGH
28	$V_{C C}$	+5 volt supply	
14	GND	Ground	

$\overline{\overline{C_{n}+1}}=Y_{0} X_{0}+Y_{0} \bar{C}_{n}$
$\overline{\overline{C_{n}+2}}=Y_{1} X_{1}+Y_{1} Y_{0} X_{0}+Y_{1} Y_{0} \bar{C}_{n}$.
$\overline{\overline{C_{n}}+3}=Y_{2} X_{2}+Y_{2} Y_{1} X_{1}+Y_{2} Y_{1} Y_{0} X_{0}+Y_{2} Y_{1} Y_{0} \bar{C}_{n}$
$\overline{\overline{C_{n}+4}}=Y_{3} X_{3}+Y_{3} Y_{2} X_{2}+Y_{3} Y_{2} Y_{1} X_{1}+Y_{3} Y_{2} Y_{1} Y_{0} X_{0}+Y_{3} Y_{2} Y_{1} Y_{0} \bar{C}_{n}$
$\overline{\overline{C_{n}+5}}=Y_{4} X_{4}+Y_{4} Y_{3} X_{3}+Y_{4} Y_{3} Y_{2} X_{2}+Y_{4} Y_{3} Y_{2} Y_{1} X_{1}+Y_{4} Y_{3} Y_{2} Y_{1} Y_{0} X_{0}+Y_{4} Y_{3} Y_{2} Y_{1} Y_{0} \bar{C}_{n}$
$\overline{\overline{C_{n}+6}}=Y_{5} X_{5}+Y_{5} Y_{4} X_{4}+Y_{5} Y_{4} Y_{3} X_{3}+Y_{5} Y_{4} Y_{3} Y_{2} X_{2}+Y_{5} Y_{4} Y_{3} Y_{2} Y_{1} X_{1}+Y_{5} Y_{4} Y_{3} Y_{2} Y_{1} Y_{0} X_{0}+Y_{5} Y_{4} Y_{3} Y_{2} Y_{1} Y_{0} \bar{C}_{n}$
$\overline{\overline{C_{n}+.7}}=Y_{6} X_{6}+Y_{6} Y_{5} X_{5}+Y_{6} Y_{5} Y_{4} X_{4}+Y_{6} Y_{5} Y_{4} Y_{3} X_{3}+Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} X_{2}+Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} Y_{1} X_{1}+Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} Y_{1} Y_{0} X_{0}$ $+Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} Y_{1} Y_{0} \bar{C}_{n}$
$\overline{\overline{C_{n}+8}}=$ High Impedance State when $E C_{n}+8$ Low
$\overline{C_{n}+8}=Y_{7} X_{7}+Y_{7} Y_{6} X_{6}+Y_{7} Y_{6} Y_{5} X_{5}+Y_{7} Y_{6} Y_{5} Y_{4} X_{4}+Y_{7} Y_{6} Y_{5} Y_{4} Y_{3} X_{3}+Y_{7} Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} X_{2}+Y_{7} Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} Y_{1} X_{1}$ $+Y_{7} Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} Y_{1} Y_{0} X_{0}+Y_{7} Y_{6} Y_{5} Y_{4} Y_{3} Y_{2} Y_{1} Y_{0} \bar{C}_{n}$ when $E C_{n}+8$ high

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias		
	Storage Temperature	
	All Output and Supply Voltages	
	All Input Voltages	
	Output Current	

"COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$.

SYMBOL	PARAMETER	MIN.	TYP. ${ }^{(1)}$) MAX.	UNIT	CONDITIONS
V_{C}	Input Clamp Voltage (All Input Pins)		-0.8	-1.2	V	${ }^{1} \mathrm{C}=-5 \mathrm{~mA}$
${ }^{\prime} \mathrm{F}$	Input Load Current:					
	$\begin{aligned} & X_{6}, X_{7}, C_{n}, E C_{n+8} \\ & Y_{7}, X_{0} \cdot X_{5}, \\ & Y_{0} \cdot Y_{6} \end{aligned}$		$\begin{aligned} & -0.07 \\ & -0.200 \\ & -0.6 \end{aligned}$	$\begin{aligned} & -0.25 \\ & -0.500 \\ & -1.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$V_{F}=0.45 \mathrm{~V}$
${ }^{\prime} \mathrm{R}$	Input Leakage Current:					
	C_{n} and $\mathrm{EC}_{n}+8$			40	$\mu \mathrm{A}$	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=5.5 \mathrm{~V}$
	All Other Inputs			100	$\mu \mathrm{A}$	
VIL	Input Low Voltage			0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{1 H}$	Input High Voltage	2.1			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	Power Supply Current		80	130	mA	All Y and $E C_{n}+8$ high, All X and C_{n} low
V_{OL}	Output Low Voltage (All Output Pins)		0.35	0.45	V	$\mathrm{IOL}=4 \mathrm{~mA}$
V_{OH}	Output High Voltage (All Output Pins)	2.4	3		V	${ }^{1} \mathrm{OH}=-1 \mathrm{~mA}$
${ }^{\prime} \mathrm{OS}$	Short Circuit Output Current (All Output Pins)	-15	-40	-65	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
${ }^{1} \mathrm{O}$ (off)	Off-State Output Current $\left(C_{n}+8\right)$			$\begin{aligned} & -100 \\ & +100 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & V_{O}=0.45 \mathrm{~V} \\ & V_{O}=5.5 \mathrm{~V} \end{aligned}$

NOTE:
(1) Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

A.C. CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	TYP. ${ }^{(1)}$	MAX	UNIT
${ }^{t} \times \mathrm{C}$	X, Y to Outputs	3	10	25	ns
${ }^{t} \mathrm{CC}$	Carry In to Outputs		13	40	ns
${ }^{\text {E }}$ EN	Enable Time, $\mathrm{C}_{\mathrm{n}}+8$		20	50	ns

NOTE:

(1) Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Output and Supply Voltages . -0.5 V to +7 V
All Input Voltages . -1.0 V to +5.5 V
Output Current . 100 mA
"COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

| SYMBOL | PARAMETER | MIN. | TYP. ${ }^{(1)}$ | MAX. | UNIT |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad CONDITIONS

NOTE:
(1) Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

A.C. CHARACTERISTICS

SYMBOL	PARAMETER	MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
${ }^{t} \times \mathrm{C}$	X, Y to Outputs	3	10	20	ns
${ }^{t} \mathrm{CC}$	Carry In to Outputs		13	30	ns
${ }^{\text {teN }}$	Enable Time, $\mathrm{C}_{\mathrm{n}}+8$		20	40	ns

NOTE:

(1) Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

WAVEFORMS

NOTE: ALTERNATE TEST LOAD:

CAPACITANCE ${ }^{(2)} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL		PARAMETER	MIN	TYP	MAX
$C_{\text {IN }}$	Input Capacitance	All inputs	12	20	UNIT
COUT	Output Capacitance	$\mathrm{C}_{\mathrm{n}}+8$	7	12	pF

NOTE:
(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, V_{B I A S}=5.0 \mathrm{~V}$, $V_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TEST CONDITIONS:

TEST LOAD CIRCUIT: vcc

Input pulse amplitude of 2.5 V .
Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 5 mA and 30 pF .
Speed measurements are made at 1.5 volt levels.

MULTI-MODE LATCH BUFFER

The INTEL 3212 Multi-Mode Latch Buffer is a versatile 8 -bit latch with three-state output buffers and built-in device select logic. It also contains an independent service request flip-flop for the generation of central processor interrupts. Because of its multi-mode capabilities, one or more 3212 's can be used to implement many types of interface and support systems for Series 3000 computing elements including:

Simple data latches

Gated data buffers
Multiplexers
Bi -directional bus drivers
Interrupting input/output ports

High Performance - 50 ns Write Cycle Time

Low Input Load Current - $250 \mu \mathrm{~A}$ Maximum

Three-State Fully Buffered Outputs
High Output Drive Capability
Independent Service Request FlipFlop

Asynchronous Data Latch Clear
24 Pin DIP

PACKAGE CONFIGURATION

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE ${ }^{(1)}$
1	DS 1	Device Select Input 1	active LOW
2	MD	Mode Input	
		When MD is high (output mode) the output buffers are enabled and the write signal to the data latches is obtained from the device select logic. When MD is low (input mode) the output buffer state is determined by the device select logic and the write signal is obtained from the strobe (STB) input.	
$\begin{aligned} & 3,5,7,9 \\ & 16,18,20, \\ & 22 \end{aligned}$	$D I_{1}-\mathrm{DI}_{8}$	Data Inputs The data inputs are connected to the D-inputs of the data latches.	
$\begin{aligned} & 4,6,8,10 \\ & 15,17,19 \\ & 21 \end{aligned}$	$\mathrm{DO}_{1}-\mathrm{DO}_{8}$	Data Outputs The data outputs are the buffered outputs of the eight data latches.	three-state
11	STB	Strobe Input	
		When MD is in the LOW state, the STB input provides the clock input to the data latch.	
12	GND	Ground	
13	DS 2	Device Select Input 2	
		When DS_{1} is low and DS 2 is high, the device is selected.	
14	CLR	Clear	active LOW
23	INT	Interrupt Output	active LOW
		The interrupt output will be active LOW (interrupting state) when either the service request flip-flop is low or the device is selected.	

NOTE:
(1) Active HIGH, unless otherwise specified.

FUNCTIONAL DESCRIPTION

The 3212 contains eight D-type data latches, eight three-state output buffers, a separate D-type service request flip-flop, and a flexible device select/ mode control section.

DATA LATCHES

The Q-output of each data latch will follow the data on its corresponding date input line ($\mathrm{DI}_{1}-\mathrm{DI}_{8}$) while its clock input is high. Data will be latched when the internal write line WR is brought low. The output of each data latch is connected to a three-state, non-inverting output buffer. The internal enable line EN is bussed to each buffer. When the EN is high, the buffers are enabled and the data in each latch is available on its corresponding data output line $\left(\mathrm{DO}_{0}-\mathrm{DO}_{8}\right)$.

DEVICE SELECT LOGIC

Two input lines $D S_{1}$ and $D S_{2}$ are pro. vided for device selection. When DS_{1} is low and DS_{2} is high, the 3212 is selected.

MODE CONTROL SECTION

The 3212 may be operated in two modes. When the mode input line MD is low, the device is in the input mode. In this mode, the output buffers are enabled whenever the 3212 is selected; the internal WR line follows the STB input line.

When MD is high, the device is in the output mode and, as a result, the output buffers are enabled. In this mode, the write signal for the data latch is obtained from the device select logic.

SERVICE REQUEST FLIP-FLOP AND STROBE

The service request flip-flop SR is used to generate and control central processor interrupt signals. For system reset, the SR flip-flop is placed in the noninterrupting state (i.e., $S R$ is set) by bringing the CLR line low. This simultaneously clears (resets) the 8 -bit data latch.

The Q output of the SR flip-flop is logically ORed with the output of device select logic and then inverted to provide the interrupt output INT. The 3212 is considered to be in the interrupting state when the INT output is low. This allows direct connection to the active LOW priority request inputs of the INTEL ${ }^{\oplus} 3214$ Interrupt Control Unit.

When operated in the input mode (i.e., MD low) the strobe input STB is used to synchronously write data into the data latch and place the SR flip-flop in the interrupting (reset) state. The interrupt is removed by the central processor when the interrupting 3212 is selected.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*
Temperature Under Bias $.0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Output and Supply Voltages -0.5 V to +7 V
All Input Voltages -1.0 V to +5.5 V
Output Currents 100 mA
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
I_{F}	Input Load Current STB, $\mathrm{DS}_{2}, \mathrm{CLR}, \mathrm{DI}_{1}-\mathrm{DI}_{8}$ Inputs			-. 25	mA	$V_{F}=.45 \mathrm{~V}$
$I_{\text {F }}$	Input Load Current MD Input			-. 75	mA	$V_{F}=.45 \mathrm{~V}$
I_{F}	Input Load Current DS 1 Input			-1.0	mA	$V_{F}=.45 \mathrm{~V}$
I_{R}	Input Leakage Current STB, DS, CLR, $\mathrm{DI}_{1}-\mathrm{DI}_{8}$ Inputs			10	$\mu \mathrm{A}$	$V_{R}=5.25 \mathrm{~V}$
I_{R}	Input Leakage Current MD Input			30	$\mu \mathrm{A}$	$V_{R}=5.25 \mathrm{~V}$
I_{R}	Input Leakage Current DS 1 Input			40	$\mu \mathrm{A}$	$V_{R}=5.25 \mathrm{~V}$
V_{C}	Input Forward Voltage Clamp			-1	V	$I_{C}=-5 \mathrm{~mA}$
$V_{\text {IL }}$	Input "Low" Voltage			. 85	V	
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	2.0			V	
$\mathrm{V}_{\text {OL }}$	Output "Low" Voltage			.45	V	$\mathrm{IOL}^{\text {O }}=15 \mathrm{~mA}$
V_{OH}	Output "High" Voltage	3.65	4.0		V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$
$\mathrm{I}_{\text {SC }}$	Short Circuit Output Current	-15		-75	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\|10\|$	Output Leakage Current High Impedance State			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=.45 \mathrm{~V} / 5.25 \mathrm{~V}$
ICC	Power Supply Current		90	130	mA	

A.C. CHARACTERISTICS $\quad T_{A}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Typ.	Max.	Unit	
${ }^{\text {P PW }}$	Pulse Width	25			ns	-
$t_{P D}$	Data To Output Delay			30	ns	
${ }^{\text {W }}$ WE	Write Enable To Output Delay			40	ns	
${ }^{\text {t SET }}$	Data Setup Time	15			ns	
t_{H}	Data Hold Time	20			ns	
t_{R}	Reset To Output Delay			40	ns	
${ }_{\text {t }}$	Set To Output Delay			30	ns	
t_{E}	Output Enable Time			45	ns	$C_{L}=30 \mathrm{pf}$
${ }^{\text {c }}$ C	Clear To Output Display			45	ns	

TEST CONDITIONS:

TEST LOAD CIRCUIT:

Input pulse amplitude of 2.5 volts.
Input rise and fall times of 5 ns between 1 volt and 2 volts. Output load of 15 mA and 30 pF .
Speed measurements are taken at the 1.5 volt level.

CAPACITANCE ${ }^{(1)}$

Symbol	LIMITS				
	Test	Min.	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	DS ${ }_{1}, \mathrm{MD}$ Input Capacitance		9	12	pf
$\mathrm{CIN}_{\text {IN }}$	$\mathrm{DS}_{2}, \mathrm{CLR}, \mathrm{STB}, \mathrm{DI}_{1}-\mathrm{DI}_{8}$ Input Capacitance		5	9	pf
Cout	$\mathrm{DO}_{1}-\mathrm{DO}_{8}$ Output Capacitance		8	12	pf

NOTE:
(1) This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{BI}} \mathrm{AS}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$9-30$

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Output and Supply Voltages	. -0.5 V to +7 V
All Input Voltages	. -1.0 V to +5.5 V
Output Currents	. 100 mA

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
I_{F}	Input Load Current STB, $\mathrm{DS}_{2}, \mathrm{CLR}, \mathrm{DI}_{1}-\mathrm{DI}_{8}$ Inputs			-. 25	mA	$V_{F}=.45 \mathrm{~V}$
I_{F}	Input Load Current MD Input			-. 75	mA	$V_{F}=.45 \mathrm{~V}$
I_{F}	Input Load Current DS ${ }_{1}$ Input			-1.0	mA	$V_{F}=.45 \mathrm{~V}$
I_{R}	Input Leakage Current STB, DS, CLR, DI $1-\mathrm{DI}_{8}$ Inputs			10	$\mu \mathrm{A}$	$V_{R}=5.5 \mathrm{~V}$
I_{R}	Input Leakage Current MD Input			30	$\mu \mathrm{A}$	$V_{R}=5.5 \mathrm{~V}$
I_{R}	Input Leakage Current DS ${ }_{1}$ Input			40	$\mu \mathrm{A}$	$V_{R}=5.5 \mathrm{~V}$
V_{C}	Input Forward Voltage Clamp			1.2	V	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
$V_{\text {IL }}$	Input "Low" Voltage			. 80	V	
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	2.0			V	
$\mathrm{V}_{\text {OL }}$	Output "Low" Voltage			. 45	V	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
V OH	Output "High" Voltage	3.5	4.0		V	$\mathrm{I}_{\mathrm{OH}}=.5 \mathrm{~mA}$
Isc	Short Circuit Output Current	-15		-75	mA	$V_{C C}=5.0 \mathrm{~V}$
$\|10\|$	Output Leakage Current High Impedance State			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=.45 \mathrm{~V} / 5.5 \mathrm{~V}$
ICC	Power Supply Current		90	145	mA	

A.C. CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Unit	
$\mathrm{t}_{\text {PW }}$	Pulse Width	40			ns	
$t_{\text {PD }}$	Data To Output Delay			30	ns	
${ }^{\text {W }}$ WE	Write Enable To Output Delay			50	ns	
${ }^{\text {SET }}$	Data Setup Time	20			ns	
t_{H}	Data Hold Time	30			ns	
t_{R}	Reset To Output Delay			55	ns	
${ }^{\text {S }}$	Set To Output Delay			35	ns	
t_{E}	Output Enable Time			50	ns	$C_{L}=30 \mathrm{pf}$
${ }^{\text {c }}$ C	Clear To Output Display			55	ns	

TEST CONDITIONS:

Input pulse amplitude of 2.5 volts.
Input rise and fall times of 5 ns between 1 volt and 2 volts. Output load of 15 mA and 30 pF .
Speed measurements are taken at the 1.5 volt level.
TEST LOAD CIRCUIT:

CAPACITANCE ${ }^{(1)}$

Symbol	Test	LIMITS			Units
		Min.	Typ.	Max.	
$\mathrm{CIN}_{\text {IN }}$	DS ${ }_{1}, \mathrm{MD}$ Input Capacitance		9	12	pf
$\mathrm{CIN}_{\text {IN }}$	$\mathrm{DS}_{2}, \mathrm{CLR}, \mathrm{STB}, \mathrm{DI}_{1}-\mathrm{DI}_{8}$ Input Capacitance		5	9	pf
Cout	$\mathrm{DO}_{1}-\mathrm{DO}_{8}$ Output Capacitance		8	12	pf

NOTE:
(1) This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, V_{B I A S}=2.5 \mathrm{~V}, \mathrm{~V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

WAVEFORMS

3214

INTERRUPT CONTROL UNIT

The Intel ${ }^{\oplus} 3214$ Interrupt Control Unit (ICU) implements multi-level interrupt capability for systems designed with Series 3000 computing elements.
The ICU accepts an asynchronous interrupt strobe from the 3001 Microprogram Control Unit or a bit in microprogram memory and generates a synchronous interrupt acknowledge and an interrupt vector which may be directed to the MCU or CP Array to uniquely identify the interrupt source.
The ICU is fully expandable in 8 -level increments and provides the following system capabilities:

Eight unique priority levels per ICU
Automatic Priority Determination
Programmable Status
N -level expansion capability
Automatic interrupt vector generation

High Performance - 80 ns Cycle Time
Compatible with Intel 3001 MCU and 3002 CPE

8-Bit Priority Interrupt Request Latch
4-Bit Priority Status Latch
3-Bit Priority Encoder with Open Collector Outputs
DTL and TTL Compatible
8-Level Priority Comparator
Fully Expandable
24-Pin DIP

PACKAGE CONFIGURATION

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE ${ }^{(1)}$
1-3	$B_{0}-B_{2}$	Current Status Inputs	Active LOW
		The Current Status inputs carry the binary value modulo 8 of the current priority level to the current status latch.	
4	SGS	Status Group Select Input	Active LOW
		The Status Group Select inpuit informs the ICU that the current priority level does belong to the group level assigned to the ICU.	
5	IA	Interrupt Acknowledge	Active LOW Open-Collector Output
		The Interrupt Acknowledge Output will only be active from the ICU (multi-ICU system) which has received a priority request at a level superior to the current status. It signals the controlled device (usually the processor) and the other ICUs OR-tied on the Interrupt Acknowledge line that an interrupt request has been recognized.	
		The IA signal also sets the Interrupt Disable flip-flop (it overrides the clear function of the ECS input).	
6	CLK	Clock Input	
		The Clock input is used to synchronize the interrupt acknowledge with the operation of the device which it controls.	
7	ISE	Interrupt Strobe Enable Input	
		The Interrupt Strobe Enable input informs the ICU that it is authorized to enter the interrupt mode.	
8-10	$\mathrm{A}_{0}-\mathrm{A}_{2}$	Request Level Outputs	Active LOW Open-Collector
		When valid, the Request Level outputs carry the binary value (modulo 8) of the highest priority request present at the priority request inputs or stored in the priority request latch. The request level outputs can become active only with the ICU. which has received the highest priority request with a level superior to the current status.	
11	ELR	Enable Level Read Input	Active LOW
		When active, the Enable Level Read input enables the Request Level output buffers ($A_{0}-A_{2}$).	
12	GND	Ground	
13	ETLG	Enable This Level Group Input	
		The Enable This Level Group input allows a higher priority ICU in multiICU systems to inhibit interrupts within the next lower priority ICU (and all the following ICUs).	
14	ENLG	Enable Next Level Group Output	
		The Enable Next Level Group output allows the ICU to inhibit interrupts within the lower priority ICU in a multi-ICU system.	
15-22	$\mathrm{R}_{0}-\mathrm{R}_{7}$	Priority Interrupt Request Inputs	Active LOW
		The Priority Interrupt Request inputs are the inputs of the priority Interrupt Request Latch. The lowest priority level interrupt request signal is attached to R_{0} and the highest is attached to R_{7}.	
23	ECS	Enable Current Status Input	Active LOW
		The Enable Current Status input controls the current status latch and the clear function of the Interrupt Inhibit flip-flop.	
24	$V_{C C}$	+5 Volt Supply	

FUNCTIONAL AND LOGICAL DESCRIPTION

The ICU adds interrupt capability to suitably microprogrammed processors or controllers. One or more of these units allows external signals called interrupt requests to cause the processor/controller to suspend execution of the active process, save its status, and initiate execution of a new task as requested by the interrupt signal.

It is customary to strobe the ICU at the end of each instruction execution. At that time, if an interrupt request is acknowledged by the ICU, the MCU is forced to follow the interrupt microprogram sequence.

Figure 1 shows the block diagram of the ICU. Interrupt requests pass through the interrupt request latch and priority encoder to the magnitude comparator. The output of the priority encoder is the binary equivalent of the highest active priority request. At the comparator, this value is compared with the Current Status (currently active priority level) contained in the current status latch. A request, if acknowledged at interrupt strobe time, will cause the interrupt flip-flop to enter the "interrupt active" state for one microinstruction cycle. This action causes the interrupt acknowledge (IA) signal to go low and sets the interrupt disable flip-flop.

The IA signal constitutes the interrupt command to the processor. It can directly force entry into the interrupt service routine as demonstrated in the appendix. As part of this routine, the microprogram normally reads the requesting level via the request level output bus. This information which is saved in the request latch can be enabled onto one of the processor input data buses using the enable level read input. Once the interrupt handler has determined the requesting level, it normally writes this level back into the current status register of the ICU. This action resets the interrupt disable flipflop and acts to block any further request at this level or lower levels.

Entry into a macro level interrupt service routine may be vectored using the request level information to generate a subroutine address which corresponds to the level. Exit from such a macroprogram should normally restore the prior status in the current status latch.

The Enable This Level Group (ETLG) input and the Enable Next Level Group (ENLG) output can be used in a daisy chain fashion, as each ICU is capable of inhibiting interrupts from all of the following ICUs in a multiple ICU configuration.

The interrupt acknowledge flip-flop is set to the active LOW state on the rising edge of the clock when the following conditions are met:

An active request level $\left(R_{0}-R_{7}\right)$ is greater than the current status $B_{0}-B_{2}$
The interrupt mode (ISE) is active
ETLG is enabled
The interrupt disable flip-flop is reset
When active, the IA signal asynchronously sets the disable flip-flop and holds the requests in the request latch until new current status information ($\mathrm{B}_{0}-\mathrm{B}_{2}, \mathrm{SGS}$) is enabled (ECS) into the current status latch. The disable flip-flop is reset at the completion of this load operation.

During this process, ENLG will be enabled only if the following conditions are met:

ETLG is enabled

The current status (SGS) does not belong to this level group
There is no active request at this level
The request level outputs $A_{0}-A_{2}$ and the IA output are open-collector to permit bussing of these lines in multiICU configuration.

Figure 1. 3214 Block Diagram.

3214

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias
Ceramic . $-65^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Plastic $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Output and Supply Voltages . -0.5 V to +7 V
All Input Voltages . -1.0 V to +5.5 V
Output Currents . 100 mA
*COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	MIN	LIMITS TYP ${ }^{(1)}$	MAX	UNIT	CONDITIONS
V_{C}	Input Clamp Voltage (all inputs)			-1.0	V	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$
I^{\prime}	$\begin{array}{ll}\text { Input Forward Current: } & \begin{array}{l}\text { ETLG input } \\ \text { all other inputs }\end{array}\end{array}$		$\begin{aligned} & -.15 \\ & -.08 \end{aligned}$	$\begin{aligned} & -0.5 \\ & -0.25 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$V_{F}=0.45 \mathrm{~V}$
I_{R}	$\begin{array}{ll}\text { Input Reverse Current: } & \text { ETLG input } \\ \text { all other inputs }\end{array}$			$\begin{aligned} & 80 \\ & 40 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{R}}=5.25 \mathrm{~V}$
$V_{\text {IL }}$	Input LOW Voltage: all inputs			0.8	V	$V_{C C}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage: all inputs	2.0			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	Power Supply Current ${ }^{(2)}$		90	130	mA	
V_{OL}	Output LOW Voltage: all outputs		. 3	. 45	V	$\mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage: ENLG output	2.4	3.0		V	$\mathrm{I}^{\mathrm{OH}}=^{\prime}=-1 \mathrm{~mA}$
IOS	Short Circuit Output Current: ENLG output	-20	-35	-55	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$I_{\text {ICEX }}$	Output Leakage Current: IA and $A_{0}-A_{2}$ outputs			100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CEX }}=5.25 \mathrm{~V}$

NOTES:
${ }^{(1)} \mathrm{T}_{\text {ypical }}$ values are for $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
${ }^{(2)}{ }_{B}{ }_{\emptyset}-B_{2}, S G S, C L K, R_{\emptyset}-R_{4}$ grounded, all other inputs and all outputs open.

