
PL/M-S6
PROGRAMMING MANUAL FOR

SOSO/SOS5-BASED
DEVELOPMENT SYSTEMS

Manual Order Number: 9800466-03 Rev. C

Copyright © 1978,1980 Intel Corporation
L.....-____ .---I1 Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 ,'--' ____ _____

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to identify Intel products:

BXP Intellec Multibu'i
i iSBC MultimoJule
ICE iSBX PROMPT
iCS Library Manager Promware
Imite MCS RMX
Intel Megachassis UPI
Intelevision Micromap I'SCOPC

and the combination of ICE, iCS, iSBC, iSBX, MCS, or RMX and a numerical suffix.

A541/282/5K SVP

PREFACE

This is a programming manual for the PL/M-86 language, as implemented by the
PL/M-86 Compiler. Throughout this manual, the name "PL/M-86" refers
specifically to this implementation.

For information on the use of the PL/M-86 Compiler itself, the reader is referred to
the PL/M-86 Compiler Operating Instructions for 8080/8085-Based Development
Systems, Intel document number 9800478. For information on the ISIS-II operating
system facilities related to PL/M-86 programming, see ISIS-II System User's Guide,
Intel document number 9800306.

How to Use This Manual

This manual is intended to be read from front to back by a new PL/M-86 program
mer. It is assumed that the reader has at least some acquaintance with a higher-level
programming language. Readers who are already familiar with PL/M-80 may find it
helpful to start by reading Appendix E, which describes the differences between
PL/M-80 and PL/M-86.

Chapter 1 contains a synopsis intended to give an intuitive feel for the language, and
also introduces certain important concepts in preparation for the complete discus
sions of language features in subsequent chapters.

An index is included at the end of the manual for reference purposes.

Appendix A contains a complete formal syntax description, written in a modified
BNF notation. Most readers will not need this formal syntax, but it is included for
completeness. Note that the terminology of Appendix A is not exactly the same as
the less formal terminology of the main body of the manual.

The remaining appendices are lists of ASCII codes, PL/M special characters,
PL/M-86 reserved words, and PL/M-86 predeclared identifiers, included for conve
nience in using the manual for reference purposes.

iii

• 8) n

CHAPTER 1
INTRODUCTION

PAGE

What is PL/M-86? 1-1
Overview of the Language 1-2

Identifiers 1-2
DECLARE Statements and Data Types 1-2
Executable Statements 1-4
Procedures 1-7
Block Structure and Scope 1-8
Builtin Procedures and Variables 1-8
Expressions 1-9
Modular Structure of PL/M-86 Programs 1-9
Input and Output 1-9

Notational Conventions Used in This Manual 1-10

CHAPTER 2
BASIC CONSTITUENTS OF A
PL/M-86 PROGRAM
PL/M-86 Character Set. 2-1
Identifiers and Reserved Words 2-1
Tokens, Separators, and the Use of Blanks 2-2
Numeric Constants 2-3
Character Strings 2-4
Comments. 2-4

CHAPTER 3
DATA TYPES, ARITHMETIC, AND
INTRODUCTION TO
DECLARATIONS
General 3-1

Scalar Variables 3-1
Types 3-1

WORD and BYTE Variables: Unsigned Arithmetic 3-2
INTEGER Variables: Signed Arithmetic 3-3
REAL Variables: Floating-Point Arithmetic 3-3
POINTER Variables and Location References 3-3

The @ Operator 3-4
The "DOT" Operator 3-4

Storing Strings and Constants via Location
References 3-5

CHAPTER 4
EXPRESSIONS AND ASSIGNMENTS
Operands 4-1

Constants 4-1
Variable References 4-2
Location References 4-2
Subexpressions 4-2
Compound Operands 4-2

Arithmetic Operators 4-2
The +, -, *, and I Operators 4-3
The "MOD" Operator 4-3

Relational Operators 4-4

iv

CONTENTS

PAGE

Logical Operators 4-4
Expression Evaluation 4-5

Precedence of Operators: Analyzing an
Expression 4-5

Choice of Arithmetic: Summary of Rules 4-10
Assignment Statements 4-12

Type Conversions 4-13
MUltiple Assignment 4-14
Embedded Assignments 4-14

CHAPTER 5
ARRAYS, STRUCTURES, AND
BASED VARIABLES
Arrays 5-1

Array Declarations 5-1
Subscripted Variables 5-1

Structures 5-2
Arrays of Structures 5-3
Arrays Within Structures 5-3
Arrays of Structures with Arrays Inside the

Structures 5-3
Reference to Arrays and Structures)-4

Fully Qualified Variable References 5-4
Unqualified and Partially Qualified Variable

References 5-4
Based Variables 5-5

Location References and Based Variables 5-6
Contiguity of Storage 5-7

CHAPTER 6
FLOW CONTROL STATEMENTS
DO and END Statements: DO Blocks 6-1

Simple DO Blocks 6-1
"True" and "False" Values 6-2
DO WHILE Blocks 6-3
Iterative DO Blocks 6-3
DO CASE Blocks 6-6

The IF Statement 6-8
Nested IF Statements 6-9
Sequential IF Statements 6-10

Statement Labels and GOTOs 6-11
Labels and Label Definitions 6-11
GOTO Statements 6-12

TheHALTStatement 6-12
The CALL and RETURN Statements 6-13

CHAPTER 7
SAMPLE PROGRAM #1
Insertion Sort Algorithm 7-1

CHAPTERS PAGE

ADV ANCED DECLARE
STATEMENTS
General 8-1

Purpose of Declarations 8-1
Scope 8-1
Where Declarations May Occur 8-1

The PUBLIC and EXTERNAL Attributes:
Extended Scope 8-2

The AT Attribute 8-3
The INITIAL Initialization 8-5
The QAT A Initialization 8-7
Label Declarations 8-8
Explicit Versus Implicit Label Declarations 8-8

Attributes of Labels 8-9
LITERALLY Declarations 8-9
Combining DECLARE Statements 8-10

CHAPTER 9
PROCEDURES
General 9-1
Procedure Declarations 9-1

Parameters 9-2
Typed Versus Untyped Procedures 9-4
Exit From a Procedure: The RETURN

Statement 9-4
The Procedure Body 9-5
The PUBLIC and EXTERNAL Attributes 9-6
Interrupts and the INTERRUPT Attribute 9-7
Reentrancy and the RE,ENTRANT Attribute 9-9

Activating a Procedure - Function References and
CALL Statements 9-10
Indirect Procedure Activation 9-11

Sample Program #2 9-11

CHAPTER 10
BLOCK STRUCTURE AND SCOPE
Blocks 10-1
Scope 10-1
Scope of Labels and Restrictions on GOTOs 10-4

CHAPTER 11
PROGRAM MODULES
Definitions 11-1
Structure of a Compilation 11-1
Modular Structure of a Program 11-1
Linkage Between Program Modules 11-1
Example of Modular Program Structure 11-2

CONTENTS (Cont'd.)

CHAPTER 12 PAGE
BUILTIN PROCEDURES AND
VARIABLES
Obtaining Information About Variables 12-1

The LENGTH Procedure 12-1
The LAST Procedure 12-2
The SIZE Procedure : 2-2

Type Conversions 12-3
The LOW, HIGH, and DOUBLE Procedures 12-3
The FLOAT Procedure 12-3
The FIX Procedure 12-4
The INT Procedure 12-4
The SIGNED Procedure 12-4
The UNSIGN Procedure 12-5

Shift and Rotate Procedures 12-5
BYTE Rotation Procedures, ROL and ROR 12-5
Logical-Shift Procedures, SHL and SHR 12-6
Algebraic-Shift Procedures, SAL and SAR 12-6

Input and Output 12-7
The INPUT and INWORD Procedures 12-7
The OUTPUT and OUTWORD Arrays 12-7

String Manipulation Procedures 12-8
The MOVB Procedure 12-8
The MOVW Procedure 12-9
The MOVRB Procedure 12-9'
The MOVRW Procedure 12-9
The CMPB Procedure 12-9
The CMPW Procedure 12-10
The XLAT Procedure 12-10
The FIN DB p'rocedure 12-10
The FINDW Procedure 12-11
The FINDRB Procedure 12-11
The FINDRW Procedure 12-11
The SKIPB Procedure 12-11
The SKIPW Procedure 12-11
The SKIPRB Procedure 12-11
The SKIPRW Procedure 12-11
The SETB Procedure 12-12
The SETW Procedure 12-12

Miscellaneous Builtins 12-12
The MOVE Procedure 12-12
The MEMORY Array 12-13
The TIME Procedure 12-13
STACKPTR and STACK BASE 12-13
The ABS Procedure 12-13
The lABS Procedure 12-14
The LOCK SET Procedure 12-14
The SET$INTERRUPT Procedure. 12-15
The INTERRUPT$PTR Procedure 12-15
The CAUSE$INTERRUPT Procedure 12-161

v

CHAPTER 13 PAGE
PL/M-86 FEATURES INVOLVING
8086 HARDWARE FLAGS
Optimization and the 8086 Hardware Flags 13-1
The PLUS and MINUS Operators 13-1
Carry-Rotation Builtin Procedures 13-2
The DEC Procedure 13-2
CARRY, SIGN, ZERO, and PARITY Builtin

Procedures 13-2.

CHAPTER 14
FLOATING-POINT ARITHMETIC:
THE REAL MATH FACILITY
Representation of REAL Values 14-1
REAL-Parameter Passing and Stack Conventions .. 14-3
The REAL Math Facility 14-3
Exception Conditions in REAL Arithmetic 14·5

Invalid Operation Exception 14-6
Denormal Operand Exception 14-7
Zero Divide Exception 14-7
Overflow Exception 14-7
Underflow Exception 14-7
Precision Exception 14-7

The INIT$REAL$MATH$UNIT Procedure 14-8
The SET$REAL$MODE Procedure 14-9
The GET$REAL$ERROR Procedure 14-9
Saving and Restoring REAL Status 14-9

TABLE TITLE PAGE

4-1 Rules for Arithmetic and Relational
Operators 4-10

• F

n

FIGURE TITLE PAGE

10-1
10-2
14-1

vi

Inclusive Extent of a Block 10-2
Exclusive Extent of a Block 10-3
The REAL Error Byte 14-3

CONTENTS (Cont'd.)

PAGE

The SAVE$REAL$STATUS Procedure 14-10
Deadlock 14-10

Writing a Procedure to Handle REAL Interrupts .. 14-11

APPENDIX A
GRAMMAR OF THE PL/M-86
LANGUAGE

APPENDIXB
PL/M-86 SPECIAL CHARACTERS

APPENDIXC
PL/M-86 RESERVED WORDS

APPENDIXD
PL/M-86 PREDECLARED
IDENTIFIERS

APPENDIXE
PL/M-80 AND PL/M-86

APPENDIXF
CHARACTER SETS AND
COLLATING SEQUENCE

TABLES I

TABLE TITLE PAGE

14-1 Exception and Response Summary 14-8

ILLUSTRATIONS

FIGURE TITLE PAGE

14-2
14-3
14-4

The REAL Mode Word " 14-4
Projective Versus Affine Closure 14-5
Memory Layout of REAL Save Area 14-12

· " CHAPTER 1
INTRODUCTION n

1.1 What Is PL/M-86?

PL/M-86 is a high-level language designed for system and applications programm
ing for the Intel 8086 microprocessor.

A PL/M-86 program is a sequence of PL/M-86 statements. The PL/M-86 Compiler
accepts the statements as input and produces a machine-code program module as
output. As will be seen in the remainder of this chapter, a PL/M-86 statement may
be translated by the compiler into a single 8086 instruction, or a sequence of instruc
tions, or none at all -- it may cause the compiler to allocate storage, for example, in
stead of producing any machine instructions.

PL/M-86 statements are divided into two basic categories:

1. DECLARE and PROCEDURE statements. DECLARE statements cause
computational "objects" (such as variables) to be defined, associate "iden
tifiers" (that is, names) with objects, and allocate memory storage for objects.
PROCEDURE statements are described later in this chapter.

2. Executable statements, which are all the PL/M-86 statements other than
DECLARE and PROCEDURE statements. Most executable statements cause
machine code to be generated.

The following is a simple example of a DECLARE statement:

DECLARE WIDTH BYTE;

This statement introduces an identifier, WIDTH, and associates it with the contents
of one byte of memory. The programmer need not know the location of the byte
he will henceforth refer to the contents of this byte by using the identifier, WIDTH.

Notice the semicolon at the end of the statement. Every PL/M-86 statement is ter
minated with a semicolon.

The following is a simple executable statement:

CLEARANCE = WIDTH + 2;

Here we have an identifier, CLEARANCE, and another identifier, WIDTH. Both
must be declared previous to this executable statement. This executable statement is
called an assignment statement, and it produces machine code to do the following:

• Retrieve the value associated with the identifier WIDTH from memory.

• Add 2 to this value.

• Store the sum into a memory location associated with the identifier
CLEARANCE.

But the PL/M-86 programmer need not think in terms of memory locations.
CLEARANCE and WIDTH are variables, and the assignment statement assigns the
value of the expression WIDTH + 2 to the variable CLEARANCE. The compiler
automatically generates all the machine code necessary to retrieve data from
memory, evaluate the expression, and store the result in the proper location.

1-1

Introduction

1-2

PL/M-86 Programming Manual

PL/M-86 also provides facilities for declaring and activating procedures. A
procedure declaration is a block of PL/M-86 statements that is not executed at the
point where it is written, but may be "activated" from other points in the program.
A reference to the procedure causes the procedure to be activated. The activation
may include passing parameters to the procedure and passing a value back from the
procedure. When a procedure is finished executing, control is returned to the point
from which it was activated.

This procedure capability permits programs to be constructed in a modular fashion,
which has numerous advantages including efficiency of programming, readability of
programs, ease of debugging, and the possibility of using the same procedure in
more than one program.

In the following overview, these and other features of PL/M-86 are examined in
greater detail.

1.2 Overview of the Language

The following sections are capsule descriptions of some of the important features of
PL/M-86.

1.2.1 Identifiers

In the examples above, we saw the characters CLEARANCE and WIDTH used as
identifiers - that is, names for objects. CLEARANCE and WIDTH were used as
identifiers for variables. However, PL/M-86 identifiers can be associated with a
wide range of different kinds of objects - variables, collections of variables, pro
cedures, and PL/M-86 statements. PL/M-86 identifiers are chosen by the program
mer and are not restricted to alphabetic characters as in the examples above.

The following are examples of PL/M-86 identifiers:

ABC
X2
PRODUCT
K

Further discussion of identifiers will be found in Chapter 2.

1.2.2 DECLARE Statements and Data Types

A simple DECLARE statement has already been shown above (Section 1.1). A
DECLARE statement is a non-executable statement that introduces some object or
collection of objects, associates an identifier or identifiers with them, and allocates
storage if necessary. The most important use of DECLARE is for declaring
variables.

A variable may be a scalar- that is, a single quantity - or an array, or a structure.

An array is a collection of scalars which are all associated with the same identifier
and differentiated from each other by the use of subscripts.

A structure is a collection of scalars and/or arrays all associated with the same iden
tifier and differentiated from each other by their own member-identifiers.

PL/M-86 Programming Manual

The following statements declare scalars:

DECLARE APPROX REAL;
DECLARE (OLD, NEW) BYTE;
DECLARE POINT WORD, VAL BYTE;

A scalar always has a type; which may be BYTE, WORD, INTEGER, REAL, or
POINTER.

• A BYTE scalar is an 8-bit quantity occupying one byte of memory. Values of
BYTE scalars are always interpreted as unsigned whole numbers and may range
from 0 to 255.

• A WORD scalar is a 16-bit quantity qccupying two contiguous bytes of
memory. Values of WORD scalars are always interpreted as unsigned whole
numbers and may range from 0 to 65535.

• The value of an INTEGER scalar is a signedwhole number and may range from
-32768 to 32767.

• The value of a REAL scalar is a signed floating-point number whose size limits
depend on the implementation (see ISIS-II PL/M-86 Compiler Operator's
Manual,98-478).

• The value of a POINTER scalar is a location in 8086 storage.

The different types are discussed in detail in Chapter 3.

The first example above declares a single scalar variable of type REAL, with the
identifier APPROX.

The second example declares two scalars, OLD and NEW, both of type BYTE.

The third example declares two scalars of different types - POINT is of type
WORD, and VAL is of type BYTE.

The following statements declare arrays:

DECLARE DOMAIN (128) BYTE;
DECLARE GAMMA (10) WORD;

The first statement declares an array called DOMAIN, with 128 scalar elements each
of type BYTE. These elements are distinguished by subscripts ranging from 0 to 127
- for example, the third element of the array can be referred to as DOMAIN(2).

The second statement declares an array called GAMMA, with 10 scalar elements of
type WORD. The subscripts for this array range from 0 to 9.

The following statement declares a structure with two scalar members:

DECLARE RECORD STRUCTURE (KEY BYTE, INFO WORD);

The two members are a BYTE scalar that can be referred to as RECORD.KEY and a
WORD scalar that can be referred to as RECORD.INFO.

Further discussion of variables and variable declarations will be found in Chapters
3,5, and 8.

Introduction

1-3

Introduction

1-4

PL/M-86 Programming Manual

1.2.3 Executable Statements

The following is a list of all PL/M-86 executable statements and the numbers of the
sections in which they are fully discussed:

Assignment Statement
GOTO Statement
IF Statement
Simple DO Statement
Iterative DO Statement
DO WHILE Statement
DO CASE Statement
END Statement
CALL Statement
RETURN Statement
HALT Statement
ENABLE Statement
DISABLE Statement
Null Statement

(Section 4.6)
(Section 6.3)
(Section 6.2)
(Section 6.1.1)
(Section 6.1.4)
(Section 6.1.3)
(Section 6.1.5)
(Section 6.1)
(Section 9.3)
(Section 9.2.3)
(Section 6.4)
(Section 9.2.6)
(Section 9.2.6)
(Section 6.1.5)

The following sections give simplified descriptions of some of the executable
statements, in order to provide a feeling for PL/M-86 before going on to the full
descriptions in later chapters.

Assignment Statement

The assignment statement has already been introduced (Section 1.1). It is fundamen
tal to PL/M-86 programming, and although its form is quite simple, the expression
in an assignment statement may be quite complex and result in a considerable
amount of computation, as will be seen in Chapter 4.

The simplest form of the assignment statement is

identifier = expression;

where the identifier is the identifier of a variable. The expression is evaluated, and
the resulting value becomes the value of the variable. Variations of this form are
given in Chapter 4.

IF Statement

The following is an example of an IF statement:

IF WEIGHT> MINWT
THEN COUNT=COUNT + 1;
ELSE COUNT = 0;

Notice how this has been broken into three lines, with indentation, to make it more
readable. As explained in Chapter 2, blanks (spaces, tabs, carriage returns, and line
feeds) may be freely inserted between the elements of a statement without changing
the meaning.

PL/M-86 Programming Manual

WEIGHT, MINWT, and COUNT are assumed to be previously declared scalar
variables. This IF statement has three parts:

• An "IF part" consisting of the reserved word IF and a condition, WEIGHT>
MINWT

• A "THEN part" consisting of the reserved word THEN and a statement,
COUNT = COUNT + 1;

• An "ELSE part" consisting of the reserved word ELSE and another statement,
COUNT = 0;.

The meaning of the IF statement is that if the condition in the IF part is "true," then
the statement in the THEN part will be executed. Otherwise, the statement in the
ELSE part will be executed.

In this particular case, if the value of WEIGHT is greater than the value of MINWT,
then the value of COUNT will be incremented by 1. Otherwise, the value 0 will be
assigned to COUNT.

The ELSE part of an IF statement may be omitted. Chapter 6 contains a full descrip
tion of IF statements.

DO and END Statements

DO and END statements are used to construct "DO blocks." A DO block begins
with a DO statement and ends with a matching END statement.

There are four kinds of DO statements, used to construct four kinds of DO blocks.

A simple DO block begins with a simple DO statement and has the property (like all
blocks) that it may be used wherever a single statement can be used. The following is
an example of a simple DO block used in place of a single statement in the THEN
part of an IF statement:

IF TMP >= 4 THEN
DO;

INCR = INCR*2;
COUNT = COUNT + INCR;

END;
ELSE COUNT = 0;

This allows two or more executable statements to be executed if the condition is
"true."

An iterative DO statement introduces an iterative DO block, and causes the ex
ecutable statements within the block to be executed repeatedly. The following is an
example:

DOJ = OT09;
VECTOR(J) = 0;

END;

where J is a previously declar~d BYTE, WORD, or INTEGER variable and VEC
TOR is a previously declared array having at least 10 elements. The assignment
statement is executed 10 times, with values of J starting at 0 and increasing by 1 each
time around until all of the integers from 0 through 9 have been used. Since J is used
as a subscript for specifying which element of VECTOR is referenced in the assign
ment statement, the effect of this iterative DO block is to assign the value 0 to all
elements of VECTOR from element 0 through element 9.

Introduction

1-5

Introduction

1-6

PL/M-86 Programming Manual

The DO WHILE statement contains a condition (like the condition in the IF part of
an IF statement) and causes the executable statements in a DO WHILE block to be
executed repeatedly as long as the conditionis "true."

In the following example a DO WHILE block is used to step through the elements of
an array called TABLE, until an element is found that is not greater than the value
of a scalar variable called LEVEL.

1=0;
DO WHILE TABLE(I) > LEVEL;

I = 1+ 1;
END;

Here TABLE is a previously declared array and LEVEL and I are previously
declared scalars. I is first assigned a value of 0, and then used as a subscript for
TABLE. It is incremented each time through the DO WHILE block, so each time
the DO WHILE statement is executed, a different element of TABLE is compared
with LEVEL. When an element is found that is not greater than LEVEL, the condi
tion in the DO WHILE statement is no longer true and the block is not repeated
again - control passes to the next statement after the END statement. At this point
the value of I is still the subscript of the first element of TABLE that is not greater
than LEVEL.

Finally, there is the DO CASE block, introduced by a DO CASE statement, which
allows the value of some expression to be used to select a statement to be executed.
In the following example, assume that the expression TST - 1 in the DO CASE
statement can have any value from ° to 3:

DOCASETST-1;
RED=O;
BLUE = 0;
GREEN =0;
GREY=O;

END;

If the value of the expression is 0, then only the first assignment statement will be ex
ecuted, and the value ° will be assigned to RED. If the value of the expression is 1,
then only the second assignment statement will be executed, and the value 0 will be
assigned to BLUE. Expression values of 2 or 3 will cause GREEN or GREY, respec
tively, to be assigned the value 0.

DO statements and DO blocks are considered flow control statements and are
discussed in Chapter 6.

Statement Labels

An executable statement may be labeled by prefixing it with an identifier and a col
on, as in the following example:

SET: SUM =0;

The identifier SET is the label of the assignment statement. Labels are useful for
readability, and in connection with GOTO statements. Labels are discussed in Sec
tion 6.3.

PL/M-86 Programming Manual

1.2.4 Procedures

A procedure declaration begins with a PROCEDURE statement and ends with a
END statement. It may be thought of as a "sub-program," which will be executed
when activated from elsewhere in the program.

PROCEDURE Statements

The following is an example of a PROCEDURE statement:

SUMSQUARE: PROCEDURE (A, B) REAL;

This statement introduces a complete procedure declaration, which will be shown in
the next section. The nameof the procedure is SUMSQUARE. This name is used for
activating the procedure.

A and B are identifiers for formal parameters. They will appear again as variables in
the procedure body. Specifying them in the PROCEDURE statement indicates that
we will supply values for them when the procedure is activated. Not all procedures
have parameters; they are left out of the PROCEDURE statement if not needed.

This is a typed procedure, with type REAL. The appearance of a type in the PRO
CEDURE statement means that the procedure will return a value to the point from
which it is activated - in this case, a floating-point (REAL) value. (The meaning of
this is explained below.)

Procedure Declaration Blocks

Using the same PROCEDURE statement given above, we can construct the com
plete declaration of the procedure (known as a procedure declaration block or simp
ly a procedure declaration):

SUMSQUARE: PROCEDURE (A, B) REAL;
DECLARE (A, B) REAL;
RETURN A*A + B*8;

END SUMSQUARE;

A and B are declared to be scalar variables of type REAL. The RETURN statement
contains an expression in which A and B are both squared (note the use of the * as a
multiplication operator), and the squares are added. The effect of the RETURN
statement is to cause this value to be returned to the point of activation.

A typed procedure, such as SUMSQUARE, is activated by referring to it as an
operand in an expression. Suppose that having written the procedure declaration
above, we now write an assignment statement like the following:

NEWVAL = OLDVAL - SUMSQUARE(PREV, NEXT);

where NEWVAL, OLDVAL, PREY, and NEXT are all previously declared REAL
variables. The text SUMSQUARE(PREV, NEXT) is a function reference to the pro
cedure SUMSQUARE, with actual parametersPREV and NEXT.

The values of PREY and NEXT are passed to the procedure SUMSQUARE as
parameters. SUMSQUARE takes the sum of their squares and returns this value.
The returned value replaces the function reference, and the expression in the assign
ment statement can now be evaluated.

Introduction

1-7

Introduction

1-8

PL/M-86 Programming Manual

For example, suppose that when the above assignment statement is executed,
OLDY AL has a value of 100.0, PREY has a value of 4.0, and NEXT has a value of
5.0. Then SUMSQUARE returns a value of 16.0 + 25.0, or 41.0. This is subtracted
from the value of OLDY AL and the result, 59.0, is assigned to the variable
NEWVAL.

Not all procedures return values. A procedure that has no type in its PROCEDURE
statement does not return a value, and is called an untyped procedure. An untyped
procedure is activated by means of a CALL statement.

A complete discussion of procedures will be found in Chapter 9.

1.2.5 Block Structure and Scope

Block Structure

We have already noted five kinds of blocks: the procedure declaration block, and
the four kinds of DO blocks. A PL/M-86 program consists entirely of one or more
blocks. (The compiler accepts as its input file one "module," and a module is simply
a labeled simple DO block that is not nested inside any other block.)

Blocks may be nested within each other. This leads to the concept of "levels" within
a program - the outermost level is that of the module, and the contents of a block
nested within the module are at an "inner" level.

This structure makes it possible to have rules of scope for declared objects.

Scope

The concept of scope is important in PL/M-86. The scope of an object (such as a
variable or procedure) is simply the part of the program in which its identifier is
recognized and the object handled according to its declaration.

In simplified form, the rules of scope are as follows:

• The scope of an object does not extend beyond the block in which it is declared.

• The scope of an object does not include any block that is nested inside the block
where the object is declared, if the nested block contains a new declaration using
the same identifier.

The complete rules of scope involve some slight modifications of these statements,
as explained in Chapter 10. However, the above rules will suffice for understanding
Chapters 2 through 9.

The effect of these rules is that when writing a block, and declaring objects solely for
use inside the block, one does not need to worry about whether the same identifier
has already been used in another block. Even if the same identifier is used elsewhere,
it refers to a different object.

1.2.6 Builtin Procedures and Variables

PL/M-86 provides a large repertoire of builtin procedures and variables. These pro
vide such functions as shifts and rotations, data type conversions, and string
manipulation. The builtin procedures and variables are described in Chapter 12.

PL/M-86 Programming Manual

1.2.7 Expressions

We have already seen simple expressions. A PL/M-86 expression is made up of
operands and operators, and resembles a conventional algebraic expression.

Operands include numeric constants (such as 3.78 or 105) and variables (as well as
other types discussed in Chapters 3 and 4). The operators include + and - for addi
tion and subtraction, * and I for multiplication and division, and MOD for modulo
arithmetic .

As in an algebraic expression, elements of a PL/M-86 expression may be grouped
with parentheses.

An expression is evaluated using unsigned integer arithmetic, signed integer
arithmetic, and/or floating-point arithmetic, depending on the types of operands in
the expression (see Chapters 3 and 4 for details).

1.2.8 Modular Structure of PL/M-86 Programs

The definition of a PL/M-86 program is that it consists of one or more modules, one
of which must be a "main program module." A main program module is a module
that contains executable statements (possibly only null statements) at its outer level.
Other modules contain nothing but DECLARE and PROCEDURE statements at
their outer levels.

The modules of a program (if there are more than one) are written and compiled
separately and combined into a program by use of the linking facility of ISIS-II.

1.2.9 Input And Output

PL/M-86 does not provide 110 functions in the usual sense of the term. In par
ticular, PL/M-86 110 does not resemble FORTRAN 110.

There are three basic methods for moving data to or from memory under PL/M-86
program control.

The INPUT, INWORD, OUTPUT, and OUTWORD Facilities

The builtin procedures INPUT and INWORD and the builtin variable arrays OUT
PUT and OUTWORD are described in detail in Chapter 12.

INPUT causes the program to read the 8-bit quantity found in one of the 65K input
ports of the 8086. A reference to OUTPUT causes the program to place an 8-bit
quantity into one of the 65K output ports of the 8086.

INWORD and OUTWORD have the same effects as INPUT and OUTPUT, except
that they handle 16-bit (WORD) quantities instead of 8-bit (BYTE) quantities.

Direct Memory Access (DMA) Techniques

A peripheral device that has direct access to 8086 memory is called a DMA device.
The program can use INPUT and OUPUT facilities to communicate with such a
device (if the system is appropriately configured) and cause it to perform data input
and output Iunctions.

Introduction

1-9

Introduction PL/M-86 Programming Manual

Memory-Mapped I/O Techniques

In memory-mapped I/O, the program executes ordinary read and store operations
using addresses that do not correspond to any actual locations in memory. A
peripheral device connected to the CPU recognizes these addresses when they appear
on the address bus, and either accepts data for output (if the CPU operation is a
store) or supplies data for input (if the CPU operation is a read).

In effect, the peripheral device appears to the CPU as if it were part of memory
(although timing is, of course, different from the timing for an actual memory ac
cess).

The PL/M-86 Compiler optimizes the machine code that it produces. This optimiza
tion may interfere with the operation of memory-mapped I/O. if a variable is
located in memory by means of the AT attribute (see Section 8.3), accesses to that
variable are not optimized.

1.3 Notational Conventions In This Manual

Throughout this manual, certain conventions are used to represent the syntactic
form of PL/M-86 statements.

Words in capital letters are reserved words in the PL/M-86 vocabulary, and are to
be entered as shown (lower-case letters may be used). Semicolons are to be entered as
shown.

The items in lower case are to be replaced by actual PL/M-86 code.

Square brackets [] around an item indicate that it is optional - that is, the statement
is syntactically correct if the item is omitted.

For example, in Section 6.1 the form of the END statement is given as follows:

END [label];

This means that an END statement consists of the following parts, in order:

• The reserved word END

• A label, which may be omitted as shown by the square brackets

• A semicolon.

Note that this is not all the important information about the END statement - it is
only the syntax. There is, for example, an important restriction on the label (if any)
in an END statement. Such information about PL/M-86 statements is given in the
text.

Note also that these notational conventions apply only to the way that the forms of
PL/M-86 statements are shown. When an example of an actualPL/M-86 statement
is given, capital letters are used for all of the code and lower-case is used only for
comments (see Section 2.6).

In examples it is sometimes necessary to indicate that part of a sequence of
statements has been omitted. Three periods (...) are used for this purpose.

1-10

• I'
CHAPTER 2

BASIC CONSTITUENTS OF
A PL/M-86 PROG RAM

n·

PL/M-86 programs are written free-form. That is, the input lines are column
independent and blanks may be freely inserted between the elements of the program.

2.1 PL/M-86 Character Set

The character set used in PL/M-86 is a subset of both ASCII and EBCDIC character
sets. The valid PL/M-86 characters consist of the alphanumerics

A BC DE FO HI J K LM N 0 P Q RS TU V W X Y Z
abcdefghijklmnopqrstuvwxyz
0123456789

along with the special characters

=./()+-'*,<> @$-

and the blank characters

space tab carriage-return line-feed

If a PL/M-86 program contains any character that is not in this set, the compiler
may treat the character as an error.

Upper- and lower-case letters are not distinguished from each other (except in string
constants - see Section 2.5). For example, xyz and XYz are interchangeable. In this
manual, all PL/M-86 code is in upper-case letters to help distinguish it visually from
explanatory text.

Blanks are not distinguished from each other (except in string constants). Any blank
is considered to be the same as any other blank. Moreover, any unbroken sequence
of blanks is considered to be the same as a single blank.

Special characters and combinations of special characters have particular meanings
in a PL/M-86 program, as described in the remainder of this manual. Appendix B is
a concise list of special characters and their meanings.

The above applies to everything in a PL/M-86 program except character string con
stants (see Section 2.5) and comments (see Section 2.6).

2.2 Identifiers and Reserved Words

Identifiers are used to name variables, procedures, and statement labels (they are
also used in "LITERALLY" declarations, described in Chapter 8). An identifier
may be up to 31 characters in length. The first character must be alphabetic, and the
remainder may be either alphabetic, numeric, or the underscore (_).

Embedded dollar signs are totally ignored by the compiler, and may be used to
improve the readability of an identifier. An identifier containing a dollar sign is
exactly equivalent to the same identifier with the dollar sign deleted. (Note that a
dollar sign is not allowed as the first character of an identifier.)

2-1

Basic Constituents of a PL/M-86 Program PL/M-86 Programming Manual

2-2

Examples of valid identifiers are

INPUT_COUNT
X
GAMMA
LONGIDENTIFIERWITHN U M SER3
IN PUT$COU NT
INPUTCOUNT

The last two examples are interchangeable, but are different from the first.

There are a number of otherwise valid identifiers whose meanings are fixed in
advance. Because they are actually part of the PL/M-86 language, they may not be
used as identifiers. A list of such reserved words is given in Appendix C.

2.3 Tokens, Separators, and the Use of Blanks

Just as an English sentence is made up of words - the smallest meaningful units of
English - so a PL/M-86 statement is made up of tokens. Every token belongs to
one of the following classes:

• Identifiers.

• Reserved words.

• Simple delimiters - all of the special characters, except the dollar sign, are
simple delimiters.

• Compound delimiters - these are certain combinations of two special
characters, namely

<> <= >= := 1* *1

• Numeric constants (see Section 2.4).

• Character string constants (see Section 2.5).

For the most part, it is obvious where one token ends and the next one begins. For
example, in the assignment statement

EXACT=APPROX*(OFFSET -3)/SCALE;

EXACT, APPROX, OFFSET, and SCALE are identifiers, 3 is a numeric constant,
and all the other characters are simple delimiters.

In some cases, identifiers, reserved words, and numeric constants must be separated
from each other. If a simple or compound delimiter does not occur between two
identifiers, reserved words, or numeric constants, a blank must be placed between
them as a separator. (Instead of a single blank, any unbroken sequence of blank
characters may be used.)

Also, a comment (see below) may be used as a separator.

Blanks may also be inserted freely around any token, without changing the meaning
of the PL/M-86 statement. Thus the assignment statement

EXACT = APPROX * (OFFSET - 3) I SCALE ;

is equivalent to

EXACT =APPROX* (OFFSET -3) I SCALE;

PL/M-86 Programming Manual Basic Constituents of a PL/M-86 Program

2.4 Numeric Constants

A constant is a value known at compile-time, which does not change during exe
cution of the program. A constant is either a whole-number constant, a floating
point constant, or a character-string constant. A whole-number constant may be
expressed as a binary, octal, decimal, or hexadecimal number. Floating-point con
stants are always decimal.

In general, the base (or radix) of a whole-number constant is represented by one of
the letters

BOQDH

following the number. The letter B denotes a binary constant. The letters a and Q
are interchangeable and denote an octal constant. The letter D may optionally
follow a decimal number for readability.

A hexadecimal number consists of a sequence of hexadecimal digits (0, 1, 2, 3,4, 5,
6,7,8,9, A, B, C, D, E, F) terminated by the letter H. The leading character of a
hexadecimal number must be a numeric digit, to avoid confusion with a PL/M-86
identifier. A leading zero is always sufficient. For example, instead of A3H (which
could be an identifier) you must write OA3H.

