

- -

I

8XC251SB
Embedded

Microcontroller
User's Manual

February 1995

i

II

I

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions
of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

·Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

C INTEL CORPORATION, 1995

intet

CONTENTS

CHAPTER 1
GUIDE TO THIS MANUAL

1.1 MANUAL CONTENTS ... 1-1
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY ... 1-3
1.3 RELATED DOCUMENTS .. 1-5

1.3.1 Data Sheet .. 1-6
1.3.2 Application Notes .. 1-6

1.4 CUSTOMER SERViCE .. 1-7
1.4.1 How to Use Intel's FaxBack Service ... 1-7
1.4.2 How to Use Intel's Application BBS .. 1-8
1.4.3 How to Find the Latest ApBUILDER Files and Hypertext Manuals and

Data Sheets on the BBS ... 1-9

CHAPTER 2
ARCHITECTURAL OVERVIEW

2.1 8XC251 SB CORE .. 2-4
2.1.1 CPU .. 2-4
2.1.2 Clock and Reset Unit .. 2-5
2.1.3 Interrupt Handler ... 2-6
2.1.4 On-chip Code Memory .. 2-6
2.1.5 On-chip RAM .. 2-7

2.2 ON-CHIP PERiPHERALS .. 2-7
2.2.1 Timer/Counters and Watchdog Timer ... 2-7
2.2.2 Programmable Counter Array (PCA) .. 2-7
2.2.3 Serial I/O Port ... 2-8

CHAPTER 3
ADDRESS SPACES

3.1 ADDRESS SPACES FOR MCS® 251 MICROCONTROLLERS 3-1
3.1.1 Compatibility with the MCS® 51 Architecture .. 3-2

3.2 THE 8XC251 SB MEMORY SPACE ... 3-5
3.2.1 On-chip General-purpose Data RAM .. 3-6
3.2.2 On-chip Code Memory (87C251 SB/83C251 SB) ... 3-6

3.2.2.1 Accessing On-chip Code Memory in Region 00: ... 3-6
3.2.3 Extemal Memory ... 3-8

3.3 THE 8XC251 SB REGISTER FILE ... 3-8
3.3.1 Byte, Word, and Dword Registers ... 3-8
3.3.2 Dedicated Registers .. 3-10

l
iii

I
j
i
I

CONTENTS intet~

3.3.2.1 Accumulator and B Register ... , 3-10
3.3.2.2 Extended Data Pointer, DPX ... 3-10
3.3.2.3 Extended Stack POinter, SPX : ... 3-11

3.4 SPECIAL FUNCTION REGISTERS (SFRS) ... 3-12

CHAPTER 4
PROGRAMMING

4.1 BINARY MODE AND SOURCE MODE CONFIGURATIONS 4-1
4.1.1 Selecting Binary Mode or Source Mode .. 4-2

4.2 PROGRAMMING FEATURES OF THE MCS® 251 ARCHITECTURE 4-4
4.2.1 Data Types .. 4-4
4.2.2 Register Notation .. 4-4
4.2.3 Address Notation .. 4-5
4.2.4 Addressing Modes .. 4-5

4.3 DATA INSTRUCTIONS ... 4-6
4.3.1 Data Addressing Modes .. 4-6

4.3.1.1 Register Addressing .. 4-8
4.3.1.2 Immediate .. 4-8
4.3.1.3 Direct ... 4-8
4.3.1.4 Indirect ... 4-9
4.3.1.5 Displacement ... 4-9

4.3.2 Arithmetic Instructions ... 4-10
4.3.3 Logical Instructions ... 4-11
4.3.4 Data Transfer Instructions .. .4-11

4.4 BIT INSTRUCTIONS ... 4-12
4.4.1 Bit Addressing ... 4-12

4.5 CONTROL INSTRUCTIONS ... 4-14
4.5.1 Addressing Modes for Control Instructions .. .4-14
4.5.2 Conditional Jumps .. 4-15
4.5.3 Unconditional Jumps ... 4-16
4.5.4 Calls and Returns ... 4-16

4.6 PROGRAM STATUS WORDS .. 4-17

CHAPTERS
INTERRUPT SYSTEM

5.1 OVERVIEW ... 5-1
5.2 8XC251SB INTERRUPT SOURCES ... 5-3

5.2.1 Extemallnterrupts ... 5-3
5.2.2 Timer Interrupts ... 5-4

5.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT .. 5-5
5.4 SERIAL PORT INTERRUPT .. 5-5
5.5 INTERRUPT ENABLE ... 5-5
5.6 INTERRUPT PRIORITIES ... 5-6

iv

.L

-

- -
int'et~ CONTENTS

5.7 INTERRUPT PROCESSING ... 5-9
5.7.1 Minimum Fixed Interrupt Time .. 5-10
5.7.2 Variable Interrupt Parameters ... 5-10

5.7.2.1 Response Time Variables ... 5-10
5.7.2.2 Computation of Worst-case Latency With Variables 5-12
5.7.2.3 Latency Calculations ... 5-13
5.7.2.4 Blocking Conditions ... 5-14
5.7.2.5 Interrupt Vector Cycle .. 5-14

5.7.3 ISRs in Process .. 5-15

CHAPTER 6
INPUT/OUTPUT PORTS

6.1 INPUT/OUTPUT PORT OVERViEW ... 6-1
6.2 I/O CONFIGURATIONS ... 6-2
6.3 PORT 1 AND PORT 3 ... 6-2
6.4 PORT 0 AND PORT 2 ... 6-2
6.5 READ-MODIFY-WRITE INSTRUCTIONS ... 6-5
6.6 QUASI-BIDIRECTIONAL PORT OPERATION .. 6-5
6.7 PORT LOADING .. 6-7

6.8 EXTERNAL MEMORY ACCESS ... 6-7

CHAPTER 7
TIMER/COUNTERS AND WATCHDOG TIMER

7.1 TIMER/COUNTER OVERViEW ... 7-1
7.2 TIMER/COUNTER OPERATION ... 7-1

7.3 TIMER 0 ... 7-4
7.3.1 Mode 0 (13-bit Timer) ... 7-4
7.3.2 Mode 1 (16-bit Timer) ... 7-5
7.3.3 Mode 2 (8-bit Timer With Auto-reload) .. 7-5
7.3.4 Mode 3 (Two 8-bit Timers) .. 7-5

7.4 TIMER 1 ... 7-6
7.4.1 Mode 0 (13-bit Timer) ... 7-9
7.4.2 Mode 1 (16-bit Timer) ... 7-9
7.4.3 Mode 2 (8-bit Timer with Auto-reload) ... 7-9
7.4.4 Mode 3 (Halt) .. 7-9

7.5 TIMER 0/1 APPLICATIONS ... 7-9
7.5.1 Auto-load Setup Example ... 7-9
7.5.2 Pulse Width Measurements .. 7-10

7.6 TIMER 2 ... 7-10
7.6.1 Capture Mode ... 7-11
7.6.2 Auto-reload Mode ... 7-12

7.6.2.1 UpCounterOperation ... 7-12
7.6.2.2 Up/Down Counter Operation ... 7-13

L
v

-
CONTENTS

7.6.3 Baud Rate Generator Mode ... 7-14
7.6.4 Clock-out Mode ... 7-14

7.7 WATCHDOG TIMER ... 7-16
7.7.1 Description .. 7-16
7.7.2 Using the WDT .. ; ... 7-18
7.7.3 WDT During Idle Mode ... 7-18
7.7.4 WDT During PowerDown .. 7-18

CHAPTERS
PROGRAMMABLE COUNTER ARRAY

8.1 PCA DESCRiPTION .. 8-1
8.2 PCA TIMER/COUNTER ... 8-2
8.3 PCA COMPARE/CAPTURE MODULES ... 8-5

8.3.1 16-bit Capture Mode ... 8-5
8.3.2 Compare Modes ... 8-7
8.3.3 16-bit Software Timer Mode .. 8-7
-8.3.4 High-speed Output Mode .. 8-8
8.3.5 PCA Watchdog Timer Mode ... 8-9
8.3.6 Pulse Width Modulation Mode .. 8-11

CHAPTER 9
SERIAL I/O PORT

9.1 OVERVIEW ... 9-1
9.2 MODES OF OPERATION .. 9-4

9.2.1 Synchronous Mode (Mode 0) .. 9-4
9.2.1.1 Transmission (Mode 0) .. 9-4
9.2.1.2 Reception (Mode 0) ... 9-5

9.2.2 Asynchronous Modes (Modes 1, 2, and 3) ... 9-6
9.2.2.1 Transmission (Modes 1, 2, 3) .. 9-6
9.2.2.2 Reception (Modes 1, 2, 3) ... : 9-6

9.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3) .. 9-7
9.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3) 9-7
9.5 AUTOMATIC ADDRESS RECOGNITION ... 9-7

9.5.1 Given Address .. 9-8
9.5.2 Broadcast Address .. 9-9
9.5.3 Reset Addresses ... 9-10

9.6 BAUD RATES .. 9-10
9.6.1 Baud Rate for Mode 0 ... 9-10
9.6.2 Baud Rates for Mode 2 ... 9-10
9.6.3 Baud Rates for Modes 1 and 3 ... 9-10

9.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3) ... 9-11
9.6.3.2 Selecting Timer 1 as the Baud Rate Generator .. 9-11
9.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3) ... 9-12
9.6.3.4 Selecting Timer 2 as the Baud Rate Generator .. 9-12

vi

L

CONTENTS

CHAPTER 10
MINIMUM HARDWARE SETUP

10.1 MINIMUM HARDWARE SETUP .. 10-1
10.2 ELECTRICAL ENVIRONMENT ... 10-2

10.2.1 Power and Ground Pins .. 10-2
10.2.2 Unused Pins .. 10-2
10.2.3 Noise Considerations .. 1 0-2

10.3 CLOCK SOURCES .. 10-3
10.3.1 On-chip Oscillator (Crystal) ... 10-3
10.3.2 On-chip Oscillator (Ceramic Resonator) ... 1 0-4
10.3.3 External Clock ... 10-4

10.4 RESET ... 10-5
10.4.1 Externally Initiated Resets .. 10-6
10.4.2 WDT Initiated Resets .. 10-6
10.4.3 Reset Operation .. 10-6
10.4.4 Power-on Reset .. 10-7

CHAPTER 11
SPECIAL OPERATING MODES

11.1 GENERAL .. 11-1
11.2 POWER CONTROL REGISTER ... 11-1

11.2.1 Serial 1/0 Control Bits ... 11-1
11.2.2 Power Off Flag .. 11-1

11.3 IDLE MODE ... 11-4
11.3.1 Entering Idle Mode .. 11-4
11.3.2 Exiting Idle Mode .. 11-5

11.4 POWERDOWN MODE .. 11-5
11.4.1 Entering Powerdown Mode ... 11-6
11.4.2 Exiting Powerdown Mode ... 11-6

11.5 ON-CIRCUIT EMULATION (ONCE) MODE .. 11-7
11 .5.1 Entering ONCE Mode ... 11-7
11.5.2 Exiting ONCE Mode .. 11-7

CHAPTER 12
EXTERNAL MEMORY INTERFACE

12.1 EXTERNAL MEMORY INTERFACE SiGNALS ... 12-1
12.2 CONFIGURING THE EXTERNAL MEMORY INTERFACE. .. 12-2

12.2.1 Page Mode and Nonpage Mode (PAGE Bit) .. 12-3
12.2.2 RD#, PSEN#, and the Number of External Address Pins (Bits RD1 :0) 12-3

12.2.2.1 Sixteen External Address Bits and a Single Read Signal
(RD1 = 1, RDO = 0) .. 12-4

12.2.2.2 Seventeen External Address Bits and a Single Read Signal
(RD1 = 0, RDO = 1) .. 12-4

vii

I

I
i'
i
!i

CONTENTS

12.2.2.3 Sixteen External Address Bits and Two Read Signals
(RD1 = 1, RDO = 1) ... 12-5

12.2.3 Wait States (WSA, WSB, XALE) ... 12-6
12.2.4 Mapping On-chip Code Memory to Data Memory (87C251SB/83C251SB) 12-7

12.3 EXTERNAL BUS CYCLES .. 12-7
12.3.1 Inactive External Bus .. 12-7
12.3.2 Bus Cycle Definitions .. , ... 12-8
12.3.3 Nonpage Mode Bus Cycles .. 12-8
12.3.4 Page Mode Bus Cycles ... 12-1 0

12.4 WAIT STATES ... 12-13
12.4.1 Extending PSEN#/RD#IWR# .. 12-13
12.4.2 Extending ALE .. 12-14

12.5 PORT 0 AND PORT 2 STATUS .. 12-15
12.5.1 Port 0 and Port 2 Pin Status in Nonpage Mode .. 12-15
12.5.2 Port 0 and Port 2 Pin Status in Page Mode .. 12-16

12.6 EXTERNAL MEMORY DESIGN EXAMPLES .. 12-16
12.6.1 Nonpage Mode, 64 Kbytes External EPROM, 64 Kbytes External RAM 12-16

12.6.1.1 An Application Requiring Fast Access to the Stack 12-16
12.6.1.2 An Application Requiring Fast Access to Data .. 12-17

12.6.2 Nonpage Mode, 128 Kbytes External RAM ~ .. 12-19
12.6.3 Page Mode, 128 Kbytes External Flash .. 12-21
12.6.4 Page Mode, 64 Kbytes External EPROM, 64 Kbytes External RAM 12-21
12.6.5 Page Mode, 64 Kbytes External Flash, 32 Kbytes External RAM 12-22

12.7 EXTERNAL BUS AC TIMING SPECiFiCATIONS ... 12-24
12.7.1 Explanation of AC Symbols .. 12-28
12.7.2 AC Timing Definitions ... 12-28

CHAPTER 13
PROGRAMMING AND VERIFYING
NONVOLATILE MEMORY

13.1 GENERAL ... : 13-1
13.2 PROGRAMMING AND VERIFYING MODES .. 13-2
13.3 GENERAL SETUP ... 13-3
13.4 OTPROM PROGRAMMING ALGORITHM .. 13-4
13.5 VERIFY ALGORITHM .. :! .. 13-5
13.6 PROGRAMMABLE FUNCTIONS ; .. 13~5

13.6.1 On-chip Code Memory ... ".13-5
13.6.2 Configuration Bytes ... 13-6
13.6.3 Lock Bit System .. 13-9
13.6.4 Encryption Array ... 13-10
13.6.5 Signature Bytes ... 13-10

13.7 VERIFYING THE 83C251SB (ROM) ... 13-10
13.8 VERIFYING THE 80C251SB (ROMLESS} .. 13-11

viii

-

CONTENTS

APPENDIX A
INSTRUCTION SET REFERENCE

A.1 NOTATION FOR INSTRUCTION OPERANDS .. A-2
A.2 OPCODE MAP AND SUPPORTING TABLES ... A-4

A.3 INSTRUCTION SET SUMMARy .. A-11
A.3.1 Execution Times for Instructions that Access the Port SFRs A-11
A.3.2 Instruction Summaries .. A-14

A.4 INSTRUCTION DESCRIPTIONS ... A-26

APPENDIXB
SIGNAL DESCRIPTIONS

APPENDIXC
REGISTERS

GLOSSARY

INDEX

_1 ____ _ ix

I
1*

I~

CONTENTS

Figure
2-1
2-2
2-3
3-1
3-2
3-3
3-4
3-5
3-6
4-1
4-2
4-3
4-4
5-1
5-2
5-3
5-4
5-5
5-6
5-7
6-1
6-2
6-3
6-4
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8

x

FIGURES

Page
Functional Block Diagram of the 8XC251SB .. 2-2
The CPU ... 2-5
8XC251SB Timing .. 2-6
Address Spaces for MCS® 251 Microcontrollers .. 3-1
Address Spaces for the MCS® 51 Architecture .. 3-3
Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture 3-4
8XC251SB Memory Space .. 3-7
The Register File .. 3-9
Dedicated Registers in the Register File and their Corresponding SFRs 3-11
Binary Mode Opcode Map .. 4-3
Source Mode Opcode Map .. 4-3
Program Status Word Register ... 4-19
Program Status Word 1 Register .. 4-20
Interrupt Control System .. 5-2
Interrupt Enable 'Register ... 5-6
Interrupt Priority High Register ... 5-8
Interrupt Priority Low Register .. 5-8
The Interrupt Process ... 5-9
Response Time Example #1 .. 5-11
Response Time Example #2 ...•.. 5-12
Port 1 and Port 3 Structure ... 6-3
Port 0 Structure .. 6-3
Port 2 Structure .. 6-4
Internal Pullup Configurations .. 6-6
Basic Logic of the Timer/Counters ... 7-2
Timer 0/1 in Mode 0 and Mode 1 ... 7-4
Timer 0/1 in Mode 2, Auto-Reload .. 7-5
Timer 0 in Mode 3, Two 8-bit Timers .. 7-6
TMOD: Timer/Counter Mode Control Register ... 7-7
TCON: Timer/Counter Control~egister .. 7-8
rimer 2: Capture Mode .. 7-11
Timer 2: Auto Reload Mode (DCEN = 0) .. 7-12
Timer 2: Auto Reload Mode (DCEN = 1) .. 7-13
Timer 2: Clock Out Mode .. 7-15
T2MOD: Timer 2 Mode Control Register .. 7-16
T2CON: Timer 2 Control Register .. 7-17
Programmable Counter Array .. , .. 8-3
PCA 16-bit Capture Mode .. 8-6
PCA Software Timer and High-speed Output Modes ... 8-8
PCA Watchdog Timer Mode ... 8-10
PCA 8-bit PWM Mode .. 8-11
PWM Variable Duty Cycle .. 8-12
CMOD: PCA Timer/Counter Mode Register ... 8-13
CCON: PCA Timer/Counter Control Register ... 8-14

J.

-
intet CONTENTS

Figure
8-9
9-1
9-2
9-3
9-4
9-5
10-1
10-2
10-3
10-4
10-5
11-1
11-2
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10

12-11
12-12

12-13
12-14
12-15
12-16
12-17
12-18
12-19
12-20
12-21
12-22
12-23
13-1
13-2
13-3
13-4
13-5

FIGURES

Page
CCAPMx: PCA Compare/Capture Module Mode Registers 8-16
Serial Port Block Diagram .. 9-2
Serial Port Special Function Register ... 9-3
Mode 0 Timing .. 9-5
Data Frame (Modes 1, 2, and 3) .. 9-6
Timer 2 in Baud Rate Generator Mode .. 9-13
Minimum Setup .. 10-1
CHMOS On-chip Oscillator .. 10-3
External Clock Connection ... 10-4
External Clock Drive Waveforms .. 10-5
Reset Timing Sequence ... 10-8
Power Control (PCON) Register ... 11-2
Idle and Powerdown Clock Control .. 11-3
Internal and External Memory Spaces for RDl = 1, RDO = 0 12-4
Internal and External Memory Spaces for RDl = 0, RDO = 1 12-5
Internal and External Memory Spaces for RDl = 1, RDO = 1 12-6
External Code Fetch or Data Read Bus Cycle (Nonpage Mode) 12-9
External Write Bus Cycle (Nonpage Mode) .. 12-9
Bus Structure in Nonpage Mode and Page Mode .. 12-1 0
External Code Fetch Bus Cycle (Page Mode) .. 12-11
External Data Read Bus Cycle (Page Mode) ... 12-12
External Write Bus Cycle (Page Mode) .. 12-12
External Code Fetch or Data Read Bus Cycle with One PSENtt/RDtt Wait State
(Nonpage Mode) .. 12-13
External Write Bus Cycle with One WRtt Wait State (Nonpage Mode) 12-14
External Code Fetch or Data Read Bus Cycle with One ALE Wait State
(Non page Mode) .. 12-14
80C251SB in Nonpage Mode with External EPROM and RAM 12-17
The Memory Space for the Systems of Figure 12-13 and Figure 12-18 12-18
87C251 SB/83C251 SB in Nonpage Mode with 128 Kbytes of External RAM 12-19
The Memory Space for the System of Figure 12-15 ... 12-20
80C251SB in Page Mode with External Flash .. 12-21
80C251 SB in Page Mode with External EPROM and RAM 12-22
80C251 SB in Page Mode with Extemal Flash and RAM .. 12-23
The Memory Space for the System of Figure 12-19 ... 12-24
External Bus Cycles for Data/Instruction Read and Data Write in Nonpage Mode .. 12-25
External Bus Cycles for Data Read and Data Write in Page Mode 12-26
External Bus Cycles for Instruction Read in Page Mode .. 12-27
Setup for Programming and Verifying .. 13-3
OTPROM Programming Waveforms .. 13-4
Configuration Byte 0 ... 13-7
Configuration Byte 1 ... 13-8
OTPROM Timing .. 13-11

1__ ___ ..
xi

CONTENTS

Table

2-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
5-1
5-2
5-3
5-4
5-5
5-6
5-7
6-1
6-2
7-1
7-2
7-3
8-1
8-2
8-3
9-1
9-2
9-3
9-4
9-5
9-6
11-1
12-1

xii

TABLES

Page

Summary of 8XC251 SB Features .. 2-4
Address Mappings .. 3-4
Register Bank Selection ... 3-8
Dedicated Registers in the Register File and their Corresponding SFRs 3-12
8XC251SB SFR Map and Reset Values .. 3-13
Core SFRs .. 3-14
I/O Port SFRs ... 3-14
Serial I/O SFRs .. 3-15
Timer/Counter and Watchdog Timer SFRs .. 3-15
Programmable Counter Array (PCA) SFRs .. 3-15
Examples of Opcodes in Binary and Source Modes .. 4-2
Data Types ... 4-4
Notation for Byte Registers, Word Registers, and Dword Registers 4-5
Addressing Modes for Data Instructions in the MCS® 51 Architecture 4-6
Addressing Modes for Data Instructions in the MCS® 251 Architecture 4-7
Bit-addressable Locations .. 4-13
Addressing Two Sample Bits .. 4-13
Addressing Modes for Bit Instructions4-14
Addressing Modes for Control Instructions .. .4-15
Compare-conditional Jump Instructions .. .4-16
The Effects of Instructions on the PSW and PSW1 Flags .. 4-18
Interrupt System Pin Signals .. 5-1
Interrupt System Special Function Registers ... 5-3
Interrupt Control Matrix ... 5-4
Level of Priority ... 5-7
Interrupt Priority Within Level ... 5-7
Interrupt Latency Variables .. 5-13
Actual vs. Predicted Latency Calculations .. 5-13
Input/Output Port Pin Descriptions ... 6-1
Instructions for External Data Moves .. 6-8
Timer/Counter and Watchdog Timer SFRs .. 7-2
External Signals ... 7-3
Timer 2 Modes of Operation ...•......................... 7-15
PCA Special Function Registers (SFRs) .. 8-4
External Signals ... 8-4
PCA Module Modes ... 8-15
Serial Port Signals .. 9-1
Serial Port Special Function Registers ... 9-2
Summary of Baud Rates .. 9-10
Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3 9-12
Selecting the Baud Rate Generator(s) ... 9-13
Timer 2 Generated Baud Rates ... 9-14
Pin Conditions in Various Modes .. 11-3
External Memory Interface Signals ... 12-1

-

Table

12-2
12-3
12-4
12-5
12-6
12-7
12-8
13-1
13-2
13-3
13-4
13-5
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28
B-1
B-2
B-3
C-1

. 1-

CONTENTS

TABLES

Page

Configuration Bits RD1:0 .. 12-3
Wait State Selection .. '" 12-6

I,
I,

1,:

Bus Cycle Definitions (No Wait States) .. 12-8
Port 0 and Port 2 Pin Status In Normal Operating Mode .. 12-15
AC Timing Symbol Definitions .. 12-28
AC Timing Definitions for Specifications on the 8XC251 SB 12-29
AC Timing Definitions for Specifications on the Memory System 12-30
Programming and Verifying Modes .. 13-2
Configuration Byte Values for 80C251SB and 80C251 SB-16 13-9
Lock Bit Function .. .'~ ... 13-9
Contents of the Signature Bytes ... 13-10
OTPROM Timing Definitions .. 13-12
Notation for Register Operands ... A-2
Notation for Direct Addresses .. A-3
Notation for Immediate Addressing ... A-3
Notation for Bit Addressing .. A-3
Notation for Destinations in Control Instructions ... A-3
Instructions for MCS® 51 Microcontrollers .. A-4
New Instructions for the MCS® 251 Architecture .. A-5
Data Instructions : ... A-6
High Nibble, Byte 0 of Data Instructions .. A-6
Bit Instructions ... A-7
Byte 1 (High Nibble) for Bit Instructions .. A-7
PUSH/POP Instructions .. A-8
Control Instructions .. A-8
Displacement/Extended MOVs .. ,A-9
INC/DEC .. A~'10
Encoding for INC/DEC .. A-1 0
Shifts ... A-1 0
State Times to Access the Port SFRs ... A-12
Summary of Add and Subtract Instructions ... A-14
Summary of Compare Instructions .. A-15
Summary of Increment and Decrement Instructions ... A-16
Summary of Multiply, Divide, and Decimal-adjust Instructions A-16
Summary of Logical Instructions ... A-17
Summary of Move Instructions .. A-19
Summary of Exchange, Push, and Pop Instructions ... A-22
Summary of Bit Instructions ... A-23
Summary of Control Instructions ... A-24
Flag Symbols ... A-26
Signals Arranged by Functional Categories .. B-1
Description of Columns of Table B-3 ... B-2
Signal Descriptions .. B-2
8XC251SB Special Function Registers (SFRs) ... C-5

xiii

-

- -

in1:et

t
Guide to This Manual

.... ____ J

II
If

I
:j.

i!~
I

:~
,~

'I Ij

1\
,1

;

i:
!