A.C: CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	MIN	LIMITS TYP(1)	MAX	UNIT
${ }^{t} \mathrm{CY}$	CLK Cycle Time	80			ns
${ }^{\text {tPW }}$	CLK, ECS, IA Pulse Width	25	15		ns
	Interrupt Flip-Flop Next State Determination:				
${ }^{\text {t }}$ SS	ISE Set-Up Time to CLK	16	12		ns
${ }_{\text {t }}^{\text {ISH }}$	ISE Hold Time After CLK	20	10		ns
${ }^{\text {t ETCS }}{ }^{2}$	ETLG Set-Up Time to CLK	25	12		ns
${ }^{\text {t }}$ ETCH ${ }^{2}$	ETLG Hold Time After CLK	20	10		ns
${ }^{\text {E ECCS }}{ }^{3}$	ECS Set-Up Time to CLK (to clear interrupt inhibit prior to CLK)	80	25		ns
${ }^{\text {ECCCH }}{ }^{3}$	ECS Hold Time After CLK (to hold interrupt inhibit)	0			ns
$\mathrm{t}_{\text {ECRS }}{ }^{3}$	ECS Set-Up Time to CLK (to enable new requests through the request latch)	110	70		ns
${ }^{\text {E ECRH }}{ }^{3}$	ECS Hold Time After CLK (to hold requests in request latch)	0			
${ }^{\text {t }}$ ECSS ${ }^{2}$	ECS Set-Up Time to CLK (to enable new status through the status latch)	75	70		ns
${ }^{\mathrm{t} E C S H}{ }^{2}$	ECS Hold Time After CLK (to hold status in status latch)	0			ns
${ }^{\text {D }}{ }^{\text {ccs }}{ }^{2}$	SGS and $\mathrm{B}_{\square}-\mathrm{B}_{2}$ Set-Up Time to CLK (current status latch enabled)	70	50		ns
${ }^{t} \mathrm{DCH}^{2}$	SGS and $\mathrm{B}_{\emptyset}-\mathrm{B}_{2}$ Hold Time After CLK (current status latch enabled)	0			ns
$\mathrm{t}_{\mathrm{RCS}}{ }^{3}$	$\mathrm{R}_{\emptyset} \mathrm{R}_{7}$ Set-Up Time to CLK (request latch enabled)	90	55		ns
$\mathrm{t}_{\mathrm{RCH}}{ }^{3}$	$\mathrm{R}_{\emptyset}-\mathrm{R}_{7}$ Hold Time After CLK (request latch enabled)	0			ns
${ }_{\text {I }} \mathrm{CS}$	IA Set-Up Time to CLK (to set interrupt inhibit F.F. before CLK)	55	35		ns
${ }^{\mathrm{t}} \mathrm{Cl}$	CLK to IA Propagation Delay		15	25	ns
	Contents of Request Latch and Request Level Output Status Determination:				
$t_{\text {RIS }}{ }^{4}$	$\mathrm{R}_{\boldsymbol{\emptyset}}-\mathrm{R}_{7}$ Set-Up Time to IA	10	0		ns
$\mathrm{t}_{\mathrm{RIH}}{ }^{4}$	$\mathrm{R}_{\emptyset}-\mathrm{R}_{7}$ Hold Time After IA	35	20		ns
${ }^{t} \mathrm{RA}$	$\mathrm{R}_{\emptyset}-\mathrm{R}_{7}$ to $\mathrm{A}_{\emptyset}-\mathrm{A}_{2}$ Propagation Delay (request latch enabled)		80	100	ns
${ }^{t}$ ELA	$E L R$ to $\mathrm{A}_{\emptyset}-\mathrm{A}_{2}$ Propagation Delay		40	55	ns
${ }^{\text {t ECA }}$	ECS to $\mathrm{A}_{\square}-\mathrm{A}_{2}$ Propagation Delay (to enable new requests through request la		100	120	ns
${ }^{\text {t ETA }}$	ETLG to $\mathrm{A}_{\square}-\mathrm{A}_{2}$ Propagation Delay		35	70	ns

3214

A.C. CHARACTERISTICS (CON'T)

SYMBOL PARAMETER MIN | LIMITS |
| :--- |
| TYP(1) MAX | UNIT

${ }^{\text {t }}$ DECS ${ }^{4}$	SGS and $\mathrm{B}_{\emptyset}-\mathrm{B}_{2}$ Set-Up Time to ECS	15	10		ns
${ }^{\text {D DECH }}{ }^{4}$	SGS and $\mathrm{B}_{\emptyset}-\mathrm{B}_{2}$ Hold Time After ECS	15	10		ns
	Enable Next Level Group Determination:				
${ }^{\text {t REN }}$	$\mathrm{R}_{\emptyset}-\mathrm{R}_{7}$ to ENLG Propagation Delay		45	70	ns
${ }^{\text {t ETEN }}$	ETLG to ENLG Propagation Delay		20	25	ns
${ }^{\text {t ECRN }}$	ECS to ENLG Propagation Delay (eriabling new request through the request latch)		85	90	ns
${ }^{\text {t }}$ ECSN	ECS to ENLG Propagation Delay (enabling new SGS through status latch)		35	55	ns

NOTES:

(1) Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
${ }^{(2)}$ Required for proper operation if ISE is enabled during next clock pulse.
${ }^{(3)}$ These times are not required for proper operation but for desired change in interrupt flip-flop.
${ }^{(4)}$ Required for new request or status to be properly loaded.
${ }^{(5)}{ }_{\mathrm{t}}^{\mathrm{CY}}, ~ \mathrm{t}_{\mathrm{ICS}}+\mathrm{t}_{\mathrm{Cl}}$

TEST CONDITIONS:

Input pulse amplitude: 2.5 volts.
Input rise and fall times: 5 ns between 1 and 2 volts.
Output loading of 15 mA and 30 pf .
Speed measurements taken at the 1.5 V levels.

CAPACITANCE ${ }^{(5)}$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | LIMITS
 TYP(1) | MAX |
| :--- | :--- | :---: | :---: | UNIT

NOTE:
${ }^{(5)}$ This parameter is periodically sampled and not 100% tested.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

*COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER		MIN	LIMITS TYP(1)	MAX	UNIT	CONDITIONS
V_{C}	Input Clamp Voltage (all inputs)				-1.2	V	${ }^{\prime} \mathrm{C}=-5 \mathrm{~mA}$
I_{F}	Input Forward Current:	ETLG input all other inputs		$\begin{aligned} & -.15 \\ & -.08 \end{aligned}$	$\begin{aligned} & -0.5 \\ & -0.25 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$V_{F}=0.45 \mathrm{~V}$
${ }^{\prime} \mathrm{R}$	Input Reverse Current:	ETLG input all other inputs			$\begin{aligned} & 80 \\ & 40 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$V_{R}=5.5 \mathrm{~V}$
$V_{\text {IL }}$	Input LOW Voltage:	all inputs			0.8	V	$V_{C C}=5.0 \mathrm{~V}$
$V_{\text {IH }}$	Input HIGH Voltage:	all inputs	2.0			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
${ }^{1} \mathrm{CC}$	Power Supply Current ${ }^{(2)}$			90	130	mA	
V_{OL}	Output LOW Voltage:	all outputs		. 3	. 45	V	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage:	ENLG output	2.4	3.0		V	$\mathrm{I}^{\mathrm{OH}}=^{\prime}-1 \mathrm{~mA}$
Ios	Short Circuit Output Cur	ent: ENLG output	-15	-35	-55	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$I_{\text {ICEX }}$	Output Leakage Current:	IA and $A \emptyset-A_{3}$ outputs			100	$\mu \mathrm{A}$	$V_{\text {CEX }}=5.5 \mathrm{~V}$

nOTES:

${ }^{(1)}$ Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
${ }^{(2)} \mathrm{B}_{\emptyset}-\mathrm{B}_{2}, S G S, C L K, \mathrm{R}_{\emptyset}-\mathrm{R}_{4}$ grounded, all other inputs and all outputs open.

A.C. CHARACTERISTICS

SYMBOL	PARAMETER	MIN	LIMITS TYP(1)	MAX	UNIT
${ }^{t} \mathrm{C} Y$	CLK Cycle Time ${ }^{(5)}$	85			ns
tPW	CLK, ECS, IA Pulse Width	25	15		ns
	Interrupt Flip-Flop Next State Determination:				
${ }_{\text {t }}$ SS	ISE Set-Up Time to CLK	16	12		ns
${ }^{\text {tISH}}$	ISE Hold Time After CLK	20	10		ns
${ }^{\text {E ETCS }}{ }^{2}$	ETLG Set-Up Time to CLK	25	12		ns
${ }^{\text {t }} \mathrm{ETCH}^{2}$	ETLG Hold Time After CLK	20	10		ns
$t_{E C C S}{ }^{3}$	ECS Set-Up Time to CLK (to clear interrupt inhibit prior to CLK)	85	25		ns
${ }^{t} \mathrm{ECCH}^{3}$	ECS Hold Time After CLK (to hold interrupt inhibit)	0			ns
${ }^{t} E C R S^{3}$	ECS Set-Up Time to CLK (to enable new requests through the request latch)	110	70		ns
${ }^{t} E C R H^{3}$	ECS Hold Time After CLK (to hold requests in request latch)	0			
$\mathrm{t}_{\mathrm{ECSS}}{ }^{2}$	ECS Set-Up Time to CLK (to enable new status through the status latch)	85	70		ns
${ }^{1} \mathrm{ECSH}^{2}$	ECS Hold Time After CLK (to hold status in status latch)	0			ns
${ }^{\text {t }}$ CS ${ }^{2}$	SGS and $\mathrm{B} \emptyset-\mathrm{B}_{2}$ Set-Up Time to CLK (current status latch enabled)	90	50		ns
${ }^{\mathrm{t}} \mathrm{DCH}^{2}$	SGS and $\mathrm{B}_{\emptyset}-\mathrm{B}_{2}$ Hold Time After CLK (current status latch enabled)	0			ns
${ }^{\text {R }}{ }_{\text {CSS }}{ }^{3}$	$\mathrm{R}_{\emptyset} \mathrm{R}_{7}$ Set-Up Time to CLK (request latch enabled)	100	55		ns
${ }^{\text {R }} \mathrm{RCH}^{3}$	$\mathrm{R}_{\emptyset}-\mathrm{R}_{7}$ Hold Time After CLK (request latch enabled)	0			ns
$\mathrm{t}_{1} \mathrm{CS}$	IA Set-Up Time to CLK (to set interrupt inhibit F.F. before CLK)	55	35		ns
${ }^{\mathrm{t}} \mathrm{Cl}$	CLK to IA Propagation Delay		15	30	ns
	Contents of Request Latch and Request Level Output Status Determination:				
$t_{\text {RIS }}{ }^{4}$	$\mathrm{R}_{\emptyset}-\mathrm{R}_{7}$ Set-Up Time to IA	10	0		ns
$\mathrm{t}_{\mathrm{RIH}}{ }^{4}$	$\mathrm{R}_{\boldsymbol{\emptyset}}-\mathrm{R}_{7}$ Hold Time After IA	35	20		ns
${ }^{\text {tra }}$	$R_{\emptyset}-R_{7}$ to $A_{\emptyset}-A_{2}$ Propagation Delay (request latch enabled)		80	100	ns
${ }^{\text {t ELA }}$	ELR to $\mathrm{A}_{\square}-\mathrm{A}_{2}$ Propagation Delay		40	55	ns
${ }^{t} \mathrm{ECA}$	ECS to $\mathrm{A}_{\emptyset}-\mathrm{A}_{2}$ Propagation Delay (to enable new requests through request la		100	130	ns
${ }^{\text {teTA }}$	ETLG to $\mathrm{A}_{\square}-\mathrm{A}_{2}$ Propagation Delay		35	70	ns

A.C. CHARACTERISTICS (CON'T)

SYMBOL	PARAMETER	LIMITS TYP(1)
	Contents of Current Priority Status Latch Determination:	MAX

NOTES:
(1) Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) Required for proper operation if ISE is enabled during next clock pulse.
(3) These times are not required for proper operation but for desired change in interrupt flip-flop.
(4) Required for new request or status to be properly loaded.
(5) $t_{C Y}=t_{I C S}+t_{C l}$

TEST CONDITIONS:

Input pulse amplitude: 2.5 volts.
Input rise and fall times: 5 ns between 1 and 2 volts.
Output loading of 15 mA and 30 pf .
Speed measurements taken at the 1.5 V levels.

CAPACITANCE ${ }^{(5)}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL PARAMETER	MIN	LIMITS TYP(1)	MAX	UNIT
$\mathrm{C}_{\text {IN }} \quad$ Input Capacitance		5	10	pf
COUT Output Capacitance		7	12	pf
TEST CONDITIONS: $\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$				

NOTE:

${ }^{(5)}$ This parameter is periodically sampled and not 100% tested.

3214

WAVEFORMS

3216/3226

PARALLEL BIDIRECTIONAL BUS DRIVER

The INTEL 3216 is a high-speed 4 -bit Parallel, Bidirectional Bus Driver. Its three-state outputs enable it to isolate and drive external bus structures associated with Series 3000 systems

The INTEL 3226 is a high-speed 4-bit Parallel, Inverting Bidirectional Bus Driver. Its three-state outputs enable it to isolate and drive external bus structures associated with Series 3000 systems.

The 3216/3226 driver and receiver gates have three state outputs with PNP inputs. When the drivers or receivers are tri-stated the inputs are disabled, presenting a low current load, typically less than $40 \mu \mathrm{amps}$, to the system bus structure.

High Performance-25 ns typical propagation delay
Low Input Load Current-0.25 mA maximum
High Output Drive Capability for Driving System Data Busses
Three-State Outputs
TTL Compatible
16-pin DIP

3216,3226

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias

Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Output and Supply Voltages . -0.5 V to +7 V
All Input Voltages . -1.0 V to +5.5 V
Output Currents
125 mA
*COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%$

NOTE: Typical values are for $T_{A}=25^{\circ} \mathrm{C}$
A.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%$

Symbol	Parameter		Min.	Limit Typ.	Max.	Unit	Condition
TPD1	Input to Output Delay DO Outputs	3216		15	25	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega, \\ & \mathrm{R}_{2}=600 \Omega \end{aligned}$
		3226		14	25		
$\mathrm{T}_{\text {PD2 }}$	Input to Output Delay DB Outputs	3216		19	30	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}, \mathrm{R}_{1}=90 \Omega, \\ & \mathrm{R}_{2}=180 \Omega \end{aligned}$
		3226		16	25		
TE	Output Enable Time DCE, CS	$\begin{aligned} & 3216 \\ & 3226 \end{aligned}$		42	65	$\mathrm{ns}^{(2)}$	$\begin{aligned} & \text { DO Outputs: } \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \text {, } \\ & \mathrm{R}_{1}=300 \Omega / 10 \mathrm{~K} \Omega, \\ & \mathrm{R}_{2}=600 \Omega / 1 \mathrm{~K} \Omega \\ & \mathrm{DB} \text { Outputs: } \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \text {, } \\ & \mathrm{R}_{1}=90 \Omega / 10 \mathrm{~K} \Omega, \\ & \mathrm{R}_{2}=180 \Omega / 1 \mathrm{~K} \Omega \end{aligned}$
				36	54		
T_{D}	Output Disable Time DCE, CS			16	35	$n s^{(2)}$	$\begin{aligned} & \text { DO Outputs: } \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {, } \\ & \mathrm{R}_{1}=300 \Omega / 10 \mathrm{~K} \Omega \\ & \mathrm{R}_{2}=600 \Omega / 1 \mathrm{~K} \Omega \end{aligned}$
							$\begin{aligned} & \text { DB Outputs: } C_{L}=5 \mathrm{pF} \text {, } \\ & \mathrm{R}_{1}=90 \Omega / 10 \mathrm{~K} \Omega \\ & \mathrm{R}_{2}=180 \Omega / 1 \mathrm{~K} \Omega \end{aligned}$

NOTE: (1) Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) The test load circuit is set for worst case source and sink loading on the outputs. The two resistor values for R1 and R2 correspond to worst case sink and source loading, respectively.

CAPACITANCE ${ }^{(2)} \quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Limit

Symbol Parameter Min. Typ. Max. Unit

C_{IN}	Input Capacitance	4	6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			
	DO Outputs	6	10	pF
	DB Outputs	13	18	pF

Note:

(2) This parameter is periodically sampled and is not 100% tested.

Condition of measurement is $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

WAVEFORMS

TEST CONDITIONS:

Input pulse amplitude of 2.5 V . Input rise and fall times of 5 ns between 1 and 2 volts. Output loading is 5 mA and 10 pF .
Speed measurements are made at 1.5 volt levels.
TEST LOAD CIRCUIT:

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

*COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter		Min.	Limit Typ.	Max.	Unit	Condition
I_{F}	Input Load Current						
	DCE, $\overline{C S}$ Inputs			-0.15	-0.5	mA	$V_{F}=0.45 \mathrm{~V}$
	All Other Inputs			-0.08	-0.25	mA	
I_{R}	Input Leakage Current				80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5.5 \mathrm{~V}$
	DI Inputs				40	$\mu \mathrm{A}$	
V_{C}	Input Clamp Voltage				-1.2	V	$I_{C}=-5 m A$
$V_{\text {IL }}$	Input Low Voltage	M3216			0.95	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
		M3226			0.90	V	
V_{IH}	Input High Voltage		2.0			V	$V_{C C}=5.0 \mathrm{~V}$
VOL1	Output.Low Voltage DO, DB Outputs			0.3	0.45	V	DO Outputs $I_{O L}=15 \mathrm{~mA}$ DB Outputs $\mathrm{I}_{\mathrm{OL}}=25 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OL} 2}$	Output Low Voltage DB Outputs Only			0.5	0.6	V	DB Outputs $\mathrm{I}_{\mathrm{OL}}=45 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage DO Outputs Only		3.4	3.8		v	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage DB Outputs Only		2.4	3.0		V	$\mathrm{lOH}=-5 \mathrm{~mA}$
$I_{\text {Sc }}$	Output Short Circuit Current						
	DO Outputs		$\begin{aligned} & -15 \\ & -30 \end{aligned}$	$\begin{aligned} & -35 \\ & -75 \end{aligned}$	-65	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mid 10$	Output Leakage Current						
	High Impedance State						
	DO Outputs				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.5 \mathrm{~V}$
	DB Outputs				100	$\mu \mathrm{A}$	
Icc	Power Supply Current	M3216		95	130	mA	
		M3226		85	120	mA	

[^16]
A.C. CHARACTERISTICS

$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter		Min.	Limit Typ.	Max.	Unit	Condition
TPD1	Input to Output Delay DO Outputs			15	25	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega, \\ & \mathrm{R}_{2}=600 \Omega \end{aligned}$
TPD2	Input to Output Delay DB Outputs	M3216 M3226		$\begin{aligned} & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 33 \\ & 25 \end{aligned}$	ns	$\begin{aligned} & C_{L}=300 \mathrm{pF}, \mathrm{R}_{1}=90 \Omega, \\ & \mathrm{R}_{2}=180 \Omega \end{aligned}$
T_{E}	Output Enable Time	M3216 M3226		$\begin{aligned} & 42 \\ & 36 \end{aligned}$	$\begin{aligned} & 75 \\ & 62 \end{aligned}$	$n s^{(2)}$	DO Outputs: $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$, $R_{1}=300 \Omega / 10 K \Omega$, $R_{2}=600 \Omega / 1 \mathrm{~K} \Omega$ DB Outputs: $\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$, $R_{1}=90 \Omega / 10 \mathrm{~K} \Omega$, $R_{2}=180 \Omega / 1 \mathrm{~K} \Omega$
T_{D}	Output Disable Time	$\begin{aligned} & \text { M3216 } \\ & \text { M3226 } \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 40 \\ & 38 \end{aligned}$	$n s^{(2)}$	DO Outputs: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, $R_{1}=300 \Omega / 10 K \dot{\Omega}$, $R_{2}=600 \Omega / 1 \mathrm{~K} \Omega$ DB Outputs: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, $R_{1}=90 \Omega / 10 K \Omega$, $R_{2}=180 \Omega / 1 \mathrm{~K} \Omega$

NOTE: (1) Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) The test load circuit is set for worst case source and sink loading on the outputs. The two resistor values for R1 and R2 correspond to worst case sink and source loading, respectively.

CAPACITANCE ${ }^{(2)} \quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

		Limit			
Symbol	Parameter	Min.	Typ. Max. Unit		
C_{IN}	Input Capacitance	4	6	pF	
$\mathrm{C}_{\text {OUT }}$	Output Capacitance				
	DO Outputs	6	10	pF	
	DB Outputs	13	18	pF	

Note:
(2) This parameter is periodically sampled and is not 100% tested.

Condition of measurement is $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{BI}} \mathrm{AS}=2.5 \mathrm{~V}$,
$V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.

DEVELOPMENT SYSTEMS

MICROCOMPUTER DEVELOPMENT SYSTEMS

This section contains information necessary to select the appropriate Intel design aids required to facilitate microprocessor hardware and software development. Design aids cover the broad range from the Intellec ${ }^{\circledR}$ MDS system with its in-circuit emulator options for both the Intel 8080 (ICE-80) and the Series 3000 Bipolar Microcomputer (ICE-30), to the extensive User's Program Library and a selection of 3 and 4 day Microcomputer Workshops. The purpose of development aids is to shorten the design cycle and thus save time and money in the development and production of microcomputer-based products.

	Type	Description	Page No.
	Intellec ${ }^{\text {® }}$ MDS-800	Intellec ${ }^{\text {® }}$ MDS-800	10-3
		Diskette Operating System	10-8
		Universal Prom Programmer	10-13
		High Speed Paper Tape Reader	10-14
		In Circuit Emulator - ICE-80	10-15
		In Circuit Emulator - ICE-30	10-18
		ROM Simulators	10-21
	Intellec ${ }^{(1)} 8 / \mathrm{MOD} / 8$	Intellec 8/MOD 8	10-23
		High Speed Paper Tape Reader	10-24
	Barebones	Barebones 80	10-25
	Intellec ${ }^{\text {® }}$ 4/MOD/40	Intellec 4/MOD 40	$10-27$
		High Speed Paper Tape Reader	10.28
	SDK-80	8080 System Design Kit	10-29
	imm 4-42	Central Processor Module	10-31
	imm 4-43	Central Processor Module	10.31
	imm 4-60	Input/Output	10-31
	imm 4-22	Data Storage Module	10-31
	imm 4-24	Data Storage Module	10-31
	imm 8-82	Central Processor Module	10-32
	imm 8-60	Input/Output Module (8008)	10-32
	imm 8-61	Input/Output Module (8080)	10-32
	imm 8-62	Output Module (8008)	10-32
	imm 8-63	Output Module (8080)	10.32
	imm 8-82	Central Processor Module (8008)	10-32
	imm 8-83	Central Processor Module (8080)	10-32
	imm 6-26	PROM Memory Module	10-33
	imm 6-28	RAM Memory Module	10-33
	imm 6-70	Universal Prototype Module	10-33
	imm 6-72	Module Extender	10-33
	imm 6-76	PROM Programmer Module	10-33
	Conversion Kits	Conversion Kits	10-33
$\sum_{\underset{\sim}{u}}$	SBC 80/10	OEM Computer System	10-34
	MAC 40	Microcomputer Software Products	10-36
		MCS-40TM Cross Assembler	10-37
	INTERP 40	4004/4040 Simulator	10-39
	MAC 8	MCS-8 ${ }^{\text {TM }}$ Cross Assembler	10-38
	INTERP/8	8008 Simulator	10-40
	MAC 80	MCS-80 ${ }^{\text {TM }}$ Cross Assembler	10.41
	INTERP/80	8080 Simulator	10-42
	PL/M ${ }^{\text {TM }}$	PL/M ${ }^{\text {TM }}$ Cross Compilers for MCS-8/MCS-80	$10-43$
	CROMIS	Series 3000 Cross Microprogramming System	10.45
	User's Library	User's Program Library	10.46
		4-Bit Library Index	10-47
		8-Bit Library Index	$10-49$
		User's Library Submittal Form	10-57
	Training	Microcomputer Training Program	10-59

MDS-800 INTELLEC ${ }^{\ominus}$ MDS MICROCOMPUTER DEVELOPMENT SYSTEM

Modular microcomputer development system for development and implementation of MCS ${ }^{\text {T.M }}$. 80 and Series 3000 Microcomputer Systems

Intel 8080 microprocessor, with 2μ s cycle time and 78 instructions, controls all Intellec MDS functions.

16 K bytes RAM memory expandable to $\mathbf{6 4 K}$ bytes.
2 K bytes ROM memory expandable to 14 K bytes.
Hardware interfaces and software drivers provided for TTY, CRT, line printer, high speed paper tape reader, high speed paper tape punch, and Universal PROM Programmer.

Universal bus structure with multiprocessor and DMA capabilities.

Eight level nested, maskable, priority interrupt system.

Optional PROM programmer peripheral capable of programming all Intel PROMs.

ICE (In-Circuit Emulator) options extend Intellec MDS diagnostic capabilities into user configured system allowing real time emulation of user processors.

Optional I/O modules expandable in groups of four 8-bit input and output ports to a maximum of 88 ports (all TTL compatible).

ROM resident system monitor includes all necessary functions for program loading, debugging, and execution.

RAM resident macro assembler used to assemble all 8080 machine instructions with full macro and conditional assembly capabilities.

RAM resident text editor with powerful string search, substitution, insertion, and deletion commands.

The Intellec ${ }^{\circledR}$ MDS is a modular microcomputer development system containing all necessary hardware and software to develop and implement Intel MCS ${ }^{\top . M .}$. 80 and Series 3000 microcomputer systems. The addition of MDS options and peripherals provides the user with a complete in-circuit microcomputer development system, supporting product design from program development through prototype debug, to production and field test.

INTELLEC ${ }^{\circledR}$ MDS HARDWARE

The standard Intellec ${ }^{\circledR}$ MDS consists of four microcomputer modules (CPU, 16K RAM Memory, Front Panel Control, and Monitor), an interconnecting printed circuit motherboard, power supplies, fans, a chassis, and a front panel. Modular expansion capability is provided by 14 additional sockets on the motherboard.

The CPU module uses Intel's powerful NMOS 8-bit 8080 microprocessor. The 8080's $2 \mu \mathrm{~s}$ cycle time, 78 instructions, unlimited subroutine nesting, vectored interrupt, and DMA capabilities are fully utilized by the Intellec MDS. Bus control logic resolves bus contention conflicts between the CPU module and other modules capable of acquiring control of the bus. The CPU module interfaces with a sixteen line address bus and a bidirectional eight line data bus. 8080 status signals are decoded and utilized for memory and I/O operations. An eight-level, nested interrupt priority system, complete with an interrupt priority push-down stack, resolves contention for 8080 interrupt servicing.
The RAM memory module contains 16 K bytes of Intel 2107 dynamic RAM which operates at full processor speed. All necessary address decoding and refresh logic is contained on the module.