Any number not followed by one of the letters B, 0, Q, D, or H is assumed to be
decimal. Whole-number constants must be representable in 16 bits except when
treated as POINTER values (see note below). Thus they may range in value from 0
t065535, orOFFFFH, or 177777Q, or 1111$1111$1111$1111B.

The following are examples of valid whole-number constants:

2 33Q 0110B 33FH 55D 55 OBF3H 65535

A whole-number constant may be treated as a BYTE, WORD, INTEGER, or
POINTER value, as explained in Chapter 4.

NOTE

There are only three cases where a whole-number constant can be treated as
a POINTER value. These are described in Sections 4.6.1, 8.3, and 8.4.

The size limits for a whole-number constant depend on which of these types it will
have, as follows:

BYTE or WORD
INTEGER
POINTER

o to 65535
o to 32767
depends on implementation and compiler controls.

Note that a minus sign in front of a constant is not part of the constant. An
INTEGER value may be negative, but a constant is never negative. This is why the
range shown opposite "INTEGER" is a range of positive numbers - it is the range
of constants that can be treated as INTEGER values, not the range of INTEGER
values (which is -32768 to 32767). See Chapter 4.

A floating-point constant is indicated by the presence of a decimal point. At least
one decimal digit must occur on the left side of the decimal point. The following are
valid PL/M-86 floating-point constants:

5.3 116.0 1.88 3.14159 0.15 0.00032 16.

2-3

Basic Constituents of a PL/M-86 Program PL/M-86 Programming Manual

2-4

Also, a floating-point constant may have an "exponent" to indicate multiplica
tion by a power of 10. To indicate an exponent, end the number with the letter E
followed by the power of ten (which must be an integer), as in the following
examples. The values of these examples are exactly the same as the previous
examples:

53.0E-1 1.760E2 0.188E1 314159.0E-5 1.5E-I 3.2E-4 1.6E+ 1

Note the "unary" plus sign in the exponent of the last example. It has no effect but
may be used if desired.

A floating-point constant is always treated as a REAL value. Its size limits depend
on the implementation (see Chapter 14).

The dollar sign may be freely inserted between the characters of any constant to
improve readability. The two following binary constants are exactly equivalent:

II1I0110011B
111 $1 0 11 $0011 B

It is strongly advised that you read Chapter 14 before using floating point arithmetic
in programs. See also Chapter 6 of the PL/M-86 Compiler Operating Instructions
for 8080/8085-Based Development Systems Manual.

2.5 Character Strings

Character strings are denoted by printable ASCII characters enclosed within
apostrophes. (To include an apostrophe in a string, write it as two apostrophes: e.g.
the string "'Q' comprises 2 characters, an apostrophe followed by a Q.) Spaces are
allowed but line-feeds are not. The compiler represents character strings in memory
as ASCII codes, one 7-bit character code to each 8-bit byte, with a high-order zero
bit. Strings of length 1 translate to single-byte values. Strings of length 2 translate to
double-byte values. For example,

'A' is equivalent to 41H
'AG' is equivalent to 4147H

(see ASCII code table at end of this manual).

Character strings can only be used as BYTE or WORD values. Therefore, character
strings longer than 2 characters cannot be used as values, since this would exceed the
16-bit capacity of a WORD value. However, longer character strings can be used in
a PL/M-86 program (see Sections 3.6, 8.4, 8.5, and Chapter 12).

The maximum length of a string constant is limited by the PL/M-86 Compiler. See
PL/M-86 Compiler Operating Instructions for 8080/8085-Based Development
Systems Manual.

2.6 Comments

Explanatory comments may be interleaved with PL/M-86 program text, to improve
readability and provide program documentation. A PL/M-86 comment is a se
quence of characters delimited on the left by the character pair 1* and on the right
by the character pair * I. These delimiters instruct the compiler to ignore any text
between them, and not to consider such text part of the program proper.

A comment may contain any printable ASCII character and may also include space,
carriage-return, line-feed, and tab characters.

PL/M-86 Programming Manual Basic Constituents of a PL/M-86 Program

A comment may not be embedded inside a character string constant. Apart from
this, it may appear anywhere that a blank character may appear - that is, anywhere
except embedded within a token. Thus comments may be freely distributed
throughout a PL/M-86 program.

Here is a sample PL/M-86 comment:

/* This procedure copies one structure to another. * /

In this manual, comments are presented in upper and lower case letters, to help
distinguish them visually from program code, which is always presented in upper
case.

CHAPTER 3
DATA TYPES, ARITHMETIC, AND

INTRODUCTION TO DECLARATIONS

3.1 General

PL/M-86 data elements can be either variables or constants. Variables are data ob
jects whose values may change during execution of the program and are referred to
by identifiers. Constants have fixed values and are referred to directly. The expres
sion

APPROX * (OFFSET - 3) I SCALE

involves the variables APPROX, OFFSET, and SCALE, and the whole- number
constant 3.

As previously mentioned, the values of PL/M-86 variables and constants are
classified as BYTE, WORD, INTEGER, REAL, and POINTER values. These
"data types" are fundamental to PL/M-86.

PL/M-86 performs calculations using three different types of arithmetic: unsigned,
signed, and floating-point. As explained in this chapter and the next, the type of
arithmetic used for any calculation depends on the data type(s} involved.

3.1.1 Scalar Variables

A scalar variable is an object whose value is not necessarily known at compile time
and may change during the execution of the program. It is therefore referred to by
means of an identifier. In this manual, the term "scalar variable" or simply
"scalar" always means a variable having a single numeric value.

The term "variable" has a more general meaning: a variable may be a scalar
variable, or it may be a set of scalars referred to by a single identifier. Such variables
("arrays" and "structures") are introduced in Sections 5.1 and 5.2.

Each variable used in a PL/M-86 program must be declared in a DECLARE state
ment before it can be referred to. This declaration defines the variable by introduc
ing the identifier and giving necessary information about it. In the simplest type of
DECLARE statement, the only information provided is a "type." (Only simple
declarations are described in this chapter. Chapter 8 gives additional information
about DECLARE statements.)

3.1.2 Types

A scalar variable has one of five "types": BYTE, WORD, INTEGER, REAL, or
POINTER. A BYTE variable is an 8-bit value occupying a single byte of storage. A
WORD variable is a 16-bit value occupying two bytes of storage. The internal
representations of INTEGER, REAL, and POINTER variables depend on the im
plementation.

The type of every variable must be formally declared in its DECLARE statement.

3-1

Data Types

3-2

PL/M -86 Programming Manual

A DECLARE statement for a variable (or a list of variables) begins with the reserved
word DECLARE. Each single identifier, or list of identifiers enclosed in paren
theses, is followed by one of the five reserved words BYTE, WORD, INTEGER,
REAL, or POINTER. Sample PL/M-86 declarations are

DECLARE UNKNOWN BYTE;
DECLARE PTR POINTER;
DECLARE (WIDTH, LENGTH, HEIGHT) REAL;

The first of these DECLARE statements introduces the identifier UNKNOWN and
states that it refers to a BYTE value.

The second DECLARE statement introduces the identifier PTR and states that it
refers to a POINTER value.

The statement

DECLARE (WIDTH, LENGTH, HEIGHT) REAL;

is called a "factored declaration." It is equivalent to the following sequence:

DECLARE WIDTH REAL;
DECLARE LENGTH REAL;
DECLARE HEIGHT REAL;

(except that contiguous storage is guaranteed for variables declared in a single
parenthesized list, while variables declared in consecutive declarations are not
necessarily stored contiguously).

The three identifiers WIDTH, LENGTH, and HEIGHT are introduced and stated
to refer to three distinct scalars of type REAL - that is, floating-point values.

The concept of data types applies not only to variables, but to every value that is
processed by a PL/M-86 program. This includes values returned by procedures, and
values calculated by processing expressions.

3.2 WORD and BYTE Variables: Unsigned Arithmetic

The value of a BYTE variable is an 8-bit binary number ranging from 0 to 255 and
occupying one byte of 8086 memory. The value of a WORD variable is a 16-bit
binary number ranging from 0 to 65535 and occupying two contiguous bytes of 8086
memory. Values of WORD and BYTE variables are treated as unsigned binary in
tegers.

Unsigned integer arithmetic is used in performing any arithmetic operation upon
WORD and BYTE variables. All of the PL/M-86 operators may be used with BYTE
and WORD variables (see Chapter 4). Arithmetic and logical operations yield a
result of type BYTE or WORD, depending on the operation and the operands (see
Section 4.2 and Table 4-1). Relational operations always yield a "true" or "false"
result of type BYTE. (See Section 4.2 and Table 4-1.)

With unsigned arithmetic, if a larger value is subtracted from a smaller one, the
result is the twos complement of the absolute difference between the two values. For
example, if a BYTE value of 1 (00000001 in binary) is subtracted from a BYTE value
of 0 (00000000 binary), the result is a BYTE value of 255 (11111111 binary).

PL/M-86 Programming Manual

Also, the result of a division operation is always truncated (rounded down) to a
whole number. For example, if a WORD value of 7 (0000000000000111 binary) is
divided by a BYTE value of 2 (00000010 binary), the result is a WORD value of 3
(0000000000000011 binary).

When declaring a variable that may be used to hold or produce a negative result, it is
advisable to make it either INTEGER or REAL. If it may be used to hold or pro
duce a non-integer value, it must be REAL. This will avoid unexpected incorrect
results from arithmetic operations. See Chapter 4.

3.3 INTEGER Variables: Signed Arithmetic

INTEGER variables represent signed integers ranging from -32768 to 32767. Inter
nally, an INTEGER value is represented in twos-complement notation.

Arithmetic operations on INTEGER variables use signed integer arithmetic to yield
an INTEGER result. Thus addition and subtraction always produce mathematically
correct results if overflow does not occur. Relational operations use signed
arithmetic comparisons to yield a "true" or "false" result of type BYTE.

However, just as with BYTE and WORD operands, division produces a result which
is truncated to an integer. (The result is rounded down if it is positive, or up if it is
negative.)

Only the arithmetic and relational operators may be used with INTEGER operands.
Logical operators are not allowed. See Chapter 4.

3.4 REAL Variables: Floating-Point Arithmetic

The value of a REAL variable is a signed floating-point number whose size limits
depend on the implementation (see Chapter 14). A REAL value may be any floating
point number (within the limits of precision allowed by the implementation).

Operations on REAL operands use signed floating-point arithmetic to yield a result
of type REAL. The implementation guarantees that the result of each operation is
the closest possible floating-point number to the exact mathematical real-number
result (if overflow or underflow does not occur). The relational operators and the
arithmetic operators +. -, *, and I may be used with REAL operands-the MOD
operator and the logical operators are not allowed. Arithmetic operations yield a
result of type REAL, and relational operations yield a "true" or "false" result of
type BYTE. (See Section 4.2 and Table 4-1.)

For a description of binary representations of REAL values and a discussion of
error handling in floating-point arithmetic, see Chapter 14.

3.5 POINTER Variables and Location References

The value of a POINTER variable is an 8086 storage location. An important use of
POINTER variables is as bases for based variables (see Section 5.4).

Only the relational operators may be used with POINTER operands, to yield a
"true" 0r "false" result of type BYTE. No arithmetic or logical operations are
allowed. See Chapter 4.

Data Types

3-3

Data Types

3-4

PL/M-86 Programming Manual

3.5.1 The @ Operator

A "location reference" is formed by using the @ operator. A location reference has
a value of type POINTER - that is, a location. An important use of location
references is to supply values for POINTER variables.

The basic form of a location reference is

@variable-ref

where the "variable-ref" is a reference to some variable. The value of this location
reference is the actual location at run time of the variable. Thus the value of any
location reference is always of type POINTER.

The "variable-ref" may refer to an array or structure. The location is the location of
the first element or member of the array or structure.

For example, suppose that we have the following declarations:

DECLARE RESULT REAL;
DECLARE XNUM (100) BYTE;
DECLARE RECORD STRUCTURE (KEY BYTE,

IN FO(25) BYTE,
HEAD POINTER);

DECLARE LIST (128) STRUCTURE (KEY BYTE,
INFO (25) BYTE,
HEAD POINTER);

Then @ RESULT is the location of the REAL scalar RESULT, while @XNUM(5) is
the location of the 6th element of the array XNUM and @XNUM is the location of
the beginning of the array, that is, the location of the first element (element 0).

Also, @RECORD.HEAD is the location of the POINTER scalar
RECORD.HEAD, while @RECORD is the location of the BYTE scalar
RECORD.KEY; and @RECORD.INFO is the location of the first element of the
25-BYTE array RECORD.INFO, whereas @RECORD.INFO(7) is the location of
the 8th element of the same array.

LIST is an array of structures. The location reference @LIST(5).KEY is the location
of the scalar LIST(5).KEY. Note that @LIST.KEY is illegal, since it does not iden
tifya unique location.

The location reference @LIST(0).INFO(6) is the location of the scalar LIST(O).IN
FO(6). Also, @LIST(O).INFO is the location of the first element of the same array.

A special case exists when the identifier is the name of a procedure. The procedure
must be declared at the outer level of the program module (see Chapter 11). No ac
tual parameters may be given (even if the procedure declaration includes formal
parameters). The value of the location reference in this case is the location of the en
try point of the procedure.

3.5.2 The" DOT" Operator

For compatibility with PL/M-80 programs, a "dot" operator is provided. The
dot operator (.) is similar to the @ operator, but produces an address of type
WORD. This will not always produce correct results in a PL/M-86 program. See
Appendix E.

PL/M-86 Programming Manual

3.6 Storing Strings and Constants via
Location References

Another form of location reference is

@(constant list)

where the "constant list" is a sequence of one or more constants separated by com
mas, and enclosed in parentheses. When this type of location reference is made,
space is allocated for the constants, the constants are stored in this space (con
tiguously, in the order given by the list), and the value of the location reference is the
location of the first constant.

Strings may be included in the list. For example, if the operand

@('NEXTVALUE')

appears in an expression, it causes the string 'NEXT VALUE' to be stored in
memory (one character per byte, thus occupying 10 contiguous bytes of storage).
The value of the operand is the location of the first of these bytes-in other words, a
pointer to the string.

Data Types

3-5

· " CHAPTER 4
EXPRESSIONS AND ASSIGNMENTS n

A PL/M-86 expression consists of operands (values) combined by means of the
various arithmetic, logical, and relational operators. Examples are

A+B
A + B-C
A*B + C/D
A*(B + C) - (D - E)/F

where +, -, *, and I are operators for addition, subtraction, multiplication, and
division, and A, B, C, D, E, and F represent operands. The parentheses serve to
group operands and operators, as in ordinary algebra.

This chapter presents a complete discussion of the rules governing PL/M-86 expres
sions. Although these rules may appear complex, bear in mind that most of the
expressions used in actual programs are simple and easy to understand. In par
ticular, when the operands of arithmetic and relational operators are all of the same
type, the resulting expression is easy to understand.

4.1 Operands

Operands are the building blocks of expressions. An operand is something that has a
value at run time, which can be operated upon by an operator. Thus in the examples
above, A, B, C, etc. might be the identifiers of scalar variables which have values at
run time.

Numeric constants and fully qualified variable references may appear as operands in
expressions. The following sections describe all of the types of operands that are
permitted.

4.1.1 Constants

Any numeric constant may be used as an operand in an expression.

A numeric constant that contains a decimal point is of type REAL.

A numeric constant that does not contain a decimal point is called a whole-number
constant. As will be seen below (Section 4.5.2), a whole-number constant may be
found in either signed context or unsigned context. In signed context a whole
number constant is treated as an INTEGER value. In unsigned context a whole
number constant is treated as a BYTE value if it is equal to or less than 255; if it is
greater than 255 it is treated as a WORD value. (In three special cases, a single
whole-number constant may be treated as a POINTER value. See Sections 4.6.1,
8.3, and 8.4.)

A string constant containing not more than two characters may also be used as an
operand. If it has only one character, it is treated as a BYTE constant whose value is
the eight-bit ASCII code for the character. If it is a two-character string, it is treated
as a WORD constant whose value is formed by stringing together the ASCII codes
for the two characters, with the code for the first character forming the most signifi
cant eight bits of the sixteen-bit number. Strings of more than two characters are
illegal as operands in expressions.

4-1

Expressions and Assignments PL/M-86 Programming Manual

4-2

4.1.2 Variable References

As we have seen, a fully qualified variable reference refers unambiguously to a single
scalar value. Any fully qualified variable reference may be used as an operand in an
expression. When the expression is evaluated, the reference is replaced by the value
of the scalar.

In addition to the kinds of variable reference described previously, there is another
kind called a "function reference."

A function reference is the name of a "typed procedure" that has previously been
declared, along with any parameters required by the procedure declaration. The
value of a function reference is the value returned by the procedure. For a complete
discussion of procedures and function references, see Chapter 9.

4.1.3 Location References

Location references have already been described in Section 3.5.

4.1.4 Subexpressions

A subexpression is simply an expression enclosed in parentheses. A subexpression
may be used as an operand in an expression. This is the same as saying that paren
theses may be used to group portions of an expression together, just as in ordinary
algebraic notation.

4.1.5 Compound Operands

All the operand types described above are primaryoperands. An operand may also
be a value calculated by evaluating some portion of the total expression. For exam
ple, in the expression

A + 8* C

(where A, B, and C are variable references), the operands of the * operator are B
and C. The operands of the + operator are A and the compound operand B * C -
or more precisely, the value obtained by evaluating B * C. Notice that this expres
sion is evaluated as if it had been written

A + (8 * C)

This analysis of an expression to determine which operands belong to which
operators, and which groups of operators and operands form compound operands,
is discussed in Section 4.5.1 .

4.2 Arithmetic Operators

There are five principal arithmetic operators in PL/M-86 (two others are described
in Chapter 13). The five principal operators are

+ - * I MOD

All of these operators are used as in ordinary algebra to combine two operands.
Each operand may have a BYTE, WORD, INTEGER, or REAL value (except that
REAL operands are not allowed with the MOD operator). Arithmetic operations on
POINTER variables are not allowed.

PL/M-86 Programming Manual Expressions and Assignments

4.2.1 The +, -, *, and / Operators

The operators +, -, *, and I perform addition, subtraction, multiplication, and
division on operands of any type except POINTER. The following rules govern
these operations (see also Table 4-1).

1. If both operands are of the same type, the result is of the same type as the
operands, with only one exception: if both operands are of type BYTE, the *
and I operations produce results of type WORD. The type of arithmetic
depends on the type of the operands (see Sections 3.2 through 3.4).

2. Only one combination of operand types is allowed: a BYTE operand can be
combined with a WORD operand. When this is the case, the BYTE operand is
extended by 8 high-order "zero" bits to produce a WORD value. Then the
operation is performed as if both operands were WORD operands.

If one operand is a whole-number constant, it will be treated as a BYTE, WORD, or
INTEGER value according to the following rules (see also Table 4-1 below):

3. If the other operand is a WORD or BYTE operand, the whole-number constant
is treated as a BYTE value if it is equal to or less than 255, or as a WORD value
if it is greater than 255. Then the operation is performed under Rule 1 or Rule 2
above. If the whole-number constant exceeds 65535, the operation is illegal.

4.

5.

If the other operand is an INTEGER operand, the whole-number constant is
treated as a positive INTEGER value. Then the operation is performed as if
both operands were INTEGER operands. If the whole-number constant exceeds
32767, the operation is illegal.

If the other operand is of type REAL or POINTER, the operation is illegal.

6. If both operands are whole-number constants, the operation depends on the
context in which it occurs, as explained in Section 4.5.2.

The result of division by 0 is undefined.

A unary"-" operator is also defined in PL/M-86. It takes a single operand, to
which it is prefixed. In other words, a minus sign that has no operand to the left of it
is taken to be a unary minus.

Its effect is that (-A) is equivalent to (O-A), where A is any operand. The 0 is a
BYTE value if A is of type BYTE or WORD, an INTEGER value if A is of type
INTEGER, or a REAL value if A is of type REAL. If A is a whole-number con
stant, its type and the unary q-" operation depend on the context as explained in
Section 4.5.2.

Finally, a unary" +" operator is defined for the sake of completeness. As in or
dinary algebra, a unary" + " has no effect, and (+ A) is exactly equivalent to (A).

4.2.2 The MOD Operator

MOD performs exactly the same as I, except as follows:

• REAL operands are not allowed - only BYTE, WORD, and INTEGER
operands can be used.

• The result is not the quotient, but the remainder left after integer division. The
result has the same sign as the operand on the left side of-the MOD operator.

For example, if A and B are INTEGER variables with values of 35 and 16 respective
ly, then A MOD B yields an INTEGER result of 3.

Unlike the I operator, the MOD operator must be separated from surrounding let
ters and digits by blanks or other separators.

4-3

Expressions and Assignments PL/M-86 Programming Manual

4-4

4.3 Relational Operators

Relational operators are used to compare operands of all types. They are

< less than
> greater than
<= less than or equal to
>= greater than or equal to
<> not equal to

equal

Relational operators are always binary operators, taking two operands to yield a
BYTE result (see below).

If both operands are of the same type, unsigned arithmetic is used to compare two
BYTE values or two WORD values, signed arithmetic is used to compare two
INTEGER values or two REAL values, and POINTER values are compared
according to the ordering of 8086 locations. (See the discussion of the Optimize con
trol in the PL/M-86 Compiler Operating Instructions for 8080/8085-Based Develop
ment Systems Manual.

As with the arithmetic operators, the only legal combination of operand types is a
BYTE operand with a WORD operand. Whole-number operands are treated as
BYTE, WORD, or INTEGER values as explained in the rules of Section 4.2.1.

If the specified relation between the operands is "true," a BYTE value of OFFH (or
1111$IIIIB) results. Otherwise the result is a BYTE value of OOH (or OOOO$OOOOB).
Thus in all cases the result is of type BYTE, with all 8 bits set to 1 for a "true" con
dition, or to 0 for a "false" condition. For example:

(6)5) result is OFFH (' 'true' ')

(6<=4) result is OOH ("false")

Values of "true" and "false" resulting from relational operations are useful in con
junction with DO WHILE statements and IF statements, as will be seen in Chapter
6. (In the context of a DO WHILE statement or IF statement, only the least signifi
cant bit of a "true" or "false" value is used.)

4.4 Logical Operators

There are 4 logical (boolean) operators in PL/M-86. These are

NOT AND OR XOR

These operators are used with BYTE, WORD, or whole-number constant operands
to perform logical operations on 8 or 16 bits in parallel.

A whole-number constant is treated as a BYTE value if it is equal to or less than 255.
It is treated as a WORD value if it is greater than 255. If it exceeds 65535, the opera
tion is illegal.

NOT is a unary operator, taking one operand only. It produces a result of the same
type as its operand, in which each bit is the ones complement of the corresponding
bit of its operand.

The remaining operators each take 2 operands, and perform bitwise "and," "or,"
and' 'exclusive or" respectively. If both operands are BYTE values, the operation is
an 8-bit operation, and delivers a result of type BYTE. If both operands are WORD

PL/M-86 Programming Manual Expressions and Assign~ents

values, the operation is a 16-bit operation, and delivers a result of type WORD. If
one operand is a BYTE value and the other is a WORD value, the BYTE operand is
first extended by 8 high-order zero bits to yield a WORD value. The operation is a
16-bit operation and the result is of type WORD.

Examples are

NOT 110011008 result is OOIIOOIIB

101010108 AND 110011008 result is lOOOIOOOB

101010108 OR 110011008 result is 11lOlllOB

101010108 XOR 110011008 result is OIIOOIIOB

Also, notice that "true" and "false" values resulting from relational operations can
be combined meaningfully by means of logical operators. Thus

NOT(6 > 5)

(6 > 5) AN D (1 > 2)

(6 > 5) OR (1 > 2)

(LIM = Y) XOR (Z < 2)

4.5 Expression Evaluation

result is OOH ("false")

result is OOH ("false")

result is OFFH ("true")

result is OFFH (' 'true' ') if LIM = Y or if Z
< 2, but result is OOH ("false") if both rela
tions are "true" or both "false."

4.5.1 Precedence of Operators: Analyzing an Expression

Operators in PL/M-86 have an implied precedence, which is used to determine the
manner in which operators and operands are grouped together. A + B*C causes A to
be added to the product of Band C. B is said to be "bound" to the operator * rather
than the operator +, which means that A + B*C is equivalent to A + (B*C) rather
than (A + B)*C.

The Rules of Precedence

• If an operand has only one operator immediately adjacent to it, it is bound to
that operator.

• If an operand has operators immediately adjacent to it on both sides, it is bound
to the operator with the highest precedence (see below).

• Left-ta-right rule: If the two operators immediately adjacent to an operand have
the same precedence, the operand is bound to the operator on the left.

4-5

Expressions and Assignments PL/M-86 Programming Manual

4-6

The PL/M-86 operators are listed below from highest to lowest precedence.
Operators listed on the same line are of equal precedence.

unary - unary +

* I MOD

+

< <= <> >= >

NOT

AND

OR XOR

The application of the precedence ranking can be seen in the following:

A + B* C
A+B-C*D
A+B+C+D
A/B*C/D
A>B AND NOT B<C-1

is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to

A + (B * C)
(A + B) - (C * D)
«A + B) + C) + D
«A I B) * C) I D
(A>B) AND (NOT(B«C-1)))

In the last four examples, we see the application of the "left-to-right" rule for
operators with the same precedence. In the second, third, and fifth examples the
left-to-right rule makes no difference in the value of the expression. But in the
fourth example, the left-to-right rule is critical.

Parentheses can be used to override the assumed precedence in the same way as they
are used in ordinary algebra. Thus the expression (A + B) * C will cause the sum of
A and B to be multiplied by C, instead of adding A to the product of Band C.

As mentioned above in Section 4.1.4, paired parentheses and everything between
them form a subexpression. whose value is considered to be an operand. What this
means in practice is that everything between paired parentheses is evaluated before
the surrounding part of the expression. and this value is used as an operand.

Parentheses are also used around subscripts and around the parameters of function
references. These are not subexpressions since they do not become operands. But
like subexpressions, they must be evaluated before the parts of the expression out
side the parentheses can be evaluated.

To see these rules in action, consider the expression

(-B + SQRT(B* B - 4.0* A *C)) I (2.0* A)

•. md assume that A, B, and C are variables of type REAL and SQRT is a procedure
of type REAL which returns the square root of the value passed to it as a parameter
- in this case, SQRT returns the square root of the value of B*B - 4.0* A *C. Notice
that it is necessary to use floating-point constants (4.0 and 2.0) rather than whole
number constants (4 and 2) since it is illegal to combine whole-number constants
with REAL variables.

We will indicate the association of operands with operators by drawing brackets
over each operator and its operana(s).

PL/M-86 Programming Manual Expressions and Assignments

Since the expression contains parentheses, we first consider the portions of the ex
pression that are within the innermost parentheses, namely the procedure parameter
B*B - 4.0*A*C and the subexpression 2.0*A. Drawing brackets over the highest
precedence operators (which all happen to be * operators), we get

(-B + SQRT(B*B - 4.0*A*C» I (2.0*A)

The two operands of the first * operator are both equal to the value of B. The
operands of the second * operator are 4.0 and the value of A. The operands of the
third * operator are the value of 4.0* A (a compound operand) and the value of C.
The operands of the fourth * operator are 2.0 and the value of A.

The subexpression 2.0* A is now completely analyzed, but the parameter expression
B*B - 4.0*A*C still contains a - operator that has not been analyzed. Therefore, we
draw another bracket:

(-B + SQRT(B* B - 4.0* A *C» I (2.0* A)

The operands of the - operator are the value of B* B and the value of 4.0* A *C. The
parameter expression is now completely analyzed and its value can be calculated, but
this value does not become an operand in the overall expression. Instead it is passed
to the procedure SQRT which returns the square root of the parameter. It is this
returned value that becomes an operand in the overall expression.

(-B + SQRT(B*B - 4.0*A*C» I (2.0*A)

Having dealt with the innermost parenthesized items, we next analyze the outer
subexpression, -8 + SQRT(B*8 -4.0*A*C). The - operator has no operand to its
left, so it is a unary minus and has the highest precedence. Its operand is the value of
B. Next comes the + operator. Its operands are the value of -8 and the value of
SQRT(B*8 - 4.0*A*C).

~i
(-B + SQRT(B*B - 4.0*A*C)) / (2.0*A)

4-7

Expressions and Assignments PL/M-86 Programming Manual

4-8

We are left with only the / operator, whose operands are the value of (-B +
SQRT(B*B - 4.0* A *C» and the value of (2.0* A).

(-8 + SQRT(B* 8 - 4.0* A *C)) I (2.0* A)

This detailed example has been included not only to illustrate the analytical process
but to make three important points.

Types of Compound Operands

The first point is that the compound operands delineated by the brackets have types,
just as primary operands do. In the above example, all of the primary operands are
of type REAL and so the compound operands are also of type REAL. But in an ex
pression where data types are mixed, it is important to understand how the analysis
determines the type of each compound operand. Consider the expression

F>G AND H < K

where F and G are INTEGER variables and Hand K are REAL variables. If we
mistakenly considered G and H to be the operands of the AND operator, we would
have a problem because only BYTE and WORD operands are allowed with logical
operators. In fact, however, the expression is analyzed as

F>G AND H<K

and the operands of the AND operator are the value of F > G and the value of
H < K. Both of these values are BYTE values, and the expression is legal. It yields a
BYTE result.

Restriction on Relational Operators

The second point is that understanding precedence rules and order of evaluation is
critical to successful use of PL/M-86. In ordinary algebra, it is common to write an
expression like

a <= x <= b

meaning that the value of x lies between the values of a and b. From the preceding
discussion, it is clear that if we used this construction in a PL/M-86 expression, it
would not have the desired meaning. First the values of a and x would be compared,
yielding a BYTE result of either 0 or FFH. Then b would be compared to this result,
instead of being compared to x.

But this construction would not only be mistaken, it would be illegal. The PL/M-86
compiler would reject it with an error message, because of the following restriction:
If a compound operand is an operand of a relational operator, the compound
operand must not be the result of a relational operation.

PL/M-86 Programming Manual Expressions and Assignments

Thus if we write

A <= X <= B /*llIegal expression* /

then the compound operand A <= X is an operand of the second <= operator. Since
the compound operand is itself the result of a relational operation, it is illegal. To
get a legal expression with the desired meaning, we can write

A <= X AND X <= B /*Legal expression* /

There are other cases where the restriction applies. For example, it might be
desirable to write something like

~
A> B <> C {*IIlegal expression* /

where C contains the BYTE result of some previous relational operation. To achieve
this legally, we can write

I
(A> B) <> C /*Legal expression* /

With the parentheses, (A > B) is no longer a compound operand but a subexpres
sion. This is legal because the restriction applies only to compound operands.

Order of Evaluation of Operands

The third point to be made from the analytical example is that the binding of
operators and operands is not the same thing as the order in which operands are
evaluated. As we have just seen, the rules of analysis completely and unambiguously
specify which operands are bound to each operator. In the expression

A + B*C

we know that Band C are the operands of the * operator, while A and the value of
B*C are the operands of the + operator. Obviously, Band C must be evaluated
before the * operation can be carried out. Also, the compound operand B*C must be
evaluated before the + operation is carried out.

But it is not obvious whether B will be evaluated before C or vice versa. Indeed, A
could be evaluated before either B or C, and its value stored until the + operation is
performed.

The rules of PL/M do not specify the order in which operands are evaluated. The
reason for this is to allow the compiler to optimize the code it produces.

4-9

Expressions and Assignments PL/M-86 Programming Manual

4-10

In most cases this makes no difference. But in certain special cases the order of
evaluation can affect the value of the expression. These cases arise only when an
embedded assignment (see Section 4.6.3) or a function reference(see Section 9.2.2)
is used as an operand, and the embedded assignment or function reference has the
"side-effect" of changing the value of some other operand in the same expression.

Such cases must be avoided, as noted in Sections 4.6.3 and 9.2.2.

4.5.2 Choice of Arithmetic: Summary of Rules

We have already seen (Sections 3.2, 3.3, and 3.4) that PL/M-86 uses three distinct
kinds of arithmetic: unsigned, signed, and floating-point. Whenever an arithmetic
or relational operation is carried out, PL/M-86 uses one of these types of arithmetic,
depending on the types of the operands.

Table 4-1 is a summary of the rules for which type of arithmetic is used in each case.
The table also shows the type of the result in each case (for arithmetic operations).
The notes following the table give additional information.

Table 4-1. Rules For Arithmetic And Relational Operations

Whole-
BYTE WORD INTEGER REAL Number POINTER

Constant

Relational
POINTER ILLEGAL" ILLEGAL" ILLEGAL" ILLEGAL" ILLEGAL" operations

only'

Unsigned Unsigned Signed Arithmetic

Whole-Number arithmetic, arithmetic, arithmetic,
ILLEGAL"

and type of

Constant BYTE or WORD WORD result' INTEGER result depend
result' result' on context'

Floating-point
REAL ILLEGAL" ILLEGAL" ILLEGAL" arithmetic,

REAL result

Signed

INTEGER ILLEGAL" ILLEGAL"
arithmetic,

INTEGER
result

Unsigned Unsigned

WORD
arithmetic, arithmetic, Type of result is

WORD WORD shown for arithmetic

result' result operators only. For relational
operators, result is always BYTE.

Unsigned

BYTE
arithmetic,

BYTE or WORD
result'

1. Two BYTE operands: The result is of type BYTE for + and - operators or type WORD for·, I, and MOD
operators.

2. BYTE and WORD: The BYTE operand is first extended with 8 high-order bits to convert it to a WORD
value.

3. BYTE and whole-number constant: The constant is treated as a BYTE value if it is equal to or less than
255. Then see Note 1 above.

If the constant is greater than 255, it is treated as a WORD value. Then see Note 2 above.

4. WORD and whole-number constant: The constant is treated as a WORD value, regardless of its
magnitude.

PL/M-86 Programming Manual Expressions and Assignments

5. INTEGER and whole-number constant: The constant is treated as a positive INTEGER value.

6. Note that PL/M-86 has a set of built-in procedures for converting a value from one type to another. See
Chapter 12.

7. POINTER values are compared according to the inherent ordering of 8086 locations. See also the
discussion of the OPTIMIZE control in the ISIS-1/ PLlM-86 Compiler Operator's Manual, Chapter 3.

8. This special case is described below.

Special Case: Constant Expressions

The rules already given explain expressions like

A + 3 * B

where we have a single whole-number constant. However, if we have an expression
like

3-5 + A

we must consider which kind of arithmetic will be used to evaluate 3 - 5, since both
operands are whole-number constants.

The answer, in this case, is that it depends on the type of the operand A. If A is of
type BYTE or WORD, we say that 3 - 5 is in "unsigned context." Unsigned
arithmetic is used to evaluate 3 - 5, giving a BYTE result of 254. Then unsigned
arithmetic is used to add this to A.

If A is of type INTEGER, we say that 3 - 5 is in "signed context." Signed
arithmetic is used to evaluate 3 - 5, giving an INTEGER result of -2. Then signed
arithmetic is used to add this to A.

If A is of type REAL or POINTER, the expression is illegal.

Any compound operand, subexpression, or expression that contains only whole
number constants as primary operands is called a constant expression. (Note that
this applies only to whole-number constants. Floating-point constants are of type
REAL and are treated exactly like the values of REAL variables.)

In this expression

IS
3 - 5 + 500 + A

3 - 5 is a constant expression which forms part of the larger constant expression 3 -
5 + 500.

If the constant expression is not the entire expression, then its value is an operand in
the expression. The context is created by the other operand of the same operator.