)
I

1 ,
j
II
{
~

-
intet~

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8XC251 SB embedded microcontroller which is the first member of the
MCS® 251 microcontroller family. It is intended for use by both software and hardware designers
familiar with the principles of microcontrollers.

1.1 MANUAL CONTENTS

This manual contains 13 chapters and 3 appendixes. This chapter, Chapter 1, provides an over
view of the manual. This section summarizes the contents of the remaining chapters and appen
dixes. The remainder of this chapter describes notational conventions and terminology used
throughout the manual and provides references to related documentation.

Chapter 2 - Architectural Overview - provides an overview of device hardware. It covers
core functions (pipe lined CPU, clock and reset unit, and on-chip memory) and on-chip peripher
als (timer/counters, watchdog timer, programmable counter array, and serial 110 port.)

Chapter 3 - Address Spaces - describes the three address spaces of the MCS 251 microcon
troller: memory address space, special function register (SFR) space, and the register file. It also
provides a map of the SFR space showing the location of the SFRs and their reset values and ex
plains the mapping of the address spaces of the MCS® 51 architecture into the address spaces of
the MCS 251 architecture.

Chapter 4 - Programming - provides an overview of the instruction set. It describes each in
struction type (control, arithmetic, and logical, etc.) and lists the instructions in tabular form. This
chapter also discusses the binary mode and source mode configurations, addressing modes, bit
instructions, and the program status words. For additional information about the instruction set,
see Appendix A.

Chapter 5 - Interrupts - describes the 8XC251 SB interrupt circuitry which provides a TRAP
instruction interrupt and seven maskable interrupts: two external interrupts, three timer interrupts,
a PCA interrupt, and a serial port interrupt. This chapter also discusses the interrupt priority
scheme, interrupt enable, interrupt processing, and interrupt response time.

Chapter 6- Input/Output Ports - describes the four 8-bit 110 ports (ports 0-3) and explains
how to configure them for general-purpose 110 and alternate special functions. It also describes
the use of ports 2 and 4 as the external address/data bus.

Chapter 7- Timer/Counters and WDT - describes the three on-chip timer/counters and
discusses their application. This chapter also provides instructions for using the hardware watch
dog timer (Wnr) and describes the operation of the WDT during the idle and powerdown modes.

~ __ L_ ... 1-1

GUIDE TO THIS MANUAL

Chapter 8 - Programmable Counter Array (PCA) - describes the PCA on-chip peripheral
and explains how to configure it for general-purpose applications (timers and counters) and spe
cial applications (programmable WDT and pulse-width modulator).

Chapter 9 - Serial 110 Port - describes the full-duplex serial I/O port and explains how to
program it to communicate with external peripherals. This chapter also discusses baud rate gen
eration, framing error detection, multiprocessor communications, and automatic address recog
nition.

Chapter 10 - Minimum Hardware Considerations - describes the basic requirements for
operating the 8XC251SB in a system. It also discusses on-chip and external clock sources and
describes device resets, including power-on reset.

Chapter 11 - Special Operating Modes - provides an overview of the idle, powerdown, and
on-circuit emulation (ONCE) modes and describes how to enter and exit each mode. This chapter
also describes the (PCON) register and lists the status of the device pins during the special modes
and reset (Table 11-1).

Chapter 12 - External Memory Interface - discusses the options available for configuring
the external memory interface for a variety of applications. These options include page mode (for
accelerated external code fetches), the number of external address bits (16 or 17), the number of
external wait states, the regions of memory for strobing PSEN# and RD#, and making a portion
of the on-chip code memory accessible as data. This chapter also discusses external memory sig
nals, control registers, and external bus cycles and their timing, and provides several examples of
external memory designs.

Chapter 13 - Programming and Verifying Nonvolatile Memory - provides instructions for
programming and verifying on-chip code memory, configuration bytes, signature bytes, lock bits
and the encryption array. This chapter provides the bit definitions of the configuration bytes.

Appendix A - Instruction Set Reference - provides reference information for the instruction
set. It describes each instruction; defines the bits in the program status word registers (PSW,
PSW1); shows the relationships between instructions and PSW flags; and lists hexadecimal op
codes, instruction lengths, and execution times. For additional information about the instruction
set, see Chapter 4, "Programming."

Appendix B - Signal Descriptions - describes the function(s) of each device pin. Descrip
tions are listed alphabetically by signal name. This appendix also provides a list of the signals
grouped by functional category.

Appendix C - Registers - provides for convenient reference a copy of the register definition
figures that appear throughout the manual.

1-2

GUIDE TO THIS MANUAL

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used in this manual. The Glossary defines other
terms with special meanings.

italics

XXXX

Assert and Deassert

Instructions

Logic 0 (Low)

Logic 1 (High)

L

The pound symbol (#) has either of two meanings, depending on the
context. When used with a signal name, the symbol means that the
signal is active low. When used in an instruction, the symbol prefixes
an immediate value in immediate addressing mode.

Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x and y, where x represents the first variable and y represents the
second variable. For example, in register Px.y, x represents the
variable [1-4] that identifies the specific port, and y represents the
register bit variable [7:0]. Variables must be replaced with the correct
values when configuring or programming registers or identifying
signals.

Uppercase X (no italics) represents an unknown value or a "don't
care" state or condition. The value may be either binary or
hexadecimal, depending on the context. For example, 2XAFH (hex)
indicates that bits 11:8 are unknown; lOXX in binary context
indicates that the two LSBs are unknown.

The terms assert and deassert refer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (high/low) is defined by the signal name. Active-low signals
are designated by a pound symbol (#) suffix; active-high signals have
no suffix. To assert RD# is to drive it low; to assert ALE is to drive it
high; to deassert RD# is to drive it high; to deassert ALE is to drive it
low.

Instruction mnemonics are shown in upper case to avoid confusion.
You may use either upper case or lower case.

An input voltage level equal to or less than the maximum value of
VIL or an output voltage level equal to or less than the maximum
value of VOL. See data sheet for values.

An input voltage level equal to or greater than the minimum value of
VIH or an output voltage level equal to or greater than the minimum
value of VOH . See data sheet for values.

1-3

GUIDE TO THIS MANUAL intelll!>

Numbers Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the character H. Decimal and binary numbers are
represented by their customary notations. (That is, 255 is a decimal
number and 1111 1111 is a binary number. In some cases, the letter B
is added for clarity.)

Register Bits Bit locations are indexed by 7:0 for byte registers, 15:0 for word
registers, ands 31:0 for double-word (dword) registers, where bit 0 is
the least-significant bit and 7, 15, or 31 is the most-significant bit. An
individual bit is represented by the register name, followed by a
period and the bit number. For example, PCONA is bit 4 of the
power control register. In some discussions, bit names are used. For
example, the name of PC ON A is POF, the power off flag.

Register Names Register names are shown in upper case. For example, PCON is the
power control register. If a register name contains a lowercase
character, it represents more than one register. For example,
CCAPMx represents the five registers: CCAPMO through CCAPM4.

Reserved Bits Some registers contain reserved bits. These bits are not used in this
device, but they may be used in future implementations. Do not write
a "I" to a reserved bit. The value read from a reserved bit is indeter
minate.

Set and Clear

Signal Names

Units of Measure

1-4

The terms set and clear refer to the value of a bit or the act of giving
it a value. If a bit is set, its value is "I"; setting a bit gives it a "I"
value. If a bit is clear, its value is "0"; clearing a bit gives it a "0"
value.

Signal names are shown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number. Port pins are represented by the P9rt abbrevi
ation, a period, and the pin number (e.g., PO.O, PO.1). A pound
symbol (#) appended to a signal name identifies an active-low signal.

The following abbreviations are used to represent units of measure:

A amps, amperes

DCV direct current volts

Kbyte kilobytes

Iffi kilo-ohms

rnA milliamps, milliamperes

Mbyte megabytes

MHz megahertz

1_
- --------

--
GUIDE TO THIS MANUAL

ms milliseconds

mW milliwatts

ns nanoseconds

pF picofarads

W watts

V volts

IlA microamps, microamperes

IlF microfarads

Ils microseconds

IlW microwatts

1.3 RELATED DOCUMENTS

The following documents contain additional information that is useful in designing systems that
incorporate the 8XC251SB microcontroller. To order documents, please call Intel Literature Ful
fillment (1-800-548-4725 in the U.S. and Canada; +44(0) 793-431155 in Europe).

Embedded Microcontrollers Order Number 270646

Embedded Processors Order Number 272396

Embedded Applications Order Number 270648

Packaging Order Number 240800

I
1-5

GUIDE TO THIS MANUAL intel~

1.3.1 Data Sheet

The data sheet is included in Embedded Microcontrollers and is also available individually.

8XC251 SB CHMOS Single-Chip 8-bit Microcontroller
(Commercial/Express)

1.3.2 Application Notes

The following application notes apply to the MCS 251 microcontroller.

AP-125, Designing Microcontroller Systems
for Electrically Noisy Environments

AP-155, Oscillators for Microcontrollers

AP-709, Maximizing Performance Using MCS 251 Microcontroller
-Programming the 8XC251SB

Order Number 272459

Order Number 210313

Order Number 230659

Order Number 272671

The following MCS 51 microcontroller application notes also apply to the MCS 251 microcon
troller.

AP70, Using the Intel MCS 51 Boolean Processing Capabilities

AP-223, 8051 Based CRT Terminal Controller

AP-252, Designing With the 80C51BH

AP-425, Small DC Motor Control

AP-41O, Enhanced Serial Port on the 83C51FA

AP-415, 83C51FAlFB PCA Cookbook

AP-476, How to Implement I2C Serial Communication
Using Intel MCS 51 Microcontrollers

1-6

Order Number 203830

Order Number 270032

Order Number 270068

Order Number 270622

Order Number 270490

Order Number 270609

Order Number 272319

___ 1-

-
intet GUIDE TO THIS MANUAL

1.4 CUSTOMER SERVICE

This section provides telephone numbers and describes various customer services.

• Customer Support (U.S. and Canada) 800-628-8686

• Customer Training (U.S. and Canada) 800-234-8806

• Literature Fulfillment

- 800-468-8118 (U.S. and Canada)

- +44(0)793-431155 (Europe)

• FaxBack* Service

800-628-2283 (U.S. and Canada)

+44(0)793-496646 (Europe)

916-356-3105 (worldwide)

• Application Bulletin Board System

800-897-2536 (U.S. and Canada)

916-356-3600 (worldwide, up to 14.4-Kbaud line)

916-356-7209 (worldwide, dedicated 24oo-baud line)

+44(0)793-496340 (Europe)

Intel provides 24-hour automated technical support through our FaxBack service and our central
ized Intel Application Bulletin Board System (BBS). The FaxBack service is a simple-to-use in
formation system that lets you order technical documents by phone for immediate delivery to
your fax machine. The BBS is a centralized computer bulletin board system that provides updated
application-specific information about Intel products.

1.4.1 How to Use Intel's FaxBack Service

Think of the FaxBack service as a library of technical documents that you can access with your
phone. Just dial the telephone number (see page 1-7) and respond to the system prompts. After
you select a document, the system sends a copy to your fax machine.

Each document is assigned an order number and is listed in a subject catalog. First-time users
should order the appropriate subject catalogs to get a complete listing of document order num
bers.

L~ _____ _ 1-7

ii
Ii
I

I!
I ~ J

i
I

i
I
I:
l

1
1
.1

:l
\ ,
j

GUIDE TO THIS MANUAL intet
The following catalogs and information packets are available:

1. Microcontroller, Flash, and iPLD catalog

2. Development Tools Handbook

3. System catalog

4. DVI and multimedia catalog

5. BBS catalog

6. Microprocessor and peripheral catalog

7. Quality and reliability catalog

8. Technical questionnaire

1.4.2 How to Use Intel's Application BBS

The Application Bulletin Board System (BBS) provides centralized access to information, soft
ware drivers, fIrmware upgrades, and revised software. Any user with a modem and computer can
access the BBS. Use the following modem settings.

• 14400, N, 8,1

If your modem does not support 14.4K baud, the system provides auto configuration support for
1200- through 14.4K-baud modems.

To access the BBS, just dial the telephone number (see page 1-7) and respond to the system
prompts. During your fIrst session, the system asks you to register with the system operator by
entering your name and location. The system operator will then set up your access account within
24 hours. At that time, you can access the fIles on the BBS. For a listing of fIles, call the FaxBack
service and order catalog #6 (the BBS catalog).

If you encounter any difficulty accessing our high-speed modem, try our dedicated 2400-baud
modem (see page 1-7)". Use the following modem settings.

• 2400 baud, N, 8, 1

1-8

-
intet~ GUIDE TO THIS MANUAL

1.4.3 How to Find the Latest ApBUILDER Files and Hypertext Manuals and Data
Sheets on the BBS

The latest ApBUILDER files and hypertext manuals and data sheets are available first from the
BBS. To access the files:

1. Select [F] from the BBS Main menu.

2. Select [L] from the Intel Apps Files menu.

3. The BBS displays the list of all area levels and prompts for the area number.

4. Select [25] to choose the ApBUILDER / Hypertext area.

5. Area level 25 has four sublevels: (1) General, (2) 196 Files, (3) 186 Files, and (4) 8051
Files.

6. Select [1] to find the latest ApBUILDER files or the number of the appropriate product
family sublevel to find the hypertext manuals and data sheets.

7. Enter the file number to tag the files you wish to download. The BBS displays the approx
imate download time for tagged files.

I
1-9

i
I
i~

I' J
11
Ij

I~
il
i

1 ;

-

-

in1:et

2 Ii
!,

I

Architectural
• Overview

II
I:

I

-

-
infel~

CHAPTER 2
ARCHITECTURAL OVERVIEW

The 8XC251SB is the first microcontroller in Intel's family ofMCS® 251 microcontrollers. This
family of 8-bit microcontrollers extends the features and performance of the widely-used MCS 51
microcontrollers, while providing binary-code compatibility. Pin compatible with the 8XC51FX,
the 8XC251SB provides a high-performance upgrade with minimal impact on existing hardware
and software. Typical control applications for the 8XC251SB include copiers, scanners, and CD
ROM and tape drives. It is also well suited for communications applications, such as phone ter
minals, business/feature phones, and phone switching and transmission systems.

All MCS 251 microcontrollers share a set of common features:

• 24-bit linear addressing and up to 16 Mbytes of memory

• a register-based CPU with registers accessible as bytes, words, and double words.

• a page mode for accelerating external instruction fetches

• an instruction pipeline

• an enriched instruction set, including 16-bit arithmetic and logic instructions

• a 64-Kbyte extended stack space

• a minimum instruction-execution time of two clocks (vs. 12 clocks for MCS 51 microcon
trollers)

• binary-code compatibility with MCS 51 microcontrollers

Several benefits are derived from these features:

• preservation of code written for MCS 51 microcontrollers

• a significant increase in core execution speed in comparison with MCS 51 microcontrollers
at the same clock rate

• support for larger programs and more data

• increased efficiency for code written in C

Figure 2-1 is a functional block diagram of the 8XC251SB. The core, which is common to all
MCS 251 microcontrollers, is described in "8XC251SB Core" on page 2-4. A specific microcon
troller in the family has its own on-chip peripherals, 110 ports, external system bus, size of on
chip RAM, and type and size of on-chip program memory.

l
2-1

11
::
I

ARCHITECTURAL OVERVIEW

System Bus & 1/0 Ports

PO P2

System Bus
I/O Ports

Code
OTPROMIROM

(16 Kbytes)
Data RAM
(1 Kbyte)

Clock & Reset

Peripherals

I I

pl}
Peripheral Signals

& I/O Ports

A4109-01

Figure 2-1. Functional Block Diagram of the 8XC251SB

2-2

I

-
ARCHITECTURAL OVERVIEW

The 8XC251SB peripherals include a dedicated watchdog timer, a timer/counter unit, a program
mable counter array (PCA), and a serial I/O unit. The 8XC251SB has four 8-bit I/O ports, PO-P4.
Each port pin can be individually programmed as a general I/O signal or a special-function signal
that supports the external bus or one of the on-chip peripherals. Ports PO and P2 comprise the ex
ternal bus, which has 16 lines that are multiplexed for a 16-bit address and 8-bit data. (You can
also configure the 8XC251SB to have a 17th external address bit. See Chapter 12, "External
Memory Interface.") Ports PI and P3 comprise bus-control and peripheral signals.

The 8XC251SB has two power-saving modes. In idle mode, the CPU clock is stopped, while
clocks to the peripherals continue to run. In powerdown mode, the on-chip oscillator is stopped,
and the chip enters a static state. An enabled interrupt or a hardware reset can bring the chip back
to its normal operating mode from idle or powerdown. See Chapter 11, "Special Operating
Modes" for details on the power-saving modes.

MCS 251 microcontrollers use an instruction set that has been expanded to include new opera
tions, addressing modes, and operands. Many instructions can operate on 8-, 16-, or 32-bit oper
ands, providing easier and more efficient programming in high-level languages such as C.
Additional new features include the TRAP instruction, a new displacement addressing mode, and
several conditional jump instructions. Chapter 4, "Programming," describes the instruction set
and compares it with the instruction set for MCS 51 microcontrollers.

You can configure the 8XC251SB to run in binary mode or source mode. In either mode, the
8XC251SB can execute all instructions in the MCS 51 architecture and the MCS 251 architec
ture. However, source mode is more efficient for MCS 251 architecture instructions, and binary
mode is more efficient for MCS 51 architecture instructions. In binary mode, object code for an
MCS 51 microcontroller can run on the 8XC251SB without recompiling.

If a system was originally developed using an MCS 51 microcontroller, and if the new
8XC251SB-based system will run code written for the MCS 51 microcontroller, performance will
be better with the 8XC251SB running in binary mode. Object code written for the MCS 51 mi
crocontroller runs faster on the 8XC251SB.

However, if most of the code is rewritten using the new instruction set, performance will be better
with the 8XC251SB running in source mode. In this case the 8XC251SB can run significantly
faster than the MCS 51 microcontroller. See Chapter 4, "Programming" for a discussion of binary
mode and source mode.

MCS 251 microcontrollers store both code and data in a single, linear 16-Mbyte memory space.
The 8XC251SB can address up to 128 Kbytes of external memory. The special function registers
(SFRs) and the register file have separate address spaces. See Chapter 3, "Address Spaces" for a
description of the address spaces.

2-3

,
i
j

II
I.!

ARCHITECTURAL OVERVIEW

Table 2-1 summarizes some features of the 8XC251SB.

Table 2-1. Summary of 8XC251SB Features

Address Register Code Memory Data I/O External Interrupt
Space File RAM Lines Bus Sources

256
83C251SB: 16 Kbytes ROM Multiplexed:

Kbytes
40 bytes 87C251SB: 16 Kbytes OTPROM 1 Kbyte 32 16/17 Address Bits 11

80C251SB: 0 Kbytes 8 Data Bits

2.1 8XC251SB CORE

The 8XC251SB core architecture contains the clock and reset unit, the interrupt handler, the bus
interface, the peripheral interface, and the CPU. The CPU contains the instruction sequencer,
ALU, register file, and data memory interface.

2.1.1 CPU

Figure 2-2 is a functional block diagram of the CPU (central processor unit). The 8XC251SB
fetches instructions from on-chip code memory two bytes at a time or from external memory in
single bytes. The instructions ate sent over the 16-bit code bus to the execution unit. You can con
figure the 8XC251SB to operate in page mode for accelerated instruction fetches from external
memory. In page mode, if an instruction fetch is to the same 256-byte "page" as the previous
fetch, the fetch requires one state (two clocks) rather than two states (four clocks).

The 8XC251SB register file has forty registers, which can be accessed as bytes, words, and dou
ble words. As in the MCS 51 architecture, registers 0--7 consist of four banks of eight registers
each, where the active bank is selected by the program staius word (PSW) for fast context switch
es.

The 8XC251 SB is a single-pipeline machine. When the pipeline is full and code is executing from
on-chip code memory, an instruction is completed every state time. When the pipeline is full and
code is executing from external memory (with no wait states and no extension of the ALE signal)
an instruction is completed every two state times.

2-4

L

-
intet~

Code Bus Code Address

Instruction Sequencer

Figure 2-2. The CPU

2.1.2 Clock and Reset Unit

ARCHITECTURAL OVERVIEW

Interrupt
Handler

8 Data Bus

24

Data Address

The timing source for the 8XC251SB can be an external oscillator or an internal oscillator with
an external crystaVresonator (see Chapter 10, "Minimum Hardware Setup"). The basic unit of
time in MCS 251 microcontrollers is the state time (or state), which is two oscillator periods (see
Figure 2-3). The state time is divided into phase 1 and phase 2.

The 8XC251SB peripherals operate on a peripheral cycle, which is six state times. (This periph
eral cycle is particular to the 8XC251SB and not a characteristic of the MCS 251 architecture.)
A one-clock interval in a peripheral cycle is denoted by its state and phase. For example, the PCA
timer is incremented once each peripheral cycle in phase 2 of state 5 (denoted as S5P2).

The reset unit places the 8XC251 SB into a known state. A chip reset is initiated by asserting the
RST pin or allowing the watchdog timer to time out (see Chapter 10, "Minimum Hardware Set
up").

2-5

ARCHITECTURAL OVERVIEW intet

P1 P2

XTAL1

I:Tasc• ' .1
2 T asc = State Time

State 1 State 2 State 3 State 4 State 5 State 6
P1 I P2 P1 I P2 P1 I P2 P1 I P2 P1 I P2 P1 I P2

XTAL1

III(Peripheral Cycle '-1
A2604-01

Figure 2-3. 8XC251SB Timing

2.1.3 Interrupt Handler

The interrupt handler can receive interrupt requests from eleven sources: seven maskable sources
and the TRAP instruction. When the interrupt handler grants an interrupt request, the CPU dis
continues the normal flow of instructions and branches to a routine that services the source that
requested the interrupt. You can enable or disable the interrupts individually (except for TRAP)
and you can assign one of four priority levels to each interrupt. See Chapter 5, "Interrupt System"
for a detailed description.

2.1.4 On-chip Code Memory

For the 83C251SB and the 87C251SB, memory locations FF:OOOOH-FF:3FFFH are implement
ed with 16-Kbytes of on-chip code memory (ROM in the 83C251SB and EPROM in the
87C251SB). Following a reset, the first instruction is fetched from location FF:OOOOH. For the
8OC251SB location FF:OOOOH is always in external memory.

2-6

L

-

- -
intet ARCHITECTURAL OVERVIEW

2.1.5 On-chip RAM

The 8XC251SB has l-Kbyte of on-chip data RAM (locations 20H-41FH) which can be accessed
with direct, indirect, and displacement addressing. Ninety-six of these locations (20H-7FH) are
bit addressable. An additional 32 bytes of on-chip RAM (OOH-IFH) provide storage for the four
banks of registers RO-R7.

2.2 ON-CHIP PERIPHERALS

The on-chip peripherals, which lie outside the core, perform specialized functions. Software ac
cesses the peripherals via their special function registers (SFRs). The 8XC251 SB has four periph
erals: the watchdog timer, the timer/counters, the programmable counter array (PCA), and the
serial 110 port.

2.2.1 Timer/Counters and Watchdog Timer

The timer!counter unit has three timer/counters, which can be clocked by the oscillator (for timer
operation) or by an external input (for counter operation). You can set up an 8-bit, 13-bit, or 16-
bit timer/counter, and you can program them for special applications, such as capturing the time
of an event on an external pin, outputting a programmable clock signal on an external pin, or gen
erating a baud rate for the serial 110 port. TImer/counter events can generate interrupt requests.

The watchdog timer is a circuit that automatically resets the 8XC251SB in the event of a hard
ware or software upset. When enabled by software, the watchdog timer begins running, and un
less software intervenes, the timer reaches a maximum count and initiates a chip reset. In normal
operation, software periodically clears the timer register to prevent the reset. If an upset occurs
and software fails to clear the timer, the resulting chip reset disables the timer and returns the sys
tem to a known state. The watchdog and the timer/counters are described in Chapter 7, "Tim
er/Counters and WatchDog Timer."

2.2.2 Programmable Counter Array (PCA)

The programmable counter array (PCA) has its own timer and five capture/compare modules that
perform several functions: capturing (storing) the timer value in response to a transition on an in
put pin; generating an interrupt request when the timer matches a stored value; toggling an output
pin when the timer matches a stored value; generating a programmable PWM (pulse width mod
ulator) signal on an output pin; and serving as a software watchdog timer. Chapter 8, "Program
mable Counter Array" describes this peripheral in detail.

1
2-7

I

I.