The front panel control module provides system initialization, priority arbitration, and real time clock functions. System initialization routines reside in a 256 byte, PROM resident, bootstrap loader. An eight-level priority arbitration network resolves bus contention requests among potential bus masters. A 1 ms interrupt request generator, which can be disabled under program control, provides real time clock functions. A 10 ms automatic time-out feature is also provided to force an interrupt request if nonexistent memory or I/O is addressed.

The Monitor module contains the Intellec MDS system monitor and all Intellec MDS peripheral interface hardware. The system monitor resides in a 2 K byte Intel 8316 ROM. The module contains all necessary control and data transfer circuitry to interface with the following intellec MDS peripherals:

- Teletype
- CRT
- High Speed Paper Tape Reader
- High Speed Paper Tape Punch
- PROM Programmer
- Line Printer

The Intellec MDS universal bus structure enables several CPU and DMA devices to share the bus by operating at different priority levels. Resolution of bus exchanges is synchronized by a bus clock signal which is derived independently from processor clocks. Read/write transfers may take place at rates up to 5 MHz . The bus structure contains provisions for up to 16 -bit address and data transfers and is not limited to any one Intel microcomputer family.
The Intellec MDS front panel is intended to augment the primary user interaction medium, the system console. The simplicity of the front panel coupled with the power of the system monitor provides an efficient user/Intellec interface. The front panel contains eight interrupt request switches with corresponding indicators, CPU RUN and HALT status
indicators, a bootstrap loader switch, RESET switch, and a POWER ON switch and indicator.
The basic Intellec MDS capabilities may be significantly enhanced by the addition of the following optional features.

ICE (In-Circuit Emulator) extends Intellec MDS diagnositc capabilities into user configured systems. The Intellec MDS resident ICE processor operates in conjunction with the MDS host CPU and interfaces to the user system via an external cable. The ICE processor replaces the user system processor providing real time emulation capability. MDS resident memory and I/O may be substituted for equivalent user system elements, allowing the hardware designer to sequentially develop his system by integrating MDS and user system hardware. MDS display and debug hardware eliminate the need for specially constructed user system equivalents. Augmenting these capabilities are such powerful ICE debug functions as setting breakpoints, tracing program flow, single stepping, examining and altering CPU registers and memory locations.

The Universal PROM Programmer is an Intellec MDS peripheral capable of programming and verifying the following Intel PROMs: 1702A, 2704, 2708, 3601, 3604, 3624, 8702A, 8704, and 8708. Programming and verification operations are initiated from the Intellec MDS system console and are controlled by programs resident in the Intellec MDS and Universal PROM Programmer.
The addition of a single or dual drive Diskette Operating System significantly reduces program development time. An intelligent controller, constructed around Intel's powerful Series 3000 computing elements, provides diskette interface and control. Intel's software operating system (IDOS) in conjunction with the diskette operating system hardware provides a highly efficient and easy to use method of assembling, editing, and executing programs.

Customized user I/O requirements may be satisfied by adding I/O modules. Each I/O module contains four 8 -bit input ports (latched or unlatched), four 8-bit latched output ports (with adjustable strobe pulses), and eight system interrupt lines. All inputs and outputs are TTL compatible. Optional I/O may be expanded to a maximum of 44 input and 44 output ports.

Memory may be expanded by adding RAM or PROM modules in user defined combinations. Up to 64 K bytes of RAM may be added in 16K byte increments. PROM (Intel 8702A) may be added in 256 byte increments by adding PROM modules with socket capacity for 6K bytes and populating each module with the desired number of PROMs. Maximum PROM capacity is 12 K bytes. RAM/PROM memory overlap is resolved by giving PROM priority.
DMA (direct memory access) modules work in conjunction with the Intellec MDS universal bus to maximize the efficiency of data transfers between MDS memory and selected I/O devices. Each module contains all the necessary control and data transfer logic to implement a complete DMA channel.

A ROM simulator composed of high speed bipolar RAM emulates Series 3000 bipolar microprogram ROM memory. Each ROM simulator module may be used in 512×16 or 1024×8 configurations.

INTELLEC ${ }^{\circledR}$ MDS SOFTWARE

Resident software provided with the Intellec ${ }^{\circledR}$ MDS includes the system monitor, 8080 macro assembler and text editor. Used together, these three programs simplify program preparation and speed the debugging task.
The system monitor provides complete control over operation of the Intellec MDS. All necessary functions for program loading and execution are provided. Additional commands provide extensive debug facilities and PROM programming functions. System peripherals may be dynamically assigned either via monitor commands or through calls to the system monitor's I/O subroutines.

Programs may be loaded from the reader device in either BNPF or hexadecimal format. Utility commands which aid in the execution and checkout of programs include:

- initialize memory to a constant
- move a block of memory to another location
- display memory
- modify RAM memory
- examine and modify CPU registers
- set breakpoints
- initiate execution at any given address
- perform hexadecimal arithmetic
- examine and modify the interrupt mask

The Intellec MDS System Monitor contains a powerful and easily expandable input/output system, which is built around four logical device types; console device, reader device, punch device and list device. Associated with each logical device may be any one of four physical devices. The user controls physical device assignment to each logical device through a System command.
Drivers are provided in the system monitor for the Universal PROM Programmer, ASR 33 teletype, high speed paper tape reader, high speed paper tape punch, line printer, and CRT. The user may write his own drivers for other peripheral devices and easily link them to the system monitor.
All system peripherals may be accessed simply by calling I/O subroutines in the system monitor. In addition, the user may dynamically reconfigure his system by monitor commands or by calling system subroutines which can assign a different physical device to each logical device. The user may also determine the current system peripheral configuration, check $1 / O$ status and determine the size of available memory.
The monitor is written in 8080 Assembly Language and resides in 2 K bytes of ROM memory.

The Intellec MDS Resident Assembler translates symbolic 8080 assembly language instructions into the appropriate machine operation codes. In addition to eliminating the errors of hand translation, the ability to refer to program addresses with symbolic names makes it easy to modify programs by adding or deleting instructions. Full macro capability eliminates the need to rewrite similar sections of code repeatedly and simplifies program documentation.

Conditional assembly permits the assembler to include or delete sections of code which may vary from system to system, such as the code required to handle optional external devices.

The assembler performs its function in three passes. The first pass builds the symbol table. The second pass produces a source listing and provides error diagnostics. The third pass produces the object code. If the punch and list devices are separate (e.g. a high speed punch or printer is available) passes 2 and 3 may be combined into one pass.
Object code produced by the assembler is in hexadecimal format. It may be loaded directly into the Intellec MDS for execution and debugging or may be converted by the system monitor to BNPF format for ROM programming. The assembler is written in PL/M ${ }^{\text {T.M. }} .80$, Intel's high level systems programming language. It occupies 12 K bytes of RAM memory including space for over 800 symbols. The symbol table size may be expanded to a maximum of 6500 symbols by adding RAM memory. All I/O in the assembler is done through the system monitor, enabling the assembler to take advantage of the monitor's I/O system. The assembler is shipped in hexadecimal object format on paper tape or diskette and is standard with each Intellec MDS.

The Intellec MDS editor is a comprehensive tool for the entry and correction of assembly language programs for the Intel 8080 microcomputer. Its command set allows manipulation of either entire lines of text or individual characters within a line.

Programs may be entered directly from the console keyboard or from the system reader device. Text is stored internally in the editor's workspace, and may be edited with the following commands:

- string insertion or deletion
- string search
- string substitution

To facilitate the use of these editing commands, utility commands are used to change positions in the workspace. These include:

- move pointer by line or by character
- move pointer to start of workspace
- move pointer to end of workspace

The contents of the workspace may be listed to the system console or written to the system list or punch device for future use.
The text editor is written in $\mathrm{PL} / \mathrm{M}^{\mathrm{T} . \mathrm{M}}$ - 80 . It occupies 8 K bytes of RAM memory, including over 4500 bytes of workspace. The workspace may be expanded to a maximum of 58 K bytes by adding RAM memory. All I/O in the editor is done through the system monitor, enabling the editor to take advantage of the monitor's I/O system. The editor is shipped in hexadecimal object format on paper tape or diskette and is standard with each Intellec MDS.

NOTES:

1. PROM PROGRAMMER DATA/STATUS/COMMANDS 2. HIGH SPEED PUNCH DATA/STATUS/COMMANDS 4. PRINTER DATA/STATUS/COMMANDS
2. CRT DATA/STATUS/COMMANDS
3. TTY DATA/STATUS/COMMANDS
4. TTY DATASTATUS/COMMANDS
5. FRONT PANEL STATUS/SWITCH INPUTS USER SYSTEM ROM PIN SIGNALS 10. EIGHT INEMRUPT LINES
6. FOUR 8.BIT OUTPUT PORTS 1. FOUR 8.BIT OUTPUT PORTS
7. FOUR 8 BIT INPUT PORTS 12. FOUR 8BIT INPUTPORTS
8. DMA DEVICE DATA/STATUS/COMMANDS 13. DMA DEVICE DATA/STATUS/COMMANDS
9. DISKETTE DRIVE DATA/STATUS/COMMANDS

INTELLEC® ${ }^{\circledR}$ MDS

 BLOCK DIAGRAM
HARDWARE SPECIFICATIONS

WORD SIZE

Host Processor (Intel 8080)
Data: 8 bits
Instruction, 8, 16, or 24 bits

MEMORY SIZE

RAM: 16 K bytes expandable to 64 K bytes using optional modules.

ROM: 2 K bytes expandable to 14 K bytes in 256 byte increments using optional PROM modules.

PROM: 256 bytes expandable to 12 K bytes using optional modules.
Total: RAM, ROM and PROM may be combined in user defined configurations up to a maximum of 64 K bytes.

MACHINE CYCLE TIME

Host Processor (Intel 8080): $2.0 \mu \mathrm{~S}$

BUS TRANSFER RATE

Maximum bus transfer rate of 5 MHz .
SYSTEM CLOCKS
Host Processor (Intel 8080) Clock: Crystal controlled at $2 \mathrm{MHz} \pm 0.1 \%$.
Bus Clock: Crystal controlled at $9.8304 \mathrm{MHz} \pm 0.1 \%$.

I/O INTERFACES

CRT:
Baud Rates: 110/300/600/1200/2400/4800/9600 (selectable).
Code Format: 7-12 level code (programmable).
Parity: Odd/even (programmable).
Interface: TTL/RS232C (selectable).
TTY:
Baud Rate: 110
Code Format: Input: $\quad 10$ level or greater.
Output: 11 level.
Parity: Odd.
Interface: 20 mA current loop.
High Speed Paper Tape Reader:
Transfer Rate: 200 cps .
Control: 2-bit output.
1-bit input.
Data: $\quad 8$-bit byte
Interface: TTL
Punch:
Transfer Rate: 75 cps
Control: 2-bit output
1-bit input
Data: $\quad 8$-bit byte
Interface: TTL

Printer:

Transfer Rate:	165 cps
Control:	2-bit status input
	1-bit output
Data:	ASCII
Interface:	TTL

PROM Programmer:

Control:	3 strobes for multiplexed output data.
Data:	8 -bit bidirectional
Interface:	TTL

GENERAL PURPOSE I/O (OPTIONAL)
Input Ports: 8-bit TTL compatible (latched or unlatched); expandable in 4 port increments to 44 input ports.
Output Ports: 8-bit TTL compatible (latched); expandable in 4 port increments to 44.
Interrupts: 8 TTL compatible interrupt lines.

INTERRUPT

8 -level, maskable, nested priority interrupt network initiated from front panel or user selected devices.

DIRECT MEMORY ACCESS

Standard capability on Intellec bus; implemented for user selected DMA devices through optional DMA module maximum transfer rate of 2 MHz .

MEMORY ACCESS TIME

RAM: 450 ns

PROM: $1.3 \mu \mathrm{~s}$ using Intel 8708A PROM.
PHYSICAL CHARACTERISTICS
Dimensions: $8.5^{\prime \prime} \times 19^{\prime \prime} \times 17^{\prime \prime}$
$21.6 \mathrm{~cm} \times 48.3 \mathrm{~cm} \times 43.2 \mathrm{~cm}$
Weight: $\quad 65 \mathrm{lb}(29.5 \mathrm{~kg})$

ELECTRICAL CHARACTERISTICS

DC POWER SUPPLY (Volts)	POWER SUPPLY CURRENT (Amps)	BASIC SYSTEM CURRENT REQUIREMENTS (Amps)	
		Maximum	Typical
$+5 \pm 5 \%$	35.0	9.0	6.6
$+12 \pm 5 \%$	3.0	0.7	0.4
$-10 \pm 5 \%$	3.0	0.2	0.2
$-12 \pm 5 \%$	0.5	--	--

AC POWER REQUIREMENTS

$50-60 \mathrm{~Hz} ; 115 / 230$ VAC; 150 Watts
ENVIRONMENTAL CHARACTERISTICS
Operating Temperature: 0 to $55^{\circ} \mathrm{C}$

SOFTWARE SPECIFICATIONS

CAPABILITIES

System Monitor:
Devices supported include:
ASR 33 teletype
Intel high speed paper tape reader
Paper tape punch
CRT
Printer
Universal PROM programmer
4 logical devices recognized
16 physical devices maximum allowed
Macro Assembler:
800 symbols in standard system; automatically expandable with additional RAM memory to 6500 symbols maximum.
Assembles all seventy-eight 8080 machine instructions plus 10 pseudo-operators.
Text Editor:
12 K bytes of workspace in standard system; automatically expandable with additional RAM memory to 58 K bytes.

OPERATIONAL ENVIRONMENTAL

System Monitor:

Required hardware:
Intellec MDS
331 bytes RAM memory
2K bytes ROM memory
System console
Macro Assembler:
Required hardware:
Intellec MDS
12 K bytes RAM memory
System console
Reader device
Punch device
List device
Required software:
System monitor
Text Editor:
Required hardware: Intellec MDS
8K bytes RAM memory
System console
Reader device
Punch device
Required software:
System monitor
Tape Format:
Hexadecimal object format.

MDS OPTIONS
MDS-016 16K Dynamic RAM
MDS-406 6K PROM (sockets and logic)
MDS-501 DMA Channel Controller
MDS-504 General Purpose I/O Module
MDS-600 Prototype Module
MDS-610 Extender Module
MDS-620 Rack Mounting Kit
MDS EMULATORS/SIMULATOR
MDS-ICE-30 3001 In-Circuit Emulator
MDS-ICE-80 8080 In-Circuit Emulator
MDS-SIM-100 Bipolar ROM Simulator

MDS PERIPHERALS

MDS-UPP Universal PROM Programmer
MDS-PTR High Speed Paper Tape Reader
MDS-DOS Diskette Operating System
MDS INTERFACE CABLES/CONNECTORS
MDS-900 CRT Interface Cable
MDS-910 Line Printer Interface Cable
MDS-915 High Speed Reader Interface Cable
MDS-920 High Speed Punch Interface Cable
MDS-930 Peripheral Extension Cable
MDS-940 DMA Cable
MDS-950 General Purpose I/O Cable
MDS-960 25-pin Connector Pair
MDS-970 37-pin Connector Pair
MDS-980 60-pin Motherboard Auxiliary Connector
MDS-985 86-pin Motherboard Main Connector
MDS-990 100-pin Connector Hood
EQUIPMENT SUPPLIED
Central Processor Module
RAM Memory Module
Monitor Module (System I/O)
Front Panel Control Module
Chassis with Motherboard
Power Supplies
Finished Cabinet
Front Panel
ROM Resident System Monitor
RAM Resident Macro Assembler
RAM Resident Text Editor
Hardware Reference Manual
Reference Schematics
Operator's Manual
8080 Assembly Language Programming Manual
System Monitor Source Listing
8080 Assembly Language Reference Card
TTY Cable
European AC Adapter
AC Cord

MDS-DOS DISKETTE OPERATING SYSTEM AND MDS-DRV ADDITIONAL DRIVE UNIT

Floppy diskette operating system providing high speed Input/Output and data storage for the Intellec ${ }^{\circledR}$ MDS.
Supports all existing standard Intellec ${ }^{\circledR}$ peripherals.
Data on flexible diskette addressed using IBM softsectored format which allows $1 / 4$ million byte data capacity per diskette.

Up to 200 files per diskette.
Dynamic allocation and deallocation of diskette sectors for variable length files.

Device independence realized by assignment of unique file names to each peripheral device.

Supports optional Intellec MDS ICE-80 (In-circuit Emulator) for Intel ${ }^{\circledR} 8080$ Microprocessor.

Diskette system macro assembler used to assemble all 8080 machine instructions with full macro and conditional assembly capabilities.

Diskette system text editor with string search, substitution, insertion, and deletion commands.
Listing produced by macro assembler can be directed to diskette allowing interrogation from high speed console device.

Diskette operating system software products loaded into Intellec MDS RAM in seconds.

Access to all Intellec MDS Monitor facilities.
Programs created, edited, assembled, executed and debugged without paper tape handling.

Diskette operating system functions callable from user programs.

The Intellec MDS Diskette Operating System is a general purpose, high speed data handler and file manipulation system for use with the Intellec MDS and its peripherals. The use of a single or dual drive Diskette Operating System significantly reduces program development time. The software system known as ISIS (Intel Systems Implementation Supervisor), provides the ability to edit, assemble, execute and debug programs, and performs all file management tasks for the user.

HARDWARE

The INTELLEC ${ }^{\circledR}$ MDS diskette system provides direct access bulk storage, intelligent controller, and up to two diskette drives. Each drive provides $1 / 4$ million bytes of storage with a data transfer rate of 250,000 bits/second. The controller is implemented with Intel's powerful Series 3000 Bipolar Microcomputer Set. The controller provides an interface to the INTELLEC MDS bus, as well as supporting the two diskette drives. The MDS diskette system records all data in the IBM-compatible soft sector format.

The MDS diskette controller consists of two boards, the Channel Board and the Interface Board. These two printed circuit boards reside in the INTELLEC MDS chassis and constitute the diskette controller. Each of the systems components is shown in the photograph, and are described in more detail in the following paragraphs.

DOS Channel and Interface Controller Boards

CHANNEL BOARD

The Channel Board is the primary control module within the diskette system. The Channel Board receives, decodes, and responds to channel commands from the 8080 Central Processor Unit (CPU) in the INTELLEC MDS system. The Channel Board can access a block of INTELLEC MDS system memory to determine the particular diskette operations to be performed and fetch the parameters required for the successful completion of the specified operation.
The control functions of the Channel Board have been achieved with an 8 -bit microprogrammed processor, designed with Intel's Series 3000 Bipolar Microcomputer Set. This 8 -bit processor includes four 3002 Central Processing Elements (2-bit slice per CPE), a 3001 Microprogram Control Unit, and 512×32 bits of 3604 programmable-read-only-memory (PROM) which stores the microprogram. It is the execution of the microprogram by the microcomputer set which actually effects the control capability of the Channel Board.

INTERFACE BOARD

The Interface Board provides the diskette controller with a means of communication with the diskette drives, as well as with the INTELLEC MDS system bus. Under control of the microprogram being executed on the Channel Board, the Interface Board generates those signals which cause the read/write head on the selected drive to be loaded (i.e., to come in contact with the diskette platter), cause the head to move to the proper track and verify successful operation. The Interface Board accepts the data being read off the diskette, interprets synchronizing bit patterns, checks the validity of the data using a cyclic redundancy check (CRC) polynomial, and then transfers the data to the Channel Board.
During write operations, the Interface Board outputs the data and clock bits to the selected drive at the proper times, and generates the CRC characters which are then appended to the data.
When the diskette controller requires access to INTELLEC MDS system memory, the Interface Board requests and maintains DMA master control of the system bus, and generates the appropriate memory command. The Interface Board also acknowledges I/O commands as required by the INTELLEC MDS bus.

The Diskette System is capable of performing seven different operations: recalibrate, seek, format track, write data, write deleted data, read data, and verify CRC.

DISKETTE DRIVE MODULES

Each diskette drive consists of read/write and control electronics, drive mechanisms, read/write head, track positioning mechanism, and the removable floppy diskette platter. These components interact to perform the following functions:

- Interpret and generate control signals.
- Move read/write head to selected track.
- Read and write data.

Additional Drive Unit MDS-DRV

SOFTWARE - INTEL SYSTEM IMPLEMENTATION SUPERVISOR (ISIS)

The ISIS programs and subroutines reside on the system diskette and provide a broad range of user-oriented design aid software. Total file management and input editing features greatly reduce software development time. The ISIS 8080 Macro Assembler can be loaded in seconds, from the diskette, and all passes executed without the need for user interaction. Object code and list files may be directed to any output device, or stored as diskette files. A special ISIS utility is provided which converts files from hexadecimal to absolute binary for high-speed retrieval and execution. Powerful system console commands are provided in an easy to use English context. Debugging is initiated by a special prefix to any system command or program call which causes Monitor mode to be entered directly from the program call along with its calling parameters.
A file is a user-defined collection of information of variable length. ISIS also treats each of the standard INTELLEC ${ }^{\circledR}$ MDS supported peripherals as files through preassignment of unique file names to each device. In this manner data can be copied from one device to another (i.e., tape reader to tape punch) using the same command required to copy one diskette data file to another. ISIS provides automatic implementation of random access disk files. Each file is identified by a user-chosen name unique on its diskette. Up to 200 files may be stored on each $1 / 4$ million byte diskette.

SYSTEM COMMANDS

The user is provided with a wide range of system commands that offer powerful file and program manipulation features:

- The DIR command lists the names, sizes and attributes of files resident on the specified disk directory.
- The RENAME command allows users to change the identifying names of files.
- The COPY command allows users to create new copies of existing files or to transfer files from one device to another.
- The ATTRIB command allows the user to set or reset write-protection and other characteristics of a disk file.
- The DELETE command removes a file from a diskette, thereby freeing space for allocation for other files.
- The HEXBIN command coverts an Intel standard hexadecimal format file into absolute binary format for a reduction in load time and space.
- The FORMAT command formats a diskette on a second disk drive so that it may be used by ISIS.
- The DEBUG command loads the name program and parameters, and gives control to the INTELLEC MDS monitor for execution and/or debugging in the event of an error.
- Programs may be loaded and executed by typing the program name as a command. Users may therefore name their own programs with descriptive verbs and extend their command repertoire.

ISIS 8080 MACRO ASSEMBLER

The ISIS 8080 Macro Assembler translates symbolic 8080 assembly language instructions into the appropriate machine operation codes. In addition to eliminating the errors of hand translation, the ability to refer to program addresses with symbolic names makes it easy to modify programs by adding or deleting instructions. Full macro capability eliminates the need to rewrite similar sections of code repeatedly and simplifies program documentation. Conditional assembly permits the assembler to include or delete sections of code which may vary from system to system, such as the code required to handle optional external devices.
The ISIS Assembler accepts diskette file input and produces an object file with corresponding symbol table and assembly listing file with any errors. The list file may then be interrogated from the system console or copied to the appropriate list device. The object file may be kept on diskette in its hexadecimal format for loading under ISIS supported software packages such as the optional 8080 In Circuit Emulator (ICE-80). For loading directly under control of ISIS, the object file may be converted from hexadecimal to absolute binary format using the HEXBIN command.

The ISIS 8080 Macro Assembler is written in PL/M ${ }^{\text {TM }}-80$, Intel's high level systems programming language. It occupies 12K bytes of RAM memory allowing space for over 1000 symbols when used with ISIS in a 32 K INTELLEC MDS system. The symbol table size may be expanded by adding additional RAM memory.

ISIS TEXT EDITOR

The ISIS Text Editor is a comprehensive tool for the entry and correction of assembly language programs for the Intel 8080 microcomputer. Its command set allows manipulation of either entire lines of text or individual characters within a line.

Programs may be entered from the console keyboard or may be loaded directly. Text is stored internally in the editor's workspace, and may be edited with the following commands:

- string insertion or deletion
- string search
- string substitution

To facilitate the use of these editing commands, utility commands are used to change positions in the workspace, These include:

- move pointer by line or by character
- move pointer to start of workspace
- move pointer to end of workspace

The contents of the workspace are stored on the diskette and can be immediately accessed by ISIS commands or other programs such as the ISIS 8080 Macro Assembler.
The ISIS Text Editor is written in PL/M ${ }^{\text {TM }} \mathbf{- 8 0}$. It occupies 8 K bytes of RAM memory allowing approximately 12 K bytes of workspace in a 32 K INTELLEC MDS system.

SOFTWARE SPECIFICATIONS

ISIS CAPABILITIES

ISIS commands (User entries at console input device)
File commands:

DIR	List diskette directory.
COPY	Make a copy of a file.
DELETE	Remove a file from diskette.
RENAME	Change the name of a diskette file.
ATTRIB	Change the attributes of a diskette file.

Diskette initialization:
FORMAT Initialize a new diskette.
Program debug and conversion:
DEBUG Execute a program in debug mode.
HEXBIN Convert program from hexadecimal format to absolute binary.

Program execution:
file name
An executable program in a diskette file can be executed by entering the file name as a command.

ISIS System Calls (System services called by user programs)

Input/output operations:

OPEN	Initialize file for input/output operations
READ	Transfer data from file to mem- ory
WRITE	Transfer data from memory to file
SEEK	Position diskette file pointer at any byte in the file
RESCAN	Position pointer to beginning of current line
CLOSE	Terminate input/output operations on file

Diskette directory maintenance

DELETE	Delete a file from the diskette directory
RENAME	Change diskette file name ATTRIB
Change diskette file attributes	

Console Reassignment and error message output

CONSOLE	Change console device
WHOCON	Determine currently assigned sys- tem console
ERROR	Output error message on system console

Program loading and execution
LOAD Load a file of executable code and transfer control to loaded program
Terminate program and return to ISIS control

ISIS 8080 Macro Assembler:
1000 symbols in 32 K system; automatically expandable with additional RAM memory.
Assembles all seventy-eight 8080 machine instructions plus 10 pseudo-operators.
ISIS Text Editor:
12 K bytes of workspace in 32 K system; automatcially expandable with additional RAM memory.

