
SYSTEMS 



intJ 
~. Aguideto 

INrELLEC® SERIES III 
MICROCOMPUTER 
DEVELOPMENT 
SYSTEMS 
121632-001 

Copyright © 1981 Intel Corporation 
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 



ii 

Additional copies of this manual or other Intel literature may be obtained from: 

Literature Department 
Intel Corporation 
3065 Bowers Avenue 
Santa Clara, CA 95051 

The information in this document is subject to change without notice. 

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited 
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation 
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no 
commitment to update nor to keep current the information contained in this document. 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in 
an Intel product. No other circuit patent licenses are implied. 

Intel software products are copyrighted by and shall remain' the property of Intel Corporation. Use, 
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 
7-104.9(a)(9). 

No part of this document may be copied 'or reproduced in any form or by any means without the prior 
written consent oflntel Corporation. 

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel 
products: 

BXP intel Megachassis 
CREDIT In television Micromap 
i Intellec Multibus 
ICE iRMX Multimodule 
iCS iSBC PROMPT 
im iSBX Promware 
lnsite Library Manager RMX/SO 
Intel MCS System 2000 

UPI 
~Scope 

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix. 



PREFACE 

This book is a welcome mat for the Intellec Series III Microcomputer Development System. It is 
also an introduction to the world of software development for micro-applications. We assume 
that you have some basic knowledge of microprocessors and their applications, but few 
demands are made on that knowledge. We do not assume that you have had exposure to any 
particular programming language. This book can be useful to beginners, and even 
sophisticated readers should find it rewarding to skim through. 

This book is a tutorial for using the Series III system, especially the "8086 side" of it (the 8086 
execution environment). The "8085 side" is similar to a Series II system, which is described in 
A Guide to /ntel/ec Microcomputer Deve/opment SystemS by Daniel McCracken. 

We lead you through a typical software development process by providing an example of a 
micro-application: a climate control system for a building. To keep the example easy to 
understand, we only describe the software development effort, assuming that the hardware for 
the climate system is being developed simultaneously. In fact, we illustrate some typical prob
lems in software development that occur as a result of changing hardware designs. 

Chapter 1 gives an overall view of the Series III system and the application example. It also 
describes top-down design, stepwise refinement, modular programming, design considera
tions, and how to choose the proper software language for each module. 

Chapter 2 is a step-by-step tutorial on the Series III operating system, showing typical 
operations. 

Chapter 3 is a step-by-step tutorial on CREDIT, and it incidently shows the process of stepwise 
refinement of the application's main control algorithm. 

Chapter 4 describes Pascal-86 programming, structured and modular design, parameter pass
ing, data typing, and the Pascal-86 compiler. 

Chapter 5 describes PLlM-86 programming, and it shows a sample PLlM-86 routine used in the 
application. It also briefly describes the PLI M-86 compiler and the 8086/8087/8088 Macro 
Assembler. 

Chapter 7 describes program debugging with DEBUG-86 and hardware emulation with the 
ICE-88 emulator. 

There is also a bibliography of related material, and a list of Intel manuals supplied with the 
Intellec Series III Microcomputer Development System. 

iii 



CONTENTS 

Page 
CHAPTER 1: THE SOFTWARE DEVELOPMENT PROCESS............................. 1 
Defining the Product's Software ....................................................... 3 
Choosing the Software Development Tools ............................................. 5 
Languages ........................................................................... 5 
Modular Programming ................................................................ 6 
Debugging and In-Circuit Emulation .................................................... 7 
Using Your Final Product .............................................................. 8 

CHAPTER 2: OPERATING THE SERIES III SYSTEM ................................. .. 9 
Turning On Your System ............................................................. . 9 
The Directory Listing ................................................................. . 10 
Formatting Disks .................................................................... . 13 

Hard Disk Subsystem Users ........................................................ . 13 
Flexible Disk Users ................................................................ . 14 

Filenames, Path names, and File Attributes ............................................ . 15 
Renaming and Deleting Files ... _ ..................................................... . 18 
Copying Files to Disks and Devices ................................................... . 19 
Executing Commands and Programs .................................................. . 22 
Summary of the Series III Operating System ........................................... . 25 

CHAPTER 3: TEXT EDITING ........................................................ . 27 
Creating a Text File and Inserting Text ................................................ . 28 
Moving Around in the Text File ........................................................ . 32 
Finding Old Text and Substituting New Text ........................................... . 33 
Macros and Command Iteration ....................................................... . 36 
Ending a Text Editing Session and Managing Backup Files ............................. . 38 
Displaying and Printing Text Files .............................. " ..................... . 39 
From Text to Program ................................................................ . 39 

CHAPTER 4: PROGRAMMING IN PASCAL-S6 ........................................ . 41 
Translating Pidgin Pascal to Pascal-86 ................................................. . 41 
Pascal-86 Data Types ................................................................ . 45 
Another Look at Modularizing.and Hiding Information .................................. . 46 
Passing Data to Other Modules-Parameter Passing Techniques ....................... . 48 
The Interface Specification ........................................................... . 49 
Test Version of the Climate Control System ............................................ . 49 
The Pascal-86 Compiler .............................................................. . 55 
Summary ........................................................................... . 61 

CHAPTER 5: PROGRAMMING IN OTHER LANGUAGES ............................. .. 63 
Another Look at Choosing Languages for Modules ..................................... . 63 
Programming in PLlM-86 ............................................................. . 64 
Programming in 8086/8087/8088 Assembly Language ................................... . 69 
Programming For the Series III Environment ........................................... . 70 

v 



CONTENTS (Cont'd.) 

PAGE 

CHAPTER 6: USING UTILITIES TO PREPARE EXECUTABLE PROGRAMS .............. 75 
Preparing a Library of Program Modules ................................................ 76 
Linking Modules to Form a Locatable Program .......................................... 77 
Locating and Running Programs ....................................................... 78 

CHAPTER 7: DEBUGGING AND EXECUTING PROGRAMS ............................ 81 
Using DEBUG-86 For Symbolic Debugging ............................................. 82 
Using ICE-88, an In-Circuit Emulator .................................................... 92 
Execution Environments .............................................................. 95 

BIBLIOGRAPHY .. .................................................................... 97 

INDEX ............................................................................... 99 

THE INTELLEC® SERIES III PUBLICATIONS LIBRARY 

ILLUSTRATIONS 

FIGURE TITLE PAGE 

1-1 Developing Software on the Series III System ................................ 2 
1-2 Block Diagram of Our Climate Control System ................................ 3 
1-3 Nassi-Schneiderman Chart for Our Climate Control Software .................. 4 
3-1 The CREDIT Video Display .................................................. 28 
3-2 The Series III Keyboard ..................................................... 29 
4-1 Algorithm for the Climate Control Main Module ............................... 42 
4-2 First Try at Coding the Main Program ........................................ 43 
4-3 Second Try at Coding the Main Program ..................................... 47 
4-4 The Interface Specification ................................................. 50 
4-5 Test Version of Our Climate Control System .................................. 51 
4-6 Lisings of Our Test Modules ................................................ 57 
5-1 The PLlM-86 Typed Procedure THERMOSTAT$SETTING$FROM$PORTS ....... 64 
5-2 The PLI M-86 Typed Procedures 

TEMP$DATA$FROM$PORTS and INTERPOLATE ......................... 66 
5-3 Listing of PLMDATA with the CODE Control .................................. 71 
6-1 Using Utilities to Prepare Executable Programs .............................. 75 
6-2 Main Module with Subordinate Modules ..................................... 77 
7-1 Climate Control Program Listing and Sample Run ............................ 85 
7-2 Listing of the Modified PLMDATA Module .................................... 92 
7-3 Possible Execution Paths for Pascal-86 Programs ............................ 96 

vi 



CHAPTER 1 
THE SOFTWARE DEVELOPMENT PROCESS 

"Hardware is computing potential; it must be harnessed and driven by software to be useful." 
--Andrew S. Grove, President of Intel Corp. 

The Intellec Series III Microcomputer Development System is more than a keyboard, a video 
display, an integral disk drive, and a box with two microprocessors. It is a useful tool for 
designing microcomputer software for the iAPX 86,88 processor family or for the 8080/8085 pro
cessors. You can choose the appropriate language (PUM, FORTRAN, Pascal, macro
assembly language) for each piece of software, debug these pieces separately, and link them 
in different ways for different applications. The applications can then be run on this system or 
any other system that is based on the iAPX 86,88 or 8080/8085 families of processors. 

Intel's iAPX microprocessor family provides an architecture best suited for modular software 
development using high-level languages. The Intellec Series III Microcomputer Development 
System takes full advantage of this architecture to provide a more cost effective programming 
environment that guarantees a shorter development cycle. 

To design a product that will contain a microprocessor, you must coordinate two efforts: the 
design of the hardware that surrounds the microprocessor, and the design of the software that 
controls the microprocessor. Hardware development involves planning the interaction of the 
microprocessor, the associated memory and peripheral circuits, and the specialized 
inputloutput circuits and processors. Software development involves programming the 
microprocessor with instructions that will eventually be stored in the product's memory. 
These instructions must be designed to correctly perform the required tasks. 

It is possible to carry out these development efforts independently--the hardware develop
ment separate from the software development. In practice, however, it takes a long time to 
develop error-free software on prototype hardware. To achieve good system integration and to 
save time, software debugging must usually begin long before prototype hardware is available 
to test the software. 

The Intellec Series III with in-circuit emulation (ICE) is a development solution because it pro
vides support for parallel hardware and software development efforts. Using the ICE-86 or 
ICE-88 emulator, you can emulate parts of your prototype hardware in order to test your soft
ware in a stable environment that resembles your final product. The ICE-86 or ICE-88 emulator 
also allows you to substitute memory and other resources from the Series III system for the 
memory and resources missing in your prototype hardware. With the ICE-86 or ICE-88 
emulator, prototype hardware can be added to your product as you are designing it, and soft
ware and hardware testing can occur simultaneously (thereby speeding up the entire develop
ment process). 



CHAPTER 1 

2 

The chart in figure 1-1 summarizes a software development process, starting with an idea for a 
final product. Such a process always starts with an idea, which you refine step by step until 
you can define the actual product's environment, hardware, and logic. 

To provide a tutorial on using the Intellec Series III system, and to show how Intel's software 
development tools are used in a development situation, we provide a simple software applica
tion for the iAPX 88 microsystem, at the heart of which is an 8088 microprocessor. The applica
tion is a climate control system for a building that uses a solar collector for heating and cool
ing, with backup methods of heating and cooling when the solar collector is not adequate. All 
methods use water, storage tanks, and a water-to-air exchanger or heat pump. 

USING INTEL'S UNIVERSAL PROM 
PROGRAMMER TO PROGRAM PROMS 

USING INTEL'S PROGRAMMING LANGUAGES; LINKING, 
lOCATING, AND LIBRARY MANAGEMENT UTILITIES; AND 

DEBUGGING TOOLS, INCLUDING ICE'M IN-CIRCUIT EMULATORS 

Figure 1-1. Developing Software on the Series III System 121632-1 



SOFTWARE DEVELOPMENT PROCESS 

Several decisions about this climate control system can be deferred to a later date. For exam
ple, by designing the system's software in a modular fashion, we can add more methods of 
heating or 900ling as necessary, and we can decide how to handle water pumps and valves at a 
later date. We know now that the software's primary purpose is to choose a method of heating 
or cooling based on temperature data, and to operate the climate system's pumps and valves. 
Figure 1-2 is a simplified block diagram of the application. 

DEFINING THE PRODUCT'S SOFTWARE 
As you define your product's hardware, you must also define the purpose of its software. For 
example, the purpose of the software for our application is to gather and store the appropriate 
temperature data, decide on a heating or cooling method based on that data, implement the 
method in the climate system, and maintain the operation of the climate system. Each task can 
be designed as a piece of software called a module. By keeping tasks modular, you can 
change the details of any task without affecting the details of the other tasks. 

Keep in mind that software provides the capability to change or add to the product. The entire 
product could consist of hardware and logic circuits, but then you might have to rebuild each 
unit to add more capabilities or change the flow of the logic. Software that is not modular and 
easy to maintain does not solve this problem; therefore, you must define the entire purpose of 
the software, with an eye to the future of your product. Keep it modular so that you can replace 
modules easily without rewriting modules that already work. 

For our climate control system, we defined the software to be a set of modules that receive and 
store data, decide heating or cooling methods based on that data, and decide how to operate 
the hardware associated with the climate system. 

At this time, we do not need a more detailed definition; in fact, more detail would hinder our 
process of step by step refinement. It is important to realize the order for these actions: first, 
the software has to start up the climate system, Once started, the software has to do several 
things over and over (unless the system shuts down): (1) read the various temperatures, (2) 
store the data for future reference, (3) decide on a heating or cooling method to use, and (4) 
operate· the climate system to provide heating or cooling and. to maintain the system (e.g., 
maintain heat gain). 

DATA 

THERMOSTAT 

AIR TEMPERATURE II 

WATER TEMPERATURE 

AMOUNT OF SUNLIGHT 

TIME OF DAY 

CONTROLLING SOFTWARE 

MINIMUM SETTINGS, 
TEMPERATURE COMPARISONS 

TO DETERMINE METHODS 
OF HEATING AND COOLING, 

INTERACTIVE CONSOLE, 
AND FILE TO STORE ALL DATA 

CLIMATE SYSTEM 

SOLAR COLLECTOR 

WATER TANKS 

EXCHANGER 

HEAT PUMP 

CIRCULATION VALUES 
AND PUMPS 

INDICATOR LIGHTS 

Figure 1-2. Block Diagram of Our Climate Control System 121632-2 

3 



CHAPTER 1 

4 

A good software definition breaks the problem into solvable tasks. The order in which these 
tasks must occur also determines the structure of the software. If the structure is simple to 
understand, it will be that much easier to implement and maintain. 

A Nassi-Shneiderman Chart (shown in figure 1-3) is useful for showing structured blocks of 
software. Use whatever charts you find useful, but hide many of the details so that you are not 
locked into doing things a certain way. In our application, we hid all details about data types, 
input and output, and actual heating or cooling methods. It is most important that we design 
each module to be self-reliant; that is, a module should not have to know about details hidden 
in another module, especially details that might change in the future. 

I OPERATION MODULE 

I MAIN MODULE 

15» <] GETDATA MODULE 

Heating Methods 

Collector To Exchanger 
Tank To Exchanger 
Collector To Heat Pump 
Tank To Heat Pump 
Heated Tank To Heat Pump 
No Method (No heating demand) 

Data 

InsideTemp 
ThermostatSetting 
CollectorWaterTemp 
TankWaterTemp 
HeatedTankTemp 

AmountOfSun (for collector operation) 
Hour, Minute (for collector and immersion heater operation) 

Figure 1-3. Nassi-Schneiderman Chart for Our Climate Control Software 121632-3 



SOFTWARE DEVELOPMENT PROCESS 

CHOOSING THE SOFTWARE DEVELOPMENT TOOLS 

It is unfortunate but common in this industry to find software development systems sorely 
lacking in the tools of the trade. There are some systems that force you to put together a whole 
program in the limited space they allow, and they don't provide the facility to create a library of 
canned routines that you could use with many different programs. 

The IntellecSeries III system provides both the ability to put together partial programs, and the 
facilities to build libraries of routines that you can link to different programs. The concept of 
module is inherent in this system. Whenever you build a partial program, it is a module; and 
the module can refer to procedures, functions, and variables in other modules found in 
libraries. 

For our application, we do not have to decide on one programming language-the Intellec 
Series III system supports several, including the high-level languages PLlM-86, Pascal-86, and 
FORTRAN-86. We can, however, decide whether or not to use modules that already exist, and 
design our application with that decision, or change the decision later and create another 
module to replace it. 

For example, we already have a module written in PLlM-86 that performs a routine to convert 
thermocouple voltage into degrees Celsius. We can decide now to tentatively use it, thereby 
saving time by not coding this routine into our main program. We can also decide, at a later 
time, not to use it, and substitute our own module to do it. The decision to link which module 
does not have to be made until the main program is finished! 

By choosing the right tools you can save time and defer decisions on specific details until you 
are ready to deal with the details. By deferring such decisions, you keep your software 
development effort from becoming too cluttered with rigid design decisions, and you keep the 
effort flexible enough to accept change. 

The right tools are (1) appropriate high-level languages to choose from, (2) a way to manage 
libraries of canned routines, (3) a linker that allows you to link finished (or unfinished) modules 
in different ways for different applications, (4) a locater that will locate programs in memory for 
you, yet give you the opportunity to specify locations for sections of the program, (5) a sym
bolic debugger you can use to test modules and partial programs easily, and (6) an in-circuit 
emulator to emulate parts of your final product before they exist. The Intellec Series III 
Microcomputer Development System supports all of. these tools. 

LANGUAGES 

When designing a system using top-down techniques, you think in and express concepts in 
the highest-level language possible at each refinement step in order to expose the logical con
cepts and conceal the details. 

How can you tell whether you are thinking in a language that is "high-level"? A language is 
"high-level" for a given application if you use it to define the overall structure of the software. 
You use a lower-level language to express in great detail each piece of code. With a high-level 
language you gain a clear understanding of the control structures of the system at the highest 
level, and you expose logical flaws in the structure that would have led to subtle bugs in the 
code. With these advantages in mind, it makes sense to start your programming with the 
highest-level language: English. After you have defined the software in English, you can use a 
high-level programming language like Pascal, which allows you to express more detailed code 
in a language that resembles English. 

5 



CHAPTER 1 

6 

In Chapter 3, we refine our climate control algorithm step by step. We use as a language 
something called Pidgin Pascal, which is really a language of concise declarative English 
sentences. Since our control structures can be translated easily from English into Pascal, we 
decided to use Pascal-S6 for our main climate control module (this decision does not have to 
be final). We do not start the translation into Pascal-S6 until after we have tested the logic of our 
Pidgin Pascal algorithm. 

Pascal is a language that resembles the control structures of human thought. We don't think in 
terms of GO TO branches normally; we consider a job to be a set of tasks to DO WHILE 
something is true, or to DO UNTIL something is done. IF something is true or false, THEN do 
one thing; ELSE do another thing. In the CASE of several different problems, solve each one 
accordingly. Occasionally we might need a disaster bail-out (GO TO a panic routine), but we 
should be planning our algorithm to take care of disasters elegantly. 

The pOint is: we should think about control structures of a system as structures, not as 
individual branch statements. Pascal is one language that was designed to express control 
structures; PLI M is another, and some new versions of FORTRAN can be structured 
accordingly . 

. Another point should now be obvious: you should choose the language best suited for the 
algorithm. For example, our module that operates the climate system has to manipulate pumps 
and valves to implement a chosen heating or cooling method. This operation module receives 
the data from the decision-making main module written in Pascal. The operation module might 
use bits in a word as control signals to send to the procedure that actually interfaces to the 
hardware of the climate system. 

We can code this operation module in assembly language or PLlM, since both languages can 
easily manipulate bits in a byte or word and respond with appropriate actions based on the 
pattern of bits. Our final decision will be made later; in the meantime, we will use a test version 
of the operation module, until prototype hardware for the climate system is ready. Our test ver
sion will be written in Pascal, and it will simply display appropriate test information at the 
console. 

It is most likely that the final version of the operation module will not be written in Pascal, since 
Pascal does not provide bit manipulation operations. We can also guess that the module will 
not be written in FORTRAN--the advantage FORTRAN has over PLI M is its ability to express 
complex mathematical formulas. Our climate control system has no complex mathematical 
formulas. 

We would code the final version of the operation module in assembly language if the applica
tion required the most efficient use of processor time and memory; however, PLiM program
ming saves development and maintenance time since it is easier to learn and the programs are 
easier to read and maintain. The only drawback to PLiM is that it is not as efficient in time or 
memory, and it cannot compute decimal or real arithmetic. These are not drawbacks in our 
application, since we do not need decimal or real arithmetic, nor do we have severe speed and 
memory constraints. The advantage of saving development time and maintenance costs with 
PLI M far outweigh the advantages of using assembly language. 

MODULAR PROGRAMMING 

Th.e Intellec Series III system has the linking and locating tools to support modular pro
gramming, and the library utility to maintain libraries of canned routines. The decisions we 
make at this time are not binding, but they can be very helpful: we can decide now what types 



SOFTWARE DEVELOPMENT PROCESS 

of routines will be separated into which modules. We have several design criteria for making 
these decisions. We must be able to (1) write the routines of one module with little knowledge 
of the code in other modules, and (2) reassemble and replace any module without affecting 
other modules. Each module of our climate control system will contain design decisions that 
are hidden from the other modules so that the decisions are not binding. 

With these criteria in mind, we designed our system to have several modules: the GetData 
module gets and stores our data, the Operation module performs the actual climate system 
operation (turning pumps and valves on and off, etc.), and the Main module makes the high
level decisions. 

The only binding decisions to be made at this time concern the data passed between modules. 
We try to keep data passing to a minimum, or we try to enforce a data-passing standard that is 
easy to comply with. In our climate system, we only need to pass a reference to a data record 
to the other modules; the other modules must know what to do with the reference. This data
passing technique is one of the two we can use: pass-by-reference and pass-by-value, which 
are described in more detail in Chapter 4. 

With the Intellec Series III system capabilities, we can design different versions of the same 
module, test each version, and decide at a later time which version to link with the other 
modules. We can also defer decisions about the physical memory locations (locations in our 
final product's memory) for these modules until after we have debugged our prototype hard
ware with an In-Circuit Emulator (lCE-86 or ICE-88). In some applications, you never have to 
decide physical memory locations; the Intellec Series IIllocater can decide them for you. 

DEBUGGING AND IN-CIRCUIT EMULATION 

At any time during software development, you can test a compiled module using DEBUG-86. In 
certain cases you will want to alter the module to be self-contained; for example, our main 
module needs the appropriate data from the GetData module, but the GetData module is not 
yet written. We can quickly write a procedure that obtains the data from an interactive session 
at the console, link this temporary data acquisition module to our main module, and test our 
main module using DEBUG-86. 

When we have our modules coded and compiled, we can test the modules in an ICE-86 or 
ICE-88 session that can emulate the final product's processor. We can use an ICE-86 emulator 
if our final product will contain an 8086 processor, or use an ICE-88 emulator if it will contain an 
8088 processor (remember, our iAPX 86, 88 applications software can run on either an 8086 or 
an 8088). 

For example, our data module will read data from ports of an 8088 processor in our final prod
uct. The ICE-88 emulator can emulate those ports before we ever have a prototype of the final 
product. Using ICE-88, you can begin testing your software before any prototype hardware 
exists. As portions of your prototype become available, you can use them and still borrow 
resources like memory from your Series III system. 

With in-circuit emulation, you control, interrogate, revise, and completely debug your product 
in its own enVironment, or in a stable environment that emulates the final product's environ
ment. Symbolic debugging is one of the key features of Intellec microcomputer development 
systems and in-circuit emulators. Symbolic debugging allows you to debug your program 
using its own symbols and line numbers-you do not have to convert your symbols to physical 
memory addresses. 

7 



CHAPTER 1 

8 

USING YOUR FINAL PRODUCT 

Intel supplies other tools to help you put together your final product. If you designed your 
product to have its software in ROM (read-only memory), you can use Intel's Universal PROM 
Programmer (UPP) with its Universal PROM Mapper (UPM) software to create the PROM 
(programmable read-only memory) device to hold the software. You can then install your 
device in an SDK-86 or SDK-88 (System Design Kit with an 8086 or 8088 processor), or in an iSBC 
(Single Board Computer) system. 

You can also run your software in other systems, or in dedicated application environments. For 
example, you could transfer your software to RAM (random-access memory) on an SDK-86 or 
SDK-88, or to RAM on an iSBC 86/12A (Single Board Computer system with an 86/12A board), 
by first using the OH86 utility described in the iAPX 86,88 Family Utilities User's Guide for 8086-
Based Development Systems to convert the program to hexadecimal object format. You would 
then use an appropriate tool to load the software into your execution board (the ICE-86 
In-Circuit Emulator, the SDK-C86 Software and Cable Interface, or the iSBC 957 Interface and 
Execution Package). 

You can also use your Series III development system as the environment for your final soft
ware product. The Series III system has an 8086 processor (the "8086 side" or 8086 execution 
environment) to run iAPX 86, 88 applications software. As soon as you have debugged your 
software, it is ready to be used in any Series III system. Chapter 6 describes the run-time 
libraries you use to run your Pascal-86 programs in the Series III environment; you can also 
supply your own versions of these libraries to run these programs in another execution 
environment. Chapter 6 also shows how you can link modules and locate them in Series III 
memory in one easy step to prepare them for execution in the Series III system. 

Whatever environment you choose for your final product, Intel provides the appropriate hard
ware and software tools to develop, debug, and produce your final product. The Intel 
environments that are suitable for final software products are excellent investments which can 
be upgraded for the software of the future. 



CHAPTER 2 
OPERATING THE SERIES III SYSTEM 

"The benefits of using a standardized operating system should prove to be as significant as 
the benefits of using standardized microcomputer hardware. Development and programming 
costs will be reduced substantially, and you will have an upward compatible interface for future 
products. " 

-Andrew S. Grove, President of Intel Corp. 

As you learned in Chapter 1, the Intellec Series III Microcomputer Development System con
tains the tools you need to develop software for your application. To use these tools, you must 
operate the system; that is, use the system's commands and utility programs. 

A large multi-user computer system can serve as a useful analogy to point out the difference 
between programming the system and using the system. A working system usually supports 
both kinds of activities. In such a large system, one or more programmers might be designing 
programs to run on the system. One or more users (who might also be programmers) might be 
simply using the programs that have already been developed for the system. Obviously, a user 
does not need to know complicated details about the system to use it, whereas a programmer 
needs to know such details to write programs for the system. 

The Series III system has most of the capabilities of larger systems, but it is only used by one 
person at a time. This person could be using the system and its programs, or writing programs 
for the system. 

We wrote this chapter for people who need to know how to use the system. This information is 
important to anyone using or programming the system, but it is not burdened with details that a 
first-time user does not need. As we describe system commands and utility programs, keep in 
mind that we swept the more complicated details under the rug to keep the chapter easy to 
read. For more details on all of the system commands, see the Inte/lec Series /II Micro
computer Development System Console Operating Instructions. 

TURNING ON YOUR SYSTEM 

Every microcomputer has something called an operating system, which is sometimes called a 
supervisor or monitor. It is usually the first piece of software you use-the software that is con
trolling your computer when you first turn it on, and the software that responds to your first 
typed command. Typically, you type a command to ask the computer for a list of the files you 
have on disk, or to execute a particular program. 

When you turn on the Intellec Series III Microcomputer Development System, the following 
message appears on your screen: 

SERIES II MONITOR, Vx.y 

9 



CHAPTER 2 

10 

This message tells you that the monitor is up and running (the x and y represent version 
numbers). The monitor is a piece of software that gives you direct control of the Series III hard
ware. Although you can use the monitor for debugging and other operations, for your pur
poses the monitor performs one quick activity: it loads the operating system from the system 
disk in drive 0 into the computer when you push the RESET button. 

To load or "boot" the system, you need a system disk: a disk that holds the operating system 
files. Intel supplies a flexible disk labeled "ISIS-II Operating System" which is your system 
disk. One of the first operations you will perform is a formatting operation to create another 
copy of the system disk-a copy designed to be used with the examples in this book. 

You insert the "ISIS-II Operating System" disk into flexible disk drive 0, and push the RESET 
button (for more detailed instructions, see the Intellec Series 11/ Microcomputer Development 
System Console Operating Instructions). The following message should appear on your 
screen: 

ISIS-II, Vx.y 

The operating system for the Intellec Series III Microcomputer Development System is called 
ISIS-II ("ISIS" stands for Intel Systems Implementation Supervisor). The x ahd y represent ver
sion numbers. ISIS-II is actually a version of the ISIS operating system that runs on older 
Intellec systems (the Intellec Microcomputer Development System and the Intellec Series II 
Microcomputer Development System). 

ISIS-II manages your use of the software tools supplied with the system. Using ISIS-II, you can 
run utility programs like CREDIT (a text editor) to write programs, or LlNK86 to link program 
modules into a final program. You also use ISIS-II to run compilers like the Pascal-86 and 
PUM-86 compilers, and to run your own developed programs. You can also make copies of 
programs and control the devices attached to your system by using ISIS-II commands. 

In most computer operations, you manipulate files, which are collections of information. Every 
file has a name, called a filename. Files and filenames are described in detail after an introduc
tion to the most popular operating system command-the DIR command. 

You use the DIR command to display a directory of filenames on a certain disk. You use other 
commands to perform file management operations. For example, you use the COPY command 
to make copies of files, or to send copies of files to the printer to be printed. You use the 
RENAME command to change a file's filename. This chapter explains some of these 
commands. 

THE DIRECTORY LISTING 

The first command to learn is the easiest to use-the DIR command. When your system is up 
and running, you will see a dash (-) on the left side of the screen. This dash is called a prompt, 
and it tells you that the system is ready for your next command. You can now type the DIR com
mand by typing the letters "DIR", and execute the DIR command by pressing the RETURN 
key. The following example is shown in blue to show that it is something you type; the part of 
the example that is in ordinary black shows what the system displays. The symbol "<cr>" 
means that you must press the RETURN key ("cr" stands for the "carriage return" key found 
on most typewriters). 



OPERATING THE SERIES III 

-OIR<cr> 

DIRECTORY OF :FO:970003.06 
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR 
SYSTEM. LIB 24 2849 WS FPAL .LIB 74 9125 W 
P LM80 .LIB 45 5615 W 

143 
1317 14 0 0 4 BL 0 C K S USED 

When you execute the DIR command, the system displays a list of filenames called a directory 
listing. These filenames are the names of the files that are stored on the disk in drive o. The 
DIR command displays the directory for the disk in drive 0 unless you specify another drive 
number with the command, as explained in the next paragraph. Disk drive 0 is usually the drive 
that holds the system disk (the disk that contains the system files), so by executing the DIR 
command by itself, you get a directory listing of some of the files on the system disk in drive 0 
(not all, because some files are invisible). 

You can use the DIR command to display the directory listing for disks in other disk drives, and 
for a hard disk subsystem, by specifying the drive number with the DIR command. For exam
ple, to see a directory listing for a disk in drive 1, insert the "CREDIT ISIS-II CRT-Based Text 
Editor" disk in drive 1, and type the following command: 

-OIR 1<cr> 

DIRECTORY OF : F1 : 970049.02 
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR 
CREDIT 156 19470 CREDIT.HLP 25 2985 W 
ADOS .MAC 3 171 W MICROB.MAC 3 158 W 
VT52 .MAC 3 163 W VT100 .MAC 3 190 W 
1510T .MAC 3 165 W 1510E .MAC 3 170 W 
LEAR .MAC 2 123 

201 
310/4004 BLOCKS USED 

The Intel/ec Series 1/1 Microcomputer Development System Console Operating Instructions 
give details about typical hard disk and flexible disk configurations, and the associated drive 
numbers. 

On each line of the directory listing, you are shown the name of a file. Some of these filenames 
are followed by a three-character extension, which is an optional identifier used to show types 
of files. These extensions are sometimes required for certain files that are used with certain 
programs. The section on filenames (following disk formatting) explains some of these 
extensions. 

Following each filename entry are three columns labeled "BLKS", "LENGTH", and "AHR". 
The "BLKS" column tells you how many "blocks" of space the file occupies, where one block 
equals 128 bytes. The "LENGTH" column gives the actual number of bytes occupied by the 
file. At the bottom of the listing appears a message showing how many blocks are used out of 
the total number of blocks available on the disk. You can use block figures to describe file 
sizes and to determine whether a file of a given size (In blocks) will fit on a disk. 

The "AHR" column might be empty, or it may contain a "W", "S", or both. This column tells 
you the attributes of each file-certain characteristics that govern the file's use. If a file has the 
"W" attribute, it is write-protected; that is, you cannot write to or delete (overwrite) the file. If a 

11 



CHAPTER 2 

12 

file has the "S" attribute, it is a system file that occurs on most system disks. You use the 
ATTRIB command and file attributes to protect your files from inadvertant delete or write 
operations, and to designate certain files as system files (as shown in the next section). 

There are other files not displayed through normal use of the DIR command. These files are 
invisible; that is, they have the I attribute. You can see them if you use a special form of the DIR 
command: 

-DIR 1< c r> 

DIRECTORY OF :FO:970003.06 
NAME .EXT BlKS lENGTH ATTR NAME .EXT B lKS lENGTH ATTR 
I SIS .0 I R 26 3200 IF I SIS .MAP 5 512 I F 
I SIS .TO 24 2944 IF I SIS .lAB 54 6784 IF 
I SIS . BIN 94 11740 SIF I SIS . C LI 20 2407 S I F 
ATTRIB 40 4909 WSI COPY 69 8489 WSI 
DELETE 39 4824 WSI DIR 55 6815 WSI 
EDIT 58 7240 WSI FIXMAP 52 6498 WSI 
HDCOPY 48 5994 WSI HEXOBJ 34 4133 WSI 
IDISK 63 7895 WSI FORMAT 62 7794 WSI 
LIB 82 10227 WSI LI NK 105 13074 WSI 
LINK .OVL 37 4578 WSI lOCATE 120 15021 WSI 
OBJHEX 28 3337 WSI RENAME 20 2346 WSI 
SUBMIT 39 4821 WSI SYSTEM.LIB 24 2849 WS 
F PA l .LIB 74 9125 W PlM80 .LIB 45 5615 W 

1317 
1317/4004 BLOCKS USED 

The "I" is called a switch, and it displays files that have the invisible attribute. When you 
specify the "I" switch in a DIR command, the DIR command displays all of the filenames, 
including ones that are invisible. The files that weren't displayed during the execution of a nor
mal DIR command are now displayed, along with their attributes (one of which is the "I" 
attribute). The "F" attribute is reserved for system files that are used to format the disk. These 
files are called format files, and you should never alter their attributes. 

You should practice using the DIR command, and at the same time, take a look at the directory 
listings for each disk you received. Take each flexible disk, insert it into drive 1, and type "DIR 
1" to see the directory listing. 

NOTE 

If you have a hard disk subsystem with only one flexible disk drive, use the following 
form of the DIR command: 

-DIR P<cr> 
LOAD SOURCE DISK, THEN TYPE (CR) 

Takeout the system disk and insert the disk whose directory you want to display, 
then press the RETURN key. After the directory listing, the following message 
appears: 

LOAD SYSTEM DISK, THEN TYPE (CR) 

Put the system disk back into the flexible drive. To see other disk directory listings, 
repeat these steps for each disk. 



OPERATING THE SERIES III 

FORMATTING DISKS 

We present in this section a typical scheme for storing copies of your Intel-supplied files on 
either hard disk or flexible disk. Subsequent examples in this book assume that certain pro
grams reside in hard disk drives 0 and 1, or flexible disk drives 0 and 1. You may use your own 
scheme and distribute files over disk drives as you wish, but in order to type the examples as 
they are, you must use the scheme presented here. If you understand the use of path names as 
described in this chapter, and if you use the COPY command correctly, you can copy files to 
disks in any distribution scheme you choose, and still use the examples in this book as long as 
you substitute your own path names. 