If the other operand is of type BYTE or WORD, then each whole-number constant
is treated as a BYTE value if it is equal to or less than 255, or a WORD value if it
greater than 255. If it exceeds 65535 it is illegal. Unsigned arithmetic is used. In the
example above, suppose the operand A has a BYTE value. Then the constant expres
sion 3 - 5 + 500 is in unsigned context. The constants 3 and 5 are treated as BYTE

4-11

Expressions and Assignments PL/M-86 Programming Manual

4-12

values, and 500 is treated as a WORD value. The operation 3 - 5 gives a BYTE
result of 254, and this is extended to a WORD value of 254 before adding 500 to give
a WORD result of 754. It is exactly as if the expression had been written as

754 + A

Now suppose that A has an INTEGER value. In this case, the constant expression 3
- 5 + 500 is in signed context, and all three constants are treated as INTEGER
values. This time, signed arithmetic is used for the operation 3 - 5, for an
INTEGER value of -2. Then 500 is added, and the INTEGER result is 498. It is as if
the expression had been written as

498 + A

To summarize, if the context is created by a BYTE or WORD operand, the constant
expression is in unsigned context. If the context is created by an INTEGER operand,
the constant expression is in signed context. Note that if the context is created by a
REAL or POINTER operand, the constant expression is illegal.

If the constant expression is the entire expression, then it is one of the following:

• Constant expression as right-hand part of an assignment statement: context is
created by the variable to which the expression is being assigned. Rules are given
below in Section 4.6.1.

• Constant expression as subscript of an array variable: evaluated as if being
assigned to a WORD variable (see Section 4.6.1).

• Constant expression in the IF part of an IF statement: evaluated as if being
assigned to a BYTE variable (see Sections 6.2 and 4.6.1).

• Constant expression in a DO WHILE statement: evaluated as if being assigned
to a BYTE variable (see Sections 6.1.3 and 4.6.1).

• Constant expression as "start," "step," or "limit" expression in an iterative
DO statement: evaluated as if being assigned to a variable of the same type as
the index variable in the same iterative DO statement (see Sections 6.1.4 and
4.6.1).

• Constant expression in a DO CASE statement: evaluated as if being assigned to
a WORD variable (see Sections 6.1.5 and 4.6.1).

• Constant expression as an actual parameter in a CALL statement or function
reference: evaluated as if being assigned to the corresponding formal parameter
in the procedure declaration (see Sections 9 .2.1 and 4.6.1).

• Constant expression in a RETURN statement: evaluated as if being assigned to
a variable of the same type as the typed procedure that contains the RETURN
statement (see Sections 9.2.3 and 4.6.1).

4.6 Assignment Statements

Results of computations can be stored as values of scalar variables. At any given
moment, a scalar variable has only one value - but this value may change with pro
gram execution. The PL/M-86 assignment statement changes the value of a
variable. Its simplest form is

variable = expression;

PL/M-86 Programming Manual Expressions and Assignments

The expression to the right of the equal sign may be any PL/M-86 expression, as
described in the preceding sections. This expression is evaluated, and the resulting
value is assigned to (that is, stored in) the variable named on the left side of the equal
sign. This variable may be any fully qualified variable reference except a function
reference. The old value of the variable is lost.

For example, following execution of the statement

RESULT=A + 8;

the variable RESULT will have a new value, calculated by evaluating the expression
A + B.

4.6.1 Implicit Type Conversions

If the variable on the left side of an assignment statement has a different type from
that of the evaluated expression on the right, then either the assignment is invalid or
an implicit type conversion occurs, as explained in the paragraphs below. (An
invalid assignment can often be changed into a valid one via the explicit type- con
version procedures described in Section 12.2.)

Expression with a BYTE Value

WORD variable on the left: The BYTE value is extended by 8 high-order bits to con
vert it to a WORD value.

If the variable on the left is of any type except BYTE or WORD, the assignment is
illegal.

Expression with a WORD Value

BYTE variable on the left: The 8 high-order bits of the WORD value are dropped to
convert it to a BYTE value. Note that this is same as saying that the value of the
expression is taken modulo 256.

If the variable on the left is of any type except BYTE or WORD, the assignment is
illegal.

Expression with an INTEGER Value

No conversions are possible. If the variable on the left is of any type except
INTEGER, the assignment is illegal.

Expression with a REAL Value

No conversions are possible. If the variable on the left is of any type except REAL,
the assignment is illegal.

Expression with a POINTER Value

No conversions are possible. If the variable on the left is of any type except
POINTER, the assignment is illegal.

4-13

Expressions and Assignments PL/M-86 Programming Manual

4-14

Constant Expression

BYTE variable on the left: The constant expression is evaluated in unsigned context.
If the resulting value is less than or equal to 255, it is treated as a BYTE value and no
conversion is necessary. If the resulting value is greater than 255, it is converted to
type BYTE by dropping all except its 8 low-order bits (in other words, it is taken
modulo 256).

WORD variable on the left: The constant expression is evaluated in unsigned con
text. The resulting value is treated as a WORD value, and no conversion is
necessary.

INTEGER variable on the left: The constant expression is evaluated in signed con
text to yield an INTEGER value. No conversion is necessary.

POINTER variable on the left: If the constant expression consists of nothing but a
single whole-number constant, the constant is treated as a POINTER value. The
whole-number constant must not be greater than 1048575. If the constant expression
consists of anything more than a single whole-number constant, the assignment is
illegal. This is one of the three cases in which a whole-number constant can be
treated as a POINTER value. The other two cases are described in Sections 8.3 and
8.4.

REAL variable on the left: The assignment is illegal. However, the FLOAT pro
cedure described in Section 12.2 can be used to convert the constant expression to a
REAL value which can be assigned to that variable.

4.6.2 Multiple Assignment

It is often convenient to assign the same value to several variables at the same time.
This is accomplished in PL/M-86 by listing all the variables to the left of the equals
sign, separated by commas. The variables LEFT, CENTER, and RIGHT can all be
set to the value of the expression INIT + CORR with the single assignment
statement

LEFT, CENTER, RIGHT = INIT + CORR;

The variables on the left-hand side of a multiple assignment must all be of the same
type, with one exception: variables of types BYTE and WORD may be mixed. When
this is done, the conversion rules given above are applied separately to each
assignment.

The order in which the assignments are performed is not predictable.
Therefore, if a variable on the left side of a multiple assignment also
appears in the expression on the right side, the results are undefined.

4.6.3 Embedded Assignments

A special form of the assignment is used within PL/M-86 expressions. The form of
this "embedded assignment" is

variable := expression

PL/M-86 Programming Manual Expressions and Assignments

and may appear anywhere an expression is allowed. The expression to the right of
the := assignment symbol is evaluated and then stored into the variable on the left.
The value of the embedded assignment is the same as that of its right half. For exam
ple, the expression

AL T + (CORR := TCORR + PCORR) - (ELEV := HT ISCALE)

results in exactly the same value as

AL T + (TCORR + PCORR) - (HT ISCALE)

The only difference is the side-effect of storing the intermediate results
TCORR + PCORR and HT ISCALE into CORR and ELEV, respectively. These
names for intermediate results can then be used at a later point in the program
without recalculating their values. The names must have been declared earlier (see
Chapter 3) . .-

As mentioned at the end of Section 4.5.1, the order in which operands in an
expression are evaluated is not specified by the rules of PL/M. When
embedded assignments are used, this may become significant.

If an embedded assignment changes the value of a variable which also
appears elsewhere in the expression, it may be impossible to predict whether
the variable's value will be changed before or after it is referenced. In this
case, the value of the expression is undefined.

You can avoid such cases by removing the embedded assignment from the
expression and using a separate assignment statement to achieve the same
effect.

NOTE

It is strongly advised that you read Chapter 14 before using floating point
arithmetic in programs. See also Chapter 6 of the PL/M-86 Compiler
Operating Instructions for 8080/8085-Based Development Systems
Manual.

4-15

· ,"'
CHAPTER 5

ARRAYS, STRUCTURES, AND BASED
VARIABLES

n

5.1 Arrays

It is often desirable to use a single identifier to refer to a whole group of scalars, and
distinguish the individual scalars from one another by means of a "subscript" (ac
tually, a value enclosed in parentheses as seen in Section 1.2.2). Such a group is call
ed an array.

5.1.1 Array Declarations

An array is declared by using a "dimension specifier." The dimension specifier is a
whole-number constant enclosed in parentheses. The value of the constant specifies
the number of array elements (individual scalar variables) making up the array. For
example,

DECLARE ITEMS (100) BYTE;

causes the identifier ITEMS to be associated with 100 array elements, each of type
BYTE. One byte of storage is allocated for each of these scalars.

The declaration

DECLARE (WIDTH, LENGTH, HEIGHT) (100) REAL;

is equivalent to the following sequence:

DECLARE WIDTH (100) REAL;
DECLARE LENGTH (100) REAL;
DECLARE HEIGHT (100) REAL;

(except that contiguous storage is guaranteed for variables declared in a single
parenthesized list, while variables declared in consecutive declarations are not
necessarily stored contiguously).

This causes the 3 identifiers WIDTH, LENGTH, and HEIGHT each to be
associated with 100 array elements of type REAL, so that 300 clements of type
REAL have been declared in all. For each of these scalars, four contiguous bytes of
storage are allocated.

5.1.2 Subscripted Variables

To refer to a single element of an array (previously declared), one uses the array
identifier followed by a subscript enclosed in parentheses. This is called a
"subscripted variable."

For example, the DECLARE statement

DECLARE ITEMS(1 00) BYTE;

actually declares 100 scalars of type BYTE, which can be referred to as ITEMS(O),
ITEMS(1), ITEMS(2), and so on up to ITEMS(99).

5-1

Arrays, Structures, and Based Variables PL/M-86 Programming Manual

5-2

Notice that the first element of an array has subscript 0-not 1.

If we want to add the third element of the array ITEMS to the fourth, and store the
result in the fifth, we can write the PL/M-86 assignment statement

ITEMS(4) = ITEMS(2) + ITEMS(3);

Much of the power of a subscripted variable lies in the fact that the subscript need
not be a whole-number constant, but can be another variable, or in fact any
PL/M-86 expression that yields a BYTE, WORD, or INTEGER value. Thus the
construction

VECTOR (ITEMS(3) + 2)

refers to some element of the array VECTOR; which element depends on the expres
sion ITEMS(3) + 2, and this in turn depends on the value stored in ITEMS(3), the
fourth element of array ITEMS, at the time when the reference is processed by the
running program.

If ITEMS(3) contains the value 5, then ITEMS(3) + 2 is equal to 7 and the reference
is to VECTOR(7), the eighth element of the array VECTOR.

The following sequence of statements will sum the elements of the 10-element array
NUMBERS by using an "index variable," I, which takes on values from 0 to 9:

DECLARE SUM BYTE;
DECLARE NUMBERS (10) BYTE;
DECLARE I BYTE;

SUM = 0;
DO I =OT09;

SUM = SUM + NUMBERS(I);
END;

Subscripted variables are permitted anywhere PL/M-86 permits an expression.
Also, subscripted variables are permitted on the left side of an assignment state
ment.

5.2 Structures

Just as an array allows one identifier to refer to a collection of elements of the same
type, a structure allows one identifier to refer to a collection of structure members
which may have different types. Each member of a structure has a member
identifier.

The following is an example of a structure declaration:

DECLARE AIRPLANE STRUCTURE (SPEED REAL, ALTITUDE REAL);

This declares two REAL scalars, both associated with the identifier AIRPLANE.
Once this declaration has been made, the first scalar can be referred to
as AIRPLANE.SPEED and the second can be referred to as
AIRPLANE.AL TITUDE. These are the two members of this structure.

A structure may have multiple members (see PL/M-86 Compiler Operating Instruc
tions for 8080/8085-Based Development Systems Manual for limits on the number
of members allowed).

PL/M-86 Programming Manual Arrays, Structures, and Based Variables

Note that each structure member must have its type given separately. The declara
tion given above cannot be rewritten as

DECLARE AIRPLANE STRUCTURE «SPEED, ALTITUDE) REAL); /*Error!* /

Also, a structure member may not be based (see Section 5.4) and may not have any
attributes (see Chapter 8).

5.2.1 Arrays of Structures

We have already seen arrays of scalars. PL/M-86 also allows arrays of structures.
The following DECLARE statement declares an array of structures which can be us
ed to store SPEED and ALTITUDE (as in the previous example) for twenty
AIRPLANEs instead of one:

DECLARE AIRPLANE (20) STRUCTURE (SPEED REAL, ALTITUDE REAL);

This declares twenty structures associated with the array identifier AIRPLANE,
distinguished by subscripts from 0 to 19. Each of these structures consists of two
REAL scalar members. Thus storage is allocated for 40 REAL scalars.

To refer to the ALTITUDE of AIRPLANE number 17, one would write
AIRPLANE(17).AL TITUDE.

5.2.2 Arrays Within Structures

An array may be used as a member of a structure, as in the following DECLARE
statement:

DECLARE PAYCHECK STRUCTURE (LAST$NAME (15) BYTE,
FIRST$NAME (15) BYTE,
MI BYTE,
AMOUNT REAL);

This structure consists of the following members: two I5-element BYTE arrays,
PAYCHECK.LAST$NAME and PAYCHECK.FIRST$NAME; the BYTE scalar
PA YCHECK.MI; and the REAL scalar PA YCHECK.AMOUNT.

To refer to the fourth element of the array PA YCHECK.LASTNAME, we would
write PA YCHECK.LASTNAME(3).

5.2.3 Arrays of Structures with Arrays Inside the Structures

We have just seen that an array can be made up of structures, and a structure can
have arrays as members. By combining these two constructions, we can write a
DECLARE statement like the following:

DECLARE X (100) STRUCTURE (Y (100) BYTE);

The identifier X refers to an array of 100 structures, each of which contains one ar
ray of 100 BYTE scalars. This could be thought of as a 100-by-l00 matrix of BYTE
scalars. To reference a particular scalar value-say element 46 of structure 35-we
would write X(35).Y(46). Note that the scalar elements of each "Y" array are stored
contiguously, and the "Y" arrays themselves are elements of the "X" array and are
stored contiguously.

5-3

Arrays, Structures, and Based Variables PL/M-86 Programming Manual

5-4

We can alter the PAYCHECK structure declaration above to make it an array of
structures, as follows:

DECLARE PAYROLL (100) STRUCTURE (LAST$NAME (15) BYTE,
FIRST$NAME (15) BYTE,
MI BYTE,
AMOUNT REAL);

Now we have an array of 100 structures, each of which can be used during program
execution to store the last name, first name, middle initial, and amount for one
employee. LAST$NAME and FIRST$NAME in each structure are I5-BYTE arrays
for storing the names as character strings. To refer to the Kth character of the first
name of the Nth employee, we would write PA YROLL(N).FIRST$NAME(K),
where Nand K are previously declared variables to which we have assigned ap
propriate values. This might be convenient in a routine for printing out payroll in
formation.

5.3 Reference to Arrays and Structures

In the preceding sections, we have seen numerous examples of variable references. A
variable reference is simply the use, in program text, of the identifier of a variable
that has been declared.

A variable reference may be "fully qualified," "partially qualified," or "un
qualified. "

5.3.1 Fully Qualified Variable References

A fully qualified variable reference is one that uniquely specifies a single scalar. For
example, if we have the declarations

DECLARE AVERAGE REAL;
DECLARE ITEMS (100) BYTE;
DECLARE RECORD STRUCTURE (KEY BYTE, INFO WORD);
DECLARE NODE (25) STRUCTURE (SUBLIST (100) BYTE, RANK BYTE);

then AVERAGE, ITEMS (5), RECORD. INFO, and NODE(2I).SUBLIST(32) are
all fully qualified variable references: each refers unambiguously to a single scalar.

It should be noted that qualification may only be applied to variables that have been
appropriately declared. A subscript may only be applied to an identifier that has
been declared with a dimension specifier. A member-identifier may only be applied
to an identifier declared as a structure identifier.

5.3.2 Unqualified and Partially Qualified Variable References

Unqualified and partially qualified variable references are allowed only in location
references (see Section 3.5) and in the builtin procedures LENGTH, LAST, and
SIZE (see Section 12.1).

An unqualified variable reference is the identifier of a structure or array, without
any member-identifier or subscript. For example, with the above declarations,
ITEMS and RECORD are unqualified variable references. An unqualified variable
reference is a reference to the entire array or structure. @ITEMS is the location of
the entire array ITEMS-that is, the location of its first byte. Similarly, @RECORD
is the location of the first byte of the structure RECORD.

PL/M-86 Programming Manual Arrays, Structures, and Based Variables

A partially qualified variable reference is the use of an identifier with a subscript
and/ or member-identifier, if the reference does not uniquely refer to a single scalar.
For example, NODE(l5) and NODE(l2).SUBLIST are partially qualified variable
references, given the above declarations. @NODE(l5) is the location of the first
byte of the structure NODE(l5), which is itself an element of the array NODE.
Similarly, @NODE(l2).SUBLIST is the location of the first byte of the array
NODE(l2).SUBLIST, which is itself a member of the structure NODE(l2), which in
turn is an element of the array NODE.

Note that @NODE.SUBLIST is not permitted: in a location reference referring to
an array made up of structures, a subscript must be given before a member-identifier
can be added to the reference. The rule is different for partially qualified variable
references in connection with the builtin procedures LENGTH, LAST, and SIZE, as
explained in Chapter 12.

5.4 Based Variables

Sometimes a direct reference to a PL/M-86 data element is either impossible or in
convenient. This happens, for example, when the location of a data element must re
main unknown until it is computed at run-time. In such cases it may be necessary to
write PL/M-86 code to manipulate the locations of data elements rather than the
data elements themselves, considering that the locations "point to" the data.

To permit this type of manipulation, PL/M-86 uses "based variables." A based
variable is a variable which is pointed to by another variable, called its "base." A
based variable is not allocated storage by the compiler. At different times during the
program run it may actually be in different places in memory, since its base may be
changed by the program. A based variable is declared by first declaring its base,
which must be of type POINTER or WORD, and then declaring the based variable
itself:

DECLARE ITEM$PTR POINTER;
DECLARE ITEM BASED ITEM$PTR BYTE;

Given these declarations, a reference to ITEM is, in effect, a reference to whatever
BYTE value is pointed to by the current value of ITEM$PTR. This means that the
sequence

ITEM$PTR = 34AH;
ITEM = 77H;

will load the BYTE value 77 (hex) into the memory location 34A (hex).

A variable is made BASED by inserting in its declaration the word BASED and the
identifier of the base (which must already have been declared).

The following restrictions apply to bases:

• The base must be of type POINTER or WORD. Normal usage is for the base to
be a POINTER variable; a base of type WORD will not always give correct
results and is only allowed for compatibility with PL/M-80 programs (see Ap
pendix E).

• The base may not be subscripted-that is, it may not be an array clement.

• The base may not itself be a based variable.

5-5

Arrays, Structures, and Based Variables PL/M-86 Programming Manual

5-6

The word BASED must immediately follow the name of the based variable in its
declaration, as in the following examples:

DECLARE (AGE$PTR, INCOME$PTR, RATING$PTR, CATEGORY$PTR)
POINTER;

DECLARE AGE BASED AGE$PTR BYTE;
DECLARE (INCOME BASED INCOME$PTR, RATING BASED RATING$PTR)

WORD;
DECLARE (CATEGORY BASED CATEGORY$PTR) (100) WORD;

In the first DECLARE statement, the POINTER variables AGE$PTR, IN
COME$PTR, RATING$PTR, and CATEGORY$PTR are declared. They are used
as bases in the next three DECLARE statements.

In the second DECLARE statement, a BYTE variable called AGE is declared. The
declaration implies that whenever AGE is referenced by the running program, its
value will be found at the location given by the value of the POINTER variable
AGE$PTR at that same time.

The third DECLARE statement declares two based variables, both of type WORD.

The fourth DECLARE statement defines a IOO-element WORD array called
CATEGORY, based at CATEGORY$PTR. This means that when any element of
CATEGORY is referenced at run time, the value of CATEGORY$PTR at that same
time is the location of the first element of CATEGORY. The other elements follow
contiguously. The parentheses around the tokens CATEGORY BASED
CA TEGOR Y$PTR are optional. They help to make the statement more readable,
and may be omitted.

5.4.1 Location References and Based Variables

An important use of location references is to supply values for bases. Thus the @
operator, together with the based variable concept, gives PL/M-86 a complete facili
ty for manipulating pointers.

For example, suppose that we have three different REAL variables, NORTH$ER
ROR, EAST$ERROR, and HEIGHT$ERROR. We want to be able to refer to them
at different times by means of the single identifier ERROR. This can be done as
follows:

DECLARE (NORTH$ERROR, EAST$ERROR, HEIGHT$ERROR) REAL;
DECLARE ERROR$PTR POINTER;
DECLARE ERROR BASED ERROR$PTR REAL;

ERROR$PTR = @ NORTH$ERROR;

At this point, the value of ERROR$PTR is the location of NORTH$ERROR. A
reference to ERROR will be, in effect, a reference to NORTH$ERROR. Later in the
program, we can write

ERROR$PTR = @HEIGHT$ERROR;

Now a reference to ERROR will be, in effect, a reference to HEIGHT$ERROR. In
the same way, we can cause the value of the pointer to be the location of EAST$ER
ROR, and a reference to ERROR will be a reference to EAST$ERROR.

PL/M-86 Programming Manual Arrays, Structures, and Based Variables

This kind of technique is useful for manipulating complicated data structures and
for passing locations to procedures as parameters. Examples are given in Chapter 9.

5.5 Contiguity of Storage

PL/M-86 guarantees that variables will be stored in contiguous memory locations in
certain situations:

• The elements of an array are stored contiguously, with the Oth element in the
lowest location and the last element in the highest location. (No storage is
allocated for a based array, but the elements are considered to be contiguous in
memory.)

• The members of a structure are stored contiguously, in the order in which they
are specified. (No storage is allocated for a based structure, but the members are
considered to be contiguous in memory.)

• Non-based variables declared in a "factored" declaration-that is, variables
within a parenthesized list-are stored contiguously, in the order specified. (If a
based variable occurs in a parenthesized list, it is ignored in allocating storage.)

These are the onlyguarantees.

5-7

CHAPTER 6
FLOW CONTROL STATEMENTS

This chapter describes statements that affect the sequence of execution of statements
in a PL/M-86 program and the grouping of PL/M-86 statements into blocks.

6.1 DO and END Statements: DO Blocks

DO and END statements act as brackets to form "DO blocks." There are four dif
ferent kinds of DO statements, described in the following sections. They are

• The simple DO statement

• The DO WHILE statement

• The iterative DO statement

• The DO CASE statement

The END statement has the form

END [label] ;

where the optional label, if used, must be the label of the DO statement that begins
the DO block.

For example, the statement

END FIND;

could be used to end a block that begins with a DO statement bearing the label
FIND.

If the DO statement has more than one label, the label in the END statement must
match the last-that is, the rightmost-of these labels. The label in an END state
ment has no effect on the program. It is allowed as a means of making programs
easier to understand and as a debugging aid. The compiler will detect an incorrect
label and may thus alert the programmer to a mistake in his program structure.

6.1.1 Simple DO Blocks

A simple DO block begins with a simple DO statement and has the form

DO;

END;

statement-O;
statement-I;

statement-n;

The following is an example:

DO;

END;

NEW$VALUE = OLD$VALUE + TEMP;
COUNT = COUNT + 1;

6-1

Flow Control Statements PL/M-86 Programming Manual

6-2

There are three principal uses of simple DO blocks:

• A simple DO block may be regarded as a single PL/M-86 statement, and may
appear anywhere in a program that a single executable statement may appear.
This is useful in DO CASE blocks and IF statements, as will be seen in Sections
6.1.5 and 6.2.

• A simple DO block delimits the scope of variables as explained in Chapter 10.

• As explained in Chapter 11, a program module is a simple DO block (with
certain other requirements).

Each statement within a simple DO block may be any PL/M-86 statement, including
both executable statements and declarations, with the restriction that all declara
tions within the outer level of the DO block must appear before the first executable
statement that occurs at the outer level.

The executable statements (if any) within the DO block iue executed in normal
sequence just as if they were not enclosed within DO and END statements. (Notice
that if any other flow control statements occur within the DO block, they may alter
the normal sequence as explained in the following sections.)

DO blocks may be nested within each other as shown in the following:

able: DO;
statement-O;
statement-l ;

baker: DO;

END able;

statement-a;
statement-b;
statement-c;

END baker;
statement-2;
statement-3;

The first DO statement and the second END statement bracket one simple DO
block. The second DO statement and the first END statement bracket a different
DO block inside the first one. Notice how indentation (using tabs or spaces) can be
used to make the sequence readable, so that it can be seen at a glance that one DO
block is nested inside another. It is recommended that this practice be followed in
writing PL/M-86 programs.

Nesting is not restricted to simple DO blocks. Any DO block may be nested within
any other DO block.

The number of levels to which DO blocks can be nested is limited by the PL/M-86
Compiler. See ISIS-II PLIM-86 Compiler Operator's Manual.

6.1.2 "True" and "False" Values

Before describing DO WHILE blocks, it is worth commenting here on the relation
ship between the logical operators and the DO WHILE statement. These comments
also apply to the IF statement (see Section 6.2). We have seen (Section 4.3) that rela
tional operations result in OFFH for "true" or OOH for "false." Such values may be
used to control a DO WHILE statement or IF statement. However, DO WHILE and
IF statements examine only the least significant bit of the value of the expression,
and the expression need not have a value of OOH or OFFH. It may have any BYTE or
WORD value. If the value is an odd number (least significant bit = 1) it will be con
sidered "true." If it is even (least significant bit = 0) it will be considered "false."

PL/M-86 Programming Manual Flow Control Statements

6.1.3 DO WH I LE Blocks

A DO WHILE block begins with a DO WHILE statement, and has the form

DO WHILE expression;
statement-O;
statement-l ;

statement-n;
END;

The effect of this statement is as follows:

1. First the expression following the reserved word WHILE is evaluated as if it
were being assigned to a BYTE variable. If the result is a quantity whose
rightmost bit is 1, then the sequence of statements up to the END is executed.

2. When the END is reached, the WHILE expression is evaluated again, and again
the sequence of statements is executed only if the value of the expression has a
rightmost bit of 1.

3. The block is executed over and over until the expression has a value whose
rightmost bit is 0, at which time execution of the statements in the block is
skipped, and program control passes to the statement following the END
statement.

NOTE
The above description assumes that the block does not contain any flow
control statements that could cause control to pass out of the block
prematurely. For example, a OOTO statement (see Section 6.3.2) could
transfer control out of the block without regard to the value of the expres
sion in the DO WHILE statement.

Consider the following example:

AMOUNT=1;
DO WHILE AMOUNT <= 3;

AMOUNT = AMOUNT +1;
END;

The statement AMOUNT = AMOUNT + 1 is executed exactly 3 times. The value of
AMOUNT when program control passes out of the block is 4.

Like a simple DO block, a DO WHILE block can be considered as a single PL/M-86
statement.

However, unlike a simple DO block, a DO WHILE block may not contain declara
tions at its outermost level. (It may contain a nested simple DO block which contains
declarations.)

6.1.4 Iterative DO Blocks

An iterative DO block begins with an iterative DO statement and executes the
statements within the block repeatedly as described below.

Like a simple DO block, an iterative DO block can be considered as a single
PL/M-86 statement.

6-3

Flow Control Statements PL/M-86 Programming Manual

6-4

However, unlike a simple DO block, an iterative DO block may not contain declara
tions at its outermost level. (It may contain a nested simple DO block which contains
declarations.)

The form of the iterative DO block is

DO index = start-expr TO limit-expr [BY step-expr];
statement-O;
statement-I;

statement-n;
END;

where "index" is a reference to a scalar variable (not subscripted) of type BYTE,
WORD, or INTEGER, called the "index variable." The "start-expr," "limit
expr," and "step-expr" are PL/M-86 expressions. The reserved word BY and the
step- expr may be omitted, if a step value of 1 is desired (see below).

The operation of an iterative DO block depends on the type of the index variable.

Iterative DO Block With INTEGER Index Variable

When the index variable is of type INTEGER, the iterative DO block operates as
follows:

1. The start-expr is assigned to the index variable.

2. The limit-expr and the step-expr are evaluated as if being assigned to variables
of type INTEGER. If no step-expr has been supplied, a value of 1 is used.

3. If the value of the step-expr is negative and the value of the index variable is less
than the value of the limit-expr, the iterative DO block terminates at this point
and control passes to the statement following the END statement.

4. If the value of the step-expr is not negative and the value of the index variable is
greater than the value of the limit-expr, the iterative DO block terminates at this
point and control passes to the statement following the END statement.

5. If the iterative DO block has not been terminated in Step 3 or Step 4, the
executable statements within the block are now executed.

6. When the last executable statement in the block has been executed, the index
variable is incremented by the value of the step-expr. (The value of the step-expr
was obtained in Step 2; it is not re-evaluated at this point.) Then we go back to
Step 2.

NOTES

The start-expr is evaluated only once. The limit-expr and the step-expr are
evaluated each time the block is repeated, before the executable statements
are executed.

The above description assumes that the block does not contain any flow
control statements that could cause control to pass out of the block
prematurely. For example, a GOTO statement (see Section 6.3.2) could
transfer control out of the block without regard to the values of the index
variable and the limit-expr.

PL/M-86 Programming Manual Flow Control Statements

An example of an iterative DO block is

DO I = 1 TO 10;
CALL BELL;

END;

where BELL is the name of a procedure that causes a bell to be rung. The bell is rung
ten times.

Another example shows how the index-variable can be used within the block.

AMOUNT = 0;
DO 1=1 TO 10;

AMOUNT = AMOUNT + I;
END;

Both AMOUNT and I are INTEGER variables. The assignment statement is
executed 10 times, each time with a new value for I. The result is to sum the integers
from I to 10 (inclusive) and leave the sum (namely 55) as the value of AMOUNT.

The next example uses a step-expr:

/*Compute the product of the
first N odd integers * /

PROD = 1;
DO 1 = 1 TO (2*N-1) BY 2;

PROD = PROD*I;
END;

Iterative DO Block With BYTE or WORD Index Variable

When the index variable is of type BYTE or WORD, the iterative DO block operates
as follows:

1. The start-expr is assigned to the index variable.

2. The limit-expr is evaluated as if it were being assigned to a variable of the same
type as the index variable, and this value is compared to that of the index
variable. If the value of the index variable is greater than the value of the limit
expr, the iterative DO block terminates at this point and control passes to the
statement following the END statement.

3. The executable statements in the block are executed.

4. The step-expr is evaluated as if it were being assigned to the index variable, and
the index variable is incremented by this value. If this causes the new value to be
less than the old value (because of "wrap-around" due to modulo arithmetic),
the iterative DO block terminates at this point and control passes to the state
ment following the END statement. If the new value of the index variable is not
less than the old value, we go back to Step 2 above.

6-5

Flow Control Statements PL/M-86 Programming Manual

6-6

NOTES

The start-expr is evaluated only once. The limit-expr is evaluated each time
the block is repeated, before the executable statements are executed. The
step-expr is evaluated each time the block is repeated, after the executable
statements are executed.

Step 4 above provides for stopping the repetition if the value of the index
variable is incremented past 255 (for a BYTE index variable) or 65535 (for a
WORD index variable).

With an index variable of type BYTE or WORD, there is no such thing as a
negative step. For example, if the step-expr is-5, it will be evaluated as 251.

Furthermore, it is not possible to step "downwards" to a limit-expr value
that is less than the initial-expr value, because the iterative DO block with a
BYTE or WORD index variable will always terminate if the value of the
index-variable is greater than the value of the limit-expr.

6.1.5 DO CASE Blocks

A DO CASE block begins with a DO CASE statement, and selectively executes one
of the statements in the block. The statement is selected by the value of an expres
sion. The form of the DO CASE block is

DO CASE expression;
statement-O;
statement-I;

statement-n;
END;

The expression in the DO CASE statement may yield a BYTE, WORD, or IN
TEGER value. If it is a constant expression, it is evaluated as if it were being assign
ed to a WORD variable. The value of the expression must lie between 0 and n. (Call
this value K.) K is used to select one of the statements in the DO CASE block, which
is then executed. The first case (statement-O) corresponds to K=O, the second case
(statement-I) corresponds to K=I, and so forth. Only one statement from the block
is selected. This statement is then executed only once. Control then passes to the
statement following the END statement of the DO CASE block.

NOTE

The above description assumes that the block does not contain any flow
control statements that could cause control to pass from one case to
another. For example, a GOTO statement (see Section 6.3.2) could transfer
control from the selected case to another case, or out of the DO CASE
block.

PL/M-86 Programming Manual Flow Control Statements

If the run-time value of the expression in the DO CASE statement is less
than 0 or greater than n (where n + 1 is the number of statements in the DO
CASE block) then the effect of the DO CASE statement is undefined. This
may have disastrous effects on program execution. Therefore if there is any
possibility that this may occur, the DO CASE block should be contained
within an IF statement that tests the expression to make sure that it has a
value that will produce meaningful results.

An example of a DO CASE block is

DO CASE SCORE;

END;

,
CONVERSIONS = CONVERSIONS + 1 ;
SAFETIES = SAFETIES + 1;
FIELDGOALS = FIELDGOALS + 1 ;

,
TOUCHDOWNS = TOUCHDOWNS + 1;

When execution of this CASE statement begins, the variable SCORE must be in the
range 0 - 6. If SCORE is 0, 4, or 5 then a null statement (consisting of only a
semicolon, and having no effect) is executed; otherwise the appropriate variable is
incremented.

A more complex DO CASE block is the following:

SELECTOR = COUNT-5;
IF SELECTOR <= 2 AND SELECTOR >= 0 THEN
DO CASE SELECTOR;

x = X + 1; / * Case 0 * /

DO; / * Begin Case 1 * /
X=X+10;
Y=Y+1;

END; /* End Case 1 * /

DO I = LAST$HI + 1 TO TOP; /* Begin Case 2 * /
CALL WRITEOUT(@TABLE(I), 1);

END; /* End Case 2 * /

END; /* End DO CASE block * /
ELSE CALL ERROR;

Here SELECTOR and COUNT are INTEGER variables; therefore negative values
could occur. The DO CASE blo~k is placed within an IF statement to guarantee that
if the value of SELECTOR is less than 0 or greater than 2, execution of the DO
CASE block will not be attempted. Instead, a procedure called ERROR (declared
previously) will be activated. IF statements are discussed in the next section.

This example illustrates the use of a simple DO block as a single PL/M-86 state
ment. The DO CASE statement can select Case 1 and cause two statements to be ex
ecuted. This is only possible because they are grouped as a simple DO block, which
acts as a single statement. Also, the iterative DO block of Case 2 appears as a single
statement. The CALL statement within the iterative DO block is executed repeated
ly.

6-7

Flow Control Statements PL/M-86 Programming Manual

6-8

Like a simple DO block, a DO CASE block can be considered as a single PL/M-86
statement. In the example above, this allows the entire DO CASE block to be written
inside the THEN part of the IF statement.

However, unlike a simple DO block, a DO CASE block may not contain declara
tions at its outermost level. (It may contain a nested simple DO block which contains
declarations.)

6.2 The IF Statement

The IF statement provides conditional execution of statements. It takes the form

IF expression THEN statement-a;
[ELSE statement-b ;]

The reserved word THEN and the statement following it are called the' 'THEN
part," while the reserved word ELSE and the statement following it are the optional
"ELSE part."

The IF statement has the following effect: first the expression following the reserved
word IF is evaluated as if it were being assigned to a variable of type BYTE. If the
result is "true" (see Section 6.1.2) then statement-a is executed. If the result is
"false" then statement-b is executed. Following execution of the chosen alternative,
control passes to the next statement following the IF statement. Thus of the two
statements (statement-a and statement-b) one and only one is executed.