ISIS OPERATIONAL ENVIRONMENTAL

ISIS:

Required hardware:
Intellec MDS
32 K bytes RAM memory
System console
MDS-DOS Diskette Operating System
Required software:
System monitor
Macro Assembler:
Required hardware:
Intellec MDS
MDS-DOS Diskette Operating System
32 K bytes RAM memory
System console

Text Editor:
Required hardware:
Intellec MDS
MDS-DOS Diskette Operating System
32 K bytes RAM memory
System console
Required software:
ISIS
System monitor
Required software: ISIS
System monitor

ICE-80 (Optional)
Required hardware:
Intellec MDS
MDS-80 ICE
32K bytes RAM memory
MDS-DOS Diskette Operating System
Required software:
ISIS
System monitor

HARDWARE SPECIFICATIONS

MEDIA

Flexible Diskette
One Recording Surface
IBM Soft Sector Format
77 Tracks/Diskette
26 Sectors/Track
128 Bytes/Sector

PHYSICAL CHARACTERISTICS
(Chassis and Drives)
Mounting: Table-Top or Standard 19" Retma Cabinet
Height: $\quad 12.08^{\prime \prime}(30.68 \mathrm{~cm})$
Width: $\quad 16.88^{\prime \prime}(42.88 \mathrm{~cm})$
Depth: $19.0^{\prime \prime}(48.26 \mathrm{~cm})$
Weight: 1 Drive $51 \mathrm{lb}(23 \mathrm{~kg})$ 2 Drives $64 \mathrm{lb}(29 \mathrm{~kg})$

ELECTRICAL CHARACTERISTICS

Chassis
DC Power Supplies
Voltage Current
$5 \mathrm{~V} \quad 3 \mathrm{~A} \pm 5 \%$
$-5 \mathrm{~V} \quad 600 \mathrm{~mA} \pm 5 \%$
$24 \mathrm{~V} \quad 4 \mathrm{~A} \pm 5 \%$
AC Power Requirements
3-wire input with center conductor (earth ground) tied to chassis
Single-phase, $115 / 230$ VAC; $50-60 \mathrm{~Hz} ; 160$ watts

INTELLEC ${ }^{\circledR}$ MDS-DOS Controller
DC Power Requirements
Channel Board: 5V @ 3.75A (typ), 5A (max)
Interface Board: 5V @ 1.5A (typ), 2.5A (max)

DISKETTE DRIVE PERFORMANCE SPECIFICATION

Capacity (Unformatted):
Per Disk . 3.1 megabits
Per Track . 41 kilobits
Capacity (Formatted):
Per Disk . 2.05 M Bits
Per Track . 26.6 K Bits
Data Transfer Rate 250 Kilobits/sec.
Access Time:
Track-to-Track . 10 ms
Head Settling Time . 10 ms
Average Random Positioning Time 260 ms
Rotational Speed . 360 rpm
Average Latency . 83 ms
Recording Mode Frequency Modulation
10.12

ENVIRONMENTAL CHARACTERISTICS

MEDIA

Temperature:
Operating $\quad 15.6^{\circ} \mathrm{C}$ to $51.7^{\circ} \mathrm{C}$
Non-Operating: $5^{\circ} \mathrm{C}$ to 55%
Humidity:
Operating: $\quad 8$ to 80% (Wet bulb $29.4^{\circ} \mathrm{C}$)
Non-Operating: 8 to 90%

DRIVES AND CHASSIS

Temperature:
Operating: $\quad 10^{\circ} \mathrm{C}$ to $38^{\circ} \mathrm{C}$
Non-Operating: $\quad-35^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
Humidity:
Operating: $\quad 20 \%$ to 80% (Wet bulb $26.7^{\circ} \mathrm{C}$)
Non-Operating: 5\% to 95%

MDS-DOS CONTROLLER BOARDS

Temperature:
Operating: $\quad 0$ to $70^{\circ} \mathrm{C}$
Non-Operating: $\quad-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Humidity:
Operating: Up to 90% relative humidity without condensation.
Non-Operating: All conditions without condensation of water or frost.

EQUIPMENT SUPPLIED

Cabinet, Power Supplies, Line Cord, Single Drive
FDC Channel Board
FDC Interface Board
Dual Auxiliary Board Connector
Floppy Disk Controller Cable
Floppy Disk Peripheral Cable
Hardware Reference Manual
Reference Schematics
ISIS System Diskette
ISIS Operators Manual
ISIS/MDS Monitor Bootstrap PROM

OPTIONAL EQUIPMENT

Rack Mount Kit
MDS-DRV Additional Drive Unit

Blank Diskettes

ISIS System Diskettes

intl

MDS-UPP UNIVERSAL PROM PROGRAMMER

Intellec ${ }^{\circledR}$ MDS peripheral capable of programming the following Intel PROMs: 1702A, 2704, 2708, 3601, 3604, 3624, 8702A, 8704, 8708.

Personality cards used for specific Intel PROM programming requirements.

Zero insertion force sockets for both 16-pin and 24-pin PROMs.

Flexible power source for system logic and programming pulse generation.
PROM programming verification facility.
Stand alone or rack mountable.

The Universal PROM Programmer is an Intellec MDS peripheral capable of programming and verifying the following Intel PROMs: 1702A, 2704, 2708, 3601, 3604, 3624, 8702A, 8704, and 8708. Programming and verification operations are initiated from the Intellec MDS system console and are controlled by programs resident in the Intellec MDS and Universal PROM Programmer.

SPECIFICATIONS

INTERFACE

Data: Two 8-bit unidirectional buses
Commands: 3 Write Commands
2 Read Commands
Initiate Command
AVERAGE PROGRAMMING TIME
1702A/8702A: 40 seconds
2708/8708: $\quad 5$ minutes
3601: 2 seconds
3604: $\quad 10$ seconds
3624: $\quad 10$ seconds
2704/8704: 2.5 minutes
PHYSICAL CHARACTERISTICS
Dimensions: $6^{\prime \prime} \times 7^{\prime \prime} \times 17^{\prime \prime}$
$14.7 \mathrm{~cm} \times 17.2 \mathrm{~cm} \times 41.7 \mathrm{~cm}$
Weight: $18 \mathrm{lb}(8.2 \mathrm{~kg})$

ENVIRONMENTAL CHARACTERISTICS

Operating Temperature: 0° to $70^{\circ} \mathrm{C}$.

OPTIONS

Personality Cards:
MDS-UPP-361:3601 Personality Card
MDS-UPP-864:8604/3604/3624 Personality Card
MDS-UPP-872:8702A/1702A Personality Card
MDS-UPP-878:8708/8704/2708/2704 Personality Card
PROM Programming Sockets:
MDS-UPP-501: 16-pin/24-pin pair
MDS-UPP-502: 24-pin/24-pin pair

EQUIPMENT SUPPLIED

Cabinet
Power Supplies
4040 Intelligent Controller Module
Specified Zero Insertion Force Socket Pair Intellec MDS Interface Cable
Hardware Reference Manual
Reference Schematics

intel

MDS-PTR HIGH SPEED PAPER TAPE READER

Intellec ${ }^{\circledR}$ MDS high speed paper tape reader peripheral 20 times faster than standard ASR-33 Teletype reader

Loads 16K Intellec MDS program memory in less than three minutes.

Data transfer at asynchronous rates in excess of $\mathbf{2 0 0}$ characters per second
Rack mountable or stand-alone

The MDS-PTR high speed paper tape reader is an Intellec MDS peripheral that reads paper tape over twenty times faster than the standard ASR-33 Teletype reader. This translates into a significantly faster development cycle due to a marked reduction in the time required for repetitive program loading, assembly, and editing operations.

SPECIFICATIONS

TAPE MOVEMENT

Tape Reader Speed:
0 to 200 characters per second asynchronous
Tape Stopping:
Stops "On Character"

TAPE CHARACTERISTICS

Tape must be prepared to ANSI $\times 3.18$ or EMCA 10 Standards for base materials and perforations.

Reads tape of any material with thickness between 0.0027" and $0.0045^{\prime \prime}$ with transmissivity less than or equal to 57% (oiled buff paper tape).
Tape loading: in line
Tape width: 1 inch

PHYSICAL CHARACTERISTICS

Height: 7.75 in. (19.69 cm)
Width: $19.25 \mathrm{in} .(48.90 \mathrm{~cm})$
Depth: $11.62 \mathrm{in} .(29.52 \mathrm{~cm})$
Weight: $13 \mathrm{lb}(5.9 \mathrm{~kg})$

ELECTRICAL CHARACTERISTICS

AC Power Requirements:
3 -wire input with center conductor (earth ground) tied to chassis. 100,115 , or 127 VAC, single phase at 3.0 amps or 220 or 240 VAC and $1.5 \mathrm{amps} ; 47$ to 63 Hz .

ENVIRONMENTAL CHARACTERISTICS

Temperature:
Operating: $\quad 0$ to $55^{\circ} \mathrm{C}$ (free air)
Non-operating: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Humidity:
Operating: Up to 90% relative humidity without condensation.
Storage: All conditions without condensation of water or frost.
EQUIPMENT SUPPLIED
Paper Tape Reader
Reader Cable
Fanfold Tape Guide
Fanfold Paper Tape
Hardware Manual
Installation and Operations Guide
Fanfold Guide Installation Instructions

MDS-ICE-80 8080 IN-CIRCUIT EMULATOR

Extends powerful Intellec ${ }^{\circledR}$ MDS diagnostic capabilities into user configured system allowing real time (2 MHz) emulation of the user system 8080.

User configured system can share Intellec MDS RAM, ROM, and PROM memory.

I/O translation allows user configured systems to share Intellec MDS input/output facilities.

Capability to display previously executed instructions with corresponding address, data, and 8080 status information.

Capability to examine and alter CPU registers and main memory.

Direct Intellec MDS connection to user configured system via an external cable and 40 -pin plug.

ICE-80 is an Intellec MDS resident module that interfaces to any user configured 8080 system and allows the designer to emulate the user 8080 in real time, single step the user system's 8080 , substitute Intellec MDS memory and I/O for user system equivalents, and extend powerful debug functions into the user system.

SPECIFICATIONS

WORD SIZE

Instruction: 8, 16 or 24 bits
Data: 8 bits

CENTRAL PROCESSOR

$8080 \mathrm{CPU}, 2 \mu \mathrm{~S}$ cycle time, 8-bit accumulator, six 8 -bit registers, subroutine nesting to any level, multiple level interrupt capability.

INSTRUCTION SET

78 instructions including conditional branching, binary arithmetic, logical operations, register-to-register transfers, and I / O.

CONNECTORS

Edge Connector: CDC VPB01E43A00A 1
PHYSICAL CHARACTERISTICS
Width: 12.00 in.
Height: 6.75 in.
Depth: 0.50 in.

ELECTRICAL CHARACTERISTICS

DC Power:

$$
\begin{aligned}
& V_{C C}=+5 \pm 5 \% \\
& I_{C C}=9.81 \mathrm{~A} \text { max.; } 6.90 \mathrm{~A} \text { typ. } \\
& V_{D D}=+12 \pm 5 \% \\
& I_{D D}=79 \text { ma max.; } 45 \text { ma typ. } \\
& V_{B B}=-9 \mathrm{~V} \pm 5 \% \\
& I_{B B}=1 \text { ma max.; } 1 \text { 年 typ. }
\end{aligned}
$$

SPECIFICATIONS

MEMORY ADDRESSING

Intellec MDS RAM, ROM and PROM may be combined with user system ROM, PROM, and RAM combinations in 4 K segments up to a maximum of 65,536 bytes.

I/O ADDRESSING

Intellec MDS I/O ports may be combined with user system I/O ports in 16 port groups, up to a maximum of 2568 -bit input and 2568 -bit output ports.

USER SYSTEM INTERFACE

Cable carrying all 8080 address, data, and control signals terminated in a 40 -pin plug.

SYSTEM CLOCK

Crystal controlled $2 \mathrm{MHz} \pm 0.01 \%$.
Removable by jumper selection when replaced by user clock.

ENVIRONMENTAL CHARACTERISTICS

Operating Temperature: 0 to $70^{\circ} \mathrm{C}$
EQUIPMENT SUPPLIED
Printed Circuit Modules (2)
Interface Cables and Buffer Board
Reference Manual
Schematic Diagram

ICE-80 allows the user to assign Intellec ${ }^{\circledR}$ MDS resident memory and I/O to the user system. Once assigned, the MDS memory or I/O becomes a part of the user system. The user system may operate with all MDS resident memory and I/O, all user provided memory and I/O, or a combination of both.

ICE-80 debug features include the setting of breakpoints in two hardware comparitors which can trap on any memory read, memory write, I/O read or I/O write operation. Breakpoint extensions, which can be logically ANDED with basic breakpoint parameters, include stack operation, M1 fetch state, or a user defined logic signal. When a breakpoint is encountered in the emulation mode, ICE-80 automatically reverts to the interrogation mode. At this time the memory address, data bus contents, and 8080 status byte from the last 44 machine cycles can be displayed along with the actual number of clock cycles which elapsed since program initiation. In the single-step mode, the user may select single-step or multiple single-step operation. In single-step operation a single instruction is executed, and upon completion, all relevant system status may be displayed. In multiple single-step mode, status information is stored at the end of each machine cycle and the next instruction is executed. When multiple single-step operation is terminated upon a software breakpoint or user command, historical information may be retrieved for display or off line analysis.

The heart of ICE-80 is a microcomputer system utilizing Intel's 8080 microprocessor as its nucleus. This system communicates with the Intellec MDS host processor via I/O commands. Host processor commands and ICE-80 status are interchanged through registers on the ICE module. ICE-80 and the MDS also communicate through a control block resident in Intellec MDS main memory which contains detailed configuration and status information.

The ICE-80 microcomputer system consists of an Intel 8080 CPU, control memory and data storage memory. The system may be driven with either an internal 2 MHz clock or a user supplied clock. The basic ICE-80 system is augmented by several peripheral devices. An 8-bit command register receives Intellec MDS commands and an 8-bit status register provides ICE-80 systems status information to the Intellec MDS. Bus control logic allows the ICE-80 processor to assume control of the Intellec MDS bus as a bus master, when required. A comparitor contains two 24 -bit hardware breakpoint registers which provide address and control information associated with breakpoint functions. Finally, buffer/driver circuitry, located in circuit board in the ICE-80 cable, insures that data transmission between the ICE-80 and user system meets the capacitive loading and input current requirements for the 8080.

intel

MDS-ICE-30 3000 SERIES IN-CIRCUIT EMULATOR

Extends the Intellec ${ }^{\circledR}$ MDS diagnostic capabilities into user configured systems allowing in-circuit emulation of the user system's $\mathbf{3 0 0 1}$ MCU

Direct Intellec MDS connection to the user configured systerh is achieved via an external cable with 3001 compatible 40-pin connector

Provides for the display of all 3001 address, status, and control lines for the current micro-instruction executed

Allows for single step microprogram execution

Presets the 9-bit 3001 Microprogram Address Register and set two independent breakpoints on micro-instruction addresses generated by 3001

Allows two independent breakpoints to be set on the logical combination of any three TTL compatible signals in the user system via three logic probes

ICE-30 is an Intellec ${ }^{\circledR}$ MDS resident module that provides the user with direct in-circuit emulation of the 3001 Microprogram Control Unit (MCU) and complete control over the execution of user developed microprograms. Through in-circuit emulation, the designer is able to set micro-program address breakpoints, single step micro-program execution and monitor all of the address, status, and control lines of the 3001.

ICE-30 Module Board with External Cable and 40 Pin Connector
A.C. CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	MIN	TYP ${ }^{(1)}$	MAX	UNIT
$\mathrm{t}_{\mathrm{CY}}{ }^{(2)}$	Cycle Time	185	120		ns
twp	Clock Pulse Width	35	20		ns
${ }^{\text {t }} \mathrm{CS}$	Clock Pulse Separation	150			
$\begin{aligned} & \mathrm{t}_{\mathrm{SF}} \\ & \mathrm{t}_{\mathrm{SK}} \\ & \mathrm{t}_{\mathrm{SX}} \\ & \mathrm{t}_{\mathrm{SI}} \end{aligned}$	Control and Data Input Set-Up Times: $\begin{aligned} & \mathrm{LD}, \mathrm{AC}_{0}-\mathrm{AC}_{6} \\ & \mathrm{FC}_{0}, \mathrm{FC}_{1} \\ & \mathrm{SX}_{0}-\mathrm{SX}_{3}, \mathrm{PX}_{4}-\mathrm{PX}_{7} \\ & \mathrm{FI} \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \\ & 13 \\ & 13 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{HF}} \\ & \mathrm{t}_{\mathrm{HK}} \\ & \mathrm{t}_{\mathrm{HX}} \\ & \mathrm{t}_{\mathrm{HI}} \end{aligned}$	Control and Data Input Hold Times: $\begin{aligned} & \mathrm{LD}, \mathrm{AC}_{0}-\mathrm{AC}_{6} \\ & \mathrm{FC}_{0}, \mathrm{FC}_{1} \\ & \mathrm{SX}_{0}-\mathrm{SX}_{3}, \mathrm{PX}_{4}-\mathrm{PX}_{7} \\ & \mathrm{FI} \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {t }} \mathrm{CO}$	Propagation Delay from Clock Input (CLK) to Outputs ($\mathrm{MA}_{0}-\mathrm{MA}_{8}, \mathrm{FO}$)		90	137	ns
t_{KO}	Propagation Delay from Control Inputs FC_{2} and FC_{3} to Flag^{2} Out (FO)		78	130	ns
$\mathrm{t}_{\text {FO }}$	Propagation Delay from Control Inputs $\mathrm{AC}_{0}-A C_{6}$ to Latch Outputs ($\mathrm{PR}_{0}-\mathrm{PR}_{2}$)		98	150	ns
${ }_{\text {teo }}$	Propagation Delay from Enable Inputs EN and ERA to Outputs $\left(M A_{0}-M A_{8}, F O, P R_{0}-P R_{2}\right)$			50	ns
${ }^{\text {t }}$ I	Propagation Delay from Control Inputs $\mathrm{AC}_{0}-\mathrm{AC}_{6}$ to Interrupt Strobe Enable Output (ISE)		86	140	ns
${ }^{\text {m }}$ M	Propagation Delay from Clock Input (CLK) to Breakpoint Match $\overline{\text { MATCH }}$			158	ns

NOTES:
(1) Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) $\mathrm{t}_{\mathrm{CY}}=\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{SF}}+\mathrm{t}_{\mathrm{WP}}$

TEST CONDITIONS:

Input rise and fall times of 10 ns between 0.8 volt and 2.4
volts.
Output load of 10 mA and 50 pF .
Speed measurements are taken at the 1.5 volt level.

TEST LOAD CIRCUIT

CAPACITANCE $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
$C_{\text {IN }}$	Input Capacitance:			50	pF
$C_{\text {OUT }}$	Output Capacitance			50	pF

D.C. AND OPERATING CHARACTERISTICS $T_{A}=0^{\circ}$ to $55^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias . $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Storage Temperature. $-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
All Output and Supply Voltages . -0.5 V to +7 V
All Input Voltages . 1.0 V to +5.5V
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS

SYMBOL	PARAMETER	MIN	TYP ${ }^{(1)}$	MAX	UNIT	CONDITIONS
v_{c}	Input Clamp Voltage (All Input Pins)		-0.8	-1.5	V	$\mathrm{I}_{\mathrm{C}}=-12 \mathrm{~mA}$
I_{F}	Input Load Current: CLK Input Logic Probe inputs All other inputs			$\begin{aligned} & -2.0 \\ & -3.0 \\ & -0.4 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$V_{F}=0.45 \mathrm{~V}$
$V_{\text {IL }}$	Input Low Voltage			0.8	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage	2.0			V	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$
${ }^{\text {cc }}$	Power Supply Current			0.0	mA	
V_{OL}	Output Low Voltage $P R_{0}-P R_{2}$ All other outputs		$\begin{aligned} & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} \mathrm{I}_{\mathrm{OL}} & =16 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}} & =40 \mathrm{~mA} \end{aligned}$
V_{OH}	Output High Voltage $M A_{0}-M A_{8}$, ISE, FO	2.4	3.0		V	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$
${ }^{\text {OS }}$	Output Short Circuit Current $\mathrm{MA}_{0}-\mathrm{MA}_{8}$, ISE, FO	-40		-120	mA	$V_{C C}=5.0 V^{(2)}$
I_{0} (OFF)	$\begin{aligned} & \text { Off-State Output Current } \\ & \mathrm{MA}_{0}-\mathrm{MA}_{8}, \text { FO } \\ & \mathrm{MA}_{0}-\mathrm{MA}_{8^{\prime}}, \mathrm{FO}, \mathrm{PR}_{0}-\mathrm{PR}_{2} \\ & \hline \end{aligned}$			$\begin{array}{r} -100 \\ 100 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{0}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{0}=5.25 \mathrm{~V} \end{aligned}$

NOTES:
(1) Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) Not more than one output should be shorted at one time.

SIM-101/SIM-102/SIM-104 ROM SIMULATORS

Extends the powerful Intellec ${ }^{\circledR}$ MDS diagnostic capabilities into user-configured systems, allowing simulation of the user system's bipolar ROM/ PROM memory
Direct Intellec MDS connection to the userconfigured system via external cables and Intel's ROM/PROM compatible dual-in-line connectors
Simulates Intel's standard bipolar ROMs and PROMs
Modular design allows the user to configure simulation modules to particular memory space requirements

Directly load the ROM Simulator modules from the output of the Intel ${ }^{\circledR}$ Cross Microassembler, CROMIS

Access the configured memory space from the console keyboard using simulated ROM addresses

Examine an entire word regardless of length; i.e., 8 bits, 10 bits, 32 bits etc.

Modify an entire word in a single operation regardless of length

Read access time is 130 ns , maximum

Each ROM-SIM module consists of a high-speed, 130-nanosecond 8 K bit RAM board, buffer assembly, external cables, and an interactive software program. The ROM-SIM software is a PL/M ${ }^{\text {T.M. }}-80$ program that operates in the Intellec MDS to provide the user interface for the ROM-SIM hardware. The software loads BNPF or hexadecimal files such as those generated by the Cross Microassembler System, CROMIS. The ROM-SIM software has the capability to compare and verify microcode, load, display and modify simulated control store contents, and output new BNPF or hexadecimal files from the simulated ROM memory for ROM/PROM programming.

DEVELOPMENT SYSTEMS

SPECIFICATIONS

DC CHARACTERISTICS

$T_{A}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

SYMBOL	PARAMETER	LIMITS			TEST CONDITION
		MIN	MAX	UNIT	
I	Input Load Current Low Order Addr A0-A8 High Order Addr A9-AB Chip Selects		$\begin{aligned} & -1.6 \\ & -2.1 \\ & -0.75 \end{aligned}$	mA	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{I N}=0.45 \mathrm{~V} \end{aligned}$
V_{OL}	Output Low Voltage		0.45	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$
ICc	User Power Supply Sensing		6	mA	User $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
$V_{\text {IL }}$	Input Low Voltage		0.8	V	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0		V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
V_{OH}	Output High Voltage		2.4	V	$\mathrm{V}_{\mathrm{Cc}}=4.75 \mathrm{~V}$
$I_{\text {SC }}$	Output Short Circuit Current at Single Output	-40	-100	mA	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
Icex	Output Leakage Current		$\begin{aligned} & \pm 50 \\ & 250 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	For High Impedance State For Open Collector $\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}$

ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias \qquad $.0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Storage Temperature $-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
All Outputs or Supply -0.5 V to 7.0 V
All Inputs \qquad -1.0 V to 5.5 V

CAPACITANCE LOAD

C_{IN}	Low Order Address, Chip Selects High Order Address (Coaxial)	45 pF max. 50 pF max.
$\mathrm{C}_{\text {OUT }}$	Data Outputs	50 pF max.

INTELLEC ${ }^{\circledR} 8$ /MOD 8 MICROCOMPUTER DEVELOPMENT SYSTEM

Complete Hardware/Software Development System for the design and implementation of 8008 CPU based microcomputer systems
Front panel designer's console provides complete system control and monitoring functions

8 K bytes of random access memory (RAM) expandable to 16K bytes

2K bytes of erasable and field programmable read only memory (PROM) expandable to 16 K bytes
Self contained PROM programmingfacility with zero insertion force PROM socket

Four 8-bit input and four 8-bit output ports
Integral asynchronous serial data communications capability at 110, 1200, or 2400 baud
Discrete teletype interface (20 mA) current loop)
Standard system software includes a PROM resident system monitor, RAM resident Macro-Assembler and RAM resident text editor
Expansion capability provided for up to 16 standard or custom designed microcomputer modules

The Intellec ${ }^{\circledR}$ 8/MOD 8 (imm 8-80A) is a complete, self-contained microcomputer development system designed specifically to support the development and implementation of 8008 CPU based microcomputer systems. Its modular design facilitates the development of both large and small MCS -8 system.
The basic Intellec 8/MOD 8 consists of seven standard microcomputer modules (CPU, RAM, PROM, I/O, PROM Programmer, Front Panel Control) and power supplies enclosed in a finished table top cabinet. The heart of the system is the imm 8-82 central processor module built around Intel's 8008 p-channel 8 -bit CPU on a single chip.
The Intellec Development System directly supports up to 16 K of memory, eight input ports, twenty-four output ports, and provides expansion capability for custom designed micrcomputer modules within the system chassis.
The front panel designer's console provides an easy means of monitoring and controlling system operation, manually moving data to and from memory and input/output devices, setting hardware breakpoints, and executing or debugging programs.

The Intellec $8 / \mathrm{MOD} 8$ has 10 K bytes of memory in its basic configuration which can be expanded to 16 K bytes within the system chassis. Of the basic 10 K bytes of memory, 8 K bytes are random access read/write memory located on two imm $6-28$ RAM memory modules. This memory can be used for both data and program storage. The remaining 2 K bytes of memory are located on the imm 6-26 PROM memory module and contain the Intellec 8/MOD 8 system monitor in eight Intel ${ }^{\circledR}$ 1702A erasable and field programmable read only memory chips. Eight additional sockets (2 K bytes) are available on the imm 6-26 for expansion.

The PROM and RAM memory modules may be used in any combination to make up the 16 K of directly addressable memory housed in the system chassis. Facilities are built into these modules so that combinations of RAM, ROM or PROM may be mixed in 256 byte increments.
The self-contained PROM programming module allows Intel 1602A or 1702A PROMs to be programmed and verified directly from RAM or PROM memory.

INTELLECㅇ8 HIGH SPEED PAPER TAPE READER

Directly compatible with all Intellec ${ }^{\circledR} 8$ Microcomputer Development Systems
20 times faster than standard ASR-33 teletype reader
Loads any 8 K Intellec ${ }^{\circledR} 8$ program memory in less than 90 seconds

Data transfer at asynchronous rates in excess of 200 characters per second
Rack mountable or stand-alone

The imm8-90 high speed paper tape reader provides all Intellec 8 Microcomputer Development Systems with a high speed paper tape input that is over twenty times faster than the standard ASR-33 teletype reader. This translates into a significantly faster development cycle due to a marked reduction in the time required for repetitive program loading, assembly, and editing operations.
The Intellec 8 monitor software provides two key capabilities which significantly enhance the systems performance of the imm8-90. A general purpose paper tape reader driver is included in the Intellec 8 Monitor. It enables all systems software to utilize the high speed reader features and is caliable by user written application programs. The monitor also provides dynamic I/O reconfiguration permitting instantaneous reassignment of physical devices to logical devices.