I'

I i

I' ~ "

Ii
1

'1
I ,
!,

I:
I:
1
1

'. l
,1
v

ARCHITECTURAL OVERVIEW intet
2.2.3 Serial 110 Port

The serial JJO port provides one synchronous and three asynchronous communication modes.
The synchronous mode (mode 0) is half-duplex: the serial port outputs a clock signal on one pin
and transmits or receives data on another pin.

The asynchronous modes (modes 1-3) are full-duplex (i.e., the port can send and receive simul
taneously). Mode 1 uses a serial frame of 10 bits: a start bit, 8 data bits, and a stop bit. The baud
rate is generated by overflow of timer 1 or timer 2. Modes 2 and 3 use a serial frame of 11 bits: a
start bit, eight data bits, a programmable ninth data bit, and a stop bit. The ninth bit can be used
for parity checking or to specify thatthe frame contains an address and data. In mode 2, you can
use a baud rate of 1/32 or 1/64 of the oscillator frequency. In mode 3, you can use the overflow
from timer 1 or timer 2 to determine the baud rate.

In its synchronous modes (modes 1-3) the serial port can operate as a slave in an environment
where multiple slaves share a single serial line. It can accept a message intended for itself or a
message that is being broadcast to all of the slaves, and it can ignore a message sent to another
slave.

2-8

- -

in1:et

Address Spaces

.... 1 ...

3

I
11
" i,

I
I

-
infel~

CHAPTER 3
ADDRESS SPACES

MCS® 251 microcontrollers have three address spaces: a memory space, a special function reg
ister (SFR) space, and a register file. This chapter describes these address spaces as they apply to
all MCS 251 microcontrollers and to the 8XC251SB in particular. It also discusses the compati
bility of the MCS 251 architecture and the MCS 51 architecture in terms of their address spaces.

3.1 ADDRESS SPACES FOR MCS@251 MICROCONTROLLERS

Figure 3-1 shows the memory space, the SFR space, and the register file for MCS 251 microcon
trollers. (The address spaces are depicted as being eight bytes wide with addresses increasing
from left to right.)

l

Memory Address Space
16 Mbytes

SFR Space
512 Bytes

Register File
64 Bytes

Figure 3-1. Address Spaces for MCS® 251 Mlcrocontrollers

A41DO-01

3-1

,
,~

I~

ADDRESS SPACES infel~

It is convenient to view the unsegmented, 16-Mbyte memory space as consisting of 256 64-Kbyte
regions, numbered 00: to FF:.

NOTE

The memory space in the MCS 251 architecture is unsegmented. The 64-
Kbyte "regions" 00:, 01:, ... , FF: are introduced only as a convenience for
discussions. Addressing in the MCS 251 architecture is linear; there are no
segment registers.

MCS 251 microcontrollers can have up to 64 Kbytes of on-chip code memory in region FF:. On
chip data RAM begins at location OO:OOOOH. The first 32 bytes (OO:OOOOH-OO:OOIFH) provide
storage for a part of the register me. On-chip, general-purpose data RAM begins at 00:0020H.
The sizes of the on-chip code memory and on-chip RAM depend on the particular device.

The register me has its own address space (Figure 3-1). The 64 locations in the register file are
numbered decimally from 0 to 63. Locations 0-7 represent one of four, switchable register banks,
each having 8 registers (see "The 8XC251SB Register File" on page 3-8). The 32 bytes required
for these banks occupy locations OO:OOOOH-OO:OOIFH in the memory space. Register me loca
tions 8-63 do not appear in the memory space.

The SFR space, can accommodate up to 512 8-bit special function registers with addresses
S:OOOH-S: IFFH. Some of these locations may be unimplemented in a particular device. In the
MCS 251 architecture, the prefix "S:" is used with SFR addresses to distinguish them addresses
from the memory space addresses OO:OOOOH-OO:OIFFH.

3.1.1 Compatibility with the MCS@ 51 Architecture

The address spaces in the MCS 51 architecture are mapped into the address spaces in the MCS
251 architecture. This mapping allows code written for MCS 51 microcontrollers to run on MCS
251 microcontrollers. (Chapter 4, "Programming," discusses the compatibility of the two instruc
tion sets.)

Figure 3-2 shows the address spaces for the MCS 51 architecturet. Internal data memory loca
tions OOH-7FH can be addressed directly and indirectly. Internal data locations 80H-FFH can
only be addressed indirectly. Directly addressing these locations accesses the Special Function
Registers (SFRs).

The register me (registers RO-R7) comprises four, switchable register banks, each having 8 reg
isters. The 32 bytes required for the four banks occupy locations OOH-IFH in the on-chip data
memory.

t MC~51 Microcontroller Family User's Manual (Order Nwnber: 272383)

3-2

1

- -
ADDRESS SPACES

The 64-Kbyte code memory has a separate memory space. Data in the code memory can be ac
cessed only with the MOVC instruction. Similarly, the 64-Kbyte external data memory can be
accessed only with the MOVX instruction.

Figure 3-3 shows how the address spaces in the MCS 51 architecture map into the address spaces
in the MCS 251 architecture; details are listed in Table 3-1.

1

OOOOH

OOOOH

BOH

OOH

Code
(MOVC)

External Data
(MOVX)

Internal Data
(indirect)

Internal Data
(direct, indirect)

FFFFH

FFFFH Register File

FFH FFH
SFRs
(direct)

BOH

7FH

Figure 3-2. Address Spaces for the MCS® 51 Architecture

A4139-01

3-3

ADDRESS SPACES

Memory Address Space
16 Mbytes

FFFFH

MCS® 51 Architecture
Code Memory

FF:OOOOH OOOOH

01 :OOOOH OOOOH

FFFFH

MCS 51 Architecture
External Data Memory

MCS 51 Architecture FFH

OO:OOOOH OOH Internal Data Memory

S:OOOH

8

SFR Space
512 Bytes

Register File
64 Bytes

O ________;..I!

63

A4133-01

Figure 3-3. Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture

Table 3-1. Address Mappings

MCSGD 51 Architecture MCSGD 251 Architecture

Memory Type
Data Size Location Addressing . Location

Code 64 Kbytes OOOOH-FFFFH Indirect using FF:OOOOH-FF:FFFFH
MOVC Instr.

External Data 64 Kbytes OOOOH-FFFFH
Indirect using

01 :0000H-D1 :FFFFH
MOVXinstr.

128 bytes OOH-7FH Direct, Indirect 00:OOOOH-D0:OO7FH
Internal Data

128 bytes 80H-FFH Indirect 00:0080H-D0:00FFH

SFRs 128 bytes S:80H-S:FFH Direct S:080H-S:OFFH

Register File 8 bytes RD-R7 Register RO-R7

3-4

-

-
ADDRESS SPACES

The 64-Kbyte code memory for MCS 51 microcontrollers maps into region FF: ofthe memory
space for MCS 251 microcontrollers. Assemblers for MCS 251 microcontrollers assemble code
for MCS 51 microcontrollers into region FF:, and data accesses to code memory are directed to
this region. The assembler also maps the interrupt vectors to region FF:. This mapping is trans
parent to the user; code executes just as before without modification.

The 64-Kbyte external data memory for MCS 51 microcontrollers is mapped into the memory
region specified by bits 16-23 of the data pointer DPX, i.e., DPXL, which is accessible as register
file location 57 and also as the SFR at S:084H (see "Dedicated Registers" on page 3-10). The re
set value of DPXL is 01H, which maps the external memory to region 01: as shown in Figure 3-3.
You can change this mapping by writing a different value to DPXL. A mapping of the MCS 51
microcontroller external data memory into any 64-Kbyte memory region in the MCS 251 archi
tecture provides complete run-time compatibility because the lower 16 address bits are identical
in the two address spaces.

The on-chip data memory for MCS 51 microcontrollers is mapped to region 00: to ensure com
plete run-time compatibility. From location OOH to 7FH, the internal data memory is the same in
the two architectures. In the MCS 251 architecture, the data memory extends beyond these 128
bytes to allow enhanced data and stack access using new instructions.

The 128-byte SFR space for MCS 51 microcontrollers is mapped into the 512-byte SFR space of
the MCS 251 architecture starting at address S:080H, as shown in Figure 3-3. This provides com
plete compatibility with direct addressing of MCS 51 microcontroller SFRs (including bit ad
dressing). The SFR addresses are unchanged in the new architecture. In the MCS 251
architecture, SFRs A, B, DPL, DPH, and SP (as well as the new SFRs DPXL and SPH) reside in
the register file for high performance. However, to maintain compatibility, they are also mapped
into the SFR space at the same addresses as in the MCS 51 architecture.

3.2 THE 8XC251SB MEMORY SPACE

The logical memory space for the 8XC251SB microcontroller is shown in Figure 3-4. The arrows
on the left side indicate the addressing modes that apply to the partitions of the memory space.
(Chapter 4, "Programming," discusses addressing modes.) The right side of the figure shows the
hardware implementation of the different areas of the memory space. For the 8XC251 SB, the us
able memory space consists of four 64-Kbyte regions: 00:, 01:, FE:, and FF:. Code can execute
from all four regions. Regions 02:-FD: are reserved. Reading a location in the reserved area re
turns an unspecified value. Software can execute a write to the reserved area, but nothing is ac
tually written.

I
3-5

I~
I~

ADDRESS SPACES in1:et

3.2.1 On-chlp General-purpose Data RAM

Memory locations 00:0020H-OO:041FH are implemented as 1 Kbyte of on-chip RAM, which can
be used for general data storage. Instructions cannot execute from on-chip data RAM. The data
is accessible by direct, indirect, and displacement addressing. Locations 00:0020H-OO:007FH are
also bit addressable.

3.2.2 On-chip Code Memory (87C251 SB/83C251 SB)

The 87C251SB/83C251SB has 16-Kbytes of on-chip OTPROMIROM at locations FF:OOOOH
FF:3FFFH. This memory is intended primarily for code storage, although its contents can also be
read as data with the indirect and displacement addressing modes. Following a chip reset, pro
gram execution begins at FF:OOOOH. Chapter 13, "Programming and Verifying Nonvolatile
Memory," describes programming and verification of the OTPROMIROM.

NOTE

Beware of executing code from the upper eight bytes of the on-chip
OTPROMIROM (FF:3FFF8H-FF:3FFFFH). The 8XC251SB may attempt to
prefetch code from external memory (at an address above FF:3FFFH) and
thereby disrupt 110 ports 0 and 2. Fetching code constants from these eight
bytes does not affect ports 0 and 2.

A code fetch in the range FF:00OOH-FF:3FFFH accesses the on-chip OTPROMIROM only if
EA# = 1. For EA# = 0, a code fetch in this address range accesses external memory. The value of
EA# is latched when the chip leaves the reset state.

3.2.2.1 Accessing On-chip Code Memory in Region 00:

The 87C251SB/83C251SB can be configured so that the upper 8 Kbytes of the on-chip code
memory can be read as data in region 00: (see "Configuration Bytes" on page 13-6). This is useful
for accessing code constants stored in OTPROMIROM. Specifically, the upper 8 Kbytes of code
memory are mapped to locations OO:EOOOH-OO:FFFFH (as well as to locations FF:EOOOH
FF:FFFFH) if the following three conditions hold:

• The 87C251SB/83C251SB is configured with EMAP = 0 in the CONFIGl register
(Chapter 13, "Programming and Verifying Nonvolatile Memory").

• EA#= 1.

• The access is a data read, not a code fetch.

If one or more of these conditions do not hold, accesses to locations OO:EOOOH-OO:FFFFH are
referred to external memory.

3-6

1

-

Indirect and
Displacement
Addressing
(16 Mbytes)

Direct
Addressing
(64 Kbytes)

Bit
Addressing
(96 Bytes)

Memory Address Space

FF:FFFFH

FF:OOOOH

FE:FFFFH

FE:OOOOH

01:FFFFH

01:0000H

00 FFFFH

00:007FH
00:0020H

00:001FH
Register

Addressing -l......l-...l- L.:0:..:O:..:.::O:..:O:.::O,;;,;OH~ ______I

(32 Bytes)

Figure 3-4. 8XC25158 Memory Space

ADDRESS SPACES

Implementation

A4101-01

3-7

ADDRESS SPACES

3.2.3 External Memory

Regions 01: and FE: and portions of regions 00: and FF: of the memory space are implemented
as external memory (Figure 3-4). External memory is described in Chapter 12, "External Memory
Interface."

3.3 THE 8XC251 SB REGISTER FILE

The 8XC251SB register file consists of 40 locations: 0-31 and 56-63, as shown in Figure 3-5.
Locations 0-7 are in the on-chip RAM. The other locations are in the CPU.

Registers 0-7 actually consist of four switchable banks of eight registers each. These 32 bytes are
stored in locations 00:0000H-OO:001FH in the memory space and are implemented in the on-chip
RAM. However, because these locations are dedicated to the register ftle, they are not considered
a part of the general-purpose, l-Kbyte on-chip RAM (locations 00:0020H-OO:041FH).

Bits RS 1 and RSO in the PSW register select one of the four register banks to be active, i.e., to
currently serve as register ftle locations 0-7, as shown in Table 3-2. (The PSW is described in
"Program Status Words" on page 4-17.) This bank selection can be used for fast context switches.
The inactive banks are inaccessible via the register ftle; however, registers in both the active and
inactive banks can be addressed as locations in the memory space.

Register ftle locations 32-55 are reserved and cannot be accessed.

Table 3-2. Register Bank Selection

PSW Selection Bits
Bank Address Range

RS1 RSO

BankO OOH-07H 0 0

Bank 1 OSH-OFH 0 1

Bank 2 10H-17H 1 0

Bank 3 18H-1FH 1 1

3.3.1 Byte, Word, and Dword Registers

Depending on its location in the register file, a register is addressable as a byte, a word, and/or a
dword, as shown in the right side of Figure 3-5. A register is named for its least-significant byte.
For example:

3-8

R4 is the byte register consisting of location 4.

WR4 is the word register consisting of registers 4 and 5.

DR4 is the dword register consisting of registers 4-7.

1

-
ADDRESS SPACES

Locations RO-R15 are addressable as bytes, words, or dwords. Locations 16-31 are addressable
only as words or dwords. Locations 56-63 are addressable only as dwords. Registers are ad
dressed only by the names shown in Figure 3-5 - except for the 32 registers that comprise the
four banks of registers RO-R7, which can also be accessed as locations OO:OOOOH-OO:OOIFH in
the memory space.

Banks 0-3

Byte Registers

Note: R10 = B
R11 =A

Rsl R91R10lR111R121R131R141R15

RO I R1 I R21 R3 I R41 R5 I R61 R7

Word Registers

WR24 WR26 WR28 WR30

WR16 WR18 WR20 WR22

WRS WR10 WR12 WR14

WRO WR2 WR4 WR6

Dword Registers

DR56 = DPX DR60=SPX

DR24 DR2S

DR16 DR20

DRS DR12

DRO DR4

A4099-01

Figure 3·5. The Register File

3-9

--"----- ------- - -
ADDRESS SPACES

3.3.2 Dedicated Registers

The register file has four dedicated registers:

• RIO is the B-register

• Rll is the accumulator (ACC)

• DR56 is the extended data pointer, DPX

• DR60 is the extended stack pointer, SPX

These registers are located in the register file; however, RIO, Rll, and some bytes of DR56 and
DR60 are also accessible as SFRs. The bytes of DPX and SPX can be accessed in the register file
only by addressing the dword registers. The dedicated registers in the register file and their cor
responding SFRs are illustrated in Figure 3-6 and listed in Table 3-3 on page 3-12.

3.3.2.1 Accumulator and B Register

The 8-bit accumulator (ACC) is byte register Rll, which is also accessible in the SFR space as
ACC at S:OEOH (Figure 3-6). The B register, used in multiplies and divides, is register RIO,
which is also accessible in the SFR space as B at S:OFOH. Accessing ACC or B as a register is
one state faster than accessing them as SFRs.

Instructions in the MCS 51 architecture use the accumulator as the primary register for data
moves and calculations. However, in the MCS 251 architecture, any of registers RI-RI5 can
serve for these taskst. As a result, the accumulator does not play the central role that it has in MCS
51 microcontrollers.

3.3.2.2 Extended Data Pointer, DPX

Dword register DR56 is the extended data pointer, DPX (Figure 3-6). The lower three bytes of
DPX (DPL, DPH, and DPXL) are accessible as SFRs. DPL and DPH comprise the 16-bit data
pointer DPfR. While instructions in the MCS 51 architecture always use DPfR as the data point
er, instructions in the MCS 251 architecture can use any word or dword register as a data pointer.

DPXL, the byte in location 58, specifies the region of memory (OO:-FF:) that maps into the 64-
Kbyte external data memory space in the MCS 51 architecture. In other words, the MOVX in
struction addresses the region specified by DPXL when it moves data to and from external mem
ory. The reset value ofDPXL is 01H.

t Bits in the PSW and PSWI registers reflect the status of the accumulator. There are no equivalent status indicators for
the other registers.

3-:10

I

-
intet ADDRESS SPACES

3.3.2.3 Extended Stack Pointer, SPX

Dword register DR60 is the stack pointer, SPX (Figure 3-6). The low byte (location 60) is the 8-
bit stack pointer, SP, in the MCS 51 architecture. The byte at location 61 is the stack pointer high, I.
SPH. The two bytes allow the stack to extend to the top of memory region 00:. SP and SPH can I~
be accessed as SFRs.

Two instructions, PUSH and POP directly address the stack pointer. Subroutine calls (ACALL,
ECALL, LCALL) and returns (ERET, RET, RET!) also use the stack pointer. To preserve the
stack, do not use DR60 as a general-purpose register.

Register File SFRs

A41S2-01

Figure 3-6. Dedicated Registers in the Register File and their Corresponding SFRs

I
3-11

i
I

i"
"~I

!I

!l
,1

I

ADDRESS SPACES

Table 3-3. Dedicated Registers In the Register File and their Corresponding SFRs

Register File SFRs

Name Mnemonic Reg. Location Mnemonic Address

- - 60 - -
Stack - - 61 - -
Pointer DR60
(SPX) Stack POinter, High SPH 62 SPH S:BDH

Stack Pointer, Low SP 63 SP S:81H

Data Pointer, Extended High - 56 - -
Data Data Pointer? Extended Low DPXL 57
Pointer I Data Pointer, High

DR56
(DPX) DPH 58

DPTR I Data Pointer, Low DPL 59

DPXL S:84H

DPH S:83H

DPL S:82H

Accumulator (A Register) A R11 11 ACC S:EOH

B Register B R10 10 B S:FOH

3.4 SPECIAL FUNCTION REGISTERS (SFRS)

The special function registers (SFRs) reside in the their associated on-chip peripherals or in the
core. Table 3-4 shows the SFR address space with the SFR mnemonics and reset values. SFR ad
dresses are preceded by "S:" to differentiate them from addresses in the memory space. Unoccu
pied locations ill the SFR space (the shaded locations in Table 3-4) are unimplemented, i.e., no
register exists. If an instruction attempts to write to an unimplemented SFR location, the instruc
tion executes, but nothing is actually written. If an unimplemented SFR location is read, it returns
an unspecified value.

3-12

NOTE

SFRs may be accessed only as bytes; they may not be accessed as words or
dwords.

I

-

L
3-13

ADDRESS SPACES

The following tables list the mnemonics, names, and addresses of the SFRs:

3-14

Table 3-5 on page 3-14 - Core SFRs

Table 3-6 on page 3-14 - JlO Port SFRs

Table 3-7 on page 3-15 - Serial JlO SFRs

Table 3-8 on page 3-15 - Timer/Counter and Watchdog SFRs

Table 3-9 on page 3-15 - Programmable Counter Array (PCA) SFRs

Table 3·5. Core SFRs

Mnemonic Name Address

ACCt Accumulator S:EOH

Bt B register S:FOH

PSW Program Status Word S:DOH

PSWt Program Status Word 1 S:D1H

Spt Stack Pointer - LSB of SPX S:81H

SPHt Stack Pointer High - MSB of SPX S:BDH

DPTRt Data Pointer (2 bytes) -
DPLt Low Byte of DPTR S:82H

DPHt High Byte of DPTR S:83H

DPXLt Data POinter, Extended Low S:84H

PCON Power Control S:87H

lEO Interrupt Enable Control 0 S:A8H

IPHO Interrupt Priority Control High 0 S:B7H

IPLO Interrupt Priority Control Low 0 S:B8H

tThese SFRs can also be accessed by their corresponding registers in the
register file (see Table 3·3).

Table 3-6. 1/0 Port SFRs

Mnemonic Name Address

PO Port 0 S:80H

P1 Port 1 S:90H

P2 Port 2 S:AOH

P3 Port 3 S:BOH

J

-
ADDRESS SPACES

Table 3-7. Serial 110 SFRs

Mnemonic Name Address

SCON Serial Control S:98H

SBUF Serial Data Buffer S:99H

SADEN Slave Address Mask S:B9H

SADDR Slave Address S:A9H

Table 3-8. Timer/Counter and Watchdog Timer SFRs

Mnemonic Name Address

TLO Timer/Counter 0 Low Byte S:8AH

THO Timer/Counter 0 High Byte S:8CH

TL1 Timer/Counter 1 Low Byte S:8BH

TH1 Timer/Counter 1 High Byte S:8DH
,'I

TL2 Timer/Counter 2 Low Byte S:CCH

TH2 Timer/Counter 2 High Byte S:CDH

TCON Timer/Counter 0 and 1 Control S:88H

TMOD Timer/Counter 0 and 1 Mode Control S:89H

T2CON Timer/Counter 2 Control S:C8H

T2MOD Timer/Counter 2 Mode Control S:C9H

RCAP2L Timer 2 Reload/Capture Low Byte S:CAH

RCAP2H Timer 2 Reload/Capture High Byte S:CBH

WDTRST WatchDog Timer Reset S:A6H

Table 3-9. Programmable Counter Array (PCA) SFRs

Mnemonic Name Address

CCON PCA Timer/Counter Control S:D8H

CMOD PCA Timer/Counter Mode S:D9H

CCAPMO PCA Timer/Counter Mode 0 S:DAH

CCAPM1 PCA Timer/Counter Mode 1 S:DBH

CCAPM2 PCA Timer/Counter Mode 2 S:DCH

CCAPM3 PCA Timer/Counter Mode 3 S:DDH

CCAPM4 PCA Timer/Counter Mode 4 S:DEH

3-15

-
ADDRESS SPACES infel~

Table 3·9. Programmable Counter Array (PCA) SFRs (Continued)

Mnemonic Name Address

CL PCA Timer/Counter Low Byte S:E9H

CH PCA Timer/Counter High Byte S:F9H

CCAPOL PCA Compare/Capture Module 0 Low Byte S:EAH

CCAP1L PCA Compare/Capture Module 1 Low Byte S:EBH

CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH

CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH

CCAP4L PCA Compare/Capture Module 4 Low Byte S:EEH

CCAPOH PCA Compare/Capture Module 0 High Byte S:FAH

CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH

CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH

CCAP3H PCA Compare/capture Module 3 High Byte S:FDH

CCAP4H· PCA Compare/Capture Module 4 High Byte S:FEH

3·16

L

- -

4
• ProgrammIng

I~

I

-

-

CHAPTER 4
PROGRAMMING

The instruction set for the MCS® 251 architecture is a superset of the instruction set for the
MCS 51 architecture. This chapter describes the addressing modes and summarizes the instruc
tion set, which is divided into data instructions, bit instructions, and control instructions. (Appen
dix A, "Instruction Set Reference" contains an opcode map and a detailed description of each
instruction.) The program status words PSW and PSWI are also described (page 4-17). The chap
ter begins with a discussion of the binary-mode and source-mode encodings of the instruction set.

NOTE

The instruction execution times given in Appendix A are for code executing
from on-chip code memory and for data that is read from and written to on
chip RAM. Execution times are increased by executing code from external
memory, accessing peripheral SFRs, accessing data in external memory, using
a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRs, Px, x = 1-3, increases the
execution time. These cases are noted individually in the tables in Appendix A.

4.1 BINARY MODE AND SOURCE MODE CONFIGURATIONS

Binary mode and source mode refer to two ways of assigning opcodes to the instruction set for
the MCS 251 architecture. One of these modes must be selected when the chip is configured. De
pending on the application, binary mode or source mode may produce more efficient code. This
section describes the binary and source modes and provides some guidelines for selecting the
mode for your application.

The MCS 251 architecture has two types of instructions:

• instructions that originate in the MCS 51 architecture

• instructions that are unique to the MCS 251 architecture

Figure 4-1 shows the opcode map for binary mode. On the left (areas I and II) is the opcode map
for the instructions that originate in the MCS 51 architecture. Every opcode (OOH-FFH), is used
for an instruction except ASH, which is reserved. On the right (area III) is the opcode map for the
instructions that are unique to the MCS 251 architecture. (Some of these opcodes are reserved for
future instructions.) Note that the opcode values for areas II and III are identical (06H-FFH). To
distinguish between the two areas, the opcodes in area III are given the prefix ASH. The area III
opcodes are then A506H-A5FFH.