Consider the following program fragment:

IF NEW>OLD THEN RESULT=NEW;
ELSE RESUL T=OLD;

Here RESULT is assigned the value of NEW or the value of OLD, whichever is
greater. This code causes exactly one of the two assignment statements to be ex
ecuted. RESULT always gets assigned some value. However, only one assignment to
RESULT is executed.

In the event that statement-b is not needed, the ELSE part may be omitted entirely.
Such an IF statement takes the form

IF expression THEN statement-a;

Here statement-a is executed only if the value of the expression has a rightmost bit of
1. Otherwise nothing happens, and control immediately passes on to the next state
ment following the IF statement.

For example, the following sequence of PL/M-86 statements will assign to INDEX
either the number 5, or the value of THRESHOLD, whichever is larger. The value
of INIT will change during execution of the IF statement only if THRESHOLD is
greater than 5. The final value of INIT is copied to INDEX in any case.

INIT=5;
IF THRESHOLD> INIT THEN INIT = THRESHOLD;
INDEX = INIT;

PL/M-86 Programming Manual Flow Control Statements

The power of the IF statement is enhanced by using DO blocks in the THEN and
ELSE parts. Since a DO block is allowed wherever a single statement is allowed,
each of the two statements in an IF statement may be a DO block. For example:

IF A=B THEN
DO;

ELSE
END;

DO;

END;

EQUAL$EVENTS = EQUAL$EVENTS + 1;
PAIR$VALUE = A;
BOTTOM = B;

UNEQUAL$EVENTS = UNEQUAL$EVENTS + 1;
TOP = A;
BOTTOM = B;

DO blocks nested within an IF statement can contain further nested DO blocks, IF
statements, variable and procedure declarations, and so on.

6.2.1 Nested IF Statements

An IF statement (including the ELSE part, if any) may be considered a single
PL/M-86 statement (although it is not a block). Thus the THEN part of an IF state
ment may contain another IF statement. This "nesting" of IF statements may be
carried to several levels, without needing to enclose any of the nested IF statements
in DO blocks, as in the following construction:

IF expression-l THEN
IF expression-2 THEN

IF expression-3 THEN statement-a;

Here we have three levels of nesting. Note that statement-a will be executed only if
the valtles of all three expressions are "true." Thus the above is equivalent to

IF (expression-I) AND (expression-2) AND (expression-3)
THEN statement-a;

Notice that the above example of nesting does not have an ELSE part. When using
nested IF statements, it is important to understand the following important rule of
PL/M-86:

• A set of nested IF statements may only have one ELSE part, and it belongs to
the innermost (that is, the last) of the nested IF statements.

The same rule can be stated as follows:

• If an IF statement is nested within the THEN part of an outer IF statement, the
outer IF statement may not have an ELSE part.

In other words, the construction

IF expression-l THEN
IF expression-2 THEN statement-a;
ELSE statement-b;

is legal and means that if the values of both expression-l and expression-2 are
"true," then statement-a will be executed. If the value of expression-l is "true" and
the value of expression-2 is "false," then statement-b will be executed. If the value
of expression-l is "false," neither statement-a nor statement-b will be executed,
regardless of the value of expression-2.

6-9

Flow Control Statements

The construction above is equIvalent to

IF expression-l THEN
DO;

END;

IF expression-2 THEN statement-a;
ELSE statement-b;

PL/M-86 Programming Manual

and it should be noted that if it is written this way it is much more readable and of
fers less opportunity for error.

If the intention is for the ELSE part to belong to the outer IF statement, then the
nesting must be done by means of a DO block:

IF expression-l THEN
DO;

IF expression-2 THEN statement-a;
END;

ELSE statement-b;

Note that the meaning of this construction is completely different from the previous
one.

Finally, consider the following:

IF expression-l THEN
IF expression-2 THEN

IF expression-3 THEN statement-a;
ELSE statement-b;

ELSE statement-c;
ELSE statement-d;

/>1< Illegal statement! >I< /

/* Illegal statement! * /

This construction is illegal, because only one ELSE part is allowed. If the intention
is for the ELSE parts to match the IF parts as indicated by the indenting, the nesting
must be done with DO blocks:

IF expression-l THEN DO;

END;

IF expression-2 THEN DO;
IF expression-3 THEN statement-a;
ELSE statement-b;

END;
ELSE statement-c;

ELSE statement-d;

6.2.2 Sequential IF Statements

Consider the following example. An ASCII-coded character is stored in a BYTE
variable named CHAR. If the character is an A, we want to execute statement-a. If
the character is a B, we want to execute statement-b. If the character is a C, we want
to execute statement-c. If the character is neither A, B, or C, we want to execute
statement-x. The code for doing this could be written as follows, using IF statements
that are completely independent of one another:

IF CHAR=' A' THEN statement-a;
IF CHAR='B' THEN statement-b;
IF CHAR='C' THEN statement-c;
IF CHAR<>' A' AND CHAR<>'B' AND CHAR<>'C' THEN statement-x;

PL/M-86 Programming Manual Flow Control Statements

This is an inefficient way to write the tests. Note that the tests of all four IF
statements (six tests in all) will be carried out in every case. This is wasteful in cases
when one of the earlier tests succeeds.

We need to test for' A' in all cases. But we need to test for 'B' only if the test for' A'
fails, and we need to test for 'c' only if both previous tests fail. Finally, if the tests
for 'A', 'B', and 'c' all fail, no further tests are needed-we must execute
statement-x. To improve the code, we rewrite it as follows:

IF CHAR='A' THEN statement-a;
ELSE IF CHAR='B' THEN statement-b;
ELSE IF CHAR='C' THEN statement-c;
ELSE statement-x;

Notice that this is not a case of "nested IF statements" as described in the preceding
section. IF statements are said to be nested only when one IF statement is inside the
THEN part of another. Here we have IF statements inside the ELSE parts of other
IF statements. This construction is called "sequential IF statements." It is
equivalent to the following:

IF CHAR=' A' THEN statement-a;
ELSE DO;

END;

IF CHAR='B' THEN statement-b;
ELSE DO;

END;

IF CHAR='C' THEN statement-c;
ELSE statement-x;

Sequential IF statements are useful whenever a set of tests is to be made, but you
want to skip the remaining tests whenever one of the tests succeeds. This construc
tion works in such cases because all the remaining tests are in the ELSE part of the
current test.

6.3 Statement Labels and GOTOs

6.3.1 Labels and Label Definitions

PL/M-86 executable statements may be labeled for identification and reference
(DECLARE and PROCEDURE statements may not be labeled). A labeled state
ment takes the form

label-I: label-2: ... label-n: statement;

where each label is a valid PL/M-86 identifier. Multiple labels may precede the state
ment. See ISIS-II PL/M-86 Compiler Operator's Manual for limits on the number
of labels allowed.

The appearance of a label in the format shown above-that is, in front of a state
ment and separated by a colon-is called a "label definition," and it implicitly
declares the label, exactly as if the label were explicitly declared with a label declara
tion (see Section 8.6) at the beginning of the block.

Here are some examples of labeled statements:

LOOP: INIT = INIT +1;
L1: CLEAN$UP: 1=0;

6-11

Flow Control Statements PL/M-86 Programming Manual

6-12

The text LOOP: is the definition of the label LOOP, the text LI: is the definition of
the label LI, and the text CLEAN$UP: is the definition of the label CLEAN$UP.
LI and CLEAN$UP are labels for the same statement.

Labels may be used in conjunction with GOTO statements (see below), and may also
be used simply to improve the readability of a program. When a label is not used in
conjunction with a GOTO, it has no effect on the operation of the program.

6.3.2 GOTO Statements

A GOTO statement alters the sequential order of program execution by transferring
control directly to a labeled statement whose label is referenced in the GOTO state
ment. Sequential execution then resumes, beginning with the "target" statement.
The GOTO statement has the following form:

GOTO label;

An example is the following:

GOTOABORT;

The appearance of a label in a GOTO statement is not a "label definition" -it is a
label reference.

The reserved word GOTO can also be written GO TO, with an embedded blank.

For reasons given in Section 10.3, there are certain restrictions on the action of
GOTO statements. The only possible GOTO transfers are the following:

• From a GOTO statement in the outer level of some block to a labeled statement
in the outer level of the same block.

• From a GOTO statement in an inner block to a labeled statement in the outer
level of an enclosing block (not necessarily the smallest enclosing block).
However, if the inner block is a procedure block, the transfer may only be to a
statement in the outer level of the main program module (see Chapter II).

• From any point in one program module to a labeled statement in the outer level
of the main program module (see Section 1.2.7 and Chapter 11). To do this, the
label must have "extended scope" (see Section 8.2).

The use of GOTOs is necessary in some situations. However, in most situations
where control transfers are desired, the use of iterative DO, DO WHILE, DO
CASE, IF, or a procedure activation (see Chapter 9) is preferable. Indiscriminate
use of GOTOs will result in a program that is difficult to understand, correct, and
maintain.

6.4 The HALT Statement

The HALT statement has the form

HALT;

It causes the 8086 to come to a halt with interrupts enabled (see Section 9.2.6).

PL/M-86 Programming Manual Flow Control Statements

6.5 The CALL and RETURN Statements

The CALL and RETURN statements are mentioned here only for completeness,
since they do control the flow of a program. However, they are not discussed in
detail until Chapter 9.

The CALL statement is used to activate an untyped procedure (one that does not
return a value).

The RETURN statement is used within a procedure body to cause a return of con
trol from the procedure to the point from which it was activated.

6-13

CHAPTER 7
SAMPLE PROGRAM #1

At this point, we have examined all of the constructions available in PL/M-86 ex
cept procedures, and we can now consider a complete PL/M-86 program.

7-1. Insertion Sort Algorithm
The following sample program implements a straight insertion sort algorithm based
on Knuth's "Algorithm S" in The Art of Computer Programming, Vol. 3, page 81.
Readers who look up Knuth's algorithm should note the following differences:

• The algorithm has been adapted to PL/M-86 usage by using an array of
structures to represent the records to be sorted. The sort key for each record is a
member of the structure for that record.

• It has been modified by using a DO WHILE block to achieve the same logical
effect as the GOTOs implied in steps S3 and S4 of Knuth's algorithm.

• The index I is used in a slightly different manner (it is initialized to J instead of
J-1).

The effect of the algorithm is to arrange 128 records in order according to the values
of their keys, with the smallest key at the beginning (lowest location) and the largest
key at the end (highest location).

The sorting method is as follows. Assume that the records are all in memory, stored
as an array of structures. The key for each record is a member of the structure.

Now we go through the array from the second record (record number 1) upwards.
When we reach any given record (the "current" record), we will already have sorted
the preceding records. (The first time through, when we look at record number 1,
record number 0 is the only preceding record.)

We take the current record, store it temporarily in a buffer, and look backwards
through the preceding records until we find one whose key is not greater than that of
the current record. Then we put the current record just after this record.

The sample program and a detailed explanation follow. Please study the program
and the explanation until you understand how the program works (especially the DO
WHILE block, which is controlled by a more complex condition expression than we
have seen up to this point).

7-1

Sample Program # 1 PL/M-86 Programming Manual

7-2

M:DO;

SORT:

FIND:

END M;

1* Beginning of module* 1

DECLARE RECORD (128) STRUCTURE (KEY BYTE,
INFOWORD);

DECLARE CURRENT STRUCTURE (KEY BYTE,
INFOWORD);

DECLARE (J, I) INTEGER;

I*Data is read in to initialize the records. * 1

DO J = 1 TO 127;
CURRENT.KEY = RECORD(J).KEY;
CURRENT.INFO = RECORD(J).INFO;
1= J;

DO WHILE I > 0 AND RECORD(I-1).KEY > CURRENT. KEY;
RECORD(I).KEY = RECORD(I-1).KEY;
RECORD(I).INFO = RECORD(I-1).INFO;
1=1-1;

END FIND;

RECORD(I).KEY = CURRENT.KEY;
RECORD(I).INFO = CURRENT.INFO;

ENDSORT;

1 * Data is written out from the records. * 1

I*End of module* 1

Let us now consider the text of this program. First we declare the following
variables:

• RECORD, an array of 128 structures to hold the 128 records. Each structure
has a BYTE member which is the sort key, and a WORD member which could
contain anything (in a working program, this would be the data content of the
record).

• CURRENT, a structure used as a buffer to hold the current record while we
look back through the records already sorted. Its members are like those of one
structure element of RECORD.

• J, which will be used as an index variable in an iterative DO statement. J is
always the subscript of the current record. When J becomes greater than 127,
the sort is done.

• I, which will be used like an index variable in controlling a DO WHILE block.
I -1 is always the subscript of a previously sorted record.

A working program would include code at this point to read data into the array
RECORD. At the end of the program, there would be code to write out the data
from RECORD. In this example, we omit this code because it would make the exam
ple too lengthy and because the method used for I/O would depend on the particular
system used to execute the program. Comments have been inserted in place of this
code.

PL/M-86 Programming Manual Sample Program # 1

The executable part of the program is organized as two DO blocks, one nested
within the other. The outer block (labeled SORT) is an iterative DO block which
goes through the records one at a time. The record selected by the index variable J
each time through this block is the "current record." (Notice that J is never
O-because of the way the algorithm is defined, we must have a preceding element to
look back at, and so we start with the second element of the array and look back at
the first.)

The first two assignment statements in the block transfer the current record into
CURRENT. The next statement sets the initial value for I, which will be used to con
trol the inner block.

The inner block (labeled FIND) is the one that looks back through previously sorted
records to find the right place to put the current record. The way this block is con
trolled is worth examining. The variable I is used like an index variable in an
iterative DO, but it is changed explicitly inside the block, instead of automatically as
in an iterative DO statement. The DO WHILE construction is used instead of an
iterative DO because it allows two or more tests to be combined-in this case, by
means of an AND operator.

I is set to J before the first time through the DO WHILE block, and decremented
each time through. As long as I remains greater than 0, the first half of the DO
WHILE condition is satisfied.

The value I -1 is the subscript of the record being' 'looked back at." The second half
of the DO WHILE condition is that the key of this record must be greater than the
key of the current record.

We are looking for a previously sorted record whose key is not greater than the key
of the current record. Thus the condition in the DO WHILE statement will cause the
DO WHILE block to be repeatedly executed until such a record is found, or until I
reaches 0 (meaning that all previously sorted records have been examined).

Each time the DO WHILE block is executed, it moves the I-1st record "up" into
the Ith position, and then decrements I.

When the condition in the DO WHILE statement is not met, one of the following is
true:

• I = 0, because we have looked through all the previously sorted records without
finding one whose key is not greater than that of the current record. All of the
previously sorted records have been moved "up" by one.

• 1-1 is the subscript of a record whose key is not greater than the key of the
current record. All of the previously sorted records whose keys are greater than
that of the current record have been moved "up" by one.

In either case, the failure of the DO WHILE condition means that the current record
(being held in CURRENT) belongs in the Ith position. It is transferred into this posi
tion by the two assignment statements that form the remainder of the outer DO
block.

Now the outer DO block repeats with an incremented value of J, to consider the next
unsorted record.

Notice that the entire program is contained within a simple DO block labeled M.
This makes it a "module," as described in Chapter 11.

7-3

· " CHAPTER 8
ADVANCED DECLARE STATEMENTS n

8.1 GENERAL

As we have seen in Chapter 1, a variable must be declared before it can be referred to
by its identifier. This is done by means of a DECLARE statement. Chapters 3 and 5
provided some examples of simple DECLARE statements, without describing all the
kinds of information that can be included in declarations. This chapter gives addi
tional information on DECLARE statements.

Labels may also be declared in DECLARE statements, although this is usually not
necessary, as has been seen in Chapter 6. Label declarations are covered in this
chapter, as are "LITERALLY" declarations.

Procedures must also be declared. However, the declaration of procedures is treated
as a separate topic in Chapter 9.

8.1.1 Purpose of Declarations

The purpose of a declaration is to introduce an identifier and define it by giving a list
of its properties. Depending on the properties, the identifier then becomes either a
label, a parameter less "macro," or the name of a variable.

The DECLARE statement also causes storage to be allocated for variables, in cases
where this is necessary (see Section 5.5 for rules on contiguity of storage).

8.1.2 Scope

The scope of a declared object is the portion of the program within which it is
recognized according to its declaration. The scope depends on the location of the
declaration within the program text.

When a DECLARE statement has been made, all occurrences of the declared iden
tifier that are within the scope are recognized and treated according to the informa
tion in the DECLARE statement.

As mentioned in Section 1.2.5, PL/M-86 is a block-structured language, and the
scope defined by any declaration is limited to the block in which it occurs (unless it
has extended scope as described below in Section 8.2).

Furthermore, if any sub-block nested within the block contains a declaration which
declares the same identifier, then the scope defined by the outer declaration excludes
the sub-block.

Scope is discussed in detail in Chapter 10.

8.1.3 Where Declarations May Occur

Declarations may occur only at the head of a simple DO block (see Chapter 6) or
procedure block (see Chapter 9)-that is, between the DO or PROCEDURE state
ment and the first executable statement in the block.

8-1

Advanced Declare Statements PL/M-86 Programming Manual

8-2

Once a declaration has been made, it is illegal to make a new declaration using the
same identifier at the outer level of the same block.

In addition, declarations containing certain "attributes" and "initializations" may
occur only at the outer level of a program module (see Chapter 11).

8.2 The PUBLIC and EXTERNAL Attributes:
Extended Scope

The PUBLIC and EXTERNAL attributes permit the programmer to extend the
scope of variables (see Chapter 10) so as to allow linkage between separate modules
of a program (see Chapter 11). They may only be used in declarations at the outer
level of a module, and may not be used with based variables.

For example, the following declaration makes FLAG accessible from other program
modules:

DECLARE FLAG BYTE PU BLlC;

The following declaration would be used in another module to indicate that all
references to FLAG within that module are references to the FLAG declared
PUBLIC in the declaration above:

DECLARE FLAG BYTE EXTERNAL;

The PUBLIC and EXTERNAL attributes are mutually exclusive. That is, they may
not be used together in the same declaration.

A declaration with the PUBLIC attribute is called the "defining" declaration of
each variable declared. It is the declaration that gives all necessary information
about each variable and causes storage to be allocated.

A declaration with the EXTERNAL attribute is called a "usage" declaration. It says
that each variable declared in the declaration is defined in a defining declaration in
another module. The usage declaration does not cause any storage to be allocated.

The effect of declaring a variable PUBLIC in one module is to extend its scope to in
clude every other module in which it is declared EXTERNAL. More specifically,
within each module the PUBLIC or EXTERNAL declaration of the variable gives it
a certain scope. The extended scope is the combination of these scopes (see Chapter
10 for a discussion of scope).

The following rules apply to declarations with the PUBLIC attribute:

• Within any program, each variable with extended scope must have exactly one
defining declaration.

• The PUBLIC attribute may only be used in a declaration at the outer level of a
module (see Chapter 11).

• The PUBLIC attribute may not be used with a based variable (however, the base
of a based variable may be PUBLIC).

The following rules apply to declarations with the EXTERNAL attribute:

• The EXTERNAL attribute may only be used in a declaration at the outer level
of a module (see Chapter 11).

• The EXTERNAL attribute may only be used with a variable that is declared
PUBLIC in another module (see Chapter 11) of the same program.

PL/M,-86 Programming Manual Advanced Declare Statements

•

•

•

•

•

•

The EXTERNAL attribute may not be used with a based variable (however, the
base of a based variable may be declared EXTERNAL).

The EXTERNAL attribute may not be used in combination with the AT
attribute, or with an initialization. Note, however, that the defining declaration
of a variable may have the AT attribute and/ or an initialization.

When a scalar variable is declared EXTERNAL, it must have the same type as
in the defining declaration.

When the EXTERNAL item is actually a constant, the attribute DATA may be
placed after EXTERNAL to indicate its membership in the constant section
rather than the data section (see also the ISIS-II PL/M-86 Compiler Operator's
Manual). This use of DATA for EXTERNAL constants is required if the ROM
control is used. This use of the keyword DATA does not permit initialization
values following it. Such values may appear in the "defining" declaration, i.e.,
where the item is declared PUBLIC.
When an array is declared EXTERNAL, it must have the same number of
elements and the same type as in the defining declaration.

When a structure is declared EXTERNAL, it must have the same list of
members as in the defining declaration. Strictly speaking, the members do not
have to have the same member-identifiers-it is only necessary to have the
members correspond as to their dimension specifiers (if any) and their types.
However, it is good practice to make the member-identifiers the same also.

It should be noted that the PUBLIC and EXTERNAL attributes may also be
applied to procedure declarations. When this is done, there are some additional
rules. These rules are given in Chapter 9.

8.3 The AT Attribute

The AT attribute has the form

AT (location)

where "location" may be either a location reference formed with the @ operator, or
a single whole-number constant in the range 0 - 1048575.

If it is a location reference, it must refer to a non-based variable that has already
been declared. If there is a subscript expression, it must be a constant expression
containing no operators except + and -.

If the "location" is a whole-number constant, it represents an absolute 8086 storage
location.

The following are examples of valid AT attributes:

AT (4096)

AT (@BUFFER)

AT (@BUFFER(128))

AT (@NAMES(lNDEX + 1))

In the last example, INDEX represents a whole-number constant that has been
previously declared with a "LITERALLY" declaration (see Section 8.7). The com
piler replaces this name with the declared whole-number constant, thus satisfying
the restrictions given above.

8-3

Advanced Declare Statements PL/M-86 Programming Manual

8-4

The effect of an AT attribute is to cause a variable to be located at the location
specified by the "location." The variable located is the first scalar in the declara
tion. Other scalars in the same declaration will follow in sequence.

For example, the declaration

DECLARE (CHAR$A, CHAR$B, CHAR$C) BYTE AT (@BUFFER);

causes the BYTE variable CHAR$A to be located at the location of the array BUF
FER. The variables CHAR$B and CHAR$C are located in the next two bytes after
CHAR$A.

The declaration

DECLARE T (10) STRUCTURE (X (3) BYTE,
Y (3) BYTE,
Z (3) BYTE) AT (@DATA$BUFFER);

causes the beginning of the structure T -namely the scalar T(O).X(O)-to be located
at the same location as a previously declared variable called DATA$BUFFER. The
other scalars making up the structure will follow this location in logical order:
T(O).X(1), T(O).X(2), and so on up to T(9).Z(2), the last scalar, which is located in
the 89th byte after the location of DAT A$BUFFER.

However, no memory locations for these 90 scalars are allocated by this declaration.
It is up to the programmer to know what else, if anything, will be stored in the
memory space starting at @DATA$BUFFER.

The following rules apply to the AT attribute:

• The AT attribute cannot be used with based variables.

• It can be used with the PUBLIC attribute, in which case it immediately follows
the word PUBLIC. However, the "location" in this case may not be a location
reference that refers to a variable which is EXTERNAL.

• It cannot be used with the EXTERNAL attribute.

The AT attribute can be used to make variables "equivalent," providing more than
one way of referring to the same information. For example,

DECLARE DATUM WORD;
DECLARE ITEM BYTE AT (@DATUM);

causes ITEM to be declared a BYTE variable at the same location that has just been
allocated for the WORD variable DATUM. The result is that any reference to ITEM
is in effect a reference to the low-order byte of DATUM (because WORD values are
stored with the low-order 8 bits preceding the high-order 8 bits).

The following is another example:

DECLARE VECTOR (6) BYTE;
DECLARE SHORT$VECTOR STRUCTURE (FIRST (3) BYTE,

SECOND (3) BYTE)
AT (@VECTOR);

Here we first declare a six-element BYTE array, VECTOR. Then we declare a
structure of two three-BYTE arrays, SHORT$VECTOR.FIRST and
SHORT$VECTOR.SECOND. The first scalar of this structure
-SHORT$VECTOR.FIRST(O)-is located at the same location as the first element
of the array VECTOR.

PL/M-86 Programming Manual Advanced Declare Statements

Thus we have two different ways of referring to the same six bytes. For example, the
fifth byte in the group can be referenced as either VECTOR(4) or SHORT$VEC
TOR.SECONDO).

When a variable is declared with the AT attribute, the PL/M-86 Compiler does not
optimize the machine code generated for accesses to that variable. This is useful in
connection with memory-mapped 110.

NOTE

For compatibility with programs written in PL/M-80, PL/M-86 allows the
"location" in an AT attribute to be an expression containing a location
reference formed with the "dot" operator. See Appendix E.

8.4 The IN ITIAL Initialization

Initializations are used to supply values for variables at compile time. Initialization
is not automatic. If it is not specified as part of the compilation process, it must be
done by the program itself when execution begins. Otherwise the values of un
initialized variables remain indeterminate and may lead to unintended and undesired
results. There are two kinds of compile-time initialization, INITIAL and DATA.

INITIAL causes initialization during program loading of a variable that has storage
allocated for it. Thus a variable that is initialized with INITIAL can subsequently be
changed during the program run, like any other variable. It will not be reinitialized
on a program restart.

The following rules apply to INITIAL and DATA initializations:

• INITIAL and DATA may not be used together in the same declaration.

• INITIAL may only be used in a declaration at the outer level of a program
module (see Chapter 11). DATA may be used in a DECLARE statement at any
level in the program structure.

• No initializations may be used with based variables or with the EXTERNAL
attribute.

• An initialization may be used with the AT attribute. However, if this causes
multiple initialization, the result is undefined.

The INITIAL initialization has the form

INITIAL (value list)

where the value list is a sequence of one or more values separated by commas. Each
value may be either a restricted expression or a string enclosed in apostrophes.

Values are taken one at a time from the value list and used to initialize the individual
scalars being declared. Initialization of a scalar is performed in the same manner as
an assignment. Initial values for members of an array or structure must be specified
explicitly. See also section 12.5.

A restricted expression is anyone of the following:

• A single floating-point constant, with no operator of any kind. Such a value
must be used to initialize a REAL scalar.

• A constant expression containing no operators except + and -. The constant
expression is evaluated as if being assigned to the scalar being initialized,
according to the rules of Section 4.6.1.

8-5

Advanced Declare Statements PL/M-86 Programming Manual

8-6

• A location reference formed with the @ operator, which must refer to a variable
that has already been declared. It must be used to initialize a POINTER scalar.
If the location reference contains a subscript expression, the subscript expres
sion must be a constant expression containing no operators except + and -.

NOTE
For compatibility with programs written in PL/M-80, PL/M-86 allows the
restricted expression to be an expression containing a location reference
formed with the "dot" operator. See Appendix E.

The declaration

DECLARE THRESHOLD BYTE INITIAL (48);

declares the BYTE scalar THRESHOLD in the usual way, and also initializes it to a
value of 48.

The declaration

DECLARE (COUNTER, LIMIT, INCR) INTEGER INITIAL (1024,0, -2);

declares the INTEGER scalars COUNTER, LIMIT, and INCR, and initializes
COUNTER to a value of 1024, LIMIT to a value of 0, and INCR to a value of -2.

The declaration

DECLARE EVEN (5) BYTE INITIAL (2,4,6,8,10);

declares the BYTE array EVEN and initializes its five scalar elements to 2, 4, 6, 8,
and 10 respectively.

The declaration

DECLARE COORD STRUCTURE (HIGH$BOUND WORD,
VALUE (3) BYTE,
LOW$BOUND BYTE) INITIAL (302,3,6,12,0);

declares the structure COORD and initializes it as follows:

COORD.HIGH$BOUND to 302
COORD. V ALUE(O) to 3
COORD.VALUE(1) to 6
COORD.VALUE(2) to 12
COORD.LOW$BOUND to O.

If a string appears in the value list, it is taken apart from left to right and the pieces
are stored in the scalars being initialized. One character is stored in each BYTE
scalar, and two in each WORD scalar. For example,

DECLARE GREETING (5) BYTE AT (1600) INITIAL ('HELLO');

causes GREETING (0) to be initialized with the ASCII code for H, GREETING (1)
with the ASCII code for E, and so forth.

So far, all of the examples have shown value lists that match up one-for-one with the
scalars being declared. It is permissible for the value list to have fewer elements than
are being declared. Thus

DECLARE DATUM (100) BYTE INITIAL (3,5,7,8);

PL/M-86 Programming Manual Advanced Declare Statements

is permissible. The first 4 elements of the array DATUM are initialized with the 4
elements in the value list, and the remainder of the array is left uninitialized.
However, the value list may not have more elements than are being declared.

The Implicit Dimension Specifier

Often, when one initializes an array, one wants the array to have the same number
of elements as the value list. This can be done conveniently by using the implicit
dimension specifier. This is used in place of an ordinary dimension specifier (that is,
a parenthesized constant), and has the form

(*)

The implicit dimension specifier may not be used in the following cases:

• After the parenthesized list of identifiers in a factored declaration.

• To specify an array whose elements are structures.

• To specify an array which is a member of a structure.

It may only be used with an initialization.

The implicit dimension specifier causes the number of elements in the array to be the
same as the number of values in the value list of the initialization. Thus the
declaration

DECLARE FAREWELL (*) BYTE INITIAL (,GOODBYE, NOW');

declares a BYTE array, FAREWELL, with enough elements to contain the string
'GOODBYE, NOW' (namely 12), and initializes the array elements with the
characters of the string.

The implicit dimension specifier may be used with any value list-it is not restricted
to use with strings.

8.5 The DATA Initialization

The DATA initialization has the form

DAT A (value list)

The DATA initialization is identical to the INITIAL initialization, except for the
following differences:

• The DATA initialization causes storage to be allocated in the program's
constant data segment. Variables declared with a DATA initialization are
"variables" in name only, and should never appear on the left-hand side of an
assignment statement.

• Unlike the INITIAL initialization, the DATA initialization can be used in a
declaration at any block level in the program.

NOTE

This description assumes that the AT attribute is not used with the DATA
initialization. Since the AT attribute forces a variable to be located at a
specified location, it may defeat the purpose of the DATA initialization.

Use of the keyword DATA with the attribute EXTERNAL does not permit
initialization values to follow.

8-7

Advanced Declare Statements PL/M-86 Programming Manual

8-8

8.6 Label Declarations

A label is an identifier that is associated with a particular executable statement in a
PL/M-86 source program and refers to it. Normally, it is not necessary to declare
labels, since a label is implicitly declared when it appears in a "label definition" as
explained in Section 6.3.1. Under certain circumstances, however, it may be
desirable to declare a label explicitly in order to give it the PUBLIC or EXTERNAL
attribute (see Section 8.2). The label declaration makes this possible.

8.6.1 Explicit Versus Implicit Label Declarations

As noted in Section 6.3.1, the appearance of a label in front of an executable state
ment is called a "label definition."

If the label is not explicitly declared by a label declaration at the beginning of the
smallest block that encloses the label definition, then the label definition not only
defines the label but also declares it implicitly. The resulting scope of the label is as if
the label had been declared explicitly at the beginning of the smallest enclosing
block.

If a label is explicitly declared at the beginning of the smallest enclosing block that
encloses the label definition, then the label definition does not implicitly declare the
label (if it did, it would be illegal, since it is illegal to re-declare something within the
outer level of the same block where it was first declared).

Some special consequences of implicit label declaration are described in Section
10.3.

In simple form, the syntax of a label declaration is as follows:

DECLARE identifier LABEL [attribute];

The identifier is the PL/M-86 identifier being declared as a label. The attribute may
be PUBLIC or EXTERNAL (see Section 8.2 above), or may be omitted, as
indicated by the brackets.

Instead of a single identifier, we can write a parenthesized list of identifiers
separated by commas, as in the following example:

DECLARE (ENTRY, EXIT, MAIN, ERROR1, ERROR2) LABEL PUBLIC;

which is exactly equivalent to

DECLARE ENTRY LABEL PUBLIC;
DECLARE EXIT LABEL PUBLIC;
DECLARE MAIN LABEL PUBLIC;
DECLARE ERROR1 LABEL PUBLIC;
DECLARE ERROR2 LABEL PUBLIC;

When a factored label declaration has an attribute (PUBLIC or EXTERNAL), it
applies to each identifier in the list.

The effect of this example is to declare five labels-ENTRY, EXIT, MAIN,
ERROR!, AND ERROR2-and give them all the PUBLIC attribute. These labels
can be declared EXTERNAL in other program modules, making it possible to
transfer control from other modules to this one by means of GOTO statements (sub
ject to restrictions given in Section 10.3).

PL/~f-86 Programming Manual Advanced Declare Statements

The number of labels that can be declared in a single factored label declaration is
limited by the PL/M-86 Compiler. See ISIS-II PLIM-86 Compiler Operator's
Manual.

8.6.2 Attributes of Labels

The only attributes allowed for labels are PUBLIC and EXTERNAL. They may
only be used in label declarations at the outer level of a program module (see
Chapter 11). The effect of these attributes is to give labels extended scope, just as
with variables. The rules given in Section 8.2 above apply to label declarations as
well as to variable declarations.

To be meaningful, an explicit label declaration with the PUBLIC attribute must be
accompanied by a label definition (since the explicit declaration does not define the
location of the label). This label definition must be at the outer level of the same
block as the explicit declaration-otherwise, it will be an implicit declaration, that
is, it will not be the same label declared in the explicit declaration. In fact, for
reasons given in Chapter 10, both the explicit declaration and the label definition
must be at the outer level of the "main program module" (see Chapter 11 for discus
sion of modules).

8. 7 LITERALLY Declarations

A declaration using the reserved word LITERALLY defines a parameterless
"macro" for expansion at compile-time. An identifier is declared to represent a
character string, which will then be substituted for each occurrence of the identifier
in subsequent text. The form of the declaration is

DECLARE identifier LITERALLY 'string';

where the identifier is any valid PL/M-86 identifier, and the string is a sequence of
arbitrary characters from the PL/M-86 set, not exceeding 255 in length. The follow
ing example illustrates the use of this facility.

DECLARE TRUE LITERALLY 'OFFH', FALSE LITERALLY '0';

DECLARE ROUGH BYTE;
DECLARE (X, Y, DELTA, FINAL) REAL;

ROUGH = TRUE;
DO WHILE ROUGH;

END;

X = SMOOTH(X, Y, DELTA);
I*SMOOTH is a procedure declared elsewhere. * I
IF (X-FINAL) < DELTA THEN ROUGH = FALSE;

The LITERALLY declaration defines the boolean values TRUE and FALSE in a
manner consistent with the way PL/M-86 handles relational operators (see Section
4.3). This often makes a program more readable.

8-9

Advanced Declare Statements PL/M-86 Programming Manual

8-10

Another use of the LITERALLY declaration is the declaration of quantities which
are fixed for one compilation, but may change from one compilation to the next.
Consider the example below:

DECLARE BUFFER$SIZE LITERALLY '32';

DECLARE PRINT$BUFFER (BUFFER$SIZE) WORD;

PRINTBUFFER (BUFFERSIZE-10) = 'G';

A future change to BUFFER$SIZE can be made in one place at the first declaration,
and the compiler will propagate it throughout the program during compilation.
Thus the programmer is saved the tedious and error-prone process of searching his
program for the occurrences of "32" that are buffer-size references, and not some
other 32's.

8.8 Combining DECLARE Statements

A separate DECLARE statement is not required for each and every declaration.
Instead of writing the two DECLARE statements

DECLARE CHR BYTE INITIAL (' A');
DECLARE COUNT INTEGER;

we may write both declarations in a single DECLARE statement, like this:

DECLARE CHR BYTE INITIAL ('A'), COUNT INTEGER;

This DECLARE statement contains two "declaration elements," separated by the
comma. Every DECLARE statement contains at least one declaration element. If it
contains more than one, they are separated by commas.

Previous to this section, all examples have shown only one declaration element in
each DECLARE statement. A declaration element is the text for declaring one iden
tifier (or one factored list of identifiers). In the example above, the text CHR BYTE
INITIAL ('A') is one declaration element, and the text COUNT INTEGER is
another.

The declaration elements appearing in a single DECLARE statement are completely
independent of each other. It is as if they were declared in separate DECLARE
statements.