If you are using a hard disk subsystem, you must follow the procedures in the Intellec Series 11/ 
Microcomputer Development System Console Operating Instructions to install your disk plat
ters and prepare them for use. If you are using flexible disk drives, you should refer to the 
same manual for instructions on the care and insertion of flexible disks. This section shows 
you how to prepare one hard disk platter or one flexible disk as the system disk, and another 
hard disk or flexible disk as a non-system disk (to hold your files and other programs). 

Hard Disk Subsystem Users 

Follow the instructions in the Intellec Series 11/ Microcomputer Development System Console 
Operating Instructions to install and power-up your hard disk subsystem. When the hard disk 
subsystem is ready, insert your "ISIS-II Operating System" flexible disk into the flexible disk 
drive of your computer, and hit the RESET button. When the dash (-) prompt is displayed (after 
the ISIS-II message appears), type the following command: 

-:F4:FORMAT :FO:SYSTEM.HDK S FROM 4<cr> 

This command prepares ("formats") drive 0 of the hard disk to be the system disk. We chose 
"SYSTEM.HDK" for its name, but you can use any name that has at most six characters to the 
right of the period, and three to the left. When this operation is finished, and the system 
displays the dash (-) prompt, use the following command to transfer your system files to drive 0 
of the hard disk: 

-:F4:COPY :F4:*.* TO :FO:<cr> 

This command will copy all of the files from the "ISIS-II Operating System" disk in the flexible 
disk drive (called drive 4) to the hard disk drive o. When this operation is finished, you can 
remove the flexible disk from drive 4 and insert another flexible disk. In addition to the "ISIS-II 
Operating System" disk, you should also copy files from the "CREDIT ISIS-II CRT-Based Text 
Editor" disk, the "Resident 8086/8087/8088 Macro Assembler" disk, and the "Resident 
8086/8088 Utilities and Linkage Libraries" disk. For each flexible disk, execute the following 
command: 

-COPY :F4:*.* TO :FO:<cr> 

This command copies all files from the flexible disk to drive 0 of the hard disk. If you insert 
each flexible disk you received and perform this operation, you will have in drive 0 all of the 
files from those flexible disks. If you want to be more selective about the files you are copying 
to drive 0, read the "Copying Files" section in this chapter. 

13 



CHAPTER 2 

14 

You should al.so copy files to drive 1 of the hard disk subsystem. First, you must prepare drive 1 
by typing the following command: 

-FORMAT: F1 :PROG86. HDK<c r> 

We chose "PRQG86.HDK" for its name, because we intend to use it for our iAPX 86,88 applica
tion programs. If you are a Pascal-86 user, insert the "Pascal-86 Compiler and Run-Time 
Libraries" disk into flexible disk drive4 and copy all of the files to the hard disk drive 1: 

-COPY :F4:*.* TO :F1:<cr> 

Do the same operation with your PLlM-86 flexible disk, and any other disks you have for your 
Series III system. The hard disk platters have plenty of room for your own files. 

Flexible Disk Users 

This section assumes that you have at least two double-density flexible disk drives. If you have 
single-density drives, you may run out of room if you try these examples. Refer to instructions 
in the Inte/lec Series Iff Microcomputer Development System Console Operating Instructions 
for information about flexible disks. 

To bring up your system, insert the "ISIS-II Operating System" disk into drive 0 and push the 
RESET button. The ISIS-II message should appear, followed by the dash (-) prompt. Insert a 
blank disk into drive 1, and type the following FORMAT command: 

-FORMAT :F1:SYSTEM.FLX S<cr> 

This command creates a new system disk and automatically copies f19m drive 0 all files that 
have the "S" attribute. When this operation is finished, you can test YO\lr new system disk by 
removing the "ISIS-II Operating System" disk from drive 0, inserting your new system disk into 
drive 0, and pushing the RESET button to restart the system. 

With your new system disk in drive 0, insert the "CREDIT ISIS-II CRT-Based Text Editor" disk 
into drive 1, and type the following command: 

-COpy :F1:CREDIT TO :FO:<cr> 

This command copies the program CREDIT to our system disk in drive O. Remove the CREDIT 
disk from drive 1 and insert the "Resident 8086/8087/8088 Macro Assembler" disk into drive 1. 
Type the following command: 

-COpy :F1:RUN.* TO :FO:<cr> 
:F1:RUN COPIED TO :FO:RUN 
:F1:RUN.OVO COPIED TO :FO:RUN.OVO 

This command copied two files at once-RUN and RUN.OVO-from drive 1 into drive O. You 
need both files in order to use the special RUN command described later. 



OPERATING THE SERIES III 

Remove the flexible disk from drive 1 and replace it with the "Resident 8086/8088 Utilities and 
Linkage Libraries" disk. Now type the following commands: 

-COpy :F1 :LIB86.86 TO :FO:<cr> 
:F1:LIB86.86 COPIED TO :FO:LIB86.86 
-COpy :F1:LOC86.86 TO :FO:<cr> 
:F1:LOC86.86 COPIED TO :FO:LOC86.86 
-COPY :F1:LINK86.86 TO :FO:<cr> 
:F1:LINK86.86 COPIED TO :FO:LINK86.86 

You now have a system disk that is complete for the examples in this book. You still need 
another disk for the Pascal-86 compiler if you have one, to hold the compiler, the run-time 
libraries, and your sample program used in examples in this book. To prepare a blank disk to 
be a non-system disk, insert the blank disk into drive 1 and type the following command: 

-IDISK :F1:PASC86.FLX<cr> 
NON-SYSTEM DISK 

The IDISK command can prepare both system and non-system disks, but it does not 
automatically copy files except the ISIS-II format ("F") files. 

With the new blank disk in drive 1 and the system disk in drive 0, you could put the "Pascal-86" 
disk in drive 2 (if you have a drive 2). The following example assumes that you only have drive 0 
and 1. To copy the files from the "Pascal-86" disk, first type the following command (don't 
forget the "P"!): 

-COpy *.* TO :F1: P<cr> 
LOAD SOURCE DISK, THEN TYPE (CR) 

The system pauses (because you specified a "P" at the end of the command), and waits for 
you to insert the "source" disk into drive O. The "source" disk in this case is the "Pascal-86" 
disk, assuming you are a Pascal-86 user (if you're using PLlM-86 only, you would substitute 
your PLlM-86 disk in this example). Insert this flexible disk into drive 0 and press the RETURN 
key. 

LOAD OUTPUT DISK, THEN TYPE (CR) 

Since the disk to receive the Pascal-86 files is already in drive 1, you only have to press 
RETURN. The system should then display the above messages (along with the "COPIED" 
messages) every time it returns to drive Oto copy more files-all you have to do is continue to 
press RETURN until the entire copy operation is finished. 

You can repeat these steps with another blank disk for the PLlM-86 compiler. After these for
matting and copying operations, you should have disks that match the ones we used for the 
examples in this book. 

FILENAMES, PATHNAMES, AND FILE ATTRIBUTES 

Most operating system commands manipulate files. A file can be any collection of information 
including text, numeric data, program instructions, and combinations of all of these. You refer 
to a file by using a filename, and filenames follow certain naming conventions so that the name 
of a file also tells you the probable use of the file. 

15 



CHAPTER 2 

16 

Filenames can have six or fewer characters, followed by an optional period and three
character extension. Extensions (and filenames themselves) follow certain conventions, but 
there are no fixed rules. Certain extensions are necessary for certain programs, as you shall 
see in the following discussion. The file naming conventions are relaxed so that you have the 
flexibility to create your own file naming conventions for your particular application. 

The term filename refers to both the name of the file and the extension, if any. Each new file 
you create must have a unique name for that disk (that is, you can have two files with the same 
name on two different disks, but not on the same disk). Some extensions have specific mean
ings to utility programs in the system, but these should not cramp the style with which you 
impose your own naming conventions. Here are the extensions that mean something to Intel
supplied programs: 

• The" .BAK" extension denotes a backup of a text file created by CREDIT, the text editor 
described in Chapter 3. For example, LETTER.BAK is the backup file for the text file 
LETTER.TXT (a text file does not need a particular extension, but "TXT" helps identify it). 

• The" .MAC" extension denotes a "macro" file used with certain programs like CREDIT. 
The" .MAC" files supplied with CREDIT enable you to use CREDIT on other non-Intel con
soles connected to Intel microcomputers. 

• The" .OVO" extension denotes an "overlay" file used with certain programs. 

• The" .OBJ" extension denotes an object module, which is created by a compiler or 
assembler, as described in Chapters 4 and 5. Compilers and assemblers also create files 
with the" .LST" extension to denote program listings (also de.scribed in Chapters 4 and 
5). Examples are PROG1.0BJ and PROG1.LST. 

• The" .LNK" extension denotes a collection of object modules that were linked together 
by the linker utility program, described in Chapter 6. When you run the locater utility pro
gram on a file with the" .LNK" extension, the locater strips the" .LNK" extension away, 
leaving only the file's name without an extension. 

• The" .LlB" extension denotes a library module that is maintained by the library utility. 
Library modules are described in Chapter 6. 

• The" .86" extension denotes a program that should be executed in the 8086 execution 
mode (the "8086 side" of the system). Examples are PASC86.86 and PROG1.86. 

Most completed programs have either the" .86" extension (if they run in the 8086 execution 
mode, described later in this chapter), or no extension. For example, the DIR command is 
actually a program named "DIR" without any extension. 

In addition to the above extensions, we use the" .SRC" extension to denote a special text file 
that holds program instructions called source statements. A ".SRC" (for "source") file can be 
created by CREDIT and filled with assembly language, PLlM, or Pascal source statements; you 
can then compile this file to create an object module (" .OBJ" file), as described in Chapters 4 
and 5. 

You can find more extensions explained in the Intel/ec Series 11/ Microcomputer Development 
System Console Operating Instructions. 

You can display the directory information for a single file by using a version of the DIR com
mand, DIR FOR: 

-DIR FOR SUBMIT<cr> 
DIRECTORY OF SYSTEM.FlX 
NAME .EXT BlKS lENGTH ATTR 
SUBMIT 39 4821 



OPERATING THE SERIES III 

The file SUBMIT is in the directory for drive 0, so the DIR command had no trouble finding it. 
However, if SUBMIT happened to be on another disk in drive 1, you would have to tell DIR to 
look in drive 1 for the file. To do this, you use a pathname-a filename with a directory 
specifier. Whenever you specify a filename for a command or utility program, if the filename is 
in the directory for drive 0, you only have to specify the filename. If the filename Is not in the 
directory for drive 0, you have to specify a pathname. 

A path name consists of a directory specifier and a filename: 

: F1: PROG1 • SRC 

The ":F1:" part of the path name is the directory specifier. The "1" stands for disk drive 1. 
Therefore, to get the dire9tory information for the file PROG1.SRC on the disk in drive 1, type 
the following command: 

-DIR FOR :F1:PROG1.SRC<cr> 

The number of separate disk drives depends on the configuration of your system. The format 
for directory specifiers is: 

: Fn: 

where n can be any drive number from 0 to 9 (0 would refer to drive 0, which does not have to be 
specified). 

If you type a directory specifier that is incorrect, you get an error message. For example, sup
pose you typed the following DIR command with an incorrect directory specifier in the 
path name for PROG1.SRC: 

-DIR FOR :G1:PROG1.SRC<cr> 
:G1:PROG1.SRC, UNRECOGNIZEO DEVICE NAME 

The "UNRECOGNIZED DEVICE NAME" is the ":G1:" directory specifier. ISIS-II thinks you are 
referring to a device by that name, and there is no device by that name. You will find legal 
device names in the section that describes copying files. 

Another common error occurs when you forget to use the word FOR in the DIR command when 
you are trying to get the directory information for one file. For example, you might type this 
command: 

-DIR :F1:PROG1.SRC<cr> 

and get this error message: 

:F1:PROG1.SRC, UNRECOGNIZED SWITCH 

Since you forgot the word FOR, ISIS-II thinks you are trying to specify a switch to the DIR com
mand-and it doesn't recognize ":F1:PROG1.SRC" as a switch! Switches are usually only one 
letter or number. Valid switches are described with the DIR command in the Intel/ec 'Series III 
Microcomputer Development System Console Operating Instructions. 

17 



CHAPTER 2 

18 

The A TTRIB command assigns attributes to files. You use file attributes to protect your files 
from accidental deletions or modifications. You use the ATTRIB command to turn on or off the 
file attributes that are described below: 

• "W" for write-protected (The file cannot be written to, modified, renamed, or deleted 
unless this attribute is turned off.) 

• "I" for invisible (The file's name and information is only displayed when you execute the 
DIR command with the "I" switch.) 

• "S" for system files (System files on a source disk are automatically copied to the output 
disk in a FORMAT operation with the "S" switch.) 

• "F" for format files (Format files are automatically copied by the FORMAT and IDISK 
commands to format disks. Do not turn off this attribute, nor use it with your own files, 
unless you've read its description in the Intellec Series 1/1 Microcomputer Development 
System Console Operating Instructions.) 

For example, to turn on the "W" (write-protected) attribute for file CREDIT, type the following 
command: 

-ATTRIB CREDIT W1<cr> 
FILE CURRENT ATTRIBUTES 

:FO:CREDIT W 

To turn off the "W" attribute, specify a 0 instead of a 1: 

-ATTRIB CREDIT WO<cr> 
FILE CURRENT ATTRIBUTES 

:FO:CREDIT 

RENAMING AND DELETING FILES 

Occasionally you will have a file with a name that needs to be changed for some reason. For 
example, you could rename UB86.86 to UBRY.86 by using the RENAME command: 

-RENAME LIB86.86 TO LIBRY.86<cr> 

The RENAME command always expects to see the original name first, followed by a space, 
then the keyword TO, followed by another space, and finally the new name. Both names must 
be legal Series III filenames or path names. You cannot RENAME a file in one directory to a 
name with a different directory specifier-the new name must have the same directory 
specifier. 

If you actually renamed UB86.86 to UBRY.86, you should rename it back to UB86.86, the name 
used for it in future examples. 

The DELETE command is very simple. Since there are no files in your system disk that you can 
delete. we'll use in this example a file that doesn't actually exist on your disk: 

-DELETE SAMPLE.TXT<cr> 
:FO:SAMPLE.TXT DELETED 

The DELETE command will irrevocably delete the file you specify. When you DELETE a file, 
you cannot retrieve it-it's gone. Use DELETE with caution. 



OPERATING THE SERIES III 

To delete a file on a disk in a drive other than drive 1, simply use the appropriate path name for 
the file. For example, suppose the file JUNK.TXT existed on the disk in drive 1. You would use 
this command to delete it: 

-DELETE :F1:JUNK.TXT<cr> 
:F1:JUNK.TXT DELETED 

You can also delete many files at once. As you will see in Chapter 3, CREDIT creates a backup 
file with a ".BAK" extension for every file you edit. At some point (to utilize disk space), you 
might want to delete all of your backup files at once. For example, to delete all of the backup 
files on the disk in drive 1, use the following command: 

-DELETE :F1:*.BAK<cr> 

The asterisk (*) matches any name, and the" .BAK" extension matches only filenames with 
that extension. This "filename matching" technique is shown in more examples to come. 

COPYING FILES TO DISKS AND DEVICES 

The COPY command is useful for several operations: 

• To make a copy of a file 

• To send a copy of a file to another hard or flexible disk 

• To send a copy of a file to a device like a printer or a paper tape punch 

• To receive a file from a sending device like a paper tape reader 

• To copy all non-system files from one disk to another 

The COPY command is similar to the RENAME command. For example: 

-COpy :F1:PROG1.SRC TO :F1:PROG1.BAK<cr> 
COPIED :F1:PROG1.SRC TO :F1:PROG1.BAK 

The COPY command expects to see the name of the source file or device (the source of the 
information to be copied, not to be confused with a source file of program source statements), 
followed by a space, then the keyword TO, followed by a space, and then the name of the out
put file or device (the destination of the copied information). After the output (or destination) 
file or device name, you can optionally specify a switch like "P" for pause, or "U" for update 
(these switches are explained in the Intel/ec Series 11/ Microcomputer Development System 
Console Operating Instructions). 

More frequent uses of the COpy command are copying to devices, copying files onto other 
disks, and copying all the files in one disk to another disk. In all of these cases, you must 
specify the device or disk that is the source of the information, and the device or disk that will 
receive the copied information. For example, the RENAME program is in the directory for drive 
O. If you want to put a copy of it on the disk in drive 1, you would type the following command: 

-COpy RENAME TO :F1:<cr> 
COPIED :FO:RENAME TO :F1:RENAME 

When the source file is in the directory for drive 0, you don't have to specify :FO: for the file, 
because :FO: is the default directory if none is specified. When the destination is a disk in 
another drive, you have to specify the directory (in this case, :F1:) for the destination file. 

19 



CHAPTER 2 

20 

In the example above, the file RENAME was copied to the disk in drive 1, and the drive 1 ver
sion has the same name. When you make copies of files for other disks, you will probably want 
the files on the other disks to have the same name. To keep the same name for the copy, 
specify only the destination directory without a new filename, as we did in the above example. 

To change the name for the copy, specify a different name with the destination directory. For 
example, if you want to use RNAM as the name of the new copy in drive 1, use this command: 

-COPY RENAME TO : F1 : RNAM<c r> 
:FO:RENAME COPIED TO :F1:RNAM 

In the last two examples, the RENAME file was copied from drive 0 to drive 1. To demonstrate 
another feature of the COPY command, we will first copy a file from drive 1 to drive 0 (you 
should also try this example): 

-COPY :F1:PROG1.SRC TO :FO:<cr> 
:F1:PROG1.SRC COPIED TO :FO:PROG1.SRC 

Let's suppose that we used CREDIT (described in the next chapter) to modify the new copy of 
PROG1.SRC on the disk in drive 0 (:FO:PROG1.SRC), and that we want to copy the newly
modified PROG1.SRC to the disk in drive 1. Since we already have a PROG1.SRC on the disk in 
drive 1, we might want to DELETE that one first, then COpy the newly-modified one to the disk 
in drive 1. However, let's suppose that we forgot to DELETE the old one first, or that we don't 
even know the old one exists on the disk in drive 1. We would type the following COPY com
mand: 

-COpy PROG1. SRC TO : F1: <c r> 
:F1:PROG1.SRC FILE ALREADY EXISTS 
DE LETE? 

The COPY command found :F1 :PROG1.SRC, and now it is asking us if we want to delete it in 
order to replace it with the newly-modified :FO:PROG1.SRC. We type a "Y" (or "y") to delete 
the old one and replace it with the new one, or type an "N" (or "n" or any other letter) to keep 
the old one and abort the copy operation. In this case, we want to replace the old 
:F1 :PROG1.SRC with the newly-modified :FO:PROG1.SRC, so we type a "Y" followed by the 
RETURN key: 

DELETE?Y<cr> 
:FO:PROG1.SRC COPIED TO :F1:PROG1.SRC 

By using this feature of the COPY command, you can selectively update existing files by typing 
"Y" (or "y") for the ones you want to update, and "N" (or "n") for the ones you don't want to 
update. 

To send a file to a device like a line printer or a paper tape punch, specify the device name as 
the destination device: 

-COpy PROG1.SRC TO :LP:<cr> 
:FO:PROG1.SRC COPIED TO :LP: 
-COPY PROG1.SRC TO :HP:<cr> 
:FO:PROG1.SRC COPIED TO :HP: 

The device name :LP: is the name of the line printer. The second example sends the file to the 
high-speed paper tape punch, whose device name is :HP:. For other device names, see the 
Intellec Series 11/ Microcomputer Development System Console Operating Instructions. 



OPERATING THE SERIES III 

The COPY command can also be used to copy several files at once, if you make use of wild 
card filenames. You can specify a wild card filename with the DELETE, RENAME, COpy, DIR, 
HDCOPY, and ATTRIB commands. A wild card filename matches a group of filenames in order 
to perform the action on several files at once. For example: 

-COpy *.* TO :F1:<cr> 

This command copies all of the files in directory :FO: to directory :F1:. 

NOTE 

To perform this example, you should insert a new disk into drive 1 and use the IDISK 
command (described in the next section in more detail) to prepare the new disk in 
drive 1 before copying all of the files in drive 0 to it. 

The above example demonstrates use of the wild card filename "*. *". The first asterisk will 
match any number of characters in the name, and the second asterisk will match any three 
characters in the extension of the filename. 

You can also specify some of the characters of a filename in a wild card filename. For example, 
if you wanted to copy all of the files that have" .SRC" as an extension, you would use this 
COPY command: 

-COPY *.SRC TO :F1 :<cr> 

There are other wild card filenames that are described in detail in the Intellec Series 11/ 
Microcomputer Development System Console Operating Instructions. 

There are several ways to copy entire disks. The IDISK and FORMAT commands are used to 
prepare ("format") disks for use in the Series III system. The IDISK command will simply for
mat the disk as a system or non-system disk, copying over to the new disk only the format 
("F") files that are needed to format the new disk as a system or non-system disk. 

The FORMAT command will format a new disk as a system or non-system disk depending on 
the source disk implied (drive 0) or specified (using FROM). The FORMAT command will also 
copy certain files from the source disk. FORMAT with the "S" switch copies all files from the 
source drive that have the "S" (system) attribute. See the previous section on formatting disks 
for an example of the FORMAT command with the "S" switch. 

To copy all of the files from the source disk, use the "A" switch. To show an example of the 
FORMAT command with the "A" switch, insert another blank disk into drive 1, and type this 
command: 

-FORMAT :F1:SYSTEM.BAK A<cr> 
SYSTEM DISK 

In this example, the FORMAT command formats the disk in drive 1 as a system disk because 
the source disk in drive 0 is a system disk. The new disk is called SYSTEM.BAK. The "A" 
switch specified that all files from the source disk in drive 0 should be copied to SYSTEM.BAK 
in drive 1. 

So far, all of the FORMAT examples used the disk in drive 0 as the source disk. If, for example, 
you have more disk drives and you want to FORMAT a disk in drive 1 using as a source a disk in 
drive 2, you would specify FROM 2 as in the following example: 

-FORMAT: F1 :MYDISK A FROM 2<c r> 

21 



CHAPTER 2 

22 

In a previous section on formatting disks, we described formatting operations to prepare your 
disks in a way that conforms with our examples. We do not necessarily recommend this for
matting scheme for your particular configuration. Chapter 2 of the Intel/ec Series 11/ Micro
computer Development System Console Operating Instructions gives you the specific details 
for setting up disks in any Series III configuration, using the IDISK, FORMAT, and HOCOPY 
commands. 

EXECUTING COMMANDS AND PROGRAMS 

The Series III has two processors: the 8085 (8-bit processor), and the 8086 (16-bit processor). 
You can execute 8085-based programs in the 8085 environment (which is called the 8085 execu
tion mode or "8085 side"), and execute 8086-based (or 8088-based) programs in the 8086 
environment (which is called the 8086 execution mode or "8086 side"). When you type the 
filename of a program as a command (as you have been doing when you type "OIR" or 
"COPY"), you are executing the program in the 8085 execution mode. In order to execute a 
program or command in the 8086 execution mode, you must prefix the command RUN to the 
program or command you wish to execute. For example, if you want to execute LlB86.86, the 
8086 librarian (which can only be run in the 8086 execution mode), you would type the following: 

-RUN LI B86<c r> 

You should notice two things that are different: the use of the command RUN, and the fact that 
you do not have to supply the" .86" extension for LlB86.86 when you RUN it. 

The RUN command is actually a program supplied on the system disk that activates the 8086 
execution mode. When you supply a filename with no extension, the RUN command 
automatically attaches the" .86" extension to the name you supplied, and looks for the file by 
that name (i.e., the name with the" .86" extension). This is a protection feature you can use for 
your 8085 and 8086 programs: you can use the same name for both, with an ".86" extension for 
the 8086 program and no extension for the 8085 program. When you specify filenames without 
extensions, RUN only looks for files that are supposed to run in the 8086 execution mode; i.e., 
files with the" .86" extension. This protection feature assumes that you would put the" .86" 
extension on files that are meant to run in the 8086 execution mode. 

If you actually executed LlB86.86, the following would appear on your screen: 

-RUN LIB86<cr> 
SERIES III 8086 LIBRARIAN, Vx.y 

* 
The LlB86.86 program is now in control. To leave this program and return to the operating 
system, use the librarian's EXIT command: 

*EXIT<cr> 

You can, of course, supply an extension with the filename you supply to the RUN command, 
and the RUN command would not supply the" .86" extension. For example, if you have an 8086 
program called MYPROG.PRG and you want to run it in the 8086 execution mode (on the "8086 
side"), you would type the following: 

-RUN MYPROG.PRG<cr> 



OPERATING THE SERIES III 

You can also RUN a program whose filename has no extension. However, you must supply a 
period to show that there should be no extension (Le., to keep RUN from supplying the" .86" 
extension). The following is an example, assuming that the name of the program is not 
MYPROG.PRG but is MYPROG: 

-RUN MVPROG.<cr> 

When you use RUN as a command (as in the examples above), the 8086 execution mode is 
turned on for program execution, and when the program terminates, the 8086 execution mode 
also terminates, returning you to the 8085 execution mode. The 8085 execution mode is con
trolled by ISIS-II, which signifies its control by displaying the dash (-) prompt. You can, 
however, use RUN as a program and stay in the 8086 execution mode. 

To use RUN as a program, simply type RUN: 

-RUN<cr> 
ISIS-II RUN 8086, Vx.y 
> 

The RUN program displays a sign-on message and its own prompt, the right angle (» bracket, 
to signify that the RUN program is now in control. This mode is caliedAhe interactive 8086 
mode, and you use it to execute more than one program. When you get the angle (» prompt, 
you can type the filename of a program in order to execute the program. The rule stated above 
about the use of the" .86" extension still applies. 

The following example shows the execution of several 8086-based programs: PASC86.86 (the 
Pascal-86 compiler), LlNK86.86 (the linker and binder), and PROG1.86 (the assembled, linked, 
and bound program). If your Pascal-86 disk (containing the compiler, run-time libraries, and 
sample PROG1.SRC) is in drive 1, and LlNK86.86 is on the disk in drive 0, you can type this 
example exactly as presented. The LlNK86.86 command line shows use of the "&" continua
tion character that allows you to type commands over several lines without executing them. 
The EXIT command turns off the 8086 execution mode and returns you to ISIS-II and the 8085 
execution mode: 

-RUN<cr> 
ISIS-II RUN 8086, V1.0 
>:F1 :PASC86 :F1 :PROG1.SRC<cr> 

This executes PASC86.86 to compile 
PROG1.SRC, both of which are on the 
di sk in dr i ve 1. The Pasca l-86 
compiler displays some information. 

>LINK86 :F1:PROG1.0BJ,:F1:P86RNO.LIB,:F1:P86RN1.LIB,&<cr> 
» : F 1 : P 86 R N 2. LI B , : F 1 : P 86 R N 3. LI B , : F 1 : E 80 87. LI B • & < c r> 
»:F1:E8087,:F1:LARGE.LIB TO :F1:PROG1.86 BIND<cr> 

T his e x amp l e s how sus e 0 f the ' , & " 
command line continuation character. 
The ent i re command links the ob) ec t 
program with the run-time libraries, 
and binds the linked module to form 
an executable program called 
PROG1.86 

23 



CHAPTER 2 

24 

>: F1 : PROG1 <c r> This command executes :F1:PROG1.86 

Farenheit temperature is:72<cr> 

PROG1.86 is a temperature conversion 
program. When it asks for more 
input, you can stop the program by 
typing "N". 

Another temperature input? :N<cr> 

>EXIT<cr> This terminates the 8086 execution 
mode and returns you to the 8085 
execution mode. 

In the above examples, commands and programs were executed directly by typing the com
mand name or program name (sometimes followed by the name of a file to be acted upon by 
the command or program; this is called an actual parameter). When you execute a program or 
command directly, it is called interactive execution. 

In many cases you will want to submit a batch of commands or programs to be executed in a 
sequence. The SUBMIT command allows you to submit a file of commands as a job to be 
handled by the system without any interaction on your part. This is called nOn-interactive 
execution. 

You use SUBMIT by first providing a file of commands to be executed-a command sequence 
definition file, which has the extension" .CSD". This file can contain operating system com
mands, parameters for the commands, and comments-any line starting with a semicolon (;), 
or any text following a semicolon, is a comment, not an executable command. In the following 
example, note that the first command is the RUN command, wl"\ich starts the 8086 execution 
mode, and that blank spaces in command lines are allowed to improve readability: 

CSD fi le to SUBMIT for linking a Pascal-86 object module 
to run-time support libraries <with E8087 emuLator> 

Parameter 0 = :fn:myprog 
Parameter 1 = drive containing run-time Libraries 

RUN 
LINK86 %O.OBJ, & 

:F%1:P86RNO.LIB, & 
: F%1 :P86RN1. LIB, & 
:F%1:P86RN2.LIB, & 
:F%1:P86RN3.LIB, & 
:F%1:E8087.LIB, & 
:F%1:E8087, & 
:F%1:LARGE.LIB TO %0.86 BIND 

EX IT 

Returns to 8085 execution mode. 



OPERATING THE SERIES III 

When this file, called LNKBND.CSD, is submitted, the system will execute the RUN command, 
then the LlNK86.86 program (the 8086 linker), and finally the EXIT command to leave the "8086 
side" and return to the 8085 execution mode. 

The percent symbols (0/0) indicate the use of formal parameters. When you execute the 
SUBMIT command, you supply actual parameters for each of these formal parameters. The 
following is an example: 

-SUBMIT LNKBND(:F1:PROG1,1l<cr> 

The SUBMIT command first looks for LNKBND.CSD (it supplies the missing" .CSD" exten
sion), and then it substitutes the first actual parameter (: F 1 : PRO G 1) for "%0" and the 
second actual parameter (1 ) for' '% 1" . The resulting command sequence is as follows: 

RUN 
LINK86 :F1:PROG1.0BJ, & 

:F1:P86RNO.LIB, & 
:F1:P86RN1.LIB, & 
:F1:P86RN2.LIB, & 
:F1:P86RN3.LIB, & 
:F1:EB087.LIB, & 
:F1:EB087, & 
:F1:LARGE.LIB TO :F1:PROG1.B6 BIND 

EX IT 

The SUBMIT program creates another file with a ".CS" extension to hold the resulting com
mand sequence. You should not modify this file. 

SUMMARY OF THE SERIES III OPERATING SYSTEM 

The Series III system has two execution environments: the 8085 environment (the "8085 side") 
where the ISIS-II commands and 8080/8085 programs run, and the 8086 environment (the "8086 
side"), activated by the RUN program, where 8086 and 8088 programs run. Programs that run in 
the "8086 side" usually have an" .86" extension in their filenames. The RUN program actually 
looks for an ".86" extension if you specify a filename without an extension. 

You use the Series III operating system and its tools to develop software, but there is another 
way to use it: your software products can use it as an execution vehicle. The Intellec Series 11/ 
Programmer's Reference Manual describes the "innards" of the Series III operating system 
and how your programs can make use of sections of the system. By using PL/ M or assembly 
language, you can call operating system procedures directly (as described in the summary of 
Chapter 5) from your program. Pascal-86 programs automatically use the operating system pro
cedures by using run-time libraries which interface between the Pascal-86 programs and the 
Series III system. 

The Series III system has a standard set of procedures that your software products can use; by 
using this standard programming interface, you can be sure that your future programs will 
remain compatible with present and future Intel operating systems. 

There are a few more commands that were not introduced because they are used infrequently, 
or they are easy to use. These commands are adequately introduced in the Intellec Series 11/ 
Microcomputer Development System Console Operating Instructions. You should consult this 
manual anyway, to be aware of details not mentioned in this tutorial. 

25 





"A good workman is known by his tools." -proverb 

CHAPTER 3 
TEXT EDITING 

You use a text editing program to create any kind of document, including a document that con
sists of program instructions. CREDIT is a text editor that takes advantage of the capabilities 
you have with CRT screens to: 

• Display and scroll text on the screen 

• Rewrite text by typing new letters over old ones 

• Rearrange lines of text and insert new lines of text between old lines 

• Move to any position in the text file or to any point on the screen instantly 

• Correct typing mistakes easily as you type 

To simplify everyday text editing operations, CREDIT also provides features that allow you to: 

• Save both the newly edited version and the old unedited version of the same document 

• Find any string of characters and substitute another string of characters automatically 

• Copy sections of a document to use in another document 

• Create macros to execute several commands at once, or to repeat sets of commands 
(command iteration) 

CREDIT is useful for all documents; for example, we used CREDIT to write this book. CREDIT is 
more often used to write the Pascal statements, PLiM statements, and assembly language 
instructions that comprise program modules. Text files created by CREDIT are called 
documents if they are meant to be read by humans; and they are also called source programs if 
they consist of program statements (Pascal, PLlM, or FORTRAN statements, or assembly 
language instructions) that are read by compilers or assemblers in order to be compiled or 
assembled into working programs. 

In the following examples, we show you how to create and edit a text file consisting of English 
sentences that you can translate (eventually) into Pascal-86 statements. As described in 
Chapter 1, this step of generating Pidgin Pascal (English sentences describing a Pascal pro
gram) is a very important one in program development, because the program logic expressed 
in English sentences closely resembles human thinking and is therefore easier to debug. 

27 



Chapter 3 

28 

CREATING A TEXT FILE AND INSERTING TEXT 

When you run CREDIT, you also specify the name of a file to be edited. If CREDIT can find the 
file you are specifying, it will open the file for editing. If CREDIT cannot find the file you are 
specifying, it will create a new file by that name. 

For example, let's create a file called PIDGIN.TXT in the directory for drive O. To create and edit 
PIDGIN.TXT, type the following command: 

-CREDIT PIDGIN.TXT<cr> 

CREDIT responds with: 

ISIS-II CRT-BASED TEXT EDITOR V2.0 
NEW FILE 1982 FREE DISK BLOCKS 

The number of free disk blocks depends on the number of files on your disk and the size of 
your disk-you do nO,t have to worry about it unless you get a "DISK FULL" warning. If you get 
such a warning, terminate your CREDIT session by typing "EX" (followed by RETURN), and 
specify another disk (like :F1:) for your text file. 

The screen is partitioned into two areas, as shown in figure 3-1. 

Notice the vertical line "I " in the text area? This symbol marks the end of the text in the file. 
Since the file is new and holds no text yet, this symbol appears at the beginning of the file. As 
you type text into the file, the symbol moves and continues to mark the end of the text. 

The blinking cursor sits underneath this vertical line. You can immediately type text into the 
file: 

just typell 

As you type, you can make changes to the text you already typed by moving the cursor back to 
the previous text and typing over it. Move the cursor by using the cursor control keys that sur
round the HOME key (do not use the HOME key yet!). If you inadvertantly typed the HOME key, 
hold down the CNTL key and type a V (Control-V) to return the cursor to the text body. 

ISIS-II CRT-BASED EDITOR V2.0 
NEW FILE 1982 FREE DISK BLOCKS 

1""'''''1 ~ 
COMMAND AREA 

~TEXTAREA 

Figure 3-1. The CREDIT™ Video Display 121632-4 



Text Editing 

You end each line of text with a carriage return by typing the RETURN key, just like a 
typewriter. CREDIT displays the carriage return operation as an uparrow (f). The carriage 
return operation is actually performed by two ASCII codes: one for the carriage return 
character, and one for the line feed character. CREDIT uses one symbol, the uparrow (t), for 
both characters. This symbol is called the line terminator. 