4-1

PROGRAMMING

Figure 4-2 shows the opcode map for source mode. Areas IT and ill have switched places (com
pare Figure 4-1). The instructions that are unique to the MCS 251 architecture now have opcodes
without the A5H prefix. The instructions from area II of the MCS 51 architecture use the escape
prefix A5H.

To illustrate the difference between the binary-mode and source-mode opcodes, Table 4-1 shows
the opcode assignments for three sample instructions.

Table 4-1. Examples of Opcodes in Binary and Source Modes

Opcode
Instruction

Binary Mode Source Mode

DEC A 14H 14H

SUBBA,R4 9CH A59CH

SUB R4,R4 A59CH 9CH

4.1.1 Selecting Binary Mode or Source Mode

If you have code that was written for an MCS 51 microcontroller and you want to run it unmod
ified on an MCS 51 microcontroller, choose binary mode. You can use the object code without
reassembling the source code. You can also assemble the source code with an assembler for the
MCS 251 architecture and have it produce object code that is binary-compatible with MCS 51
microcontrollers. The remainder of this section discusses the selection of binary mode or source
mode for code that may contain instructions from both architectures.

An instruction with a prefixed opcode requires one more byte for code storage, and if an addition
. al fetch is required for the extra byte, the execution time is increased by one state. This means that
using fewer prefixed opcodes produces more efficient code.

If a program uses only instructions from the MCS 51 architecture, the binary-mode code is more
efficient because it uses no prefixes. On the other hand, if a program uses many more new instruc
tions than instructions from the MCS 51 architecture, source mode is likely to produce more ef
ficient code. For a program where the choice is not clear, the better mode can be found by
experimenting with a simulator.

4-2

-

-

OH
OH

FH

OH
OH

FH

MCS®51
Architecture

5H 6H

II

MCS51
Architecture

FH 6H

OH

FH

Figure 4-1. Binary Mode Opcode Map

MCS®51
Architecture

5H 6H

III

MCS 251
Architecture

FH 6H

OH

FH

Figure 4-2. Source Mode Opcode Map

PROGRAMMING

A5H Prefix

III

MCS 251
Architecture

A5H Prefix

II

MCS51
Architecture

FH

A4131-01

FH

A4130-01

4-3

PROGRAMMING intel~

4.2 PROGRAMMING FEATURES OF THE MC~ 251 ARCHITECTURE

The instruction set for MCS 251 microcontrollers provides the user with new instructions that ex
ploit the features of the architecture while maintaining compatibility with the instruction set for
MCS 51 microcontrollers. Many of the new instructions can operate on either 8-bit, 16-bit, or 32-
bit operands. (In comparison with 8-bit and 16-bit operands, 32-bit operands are accessed with
fewer addressing modes.) This capability increases the ease and efficiency of programming MCS
251 microcontrollers in a high-level language such as C.

The instruction set is divided into "Data Instructions"(page 4-6), ''Bit Instructions" (page 4-12),
and "Control Instructions" (page 4-14). Data instructions process 8-bit, 16-bit, and 32-bit data;
bit instructions manipulate bits; and control instructions manage program flow.

4.2.1 Data Types

Table 4-2 lists the data types that are addressed by the instruction set. A word or dword (double
word) in memory can have its least significant byte at any address; alignment on two-byte or four
byte boundaries is not required.

Table 4-2. Data Types

Data Type Number of Bits

Bit 1

Byte 8

Word 16

Dword (Double Word) 32

4.2.2 Register Notation

In register-addressing instructions, specific indices denote the registers that can be used in that
instruction. For example, the instruction ADD A,Rn uses "Rn" to denote anyone of RO, Rl, ... ,
R7; i.e., the range of n is 0-7. The instruction ADD Rm,#data uses "Rm" to denote RO, Rl, ... ,
R15; i.e., the range of m is 0-15. Table 4-3 summarizes the notation used for the register indices.
When an instruction contains two registers of the same type (e.g., MOV Rmd,Rms) the first index
"d" denotes "destination" and the second index "s" denotes "source."

4-4

I

-

-
PROGRAMMING

Table 4-3. Notation for Byte Registers, Word Registers, and Dword Registers

Register Register Destination Source
Register Range Type Symbol Register Register

Ri ~ - RO,R1

Byte Rn - - RO-R?

Rm Rmd Rms RO-R15

Word WRj WRjd WRjs WRO, WR2, WR4, ... , WR30

Dword DRk DRkd DRks DRO, DR4, DRB, ... , DR2B, DR56, DR60

4.2.3 Address Notation

In the MCS 251 architecture, memory addresses include a region number (00:, 01:, ... , FF:) (Fig
ure 3-1 on page 3-1). SFR addresses have a prefix "S:" (S:OOOH-S:IFFH). The distinction be
tween memory addresses and SFR addresses is necessary, because memory locations OO:OOOOH
OO:OIFFH and SFR locations S:OOOH-S:IFFH can both be directly addressed in an instruction.

Instructions in the MCS 51 architecture use 80H-FFH as addresses for both memory locations
and SFRs, because memory locations are addressed only indirectly and SFR locations are ad
dressed only directly. For compatibility, software tools for MCS 251 controllers recognize this
notation for instructions in the MCS 51 architecture. No change is necessary in any code written
for MCS 51 controllers.

For new instructions in the MCS 251 architecture, the memory region prefixes (00:, 01, ... , FF:)
and the SFR prefix (S:) are required. Also, software tools for the MCS 251 architecture permit
00: to be used for memory addresses OOH-FFH and permit the prefix S: to be used for SFR ad
dresses in instructions in the MCS 51 architecture.

4.2.4 Addressing Modes

The MCS 251 architecture supports the following addressing modes:

• register addressing: The instruction specifies the register that contains the operand.

• immediate addressing: The instruction contains the operand.

• direct addressing: The instruction contains the operand address.

• indirect addressing: The instruction specifies the register that contains the operand address.

• displacement addressing: The instruction specifies a register and an offset. The operand
address is the sum of the register contents (the base address) and the offset.

1
4-5

PROGRAMMING

• relative addressing: The instruction contains the signed offset from the next instruction to
the target address (the address for transfer of control, e.g., the jump address).

• bit addressing: The instruction contains the bit address.

More detailed descriptions of the addressing modes are given in "Data Addressing Modes" on
page 4-6, "Bit Addressing" on page 4-12, and "Addressing Modes for Control Instructions" on
page 4-14.

4.3 DATA INSTRUCTIONS

Data instructions consist of arithmetic, logical, and data-transfer instructions for 8-bit, 16-bit, and
32-bit data. This section describes the data addressing modes and the set of data instructions.

4.3.1 Data Addressing Modes

This section describes the data-addressing modes, which are summarized in two tables: Table 4-4
for the instructions that are native to the MCS 51 architecture, and Table 4-5 for the new data in
structions in the MCS 251 architecture.

NOTE

References to registers RO-R7, WRO-WR6, DRO, and DR2 always refer to the
register bank that is currently selected by the PSW and PSWI registers (see
"Program Status Words" on page 4-17). Registers in all banks (active and
inactive) can be accessed as memory locations in the range OOH-IFH.

Table 4-4. Addressing Modes for Data Instructions in the MCSID 51 Architecture

Mode
Address Range of Assembly Language

Comments Operand Reference

Register OOH-1FH
RQ-R7
(Bank selected by PSW)

Immediate Operand in Instruction #data = #OOH-#FFH

OOH-7FH dirS = OOH-7FH On-chip RAM

Direct dirS = SOH-FFH SFRs
or SFR mnemonic.

SFR address

Accesses on-chip RAM or the
OOH-FFH @RO, @R1 lowest 256 bytes of external

data memory (MOVX).

Indirect OOOOH-FFFFH @DPTR, @A+DPTR Accesses external data
memory (MOVX).

OOOOH-FFFFH @A+DPTR, @A+PC
Accesses region FF: of code
memory (MOVC).

4-6

-

-
PROGRAMMING

Table 4-5. Addressing Modes for Data Instructions in the MCSID 251 Architecture

Mode Address Range of Assembly Language
Comments Operand Notation

00:0000H-oO:001 FH RO-R7, WRO-WR6, DRO, and

Register (RD-R7, WRD-WR3,
RD-R15, WRD-WR30, DR2 are in the register bank
DRO-DR2B, DR56, DR60 currently selected by the

DRO, DR2) (1) PSW and PSW1.

Immediate, N.A. (Operand is in the
#short = 1, 2, or 4

Used only in increment and
2 bits instruction) decrement instructions.

Immediate, N.A. (Operand is in the
#dataB = #OOH-#FFH

B bits instruction)

Immediate, N.A. (Operand is in the
#data16 = #OOOOH-#FFFFH

16 bits instruction)

00:0000H-OO:OO7FH dirB = 00:0000H-OO:007FH On·chip RAM
Direct,

dirB = S:OBOH-S:1 FFH (2) B address bits SFRs SFR address or SFR mnemonic

Direct, OO:OOOOH-oO:FFFFH dir16 = OO:OOOOH-oO:FFFFH
16 address bits

Indirect, OO:OOOOH-oO:FFFFH @WRD-@WR30
16 address bits

Indirect, OO:OOOOH-FF:FFFFH
@DRO-@DR30, @DR56, Upper B bits of DRk must be

24 address bits @DR60 OOH.

Displacement,
@WRj + dis16 =

Offset is signed; address
16 address bits

OO:OOOOH-oO:FFFFH @WRO + OH through wraps around in region 00:.
@WR30+ FFFFH

@DRk + dis24 =
Displacement, OO:OOOOH-FF:FFFFH

@ DRO + OH-through Offset is signed, upper 8 bits
@DR28 + FFFFH, 24 address bits

@DR56 + (OH-FFFFH),
of DRk must be OOH.

@DR60 + (OH-FFFFH)

NOTES:
1. These registers are accessible in the memory space as well as in the register file (see "The

8XC251SB Register File" on page 3-8).
2. The MCS 251 architecture supports SFRs in locations S:000H-S:1FFH; however, in the 8XC251SB,

all SFRs are in the range S:080H-5:0FFH.

L

NOTE

Instructions from the MCS 51 architecture access external memory through the
region of memory specified by byte DPXL in the extended data pointer
register, DP:X; (DRS6). Following reset, DPXL contains OIH, which maps the
external memory to region 01:. You can specify a different region by writing to
DRS6 or the DPXL SFR. (See "Dedicated Registers" on page 3-10.).

4-7

I
I,

I
I

PROGRAMMING int"et~

4.3.1.1 Register Addressing

Both architectures address registers directly.

• MCS 251 architecture. In the register addressing mode, the operand(s) in a data instruction
are in byte registers (RO-RI5), word registers (WRO, WR2, ... , WR30), or dword registers
(DRO, DR4, ... , DR28, DR56, DR60).

• MCS 51 architecture. Instructions address registers RO-R7 only.

4.3.1.2 Immediate

Both architectures use immediate addressing.

• MCS 251 architecture. In the immediate addressing mode, the instruction contains the data
operand itself. Byte operations use 8-bit immediate data (#data); word operations use 16-bit
immediate data (#dataI6). Dword operations use 16-bit immediate data in the lower word
and either zeros in the upper word (denoted by #Odatal6) or ones in the upper word
(denoted by #ldataI6). MOV instructions that place 16-bit immediate data into adword
register (DRk), place the data either into the upper word while leaving the lower word
unchanged, or into the lower word with a sign extension or a zero extension.

The increment and decrement instructions contain immediate data (#Short = 1, 2, or 4),
which specifies the amount of the increment/decrement.

• MCS 51 architecture. Instructions use only 8-bit immediate data (#data).

4.3.1.3 Direct

• MCS 251 architecture. In the direct addressing mode, the instruction contains the address of
the data operand. The 8-bit direct mode addresses on-chip RAM (dir8 = OO:OOOOH
OO:007FH) as both bytes and words, and addresses the SFRs (dir8 = S:080H-S:IFFH) as
bytes only. (See the note below Table 4-5 on page 4-7 regarding SFRs in the MCS 251
architecture.) The 16-bit direct mode addresses both bytes and words in memory (dirl6 =
OO:OOOOH-OO:FFFFH). -

• MCS 51 architecture. The 8-bit direct mode addresses 256 bytes of on-chip RAM (dir8 =
OOH-7FH) as bytes only and the SFRs (dir8 = 80H-FFH) as bytes only.

4-8

-

-
intet~ PROGRAMMING

4.3.1.4 Indirect

In arithmetic and logical instructions that use indirect addressing, the source operand is always a
byte, and the destination is either the accumulator or a byte register (RO--RI5). The source address
is a byte, word, or dword. The two architectures do indirect addressing via different registers:

• MCS 251 architecture. Memory is indirectly addressed via word and dword registers:

Word register (@WRj, j = 0, 2, 4, ... , 30). The 16-bit address in WRj can access
locations OO:ooOOH-OO:FFFFH.

Dword register (@DRk, k = 0, 4,8, ... , 28, 56, and 60). The 24 least significant bits can
access the entire 16-Mbyte address space. The upper eight bits of DRk must be o. (If
you use DR60 as a general data pointer, be aware that DR60 is the extended stack
pointer register DPX.)

• MCS 51 architecture. Instructions use indirect addressing to access on-chip RAM, code
memory, and external data RAM. (See the Note on page 4-7 regarding the region of external
data RAM that is addressed by instructions in the MCS 51 architecture.)

4.3.1.5

Byte register (@Ri, i = 1,2). Registers RO and Rl indirectly address on-chip memory
locations OOH-FFH and the lowest 256 bytes of external data RAM.

16-bit data pointer (@DPfR or @A+DPfR). The MOVC and MOVX instructions use
these indirect modes to access code memory and external data RAM.

16-bit program counter (@A+PC). The MOVC instruction uses this indirect mode to
access code memory.

Displacement

Several move instructions use displacement addressing to move bytes or words from a source to
a destination. Sixteen-bit displacement addressing (@WRj+disI6) accesses indirectly the lowest
64 Kbytes in memory. The base address can be in any word register WRj. The instruction contains
a 16-bit signed offset which is added to the base address. Only the lowest 16 bits of the sum are
used to compute the operand address. If the sum of the base address and a positive offset exceeds
FFFFH, the computed address wraps around within region 00: (e.g. FooOH + 2oo5H becomes
1005H). Similarly, if the sum of the base address and a negative offset is less than zero, the com
puted address wraps around the top of region 00: (e.g., 2005H + FooOH becomes W05H).

Twenty-four-bit displacement addressing (@DRk+dis24) accesses indirectly the entire 16-Mbyte
address space. The base address must be in DRO, DR4, ... , DR24, DR28, DR56, or DR60. The
upper byte in the dword register must be zero. The instruction contains a 16-bit signed offset
which is added to the base address.

L
4-9

-- -- ----------- ----~

PROGRAMMING intel~

4.3.2 Arithmetic Instructions

The set of arithmetic instructions is greatly expanded in the MCS 251 architecture. The ADD and
SUB instructions (Table A-19 on page A-14) operate on byte and word data that is accessed in
several ways:

• as the contents of the accumulator, a byte register (Rn), or a word register (WRj)

• in the instruction itself (immediate data)

• in memory via direct or indirect addressing

The ADDC and SUBB instructions (Table A-19 on page A-14) are the same as those for MCS 51
microcontfbllers.

The CMP (compare) instruction (Table A-20 on page A -15) calculates the difference of two bytes
or words and then writes to flags CY, av, AC, N, and Z in the PSW and PSWI registers. The
difference is not stored. The operands can be addressed in a variety of modes. The most frequent
use of CMP is to compare data or addresses preceding a conditional jump instruction.

Table A-21 on page A-16 lists the INC (increment) and DEC (decrement) instructions. The in
structions for MCS 51 microcontrollers are supplemented by instructions that can address byte,
word, and dword registers and increment or decrement them by 1,2, or 4 (denoted by #short).
These instructions are supplied primarily for register-based address pointers and loop counters.

The MCS 251 architecture provides the MUL (multiply) and DIV (divide) instructions for un
signed 8-bit and 16-bit data (Table A-22 on page A-16). Signed multiply and divide are left for
the user to manage through a conversion process. The following operations are implemented:

• eight-bit multiplication: 8 bits x 8 bits ~ 16 bits

• sixteen-bit multiplication: 16 bits x 16 bits ~ 32 bits

• eight-bit division: 8 bits + 8 bits ~ 16 bits (8-bit quotient, 8-bit remainder)

• sixteen-bit division: 16 bits + 16 bits ~ 32 bits (16-bit quotient, 16-bit remainder)

These instructions operate on pairs of byte registers (Rmd,Rms), word registers (WRjd,WRjs), or
the accumulator and B register (A,B). For 8-bit register multiplies, the result is stored in the word
register that contains the first operand register. For example, the product from an instruction
MUL R3,R8 is stored in WR2. Similarly, for 16-bit multiplies, the result is stored in the dword
register that contains the flrst operand register. For example, the prbductfrom the instruction
MUL WR6,WRI8 is stored in DR4.

4-10

1

-
PROGRAMMING

For 8-bit divides, the operands are byte registers. The result is stored in the word register that con
tains the first operand register. The quotient is stored in the lower byte, and the remainder is stored
in the higher byte. A 16-bit divide is similar. The first operand is a word register, and the result is
stored in the double word register that contains that word register. If the second operand (the di
visor) is zero, the overflow flag (OV) is set and the other bits in PSW and PSWI are meaningless.

4.3.3 Logical Instructions

The MCS 251 architecture provides a set of instructions that perform logical operations. The
ANL, ORL, and XRL (logical AND, logical OR, and logical exclusive OR) instructions operate
on bytes and words that are accessed via several addressing modes (Table A-23 on page A-17).
A byte register, word register, or the accumulator can be logically combined with a register, im
mediate data, or data that is addressed directly or indirectly. These instructions affect the Z and N
flags.

In addition to the CLR (clear), CPL (complement), SWAP (swap), and four rotate instructions that
operate on the accumulator, MCS 251 microcontrollers have three shift commands for byte and
word registers:

• SLL (Shift Left Logical) shifts the register one bit left and replaces the LSB with o.
• SRL (Shift Right Logical) shifts the register one bit right and replaces the MSB with O.

• SRA (Shift Right Arithmetic) shifts the register one bit right; the MSB is unchanged.

4.3.4 Data Transfer Instructions

Data transfer instructions copy data from one register or memory location to another. These in
structions include the move instructions (Table A-24 on page A-19) and the exchange, push, and
pop instructions (Table A-24 on page A-19). Instructions that move only a single bit are listed
with the other bit instructions in Table A-26 on page A-23.

MOV (Move) is the most versatile instruction, and its addressing modes are expanded in the
MCS 251 architecture. MOV can transfer a byte, word, or dword between any two registers or
between a register and any location in the address space.

The MOVX (Move External) instruction moves a byte from external memory to the accumulator
or from the accumulator to memory. The external memory is in the region specified by DPXL,
whose reset value is 01H. (See "Dedicated Registers" on page 3-10.)

The MOVC (Move Code) instruction moves a byte from code memory (region FF:) to the accu
mulator.

I
4-11

------~

PROGRAMMING

MOVS (Move with Sign Extension) and MOVZ (Move with Zero Extension) move the contents
of an 8-bit register to the lower byte of a 16-bit register. The upper byte is filled with the sign bit
(MOVS) or zeros (MOVZ). The MOVH (Move to High Word) instruction places 16-bit immedi
ate data into the high word of a dword register.

The XCH (Exchange) instruction interchanges the contents of the accumulator with a register or
memory location. The XCHD (Exchange Digit) instruction interchanges the lower nibble of the
accumulator with the lower nibble of a byte in on-chip RAM. XCHD is useful for BCD (binary
coded decimal) operations.

The PUSH and POP instructions facilitate storing information (PUSH) and then retrieving it
(POP) in reverse order. Push can push a byte, a word, or a dword onto the stack, using the imme
diate, direct, or register addressing modes. POP can pop a byte or a word from the stack to a reg
ister or to memory.

4.4 BIT INSTRUCTIONS

A bit instruction addresses a specific bit in a memory location or SFR. There are four categories
of bit instructions: '

• SETB (Set Bit), CLR (Clear Bit), CPL (Complement Bit). These instructions can set, clear
or complement any addressable bit.

• ANL (And Logical), ANLI (And Logical Complement), ORL (OR Logical), ORLI (Or
Logical Complement). These instructions allow ANDing and ~Ring of any addressable bit
or its complement with the CY flag.

• MOV (Move) instructions transfer any addressable bit to the carry (CY) bit or vice versa.

• Bit-conditional jump instructions execute a jump if the bit has a specified state. The bit
conditional jump instructions are classified with the control instructions and are described
in "Conditional Jumps" on page 4-15.

4.4.1 Bit Addressing

The bits that can be individually addressed are in the on-chip RAM and the SFRs (Table 4-6). The
bit instructions that are unique to the MCS 251 architecture can address a wider range of bits than
the instructions from the MCS 51 architecture.

4-12 J

-
intet PROGRAMMING

Table 4-6. Bit-addressable Locations

Bit-addressable Locations
Architecture

On-chip RAM SFRs

MCS 251® Architecture 20H-7FH All defined SFRs

SFRs with addresses ending in OH
MCS 51 Architecture 20H-2FH orBH:

BOH. BBH. 90H. 9BH •...• FBH

There are some differences in the way the instructions from the two architectures address bits. In
the MCS 51 architecture, a bit (denoted by bit51) can be specified in terms of its location within
a certain register, or it can be specified by a bit address in the range OOH-7FH. The MCS 251
architecture does not have bit addresses as such. A bit can be addressed by name or by its location
within a certain register, but not by a bit address.

Table 4-7 illustrates bit addressing in the two architectures by using two sample bits:

• RAMBIT is bit 5 in RAMREG, which is location 23H. ("RAMBIT" and "RAMREG" are
assumed to be defined in user code.)

• ITI is bit 2 in TCON, which is an SFR at location 88H.

Table 4-7. Addressing Two Sample Bits

Location
Addressing MCS®S1 MCS2S1

Mode Architecture Architecture

Register Name RAMREG.5 RAMREG.5

Register Address 23H.5 23H.5
On-chip RAM

Bit Name RAM BIT RAMBIT

Bit Address 1DH NA

Register Name TCON.2 TCON.2

Register Address BB.2H S:BB.2H
SFR

Bit Name IT1 IT1

Bit Address BA NA

Table 4-8 lists the addressing modes for bit instructions, and Table A-26 on page A-23 summa
rizes the bit instructions. "bit" denotes a bit that is addressed by a new instruction in the MCS 251
architecture, and "bit51" denotes a bit that is addresseg by an instruction in the MCS 51 architec-
~. .

l
4-13

PROGRAMMING

Table 4-8. Addressing Modes for Bit Instructions

Architecture Variants Bit Address MemorylSFR Address Comments

MC~ 251 Memory NA 20H.0-7FH.7
Architecture
(bit) SFR NA All defined SFRs

00H-7FH 20H.0-7FH.7
MCS51

Memory

Architecture XXH.Q-XXH.7. where XX= 80.
SFRs are not defined

(bit51) SFR 80H-F8H
88. 90. 98 •...• FO. F8.

at all bit-addressable
locations.

4.5 CONTROL INSTRUCTIONS

Control instructions-instructions that change program flow-include calls. returns, and condi
tional and unconditional jumps (see Table A-27 on page A-24). Instead of executing the next in
struction in the queue. the processor executes a target instruction.

4.5.1 Addressing Modes for Control Instructions

A control instruction provides the address of a target instruction. The instruction can specify the
target address implicitly, as in a return from a subroutine, or explicitly. in the form of a relative,
direct, or indirect address:

• Relative addressing: The control instruction provides the target address as an 8-bit signed
offset (reI) from the address of the next instruction.

• Direct addressing: The control instruction provides a target address, which can have 11 bits
(addrll), 16 bits (addrI6), or 24 bits (addr24). The target address is written to the PC.

addr11: Only the lower 11 bits of the PC are changed; i.e., the target address must be in
the current 2-Kbyte block (the 2-Kbyte block that includes the first byte of the next
instruction).

addrl6: Only the lower 16 bits of the PC are changed; i.e., the target address must be in
the current 64-Kbyte region (the 64-Kbyte region that includes the first byte of the next
instruction).

addr24: The target address can be anywhere in the 16-Mbyte address space.

• Indirect addressing: There are two types of indirect addressing for control instructions:

4-14

For the instructions LCALL @WRj and LJMP @WRj, the target address is in the
current 64-Kbyte region. The 16-bit address in WRj is placed in the lower 16 bits of the
PC. The upper eight bits of the PC remain unchanged from the address of the next
instruction.

For the instruction JMP @A+DPTR, the sum of the accumulator and DPTR is placed in
the lower 16 bits of the PC, and the upper eight bits of the PC are FF:, which restricts
the target address to the code memory space of the MCS 51 architecture.

1

-

-
PROGRAMMING

Table 4-9 lists the addressing modes for the control instructions.