· "" CHAPTER 91
PROCEDURES n

9.1 General

A procedure is a section of PL/M-86 code which is declared without being executed,
and then activated from other parts of the program. A function reference or CALL
statement activates the procedure, causing the procedure code to be executed out of
normal sequence: program control is transferred from the point of activation to the
beginning of the procedure code, the code is executed, and upon exit from the pro
cedure code, program control is passed back to just beyond the point of activation.

The use of procedures forms the basis of modular programming, facilitates making
and using program libraries, eases programming and documentation, and reduces
the amount of object code generated by a program. The following sections tell how
to declare procedures, and how to activate procedures.

9.2 Procedure Declarations

Procedures, like variables, must be declared. Any reference to a procedure must oc
cur within the scope defined by the procedure declaration. Also, a reference to a
procedure may not occur until afterthe END statement of the procedure declaration
(except as noted below in Section 9.2.7).

A procedure declaration consists of three parts: a PROCEDURE statement, a se
quence of statements forming the "procedure body," and an END statement. These
parts take the following form:

name: PROCEDURE [(parameter list)] [type] [attributes] ;
statement-I;
statement-2 ;

statement-n;
END [name];

The following is a simple example:

DOOR$CHECK: PROCEDURE;
IF FRONT$DOOR$LOCKED AND SIDE$DOOR$LOCKED THEN

CALL POWER$ON;
ELSE CALL DOOR$ALARM;

END DOOR$CHECK;

where POWER$ON and DOOR$ALARM are procedures declared elsewhere in the
same program.

NOTE

The name in a PROCEDURE statement has the same appearance as a
label definition-but it is not considered a label definition, and a pro
cedure name is not a label. PROCEDURE statements may not be label
ed.

9-1

Procedures

9-2

PL/M-86 Programming Manual

The name is a PL/M-86 identifier, which is associated with this procedure. The
scope of a procedure is governed by the placement of its declaration in the program
text, just as the scope of a variable is governed by the placement of its DECLARE
statement (see Chapter 10 for a detailed description). Within this scope, the pro
cedure can be activated by the name used in the PROCEDURE statement.

A procedure declaration, like a DO block, is a block. As such, it controls the scope
of variables as described in Chapter 10. Also, like a simple DO block, a procedure
declaration may contain DECLARE statements, and they must precede the first ex
ecutable statement in the procedure body.

As in a DO block, the identifier in the END statement has no effect on the program,
but helps legibility and debugging. If used, it must be the same as the procedure
name.

The parameter list and the type are discussed in the following two sections.

9.2.1 Parameters

Formal parameters are non-based scalar variables declared within a procedure
declaration, whose identifiers appear in the parameter list in the PROCEDURE
statement. The identifiers in the list are separated by commas and the list is enclosed
in parentheses. No subscripts or member-identifiers are allowed in the parameter
list.

If the procedure has no formal parameters, the parameter list (including the paren
theses) is omitted from the PROCEDURE statement.

Each formal parameter must be declared as a non-based scalar variable in a
DECLARE statement preceding the first executable statement in the procedure
body.

When a procedure that has formal parameters is activated, the CALL statement or
function reference contains a list of actual parameters. Each actual parameter is an
expression whose value is assigned to the corresponding formal parameter in the
procedure, before the procedure begins to execute.

NOTE

Parameters are not stored according to the same rules as other declared
variables. In particular, do not assume that a parameter is stored con
tiguously with other variables declared in the same factored variable
declaration.

For example, the following procedure takes four parameters, called PTR, N,
LOWER, and UPPER. It examines N contiguously stored BYTE variables. The
parameter PTR is the location of the first of these variables. If any of these
variables is less than the parameter LOWER or greater than the parameter UP
PER, the ERRORSET procedure (declared elsewhere in the program) is ac
tivated.

PL/M-86 Programming Manual

RANGE$CHECK: PROCEDURE (PTR, N, LOWER, UPPER);
DECLARE PTR POINTER;
DECLARE (N, LOWER, UPPER, I) BYTE;
DECLARE ITEM BASED PTR (1) BYTE;

DO I = OTO N-1;

END;

IF (lTEM(I) < LOWER) OR (lTEM(I) > UPPER)
THEN CALL ERRORSET;

/ * ERRORSET is a procedure declared elsewhere. * /

END RANGE$CHECK;

Notice that the array ITEM is declared to have only one element. Since it is a based
array, a reference to any element of ITEM is really a reference to some location
relative to the location represented by PTR. In writing the procedure
RANGE$CHECK, we must supply some dimension specifier for ITEM so that
references to ITEM can be subscripted. But it does not matter what the dimension
specifier is. We arbitrarily use 1 here.

Having made this declaration, suppose that we have 25 variables stored contiguously
in an array called QUANTS. We want to check that all of these variables have values
within the range defined by the values of two other BYTE variables, LOW and
HIGH.

We write

CALL RANGE$CHECK (@QUANTS, 25, LOW, HIGH);

When this CALL statement is processed, the following sequence occurs:

• The four actual parameters in the CALL statement-@QUANTS, 25, LOW,
and HIGH-are assigned to the formal parameters PTR, N, LOWER, and up
PER, which are declared within the procedure RANGE$CHECK. Since ITEM
is based on PTR and the value of PTR is @QUANTS, any reference to an ele
ment of ITEM is a reference to the corresponding element of QUANTS.

*

•

The executable statements of the procedure RANGE$CHECK are executed,
and if any of the values are less than the value of LOW or greater than the value
of HIGH, the procedure ERRORSET is activated.

Finally, control returns to the statement following the CALL statement.

Notice how the use of a based variable, with the base passed as a parameter, allows
the procedure to have its own unchanging name (ITEM) for a set of variables which
may be a different set each time the procedure is activated.

When a procedure has more than one parameter, PL/M-86 does not
guarantee the order in which actual parameters are evaluated when the
procedure is activated. If an expression used as an actual parameter con
tains an embedded assignment or function reference which has the side
effect of changing the value of some variable which appears in another
expression used as an actual parameter for the same procedure, the
results are undefined. See also the caution in Section 9.2.2 below.

Procedures

9-3

Procedures

9-4

PL/M-86 Programming Manual

9.2.2 Typed Versus Untyped Procedures

The procedure shown above is an "untyped" procedure. No type is given in the
PROCEDURE statement, and it does not return a value. An untyped procedure is
activated by using its name in a CALL statement, as shown above and as explained
in Section 9.3.

A typed procedure has a type-BYTE, WORD, INTEGER, REAL, or
POINTER-in its PROCEDURE statement. It returns a value of this type. It is ac
tivated by using its name in an expression as a special kind of variable reference call
ed a "function reference." As we have seen in Section 4.1.2, a function reference
may be an operand in an expression.

When the expression is processed at run time, the appearance of the function
reference causes the procedure to be executed. The function reference itself is then
replaced by the value returned by the procedure. The expression is then evaluated,
and program execution continues in normal sequence.

Like an untyped procedure, a typed procedure may have parameters. They are
handled in the same way as described above in Section 9.2.1.

The body of a typed procedure must always contain a RETURN statement with an
expression, as explained in the following section.

The body of a typed procedure may contain code (such as an assignment
statement) that changes the value of some variable declared outside the
procedure. This is called a "side effect."

Recall that PL/M-86 does not guarantee the order in which operands in
an expression are evaluated. Therefore, if a function reference appears in
an expression, and the typed procedure that it activates has the side effect
of changing the value of another variable in the same expression, the
value of the expression depends on whether the function reference or the
variable is evaluated first. If the analysis of the expression does not force
one of these operands to be evaluated before the other, then the value of
the expression is undefined. This situation can be avoided by being
careful about the use of any typed procedure that has a side effect, e.g.,
enclosing in parentheses the subexpression containing the affected
operand.

9.2.3 Exit From A Procedure: The RETURN Statement

The execution of a procedure is terminated in one of three ways:

• By execution of a RETURN statement within the procedure body. A typed
procedure must contain a RETURN statement with an expression.

• By reaching the END statement that terminates the procedure declaration.

• By executing a GOTO to a statement outside the procedure body. The target of
the GOTO must be at the outer level of the main program module (see Chapter
11). This method should be used only when necessary.

The RETURN statement takes one of two forms:

RETURN;

or

RETURN expression;

PL/M-86 Programming Manual

The first form is used in an untyped procedure. The second form is used in a typed
procedure. The value of the expression is the value returned by the procedure.

It is evaluated as if it were being assigned to a variable of the type given in the PRO
CEDURE statement.

9.2.4 The Procedure Body

The statements within the procedure body may be any valid PL/M-86 statements,
including CALL statements and nested procedure declarations.

Example 1

The following is a typed procedure declaration:

AVG: PROCEDURE (X, Y) REAL;
DECLARE (X, Y) REAL;
RETURN (X + Y)/2.0;

ENDAVG;

This procedure could be used as follows:

LOW = 3.0;
HIGH = 4.0;
MEAN = AVG (LOW, HIGH);

The effect would be to assign the value 3.5 to MEAN.

Example 2

The following is an untyped procedure:

AOUT: PROCEDURE (ITEM);
DECLARE ITEM WORD;
IF ITEM >= OFFH THEN COUNTER = COUNTER + 1;
RETURN;

ENDAOUT;

Here COUNTER is some variable declared outside the procedure-that is, a
"global" variable. This procedure could be activated as follows:

CALL AOUT(UNKNOWN);

If the value of the variable UNKNOWN is greater than or equal to OFFH, the value
of COUNTER will be incremented.

Example 3

This example demonstrates an important use of based variables:

SUM$ARRAY: PROCEDURE (PTR, N) BYTE;
DECLARE PTR POINTER,

SUM=O;

ARRAY BASED PTR (1) BYTE,
(N, SUM, I) BYTE;

DO I=OTO N;
SUM=SUM + ARRAY(I);

END;
RETURN SUM;

END SUM$ARRAY;

Procedures

9-5

Procedures

9-6

PL/M-86 Programming Manual

This procedure returns the sum of the first N + 1 elements (from the Oth to the Nth)
of a BYTE array pointed to by PTR. Notice that ARRAY is declared to have 1 ele
ment. Since it is a based variable, no space is allocated for it. It must be declared as
an array, so that it can be subscripted in the iterative DO block. The choice of 1 as
the constant in the dimension specifier is arbitrary, and does not restrict the value of
N that may be supplied when the procedure is activated.

The procedure could be used as follows to sum the elements of a IOO-element BYTE
array named PRICE, and assign the sum to the variable TOTAL:

TOTAL = SUM$ARRAY(@PRICE, 99);

9.2.5 The PUBLIC and EXTERNAL Attributes

The PUBLIC and EXTERNAL attributes can be included in PROCEDURE
statements to give procedures extended scope. Extended scope is discussed in Section
8.2 and Chapter 11.

A procedure declaration with the PUBLIC attribute is called a "defining declara
tion." The following rules apply to the use of the PUBLIC attribute in a PRO
CEDURE statement:

• Within any program, each procedure with extended scope must have exactly one
defining declaration-that is, it must be declared once with the PUBLIC at
tribute.

• The PUBLIC attribute may only be used at the outer level of a module (see
Chapter 11).

A procedure declaration with the EXTERNAL attribute is called a "usage declara
tion." The following rules apply to use of the EXTERNAL attribute in a procedure
declaration:

• The EXTERNAL attribute may only be used at the outer level of a module (see
Chapter 11).

• The EXTERNAL attribute may only be used if the procedure is declared
PUBLIC in another module of the same program.

• The EXTERNAL attribute may not be used in the same PROCEDURE
statement as a PUBLIC, INTERRUPT, or REENTRANT attribute (see below).
Note, however, that the defining declaration of a procedure may have the IN
TERRUPT and REENTRANT attributes.

• A usage declaration of a procedure should have the same number of parameters
as the defining declaration. Variable types and dimension specifiers should
match up in the same sequence in both declarations. The names of the
parameters need not be the same. Note that a discrepancy between the
parameter lists in the defining declaration and a usage declaration will not be
automatically detected.

• The procedure body of a usage declaration may not contain anything except the
declarations of the formal parameters. The formal parameters must be declared
with the same types as in the defining declaration.

• The END statement of a usage declaration may not be labeled.

For example, we can alter the procedure AVO (from Section 9.2.4) by giving it the
PUBLIC attribute as follows:

AVG: PROCEDURE (X, Y) REAL PUBLIC;
DECLARE (X, Y) REAL;
RETURN (X + Y)/2;

ENDAVG;

PL/M-86 Programming Manual

In another module, we can have a usage declaration:

AVG: PROCEDURE (X, Y) REAL EXTERNAL;
DECLARE {X, Y) REAL;

ENDAVG;

Now, in the module with the usage declaration, we can reference AVO in an ex
ecutable statement:

MIDDLE = AVG(FIRST, LATEST);

The effect of this is to activate the procedure AVO as declared in the first module.

9.2.6 Interrupts and the INTERRUPT Attribute
Only an untyped procedure with no parameters, declared at the outer level of a pro
gram module (see Chapter 11), may have the INTERRUPT attribute. A procedure
with this attribute is called an "interrupt procedure." An interrupt procedure may
be desirable if you wish to provide non-default handling of exception conditions
arising in floating-point arithmetic (see Chapter 14).

The INTERRUPT attribute has the form

INTERRUPT n

where n is any whole-number constant from 0 to 255 (inclusive). The effect of this
attribute is that the procedure will be activated whenever the 8086 interrupt cor
responding to n occurs.

To explain this in more detail, we must first consider the 8086 interrupt mechanism
and the PL/M-86 statements ENABLE and DISABLE.

The interrupt mechanism has two states; "enabled" and "disabled." The 8086 CPU
always starts in the disabled state. The ENABLE statement forces it into the enabled
state, and has the form

ENABLE;

The HALT statement also forces interrupts to be enabled (see Section 6.4).

The DISABLE statement forces the interrupt mechanism to be disabled, and has the
form

DISABLE;

An interrupt is initiated by some peripheral device or processor in the 8086-based
system, which sends an interrupt signal and an interrupt number to the 8086 CPU.
The software command CAUSE$INTERRUPT (constant) can also initiate an inter
rupt signal. If the interrupt mechanism is in the disabled state, the signal is ignored.
If it is enabled, the interrupt is processed as follows:

1. The machine instruction currently being executed is completed.

2. The interrupt mechanism is automatically disabled.

3. The interrupt procedure whose number corresponds to the number sent by the
peripheral device is activated. If no such procedure has been declared, the
results are undefined, since the vector which transfers control remains
uninitialized. (See also Sections 12.6.8 and 12.6.9 of -this manual, and Chapter
10 of the PLIM-86 Compiler Operating instructions for 8080/8085-Bascd
Development Systems Manual.)

4. When the procedure terminates (by executing a RETURN or reaching the END
of the procedure) the interrupt mechanism is automatically enabled, and control
returns to the point where the interrupt occurred.

Procedures

9-7

Procedures

9-8

PL/M-86 Programming Manual

It is also possible (as with other untyped procedures) for the procedure to ter
minate by executing a GOTO with a target outside the procedure, in the outer
level of the main program module. In this case, control will never be returned to
the point where the program was interrupted, and interrupts will not be
automatically enabled.

The following is an example of an interrupt procedure for a hypothetical system
where a peripheral device initiates an "interrupt 45" whenever the temperature of a
device exceeds a certain threshold. The interrupt procedure turns on an annunciator
light, updates a 'Status word, and returns control to the program.

HITEMP: PROCEDURE INTERRUPT 45;
CALL ANNUNCIATOR (1);

/*This will result in an output
from the 8086 to turn on annunciator light
number 1, the high-temperature warning. * /

ALERT = ALERT OR 000000108;
/ *This puts a 1 in one of the bit positions
of ALERT, which contains a bit pattern representing
current alerts. * /

END HITEMP;

The following rules apply to the INTERRUPT attribute:

• The INTERRUPT attribute may not be used in combination with the
EXTERNAL attribute. (It may be used with the PUBLIC attribute.)

• It may only be used in a PROCEDURE statement at the outer level of a
program module.

• The whole-number constant in the INTERRUPT attribute may be any number
from 0 to 255 (inclusive). Each number may be used only once within a
program.

• The procedure must be untyped and may not have any parameters.

Activating an Interrupt Procedure with a CALL Statement

A procedure with the INTERRUPT attribute may also be activated by means of a
CALL statement, like any other untyped procedure. However, when this is done,
the programmer must bear in mind that interrupts are not automatically disabled
upon activation of the procedure. If interrupts are enabled when the CALL is
executed, then unless the procedure has a DISABLE as its first executable statement,
it will run with interrupts enabled and should have the REENTRANT attribute (see
next section).

In every other respect, an interrupt procedure activated by a CALL statement is like
any other procedure so activated.

NOTE

Unlike PL/M-SO, PL/M-S6 interrupt routines activated with a CALL
statement do not alter the interrupt enable status. This means that ter
mination of the procedure by means of a RETURN statement or the
END statement will not automatically enable interrupts.

Section 6.S of Chapter 12 discusses the builtin function INTERRUPT$PTR, which
returns the interrupt entry point, given an interrupt procedure name, and also the
builtin procedure SET$INTERRUPT, which sets an interrupt vector given the inter
rupt procedure name and number.

PL/M-86 Programming Manual

The CAUSE$INTERRUPT command causes a software interrupt to the vector
specified in the statement

CAUSE$INTERRUPT (constant)

9.2.7 Reentrancy and the REENTRANT Attribute

When a procedure does not have the REENTRANT attribute, storage for its
variables is allocated statically in memory. This causes an important limitation
which can be understood from the following hypothetical example.

Suppose that we have a procedure PROC$A which is activated both from the main
program and from an interrupt procedure. The program runs, and PROC$A is
activated. While PROC$A is running, an interrupt occurs and execution of
PROC$A is suspended. The interrupt procedure is activated, and while it is running
it activates PROC$A. In this "second incarnation" of PROC$A, it runs normally
and uses the same storage space for variables as the suspended first incarnation. The
second incarnation eventually terminates and returns to the point where it was
activated within the interrupt procedure.

Finally the interrupt procedure terminates and returns to the point at which the first
incarnation of PROC$A was suspended.

But the variable values that were in use by the first incarnation of PROC$A have
been changed by the second incarnation, and the first incarnation cannot produce
correct results.

A similar problem occurs if a procedure activates itself (this is known as "direct
recursion") or if it activates a second procedure with the result that the first pro
cedure is activated again before the second procedure returns ("indirect recursion").

A procedure with the REENTRANT attribute is called a "reentrant procedure."
When a procedure is reentrant, the problems of multiple incarnations are avoided.
Instead of being stored statically, the procedure's variables are stored on the stack,
and each incarnation of the procedure uses separate storage.

Also, a procedure with the REENTRANT attribute may be activated before it is
declared, if it is activated from within the body of a reentrant procedure-possibly
the same procedure.

This permits "direct recursion," where the procedure activates itself, and "indirect
recursion," where the procedure activates a second procedure and the second pro
cedure activates the first-or activates a third procedure, which activates a fourth,
etc., with the result that the first procedure is activated before it terminates.

The following rules summarize the use of the REENTRANT attribute:

• Any procedure that may be interrupted and is also activated from within an
interrupt procedure should have the REENTRANT attribute.

Note that this may apply to an interrupt procedure that runs with interrupts
enabled, either because it contains an ENABLE statement or because it is
activated by means of a CALL statement. If there is any possibility that it will
be interrupted by its own interrupt, it should have the REENTRANT attribute.
This situation is equivalent to recursion.

• Any procedure that is directly recursive (activates itself) should have the
REENTRANT attribute.

Procedures

9-9

Procedures PL/M-86 Programming Manual

9-10

• Any procedure that is indirectly recursive (activates another procedure and is
activated itself as a result) should have the REENTRANT attribute.

• Any procedure that is activated by a reentrant procedure should also have the
REENTRANT attribute.

In other words: if there is any possibility that a procedure can be activated while it is
already running, it should be reentrant.

The following rules apply to the REENTRANT attribute.

• The REENTRANT attribute cannot be used in the same declaration as the
EXTERNAL attribute. (It may be used with the PUBLIC attribute.)

• The REENTRANT attribute may only be used in a PROCEDURE statement at
the outer level of a module (see Chapter 11).

• A procedure declaration with the REENTRANT attribute may not have another
procedure declaration nested inside it.

9.3 Activating A Procedure-Function References
and CALL Statements

As we have already seen, there are two forms of procedure activation, depending on
whether the procedure is typed or untyped. An untyped procedure is activated by
means of a CALL statement, which has the form

CALL name [(parameter list)] ;

An example is the following:

CALL REORDER (@RANK$TABLE, 3);

(An alternate form of the CALL statement is given in Section 9.3.1 below.)

A typed procedure is activated by means of a function reference, which is an
operand in an expression and has the form

name [(parameter list)]

This occurs as an operand in an expression, as in the following example:

TOTAL = SUBTOTAL + SUM$ARRAY (@ITEMS, COUNT);

where SUM$ARRA Y is a previously declared typed procedure. The value of the
operand SUM$ARRAY(@ITEMS, COUNT) is the value returned by SUM$AR
RAY. See the cautionary note in Section 9.2.2.

In both forms of procedure activation, the elements of the parameter list are called
"actual parameters," to distinguish them from the "formal parameters" of the pro
cedure declaration. At the time of the activation, each actual parameter is evaluated,
and its resulting value is assigned to the corresponding formal parameter in the pro
cedure declaration. Then the procedure body is executed. An actual parameter may
be any PL/M-86 expression.

The actual parameter list in a procedure activation must match the formal parameter
list in the procedure declaration-that is, it must contain the same number of
parameters. If the procedure is declared without a formal parameter list, then no ac
tual parameter list is used in the activation.

PL/M-86 Programming Manual

As in expression evaluation and assignment statements (see Chapter 4), automatic
type conversions are performed as necessary in activating and returning from a pro
cedure.

9.3.1 Indirect Procedure Activation

The CALL statement, in the form shown above, activates an untyped procedure by
its name. It is also possible to activate an untyped procedure by its location, if the
procedure has extended scope (see Section 9.2.5). This is done by means of a CALL
statement with the form

CALL identifier[.member-identifier] [(parameter list)] ;

The identifier may not be subscripted. It must be a fully qualified POINTER type
variable reference, and its value is assumed to be the location of the entry point of
the procedure being activated.

NOTE
For compatibility with programs written in PL/M-80, a reference to a
WORD variable is also allowed. In this case, the procedure need not have
extended scope. See Appendix E.

When a CALL statement that uses the name of the procedure is compiled, the com
piler checks to make sure that the correct number of parameters is supplied, and per
forms automatic type conversion on the actual parameters. When the CALL state
ment uses a location, the compiler does not check the number of parameters or per
form type conversion. If the number of parameters is wrong or if an actual
parameter is not of the same type as the corresponding formal parameter, the results
are unpredictable. (The builtin type-conversion procedures described in Section 12.2
can be used to force the value of an expression to the desired type in certain cases.)

9.4 Sample Program #2

The example program of Chapter 7 is very limited in its application. It always sorts
128 records. Each record consists of a structure with one BYTE element and one
WORD element, and the BYTE element of each record is used as the sort key. To
sort records structured in any other way, or to sort a different number of records,
you would have to rewrite the program.

U sing the techniques discussed in this chapter, we can rewrite the sort program as a
procedure. By using parameters to control the operation of the procedure, we can
use it to sort any number of records, and we can use it on different kinds of records.
The procedure can be used any number of times within a single program.

In the following sample program, we first declare a procedure called SORTPROC,
which implements the same sorting method used in Sample Program #1. This pro
cedure makes only the following assumptions about the records it is to sort:

• Each record occupies a contiguous set of storage locations. Therefore, by using
based variables each record can be handled as a sequence of bytes, even though
the parts of a record are not necessarily BYTE scalars.

• The records themselves are also stored contiguously, so the entire set of records
can be regarded as a single sequence of bytes. The location of the first byte of
the first record is specified by the POINTER parameter PTR.

• All records are the same size, that is, each occupies the same number of bytes.
This size is specified by the INTEGER parameter RECSIZE, and may not ex
ceed 128.

Procedures

9-11

Procedures PL/M-86 Programming Manual

9-12

• In each record, the value of one byte is to be used as the sort key. Within each
record, this byte is always in the same relative position-that is, the first byte in
the record, or the third, etc. This relative position is specified by the INTEGER
parameter KEYIND, which resembles an array subscript-that is, it is 0 if the
key is the first byte in the record, I if the key is the second byte, etc.

• The number of records is specified by the INTEGER parameter COUNT.

The program is followed by a detailed explanation.

M: DO; I*Beginning of module* I

SORTPROC: PROCEDURE (PTR, COUNT, RECSIZE, KEYINDEX);
DECLARE PTR POINTER, (COUNT, RECSIZE, KEYINDEX) INTEGER;

I * Parameters:
PTR is pOinter to first record.
COUNT is number of records to be sorted.
RECSIZE is number of bytes in each record- max is 128.
KEYINDEX is byte position within each record of a BYTE scalar

to be used as sort key. * I

DECLARE RECORD BASED PTR (1) BYTE,
CURRENT (128) BYTE,
(I, J) INTEGER;

SORT: DO J = 1 TO COUNT-1;

FIND:

CALL MOVB(@RECORD(J*RECSIZE), @CURRENT, RECSIZE);
I=J;

DOWHILEI>O
AND RECORD((I-1)*RECSIZE + KEYINDEX)
> CURRENT(KEYINDEX);

CALL MOVB(@RECORD((I~1)*RECSIZE),
@RECORD(I*RECSIZE),
RECSIZE);

1=1-1;
END FIND;

CALL MOVB(@CURRENT, @RECORD(I*RECSIZE), RECSIZE);
END SORT;

END SORTPROC;

I * Program continues on next page. * I

I*Program to sort two sets of records, using SORTPROC' I

DECLARE SET1(50) STRUCTURE (ALPHA WORD,
BETA(12) BYTE,
GAMMA INTEGER,
DELTA REAL,
EPSILON BYTE);

I*Key of Nth record in SET1 is SET1(N).BETA(O), the 3rd byte in the record.' I

DECLARE SET2(500) STRUCTURE (lTEMS(21) INTEGER,
KEY BYTE);

I*Key of Nth record in SET2 is SET2(N).KEY, the 43rd byte in the record.' I

I*Data is read in to initialize the records. * I

CALL SORTPROC(@SET1, INT(LENGTH(SET1)), INT(SIZE(SET1 (1))),2);
CALL SORTPROC(@SET2, INT(LENGTH(SET2)), INT(SIZE(SET2(1))),42);

I * Data is written out from the records. * I

ENDM; I*End of module' I

PL/M-86 Programming Manual

After the PROCEDURE statement and the declaration of the parameters, we
declare a based BYTE array called RECORD. This array is based on the parameter
PTR, which points to the beginning of the first record to be sorted. Therefore, a
reference to a scalar element of RECORD will be a reference to some byte within the
set of records to be sorted, as long as the subscript used with RECORD is less than
the total number of bytes in all the records.

Note that a dimension specifier of 1 is used in declaring RECORD. We need to use a
dimension specifier here, so as to be able to use subscripts. However, the value of
the dimension specifier is unimportant because RECORD is a based array and does
not have any actual storage allocated to it. The value 1 is chosen arbitrarily.

Next we declare CURRENT, an array of 128 BYTE elements. Like the structure
CURRENT in Sample Program #1, the array CURRENT will be used to store the
"current" record. Note that the dimension (size) of the array CURRENT is what
establishes the maximum size of record that this procedure can handle. We have
chosen 128 here, but in principle any dimension could be specified.

As in Sample Program #1, the INTEGER variables I and J are used to control the
DO WHILE and iterative DO blocks. They have the same meaning as before.
However, here they are also used to calculate subscripts for the based array
RECORD.

In the statement following the iterative DO, we introduce a builtin procedure,
MOVB. A builtin procedure is a predefined procedure that need not be declared and
may be activated anywhere in the program (see Chapter 12 for details).

MOVB has the effect of copying a sequence of byte values from one storage location
to another. It takes three parameters. The first specifies the starting location of the
byte sequence to be copied, the second specifies the starting location to copy the
bytes to, and the third specifies the number of bytes to be copied.

In the first activation of MOVB, the parameter @RECORD(J*RECSIZE) is the
location of the beginning of the J th record and @CURRENT is the location of the
beginning of the array CURRENT. Thus the effect of this CALL statement is to
copy the Jth record into the array CURRENT.

To understand the DO WHILE statement, consider that RECORD«(I-1)*REC
SIZE) would be the first byte of the (I-1)st record, so RECORD«(I-l)*RECSIZE +
KEYINDEX) is the byte that is to be used as the sort key of the (1-1)st record.
Similarly, CURRENT(KEYINDEX) is the sort key of the "current" record.
Therefore, this DO WHILE is logically equivalent to the corresponding DO WHILE
in Sample Program #1.

The second CALL statement activates MOVB to copy the (I-1)st record into the
position of the Ith record, and the third CALL on MOVB copies the "current"
record into the position of the Ith record.

Thus the sorting method of this procedure is identical to that of Sample Program # 1.
To illustrate the way this procedure can be used, it is set in a program which declares
two sets of records, SETI and SET2, and sorts them. As in the previous sample pro
gram, comments are inserted in place of the code which would be used in a working
program to read data into the records and write it out after they are sorted.

SET! is a set of 50 structures, each of which represents one record. Each structure
contains a WORD scalar, an array of 12 BYTE scalars, an INTEGER scalar, a
REAL scalar, and another BYTE scalar. We want to sort the records using the first
element of the 12-byte array as the sort key. Since the preceding WORD scalar oc
cupies two bytes of storage, the key is to be found in the 3rd byte of each record. Ac
cordingly, we will specify 2 for the parameter KEYINDEX.

Procedures

9-13

Procedures

9-14

PL/M-86 Programming Manual

SET2 is a set of 500 structures, each containing an array of 21 INTEGER scalars and
a BYTE scalar which is to be used as the key. Since an INTEGER scalar occupies
two bytes of storage, the key is to be found in the 43rd byte of each record and we
will specify 42 for the parameter KEYINDEX.

In the two CALL statements used to activate SORTPROC, we introduce three more
builtin procedures: INT, LENGTH, and SIZE. LENGTH and SIZE are WORD
procedures. LENGTH takes as its only parameter the name of an array (without
subscript) and returns the number of elements in the array. SIZE takes either the
name of a structure (without member-identifier) or the name of an array (without
subscript), and returns the number of bytes in the structure or array. Thus they are
convenient for calculating the COUNT and RECSIZE parameters for an activation
of SORTPROC-except that they return WORD values and SORTPROC requires
INTEGER values. The builtin procedure INT solves this problem. INT accepts a
WORD value as its parameter and returns the corresponding INTEGER value
(always positive). See Chapter 12 for complete details.

CHAPTER 10
BLOCK STRUCTURE AND SCOPE

PL/M-86 is a "block structured" language. This chapter deals with block structure
and scope in programs where the PUBLIC and EXTERNAL attributes are not
used-that is, where there is no extended scope. Chapter 11 discusses modules and
extended scope.

10.1 Blocks

There are two kinds of blocks in PL/M-86: every DO block is a block, and every
procedure declaration is a block. As will be seen in Chapter 11, a PL/M-86 program
is made up of modules, and a module is a particular kind of DO block. Thus
everything in a PL/M-86 program is part of some block. Any kind of block may be
nested within any other kind of block. This nesting creates a multi-level structure of
blocks in a typical PL/M-86 program.

As we have seen, each type of block has special properties and uses; but the impor
tant common property of all blocks is that they control the scope of the objects
declared in the program.

In order to discuss scope, it will be useful to have the following definitions:

• The inclusive extent of a block is everything from the DO or PROCEDURE
statement that begins the block to the END statement that terminates it. The
DO or PROCEDURE statement and the END statement are included in the in
clusive extent of the block. However, any label attached to the DO statement
that begins a DO block is notin the inclusive extent of the block; it is outside the
block. See Figure 10-1.

• The exclusive extent of a block is the inclusive extent of the block minus the
inclusive extents of all blocks nested inside it. See Figure 10-2.

In other words, the inclusive extent includes nested blocks, and the exclusive extent
excludes them. Notice that the exclusive extent of a block is the same thing as the
"outer level" of the block.

10.2 Scope

Every object that is declared in a PL/M..:86 program has scope. This includes

• Variables

• Procedures

• Labels

• Macros

The scope of an object is defined as follows:

• The scope of an object is the part of the program in which the object's identifier
is recognized and handled according to its declaration.

• The declaration of an object is in the exclusive extent of some block. The scope
of the object is the inclusive extent of this block, minus the inclusive extent of
any nested block(s) in which the same identifier is declared.

10-1

Block Structure and Scope PL/M-86 Programming Manual

10-2

M: I DO; 1* Beginning of module* 1

DECLARE RECORD (128) STRUCTURE (KEY BYTE,
INFOWORD);

DECLARE CURRENT STRUCTURE (KEY BYTE,
INFO WORD);

DECLARE (J, I) INTEGER;

I*Data is read in to initialize the records. * 1

SORT~OJ=1T0127;-- -- -- -- -- --I
r- CURRENT. KEY = RECORD(J).KEY; I

CURRENT.INFO = RECORD(J).INFO;

I .. ~~.~: ... 1

I
FIND: • DO WHILE I > 0 AND RECORD(I-1).KEY > CURRENT.KEY; : I

RECORD(I).KEY = RECORD(I-1).KEY;
RECORD(I).INFO = RECORD(I-1).INFO;
1=1-1;

I : · :·:~~~:;I:):~~~ :.~~.~~~.~; .. ~~~.; ... · : 1

L RECORD(I).INFO = CURRENT.INFO; ~
END SORT; ---------
1 * Data is written out from the records. * 1

ENDM; I I*End of module* 1

Everything inside the solid line constitutes the inclusive extent of block M.
Everything inside the dashed line constitutes the inclusive extent of block SORT.
Everything inside the dotted line constitutes the inclusive extent of block FIND.

Figure 10-1. Inclusive Extent of a Block

• The scope of variables, non-reentrant procedures, and macros is restricted:
They may not be referred to until after they are declared. The restriction does
not apply to reentrant procedures (see Section 9.2.7) or to labels.

The effect of this is that when writing a block, one does not need to worry about in
advertently using an identifier that is already in use elsewhere in the program.

Suppose that we are writing a block called NEWBLOCK, and we declare a variable
(or other object) called VBL. Now, if VBL is also declared in some other block call
ed OLDBLOCK, what will happen?

If NEWBLOCK is not nested inside OLDBLOCK, then it is outside the scope of the
VBL declared in OLDBLOCK, since the scope of the old VBL cannot go beyond the
inclusive extent of OLDBLOCK. Therefore the VBL declared in NEWBLOCK is a
differentVBL from the one declared in OLDBLOCK, just as if a different identifier
had been used.

PL/M-86 Programming Manual Block Structure and Scope

M: DO;I*Beginning of module* 1

DECLARE RECORD (128) STRUCTURE (KEY BYTE,
INFO WORD);

DECLARE CURRENT STRUCTURE (KEY BYTE,
INFO WORD);

DECLARE (J, I) INTEGER;

1* Data is read in to initialize the records. * 1

SORT:

DO WHILE I > 0 AND RECORD(I-1).KEY > CURRENT.KEY;
RECORD(I).KEY = RECORD(I-1).KEY;
RECORD(I).INFO = RECORD(I-1).INFO;
1=1-1;

END FIND;

I*Data is written out from the records. * 1

END M;I*End of module* 1

The shaded area is the exclusive extent of block SORT.

Figure 10-2. Exclusive Extent of a Block

If NEWBLOCK is nested inside OLDBLOCK, then it "interrupts" the scope of the
old VBL. The scope of the old VBL will now be the inclusive extent of OLD BLOCK
minus the inclusive extent of NEWBLOCK. Again, the VBL declared in
NEWBLOCK is an entirely different object from the VBL declared in OLDBLOCK.