There are several keys used often in editing: 

• The RPT (Repeat) repeats whatever key you hold down. For example, hold down both the 
RPT key and a cursor movement key, and the cursor will move faster. Use the RPT key 
with RUBOUTto erase a line. 

• The TPWR (Typewriter) key, when in the down position, displays every character in lower 
case like a typewriter. When in the up position, all characters are in upper case. 

• The ESC (Escape) key will cause a break in an executing command. 

If your keyboard seems to freeze and does not display characters, you probably moved the 
cursor past the vertical line. You cannot type any characters after the vertical line, since the 
vertical line marks the end of the text. You can move the cursor to the vertical line and type, 
thereby moving the vertical line, or you can move the cursor to any position before the vertical 
line and type over the previously typed characters. 

The ISIS-1/ CREDIT (CRT-Based Text Editor) User's Guide contains an interesting tutorial ses
sion. Before you learn how to use some of CREDIT's powerful editing commands, you should 
learn how to end a CREDIT session properly, without losing the edits you have made. Figure 
3-1 shows the layout of the screen; in the Command Area you'll find an asterisk. To move the 
cursor to this asterisk, press the HOME key. 

ESCAPE 
(ESC) 

CONTROL 
(CNTL) 

REPEAT 
(RPT) 

CURSOR 
CONTROL 

KEYS 

HOME TYPEWRITER 
MODE 
(TPWR) 

Figure 3-2. The Series III Keyboard 121632-5 

29 



Chapter 3 

30 

When the cursor appears after the asterisk, you can type a CREDIT command. The EX (exit) 
command terminates a CREDIT session properly. Type "EX", followed by RETURN: 

*EX<cr> 

CREDIT will clear the screen and display the following message: 

EDITED TO :FO:PIDGIN.TXT 

By using the DIR command, you can see that the directory listing for :FO: now contains a new 
file called PIDGIN .TXT. 

You can use CREDIT to edit PIDGIN.TXT by invoking CREDIT again: 

-CREDIT PIDGIN.TXT<cr> 

This time, CREDIT does not have to create the file, because it already exists in the directory for 
the disk in drive O. CREDIT responds with: 

ISIS-II CRT-BASED TEXT EDITOR V2.0 
OLD FILE SIZE=2 1980 FREE DISK BLOCKS 

The text you typed during the last example appears under this message. The message tells 
you that PIDGIN.TXT is an old file, its size is 2 blocks (a block is 128 bytes), and you have 1980 
free disk blocks in which to expand the file (these numbers vary depending on the space taken 
up by files on your disk). If you do not have enough free disk blocks to expand the file, CREDIT 
displays a warning message. 

You can continue to experiment with CREDIT by typing and retyping lines of text. When you 
are finished typing extraneous characters and are ready to type meaningful English 
sentences, move the cursor to the first character or screen position, and type CNTL and Z 
(hold down the CNTL key and type Z). The @ symbol will replace the character. Now move the 
cursor to the end of the text-to the vertical line-and type CNTL and Z together again. ZAP! 
You just deleted all the text you typed. All of the characters between the two @ symbols were 
deleted, and you are left with an empty text file again. 

Let's start with the simple problem definition. Type the following sentence: 

Maintain the climate of a bui lding using a system comprised oft 
heating and cooling methods.t 
t 

NOTE 

The uparrow (t) stands for the RETURN key. Use the RETURN key to end each line of 
text, including blank lines. 

Using CREDIT, you can type the sentences you know you need, and insert more sentences 
later. For example, you know you need the following sentences: 

Based on temperature data, see if there is a demand,t 
and determine the type of demand.t 
If there is no demand, simply continue operating the climate system.t 
If there is a demand for heat, determine the heating method,t 

and operate the system with this method.t 
If there is a demand for cold, determine the cooling method,t 

and operate the system with this method.t 
t 



Text Editing 

Two questions should immediately come to mind: what information does the program need, 
and what else would a climate control program do? Let's add new sentences by using 
CREDIT's insert capability. Here is our text file so far: 

Maintain the climate of a bui lding using a system comprised oft 
heating and cooling methods.t 
t 

Based on temperature data, see if there is a demand,t 
and determine the type of demand.t 
If there is no demand, simply continue operating the climate system.t 
If there is a demand for heat, determine the heating method,t 

and operate the system with this method.t 
If there is a demand for cold, determine the cooling method,t 

and operate the system with this method.t 

Move the cursor to the beginning of the fourth line of text (the line that begins with 
"Based on ... "). Hold down the CNTL key and type A (CNTL-A). The rest of the text disap
pears, and you are now able to type sentences. Type the following sentences and blank lines: 

t 

Startup the climate system.t 
t 

W hi let h e s y stem i sop era tin g, do (a n d rep eat) the f 0 l low i n g : t 
t 

Get the data needed for each pass: the time, the temperatures,t 
the weather, the state of the solar collector, etc.t 
Store this data.t 
t 

Now type CNTL and A together again. The rest of the text file reappears with the new lines 
inserted in their proper places. By typing CNTL and A together, you turn on the Add Text 
Mode; by typing them again, you turn off Add Text mode. Here is your text file with the newly 
inserted lines: 

Mai ntai n the climate of a bui ldi ng usi ng a system compri sed oft 
heating and cooling methods.t 
t 

Startup the climate system.t 
t 

Whi le the system is operating, do (and repeat) the following:t 
t 

Get the data needed for each pass: the time, the temperatures,t 
the weather, the state of the solar collector, etc.t 
Store this data.t 
t 

Based on temperature data, see if there is a demand,t 
and determine the type of demand.t 
If there is no demand, simply continue operating the climate system.t 
If there is a demand for heat, determine the heating method,t 

and operate the sy~tem with this method.t 
If there is a demand for cold, determine the cooling method,t 

and operate the system with this method.t 

31 



Chapter 3 

32 

MOVING AROUND IN THE TEXT FILE 

Using the cursor movement keys, you can move the cursor anywhere within a screenful of 
text. If the text file is larger than twenty lines, it will not fit entirely in one screen-you have to 
scroll the screen by using the scrolling commands. 

The scrolling commands only operate when the cursor is in the text area (when the cursor is in 
the text area, you are in screen mode). Refer to figure 3-1 for an illustration of the text and com
mand areas. When the cursor is in the command area (command mode), you can only execute 
command mode commands; to move into screen mode (and move the cursor to the text area), 
type CNTL-V (hold down the CNTL key and type V). 

The scrolling commands are CNTL-N (to see the next screenful of text), and CNTL-P (to see 
the previous screenful of text). You can also use CNTL-V to see which character CREDIT is cur
rently pOinting to, and to move into screen mode. If you experiment with CNTL-V, you will 
notice that the first use of CNTL-V moves the cursor to the character that CREDIT's pointer is 
pointing to (more on this pointer in the next paragraph). Subsequent executions of CNTL-V 
rearrange the lines of text so that the line that contains the character pointed to by CREDIT 
becomes the third line in a screenful of text. This is very useful for partial scrolling. You can 
use these commands without fear, since they do not modify the text. 

NOTE 

The CNTL key, when used with another key (e.g., CNTL-V), is sometimes 
represented by the uparrow (t) symbol in our manuals and pocket references. For 
example, CNTL-V is shown as tV, and CNTL-A is shown as tAo 

The character pointer mentioned above is a reference point for all of CREDIT's commands. In 
screen mode, the cursor represents the pointer. It is sometimes called "the CP". Most text 
editors have some pointer or marker that points to a place in the file, and commands that insert 
characters, delete characters, or search for characters use this pointer to find the place in the 
file to perform their operations. CREDIT's pointer pOints to a single character, and this pointer 
moves whenever you move the cursor within the text area. When you type the HOME key and 
move the cursor to the command area, the pOinter stays where it is, pOinting to the character in 
the text area. The CNTL-V command moves the cursor back to the text area and back to the 
character pointed to. 

In screen mode, the cursor movement keys and the scrolling commands move this pointer. In 
command mode, all editing changes are made relative to the position of this pointer. Deleting a 
single character, for example, erases the character pointed to by the pointer, and moves the 
pointer to the next character. When you insert text, the text is inserted preceding this pOinter. 
Many other commands also move this pointer. CNTL-V will always move the cursor to the 
character pointed to by this pointer. 

One command that always moves the pointer is the J (jump) command. You can only use the J 
command in command mode, and the J command leaves you in command mode (so you have 
to do another CNTL-V to get into screen mode). You can jump to any location relative to the 
pOinter, or you can jump to specific locations called tags. You can set your own tags by using 
the TS (tag set) command, and delete tags by using the TD (tag delete) command. There are 
two permanent tags that need not be set, and that cannot be deleted: the beginning of the file, 
known as TT (tag for top), and the end of the file, known as TE (tag for end). For example: 

*JTT<cr> 

This command moves the pointer to the top of the text file (the beginning of the first line). 



Text Editing 

Since CREDIT usually puts the pointer at the top of the file when you start an editing session, 
the JTT command (jump to tag for top of file) is more useful during an edit session. The JTE 
command (jump to tag for end of file) is useful at any time: 

*JTE<cr> 

After using the J command, you are still left in command mode. Use the CNTL-V command to 
return to screen mode, and to return the cursor to the character pointed to by the CPo 

Use the JTE command (jump to tag for end of file), followed by a CNTL-V command to return to 
screen mode, in order to add a sentence to the end of our Pidgin Pascal software definition. 
The following example shows the execution of the JTE command, followed by a CNTL-V 
(displayed as tV), followed by a display of the current text file with the added sentence at the 
end: 

*JTE<cr> 
*tV 

Maintain the climate of a bui lding using a system comprised oft 
heating and cooling methods.t 
t 

Startup the climate system.t 
t 

W h i let he s y stem i sop era tin g, do (a n d rep eat) the f 0 l low i n g : t 
t 

Get the data needed for each pass: the time, the temperatures,t 
the weather, the state of the solar collector, etc.t 
Store this data.t 
t 

Based on temperature data, see if there is a demand,t 
and determine the type of demand.t 
If there is no demand, simply continue operating the climate system.t 
If there is a demand for heat, determine the heating method,t 

and operate the system with this method.t 
If there is a demand for cold, determine the cooling method,t 

and operate the system with this method.t 
t 

If no method is possible (abnormal conditions),t 
shut down the climate system.t 
t 

FINDING OLD TEXT AND SUBSTITUTING NEW TEXT 

There will be numerous occasions when you will want to find a specific word or group of 
words, and move the character pointer at the same time. There will also be times when you will 
want to substitute a new word or group of words for an old one. For example, you might write a 
program that displays the name of your product (for example, "ACME Solar Controller") in 
several different places. Sometime later, you find out that the marketing people changed the 
name to "ACME Climate Controller". With one simple CREDIT command, you could substitute 
the new word ("Climate") for the old word ("Solar") wherever the old word occurs in the text 
file. You would only have to make sure that you specified the old name using upper and lower 
case characters as they appear in the file, and that the new name looks exactly as it should 
look. 

33 



Chapter 3 

34 

The F (Find) command finds any string (group of characters) you specify. The S (Substitute) 
command finds the old string you specify and substitutes the new string you specify, and rear
ranges the text so that spaces aren't introduced into the file. The SQ (Substitute after Query) 
command finds the old string you specify, then asks you for a yes-or-no ansWer: a yes tells 
CREDIT to substitute the new string you specified, and a no tells CREDIT not to substitute the 
new string. If you executed the SQ command iteratively (see next section), CREDIT would con
tinue looking for more instances of the old string. 

To show examples of these commands, we'll return to our Pidgin Pascal text file to add some 
new text and substitute a new word for an old one. Use the F command to find the string 
"simply continue": 

*F/simply continue/<cr> 

When the F command finishes, it displays the asterisk once again. To see where it put the 
character pointer, type CNTL-V. The cursor should be under the space after the last letter of 
"continue." We want to rewrite the sentence so that "no method" is one of the methods used 
to operate the climate system. 

At this point, it is easy to move the cursor to the appropriate place to insert new text. You can 
type over the old text, and use the RETURN key to continue typing a line. You can also use the 
CNTL-A combination to insert a lot of text. After inserting the new text, the sentences should 
read as follows: 

If there is no demand, choose "no method" as the method,t 
and operate the system with t his method.t 

If there is a demand for heat, det e rmi ne the heating 
and operate the system with t his method.t 

If there is a demand for coLd, determine the cooLing 
and operate the system with t his method.t 

t 

If no method is possibLe (abnormaL conditions),t 
shut down the cLimate system.t 

method,t 

method,t 

To illustrate use of the Sand SQ commands, we will substitute the word "request" for 
"demand" throughout our text file (and thereby make our program more polite). First, use the 
JTT command to move the character pointer to the beginning of the file; then use the S com
mand in the following manner: 

*JTT<cr> 
*S/demand/request/<cr> 

The S command found the first instance of "demand" and substituted "request" for it. Check 
to see the result by typing CNTL-V: 

Based on temperature data, see if there is a request,t 
and determine the type of demand.t 

Note that S command only found the first instance of "demand" and sUbstituted "request" for 
it only. Note also that the S command must have moved the comma after the first "demand" in 
order to fit the word" req uest" in that place. 



Text Editing 

To execute the S or SO commands repeatedly, you would use a form of command iteration. 
The SO command performs the same operation as the S command if you answer with a yes; on 
a no answer, the SO command does not substitute text. Here is an example of the SO com
mand, with a sneak preview of the easiest form of command iteration: 

*'<SQ/demand/request/><cr> 

The angle brackets around the entire SO command, in conjunction with the exclamation point, 
cause the SO command to be executed repeatedly until the command reaches the end of the 
text file. Do not be confused by the angle brackets surrounding the "cr"-that is the symbol 
depicting use of the RETURN key. Angle brackets delimit the command to be executed 
iteratively, and the exclamation point replaces a number that would specify the number of 
iterative executions. This is explained in more detail in the next section. 

The sa command displays the line that contains the old text, and then displays a question 
mark. You must respond with a "Y" for yes, or an "N" for no: 

and determine the type of demand.t 
?y 

You do not have to type RETURN after typing the "Y" or "N", because CREDIT is expecting 
such an answer. The SO command goes on to find more instances of "demand": 

If there is no demand, choose' 'no method" as the method,t 
? Y 

If there is a demand for heat, determine the heating method,t 
?y 

If there is a demand for co l d, determine the cooling method,t 
?y 

* 
When the sa command has found the end of the text file, the condition for iterative execution 
is satisfied, and the execution ends. Type CNTL-V, followed by a CNTL-P, to see the previous 
page and the substitutions: 

Maintain the climate of a bui lding using a system comprised oft 
heating and cooling methods.t 
t 

Startup the climate system.t 
t 

Whi le the system is operating, do (and repeat) the following:t 
t 

Get the data needed for each pass: the time, the temperatures,t 
the weather, the state of the solar collector, etc.t 
Store this data.t 
t 

Based on temperature data, see if there is a request,t 
and determine the type of request.t 
If there is no request, choose' 'no method" as the method,t 

and operate the system with this method.t 
If there is a request for heat, determine the heating method,t 

and operate the system with this method.t 
If there is a request for cold, determine the cooling method,t 

and operate the system with this method.t 
t 

If no method is possible {abnormal conditions),t 
shut down the climate system.t 
t 

35 



Chapter 3 

36 

MACROS AND COMMAND ITERATION 

Our Pidgin Pascal program still needs a modification that will vastly improve its readability. We 
need to indent all of the sentences that occur after the sentence "While the system is 
operating, do (and repeat) the following:". This will improve the readability, since it will then 
be obvious that the indented sentences are the actions that have to be repeated. 

To make this improvement, we will define a macro to hold several editing commands that will 
be executed iteratively. Rather than explain the process of defining macros and the syntax for 
command iteration, we'll show you the steps to take to make this improvement to our text file, 
and then we'll explain them. 

To begin, move the cursor (in screen mode, so that it also moves the character pointer) to the 
beginning of the blank line that follows the sentence "While the system is operating ... ". Your 
cursor (and the character pointer) should now be at the beginning of this blank line, as shown 
by the underscore "_" symbol: 

Maintain the climate of a bui lding using a system comprised oft 
heating and cooling methods.t 
t 

Startup the climate system.t 
t 

Whi le the system is operating, do <and repeat) the following:t 

Now type the HOME key to return to command mode. 

You can only define macros while in command mode. We will now define a macro called X that 
will make the improvement. Here is our definition of X: 

*MSX@LO;%<L;I/DDDDD/iP>@<cr> 

Type this macro definition exactly as it is shown above (the "0" symbol stands for a 
space-type five spaces-and the "<cr>" stands for the RETURN key). When CREDIT finishes 
digesting this definition, it displays the asterisk again. Now type the following command: 

*MFX(13)<cr> 

You will see each line following the sentence "While the system is operating ... " being acted 
upon by macro X. All of the lines following that sentence are now indented by five spaces, as 
shown below: 

Maintain the climate of a bui lding using a system comprised oft 
heating and cooling methods.t 
t 

Startup the climate system.t 
t 

While the system is operating, do <and repeat) the following:t 
t 

Get the data needed for each pass: the time, the temperatures,t 
the weather, the state of the solar collector, etc.t 
Store this data.t 
t 

Based on temperature data, see if there is a request,t 
and determine the type of request.t 
If there is no request, choose' 'no method" as the method,t 

and operate the system with this method.t 



Text Editing 

If there is a request for heat, determine the heating method,t 
and operate the system with this method.t 

If there is a request for cold, determine the cooling method,t 
and operate the system with this method.t 

t 
If no method is possible <abnormal conditions),t 
shut down the climate system.t 
t 

"What was that gibberish I typed?" To answer your question, display the macro definition 
again by typing the following command in command mode: 

*?M<cr> 
XLOi%<Li II liP> 

The display is exactly what you typed before, without the "@" symbols. The "@" symbols 
were used to define the macro-they delimit the actual text of the macro, so they are not 
necessary in this display (therefore CREDIT does not display them). 

The macro starts with its name: X. Following the name is the first command in the macro: the 
LO command, which moves the character pointer (called CP from now on) to the beginning of 
the current line (the line that the CP is currently sitting on-this line changes every time the 
entire macro executes). Following the LO command is a semicolon, which separates one 
command from the next. 

The next command in macro X is a set of commands to be executed repeatedly, or iteratively. 
The "%" (percent) symbol is a special one in this case, and is explained in the next paragraph. 
You saw the angle brackets in the last section-they delimit the set of commands to be 
executed repeatedly. The commands to be executed repeatedly are the L command (move CP 
to the beginning of the next line), the I command (insert the text that is specified within the 
following "I" (slash) symbols), and the P command (display the current line). The text within 
the "I" (slash) symbols consists of the five spaces we need to insert in order to indent the 
lines. 

Now we'll explain the "%" (percent) symbol. When you typed the command to execute macro 
X, you typed: 

*MFX(13)<cr> 

The "MF" command executes the macro "X". The number 13 in parentheses is called a 
parameter-the MF command substitutes the parameter you specify (in this case, 13) for the 
"%" (percent) symbol. The result is that the iterative command set ("<L;II I;P>") is 
executed 13 times. Why did we pick 13? Because there were only 13 lines ahead of the 
character pointer to be indented. We could have specified a "!" (exclamation point) symbol to 
execute the iterative command set over and over until it reached the end of the file, but we 
chose this method to show you the use of parameters in macros, and to make sure that the last 
two lines would not be indented. 

We also chose to use the "@" symbol to delimit the entire macro, but you can use any symbol 
that is not used within the macro. 

Obviously, there are more details you should learn before using macros and other advanced 
editing features. However, you do not need these features to perform simple editing opera
tions. They exist only to make your text editing sessions easier, if you first learn how to use 
them. 

37 



Chapter 3 

38 

ENDING A TEXT EDITING SESSION AND MANAGING 
BACKUP FILES 

When you are editing text, the edited text is in the computer's memory, but it is not yet on disk. 
To update the text file with the edited text, you have to end your text editing session properly. 
The EX command properly replaces the old text in the file with the newly edited text, and it also 
saves the old version of the file in another file called a backup file. When the edit session ends, 
control of the system returns to the operating system (ISIS-II). 

If you have been following the examples in this chapter, you are now in CREDIT with your 
edited text, and you are ready to end your edit session. If you are not in command mode (with 
the asterisk prompt), use the HOME key to get into command mode. When you are in com
mand mode, type the following command: 

*EX<cr> 

The text on the screen should disappear, and another message should appear: 

EDITED TO :FO:PIDGIN.TXT 

The file PIDGIN.TXT, on the disk in drive 0, now contains the newly edited text. Use the DIR 
command to see the directory for drive o. In the directory listing, you should see the filename 
PIDGIN.BAK. CREDIT created this file to be the backup file that contains the old unedited ver
sion of PIDGIN.TXT. Every time you use the EX command by itself, CREDIT automatically 
creates a backup file with the" .BAK" extension to contain the previous version of the file. 

NOTE 

You should not execute CREDIT to edit a backup file (a file with the ".BAK" exten
sion), because the EX command would first put the new edits into the" .BAK" file, 
then it would overwrite the" .BAK" file with the previous (unedited) version of it. Use 
the REN (rename) command to rename the file before editing it, or use the filename 
option with the EX command, described in the next paragraph. 

You can optionally specify a filename with the EX command, so that the newly edited text 
becomes a new text file, and the old text file remains unedited. For example, if you had typed 
the following version of the EX command (rather than the preceding version): 

*EX NEW.TXT<cr> 

the following message would appear: 

EDITED TO :FO:NEW.TXT 

The file NEW.TXT would containthe newly edited text, and the old PIDGIN.TXT would not have 
been updated (and PIDGIN.BAK would not have been created as a backup file). 

NOTE 

If you type "EXIT" rather than "EX", CREDIT assumes that you want to store the 
newly edited text in the file IT (:FO:IT). 

Another way to end an edit session is to use the EO (quit) command. The EO command will 
keep all files unchanged, as if nothing had happened. All edits you made while in the edit ses
sion vanish, and the text and backup files (if they exist) remain unchanged. If you use the EO 
command in a session that created the text file, the new text file would not exist. 



Text Editing 

To keep you from making a mistake, the EO command will first ask you for a Y or N answer 
before it ends the session: 

*EQ<cr> 
QUIT?Y 

If you reply with anything other than a "Y" or "y", the EO does not end the edit session. 

DISPLAYING AND PRINTING TEXT FILES 

Now that you have a text file, we can show you how to display the file on your screen and copy 
the file to a printing device. You can display the text file on your screen without using CREDIT 
by using the COPY command and the device name :CO: (for "console output"): 

-COpy PIDGIN.TXT TO :CO:<cr> 

To print the text file PIDGIN.TXT, you use the COPY command to copy the file to the device 
name :LP: (for "line printer"), or to the device name :TO: (for "teletype output"). You can 
COpy a file to any output device. You can find a complete list of device names in the Intel/ec 
Series 11/ Microcomputer Development System Console Operating Instructions. This example 
assumes that you have an :LP: device to receive a copy of the file :FO:PIDGIN.TXT: 

-COPY PIDGIN.TXT TO :LP:<cr> 

FROM TEXT TO PROGRAM 

Your PIDGIN.TXT text file now contains an algorithm that is actually a program in disguise (the 
disguise is English, or Pidgin Pascal). You should keep a copy of it somewhere, perhaps on 
another disk (or leave it in drive 0 if you have a hard disk subsystem). To use this algorithm in 
the next chapter, you will want to copy the text file to the Pascal-86 disk, and call it MAIN.SRC, 
since it will become the source file of your main control algorithm: 

-COpy PIDGIN.TXT TO :F1:MAIN.SRC<cr> 
:FO:PIDGIN.TXT COPIED TO :F1:MAIN.SRC 

The examples in this and subsequent chapters assume that you either have a hard disk sub
system, or at least two double-density flexible disk drives. If you have single-density flexible 
disk drives, you should have more than two of them; in this case, you should put your program 
on the third disk, since it probably will not fit on the Pascal·86 disk in drive 1. 

Although MAIN.SRC only has Pidgin Pascal statements at this time, you will edit them to make 
them real Pascal-86 statements as they appear in figures in Chapter 4. 

39 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 

I 

I 
I 
I 
I 



CHAPTER 4 
PROGRAMMING IN PASCAL-86 

"One of the most important aspects of any computing tool is its influence on the thinking 
habits of those who try to use it. .. " 

-E. W. Dijkstra 

The Series III Microcomputer Development System was designed to support a variety of pro
gramming techniques with several programming languages. The preceding chapters give you 
the background you need to use this system wisely, and this and the following chapters help 
you decide the criteria for decomposing your application into modules and picking the 
appropriate language to use for each module. 

One popular approach to programming is the top-down approach, where you define the prob
lem completely, design an abstract algorithm to solve the problem, and refine this algorithm 
into self-supporting modules that can be coded and compiled separately. Typically, the main 
module would contain the most abstract algorithm-the control algorithm at the top of the 
design that solves the entire problem. The subordinate modules perform the procedures 
dictated by the main module. 

Pascal-86 is a language that is ideal for the main module of such a modular solution. Using 
Intel's Pascal-86 compiler, you can decompose a program into modules that can be compiled 
separately, whereas other Pascal compilers only compile whole programs which have to be 
tailored to fit into microprocessor environments. 

Perhaps the most important reason for Pascal's wide acceptance is the fact that it is a 
language that closely resembles English. In the past, programmers had to keep their algorithm 
designs well within the constraints of programming languages that were designed to express 
mathematical equations. In other words, at the outset they had to think in terms of the pro
gramming language available to them. This approach reinforced the practice of giving 
implementation ("how to") information in the problem definition (for example, "the input to 
this program is to be formatted on cards in columns 0-15 ... "). 

In Chapter 3 we designed an algorithm for the climate control of a building using English, which 
we jokingly call Pidgin Pascal. Since our control structures are in English, we have been able 
to communicate this algorithm easily and test its logic before translating it into Pascal-86. By 
now we should have a complete problem definition and a clean algorithm that could be 
translated into any programming language. 

TRANSLATING PIDGIN PASCAL TO PASCAL-86 

Figure 4-1 shows the main climate control algorithm, described in Pidgin Pascal. Several 
assumptions are made: that another subordinate module will operate the climate system, that 
yet another module will access and store the data, and that the data itself will be in the form of 
a record, which will be available to this algorithm. 

41 



CHAPTER 4 

42 

As in typical development situations, a change has just occurred in our climate system that we 
software engineers have to accomodate: the first version of our climate system will not have 
cooling methods-only heating methods. We must design the software to make room for cool
ing methods in the future. 

We made another change to the algorithm to accomodate a "panic" condition. An algorithm is 
not complete unless it can handle any situation; remember, Murphy said that if it can go wrong, 
it will. Therefore, we added a test to see if the climate system can handle the request for heat. 
If neither the collector water nor the tank water is hot enough to heat the building, a panic con
dition occurs that stops the normal operation of the climate system. At this time, it is sufficient 
to simply stop the program and output warning messages; later, we can add more procedures 
to handle such panics. 

Using CREDIT (as described in Chapter 3), you can change this algorithm into Pascal-S6 by 
adding the Pascal-S6 statements and using comment symbols to turn the English sentences 
into program comments. The (* and *) symbols tell the Pascal-S6 compiler to ignore whatever is 
between them. Some comments are only a few words surrounded by the (* and *) symbols, but 
comments can take up many lines, as shown at the end of the program in figure 4-2. As soon as 
the compiler sees the (* symbols, it ignores the characters and lines following it until it sees 
the *) closing symbols. 

These comments are carried over With the program statements to the listing file produced by 
the compiler. You use the listing file as documentation for the program. You'll see a listing file 
later in this chapter. 

Figure 4-2 shows the same algorithm expressed in Pascal-S6 statements, with the English 
sentences masquerading as program comments. We also added more comments. It is a good 
practice to write the comments of a program before writing the actual program statements. 

Maintain the climate of a bui lding using a system comprised of 
h~ating methods. 

Startup the climate system. 

While the system is operating, do (and repeat) the following: 

Get the data needed for each pass: the time, the temperatures, 
the weather, the state of the solar collector, etc. 
Store thi s data. 

Based on temperature data, see if there is a request 
for heat. 
If there is no request, choose' 'no method" as the method, 

and operate the system with this method. 
If there is a request for heat, determine whether the 

system can handle the request. If not, cause a panic. 
Otherwise, determine the heating method, 
and operate the system with this method. 

If no method is possible (panic or abnormal conditions), 
shut down the climate system. 

Figure 4·1. Algorithm for the Climate Control Main Module 



PROGRAMING IN PASCAL·86 

(**Type and variable declarations to be supplied later**) 
(**Public procedures external to this program will be supplied later**) 

PROGRAM MainControl(INPUT,OUTPUT)i 

BEGIN (**Main Control Algorithm**) 
StartUpSystemi (*procedure to start up the climate system*) 
Operating:=TRUEi 
Panic:=FALSEi 

WHILE Operating DO (*While the system is operating, do 
(and repeat) the following:*) 

BEGIN 
GetData(CurrentData)i 

(*Get data needed for each pass: temps, time, etc.*) 
StoreData(CurrentData)i (*Store this data as record*) 

(**If there is a request for heat, determine whether the system 
can handle the request. If not, cause a panic. 
Otherwise, determine the heating method, 
and operate the system with this method. 

If there is no request for heat, choose I 'no method, I I 

and operate the system with this method. **) 

WITH Current Data DO 
BEGIN 

IF InsideTemp<ThermostatSetting THEN (*if request*) 
BEGIN 

IF CollectorWaterTemp>MinimumForExchanger THEN 
BEGIN ChosenMethod:=CollectorToExchangeri 

OperateSystem(CurrentData)i 
END 

ELSE IF ~ollectorWaterTemp>MimimumForHeatPump THEN 
BEGIN ChosenMethod:=CollectorToHeatPumpi 

OperateSystem(CurrentData)i 
END 

ELSE IF TankWaterTemp>MinimumForExchanger THEN 
BEGIN ChosenMethod:=TankToExchangeri 

OperateSystem(CurrentData)i 
END 

ELSE IF TankWaterTemp>MimimumForHeatPump THEN 
BEGIN ChosenMethod:=TankToHeatPumpi 

OperateSystem(CurrentData)i 
END 

ELSE IF HeatedTankTemp>MinimumForHeatPump THEN 
BEGIN ChosenMethod:=HeatedTankToHeatPumpi 

OperateSystem(CurrentData)i 
END 

ELSE Panic:=TRUEi Operating:=FALSEi 
END (*if heating request*) 

ELSE (*no heating request*) 
BEGIN ChosenMethod:=NoMethodi 

OperateSystem(CurrentData)i 
ENDi 

ENDi (*End routine WITH CurrentData*) 
ENDi (*Whi le operating*) 

ShutDownSystem(CurrentData)i (* panic or abnormal condition *) 
END. 

Figure 4·2. First Try at Coding the Main Program 

43 



CHAPTER4 

44 

(**The following are only comments: 

The following procedures wi II be coded in another module 
called the Operation Module: 

PROCEDURE OperateSystem(CurrentData) 

This procedure wi II operate the system and constantly 
maintain heat gain in the system. Depending on the 
heating method chosen, it opens certain valves and 
closes others, and turns on certain pumps and turns 
off others. It also maintains a flow of heated water 
to the storage tank. 

NOTE: for our testing purposes, a dummy OperateSystem 
procedure wi II only display messages telling us what 
heating method was chosen, and temperature data. 

PROCEDURE ShutDownSystem(CurrentData) 

This procedure wi II perform an orderly shut dowh if a 
panic or abnormal condition occurs. ihe shut down must 
keep warm water flowing through the solar collector and 
close any extraneous valves, etc. It must also send a 
warning messages to the console, advising manual operation 
of the furnace, etc. 

NOTE: for our testing purposes, a dummy ShutDownSystem 
procedure wi II only display data and a shutdown message. 

PROCEDURE StartUpSystem 

This procedure wi II start the climate system (cold start, 
or after ShutDownSystem occurs), open necessary valves, 
etc. It wi II also display a startup message. 

NOTE: for our testing purposes, a dummy StartUpSystem 
procedure wi II only display a startup message. 

The following procedures wi II be coded in another module 
called the GetData Module: 

PROCEDURE GetData(CurrentData) 

This procedure wi II obtain the data from a PL/M-86 module 
called PLMDATA that accesses ports to obtain temperature 
data. Data other than temperature data wi II come from 
ports via port input/output procedures in this Pascal-86 
module. 

NOTE: for our testing purposes, a dummy GetData procedure 
wi l lob t a ina l l d a t a from the con sol e . 

Figure 4·2. First Try at Coding the Main Program (Cont'd.) 



PROGRAMING IN PASCAL-86 

PROCEDURE StoreData(CurrentData) 

This procedure wi II store the data record CurrentData in a 
file (the file would probably reside in non-volatile bubble 
memory). 

NOTE: for our testing purposes, a dummy StoreData procedure 
wi II simply output the data to the console. 

T his i s the las t lin e 0 f c omme n t s . * * ) 

Figure 4-2. First Try at Coding the Main Program (Cont'd.) 

This guide cannot possibly explain Pascal syntax-there are several books mentioned in the 
Bibliography that can give you the background you need, and the Pasca/-86 User's Guide pro
vides all the information you need to use Intel's extensions to standard Pascal. 

PASCA~86DATATYPES 

A major advantage that Pascal has over other high-level languages is its strong type checking 
mechanisms that enforce data typing. By using Pascal's data types, you avoid some of the 
classic causes of errors in programs-the ambiguities involved with using simple X and Y 
variables to hold truly non-numeric data, the mistakes that occur when you attach arbitrary 
meanings to numeric data, and the complexities that are magnified by ambiguous variable 
names. 

An example is worth a thousand explanations. In the Pascal-86 algorithm in figure 4-2, we make 
assignments like this one: 

ChosenMethod:=TankToExchanger; 

If ChosenMethod and TankToExchanger are declared properly in the module heading (not 
shown in figure 4-2, but shown later in this section), the Pascal-86 compiler will know their 
meanings. When you read this assignment, you know exactly what heating method has been 
chosen. The data type is a type of heating method, not an integer representing a method. In 
other programming languages you might be able to have a variable named "ChosenMethod" 
and another variable named "TankToExchanger", but you would also have to be sure to assign 
proper numeric or string values to them. A typical way of expressing the above assignment in 
PLI M would be: 

or 

CHOSENSMETHOD = 2 
I*where 2 is the appropriate method*1 

CHOSENSMETHOD = TSTOSEXCH 
I*where TSTOSEXCH has already been assigned the appropriate 
value*1 

45 



CHAPTER 4 

46 

In both cases, you have to know a numeric code for the heating method. In Pasca"l, however, 
you only have to define a set of heating methods, and pick one for the assignment. Here is an 
example of such a definition: 

TYPE HeatingMethods = <CollectorToExchanger, 
CollectorToHeatPump, 
TankToExchanger, 
TankToHeatPump, 
HeatedTankToHeatPump, 
NoMethod>i 

<*The above defines the data type HeatingMethods, which is 
used to define the variable ChosenMethod below.*> 

VAR ChosenMethod : HeatingMethodsi 

In order to assign a value to ChosenMethod, the program must assign one of the methods in 
the set of type HeatingMethods. Any other assignment would cause a compiler error message 
to occur. By enforcing this data typing mechanism, the Pascal-86 compiler reduces the number 
of run-time errors by flagging the data type errors early in the game. 