Table 4-9. Addressing Modes for Control Instructions

Description Address Bits Address Range Provided

Relative, 8-bit relative address (rei) 8 -128 to +127 from first byte of next instruction

Direct, 11-bit target address (addr11) 11 Current 2 Kbytes

Direct, 16-bit target address (addr16) 16 Current 64 Kbytes

Direct, 24-bit target address (addr24)t 24 OO:OOOOH-FF:FFFFH

Indirect (@WRj)t 16 Current 64 Kbytes

Indirect (@A+DPTR) 16
64-Kbyte region specified by DPXL (reset
value = 01H)

tThese modes are not used by instructions in the MCSH> 51 architecture.

4.5.2 Conditional Jumps

The MCS 251 architecture supports bit-conditional jumps, compare-conditional jumps, and
jumps based on the value of the accumulator. A bit-conditional jump is based on the state of a bit.
In a compare-conditional jump, the jump is based on a comparison of two operands. All condi
tional jumps are relative, and the target address (reI) must be in the current 256-byte block of
code.

The instruction set includes three kinds of bit-conditional jumps:

• m (Jump on Bit): Jump if the bit is set.

• JNB (Jump on Not Bit): Jump if the bit is clear.

• mc (Jump on Bit then Clear it): Jump if the bit is set; then clear it.

"Bit Addressing" on page 4-12 describes the bit addressing used in these instructions.

Compare-conditional jumps test a condition resulting from a compare (CMP) instruction that is
assumed to precede the jump instruction. The jump instruction examines the PSW and PSWI reg
isters and interprets their flags as though they were set or cleared by a compare (CMP) instruction.
Actually, the state of each flag is determined by the last instruction that could have affected that
flag.

The condition flags are used to test one of the following six relations between the operands:

• equal (=), not equal (:#:)

• greater than (», less than «)
• greater than or equal ~), less than or equal (s;)

I
4-15

1,1

I!
I ~

I
,
{
I,

::;

I"

1

PROGRAMMING

For each relation there are two instructions, one for signed operands and one for unsigned oper
ands (Table 4-10).

Table 4-10. Compare-conditional Jump Instructions

Operand Relation

Type
= * > < 2 ~

Unsigned JG JL JGE JLE
JE JNE

Signed JSG JSL JSGE JSLE

4.5.3 Unconditional Jumps

There are five unconditional jumps. NOP and SJMP jump to addresses relative to the program
counter. AJMP, LJMP, and EJMP jump to direct or indirect addresses.

• NOP (No Operation) is an unconditional jump to the next instruction.

• SJMP (Short Jump) jumps to any instruction within -128 to 127 of the next instruction.

• AJMP (Absolute Jump) changes the lowest 11 bits of the PC to jump anywhere within the
current 2-Kbyte block of memory. The address can be direct or indirect.

• LJMP (Long Jump) changes the lowest 16 bits of the PC to jump anywhere within the
current 64-Kbyte region.

• EJMP (Extended Jump) changes all 24 bits of the PC to jump anywhere in the 16-Mbyte
address space. The address can be direct or indirect.

4.5.4 Calls and Returns

The MCS 251 architecture provides relative, direct, and indirect calls and returns.

ACALL (Absolute Call) pushes the lower 16 bits of the next instruction address onto the stack
and then changes the lower 11 bits of the PC to the II-bit address specified by the instruction.
The call is to an address that is in the same 2-Kbyte block of memory as the address of the next
instruction.

LCALL (Long Call) pushes the lower 16 bits of the next-instruction address onto the stack and
then changes the lower 16 bits of the PC to the 16-bit address specified by the instruction. The
call is to an address in the same 64-Kbyte block of memory as the address of the next instruction.

ECALL (Extended Call) pushes the 24 bits of the next instruction address onto the stack and then
changes the 24 bits of the PC to the 24-bit address specified by the instruction. The call is to an
address anywhere in the 16-Mbyte memory space.

4-16

J

-

-
PROGRAMMING

RET (Return) pops the top two bytes from the stack to return to the instruction following a sub
routine call. The return address must be in the same 64-Kbyte region.

ERET (Extended Return) pops the top three bytes from the stack to return to the address follow
ing a subroutine call. The return address can be anywhere in the 16-Mbyte address space.

RET! (Return from Interrupt) provides a return from an interrupt service routine. The operation
of RET! depends on the INTR configuration bit in the CONFIG 1 register:

• For INTR = 0, an interrupt causes the two lower bytes of the PC to be pushed onto the stack.
The RET! instruction pops these two bytes and uses them as the 16-bit return address in
region FF:. RET! also restores the interrupt logic to accept additional interrupts at the same
priority level as the one just processed.

• For INTR = 1, an interrupt causes four bytes to be pushed onto the stack: the three bytes of
the PC plus the PSWI register. The RET! instruction pops these four bytes and then returns
to the specified 24-bit address, which can be anywhere in the 16-Mbyte address space.
RET! also clears the interrupt request line.

The TRAP instruction is useful for the development of emulations of an MCS 251 microcontrol
ler.

4.6 PROGRAM STATUS WORDS

The Program Status Word (PSW) register and the Program Status Word 1 (PSW 1) register contain
four types of bits (Figure 4-3 on page 4-19 and Figure 4-4 on page 4-20):

• CY, AC, Ov, N, and Z are flags set by hardware to indicate the result of an operation.

• The P bit indicates the parity of the accumulator.

• Bits RSO and RS 1 are programmed by software to select the active register bank for
registers RO-R7.

• FO and UD are available to the user as general-purpose flags.

The PSW and PSWI registers are read/write registers; however, the parity bit in the PSW is not
affected by a write. Individual bits can be addressed with the bit instructions ("Bit Instructions"
on page 4-12). The PSW and PSW 1 bits are used implicitly in the conditional jump instructions
("Conditional Jumps" on page 4-15).

The PSW register is identical to the PSW register in MCS 51 microcontrollers. The PSWI regis
ter exists only in MCS 251 microcontrollers. Bits CY, AC, RSO, RS1, and OV in PSWI are iden
tical to the corresponding bits in PSW, i.e., the same bit can be accessed in either register. Table
4-11 lists the instructions that affect the CY, AC, OV, N, and Z bits.

4-17

II
Ii
I

PROGRAMMING

Table 4-11. The Effects of Instructions on the PSW and PSW1 Flags

Rags Affected (1)
Instruction Type Instruction

CY OV AC(2) N z
ADD, AD DC, SUB, X X X X X
SUBB,CMP

Arithmetic INC, DEC X X

MUL, DIV (3) 0 X X X

DA X X X

ANL, ORL, XRL, CLR A, X X

Logical
CPL A, RL, RR, SWAP

RLC, RRC, SRL, SLL, X X X
SRA (4)

CJNE X X X
Program Control

DJNE X X

NOTES:
1. X = the flag can be affected by the instruction.

o = the flag is cleared by the Instruction.
2. The AC flag is affected only by operations on S-bit operands.
3. If the divisor Is zero, the OV flag is set, and the other bits are meaningless.
4. For SRL, SLL, and SRA instructions, the last bit shifted out is stored in the CY bit.

4-18 _J

-
intet PROGRAMMING

PSW Address: S:DOH
Reset State: OOOOOOOOB

7 0

CY AC FO RS1 II RSO OV UD P

Bit Bit Function Number Mnemonic

7 CY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) If there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by some rotate and shift instructions, logical bit instructions and bit move
instructions, and the multiply (MUL) and decimal adjust (DA) instructions
(see Table 4-11 on page 4-18).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise it is cleared. This flag is useful for BCD
arithmetic (see Table 4-11 on page 4-18).

5 FO Flag 0:

I

I

'j
I
I

This general-purpose flag is available to the user.

4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers RO-R7).

RS1 RSO Bank Address

0 0 0 OOH-07H
0 1 1 08H-OFH
1 0 2 10H-17H
1 1 3 18H-1FH

2 OV Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2's-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 UD User-definable Flag:

This general-purpose flag is available to the user.

0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all instruc~
tions update the parity bit.

Figure 4-3. Program Status Word Register

L
4-19

-
PROGRAMMING intet,

PSW1 Address: 8:01 H
Reset State: 0000 OOOOB

7 o
~_C_Y __ ~ __ A_C __ ~ ___ N __ ~ __ R_S_1~1 ~I __ R_8_0 __ ~_O_V __ ~ ___ Z __ ~ ____ ~

Bit Bit Function Number Mnemonic

7 CY Carry Flag:

Identical to the CY bit in the PSW register (Figure 4-3 on page 4-19.)

6 AC Auxiliary Carry Flag:

Identical to the AC bit in the PSW register (Figure 4-3 on page 4-19.)

5 N Negative Flag:

This bit is set if the result of the last logical or arithmetic operation was
negative. Otherwise it is cleared.

4-3 RS.1:0 Register Bank Select Bits a and 1:

Identical to the RS1:0 bits in the PSW register (Figure 4-3 on page 4-19).

2 OV Overflow Flag:

Identical to the OV bit in the PSW register (Figure 4-3 on page 4-19.)

1 Z Zero Flag:

This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.

a - Reserved:

The value read from this bit is indeterminate. 00 not write a "1" to this bit.

Figure 4-4. Program Status Word 1 Register

4-20

L

- -

5
I

I

Interrupt System

-

--

5.1 OVERVIEW

CHAPTER 5
INTERRUPT SYSTEM

The 8XC251SB, like other control-oriented computer architectures, employs a program interrupt
method. This operation branches to a subroutine and performs some service in response to the
interrupt. When the subroutine completes, execution resumes at the point where the interrupt oc
curred. Interrupts may occur as a result of internal8XC251SB activity (e.g., timer overflow) or
at the initiation of electrical signals external to the microcontroller (e.g., serial port communica
tion). In all cases, interrupt operation is programmed by the system designer, who determines pri
ority of interrupt service relative to normal code execution and other interrupt service routines.
Seven of the eight interrupts are enabled or disabled by the system designer and may be manipu
lated dynamically.

A typical interrupt event chain occurs as follows. An internal or external device initiates an inter
rupt-request signal. This signal, connected to an input pin (see Table 5-1, Interrupt System Pin
Signals) and periodically sampled by the 8XC251SB, latches the event into a flag buffer. The pri
ority of the flag (see Table 5-2, Interrupt System Special Function Registers) is compared to the
priority of other interrupts by the interrupt handler. A high priority causes the handler to set an
interrupt flag. This signals the instruction execution unit to execute a context switch. This context
switch breaks the current flow of instruction sequences. The execution unit completes the current
instruction prior to a save of the program counter (PC) and reloads the PC with the start address
of a software service routine. The software service routine executes assigned tasks and as a final
activity performs a RET! (return from interrupt) instruction. This instruction signals completion
of the interrupt, resets the interrupt-in-progress priority, and reloads the program counter. Pro
gram operation then continues from the original point of interruption.

Table 5-1. Interrupt System Pin Signals

Signal Type Description Multiplexed
Name With

INT1:0# I External Interrupts 0 and 1. These inputs set bits IE1:0 in the P3.3:2
TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0
are controlled by a negative-edge trigger on INT1 #/INTO#. If bits
INT1 :0# are clear, bits IE1:0 are controlled by a low level trigger on
INT1:0#.

NOTE: Other pin signals are defined in their respective chapters and in Appendix B, "Signal Descrip
tions."

5-1

:!

INTERRUPT SYSTEM

Interrupt Enable

A4149-01

Figure 5-1. Interrupt Control System

5-2

1

-
INTERRUPT SYSTEM

Table 5·2. Interrupt System Special Function Registers

Mnemonic Description Address

lEO Interrupt Enable Register. Used to enable and disable programmable S:A8H
interrupts. The reset value of this register is zero (interrupts disabled).

IPLO Interrupt Priority Low Register. Establishes relative four-level priority for S:B8H
programmable interrupts. Used in conjunction with IPHO.

IPHO Interrupt Priority High Register. Establishes relative four-level priority for S:B7H
programmable interrupts. Used in conjunction with IPLO.

NOTE: Other Special Function Registers are described In their respective chapters.

5.2 8XC251SB INTERRUPT SOURCES

Figure 5-1 on page 5-2 illustrates the interrupt control system. The 8XC251SB has eight interrupt
sources; seven maskable sources and the TRAP instruction (always enabled). The maskable
sources include two external interrupts (INToo and INT1#), three timer interrupts (timers 0, 1,
and 2), one programmable counter array (PCA) interrupt, and one serial port interrupt. Each in
terrupt (except TRAP) has an interrupt request flag, which can be set by software as well as by
hardware (see Table 5-3 on page 5-4). For some interrupts, hardware clears the request flag when
it grants an interrupt. Software can clear any request flag to cancel an impending interrupt.

5.2.1 External Interrupts

External interrupts INToo and INTl# (INTX#) pins may each be programmed to be level-trig
gered or edge-triggered, dependent upon bits ITO and ITI in the TCON register (see Figure 7-5
on page 1-8). If ITx == 0, INTx# is triggered by a detected low at the pin. If ITx == 1, INTx# is neg
ative-edge triggered. External interrupts are enabled with bits EXO and EXI (EXx) in the lEO reg
ister (see Figure 5-2 on page 5-6). Events on the external interrupt pins set the interrupt request
flags lEx in TCON. These request bits are cleared by hardware vectors to service routines only if
the interrupt is negative-edge triggered. If the interrupt is level-triggered, the interrupt service
routine must clear the request bit. External hardware must deassert INTx# before {he service rou
tine completes, or an additional interrupt is requested. External interrupt pins must be deasserted
for at least four state times prior to a request.

External interrupt pins are sampled once every four state times (a frame length of 666.4 ns at 12
MHz). A level-triggered interrupt pin held low or high for any five-state time period guarantees
detection. Edge-triggered external interrupts must hold the request pin low"for at least five state
times. This ensures edge recognition and sets interrupt request bit EXx. The CPU clears EXx au
tomatically during service routine fetch cycles for edge-triggered interrupts.

5-3

INTERRUPT SYSTEM in1et

Table 5-3. Interrupt Control Matrix

Interrupt Name Global peA Timer Serial Timer
INT1#

Timer
INTO#

Enable 2 Port 1 0

Bit Name in Interrupt
Enable Register EA EC ET2 ES ET1 EX1 ETO EXO
@S:A8H

Interrupt Priority-
Within-Level NA 7 6 5 4 3 2 1
(7 = Low Priority,
1 = High Priority)

Bit Name in Interrupt
Reserved IPLO.6 IPLO.5 IPLO.4 IPLO.3 IPLO.2 IPLO.1 IPLO.O Priority Low @S:B8H

Bit Name in Interrupt
Priority High Reserved IPHO.6 IPHO.5 IPHO.4 IPHO.3 IPHO.2 IPHO.1 IPHO.O
@S:B7H

Programmable for
Negative-edge

NA Edge No No No Yes No Yes
Triggered 'or Level-
triggered Detect?

Request Flag NA
CF, TF2, RI,TI TF1 IE1 TFO lEO

CCFX EXF2

Request Flag Edge Edge
Cleared by No No No No Yes Yes, YES Yes,
Hardware? Level No Level No

ISR Vector Address
NA

FF: FF: FF: FF: FF: FF: FF:
0033H 002BH 0023H 001BH 0013H OOOBH 0OO3H

5.2.2 Timer Interrupts

Two timer-interrupt request bits TFO and TF1 (see TCON register, Figure 7-5 on page 7-8) are set
by timer overflow (the exception is Timer 0 in Mode 3, see Figure 7-3 on page 7-6). When a timer
interrupt is generated, the bit is cleared by an on-chip-hardware vector to an interrupt service rou
tine. Timer interrupts are enabled by bits ETO, ET1, and ET2 in the lEO register (see Figure 5-2
on page 5-6).

Timer 2 interrupts are generated by a logical OR of bits TF2 and EXF2 in register T2CON (see
Figure 7-11 on page 7-17). Neither flag is cleared by a hardware vector to a service routine. In
fact, the interrupt service routine must determine ifTF2 or EXF2 generated the interrupt, and then
clear the bit. Timer 2 interrupt is enabled by ET2 in register lEO.

5-4

-

-
intet INTERRUPT SYSTEM

5.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT

The programmable counter array (PCA) interrupt is generated by logical OR of five event flags
(CCFx) and the PCA timer overflow flag (CF) in the CCON register (see Figure 8-8 on page
8-14). All PCA interrupts share a common interrupt vector. Bits are not cleared by hardware vec
tors to service routines. Normally, interrupt service routines resolve interrupt requests and clear
flag bits. This allows the user to define the relative priorities of the five PCA interrupts.

The PCA interrupt is enabled by bit EC in the lEO register (see Figure 5-1 on page 5-2. In addi
tion, the CF flag and each of the CCFx flags must also be individually enabled by bits ECF and
ECCFx in registers CMOD and CCAPMx respectively for the flag to generate an interrupt (see
Figure 8-8 on page 8-14 and Figure 8-9 on page 8-16).

NOTE

CCFx refers to 5 separate bits, one for each PCA module (CCFO, CCF1, CCF2,
CCF3, CCF4).

CCAPMx refers to 5 separate registers, one for each PCA module (CCAPMO,
CCAPM1, CCAPM2, CCAPM3, CCAPM4).

5.4 SERIAL PORT INTERRUPT

Serial port interrupts are generated by the logical OR of bits RI and TI in the SCON register (see
Figure 9-2 on page 9-3). Neither flag is cleared by a hardware vector to the service routine. The
service routine resolves RI or TI interrupt generation and clears the serial port request flag. The
serial port interrupt is enabled by bit ES in the lEO register (see Figure 5-2 on page 5-6).

5.5 INTERRUPT ENABLE

Each interrupt source (with the exception of TRAP) may be individually enabled or disabled by
the appropriate interrupt enable bit in the lEO register at S :A8H (see Figure 5-2 on page 5-6). Note
lEO also contains a global disable bit (EA). IfEA is set, interrupts are individually enabled or dis
abled by bits in lEO. If EA is clear, all interrupts are disabled.

5-5

INTERRUPT SYSTEM intet

lEO Address: S:A8H
Reset State: 0000 00008

7 o
L-_E_A_--1-_E_C_...1..-_E_T_2_.L..-_E_S_....J11 ET1 EX1 ETO EXO

Bit Bit
Function Number Mnemonic

7 EA Global Interrupt Enable:

Setting this bit enables all interrupts that are individually enabled by bits
0-6. Clearing this bit disables all Interrupts, except the TRAP interrupt,
which is always enabled.

6 EC PCA Interrupt Enable:

Setting this bit enables the PCA interrupt.

5 ET2 Timer 2 Overflow Interrupt Enable:

Setting this bit enables the timer 2 overflow interrupt.

4 ES Serial I/O Port Interrupt Enable:

Setting this bit enables the serial I/O port interrupt.

3 ET1 Timer 1 Overflow Interrupt Enable:

Setting this bit enables the timer 1 overflow interrupt.

2 EX1 External Interrupt 1 Enable:

Setting this bit enables external interrupt 1.

1 ETO Timer 0 Overflow Interrupt Enable:

Setting this bit enables the timer 0 overflow interrupt.

0 EXO External Interrupt 0 Enable:

Setting this bit enables external interrupt O.

Figure 5·2. Interrupt Enable Register

5.6 INTERRUPT PRIORITIES

Each of the seven interrupt sources on the 8XC251SB may be individually programmed to one
of four priority levels. This is accomplished by a bit in the interrupt priority low and high registers
(IPHO.xIIPLO.x, see Figure 5-3 and Figure 5-4 on page 5-8). The IPHO register has the same bit
map as the IPLO register. This gives each interrupt source two priority-level select bits (see Table
5-4). The MSB of the priority select bits is in the IPHO register, and the LSB is in the IPLO
register.

5-6 _1

-
INTERRUPT SYSTEM

Table 5-4. Level of Priority

IPHO.X (MSB) IPLO.X (LSB) Priority Level

0 0 o Lowest Priority

0 1 1

1 0 2

1 1 3 Highest Priority

A low-priority interrupt is always interrupted by a higher priority interrupt but not by another in
terrupt of equal or lower priority. The highest priority interrupt is not interrupted by any other in
terrupt source. Higher priority interrupts are serviced before lower priority interrupts. The
response to simultaneous occurrence of equal priority interrupts (i.e., sampled within the same
four state interrupt cycle) is determined by a hardware priority-within-Ievel resolver (see Table
5-5).

Table 5-5. Interrupt Priority Within Level

Priority Number Interrupt Name

1 (Highest Priority) INTO#

2 Timer 0

3 INT1#

4 Timer 1

5 Serial Port

6 Timer 2

7(Lowest Priority) peA

NOTE

The 8XC251SB interrupt priority-within-Ievel table (Table 5-5) differs from
MCS® 51 microcontrollers. Other MCS 251 microcontrollers may have unique
interrupt priority-within-Ievel tables.

L~~ ~
5-7

I
i

--
INTERRUPT SYSTEM intel~

IPHO Address: S:B7H
Reset State: 0000 OOOOB

7 o
~ ____ ~ __ IP_H_0_.6 __ ~_IP_H_0._5~ __ IP_H_0_.4~1 ~I _1_P_H_0._3~ __ IP_H_0_.2 __ ~I_P_HO_._1~ __ IP_H_0_.0~

Bit Bit
Function Number Mnemonic

7 - Reserved. The value read from this bit is Indeterminate. Do not write a
"1" to this bit.

6 IPHO.6 PCA Interrupt Priority Bit High

5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High

4 IPHO.4 Serial 110 Port Interrupt Priority Bit High

3 IPHO.3 Timer 1 Overflow Interrupt Priority Bit High

2 IPHO.2 External Interrupt Priority Bit High

1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High

0 IPHO.O External Interrupt 0 Priority Bit High

Figure 5-3. Interrupt Priority High Register

IPLO Address: S:B8H
Reset State: 0000 OOOOB

7 o
~ ____ ~ __ IP_L_0._6~ __ IP_L_0_.5~ __ IP_L_0_.4~11 ~ _1_P_LO_.3 __ ~_IP_L_0._2~ __ IP_L_0._1~ __ IP_L_0_.0~

Bit Bit
Function

Number Mnemonic

7 - Reserved. The value read from this bit is indeterminate. Do not write a
"1" to this bit.

6 IPLO.6 PCA Interrupt Priority Bit Low

5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low

4 IPLO.4 Serial 110 Port Interrupt Priority Bit Low

3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low

2 IPLO.2 External Interrupt Priority Bit Low

1 IPLO.1 Timer 0 Overflow Interrupt Priority Bit Low

0 IPLO.O External Interrupt 0 Priority Bit Low

Figure 5-4. Interrupt Priority Low Register

5-8

__ l

-
intet INTERRUPT SYSTEM

5.7 INTERRUPT PROCESSING

Interrupt processing is a dynamic operation that begins when a source requests an interrupt and
lasts until the execution of the first instruction in the interrupt service routine (see Figure 5-5).
Response time is the amount of time between the interrupt request and the resulting break in the
current instruction stream. Latency is the amount of time between the interrupt request and the
execution of the first instruction in the interrupt service routine. These periods are dynamic due
to the presence of both fixed-time sequences and several variable conditions. These conditions
contribute to total elapsed time.

asc
State
Time

External
Interrupt
Request

\%

Response Time

IlII

Ending Instructions

Latency

A4153·01

Figure 5-5. The Interrupt Process

Both response time and latency begin with the request. The subsequent minimum fixed sequence
comprises the interrupt sample, poll, and request operations. The variables consist of (but are not
limited to): specific instructions in use at request time, internal versus external interrupt source
requests, internal versus external program operation, stack location, presence of wait states, page
mode operation, and branch pointer length.

NOTE

In the following discussion external interrupt request pins are assumed to be
inactive for at least four state times prior to assertion. In this chapter all
external hardware signals maintain some setup period (Le., less than one state
time). Signals must meet VIH and Vn.. specifications prior to any state time
under discussion. This setup state time is not included in examples or calcula
tions for either response or latency.

5-9

INTERRUPT SYSTEM

5.7.1 Minimum Fixed Interrupt Time

All interrupts are sampled or polled every four state times (see Figure 5-5 on page 5-9). Two of
eight interrupts are latched and polled per state time within any given four-state time window.
One additional state time is required for a context switch request. For code branches to jump lo
cations in the current 64-Kbyte memory region (compatible with MCS 51 microcontrollers), the
context switch time is 11 states. Therefore, the minimum fixed poll and request time is 16 states
(4 poll states + 1 request state + 11 states for the context switch = 16 state times).

Therefore, this minimum fixed period rests upon four assumptions:

• The source request is an internal interrupt with high enough priority to take precedence over
other potential interrupts,

• The request is coincident with internal execution and needs no instruction completion time,

• The program uses an internal stack location, and

• The ISR is in on-chip OTPROM/ROM.

5.7.2 Variable Interrupt Parameters

Both response time and latency calculations contain fixed and variable components. By defini
tion, it is often difficult to predict exact timing calculations for real-time requests. One large vari
able is the completion time of an instruction cycle coincident with the occurrence of an interrupt
request. Worst-case predictions typically use the longest-executing instruction in an architecture's
code set. In the case of the 8XC251SB, the longest-executing instruction is a 16-bit divide (DIV).
However, even this 21- state instruction may have only 1 or 2 remaining states to complete before
the interrupt system injects a context switch. This uncertainty affects both response time and la
tency.