Now let us consider the reverse situation. Suppose that in NEWBLOCK we want to
reference a variable XYZ declared in OLDBLOCK, and have it be the samevariable.

If NEW BLOCK is nested inside OLDBLOCK, we merely reference XYZ without
declaring it in NEWBLOCK. The reference will thus be within the scope of the XYZ
declared in OLDBLOCK.

If NEWBLOCK is not nested inside OLDBLOCK, there is no way to reference the
XYZ declared in OLDBLOCK. The program must be rearranged, either by moving
NEWBLOCK so as to nest it inside OLDBLOCK or by nesting both OLDBLOCK
and NEWBLOCK inside another block and moving the declaration of XYZ into this
outer block.

10-3

Block Structure and Scope PL/M-86 Programming Manual

10-4

10.3 Scope of Labels and Restrictions on GOTOs

Labels are subject to exactly the same rules of scope just given for other objects.

Let us reexamine the definition (Section 10.1) of the inclusive extent of a block. Note
that the inclusive extent of a DO block does not include any label(s) attached to the
DO statement that begins the block. This means that if the same identifier used as a
label on the DO statement is used within the block to declare a label (implicitly or ex
plicitly), this will interrupt the scope of the label on the DO statement and constitute
a different label.

This has an important effect on the label of a DO statement that begins a module
(modules are defined in Chapter 11):

• It is not possible to explicitly declare the label of a module. This means that the
label of a module may not have the PUBLIC or EXTERNAL attributes.

Moreover, the implicit declaration of labels causes some special effects.

As explained in Section 6.3.1, a label definition implicitly declares the label-unless
the label has already bee'n declared explicitly in the exclusive extent of the same
block. An implicit label declaration may occur anywhere in the block structure of a
program, whereas explicit declarations are limited to simple DO blocks and pro
cedure declarations, and may only appear before the first executable statement in
the block.

The rules of scope guarantee that the scope of an implicit declaration is exactly the
same as the scope of an explicit declaration at the beginning of the smallest block
that encloses the implicit declaration. This means that wherever a labeled statement
appears, the scope of the label cannot extend beyond the smallest enclosing block.

This leads to certain important restrictions:

• It is not possible for a GOTO to transfer control from an outer block to a
labeled statement in a nested block.

• Moreover, it is not possible for a GOTO to transfer control from one block to
any block (in the same module) that does not enclose the block containing the
GOTO.

In addition, there is the following restriction:

• Any label with the PUBLIC attribute must be attached to an executable
statement at the outer level of the main program module.

In fact, the only possible GOTO transfers are the following:

• From one point in the exclusive extent of a block to a statement in the exclusive
extent of the same block.

• From an inner block to a statement in the exclusive extent of an enclosing block
(not necessarily the smallest enclosing block). However, if the inner block is a
procedure block, the transfer may only be to a labeled statement in the outer
level of the main program module as stated in Section 9.2.3.

• From any point in one module, in which the label is declared EXTERNAL, to a
statement in the outer level of the main program module, in which the label is
declared PUBLIC.

. " CHAPTER 111
PROGRAM MODULES n

11.1 Definitions

In preceding chapters, we have referred to "modules," the "outer level of a
module," and the "main program module." The precise definitions of these terms
are as follows:

• A moduleis a labeled simple DO block which is not nested in any other block.

• The' 'outer level of a module" or module level is the exclusive extent (see
Chapter-IO) of a module.

• A main program module is a module that contains executable statements at the
module level.

11.2 Structure of a Compilation

A "compilation" is one module of PL/M-86 statements. A compilation is not
necessarily a complete program. After compilation, the module may be linked with
modules from different compilations to build up a program, as described below.

The number of DO blocks and the number of procedure declarations in a module
are limited by the PL/M-86 Compiler. See ISIS-II PL/M-86 Compiler Operator's
Manual.

11.3 Modular Structure of a Program

A program is created by means of the linker, using compiled and/or assembled
modules as building blocks. A program is built up from one or more modules, in
cluding a main program module.

11.4 Linkage Between Program Modules

The compiled modules produced by the PL/M-86 Compiler are relocatable code.
Some of the identifiers have extended scope-those declared with the EXTERNAL
and PUBLIC attributes. The references to identifiers declared EXTERNAL need to
be associated with the defining declarations. This association of EXTERNAL and
PUBLIC identifiers is called "linkage."

To create a program with the linker, one specifies the modules making up the pro
gram, in the desired sequence. In choosing this set of modules, the following restric
tions must be borne in mind:

• The set of modules must contain a main program module.

• Each identifier with extended scope must have exactly one defining declaration
in the total set of modules-that is, exactly one declaration with the PUBLIC at
tribute.

The linker combines the modules, "satisfying" all references to objects that are
declared with the EXTERNAL attribute by associating them with the defining
declarations. The effect is to extend the scope of each object declared with the
PUBLIC attribute to include the scope of each object (in another module) that has
the EXTERNAL attribute and the same identifier.

This results in a complete relocatable program in which every variable reference,
procedure activation, and label reference is meaningful.

11-1

Program Modules PL/M-86 Programming Manual

11-2

11.5 Example of Modular Program Structure

Consider once again the sort program used in Chapter 7 and Section 9.4. This pro
gram contains the procedure SORTPROC, which might be useful in other pro
grams. Therefore, it might be desirable to compile SORTPROC as a separate
module, so that it can be linked to this program and also to any other program that
needs to sort records.

Broken into two modules, our example program appears as follows.

SORTMODULE: DO; '''Beginning of module'"

SORTPROC: PROCEDURE (PTR, COUNT, RECSIZE, KEYINDEX) PUBLIC;
DECLARE PTR POINTER, (COUNT, RECSIZE, KEYINDEX) INTEGER;

'''Parameters:

SORT:

FIND:

PTR is painter to first record.
COUNT is number of records to be sorted.
RECSIZE is number of bytes in each record- max is 128.
KEYINDEX is byte position within each record of a BYTE scalar

to be used as sort key. " ,

DECLARE RECORD BASED PTR (1) BYTE,
CURRENT (128) BYTE,
(I, J) INTEGER;

DO J = 1 TO COUNT-1;
CALL MOVB(@RECORD(J*RECSIZE), @CURRENT, RECSIZE);
I=J;

DOWHILEI>O
AND RECORD«1-1)"RECSIZE + KEYINDEX)
> CURRENT(KEYINDEX);

CALL MOVB(@RECORD((I-1)"RECSIZE),
@RECORD(I"RECSIZE),
RECSIZE);

1=1-1;
END FIND;

CALL MOVB(@CURRENT, @RECORD(I*RECSIZE), RECSIZE);
END SORT;

END SORTPROC;

END SORTMODULE; '*End of module*'

This module is compiled and can then be kept available for use by any program that
is linked to it. The main program module is on the next page. It is the same as the
program of Section 9.4, but a usage declaration of the SORTPROC procedure has
been substituted for the defining declaration, which is now in the above module.

PL/M-86 Programming Manual

M: DO; I*Beginning of module* 1

I*Program to sort two sets of records, using SORTPROC* 1

SORTPROC: PROCEDURE (PTR, COUNT, RECSIZE, KEYINDEX) EXTERNAL;
DECLARE PTR POINTER, (COUNT, RECSIZE, KEYINDEX) INTEGER;

END SORTPROC; I*End of usage declaration* 1

DECLARE SET1(50) STRUCTURE (ALPHA WORD,
BETA(12) BYTE,
GAMMA INTEGER,
DELTA REAL,
EPSILON BYTE);

I*Key of Nth record in SET1 is SET1(N).BETA(O), the 3rd byte in the record. *1

DECLARE SET2(500) STRUCTURE (ITEMS(21) INTEGER,
KEY BYTE);

I*Key of Nth record in SET2 is SET2(N).KEY, the 43rd byte in the record. *1

I*Data is read in to initialize the records. *1

CALL SORTPROC(@SET1, INT(LENGTH(SET1», INT(SIZE(SET1(1 »),2);
CALL SORTPROC(@SET2, INT(LENGTH(SET2», INT(SIZE(SET2(1»), 42);

1* Data is written out from the records. * 1

ENDM; 1 * End of module· I

Program Modules

11-3

CHAPTER 12
BUILTIN PROCEDURES

AND VARIABLES

Builtin procedures and variables act as if they were declared in an all-encompassing
global block invisible to the programmer.

The identifiers are subject to the rules of scope. This means that if the identifier of a
builtin procedure or variable is used in a declaration within the program, the scope
of the builtin procedure or variable is interrupted by the scope of the declaration in
the program. Note that this distinguishes these identifiers from reserved words,
which cannot be used as identifiers in declarations.

No builtin procedure may be used within a location reference. No builtin variable
may be used within a location reference, except as specifically noted in the following
sections.

12.1 Obtaining Information About Variables

PL/M-86 has three builtin procedures that take variable names as actual parameters
and return information based on the declarations of the variables.

12.1.1 The LENGTH Procedure

LENGTH is a WORD procedure that returns the number of elements in an array. It
is activated by a function reference, with the form

LENGTH (variable-ref)

where

• "variable-ref" must be a non-subscripted reference to an array.

The array may be a member of a structure; it may not be the MEMORY array (see
Section 12.6.2).

The WORD value returned is the number of elements in the array-that is, it is equal
to the dimension specifier in the array declaration.

If the array is not a structure member, then the reference is an unqualified variable
reference. If the array is a structure member, then the reference is a partially
qualified variable reference (see Section 5.3). For example, given the declaration

DECLARE RECORD STRUCTURE (KEY BYTE,
INFO (3) WORD);

then LENGTH(RECORD.INFO) is a valid function reference and returns a WORD
value of 3.

If the array is a member of a structure, and the structure is an element of an array, a
special case arises. Given the declaration

DECLARE LIST (4) STRUCTURE (KEY BYTE,
INFO (3) WORD);

12-1

Builtin Procedures and Variables PL/M-86 Programming Manual

12-2

then all of the following function references are correct and return the value 3:

LENGTH(LlST(O).IN FO)
LENGTH(LlST(1).lNFO)
LENGTH(LlST(2).INFO)
LENGTH(LlST(3).INFO)

In other words, the subscript for the array LIST is irrelevant when a member- iden
tifier is supplied, since the arrays within the structures are all the same length.
PL/M-86 allows a "shorthand" form of partially qualified variable reference in the
LENGTH, LAST, and SIZE function references:

LENGTH(LlST.1 N FO)

12.2.2 The LAST Procedure

LAST is a WORD procedure that returns the subscript of the last element in an ar
ray. It is activated by a function reference, with the form

LAST (variable-ref)

where

• "variable-ref" must be a non-subscripted reference to an array.

The array may be a member of a structure; it may not be the MEMORY array (see
Section 12.6.2).

The WORD value returned is the subscript of the last element of the array-note
that for a given array, LAST will always be one less than LENGTH.

As in the LENGTH procedure, a "shorthand" form of partially qualified variable
reference is allowed in the case where the array is a member of a structure and the
structure is an array element.

12.1.3 The SIZE Procedure

SIZE is a WORD procedure that returns the number of bytes occupied by an array
or structure. It is activated by a function reference, with the form

SIZE (variable-ref)

where

• "variable-ref" is a fully qualified, partially qualified, or unqualified reference
to any scalar, array, or structure variable except the MEMORY array (see Sec
tion 12.6.2).

The WORD value returned is the number of bytes required by the object referenced.

If the reference is fully qualified, it refers to a scalar and the value is the number of
bytes required for the scalar. If the reference is unqualified, it refers to an entire
structure or array, and the value is the total number of bytes required for the struc
ture or array.

If the reference is partially qualified, it refers either to a structure member which is
an array, or to an array element which is a structure. The value is the number of
bytes required for the array or structure.

PL/l\1-86 Programming Manual Builtin Procedures and Variables

As in the LENGTH procedure, a ·"shorthand" form of partially qualified variable
reference is allowed in the case where the array or scalar is a member of a structure
and the structure is an array element.

12.2 Type Conversions

12.2.1 The LOW, HIGH, and DOUBLE Procedures

LOW and HIGH are BYTE procedures that convert WORD values to BYTE values.
They are activated by function references with the forms

LOW (expression)
HIGH (expression)

where

• "expression" has a WORD or BYTE value.

If "expression" has a WORD value, LOW returns the value of the low-order (least
significant) byte of the expression value, whereas HIGH returns the value of the
high-order (most significant) byte of the expression value.

If "expression" has a BYTE value, then LOW will return this value unchanged.
However, HIGH will return O.

DOUBLE is a WORD procedure that converts a BYTE value to a WORD value. It is
activated by a function reference with the form

DOUBLE (expression)

where

• "expression" has a BYTE or WORD value.

If "expression" has a BYTE value, the procedure appends 8 high-order O-bits to
convert it to a WORD value and returns this WORD value. If "expression" has a
WORD value, the procedure returns this value unchanged.

12.2.2 The FLOAT Procedure

FLOAT is a REAL procedure that converts an INTEGER value to a REAL value. It
is activated by a function reference, with the form

FLOAT (expression)

where

• "expression" has an INTEGER value.

FLOAT converts the INTEGER value to the corresponding REAL value and returns
this REAL value.

12.2.3 The FIX Procedure

FIX is an INTEGER procedure that converts a REAL value to an INTEGER value.
It is activated by a function reference, with the form

FIX (expression)

12-3

Builtin Procedures and Variables PL/M-86 Programming Manual

12-4

where

• "expression" has a REAL value.

FIX rounds the REAL value to the nearest INTEGER. If both INTEGERs are
equally near, FIX rounds to the even one. The resulting INTEGER value is then
returned. Thus FIX(1.4) would result in the INTEGER value 1, FIX(-1.8) in -2,
FIX(3.5) in 4, an FIX(6.5) in 6.

If the result calculated by FIX is not within the implemented range of INTEGER
values, i.e., is greater than 32767, the result is undefined.

NOTE
FIX is affected by your choice of rounding mode-see Chapter 14. The
above examples assume the default mode, which is "round to nearest or
even."

12.2.4 The INT Procedure

INT is an INTEGER procedure that converts a BYTE or WORD value to an
INTEGER value. It is activated by a function reference, with the form

INT (expression)

where

• "expression" has a BYTE or WORD value.

INT interprets the BYTE or WORD value as a positive number and returns the cor
responding INTEGER value.

If the result calculated by INT is not within the implemented range of INTEGER
values, the result is undefined.

12.2.5 The SIGNED Procedure

SIGNED is an INTEGER procedure that converts a WORD value to an INTEGER
value. It is activated by a function reference, with the form

SIGNED (expression)

where

• "expression" has a WORD or BYTE value. If it has a BYTE value, it will be
extended by 8 high-order O-bits to produce a WORD value.

SIGNED interprets the WORD value as a 16-bit twos-complement number and
returns the corresponding INTEGER value.

This means that if the highest-order (most significant) bit of the WORD value is a 0,
SIGNED interprets the WORD value as a positive number and returns the cor
responding INTEGER value. For example,

S IG NED (0000$0000$0000$0100 B)

returns an INTEGER value of 4.

PL/M-86 Programming Manual Builtin Procedures and Variables

But if the highest-order bit of the WORD value is a I, SIGNED returns a negative
INTEGER value whose absolute magnitude is the twos complement of the WORD
value. For example,

SIGNED (1111$1111$1111$11008)

returns an INTEGER value of -4.

12.2.6 The UNSIGN Procedure

UNSIGN is a WORD procedure that converts an INTEGER value to a WORD
value. It is activated by a function reference, with the form

UNSIGN (expression)

where

• "expression" has an INTEGER value.

UNSIGN converts the INTEGER value to a WORD value.

If the INTEGER value is positive, then the WORD value will be numerically the
same as the INTEGER value. But if the INTEGER value is negative, then the
WORD value will be the twos complement of the absolute magnitude of the
INTEGER value. For example,

UNSIGN (-4)

returns a WORD value equal to 1111$1111$1111$1100B.

12.3 Shift and Rotate Procedures

In shift and rotate operations, a value is handled as a pattern of 8 bits (for a BYTE
value) or 16 bits (for a WORD or INTEGER value). The pattern is moved to the
right or left by a specified number of bits called the "bit count."

In a shift, bits moved off one end of the pattern are lost, and O-bits move into the
pattern from the other end (except in the case of SAR-see Section 12.3.3 below). In
a rotate, bits moved off one end move onto the other end.

12.3.1 Byte Rotation Procedures, ROL and ROR

ROL and ROR are BYTE or WORD procedures. They are activated by function
references, with the forms

ROL (pattern, count)
ROR (pattern, count)

where

• "pattern" is an expression with a BYTE or WORD value, and "count" is an
expression with a BYTE value. If the value of "count" is 0, no rotation occurs.

The value of "pattern" is handled as an 8-bit or 16-bit binary quantity which is
rotated to the left (by ROL) or to the right (by ROR). The number of bit positions by
which it is rotated is specified by "count."

12-5

Builtin Procedures and Variables PL/M-86 Programming Manual

12-6

The following are examples of the action of these procedures:

ROR(1 00111 01 B, 1) returns a value of 110011 (OB.

ROL(1 00111 01 B, 2) returns a value of 01110110B.

ROR(1101011010011010B, 9) returns a value of 0100110101101011B.

12.3.2 Logical-Shift Procedures, SHL and SHR

SHL and SHR are procedures whose type depends on the type of the value of an
expression given as an actual parameter. They are activated by function references,
with the forms

SHL (pattern, count)
SHR (pattern, count)

where

• "pattern" and "count" are expressions with BYTE or WORD values. If
"count" has a WORD value, the 8 high-order bits will be dropped to produce a
BYTE value. If the value of "count" is 0, no shift occurs.

The value of "pattern" may be either a BYTE value or a WORD value and will not
be converted. If it is a BYTE value, then the procedure will return a BYTE value. If
it is a WORD value, then the procedure will return a WORD value.

The value of "pattern" is shifted left (by SHL) or right (by SHR), with the bit count
given by "count".

Note that a shift of one bit position has the effect of multiplication by 2 for a left
shift, or division by 2 for a right shift. For example, suppose that V AR is a BYTE
variable with a value of 8. This is represented as 0000$1000. SHL(VAR, I) will return
0001$0000,· which represents 16, while SHR(VAR, I) will return 0000$0100 which
represents 4.

12.3.3 Algebraic-Shift Procedures, SAL and SAR

SAL and SAR are INTEGER procedures. They are activated by function references,
with the forms

SAL (pattern, count)
SAR (pattern, count)

where

• "pattern" is an expression with an INTEGER value.

• "count" is an expression with a WORD or BYTE value. If "count" has a
WORD value, the 8 high-order bits will be dropped to produce a BYTE value. If
the value of "count" is 0, no shift occurs.

SAL and SAR treat the INTEGER value of "pattern" as a bit pattern. This pattern
is shifted to the left or to the right.

In a left shift (SAL), O-bits move into the pattern from the right (as in SHL and
SHR).

PL/M-86 Programming Manual Builtin Procedures and Variables

In a right shift (SAR), eitherO-bits or I-bits move into the pattern from the left. If
the original value of "pattern" is positive, the sign bit (leftmost bit) is a 0 and O-bits
move in from the left. If the original value is negative, the sign bit is ai, and I-bits
move in from the left.

This means that just as with the logical shifts, an algebraic shift of one bit position
has the effect of multiplication by 2 for a left shift or division by 2 for a right shift.
For example, suppose that VAL is an INTEGER variable with a value of -8. This
value is represented as 1111$1111$1111$1000. SAL(VAL,I) will return
1111 $1111 $1111 $0000, which represents -16, while SAR(V AL, 1) will return
1111$1111$1111$1100, which represents -4.

12.4 Input and Output

12.4.1 The INPUT and INWaRD Procedures

INPUT is a BYTE procedure and INWORD is a WORD procedure. They are
activated by function references, with the forms

INPUT (expression)
INWORD (expression)

where

• "expression" has a BYTE or WORD value.

The value of "expression" specifies one of the input ports of the 8086 CPU. The
value returned by INPUT is the BYTE quantity found in the specified input port.
The value returned by INWORD is the WORD quantity found in the specified input
port.

12.4.2 The OUTPUT and OUTWaRD Arrays

The builtin variables OUTPUT and OUTWORD are arrays, each with 65536
elements. Each element corresponds to one of the output ports of the 8086 CPU.

OUTPUT is a BYTE array, and OUTWORD is a WORD array.

A reference to OUTPUT or OUTWORD may only appear as the Jeft part of an
assignment statement or embedded assignment. Anywhere else it is illegal. The right
hand side of the assignment must have a BYTE or WORD value.

The effect of an assignment to an element of OUTPUT is to place the BYTE value
of the expression on the right side of the assignment into the corresponding output
port. (Since OUTPUT is a BYTE array, the value of the expression will be
automatically converted to type BYTE if necessary.)

The effect of an assignment to an element of OUTWORD is to place the WORD
value of the expression on the right side of the assignment into the corresponding
output port.

12-7

Builtin Procedures and Variables PL/M-86 Programming Manual

12-8

12.5 String Manipulaltion Procedures

The string-manipulation procedures (with the exception of XLAT) are available in
pairs. One of each pair is for BYTE strings and the other is for WORD strings.

Note that the term "string" is used here in a broader sense than previously. The
"character strings" mentioned previously (Sections 2.5, 3.6, and 8.4) are BYTE
strings. More broadly, a string is any contiguously stored set of BYTE values or
WORD values. We can regard a string as if it were a BYTE or WORD array, and
refer to the BYTE or WORD values as "elements."

We will use the word "index" to refer to the position of a given element within a
string. The index is like the subscript of an array reference. Thus the index of the
first element of a string is 0, the index of the second element is 1, etc.

In the following descriptions, the "location" of a string is always the location of its
first element. In each string-manipulation procedure, the location of a string is
specified by a parameter called "source" or "destination," which is an expression
with a POINTER value. Thus the source points to the lowest element. For MOVB
and MOVW, this is the first element to be processed. For MOVRB and MOVRW, it
is the last element to be processed.

The "length" of a string is the number of elements it contains. In each string
manipulation procedure, the length of a string is specified by a parameter called
"count," which is an expression with a WORD or BYTE value representing the
number of elements.

These procedures can also be used to initialize arrays.

12.5.1 The MOVB Procedure

MOVB is an untyped procedure that copies a BYTE string from one location to
another. It is activated by a CALL statement with the form

CALL MOVB (source, destination, count) ;

where

• "source" and "destination" are expressions with POINTER values.

• "count" is an expression with a BYTE or WORD value.

The value of "source" is the location of the string to be copied, and the value of
"destination" is the location to which the string is to be copied.

The string elements are copied in ascending order-that is, element 0 is copied first,
then element 1, etc. This is significant if the source string and the destination string
overlap. If the value of "destination" is higher than the value of "source," and the
two strings overlap, elements in the overlap area will be overwritten before they are
copied. This can be avoided by using MOVRB instead of MOVB (see Section 12.5.3
below).

If the two strings overlap, but the value of "source" is higher than the value of
"destination, " then elements in the overlap area will not be overwritten until after
they have been copied.

PL/M·,86 Programming Manual Builtin Procedures and Variables

A procedure such as the following can be used ,to make the correct choice between
MOVB and MOVRB.

MOVBYTES: PROCEDURE(SRC, DST, CNT);
DECLARE (SRC, DST) POINTER, CNT WORD;
IF SRC > DST THEN CALL MOVB(SRC, DST, CNT);
ELSE CALL MOVRB(SRC, DST, CNT);

END MOVBYTES; ,

This procedure can be activated without the need to consider whether overlap may
occur or whether "source" or "destination" is higher.

12.5.2 The MOVW Procedure

MOVW is the same as MOVB (see Section 12.5.1 above), except that it copies a
WORD string instead of a BYTE string.

12.5.3 The MOVRB Procedure

MOVRB is the same as MOVB (see Section 12.5.1 above), except that the elements
in the source string are copied to the destination string in descending order. This is
significant when the two strings overlap. If the value of "destination" is higher than
the value of "source," and there is overlap, elements in the overlap area will not be
overwritten until after they have been copied. However, if the value of "source" is
higher than the value of "destination," then elements in the overlap area will be
overwritten before they are copied.

12.5.4 The MOVRW Procedure

MOVRW is the same as MOVRB (see Section 12.5.3 above), except that it copies a
WORD string instead of a BYTE string.

12.5.5 The CMPB Procedure

CMPB is a WORD procedure that compares two BYTE strings. It is activated by a
function reference with the form

CMPB (source!, source2, count)

where

• "source!" and "source2" are expressions with POINTER values.

• "count" is an expression with a BYTE or WORD value.

CMPB compares two BYTE strings of length "count," whose locations are
"sourcel" and "source2."

If every element in the string at "source!" is equal to the corresponding element in
the string at "source2," CMPB returns a WORD value of OFFFFH. Otherwise, it
returns the index (position within the strings) of the first pair of elements found to
be unequal.

12-9

Builtin Procedures and Variables PL/M-86 Programming Manual

12-10

12.5.6 The CMPW Procedure

CMPW is the same as CMPB (see Section 12.5.5), except that it compares two
WORD strings instead of two BYTE strings.

12.5.7 The XLAT Procedure

XLAT is an untyped procedure that "translates" a BYTE string to produce another
BYTE string, using a translation table. It is activated by a CALL statement of the
form

CALL XLAT (source, destination, count, table) ;

where

• "source," "destination," and "table" are expressions with POINTER values.

• "count" is an expression with a BYTE or WORD value.

XLAT "translates" the BYTE elements in the source string, placing the translated
elements in the destination string. The value of "table" is assumed to be the location
of a BYTE string of up to 256 elements. This string is used as a translation table.

The value of an element in the source string is used as an index for the translation
table. The index selects one element from the translation table, and this element is
then copied into the destination string.

For example, if the fifth element in the source string is 202, then 202 is used as an
index for the translation table. The 203rd element of the table is copied into the fifth
position in the destination string.

The elements of the source string are translated into the destination string in
ascending order.

12.5.8 The FIN DB Procedure

FINDB is a WORD procedure that searches a BYTE string to find an element that
has a specified value. It is activated by a function reference of the form

FINDB (source, target, count)

where

• "source" is an expression with a POINTER value.

• "target" is an expression with a BYTE or WORD value. If "target" has a
WORD value, the 8 high-order bits will be dropped to produce a BYTE value.

• "count" is an expression with a BYTE or WORD value.

FINDB examines each element of the source string (in ascending order) until it finds
an element whose value is equal to the BYTE value of "target" -or until "count"
elements have been searched without any of them matching' 'target." If the search is
successful, FINDB returns the index of the first element of the string that matches
"target." If the search is unsuccessful, FINDB returns a WORD value of OFFFFH.

PL/M-86 Programming Manual Builtin Procedures and Variables

12.5.9 The FINDW Procedure

FINDW is the same as FINDB (see Section 12.5.8 above), except that it searches a
WORD string instead of a BYTE string. If the "target" parameter has a BYTE
value, it is extended by 8 high-order O-bits to produce a WORD value.

12.5.10 The FINDRB Procedure

FINDRB is the same as FINDB (see Section 12.5.8 above), except that it searches the
source string in descending order. Thus if the search is successful, FINDRB returns
the index of the last element that matches the BYTE value of "target."

12.5.11 The FINDRW Procedure

FINDRW is the same as FINDRB (see Section 12.5.10 above), except that it searches
a WORD string instead of a BYTE string (in descending order).

12.5.12 The SKIPB Procedure

SKIPB is a "converse" of FINDB (see Section 12.5.8 above). Instead of searching
for the first element in the BYTE source string that matches the BYTE value of
"target," SKIPB searches for the first element that does not match.

In every other respect, the operation is exactly the same as FINDB.

12.5.13 The SKIPW Procedure

SKIPW is a "converse" of FINDW (see Section 12.5.9 above). Instead of searching
for the first element in the WORD source string that matches the WORD value of
"target," SKIPW searches for the first element that does not match.

In every other respect, the operation is exactly the same as FINDW.

12.5.14 The SKIPRB Procedure

SKIPRB is a "converse" of FINDRB (see Section 12.5.10 above). Instead of search
ing for the last element in the BYTE source string that matches the BYTE value of
"target," SKIPB searches for the last element that does not match.

In every other respect, the operation is exactly the same as FINDRB.

12.5.15 The SKIPRW Procedure

SKIPRW is a "converse" of FINDRW (see Section 12.5.11 above). Instead of
searching for the last element in the WORD source string that matches the WORD
value of "target," SKIPB searches for the last element that does not match.

In every other respect, the operation is exactly the same as FINDRW.

12-11

Builtin Procedures and Variables PL/M-86 Programming Manual

12-12

12.5.16 The SETe Procedure

SETB is an untyped procedure that sets each element of a BYTE string to a single
specified value. It is activated by a CALL statement with the form

CALL SETB (newvalue, destination, count) ;

where

• "newvalue" is an expression with a BYTE or WORD value. If it has a WORD
value, the 8 high-order bits are dropped to produce a BYTE value.

• "destination" is an expression with a POINTER value.

• "count" is an expression with a BYTE or WORD value.

SETB assigns the BYTE value of "newvalue" to each element in the destination
string.

12.5.17 The SETW Procedure

SETW is the same as SETB, except that it assigns a single WORD value to each ele
ment of a WORD string instead of a BYTE string.

If "newvalue" has a BYTE value, it will be extended by 8 high-order O-bits to pro
duce a WORD value.

12.6 Miscellaneous Builtins

12.6.1 The MOVE Procedure

MOVE is an untyped procedure that is provided for compatibility with PL/M-80
programs. It is activated by a CALL statement with the form

CALL MOVE (count, source, destination) ;

where

• "count," "source," and "destination" are expressions with WORD or BYTE
values. If any of these parameters has a BYTE value, it will be extended by 8
high-order O-bits to produce a WORD value.

The values of "source" and "destination" are assumed to be the WORD-type
addresses of the source string and the destination string. The operation differs from
MOVB (see Section 12.5.1) as follows:

• All three parameters must have either BYTE or WORD values, and will be
converted to WORD values if they are BYTE values. POINTER values for
"source" and "destination" are not allowed and therefore the values cannot be
supplied by means of the @ operator. Thus MOVE can only handle strings
whose locations can be expressed as WORD addresses.

• Note that the parameters are in a different order.

• If the source and destination strings overlap, the results are always undefined.

PL/M-86 Programming Manual Builtin Procedures and Variables

12.6.2 The MEMORY Array

MEMORY is a BYTE array of unspecified length which represents an uninitialized
(free) segment of 8086 storage. References to MEMORY may be subscripted. The
maximum subscript allowed depends on both the system environment and the pro
gram. References to MEMORY, either subscripted or unqualified, may be used in
location referel).ces. Thus, for example, @MEMORY is the location of the beginn
ing of free memory space, i.e., byte 0 of the memory segment.

A reference to MEMORY may not be used as an actual parameter for the
LENGTH, LAST, and SIZE procedures.

12.6.3 The TIME Procedure

The untyped procedure TIME causes a time delay specified by its actual parameter.
It is activated by a CALL statement, with the form

CALL TIME (expression);

where the expression is converted, if necessary, to a WORD quantity. The length of
time measured by the procedure is a mUltiple of 100 microseconds: if the actual
parameter evaluates to n, then the delay caused by the procedure is lOOn
microseconds. For example, the statement

CALL TIME (45);

causes a delay of 4.5 milliseconds. Since the maximum delay offered by the pro
cedure is about 6.55 seconds, longer delays must be obtained by repeated activa
tions. The following block takes one second to execute:

DO I = 1 TO 40;
CALL TIME (250);

END;

The TIME procedure is based on 8086 CPU cycle times, and assumes that the system
is running at 5 MHz without interruptions.

12.6.4 STACKPTR and STACKBASE

STACKPTR and ST ACKBASE are builtin WORD variables that provide access to
the 8086 hardware stack pointer and stack base registers.

Care must be exercised in setting these registers (that is, using STACKPTR or
ST ACKBASE on the left side of an assignment). Taking control of the stack away
from the compiler frustrates the compile-time checks on stack overflow and
invalidates the compiler's assumptions about the run-time status of the stack.

12.6.5 The ABS Procedure

ABS is a REAL procedure that returns the absolute value of a REAL value. It is
activated by a function reference with the form

ABS (expression)

where

• "expression" has a REAL value.

If the value of "expression" is positive, ABS returns it unchanged. If the value of
"expression" is negative, ABS returns -(expression).

12-13

Builtin Procedures and Variables PL/M-86 Programming Manual

12-14

12.6.6 The lABS Procedure

lABS is an INTEGER procedure that returns the absolute value of an INTEGER
value. It is activated by a function reference with the form

lABS (expression)

where

• "expression" has an INTEGER value.

If the value of "expression',' is positive, lABS returns it unchanged. If the value of
"expression" is negative, lABS returns -(expression).

12.6.7 The LOCKSET Procedure

The LOCKSET procedure permits a programmer to implement a simple software
lock. It is a BYTE procedure called by a function reference with the form

LOCKSET(lockptr, newvalue)

where

• "lockptr" is an expression with a POINTER value.

• "newvalue" is an expression with a BYTE or WORD value. If "newvalue" has
a WORD value, the 8 high-order bits will be dropped to produce a BYTE value.

The action of LOCKSET is as follows: The "lockptr" parameter is used as a pointer
to a BYTE variable. The value of "newvalue" is assigned to this variable, and
LOCKSET returns the original value of the variable. During this transaction, a
hardware lock is set on the memory bus to prevent any interference from anoth€r
processor. However, the hardware lock is released before LOCKSET returns.

To see how this facility can be used, consider a system having more than one 8086
processor using the same memory, and consider a program in one of these pro
cessors. Suppose that this program uses memory locations that are also used by
other processors in the system.

Within certain "critical" regions of our program, we want to ensure that no other
processor will access the shared memory locations. To achieve this, we declare a
BYTE variable called LOCK and establish a convention that if LOCK=O, any pro
cessor in the system may access the shared memory locations. But if LOCK= 1, no
processor may access the shared memory locations unless it was the one that set
LOCK to 1.

Now if we write the function reference LOCKSET(@LOCK, 1), the value 1 is
assigned to LOCK. Furthermore, if the value returned by LOCKSET is 0, then
LOCK was not already set and so this processor is the one that set it. Weare now
allowed, by convention, to enter the critical region of our program and access the
shared memory locations. At the end of the critical region, we must release the lock
by writing LOCK=O.

But if LOCKSET returns a value of 1, then LOCK was already set and this processor
was not the one that set it. By convention, we must wait until a
LOCKSET(@LOCK, 1) function reference returns a value of ° before accessing the
shared memory locations.

PL/M·-86 Programming Manual Builtin Procedures and Variables

Thus our program could contain the following construction:

1*8egin critical region* 1

DO WHILE LOCKSET(@LOCK, 1);
I*Do nothing but repeat until LOCKSET returns 0* 1

END;

1 * Now LOCK has been set to 1 by this processor* 1

I*Critical region of program, where shared memory
locations are accessed * 1

LOCK=O;
I*End critical region* 1

In the simple case just described, only one software lock is used. It is represented by
tbe variable LOCK. But if more than one set of memory locations needed protection
at different times, we could establish as many different software locks as necessary,
each using a different BYTE variable.

Also, note that a software lock can be used for other purposes than protecting
memory locations. LOCKSET provides a mechanism that can be used to implement
various types of synchronization in a multiprocessor system.

12.6.8 The SET$INTERRUPT Procedure

This procedure permits a program in execution to set an interrupt vector to point to
the interrupt entry point of a separately compiled interrupt handling routine, or to
alter such vectors dynamically. See also section 9.2 of this manual and Chapter 10 of
the PL/M-86 Compiler Operating Instructions for 8080/8085-Based Development
Systems Manual.

The procedure is invoked by a CALL of the form

CALL SET$INTERRUPT (constant, name)

where

• "name" is the interrupt procedure name

and

• "constant" is an interrupt number, i.e., a whole-number constant between 0
and 255.