There are several standard Pascal data types that are useful. For example, you can define a 
variable to be of type BOOLEAN, which means that the only values that can be assigned to the 
variable are the values TRUE and FALSE. The variables Operating and Panic are of type 
BOOLEAN; they are either TRUE or FALSE. 

Note that ChosenMethod and CHOSEN METHOD would refer to the same variable, since lower 
case characters are treated as upper case. This feature allows you to create long identifying 
names with combinations of upper and lower case characters that are easy to read and 
understand. 

ANOTHER LOOK AT MODULARIZING AND HIDING INFORMATION 

The programming technique called information-hiding is not an excuse for designers to 
withhold information from their documentors-it is more akin to a technique we use to hold a 
lot of information in our minds. When we have to interface with several different organizations 
within a company in order to get a job done, we don't pay attention to the inner workings of an 
organization; we simply assume that the organization will do its job, and we define our inter
face with the organization. Their organization is one module, and ours is another module; the 
job gets done because the modules know how to communicate to each other without interfer
ing in each other's details. 

Most logical algorithms are designed with assumptions about working modules. In our 
algorithm in figure 4-2, we assume that the procedures StartUpSystem, GetData, StoreData, 
OperateSystem and ShutDownSystem will work as planned, even though they are not yet writ
ten. We also assume that another group may write them. We can make these assumptions 
because we designed our main module to hide most of the details about choosing heating 
methods. 

So far, the main module's algorithm decides the appropriate heating method based on a set of 
data. Once the algorithm is written, it may never change; and if it had to change, its change 
should not affect the other modules. However, we could change the control algorithm so that 
changes to the heating methods, or additional heating methods, would not even affect the 
main control algorithm. A simple way to do this would be to turn the heating method determina-



PROGRAMING IN PASCAL·86 

tion algorithm into an independent procedure called DetermineMethod, extract from this 
algorithm the calls to OperateSystem, and put the call to OperateSystem in the control 
algorithm. 

The resulting main module is shown in figure 4·3. We added the module heading, but we still 
need the interface specification and variable declarations (shown later). 

MODULE MainControl; 

(* Interface specification goes here, to be supplied later. *) 
(* Type definitions and variable declarations to be supplied later. *) 

PROGRAM MainControl(INPUT,OUTPUT); 

PROCEDURE DetermineMethod(VAR Current Data 
BEGIN 

SystemData) ; 

WITH Current Data DO 
BEGIN 

IF InsideTemp<ThermostatSetting THEN 
BEGIN 

END 

IF CollectorWaterTemp>MinimumForExchanger THEN 
ChosenMethod:=CollectorToExchanger 

ELSE IF CollectorWaterTemp>MinimumForHeatPump THEN 
ChosenMethod:=CollectorToHeatPump 

ELSE IF TankWaterTemp>MinimumForExchanger THEN 
ChosenMethod:=TankToExchanger 

ELSE IF TankWaterTemp>MinimumForHeatPump THEN 
ChosenMethod:=TankToHeatPump 

ELSE IF HeatedTankTemp>MinimumForHeatPump THEN 
ChosenMethod:=HeatedTankToHeatPump 

ELSE Panic:=TRUE; Operating:=FALSE; 

ELSE (*no heating request*)ChosenMethod:=NoMethod 
END; (*With CurrentData*) 

END; (*DetermineMethod) 

(************** MAIN PROGRAM *************************************) 

BEGIN 
StartUpSystem; 
Operating:=TRUE; 
Pani c :=FALSE; 
WHILE Operating DO (*whi le system is operating, do:*) 

BEGIN 
GetData(CurrentData); (*Get the temps, time, etc.*) 
StoreData(CurrentData); (*Store this data as record*) 
DetermineMethod(CurrentData); (*this detects a panic*) 
OperateSystem(CurrentData); 

END; (*whi le operating*) 
ShutDownSystem(CurrentData); 

END. (*Main Control Algorithm*) 

Figure 4·3. Second Try at Coding the Main Program 

47 



CHAPTER4 

48 

The DetermineMethod procedure now hides all the information about choosing the 
appropriate heating method. We could also rewrite it to include cooling methods, or to change 
the heating methods. The procedure expects to receive the record CurrentData, and it only 
changes the value of the variable ChosenMethod. 

The OperateSystem procedure will not be written until more facts are known about the hard
ware of the actual climate system. However, we already know that if we make a decision about 
a chosen method, include that method in the data record CurrentData, and send that data 
record to the OperateSystem procedure properly, the OperateSystem procedure will know 
how to operate the system. We defer these details to a later time when we'll have a prototype 
system to operate. 

PASSING DATA TO OTHER MODULES-PARAMETER PASSING 
TECHNIQUES 

We designed our main module so that it will receive a record of information. A Pascal-86 record 
is much like a PLI M-86 structure which can be defined to hold certain data types. We have to 
define this record in order to write the main module, but we can defer decisions about obtain
ing the data in order to preserve our options. 

A PLlM-86 procedure could easily obtain the data and build the structure according to inter
face specifications; so could an 8086/8087/8088 Macro Assembly Language program, or an 8089 
Assembly Language program. In fact, we might be able to use existing routines to obtain the 
data, and simply write another routine to structure the data accordingly. 

In any case, we only have to pass the address of the structure to the Pascal-86 main module, 
which knows what to do with it. This parameter-passing technique is known as pass by 
reference, because the main module only needs a reference to the address of the structure in 
order to treat the structure as a Pascal record. 

Another parameter-passing technique is pass by value, where a procedure calls another pro
cedure and sends it a value rather than an address. We don't use this technique in our applica
tion, since our procedures need to access data in the record. We decided against paSSing 
specific values from this data record, and decided instead to make the entire data record 
available to the appropriate procedures. 

To define the data record properly and still provide the ability to change it easily, we created a 
data type for the record: 

TYPE {*definitions publicly defined in this module*> 

SystemData RECORD 
ChosenMethod 
InsideTemp, 
ThermostatSetting 
CollectorWaterTemp, 
TankWaterTemp, 
HeatedTankTemp 
AmountOfSunlight 
Hour 
Minute 

END {*SystemData*>; 

HeatingMethods; 

AirTemperature; 

WaterTemperature; 
Integer; 
00 .• 24; 
00 .. 59; 



PROGRAMING IN PASCAL·S6 

Using the data type System Data, we defined the variable CurrentData to be of that type: 

VAR 
CurrentData SystemData; 

We pass the variable CurrentData to other procedures. If we were to change the data fields in 
the record, we would only have to change the definition of System Data; we would not have to 
change any of the calls that pass the variable CurrentData. If the data fields kept the same 
names (Chosen Method, ThermostatSetting, etc.), we would not have to change the routines 
that use those data fields. 

THE INTERFACE SPECIFICATION 

A module that calls a procedure in another module must have some information about where 
the other procedure is, and it must provide some information to the other procedure about the 
data being passed. Intel's Pascal-86 provides a mechanism for supplying the appropriate 
information to all modules that are to be linked to form a program-it is called an interface 
specification. 

The interface specification typically holds the type definitions and variable declarations that 
are needed by all modules, and it also contains the names of procedures (with their 
parameters) that are public to other modules; that is, they can be called from other modules. 
Each module of the entire program contains this information. Figure 4-4 shows the interface 
specification for our program. 

In addition to PUBLIC definitions in the interface specification, a module can have PRIVATE 
type definitions and variable declarations for variables used only within the module. Our 
Operation module will have a PRIVATE section for all variables that are only used within the 
module, but our MalnControl main module does not need one. In Pascal-86, a PRIVATE 
heading is used in non-main modules instead of a PROGRAM heading. 

Several enumerated types are defined in our program: AirTemperature and WaterTemperature 
are defined as types that can only have values in the ranges specified. The variables Hour and 
Minute are also of enumerated types, but since their ranges do not change, their types are not 
defined separately. By defining the temperature types separately, we can easily change their 
ranges without affecting the data record. 

By defining the data record as type SystemData, we can easily change data fields in the record 
without changing the CurrentData declaration. By defining and declaring types and variables in 
the interface specification, we can maintain the interface speCification separately (and change 
definitions and declarations) without affecting the procedures. 

TEST VERSION OF THE CLIMATE CONTROL SYSTEM 

Since our hardware designs are not yet firm, we should put together a test version of our 
system that does not interact with any prototype hardware. This version should include 
dummy procedures for the procedures that would normally rely on 8088 ports and other 
hardware. 

49 



CHAPTER 4 

50 

PUBLIC MainControl; (*section of interface specification*) 

CONST (*declarations declared publicly in this module*) 

MinimumForExchanger 
MinimumForHeatPump 

35; (*degrees Celsius*) 
13 ; 

T Y P E (* d e fin i t ion s pub l i cl y de fin e din t his mo d u l e * ) 

Air Temp era t u r e = - 2 0 .. 1 20 ; (* d e 9 r e e sin C e lsi us * ) 
WaterTemperature =0 .• 120; 
HeatingMethods =(CollectorToExchanger, 

SystemData 

CollectorToHeatPump, 
TankToExchanger, 
TankToHeatPump, 
HeatedTankToHeatPump, 
NoMethod); 
RECORD 

ChosenMethod 
InsideTemp, 
ThermostatSetting 
CollectorWaterTemp, 
TankWaterTemp, 
HeatedTankTemp 
AmountOfSunlight 
Hour 
Minute 

END (*SystemData*); 

HeatingMethods; 

Air Temp era t u r e ; 

WaterTemperature; 
Integer; 
00 .. 24; 
00 .. 59; 

VAR (*variables publicly defined in this module.*) 

Current Data 
Operating, Panic 

SystemData; 
BOOLEAN; 

PUBLIC GetData; (*GetData Module containing GetData & StoreData*) 

PROCEDURE GetData(VAR CurrentData:SystemData); 
PROCEDURE StoreData(VAR CurrentData:SystemData); 

PUBLIC Operation; (*Operation Module containing OperateSystem, 
StartUpSystem and ShutDownSystem*) 

PROCEDURE StartUpSystem; 
PROCEDURE OperateSystem(VAR CurrentData:SystemData); 
PROCEDURE ShutDownSystem(VAR CurrentData:SystemData); 

Figure 4-4. The Interface Specification 



PROGRAMING IN PASCAL-86 

The dummy versions are shown in figure 4-5. You should type these versions exactly as you 
see them, with the StartUpSystem, OperateSystem, and ShutDownSystem dummy procedures 
in the dummy Operation module stored in the file :F1 :DUMOP.SRC, and GetData and StoreData 
dummy procedures in the dummy GetData module stored in the file :F1 :DUMDAT.SRC. The 
MainControl module should be stored in :F1 :MAIN.SRC, and the interface specification shown 
in figure 4-4 should be typed into the file :F1 :INSPEC.SRC. If you cannot fit all of these files on 
the disk in drive 1, you should put all of them on another disk-and use your own path name 
(:Fn:) for the" .SRC" files. For our examples we assume that these files are on the disk in drive 
1, along with the Pascal-86 compiler and run-time libraries. 

Figure 4-5 shows each module and the dummy procedures. Since the interface specification is 
repeated in each module, we use a shortcut when compiling the modules by putting the com
mon interface specification in a seperate file (:F1 :INSPEC.SRC), and we use the INCLUDE con
trol in a control line as shown: 

$INCLUDE(:F1:INSPEC.SRC) 

If you put INSPEC.SRC on a disk in a drive other than drive 1, use your own path name instead 
of :F1 :INSPEC.SRC. 

MODULE MainControl; 

(* Interface specification common to all modules *) 

SINCLUDE(:F1:INSPEC.SRC) 

PROGRA~ MainControl(INPUT,OUTPUT); 

(* end of interface specification *) 

PROCEDURE DetermineMethod(VAR CurrentData 
BEGIN 

S Y s t emD a t a ) ; 

WITH CurrentData DO 
BEGIN 

IF InsideTemp<ThermostatSetting THEN 
BEGIN 

END 

IF CollectorWaterTemp>MinimumForExchanger THEN 
ChosenMethod:=CollectorToExchanger 

ELSE IF CollectorWaterTemp>MinimumForHeatPump THEN 
ChosenMethod:=CollectorToHeatPump 

ELSE IF TankWaterTemp>MinimumForExchanger THEN 
ChosenMethod:=TankToExchanger 

ELSE IF TankWaterT~mp>MinimumForHeatPump THEN 
ChosenMethod:=TankToHeatPump 

ELSE IF HeatedTankTemp>MinimumForHeatPump THEN 
ChosenMethod:=HeatedTankToHeatPump 

ELSE Panic:=TRUE; Operating:=FALSE; 

ELSE (*no heating request*)ChosenMethod:=NoMethod 
END; (*With CurrentData*) 

END; (*Determi neMethod) 

Figure 4-5. Test Version of Our Climate Control System 

51 



CHAPTER 4 

52 

(************** MAIN PRO'RAM *************************************) 

BEGIN 
StartUpSystemi 
Operating:=TRUEi 
Panic:=FALSEi 
WHILE Operating DO (*whi le system is operating, do:*) 

BEGIN 
GetData(CurrentData)i (*Get the temps, time, etc.*) 
StoreData(CurrentData)i (*Store this data as record*) 
DetermineMethod(CurrentData)i (*this detects a panic*) 
OperateSystem(CurrentData)i 

ENDi (*while operating*) 
ShutDownSystem(CurrentData)i 

END. (*Main Control Algorithm*) 

(*This is a dummy Get Data module, with dummy GetData 
and StoreData procedures, for use with MainControl 
module in testing phases. It only performs console 
input to get Celsius temperatures, the time of day, 
and the amount of sunlight (insolation) for the 
solar collector. Use PLMDATA module for real 
application.*) 

MODULE GetDatai 

(* Interface specification common to all modules *) 

$INCLUDE(:F1:INSPEC.SRC) 

PRIVATE GetDatai 
(* end of interface specification *) 

PROCEDURE GetData(VAR CurrentData:SystemData); 
BEGIN 

WITH Current Data DO BEGIN 
WRITE('Type the thermostat setting in degrees Celsius: 'I; 
READLN(ThermostatSetting); WRITELN; 
WRITE('Type the inside temperature reading in Celsius:'); 
READLN(InsideTemp)i WRITELN; 
WRITE('Type the temperature of the collector water in Celsius: 'I; 
READLN(CollectorWaterTemp); WRITELN; 
WRITE('Type the temperature of the tank water in Celsius: 'I; 
READLN(TankWaterTemp); WRITELN; 
WRITE('Type the temperature of the heated tank water in Celsius:'); 
READLN(HeatedTankTemp); WRITELN; 
WRITE('Type the hour of day, as in 04 or 24:'); 
READLN(Hour); WRITELN; 

Figure 4-5. Test Version of Our Climate Control System (Cont'd.) 



PROGRAMING IN PASCAL·86 

WRITE('Type the minute of the hour, as in 01 or 59: '); 
READLN(Minute); WRITELN; 
WRITE('Type the amount of sunlight, any integer will do for now:'); 
READLN(AmountOfSunlight); WRITELN; 

END; (twith CurrentData t ) 
END; 
PROCEDURE StoreData(VAR CurrentData:SystemData); 
BEGIN 
(tDummy procedure, eventually wi II store CurrentData in a filet) 

WITH Current Data DO BEGIN 
WRITELN('---------------------------'); 
WRITELN(' CURRENT DATA IS AS FOLLOWS:'); 
WRITELN('---------------------------'); 
WRITELN('Thermostat Setting is ',ThermostatSetting, 'C'); 
WRITELN('Inside temperature is ',InsideTemp, 'C'); 
WRITELN('Temperature of collector water is ';CollectorWaterTemp,'C'); 
WRITELN('Temperature of tank water is ',TankWaterTemp,'C'); 
WRITELN('Temperature of the heated tank water is ',HeatedTankTemp, 'C'); 
WRITELN('Time of day is ',Hour, ':',Minute); 
WRITELN('Amount of sunlight is ',AmountOfSunlight); 
WRITELN; (ta blank line t ) 

END; (twith CurrentData t ) 
END. 

(tThis is a dummy Operation module, with dummy StartUpSystem, 
ShutDownSystem, and OperateSystem procedures, 
for use with MainControl module in testing phases. t ) 

MODULE Operation; 

(t Interface specification common to all modules .) 

$INCLUDE(:F1:INSPEC.SRC) 

PRIVATE Operation; 
(* end of interface specification *) 

PROCEDURE StartUpSystem; 
BEGIN 

END; 

WRITELN ('Climate system is now on.'); 
WRITELN ('-------------------------'); 
WRITELN; 

PROCEDURE OperateSystem(VAR CurrentData:SystemData); 
BEGIN 

WITH Current Data DO BEGIN 
WRITELN('=============================================='); 
WRITELN('The Climate System is now operating. '); 

Figure 4·5. Test Version of Our Climate Control System (Cont'd.) 

53 



CHAPTER 4 

54 

WRITELN; 
WRITELN('The Time is ',Hour, ':',Minute); 
WRITELN('The inside temperature is ',InsideTemp,'C'); 
WRITELN('The thermostat setting is ',ThermostatSetting,'C'); 
WRITE('Method chosen to heat the building: '); 
CASE ChosenMethod OF 

CollectorToExchanger: 
CollectorToHeatPump 
TankToExchanger 
TankToHeatPump 

WRITE('Solar Collector to Exchanger'); 
WRITE('Solar Collector to Heat Pump'); 
WRITE('Tank to Exchanger'); 
WRITE('Tank to Heat Pump'); 

HeatedTankToHeatPump: WRITE('Heated Tank to Heat Pump'); 
NoMethod WRITE('No heat required'); 

END; 
WRITELN; 
WRITELN('=============================================='); 
WRITELN; (*write a blank line.*) 

END; 
END;(*OperateSystem*) 

PROCEDURE ShutDownSystem(VAR CurrentData:SystemData); 
BEGIN 
WR IT E LN ( , : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :' ); 

'IF Panic THEN WRITELN('PANIC occurred, NORMAL shutdown.') 
ELSE WRITELN('No panic occurred, ABNORMAL shutdown.'); 

WRITELN (':::::::::::::::::::::::::::::::::::::::::::::::::') 
WITH Current Data DO BEGIN 

WRITE('Last chosen heating method was: '); 
CASE ChosenMethod OF 

CollectorToExchanger: WRITE('Solar Collector to Exchanger'); 
CollectorToHeatPump WRITE('Solar Collector to Heat Pump'); 
TankToExchanger WRITE('Tank to Exchanger'); 
TankToHeatPump WRITE('Tank to Heat Pump'); 
HeatedTankToHeatPump: WRITE('Heated Tank to Heat Pump'); 
NoMethod WRITE('No heat required'); 

END; 
WRITELN; 
WRITELN('Thermostat Setting is ',ThermostatSetting,'C'); 
WRITELN(' Inside temperature is', InsideTemp,' C'); 
WRITELN('Temperature of collector water is ',CollectorWaterTemp,'C'); 
WRITELN('Temperature of tank water is ',TankWaterTemp,'C'); 
WRITELN('Temperature of the heated tank water is ',HeatedTankTemp,'C'); 
WRITELN('Time of day is ',HOur,':',Minute); 
WRITELN('Amount of sunlight is ',AmountOfSunllght); 

END;(*with CurrentData*) 
WRITELN('::::::::::::::::::::::::::::::::::::::::::::::::::: :::'); 
WRITELN; 
WRITELN('Goodnight, Irene ... '); 

END.(*ShutDownSystem*) 

Figure 4-5. Test Version of Our Climate Control System (Cont'd.) 



PROGRAMING IN PASCAL-86 

THE PASCAL-86 COMPILER 

A compiler is a program that translates your high-level language statements into machine 
code. Machine code, sometimes called object code, consists of the instructions that machines 
understand, whereas high-level language statements are instructions that humans under
stand. You must translate your high-level language statements into machine code by compil
ing your high-level language program. 

The Pascal-86 statements we typed (using CREDIT) are program source statements. We now 
have three source files: :F1:MAIN.SRC (for the MainControl module), :F1:DUMDAT.SRC (for 
the dummy GetData module), and :F1 :DUMOP.SRC (for the dummy Operation module). To 
translate these source statement modules into object code modules, we must compile each 
source module separately. 

The Pascal-86 compiler is supplied as the file PASC86.86. You invoke the compiler by using the 
RUN command to load and execute it in the "8086 side" (8086 execution mode) of the Series III 
system. The compiler usually produces two files: a listing file that contains a listing of the 
source program as the compiler saw it, and an object file that contains the actual machine 
code. The listing file usually contains a listing of the source statements, additional information 
about the compilation, and any errors that occurred during the compilation. 

For example, assume that MAIN.SRC, the first module, is in directory :F1:. The Pascal-86 
Compiler, PASC86.86, is also in directory :F1:. To compile this module, use the following 
command: 

-RUN :F1:PASC86 :F1:MAIN.SRC DEBUG<cr> 

Let's analyze this command line. RUN is the command used to execute the program in the 
"8086 side" of the system. :F1 :PASC86 is the path name (without the" .86" extension) of the 
Pascal-86 Compiler (RUN supplies the" .86" extension). :F1 :MAIN .SRC is the path name for the 
MAIN.SRC module. Finally, DEBUG is a compiler control which tells the compiler to do 
something special (described later). 

This compilation produced two files: :F1 :MAIN .LST is the listing file, and :F1 :MAIN .OBJ is the 
object file that contains the object code. :F1 :MAIN .SRC is still in drive 1. All of these files are in 
directory :F1:, since that is where MAIN .SRC resides. 

Compiler controls tell the compiler to perform certain operations. Most controls have default 
settings that you do not have to specify. For example, the PRINT control is always on unless 
you specify NOPRINT. The PRINT control tells the compiler to produce a listing file, and use 
the name of the source file with an ".LST" extension (e.g., :F1:MAIN.LST). We could have 
used this version of the PRINT control: 

-RUN :F1:PASC86 :F1:MAIN.SRC DEBUG PRINT(:LP:)<cr> 

This version of the PRINT control sends the listing to the line printer (:LP:), rather than creating 
:F1 :MAIN.LST as a listing file. 

Most of the compiler control default settings are useful for everyday compiling; that is, there is 
no need to learn how to use the compiler controls unless you want to do something special. 
For example, if you want the compiler to issue a warning message whenever it sees a non
standard Pascal statement (an Intel extension to the standard Pascal language), use the 
NOEXTENSIONS control. 

55 



CHAPTER 4 

56 

We used the DEBUG control for a good reason: we want to do symbolic debugging while the 
program is running (using DEBUG-86, described in Chapter 7). You will want to do symbolic 
debugging during the first run of your program. Use the DEBUG control to prepare your pro
gram for symbolic debugging unless your program is extremely large. 

Most compiler controls can be specified in the invocation line as we show above. Most com
piler controls can also be imbedded in the source file-as contro//ines. For example, we used 
the INCLUDE control in a control line: 

$INCLUDE(:F1:INSPEC.SRC) 

The INCLUDE control allows you to insert source statements from another file into this com
pilation. In this case, we wanted to insert the common interface specification (in 
:F1 :INSPEC.SRC) into our compilation. The INCLUDE control saved us from typing the same 
interface specification for all three source files. 

We also need to compile the other modules separately. The following invocation line compiles 
our GetData module in DUMDAT.SRC: 

-RUN :F1:PASC86 :F1:DUMDAT.SRC DEBUG<cr> 
SERIES III PascaL-86 V1.O 
PARSE 

68 99 0 0 
***WARNING, input: "END" 
***was repaired to: "END;" 
END PARSE(1), ANALYZE(O), NOXREF, OBJECT 

COMPILATION OF GETDATA COMPLETED, 1 ERROR DETECTED. 
END OF PascaL-86 COMPILATION. 

The compiler displays a sign-on message, then the word "PARSE" to show that it is parsing 
the program statements. During the parsing phase, the compiler discovered an error-the 
"END" statement was not punctuated correctly. The compiler repairs our error, and con
tinues to compile. Each phase of compiling is displayed with a number in parentheses-the 
number of errors detected during the phase. The compiler only detected that one error, 
and since the error was easily repaired, the compilation was successful. We now have 
:F1 :DUMDAT.OBJ containing the object module. 

To compile our dummy Operation module, we use the following invocation line: 

-RUN :F1:PASC86 :F1:DUMOP.SRC DEBUG<cr> 

The listing files :F1 :MAIN.LST, :F1 :DUMDAT.LST, and :F1 :DUMOP.LST are shown in figure 4-6. 



PROGRAMING IN PASCAL-86 

SERIES-III Pllsca'l1-8b, xC31 

501,11"", Fil'l :F1:MAIN.SRC 
Obj.ct Fih: :F1:MAIN.:SJ 
Contl"'oll Slucifi.d: CeBUG. 

ST"T LINE NESTING 
1 1 0 0 
2 2 0 0 

=1 
0 0 =1 

=1 
-1 
-1 
-1 
-1 
=1 
-1 
=1 

11 =1 
12 =1 

-1 
=1 
=1 
=1 
=1 

18 =1 
=1 

20 =1 
21 =1 

=1 
10 23 =1 

'1 
=1 

11 26 0 =1 
12 27 0 =1 
13 28 0 -1 
14 29 0 =1 
15 30 0 -1 

=1 
=1 
=1 

16 34 '1 
17 35 =1 

=1 
18 37 =1 

=1 
19 39 =1 
20 40 -1 

=1 
21 42 =1 

=1 
22 44 =1 
23 45 =1 
24 46 =1 

25 

26 13 
26 14 
27 15 
27 16 
28 17 
28 18 
29 19 

31 21 

33 23 

35 25 

37 Z7 

40 29 
41 30 
42 31 
44 32 
45 33 

5:JURce TExT: :F1:MAIN.SAC 
MC:lUL!: MliinContl"'oli 

(* Inhr1i!lc. 51)9Cif1c2It101'1 common to lIll modul., *) 

SINCL.U::JE(:F1 :INSPEC.SRC) 
"'U3LIC MalnContl"'oU (*"etlon of int.r-he. sPlcificatio".) 

Hi nillluIIIFOl": x C 1'1211"1;'1'" 
MinimumF ol""ellH'ump 

35; (tilde;,. .. , C.ls1u.*') 
131 

TYPE (*d.finitl.ol'ls publicly dlfintd in this "'oclul,.) 

A iI"'T''''PIJI'''2! tUl"'6 
Wi!lt,,.Tamp'l"'lItul"" 
P'4ll1tingMatnods 

=-20 •• 120;C.cI.g ..... in CIlIsiu,.) 
=0 •• 120; 
= C C 011 /lie tOI"'To e xc 1'1;1 1"1 g.'" 

Co 11ec tor T o lot II 21 tClump, 
TSlnkTo:xchllng,,., 
TllnkToHeCltPuml!l' 
ri eatedT 21nk T oHelltP ump, 
NoMet"od) i 

Q:Ee':lRO 

InsideT!!mp, 
T" s ,.most CIt Set tint;j 
Co 11ec torW~ terT emp, 
T ankWClterTemp, 
H2S1t(fdTankTemp 
Amou n tDfSu n 1iQht 
H?ur 
Minute 

END C-SvstemData-)i 

HeatingMttthodsi 

W at.r Temp e" a t u r.; 
Inteoer; 
00 •• 24; 
00 •• 59; 

VAR (*va,.hb1.s publicly defined in t"is module.-) 

eu"rentDat:l 
Jiarating, Panic 

: SvstltmData; 
: aOOLEANi 

PUBLIC G.tDlIta; C-GetDatCl Module contalinint;j GetData & StoreOata*) 

PROCE:JURE GetOEltaCVAR C\,I,.rentData:SvstemOatali 
PROe EOURE S to"eOClt iii C VAR C urrentData: Sv stemOlltSl); 

:lWSLIC Operation; C*Opa,.ation Module containing QperateSvstem, 
StartUpSystem and ShutOownSystem*) 

PRQe::OURE St2lrt:.JpSvstem; 
PR:!C:: OU~ E Qp lI,.ateSvstam (" 4 q C u,.rent DSltSl: Sy stemData) i 
PR::JCEOUR = 5 hutJo wnSv stem (V 4 q C urrent'Ja ta: Sys hmCah); 

P~OGRAM MainContl"pl (INPUT ,OUTPUT>; 

(* lind of interf2lC2 specification *) 

PROCEDURE Oeter'llineMethod (VA~ Cl.lr"ent')ah 
3::G:i:N 

SvstemData) i 

WITH Cur,.gntJSlta 0:: 
3EGIN 

!F InsideTemp<The,.mostatSetting THEN 
SEGIN 

:ND 

IF Co1lectorWaterTemp>MinimumForExchant;je,.. THEN 
C hosenMethod: =Co 11ect o,.To Exchange r 

eLS= IF C?l19ctol"WaterTemp>MinimumForHeatPump THEN 
e hosenMe thod: =C01lee torT oHeat Pump 

ELSE IF TankW<!'Ite,.Temp>MinimumFo,.Exchange,. THEN 
C 1'1 os e nMe t 1'10 d : = T an k T oE x chan gllr 

:LSE IF TankWate,.Temll>MinimumForHeatDump T"iEN 
C 1'10 5' n Milt 1"10 d: = T "nk To He a t Pump 

ELSE IF He&tedTankTemll>MinimumFo"Heeti'ump THEN 
e n05 en Met nod: = Heil t ad T iI n k T oHea t Pump 

ELSE Panie:=TIWEi Ope,..ating:=FALSE; 

ELSE (*no he~ting requllst*>ChosenMethod:=NoMethod 
E~Di (*With Cu,.rentData*) 

END; (*DetarmineM/lthod) 

Figure 4-6. Listings of Our Test Modules 

09/01/80 "AGE 1 
MAINCONTROL 

57 



CHAPTER 4 

45 37 
46 38 
47 39 
48 40 
49 41 
49 42 
50 43 
51 44 
52 45 
53 46 
55 ,. 47 
56 48 

Summ.,.y Information: 

PROCEDURE 
De T e 11M I NE M ET HOD 

Total 

94 Lines Rlud. 
a Errors Detaetad. 

(* • ., *.,., **. * * •• ., HA I N P R OG RA M .,., *** '" ******* ** ** * •• *** ** * * * ***., .***) 

BEGIN 
StartUpSysteiTI; 
Op,,.ating:=TRUe; 
Panic:=FALSE; 
WHIL.E Ol::lel"elting 00 (.while system is 0".,.at1ng, do:·) 

BEGIN 
GetOatSlCCu,.,.entOata); (*G8t tn, tem"s, time, ete •• > 
StoreOEltaCCu",-entOata): (*5tol". this data liS record.> 
Oete,.rnineMlthodCCu,.,.entOi!ita); (.U,!s detects a panic.) 
Opet"'a te5ystem (Cu,.,..ntDat!l); 

END: (.while operating.> 
Shu t Dow r, Sy $ t em (C u I" I" en t:l at cd ; 

ENO. (*M~in Contl"ol Algol"ithm*> 

OFFSET CODE SIze DATA SIZE STACK SIZe 
OD11 H 008F" 1430 0006H 60 

0147" 3270 0016H 220 J04CH 760 

33~ Utilization of Memory. 

SERleS"III PascEll"S6, x031 

Source File: :1=1 :DUMOAT.SRC 
iJbject File: :F1 :OUMJAT.OaJ 
Controls Sl)eeified; DESUG. 

STH1 LINE NESTING 
1 1 0 0 

10 

=1 
=1 
=1 
=1 
-1 
=1 
=1 
=1 
=1 
=1 

11 =1 
12 =1 

=1 
=1 
=1 
=1 
=1 

18 =1 
=1 

20 =1 
21 =1 

=1 
10 23 =1 

=1 
=1 

11 26 =1 
12 27 -1 
13 28 =1 
14 29 =1 

58 

SOURCE TEXT: :c1:0UMOAT.SQC 
(*This is aI dummy GetDi!lte module, with dummy GetOata 
and Stol"eData procedures, fol" use with Ma1nContl"ol 
module in testing pnases. It only Del"forms console 
inJ)ut to get Celsius temJ:leratul"es, tne time of day, 
and the amount of sur,light (insolz,tion) fol" tne 
sol;;1r collectol". Use PLM86S0ATA module fol" real 
application.*) 

MODULE GetDatCl; 

(* Int9dace specifiCiition common to 11111 modules *) 

SINCLUDE(:1=1 :INSI'EC.SQC> 
PU3LIC MainContl"ol; (*section of interface specification*) 

CaNST (*declaratior,s dacl:il"ed publicly 1n this module*) 

Mi n i m umF 0 I" E)( chan gel" 
Min i mumF orl-lea t Pump 

35; (*degrees Celsius*) 
13; 

TYPE (.definitions publicly defined in this module*> 

Ai,-r.mpel"atur, ="'20 •• 120;(*de!ilre.s in Celsius*) 
WaterTemQe,.ature =0 •• 120; 
Heati ngMet t,ods = (Col lee tOl"ToExc I'Ian gel", 

SystemOatll 

ColI ec to rT 0 He at Pump, 
Tank T oE)( C 1'1 IInge,-, 
TankToHeatPump, 
He!! t ed T ClnkT oHea t Pump, 
NO~8tl'lod); 

QeCOR~ 
Cl'lOS8nMetl'lod 
InsideTemp, 
Thermos ta.t S. t tin 9 
ColI ec torWi!lterT emp, 
T2InkWat.rremp, 
HeatedTankTeml3 
Am 0 untO f S un 1 i gl'l t 
Hour 
Minute 

;NO C*SystemOata*); 

Hee1:ingMe1:hod~; 

AirTemI38,..atu r .; 

WaterTernl)er.tur8; 
Intege,-; 
00 •• 24; 
00 .. 59; 

Figure 4-6. Listings of Our Test Modul~s (Cont'd.) 

09/01/80 PAGE 



15 30 o =1 
=1 
=1 
=1 

16 34 =1 
17 35 =1 

=1 
18 37 =1 

=1 
19 39 =1 
20 40 =1 

=1 
21 42 =1 

=1 
22 44 =1 
23 45 =1 
24 46 =1 

25 16 

26 21 0 
26 22 1 
27 23 2 
28 24 2 
30 25 2 
31 26 2 
33 27 2 
34 28 2 
36 29 2 
37 30 2 
39 31 2 
40 32 2 
42 33 2 
43 34 2 
45 35 2 
46 36 2 
48 37 2 
49 38 2 
51 39 Z 
53 40 1 
54 41 0 

55 43 
55 44 

56 46 
57 47 
58 48 
59 49 
60 50 
61 51 
62 52 
63 53 
64 54 
65 55 
66 56 
67 57 
69 58 

*.*WARNING, input: "':ND 
* •• was repaired to "END 

70 58 0 0 

Summary Information: 

PROCEDURE 
STOREDATA 
GETOATA 

Total 

104 Lines Read. 
1 error Detected. 

VAI1: (*va,.iilbles publicly defined in this module •• ) 

Cu,.rantiJata 
Oper€lting, Panic 

: Sy~ter'l'lOata; 

: BOOLEAN: 

PROGRAMING IN PASCAL·86 

puaLIC GetOatai (*GetData Module containi"'~ Get02lta & Stor-.oatil.) 