5.7.2.1 Response Time Variables

Response time is defined as the start of a dynamic time period when a source requests an interrupt
and lasts until a break in the current instruction execution stream occurs (see Figure 5-5 on page
5-9). Response time (and therefore latency) is affected by two primary factors: the incidence of
the request relative to the four-state-time sample window and the completion time of instructions
in the response period (Le., shorter instructions complete earlier than longer instructions).

5-10

NOTE

External interrupt signals require one additional state time in comparison to
internal interrupts. This is necessary to sample and latch the pin value prior to
a poll of interrupts. The sample occurs in the first half of the state time and the
poll/request occurs in the second half of the next state time. Therefore, this
sample and polUrequest portion of the minimum fixed response and latency

L

-

-
intet~ INTERRUPT SYSTEM

time is five states for internal interrupts and six states for external interrupts.
External interrupts must remain active for at least five state times to guamntee
interrupt recognition when the request occurs immediately after a sample has
been taken (i.e., requested in the second half of a sample state time).

If the external interrupt goes active one state after the sample state, the pin is not resampled for
another three states. After the second sample is taken and the interrupt request is recognized, the
interrupt controller requests the context switch. The programmer must also consider the time to
complete the instruction at the moment the context switch request is sent to the execution unit. If
9 states of a lO-state instruction have completed when the context switch is requested, the total
response time is 6 states, with a context switch immediately after the final state of the lO-state
instruction (see Figure 5-6).

Response Time = 6

osc

~ State Time

INTO#

Sample INTO#

Request -------, I
I

1~:t~U~! \L _______ P.a.:~.;;;.;1I_=~=~w'···w~·L.JS

Figure 5-6. Response lime Example #1

A4155-01

Conversely, if the external interrupt requests service in the state just prior to the next sample, re
sponse is much quicker. One state asserts the request, one state samples, and one state requests
the context switch. If at that point the same instruction conditions exist, one additional state time
is needed to complete the 10-state instruction prior to the context switch (see Figure 5-7 on page
5-12). The total response time in this case is four state times. The programmer must evaluate all
pertinent conditions for accurate predictability.

1- _ ..
5-11

i~

INTERRUPT SYSTEM

OSC

State Time

INTO#

Sample INTO#

Request

Ten State

Response Time = 4

~
I

Instruction "--_____

Figure 5-7. Response Time Example #2

5.7.2.2 Computation of Worst-case Latency With Variables

intet~

A4154-o1

Worst-case latency calculations assume that the longest 8XC251SB instruction used in the pro
gram must fully execute prior to a context switch. The instruction execution time is reduced by
one state with the assumption the instruction state overlaps the request state (therefore, 16-bit
DN is 21 state times - 1 = 20 states for latency calculations). The calculations add fixed and vari
able interrupt times (see Table 5-6 on page 5-13) to this instruction time to predict latency. The
worst-case latency (both fixed and variable times included) is expressed by a pseudo-formula:

FIXED_TIME + VARIABLES + LONGEST_INSTRUCTION = MAXIMUM LATENCY PREDICTION

5-12

I

-
INTERRUPT SYSTEM

Table 5-6. Interrupt Latency Variables

INTO#, Extemal Page >64K Extemal Extemal Extemal Extemal

Variable INT1#, Execution Mode Jump to Memory Stack Stack Stack

T2EX
ISR (1) Wait State <64K (1) >64K (1) Wait State

Number
of

1 2 1 8 1 per
4 8

1 per
States bus cycle bus cycle
Added

NOTES:
1. <64K1>64K means inside/outside the 64-Kbyte memory region where code is executing.
2. Base-case fixed time is 16 states and assumes:

- A 2-byte instruction is the first ISR byte. - Intemal execution

- <64K jump to ISR - Intemal stack

- Intemal peripheral interrupt

5.7.2.3 Latency Calculations

Assume the use of a zero-wait-state external memory where current instructions, the ISR, and the
stack are located within the same 64-Kbyte memory region (compatible with memory maps for
MCS 51 microcontrollers.) Further, assume there are 3 states yet to complete in the current 21-
state DIV instruction when INTO# requests service. Also assume INTO# has made the request one
state prior to the sample state (as in Figure 5-7 on page 5-12). Unlike in Figure 5-7, the response
time for this assumption is three state times as the current instruction completes in time for the
branch to occur. Latency calculations begin with the minimum fixed latency of 16 states. From
Table 5-6, one state is added for an INTO# request from external hardware; two states are added
for external execution; and four states for an external stack in the current 64-Kbyte region. Final
ly, three states are added for the current instruction to complete. The actual latency is 26 states.
Worst-case latency calculations predict 43 states for this example due to inclusion of total DIV
instruction time (less one state).

Table 5-7. Actual VS. Predicted Latency Calculations

Latency Factors Actual Predicted

Base Case Minimum Fixed Time 16 16

INTO# Extemal Request 1 1

Extemal Execution 2 2

<64K Byte Stack Location 4 4

Execution Time for Current DIV Instruction 3 20

TOTAL 26 43

5-13

II I,:

INTERRUPT SYSTEM intet
5.7.2.4 Blocking Conditions

If all enable and priority requirements have- been met, a single prioritized interrupt request at a
time generates a vector cycle to an interrupt service routine (see CALL instructions, Appendix A,
"Instruction Set Reference"). There are three causes of blocking conditions with hardware-gen
erated vectors:

1. An interrupt of equal or higher priority level is already in progress (defined as any point
after the flag has been set and the RETI of the ISR has not executed).

2. The current polling cycle is not the final cycle of the instruction in progress.

3. The instruction in progress is RETI or any write to the lEO, IPHO, or IPLO registers.

Any of these conditions blocks calls to interrupt service routines. Condition two ensures the in
struction in progress completes before the system vectors to the ISR. Condition three ensures at
least one more instruction executes before the system vectors to additional interrupts if the in
struction in progress is a RETI or any write to lEO, IPHO, or IPLO. The complete polling cycle is
repeated each four state times.

5.7.2.5 Interrupt Vector Cycle

When an interrupt vector cycle is initiated, the CPU breaks the instruction stream sequence, re
solves all instruction pipeline decisions, and pushes multiple program counter (PC) bytes onto the
stack. The CPU then reloads the PC with a start address for the appropriate ISR. The number of
bytes pushed to the stack depends upon the INTR bit in the CONFIGI configuration register (see
Figure 13-4 on page 13-8). The complete sample, poll, request and context switch vector se
quence is illustrated in the interrupt latency timing diagram (see Figure 5-5 on page 5-9).

5-14

NOTE

If the interrupt flag for a level-triggered external interrupt is set but denied for
one of the above conditions and is clear when the blocking condition is
removed, then the denied interrupt is ignored. In other words, blocked interrupt
requests are not buffered for retention.

-
INTERRUP:r SYSTEM

5.7.3 ISRs in Process

ISR execution proceeds until the RET! instruction is encountered. The RET! instruction informs
the processor the interrupt routine is completed. The RET! instruction in the ISR pops PC address
bytes off the stack (as well as PSWI for INTR = 1), and execution resumes at the suspended in
struction stream.

NOTE

A simple RET instruction also returns execution to the interrupted program. In
previous implementations this inappropriately allowed the system to operate as
though an interrupt service routine is still in progress. The 8XC251SB allows
use of both RET! and RET instructions for interrupt completion. However, for
code expected to run properly on both MCS 51 microcontrollers and
8XC25lSB products, only the execution of a RET! instruction is considered
proper completion of the interrupt operation.

With the exception of TRAP, the start addresses of consecutive interrupt service routines are eight
bytes apart. If consecutive interrupts are used (lEO and 1FO, for example, or 1FO and lEI), the
first interrupt routine (if more than seven bytes long) must execute a jump to some other memory
location. This prevents overlap of the start address of the following interrupt routine.

L
5-15

I

I

1

I
1

1

-

- -

I
I

6
Input/Output Ports

ii' i

l
I I

-

-
int:et

CHAPTER 6
INPUT/OUTPUT PORTS

6.1 INPUT/OUTPUT PORT OVERVIEW

The 8XC251SB uses input/output (I/O) ports to exchange data with external devices. In addition
to performing general-purpose I/O, some ports are capable of external memory operations (see
Chapter 12, "External Memory Interface"); others allow for alternate functions. All four
8XC251SB I/O ports are bidirectional. Each port contains a latch, an output driver, and an input
buffer. Port 0 and port 2 output drivers and input buffers facilitate external memory operations.
Port 0 drives the lower address byte onto the parallel address bus, and port 2 drives the upper ad
dress byte (16 or 17) onto the bus. In nonpage mode, the data is multiplexed with the lower ad
dress byte on port O. In page mode, the data is multiplexed with the upper address byte on port 2.
All port 1 and port 3 pins serve for both general-purpose I/O and alternate functions (see Table
6-1).

Table 6-1. Input/Output Port Pin Descriptions

Pin
Type

Alternate
Alternate Description

Alternate
Name Pin Name Type

PO.7:0 1/0 AD7:0 Address/Data Unes (Nonpage Mode), Address Unes (Page Mode) 1/0

P1.0 1/0 T2 Timer 2 Clock Input/Output 1/0

P1.1 1/0 T2EX Timer 2 External Input I

P1.2 1/0 ECI PCA External Clock Input I

P1.3 1/0 CEXO PCA Module 0 1/0 1/0

P1.4 1/0 CEX1 PCA Module 1 1/0 1/0

P1.5 1/0 CEX2 PCA Module 2 1/0 1/0

P1.6 1/0 CEX3 PCA Module 3 1/0 1/0

P1.7 1/0 CEX4 PCA Module 41/0 110

P2.7:0 1/0 A15:8 Address Unes (Nonpage Mode), AddresslData Unes (Page Mode) 1/0

P3.0 1/0 RXD Serial Port Receive Data Input 1(1/0)

P3.1 1/0 TXD Serial Port Transmit Data Output 0(0)

P3.2 1/0 INTO# External Interrupt 0 I

P3.3 1/0 INT1# External Interrupt 1 I

P3.4 1/0 TO Timer 0 Input I

P3.5 1/0 T1 Timer 1 Input I

P3.6 110 WR# Write Signal to External Memory 0

P3.7 110 RD#/A16 Read Signal to External Memory or 17th Address Bit 0

L __ 6-1

INPUT/OUTPUT PORTS

6.2 1/0 CONFIGURATIONS

Each port SFR operates via type-D latches, as illustrated in Figure 6-1 for ports 1 and 3. A CPU
"write to latch" signal initiates transfer of internal bus data into the type-D latch. A CPU "read
latch" signal transfers the latched Q output onto the internal bus. Similarly, a "read pin" signal
transfers the logical level of the port pin. Some port data instructions activate the ''read latch" sig
nal while others activate the "read pin" signal. Latch instructions are referred to as read-modify
write instructions (see "Read-Modify-Write Instructions" on page 6-5). Each I/O line may be in
dependently programmed as input or output.

6.3 PORT 1 AND PORT 3

Figure 6-1 shows the structure of ports 1 and 3, which have internal pullups. An external source
can pull the pin low. Each port pin can be configured either for general-purpose I/O or for its al
ternate input or output function (Table 6-1).

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x =
1, 3). To use a pin for general-purpose input, set the bit in the Px register. This turns off the output
driver PET.

To configure a pin for its alternate functio~, set the bit in the Px register. When the latch is set, the
"alternate output function" signal controls the output level (Figure 6-1). The operation of ports 1
and 3 is discussed further in "Quasi-bidirectional Port Operation" on page 6-5.

6.4 PORT 0 AND PORT 2

Ports ° and 2 are used for general-purpose I/O or as the external address/data bus. Port 0, shown
in Figure 6-2, differs from the other ports in not having internal pullups. Figure 6-3 on page 6-4
shows the structure of port 2. An external source can pull a port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x =
0, 2). To use a pin for general-purpose input set the bit in the Px register to turn off.the output
driver PET.

6-2

-

-
intet~

Read
Latch

Internal
Bus

Write to
Latch

Read
Pin

--.... ---ID
P3.x
Latch

--~---ICL 0#

Alternate
Input

Function

Figure 6-1. Port 1 and Port 3 Structure

Address!
Read Data Control
Latch --------,

Internal --..... -_~ D 0
Bus PO.x

Latch
Write to

Latch ---+---f CL O#I--------f

Read _______
Pin

Figure 6-2. Port 0 Structure

L_-

INPUT/OUTPUT PORTS

Vee

A2239-o1 Ij

Vee

A2238-01

6-3

-- --~

INPUT/OUTPUT PORTS intet

Read
Latch

Internal
Bus D Q

P2.x
Latch

Address

Control
Internal
Pullup

Write to
CL Q# Latch

Read
Pin

A2240'()1

Figure 6-3. Port 2 Structure

When port 0 and port 2 are used for an external memory cycle, an internal control signal switches
the output-driver input from the latch output to the internal address/data line. "External Memory
Access" on page 6-7 discusses the operation of port 0 and port 2 as the external address/data bus.

6-4

NOTE

Port 0 and port 2 are precluded from use as general purpose I/O ports when
used as address/data bus drivers.

Port 0 internal pullups assist the logic-one output for memory bus cycles only.
Except for these bus cycles, the pullup FET is off. All other port 0 outputs are
open drain.

-
intet INPUT/OUTPUT PORTS

6.5 READ-MODIFY-WRITE INSTRUCTIONS

Some instructions read the latch data rather than the pin data. The latch based instructions read
the data, modify the data, and then rewrite the latch. These are called "read-modify-write" in
structions. Below is a complete list ofthese special instructions. When the destination operand is
a port, or a port bit, these instructions read the latch rather than the pin:

ANL

ORL

XRL

JBC

CPL

INC

DEC

DJNZ

MOV PX.Y,

CLR PX.Y

SETB PX.Y

C

(logical AND, e.g., ANL Pl, A)

(logical OR, e.g., ORL P2, A)

(logical EX-OR, e.g., XRL P3, A)

(jump if bit = 1 and clear bit, e.g., JBC Pl.l, LABEL)

(complement bit, e.g., CPL P3.0)

(increment, e.g., INC P2)

(decrement, e.g., DEC P2)

(decrement and jump if not zero, e.g., DJNZ P3, LABEL)

(move carry bit to bit Y of port X)

(clear bit Y of port X)

(set bit Y of port x)

It is not obvious the last three instructions in this list are read-modify-write instructions. These
instructions read the port (aIlS bits), modify the specifically addressed bit, and write the new byte
back to the latch. These read-modify-write instructions are directed to the latch rather than the pin
in order to avoid possible misinterpretation of voltage (and therefore, logic) levels at the pin. For
example, a port bit used to drive the base of an external transistor appears to provide incorrect
information. When logic one is written to the bit, the external base-emitter transistor junction sat
urates. Due to Kirchoff's Law of Series Circuits and the characteristics of transistor base-emitter
saturation, the voltage measurement on the transistor base is low (below V1L). If the CPU attempts
to read the port at the pin, the base voltage of the external transistor is incorrectly interpreted as
logic zero. A read of the latch rather than the pin returns the correct logic-one value.

6.6 QUASI-BIDIRECTIONAL PORT OPERATION

Port 1, port 2, and port 3 have fixed internal pullups and are referred to as "quasi-bidirectional"
ports. When configured as an input, the pin impedance appears as logic one and sources current
(see SXC251SB datasheet) in response to an external logic-zero condition. Port 0 is a "true bidi
rectional" pin. The pin floats when configured as input. Resets write logical one to all port latches.
If logical zero is subsequently written to a port latch, it can be returned to input conditions by a
logical one written to the latch. For additional electrical information, refer to the current
8XC251SB data sheet.

L
6-5

------~

INPUT/OUTPUT PORTS intet
NOTE

Port latch values change near the end of read-modify-write instruction cycles.
Output buffers (and therefore the pin state) update early in the instruction after
the read-modify-write instruction cycle.

Logical zero-to-one transitions in port 1, port 2, and port 3 utilize an additional pullup to aid this
logic transition (see Figure 6-4). This increases switch speed. The extra pullup briefly sources 100
times normal internal circuit current. The internal pullups are field-effect transistors rather than
linear resistors. Pullups consist of three p-channel FET (pFET) devices. A pFET is on when the
gate senses logical zero and off when the gate senses logical one. pFET #1 is turned on for two
oscillator periods immediately after a zero-to-one transition in the port latch. A logic one at the
port pin turns on pFET #3 (a weak pullup) through the inverter. This inverter and pFET pair form
a latch to drive logic one. pFET #2 is a very weak pullup switched on whenever the associated
nFET is switched off. This is traditional CMOS switch convention. Current strengths are 111 0 that
ofpFET#3.

6-6

Q#
From

Port
Latch

2 Osc. Periods

Input Data

Read Port Pin

Figure 6-4. Internal Pull up Configurations

A2242-01

1

-
intet INPUT/OUTPUT PORTS

6.7 PORT LOADING

Output buffers of port 1, port 2, and port 3 can each sink 1.6 rnA at logic zero (see VOL specifica
tions in the 8XC251SB data sheet). These port pins can be driven by open-collector and open
drain devices. Logic zero-to-one transitions occur slowly as limited current pulls the pin to a log
ic-one condition (Figure 6-4 on page 6-6). A logic-zero input turns off pFET #3. This leaves only
pPET #2 weakly in support of the transition. In external bus mode, port 0 output buffers each sink
3.2 rnA at logic zero (see VoLl in the 8XC251SB data sheet). However, the port 0 pins require
external pull ups to drive external gate inputs. See the latest revision ofthe 8XC251SB datasheet
for complete electrical design information. External circuits must be designed to limit current re
quirements to these conditions.

6.8 EXTERNAL MEMORY ACCESS

The external bus structure is different for page mode and nonpage mode. In nonpage mode (used
by MCS 51 microcontrollers), port 2 outputs the upper address byte; the lower address byte and
the data are multiplexed on port O. In page mode, the upper address byte and the data are multi
plexed on port 2, while port 0 outputs the lower address byte.

The 8XC251SB CPU writes FFH to the PO register for all external memory bus cycles. This over
writes previous information in PO. In contrast, the P2 register is unmodified for external bus cy
cles. When address bits or data bits are not on the port 2 pins, the bit values in P2 appear on the
port 2 pins.

In nonpage mode, port 0 uses a strong internal pullup FET to output ones or a strong internal pull
down PET to output zeros for the lower address byte and the data. Port 0 is in a high-impedance
state for data input. In page mode, port 0 uses a strong internal pullup FET to output ones or a
strong internal pulldown FET to output zeros for the lower address byte or a strong internal pull
down PET to output zeros for the upper address byte.

In nonpage mode, port 2 uses a strong internal pullup FET to output ones or a strong internal pull
down PET to output zeros for the upper address byte. In page mode, port 2 uses a strong internal
pullup PET to output ones or a strong internal pulldown PET to output zeros for the upper address
byte and data. Port 2 is in a high-impedance state for data input.

NOTE

In external bus mode port 0 outputs do not require external pull ups.

6·7

INPUT/OUTPUT PORTS

There are two types of external memory accesses: external program memory and external data
memory (see Chapter 12, "External Memory Interface"). External program memories utilize sig
nal PSEN# as a read strobe. MCS 51 microcontrollers use RD# (read) or WR# (write) to strobe
memory for data accesses. Depending on its RDl:0 configuration bits, the 8XC251SB uses
PSEN# or RD# for data reads ("RD#, PSEN#, and the Number of External Address Pins (Bits
RDl:0)" on page 12-3).

During instruction fetches, external program memory can transfer instructions with 16-bit ad
dresses for binary-compatible code or with 17-bit addresses for extended memory operations.

External data memory transfers use an 8-, 16-, or 17-bit address bus, depending on the instruction.
Table 6-2 lists the instructions that can be used for the three bus widths.

Table 6-2. Instructions for External Data Moves

Bus Width Instructions

B MOVX @Ri;MOV @Rm;MOVdirB

16 MOVX @DPTR; MOV @WRj; MOV @WRj+dis; MOV dir16

17 MOV @ DRk; MOV @ DRk+dis

NOTE

Avoid MOV PO instructions for external memory accesses. These instructions
can corrupt input code bytes at port O.

External signal ALE (address latch enable) facilitates external address latch capture. The address
byte is valid after the ALE pin drives VOL' For write cycles, valid data is written to port 0 just prior
to the write (WR#) pin asserting VOL' Data remains valid until WR# is undriven. For read cycles,
data returned from external memory must appear at port 0 before the read (RD#) pin is undriven
(refer to the 8XC251SB datasheet for exact specifications). Wait states, by definition, affect bus
timing.

6-8

I

- -

intet.

Timer/Counters and
Watchdog Timer

7

-

-

CHAPTER 7
TIMER/COUNTERS AND WATCHDOG TIMER

This chapter describes the timer/counters and the watchdog timer (WDT) included as peripherals
on the 8XC251SB. When operating as a timer, a timer/counter runs for a programmed length of
time, then issues an interrupt request. When operating as a counter, a timer/counter counts nega
tive transitions on an external pin. After a preset number of counts, the counter issues an interrupt
request. Timer/counters are covered in sections 7.1 through 7.6.

The watch dog timer provides a way to monitor system operation. It causes a system reset if a
software malfunction allows it to expire. The watchdog timer is covered in "Watchdog TImer" on
page 7-16.

7.1 TIMER/COUNTER OVERVIEW

The 8XC251SB contains three general-purpose, 16-bit timer/counters. Although they are identi
fied as timer 0, timer 1, and timer 2, you can independently configure each to operate in a variety
of modes as a timer or as an event counter. Each timer employs two 8-bit timer registers, used
separately or in cascade, to maintain the count. The timer registers and associated control and cap
ture registers are implemented as addressable special function registers (SFRs). Table 7-1 briefly
describes the SFRs referred to in this chapter. Four of the SFRs provide programmable control of
the timers as follows:

• Timer/counter mode control register (TMOD) and timer/counter control register (TeON)
control timer 0 and timer 1.

• Timer/counter 2 mode control register (T2MOD) and timer/counter 2 control register
(T2CON) control timer 2

For a map of the SFR address space, see Table 3-4 on page 3-13. Table 7-2 describes the external
signals referred to in this chapter.

7.2 TIMER/COUNTER OPERATION

The block diagram in Figure 7-1 depicts the basic logic of the timers. Here timer registers THx
and TLx (x = 0, 1, and 2) connect in cascade to form a 16-bit timer. Setting the run control bit
(TRx) turns the timer on by allowing the selected input to increment TLx. When 1Lx overflows
it increments THx; when THx overflows it sets the timer overflow flag (TFx) in the TCON or
T2CON register. Setting the run control bit does not clear the THx and TLx timer registers. The
timer registers can be accessed to obtain the current count or to enter preset values. Timer 0 and
timer 1 can also be controlled by external pin INTX# to facilitate pulse width measurements.

L __ ~- 7-1

I,

TIMER/COUNTERS AND WATCHDOG TIMER intet

Table 7-1. Timer/Counter and Watchdog Timer SFRs

Mnemonic Description Address

TLO Timer 0 TImer Registers. Used separately as 8-bit counters or in cascade S:8AH
THO as a 16-bit counter. Counts an internal clock signal with frequency Fosc/12 S:8CH

(timer operation) or an external input (event counter operation)

TL1 Timer 1 Timer Registers. Used separately as 8-bit counters or in cascade S:8BH
TH1 as a 16-bit counter. Counts an internal clock signal with frequency Fosd12 S:8DH

(timer operation) or an external input. (event counter operation)

TL2 Timer 2 TImer Registers. TL2 and TH2 connect in cascade to provide a S:CCH
TH2 16-bit counter. Counts an internal clock signal with frequency Fosd12 S:CDH

(timer operation) or an external input (event counter operation)

TCON Timer 0/1 Control Register. Contains the run control bits, overflow flags, S:88H
interrupt flags, and interrupt-type control bits for timer 0 and timer 1.

TMOD Timer 0/1 Mode Control Register. Contains .the mode select bits, S:89H
counter/timer select bits, and external control gate bits for timer 0 and
timer 1.

T2CON Timer 2 Control Register. Contains the receive clock, transmit clock, and S:C8H
capture/reload bits used to configure timer 2. Also contains the run control
bit, counter/timer select bit, overflow flag, external flag, and external enable
for timer 2.

T2MOD Timer 2 Mode Control Register. Contains the timer 2 output enable and S:C9H
down count enable bits.

RCAP2L TImer 2 Reload/Capture Registers (RCAP2L, RCAP2H). Provide values S:CAH
RCAP2H to and receive values from the timer registers (TL2,TH2.) S:CBH

WDTRST Watchdog TImer Reset Register (WDTRST). Used to reset and enable S:A6H
theWDT.

XTAL1

I
THx I TLx

,...-_---. Interrupt
Request

(8 Bits) I (8 Bits)

Tx

X= 0,1, or2 TAx

M121·02

Figure 7-1. Basic Logic of the Timer/Counters

7-2 ___ J _

-
TIMER/COUNTERS AND WATCHDOG TIMER

The C\TX# control bit selects timer operation or counter operation by selecting the divided-down
system clock or external pin Tx as the source for the counted signal.