12.6.9 The INTERRUPT$PTR Procedure

This builtin function returns the interrupt entry point. I ts form is
INTERRUPT$PTR (name). It is typically used in an assignment statement, e.g.,

INT$ARRA Y (4) = INTERRUPT$PTR (HANDLER __ PROC_ 4)

12-15

Builtin Procedures and Variables PL/M-86 Programming Manual

12-16

The interrupt entry point is not readily accessible without using this function, since
the @ operator refers to the procedure entry point instead. These differences are
discussed in greater detail in Chapter 10 of the PL/M-86 Compiler Operating
Instructions for 8080/8085-8ased Development Systems Manual.

12.6.10 The CAUSE$INTERRUPT Procedure

This procedure causes a software interrupt to the vector specified in the statement

CAUSE$INTERRUPT (constant)

CHAPTER 13
PL/M-86 FEATURES

INVOLVING 8086 HARDWARE FLAGS

The PL/M-86 features described in this chapter make use, directly or indirectly, of
the 8086 hardware flags or "toggles" - CARRY, ZERO, SIGN, and PARITY. As
explained in the following section, these features cannot be guaranteed to produce
correct results and the programmer should use them only with caution.

Instead of using these features, it may be more convenient to link the PL/M-86 pro
gram to modules containing code to perform the same functions, but written in
assembly language.

13.1 Optimization and the 8086 Hardware Flags

In order to produce an efficient machine-code program from a PL/M-86 source, the
PL/M-86 Compiler performs extensive optimization of the machine code. This
means that the exact sequence of machine code produced to implement a g~ven se
quence of PL/M-86 source statements cannot be predicted.

Consequently, the state of the 8086 hardware flags cannot be predicted for any given
point in the program. For example, suppose that a source program contains the
following fragment:

SUM = SUM + 250;

where SUM is a BYTE variable. Now, if the value of SUM before this assignment
statement is greater than 5, the addition will cause an overflow and the hardware
CARRY flag will be set.

If there were no optimization of the machine code, one could follow this assignment
statement with one of the PL/M-86 features described in the following sections, and
be sure that the feature would operate in a certain fashion depending on whether or
not the addition caused the CARRY flag to be set. However, because of optimiza
tion, some machine code instructions may occur immediately after the addition, and
change the CARRY flag. One cannot safely predict whether this will happen or not.

Accordingly, any PL/M-86 feature that is dependent on the CARRY flag (or any of
the other hardware flags) may cause the program to run incorrectly. These features
must therefore be used with caution, and any program that uses them must be check
ed carefully to make sure that it operates correctly.

13.2 The PLUS and MINUS Operators

In addition to the arithmetic operators described in Section 4.2, there are two more:
PLUS and MINUS.

PLUS and MINUS perform similarly to + and -, and have the same precedence.
However, they take account of the current setting of the 8086 CPU hardware
CARRY flag in performing the operation.

13-1

8086 Hardware Flags PL/M-86 Programming Manual

13-2

13.3 Carry-Rotation Builtin Procedures

SCL and SCR are built-in rotation procedures whose type depends on the type of the
value of an expression given as an actual parameter. They are activated by function
references, with the forms

SCL (pattern, count)
SCR (pattern, count)

where "pattern" and "count" are both expressions.

The value of "count" will be converted, if necessary, to a BYTE quantity. If the
value of "count" is 0, no rotation occurs.

The value of "pattern" may be either a BYTE value or a WORD value and will not
be converted. If it is a BYTE value, then the procedure will return a BYTE value. If
it is a WORD value, then the procedure will return a WORD value.

The value of "pattern" is rotated left (by SCL) or right (by SCR), with the bit count
given by "count," just as with the ROL and ROR procedures described in Chapter
12. But with SCL and SCR, the rotation includes the CARRY flag: the bit rotated
off one end of "pattern" is rotated into CARRY, and the old value of CARRY is
rotated into the other end of "pattern." In effect, SCL and SCR perform 9-bit rota
tions on 8-bit values, and 17-bit rotations on 16-bit values.

13.4 The DEC Procedure

DEC is a built-in BYTE procedure which uses the value of the hardware CARRY
flag internally. It is activated by a function reference, with the form

DEC (expression)

where the value of the expression will be converted, if necessary, to a BYTE value.
The procedure performs a decimal adjust operation on the actual parameter value
and returns the result of this operation.

13.5 CARRY, SIGN, ZERO, and PARITY
Builtin Procedures

There are four built-in BYTE procedures that return the logical values of the 8086
hardware flags. These procedures take no parameters, and are activated by function
references with the following forms:

CARRY
ZERO
SIGN
PARITY

An occurrence of one of these activations (in an expression) generates a test of the
corresponding condition flag. If the flag is set (= 1), a value of OFFH is returned. If
the flag is clear (= 0), a value of 0 is returned.

• ;R; CHAPTER 14
FLOATING-POINT ARITHMETIC: n

THE REAL MATH FACILITY

This chapter covers the general aspects of the design of the REAL math facility used
to support REAL arithmetic in PL/M-86, plus REAL error control and the use of
REALs by interrupting programs. This facility operates as described herein, whether
performed by the INTEL 8087 chip or INTEL emulators. The discussions therefore
make no distinction as to that environment, except in Chapter 6 of the PL/M-S6
Compiler Operating Instructions for SOSO/SOS5-Based Development Systems
Manual.

NOTE

If your program performs ANY floating-point arithmetic or assign
ments, it must first initialize the REAL math facility by calling the
procedures INIT$REAL$MATH$UNIT (Section 14.5) and, optionally,
SA VE$REAL$ST ATUS (Section 14.8), and SET$REAL$MODE
(Section 14.8). (However, it must be noted that PL/M-86 programs using
REAL assignments and arithmetic cannot be accommodated on an
SDK-86 board.)

The use of REAL functions within REAL expressions can lead to stack
overflow because PL/M-86 does not clear the stack before the function
call. The recommended practice is to use an assignment statement first to
store the functions value in a REAL variable, and then use that variable
in the longer expression.

14.1 Representation of REAL Values

This section describes Intel's standard single-precision format for floating-point
arithmetic. All PL/M-86 REAL values usc this format.

A REAL value occupies four contiguous memory bytes, which may be viewed as 32
contiguous bits. The bits are divided into fields as follows:

sign exponent fraction
(1 bit) (8 bits) (23 bits)

where

• The byte with the lowest address contains the least significant 8 bits of the
fraction field, and the byte with the highest address contains the sign bit and the
most significant 7 bits of the exponent field.

• The sign bit is 0 if the REAL value is positive or zero, or 1 if the REAL value is
negative.

• The exponent field contains a value "offset" by 127-in other words, the actual
exponent can be obtained from the exponent field value by subtracting 127. This
field is all O's if the REAL value is zero.

• The fraction field contains the binary digits of the fractional part of the REAL
value, when it is represented in "binary scientific" notation (sec below). This
field is all O's if the REAL value is zero.

The following examples illustrate these concepts.

14-1

Floating-Point Arithmetic: Real Math PL/M-86 Programming Manual

14-2

Consider the following binary number (which is equivalent to the decimal value
10.25):

1010.01 B

(The"." in this number is a binary point.) The same number can be represented as

1.01001 B * 23

This is "binary scientific" notation, with the binary point immediately to the right
of the most significant digit. The digits 01001 are the fractional part, and 3 is the
exponent. This value would be represented as follows:

• The sign bit would be 0, since the value is positive.

• The exponent field would contain the binary equivalent of 127 + 3=130.

• The leftmost digits of the fraction field would be 01001, and the remainder of
this field would be all O's.

The complete 32-bit representation would be

o 10000010 01001000000000000000000

and the contents of the four contiguous memory bytes would be as follows:

highest address: 01000001
00100100
00000000

lowest address: 00000000

Note that the most significant digit is not actually represented, since by definition it
is a "1" unless the REAL value is zero. If the REAL value is zero, the entire 32-bit
representation is all O's.

For a second example, consider the fraction 1/16, or 0.0625. In binary, this is

0.0001 B

In "binary scientific" we would have

1.0000B * 2-4

The actual exponent, -4, would be represented as 123 (127-4), and the fraction field
would contain all O's.

The largest possible value for a valid exponent field is 254, which corresponds to an
actual exponent of 127. The largest possible absolute value for a positive or negative
REAL value is therefore

1.11111111111111111111111B * 2127

or approximately 3.37* 1038 .

The lowest permissible exponent field value for a non-zero REAL value is 1, which
corresponds to an actual exponent of -126. The smallest possible absolute value for
a positive or negative REAL value is therefore

1.0B * 2-126

or approximately 1.17* 10-38 .

PL/M-86 Programming Manual Floating-Point Arithmetic: Real Math

The utility of the REAL data type is extended by the PL/M-86 compiler's practice of
holding intermediate results in the 8087's temporary-real format, preserving 64 bits
of precision and the full range of representable numbers. The exponent in this for
mat is 15 bits instead of 11 or 8 in the long- and short-real formats, respectively.

This greater range of exponent greatly reduces the likelihood of underflow and
overflow, and eliminates roundoff as a source of error until the final assignment of
the result is performed. These advantages arise because underflow, overflow, and
roundoff errors are more probable for intermediate computations than for the final
result. For example, an intermediate underflow result might later be multiplied by a
very large factor, providing a final result of acceptable magnitude.

14.2 REAL-Parameter Passing and
Stack Conventions

The first seven REAL parameters of a procedure or function are passed by
value, pushed onto the 8087 stack in the order in which they are specified in the
CALL. (Thus the seventh is on top.) The values of any remaining parameters
after the seventh, plus all non-REAL parameters, are pushed onto the 8086
stack, last on top.

The 8087 stack is organized and used with top-relative addressing and opera
tions, permitting different routines to call a common subroutine without obser
ving a convention for passing parameters in dedicated registers. Only the order,
type, and number of the parameters need be consistent. Results from pro
cedures typed REAL are returned on the top of the REAL stack.

14.3 The REAL Math Facility

From the program's point of view, the facility consists of the following:

• The REAL stack, used to hold operands and results during REAL operations

• The REAL Error Byte, consisting of 8 bits initialized to all O's.

The first six bits in this byte correspond to the possible errors that can arise
during REAL operations (see Section 14.4 below). When an ~rror occurs,
the facility sets the corresponding bit to 1. There is a built-in procedure des
cribed in Section 14.7 that a program can invoke to read and clear the
REAL Error Byte.

The exception/error categories are discussed below in Section 14.4.

IIR I I PEl UE I OE I ZE I DEllE I
III L EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED)

INVALID OPERATION

DENORMALIZED OPERAND

ZERODIVIDE

OVERFLOW

UNDERFLOW

PRECISION

L--________ (RESERVED)

L..-.. _________ INTERRUPT REQUEST

Figure 14-1. The REAL Error Byte

14-3

Floating-Point Arithmetic: Real Math PL/M-86 Programming Manual

15

14-4

I I
IIC I RC

I I
-r-- -r--

o

~

(1) Interrupt-Enable Mask:
o = Interrupts Enabled

EXCEPTION MASKS (1 = EXCEPTION IS MASKED)

INVALID OPERATION

DENORMALIZED OPERAND

ZERO DIVIDE

OVERFLOW

UNDERFLOW

PRECISION

(RESERVED)

INTERRUPT-ENABLE MASK(1)

PRECISION CONTROU2)

ROUNDING CONTROU3)

INFINITY CONTROU4)

(RESERVED)

1 = Interrupts Disabled (Masked)

Figure 14-2. The REAL Mode Word

• The REAL mode word, consisting of 16 bits initialized to 03BFH.

Bits 0-5 determine whether the corresponding error condition is to be handled by
using the default recovery described below or by using the programmer-supplied
exception procedure (see Seeton 14_9 for details on writing these)_ When the bit is 1,
the default is u~ed. When it is 0, the user routine is used_ In either case the facility
records the error by setting the corresponding bit of the REAL Error Byte. For most
uses, the default recovery is appropriate, and less work.

This mode word is often called a mask, i.e., it lets some signals through (to interrupt
processing) and not others. If one of the bits 0-5 is a 0, the corresponding error is
said to be unmasked. (Sec Section 14.6 on how to set the mode word.)

If one of these bits is 0 and the corresponding error occurs during floating point
processing, the REAL math facility interrupts the host CPU, e.g., an SOS6, with
interrupt 16. The exception condition is thus reported, and control passed, to the
user-written error handling routine. This situation is called an un-masked error. Sec
tions 12.6.S, 12.6.9, and 9.2.6 discuss aspects of interrupt procedures.

Conversely, a "masked error" means the mode bit corresponding to that error is 1.
Masked errors do not cause an interrupt 16, but arc handled as described in Section
14.4, Exception Conditions.

Bits 13, 14, 15 are reserved and not for PL/M-S6 use. Bits S-12 provide options for
controlling precision, rounding, and infinity representation, as follows:

BITS SET MEAN
TO

(1) 9,S 00 24-bit precision
1 1 64-bit precision [default]

(2) 11,10 00 Round to nearest (or even) [default]
01 Round Down (toward -infinity)
10 Round Up (toward +infinity)
11 Chop (truncate toward 0)

PL/M-86 Programming Manual Floating-Point Arithmetic: Real Math

12 o
1

Projective Infinity: +infinity=-infinity [default]
Affine Infinity: +infinity > -infinity
(see Figure 14-3)

00 + +00
o

AFFINE CLOSURE

o
PROJECTIVE CLOSURE

Figure 14-3. Projective Versus Affine Closure

(1) All intermediate results are held in an internal format of 64-bit precision.
The most-significant 24 bits of the final result are returned (plus sign and
7-bit exponent) as the PL/M-86 answer, rounded if needed according to
the user-specified control. The default precision setting preserves
extended precision and operates slightly faster than the other.

(2) Rounding introduces an error of less than one unit in the last place to
which the result is rounded. The default provides the statistically most
accurate and unbiased estimate of the "true result", i.e., the 64-bit
result. In all rounding modes except "round down", subtracting a
number from itself yields +0; round down yields -0.

The full extent of the 8087's numeric and operational capabilities arc disclls"ed in
the 8086 Family User's Manual Supplement far the 8087 Numeric Data Processor.

14.4 Exception Conditions In REAL Arithmetic

As indicated in Figure 14-1, there are six exception conditions that apply to normal
numeric operations:

• invalid operation

• denormalized operand

• zero divide

• overflow

• underflow

• precision

These are discussed in order below. In each case, only a few of the possible causes
are described, because most are not likely in common PL/M-86 usage. Sophisticated
numeric processing of extreme precision and flexibility may be performed. For full
information at that level, see the 8086 Family User's Manual Supplement for the
8087 Numeric Data Processor.

As the sections following indicate, the masked, default response to most exceptions
will provide the least abrupt, most appropriate action for most PL/M-86 applica
tions. Infrequency of exception conditions is almost guaranteed by the extreme
range of the temporary-real format (64-bit precision) used to hold intermediate
results. The "soft" recovery of gradual underflow, described under the denormal
exception, also extends the range of permissible execution rather than reporting a
hard-failure condition.

14-5

Floating-Point Arithmetic: Real Math PL/M-86 Programming Manual

14-6

Programmers who use the recommended setting of the REAL Mode Word (see
Section 14.6) need to handle only the invalid-exception. Study of the information
from the end of Section 14.4.1 to Section 14.5 is advised in that it provides a general
overview of the meaning of the other exception conditions. Section 14.9 describes
writing the exception handler.

14.4.1 Invalid Operation Exception

This exception generally indicates a program error. It could be caused by referencing
an uninitialized REAL variable or a location that does not contain a REAL value (as
might occur with an out-of-range subscript for a REAL array). Attempting to take
the square root of a negative number or to store a number too large for integer for
mat would also generate this exception.

Another interpretation of this exception is stack error. This may be caused by failing
to restore the math unit status before returning from an interrupt routine that had
saved the status Another cause is the generation of more than 8 intermediate results
during REAL arithmetic, which can arise if REAL procedure function calls are
nested too deeply. The compiler ensures that no single procedure does this, but
cannot check what may occur only at run time. This exception can also occur when
REAL functions (typed procedures) are used as operands within longer REAL
expressions, for example,

DEL TA$1 = ALPHA * (BETA/GAMMA) + CHI (PSI, RHO, PI)

where all these names are typed REAL and CHI is some previously declared REAL
function of three parameters.

The following i~ less likely to cause an exception condition:

EPS = CHI (PSI, RHO, PI)
DELTA$1 = ALPHA * (BETA/GAMMA) + EPS

Here's why:

All REAL arithmetic is performed using the 8087 stack (actual or emulated), which
has eight registers. The first seven REAL parameters supplied in procedure calls are
placed on this stack. If the procedure is typed, that is, invoked as a function, it can
be imbedded as one operand within a longer REAL expression.

Since the evaluation of such an expression also involves the use of this stack for
prior and subsequent arithmetic operations, stack overflow can occur. This
overflow amounts to unpredictable destruction of original parameters or
intermediate results. It becomes more likely as you increase the complexity of REAL
expressions containing REAL functions. Thus you are safer using an assignment
statement first, to store the function's value in a real variable, and using that
variable in the larger expression.

If stack error might apply to your program, modify the code for the affected
procedures to call the built-in procedures SA VE$REAL$STATUS and
RESTORE$REAL$ST ATUS as their first and last operations, respectively.

The masked (default) response is to set the result to one of the special bit patterns
called Not-A-Number (NANs), usually the indefinite value, the smallest number
representable in the specified precision. It also sets Bit 0 of the REAL Error Byte.

If Bit 0 of the REAL Mode Word is 0 (invalid-exception unmasked), an interrupt 16
occurs, transferring control to the user-written interrupt handler.

PL/M-86 Programming Manual Floating-Point Arithmetic: Real Math

14.4.2 Denormal Operand Exception

This condition arises when numeric operations have resulted in a number whose
exponent is literally zero and whose significand, while non-zero, does not begin with
ai, as it would if it were normalized.

The masked, default response is to adjust the significand, moving significant digits
off to the right and raising the exponent until the latter becomes non-zero. For
example, a 24-bit significand of .01 with an exponent of zero implies the number I x
2- 129, since a zero exponent in this format means -127. This would be adjusted into
a significand of .00001 with an exponent of 1, i.e., 0.00001 x 2- 126 . Then this
number would be available for use in subsequent REAL operations, which might
well yield valid results. For example, a small denormal multiplied by a large normal
REAL number can give an acceptable, in-range answer. In practice, since
intermediate results are kept in temporary real format (I5-bit exponent), denormals
are very rare.

This condition causes Bit 1 of the REAL Error Byte to be set to 1. If Bit 1 of the
REAL Mode Word is 1, the response described above occurs; if 0, an interrupt 16
occurs, transferring control to the user-written interrupt handler.

14.4.3 Zero Divide Exception

This condition arises when, in the course of some REAL computation, a divisor
turns out to be zero. The masked response, when Bit 2 of the REAL Mode Word is
1, is to return infinity, appropriately signed if need be. If that bit is 0, interrupt 16
occurs, giving control to the user-written interrupt handler. In either case, Bit 2 of
the REAL Error Byte is set to 1 .

14.4.4 Overflow Exception
This error occurs when a real result is too large for the format in use, i.e., for REAL
assignment, greater than about 3.37 x 1038 , or for intermediate REAL computations
using the extended format, greater than about 104932 . It can arise during assignment,
addition, subtraction, multiplication, division, or conversion to integer.

The masked, default response (Bit 3 of REAL Mode Word = 1) is to return infinity
(signed if Affine) and set Bit 3 of the REAL Error Byte to 1. Unmasked overflow
must go through a user-written interrupt 16 handler.

14.4.5 Underflow Exception

This exception is caused by an exponent too small for the format in use, i.e., for
REAL assignments, less than -127, and for intermediate results, less than -16383.
Underflow can be caused by the same type of REAL operations as overflow.

The masked, default response (Bit 4 of REAL Mode Word = 1) is to use the denor
mal number created by adjusting the very small result (see denormal discussion
above), or to return zero if that is the rounded result. Bit 4 of the REAL Error Byte
is set to 1. Unmasked underflow must go through a user-written interrupt 16
handler.

14.4.6 Precision Exception

This error occurs when the result of an operation is inexact, i.e., rounded, and as a
result of an overflow exception. No special action is performed by a masked
response (Bit 5 of REAL Mode Word = 1) other than setting Bit 5 of the REAL
Error Byte. Unmasked response is as chosen by the user.

14-7

Floating-Point Arithmetic: Real Math PL/M-86 Programming Manual

14-8

Exception

Invalid
Operation

Zerodivide

Denormalized

Overflow

Underflow

Precision

Table 14-1. Exception and Response Summary

Masked Response

If one operand is NAN, return
it; if both are NANs, return NAN
with larger absolute value; if
neither is NAN, return
indefinite NAN.

Return 00 signed with
"exclusive or" of operand
signs.

Memory operand: proceed as
usual.
Register operand: convert to
valid unnormal, then re
evaluate for exceptions.

Return properly signed 00.

Denormalize result.

Return rounded result.

Unmasked Response

Request interrupt.

Request interrupt.

Request interrupt.

Register destination: adjust
exponent, * store result,
request interrupt.
Memory destination: request
interrupt.

Register destination: adjust
exponent, * store result,
request interrupt.
Memory destination: request
interrupt.

Return rounded result, request
interrupt.

* On overflow, 24,576 decimal is subtracted from the true result's exponent; this forces the
exponent back into range and permits a user exception handler to ascertain the true result
from the adjusted result that is returned. On underflow, the same constant is added to the
true result's exponent.

14.5 The INIT$REAL$MATH$UNIT Procedure

INIT$REAL$MATH$UNIT is a built-in untyped procedure activated by a CALL
statement, as follows:

CALL INIT$REAL$MATH$UNIT;

This call is required as the first access to the REAL math facility, irrespective of
whether the 8087 chip or its software emulator will be used. That decision can be
deferred until link time, and the proper controls are described in the PL/M-86 Com
piler Operating Instructions for 8080/8085-Based Development Systems Manual

The effect of this call is to initialize the REAL math unit for subsequent operation.
This includes setting a default value into the control word, namely 03BFH or
000000 III 0 111111 in binary. The effect of this setting is to mask all exceptions and
interrupts, set precision to 64 bits, and cause rounding to even (as described in
Section 12.6.8). This means no interrupts will occur from the REAL Math Facility
regardless of what errors are detected. See also Section 14.6 below.

Procedures which are activated after this call has taken effect do not need to do such
initialization. See also Section 14.8.

PL/M-86 Programming Manual Floating-Point Arithmetic: Real Math

14.6 The SET$REAL$MODE Procedure
SET$REAL$MODE is a built-in untyped procedure, activated by a CALL state
ment with the following form:

CALL SET$REAL$MODE (modeword) ;

where

• modeword is an expression with a WORD value.

The value of modeword becomes the new contents of the REAL mode word. If bits
6,7,13,14, and 15 are not 0 in modeword then the results are undefined. The sug
gested value for modeword is 033EH, that is, 0000001100111110 in binary. This
value provides maximum precision, default rounding, and masked handling of all
exception conditions except invalid, which can alert you to errors of initialization or
stack usage. See Section 14.9 for facts and references on writing an interrupt han
dling procedure.

14.7 The GET$REAL$ERROR Procedure
GET$REAL$ERROR is a built-in BYTE procedure activated by a function
reference with the following form:

GET$REAL$ERROR

The BYTE value returned is the current contents of the REAL error byte. This pro
cedure also clears the error byte in the REAL math facility.

14.8 Saving and Restoring REAL Status
If any interrupt procedure performs any floating point operation, it will change the
REAL status. If such an interrupt procedure is activated during a floating point
operation, the program will be unable to continue the interrupted operation cor
rectly after return from the interrupt procedure. Therefore, it is necessary for any
interrupt procedure that performs a floating-point operation to first save the REAL
status and subsequently restore it before returning. The built-in procedures
SA VE$REAL$STATUS and RESTORE$REAL$STATUS make this possible.

These procedures can also be used in a multi-tasking environment, where a running
task using the SOS7 may be preempted by another task that also uses the SOS7. The
preempting task must call SA VE$REAL$ST ATUS before it executes any statements
that affect the SOS7. This means before calling INIT$REAL$MATH$UNIT and
SET$REAL$MODE, and before any arithmetic or assignment of REALs (other
than GET$REAL$ERROR, if needed).

New vectors will be required for the interrupt handlers appropriate to each new task,
e.g., to handle unmasked exception conditions. These vectors can be placed in the
correct locations via the SET$INTERRUPT procedure described in Section 12.6.S.
Multitasking must be disabled during this operation.

After its processing is complete and the preempting task is ready to terminate, it
must call RESTORE$REAL$STATUS to reload the state information that applied
at the time the former running task was preempted. This enables that task to resume
execution from the point where it relinquished control.

NOTE
The SOS7 Emulator is not supported for multitasking by the RMX/S6
Real-Time Operating System, due to the requirement for dynamic
storage allocation (i.e., memory reallocation during execution) in such
an environment.

14-9

Floating-Point Arithmetic: Real Math PL/M-86 Programming Manual

14-10

[WA~
The use of real functions without real parameters within real expressions
may result in loss of processor synchronization. Do not call
GET$REAL$ERRORS or SA VE$REAL$ST A TUS from such a func
tion before executing at least one floating point instruction.

14.8.1 The SAVE$REAL$STATUS Procedure
SA VE$REAL$ST A TUS is a built-in untyped procedure activated by a CALL state
ment with the form

CALL SAVE$REAL$ST A TUS (location) ;

where

• location is a pointer to a memory area of 100 bytes where the REAL status
information will be saved.

The REAL status is saved at the specified location, and the REAL stack, mode
word, and error byte are reinitialized.

If the state of the REAL math unit is unknown to this procedure when it is called, as
in the case mentioned above for preempting tasks, then you don't want to do an in
itialization because that will destroy existing error flags, masks, and control settings.
The action appropriate to these circumstances (except for error-recovery routines,
discussed later) is to issue

CALL SAVE$REAL$ST ATUS (location_1)

before any REAL math usage and, prior to the procedure's return, a CALL
RESTORE$REAL$ST A TUS (1ocatioI1_I), as described below. The save
automatically reinitializes the math unit and the error byte.

This protects the status of preempted tasks or prior procedures and establishes a
known initialization state for the current procedure's actions. 8086 interrupts are
disabled during the save.

14.8.2 Deadlock

When you use an actual 8087 Numeric Data Processor chip (NOP), a problem called
"deadlock" can arise if 8086 interrupts are disabled:

The 8086 processor can have interrupts disabled when it enters aWAIT state.
The wait is to allow the NOP to complete a current operation so as to syn
chronize the two processors for subsequent instructions.

If an 8087 exception now occurs, the NOP sends an interrupt signal to the 8086
chip. Until that exception is cleared by a call to GET$REAL$ERROR or
SA VE$REAL$ST ATUS, the NOP remains in a "busy" state. But that inter
rupt signal never arrives because 8086 interrupts were disabled. Therefore each
processor indefinitely awaits the other.

When you use the Emulator, it ignores a WAIT condition, so that if 8086 interrupts
are disabled it simply executes a return. If 8086 interrupts are enabled, then the
Emulator checks the NDP's interrupt mask: if it is zero (meaning 8087 interrupts are
enabled), the Emulator then interrupts the 8086; if the NOP's interrupt mask is one
(8087 interrupts disabled), the Emulator simply executes a return.

PL/M-86 Programming Manual Floating-Point Arithmetic: Real Math

14.9 Writing a Procedure to Handle REAL Interrupts
This section partially summarizes advice, notes, and warnings from Chapters 9, 12,
and 14 pertaining to interrupts, floating-point usage, and procedures.

(It does not duplicate all of the information to be found there as to additional
capabilities which may be permitted or disallowed, e.g., the attributes PUBLIC or
REENTRANT may be applied to an interrupt procedure, but the attribute EXTER
NAL may not. INTERRUPT may only be used in an untyped PROCEDURE state
ment at the outer level of a program module, and may not have any parameters.)

The procedure must begin by declaring its name and nature:

HANDLER: PROCEDURE INTERRUPT 16;

This alerts the compiler to create a code prologue appropriate to a routine which
will, in general, be invoked by interrupts. It also provides the number of the inter
rupt, used during linkage and locating to create the correct vector to this routine's
absolute location during execution.

If HANDLER will do any REAL arithmetic or assignments, its first executable
statements should be of the form

ERR$INFO = GET$REAL$ERROR; /* must earlier declare ERR$INFO BYTE * /

or

CALL SAVE$REAL$STATUS (Iocal_save_area); /* also declare earlier * /

Each procedure clears the error byte. The latter procedure also clears out the REAL
stack. Thus, after either procedure is used, the REAL Error Byte no longer contains
the flagged cause of the exception condition that invoked HANDLER.

(Using SA VE$REAL$STATUS is a way of avoiding possible stack errors from
cumulative usage. This permits errors in HANDLER to be detected independently
of the originating exception condition, and allows HANDLER to restore the state of
the interrupted procedure despite HANDLER's own use of the REAL facility.
SA VE$REAL$ST ATUS also makes available all the information as to the state of
the 8087 exceptions, stack and operations, as shown below.)

Thus the beginning of a typical routine to handle REAL exception conditions could
look like this:

HANDLER: PROCEDURE INTERRUPT 16;

DECLARE ERR$INFO BYTE;
DECLARE LOCAL_SAVE_AREA (100) BYTE;

ERR$INFO = GET$REAL$ERROR;

or like this:

HANDLER: PROCEDURE INTERRUPT 16;

DECLARE ERR$IN FO BYTE;
DECLARE LOCAL_SAVE_AREA (100) BYTE;

CALL SAVE$REAL$STATUS (LOCAL_SAVE __ AREA);

ERR$INFO = SAVE_AREA.STATUS(O);
/*(see structure defined below)* /

(If you used GET$REAL$ERROR prior to the above call, e.g., the sequence

ERR$INFO = GET$REAL$ERROR;
CALL SAVE$REAL$ST ATUS (LOCAL_SAVE_AREA) ;

the error byte of the status word saved in this local area would not reflect the excep
tions that invoked HANDLER, because the byte would have been zero'd by the
prior use of GET$REAL$ERROR. The actual exceptions would be in ERR$INFO.)

14-11

Floating-Point Arithmetic: Real Math PL/M-86 Programming Manual

14-12

If you won't need the extra information gained by the SAVE, i.e., if you need only
the exceptions, use the GET$REAL$ERROR beginning shown first.

Conversely, if you use the SAVE, GET$REAL$ERROR is unnecessary because the
SA VE supplies the exceptions as part of the 8087 status (see Figure 14-4).

The rest of HANDLER can perform any actions deemed appropritate. This is an
application-dependent decision. Among the possibilities:

• incrementing an exception counter for later display

• printing diagnostic data, e.g., the contents of local_save_area

• aborting further execution of the calculation causing exception

• aborting all further execution

The format of the local_savc_area as it is filled by the save procedurc is

INSTRUCTION {
POINTER

OPERAND .{
POINTER

TOP STACK {
ELEMENT:ST

NEXT STACK {
ELEM ENT:ST(1)

LAST STACK {
ELEMENT:ST(7)

NOTES:
S = Sign

INCREASING ADDRESSES

15 o

CONTROL WORD +0

STATUS WORD +2

TAG WORD +4

IP15-0 +6

IP19-16 Tor OPCODE +8

OP15-0 +10

OP19-161 0 +12

SIGNIFICAND 15-0 +14

SIGNIFICAND 31-16 +16

SIGNIFICAND 47-32 +18

&
SIGNIFICAND 63-48 +.20

sl EXPONENT 14-0 +22

SIGNIFICAND 15-0 +24

SIGNIFICAND 31-16 +26

SIGNIFICAND 47-32 +28

SIGNIFICAND 63-48 +30
&

sl EXPONENT 14-0 +32

,~ ~~

SIGNIFICAND 15-0 +84

SIGNIFICAND 31-16 +86

SIGNIFICAND 47-32 +88

SIGNIFICAND 63-48 +90
&

'si EXPONENT 14-0 +92

Bit 0 of each field is rightmost. least significant bit of corresponding
register field.
Bit63 of significand is integer bit (assumed binary pOint is immediately
to the right),

Figure 14-4. Memory Layout of REAL Save Area

PL/M··86 Programming Manual Floating-Point Arithmetic: Real Math

If you might later perform more extensive manipulations on that area, you could
declare a structure permitting you to access its component parts by name and/or
byte:

DECLARE SAVE AREA STRUCTURE
(CONTROL(2) BYTE,
STATUS(2) BYTE,

TAG WORD,
INSTR_PTR WORD,

IP OPCODE WORD,
OPERAND PTR(2) WORD,

STACK-TOP(S) WORD,
STACK-ONE(S) WORD,
STACK-TWO(S) WORD,
STACK-3 (5) WORD,
STACK-4 (5) WORD,
STACK-S (5) WORD,
STACK-6 (5) WORD,
STACK-7 (5) WORD
) AT(@LOCAL SAVE AREA)

NOTE

To make use of the words from TAG through IP _OPCODE, you must
employ masks and shifts to access the individual fields shown in Figure
14-4.

The final action prior to returning (if desired) to the interrupted procedure is to
restore the status of the REAL math unit:

CALL RESTORE$REAL$STATUS (LOCAL __ SAVE __ AREA);

However, if you did not use GET$REAL$ERROR prior to the
SA VE$REAL$ST A TUS call, the local save area will contain the original contents of
the error byte. Under these circumstances, you must first clear the lower byte of the
saved status word before the above RESTORE so as to avoid retriggering the same
exception that invoked HANDLER to begin with.

To do so, you can use a command of the form

LOCAL_SAVE_AREA (2) = 0; (should precede restore)

or

SAVE_AREA.STATUS (0) = 0;

14-13

APPENDIX A
GRAMMAR OF THE

PL/M-86 LANGUAGE

This appendix lists the entire BNF syntax of the PL/M-86 language. Since the
semantic rules are not included here, this syntax permits certain constructions that
are not actually allowed. Also, the terminology used in this BNF syntax has been
designed for convenience in constructing concise and rigorous definitions. In some
cases, this terminology differs from the terminology used in the main body of the
manual.

The notation used here is slightly extended from standard BNF. A sequence of three
periods (...) is used to indicate that the preceding syntactic element may be repeated
any number of times. Curly brackets are used to indicate that exactly one of the
items stacked vertically between them is to be used. Square brackets indicate that
whatever is between them may be omitted. Also, when items are stacked vertically
between square brackets, only one of them may be used, if any.

Following the syntax, the nonterminals in the syntax are listed in alphabetical order.
Each nonterminal is tagged with the section number (within this appendix) where its
primary definition can be looked up.