PROCEDURE GetOataCVAR Cu,."ent!lata: SystemData); 

PROCEDURE StoreQata(VAR Cu,.rantOCltil:SystGmOat2l); 

puaLIC Operation; (*Operation Module containing Qperllte$ystem, 
StartUp$ystem OInd Shut:JownSystem*> 

PROCEDURE StClrtUp$ystem; 
PROCEDURE Qpel"'ateSystem(VAR Cu,.,-entDati!l: SystemDad:a); 
PROCEDURE ShutDown Sy st em (VA R Cur re ntData: Sy stemO i!'Ita); 

PRIVATE GetD~tC'l; 

(* end 01 interface specifiCi!'ltion *) 

PROCEDURE GetData (VAR CurrentOatCl: SystamData); 
BEGIN 

WITH Current!')ati!'l 00 BEGIN 
WRITEC"Type the thermostat setting in degrees Celsius:'); 
QEAOLN (Thermostat$et ting); W R I TELN; 
WRITE('Type the inside temperi!'lture reading in Celsius:'); 
READLNClnsideTemp); WRITELN; 
WRITEC'Type the temperature of the collector water in Celsius:'); 
R EAOLN (C 0 HectorWClt erT emp); WRIT E LN; 
WRITE('Type the temperature of the tank welter in Celsius:'); 
REA!,)LNCTankWaterTemp); WRITELN; 
WRITEC'Type the temperi!'lture of the heated tank water in Celsius:"); 
R EADLN (HeatedT ankTemp); WRI T E LN; 
WRITE ("Type the hour of day, as in 04 or 24:"); 
READLN(Hour); WRITELN; 
WRITE ("Typ; the minute of the hour, as in 01 or 59: "); 
READLN(Minute); WRITELN; 
WRITEC"Type the Clmount of sunlight, any integer will do for now:'); 
READLN(AmountDfSunlight); WRITELN; 

END; (*with CurrentDC'lti!'l*> 
END; 

PROCEDURE StoreDatCl(VAR CurrentData:SystemOata'l); 
S E GIN 
{*Dummy pr6cedure .. eventue.lly will stora CurrentData in a file*) 

WITH Current:JElti!'l DO BEG:N 
WR ITELN (" ---------------------------"); 
WRITELNC"CUi<RENT DATA IS AS FOLUHoiS:"); 
W R I TEL N C ' --- --- - --- - -------- --- -- ---") ; 
WRIT:L"lC'Thermost2lt Setting is • ,Thel"mostatSetting .. "C'); 
WR:T2:LNC'Inside temperature is ",InsideTemp .. "C"); 
WRITELN("Tempera'ture of collector water is .... Coll~ctorW2l'terTemp .. "C'); 
WRITELN('Temperature of tank water is ",TankWaterTemp .. "C'); 
WRIT::LN('Tamperature of the heated tank water is ',HeCitedlankTemp .. "C"); 
WRITELNC"Time of dCl)! is ' .. Hour,,":",Minute); 
WR!TELN("Amount of sunlight is ' .. AmountOfSunlight); 
WRITELN; (*21 bli!'lnk line*) 

ENJ; C*with Curr-ent02lta*) 
END 

OFFSET 
04DSH 
C 294H 

COD: S!Z= DATA SIZE STACK SIZE 
0222H 5460 0010H 160 
02411"1 5770 0010H 160 

06F7H 17830 OOOOH 00 0020H 320 

33% Utilization of Memory. 

Figure 4·6. Listings of Our Test Modules (Cont'd.) 

59 



CHAPTER 4 

SERIES-III Po35c011-86, x031 

Source File: :F1:DUMOP.SRC 
Object File: : F1 :OUM;JP. OBJ 
Controls Specified: DEBUG. 

STMT LINE NESTING 
1 1 0 0 

=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 

11 =1 
12 = 1 

=1 
=1 
= 1 
=1 
=1 

18 = 1 
=1 

20 = 1 
21 = 1 

=1 
10 23 1 =1 

=1 
= 1 

11 26 =1 
12 27 =1 
13 28 = 1 
14 29 =1 
15 30 = 1 

=1 
= 1 
= 1 

16 34 D =1 
17 35 0 =1 

=1 
13 37 =1 

=1 
19 39 =1 
20 40 a = 1 

=1 
21 42 =1 

=1 
22 4, =1 
23 45 =1 
24 46 =1 

25 13 

26 18 
26 19 
27 20 
28 21 
29 22 
30 23 

31 26 
31 27 
32 28 
33 29 
34 30 
35 31 
36 32 
37 33 
38 34 

60 

SOURC T:XT: :F1:JUMOP.SRC 
(*Thi is E1 dU;11my Jperation module, witl'1 dummy StClrtUpSystem, 
ShutD .IInSyst~m, Zlnd Dpel"'.,taSystem procedures, 
for u e with MClinC:)ntrol module in testing phClses • . ) 
MODULE Opel"'",tiol"l; 

(* Int~rfClce s"t?cificCltion common to all modules *) 

$INCLUJ: (: F1: INSPEC .St!C) 
PUSLIC M01inContr01; (*saction of interface specific",tion*) 

CJN$T (*d~clarations declared publicly in this m:;,dule*) 

Mi n i 'l1\"Im:; or::x c hCl ngel'" 

,\l i nim umForl-i e at Pump 
35; (*degrees Celsius*) 
13; 

TVPE (*deflnitions publicly defined in this "I'Iodule*) 

AiI"'Tempel"'~t:.Jr"e =-20 •• 120;(*degrees in Celsius*) 
~~terTerrrper~ture =::; •• 120; 
'"t:?., t i f"1g!.je t no d 5 = (C 0 11 ec torT 0 E x c hC'll'lger, 

Co 11 ec torT o"i eo? t Pump, 
T::'1l1kTo:xchCinger, 
TCinkToHeCitPump, 
He alte dT ank To H ea tPump, 
Nolhthod) ; 

:(::ORD 
ChosenMethod 
InsideTemp, 
T ~H! rm05 t at Set tin 9 

C 011 ec t orW aterT emp, 
T~nkW,;'lterTemp, 

HeateclT.!\l"IkTemp 
4mou"tJfSunlight 
Hour 
"1inute 

END (*SysterrrJClt~*); 

HeCitingMethods; 

AirTemperature; 

~.!I t e rTe mper2lt \,Ire; 
Integgri 
00 •• 24; 
00 •• 59; 

VAP (*VClri::'1bles pul)licly defined in this mOdule.*) 

Curre.,'t~OIt~ 

:;perO't1.n:;, ~~nic 

: SystemDClt~; 

: 8:::0L:AIIj; 

~u6LIC GetJClt2l; (*GetDat.s "'1oclule cOl"ltO'ining GetOClta & StoreDatCl*) 

P:(8C::JURE Get;)CltCl"VA~ CurrentDatCl:System;Jata); 
P=1J:::DiJ:(: StoreD8ta (VAR CurrentDat?: SystemData); 

?J9lIC JperCltiOI"l; (*:]per?tiOI"l "1oclule contC'linl.ng DperateSystem, 
StartupSyste'11 Clncl ShutOoUlnSystem*) 

PRJC:OURE StClrtUpSystem; 
PROCEDU"!E OoerClteSyshm(VAR Current:)C1ta1:SystemData); 
p~:::C ;:DURE ShutDown System (VAR C urrentOata: SystemData); 

PRIVATE Operstion; 

(* and of interf2lca so<:!cifiC2ltion *) 

PROCEDURE StClrtUoSyshm; 
BEGIN 

~RIT::LN (-ClimCite system is now on.I); 
WRITELN (. -------------------------"); 
WRlTELN; 

E NO; 

PRJ C EDU~ E Jpers teS y stem (VAR Curre nt Data: $y stemData); 
8 E G IN 

WITH CurrentDSlta D: BSGIN 
W ~ I TEL N ( , = = = = = = = = = = = = = = = = = = = = = = = = =:= = = = = = = = = = = = = = = = ==: =" ) ; 
WRITElNC'Th<2 Clim2lte System is now operating~'); 
WRITElNi 
WRIT:lNC"The Time is ",Hour,":",Minute); 
WRITELNC'Th~ inside tlilmoeratura is ',InsideTemp,"C"); 
WRITElNC "The thermostat setting is ",ThermostatSetting, IC"); 
WRITE("Method chosen to heat the building: "); 

Figure 4-6. Listings of Our Test Modules (Cont'd.) 

09/01/80 PAGE 



PROGRAMING IN PASCAL-86 

39 35 
40 36 
41 37 
42 38 
43 39 
44 40 
45 41 
46 42 
48 43 
49 44 
50 45 
51 46 
53 47 
54 48 

55 51 
55 52 
56 53 
57 54 
59 55 
60 56 1 
61 57 2 
62 58 2 
63 59 3 
64 60 3 
65 61 3 
66 62 3 
67 63 3 
68 64 3 
69 65 3 
71 66 2 
72 67 2 
7J 68 2 
7~4 69 2 
75 70 2 
76 71 2 
77 72 2 
78 73 2 
79 74 2 
81 75 1 
82 76 1 
83 77 1 
84 78 1 

CAS!:: ChosenMethod OF 
C ollac torT 0 Exe han ger" 
C ollec to,.T oHeat PU'YIp 
TankToExchanger 
T~nkTOHeatPump 

Hea tedT enk T oHea tPump 
NoMe-thod 

WRITEC'Solo!lr" Collector to Exchange,.."); 
WRITEC'Solar Collector to Heat Pump'); 
wRITEC'Tank to Exchanger'); 
WRtTEC"Tar.k to HeClt Pump'); 
WI1:ITEC'Heahd Tank to Heat Pump'); 
WRITEC'No he-CIt reQuired'); 

END: 
WRITELN; 
WR I TEL N ( • = = ============= =============== ================'); 
WRITElNi (.write a blank line •• ) 

END; 
END: (*Oper-ateSystem.> 

PRQCEDURE ShutDown$ystem(IJAR CurrentOata: $ystemData); 
SEGIN 
WI:!ITELN(":::::::::::::::::::::::::::::::::::::::::::::::::"); 

IF Panic THEN WRITELN("PANIC occurred, NORMAL shutdown.") 
ELSE WRITELNC"No PClnic occurred, ABNORMAL shutdown."); 

WRITEL".j("::::::::::::::::::::::::::::::::::::::::::::::::: ")} 
\fIITH CurrentlJata 00 BEGIN 

IoIRITEC"Last chosen l'1eClting method was: "); 
CASE Cl'1osenMethod OF 

Co llec torToE x chan ge r: 
CollectorToHeatPump : 
TankToExch;;lnger 
TankToHeatPu'TIp 
He atedT ank T oH eClt Pump: 
NoMethod 

END; 
WRIT:lN; 

WRITEC"Solar Collector to EXChanger"); 
w~ITEC"Soli!lr Collector to Heat Pump"); 
WRITEC"Tank to Exchanger"); 
W;1:ITEC"Ti!lnk to Heat Pump"); 
wRlTEC"HeCl'ted TO!<nk to Heat Pump"); 
WRITEC""lo heat reQuired"); 

WqrT:LN("Thermostat Setting is ",ThermostCltSetting,·C")} 
WRITELN("Inside temperatl,lre is ",InsideTemp,"C"); 
WRIT~LN("Temperature of collector w.!Iter is ·,CollectorWClter-Temp,"C")} 
WRIT!:LNC"Temperature of tank water is ",TankwaterTemp,"C"); 
WRITELNC"Temperature of the heO!<ted tank wClter is ·,HeatedTankTemp,"C")} 
WRITELNC"Time of d~y is ",Hour,":",Minute); 
WRITELNC"Amount of sunlight is ",AmountDfSunlight); 

END; (*with CurrentDatCl*> 
WRITELNC"::::::::::::::::::::::::::::::::::::::::::::::::::::::"); 
~RITELN} 

wRITElN(#Goodnight, Irene ••• ·); 
END 

···WARNING, input: n:N:l .. 
·*"'was r"paired to "2ND 

85 78 0 0 • C*ShutDownSystem*) 

Summary Information: 

PROCEDURE 
SHUTDOWNSVSTEM 
OPERATESVSTeM 
STARTUP$VSTEM 

DFFS!:T 
0698H 
044(jH 
03E2~ 

COO::: 
039BN 
Q258H 
DOSE H 

SIrE 
9200 
6000 

940 

DATA SIZE STACK SIZE 
0010H 160 
0010H 160 
0010H 160 

Toul o A30H 26GSJ aD;)::!"'! 00 0030H 480 

125 Lines Read. 
1 Error Jetected. 

33% Utilization of Memory. 

Figure 4-6. Listings of Our Test Modules (Cont'd.) 

Summary 

We now have three Pascal-86 modules: MainControl, GetData, and Operation. Two of these 
modules, GetData and Operation, are dummy versions that do not interact with any hardware 
except the Series III system; we will use them for examples in subsequent chapters. The Main
Control module can remain unchanged even in our final application. 

The final application will probably use an 8088 processor. In Chapter 5, we show PLI M-86 pro
cedures we can use to obtain data from thermocouples via the input/output ports on the 8088. 
Since you probably do not have prototype climate control hardware with an 8088, we will not 
include these procedures in our test versions for execution on a Series III system; never
theless, they are good examples of PLI M-86 procedures. 

Our Pascal-86 modules cannot run by themselves on a Series III. Certain built-in procedures 
(like WRITELN and READLN) rely on run-time support software, which consists of public 
modules that contain the software needed to perform console input/output and other opera
tions. In Chapter 6, we'll show you how to link the run-time support libraries to these Pascal-86 
modules to make them executable on a Series III system. 

61 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



CHAPTER 5 
PROGRAMMING IN OTHER LANGUAGES 

"It is possible by ingenuity and at the expense of clarity ... [to do almost anything in any 
language). However, the fact that it is possible to push a pea up a mountain with your nose 
does not mean that this is a sensible way of getting it there." 

-Christopher Strachey 
NATO Summer School in Programming 

The Intellec Series III system also supports PLlM, FORTRAN, and assembly language pro
gramming for iAPX 86,88 and 8080/8085 applications. In the previous chapter we used Pascal-86 
for our main control algorithm, but a modular strategy might take advantage of other languages 
for other modules. 

ANOTHER LOOK AT CHOOSING LANGUAGES FOR MODULES 

In the best of all possible worlds, would we all speak the same language? Tower of Babel 
enthusiasts would have us coding our entire program in one language-but which? We do not 
want to return to the stone age and lose cultural variety and language diversity. There are 
expressions that can only be expressed in Chinese characters, and there are problem-solving 
statements that are better expressed in PLI M than in FORTRAN. A good carpenter should 
have more tools than nails and a hammer; a good programmer should be fluent in several pro
gramming languages. 

When you design an algorithm, design it using a comfortable language. You will find the 
algorithm easier to debug, and you will notice the paradigm inherent in your design. When you 
are ready to translate your algorithm into code for a computer, use the language best suited for 
the paradigm. 

If you have many algorithms that must work together, you should keep the communication 
among them simple. With simple interfaces, you can code each algorithm in the language best 
suited for the algorithm. In some cases, you can use an algorithm that has already been 
developed for use in another application-another reason for keeping your algorithms and 
interfaces simple. With the Intellec Series III development tools, you can link these algorithms 
in different configurations to form several applications. _ 

For example, we chose to write our main control algorithm for the climate system in Pascal-86. 
We still need an algorithm for retrieving the data and converting it to Celsius temperatures. We 
decided to write a simple Pascal-86 routine for testing purposes only (this routine only 
retrieves the data from the Series III console); however, our final product will rely on ther
mocouples and other sources of data, and we will need an algorithm to convert thermocouple 
voltages to degrees Celsius. Fortunately, we already have a routine in PLI M-86 that performs 
this activity, and we can save development time and money byusing it. 

63 



Chapter 5 

64 

PROGRAMMING IN PL/M-86 

PLI M is renowned for its structure and versatility. PLI M is one of the only structured high-level 
languages that allow you to manipulate bits with AND, OR, and shift (SHR for "shift right" and 
SHL for "shift left") operations. PLlM's data types are not as strictly enforced as 
Pascal's-PLlM's BYTE, WORD (ADDRESS), and POINTER types have loose definitions so 
that you can use them for different kinds of data. For this reason, PLiM is easier to use for 
system programming (designing computer systems or control mechanisms), yet harder to use 
in application programming where enforced data typing makes it easier to write error-free 
programs. 

In our climate control system, there are two routines whose paradigms lend themselves easily 
to PLlM: the routine to get BCD digits from a thermostat device and convert them to a Celsius 
temperature, and the routine to get voltage data from a thermocouple and convert the voltages 
to Celsius temperatures. Figure 5-1 shows the algorithm and the actual PLlM-86 code for the 
routine to retrieve data from a thermostat device. You are already familiar with comments in 
Pascal programs that occur between the (* and *) symbols; in PLlM, comments occur between 

the '* and *' symbols. 

A PLiM typed procedure is like a Pascal or FORTRAN function: it is called in an assignment 
statement (as in X:=FUNCTlON(Y)), and it returns a value (X receives the value of 
FUNCTION(Y)). In figure 5-1, the typed procedure THERMOSTAT$SETTING$FROM$PORTS 
returns the value of THERMO$SETTING, which it computes by accessing the two ports 
HIGH and LOW and converting the BCD digits to a Celsius temperature. The value of 
THERMO$SETTING is assigned to ThermostatSetting in the GetData procedure's assignment 
statement: 

ThermostatSetting:=THERMOSTAT$SETTING$FROM$PORTS(StatPort1,Stat Port2); 

PLMDATA: DO; 

f* This moduLe hoLds the procedures THERMOSTAT$SETTING$FROM$PORTS, 
TEMP$DATA$FROM$PORTS, and INTERPOLATE (a procedure used by 
TEMP$DATA$FROM$PORTS). These wi LL be used in the finaL testing 
phase of the cLimate controL system (when prototype hardware is 
avai LabLe). For intermediate testing (and exampLes in this book), 
do not use this moduLe; use the dummy GetData moduLe. *f 

f* 
The aLgorithm for getting a CeLsius temperature from a thermostat 
device that can send BCD digits to two ports of the 8088: 

The finaL version of the GetData procedure (to be 
w r itt e n i n Pas caL - 86) wi L l use t his s tat eme n t tog e t 
the thermostat reading: 

ThermostatSetting:=THERMOSTAT$SETTING$FROM$PORTS(StatPort1,StatPort2); 

A PLfM-86 typed procedure caLLed THERMOSTAT$SETTING$FROM$PORTS 
receives two port numbers from GetData: StatPort1 and StatPort2. 
THERMOSTAT$SETTING$FROM$PORTS must access these ports, convert 
the BCD digits to a CeLsius temperature, and return the 
temperature. 

Figure 5-1. The PL/M-86 Typed Procedure THERMOSTAT$SETTlNG$FROM$PORiS 



Other Languages 

INPUTS 

THERMOSTAT$SETTING$FROM$PORTS: 

Formal parameters HIGH and LOW receive port numbers as actual 
parameters. 

Input ports HIGH and LOW: Three BCD digits for the thermostat setting: 

OUTPUT 

Port HIGH, bits 3-0: hundred's digit 
Port LOW, bits 7-4: ten's digit 
Port LOW, bits 3-0: unit's digit 

THERMOSTAT$SETTING$FROM$PORTS: Return WORD with Celsius temperature 
*1 

I*Here is the typed procedure THERMOSTAT$SETTING$FROM$PORTS:*I 

THERMOSTAT$SETTING$FROM$PORTS: 
PROCEDURE (HIGH, LOW) WORDj 

DECLARE (HIGH, LOW) WORDj 
DECLARE (IN$PORT$HIGH, IN$PORT$LOW) BYTEj 
DECLARE THERMO$SETTING WORDj 
DECLARE (HUNDREDS, TENS, UNITS) BYTEj 

IN$PORT$HIGH = INPUT(HIGH)j 
IN$PORT$LOW = INPUT(LOW)j 
HUNDREDS = IN$PORT$HIGH AND 00001111Bj 
TENS = SHR(IN$PORT$LOW, 4)j 
UNITS = IN$PORT$LOW AND 00001111Bj 
THERMO$SETTING = UNITS + 10*TENS + 100*HUNDREDSj 

RETURN THERMO$SETTINGj I*this returns the temperature*1 
END THERMOSTAT$SETTING$FROM$PORTSj 

Hore procedures follow-osee figure 5-2. 

Figure 5-1. The PL/M-86 Typed Procedure THERMOSTAT$SETTlNG$FROM$PORTS (Cont'd.) 

There are notable similarities between Pascal and PLiM. Most notable are the logical struc
tures that can occur in both languages-both have the DO WHILE and IF-THEN-ELSE con
structs. The languages are lexically and syntactically different in data declarations, procedure 
headings, and other constructs, but they are logically similar. By conforming to a logical struc
ture, you make your program readable and easier to debug. 

65 



ChapterS 

66 

The data declarations in both languages are very similar. In both languages, you must declare 
your data identifiers to be of some type before using the identif~rs. In Pascal, you define data 
types or use predefined Pascal data types. In PLlM, you are restricted to the acceptable PLiM 
data types, but they are loosely defined. A BYTE can be any value expressed in eight bits, and 
a WORD in PLlM-86 (ADDRESS in PLlM-80) can be any value expressed in sixteen bits; both 
types of values are treated as unsigned integers. PLlM-86 offers several more types: INTEGER 
(for signed integers), REAL (for floating point numbers), and POINTER (for 8086 and 8088 
addressing). 

PLlM-86 offers many features useful for system programming- arrays and structures, based 
variables, easy type conversion, built-in procedures for manipulating strings, setting and 
disabling interrupts, accessing the 8086 or 8088 hardware stack pointer and base registers, and 
performing bit shift and rotate operations. We use the AND and SHR operators in the 
THERMOSTAT$SETTING$FROM$PORTS procedure in figure 5-1. 

We also use PLlM-86 procedures to obtain temperature data from thermocouple voltage 
data. the GetData procedure in our GetData module (written in Pascal-86) calls the 
PLlM-86 procedure TEMP$DATA$FROM$PORTS to obtain the temperatures InsideTemp, 
ColiectorWaterTemp, TankWaterTemp, and HeatedTankTemp using these assignment 
statements: 

InsideTemp:=TEMPSDATASFROMSPORTS(InsidePort1,InsidePort2); 
CollectorWaterTemp:=TEMPSDATASFROMSPORTS(CollectPort1,CollectPort2); 
TankWaterTemp:=TEMPSDATASFROMSPORTS(TankPort1,TankPort2); 
HeatedTankTemp:=TEMPSDATASFROMSPORTS(HotTankPort1,HotTankPort2); 

In all four aSSignments, the Pascal-86 identifiers on the left side of the := symbols receive the 
values from the PLlM-86 typed procedure TEMP$DATA$FROM$PORTS. Figure 5-2 shows 
TEM P$DAT A$FROM$PORTS. 

1* 
The typed procedure TEMPSDATASFROMSPORTS receives two port numbers: 
HIGH and LOW. These ports are accessed for the binary ADC output 
from a thermocouple device: HIGH gets the high-order 8 bits, and 
LOW gets the low-order 8 bits. TEMPSDATASFROMSPORTS then uses 
the typed procedure INTERPOLATE, a routine that interpolates a 
Celsius temperature from a thermocouple voltage using two tables. 
TEMPSDATASFROMSPORTS sends a WORD with the input voltage to 
INTERPOLATE. INTERPOLATE returns a Celsius temperature, which 
is returned to the GetData procedure (written in Pascal-86). 

INPUTS 

TEMPSDATASFROMSPORTS: 

Formal parameters HIGH and LOW receive port numbers as actual 
parameters. 

Input port HIGH: Binary ADC output of thermocouple, high-order 8 bits 
Input port LOW: Binary ADC output of thermocouple, low-order 8 bits 

Figure 5-2. The PL/M-86 Typed Procedures TEMP$DATA$FROM$PORTS and INTERPOLATE 



Other Languages 

OUTPUT 

TEMPSDATASFROMSPORTS: Return WORD with temperature in Celsius 

/* INTERPOLATE is declared first, then its calling procedure 
TEMPSDATASFROMSPORTS is declared. */ 

/* INTERPOLATE is a typed procedure that receives thermocouple 
voltage and returns temperature in Celsius using an 
interpolation routine. */ 

INTERPOLATE: 
PROCEDURE(VOLTSIN) WORD; 

DECLARE VOLTS(*) WORD DATA(0,S1,102,1S4,206,2S8,36S,472); 
DECLARE TSCEL(*) WORD DATA(0,10,20,30,40,SO,70,90); 
DECLARE (I, VOLTSIN, NUMERATOR) WORD; 

I = 0; 
IF VOLTSIN=O THEN RETURN TSCEL(I); 
DO WHILE VOLTSIN > VOLTS(I); 

I = I + 1; 
EN 0; 
/* Shift for rounding, and return Celsius temperature */ 
NUMERATOR = SHL«VOLTSIN-VOLTS(I-1»*(TSCEL(I)- TSCEL(I-1», 1); 
RETURN TSCEL(I-1) + SHR(NUMERATOR/(VOLTS(I)- VOLTS(I-1»+1, 1); 

END INTERPOLATE; 

1******************************************************************1 
/* TEMPSDATASFROMSPORTS */ 

TEMPSDATASFROMS~ORTS: 

PROCEDURE(HIGH,LOW) WORD; 
DECLARE (HIGH, LOW) WORD; 
DECLARE INSPORTSHIGH WORD; 
DECLARE INSPORTSLOW BYTE; 
DECLARE (THERMOCOUPLESOUTPUT, TEMPERATURE) WORD; 

INSPORTSHIGH = INPUT(HIGH); 
INSPORTSLOW = INPUT(LOW); 
THERMOCOUPLE$OUTPUT = SHL(INSPORTSHIGH, 8) OR INSPORTSLOW; 
TEMPERATURE = INTERPOLATE(THERMOCOUPLESOUTPUT); 
RETURN TEMPERATURE; 

END TEMPSDATASFROMSPORTS; 

Figure 5-2. The PLM-86 Typed Procedures TEMP$DATA$FROM$PORTS 
and INTERPOLATE (Cont'd.) 

67 



Chapter 3 

68 

Let's look closely at the following statement, which appears in the procedure 
TEMP$DATA$FROM$PORTS shown in figure 5-2: 

THERMOCOUPLESOUTPUT = SHLCINSPORTSHIGH, 8) OR INSPORTSLOWi 

The variable IN$PORT$HIGH was declared as a WORD with 16 bits, and the variable 
IN$PORT$LOW was declared as a BYTE with 8 bits. The thermocouple voltage data from an 
analog-to-dlgital converter can have up to 13 bits, but our procedure was originally written to 
access 8-bit ports. To assemble the 13 bits, we use the SHL (shift to the left) built-in procedure 
to shift the rightmost 8 bits of IN$PORT$HIGH to the left, and we OR this shifted value with 
IN$PORT$LOW. 

The INTERPOLATE procedure uses a more complicated expression that includes both the SHL 
(shift to the left) and SHR (shift to the right) built-in procedures. The INTERPOLATE procedure 
also uses two tables, or arrays. They are declared in the following statements: 

DECLARE VOLTSC*) WORD DATACO,51,102,154,206,258,365,472)i 
DECLARE TSCELC*) WORD DATACO,10,20,30,40,50,70,90)i 

In both declarations, the arrays VOLTS and T$CEL are assigned actual values through the use 
of DATA initializations. The DATA initialization allocates storage for the array and assigns the 
values specified in parentheses after the word OAT A in a single step. 

, 
The values chosen for the VOLTS array are from the National Bureau of Standards; they repre
sent the output (in millivolts) of type J thermocouples that corresponds to the Celsius 
temperature range assigned to the T$CEL array. For example, a thermocouple output of 102 
millivolts should correspond roughly to 20 degrees Celsius. The INTERPOLATE procedure 
uses these tables to arrive at an approximate Celsius temperature value for a known ther
mocouple output Value. Our calculations would be more accurate if the ranges between values 
within each table were smaller. 

Compiling a PLlM-86 program is very similar to compiling a Pascal-86 program. We ~xecute the 
PLlM-86 compiler in the 8086 execution environment by using the Series III R.UN command. 
The PLlM-86 compiler is supplied in the file PLM86.86 on the PLlM-86 disk. We inserted a copy 
of this disk into drive 1 (we also put our source program on the same disk). In the following 
example, we execute the PLM86.86 using the RUN command. We do not have to supply the 
".86" extension, since RUN already assumes that the file you specify has that extension. The 
following example shows the RUN command line for compiling the module PLMDATA, which is 
in a source file called PLMDAT.SRC (PLMDAT.SRC and the PL/M-86 compiler are both in direc
tory :F1 :): 

-RUN :F1:PLM86 :F1:PLMDAT.SRC CODE LARGE<cr> 

This compiler invocation produces two output files: :F1 :PLMDAT.OBJ to hold the compiled 
object module, and :F1 :PLMDAT.LST to hold the listing. The listing is shown in figure 5-3 (in the 
next section). 

Two compiler controls, CODE and LARGE, were also specified. The CODE control tells the 
compiler to list the approximate assembly language instructions that would be necessary to 
implement the PLlM-86 statements-this is useful for many reasons, some of which are 
described in the next section. The LARGE control is needed here because Pascal-86 modules 
are compiled with a default size control that is equivalent to the PLlM-86 LARGE model. All 
modules of a program must conform to the same size control, so our PLlM-86 module must be 
compiled as a LARGE module to conform to the default size of Pascal-86 modules. 



Other Languages 

You need to know more about the PLI M-86 language and compiler than the brief introduction 
provided in this guide. Intel provides a manual for the PLlM-86 language and compiler 
(PLlM-86 User's Guide for 8086-8ased Development Systems). Intel also supplies two manuals 
for PLlM-80 program development (PLlM-80 Programming Manual and 1515-/1 PLlM-80 
Compiler Operator's Manual) in the 8085 execution environment of the Series III. For tutorial 
information on the PLIM language, see A Guide to PLiM Programming For Microcomputer 
Applications by Daniel McCracken (listed in the Bibliography). 

PROGRAMMING IN 8086/8087/8088 ASSEMBLY LANGUAGE 

So far we have described high-level languages that are translated by compilers into machine 
code; namely, Pascal-86 and PLlM-86. Another high-level language not described in this book 
is FORTRAN, which is also translated by a compiler into machine code. Other high-level 
ianguages like BASIC-80 are translated by interpreters into machine code. 

An assembly language program is translated into machine code by an assembler. Intel pro
vides the 8086/8087/8088 Macro Assembler, which is described in this section, to translate 
8086/808718088 Assembly Language programs. It is called a macro assembler because it will 
also translate macro definitions written in the Macro Processor Language, which is described 
with the 8086/8087/8088 Assembly Language. 

The common denominator of all these languages is the machine code, which is the binary 
language of ones and zeros that only the processor can "speak" well. The following is an 
example of machine code, with comments to explain what action each code performs: 

Memory Address Memory Contents Comments 

(Hexadecimal) (Binary) (English) 

00000 11100101 Read word into reg. AX ... 

00001 00000101 ... from input port 5. 

00002 01000000 Increment contents of AX. 

00003 11100111 Write word from reg. AX ... 

00004 00000010 ... to output port 2. 

00005 11101011 Repeat by jumping ... 

00006 11111001 ... back seven bytes. 

00007 

This machine code (sometimes called object code) is the code that the processor executes. 
All languages are eventually translated into this type of code. 

A program written in assembly language is a symbolic representation of machine code. The 
relation between assembly language instructions and the resulting machine code is usually 
very obvious; the relation between statements in a high-level language and the resulting 
machine code is often not obvious (with some exceptions in the PLlM-86 language). . 

Assembly language gives you complete control over the resulting machine code and thereby 
allows you to generate very efficient machine code. There are times when this control is 
desirable, and other times when you want to be free of such details. Most high-level language 
compilers are efficient enough for microcomputer applications; in fact, some compilers are 
more efficient than most humans. 

69 



ChapterS 

70 

Assembly language is the cl.osest language t.o machine c.ode, but it d.oes all.ow y.ou t.o use sym
b.olic names. Here is a rewrite .of the machine c.ode instructi.ons sh.own bef.ore, using 
8086/8087/8088 Assembly Language (c.omments f.oll.ow the semic.ol.ons): 

CYCLE: IN 
INC 
OUT 
JMP 

AX,5 
AX 
2,AX 
C Y C LE 

iRead word from port 5 into reg. AX. 
iIncrement the contents of reg. AX. 
iWrite word from reg. AX to port 2. 
iJump to beginning and repeat. 

This pr.ogram fragment is simpler t.o read because it uses symb.olic names like CYCLE instead 
.of binary and hexadecimal numbers. The 8086/8087/8088 Assembly Language als.o pr.ovides 
s.ophisticated c.ode and data structuring mechanisms usually f.ound .only in high-level 
languages. The assembler enf.orces s.ome c.onsistency in data types t.o prevent inadvertent 
err.ors, yet it als.o all.ows s.ome deliberate ways t.o .override data types. 

The 8086/8087/8088 Macr.o Assembler als.o pr.ocesses macr.o definiti.ons. A macro is a sh.ort
hand functi.on name f.or a string .of instructi.ons. First y.ou define a macr.o, using the Macr.o Pr.o
cessing Language, t.o be a sequence .of assembly language instructi.ons. Once defined, y.ou 
can specify the macr.o name in an assembly language pr.ogram, and the macr.o assembler 
aut.omati.cally replaces the macr.o name with the actual sequence .of instructi.ons fr.om the 
definiti.on. Using this facility y.ou can create many macr.os and use them in many pr.ograms. 

There are many times when an assembly language versi.on .of a r.outine runs faster and takes 
up less space than a high-level language versi.on. Intel's c.ompilers can pr.oduce a listing .of the 
assembly language instructi.ons that are appr.oximately the .ones y.ou w.ould use t.o implement 
the c.ompiled high-level language r.outine in assembly language. F.or example, we used the 
CODE c.ontr.ol in the previ.ous secti.on when we c.ompiled the PLlM-86 pr.ogram PLMDAT.SRC. 
The CODE c.ontr.ol pr.oduced the listing sh.own in figure 5-3. 

PROGRAMMING FOR THE SERIES III ENVIRONMENT 

Assembly language and PLiM give y.ou m.ore direct c.ontr.ol .over the pr.ocess.or's .operati.on; 
h.owever, the Series III system gives y.ou a set .of .operating system pr.ocedures called 
primitives (.or service routines) that y.our pr.ograms can use t.o perf.orm standard .operati.ons. By 
using these primitives, y.ou save devel.opment time in tw.o ways: first, y.ou save time by n.ot 
implementing the standard .operati.ons y.ourself; and sec.ond, y.ou save time in the future by 
writing pr.ograms that will always be c.ompatible with future Intel .operating systems. 

In Pascal-86, y.ou are supplied with built-in pr.ocedures that aut.omatically call these primitives. 
Y.ou link the run-time libraries that c.ontain the primitives t.o y.our Pascal-86 m.odules, and y.ou're 
all set t.o run the pr.ogram .on a Series III system. The pr.ogram will als.o run .on future Intel 
.operating systems, since the .only changes it w.ould need w.ould be c.ontained in the run-time 
libraries; that is, y.ou w.ould have a different set .of run-time libraries f.or each system, but y.our 
basic pr.ogram m.odules w.ould remain unchanged. 