For timer operation (CfI'X# = 0), the timer register counts the divided-down system clock. The
timer register is incremented once every peripheral cycle, i.e. once every six states (see "Clock
and Reset Unit" on page 2-5). Since six states equals 12 clock cycles, the timer clock rate is
Fosc/12. Exceptions are the timer 2 baud rate and clock-out modes, where the timer register is
incremented by the system clock divided by two.

For counter operation (CfI'X# = 1), the timer register counts the negative transitions on the Tx ex
ternal input pin. The external input is sampled during every S5P2 state. ("Clock and Reset Unit"
on page 2-5 describes the notation for the states in a peripheral cycle.) When the sample is high
in one cycle and low in the next, the counter is incremented. The new count value appears in the
register during the next S3Pl state after the transition was detected. Since it takes 12 states (24
oscillator periods) to recognize a negative transition, the maximum count rate is 1124 of the os
cillator frequency. There are no restrictions on the duty cycle of the external input signal, but to
ensure that a given level is sampled at least once before it changes, it should be held for at least
one full peripheral cycle.

Table 7-2. External Signals

Signal Type Description M·ultiplexed
Name With

T2 1/0 Timer 2 Clock Input/Output. This signal is the external clock input P1.0
for the timer 2 capture mode; and it is the timer 2 clock-output for the
clock-out mode.

T2EX I Timer 2 External Input. In timer 2 capture mode, a falling edge P1.1
initiates a capture of the timer 2 registers. In auto-reload mode, a
falling edge causes the timer 2 registers to be reloaded. In the up-
down counter mode, this signal determines the count direction:
high = up, low = down.

INT1:0# I External Interrupts 1 :0. These inputs set the I E1:0 interrupt flags in P3.3:2
the TeON register. TeON bits IT1 :0 select the triggering method:
IT1:0 = 1 selects edge-triggered (high-to-Iow);
IT1:0 = 0 selects level-triggered (active low).
INn :0# also serves as extemal run control for timer 1 :0, when
selected by TeON bits GATE1 :0#.

T1:0 I Timer 1:0 External Clock Inputs. When timer 1 :0 operates as a P3.5:4
counter, a falling edge on the T1 :0 pin increments the count.

7-3

I"

TIMER/COUNTERS AND WATCHDOG TIMER

7.3 TIMERO

Timer 0 functions as either a timer or event counter in four modes of operation. Figures 7-2, 7.3.4,
and 7-3 show the logical configuration of each mode.

Timer 0 is controlled by the four low-order bits of the TMOD register (Figure 7-4) and bits 5, 4,
1, and 0 of the TCON register (Figure 7-5). The TMOD register selects the method of timer gating
(GAlEO), timer or counter operation (T/CO#), and mode of operation (MlO and MOO). The
TCON register provides timer 0 control functions: overflow flag (TFO), run control (TRO), inter
rupt flag (lEO), and interrupt type control (ITO).

For normal timer operation (GATEO = 0), setting TRO allows TLO to be incremented by the se
lected input. Setting GATEO and TRO allows external pin INTO# to control timer operation. This
setup can be used to make pulse width measurements. See "Pulse Width Measurements" on page
7-10.

Timer 0 overflow (count rolls over from allIs to aliOs) sets the TFO flag generating an interrupt
request.

7.3.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as an 13-bit timer which is set up as an 8-bit timer (THO register) with
a modulo 32 prescaler implemented with the lower five bits of the TLO register (Figure 7-2). The
upper three bits of the TLO register are ignored. Prescaler overflow increments the THO register.

XTAL1

Tx

TRx --------~

GATEx

INTX#

I
,.-_-, Interrupt

THx I TLx
(8 Bits) I (8 Bits)

Mode 0: 13-bit Timer/Counter
Mode 1: 16-bit Timer/Counter
X= 0 or 1

Request

A4110-02

Figure 7-2. Timer 0/1 in Mode 0 and Mode l

7-4 J_

--

-
intet~ TIMER/COUNTERS AND WATCHDOG TIMER

7.3.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 0 as a 16-bit timer with THO and TLO connected in cascade (Figure 7-2).
The selected input increments TLO.

7.3.3 Mode 2 (8-bit Timer With Auto-reload)

Mode 2 configures timer 0 as an 8-bit timer (TLO register) that automatically reloads from the
THO register (Figure 7.3.4). TLO overflow sets the timer overflow flag (TFO) in the TCON reg
ister and reloads TLO with the contents of THO, which is preset by software. When the interrupt
request is serviced, hardware clears TFO. The reload leaves THO unchanged. See "Auto-load Set
up Example" on page 7-9

XTAL1
......-_--.. Interrupt

Overflow Request

Tx

TRx--------~

GATEx

INTX#

A4111-02

Figure 7-3. Timer 011 in Mode 2, Auto-Reload

7.3.4 Mode 3 (Two 8-bit Timers)

Mode 3 configures timer 0 such that registers TLO and THO operate as separate 8-bit timers (Fig
ure 7-3). This mode is provided for applications requiring an additional 8-bit timer or counter.
TLO uses the timer 0 control bits CffO# and GATEO in TMOD, and TRO and TFO in TCON in the
normal manner. THO is locked into a timer function (counting Fose 112) and takes over use of the
timer 1 interrupt (TFl) and run control (TR1) bits. Thus, operation of timer 1 is restricted when
timer 0 is in mode 3. See ''Timer I" on page 7-6 and "Mode 3 (Halt)" on page 7-9.

L __ ~-
7-5

I

I
ill
"

1.1;

TIMER/COUNTERS AND WATCHDOG TIMER

7.4 TIMER 1

Timer 1 functions as either a timer or event counter in three modes of operation. Figures 7-2 and
7.3.4 show the logical configuration for modes 0, 1, and 2. Timer 1 's mode 3 is a hold count mode.

Timer 1 is controlled by the four high-order bits ofthe mOD register (Figure 7-4) and bits 7,6,
3, and 2 of the TCON register (Figure 7-5). The mOD register selects the method of timer gating
(GATEl), timer or counter operation (T/Cl#), and mode of operation (Mll and MOl). The
TCON register provides timer 1 control functions: overflow flag (TFl), run control (TRl), inter
rupt flag (lEI), and interrupt type control (ITl).

Timer 1 operation in modes 0,,1, and 2 is identical to timer O. Timer 1 can serve as the baud rate
generator for the serial port. Mode 2 is best suited for this purpose.

For normal timer operation (GATEl = 0), setting TRI allows timer register TLI to be increment
ed by the selected input. Setting GATEI and TR 1 allows external pin INTI # to control timer op
eration. This setup can be used to make pulse width measurements. See ''Pulse Width
Measurements" on page 7-10.

Timer 1 overflow (count rolls over from allIs to aliOs) sets the TFI flag generating an interrupt
request.

XTAL1 1-.... _ ... 1/12 Fosc

.--_~ Interrupt
Request

TO

TRO ---------/

GATEO
.--_~ Interrupt

Request
1/12 Fosc INTO#

TR1

A4112-02

Figure 7-3. Timer 0 in Mode 3, Two a-bit Timers

7-6

L

-

-

TMOD

7

TIMER/COUNTERS AND WATCHDOG TIMER

Address:
Reset State:

S:89H
0000 00008

a
L-G_A_~_E1~L-C_~_1_#~L-_M_1_1~ ___ M_01 __ ~11 GATEO crro# M10 MOO

Bit Bit Function Number Mnemonic

7 GATE1 Timer 1 Gate:

When GATE1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATE1 = 1 and TR1 = 1, external signal INT1 gates the
timer input.

6 cm# Timer 1 Counterrrimer Select:

c/n # = a selects timer operation: timer 1 counts the divided-down
system clock. Crr1 # = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

5,4 M11, M01 Timer 1 Mode Select:

M11 M01
a a Mode 0: 8-bit timer/counter (TH1) with 5-bit prescaler (TL 1)
a 1 Mode 1: 16-bit timer/counter
1 a Mode 2: 8-bit auto-reload timer/counter (TL 1). Reloaded

from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATEO Timer a Gate:

When GATEO = 0, run control bit TRO gates the input Signal to the timer
register. When GATEO = 1 and TRO = 1, external signal INTO gates the
timer input.

2 C/TO# Timer a Counterrrimer Select:

crro# = a selects timer operation: timer 0 counts the divided-down
system clock. crro# = 1 selects counter operation: timer a counts
negative transitions on external pin TO.

1, a M10, MOO Timer a Mode Select:

M10 MOO
a a Mode 0: 8-bit timer/counter (THO) with 5-bit prescaler (TLO)
a 1 Mode 1: 16-bit timer/counter
1 a Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded

from THO at overflow
1 1 Mode 3: TLO is 8-bit timer/counter. THO is 8-bit timer only

using timer 1 TR1 and TF1 bits.

Figure 7-4. TMOD: Timer/Counter Mode Control Register

7-7

l
l , I

-
TIMER/COUNTERS AND WATCHDOG TIMER

TeON Address: S:88H
Reset State: 0000 OOOOB

7 o
TF1 TR1 TFO TRO 1~1 __ I_E1 __ ~ __ IT_1 __ ~ __ IE_0 __ ~_I_TO __ ~

Bit Bit Function
Number Mnemonic

7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:

SeVcleared by software to tum timer 1 on/off.

5 TFO Timer 0 Overflow Flag:

Set by hardware when the timer 0 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TRO Timer 1 Run Control Bit:

SeVcleared by software to tum timer 1 on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1 # pin.
Edge- or level- triggered (see In). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-Iow) for external interrupt 1.
Clear this bit to select level-triggered (active-low).

1 lEO Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INTO# pin.
Edge- or level- triggered (see ITO). Cleared when interrupt is processed
if edge-triggered.

0 ITO Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-Iow) for external interrupt O.
Clear this bit to select level-triggered (active-low).

Figure 7-5. TCON: Timer/Counter Control Register

7-8

-
TIMER/COUNTERS AND WATCHDOG TIMER

When timer 0 is in mode 3, it uses timer 1 's overflow flag (TFl) and run control bit (TRl). For
this situation, use timer 1 only for applications that do not require an interrupt (such as a baud rate
generator for the serial interface port) and switch timer 1 in and out of mode 3 to turn it off and on.

7.4.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer, which is set up as an 8-bit timer (THI register) with
a modulo-32 prescaler implemented with the lower 5 bits of the 1Ll register (Figure 7-2). The
upper 3 bits of the TLI register are ignored. Pres caler overflow increments the THI register.

7.4.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 1 as a 16-bit timer with THI and 1Ll connected in cascade (Figure 7-2).
The selected input increments 1L 1.

7.4.3 Mode 2 (a-bit Timer with Auto-reload)

Mode 2 configures timer 1 as an 8-bit timer (1Ll register) with automatic reload from the THI
register on overflow (Figure 7.3.4). Overflow from 1Ll sets overflow flag TFl in the TCON reg
ister and reloads 1Ll with the contents of THl, which is preset by software. The reload leaves
THI unchanged. See "Auto-load Setup Example" on page 7-9

7.4.4 Mode 3 (Halt)

Placing timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt timer 1
when the TRI run control bit is not available, i.e. when timer 0 is in mode 3. See the final para
graph of "TImer 1" on page 7-6.

7.5 TIMER 0/1 APPLICATIONS

Timer 0 and timer 1 are general purpose timers that can be used in a variety of ways. The timer
applications presented in this section are intended to demonstrate timer setup, and do not repre
sent the only arrangement nor necessarily the best arrangement for a given task. These examples
employ timer 0, but timer 1 can be set up in the same manner using the appropriate registers.

7.5.1 Auto-load Setup Example

Timer 0 can be configured as an eight-bit timer (1L0) with automatic reload as follows:

1. Program the four low-order bits of the TMOD register (Figure 7-4) to specify: mode 2 for
timer 0, CITO# = 0 to select Fosd12 as the timer input, and GA1EO = 0 to select TRO as
the timer run control.

7-9

TIMER/COUNTERS AND WATCHDOG TIMER intet~

2. Enter an eight-bit initial value (no) in timer register TLO, so that the timer overflows after
the desired number of peripheral cycles.

3. Enter an eight-bit reload value (nR) in register THO. This can be the same as no or
different, depending on the application. .

4. Set the TRO bit in the TCON register (Figure 7-5) to start the timer. Timer overflow occurs
after FFH + 1 - no peripheral cycles, setting the TFO flag and loading nR into TLO from
THO. When the interrupt is serviced, hardware clears TFO.

5. The timer continues to overflow and generate interrupt requests every FFH + 1 - nR

peripheral cycles.

6. To halt the timer, clear the TRO bit.

7.5.2 Pulse Width Measurements

For timer 0 and timer 1, setting GATEx and TRx allows an external waveform at pin INTX# to
tum the timer on and off. This setup can be used to measure the width of a positive-going pulse
present at pin INTx#. Pulse width measurements using timer 0 in mode 1 can be made as follows:

1. Program the four low-order bits of the TMOD register (Figure 7-4) to specify: mode 1 for
timer 0, C/TO# = 0 to select Fosd12 as the timer input, and GAlEO = 1 to select INTO as
timer run control.

2. Enter an initial value of all zeros in the 16-bit timer register THO/TLO, or read and store
the current contents of the register.

3. Set the TRO bit in the TCON register (Figure 7-5) to enable INTO.

4. Apply the pulse to be measured to pin INTO. The timer runs when the waveform is high.

5. Clear the TRO bit to disable INTO.

6. Read timer register THOITLO to obtain the new value.

7. Calculate pulse width = 12 Tosc x (new value - initial value).

8. Example: Fosc = 16 MHz and 12Tosc = 750 ns. If the new value = 10,00010 and the initial
value = 0, the pulse width = 750 ns x 10,000 = 7.5 ms.

7.6 TIMER 2

Timer 2 is a 16-bit timer/counter. The count is maintained by two eight-bit timer registers, TH2
and TL2, connected in cascade. The timer/counter 2 mode control register (TIMOD) (Figure
7-10 on page 7-16) and the timer/counter 2 control register (T2CON) (Figure 7-11 on page 7-17)
control the operation of timer 2.

7-10

l

-
TIMER/COUNTERS AND WATCHDOG nMER

Timer 2 provides the following operating modes: capture mode, auto-reload mode, baud rate gen
erator mode, and programmable clock-out mode. Select the operating mode with T2MOD and
TCON register bits as shown in Table 7-3 on page 7-15. Auto-reload is the default mode. Setting
RCLK and/or TCLK selects the baud rate generator mode.

Timer 2 operation is similar to timer 0 and timer 1. C1T2# selects Fosc /12 (timer operation) or
external pin T2 (counter operation) as the timer register input. Setting TF2 allows TL2 to be in
cremented by the selected input.

The operating modes are described in the following paragraphs. Block diagrams in Figl,lre 7-6
through Figure 7-9 show the timer 2 configuration for each mode.

7.6.1 Capture Mode

In the capture mode, timer 2 functions as a 16-bit timer or counter (Figure 7-6). An overflow con
dition sets bit TF2, which you can use to request an interrupt. Setting the external enable bit
EXEN2 allows the RCAP2H and RCAP2L registers to capture the current value in timer registers
TH2 and TL2 in response to a 1-to-0 transition at external input TIEX. The transition at TIEX
also sets bit EXF2 in T2CON. The EXF2 bit, like TF2, can generate an interrupt.

XTAL1

T2

T2EX

L

Capture

EXEN2

TH2 I TL2
(8 Bits) : (8 Bits)

Figure 7-6. Timer 2: Capture Mode

Interrupt
Request

A4113-02

7-11

I~

Ii
'1,1 ,

-~----~

TIMER/COUNTERS AND WATCHDOG TIMER

7.6.2 Auto-reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload.
The timer operates an as an up counter or as an up/down counter, as determined by the down
counter enable bit (DCEN). At device reset, DCEN is cleared, so in the auto-reload mode, timer
2 defaults to operation as an up counter.

7.6.2.1 Up Counter Operation

When DCEN = 0, timer 2 operates as an up counter (Figure 7-7). The external enable bit EXEN2
in the T2CON register provides two options (Figure 7-11). If EXEN2 = 0, timer 2 counts up to
FFFFH and sets the TF2 overflow flag. The overflow condition loads the 16-bit value in the re
load/capture registers (RCAP2H, RCAP2L) into the timer registers (TH2, TL2). The values in
RCAP2H and RCAP2L are preset by software.

If EXEN2 = 1, the timer registers are reloaded by either a timer overflow or a high-to- low tran
sition at external input TIEX. This transition also sets the EXF2 bit in the TIC ON register. Either
TF2 or EXF2 bit can generate a timer 2 interrupt request.

XTAL1

T2

T2EX

7-12

Overflow

EXEN2

Figure 7-7. Timer 2: Auto Reload Mode (DCEN= 0)

Interrupt
Request

A4115·02

_I

-
intetll TIMER/COUNTERS AND WATCHDOG TIMER

7.6.2.2 Up/Down Counter Operation

When DCEN = 1, timer 2 operates as an up/down counter (Figure 7-8). External pin T2EX con
trols the direction of the count (Table 7-2 on page 7-3). When T2EX is high, timer 2 counts up.
The timer overflow occurs at FFFFH which sets the timer 2 overflow flag (TF2) and generates an
interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L to be load
ed into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer
registers (TH2, TL2) equals the value stored in RCAP2H and RCAP2L. The underflow sets the
TF2 bit and reloads FFFFH into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows changing the direction of the count.
When timer 2 operates as an up/down counter, EXF2 does not generate an interrupt. This bit can
be used to provide 17-bit resolution.

T2

Cff2#

(Down Counting Reload Value)

Count
Direction
1 = Up
0= Down

Figure 7-8. Timer 2: Auto Reload Mode (DCEN = 1)

A4114-01

7-13

TIMER/COUNTERS AND WATCHDOG TIMER intel~

7.6.3 Baud Rate Generator Mode

This mode configures timer 2 as a baud rate generator for use with the serial port. Select this mode
by setting the RCLK and/or TCLK bits in T2CON. See Table 7-3 on page 7-15. For details re
garding this mode of operation, refer to ''Baud Rates" on page 9-10.

7.6.4 Clock-out Mode

In the clock-out mode, timer 2 functions as a 50%-duty-cycle, variable-frequency clock (Figure
7-9). The input clock increments TLO at frequency Fosd2. The timer repeatedly counts to over
flow from a preloaded value. At overflow, the contents of the RCAP2H and RCAP2L registers
are loaded into TH2ITL2. In this mode, timer 2 overflows do not generate interrupts. The formula
gives the clock-out frequency as a function of the system oscillator frequency and the value in the
RCAP2H and RCAP2L registers:

Fosc
Clock-out Frequency = 4 x (65535 - RCAP2H, RCAP2L)

For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz to 4 MHz.
The generated clock signal is brought out to the T2 pin.

Timer 2 is programmed for the clock-out mode as follows:

1. Set the T20E bit in T2MOD. This gates the timer register overflow to the +2 counter.

2. Clear the Cff2# bit in T2CON to select Fosd2 as the timer input signal. This also gates the
output of the +2 counter to pin T2.

3. Determine the 16-bit reload value from formula and enter in the RCAP2H1RCAP2L
registers.

4. Enter a 16-bit initial value in timer register TH2ffL2. This can be the same as the reload
value or different depending on the application.

5. To start the timer, set the TR2 run control bit in T2CON.

Operation is similar to timer 2 operation as a baud rate generator. It is possible to use timer 2 as
a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates
and clock frequencies are not independent since both functions use the values in the RCAP2H
and RCAP2L registers.

7-14 _1

-
intet~ TIMER/COUNTERS AND WATCHDOG TIMER

T2

T20E

T2EX Of----II'II----f~>----------1 EXF2

Interrupt
Request •

EXEN2

A4116-02

Figure 7-9. Timer 2: Clock Out Mode

Table 7-3. Timer 2 Modes of Operation

Mode RCLKORTCLK CPIRL2# T20E
(inT2CON) (in T2CON) (in T2MOD)

Auto-reload Mode 0 0 0

Capture Mode 0 1 0

Baud Rate Generator Mode 1 X X

Programmable Clock-Out X 0 1

L __ -
7-15

TIMER/COUNTERS AND WATCHDOG TIMER

T2MOD Address: S:C9H
Reset State: XXXX XXOOB

7 o
L_ ____ ~ ____ _L ____ ~ ____ ~I~I ____ ~ ______ L_T_2_0_E~ __ DC_E_N~

Bit Bit Function
Number Mnemonic

7:2 - Reserved:

The values read from these bits are indeterminate. Do not write a "1" to
these bits.

1 T20E Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:

Configures timer 2 as an up/down counter.

Figure 7-10_ T2MOD: Timer 2 Mode Control Register

7.7 WATCHDOG TIMER

The peripheral section of the 8XC251SB contains a dedicated, hardware watchdog timer (WDT)
that automatically resets the chip if it is allowed to time out. The WDT provides a means of re
covering from routines that do not complete successfully due to software malfunctions. The WDT
described in this section is not associated with the PCA watchdog timer, which is implemented
in software.

7.7.1 Description

The WDT is a 14-bit counter that counts peripheral cycles, i.e. the system clock divided by twelve
(FoseI12). The WDTRST special function register at address S:A6H provides control access to
the WDT. Two operations control the WDT:

• Device reset clears and disables the WDT (see "Reset" on page 10-5).

• Writing a specific two-byte sequence to the WDTRST register clears and enables the WDT.

If it is not cleared, the WDT overflows on count 3FFFH + 1. With Fose = 16 MHz, a peripheral
cycle is 750 ns and the WDT overflows in 750 x 16384 = 12.288 ms. The WDTRST is a write
only register. Attempts to read it return FFH. The WDT itself is not read or write accessible. The
WDT does not drive the external RESET pin.

7-16

J

-

-
intel~ TIMER/COUNTERS AND WATCHDOG TIMER

T2eON Address: S:C8H
Reset State: OOOOOOOOB

7 o
~_T_F_2 __ ~_E_X_F2 __ ~_R_C_L_K~ __ T_C_L_K~1 ~I _E_X_E_N_2~ __ T_R_2 __ ~_C_~_2_#~_C_P_/R_~ __ #~

Bit Bit
Function

Number Mnemonic

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by software. TF2 is not set if
RCLK = 1 or TCLK = 1 .

6 EXF2 Timer 2 Extemal Flag:

If EXEN2 = 1 , capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN = 1)

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 Extemal Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:

Setting this bit starts the timer.

1 C~2# Timer 2 Countermmer Select:

CIT2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C~2# = 1 selects counter operation: timer 2 counts
negative transitions on extemal pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CPIR~# bit is ignored and timer 2
forced to auto-reload on timer 2 overflOW, if RCLK = 1 or TCLK = 1.

Figure 7-11. T2CON: Timer 2 Control Register

7-17

TIMER/COUNTERS AND WATCHDOG TIMER in1:et

7.7.2 Using the WDT

To use the WDT to recover from software malfunctions, the user program should control the
WDT as follows:

1. Following device reset, write the two-byte sequence lEH-EIH to the WDTRST register to
enable the WDT. The WDT begins counting from O.

2. Repeatedly for the duration of program execution, write the two-byte sequence lEH-EIH
to the WDTRST register to clear and enable the WDT before it overflows. The WDT
starts over at o.

If the WDT overflows, it initiates a device reset (see "Reset" on page 10-5). Device reset clears
the WDT and disables it.

7.7.3 WDT During Idle Mode

Operation of the WDT during the power reduction modes deserves special attention. The WDT
continues to count while the microcontroller is in idle mode. This means the user must service the
WDT during idle. One approach is to use a peripheral timer to generate an interrupt request when
the timer overflows. The interrupt service routine then clears the WDT, reloads the peripheral
timer for the next service period, and puts the microcontroller back into idle.

7.7.4 WDT During PowerDown

The powerdown mode stops all phase clocks. This causes the WDT to stop counting and to hold
its count. The WDT resumes counting from where it left off if the powerdown mode is terminated
by INTO/INTI. To ensure that the WDT does not overflow shortly after exiting the powerdown
mode, clear the WDT just before entering powerdown. The WDT is cleared and disabled if the
powerdown mode is terminated by a reset.

7-18 L

-

- -

intel ..

Programmable
Counter Array

8

-

-
intet~

CHAPTER 8
PROGRAMMABLE COUNTER ARRAY

This chapter describes the programmable counter array (PCA), an on-chip peripheral of the
8XC251SB that performs a variety of timing and counting operations, including pulse width
modulation (PWM). The PCA provides the capability for a software watchdog timer (WDT).

8.1 PCA DESCRIPTION

The programmable counter array (PCA) consists of a 16-bit timer/counter and five 16-bit com
pare/capture modules. The timer/counter serves as a common time base and event counter for the
compare/capture modules, distributing the current count to the modules by means of a 16-bit bus.
A special function register (SFR) pair, CH/CL, maintains the count in the timer/counter, while
five SFR pairs, CCAPxH/CCAPxL, store values for the modules (see Figure 8-1). Additional
SFRs provide control and mode select functions as follows:

• The PCA timer/counter mode register (CMOD) and the PCA timer/counter control register
(CCON) control the operation of the timer/counter. See Figures 8-7 and 8-8 beginning on
page 8-13.

• Five PCA module mode registers (CCAPMx) specify the operating modes of the
compare/capture modules. See Figure 8-9 on page 8-16.