SPECIFICATIONS

TAPE MOVEMENT:

Tape Reading Speed
0 to 200 characters per second
asynchronous
Tape Stopping
Stops "On Character"

TAPE CHARACTERISTICS:

Tapes must be prepared to ANSI
X 3.18 or EMCA 10 Standards for base
materials and perforations.
Reads tape of any material with thickness between 0.0027' and $0.0045^{\prime \prime}$ with transmissivity less than or equal to 5% (oiled buff paper tape).

Tape loading: in line
Tape width: 1 inch

ELECTRICAL CHARACTERISTICS:

AC Power Requirement
3 wire input with center conductor (earth ground) tied to chassis. 100,
115 , or 127 VAC, single phase at
3.0 amps or 220 or 240 VAC and
$1.5 \mathrm{amps} ; 47$ to 63 Hz .
EQUIPMENT SUPPLIED
Paper Tape Reader
Reader Cable
Reader Flat Cable
Fanfold Tape Guide
Fanfold Paper Tape
Hardware Manual
Installation and Operations Guide
Fanfold Guide Installation
Instructions

intel

BAREBONES 80 MICROCOMPUTER SUBSYSTEM

Complete 8080 CPU based microcomputer subsystem composed of Intel microcomputer modules housed in a card cage and interconnected by a printed circuit motherboard containing module sockets
78 instructions including data transfer; decimal, binary, and double precision arithmetic; logical, branch, stack, and I/O
Vectored interrupt capability
DMA capability
4 K 8 -bit bytes of RAM expandable to 16 K bytes in standard system and 64 K bytes in user modified system
Sockets for 4 K 8 -bit bytes of PROM expandable to 16 K bytes in standard system and 64 K bytes in user modified system

Four 8-bit input ports expandable to 16 input ports; four 8 -bit output ports expandable to 28 output ports. Expansion to 256 input and 256 output ports in user modified system. All ports are TTL compatible
Integral asynchronous serial data communications capability at 110, 1200, or 2400 baud
Discrete teletype interface (20 mA current loop)
Expansion capability provided for additional 12 Intel or custom microcomputer modules

Rack mountable.

The Barebones 80 (imm8-85) is a complete microcomputer system intended for OEM applications. The subsystem is composed of Intel microcomputer modules which are housed in a card cage and interconnected by a printed circuit motherboard. The chassis has space allocated for OEM power supplies, fan, and front panel.
Four modules are supplied with the basic system and expansion capability exists for 12 additional Intel-supplied or custom modules. Control signals, data and address lines are present at the 12 expansion connectors.

SPECIFICATIONS

WORD SIZE
Data: 8 bits
Instruction: 8, 16, or 24 bits

MEMORY SIZE

6 K bytes expandable to 16 K bytes with standard modules, 64 K bytes using custom memory modules.

INSTRUCTION SET

78, including conditional branching, binary arithmetic, logical, register-toregister, input/output, and memory reference.

MACHINE CYCLE TIME

$2.5 \mu \mathrm{~s}$. (Reduction to $2.0 \mu \mathrm{~s}$ possible by using faster memory and appropriate bus control signals.)

SYSTEM CLOCK

Crystal controlled at $2 \mathrm{MHz} \pm 0.01 \%$.

I/O CHANNELS

Maximum Input/Output configuration available with I/O or Output Modules
imm8-61
\(\left.$$
\begin{array}{cc}\text { Input } \\
\text { Ports }\end{array}
$$ \begin{array}{c}Output

Ports\end{array}\right]\)| 16 | 16 |
| :---: | :---: |
| 4 | 28 |

imm8-63 28 (with one imm8-61)

INTERRUPT

User-designed multiple level interrupt capability.

DIRECT MEMORY ACCESS

User-designed DMA capability.

MEMORY ACCESS TIME

RAM: $1 \mu \mathrm{~s}$ with standard RAM module. Faster access time available with user-designed memory systems.
PROM: 1.3μ s with 8702A PROMs. Faster access time available with higher speed PROMs.

PHYSICAL CHARACTERISTICS

$634^{\prime \prime} \times 17^{\prime \prime} \times 12^{\prime \prime}$ (suitable for mounting in standard RETMA $7^{\prime \prime} \times 19^{\prime \prime}$ panel space).
Weight: $11 \mathrm{lb}(4.9 \mathrm{~kg})$.

ELECTRICAL CHARACTERISTICS

DC Power Requirement:
$V_{C C}=5 \mathrm{~V} \pm 5 \%$,
$\mathrm{I}_{\mathrm{CC}}=6 \mathrm{~A}$ max., 3.5A typ.
$V_{D D}=-9 V \pm 5 \%$,
$I_{D D}=1.2 \mathrm{~A}$ max., 0.8 A typ.
$V_{C C}=+12 V \pm 5 \%$,
$\mathrm{I}_{\mathrm{GG}}=0.06 \mathrm{~A}$ max., 0.04 A typ.
*Requirement based on basic Barebones 80 system.

ENVIRONMENTAL CHARACTERISTICS
Operating Temperature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
OPTIONAL MODULES
Available for Barebones 80:
imm8-61 I/O Module
imm8-63 Output Module imm6-28 RAM Memory Module imm6-70 Universal Prototype Module
imm6-72 Module Extender
EQUIPMENT SUPPLIED
Central Processor Module
Input/Output Module PROM Memory Module RAM Memory Module Chassis with Mother Board PROM Resident System Monitor Complete Hardware and Software Documentation including schematics and assembly drawings Rack Slides

INTELLEC ${ }^{\circledR}$ 4/MOD 40 MICROCOMPUTER DEVELOPMENT SYSTEM

Complete Hardware/Software Development System for the design and implementation of 4040 and 4004 CPU based microcomputer systems

TTY interface, front panel designer's console, and high speed paper tape reader interface, in conjunction with PROM resident system monitor provide complete program loading, punching, monitoring, interrogation, and alteration capabilities
Program RAM (4K 8-bit bytes) provides a program development medium which lends itself to rapid and facile program monitoring and alteration
Data RAM (320 4-bit bytes expandable to 2560 bytes) provides data storage capacity
Program PROM (expandable to 4 K 8 -bit bytes) in conjunction with the resident PROM programmer provide capability of simulating final ROM resident program

PROM resident system monitor, RAM resident assembler with edit feature included in standard systems software
Includes such standard program development features as program single step, address search (and pass count), next instruction indication, program flow verification

I/O expandable to 164 -bit input ports and 484 -bit output ports (all TTL compatible) allowing "hands-on" simulation of entire user system (processor and peripheral devices)

RESET, STOP, INTERRUPT control signals available to user via back panel

Modular design with expansion capability provided for up to eleven optional or user designed modules

The Intellec ${ }^{\circledR}$ 4/MOD 40 (imm 4-44A) is a complete, self-contained microcomputer development system designed specifically to support the development and implementation of 4040 and 4004 CPU based mirocomputer systems. Its modular design provides the flexibility to adapt to any size user system and the resident software facilitates program development.
The basic Intellec 4/MOD 40 Microcomputer Development System consists of 4 microcomputer modules (CPU, RAM, MEMORY CONTROL, and PROM PROGRAMMER), power supplies, I/O connectors, console, and displays. The heart of the system is the imm 4-43 central processor module built around Intel's high performance 4 -bit 4040 CPU . The imm 4-43 is a complete microcomputer system containing the system clock, 1 K 8 -bit bytes of PROM memory, 3204 -bit bytes of data RAM memory, 34 -bit input ports and 84 -bit output ports. The imm 6 -28 program RAM memory module contains a $4 \mathrm{~K} \times 8$ memory array composed of Intel 2102 static random access memory elements. The imm 4-72 control module contains the circuitry required to interface the central processor module to the program RAM module. The imm 6-76 PROM programmer module provides the capability of programming Intel 1702A PROMs in conjunction with the front panel PROM socket and system monitor. All I/O ports are TTL compatible and accessible from the back panel 37-pin connectors. The front panel designer's console provides a means of monitoring and controlling system operation.

The Intellec modular design allows great design system flexibility. Program PROM can be expanded to 4 K 8 -bit bytes using imm 6-26 or imm 4-22 optional modules. Data RAM can be expanded to 25604 -bit bytes using imm $4-24$ modules. I/O capability can be expanded to 164 -bit input and 484 -bit output ports using optional imm $4-60$ and $4-24$ modules. The universal prototype card (imm 6-70) in conjunction with the eleven optional card sockets (which contain all essential system signals) provide the capability for interfacing custom designed modules.
The user RESET IN/OUT, STOP/STOP ACKNOWLEDGE, and INTERRUPT/INTERRUPT ACKNOWLEDGE control signals are all available at the back panel. Hence, the user can interrupt, halt, and reset the resident CPU via his own interface.

INTELLEC ${ }^{\circ} 4$
HIGH SPEED PAPER TAPE READER

Directly compatible with all Intellec ${ }^{\circledR} 4$ Microcomputer Development Systems

20 times faster than standard ASR-33 teletype reader

Data transfer at asynchronous rates in excess of $\mathbf{2 0 0}$ characters per second
Rack mountable or stand-alone

The imm4-90 high speed paper tape reader provides all Intellec ${ }^{\circledR} 4$ Microcomputer Development Systems with a high speed paper tape input that is twenty times faster than the standard ASR-33 teletype reader. This translates into a significantly faster development cycle due to a marked reduction in the time required for repetitive program loading, assembly, and editing operations.
The Intellec 4 monitor provides the capability of assigning the imm4-90 as an input device and contains the reader driver software. Tapes may be read in BNPF or hexadecimal format.
At least one optional imm4-60 Input/Output Module must be included in the Intellec system to provide the required reader input and output ports.

SPECIFICATIONS

TAPE MOVEMENT:

Tape Reading Speed
0 to 200 characters per second asynchronous
Tape Stopping
Stops "On Character"
TAPE CHARACTERISTICS:
Tapes must be prepared to ANSI
$\times 3.18$ or EMCA 10 Standards for base materials and perforations.
Reads tape of any material with thickness between 0.0027' and $0.0045^{\prime \prime}$ with transmissivity less than or equal to 5% (oiled buff paper tape).
Tape loading: in line
Tape width: 1 inch

ELECTRICAL CHARACTERISTICS:
AC Power Requirement
3 wire input with center conductor (earth ground) tied to chassis. 100, 115 , or 127 VAC, single phase at 3.0 amps or 220 or 240 VAC and $1.5 \mathrm{amps} ; 47$ to 63 Hz .

EQUIPMENT SUPPLIED:
Paper Tape Reader
Reader Cable
Reader Flat Cable
Fanfold Tape Guide
Fanfold Paper Tape
Hardware Manual
Installation and Operations Guide
Fanfold Guide Installation Instructions

8080 SYSTEM DESIGN KIT SDK-80

Complete single board microcomputer system including CPU, memory and I/O
Easy to assemble kit-form
High-performance ($2 \mu \mathrm{~s}$ instruction cycle)

Interfaces directly with most terminals (75-4800 baud)
Large wire-wrap area for custom interfaces
Extensive system monitor software in ROM
PC board format and power, compatible with Intellec ${ }^{\circledR}$ MDS

The 8080 System Design Kit (SDK-80) is a complete, single board, microcomputer system in kit form. It contains all necessary components, including resistors, caps, crystal and miscellaneous hardware to complete construction. Included is a preprogrammed ROM that contains the system monitor for general software utilities and system diagnostics.
All that is required for operation are power supplies and a suitable terminal; TTY, CRT, etc., (level conversions and baud rate generation included on board).
The SDK-80 is an inexpensive, high-performance prototype system that has designed-in flexibility for simple interface to the users application.

SPECIFICATIONS

CENTRAL PROCESSOR

CPU: 8080A
Instruction Cycle: 1.95 microsecond
Tcy: 488 ns

MEMORY

ROM: 2K bytes (expandable to 4 K bytes) $8708 / 8308$
RAM: 256 bytes (expandable to 1 K bytes) 8111
Addressing: ROM 0000-0FFF
RAM 1000-13FF
INPUT/OUTPUT
Parallel: One 8255 for 24 lines (expandable to 48 lines).
Serial: One 8251 USART.
On-board baud rate generator (jumper selectable).
Baud Rates: 751200
1102400
3004800 600

INTERFACES
Bus: All signals TTL compatible.
Parallel I/O: All signals TTL compatible.
Serial I/O: RS232C/EIA
20 mA current loop TTY
TTL (one TTL load)

INTERRUPTS

Single level: Generates RST7 vector.
TTL compatible input.
DMA
Hold Request: Jumper selectable.

SOFTWARE

System Monitor: Pre-programmed 8708 or 8308 ROM
Addresses; 0000-03FF.
Features:
Display Memory Contents (D)
Move blocks of memory
Substitute memory locations (S)
Insert hex code (I)
Examine Registers (X)
Program Control
Break Point Capability
Power-up start or system reset start.
I/O: Console Device (serial I/O)

LITERATURE

Design Library:
8080 Users Manual
8080 Assembly Language Manual
PL/M Programming Manual
MDS Brochure
Reference Card (Programmers)
SDK-80 User's Guide

CONNECTORS

I/O: 25 pin female (RS232C)
PCB: MDS format
PHYSICAL CHARACTERISTICS (MDS
MECHANICAL FORMAT)
Width: 12.0 in .
Height: 6.75 in .
Depth: 0.50 in .
Weight: approx. 12 oz .
ELECTRICAL CHARACTERISTICS (DC POWER)
VCC 5V $\pm 5 \% \quad$ 1.3 Amps
VDD 12V $\pm 5 \% \quad$ 0.35 Amps
$\mathrm{V}_{\mathrm{BB}}-10 \mathrm{~V} \pm 5 \%$ 0.20 Amps
or $-12 \mathrm{~V} \pm 5 \%$

MICROCOMPUTER MODULES

MCS-4/40 ${ }^{\text {TM }}$

Modules may be ordered individually. All modules are 8 " wide, $6.18^{\prime \prime}$ high and use standard $100-$ pin connectors.

imm4-42 Central Processor Module

- This is a complete microcomputer system with the processor, program storage, data storage, and I/O in a single module.
- The heart of this module is Intel's 4004 single chip fourbit parallel processor - p-channel silicon gate MOS.
- Accumulator and sixteen working registers (4-bit).
- Subroutine nesting up to 3 levels.
- For development work, the CPU interfaces to standard semiconductor memory elements (provided by Intel's standard memory and I/O interface set 4008/4009).
- Sockets for 1K bytes of PROM (Intel 1702A PROM) are provided.
- 320 words (4-bit) of data storage (Intel 4002) are provided.
- Four 4-bit input ports and eight 4-bit output ports (includes TTY interface).
- Bus-oriented expansion of memory and I/O.
- Two phase crystal clock.

imm4-43 Central Processor Module

- Complete microcomputer system with Intel's high performance 4040 4-bit processor, program storage, data storage, I/O and system clock in a single module.
- 60 instructions including decimal arithmetic, register-to-register transfers, conditional branching, logical operations and I/O.
- Interrupt capability.
- Single step capability.
- 24 index registers.
- Subroutine nesting to 7 levels.
- Direct interface capability to all standard memories (i.e., TTL, NMOS, PMOS, CMOS) through Intel's 4289 Standard Memory Interface chip.
- Sockets for $1 \mathrm{~K} \times 8$ bytes of program memory (Intel 4702A PROM) expandable to $4 \mathrm{~K} \times 8$ using optional imm6-26 or imm4-24 modules.
- 320 4-bit bytes of data storage (Intel 4002) expandable to 2560×4 using optional imm4-22 or imm4-24 modules.
- Four 4-line input ports and eight 4 -line output ports expandable to 16 input and 48 output ports using optional imm4-60, imm4-22 or imm4-24 modules.
- Two phase crystal clock.

imm4-22 Instruction/Data Storage Module

- This microcomputer module has memory capacity identical to the Central Processor Module and is used for expanding memory and I/O.
- Sockets for 1 K bytes of PROM program storage are provided.
- 320 words (4-bit) of data storage are provided.
- Four 4-bit input ports and eight 4-bit output ports.

imm4-24 Data Storage Module

- This microcomputer module has capacity for sixteen Intel 4002 RAMS - 1280 words (4-bit) of data storage.
- 320 words (4-bit) of data storage are provided.
- A maximum Intellec 4 system may contain up to 2560 words of storage - decoding for this expansion is provided.
- A 4-bit output port is associated with each RAM on this microcomputer module providing sixteen 4 -bit output ports on each module.
- All output ports are TTL compatible.

imm4-60 Input/Output Module

- This module provides input and output port expansion without additional memory.
- Eight 4-bit input ports and eight 4-bit output ports are provided.
- Ports on this module are TTL compatible.

MCS-8 ${ }^{\text {TM }}$

imm8-82 Central Processor Module

- Intel's 8008 eight-bit parallel single chip CPU -p-channel silicon gate MOS.
- Accumulator and six 8 -bit working registers.
- Subroutine nesting up to seven levels.
- Interface to 16 K 8 -bit bytes of PROM, ROM, or RAM via the PROM Memory Module and RAM Memory Module.
- Interface for expansion to eight 8 -bit input ports and twenty-four 8-bit output ports, via the I/O and Output Modules.
- Interrupt capability.
- Two phase crystal clock.
- All module interfaces are TTL compatible.

imm8-60 Input/Output Module

- Four 8-bit input ports (32 lines).
- Four 8-bit data latching output ports (32 lines).
- One pair of ports for TTY communication.
- All input and output ports are TTL compatible.

imm8-82 Central Processor Module

MCS-80 ${ }^{\text {TM }}$

imm8-83 CPU Module

- Complete 8-bit parallel central processor module with system clocks, interface and control for memory, I/O ports, and real time interrupt.
- Utilizes Intel's high performance 8080 single chip n-channel microcomputer.
- 2.5μ second instruction execution time.
- 78 basic instructions including the entire 8008 instruction set.
- Direct addressing of up to 64 K bytes of any speed ROM, PROM, or RAM memory.
- Unlimited subroutine nesting.
- Seven working registers - six 8-bit general purpose registers and an 8-bit accumulator.
- Separate 16 -bit address bus, 8 -bit output bus and 3 multiplexed 8-bit input busses for I/O input, memory input and interrupt data.
- Direct addressing of 256 input and 256 output ports.
- Multiple level real time interrupt capability.
- Direct memory access capability.
- All buses TTL compatible.

imm8-61 I/O Module

- Four 8-bit input and four 8-bit latching output ports.
- Directly compatible with imm8-83 central processor module.
- Integral asynchronous serial data communications capability and teletype interface.
- Jumper selectable transmission rates of 110, 1200 or 2400 baud.
- Crystal controlled clock.
- Capable of high speed serial communications to 9600 baud.
- TTL compatible.

imm8-63 Output Module

- Eight 8-bit latching output ports.
- Directly compatible with imm8-83 central processor module.
- Decoding provided for the selection of up to 256 individual output ports.
- TTL compatible.

COMMON SYSTEM MODULES

imm6-26 PROM Memory Module

- Provides sockets for up to sixteen 1702A electrically programmable and erasable PROMs for a system's fixed program memory (maximum 4 K bytes/module).
- For volume requirements, Intel 2048-bit mask programmed MOS ROMs (1302) may be substituted in the same module.
imm6-28 RAM Memory Module
- A $4 \mathrm{~K} \times 8 \mathrm{n}$-channel MOS memory system using Intel's 1024-bit Static RAM (2102).
- Address latching, data latching, and module select decoding are provided on the card.
- Provides program storage for up to 4 K instructions.

imm6-70 Universal Prototype Module

- Accommodates $14,16,24$, or 40 pin wire wrap sockets (maximum of 52 16-pin sockets).
- Provides breadboard capability for developing custom and specialized interface circuits.

imm6-72 Module Extender

- Extends Intellec modules out of card chassis for ease in test and system debugging.
imm6-76 PROM Programmer Module
- Provides all timing and level shifting circuitry for programming Intel's programmable and erasable 1702A PROMs.

IMM 6-28 RAM MEMORY MODULE

CONVERSION KITS

imm4-88

The imm4-88 conversion kit provides an upgrade path for Intellec ${ }^{\oplus} 4 /$ MOD 4 microcomputer development systems. It includes all the hardware and software required to fully support 4040 CPU based microcomputer system development.
The conversion kit contains an imm4-43 CPU module, new memory controller, new front panel, and any software required.

NOTE: Due to necessary wiring changes, these conversions are done at the Intel factory. Contact local Intel salesmen or representatives for instructions.
imm8-88
The imm8-88 conversion kit provides an upgrade path for Intellec ${ }^{\text {® }} 8$ /MOD 8 microcomputer development systems. It includes all the hardware and software products required to fully support 8080 CPU based microcomputer system development. With the imm8-88 conversion kit installed in an Intellec 8/MOD 8, complete 8080 CPU hardware and software development capability is provided.

The conversion kit is installed by simply plugging in the three new hardware modules in the appropriate Intellec 8/ MOD 8 chassis connectors and installing the new system monitor. The system can be quickly reconfigured to support 8080 CPU chip development by replacing the original boards and system monitor.

SBC 80/10 SINGLE BOARD COMPUTER

8080A Central Processing Unit
1 K bytes of read/write memory
Sockets for 4 K bytes of programmable or masked read-only memory
48 Programmable I/O lines with sockets for interchangeable line drivers and terminators

The SBC-80/10 is a member of Intel's complete line of OEM computer systems which take full advantage of Intel's LSI technology to provide economical, self-contained computer based solutions for OEM applications. The SBC-80/10 is a complete computer system on a single 6.75 -by- 12 inch printed circuit card. The CPU, system clock, read/write memory, non-volatile read-only-memory, I/O ports and drivers, serial communications interface, bus control logic and drivers all reside on the board.
Memory and I/O expansion may be achieved using standard Intel boards. Memory may be expanded to 65,536 bytes by adding user specified combinations of SBC-016 16K byte RAM boards, SBC-406 6K by te PROM boards, and SBC-416 16K PROM boards. Input/output capacity may be expanded to 638 -bit input ports and 638 -bit output ports using SBC-508 Input/Output boards. Each I/O board contains four 8 -bit input ports and four 8 -bit output ports. Memory and I/O may be expanded simultaneously (i.e. 4 K bytes of RAM, 4 K bytes of PROM, and 48 programmable I/O lines, and a USART) by using the SBC-104 Combination board. Expandable backplanes and card-cages are available to support multi-board systems.

SPECIFICATIONS

WORD SIZE

Instruction: 8, 16, or 24 bits
Data: 8 bits

CYCLE TIME

Basic Instruction Cycle: $1.95 \mu \mathrm{sec}$
Note: Basic instruction cycle is defined as the fastest instruction (i.e. four clock cycles)

MEMORY ADDRESSING
On-Board ROM/PROM: 0-0FFF
On-Board RAM: 3C00-3FFF

I/O CAPACITY

Parallel: 48 programmable lines

Note: Expansion to 504 input and 504 output lines can be accomplished using optional I/O boards.
Serial: (USART)

Frequency (KHz) (Jumper Selectable)	Saud Rate (Hz)		
	Synchronous	Asynchronous (Program Selectable)	
		$\div 16$	$\frac{\div 64}{48}$
153.6	-	19200	4800
76.8	-	9600	2400
38.4	38400	4800	1200
19.2	19200	2400	600
9.6	9600	600	300
4.8	4800	300	150
3.49	3490	-	75
			110

SPECIFICATIONS

MEMORY CAPACITY

On-Board ROM/PROM: 4K bytes (sockets only) On-Board RAM: 1 K bytes
Off-Board Expansion: Up to 65,536 bytes using user specified combinations of RAM, ROM, and PROM
NOTE: ROM/PROM may be added in 1 K byte increments.

I/O ADDRESSING

On-Board Programmable I/O

Port	1	2	3	4	5	6	$8255 \text { \#1 }$ Control	$8255 \text { \#2 }$ Control	$\begin{gathered} \text { USART } \\ \text { Data } \end{gathered}$	USART Control
Address	E4	E5	E6	E8	E9	EA	E7	EB	EC	ED

Synchronous:
$5-8$ bit characters
Internal or external character synchronization Automatic Sync Insertion
Asynchronous:
5-8 bit characters Break characters generation $1,1-1 / 2$, or 2 stop bits
False start bit detectors
Full duplex, double buffered transmitter and receiver
Parity, overrun, and framing error detection

INTERRUPTS

Single-level with on-board logic that automatically vectors processor to location 3816 using RESTART 7 instruction. Interrupt requests may originate from user specified I/O (2) the programmable peripheral interface (2), or USART (2)

INTERFACES

Bus: All signals TTL compatible
Parallel I/O: All signals TTL compatible
Serial I/O: RS232C or 20 mil current loop TTY interface (jumper selectable)
Interrupt Requests: All TTL compatible

LINE DRIVERS AND TERMINATORS

I/O Drivers:
The following line drivers and terminators are all compatible with the I/O driver sockets on the SBC-80/10.

Driver	Characteristic	Sink Current (mA)
7438	I, OC	48
7437	I	48
7432	NI	16
7426	I, OC	16
7409	NI, OC	16
7408	NI	16
7403	I, OC	16
7400	I	16

Note: $\mathrm{I}=$ inverting N.I. $=$ non-inverting $\mathrm{OC}=$ open collector

1/O Terminators:
Terminators: $220 \Omega / 330 \Omega$ divider or $1 \mathrm{k} \Omega^{*}$

*Must be ordered separately.
Bus Drivers:

Function	Characteristic	Sink Current (mA)
Data	Tri-State	25
Address	Tri-State	25
Commands	Tri-State	25

SYSTEM CLOCK

$2.048 \mathrm{MHz} \pm 0.1 \%$

CONNECTORS

Bus:
86 pin double-sided PC edge connector
0.156 inch centers

Mating Connector: Control Data Corp.

> VPB01E43A00A1

Parallel I/O:
Two 50 pin double-sided PC edge connectors
0.1 inch centers

Mating Connector: 3M 3415-000 or TI H312125
Serial I/O:
26 pin double-sided PC edge connector
0.1 inch centers

Mating Connector: 3M 3462-000 or TI H312113
PHYSICAL CHARACTERISTICS
Width: $12.00 \mathrm{in} .(30.48 \mathrm{~cm})$
Height: 6.75 in. (17.14 cm)
Depth: $0.50 \mathrm{in} .(1.27 \mathrm{~cm})$
Weight: $14 \mathrm{oz} .(0.48 \mathrm{Kg})$

ELECTRICAL CHARACTERISTICS

DC Power:

$$
\begin{array}{ll}
V_{C C}=+5 \pm 5 \% & I_{C C}=2.9 A \max \\
V_{D D}=+12 \pm 5 \% & I_{D D}=150 \mathrm{~mA} \max \\
V_{B B}=-5 V \pm 5 \% & I_{B B}=2 \mathrm{~mA} \text { max } \\
V_{S S}=-12 V \pm 5 \% & I_{S S}=150 \mathrm{~mA} \text { max }
\end{array}
$$

Note: Does not include power required for options PROM, I/O drivers, and I/O terminators.