T.o have this m.odularity in PLiM .or assembly language, y.ou simply use the set .of primitives 
described in the /ntel/ec Series 11/ Microcomputer Deve/opment System Programmer's 
Reference Manua/, and then link in the appr.opriate system libraries t.o y.our PLI M .or assembly 
language m.odules (as described in the iAPX 86,88 Fami/y Utilities User's Guide). F.or future 
Intel .operating systems, y.ou .only need t.o use a different set .of system libraries. Y.our basic 
pr.ogram m.odules w.ould remain unchanged. 

The next chapter describes the linking and locating .operati.ons f.or .our Pascal-86 m.odules. 



PLMJATA 

ISI$-II PL/M-ab H121 CJMPILATICN 0::; M":!::JUlE I'lMDATA 
OBJECT MOOULE PLACED :N PLM:X.:JSJ 
COMDILER INVOKi:i) 3Y: PLM36 PLM:X.S~C C::lDO: 

10 

11 

,
INPUTS 

THE RMC S T AT$ S ETTINGSFRQM$PORT S: 

For-mEl! parameta-rs H:GIi and LJW r~eeoive POl"'t numbers as actual par!lmeters. 

Input ports H:GI-t C'lnd LOw: Three 3CD digits for the thermostat setting: 

Port HIGH, bits 3-0; hundred ~s digit 
POl"'t LOw, bits 7-4: ten's digit 
POl"'t L'JW, bits 3-0: unit"s digit 

T E HI' $ OAT A $ FRO H$ P 0 R T S: 

Formal parameters HIGH .!Ind lOW receiv. POl"t "numbers liS actual parameters. 

Input port I'C::GH: Sinary ADe output of ther"mocoup!e, high""order 8 bits 
Input port LOW: BinC'lry ADe output of thermocouple, low-ol"d.,. S bits 

OUTPUTS 

THERMQSTATSSETTINGSFROMSPDRTS: RetUr"n wO~O with s.t'ting in Celsius 

TEMPSOATASFROMSPORTS: ~e'tUr"n WORD wi'th tempera·tur"1iJ in Celsius 

-, 
THE R MO S T.A TS S E TTl NG$ F ~OM S P 0 R T S : 

; STATEMENT # 2 
THE~MOSTATSETTINGFROMPORTS PROC NEAR 

0000 55 PUSH 8P 
0001 8BEC MOV BP,SP 

PROCEDURE (HIGH, LOW) WORD; 
DECLARE (HIGH, LOW) WORD; 

0003 
0006 
0007 

0008 
OOOE 
OOOF 

0013 
0017 
OOlA 

DOH 
0022 
0024 
0026 

~OH 
002E 
0031 

DECLARE CINSPDRTSHIGH, INSPDRTSLOW) lUTE; 
;)ECLARE THERMOSSETTING WORD; 
DECLARE CHUNDREOS, TENS, UNITS) BYTE; 

INSPORTSHIGH INPUT (HIGH); 
; STATEMENT 

885606 MOV ox, CBP). HIGH 
EC IN OX 
88060COO MOV I~PORTHIGH, AL 

INSPORTSLOW INPUT(LOW) ; 
; STATEMENT 

885604 MOV ox, CBP) .LOW 
EC IN OX 
88060000 MOV INPORTLOW,AL 
HUNDREDS IN$PORTSHIGH AND 000011118; 

STATEMENT 
8A060COO MOV AL,lNPQRTHIGH 
80EOOF AND AL,OFH 
88060EOO MOV HUNOREOS,AL 
TENS = SHR(INSPORT$LOw, 4) ; 

; STATEMENT 
8A060000 MOV AL,INPQRTLOW 
8104 MOV CL,4H 
02E8 SHR AL,Cl 
88060FOO MOV TENS,AL 
UNITS = INSPDRTSLQW AND 000011118; 

; STATEMENT 
8A060000 MOV AL,INPORTLDW 
80EOOF AND AL,OFH 
88061000 MOV UNITS, AL 

# 7 

# 8 

# 9 

# 10 

# 11 

Figure 5-3. Listing of PLMDATA with the CODE Control 

Other Languages 

PAGe 

71 



II a TH~RMaSSETTING .. UNITS + 1Q*Tf!NS + 100*HUNOREOSi 
; STATEMENT. 12 

OOH BAObPFOO MOV AI.,T,NS 
OQU 8104 HOV CI.,OAH 
QO~' FH1 HUL CI. 
OQ~O uoe100P MOV .u,U~ITS 
0041 B500 MOV CH,OH 
0043 03e1 AOO +,x,cx 
OOU 50 PUSH AX ; 1 
0046 U060EOO MOV ,l1.,.,HUNOREOS 
OPU .164 MOv Cl,.,f>4H 
OOH F6e1 MUI. tl. 
QQ4E 59 PO" ex ; 1 
004F D3C1 AOO AX.lC;X 
OQS1 89060000 MOV 1H E RH 0 S e: TTl:.NG, A X 

U RETURN THERMOS.S ETT lNG, 
; STATEMENT 

• 13 0055 50 ~OP ~p 

OOH C20400 RET 4" 
14 ENQ THE RHOS T AT$SETT ING$FR ~MSPJRTS; 

. ; STATEMENT 11 14 
TH,RMOST ATSnTINGF'OMPO~T s ENOP 

I- 4AOth,I" typed pl"lI!H;.e~ur. to return temp.reture datill which 
uses 'th, INTERP:jL4TS typed Ifjrqeedure, *, 

I- INTeRftOLAT~ is a 1YQUI proeedur9 thllt receives thermClco\.lpl(t 
volt.gl "nd ,..1:\.Il"n5 "ttmc,rllt\.ll"'e 11'1 Celsius using an 
int.",!:?ol,t;iQn l"outif'llJ' */ 

n IfllT!RPOI,.ATE; 
; STATEMENT 

• 15 
INT;~I'OL.ATe "litOC NEAR 

0059 55 PUSM S" 
OQ5, nEC MGv 3 P,SP 

U~CEOU.E(VOLT$IN) WORO; 
H l ~E~~"E VOI.T$(*) .010 DATA to, S1, 1 02,154, 206, 258, 365,472); 
'1 ~ O~C:~.Re T$Ce\.c",) WORO OATA(O,10;20,30,4C,50,70,90); 
18 ~ O'~~UE (l, VOLUIN, N~ME~'TOR) WORO; 

19 • = 0; 
; STATEMENT .19 

QQ$t C70~OlOOOOQO M~¥ 1IOH 
20 f< VOL TUN<1 T~eN RerURN 1$O!I.O); 

STAT;MENT * 20 
006l 817EQ~0100 CM' CSP).VOLTIN,1H 
0061 7203 Je $+5~ 
DOb9 <9DOOO JMP ~1 

; STATEMENT 
• 21 OO~t uaooa MOV &X,OH 

OO~. 01 E3 SHL &X,1 
0071 8B~71 OOQ MOV AX,TCEL[BX) 
001$ ~O pop BP 
0076 C20?OQ RP 2H 

;1 : 
~2 DO .HHE VOLT UN ) VO~TSII); 

I STAHMENT • 22 
a2. 

00 79 UHOlOO MQV PX,I 
007Q 01n SH~ 8X,1 
007" U460~ MOV I\X, [e'J. VOL TIN 
coU 3B~70000 CM' AX,VOI.TSCeXl 
0086 77Q3 JA S+SH 
0088 ;90700 JMP a3 

23 I ~ I + 1; 
STATeMENT. 23 

OOIS FF060200 !NC 
~4 END; 

STATEMENT 24 
008F e9E7F' J~p az 

U: 

25 
/'It $hj.ft for l"ounQing, and ,..tl,lrn Cel'ius .teml)erature *1 
NUM!~ATOR • S~~, (VOL TSIN-VOI. T S (I-1» - (T$CEL (Xl-TSC! L( 1-1», 1); 

; STATEMENT * 2S 
0092 a.a020a MOV 1$)(,1 
0096 48 oec ex 
0097 OH3 SHL 8X,1 
0099 8687000·0 HOV AX,VOI. TstUl 
0090 884e04 MOV 0, [BPl. VOL TIN 
OOAO 28t8 SUB eX,AX 
00A2 8B360?00 MOV $1,1 
00A6 01<6 SHL SI,1 

Figure 5-3. Listing of PLMDATA with the CODE Control (Cont'd.) 

72 



26 

27 

28 

00A8 88971000 MOV DX,TCEl(SX) 
OOAt 889tl000 MOV 8X,TCEl.(SI) 
0080 280A SU8 BX,DX 
0082 50 PUSH AX 
0083 89C8 MOV AX,CX 
0085 52 PUSH OX 
00B6 F7E3 MUL 8X 
00B8 01 EO SHL Ax,l 

008A 89060400 MOV NJMERATO~,AX 

RETuRN TSCElCI-1) + $HR (NUMEQATOR/ (VOL T S (I) -VOL TS< 1-1» +1, 
; STATEMENT II 26 

DOBE 889tOOOO MOV BX,VOLTS(SIJ 
00e2 5A POP Ox 2 
000 59 POP ex 1 
00e4 2809 SUB 8X,CX 
00e6 52 PUSH OX 
00e7 3102 XJR Ox, DX 
00e9 F7F3 DIV BX 
OOCB 40 INC AX 
ooee 01E8 SHR Ax,1 
OOCE 59 POP CX 
ooeF 03e 1 AOO AX, ex 
0001 50 POP BP 
0002 C20200 RET 2H 

ENO INTERPDLAT!:i 
STATEMENT # 27 

INTERPOLATE ENOl' 

T EMP$OATA$FROMSPORT S: 

TEMPO AT AFRJHPQ RT S 
; STAT!:MENT II 28 

PROC NEAR 
0005 5S PUSH SF' 
0006 8BEe MOV BP,SP 

PROCEDURE(HIGH,LOW) WORO; 
29 oeCLARE (HIGH,LOW) WORO; 

1); 

30 OECLA~E IN$PORTSHIGH ",:lAD; ,* ADDRESS in Mc:C"i!lc:ken~s book *' 
31 DECLARE IN$PORT$LOW BYTE; 
32 OECLARE (THERM(JCOUPLE$OUTPUT, TEMPERATURE) WORO; 

33 

34 

35 

36 

37 

38 

39 

0008 
OOOB 
oooe 
OODE 

00E2 
00E5 
00E6 

OOEA 
OOEE 
OOFO 
00F2 
00F6 
00F8 
OOFA 

OOFE 
OOFF 
0102 

INSPORTSHIGH INPUT (HIGH); 
; STATEMENT • 33 

885606 MOV ox, (SP). HIGH 
EC IN Ox 
8400 MOV AH,DH 
89060600 MDV INPQRTHIGH,AX 
INSPORTSLOW INPUT (LOW); 

885604 MOV 
; STATEMENT II 34 

OX,CSP) .lOW 
EC IN OX 
88061100 MOV INPORTlOW, AL 
T HE ~MOC au PL!: SO UT P UT SHL CINSPORT$HIGH, 8) OR INSPQRTSLOW; 

8B060600 
Bl08 
D3EO 
8AO.1100 
8500 
OBe1 
89060800 
TEMPERATURE 

; STATEMENT II 35 
MOV AX,INPQRTHIGH 
MOV CL,8H 
SHL AX,Cl 
MOV CL,INPORTLOW 
MOV CH,OH 
OR u:,cx 
MOV THERMOCOUPLEQUTPUT,Ax 

INTE RPOLATE (THE RMOC OUPL E SOUT PUT) ; 

SO PUSH 
; STATEMENT II 36 

AX ; 1 
E8S7FF CALL 
89060AOO MOV 
RETURN TEMPERATURE; 

INTERPOLATE 
TeMPEiaTURE,AX 

; STATEMENT II 37 

0106 88060AOO MOV AX,TEMPERATURE 
BP 010A SO PCP 

0108 e20400 RET 4H 
ENO TEMPSOATA$FROMSPORTSi 

TEMPOAT AF ROMPO:n S 

END PLMOATA; 

i STATEMENT It 38 
END? 

; STATEMENT II 39 

MOOULE INFORMATION: 

CODE ARE' SIZE 
CONSTANT AREA SIze 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
95 LINES READ 
a PROGRAM ERROR(S) 

ENO OF ~l.IM-86 COMPILATION 

010EI-! 
0020H 
0012H 
0010H 

2700 
320 
180 
160 

Figure 5·3. Listing of PLMDATA with the CODE Control (Cont'd.) 

Other Languages 

73 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 

I 
I 
I 
I 



CHAPTER 6 
USING UTILITIES TO PREPARE 

EXECUTABLE PROGRAMS 

"Three things are to be looked to in a building: that it stand on the right spot; that it be securely 
founded; that it be successfully executed." 

-Johann Wolfgang Von Goethe 

You must do three things to prepare and execute programs successfully: link program 
modules to resolve external references, locate the linked modules by binding them to memory 
addresses, and run the program in the appropriate operating environment. 

These things are easy to do for most high-level language programs. Easy-to-use utility pro
grams perform these operations for you. They are also flexible enough to allow you to perform 
more complicated linking and locating operations for programs that refer to physical memory 
addresses. The compilers for high-level languages usually produce programs that do not refer 
to physical memory addresses; these programs can be linked and located in one easy step. 

The diagram in figure 6-1 shows the process of linking and locating (binding to addresses) 
modules to prepare a program that can be RUN on the Series III system (or debugged via 
DEBUG-86, described in Chapter 7). 

MODULES CONTAINED 
OBJECT MODULES IN RUN·TIME 

AND FROM COMPILERS 

USER'S LIBRARIES OR ASSEMBLERS 

t t 

9 
t 

~ l 
DEBUG-86 RUN 

Figure 6-1. Using Utilities to Prepare Executable Programs 121632-6 

75 



CHAPTER 6 

76 

PREPARING A LIBRARY OF PROGRAM MODULES 

A library is any collection of public modules-modules that contain public procedures that can 
be used by programs. Some libraries are supplied by Intel; for example, the run-time system 
used with Pascal-86 programs is supplied as several library files. Pascal-86 has a number of 
built-in procedures that you can use in any Pascal-86 program-these procedures can be 
found in the supplied run-time libraries. To use any of the built-in procedures, you must link 
the run-time libraries to your program modules using the LlNK86 utility. 

You can also build your own library files using the LlB86 utility. With the LlB86 utility you can 
create a library, add modules from another library, add new modules, delete modules in a 
library, and list the names of modules in a library. 

The following example shows a session with LlB86. We create a new library called TONY.LlB, 
and then we ADD to it some of the modules from a supplied run-time library called P86RN2.LlB. 
We then LIST the modules in TONY .LlB, and EXIT from the LlB86 utility: 

-RUN LI B86<c r> 
SERIES-III 8086 LIBRARIAN V1.0 
*CREATE :F1:TONY.LIB<cr> 
*ADD :F1:P86RN2.LIB(MOD1, MOD4, MOD?) TO :F1:TONY.LIB<cr> 
*LIST :F1 :TONY.LIB<cr> 
TONY.LIB 

MOD1 
MOD4 
MOD7 

*EXIT<cr> 

The linker (LlNK86) treats library files in a special way. As shown in the next section, you 
specify your program modules first in the LlNK86 command line, then you specify the 
appropriate libraries. You must be sure to link these modules in the proper sequence. 

Why? Remember that your program's main module refers to procedures that exist only in 
other modules-external procedures. The linker must be able to find the external procedures. 
LlNK86 remembers the references to external procedures in the first module, and looks in the 
subsequent modules for those external procedures. If it cannot find the external procedures in 
subsequent modules (maybe because you erroneously specified the library before specifying 
the program modules in the LlNK86 command line), LlNK86 will generate an error message. 

The built-in procedures supplied with Pascal-86 (READLN, WRITELN, etc.) are external pro
cedures contained in the modules included with the run-time support libraries. LlNK86 will first 
see the reference to these procedures in your program modules, and then it will look in the 
librpries for the modules that will satisfy those references. LlNK86 will only link in those 
modules that are needed to satisfy external references; it will not link in the entire library of 
modules unless your program modules refer to all of the library modules. 

Since you do not need to use LlB86 to handle run-time libraries supplied with Pascal-86, you 
only need LlB86 to handle your own libraries. Why would you set up your own libraries? To 
manage sets of repetitive modules. In many software development labs, modules useful to 
many different programs would either be lost or repeated. Libraries are sets of modules that 
are easily maintained through use of the LlB86 librarian. The LlNK86 utility is capable of 
searching such a library and only checking out the modules needed for the linked program. 



USING UTILITIES 

LINKING MODULES TO FORM A LOCATABLE PROGRAM 

Most modular programs have a main module that calls procedures in other subordinate 
modules. Although a subordinate module can call a procedure in the main module, most calls 
are from the main module to a subordinate module, and the modular structure resembles an 
upside-down tree, as shown in figure 6-2. We included the run-time system modules in this 
tree, since the program modules rely on the built-in procedures and operating environment 
calls found in the run-time system. 

When you link these modules together using the LlNK86 utility, you allow LIN K86 to see the 
main module first, because the main module is the most abstract; that is, it has the highest 
level of abstraction, and it calls procedures in lower levels to perform each activity. You should 
then allow LlNK86 to see the next subordinate level of modules, and so on. 

The last group of modules for LlNKB6 should be any run-time system libraries that are needed 
to perform the built-in procedures (READlN, WRITElN, etc.). The run-time system libraries 
contain modules that are at the lowest level of abstraction-these are the modules that call 
procedures in the operating environment of your system (the operating environment is usually 
invisible to you, but not to your Pascal program). 

For an example, we will link together the modules needed to test our main program in the 
Series III environment. We start with our main module MAIN.OBJ, which holds the MainControl 
module. We link to it the test versions of the modules GetData found in DUMDAT.OBJ, and 
Operation found in DUMOP.OBJ. Finally, we link in the modules we need from the run-time 
system libraries P86RNO.LlB, PB6RN1.LlB, P86RN2.LlB, P86RN3.LlB, 87NUll.LlB, and 
lARGE.LlB (we explain these libraries after the example): 

-RUN LINK86 :F1:MAIN.OBJ,:F1:DUMDAT.OBJ,:F1:DUMOP.OBJ,&<cr> 
»:F1:P86RNO.LIB, :F1:P86RN1.LIB,:F1 :P86RN2.LIB,&<cr> 
»:F1 :P86RN 3.LIB,:F1 :87NULL.LIB, :F1 :LARGE.LIB&<cr> 
»TO :F1:PROGRM.86 BIND<cr> 

let's explain this example. We used the RUN command to run the LlNKB6.B6 utility in the "B086 
side" of the Series III. We specified the three object modules of our program, and then we 
specified all of the run-time libraries needed to run our program in the Series III environment. 

MAIN CONTROL 

RUN·TlME SYSTEM MODULES 

Figure 6-2. Main Module with Subordinate Modules 121632-7 

77 



CHAPTER 6 

78 

We directed the output to a file called PROGRM.86. Finally, we specified the BIND control in 
order to make PROGRM.86 an L TL (load-time locatable) program. The BIND control is the 
easiest way to make a program locatable in the Series III environment (more on BIND in the 
next section). PROGRM.86 can now be loaded and executed (via the RUN command) in the 
Series III system. 

The run-time system libraries P86RNO.LlB and P86RN1.LlB are required for any Pascal-86 pro
gram that needs run-time support. The libraries P86RN2.LlB and P86RN3.LlB are required for 
any Pascal-86 program that uses the file inputloutput procedures and other operations per
formed by the operating system. The 87NULL.LlB is needed for programs that do not use 
either the 8087 processor or emulator to perform real arithmetic. Since our program has no 
REAL data types, it does not perform real arithmetic; therefore, it needs the 87NULL.LlB 
library (if it did perform real arithmetic, it would need other libraries). Finally, to run any 
Pascal-86 program on the Series III system, you need to link the LARGE. LIB library to the pro
gram. The LARGE.LlB library contains the primitives (service routines) used to perform opera
tions in the Series III environment. 

The run-time system is separated into several libraries so that you can customize your run
time environment if you so wish. The libraries described above are the default libraries used to 
run programs on the Series III system, if your programs do not use REAL data types. If your 
programs use REAL data types, you would not use 87NULL.LlB; instead, you would use the 
8087 processor with the library 8087.LlB, or the 8087 software emulator with the libraries E8087 
and E8087.LlB. Consult the Pascal-86 User's Guide for specific information about the run-time 
system libraries. 

LOCATING AND RUNNING PROGRAMS 

A program must reside in actual memory before it can run. The locating process assigns actual 
(physical) memory addresses to a program. There are two ways to accomplish the locating 
process: 

1. Using LlNK86 with the BIND control to produce an LTL module (discussed in the next 
paragraph), which can be located, loaded, and executed automatically by the RUN 
command 

2. Using LlNK86 (without the BIND control) to produce a linked module, then LOC86 to locate 
the module in an area of memory you speCify, and finally RUN to load and execute the 
program 

The simplest locating operation involves using the LlNK86 utility with the BIND control, as 
shown in the previous example. This Simpler process, called binding, binds modules to logical 
segments, which can be located in actual memory by the RUN command in one fast step. 
Modules produced by the LlNK86 utility with the BIND control are called load-time locatable 
modules (L TL modules). An L TL module is a module that can be located almost anywhere in 
memory, and so the RUN loader can easily locate it in the Series III environment for you. The 
DEBUG-86 debugger can also locate an L TL module for you, as we will show in the next 
chapter. 

For example, our LlNK86 example in the previous section bound the modules properly to form 
the program PROGRM.86. Now, in one step, you can locate this bound program in actual 
memory, load it into memory, and execute it in the "8086 side" (8086 execution mode) of the 
Series III system by using the RUN command: 

-RUN : F1 : PROGRM<c r> 



USING UTILITIES 

Note that we did not type PROGRM.86, only PROGRM. The RUN loader looks for the" .86" 
extension automatically, unless you specify another extension or a period at the end of the 
name (the period signifies no extension). 

High-level language programmers usually do not burden themselves with more details about 
locating programs. However, assembly language programs and some PUM programs fre
quently refer to physical addresses rather than symbolic (logical) addresses. These program 
modules are called absolute modules because they use absolute physical addresses. 
Absolute modules cannot be located automatically by the RUN command-they must be 
relocated first by the LOC86 utility. 

There is a case when even the simplest program must be located by LOC86: if you intend to 
debug your program using an ICE-86 or ICE-88 emulator, you must locate the program with 
LOC86 to make it an absolute module. The ICE (In-Circuit Emulation) loaders can only load 
absolute modules. 

For an example, we will link our new PUM-86 module PLMDAT.OBJ to our program, along with 
another version of our GetData module in DATA.OBJ, and produce the linked module 
MAIN.LNK: 

-RUN LINK86 :F1:MAIN.OBJ,:F1:DATA.OBJ,:F1 :PLMDAT.OBJ,&<cr> 
»:F1 :DUMOP.OBJ,:F1:P86RNO.LIB, :F1 :P86RN1 .LIB, :F1 :P86RN2.LIB,&< cr> 
»:F1 :P86RN3.LIB, :F1 :87NULL.LIB, :F1 :LARGE.LIB<cr> 

Since we did not specify a new filename with a "TO" clause, the LlNK86 utility directed the 
linked output to the file :F1:MAIN.LNK (LlNK86 takes the name of the first object module 
MAIN.OBJ, and changes its extension to LNK to make MAIN.LNK). Now we are ready to locate 
:F1:MAIN.LNK with the LOC86 utility: 

-RUN LOC86 :F1 :MAIN.LNK TO :F1 :PROGRM.86 RESERVE(200H TO 77FFHl<cr>. 

We used the RESERVE control with LOC86 to reserve an area of memory for the Series III 
operating system. LOC86 will not locate anyprogram segments in the area between addresses 
200H and 77FFH ("H" is for hexadecimal). You must leave room for the Series III operating 
system to execute programs in the Series III environment. 

The LlNK86, LOC86, and LlB86 utilities are described in detail in the iAPX 86,88 
Family Utilities User's Guide for 8086-8ased Development Systems. This manual 
describes all of the utilities for iAPX 86 or iAPX 88 applications development. 
These utilities are designed to be used in 8086-based development systems like 
the Series III. 

We can now RUN our program on the Series III system: 

-RUN PROGRM<cr> 

Climate system is now on. 

Type the thermostat setting in degrees Celsius:24<cr> 

Type the inside temperature reading in Celsius:21<cr> 

Type the temperature of the collector water in Celsius:60<cr> 

Type the temperature of the tank water in Celsius:60<cr> 

79 



CHAPTER 6 

80 

Type the tempera~ure of the heated tank water in Celsius:70<cr> 

Type the hour of day, as in 04 or 24:13<cr> 

Type the minute of the hour, as in 01 or 59:25<cr> 

Type the amount of sunlight, any integer wi II do for now:1<cr> 

CURRENT DATA IS AS FOLLOWS: 

Thermostat Setting is 24C 
Inside temperature is 21C 
Temperature of collector water is 60C 
Temperature of tank water is 60C 
T~mperature of the heated tank water is 70C 
Time of day is 13:25 
Amount of sunlight is 

=============================================== 
The Climate System is now operating. 

The time is 13:25 
The inside temperature ;s 21C 
The thermostat setting is 24C 
Method chosen to heat the bui lding: Solar Collector to Exchanger 
=============================================== 

... oO .......................................................................................... .. ................................................................................................ .. 
No panic occurred, ABNORMAL shutdown • 
................................................................................................ .. ................................................................................................ .. 
Last chosen heating method was: Solar Coll~ctor to Exchanger 
Thermostat Setting is 24C 
Inside temperature is 21C 
Temperature of collector water is 60C 
Temperature of tank water is 60C 
Temperature of the heated tank water is 70C 
Time of day is 13:25 
Amount of sunlight is 1 
............................................................................................................ .......................................................................................................... .. 

Goodnight, Irene ... 

What happened!? Our program stopped with an abnormal shutdown! It had no trouble picking 
the right heating method; however, something caused the variable Operating to become 
FALSE, without setting Panic to TRUE. We will have to debug the program in the next 
chapter ... 



CHAPTER 7 
DEBUGGING AND EXECUTING PROGRAMS 

"Appearances are often deceiving." -Aesop 

We have written program modules and they compiled correctly. We used the LlNK86 utility with 
BIND to link the modules into a program and prepare it for execution. By all appearances, it 
looks like it will work as planned. 

However, when we loaded and executed (via the RUN command) the program, something 
mysterious happened-the "hidden glitch" struck! 

We now have to debug our program~find all of the "hidden glitches" and fix them. Debugging 
is so essential to programming that in most software development efforts, more time is alotted 
to debugging than to any other activity. 

Debuggers are programs that monitor a program's execution and allow you to stop execution 
and check details. Usually a debugger is part of an execution vehicle-a piece of hardware 
your program executes on, or a piece of software your program executes in. The debugger 
monitors the activity in the execution environment. 

For example, the Series III provides two execution environments or execution vehiCles: the 
8085 execution mode and the 8086 execution mode .. To debug programs that run in the 8085 
execution mode, you type the DEBUG command on the "8085 side" (8085 execution mode) to 
start the Monitor. To debug programs that run in the 8086 execution mode, you RUN the 
DEBUG command on the "8086 side" (8086 execution mode) to start the DEBUG-86 debugger. 
Both debuggers reside in ROM. 

With a debugger you can load and execute a program (rather than using RUN), and stop the 
execution to check the values of variables, the contents of registers, and other details. You 
can also change such values, and perform other activities that monitor a program's execution. 
You can even execute your program one step at a time. 

Since the Monitor (for80B5· execution mode) is described in several Intel documents 
(McCracken's Guide to Intel/ec Microcomputer Development Systems and the Intel/ec Series 
III Microcomputer Development System Console Operating Instructions), we will devote this 
chapter to describing DEBUG-B6 and the ICE-BB emulator (a version of the1CE-B6 emulator) for 
debugging programs in the BOB6 execution mode for iAPX 86,88 applications. 

B1 



CHAPTER 7 

82 

USING DEBUG-8S FOR SYMBOLIC DEBUGGING 

Debuggers are useful because they load and execute a program for you, and they allow you to 
stop execution at any point you specify. If you are an assembly language programmer, your 
program directly uses registers and memory locations; you would want to check the contents 
of these registers and memory locations. If you are a high-level language programmer (PLlM, 
Pascal, FORTRAN, etc.), you do not directly refer to registers and memory locations; you 
would rather check the values of your variables, or symbols. 

For example, we know we have a problem with our program: the variable Operating should 
always have the boolean value of TRUE as long as Panic is FALSE. If Panic is set to TRUE, 
Operating should then become FALSE; however, Operating is somehow set to FALSE while 
Panic remains FALSE. During the execution of our program, we should be able to stop execu
tion and check the value of Operating. 

One way to do this is to find the address of Operating and check its contents. A better way 
would be to simply ask for the value of Operating in a command such as: 

*BOOlEAN BYTE .. MAINCONTROl.OPERATING<cr> 
FALSE 

In DEBUG-86, you can execute our program and stop its execution anywhere. You can then 
use the above command to find the boolean (true or false) value of Operating without knowing 
where Operating is located. 

In our program there is only one symbol named Operating. If there were more than one, we 
would specify the symbol by specifying both the module name and the symbol name (e.g., 
.. MAINCONTROL.OPERATING), as we did in the above example. We would have obtained the 
same result by specifying only ".OPERATING". You use two periods as a prefix to module 
names, and one period as a prefix to symbol names. 

To do symbolic debugging using the symbols in your program, you must compile your program 
using the DEBUG compiler control (see Chapter 4 for the Pascal-86 compiler, and Chapter 5 for 
the PLlM-86 compiler). The DEBUG compiler control produces a symbol table for your pro
gram, which can be loaded by DEBUG-86. If you do not use the DEBUG compiler control while 
compiling, you can still do symbolic debugging by defining all of your symbols from within 
DEBUG-86. 

To invoke DEBUG-86, use the following command: 

-RUN OEBUG<cr> 
OEBUG 8086, V1.0 
* 

DEBUG-86 is now in control, as shown by the asterisk (*) prompt. You can now type DEBUG-86 
commands. To load PROGRM.86 and its symbol table, type the following command: 

*lOAO :F1 :PROGRM.86<cr> 

You can check the symbol table by typing the SYMBOLS command: 

*SYMBOlS<cr> 



DEBUGGING AND EXECUTING PROGRAMS 

The symbol table contains each module name and symbol name, with their addresses. You 
can find the address of a single symbol by typing the name of the symbol. For example, we 
want to know the address of the call (in module MainControl) to the procedure OperateSystem 
(which is in the module Operation): 

* .• MAINCONTROL.OPERATESYSTEM<cr> 
.. MAINCONTROL.OPERATESYSTEM=0481:06CCH 

DEBUG-86 knows where to start executing the program by looking at the contents of the CS 
and IP (CS:IP) registers. The CS register holds the starting address of the program's code seg
ment, and the IP register holds the address within the code segment where the program 
should start execution. CS and IP change as the program executes; therefore, to preserve the 
starting location of the program, we create a new symbol called .START to hold the starting 
address: 

*DEFINE .START=CS:IP<cr> 

We could also check the contents of CS:IP: 

*CS<cr> 
CS=0481H 
*IP<cr> 
IP=OFD6H 

You should familiarize yourself with addresses. The 8086 and 8088 processors use 20-bit 
physical addresses separated into two words: the segment base address and the offset value. 
The CS register holds the code segment base address, and the IP register holds the offset 
value. All addresses are in hexadecimal notation (the "H" stands for hexadecimal). All 
addresses are displayed with the segment base, followed by a colon, followed by the offset. 

The EVALUATE (abbreviated "EVA") command is useful for evaluating numeric and character 
values and addresses. For example, the number 4142H can be represented .in several ways: 

*EVA 4142<cr> 
1000001010000Y 40S02Q 16706T 4142H 'AB' 

When you type a number by itself, DEBUG-86 assumes the number is in hexadecimal notation. 
The number 4142H is equivalent to the decimal number 16706 ("T" denotes decimal notation), 
the octal number 405020 ("0" denotes octal notation), the binary number 1000001010000Y ("Y" 
denotes binary notation), and the ASCII characters "AB" (41H is the ASCII code for "A" and 
42H is the ASCII code for "B"). 

The EVA command will also find the closest symbol that has the address you specify. The 
keyword SYM tells the EVA command to evaluate the address symbolically: 

*EVA 481:6CC SYM<cr> 
.• MAINCONTROL.OPERATESYSTEM 

We will now execute our program and stop its execution before it executes the OperateSystem 
procedure. The GO command will start executing at the beginning of the program, which it 
knows by looking at the CS and IP registers (CS:IP). You could specify an actual address with 
GO to start from, or the line number of a program statement, or a statement label; however, we 
do not use statement labels in our program. We want our program to stop while it is executing 
the main (WHILE Operating) loop, not at the start of the OperateSystem procedl ·e in the 

83 



CHAPTER 7 

84 

Operation module (since procedure definitions do not actually execute). Our program will GO 
until it reaches the starting address, in the MainControl module, of the call to the 
OperateSystem procedure: 

*GO TILL •. MAINCONTROL.OPERATESYSTEM<cr> 
Climate System is now on. 

During execution, we type in the 
temperatures and other data. The program 
stops and DEBUG-86 displays the next 
instruction to be executed (in assembly 
language fo rm) . 

0481: 06CCH PUSH BP 
** 

At this point, we can check the boolean values of both Panic and Operating: 

**BOOL BYTE .PANIC<cr> 
FALSE 
*BOOL BYTE .OPERATING<cr> 
FALSE 

To make sure the program stopped at the right place, we evaluate the CS and IP registers 
symbolically: 

*EVA CS:IP SYM<cr> 
.. MAINCONTROL.OPERATESYSTEM 

Another useful DEBUG-86 command is the STEP command. From any pOint of program execu
tion, you can execute the program step by step-one machine instruction at a time. The STEP 
command also displays the next machine instruction to be executed. This display is in 
"disassembled" form-the machine instruction is translated back into assembly language: 

*STEP<cr> 
0481:06CDH 

* 
MOV BP,SP 

STEP executes one machine instruction and displays 
the next one disassembled. Another STEP would 
execute the displayed instruction. 

We will now change the value of Operating to be TRUE. A boolean variable is TRUE if its 
numeric value is odd; FALSE Wits numeric value is even. Why? Because a boolean is TRUE if 
its rightmost bit (in a binary representation) is 1, and FALSE if its rightmost bit is O. All even 
values written in binary form end with a 0 in the rightmost bit, and all odd values written in 
binary form end with a 1. 

To change the value of Operating, we must also specify BYTE, since it is only one byte long: 

*BYTE .OPERATING=1<cr> 
*BOOL BYTE .OPERATING<cr> 
TRUE 



DEBUGGING AND EXECUTING PROGRAMS 

We can now continue execution with a GO command: 

*GO<cr> 
============================================== 
The Climate System is now operating. 

Execution continues correctly, and the 
program loops back to the GetOata 
procedure to obtain more data. As we 
continue execution, the program once 
again erroneously changes Operating 
to FALSE. 

We can use our .START symbol to start execution once again at the beginning of the program: 

*GO FROM .START TILL •• MAINCONTROL.OPERATESYSTEM<cr> 

After repeating these debugging operations, we are sure that our error occurred at the state
ment where Operating is set to FALSE while Panic is set to TRUE. 

Refer to the listing in Chapter 4. The Pascal-86 statement numbers are in the "STMT" column 
of the listing. The "LINE" column shows the source file line numbers (you can use the line 
numbers with CREDIT to display, edit, move, or copy particular lines). 