A.1 Lexical Elements

A.1.1 Character Sets

<character>::= <apostrophe>

SYNTAX

I <non-quote character>

<non-quote character>::= <letter>
I <decimal digit>
I $
I <special character>
I blank

<Ietter>::= <upper case letter>
I <lower case letter>

<upper case letter>::= AIBICIDIEIFIGIHIIiJIKILIMINIOIPIQIRI SITIUIVIWIXI YIZ
<lower case letter>::= alblcidielflglhliljlkillminiolplqlrlsitlulvlwixlylz
<decimal digit>::= 0111213141516171819
<special character>::= + 1-1* 111<1>1=1:1; 1.1, 1(I)I@I_
<apostrophe>::= '

A.1.2 Tokens

<token>::= <delimiter>
I <identifier>
I <reserved word>
I <numeric constant>
I <string>

A-I

Grammar of the PL/M-86 Language PL/M-86 Programming Manual

A-2

A.1.3 Delimiters

<delimiter>::== <simple delimiter>
I <compound delimiter>

<simple delimiter>::= + I-I*I/I<I>I=I:I;I.I,I(I)I@
<compound delimiter>::= <>

I <=
>=

A.1.4 Identifiers and Reserved Words

<identifier>:: = <letter> [<letter> ...]
<decimal digit>

$

<reserved word> see list, Appendix C

A.1.5 Numeric Constants

<numeric constant>::= <binary number>
I <octal number>
I <decimal number>

<hexadecimal number>
<floating point number>

<binary number>::= <binary digit> [<binary $di9it>] ... B

<octal number>::= <octal digit> [<octal d~9it>] ... I ~)
[0] <decimal number>::= <decimal digit> [<decimal$di9it>]

<hexadecimal number>::= <decimal digit> [<hexadec~mal digit>] ... H

<floating pointnumber>::= <digit string> <fractional part> [<exponent part>]
<fractional part>::= . [<digit string>]
<exponent part>::= E [+ I -] <digit string>
<digit string>::= <decimal digit> [<decima~ digit>]

<binary digit>::= 011
<octal digit>::= <binary digit> 121314151617
<decimal digit>::= <octal digit> 1819
<hexadecimal digit>::= <decimal digit>IAIBICIOIEIF

A.1.6 Strings

<string>::= ' <string body element>
<string body element>::= <non-quote character>

I "

PL/M-86 Programming Manual Grammar of the PL/M-86 Language

A.1.7 PL/M Text Structure: Tokens, Blanks, and Comments

<pl/m text>::= [<token>]
<separator>

<separator>::= blank
I <comment>

<comment>::= 1* [<character>] ... * 1

A.2 Modules and the Main Program

<compilation>::= <module> [EOF]
<module>::= <module name> : <simple do block>
<module name>::= <identifier>

A.3 Declarations

<declaration>::= <declare statement>
I <procedure definition>

A.3.1 DECLARE Statement

<declare statement>::= DECLARE <declare element list>;
<declare element list>::= <declare element>[,<declare element>] ...
<declare element>::= <factored element>

I <unfactored element>

<unfactored element>::= <variable element>
I <literal element>
I <label element>

<factored element>::= <factored variable element>
I <factored label element>

A.3.2 Variable Elements

<variable element>::= <variable name specifier>
[<array specifier>] <variable type>
[<variable attributes>]

<variable name specifier>::= <non-based name>
I <based name> BASED <base specifier>

<non-based name>::= <variable name>
<based name>::= <variable name>
<variable name>::= <identifier>
<base specifier>::= <identifier> [.<identifier>]

A-3

Grammar of the PL/M-86 Language PL/M-86 Programming Manual

A-4

<variable attributes>::= [PUBLIC] [<Iocator>][<initialization>]
I [EXTERNAL][<constant attribute>]

<Iocator>::= AT «expression»

<constant attribute>::= DATA

<array specifier>::= <explicit dimension>
I <implicit dimension>

<explicit dimension>::= «numeric constant»
<implicit dimension>::= (•)

<variable type>::= <basic type>
I <structure type>

<basic type>::= INTEGER
I REAL
I POINTER
I BYTE
I WORD

A.3.3 Label Element

<label element>::= <identifier> LABEL [PUBLIC]
EXTERNAL

A.3.4 Literal Elements

<literal element>::= <identifier> LITERALLY <string>

A.3.5 Factored Variable Element

<factored variable element>::= (<variable name specifier>
[,<variable name specifier>] ...)
[<explicit dimension>] <variable type>
[<variable attributes>]

A.3.6 Factored Label Elements

<factored label element>::= «identifier> [,<identifier>] ...) LABEL [PUBLIC]
EXTERNAL

A.3.7 The Structure Type

<structure type>::= STRUCTURE «member element> [,<member element>] .. :)
<member element>::= <factored member>

I <unfactored member>

<factored member>::= «member name> [,<member name>] ...)
[<explicit dimension>] <basic type>

<unfactored member>::= <member name> [<explicit dimension>] <basic type>
<member name>::= <identifier>

PL/M-86 Programming Manual Grammar of the PL/M-86 Language

A.3.8 Procedure Definition

<procedure definition>::= <procedure statement>
[<declaration> ...][<unit> ...] <ending>

<procedure statement>::= <procedure name> : PROCEDURE
[<formal parameter list>][<procedure type>]
[<procedure attributes>] ;

<procedure name>::= <identifier>
<procedure type>::= <basic type>
<basic type>::= INTEGER

I REAL
I POINTER
I BYTE
I WORD

<formal parameter list>::= «formal parameter> [,<formal parameter>] ...)
<formal parameter>::= <identifier>
<procedure attributes>::= {INTERHUPT <numeric constant>}

<linkage>
REENTRANT

<linkage>::= PUBLIC
I EXTERNAL

A.3.9 Attributes

A.3.9.1 AT

<Iocator>::= AT «expression»

A.3.9.2 INTERRUPT

<interrupt>::= INTERRUPT <numeric constant>

A.3.9.3 Initialization

<initialization>::=
(

INITIAL}
DATA

<initial value>::= <expression>
I <string>

A.4 Units

<unit>::= <conditional clause>
I <do block>
I <basic statement>

(<initial value> [,<intial value>] ...)

I <label definition> <unit>

A-5

Grammar of the PL/M-86 Language

A-6

<basic statement>::= <assignment statement>
I <call statement>

<goto statement>
<null statement>
<return statement>
<8086 dependent statement>

<scoping statement>::= <simple do statement>
I <do-case statement>

<do-while statement>
<iterative do statement>
<end statement>
<procedure statement>

<label definition> ::= <identifier> :

A.4.1 Basic Statements

A.4.1 .1 Assignment Statement

<assignment statement>::= <left part> = <expression> ;
<left part>::= <variable reference> [, <variable reference>]

A.4.1.2 CALL Statement

<call statement>::= CALL <simple variable> [<parameter list>] ;
<parameter list>::= «expression> [, <expression>] ...)
<simple variable>::= <identifier>

I <identifier>. <identifier>

A.4.1.3 GOTOStatement

<goto statement>::=
(

GOTO I
GOTO

<identifier> ;

A.4.1.4 Null Statement

<null statement>::= ;

A.4.1.S RETURN Statement

<return statement>::= <typed return>
I <untyped return>

<typed return>::= RETURN <expression>;
<untyped return>::= RETURN;

PL/M-86 Programming Manual

PL/M-86 Programming Manual Grammar of the PL/M-86 Language

A.4.1.6 8086 Dependent Statements

<8086 dependent statement>::= <disable statement>
I <enabl.e statement>
I <halt statement>
I <cause interrupt statement>

<disable statement>::= DISABLE;
<enable statement>::= ENABLE;
<halt statement>::= HALT;
<cause interrupt statement>::= CAUSE$INTERRUPT (numeric constant)

A.4.2 Seoping Statements

A.4.2.1 Simple DO Statement

<simple do statement>::= DO;

A.4.2.2 DO-CASE Statement

<do-case statement>::= DO CASE <expression> ;

A.4.2.3 DO-WHILE Statement

<do-while statement>::= DO WHILE <expression> ;

A.4.2.4 Iterative DO Statement

<iterative do statement>::= DO <index part> <to part> [<by part>] ;
<index part>::= <index variable> = <start expression>
<to part>::= TO <bound expression>
<by part>::= BY <step expression>
<index variable>::= <simple variable>
<start expression>::= <expression>
<bound expression>::= <expression>
<step expression>::= <expression>

A.4.2.5 END Statement

<end statement>::= END [<identifier>] ;

AA.2.6 Procedure Statement

<procedure statement>::= <procedure name>: PROCEDURE
[<formal parameter list>][<procedure type>]
[<procedure attributes>] ;

A-7

Grammar of the PL/M-86 Language PL/M-86 Programming Manual

A-8

A.4.3 Conditional Clause

<conditional clause>::= <if condition> <true unit>
I <if condition> <true element> ELSE <false element>

<if condition>::= IF <expression> THEN
<true element>::= [<label definition> ...] <do block>

I [<label definition> ...] <basic statement>

<false element>::= <unit>
<true unit>::= <unit>

A.4.4 DO Blocks

<do block>::= <simple do block>
I <do-case block>
I <do-while block>
I <iterative do block>

A.4.4.I Simple DO Blocks

<simple do block>::= <simple do statement>[<declaration> ...][<unit> ...]<ending>
<ending>::=[<label definition> ...]<end statement>

A.4.4.2 DO-CASE Blocks

<do-case block>::= <do-case statement> {<unit> ... } <ending>

A.4.4.3 DO-WHILE Blocks

<do-while block>::= <do-while statement> [<unit> ...] <ending>

A.4.4.4 Iterative DO Blocks

<iterative do block>::=<iterative do statement> [<unit> ...] <ending>

A.5 Expressions

A.S.1 Primaries

<primary>::= <constant>
I <variable reference>
I <location reference>

<subexpression>

<subexpression>::= «expression»

A.5.1.I Constants

<constant>::= <numeric constant>
I <string>

PL/M-86 Programming Manual Grammar of the PL/M-86 Language

A.S.l.2 Variable References

<variable reference>::= <data reference>
I <function reference>

<data reference>::= <name>[<subscript>][<member specifier>]
<subscript>::= (<expression>)
<member specifier>::= .<member name>[<subscript>]
<function reference>::= <name>[<actual parameters>]
<actual parameters>::= (<expression>[,<expression>] ...)
<member name>::= <identifier>
<name>::= <identifier>

A.S.l.3 Location References

<location reference>::= <constant list>

<variable reference>

<constant list>::= «constant>[,<constant>] ...)

A.S.2 Operators

<operator>::= <logical operator>
I <relational operator>
I <arithmetic operator>

<logical operator>::= AND
I OR

NOT
XOR

<relational operator>::= < I> I <= I >= I <> I =
<arithmetic operator>::= + I - I PLUS I MINUS I * III MOD

A.S.3 Structure of Expressions

<expression>::= <logical expression>
I <embedded assignment>

<embedded assignment>::= <variable reference> := <logical expression>
<logical expression>::= <logical factor>

I <logical expression> <or operator> <logical factor>

<or operator>::= OR
I XOR

<logical factor>::= <logical secondary>
I <logical factor> <and operator> <logical secondary>

A-9

Grammar of the PL/M-86 Language

<and operator>::= AND
<logical secondary>::= [<not operator>] <logical primary>
<not operator>::= NOT
<logical primary>::= <arithmetic expression>

[<relational operator> <arithmetic expression>]

<relational operator>::= < I > I <= I >= I <> I =

<arithmetic expression>::= <term>

PL/M-86 Programming Manual

I <arithmetic expression> <adding operator> <term>

A-lO

<adding operator>::= + I - I PLUS I MINUS
<term>::= <secondary>

I <term> <multiplying operator> <secondary>

<multiplying operator>::= * I I I MOD
<secondary>::=[<unary minus>l <primary>

<unary plus> J

<unary minus>::=
<unary plus>::= +

NONTERMINALS

<actual parameters>
<adding operator>
<and operator>
<apostrophe>
<arithmetic expression>
<arithmetic operator>
<array specifier>
<assignment statement>
<base specifier>
<based name>
<basic statement>
<basic type>
<binary digit>
<binary number>
<bound expression>
<by part>
<call statement>
<character>
<comment>
<compilation>
<compound delimiter>
<conditional clause>
<constant list>
<constant>
<data reference>
<decimal digit>
<decimal number>
<declaration>
<declare element list>
<declare element>
<declare statement>
<delimiter>
<digit string>

SECTION

A.S.I.2
A.S.3
A.S.3
A.I.I
A.S.3
A.S.2
A.3.2
A.4.I.I
A.3.2
A.3.2
A.4
A.3.2
A.I.S
A.I.S
A.4.2.4
A.4.2.4
A.4.I.2
A.I.I
A.I.7
A.2
A.I.3
A.4.3
A.S.I.3
A.S.I.I
A.S.I.2
A.I.S
A.I.S
A.3
A.3.1
A.3.1
A.3.1
A.I.3
A.I.S

PL/M-86 Programming Manual

<disable statement>
<do block>
<do-case block>
<do-case statement>
<do-while block>
<do-while statement>
<embedded assignment>
<enable statement>
<end statement>
<ending>
<explicit dimension>
<exponent part>
<expression>
<factored element>
<factored label element>
<factored member>
<factored variable element>
<false element>
<floating point number>
<formal parameter list>
<formal parameter>
<fractional part>
<function reference>
<goto statement>
<halt statement>
<hexadecimal digit>
<hexadecimal number>
<identifier>
<if condition>
<implicit dimension>
<index part>
<index variable>
<initial value>
<initialization>
<interrupt>
<iterative do block>
<iterative do statement>
<label definition>
<label element>
<left part>
<letter>
<linkage>
<literal element>
<location reference>
<locator>
<logical expression>
<logical factor>
<logical operator>
<logical primary>
<logical secondary>
<lower case letter>
<member element>
<member name>
<member specifier>
<module name>
<module>
<multiplying operator>
<name>
<non-based name>

Grammar of the PL/M-86 Language

A.4.1.6
A.4.4
A.4.4.2
A.4.2.2
A.4.4.3
A.4.2.3
A.5.3
A.4.l.6
A.4.2.5
A.4.4.1
A.3.2
A.l.5
A.5.3
A.3.1
A.3.6
A.3.7
A.3.5
A.4.3
A.I.5
A.3.8
A.3.8
A.I.5
A.5.I.2
A.4.I.3
A.4.I.6
A.I.5
A.I.5
A.1.4
A.4.3
A.3.2
A.4.2.4
A.4.2.4
A.3.9.3
A.3.9.3
A.3.9.2
A.4.4.4
A.4.2.4
A.4
A.3.3
A.4.I.l
A.I.l
A.3.8
A.3.4
A.5.I.3
A.3.9.l
A.5.3
A.5.3
A.5.2
A.5.3
A.5.3
A.I.l
A.3.7
A.3.7
A.5.I.2
A.2
A.2
A.5.3
A.5.I.2
A.3.2

A-II

Grammar of the PL/M-86 Language

A-12

<non-quote character>
<not operator>
<null statement>
<numeric constant>
<octal digit>
<octal number>
<operator>
<or operator>
<parameter list>
<pl/m text>
<primary>
<procedure attributes>
<procedure definition>
<procedure name>
<procedure statement>
<procedure type>
<relational operator>
<reserved word>
<return statement>
<scoping statement>
<secondary>
<separator>
<simple delimiter>
<simple do block>
<simple do statement>
<simple variable>
<special character>
<start expression>
<step expression>
<string body element>
<string>
<structure type>
<subexpression>
<subscript>
<term>
<to part>
<token>
<true element>
<true unit>
<typed return>
<unary minus>
<unary plus>
<unfactored element>
<unfactored member>
<unit>
<untyped return>
<upper case letter>
<variable attributes>
<variable element>
<variable name specifier>
<variable name>
<variable reference>
<variable type>

PL/M-86 Programming Manual

A.I.1
A.5.3
A.4.I.4
A.I.5
A.1.5
A.1.5
A.5.2
A.5.3
A.4.I.2
A.I.7
A.5.1
A.3.8
A.3.8
A.3.8
A.3.8
A.3.8
A.5.2
A.I.4
A.4.I.5
A.4
A.5.3
A.1.7
A.I.3
A.4A.1
A.4.2.1
A.4.I.2
A.I.I
A.4.2A
A.4.2A
A.1.6
A.1.6
A.3.7
A.5.1
A.5.I.2
A.5.3
A.4.2.4
A.1.2
A.4.3
AA.3
A.4.1.5
A.5.3
A.5.3
A.3.1
A.3.7
A.4
A.4.I.5
A.I.I
A.3.2
A.3.2
A.3.2
A.3.2
A.5.I.2
A.3.2

SYMBOL

$

-

@

/
/*
*/
(

+

*
<
>

<=
>=
<>

NAME

dollar sign
equal sign

assign
at-sign
dot

slash

left paren

right paren

plus
minus
apostrophe
asterisk
less than
greater than
less or equal

APPENDIX B
PL/M-86 SPECIAL CHARACTER"S

USE

number and identifier spacer
Two distinct uses:

(1) assignment operator
(2) relational test operator

embedded assignment operator
location reference operator
Three distinct uses:

(1) decimal point
(2) structure member qualification
(3) address operator

division operator
beginning-of-comment delimiter
end-of-comment delimiter
left delimiter of lists, subscripts, and

expressions
right delimiter of lists, subscripts, and

expressions
addition operator
subtraction or unary minus operator
string delimiter
multiplication operator
relational test operator
relational test operator
relational test operator

greater or equal relational test operator
not equal relational test operator
colon label delimiter
semicolon statement delimiter
comma list element delimiter
underscore significant character in identifier

B-1

• ® n APPENDIX C
PL/M-86 RESERVED WORDS

These are the reserved words of PL/M-86. They may not be used as identifiers.

ADDRESS
AND
AT
BASED
BY
BYTE
CALL
CASE
DATA
DECLARE
DISABLE
DO
ELSE
ENABLE
END
EOF
EXTERNAL
GO
GOTO
HALT
IF
INITIAL
INTEGER
INTERRUPT
LABEL
LITERALLY
MINUS
MOD
NOT
OR
PLUS
POINTER
PROCEDURE
PUBLIC
REAL
REENTRANT
RETURN
STRUCTURE
THEN
TO
WHILE
WORD
XOR

C-l

APPENDIX D
PL/M-86 PREDECLARED IDENTIFIERS

These are the identifiers for the builtin procedures and predeclared variables. If one
of these identifiers is declared in a DECLARE statement, the corresponding builtin
procedure or predeclared variable becomes unavailable within the scope of the
declaration.

ABS
CARRY
CMPB
CMPW
DEC
DOUBLE
FINDB
FINDRB
FINDRW
FINDW
FIX
FLOAT
HIGH
lABS
INPUT
INT
INWORD
LAST
LOCKSET
LENGTH
LOW
MEMORY
MOVB
MOVE
MOVRB
MOVRW

MOVW
OUTPUT
OUTWORD
PARITY
ROL
ROR
SAL
SAR
SCL
SCR
SETB
SETW
SHL
SHR
SIGNED
SIZE
SKIPB
SKIPRB
SKIPRW
SKIPW
STACKBASE
STACKPTR
TIME
UNSIGN
XLAT
ZERO

0-1

• .5 APPENDIX E
PL/M-80 AND PL/M-86 n

E.1 General Comparison

PL/M-86 may be regarded as an extension of the PL/M-80 language, described in
Intel document 9800268. PL/M-86 differs from PL/M-80 in three principal
respects:

• Floating-point arithmetic and signed integer arithmetic are provided. These are
supported by two new data types, REAL and INTEGER.

• The extended addressing capability of the 8086 is supported by a new data type,
POINTER, for storage of 8086 locations, and a new location reference
operator, @.

• The set of builtin procedures is greatly expanded.

In addition, the PL/M-80 reserved word ADDRESS is replaced by the PL/M-86
reserved word WORD. Thus where PL/M-80 has only the two data types BYTE and
ADDRESS, PL/M-86 has five: BYTE, WORD, INTEGER, REAL, and
POINTER.

The PL/M-86 rules for expression evaluation are more complete than those of
PL/M-80, to make proper use of the extended capabilities. There are also various
other differences which stem from the ones noted here. In particular, an iterative
DO block operates differently if its index variable is an INTEGER variable.

E.2 Compatibility of PL/M-80 Programs and the
PL/M-86 Compiler

PL/M-80 programs which operate correctly on an 8080 can be recompiled with the
PL/M-86 compiler to produce code which will run on an 8086. The PL/M-80 source
code must first be edited as follows:

• All identifiers in the PL/M-80 source code must be examined and changed if
they are PL/M-86 reserved words. The PL/M-86 reserved words which might
occur as identifiers in a PL/M-80 source program are WORD, INTEGER,
REAL, and POINTER (since these are not reserved words in PL/M-80).

• It is not necessary to change ADDRESS to WORD; ADDRESS is a PL/M-86
reserved word with the same meaning as WORD.

Note that where PL/M-86 programs would normally have POINTER variables and
location references formed with the @ operator, PL/M-80 programs have
ADDRESS (WORD) variables and location references formed with the "dot"
operator. PL/M-80 usage is therefore slightly less restricted than normal PL/M-86
usage, since arithmetic operations are allowed on WORD values. To provide
upward compatibility, the PL/M-86 compiler in general supports PL/M-80 usage.
However, some restrictions are imposed, as explained in the ISIS-II PLIM-86 Com
piler Operator's Manual, Intel document number 9800478. These restrictions affect
the types of expressions allowed in the AT attribute, the INITIAL and DATA
initializations, and location references. See also the discussions of the dot and @
operators in this manual.

Likewise, the base of a based variable may be a WORD variable instead of a
POINTER variable. When a procedure is activated by its location a WORD variable
may be used instead of a POINTER variable. In this case, the procedure is not
required to have extended scope.

E-I

PL/M-80 And PL/M-86 PL/M-86 Programming Manual

E-2

(In fact, all of these constructions are formally permitted by the PL/M-86 language,
but their use in PL/M-86 programs is not recommended for most purposes, since
they will not always produce correct results in a program where POINTER values
also appear.)

ASCII
HEX PL/M-86

CHARACTER CHARACTER?

NUL 00 no
SOH 01 no
STX 02 no
ETX 03 no
EOT 04 no
ENO 05 no
ACK 06 no
BEL 07 no
BS 08 no
HT 09 no
LF OA no
VT OB no
FF OC no
CR OD no
SO OE no
SI OF no
DLE 10 no
DCI 11 no
DC2 12 no
DC3 13 no
DC4 14 no
NAK 15 no
SYN 16 no
ETB 17 no
CAN 18 no
EM 19 no
SUB 1A no
ESC 1B no
FS 1C no
GS 1D no
RS 1E no
us 1F no
space 20 yes
! 21 no

22 no
23 no
$ 24 yes
% 25 no
& 26 no

27 yes
28 yes
29 yes
2A yes

+ 2B yes
2C yes
2D yes
2E yes

I 2F yes
0 30 yes
1 31 yes
2 32 yes
3 33 yes
4 34 yes
5 35 yes
6 36 yes
7 37 yes
8 38 yes
9 39 yes

3A yes
3B yes

< 3C yes
3D yes

> 3E yes
? 3F no

APPENDIX F
CHARACTER SETS AND
COLLATING SEQUENCE

ASCII
HEX

PLlM-86
CHARACTER CHARACTER?

@ 40 yes
A 41 yes
B 42 yes
C 43 yes
D 44 yes
E 45 yes
F 46 yes
G 47 yes
H 48 yes
I 49 yes
J 4A yes
K 4B yes
L 4C yes
M 4D yes
N 4E yes
0 4F yes
P 50 yes
0 51 yes
R 52 yes
S 53 yes
T 54 yes
U 55 yes
V 56 yes
W 57 yes
X 58 yes
Y 59 yes
Z 5A yes
[5B no
\ 5C no
1 5D no

A(t) 5E no
5F yes
60 no

a 61
b 62
c 63
d 64
e 65
f 66
g 67
h 68
i 69
j 6A
k 6B
I 6C

m 6D
n 6E
0 6F
p 70
q 71

72
s 73
t 74
u 75
v 76
w 77
x 78
y 79
z 7A
{ 7B no
I 7C no
} 7D no
~ 7E no

DEL 7F no

F-J

@ operator, 3-4, 3-5, 5-4, 5-5, 5-6, 8-3,
12-13

ABS (builtin procedure), 12-13, 12-14
activating a procedure, 1-2, 1-7, 1-8,4-2,

4-15,9-1,9-8-9-11
actual parameter, 9-2
address (memory location), 1-1,3-3-3-5,

5-5-5-7,8-3-8-5,9-11,12-8,12-9
ADDRESS (PL/M-80 data type), E-l
analysis of expression, 4-5-4-12, 9-4
AND-see logical operator
arithmetic (signed floating-point), 3-3,

4-2-4-4,4-10,4-11
arithmetic (signed integer), 3-3,4-2-4-4,

4-10-4-12
arithmetic (unsigned), 3-2, 3-3,4-2-4-4,

4-10-4-12
arithmetic operator, 4-2, 4-3, 4-5, 4-6,

13-1
array, 1-2, 1-3,5-1-5-7
ASCII code, 2-4
ASCII code (table), F-l
assignment statement, 1-1, 1-4,4-12-4-15
AT attribute, 8-3-8-5,12-13
attributes of labels, 8-9
attributes of procedures, 9-6-9-10
attributes of variables, 8-2-8-5

base-see based variable
base specifier-see based variable
BASED-see based variable
based variable, 5-5-5-7, 8-2, 8-4, 8-5,

9-5,9-6
binary number-see whole-number

constant
binding-see precedence
blanks, 2-2
block, 1-5-1-8,6-1-6-4,8-1,9-2,

10-1-10-4, 11-1
builtin procedures, 1-8, 12-1-12-15, 13-2
builtin variables, 1-8, 12-7, 12-13
BY -see iterative DO block
BYTE (data type), 1-3,3-2,3-3,4-1-4-5,

4-10, 4-1 3, 6-5

CALL statement, 9-8-9-12
carriage return-see blanks
CARRY (builtin procedure)-see

hardware
flags

CASE-see DO CASE block
CAUSE$INTERRUPT statement, 9-9
CAUTION (embedded assignments), 4-15
CAUTION (expression in DO CASE

statement), 6-6
CAUTION (multiple assignments), 4-14
CAUTION (order of evaluation of actual

parameters), 9-3
CAUTION (side effects of typed

procedures), 9-4

INDEX

character set, 2-1
character strings, 2-4
choice of arithmetic, 3-2, 3-3, 4-10-4-12
CMPB (builtin procedure), 12-9
CMPW (builtin procedure), 12-10
coercion-see type conversion
comment, 2-4, 2-5
compatibility (PL/M-80 to PL/M-86),

3-4,
8-5,9-11, 12-12

compilation, 11-1
compound operand, 4-2, 4-8, 4-9,

4-11,4-12
condition (in DO WHILE statement), 6-2,

6-3
condition (in IF statement), 6-8
constant-see whole-number constant,

floating-point constant,
string constant

constant expression, 4-11-4-14
contiguity of storage, 5-7

DATA (external), 8-2, 8-3
DAT A (initialization), 8-7
data elements, 3-1-3-5
data types, 1-3, 2-3, 3-1-3-3,4-1-4-5,

4-8,4-9,4-10-4-14
DEC (builtin procedure)-sce hardware

flags
decimal number-see whole-number

constant, floating-point constant
declaration, 1-1-1-3, 1-7, 1-8,3-1, 3-2,

5-1-5-7,8-1-8-10,9-1-9-10
DECLARE statement, 1-1-1-3, 1-7, 1-8,

3-1-3-2,5-1-5-7,8-1-8-10
dimension specifier, 5-1, 8-7
DISABLE statement, 9-7
DO block, 1-5, 1-6,6-1-6-7,10-1,11-1
DO CASE block, 1-6, 6-6, 6-7
DO WHILE block, 1-6,6-2,6-3
dot operator, 3-4, 8-5
DOUBLE (builtin procedure), 12-3

element (of array), 1-3,5-1-5-5
ELSE part-see IF statement
embedded assignment, 4-14,4-15
ENABLE statement, 9-7
END statement, 1-5, 1-7,6-1
executable statement, 1-1, 1-9
explicit dimension specifier, 5-1
explicit label declaration, 8-7, 8-8
expression, 1-1,4-1-4-15
expression evaluation, 4-5-4-12
extended scope, 8-2, 8-3,9-6,9-7, 11-1
EXTERNAL attribute, 8-2, 8-3,9-6,9-7,

11-1

" false" -see logical val ue
FIN DB (builtin procedure), 12-10
FINDRB (builtin procedure), 12-11

Index-l

Index

Index-2

FINDRW (builtin procedure), 12-11
FINDW (builtin procedure), 12-11
FIX (builtin procedure), 12-4
FLOAT (builtin procedure), 12-3
floating-point constant, 2-3, 2-4, 4-1, 4-11
flow control, 6-1-6-12
formal parameter, 1-7, 9-2, 9-3
function-see typed procedure
function reference, 4-2, 4-10, 9-4, 9-10

GO-see GOTO "tatement
GOTO statement, 6-12, 10-4
grammar-see syntax

HALT statement, 6-12, 9-7
hardware flags, 13-1, 13-2
hexadecimal number-see whole-number

constant
HIGH (builtin procedure), 12-3

lABS (builtin procedure), 12-14
identifier, I-I, 1-2,2-1,2-2,3-1,5-1,6-11,

8-1,8-7-8-10,9-2,9-11,10-1,10-2,
II-I

IF part-see IF statement
IF statement, 1-4, 1-5, 6-2, 6-8-6-10
implicit dimension specifier, 8-7
implicit label declaration, 6-11,8-8,8-9,

10-4
indirect procedure activation, 9-11
INITIAL (initialilation), 8-5-8-7
initialization, 8-3, 8-5-8-7
INPUT (builtin procedure), 1-9, 12-7
INT (builtin procedure), 12-4
INTEGER (data type), 1-3,2-3,3-3,

4-1-4-4, 4-10--4-14, 6-4
INTERRUPT attribute, 9-7-9-9
INTERRUPT$PTR, (builtin

procedure), 12-15
interrupt mechanism (8086), 9-9
interrupt procedure, 9-7-9-9, 12-15
interrupt via soft ware, 9-9
INWORD (builtin procedure), 1-9, 12-7
iterative DO block, 1-5,6-3-6-5

label, 1-6,6-11,6-12,8-8,8-9,9-1,10-4
LABEL (reserved word in DECLARE

statement), 8-8
LAST (builtin procedure), 12-2
LENGTH (builtin procedure), 12-1, 12-2
level-see block structure
line-feed-see blanks
linkage, II-I
LITERALL Y, 8-1

), 8-10
location reference, 3-4, 3-5, 4-2, 5-6, 5-7,

8-3-8-5
logical operator, <1--4, 4-5
logical value, 6-2
LOW (builtin procedure), 12-3

main program-sec module
member (of struclure), 1-3,5-2-5-5,8-3,

8-7
member-identifier, 5-2
MEMORY (builtin array), 12-13
MINUS, 13-1

MOD-see arithmetic operator
module, 1-8, 1-9,6-2,6-11,6-12,8-2,8-5,

8-7,8-9,9-4,9-6-9-8, 10-4, 11-1
module level, 6-11, 6-12, 8-2, 8-5, 8-7, 8-9,

9-4,9-6-9-8,10-4,11-1
MOVB (builtin procedure), 12-8
MOVE (builtin procedure), 12-12
MOVRB (builtin procedure), 12-9
MOVRW (builtin procedure), 12-9
MOVW (builtin procedure), 12-9
multiple assignment, 4-14

nested IF statements, 6-9-6-10
NOT -sec logical operator
notation, 1-10
numeric constant-sec whole-number

constant, floating-point constant

octal number-sec whole-number
constant

operand, 4-1-4-2, 4-2-4-12, 4-15, 9-10
OR-sec logical operator
order of assignment (in multiple

assignment), 4-14
order of evaluation (of actual parameters

of procedure), 9-3
order of evaluation (of operands in

expression), 4-9,4-10
OUTPUT (builtin array), 1-9, 12-7
OUTWORD (builtin array), 1-9, 12-7

parameter, 1-7,9-2,9-3
PARITY-sec hardware flags
PL/M-80, 3-4, 8-5, 9-11,12-12
PL/M-86 Compiler, preface
PLUS, 13-1
POINTER (data type), 1-3,3-1,3-2,

3-3-3-5,4-2,4-3,4-4,4-10,4-11,
4-13,4-14,5-5,8-5,9-11

precedence, 4-5-4-8
predeclared ident ifiers, 12-1
predeclared identifiers (table), D-1
procedure, 1-7,1-8,4-2,5-7,9-1-9-14
procedure activation, 1-7, 1-8, 9-1-9-4,

9-7-9-10,9-10,9-11
procedure body, 9-1,9-5,9-6
procedure call-sec procedure activation,

CALL statement
procedure declaration, 1-7,9-1-9-10
PROCEDU RE statement, I-I, 1-7,

9-1-9-3,
9-6, 9-8, 9-10

program, 11-1
PUBLIC attribute, 8-2, 8-3, 9-6,9-7, 11-1

qualification (of variable
reference), 5-4, 5-5

REAL (data type), 1-3,2-3,2-4,3-1,3-3,
4-1-4-4,4-10,4-11,4-13,4-14,9-4

recursion, 9-9, 9-10
REENTRANT attribute, 9-8-9-10
reentrant procedure, 9-8-9-10
relational operator, 3-2, 3-3, 4-4, 4-5,

4-8,4-9,6-2

relational operator (restriction on),
4-8,4-9

relocatable code, 11-1
reserved words, 2-2
reserved words (table), C-l
restricted expression, 8-5
RETURN statement, 9-4, 9-5
ROL (builtin procedure), 12-5, 12-6
ROR (builtin procedure), 12-5, 12-6

sample programs, 7-1,9-11
SAL (builtin procedure), 12-6,12-7
SAR (builtin procedure), 12-6, 12-7
scalar, 1-2, 1-3,3-1
SCL (builtin procedure)-see hardware

flags
scope, 1-8, 6-2, 8-1, 10-1-10-4
SCR (builtin procedure)-see hardware

flags
semicolon, 1-1
separator, 2-2
sequential IF statements, 6-10
SETB (builtin procedure), 12-12
SET$INTERRUPT (builtin

procedure),12-15
SETW (builtin procedure), 12-12
SHL (builtin procedure), 12-6
SHR (builtin procedure), 12-6
SIGNED (builtin procedure), 12-4, 12-5
simple DO block, 1-5,6-1,6-2,6-3,

6-7-6-10,8-1
SIZE (builtin procedure), 12-2, 12-3
SKIPB (builtin procedure), 12-11
SKIPRB (builtin procedure), 12-11
SKIPRW (builtin procedure), 12-11
SKIPW (builtin procedure), 12-11
sort, 7-1
space-see blanks
special characters, 2-1, 2-2
special characters (table), B-1
STACKBASE (builtin variable), 12-13
ST ACKPTR (builtin variable), 12-13
storage of variables-see contiguity

of storage
string constant, 2-4, 3-5, 8-5-8-7

string constant (in initialization), 8-5-8-7
string constant (in location reference), 3-5
structure (blocks), 1-8, 10-1-10-4, 11-1
structure (modular), 1-9, 11-1
STRUCTURE (reserved word in

DECLARE statement), 5-2
structure (set of scalars), 5-2-5-4
subexpression, 4-2, 4-6, 4-9
subscripted variable, 1-3,5-1,5-2,

5-3-5-5,6-4,8-3,8-5,9-11
syntax, 1-10

tab-see blanks
THEN part-see IF statement
TIME (builtin procedure), 12-13
TO part-see iterative DO block
token, 2-2
"true"-see logical value
type-see BYTE, WORD, INTEGER,

REAL, POINTER, data types
type conversion, 4-3, 4-5, 4-10-4-12,

4-13,4-14
typed procedure, 1-7,4-2,9-4,9-5,9-10

UNSIGN (builtin procedure), 12-5
untyped procedure, 1-8,9-4,9-5,9-10,

9-11

variable, 1-1-1-3, 1-8,2-1,3-1-3-4,4-2,
4-12-4-15,5-1-5-7,6-4-6-5,
8-1-8-7, 9-11, 10-1-10-3

variable reference, 4-2, 4-12, 5-4-5-7,
6-4,6-5,9-11,10-1-10-3

WHILE-see DO WHILE block
whole-number constant, 2-3, 4-1,4-3,

4-10-4-12,4-14,8-3
WORD (data type), 1-3, 3-2-3-4,

4-1-4-5,4-10,4-13,4-14,6-5

XLAT (builtin procedure), 12-10
XOR-see logical operator

ZERO (builtin procedure)-see
hardware flags

Index

Index-3

intJ
INTEL CORPORATION .. 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	13-01
	13-02
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-1
	B-2
	C-1
	C-2
	D-1
	D-2
	E-1
	E-2
	F-1
	F-2
	index-1
	index-2
	index-3
	xBack