MICROCOMPUTER SOFTWARE PRODUCTS

The following section contains information on Intel's Cross Software Products and User's Library. These cross products are all written in FORTRAN IV and are designed to run on a large computer system while generating code for or simulating one of Intel's microcomputers. All these products are also available on several computer timesharing services worldwide.
 Intel for the 8008 and 8080 microcomputers. Use of this language can significantly reduce programming time and costs.
A partial list of programs in the Intel microcomputer User's Library is also included. New programs are constantly being added to the library in a continuing effort to increase the size of the largest commercially available library of microcomputer programs in the world. You are encouraged to become a member to reap the benefits of the knowledge and experience of hundreds of users. Contributed programs are gratefully accepted.

MCS-40 CROSS ASSEMBLER

Accepts all 4004 and 4040 instructions

Conditional assembly capability

Full macro facility

Hexadecimal or BNPF object code formats

The MCS-40 Cross Assembler, MAC40, is a powerful program development tool for Intel's ${ }^{\circledR}$ 4-bit microcomputers, the 4004 and the new 4040. MAC40 provides extensive capabilities which reduce the time and effort involved in program development, debug and documentation. The cross assembler allows usage of the high speed I/O and text editing capability of a large computer system to further shorten the programming task.
MAC40 translates $4004 / 4040$ machine assembly language instructions into the appropriate machine operation codes. In addition to eliminating the errors of hand translation, the ability to refer to program addresses with symbolic names makes it easy to modify programs by adding or deleting instructions, or to move the program to another memory location. Full macro capability eliminates the need to rewrite similar sections of code repeatedly and simplifies program documentation. Conditional assembly permits MAC40 to include or delete sections of code which may vary from system to system, such as the code required to handle optional external devices.
Output from MAC40 may be punched to paper tape in hex format for loading into an Intellec ${ }^{\circledR} 4$ Development System or may be punched in BNPF format to program ROMs.
MAC40 is written in ANSI standard FORTRAN IV and is designed to run on most large scale computing systems with a 32-bit or larger integer format (word size). It is also available for immediate use on several major timesharing services throughout the world.

SPECIFICATIONS

CAPABILITIES:

Accepts all 66 instruction mnemonics plus 10 pseudo-operators.
Allows up to 499 labels in standard configuration; easily expandable.

Allows a total of up to 9 levels of nested conditional assembly and nested macro-calls.
User definable I/O formats.
Batch or interactive mode.

OPERATIONAL ENVIRONMENT:

Hardware required

32-bit or larger word size

12-16K words depending on machine

Software required
ANSI standard FORTRAN IV
compiler

SHIPPING MEDIA:

Magnetic tape
TAPE FORMAT:

9 Track	80 Byte unblocked
EBCDIC	records
800 BPI	Unlabeled

TAPE CONTENTS:
MCS-40 ${ }^{\text {T.M. }}$ Cross Assembler
(FORTRAN IV Source)
MERGE Source File Editing Program (FORTRAN IV Source)

XCNV4 Conversion Program (FORTRAN IV Source)

DOCUMENTATION PACKAGE

 INCLUDES:4004/4040 Assembly Language Programming Manual

MAC4 External Reference Specification
Pocket Reference Card

MCS-8 ${ }^{\text {T.M }}$ CROSS ASSEMBLER

Accepts all 8008 instructions

Conditional assembly capability
Full macro facility

Written in ANSI standard FORTRAN IV
 Comprehensive user documentation
 Instantly available on worldwide timesharing services

Hexadecimal or BNPF object code formats
 provides extensive capabilities which reduce the time and effort involved in program development, debug and documentation. The cross assembler allows usage of the high speed I/O and text editing capability of a large computer system to further shorten the programming task,
MAC8 translates symbolic 8008 assembly language instructions into the appropriate machine operation codes. In addition to eliminating the errors of hand translation, the ability to refer to program addresses with symbolic names makes it easy to modify programs by adding or deleting instructions, or to move the program to another memory location. Full macro capability eliminates the need to rewrite similar sections of code repeatedly and simplifies program documentation. Conditional assembly permits MAC8 to include or delete sections of code which may vary from system to system, such as the code required to handle optional external devices.
Output from MAC8 may be loaded directly to the 8008 Simulator (INTERP/8) for interactive, symbolic debugging or may be punched to paper tape in hex format for loading into an Intellec ${ }^{\circledR} 8 /$ Mod 8 Development System. It may also be punched in BNPF format to program ROMs.
MAC8 is written in ANSI standard FORTRAN IV and is designed to run on most large scale computing systems with a 32 -bit or larger integer format (word size). It is also available for immediate use on several major timesharing services throughout the world.

MCS-8 ${ }^{\text {r.m. }}$ ASSEMBLY LANGUAGE PROGRAMMING EXAMPLE:

```
; UMUL - UNSIGNED INTEGER MULTIPLY
; CALL: ARGUMENTS IN C & D
; EXIT: HI ORDER PRODUCT IN B
    LO ORDER PRODUCT IN C
    REGS: A,B,E AND FLAGS EXCEPT CARRY ALTERED
UMUL:
    MVI B,O
    MVI E,9
    MOV A,C
    RAR
    MOV C,A
    DCR E
    RZ
    MOV A,B
    JNC UMUL1
    ADD D
UMUL1:
    RAR
    MOV B,A
    JMP UMULO
```

: ROTATE CARRY INTO
; ROTATE CARRY INTO
; SHARED REGUSTER
FORCING NEXT LSB
INTO CARRY
EXIT IF 8TH ITERATION IF CARRY SET
ADD MULTIPLICAND TO •
PRODUCT
ROTATE MOST SIGNIFICANT PRODUCT AND REPEAT LOOP

SPECIFICATIONS

CAPABILITIES:
Accepts all 48 instruction mnemonics plus 10 pseudo-operators.
Allows up to 499 labels in standard configuration; easily expandable.

Allows total of up to 9 levels of nested conditional assembly and nested macro-calls.
User definable I/O formats.
Batch or interactive mode.

OPERATIONAL ENVIRONMENT:
Hardware required
32-bit or larger word size
$12-16 \mathrm{~K}$ words depending on machine

Software required
ANSI standard FORTRAN IV compiler

SHIPPING MEDIA:

Magnetic tape

TAPE FORMAT:

9 Track 80 Byte unblocked
EBCDIC
800 BPI
records
Unlabeled

TAPE CONTENTS:

 MCS-8 ${ }^{\text {r.m. }}$ Cross Assembler (FORTRAN IV Source)MERGE Source File Editing Program (FORTRAN IV Source)
CONV8 Conversion Program (FORTRAN IV Source)

DOCUMENTATION PACKAGE INCLUDES:
8008 Assembly Language Programming Manual
MAC8 External Reference Specification
Pocket Reference Card

4004/4040 SIMULATOR

Simulates all 4004/4040 machine instructions
Accepts output from MAC40, the Intel ${ }^{\circledR}$ 4004/4040 Cross Assembler

Contains extensive symbolic debugging capabilities
Written in ANSI standard FORTRAN IV
Instantly available on worldwide timesharing services

COMMAND CAPABILITIES:
 Set breakpoints
 Trace program execution
 Dump and modify memory
 Examine and modify registers
 Examine and set I/O ports
 Simulate the 4040 hardware interrupt
 Measure program execution time

The $4004 / 4040$ Simulator, INTERP/40, is a complete simulation and debug program for the Intel ${ }^{\circledR 8} 4004$ and 4040 microcomputers. Programs can be run, displayed, stopped, and altered allowing step by step refinement without continuous reassembly of the source program. INTERP/40 provides powerful commands to control the execution of 4004 and 4040 programs. Extensive debug features are built in to help reduce the time and cost involved in program checkout.

INTERP/40 also provides symbolic reference to storage locations and operation codes as well as numeric reference in various number bases.

INTERP/40 is written in FORTRAN IV and is designed to run on most large scale computer systems with a 32-bit or larger integer format (word size). It is also available for immediate use on major timesharing services throughout the world.

MCS-40 ${ }^{\text {T.M. PROGRAM DEVELOPMENT CYCLE }}$

INTELLEC ${ }^{\oplus} 4$ MODELS 4 AND 40 MICROCOMPUTER DEVELOPMENT SYSTEMS

ROM

ASSEMBLY LANGUAGE

SPECIFICATIONS

CAPABILITIES:

Provides total software simulation of the Intel ${ }^{\circledR} 4004$ and 4040 CPU's.

Can be run in batch or interactive mode.

OPERATIONAL ENVIRONMENT:
Hardware required
32-bit or larger word size
12-15K words of memory, depending on machine

Software required
FORTRAN IV compiler

SHIPPING MEDIA:
Magnetic tape
TAPE FORMAT:
9-track -80-byte unblocked EBCDIC records
800BPI Unlabeled

TAPE CONTENTS: 4004/4040 Simulator (FORTRAN IV Source) MERGE Source File Editing Program (FORTRAN IV Source)

DOCUMENTATION PACKAGE: INTERP/40 External Reference Specification

8008 SIMULATOR

Simulates all 8008 machine instructions
Accepts output from PL/M ${ }^{\text {T.M. compiler or MAC8 cross }}$ assembler

Comprehensive debug features

Written in FORTRAN IV
Instantly available on worldwide timesharing services
Comprehensive user documentation

The 8008 Simulator, INTERP/8, is a complete simulation and debug program for the Intel ${ }^{\circledR} 8008$ microcomputer. INTERP/8 provides powerful commands to control the execution of 8008 programs. Extensive debug features are built-in to help reduce the time and cost involved in program checkout.
INTERP/8 simulates execution of all 8008 machine instructions. Programs either compiled on the PL/M ${ }^{\text {T.M. }}$ compiler or assembled on the MAC8 Cross Assembler may be loaded directly into INTERP/8 for simulation and checkout.

INTERP/8 provides commands to:

- Set Breakpoints - Measure Program Timing
- Trace Program Execution
- Examine and Set I/O Ports
- Dump and Modify Memory
- Perform Interrupts and Stack Manipulations
- Examine and Modify Registers
- Perform Address Arithmetic

INTERP/8 also provides symbolic debugging capability. Memory locations may be referenced by their symbolic names, either through labels or variable names. This eliminates the need to know the specific absolute address of each variable or label.
INTERP/8 is written in FORTRAN IV and is designed to run on most large-scale computer systems with a 32-bit or larger integer format (word size). It is also available for immediate use on several major timesharing services throughout the world.

MCS-8 ${ }^{\text {T.M. PROGRAM DEVELOPMENT CYCLE }}$

SPECIFICATIONS

CAPABILITIES:

Simulates all 48 machine instructions
Allows full 16 K program
Can be run in batch or interactive mode

OPERATIONAL ENVIRONMENT:

Hardware required 32-bit or larger word size 15-20K words of memory, depending on machine
Software required
FORTRAN IV compiler
SHIPPING MEDIA:
Magnetic tape
TAPE FORMAT:
9-track 80-byte unblocked
EBCDIC
800 BPI

TAPE CONTENTS: 8008 Simulator (FORTRAN IV Source) MERGE Source File Editing Program (FORTRAN IV Source)
DOCUMENTATION PACKAGE:
INTERP/8 User's Manual INTERP/8 Installation Guide

MCS-80 ${ }^{\text {T. }}$ CROSS ASSEMBLER

Accepts all 8080 instructions

Conditional assembly capability
Full macro facility

Hexadecimal or BNPF object code formats

Written in ANSI standard FORTRAN IV

Comprehensive user documentation
Instantly available on worldwide timesharing services

The MCS-80 Cross Assembler, MAC80, is a powerful program development tool for Intel's ${ }^{\circledR} 8080$ microcomputer. MAC80 provides extensive capabilities which reduce the time and effort involved in program development, debug and documentation. The cross assembler allows usage of the high speed I/O and text editing capability of a large computer system to further shorten the programming task.
MAC80 translates symbolic 8080 assembly language instructions into the appropriate machine operation codes. In addition to eliminating the errors of hand translation, the ability to refer to program addresses with symbolic names makes it easy to modify programs by adding or deleting instructions, or to move the program to another memory location. Full macro capability eliminates the need to rewrite similar sections of code repeatedly and simplifies program documentation. Conditional assembly permits MAC80 to include or delete sections of code which may vary from system to system, such as the code required to handle optional external devices.
Output from MAC80 may be loaded directly to the 8080 Simulator (INTERP/80) for interactive, symbolic debugging or may be punched to paper tape in hex format for loading into an Intellec ${ }^{\circledR}$ MDS Microcomputer Development System. It may also be punched in BNPF format to program ROMs.
MAC80 is written in ANSI standard FORTRAN IV and is designed to run on most large scale computing systems with a 32-bit or larger integer format (word size). It is also available for immediate use on several major timesharing services throughout the world.

MCS-80 ${ }^{\text {T.M. }}$ ASSEMBLY LANGUAGE PROGRAMMING EXAMPLE:

8080 SIMULATOR

Simulates all 8080 machine instructions

Accepts output from PL/M ${ }^{\text {T.M. }}$ compiler or MAC80 Cross Assembler

Comprehensive debug features

Written in FORTRAN IV

Instantly available on worldwide timesharing services
Comprehensive user documentation

The 8080 Simulator, INTERP/80 ${ }^{\text {T.M. }}$, is a complete simulation and debug program for the Intel ${ }^{\circledR} 8080$ microcomputer. INTERP/80 provides powerful commands to control the execution of 8080 programs. Extensive debug features are built in to help reduce the time and cost involved in program checkout.
INTERP/80 simulates execution of all 8080 machine instructions. Programs either compiled on the PL/M ${ }^{\text {T.M. compiler or }}$ assembled on the MAC80 Cross Assembler may be loaded directly into INTERP/80 for simulation and checkout.
INTERP/80 provides commands to:

- Set Breakpoints - Measure Program Timing
- Trace Program Execution
- Examine and Set I/O Ports
- Dump and Modify Memory
- Examine and Modify Registers
- Perform Interrupts and Stack Manipulations
- Perform Address Arithmetic

INTERP/80 also provides symbolic debugging capability. Memory locations may be referenced by their symbolic names, either through labels or variable names. This eliminates the need to know the specific absolute address of each variable or label.
INTERP/80 is written in FORTRAN IV and is designed to run on most large-scale computer systems with a 32-bit or larger integer format (word size). It is also available for immediate use on several major timesharing services throughout the world.

MCS-80 ${ }^{\text {T.M. PROGRAM DEVELOPMENT CYCLE }}$

SPECIFICATIONS

CAPABILITIES:
Simulates all 78 machine instructions
Allows 16 K program, easily expandable

Can be run in batch or interactive mode

OPERATIONAL ENVIRONMENT:

Hardware required
32-bit or larger word size
15-20K words of memory, depending on machine
Software required
FORTRAN IV compiler
SHIPPING MEDIA:
Magnetic tape
TAPE FORMAT:

9-track	80-byte unblocked
EBCDIC	records
800 BPI	Unlabeled

TAPE CONTENTS:
8080 Simulator
(FORTRAN IV Source)
MERGE Source File Editing Program (FORTRAN IV Source)

DOCUMENTATION PACKAGE:
INTERP/80 User's Manual INTERP/80 Installation Guide

PL/M ${ }^{\top}{ }^{\top}$. HIGH LEVEL PROGRAMMING LANGUAGE MCS-8 ${ }^{\text {T. }}$ AND MCS-80 ${ }^{\text {™ }}$ CROSS COMPILERS

Reduces program development time and cost
Improves product reliability and eases maintenance
Available for 8008 and 8080
Comprehensive user documentation

Hexadecimal or BNPF object code formats

Written in ANSI standard FORTRAN IV
Instantly available on worldwise timesharing services
PL / M is a high-level system programming language, specifically designed to ease the programming task for INTEL's 8 -bit microcomputers, the 8008 and the 8080 . PL/M is a powerful tool, well suited to the requirements of the microcomputer system designer and implementor. The language has been designed to facilitate the use of modern techniques in structured programming. These techniques can lead to rapid system development and checkout, straightforward maintenance and modification, and high product reliability.

The PL/M compilers convert a free-form symbolic PL/M program into an equivalent 8008 or 8080 object program. The compilers themselves take care of all the details of machine or assembly language programming, which permits the programmer to concentrate entirely on effective software design, and the logical requirements of his system.

Output from the PL/M compiler may be loaded directly into the 8008 or 8080 simulator programs for interactive, symbolic debugging or may be punched to paper tape in hex format for loading into an Intellec ${ }^{\circledR}$ Microcomputer Development System. It may also be punched in BNPF format to program ROMs.

The PL/M compilers are written in ANSI standard FORTRAN IV and are designed to run on any large-scale computer system with a minimum 32 -bit integer format (word size). They are also available for immediate use on several worldwide timesharing systems.

PL/M PROGRAMMING EXAMPLE:

```
                                    /* BUBBLE SORT DECLARATION */
```

SORT: PROCEDURE (N) ADDRESS;
/* $\quad N=$ LENGTH OF A
COUNT $=$ NR. OF SWITCHES PERFORMED TO.DATE
SWITCHED = (BOOLEAN) HAVE WE DONE ANY SWITCHING YET ON THIS SCAN? */
DECLARE (N, I, SWITCHED) BYTE,
(TEMP. COUNT) ADDRESS;
SWITCHED = 1: \quad /* SWITCHED 2 TRUE MEANS NOT DONE YET */
COUNT $=\emptyset$;
DO WHILE SWITCHED;
SWITCHED $=\emptyset_{i} \quad 1^{*}$ BEGIN NEXT SCAN OF A */
DO I = \emptyset TO N-2;
IF $\mathrm{A}(\mathrm{I})>\mathrm{A}(1+1)$ THEN
DO: /* FOUND A PAIR OUT OF ORDER */ *.
COUNT = COUNT + 1;
SWITCHED = 1; 1* SET SWITCHED = TRUE */
TEMP = A $(1) ;$ /* SWITCH THEM INTO ORDER */
$A(1)=A(1+1)$;
$\mathrm{A}(1+1)=$ TEMP;
END:
END:
1* HAVE NOW COMPLETED A SCAN */
END /* WHILE */;
/* HAVE NOW COMPLETED A SCAN WITH NO SWITCHING */
RETURN COUNT:
END SORT:

SPECIFICATIONS

OPERATING ENVIRONMENT:

Required hardware 32-bit or larger word size 20-25K words of memory, depending on machine
Required software
ANSI standard FORTRAN IV compiler

SHIPPING MEDIA:
Magnetic tape
TAPE FORMAT:
9-track EBCDIC
$800 \mathrm{BPI} \quad 80$-byte unblocked records Unlabeled

DOCUMENTATION PACKAGE:
8008 and 8080 PL/M Programming Manual
8008 (or 8080) PL/M Compiler Operator's Manual

TAPE CONTENTS:

PLM Pass 1 (FORTRAN IV Source)
PLM Pass 2 (FORTRAN IV Source)
MERGE Source File Editing Program
(FORTRAN IV Source)
Sample Test Program (PL/M Source)

SERIES 3000 CROSS MICROPROGRAMMING SYSTEM

Built-in series 3000 fields and mnemonics
User definable fields and mnemonics
Hierarchical field defaults
Free field statement format
String macro capability

Extended address generation
Graphical microprogram memory display
Symbolic label reference directory
MCU jump address validation
RAM/ROM/PROM programming file generation

Abstract

The Intel ${ }^{\circledR}$ Series 3000 Cross Microprogramming System, CROMIS, is an advanced software system that supports the generation of microprograms for custom Series 3000 processor and controller micro-architectures. It provides extensive programming facilities that greatly reduce the time and effort required to develop, debug, and document a microprogram. CROMIS consists of two major software subsystems, XMAS and XMAP, XMAS is a symbolic microassembler which is dynamically user extensible in the size and structure of the target microinstruction format. XMAP is a complementary subsystem which maps the microinstruction bit patterns produced by XMAS into the desired physical microprogram memory locations. In addition to providing four built-in microinstruction fields and corresponding mnemonic sets for the basic 3001 MCU and 3002 CPE functions, XMAS accepts user definitions for extended microinstruction fields and their associated mnemonics. Graphic debugging aids, string macro capability, definable defaults, and extended address generation further simplify the microprogramming of Series 3000 computing elements. XMAP accepts the microinstruction file produced by XMAS and generates under user specifications one or more programming files for use with standard memory components. It enables the user to specify the mapping of the field into the physical bit positions of the microprogram memory components. CROMIS is designed for use on almost any modern computing system with high speed I/O and on-line file facilities. It is available in ANSI (standard) FORTRAN IV source form for user installation or may be immediately accessed on any of several major timesharing services throughout the world. To insure the long term reliability and maintainability of CROMIS, all component programs are written in a highly modular, structured programming style with extensive operational documentation.

SPECIFICATIONS

XMAS CAPABILITIES

Translates all 3001 MCU and 3002
CPE mnemonics.
Dynamically allocates storage for labels, values and strings in a user expandable data area.
Accepts microinstruction format definitions of up to 64 total bits.
Provides extended address generation for up to 16 K microinstructions. Includes a four-level user definable field default mechanism.

XMAP CAPABILITIES

Provides direct or inverted mapping for any bit in any microinstruction field. Permits explicit 1's or 0's to be specified for unused bit locations.
Generates standard BNPF or hexadecimal programming files.
Accepts memory configuration definitions from 1×1 bits to $16 \mathrm{~K} \times 16$ bits.

OPERATIONAL ENVIRONMENT

Required hardware:
16-bit or larger word size
5 rewindable data files (disc or tapes)
Required software:
ANSI standard FORTRAN IV compiler
TAPE CONTENTS
TAPE 1
Part 1 of XMAS FORTRAN IV Source
TAPE 2
Part 2 of XMAS FORTRAN IV Source
XMAS Sample Program
XMAP FORTRAN IV Source
XMAP Sample Program
MERGE File Editing Program

SHIPPING MEDIA
Two 2400' magnetic tapes
TAPE FORMAT

9 -track	800 bpi
80 byte	unblocked
EBCDIC	unlabeled

DOCUMENTATION

Microprogramming the Series 3000 XMAS/XMAP Message Summary XMAS Installation Guide (preamble to XMAS FORTRAN source)
XMAP Installation Guide (preample to XMAP FORTRAN source)

MICROCOMPUTER SOFTWARE LIBRARY USER'S PROGRAM LIBRARY

Abstract

The Intel Microcomputer User's Library is a collection of programs, subroutines, procedures and macros written by users of Intel's 4004, 4040, 8008 or 8080 microcomputers. Thanks to customer contributions to the User's Library, Intel is now able to make these programs available to all users of Intel microcomputers. By taking advantage of the availability of these general purpose routines, the microcomputer design engineer and programmer can save many hours of programming and debugging. A complete, documented listing of each program, procedure or macro in the user's library is sent to each member. This includes information on the program environment, required hardware and software, subroutine calling sequences and memory requirements. As new programs are submitted to the User's Library, they will be sent to all members. Strict documentation standards will be maintained to assure the usability of each library program by every interested member. Several of the available programs are listed in this brochure.

There are two user's libraries, one each containing programs for the Intel 4 -bit and 8 -bit microcomputer systems, respectively. Membership in each user's library is available to any interested person or organization. A yearly membership fee of $\$ 100$ is charged, for which the member receives a manual of all programs in that library and all updates during the year. For those prospective members who submit a program to the library, a free one-year membership will be awarded. A submittal form for program donation is included in this catalog. More forms may be obtained from any Intel representative.

Ordering Information

To become a member, send a program, purchase order, or check to:

User's Library
Microcomputer Systems
Intel Corporation
3065 Bowers Avenue
Santa Clara, California 95051

MICROCOMPUTER SOFTWARE LIBRARY PARTIAL PROGRAM INDEX-4-BIT USERS LIBRARY

TITLE

Cross Assembler on PDP-8

Cross Assembler for NOVA Computer

BNPF Tape Generator for PDP-8

MCS-4 Simulator for PDP-8

MCS-40 Cross Assembler

Intel MCS-40 Cross Assembler and Text Editor

FUNCTION

Performs symbolic assembly for 4004 assembly language programs. The assembler runs on a DEC PDP-8 minicomputer.

Assemble MCS-4 programs and program PROMs.
Produces a BNPF object tape from the output of the PDP- 8 assembler modified to assemble MCS-4 programs.

Simulates operation of MCS-4 system; allows breakpoints, dumps, modification of RAM or ROM, I/O under user control, provides cycle counter for timing. Accepts output of PAL8 assembler in binary form.

Program to perform assembly of 4040 programs on an Intellec $8 / \operatorname{Mod} 80$.
Edit and assemble MCS-40 source language using a Computer Automation Alpha-16/Alpha-LSI producing program listings, error diagnostics, source and object tapes.

All programs listed below will execute on the 4004 or 4040 CPU.

A Chebyshev Approximation Package

Parity Checker/Generator

Parity Generator, ASCII Character

Code Conversion: ASCII to EBCDIC

Delay Subroutines

Bit Manipulation Routine

Universal Logic Subroutines

8-bit Parity Check Annex

Binary to BCD Converter

Data Compare

Paper Tape Edit

IOMEC SERIES THREE (S-3)
Cartritape to Intel MCS-4

The package contains approximation routines for sine, cosine, arctangent, natural logrithm ($\log _{e}$), and exponential functions (e^{x}). It also contains routines for performing addition, complement, multiplication, and division on 64-bit binary numbers.

Routine to check or generate parity for 8 -bit byte. Utilizes modulo-2 counting technique.

Routine to add even parity bits to 7 -bit ASCII character. Utilized modulo-2 counting technique.

Table and routine to perform 7-bit ASCII to 8-bit EBCDIC code conversion. Full table with 128 entries provided.

To conditionally generate a selectable time delay of:

1. 1 through 256 ms in one ms increments
2. 1 through 256 quarter seconds in one quartersecond increments
3. 1 through 15 minutes in one minute increments

AND, OR, XOR, COMPARE, set unselected bits, clear selected bits, test ones.
Forms logical AND, OR, XOR, $\overline{X O R}$ functions functions between the contents of Registers 0 and 1.

Compute parity of 8 -bit word without affecting any registers or carry.
Converts 16 -bit binary value into $B C D$.
Compares two 8 -digit numbers and returns a pointer to the greater value in the carry.

Add, correct, or delete lines in generating a new paper tape without manually controlling tape reader.
Routines which allow full control of the IOMEC S-3 by the MCS-4.

TITLE

I/O Test

Bowmar TP 3100 Printer Routine

8-Digit Register Dispaly

Intellec 4/Mod 40 - Silent 700 Interface
PROM Dump Utility Program

PRO FORMA

Peripheral Interface Routine for a Thermal Strip Printer

MCS-4/40 Dissembler

Right Justified HEX Data Shifter

Floating Point Arithmetic
Subroutine Package

HEXBCD

Fast Binary Multiply:
Selectable Bit Precision and Constant Execute Time

Fast Decimal Multiplication Routine

Automatic Digital Integration

Binary to BCD Converter

FUNCTION

To exercise all I/O lines to allow for troubleshooting of system design, wiring errors, and chip malfunctions.