Between statements 37 and 40 (source lines 68 and 70), we have an ELSE clause that should 
only execute if the temperatures are not greater than the minimums necessary to heat the 
building. Panic should be set to TRUE and Operating should be set to FALSE, if this ELSE 
clause executes. 

However, the "ELSE Panic:=TRUE" is not executing, but the "Operating:=FALSE" is always 
executing! The error is one of omission: to have two statements execute as part of an ELSE 
clause, they must begin with BEGIN and end with END, as shown: 

ELSE BEGIN 
Panic:=TRUE; dp~t;ng:=FALSE; 

END; 

To make this change, we must re-edit MAIN.SRC, re-compile MAIN.SRC to obtain 
a new MAIN.OBJ, and re-link the modules using L1NK86 (with BIND, as shown in 
Chapter 6). Figure 7-1 shows the revised listing, with the corrected ELSE clause 
shaded, and a sample run of the program. 

SERIES-III Paseal-S6, X031 09/01/80 PAGE 1 

Source I=il.: ;F1:MAIN.Src:C 
qbject File: :1:1:MAIN.OSJ 
Controls Specified: :lE5UG. 

STMT LINE NESTING 
1 1 0 0 
2 2 0 0 

SOURCE TEXT: :F1:MAIN.SRC 
MODULE MiOIinContl"'oli 

(* Interface specificatior: common to all modules *) 

SINCLUDE (: 1=1: INSPEC. SRC) 
=1 PU5LIC MSlinContl"'oli (*section of intel"'face specification*) 

Figure 7·1. Climate Control Program Listing and Sample Run 

MA INCQNTQ:OL 

85 



CHAPTER 7 

=, 
=, =, ., ., ., ., 
=, 
=, 

" =, 
'2 =, =, =, ., ., ., 
'8 =, ., 
20 ., 
2' ., ., 

'0 23 ., =, ., 
" 26 0 =, 
'2 27 0 =, 
'3 28 0 ., 
'4 29 0 ., 
'5 30 0 =1 ., ., ., 
16 34 0 0 ., 
'7 35 0 0 ., ., 
'8 17 0 ., 

·1 
19 39 0 0 '1 
20 40 0 0 =, 

=, 
21 42 0 ·1 

-1 
22 44 0 0 =1 
23 45 0 0 " 24 46 0 0 " 
25 

26 13 0 
26 14 1 
27 15 1 
27 16 2 
28 17 2 
28 18 3 
29 19 3 

31 21 

33 23 

35 25 

37 27 

38 29 
40 30 
41 31 
42 32 
43 33 
45 34 
46 35 

46 39 
47 40 
48 41 
49 42 
50 43 
50 44 
5' 4S 
52 46 
;] 47 
54 48 
56 49 
57 50 

86 

CONST ("'declarations declar.d publicly in tl'l15 modul •• ) 

Minimum 1=0 roE)C change,.. 
M i n1 mumF 0 ,-Heat P urnp 

35i (*degrees Celsius.) 
13; 

TYP!: (*definitions J)ublicly defined in this module.> 

Air-Tempe,.lItu"" =-20 •• 120; (*degrees in Celsius.) 
Wat.,..Tem!)eratur. =0 •• 120; 
H. a tin9M1 t !'Iod 5 = (C ollee t'orToE xc "'an 0'''' 

SystemOata 

Co llee torT oHeat PUIIIP' 
T ankToExel'tang.,.., 
Tank T oH eatP UI'III), 

He at ed T ankT oHea tP ump, 
NoM,thad); 

RECORO 
CI'tOsltnMethod 
Insider.mp, 

H •• tlngHethods; 

11'1 &,.11105 tat Set t1 no 
ColI ec torWe t,,,T emp, 
rankwat.,.Temp, 
Hest.dTankT •• p 
Arnou n t 0 f Sun 1 i ;I'It 
Hour 

Water-TIIIIP.ratu,...; 
Integer; 
00 •• 24; 

Minute 00 •• 59; 
END (*S)'stemData*>; 

VAR (*v8 ... iables publicly defined in this module.*) 

Cu,.,.entOata 
0I)e,.8tin;, Panic 

: SystemOata; 
: BOOLEAN; 

PUBLIC GetOata; C"'G,tOata Module cont.tni"g GetOeta & Sto,.eOata*) 

PROCEDURE GetO.ta(VAR Cu,.,..ntOata:Syste.Oata); 
PROe EOURE S to,.e Oat a (VAR C u,.,.ent Oa til: Sy stemOata) ; 

PUBLIC Operat10n; (*Ol)eration Module containing OperateS.y.tem, 
StartUpSyste", and ShutOolilnSystem*) 

PROCeDURE StartUpSystem; 
PROC e OUR e O~"r a te S Yltem (VA R C u,.,.. ntOat a: SysteMO ata) ; 
PROCeDURE ShutOolinSystem C VAR CurrentOllta: SysteIllOati!l); 

PROGRAM lola i nC on tro l( INPUT, a UT PUn; 

(* end of inte ... of'i"ce specification *) 

PROC EOU U Oetel"mineMetl"lod (VAR CUl"rlntOata SY5temOatll); 
BEGIN 

WITH CUl"l"entOatEl 00 
BEGIN 

IF InsideTemp<Tl"lermostatSetting TIoIEN 
BEGIN 

END 

IF Collec to,.Wa t el"T emp>Min imumFor E xch anger THEN 
C 1'10 se nMethod: =Co llec torT 0 E xch an gel" 

ELSE IF CoUectoI"Wa-teI"Temp>MinimumForHeatPump THEN 
C nos en.'" e t h od: =Co llec t ol"T oHllit Pump 

elSE If: TankWatel"Temp>MinimumForExchangel" THEN 
C h 0 sen Met hod: = T link T 0 Ex c han gIl" 

elSe IF TankWatel"TemD>MiniMulIIFol"HeatPump THEN 
Chosen Me t 1'10 d: =T a nk ToHeat P u IIIP 

ELSE IF HeatedTankTemp>MiniliumFol"HeatPump THEN 
o 

ELS:: (*no heating ,.eQuest*) ChosenMethod:=NoMethod 
ENO; (*With CurrentOilta*) 

eNO; (*Oetel"mineMethod) 

(* * ... ** * * ... * * * .... * * MA IN PR OG RAM ... **** *** ** ... ** ** **** ** ** * *** * *** * * * * *) 

B,GIN 
Stal"tUpSystem; 
:Jpel"lItin;:=T~U:; 

Panic;=FALS:; 
WHIL:: Oper:otin; 00 (*wh11. system is ope,.ating, do;*) 

Se:;I"l 
GatOataCCu"l"entOah); (*Get tl"le temps, time, etc.*) 
Stol"eOSlta(CUl"r."tData); (*$to ... e this data as "ecol"d*) 
Oete,.mineMethod(C:.Jl"l"entData); (*t"'is detects 1I panic"') 
OperateS y stem (Cul""'entData); 

ENO; C*while operating"') 
Shu t 'jown S y stem (C u "I"e n t 0 at a) ; 

EN;). (*Main Control Algorithm*) 

Figure 7·1 . .Climate Control Program Listing and Sample Run (Cont'd.) 



DEBUGGING AND EXECUTING PROGRAMS 

Summary Information: 

PRDCE:JURE 
OETERMINEMETHOO 

To tal 

96 Lines ~"ad. 
:J Errors Olitactad. 

J=FSET CODE SIZ: DATA SIZ: ST~CK SIZE 
:;011 H OJ3F>i 143D 0006" 60 

0147'"4 327'J 0016H 221) 004Cf1 760 

33% Utiliz~tion of ,"lemory. 

SERIES-III Pascel-86, X031 

Source File: : F1 :OUMOAT. SRC 
Object File: :F1 :OUMOAT.OBJ 
Controls Specified: DESUG. 

STMT LINE NESTING 
1 1 0 0 

10 

=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 

11 =1 
12 =1 

=1 
=1 
=1 
=1 
=1 

18 =1 
=1 

20 =1 
21 =1 

=1 
10 23 =1 

=1 
=1 

11 26 =1 
12 27 =1 
13 28 =1 
14 29 =1 
15 30 =1 

=1 
=1 
=1 

16 34 =1 
17 35 =1 

=1 
18 37 =1 

=1 
19 39 =1 
20 40 =1 

=1 
21 42 =1 

=1 
22 44 -1 
23 45 =1 
24 46 =1 

25 16 

SOURCE TExT: :c1 :DUMDAT.SRC 
(*This is a dummy GetData module, with dummy GetOata 
and StoreOata procedures, for use with MainControl 
module in testing phases. It only performs console 
input to get Celsius temperature!, the time of day, 
and the amount of sunlight (insolation) for the 
solar collector. Use PLM86$OATA module for real 
application.*) 

MODUL::: GetDatCli 

(* Int~rfe'\ce spGcific.:ltion common to all modules *) 

$INCloUDE(:F1 :INSPEC.SRC) 
::JU9l.IC MainControli (-section of interface specifiC2ltion*) 

CJNST (*declarations declared publicly in thi. module*) 

Mini mumF orE xc hange r 
Min im u m For!oje;:o t Pum p 

35; (*degrees Celsius*) 
1 J; 

TYPE (*definitions publicly defined in this module*) 

AirTamperature =-20 •• 120iC*degrees in Celsius.) 
W2ItC?rTemperature =0 •• 120; 
Heat ingMethods = (C 011 ec torT oE xc hanger, 

SystemJata 

CoIl eC torToHei! tPump, 
TClnkToExchl':'nge r , 
T2InkToHeatPu'1lp, 
Hea ted Tank T 0 H Qat I' ump, 
NoMethod) ; 

REC:lRD 
ChosenMethod 
InsideTemp, 
The rmo s tatS e t ting 
Co llec t orWaterT amp, 
TankWaterTemp, 
HeatedTankTemp 
A'I1ountOfSunlight 
Hour 
Minute 

END (*SystemData.); 

Heo!ltingMethodsi 

AirTemperature; 

W a tarT empe rEI tur II; 
Integer; 
00 •• 24; 
00 •• 59; 

VAR (*IJ2Iriables publicly defined in this module •• > 

Cu!"'rcntD2Ita 
Operating, PEinic 

: SystemOatEl; 
: BOOl.EAN; 

PUBLIC GetDClta; (*GetData Modul? containing GetData & StoreData*) 

PROCEDURE GetDI':'ta (VAq CurrentD¢'ota: SYstemData); 
PROCEOUR!: StoreOElta(VAR CurrentOata:SystemData); 

PUBl.IC Jper2ltion; (*Oper?tion Module containing OperaleSystern, 
St2lrtUpSystem C\nd ShutOownSystem*) 

PROCEDURE StartUpSystem; 
PROC EOUR E DperateS ys tern (vAR CurrentData: Sys temData); 
PROCEDURE ShutDownSystem(VAR CurrentDaht:SystemData); 

PRIVATE GetDlIta; 

(* end of interface speCification *) 

09/01/80 

Figure 7·1. Climate Control Program Listing and Sample Run (Cont'd.) 

PAGE 

87 



CHARTER 7 

26 21 
26 22 
27 23 
28 24 
30 a5 
31 26 
33 Z7 
34 2e 
36 29 
37 30 
39 31 
40 32 
42 33 
43 34 
45 35 
46 36 
4e 37 
49 38 
51 39 
53 40 
54 41 

55 43 
55 44 

56 46 
57 47 
58 48 
59 49 
60 50 
61 51 
62 52 
63 53 
64 54 
65 55 
66 56 
67 57 
69 58 

ItiNO 

PRO~;DI,JRE Gl3t:la1:a(VAR Cyrl"'entData:SystemOata); 
BEGIN 

WITH C",,.,.antp_ta 00 BEGIN 
WRITe(~Ty~t the th'rlll0stat setting in degre.s Celsius:'); 
Ii: =AOLN (TtUr"mo stlltSet t1"9>; WR ITEl"N; 
WRITEC'Type tne inside temperature '-'elding in Celsius:'); 
REAOLNC-Insid'!Temt,l); WRITELN; 
WRITEC'Typ. the temperatul"'. of the collectOr" w~te,.. in Celsius:-); 
R E A:JLN (Co 1 hetorWat&I"'Temp); WRI T ELN; 
WR!TEC"TYPt the temperature of the tank wet.,. in Celsius:'); 
qUOLN (T a"kW alter-Temp); WR ITE LN; 
WRIT!:C"TYl)e the temperature of the heated tank water in Celsius: '); 
Re,AOLNCHe~t.dTilnkTemp); WRITELN; 
WRITEC"Type the hour of day, as in 04 0 ... 24:'); 
IiEAOLN(Hour}i WRITI::I.Ni 
WRITEC"Type the minute of the hour, as in 01 0" 59: "); 
REAOLN(Minut,p WRITELN; 
WRITEC"Typt the amount of sunlight, any integer will do fol"' now:'}; 
R:: 4:lL.N' Allloun t01 Sun 1 ight); W Rl TELN; 

END; C*~ith Curl"'entOlita*) 
eND; 

PIt~C E:lURE S'tol"~:la tll (VA R CUl"'l"entOata: S ys temO ata); 
OEGIN 
(*ilummy prqced\.lr., 'lventue-l.ly will $tOI"'~ CurrentOata in " fi1,,*) 

~ITJ1 Cl,lrrentOata OQ BEGIN WR I TEI,.N (1 ____ ...... _____ ... _ ....... _______ .. ___ "); 

wRITEI,.N("CURRENT DATA IS AS FOLLOWS:"); 
W R I TEL N ( ............ _- - .......... -- ... ---- ... - ...... - ... ---" ) ; 
WRITEI,.N( 'Thermostllt Setting is • ,The,.most~tSetting, 'C"); 
IO/:(;IT!LN("Insidt temp,r.!lture is ",InsideTemp,'C"); 
WRITELNC'T,mperatur, of collector lIIater is ·,CollectorWater"Temp,·C·); 
WRlTELNC'Tem~e ... ature of tiilnk lIIatflr is ·,T",nkWate ... Temp,'C"); 
WRITEI,.NC'Temperatyre of the heated tal'lk water ~s ',HeatedTankTemp,·C'); 
WR:::TELN('Timll of oay i? • ... IoIOU,.,';·,Min\olte); 
WRIT:LNC·Amount of sunli9ht is ',AmountOfSunlj,ght); 
WRITEUJ} C*a blC1nk 1ine*) 

END; C*\IIith CI./,.,.antOat:'l*> 
ENe 

".*WARNING, i""'I,.It: 
-.*WIS ,.epaj,red to 

7J !.II ~ 0 
"EN~ ; " 

SUIII"'~")1 InfOl"'lftBtioA: 

PRoceDURe 
STOREOAT" 
GeT DATA 

Total 

104 I.~"" hod. 
1 e,.ror pe1ltcttd. 

'JFFSET 
04~5H 

0294H 

CODE SIZE i)ATA SIZE STACK SIZE 
0222H 5460 0010H 160 
0241H 5770 0010H 160 

06F7H 17830 OOOOH 00 0020H 320 

33% U,\ilization of Memory. 

Source File: :F1 :OUMOP.$RC 
DbJ.~t PU., ,F1,OUMOP.OBJ 
Controls Specified; oeeUG. 

STHT 1.1~e NESTING 
1 1 a 0 

0 0 

=1 
=1 
=1 
=1 
=1 
.1 
=1 
=1 
=1 
=1 

11 .1 

SOURCE TEXT, ,Fl,OUMOP.SRC 
(*Th15 h: ill dummy Op .... ation module, with dummy StartUp System, 
Sh\.ltOownSyst.m, "I'Id Oper"'ataSyshm procedyres, . 
fQr use with MC'linControl modlJle in test~ng phases • . ) 
MOOULE Opert'l'tion; 

C* Interfillce specification common to all modules *) 

$INCLUDE (,'1 'I N SP,C. SRC) 
PU3LIC MilinCont,.oli (*section of interface specification*) 

CONST (*dsc12l ... ations declared publicly in this module.) 

Mi n:i, mumFor E)( c h Cln ger 
Mini mumFo ,.He a t Pu mr:;l 

35; C*deg ... ees Celsius*' 
13; 

TYPE (*definitions publicly def:i,ned in this module*) 

AirTe:"llper2lt\.lr"e ="'20~ .120; C*de~r"ees in Celsius*) 
WaterTemperature =0 •• 120; 

09/01/80 

Figure 7-1. Climate Control Program Listing and Sample Run (Cont'd.) 

88 

PAGE 



12 =1 
=1 
=1 
=1 
=1 

" 18 =1 
'1 

8. 20 =1 
9 21 =1 

'1 
10 23 =1 

'1 
'1 

II 26 '1 
12 27 =1 
13 28 '1 
14 29 '1 
15 30 ·1 

'1 
=1 
'1 

16 34 '1 
17 35 '1 

=1 
18 37 =1 

'1 
19 39 '1 
20 40 '1 

=1 
21 42 '1 

" Z2 44 '1 
23 45 " 24 46 =1 

25 13 

26 18 
26 19 
Z7 20 
28 21 
29 22 
30 23 

31 26 0 
31 27 I 
32 28 Z 
33 29 2 
34 30 2 
35 31 2 
36 32 2 
37 33 2 
38 34 2 
39 35 2 
40 36 3 
41 37 3 
42 38 3 
43 39 3 
44 40 3 
45 41 3 
46 42 3 
48 43 2 
49 44 2 
50 45 2 
51 46 2 
53 47 I 
54 48 0 

55 51 0 
55 52 1 
56 53 1 
57 54 1 
59 55 1 
60 56 1 
61 57 2 
62 58 2 
63 59 3 
64 60 3 
65 61 3 
66 62 3 
67 63 3 
68 64 3 

DEBUGGING AND EXECUTING PROGRAMS 

Heat i n gMe t nod s = (C 0 llee; to,.T oE x c niln g''', 

SystemQata 

Co UectorToH •• tPump, 
T enk Toe xc hanger, 
T ~nkToHei!'ltPumru 
He a te d Tank TaHea tP ump, 
NoM'thod) ; 

RECORD 
ChosenMethod 
InsideT.mp, 
ThermostetS,tting 
Call e c to "WZI t.,. Temp, 
TllnkWllterTemp, 
HeatedTankTe",p 
A 11101.1 "tOf S unl 191'1 t 
Hour" 
Minute 

END C*Syste",02lta*); 

H •• tingMethodsi 

Air-Temperature; 

Wat.,.Temperaturei 
Intege,,; 
00 •• 24; 
00 •• 59; 

VAR (.valr-iables publicly defined in this Module •• ' 

Curl"'entOate 
Operating, Panic 

; SystemOata; 
: BOOLEAN; 

PUBLIC GatD.ta; (*GetDatB Module contlli"1"9 GatData & Sto,..Ollta*) 

P ROC EOU REG. tDat!! (V AR Cur" 9"tO at I: S y st e .. O ata) ; 
P~OCEDUR E Stor.Oi!lta (VAR CurrentO.ta: SystemOata); 

PUBLIC Dperattion; C*Operation Module containing Op.,.ateSyst."" 
Stell"tUpSystam rtnd ShutDolllnSyste",*) 

PROC:DURE StCirtUpSystarn; 
PROCE:lURE :Jp,rateSystemCVAR Curl"entDatat: Syst:uOata); 
II' R:J C': OUR E Shut OOllin S y s t. III (V A.::l C ur,.en t Oatt at: S y stem 0 1I til) ; 

PRIVATE Operation; 

(* end of intel"face s!)ecification *) 

PROCEDURE Stal"tUpSystem; 
BEGIN 

W~ITeLN ('Climllte system is now on.'); 
WqITELN C ..... - .... ---- ........ -- ...... - .. - .. -- ... ); 
WRITELN; 

END; 

PROCEDURE OperliteSystem CVAR CurrentDati!l: SystemData); 
BEGIN 

WITH Cur,.entOata DO BEGIN 
WR IT!: LN (' =============================================='); 
WRITELN('TI,. Climate System is now operating.'); 
WRITELN; 
WRITELNC'The Tillie is ',HOu,.,':',Minute); 
WiUTELNC'The inside temp.,.atul"e is ',InsideTelllp,'C'); 
WRITELNC'The thermostat setting is ',Th.rmostatSetting,'C'); 
WRITEC'Method chos.n to heat the building: '); 
CASE ChosenMethod OF 

Co llec torT 0 E xc hanger: 
Collectol"ToHeatPump : 
Til n Ie To E xc han ge" 
TanleToHeatPump : 
HeatedT ankToHeatPump: 
NoMethod 

END; 
wtUTELN; 

WRITEC'Sol,r Collector to Exchang.r'); 
WRITEC'Solar Collecto" to Heat Pump'); 
WRITEC'Tank to Exchange,.'); 
WRITEC'Tank to Heat PUllp·); 
WRITEC 'Heilted Tank to Heat Pump·); 
WRITEC'No heat reCluired·); 

WR IT E LN C ' = = ==== I; = ========= === ==== ==== ============= =r=s==' ) ; 
WRITELN; C*wl"ite a blank line.*) 

END; 
END; C*Opel"ilteSyst.",*) 

PROC EDUR E S 1'1 ut Down S yst em C VAR Cur,. entO. t a: Sy stemOilt a) ; 
BEGIN 
W'ITE~N (': : ::::::: :: : : ::: : : : ::::::::: :: :: : :::::::::: ::: :::·Ii 

IF 'Panic THEN WRITELNC"'PANIC occurr,d, NORMAL shutdown.·) 
ELSe WRITELNC'No panic occur"ed, A8NORMAL shutdollln.'); 

WRITELN C':::::;:::::::::::::::::::::::::::::::::::::::::::'); 
WIT ... Cu,.r.ntOat!l 00 BEGIN 

WRITEC·LlIst chosen heating method was: '); 
CASE CMosenMetl'lod OF 

C ollec torT 0 Exc l'Ian gel": 
CollectorToHe.tPump : 
TankToExchange,. : 
TankToHeatF'ump 
Hea tedT link T oH ell t Pump: 
NoMethod 

WRITEC'Sola,. Collecto,. to Exchanger·); 
WRITEC'Sol.,. Collecto,. to Heat PUMp'); 
WRITEC·Tillnk to Exc:hillngel"'"'; 
WRITEC'Tank to Heat PUMp'); 
WRITEC·Heated Tank to Heat Pump'); 
WRITEC'No heat requi,..d'); 

Figure 7·1. Climate Control Program Listing and Sample Run (Cont'd.) 

89 



CHAPTER 7 

69 65 
71 66 
72 67 
73 68 
74 69 
75 70 
76 71 
77 72 
78 13 
79 74 
81 75 
82 76 
83 77 
84 78 

END; 
WRITELN: 
WRITELN ("Th.,.mostat Setting is .. ,Th.,.mostatSetting," C·); 
WRITELNC'"Inside teMperature is ·,InsideTemp,·C"); 
WRITELN( "Temperatu,.. of eollecto,.. lIIat.,. 1s .. ,CollectorWat."Temp,"C"); 
WR!TELN( "Temlarature of tank wat.,. is .. ,TankWat.rTeIllP,"C"); 
ioIRITELN("'Tempe,.atur. of the hellted tank lIate" 1s ·,HeatedTankTeIllP,·C·)j 
w~ITeLN(·T1m. of day is ·,Hour,":",M1nut.); 
WRITELN ( .. Amount of sunlight is .. ,Alllou"t015u"11ght); 

SHO: (*1II1th Cu""e"tJata*> 
WRI TELN (": : :::::: : :: ::: : : :::::::: ::: ::::::::::::: : :: : :: :: :: : :::"); 
WRITELfH 
WRITELN( "Goodni;ht, I".ne .... "'; 

END 
***W'ARNING, input: "END 
***11111. r.~ai".d to "END ; " 

85 78 0 0 

SUMma,-y Info,.mation: 

PROCEDURE 
SHUT~OWNS Y S TeM 
OPEiUTESYSTEM 
STARTUP$YSTEM 

OFFseT 
0698" 
0440H 
03E2H 

CODE SIZE 
039B_ 9200 
0258H 6000 
O~SeH 940 

DATA SIZE STACK SIZE 
0010H 160 
0010H 160 
0010H 160 

Total OA3CH 26nO oOOOH 00 0030H 480 

90 

125 Lines Read. 
1 error Deteeted. 

33% utilization of Memory. 

-RUN PROGRM<cr> 

Climate system is now on. 

Type the thermostat setting in degrees Celsius:24<cr> 

Type the inside temperature reading in Celsius:21<cr> 

Type the temperature of the collector water in Celsius:60<cr> 

Type the temperature of the tank water in Celsius:60<cr> 

Type the temperature of the heated tank water in Celsius:70<cr> 

Type the hour of day, as in 04 or 24:13<cr> 

Type the minute of the hour, as in 01 or 59:25<cr> 

Type the amount of sunlight, any integer wi II do for now:1<cr> 

CURRENT DATA IS AS FOLLOWS: 

Thermostat Setting is 24C 
Inside temperature is 21C 
Temperature of collector water is 60C 
Temperature of tank water is 60C 
Temperature of the heated tank water is 70C 
Time of day is 13:25 
Amount of sunlight is 

Figure 7-1. Climate Control Program Listing and Sample Run (Cont'd.) 



DEBUGGING AND EXECUTING PROGRAMS 

=============================================== 
The CLimate System is now operating. 

The time is 13:25 
The inside temperature is 21C 
The thermostat setting is 24C 
Method chosen to heat the bui Lding: SoLar CoLLector to Exchanger 
=============================================== 

Type the thermostat setting in degrees CeLsius:24<cr> 

Type the inside temperature reading in CeLsius:22<cr> 

Type the temperature of the co L Lector water in CeLsius:10<cr> 

Type the temperature of the tank water in CeLsius:10<cr> 

Type the temperature of the heated tank water in CeLsius:10<cr> 

Type the hour of day, as in 04 or 24:13<cr> 

Type the minute of the hour, as in 01 or 59 :30<c r> 

Type the amount of sunLight, any integer wiLL do for now:O<cr> 

CURRENT DATA IS AS FOLLOWS: 

Thermostat Setting is 24C 
Inside temperature is 22C 
Temperature of coLLector water is 10C 
Temperature of tank water is 10C 
Temperature of the heated tank water is 10C 
Time of day is 13:30 
Amount of sunLight is 0 
=============================================== 
The CLimate System is now operating. 

The time is 13:30 
The inside temperature is 22C 
The thermostat setting is 24C 
Method chosen to heat the bui Lding: SoLar CoLLector To Exchanger 

................................................................................................ ................................................................................................ .. 
PANIC occurred, NORMAL shutdown . 
................................................................................................ .. ................................................................................................ .. 
Last chosen heating method was: SoLar CoLLector to Exchanger 
Thermostat Setting is 24C 
Inside temperature is 22C 
Temperature of coLLector water is 10C 
Temp~rature of tank water is 10C 
Temperature of the heated tank water is 10C 
Time of day is 13:30 
Amount of sunLight is 0 
............................................................................................................ .......................................................................................................... .. 

Goodnight, Irene ... 

Figure 7-1. Climate Control Program Listing and Sample Run (Cont'd.) 

Obviously this book only introduces DEBUG-86. For a complete description, see the Intel/ec 
Series 11/ Microcomputer Development System Console Operating Instructions. 

91 



CHAPTER 7 

USING ICE-88™, AN IN-CIRCUIT EMULATOR 

Th~ ICE-88 emulator consists of three circuit boards, a cable, a buffer box, and software on 
disk. The thr~e circuit boltrds fit inside your Intellec Series III development system, and the 
cable and buffer box assembly connects your Series III system to your prototype hardware. A 
forty-pin plug at the end of the cable plugs into your prototype system in place of your pro
totype's CPU, allowing the in-circuit emulator hardware to emulate all functions of your pro
totype's CPU. If you do not have any prototype hardware, keep the plug's protector closed to 
prevent damage to its pins. ' 

In-circuit emulation shortens your development time in two ways. It provides symbolic debug
ging capabilities and diagnostic hardware debugging capabilities, and it lets you borrow 
resources (like memory) from your Series III system until your prototype system is complete. 

YQur program can be loaded into borrowed memory, prototype memory, or any combination of 
the two, and run as if it were resident in the prototype. YOIl can emulate program execution at 
real-time speed or in single- or multiple-instruction steps. You can also stop emulation 
manually at any time to examine system status, or you Ciln specify breakpOints as you can with 
DEBUG-86. ' 

We will debug the PLMDATA module (first shown in Chapter 5) to see if it performs its port 
input and interpolations correctly. We added statements (shaded in figure 7-2) to the module 
that will execute the propedures. Figure 7-2 shows th~ listing of the compiled PLMDATA 
module. 

PL/M-86 COMPILER PLMOATA PAGE 

ISIS-II PL/N-86 H121 COMP:LATION ~. NaCULE 0LMOATA 
OBJECT MOOULE PLACED IN PLMOEB.CBJ 
COMPILER INVOKEO BY: PLM86 PLMOE;.S.C DEBUG 

92 

PLMOATA: 00; 

OECLA~E START LABEL PUBLIC; 
oeCLARE (SETTING, T5:MPERATI,JRE' WORJ; 

I' 
INPUTS 

THE RHOS TAT S serf I NG $!= R!J M$ :)~R T S : 

Formal Pill"amtte"'$ HIGH and L:JW receive port numbers as ilIctual pa,.ameters. 

Input POl"'ts *'1IGfi and LOW: Thre9 9(0 dioits for the thel"'lI'Iostat setting: 

Port IoIIGI-1, bi,\s 3-0: hundred·s digit 
Port LOW, bits 7-4: ten·, digit 
Port LOW, bits 3-0: unit·, digit 

TeMPSOATAS~ROMSP::::RTS : 

F=ol"mal parameters H::GH and LOW r.c.iv. port numbers as act'Ual para ... t.rs. 

Input POl"t HI::iH: Binllry AJC output of thermocouple,. hign-order 8 bits 
Input oort LJW: Binary ADC outout 01 tnerlftoc:oupl.,. lo .... ord.r 8 bits 

OUTPUTS 

THeRMOSTAT$SETTINGSJ=:ROMSPORTS: Return WORD with setting in Celsius 

TEM;>SD~TASP:RJM$PORTS: Return WORO lIIith temperature 1n ·Celsiu$ 

*1 

Figure 7-2. Lis~ing of the Modified PLMDATA Module 



DEBUGGING AND EXECUTING PROGRAMS 

9 
10 
11 
12 
13 
14 

1~ 
16 

17 

18 
19 
20 

21 
22 
23 
24 

25 
26 

27 

28 

29 
3D 
31 
32 

33 
34 
35 
36 
37 

38 

39 
40 
41 
42 
43 

2 
2 
2 
2 
2 

THERMO STA TSSETTI NGSFRO""PQRTS: 
PRQCeOUqe (HIGH, LOW) wORO; 

oeCLARe (H1GIoI, LOtI!) wo~u; 
DeCLA5IE (INSPORTSHIGH, INSPJRTSlOW) BYTE; 
oeCLARE THERMOSS!:TTING WORO; ~ 
OeCLA~E (HUNDREDS, TENS, UNITS) BYTE; 

INSPDRTSHIGH = ':NPUT (H!GH); 
INSPORTSL:JW = INClUT(L;jW); 
HUNDREDS = I~SPO~TSHIG'" ANJ 00001111e; 
TENS = SHR(INSPCRTSL.C:W, 4); 
UNITS'lI INSPORTSLOW AND 000011118; 
THERM:lSSETTING =- UNITS + 10-TEN5 + 1QO*HUNOREOSi 

RETURN THERMOSSfTTINGi 
E NO TtiE RMCSTAT$SETTING$F~'JM$PORT S; 

/. Anothe'" typed procedure to ,..t ... rn t.mp.I" .. tu"8 data, ""hieh 
... 585 t". INTERPOLATE typed pl"oc:edur,. *1 

,* INTERPOL.ATE is II typed "rocedu,.. thllt receives tnermocougle 
voltage .nd ,..tUI"n5 t.mlaratur. in Celsius using an 
interpolation routine *, 

INTERPOLATE : 
PROCEOURE (VOLTSIN) WO~O: 

DECLARE VOLTSC*) W:lRO OATACO,51,102,154,206,258,365,472): 
DECLARE TSCELC*) W:]RQ :)ATACO,10,20,30,40,50,70,90): 
DECLARE CI, VOL TSIN, NUME1UT:JR) W:lRO: 

t = 0: 
00 MHILE VOLTS IN > VOLTSCI); 

1=1+1; 
END; 

1* Shift for rounding, and return Celsius te",peratur. *1 
NUMERATOR := SHLCCVOLTSIN-VOLTSC1-1»*(TSCEL(I)-TSC!:LCI-1), 1); 
~ETURN TSCEt..CI-1) + SHRCNUME~ATOR/CVOLTSCI)-VOLTS(I-1»+1, 1); 

END INTERPOLATE; 

T !MPSO AT ASF II :l"SPO RT S: 
PROCEDURe tHIGI't,LOW) WORO: 

OECLAA:E (HIGH, LOW) WORD; 
DECLARE IHSPORTSHIG"t WORD; ,* ADD~ESS in McCr.cken"s book *, 
OECLAA:E INSPORTSl:lW BYTE; 
OEClAA:E CTHERM:lCCUPLESOUTPUT, TEMPERATUIH) WORO; 

INSPORTSrHGH z INPUTCI1IGI1); 
INSPOItTSLiJw = INPUT CLOW); 
THERM:JCOUPLES:JUTPUT = SHLCINSP:JRTSHI~H, 8) OR INSPCRTSLOW: 
TEMPEiUTURE = INTERPOLATECTHERMOCJUPLESOUTPUT); 
RETURN TEMPERATU~E; 

END TEMP$OATASFROMSPORTS; 

STA:tT: 00; 
SeTT ING = T!1: RM'JST ATSS E1T INGSFROMSPORl S C 2000, 1 000); 
TEMPe:UTu~E = T::MPSOATASF'RJMSPOIHSC200,100); 
END START: 

END PLMOATA; 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
vARIABLE AREA SIZE 
MAXIMUM STACI( SIZe 
101 LINES ~EAO 
o PROGRAM ERR~'(S) 

= 012CI.l 
00201"1 

== 0016!1 
oo12H 

3JJ~ 
320 
220 
180 

END OF PL/M-a6 COMPILATION 

Figure 7-2. Listing of the Modified PLMDATA Module (Cont'd.) 

93 



CHAPTER 7 

94 

We also have to link the LARGE.L1B run-time library to this module, and locate the final 
module: 

-RUN LINK86 :F1:PLMDAT.OBJ. :F1:LARGE.LIB TO :F1:PLMDAT.LNK<cr> 

-RUN LOC86 :F1:PLMDAT.LNK RESERVE(200H TO 77FFH) TO :F1:PLMDAT.86<cr> 

To use the ICE-88 emulator, copy the ICE88 program from its disk ohto a disk in your system 
(for example, the system disk in drive 0), and type the following command: 

-ICE88<cr> 

You can now use the ICE-88 LOAD command to load the module and its symbols: 

*LOAD :F1 :PLMDAT.86<cr> 
*SYMBOLS<cr> 

The SYMBOLS command displays the entire symbol table. We can start emulation with the GO 
command, specifying both astarting location and a breakpoint. We can"use the .STARTlabel 
as a starting location, and specify line #8 as a breakpoint: 

*GO FROM .START TILL #8 EXECUTED<cr> 
EMULATION BEGUN 

EMULATION TERMINATED, CS:IP=0781:0040H 

At this pOint, we want to change the contents of the 8088 ports so that the 
THERMOSTAT$SETTING$FROM$PORTS procedure can pick them up: 

*PORT 2000=0 ;Hundred's digit of BCD thermostat setting.<cr> 
*PORT 1000=24 ;Tens and units of BCD setting.<cr> 
*GO FROM CS:IP TILL .SE~TING WRITTEN<cr> 
EMULATION BEGUN 

EMULATION TERMI~ATED. CS:IP=0781:002CH 

Note that a semicolon and comment is allowed on an ICE-88'command line. We assigned 24H to 
port 1000 to obtain .a 2 as the tens digit and a 4 as the units digit (to represent a thermostat 
setting of 24 degrees Celsius). Then we resumed emulation from the program counter (PC) 
until a value was obtained for the .SETTING variable. At this point, we can check the contents 
of .SETTING: 

*WORD .SETTING<cr> 
WOR 0794:0024H = 0018H 

1 8 hex a dec i ma lis 24 i n dec i ma l. 



DEBUGGING AND EXECUTING PROGRAMS 

Since .SETTING is correct, we can set the contents of the other two ports and continue 
emulation: 

*PORT 200=0 ;High order 8 bits are zero.<cr> 
*PORT 100=66 ;Low order equal 66H. or 102 in decimal.<cr> 
*GO FROM CS:IP TILL #43 EXECUTED<cr> 
EMULATION BEGUN 

EMULATION TERMINATED, CS:IP=0781:003BH 
*WORD .TEMPERATURE<cr> 
WOR 0794:0026H = 0014H 

* 
14 hexadecimal is 20 in decimal. 

We have a temperature reading of 20 degrees Celsius. 

Obviously this session only introduces the ICE-88 emulator. The ICE-88 In-Circuit Emulator 
Operating Instructions for ISIS-II Users contains both tutorial and reference information on the 
ICE-88 emulator. The similarities between DEBUG-86 and in-circuit emulators enhance their 
usefulness in software development efforts, since both provide symbolic debugging. In-circuit 
emulation also lets you emulate all of your prototype CPU functions, even though your pro
totype CPU is not installed, and even if your prototype has not been built. It is a powerful 
debugging and diagnostic tool for both the hardware and software of your final product. 

EXECUTION ENVIRONMENTS 

The Intellec Series III system provides an 8086 execution environment and operating system 
support-the support your program needs to be able to access devices and files. When you 
link the run-time support libraries to your Pascal-86 program, you are providing the software 
your program needs to "talk" to the Series III operating system. 

You can also run Pascal-86 programs in other systems, or in dedicated application 
environments, as long as you provide the run-time support software. For example, you could 
transfer your program to RAM on an SDK-86 (System Design Kit with an 8086), or to RAM on an 
iSBC 86/12A Single Board Computer system, by first using the OH86 utility described in the 
iAPX 86,88 Family Utilities User's Guide for 8086-8ased Development Systems to convert the 
program to hexadecimal object format, and then using an appropriate tool to load the program 
into your execution board (the ICE-86 In-Circuit Emulator, the SDK-C86 Software and Cable 
Interface, or the iSBC 957 Interface and Execution Package). 

You could also transfer your program to ROM on an SDK-86 kit, iSBC Single Board Computer 
system, or your own custom-designed hardware, by using the Universal PROM Programmer 
(UPP) with its Universal PROM Mapper (UPM) software. 

Figure 7-3 shows possible execution paths for Pascal-86 programs. 

The Series III operating system has a standard set of primitives (service routines) that any pro
gram can use. Intel supplies run-time support libraries that act as an interface between your 
Pascal-86 program and the Series III system. By replacing this interface with your own custom
designed interface, you can use the same Pascal-86 programs on other non-Intel systems. 
With each future Intel system, Intel will supply the appropriate run-time interface so that your 
present programs will also run in future Intel systems. 

95 



CHAPTER 7 

96 

INTELLEC" SERIES III , 
DEVELOPMENT SYSTEM 

iSBC 86/12A'· 
SYSTEM 

LOCATED 
OBJECT 

CODE 

SDK-86 SYSTEM 
DESIGN KIT 

CUSTOM-DESIGNED 
SYSTEM 

Figure 7·3. Possible Execution Paths for Pascal·86 Programs 121632-8 

A system library is also supplied for PL/ M and assembly language programs; this library (or 
set of libraries) also acts as an interface between your programs and the Series III operating 
system. By supplying your own interface, you can also use these programs on other systems. 

The Series III system was designed in this modular fashion to provide operating system sup
port without necessarily binding programs to that particular system. It was designed to be 
used as part of your application (as the operating environment), but it was also designed to be 
useful for the development of applications that do not need full-blown operating system sup
port. With several layers of interfacing between the system and your program, you can choose 
exactly how much system you want in your final application, and you can preserve your soft
ware investment with an eye to the future. 



BIBLIOGRAPHY 

1. Brooks, Frederick P., The Mythical Man-Month: Essays on Software Engineering; 
Addison-Wesley Pub. Co., Phillipines, 1975. 

2. Brown, P.J., "Programming and Documenting Software Projects," Computing Surveys, 
Dec. 1974, pp. 213-220. 

3. Dahl, O. J., Dijkstra, E. W., and Hoare, C.A.R., Structured Programming; Academic Press, 
New York, 1972. 

4. Dijkstra, E. W., "The Humble Programmer," 1972 Turing Award Lecture, Communications 
oftheACM; Vol. 15, No. 10, Oct. 1972. 

5. Floyd, Robert W., "The Paradigms of Programming," 1978 Turing Award Lecture, 
Communications of the ACM; Vol. 22, No.8, Aug. 1979. 

6. Hueras, J. F., Ledgard, H. F., and Nagin, P. A., Pascal With Style (Programming Proverbs 
Series); Hayden Book Co., Rochelle Park, NJ., 1979. 

7. Jensen, Kathleen, and Wirth, Nicklaus, PASCAL User Manual and Report; 
Springer-Verlag, New York, Heidelberg, and Berlin, 1975. 

8. Kernighan and Plauger, The Elements of Programming Style (2nd Edition); Bell Telephone 
Labs, Inc., Murray Hill, NJ, and McGraw-Hili, New York, 1978. 

9. Kernighan and Plauger, Software Tools; Bell Telephone Labs, Inc., New Jersey, Yourdon 
inc., New York, and Addison-Wesley, Cambridge MA, 1976. 

10. Ledgard, Henry F., Programming Proverbs; Hayden Book Co., Rochelle Park, NJ., 1975. 

11. McCracken, D. D., A Guide to Intellec Microcomputer Development Systems; Intel Corp., 
1978 (No. 9800558B). 

12. McCracken, D. D., A Guide to PUM Programming For Microcomputer Applications; 
Addison-Wesley Pub. Co., Menlo Park, CA., 1978. 

13. Morse, Stephen P., The 8086 Primer: An Introduction to Its Architecture, System Design, 
and Programming; Hayden Book Co., Rochelle Park, New Jersey, 1980. 

14. Parnas, D. L., "On the Criteria To Be Used in Decomposing Systems into Modules," 
Communications ofthe ACM; Vol. 15, No. 12, Dec. 1972. 

15. Polya, G., How To Solve It (2nd Ed.); Princeton Univ. Press and Doubleday Anchor Books, 
Doubleday & Company, Inc., Garden City, NY, 1957. 

16. Strunk, William, Jr., and White, E. B., The Elements of Style (3rd Ed.); Macmillan, New 
York, 1979. 

17. Weinberg, Gerald M., PUI Programming Primer; McGraw-Hili, Inc., New York, 1966. 

18. Wirth, Nicklaus, "Program Development by Stepwise Refinement," Communications of 
the ACM; Vol. 14, No.4, April1971. 

19. Wirth, Nicklaus, Systematic Programming: An Introduction; Prentice-Hall, Englewood 
Cliffs, NJ, 1973. 

97 



Within this index, for ff after a page number 
means and the following page (or pages). 

"&" continuation character, 23ff 
"< >" (angle brackets) in CREDIT, 35ff 
">" (angle) prompt, 23f 
"<cr>", See a/so RETURN key, 10,35 
"*,, (asterisk) in CREDIT command area, 29f 
"*,, (asterisk) in pathname, 19ft 
"@" in CREDIT, 30 
"-", See a/so prompt, 10, 13, 23 
"!" in CREDIT, 35ft 
"(*" and "*)" comment symbols, 42 
"1*" and ".* I" comment symbols, 64 
"%" (percent) symbols for parameters, 25 
"?M" in CREDIT, 37 
";" (semicolon) for comments, 24f 
8080/8085 processor family, 1,22 
8085 execution environment, Preface, 22ft, 

25 
8086 execution environment, Preface, 7f, 16, 

22ff, 25, 55, 68, 78f 
8086/8087/8088 macro assembler, 13ff, 48, 

63,68ft 
8086/8088 Utilities, 13ft 
8087 processor, 78 
8087.L1B (Pascal-86 run-time library), 78 
8087 software emulator, 78 
86 extension, 16, 22ft, 25, 55, 79 
8088 processor, 61 
87NUlL.L1B (Pascal-86 run-time library), 77f 

A switch with FORMAT command, 21 
absolute modules, 79 
actual parameter, 24 
ADD command (L1B86), 76 
add text mode (CREDIT), 31 f 
addresses, See physical memory address 
address, reference to, 48, 75ff 
Aesop, 81 
algorithm for climate control system, 42, 63 
AN 0 operation, PLI M-86, 64 
angle brackets (CREDIT), 35ft 
angle (» prompt, 23f 
application, climate control, 2ff 
arithmetic, real, 6, 78 
array, PLI M-86, 68 
assembler, 8086/8087/8088, 13ft,63, 68ff 

INDEX 

assembly language, 6, 25f, 48, 63, 68ft, 79, 82 
asterisk in CREDIT command area, 29f 
asterisk in path name, 19ft 
ATTRIB command, 18, 21 
attributes, file, 11f, 15f, 18 

backup of text file, 16, 19, 38f 
BAK extension, 16, 19, 38f 
base address, segment, 83 
BCD digits, 64ft 
binarY,83f 
binary-coded decimal digits (BCD), 64ft 
BIND control (L1NK86), 78f, 81 
binding modules, 75ft, 78f 
bit-shift operations, PLI M-86, 64, 68 
black printing, 10 
block diagram of climate system, 3 
blocks, file 11,28,30 
blue printing, 10 
BOOLEAN command (DEBUG-86), 82ft 
BOOLEAN type, 46, 82ff 
breakpoints, debugging, 92 

carriage return, See RETURN key 
Celsius degrees, 5, 24, 63ft, 68, 94f 
character pointer (CREDIT), 32ft 
choosing software tools, 5f 
climate control application, 2ff, 41ff, 44f, 49ft, 

57ft, 63, 85ff, 92f 
CNTl-A command (CREDIT), 31 
CNTl-N (CREDIT), 32, 35 
CNTl-P (CREDIT), 32, 35 
CNTl-V (CREDIT), 28ft, 32ff 
CNTl-Z (CREDIT), 30 
:CO: (console output), 39 
CODE control, PLI M-86, 68, 70ff 
collector water, solar, 42, 45f 
command area (CREDIT), 28f 
command iteration, 27, 35ft 
command mode (CREDIT), 32f 
command sequence, 25 
command sequence definition file, 24f 
commands, executing, 22ft, 25 
comment symbols - Pascal, 42 
comment symbols - PLlM, 64 
comments, semicolon, 24f 
compilations, separate, 41 

99 



INDEX 

100 

compiler, See a/so Pascal-86 or PLlM-86, 16, 
55f 

compiler controls, Pascal-86, 55f 
compiler controls, PLI M-86, 68 
console output, 39 
continuation character (&), 23ft 
Control key, See CNTL 
Control lines, source file, 51,56 
Controls, Pascal-86, 55f 
convert voltage to temperature, 5, 63ff, 68 
cooling methods, 3ft 
COPY command, 19ft 
copying files to disks and devices, 19ff 
CP, See character pointer 
CREATE command (LlB86), 76 
creating a text file, 28f 
CREDIT text editor, 2, 11,13,16,20, 27ft, 30ff, 

33ft, 36ft, 42 
CS extension, 25 
CS register (code segment), 83f 
CSD extension, 24f 
cursor (editing text), 28ft 
cursor movement keys, 32f 

dash, See prompt 
DATA initialization, PLlM-86, 68 
data passing between modules, 7, 48f 
data type, REAL (Pascal-86), 78 
data types, Pascal-86, 45f, 48f 
data types, PLI M-86, 64, 66 
DEBUG-86, 7, 55f, 75, 78, 81ft, 84ft 
DEBUG control, Pascal-86, 55f, 82 
debuggers, 81 
debugging, 2ft, 5ft, 55f, 75, 78, 81ft, 84ft 
default directory (:FO:); 19ft 
default settings, compiler controls, 55 
DEFINE command (DEBUG-86), 83 
defining software, 3ff 
degrees in Celsius, 5 
DELETE command, 18ft 
deleting files, 18ff 
Determine Method procedure, 47f, 51, 86 
device names, 20f 
devices, copying files to, 19ff 
Dijkstra, E.W., 41 
DIR command, 10ft, 16f, 21 
directory, default (:FO:), 19ff 
directory listing, 10ft, 17 
directory specifier, See path name 
disassembled display (DEBUG-86), 84 
disk blocks, See file blocks 
disks, See formatting disks 
disks, copying files to, 19ft 
displaying text file, 39 
drive 0, See system disk, 

See a/so RESET key 

E8087 emulator, 78 
E8087.LlB (Pascal-86 run-time library), 78 
editor, text (CREDIT), 2, 16, 27ff, 30ff, 33ft, 

36ff, 42 

emulation, in-circuit (ICE), 1f, 5ft, 8, 79, 92ff 
emulator, 8087, 78 
end of text, 28 
ending text editing session, 38f 
English, 5f, 27, 41 
environment, execution, 81, 95f 

Series III operating, 77ft 
EQ (quit) command (CREDIT), 38f 
ESC (Escape) key, 29 
EVALUATE command, 83f 
EX command (CREDIT), 28, 30, 38f 
exchanger, See climate control 
exclamation point in CREDIT, 35ff 
executable programs, 75f 
executing commands and programs, 22ff, 

25,81ft 
execution environment, 8085, Preface, 22ff, 

25,81,95 
8086, Preface, 8, 16, 22ft, 25, 55, 68, 78f, 81, 

95 
execution, interactive mode, 23ft 

non-interactive mode, 24f 
paths for Pascal-86 programs, 

95f 
execution vehicle, 81 
EXIT command (LlB86), 22FF, 25, 76 
extension, filename, 11,16,22,25 
extensions to standard Pascal, Intel, 55 
external procedures, 76f 
external references, 75ff 

F attribute, 12, 15, 18, 21 
F (Find) command (CREDIT), 34 
:FO: (default directory), 19ft 
file attributes, 11f, 15f, 18 

blocks, 11,28,30 
command sequence definition, 24f 
copying to disks and devices, 19ft 
deleting, 18ff 
format (F) attribute, 12, 15, 18, 21 
input/output procedures (Pascal-86), 78 
invisible (I) attribute, 12, 18 
length, 11 
IibrarY,76f 
listing, 16, 42, 55ff, 58ft, 68, 71ff 
macro, 16 
object, See object module 
overlay, 16 
renaming, 18ft 
source, 27, 55f, 68 
system(s) attribute, 12, 14f, 18, 21 
text, 27ff 
text backup, 16, 19, 38f 
update with COpy command, 20 
write-protected (w attribute), 11f, 18 

filename, 10ff, 15ft, 18ft, 21ff, 24f 
filename matching, 19ff 
files, manipulate, 10, 15 

naming conventions, 15f 
final product, using, 8 
finding text, 33f 



flexible disks, See also formatting disks, 14f 
FOR, used with DIR command, 17f 
formal parameters, 25 
FORMAT command, 13ff, 18, 21 
format files, 12, 15, 18, 21 
formatting disks, 10, 13ft, 16ft, 20f 
FORTRAN-86, 5f 
FORTRAN language, 6, 27, 63f 
FROM with FORMAT command, 21 

GETDATA module, 4ft, 7, 44f, 50, 55ff, 58ff, 
66,77,87ff 

GetData procedure, 44, 46f, 50, 52f, 66, 87 
glitch, hidden, 81 
GO command (DEBUG-86), 83f 
GO command (ICE-88), 94 
Goethe, von, 75 
Grove, Andrew S., 1,9 

hard disk subsystem, 12ft 
hardware development process, lIf, 7f 
HD COPY command, 21 
heat pump, See climate control 
heating methods, 3ff, 42, 45f 
hexadecimal,83f 
hexadecimal object format, 8, 95 
hidden glitch, 81 
hiding information, 46f 
high-level languages, 2ff, 5f, 41,55, 63f, 69f, 

75,79,82 
HOME key (CREDIT), 28f, 32f 
:HP: (paper tape punch), 20 

iAPX 86, 88 processor family, 1, 7f, 22 
ICE-86, 11, 7f, 79, 92ff, 95 
ICE-88, 11, 7f, 79, 92ft, 95 
IDISK command, 15, 18, 21 
in-circuit emulation (ICE), 11, 5ft, 8, 79, 92ff 
INCLUDE control, Pascal-86, 51,56 
information-hiding,46f 
inputl output procedures (Pascal-86), 61,78 
inserting text, 28f, 311 
interactive 8086 mode, 23 
interactive execution, 23ff 
Interface, iSBC 957,8,95 

Software and Cable (SDK-C86), 8, 95 
interface specification, Pascal-86, 47, 49f, 51 
INTERPOLATE procedure, 66ft, 93 
invisible file attribute, 12, 18 
Irene, goodnight, 54, 80, 91 
IP (instruction pointer) register, 83f 
iSBC 86/12A system, 8, 95f 
iSBC 957 Interface and Execution Package, 

8,95f 
iSBC (Single Board Computer) System, 8, 

95f 
ISIS-II operating system, See also operating 

the Series III system, 10ft, 13ft, 16ff, 23 

J (jump) command (CREDIT), 32ft 

keyboard,29 

L (Line) command (CREDIT), 37 
language diversity, 63 
languages, high-level, 2ft, 5f, 41,55, 63f, 69f, 

75,79,82 
LARGE control, PL/ M-86, 68 
LARGE.LlB (run-time library), 77f, 94 
Ledbetter, Huddie ("Goodnight Irene"), 54, 

80,91 
length, file, 11 
LIB extension, 16 
LlB86.86 utility, 22, 75f 
librarian utility, 22, 75f 
libraries, run-time, 14f, 23ft, 75ft, 78f, 94 
library file, 76f 

management, 2, 5ft, 16, 76 
module, 16, 75ff, 78f 
of routines, 2ft, 5ft, 13, 16, 75ft, 78f 

line feed character, 29 
line printer, 20, 39 
line terminator (CREDIT), 29 
LlNK86.86 Utility, 23f, 75ff, 78f, 81 
linkage libraries, 13ft, 16, 23ff, 75ff 
linker utility, 16, 75ff, 78f 
linking modules, 2ft, 5f, 16, 75ft, 78f 
LIST command (LlB86), 76 
listing of PLMDATA module, 71ft, 92f 
listings, program, 16, 42, 55ft, 58ff, 68, 711f, 

85ft,92f 
of test modules, 57ft, 85ft, 92f 

LNK extension, 16, 79 
LOAD command (DEBUG-86), 82f 
LOAD command (lCE-88), 94 
loader, RUN, 78f 
loaders, ICE (in-circuit emulation), 79, 95 
load-time locatable (L TL) module, 78f 
LOC 86.86 utility, 16, 75ff, 79 
locatable program, 77ff 
locater utility, 16, 75ft, 78f 
locating modules, 2ft, 5f, 16, 75ff, 78f 
:LP: (line printer), 20, 39 
LST extension, 16 
L TL module (load-time locatable), 78f 

M (Macro definition) command (CREDIT), 36f 
MAC extension, 16 
machine code, 69f 
macro assembler, 8086/8087/8088, 13ft, 48, 

63,68ff 
macro, assembly language, 69f 

CREDIT,36f 
definitions, macro assembler, 69f 
file,16 
processor language, 69f 

INDEX 

101 



INDEX 

102 

MAIN module, 4ft, 7, 41ff, 46f, 49f, 55ft, 58ft, 
63, 77f, 85ft 

main program (climate control system), 43f, 
461,49, 51ff, 63, 77, 85ft 

MainControl (main module), 43f, 47, 49f, 51ft, 
63,77, 82f, 85ft 

matching filenames, 19ft 
memory addresses, See also physical 
memory 

ad(lresses, 7, 75ft, 781 
methods, heating and cooling, 3ff, 42, 45f 
MF command (CREDIT), 37 
modular programming, 6ff, 41f, 461, 49, 63, 

761 
modular structure, See also modular 

programming, 77 
module, absolute, 79 

concept 01, 5FF. 41, 461, 49 
heading, Pascal-86, 45, 491 
LTL (load-time locatable), 78t 
names,82f 
object, See object module 
subordinate, 41,77 

modules, binding, 75ff, 78f 
program, 2ft, 6ft, 16, 41f, 44f, 461, 491, 63, 

76ff, 85ff, 921 
monitor, 91 
moving around in text file, 3211 

naming Gonventions for files, 151 
Nassi-Schneiderman chart, 4 
NDP (8087), 78 
NOEXTENSIONS control, Pascal-86, 55 
non-interactive exeGutipn mode, 241 
NOPRINT Gontrol, Pascal-86, 55 
numeric data processor (8087), 78 

object format, hexadecimal, 8, 95 
object module also called object lile, 16, 55f, 

68,751 
OBJ extension, 16, 55 
octal,831 
offset value, base address, 83 
OH86 utility, 8, 95 
Operate System procedure, 44, 461f, 50, 52ff, 

831,89 
operating environment, Series III, 77ff 
operating system procedures, 25, 78, 95 

Series III, See also operating the Series III 
system, 79, 95 

summary of, 25 
operating the Series III system, 9ff, 12ff, 1511, 

18ft, 21ff, 24f, 78 
OPERATION module, 4fl, 7, 44, 50, 55 It, 58ft, 

77,821,88ff 
operation of Glimate system, 3ft, 44, 46f 
OR operation, PLI M-86, 64, 68 
output disk or device, 19ff 
overlay file, 16 
OVO extension, 16 

P (switch), used with COPY, 15 
P86RNx.LlB (Pascal-86 run-time libraries), 

77f 
panic condition in climate system, 42, 44 
paper tape punch device, 20 
parameter, actual, 24 
parameter passing between modules, 7, 48 
parameters, formal and actual, 25 
parse phase, Pascal-86 compiler, 56 
PASC86.86 Compiler, 23f, 55t 
Pascal language, 5ff, 27, 39, 411, 45f, 481, 55, 

631,651 
record, 41, 48 

Pascal-86 Compiler and Language, 51, 14, 23, 
25,4111,45,481,551,631,66,681,951 
data types, 451, 481 
run-time libraries, 7711 

pass data by relerence, 7, 481 
by value, 7, 481 

pathname matching, 19ft 
pathnames, 15ff, 1811, 21ft, 241 
percent symbols lor parameters, 25 
physical memory address, 7, 75ft, 781, 83ff 
Pidgin Pascal, 6, 27, 391 
PLlM-86 Compiler and Language, 5t, 14, 48, 

63ff, 66tl, 691f 
data types, 64, 66 

PLM86.86 Compiler, 68 
PLiM language, 6, 251, 45, 63ft, 66, 691, 79 
PLMDATA module, 68, 71ft, 941 
pOinter, character, 3211 
ports, inputloutput, 49, 61, 64ff 
primitives, Series III operating system, 70, 

78,95 
PRINT control, Pascal-86, 55 
printing, blue or black, 10 
printing text lile, 39 
PRIVATE delinitions, Pascal-86, 491 
procedure, typed (PLI M), 64 
procedures, built-in (Pascal-86), 761 

external,76t 
lile input/output (Pascal-86), 78 
operating system, 25 

processor, 8080/8085, 1ft, 7,61 
iAPX 86,88 (8086 and 8088), 1f1, 7, 61 
numeric data (8087), 78 

product, final, 8 
program, executable, 75t 

locatable, 77 
listings, 16, 42, 55ft, 58ft, 68, 71 ft 
main (climate control system), 431, 461, 49, 

51f1 
modules, 211, 6ft, 16, 41f, 441, 461, 491, 63, 

76ft 
source statements, See also source lile, 

55,85 
programmable read-only memory, 2, 8 
programming the system, 9, 70 
programs, executing, 22ff, 25 
PROGRM.86 (test version 01 application), 

77f, 79t, 82ft, 901 



PROM, See programmable read-only 
memory 

prompt, dash (-), 10, 13, 23 
prototype, hardware, 7f, 48f, 61,92 
PUBLIC definitions, Pascal-86, 49f 

RAM, See random access memory 
random access memory, 8, 95 
READLN procedure (Pascal-86l.·61, 76f 
read-only memory (ROM), 8, 81,95 
real arithmetic, 6, 78 
REAL data type (Pascal-86), 78 
record, Pascal, 41,48 
recursive, See self-reference 
reference, pass data by, 7, 48f 

to address, 48, 75ft 
references, external, 75ff 
RENAME command, 18ft 
renaming files, 18ft 
RESERVE control (LOC86), 79 
RESET key, 9f, 13f 
RETURN key, 10, 12ff, 15, 20f, 28f, 35 
ROM, See read-only memory 
RPT (Repeat) key, 29 
RUBOUT key, 29 
RUN command, 14, 22ff, 25, 68, 75ft, 78f, 81 
run-time libraries, 14f, 23ft, 61,70, 75ff, 78f, 

94f 
run-time system, See a/so run-time 
libraries, 76ft' 

S attribute, 12, 14f, 18, 21 
S (Substitute) command (CREDIT), 34f 
screen mode (CREDIT), 32f 
scrolling text, 32f 
SDK-86, 8, 95 
SDK-88, 8, 95 
SDK-C86 Software and Cable Interface, 8, 

95 
segment base, 83 
self-reference, See recursive 
semicolon for comments, 24f, 94 
separate compilations, See a/so modular 

programming, 41 
Series II monitor, 9f 

Series II system, Preface 
service routines, operating system, 70, 78, 

95 
shift operations, PLlM-86, 64, 68 
SHL (shift left) operation, PLlM-86, 64, 68 
SHR (shift right) operation, PLlM-86, 64, 68 
ShutDownSystem procedure, 44, 46f, 50, 54, 

89f 
Single Board Computer (iSBC) system, 8 
size control, object module, 68 
Software and Cable Interface (SDK-C86), 8, 

95 
Software definition, 3ff, 30f 
Software development process, 1ft 

Solar collector, 2ft, 42, 45f 
Source disk, 15, 19ft 
source file or program, 27, 55f, 68 
SQ (Substitute after Query) command 

(CREDIT),34f 
SRC extension, 16 
StartUpSystem procedure, 44, 46f, 50, 53, 89 
STEP command (DEBUG-86), 84 
stepwise refinement, 2ft 
StoreData procedure, 45f, 50, 53, 87f 
Strachey, Christopher, 63 
string,34f 
structure, PLlM-86, 48 

of software, 4ft 
SUBMIT command, 24f 
subordinate modules, 41,77 
substituting text, 33f 
summary of operating system, 25 
switch used with DIR, 12, 17 
S,YM keyword (DEBUG-86), 83 
symbol table (DEBUG-86), 82ft 
symbolic debugging, 5ft, 82ft 
symbols, 7, 82ff 
SYMBOLS command (DEBUG-86), 82f 
SYMBOLS command (ICE-88), 94 
System Design Kits, 8, 95f 
system climate control, 2ft, 41ff, 44f, 49ft, 

55ft, 58ft, 63, 85ft, 92f 
disk, 9ft, 12ft, 15ft, 21 
files, 11ft, 14, 18, 21 
operation, Series III, See operating the 

Series III system 
run-time, See a/so run-time libraries, 76ft 
turning on, 9f 

tags (CREDIT), 32f 
tank, water (climate system application), 42, 

45f 
TO (tag delete) command (CREDIT), 32 
TE (tag for end), used in CREDIT, 32f 
teletype output, 39 
TEMP$DATA$FROM$PORTS, 66ff, 92f 
temperature conversion program, 24 
temperature data, 3f, 49, 63ft, 68 
terminator, line (CREDIT), 29 
text area (CREDIT), 28f 

creating and inserting, 28f, 31 
editing, ending session, 38f 
editor (CREDIT), 2, 16, 27ff, 30ft, 33ft, 36ff, 

42 
file, 27ft 
file backup, 16, 19, 38f 
file, displaying, 39 
file, printing, 39 
finding,33f 
scrolling,32f 
su bstituti ng, 33f 

thermocouple voltage, 5, 61ff, 68 
THERMOSTAT$SETTING$FROM$PORTS 

procedure, 64ff, 92ft 

INDEX 

103 



INDEX 

104 

:TO: (teletype output), 39 
tools, software, 4ff, 7ft 
top-down design, 2ft, 41 
TPWR (typewriter) key, 29 
TS (tag set) command (CREDIT), 32 
TT (tag for top), used in CREDIT, 32f 
turning on your system, 9f 
TXT extension, 16 
type, data, 45f, 64, 66 
TYPE definition, Pascal, 46, 48 
type, REAL (pascal-86), 78 
typed procedure, PL/ M, 64 
typeface, blue or black, 10 

Universal PROM Mapper (UPM), 8, 95 
Universal PROM programmer (UPP), 2, 8, 95 
uparrow (f), 29 
update files, 20 

UPM, See universal PROM mapper 
UPP, See universal PROM programmer 
using the system, 9 
using your final product, 8 
utilities, Series III, 2ff, 6ff, 13, 75ft, 78f 

value, pass data by, 7, 48f 
VAR definition, Pascal, 46, 49 
vehicle, execution, 81 
video display (CREDIT), 28 
voltage, thermocouple, 5, 61ff, 68 

W attribute, 11f, 18 
wild card filename, See a/so filename 

matching, 21 
WRITELN procedure (Pascal-86), 61, 76f 



The Intellec® Series III Publications Library 



A GUIDE TO THE INTELLEC SERIES 11\ 

The B086 Family User's Manual -
9800722 

Mlcrosystem o.,lgn Using INTElLEce SERIES III A GUIDE TO 
MICROCOMPUTER INTElLEC" SERIES III the iAPX 86,88 Family Microprocessors DEVELOPMENT SYSTEM MICROCOMPUTER 

PRODUCT OVERVIEW DEVELOPMENT SYSTEMS 

121575 121632-001 

The ~~8!:r~:i~u~~~!~:n~nual -
121586 Using the 

Intelle~ Serle, III System 
Hardware and Sollware 

Hudware InSlaU.tlO~ I Systems operallO~ I Programming lor -; :~~i~~~·;~:~~i!:~I~I::li:~s I Progr,mmlni lor 
and Checkout and System$ Programming iAPX 86,88 Applications MeS·aO/8ST Applications 

INTElLECI!l SERIES III INTELLEC® SERIES III r----l MeS·BO/S5'" UTILITIES 
MICROCOMPUTER MICROCOMPUTER iAPX 86, 88 FAMILY UTILITIES ICE·86T~ IN-CIRCUIT EMULATOR USER'S GUIDE 

DEVELOPMENT SYSTEM DEVELOPMENT SYSTEM USER'S GUIDE 

I 
OPERATING INSTRUCTIONS 

I I" INSTALLATION AND CHECKOUT CONSOLE OPERATING for BOBG-Based Developmenl Syslems FOR ISIS·II USERS BOBO/BOB5-Based 
MANUAL INSTRUCTIONS Developmenl Syslems 

121616 

L 
9600714 

J 12'612 121609 121617 

1 1 
- -1- - I 1 r - - - - 1 MODEL 556 INTElLEC® SERIES III 8080/8085 

RESIDENT PROCESSOR MICROCOMPUTER iAPX 86,88 FAMILY FLOATlNG·POINT 
BOARD KIT DEVElOPMENT SYSTEM UTILITIES POCKET REFERENCE I ICE·86'" POCKET REFERENCE I ARITHMETIC LIBRARY 

INSTALLATION MANUAL POCKET REFERENCE for 60B6-Based Oevelopmenl Syslems USER'S MANUAL 
9600B3B 

121663 '21610 121669 

L J 9800452 - -1- -
1 I I------,u"" - _1- -

INTElLEC@SERIESIII USin~ I r 1 
ISIS-II CREDIT'~ Assembly Languages I High-Level Languages ICE·88IM IN-CIRCUIT EMULATOR MICROCOMPUTER 

CRT·BASED TEXT EDITOR r - ---1 I OPERATING INSTRUCTIONS I DEVElOPMENT SYSTEM 
USER'S GUIDE FOR ISIS-II USERS SCHEMATIC DRAWINGS 8086/8087/8088 MACRO 

9800902 
ASSEMBLY LANGUAGE 

I PASCAL-86 USER'S GUIDE I 9B00949 '2'642 REFERENCE MANUAL 

L J lor 8086-Based Developmenl Systems 
121539 - -1 

1 
121627 

-1-

- _1- - L - - J - - 1 - - 1 r 1 I 
-1- r 

MODEL 740 CREDIT'" - - 1 - -I HARD DISK SUBSYSTEM I CRT-BASED TEXT EDITOR r 1 I ICE_88'M POCKET REFERENCE I OPERATION AND CHECKOUT POCKET REFERENCE 8086/8087/8088 MACRO 
9800950 

9800943 9800903 
ASSEMBLER OPERATING 

I 
PASCAL·86 POCKET 

I L J INSTRUCTIONS REFERENCE L J - - - - for 8086-Based Development Syslems - -
1 

12'541 -1-
'21628 L J _1-- -1- - r - - 1 INTELLEC@SERIESIII 

1 
RBF-89 REAL-TIME 

MICROCOMPUTER _1- BREAKPOINT FACILITY 
DEVELOPMENT SYSTEM r - - 1 I OPERAT~~~ 11~~:a~~MCTIONS I PROGRAMMER'S REFERENCE 

8086/8087/8088 MACRO MANUAL IN·CIRCUIT EMULATOR USERS 
ASSEMBLER 

I 
PLlM-86 USER'S GUIDE 

I 121618 POCKET REFERENCE tor 80B6-Based Development Syslems L 9801018 J lor 8086-Based Development Systems - - - -121636 
121674 L J - -1- -I - _1- -

MCS-86'" ASSEMBLY r 1 
LANGUAGE CONVERTER 

I 
PL/M-86 POCKET REFERENCE 

I OPERATING INSTRUCTIONS for 8086-Based Development Systems 
FOR ISIS-II USERS 

121662 
9800642 L J - - - -I 

r - _1- - 1 
I 

8089 MACRO ASSEMBLER 

I USER'S GUIDE 

9800938 

L -1- J 
LEGEND 

r _1-
1 MANUAL SUPPLIED 

WITH SERIES III 8089 MACRO ASSEMBLER 

I POCKET REFERENCE I 
MANUAL SUPPLIED WITH 

- OPTIONAL PACKAGE L J 121632-9 

The Intellec Series III Publications Library 