This program is to run a Bowmar model 3100 thermal printer.
Program to display 8 digits of data.
Program to interface Intellec 4/Mod 40 to TI Silent 700 terminal.
This is a program to dump the contents of a PROM in the front panel socket onto the teletype printer. The first address and first word is always printed out in the form " $00-00$ " as address-contents. All subsequent address contents-listings are printed out only if the contents of the respective location are different from the contents of the previous location.

This program assists in the compiling of source code tapes by eliminating errors and typing mistakes. In the keyboard mode it will only transmit characters to the paper tape punch that are valid in the context of the system assembly language, and automatically formats individual lines and pages to suit.

This subroutine controls the printing of data (numbers and selected characters) on thermal print paper using a 4×5 dot matrix thermal printhead. The software provides character generation and controls the timing of the print cycle.

To convert MCS-4 or MCS-40 machine code programs back into mnemonic or assembly code to assist in the modification of programs.

Shifts HEX digit (four binary bits) into RAM right justified.
Performs decimal arithmetic on 16 -digit floating point operands (hexadecimal arithmetic is possible with minor changes). Numbers may range from 10^{-130} to 10125. Functions include Addition, Subtraction, Multiplication, Division and a normalization routine.

Convert 2 digit HEX value to decimal range.
The user loads the input variables to CPU registers and specifies one of five multiply precisions ($12 \times 12,12 \times 8,8 \times 8,8 \times 4,4 \times 4$) via a code character in register E.

This subroutine computes the product (16 digit maximum) of two fixed point decimal numbers (each 8 digits maximum).

Program will detect and integrate peaks from an amino acide analyzer and type out the area under the peak on the teletype. Program will detect saddle peaks and do simple baseline correction.

The multiply/divide subroutine calculates the product/quotient by repeated shifted additions or subtractions and by incrementing/decrementing the multiplier/ quotient.

Converts an 8-bit binary number to a BCD number.

PARTIAL PROGRAM INDEX-8-BIT USERS LIBRARY 8-BIT MICROCOMPUTER SOFTWARE LIBRARY

TITLE

Save/Restore CPU State on an Interrupt

RAM TEST PROGRAM

TTY Binary Load Routine

TTY Binary Dump Routine

Memory Dump

PROM Programmer for Intellec 8 Microcomputer Development System

Data Transfer Routine

Move Routine
Morse Code

Binary Search Routine
Floating Point Math Package

Floating Point Format Conversion Package

FUNCTION

Saves the CPU registers and flags to memory at the start of interrupt processing and restores the CPU registers and flags after the interrupt has been processed.

Performs write and read of all zeros and ones, checkerboard test and unique address test. The RAM to be tested is successively initialized to a value and then tested.

Will load memory from a paper tape which is formatted into blocks of 256 or less binary bytes and tests each block against a checksum frame for any read errors. The tape format requires a rubout to indicate start of blocks followed by the starting page address, the starting byte address, the word count up to 256 bytes of data and a checksum in that order. A block of data may overlap pages but may not exceed 256 bytes in length. The last block of data should be followed by two consecutive rubouts to indicate end of data. Program will then branch to page 000 byte 000.

Program will punch the contents of memory to paper tape which is formatted into blocks of 256 or less binary bytes with checksum. Tape format begins with a rubout to indicate start of block followed by the starting page address, starting byte address, word count, up to 256 bytes of data and checksum in that order. Start and end memory locations are entered from TTY keyboard.

Lists memory in octal: start and stop point user definable.
Changes programmer from fixed timing to PROM dependent timing. Program 50\% more than minimum required, ensuring permanency.

Transfer a block of data from any location in memory to another.
Moves a string with a specified length to a specified location in RAM.
Program receives message text typed on an ASR33 teletype and sends morse code equivalent to output port 10 bit 0 . It contains a 256 character buffer so that text can be typed in faster than it is sent.

Uses a binary search method to find a character in a table of characters.
Package contains subroutines for Addition, Subtraction, Multiplication, Division, Negate, Absolute Value, and Test of Floating Point Numbers.

Provides subroutines for conversion between floating point format and ASCII or BCD. Functions are:

1. Floating point to $B C D$ conversion
2. $B C D$ to floating point conversion
3. Floating point to fixed point (integer) conversion
4. Fixed point to floating point conversion

Multiplication of two 16 -bit positive numbers giving a 32 -bit result.
Macro for decrementing the 16-bit binary contents of the H and L registers.
Performs 16 -bit $\times 16$-bit multiplication giving a 16 -bit result.
16-bit 2's complement signed multiply.
To calculate the Base $2 \log$ of a number between 1 and 256.

16-Bit Multiply
DECHL

16-Bit Multiply
SIMPY 16

TITLE

Single Precision (8-bit) Multiply/Divide
Subroutine

DIV16
BCD To/From Binary Conversion

Binary Multiplication

8080 I/O System Status Display

Binary to BCD Routine
$B C D$ to Binary Routine
Match Game
Bit Masking Subroutine
High Speed List
Read and Interrupt Modification

MPY16

Binary to ASCII Digit Converter

Gray to Binary Conversion

I/O Simulation Macros

Tape Duplication

CRC GEN

16 Bit CRC for polynomial X16+X12+X5+1 (polynomial for SDLC)

CRC16

CRECH

FUNCTION

Five subroutines are provided:

1. 8 -bit by 8 -bit multiply for signed integers giving a 16 -bit result
2. 8 -bit by 8 -bit multiply for unsigned integers giving a 16 -bit result
3. 16 -bit by 8 -bit divide for signed integers giving an 8 -bit result
4. 16 -bit by 8 -bit divide for unsigned integers giving an 8 -bit result
5. 16 -bit negate (2 's complement)

Performs a 16 -bit $\times 16$-bit division giving a 16 -bit quotient and a 16 -bit remainder.
Subroutines are provided for:

1. $B C D$ to binary conversion
2. Binary to $B C D$ conversion

Multiplies two binary numbers:

1. Multiplicand: 24 -bits
2. Multiplier: 1 - to 24 -bits

Display current I/O assignment information when invoked by the INTELLEC 8/MOD 80 MONITOR (Version 1.0).

Converts binary value (1- to 24 -bits) to its BCD value (1 to 8 digits).
Converts BCD value (1 to 8 digits) to binary value (maximum 24 bits).
A game to match a player against the processor in a test of logic.
Subroutines for changing 1 to 16 bits of a command word in RAM.
Permits use of a high speed printer with the Intellec 8 monitor (Version 1.0).
Allows printing of headings or operator instructions at the beginning of a Read Operation.

Performs a 16 -bit $\times 16$-bit multiply giving a 16 -bit result.
Converts binary numbers to ASCII characters.
Converts up to 16 bits of cyclic Gray into binary data.
I/O simulation macros for INTELLEC 8/MOD 80 systems allows simulation of input and output instruction based on an assembly time variable.

Duplicates a tape read in from the high speed tape reader by punching a copy on the TTY terminal with a leader added at both ends.

Generate a 16 bit cyclic redundancy check (CRC) for a data string of up to 2^{16} bytes. The generator polynomial and initial conditions are defined by the user.

Produces a 16 bit CRC with 8 bit input bytes. Care should be taken with Most/ Least bit feeding of the data byte and CRC residue. Does not require a table or contain any loops. Requires 24H memory locations and executes in $72.5 \mu \mathrm{sec}$.

This macro calculates a CRC16 check word using the generation polynomial $X * * 16+X * * 15+X * * 2+1$. It can be used to generate a check word for a record that doesn't include one or to check that a record including a check word is correct.

Computes CRC characters for IBM compatible floppy disk. Also works for Synchronous Data Link Control (SDLC).

TITLE

Legible Paper Tape

Banner Print and Punch

Large Character Paper Tape Punch Program

Page Listing Program

Source Paper 'Tape to Magnetic Cassette

I Command

8080 RAM Memory Test

Memory Diagnostic Program

Compare Object Code Tape with Memory

K, Program Trap

DEBUG

Punch Test or TTY Reader/Punch Test

Reader Test

TALLEY R2050 HSPTR Driver

TALLY

Model 101 Centronics Printer Handler

FUNCTION

The program punches legible characters on paper tape, useful for tape labeling.
Create, on a listing device or tape perforator, a graphic representation of certain ASCII characters.

The program will convert an inputted TTY ASCII character to a symbolic representation of that character on the paper tape. The program can also be called to output the ASCII character in the accumulator so the punch feature can be used by other programs such as monitors to print leaders, etc.

Provide facility for listing information in a paginated, numbered format. This is accomplished thru the system software with the console printer.

Will copy a source paper tape onto a magnetic cassette. End statement must be followed by a carriage return. Program will ignore leading blanks.

This program loads HEX code into sequential RAM locations beginning at the address specified. It is useful for loading HEX machine code directly into RAM for corrections, debugging, execution, or PROM programming.

Memory test for Intellec 8/Mod 80 system
Writes test bytes in any range of memory and compares the written bit combination with what is read. Upon detection of a defective memory location, an error message is printed specifying the address, reference and actual values.

This program extends the Intellec 8 system monitor's "Compare" command to check the data from a HEX format tape against the current information stored in memory.

This program provides tow traps (search/wait) for debugging other programs which use RAM memory. Displays the contents of five registers and the trap address when the trap occurs.

A two PROM debugging package to be used in minimum 8080 systems to inspect, dump, move and find data in memory.
(1) Tests paper tape (using high speed or TTY reader),
(2) complete TTY reader/punch test.

Test high speed paper tape reader or TTY reader.
Extension to the Intel 8080 monitor to handle a TALLY model R2050 photoelectric tape reader at 200 cps .

Allows Tally 2200 line printer to be used in the assembly stage of programming with Intellec 8/Mod 80.

Accepts character output for Model 101 Centronics printer from assembler or other source. Buffers print characters in RAM performing TTY compatible operations with control characters. Causes line to be printed upon receipt of line feed. Counts lines and keeps track of pagination. Inserts title at top of each page.

This circuit and program allow paper tape to be read at approximately 150 characters per second. The reader is assigned by monitor command " $A R=1$ ". The program uses electronic damping, under software control, of a stepper motor to increase stepping speed and precision.

Procedure for controlling an ASR733 Texas Instruments terminal equipped with RDC (remote control device) option. Search a line in a file contained in cassette 1 with or without copying on cassette 2. The procedure is linked to the Intellec monitor.

TITLE

Intellec 8/Mod 80-Silent 700 Interface
Interrupt Service Routine

Interrupt Handler Re-entrant

8008 Disassembler

8080 Dis-Assembler

DISASM (8080 Disassembler)

BINLB - $\mathbf{8 0 8 0}$ System Loader

Boot

Octal PROM Programming

8080 IDLE Analyzer for Approximating CPU Utilization

Real Time Executive

Read/write Routines for Interchange Tapes
Proportional Power Control Image Builder
Flag Processing Routine
Software Stack Routines for 8008

Symbol Table List Routine

FUNCTION

Interface TI Silent 700 to Mod 80.

Handles multiple-level interrupts, saving all registers and flags and outputting the status of the current interrupt to an external status latch.

On processor receipt of an interrupt instruction (RST 0-7), this program saves the machine state and previous interrupt level on the stack, transmits the new service level to the interrupt control unit (ICU), executes a subroutine corresponding to the level interrupt received, then restores the machine and ICU to their preinterrupt state before resuming executing the interrupted program.

This program is used to obtain an assembly language listing of a machine coded program in memory.

This program inputs a HEX tape and generates a symbolic assembly language program suitable for modifications and/or assembling.

DISASM is intended as a software development and debugging aid. Operating on resident object code, it produces an assembly language equivalent which is printed on a TTY terminal. In its present form, the program starts at a given memory address and steps sequentially through memory until manually halted.

Loads HEX format paper tape produced by macro assembler on GE Timesharing into 8080 system. Also provides TTY input and output subroutines. BINLD can also produce a binary dump of itself for bootstrap loading.

To allow for bootstrap loading of program and for patching of programs or data in memory via the teletype. The program uses less than 200 bytes of memory and may be placed in ROM or entered manually.

This program accepts sets of 3 octal numbers. The fourth character (unless it is a rubout) will cause the BYTES to be placed in memory starting at 100 H . Any invalid octal character input in the first 3 positions will cause a carriage return and line feed to be output to the teletype and the line to be ignored. Any number of sets may be input (up to the practical limit of 100H). Whenever a "bell" is typed, the address of the last valid byte on Page 1 will be displayed on the register/flag lights and control will pass to the system monitor. To program the PROM, type P100, 1NN, 0 where NN is the HEX number displayed on the lights.

Displays amount of time 8080 would have spent in an idle loop. When RUN time is compared with idle time, the percent of CPU utilization can be calculated. Time display is in memory, in ASCII.

Performs processor initialization, period and demand scheduling, routine termination, and waits during idle time.

Subroutines read and write blocks and characters for any common audio cassette recorder. Variable redundancy allows high-speed or highly reliable operation.

This program builds an "ON-OFF" image in RAM to allow proportional power control using zero crossing solid state relays.

A routine for contact closure debounding and processing.
Subroutines provided for PUSH, POP and EXCHange A with top of stack, and to save processor state on stack in case of an interrupt, and to restore it again.

This program will print the user's symbols in alphabetical order followed by the address the 8008 Macro Assembler has assigned to each symbol.

TITLE

Digital to Analog Conversion for Eight Outputs

Binary to HEX Routine

Binary to BCD Subroutine

HEX to decimal conversion

"VALUE" ASCII to HEX check and convert routine

BCD input and direct conversion to binary routine

BINDECBIN

MATH

Elementary Function Package

8080 Foating Point Package with

 BCD Conversion Routine8080 Least Squares Quadratic Fitting Routine

Floating point procedures

PL/M floating point interface
Floating point decimal \& HEX format conversion

N -byte Binary Multiplication and leading zero blanking

Subroutine DEMULT

FUNCTION

The program processes a list of eight 16 bit values to generate eight pulse width modulated voltages which can be filtered to provide inexpensive digital to analog conversion useful for process control or other low speed requirements.

To read a paper tape in binary (EBCDIC) format from the Intel high speed paper tape reader to the MCS-80 system.

Converts unsigned binary number in D, E to $5 B C D$ digits.
Converts any HEX number between 0 and FFFFH to the decimal equivalent.
Using routines already available in the Intellec 8/Mod 80 monitor, "VALUE", when called will get an ASCII character from the assigned console device, check it for a valid hex digit and convert it to a four bit memory value which is returned in the ACCumulator.

Fast and efficient BCD to binary conversion code. Presented in pseudo subroutine form for implementation in ROM to allow reading of BCD input value, conversion to binary representation and branching based on loading $\mathrm{H} \& \mathrm{~L}$ registers to PC.

Converts hex numbers input on TTY to decimal numbers and vice versa. Decimal numbers must be ended with D, hexadecimals with H. Conversion begins with space. If first character input is CR, control is given back to monitor. Largest number handled is two bytes binary.

Includes routines for fixed and floating point arithmetic together with a demonstration program that performs algebraic evaluation and allows unlimited parentheses nesting. An expression within parentheses can be evaluated and displayed by "=" and is preserved as a subtotal, etc.

Calculates floating point:
square root
logarithm
exponential function
sine
cosine
arc tangent
hyperbolic sine
hyperbolic cosine
Performs floating addition, subtraction, multiplication, division, fixing, floating, negation, and conversion from floating point to BCD with exponent.

Performs summations and matrix manipulation for fitting up to 256 floating point $X-Y$ pairs to a function of the form:

$$
a X^{2}+b X+c=Y
$$

Dummy PL/M interface procedures.
Interfaces PL/M conventions with floating point assembler format.
The program converts a number of 27 characters maximum to standard 13 digit decimal format and to floating point accumulator form in HEX format on the teletype.

The program performs binary multiplication on two numbers and returns a result that may be up to 255 bytes in length.

To multiply M decimal digits by N decimal digits and store the product (7 digits $\times 3$ digits as written, but easy to expand as required.)

TITLE

BCD Multiplication

MUL/DIV multi-precision pack for 8080

Double precision multiply

16 Bit Square Root Routine

Floating Point Square Root

SQRTF

Subroutine SQRT

Fast Floating Point Square
Root Routine

Natural logarithm

Subroutine LOG

Approximating Routine

Sin X, Cos X Subroutines

RMSTF

Binary search

Random Number Generator Subroutine

8-bit Pseudo Random Number Generator

16-bit Random Number Generator

FUNCTION

Multiplies up to a 6 digiṭ BCD number by a 4 digit BCD number, providing a 10 digit $B C D$ result. All numbers are unsigned.

Signed fixed-point binary fraction multiply and divide. Double-precision inputs, double-precision output for divide and 4-byte output for multiply.

To multiply two 16 -bit numbers, returning the most significant 16 bits (in address form) thru the appropriate registers to the calling program.

Return 16 bit square root (8 bit whole number joined with 8 bit fraction) of a 16 bit argument. The result conforms to standard signed number convention; therefore, its highest order bit will always be zero. The argument must have zeros in its two highest order bits, for its square root to lie in the valid range of the signed result.

Math \& numerical Manipulation Programs. Operations performed are: test for negative argument (overflow set and return) computation of the square root for positive arguments

Generates 8 bit root of 16 bit number.

This subroutine takes the square root of a number in floating point notation.
Calculate square root of a floating point number by Heron's method. Execution time less than 50 ms for any number.

Computes the natural logarithm of a number between 1 and 65535.
This subroutine takes the log to any integer base of any positive floating point number.

To solve functions such as the log, the antilog, the sine and the tangent function. The program given is set up to solve the antilog (base 2) function.

Generates sine or cosine accurate to 8 bits of an input angle that is accurate to 8 bits. Uses a Chebyshev Economization of Taylor Series for Cosine X. Sine X is generated by complementing the angle X with respect to $90^{\circ}\left(x^{\prime}=90^{\circ}-X\right)$ and then taking Cosine X .

To calculate the integration " T " of any continuous function " $F(x)$ " between two limits "a" and " b ".

Program searches a table of up to 128 entries. Each entry is composed of a 1 byte argument (Search Key) and an associated result. The result field may be up to 255 bytes for each argument. Result fields must all be the same length.

Subroutine to generate a random number between 0 and $177_{8}\left(125^{10}\right)$.

The program reads data from page 0 , address FF and generates a random number. The new number is written back in the same location. All numbers except zero are generated. Zero is a disallowed state and is corrected in the program.

The subroutine implements a linear congruential sequence which generates 16 -bit random numbers. The random numbers produced range from 0000 to FFFF with a period less than or equivalent to $2^{* *} 16$. An 8 -bit random number is available as the upper byte of the 16 -bit random number.

$$
X(N+1)=(2053 * X(N)+13849) \bmod 2 * * 16
$$

TITLE

PL/M Histogram Procedure and Random Number Generator

RANDOM\$BITS

Clock Subroutine

Interrupt Driven Clock Routine

Calendar Subroutine

PASS

Address

Data Array Move

Shellsort

Text Storage Program

Time Sharing Communications

A Generalized Stepper Motor Driver Program

FUNCTION

Main program generates an 8 -bit shift register sequence by XORing the first and last bits and shifting the result into the next random numbers bottom bit. 1000 numbers are generated and then histogramed. Histogram procedure sets up an output histogram array and then prints the histogram on the TTY when commanded after printing. The array is not zeroed so that intermediate results may be displayed without effect on the final histogram.

A Non-multiplicative pseudo-random number generator.
Maintains a current time of day, decimal adjusted in BCD, of hours, minutes, and seconds. Must be invoked once each second, usually by an external interrupt. Time is stored in three bytes of memory, in the 24 -hour system or optically in the 12-hour system.

Updating of clock located in RAM based on 100 ms time intervals. Pulses arriving on interrupt line. Four storage locations reserved for 100 ms counter, secs counter, mins counter and hour counter. One location for interval counter one for preset interval and one for flag indicating interval has elapsed. Updating of clock takes about 70 microsecs.

Uses three bytes of RAM to store the current date arranged as two BCD digits per byte. The date is adjusted for months with 28, 29, 30 or 31 days and February is adjusted for leap years 1976, 1980 and 1984.

Program PASS transfers addresses of parameters between a calling program and subroutine.

Subroutines for dynamic memory allocation and addressing.
A contiguous array of data may be relocated in memory, regardless of the magnitude and direction of the move. The source and destination array locations may overlap. The maximum array size is 2^{16} bytes.

Sorts arrays in place using Shell's method of diminishing increment.
Allows text to be stored in memory using a letter of the alphabet as a pointer. After the message is stored, it can be retrieved by depressing a single key on the TTY. Up to 32 messages may be stored and retrieved independently.

To communicate with medium to large scale computer systems as an external time-share user.

Operations performed by the program are: using entry variables of numiber of steps, clockwise or counterclockwise direction and speed of steps - several programs are illustrated for moving a stepper motor in either direction then stopping, moving N steps forward then return N steps, moving motor continuously in either direction until interrupted by a TTY keyboard entry, also programs using an LEDphotodetector sensor for absolute motor position.

SOFTWARE

8-BIT

CROSS PRODUCTS

Cross Assembler for HP2100
Cross Assembler for PDP-11
Macro Assembler for PDP-11
Absolute Loader for PDP-11
LDA Tape Format
8008 Macro Definition Set for Assembly on PDP-11
8080 Macro Definition Set for Assembly on PDP-11
8080 Cross Compiler on PDP- 11
Cross Assembler for PDP-11
Cross Assembler for Nova 1200

Cross Assembler for Nova 1220, IBM 360/40 and CDC3300
Nova Cross Assembler for Intel 8080
Cross Assembler for Nova
Intel 8008 Cross Inverse Assembler for HP 2100
8080 Cross Assembler for HP 2100 DOS
8008 Cross Assembler for HP 3000
8080 Cross Assembler for HP 3000
PL/M 80 Pass 3

GAMES

NIM	Maze
NIM	Game of Life
Blackjack	Numbers
The Word Game	Kalah
Gambol	An Adaptive Game Program
Mastermind	Match Game

Program Title

Function

Required
Hardware

Required
Software

Input Parameters

Output
Results

Registers Modified:	Assembler/Compiler Used:
RAM Required:	Programmer:
ROM Required:	Company:
Maximum Subroutine Nesting Level:	Address:

INSTRUCTIONS FOR PROGRAM SUBMITTAL TO MCS USER'S LIBRARY

1. Complete Submittal. Form as follows: (Please print or type)
a. Processor (check appropriate box)
b. Program title: Name or brief description of program function
c. Function: Detailed description of operations performed by the program
d. Required hardware:

For example: TTY on port 0 and 1
Interrupt circuitry
I/O Interface
Machine line and configuration for cross products
e. Required software:

For example: TTY routine
Floating point pack age
Support software required for cross products
f. Input parameters: Description of register values, memory areas or values accepted from input ports
g. Output results: Values to be expected in registers, memory areas or on output ports
h. Program details (for resident products only)

1. Registers modified
2. RAM required (bytes)
3. ROM required (bytes)
4. Maximum subroutine nesting level
i. Assembler/Compiler Used:

For example: PL/M
Intellec 8 Macro Assembler
IBM 370 Fortran IV
j. Programmer, company and address
2. A source listing of the program must be included. This should be the output listing of a compile or assembly, Extra information such as symbol table or code dumps is not necessary.
3. A test program which assures the validity of the contributed program must be included. This is for the user's verification after he has transcribed and assembled the program in question.
4. A source paper tape of the contributed program is required. This insures that a clear, original copy of the program is available to photo-copy for publication in a User's Library update publication.

Send completed documentation to:

Intel Corporation
User's Library
Microcomputer Systems
3065 Bowers Avenue
Santa Clara, California 95051

MICROCOMPUTER TRAINING MICROCOMPUTER WORKSHOPS

Abstract

Microcomputers are being used in hundreds of applications from simple controllers to complex data processing systems. To enable users to bring microcomputers into their applications, Intel is offering a selection of 3 and 4 day workshops that are designed to provide you with the "tools" for making optimum use of Intel microcomputers in system development.

PREREQUISITES: To attain benefit from course presentation, some background in logic design and a basic knowledge of programming is necessary.

ATTENDANCE: Attendance is limited to (15) enrollees.

TUITION: The fee for each workshop is $\$ 350$, which includes course materials, computer time, and luncheons.

SCHEDULE: These workshops are scheduled to be held at Intel Corporation Training Centers in Santa Clara, CA and Boston, MA.

REGISTRATION: Contact your Intel Sales Office for details.

COURSE OBJECTIVE: This workshop will prepare the student to design and develop a system using the Intel ${ }^{\circledR} 8080$ microprocessor through the use of lecture, demonstration, and laboratory "hands-on" experience with the Intellec MDS development system and ICE-80.

COURSE OUTLINE:

DAY 1

Introduction
a. Microprocessor System

Fundamentals
Function/Organization/
Programming
b. Introduction to the $\mathbf{8 0 8 0}$

1. Basic System
a) CPU
b) Memory
c) Input/Output:
(Programmed/Interrupt/DMA)
2. Programming Model
c. Languages
3. Machine Code
4. Assembly Language
5. PL/M

Instructions
a. Input/Output
b. Register/Memory Reference
c. Control/Arithmetic

The Intellec MDS
a. Function/Operation
b. System Monitor

The Text Editor
a. Structure/Commands
b. Operation

Laboratory
a. Using the System Monitor
b. Using the Text Editor

DAY 2

The Macro Assembler
a. Syntax/Pseudo-Instructions
b. Operation

System Timing
a. Instruction
b. Clock
c. Address/Data

Input/Output Programming
Subroutines
a. Invocation
b. Stack Memory
c. Parameter Passing

Teletype Programming Requirements
The Interrupt System
a. Definition
b. RST Instruction
c. Service Subroutines

Laboratory
a. Using the Assembler
b. Program Assembly and Execution

DAY 3

Branch Table
a. Application
b. Construction

Direct Load/Store Instructions
System Monitor Debugging Function
System Design Process
a. Memory and I/O Requirements
b. Bus Control
c. Clocks
d. Hardware/Software Trade-offs

Additional Development Aids

Laboratory
a. Program Assembly and Execution
b. PROM Programming

DAY 4
What is "In Circuit Emulation" ICE-80 Description
a. Functional Block Diagram
b. Theory of Operation

ICE-80 Laboratory
a. Operating the ICE-80
b. Emulating an 8080 Based System

COURSE OBJECTIVE: This workshop will prepare the student for writing and debugging PL/M programs using lecture, demonstration, and laboratory "hands-on" experience in operating PL/M interactively from a high-speed, time-shared computer terminal.

COURSE OUTLINE:

DAY 1

Introduction
a. Overview of PL/M
b. Preview of Course

Definitions

a. Symbols
e. Data Elements
b. Identifiers
c. Reserved Words
f. Expressions
d. Comments
g. Statements

Data Elements

a. Variables
b. Subscripted Variables
c. Data Type
d. Constants

Operators, Operations and Priorities
a. Arithmetic
b. Boolean

Evaluating Expressions Statements
a. Redefine
b. Basic
c. Conditional

Blocks

a. Concept and Use
b. Scope of Declarations

1. Global and Local
2. Nested and Parallel Blocks

Laboratory

a. Introduction to Data Terminal and Timesharing
b. Compiling a PL/M Program

Assignment

Sample Problem to Flowchart and Program Outside Class

DAY 2

Review
Procedures
a. Declaration
b. Invocation
c. Program Construction

Data References
Statement Labels
Unconditional Transfers Compile-Time Macro Processing Input/Output Processing Simulating an 8080 System Laboratory
a. Compile Programs
b. Execute Programs

DAY 3

Review
Memory Mapping
Assembly Language Interface
Interrupt Processing
Predeclared Variables and Procedures
a. LENGTH and LAST
b. Condition Code
c. Memory Vector
d. TIME Procedure
e. Type Transfer
f. Decimal Arithmetic
g. Shifts and Rotates

Laboratory
a. Compile Programs
b. Execute Programs

COURSE OBJECTIVE: This workshop will provide the student with an in-depth understanding of the Series 3000 family through the use of lecture and demonstration. Microprogramming and design examples are presented.

COURSE OUTLINE:

DAY 1
Introduction
a. Introduction to Microprogramming
b. The Series 3000 Component Family
c. Series 3000 System Overview

CPU Design Example
a. CPU System Requirements
b. Architecture of a CPU
c. Developing a Macro-instruction Set
d. Interrupt Handling
e. Microprogram Mapping

DAY 2

Design Techniques
a. Conditional Clocking
b. K-Bus
c. Micro-instruction Field Extension
d. Micro-subroutines
e. Pipelining
f. Timing Analysis

Controller Design Example
a. Disc Controller System

Requirements
b. Architecture of a Disc Controller
c. Microprogram Implementation

DAY 3

Development Support
a. Introduction to CROMIS, the Series 3000 Cross Micro-Assembler
b. MDS-800 Microcomputer Development System
c. ICE-30 In-Circuit Emulator
d. ROM Simulator
e. Demonstration

MCS-4/40 WORKSHOP

COURSE OBJECTIVE: This workshop will prepare the student to design and develop systems using the Intel ${ }^{\circledR} 4040$ and 4004 through the use of lecture, demonstration, and laboratory "hands-on" experience with the Intellec 4 MOD 40 development system.

COURSE OUTLINE:

DAY 1

Introduction
a. Basic Microcomputer Block Diagram

1. Function
2. Uses
b. MCS-40 Block Diagram
3. CPU $-4004 / 4040$
4. Memory - 4001, 4002, 4308, 4289
5. $\mathrm{I} / \mathrm{O}-4207,4209,4211,4003$

Basic System Timing
Description of Major Elements of CPU
MCS-40 Instructions
a. Basic Machine Instructions
b. Accumulator Group Instructions
c. I/O and RAM Instructions
d. 4040 Group Instructions

MCS-40 Assembler
a. Syntax
b. I/O Formats
c. Coding Examples

Laboratory - Intellec 40 Operation
a. Control Console Use
b. TTY Input
c. High-Speed Reader Operation

Homework Utilizing Assembler
Language to Code Sample Programs

DAY 2

Review Sample Programs
The Interrupt System
a. Definition
b. Instructions
c. Service Subroutines

System Monitor Description
System Development Aids
a. Intellec 4 MOD 40
b. Cross Assemblers
c. User's Library

System Interrelation
a. Connections

1. Hardware
2. Software
b. ROM/RAM Configurations
c. Interface Design
d. MCS-40 Family Components

Sample System Design

Laboratory
a. Using the Assembler
b. Debug Using System Monitor and Console

DAY 3

Review System Design
Hardware/Software Trade-offs
Laboratory
a. Hands-On Programming Time
b. PROM Programming

Summary and Course Review

TIMEKEEPING CIRCUITS

SINGLE CHIP LCD TIME/SECONDS/DATE WATCH CIRCUIT

\author{

- On Chip Voltage Multiplier Provides 4.5V For Driving 3½ Digit Field Effect Display
 - Only Two Switches Required For Complete Operation Of The Watch
}
■ Operates With 32.768 kHz Quartz Crystal
- Anti-Bounce Protection On Switch Inputs
- AM/PM Indication When Setting Time

The 5810A is a low power timekeeping circuit intended for use with 7 segment, $3-1 / 2$ digit field effect liquid crystal displays. All of the circuitry required in a Time/Seconds/Date watch is contained on this single chip.
An on-chip voltage multiplier is incorporated on the 5810A. The multiplier derives a 4 to 4.8 volt display drive supply from the 1.5 volt battery. This multiplier requires only three external capacitors.
The 5810A, in conjunction with an external quartz crystal and trimmer capacitor, oscillates at 32.768 kHz , divides down and decodes Seconds, Minutes, Hours, and Date of Month.

The 5810A will normally display Hours and Minutes. Closure of the D/C command switch will cause Seconds to be displayed in the Minutes position and the Hours will be blanked. A second closure of the D/C command switch will cause the Date to be displayed in the Minutes position and Hours to be blanked. A third closure of the D/C command switch will cause a return to the normal mode displaying Hours and Minutes. Switch S is used in conjunction with switch D/C for timesetting operations (see page 11-4 for description of operation). Thus only two switches are required for complete operation of the watch.
The colon is flashed at a 1 Hz rate in all three display modes.
To facilitate testing and calibration a fast test input, reset and oscillator calibrate output are provided. These functions are described on page 11-4.
The 5810A is manufactured with complementary silicon gate MOS. This extremely low power technology is ideally suited for the manufacture of devices designed to operate on small batteries for long periods of time.

CHIP TOPOGRAPHY

PAD ASSIGNMENT

1. D/C	21. B3
2. S	22. Fast Test
3. VDD	23. C3
4. GND	24. D3
5. Cap 1	25. E3
6. Cap 1	26. C2
7. Ca 2	27. A2 + D2
8. Cap 2	28. E2
9. VTT	29. L
1. G1	30. C1
11. F1	31. D1
12. A1	32. E1
13. B1	33. K
14. G2	34. Common
15. F2	35. Calibrate Out
16. A2 + D2	36. Oscillator Cap 1
17. B2	37. Oscillator Cap 2
18. G3	38. OScillator Out
19. F3	39. Oscillator In
20. A3	40. Reset

Absolute Maximum Ratings*

Temperature Under Bias . $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage $V_{D D}$ with respect to GND . $\quad-8.0 \mathrm{~V}$ to +0.3 V
Voltage on all Inputs or Outputs with respect to GND . V VD $-0.3 V$ to +0.3 V
Power Dissipation
100 mW
*COMMENT:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{DD}}=-1.6 \mathrm{~V}$; fosc $=32.768 \mathrm{kHz}$, Unless Otherwise Specified.

Symbol	Parameter	Min.	Max.	Unit	Test Condition
IDD	Total Average Internal Current		5	$\mu \mathrm{A}$	No Output Load
			10	$\mu \mathrm{A}$	$1 \mu \mathrm{~A}$ Output Load
$V_{T T}$	Multiplier Output Voltage		-4.8	V	$\mathrm{l}_{\text {OUT }}=0.0 \mu \mathrm{~A}$
		-4.0		V	$\mathrm{V}_{\text {DD }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1.0 \mu \mathrm{~A}$
IIHS	Switch Input High Current (D/C, S)		4	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$V_{D D}-0.3$	$\mathrm{V}_{D D^{+}} 0.4$	V	
$V_{1 H}$	Input High Voltage	-0.3	0.3	V	
$V_{D D}$ START	Minimum Oscillator Start Voltage	-1.4		V	
$V_{D D}$ SUST	Minimum Oscillator Sustaining Voltage	-1.3		V	
$V_{\text {OLC }}$	Output Low Voltage Common		$\mathrm{V}_{\mathrm{TT}}+0.1$	V	$\mathrm{V}_{\mathrm{TT}}=-4.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OLC}}=1.0 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OHC}}$	Output High Voltage Common	-0.1V		V	$\mathrm{V}_{\mathrm{TT}}=-4.0 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OHC}}=-1.0 \mu \mathrm{~A}$
VOLS	Output Low Voltage Segment		$\mathrm{V}_{\mathrm{TT}}+0.1$	V	$\mathrm{V}_{\mathrm{TT}}=-4.0 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OLS}}=50 \mathrm{nA}$
$\mathrm{V}_{\text {OHS }}$	Output High Voltage Segment	-0.1V		V	$\mathrm{V}_{\mathrm{TT}}=-4.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OHS}}=-50 \mathrm{nA}$

BLOCK DIAGRAM

Output Waveforms

UNENERGIZED SEGMENT

Time Display

Switch input D/C controls the time display modes. Each closure of switch D/C (D/C input = high) causes a change in the display mode in the sequence Hours and Minutes \rightarrow Seconds \rightarrow Date \rightarrow Hours and Minutes. The following diagram illustrates this:

Time Setting

Switch input S controls the time setting modes. This switch input is active only when the circuit is in the Hours and Minutes display mode. Each closure of switch $\mathrm{S}(\mathrm{S}$ input $=$ high $)$ causes a change in the time set modes in the sequence Hours and Minutes \rightarrow Minutes \rightarrow Seconds \rightarrow Hours \rightarrow Date \rightarrow Hours and Minutes. Closure of switch D/C when in the Minutes, Hours, or Date time set modes will cause that mode to be advanced at a 1 Hz rate. Closure of switch D/C in the Seconds synchronize mode will cause the Minutes to be advanced by one and the Seconds to be reset to zero and held until the D/C input is returned high. The colon is displayed only in the Hours PM state in the time set mode. The following diagram illustrates this:

Reset

The reset input may be used to initialize all time counters to the zero state. All time counters are automatically reset to zero when voltage is initially applied to the circuit. The zero state is 12:00 AM, 00 Seconds, 0 Date.

Fast Test

This input by-passes the oscillator stage and prescaler 1, allowing cycling of the counters at rates faster than real time.

Calibration Output

This output brings out the oscillator frequency divided by 32 and may be used for calibration of the oscillator.

Display Segment Format

DIGITS D1, D2 AND D3 TRUTH TABLE

number	SEGMENTS						
	A	B	C	D	E	F	G
\square	1	1	1	1	1	1	0
1	0	1	1	0	0	0	0
$己$	1	1	0	1	1	0	1
\exists	1	1	1	1	0	0	1
4	0	1	1	0	0	1	1
5	1	0	1	1	0	1	1
6	1	0	1	1	1	1	1
7	1	1	1	0	0	0	0
$日$	1	1	1	1	1	1	1
\square	1	1	1	1	0	1	1

Typical Application

GENERAL INFORMATION

GENERAL INFORMATION

Description	Page No.
Ordering Information	$12-3$
Packaging Information	$12-4$
Standard Product Processing	$12-8$
Additional Literature	$12-10$
Sales Offices	Inside Cover

Semiconductor components are ordered as follows:

Examples

P5101L	CMOS 256×4 RAM, low power selection, plastic package, commercial temperature range
C8080A2	8080A Microprocessor with 1.5μ s cycle time, hermetic package Type C, commercial temperature range
MD3601/C	256×4 PROM, hermetic package Type D, military temperature range, MIL-STD-883 Level C processing*
MC8080A/B	8080A Microprocessor, hermetic package Type C, military temperature range, MIL-STD-883 Level B processing*

*On military temperature devices, the /B suffix indicates MIL-STD-883 Level B processing, suffix /C indicates MIL-STD-883 Level C processing.

Systems boards, kits and software are ordered using designated part numbers as shown in this catalog.

The latest Intel price book should be consulted for availability of various options.

16-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPED

16-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P

16-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE C

18-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P

18-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE D

18-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE C

22-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE D

22-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE B

22-LEAD HERMETIC DUAL IN-LINE

 PACKAGE TYPE C

22-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P

24-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P

24-LEAD HERMETIC DUAL IN-LINE PACKAGE

TYPE C

24-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE B

TYPE C OR H*

24-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE D

28-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P

28-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE D

28-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE C

40-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P

40-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE D

40-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE C

[^17]
Intel provides a variety of brochures, users' manuals, and other literature. The list below includes the most popular publications available at the time of publication. If you wish to receive one of the listed documents or have specific requirements for more detailed information, contact your local distributor, sales office, or write Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051, Attention: Literature Department.
 International locations also provide selected literature in Japanese, French or German.

Complimentary Information

BROCHURES

MCS-80'" Brochure
MCS-40" Brochure
Intellec® MDS Brochure
MCS Users' Library Brochure
OEM Single Board Computer Brochure
Selection of best approach with 4K RAMs: 16, 18 or 22 pin.

REFERENCE CARDS

8080 Assembly Language reference card
8008 Assembly Language reference card
MCS-40 Assembly Language reference card
RELIABILITY REPORTS
RR-6 1702A Silicon Gate MOS 2K PROM
RR-7 2107A/2107B N-Channel Silicon Gate MOS 4K RAMs
RR-8 Polysilicon Fuse Bipolar PROMs
RR-9 Static MOS RAMs

Manuals and Handbooks

(Please enclose check or money order payable to Intel Corporation with your order)

> Price
Memory Design Handbook: The complete source of application information on RAMs, ROMs, Serial Memory and Support Circuits \$5.00
8080 Microcomputer Systems User's Manual 5.00
MCS-8 User's Manual 2.50
8080 Assembly Language Programming Manual 5.00
8008 Assembly Language Programming Manual 5.00
8008 and 8080 PL/M Programming Manual 5.00
MCS-40 User's Manual 5.00
4004 and 4040 Assembly Language Programming Manual 5.00
Series 3000 Reference Manual 5.00
Series 3000 Microprogramming Manual 5.00

SALES AND MARKETING OFFICES

ALABAMA
Barnhill and Associates
7844 Horseshoe Trail
Huntsville 35802
Tel: (205) 883-9394
ARIZONA
Sales Engineering, Inc.
7155 E. Thomas Road, No. 6
Scottsdale 85252
Tel: (602) 945-578
TWX: 910-950-1288

CALIFORNIA

Intel Corp.*
3065 Bowers Avenue
Santa Clara 95051
TWX:910-338-002
Mac-1
P.O. Box 1420

Cupertino 95014
Tel: (408) 257-9880
Earle Associates, Inc.
4433 Convoy Street
Suite A
San Diego 92111
Tel: (714) 278-544
TWX: 910-335-1585
Intel Corp.
1651 East 4th Stroot
Suite 228
Santa Ana 9270
Tel: (714) 835-9642
TWX: 910-595-1114
COLORADO
Intel Corp.
12075 East 45th Avenue
Suite 310
Denver 80239
Tel: (303) 373-4920
TWX: 910-932-0322

EUROPEAN MARKETING OFFICES

BELGIUM

Intel International
Rue du Moulin à Papier
51-Boite 1
B-1160 Brussels
Tel: (02) 6603010
TELEX: 24814

ORIENT MARKETING OFFICES
JAPAN
Intel Japan Corporation *
Flower Hill-Shinmachi East Bldg.
1-23-9, Shinmachi, Setagaya-ku
Tokyo 154
Tel: (03) 426-9261
TELEX: 781-28426

INTERNATIONAL DISTRIBUTORS

AUSTRALIA

A. J. Ferguson (Adelaide) PTY, Ltd. 44 Prospect Rd.
Prospect 5082
South Australia
Tel: 269-1244
TELEX: 82635

AUSTRIA

Bacher Elektronischo Gerate GmbH
Meidlinger Hauptstrasse 78
A 1120 Vienna
Tel: (0222) 836396
TELEX: (01) 1532

BELGIUM

Inelco Belgium S.A.
Avenue Val Duchesse, 3
B-1160 Brussels
Tel: (02) 6600012

DENMARK

Scandinavian Semiconductor
Supply A/S
20, Nanasgade
Tel: (01) 935090
TELEX: 19037

FLORIDA
Intel Corp MICHIGAN
1090 NE 27th Terrace
Pompano Beach 33062
TWX 510-956-9407
Intel Corp.
5151 Adanson Street, Suite 200-3
Orlando 32804
Tel: (305) 628-2393
TWX: 810-853-9219
ILLINOIS
Intel Corp.*
900 Jorie Boulevard
Suite 138
Oakbrook 60521
TWX:910-651-510

KANSAS

Technical Representatives, Inc. 801 Clairborne
Olathe 66061
Tel (913) 782-1177
TWX: 910-749-6412

MARYLAND

Barnhill and Associates
57 West Timonium Road
Timonium 21093
Tel: (301) 252-7742
Intel Corp.*
57 West Timonium Road
Suite 307
Timonium 21093
Tel: (301) 252-7742
MASSACHUSETS
Datcom
55 Moody Street
Tel: (617) 891-460
TELEX: 92-3462
Intel Corp.*
187 Billerica Road, Suite 14A
Chelmsford 01824
Tel: (617) 861-1136
TWX: 710-343-6333
MICHIGAN
725 South
Suite 288
Birmingham 48011
Tel: (313) 642-7018
TWX: $910-420-1212$
TELEX: 231143

MINNESOTA

Intel Corp.

Bloomington 55437
Tel: (612) 835-6722
TWX: 910-576-2867

MISSOURI

Trade Center BIdg.
Hazelwood 63042
Tel: (314) 731-5200
TWX: 910-762-0618
NEW JERSEY
Intel Corp.
2 Kilmer Road
Tel: (201) 985-9100
TWX: 710-480-6238
NEW YORK
Syosset 11791
TWX: 510-221-2198
Intel Corp.
474 Thurston Road
TWX. 510-253-384
395 Cleveland Drive
Buffalo 14215
Tel: (716) 832-4271
280 Metro Park
Rochester 14623
Tel: (716) 442-3290

FRANCE

Intel Corporation, S.A.R.L.
74, Rue D'Arcueil
Silic 223
94528 Rungis Cedex
Tel: (01) 6872221
TELEX: 270475

HONG KONG
Q1 (Far East) Ltd.
Tak Yan Commercial Bldg. 6th floor
30-32 D'Aguilar Street, Central
Hong Kong
Tel: 5-260311
TELEX: 83138 JADE HX

725 South Adams Road

675 Southgate Office Plaza
5001 West 80th Street

Technical Representatives, Inc
300 Brookes Drive, Suite 108

6901 Jericho Turnpike
Tel: (516) 364-9860

Rochester, N.Y. 14619

Ossmann Components Sales Corp

Ossmann Components Sales Corp.

SCANDINAVIA

Intel Scandinavia A/S*
Lyngbyvej 32 2nd Floo
DK-2100 Copenhagen East
Denmark
Tel: (01) 182000
TELEX: 19567
Intel Sweden AB*
Box 86
S-16212 Vällingby 1
Sweden
Tel: (08) 375370
TELEX: 13164 (ABCENT)

TAIWAN
Taiwan Automation Co.*
8th Floor, 140, Section 1
Chung Hsiao E. Road
Taipei
Tel: 393-33-34
TELEX: 11942 TAIAUTO

FINLAND
Fintronic $A B$
Karjalankatu 2C
SF 00520
Helsinki 52
Tel: (90) 735488
TELEX: 123107

FRANCE

Tekelec Airtronic
Cite des Bruyeres
Rue Carle Vernet
92310 Sevres
Tel: (1) 0277535
TELEX: 250997
GERMANY
Alfred Neye Enatachnik GmbH
Schillerstrasse 14
D-2085 Quickborn-Hamburg
Tel: (04106)612
HONG KONG
ASTEC International
Keystone House, 2nd Floor
Hankow Road, Kowloon
TELEX: 74899 ASCOM

ISRAEL
 Telsys Ltd

54, Jabotinsky Road
IL-Ramat - Gan 52464
Tel: (3) 739865
TELEX: 32392
ITALY
Eledra 3 S S.P.A.
Viale Elvezia, 18
20154 Milan,
Tel: (02) 3493041
TELEX: 39332
Eledra 3S S.P.A
Via Giuseppe Valmarana, 63
00139 Rome, Italy
Tel: (06) $8127290-8127324$

JAPAN

Pan Electron
No. 1 Higashikata-Machi
Midori-Ku, Yokohama 226
Tel: (045) 471-8811
TELEX: 781-4773

NEW YORK (cont)
Ossmann Components Sales Corp.
1911 Vestal Parkway E
Vestal 13850
Tel: (607) 785-9949
Ossmann Components Sales Corp.
132 Pickard Building
Syracuse 13211
Tel: (315) 454-4477
TWX: 710-541-1522
Ossmann Components Sales Corp.
140 Pine Street
Kingston 14201
Tel: (914) 338-5505
TWX: 510-247-194
Intel Corp.
55 Market Street
Poughkeepsie, New York 12601
Tel: (914) 473-2303
NORTH CAROLINA
Barnhill and Associates
913 Plateau Lane
Raleigh 27609
Tel: (919) 876-5617

OHIO
Intel Corp.*
8312 North Main Street
Dayton 45415
Tel: (513) 890-5350
TELEX: 288-004
Intel Corp.*
27801 Euclid Ave.
Suite 450
Tel: (216) 289-0101
PENNSYLVANIA
Vantage Sales Company
21 Bala Avenue
Bala Cynwyd 19004
Tel: (215) 667-0990
TWX: 510-662-5846
Intel Corp.*
1777 Walton Rd.
Suite 328A
Blue Bell 19422
Tel: (215) 542-9444
TWX: 510-661-0709

ENGLAND

Intel Corporation (U.K.) Ltd.*
Broadfield House
4 Between Towns Road
Cowley, Oxford OX4 3NB
Tel: (0865) 771431
TELEX: 837203

TENNESSEE
Barnhill and Associates
206 Chickasaw Drive
Johnson City 37601
Tel: (615) 928-0184
Barnhill and Associates
1806 Cour De Chartres
Germantown 38138
Tel: (901) 754-0483
TEXAS
Evans \& McDowell Associates
13777 N. Central Expressway
Suite 405
Suite 405
Dallas 75231
Tel: (214) 238-7157
TWX: 910-867-4763
Evans \& McDowell Associates
6610 Harwin Avenue, Suite 125
Houston 77036
Tel: (713) 783-2900
Intel Corp.*
6350 L.B.J. Freeway
Suite 178
Dallas 75240
Tel: (214) 661-8829
TWX: 910-860-5487
VIRGINIA
Barnhill and Associates
P.O. Box 1104

Lynchburg 24505
WASHINGTON
E.S./Chase Co.
P.O. Box 80903

Seattle 98108
Tel: (206) 762-4824
Twx: 910-444-2298

CANADA
Multilek, Inc.
4 Barren Street
Ottawa, Ontario K2J 1G2
Tel: (613) 825-4695
TELEX: 053-4585

GERMANY
Intel Semiconductor GmbH^{*} Wolfratshauserstrasse 169
D8 Munich 71
Tel: (089) 798923
TELEX: 5-212870
Intel Semiconductor GmbH*
06272 Neiderhausen
Wiesenweg 26
Tel: (06127) 2314

TAIWAN (cont.)
Asionics-Taiwan, Inc
205 Pa -Teh Road, Section 4
Taipei
Tel: 755582
TELEX: 22158 Asionics

NETHERLANDS
Inelco Nederland
AFD Elektronic

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 246-7501

[^0]: Note 1: Power Dissipation calculated with maximum power supply current and nominal supply voltages.

[^1]: Note 1: Power Dissipation calculated with maximum power supply current and nominal supply voltages.

[^2]: *This parameter is periodically sampled and is not 100% tested. They are measured at worst case operating conditions.

[^3]: *This parameter is periodically sampled and is not 100% tested. They are measured at worst case operating conditions.

[^4]: . $V_{S S}+1.5 \mathrm{~V}$ is the reference level for measuring timing of the address $C S, W E$, and $D_{I N}$. $V_{S S}+3.0 \mathrm{~V}$ is the reference level for measuring timing of the address, CS, WE, and DIN.
 $\mathrm{V}_{\mathrm{SS}}+2.0 \mathrm{~V}$ is the reference level for measuring timing of CE .
 4. $V_{D D}-2 V$ is the reference level for measuring timing of $C E$.
 5. $\mathrm{V}_{\mathrm{SS}}+2.0 \mathrm{~V}$ is the reference level for measuring the timing of DOUT

[^5]: NOTE 1: Typical values are at $25^{\circ} \mathrm{C}$ and at nominal voltage.

[^6]: NOTE 1: Typical values are at $25^{\circ} \mathrm{C}$ and at nominal voltage.

[^7]: ${ }^{*}{ }^{\mathrm{t}} \mathrm{DW}$ and ${ }^{\mathrm{t}} \mathrm{DH}$ same for ${ }^{\mathrm{t}} \varnothing_{2} \quad * * \mathrm{~N}=256$ for $1402 \mathrm{~A}, \mathrm{~N}=512$ for $1403 \mathrm{~A}, \mathrm{~N}=1024$ for 1404 A

[^8]: Notes: $2 .+2.0 \mathrm{~V}$ and $\mathrm{V}_{D D}-2.0 \mathrm{~V}$ are the reference low and high level respectively for measuring the timing of $\phi_{1} \ldots \phi_{4}, \mathrm{CE}, \mathrm{CS}$, WE, and addresses.

[^9]: *For low power operation
 **May vary depending on system interface

[^10]: $V_{\text {SS }} \quad$ Ground Reference.
 $V_{D D}+12 \pm 5 \%$ Volts.
 $V_{\text {CC }} \quad+5 \pm 5 \%$ Volts.
 $V_{B B} \quad-5 \pm 5 \%$ Volts (substrate bias).
 $\phi_{1}, \phi_{2} \quad 2$ externally supplied clock phases. (non TTL compatible)

[^11]: Note 1: Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltages.

[^12]: ${ }^{[1]}{ }_{t_{1 H}}$ MIN $\geq \mathrm{t}_{\mathrm{SD}} \quad{ }^{[2]}$ If the INTERRUPT is not used, all states have the same output delay, $\mathrm{t}_{\mathrm{S} 1}$.

[^13]: Note 1: In the programming mode, the data inputs $1-8$ are pins 4-11 respectively. $\overline{\mathrm{CS}}=\mathrm{GND}$.
 Note 2: $\quad V_{G G}$ may be clocked to reduce power dissipation. In this mode average IDD increases in proportion to $V_{G G}$ duty cycle. (See p. 5)
 Note 3: Typical values are at nominal voltages and $T_{A}=25^{\circ} \mathrm{C}$.

[^14]: System Application of 8257.

[^15]: NOTES:
 (1) Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
 (2) EN input grounded, all other inputs and outputs open.

[^16]: NOTE: Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

[^17]: *Consumer Grade Products receive similar processing as applicable.