For a list of SFRs associated with the PCA, see Table 8-1. For an SFR address map, see Table 3-4
on page 3-13. Port 1 provides external I/O for the PCA on a shared basis with other functions.
Table 8-2 identifies the port pins associated with the timer/counter and compare/capture modules.
When not used for PCA I/O, these pins can be used for standard I/O functions.

The operating modes of the five compare/capture modules determine the functions performed by
the PCA. Each module can be independently programmed to provide input capture, output com
pare, or pulse width modulation. Module 4 only also has a watchdog-timer mode.

The PCA timer/counter and the five compare/capture modules share a single interrupt vector. The
EC bit in the IE special function register is a global interrupt enable for the PCA. Capture events,
compare events in some modes, and PCA timer/counter overflow set flags in the CCON register.
Setting the overflow flag (CF) generates a PCA interrupt request if the PCA timer/counter inter
rupt enable bit (ECF) in the CMOD register is set (Figure 8-1). Setting a compare/capture flag
(CCFx) generates a PCA interrupt request if the ECCFx interrupt enable bit in the corresponding
CCAPMx register is set (Figures 8-2 and 8-3). For a description of the 8XC251SB interrupt sys
tem see Chapter 5, "Interrupt System."

L~_ 8-1

PROGRAMMABLE COUNTER ARRAY

8.2 PCA TIMER/COUNTER

Figure 8-1 depicts the basic logic of the timer/counter portion of the PCA. The CHlCL special
function register pair operates as a 16-bit timer!counter. The selected input increments the CL
(low byte) register. When CL overflows, the CH (high byte) register increments after two oscil
lator periods; when CH overflows it sets the PCA overflow flag (CF in the CCON register) gen
erating a PCA interrupt request ifthe ECF bit in the CMOD register is set.

The CPSI and CPSO bits in the CMOD register select one of four signals as the input to the
timer/counter (Figure 8-7 on page 8-13).

• Fose/12. Provides an clock pulse at S5P2 of every peripheral cycle. With Fose = 16 MHz,
the time/counter increments every 750 nanoseconds.

• Fose/4. Provides clock pulses at SIP2, S3P2, and S5P2 of every peripheral cycle. With
Fose = 16 MHz, the time/counter increments every 250 nanoseconds.

• Timer 0 overflow. The CL register is incremented at S5P2 of the peripheral cycle when
timer 0 overflows. This selection provides the PCA with a programmable frequency input.

• External signal on P1.2/ECI. The CPU samples the ECI pin at SIP2, S3P2, and S5P2 of
every peripheral cycle. The first clock pulse (SIP2, S3P2, or S5P2) that occurs following a
high-to-Iow transition at the ECI pin increments the CL register. The maximum input
frequency for this input selection is Fose/8.

For a description of peripheral cycle timing, see "Clock and Reset Unit" on page 2-5.

Setting the run control bit (CR in the CCON register) turns the PCA timer/counter on, if the out
put of the NAND gate (Figure 8-1) equals logic 1. The PCA timer/counter continues to operate
during idle mode unless the CIDL bit of the CMOD register is set. The CPU can read the contents
of the CH and CL registers at any time. However, writing to them is inhibited while they are
counting i.e., when the CR bit is set.

8-2

l

-

-
intet~ PROGRAMMABLE COUNTER ARRAY

Compare/Capture
Modules

Module 0 P1.3/CEXO

Module 1 P1.4/CEX1

16-bit Module 2 P1.5/CEX2 Bus

Module 3 P1.6/CEX3
I

Module 4 P1.7/CEX4 1:1

(16 Bits) i'l
!,'

FOSC/12 Interrupt
ill

FOSC/4
01 Request

Timer 0 Overflow

P1.2lECI PCA
Timer/Counter Overflow

PCON.O CCON.6
Idle Mode Run Control

A4162-01

Figure 8-1. Programmable Counter Array

L
8-3

PROGRAMMABLE COUNTER ARRAY intet

Table 8-1. PCA Special Function Registers (SFRs)

Mnemonic Description Address

CL PCA Timer/Counter. These registers serve as a common 16-bit timer or .S:E9H
CH event counter for the five compare/capture modules. Counts Fosd12, S:F9H

Fosd4, timer 0 overflow, or 'the external Signal on P1.21ECI, as selected by
CMOD. In PWM mode CL operates as an 8-bit timer.

CCON PCA Timer/Counter Control Register. Contains the run control bit and S:D8H
the overflow flag for the PCA timer/counter, and interrupt flags for the five
compare/capture modules.

CMOD PCA Timer/Counter Mode Register. Contains bits for disabling the PCA S:D9H
timer/counter during idle mode, enabling the PCA watchdog timer (module
4), selecting the timer/counter input, and enabling the PCA timer/counter
overflow Interrupt.

CCAPOH PCA Module 0 Compare/Capture Registers. This register pair stores the S:FAH
CCAPOL comparison value or the captured value. In the PWM mode, the low-byte S:EAH

register controls the duty cycle of the output waveform.

CCAP1H PCA Module 1 Compare/Capture Registers. This register pair stores the S:FBH
CCAP1L comparison value or the captured value. In the PWM mode, the low-byte S:EBH

register controls the duty cycle of the output waveform.

CCAP2H PCA Module 2 Compare/Capture Registers. This register pair stores the S:FCH
CCAP2L comparison value or the captured value. In the PWM mode, the low-byte S:ECH

register controls the duty cycle of the output waveform.

CCAPSH PCA Module 3 Compare/Capture Registers. This register pair stores the S:FDH
CCAPSL comparison value or the captured value. In the PWM mode, the low-byte S:EDH

register controls the duty cycle of the output waveform.

CCAP4H PCA Module 4 Compare/Capture Registers. This register pair stores the S:FEH
CCAP4L comparison value or the captured value. In the PWM mode, the low-byte S:EEH

register controls the duty cycle of the output waveform.

CCAPMO PCA Compare/Capture Module Mode Registers. Contain bits for S:DAH
CCAPM1 selecting the operating mode of the compare/capture modules and S:DBH
CCAPM2 enabling the compare/capture flag. See Table 8-S on page 8-15 for mode S:DCH
CCAPMS select bit combinations. S:DDH
CCAPM4 S:DEH

Table 8-2. External Signals

Signal Type Description Multiplexed
Name With

ECI I PCA Timer/counter External Input. This signal is the external clock P1.2
input for the PCA timer/counter.

CEXO 110 Compare/Capture Module External I/O. Each compare/capture P1.S
CEX1 module connects to a Port 1 pin for external 110. When not used by P1.4
CEX2 the PCA, these pins can handle standard 110. P1.5
CEX3 P1.6
CEX4 P1.7

8-4

1

-
PROGRAMMABLE COUNTER ARRAY

8.3 PCA COMPARE/CAPTURE MODULES

Each compare/capture module is made up of a compare/capture register pair
(CCAPxHlCCAPxL), a 16-bit comparator, and various logic gates and signal transition selectors.
The registers store the time or count at which an external event occurred (capture) or at which an
action should occur (comparison). In the PWM mode, the low-byte register controls the duty cy
cle of the output waveform.

The logical configuration of a comparelcapture module depends on its mode of operation
(Figures 8-2 through 8-5). Each module can be independently programmed for operation in any
of the following modes:

• 16-bit capture mode with triggering on the positive edge, negative edge, or either edge.

• Compare modes: 16-bit software timer, 16-bit high-speed output, 16-bit WDT (module 4
only), or 8-bit pulse width modulation.

• No operation.

Bit combinations programmed into a compare/capture module's mode register (CCAPMx) deter
mine the operating mode. Figure 8-9 on page 8-16 provides bit definitions and Table 8-3 on page
8-15 lists the bit combinations of the available modes. Other bit combinations are invalid and pro
duce undefined results.

The compare/capture modules perform their programmed functions when their common time
base, the PCA timer/counter, runs. The timer/counter is turned on and off with the CR bit in the
CCON register. To disable any given module, program it for the no operation mode. The occur
rence of a capture, software timer, or high-speed output event in a compare/capture module sets
the module's compare/capture flag (CCFx) in the CCON register and generates a PCA interrupt
request if the corresponding enable bit in the CCAPMx register is set.

The CPU can read or write the CCAPxH and CCAPxL registers at any time.

8.3.1 16-bit Capture Mode

The capture mode (Figure 8-2) provides the PCA with the ability to measure periods, pulse
widths, duty cycles, and phase differences at up to five separate inputs. External 110 pins CEXO
through CEX4 are sampled for signal transitions (positive and/or negative as specified). When a
compare/capture module programmed for the capture mode detects the specified transition, it
captures the PCA timer/counter value. This records the time at which an external event is detect
ed, with a resolution equal to the timerlcounter clock period.

L
8-5

I

PROGRAMMABLE COUNTER ARRAY intet
To program a compare/capture module for the 16-bit capture mode, program the CAPPx and
CAPNx bits in the module's CCAPMx register as follows:

• To trigger the capture on a positive transition, set CAPPx and clear CAPNx.

• To trigger the capture'on a negative transition, set CAPNx and clear CAPPx.

• To trigger the capture on a positive or negative transition, set both CAPPx and CAPNx.

Table 8-3 on page 8-15 lists the bit combinations for selecting module modes. For modules in the
capture mode, detection of a valid signal transition at the 110 pin (CEXx) causes hardware to load
the current PCA timer/counter value into the compare/capture registers (CCAPxHlCCAPxL) and
to set the module's compare/capture flag (CCFx) in the CCON register. If the corresponding in
terrupt enable bit (ECCFx) in the CCAPMx register is set (Figure 8-9 on page 8-16), a the PCA
sends an interrupt request to the interrupt handler.

Since hardware does not clear the event flag when the interrupt is processed, the user must clear
the flag in software. A subsequent capture by the same module overwrites the existing captured
value. To preserve a captured value, save it in RAM with the interrupt service routine before the
next capture event occurs.

CEXx
External 110

x = 0,1,2,3 or 4
X= Don't Care

8-6

7

Count
Input--~~

Capture

CCON Register

Figure 8-2. PCA 16-bit Capture Mode

PCA Timer/Counter

Interrupt
Request

A4163-02

-

-
PROGRAMMABLE COUNTER ARRAY

8.3.2 Compare Modes

The compare function provides the capability for operating the five modules as timers, event
counters, or pulse width modulators. Four modes employ the compare function: 16-bit software
timer mode, high-speed output mode, WDT mode, and PWM mode. In the first three ofthese, the
compare/capture module continuously compares the 16-bit PCA timer/counter value with the 16-
bit value pre-loaded into the module's CCAPxHlCCAPxL register pair. In the PWM mode, the
module continuously compares the value in the low-byte PCA timer/counter register (CL) with
an 8-bit value in the CCAPxL module register. Comparisons are made three times per peripheral
cycle to match the fastest PCA timer/counter clocking rate (Fose/4). For a description of periph
eral cycle timing, see "Clock and Reset Unit" on page 2-5.

Setting the ECOMx bit in a module's mode register (CCAPMx) selects the compare function for
that module (Figure 8-9 on page 8-16). To use the modules in the compare modes, observe the
following general procedure:

1. Select the module's mode of operation.

2. Select the input signal for the PCA timer/counter.

3. Load the comparison value into the module's compare/capture register pair.

4. Set the PCA timer/counter run control bit.

5. After a match causes an interrupt, clear the module's compare/capture flag.

8.3.3 16-bit Software Timer Mode

To pro~am a compare/capture module for the 16-bit software timer mode (Figure 8-3), set the
ECOMx and MATx bits in the module's CCAPMx register. Table 8-3 on page 8-15 lists the bit
combinations for selecting module modes.

A match between the PCA timer/counter and the compare/capture registers (CCAPxHlCCAPxL)
sets the module's compare/capture flag (CCFx in the CCON register). This generates an interrupt
request if the corresponding interrupt enable bit (ECCFx in the CCAPMx register) is set. Since
hardware does not clear the compare/capture flag when the interrupt is processed, the user must
clear the flag in software. During the interrupt routine, a new 16-bit compare value can be written
to the compare/capture registers (CCAPxHlCCAPxL).

NOTE

To prevent an invalid match while updating these registers, user software
should write to CCAPxL first, then CCAPxH. A write to CCAPxL clears the
ECOMx bit disabling the compare function, while a write to CCAPxH sets the
ECOMx bit re-enabling the compare function.

8-7

PROGRAMMABLE COUNTER ARRAY intet

Compare/Capture

Count
Input

PCA Timer/Counter Module

Reset

Write to
CCAPxL

CH I CL
(8 Bits) : (8 Bits)

Write to CCAPxH

Toggle

~+-----~ ~----~~ CEXx

'-----.-----'
Interrupt

Enable Request

x = Don't Care
x=O,1,2,3,4
For software timer mode, set ECOMx and MATx.
For high speed output mode, set ECOMx, MATx, and TOGx.

A4164'01

Figure 8-3. PCA Software Timer and High-speed Output Modes

8.3.4 High-speed Output Mode

The high-speed output mode (Figure 8-3) generates an output signal by toggling the module's 110
pin (CEXx) when a match occurs. This provides greater accuracy than toggling pins in software
because the toggle occurs before the interrupt request is serviced. Thus, interrupt response time
does not affect the accuracy of the output.

To program a compare/capture module for the high-speed output mode, set the ECOMx, MATx,
TOGx bits in the module's CCAPMx register. Table 8-3 on page 8-15 lists the bit combinations
for selecting module modes. A match between the PCA timer/counter and the compare/capture
registers (CCAPxHlCCAPxL) toggles the CEXx pin and setsthe module's compare/capture flag
(CCFx in the CCON register). By setting or clearing the CEXx pin in software, the user selects
whether the match toggles the pin from low to high or vice versa.

8-8

1

-
intet PROGRAMMABLE COUNTER ARRAY

The user also has the option of generating an interrupt request when the match occurs by setting
the corresponding interrupt enable bit (ECCFx in the CCAPMx register). Since hardware does not
clear the compare/capture flag when the interrupt is processed, the user must clear the flag in soft
ware.

If the user does not change the compare/capture registers in the interrupt routine, the next toggle
occurs after the PCA timer/counter rolls over and the count again matches the comparison value.
During the interrupt routine, a new 16-bit compare value can be written to the compare/capture
registers (CCAPxHlCCAPxL).

NOTE

To prevent an invalid match while updating these registers, user software
should write to CCAPxL first, then CCAPxH. A write to CCAPxL clears the
ECOMx bit disabling the compare function, while a write to CCAPxH sets the
ECOMx bit re-enabling the compare function.

8.3.5 peA Watchdog Timer Mode

A watchdog timer (WDT) provides the means to recover from routines that do not complete suc
cessfully. A WDT automatically invokes a device reset if it does not regularly receive hold-off
signals. WDTs are used in applications that are subject to electrical noise, power glitches, elec
trostatic discharges, etc., or where high reliability is required.

In addition to the 8XC251SB's 14-bit hardware WDT, the PCA provides a programmable-fre
quency 16-bit WDT as a mode option on compare/capture module 4. This mode generates a de
vice reset when the count in the PCA timer/counter matches the value stored in the module 4
compare/capture registers. A PCA WDT reset has the same effect as an external reset. Module 4
is the only PCA module that has the WDT mode. When not programmed as a WDT, it can be used
in the other modes.

To program module 4 for the PCA WDT mode (Figure 8-4), set the ECOM4 and MAT4 bits in
the CCAPM4 register and the WDTE bit in the CMOD register. Table 8-3 on page 8-15 lists the
bit combinations for selecting module modes. Also select the desired input for the PCA tim
er/counter by programming the CPSO and CPS 1 bits in the CMOD register (see Figure 8-7 on
page 8-13). Enter a 16-bit comparison value in the compare/capture registers
(CCAP4H/CCAP4L). Enter a 16-bit initial value in the PCA timer/counter (CHlCL) or use the
reset value (OOOOH). The difference between these values multiplied by the PCA input pulse rate
determines the running time to "expiration." Set the timer!counter run control bit (CR in the
CCON register) to start the PCA WDT.

8-9

I
I:

I~
1\
!

PROGRAMMABLE COUNTER ARRAY

The PCA WDT generates a reset signal each time a match occurs. To hold off a PCA WDT reset,
the user has three options:

• periodically change the comparison value in CCAP4H/CCAP4L so a match never occurs

• periodically change the PCA timer/counter value so a match never occurs

• disable the module 4 reset output signal by clearing the WDTE bit before a match occurs,
then later re-enable it

The first two options are more reliable because the WDT is not disabled as in the third option.
The second option is not recommended if other PCA modules are in use, since the five modules
share a common time base. Thus, in most applications the first option is the best one.

Count
Input

Compare/Capture
PCA Timer/Counter Module

CH : CL
(8 Bits) I (8 Bits)

>---~~ PCA WDT Reset

Reset
Write to

CCAP4L
"1"

7 CCAPM4 Mode Register

x = Don't Care

Write to CCAP4H --....I

Figure 8-4. PCA Watchdog Timer Mode

8-10

o

A4165-01

1

-
PROGRAMMABLE COUNTER ARRAY

8.3.6 Pulse Width Modulation Mode

The five PCA comparator/capture modules can be independently programmed to function as
pulse width modulators (Figure 8-5). The modulated output, which has a pulse width resolution
of eight bits, is available at the CEXx pin. The PWM output can be used to convert digital data to
an analog signal with simple external circuitry.

In this mode the value in the low byte of the PCA timer!counter (CL) is continuously compared
with the value in the low byte of the compare/capture register (CCAPxL). When CL < CCAPxL,
the output waveform (Figure 8-6) is low. When a match occurs (CL = CCAPxL), the output wave
form goes high and remains high until CL rolls over from FFH to OOH, ending the period. At roll
over the output returns to a low, the value in CCAPxH is loaded into CCAPxL, and a new period
begins.

I

CL rollover from FFH to OOH loads ----.0\.
CCAPxH contents into CCAPxL

x = Don't Care
x = 0, 1, 2, 3, 4.

7 CCAPMx Mode Register

Figure 8-5. PCA 8-bit PWM Mode

CEXx

o
A4166·01

8-11

I

~
I

PROGRAMMABLE COUNTER ARRAY intet.
The value in CCAPxL detennines the duty cycle of the current period. The value in CCAPxH de
tennines the duty cycle of the following period. Changing the value in CCAPxL over time mod
ulates the pulse width. As depicted in Figure 8-6, the 8-bit value in CCAPxL can vary from 0
(100% duty cycle) to 255 (0.4% duty cycle).

NOTE

To change the value in CCAPxL without glitches, write the new value to the
high byte register (CCAPxH). This value is shifted by hardware into CCAPxL
when CL rolls over from FFH to OOH.

The frequency of the PWM output equals the frequency of the PeA timer/counter input signal
divided by 256. The highest frequency occurs when the Fosd4 input is selected for the PeA tim
er/counter. For Fosc = 16 MHz, this is 15.6 KHz.

To program a compare/capture module for the PWM mode, set the ECOMx and PWMx bits in
the module's CCAPMx register. Table 8-3 on page 8-15 lists the bit combinations for selecting
module modes. Also select the desired input for the PeA timer/counter by programming the
CPSO and CPS 1 bits in the CMOD register (see Figure 8-7 on page 8-13). Enter an 8-bit value in
CCAPxL to specify the duty cycle of the first period of the PWM output waveform. Enter an 8-
bit value in CCAPxH to specify the duty cycle of the second period. Set the timer/counter run con
trol bit (CR in the CCON register) to start the PeA timer/counter.

Duty
CCAPxL Cycle Output Waveform

255 0.4% ~ I I I
230 10% ~l n n Il
128 50%

25 90% ~1J U U L
1

0 100%
0

A4161-01

Figure 8-6. PWM Variable Duty Cycle

8-12

1

--- -

PROGRAMMABLE COUNTER ARRAY

CMOD Address: S:D9H
Reset State: OOXX XOOOB

7 o
~_C_ID_L __ ~W __ DT_E __ ~ ____ ~ ____ ~I ~I ______ ~_CP_S_1~~C_P_S_O~ ___ E_CF __ ~

Bit Bit
Function Number Mnemonic

7 CIDL Counter Idle Control:

CIDL = 1 disables the PCA timer/counter during idle mode. CIDL = 0
allows the PCA timer/counter to run during idle mode.

6 WDTE Watchdog Timer Enable:

WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.

5:3 - Reserved:

The values read from these bits are indeterminate. Do not write "1 "s to
these bits.

2:1
I

CPS1:0 PCA Timer/Counter Input Select:

CPS1 CPSO

0 0 Fasd12
0 1 Fasd4
1 0 Timer 0 overflow
1 1 External clock at ECI pin (maximum rate = Fascia)

0 ECF PCA Timer/Counter Interrupt Enable:

ECF = 1 enables the CF bit in the CCON register to generate an interrupt
request.

Figure 8-7. CMOD: PCA Timer/Counter Mode Register

L
8-13

PROGRAMMABLE COUNTER ARRAY intet

CCON Address: S:D8H
Reset State: OOXO OOOOB

7 o
~_C_F __ ~ __ C_R __ ~ ____ ~~C_C_F_4~11 ~ __ CC_F_3 __ ~C_C_F_2~~C_C_F_1~~C_C_F_0~

Bit Bit Function Number Mnemonic

7 CF PCA Timer/Counter Overflow Flag:

Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or software butcan be cleared only by software.

6 CR PCA Timer/Counter Run Control Bit:

Set and cleared by software to turn the PCA timer/counter on and off.

5 - Reserved:

The value read from this bit is indeterminate. Do not write a "1" to this bit.

4:0 CCF4 PCA Module Compare/Capture Flags:
CCF3 Set by hardware when a match or capture occurs. This generates a PCA
CCF2 interrupt request if the ECCFx interrupt enable bit in the corresponding
CCF1 CCAPMx register is set. Must be cleared by software.
CCFO

Figure 8-8. CCON: PCA Timer/Counter Control Register

.""

8-14

l

int"et PROGRAMMABLE COUNTER ARRAY

Table 8-3. PCA Module Modes

ECOMx CAPPx CAPNx MATx TOGx PWMx ECCFx Module Mode

0 0 0 0 0 0 0 No operation

X 1 0 0 0 0 X 16-bit capture on positive-edge
trigger at CEXX

X 0 1 0 0 0 X 16-bit capture on negative-edge
trigger at CEXX

X 1 1 0 0 0 X 16-bit capture on positive- or
negative-edge trigger at CEXx

1 0 0 1 0 0 X Compare: software timer

1 0 0 1 1 0 X Compare: high-speed output

1 0 0 0 0 1 0 Compare: 8-bit PWM

1 0 0 1 X 0 X Compare: PCA WOT
(CCAPM4 only) (Note 3)

NOTES:
1. This table shows the CCAPMxregister bit combinations for selecting the operating modes of the PCA

compare/capture modules. Other bit combinations are invalid. See Figure 8-9 for bit definitions.
2. x = 0-4, X = Oon't care.
3. For PCA WOT mode, also set the WOTE bit in the CMOO register to enable the reset output signal.

8-15

PROGRAMMABLE COUNTER ARRAY intet~

CCAPMx (x = 0-4)

7

Address: CCAPMO S:DAH
CCAPM1 S:DBH
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: XOOO OOOOB

o
~ ____ ~~E_C_O_M_X~ __ C_A_P_P_X~ __ C_A_P_N_x~1 ~I __ M_~_~_X~~T_O_G_X __ ~_P_W_M_X __ ~_E_C_C_F_X~

Bit Bit Function Number Mnemonic

7 - Reserved:
The value read from this bit Is Indeterminate. Do not write a "1" to this bit.

6 ECOMx Compare Modes:
ECOMx = 1 enables the module comparator function. The comparator is
used to Implement the software timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPx Capture Mode (Positive):
CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNx Capture Mode (Negative):
CAPNx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MATx Match:
Set ECOMxand MATxto implement the software timer mode. When
MATx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFxblt In the CCON register, flagging an Interrupt.

2 TOGx Toggle:
Set ECOMx, MATx, and TOGxto implement the high-speed output
mode. When TOGx= 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:

PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:
Enables compare/capture flag CCFx in the CCON register to generate
an interrupt request.

-
Figure 8-9. CCAPMx: PCA Compare/Capture Module Mode Registers

8-16

9
Serial 110 Port

I

i

I

I
I
I

CHAPTER 9
SERIAL 1/0 PORT

The serial input/output port supports communication with modems and other external peripheral
devices. This chapter provides instructions on programming the serial port and generating the se
rial 110 baud rates with timer 1 and timer 2.

9.1 OVERVIEW

The serial 110 port provides both synchronous and asynchronous communication modes. It oper
ates as a universal asynchronous receiver and transmitter (UARn in three full-duplex modes
(modes 1,2, and 3). Asynchronous transmission and reception can occur simultaneously and at
different baud rates. The UART supports framing-bit error detection, multiprocessor communi-

I'
I

cation, and automatic address recognition. The serial port also operates in a single synchronous I~
mode (mode 0).

The synchronous mode (mode 0) operates at a single baud rate. Mode 2 operates at two baud
rates. Modes 1 and 3 operate over a wide range of baud rates, which are generated by timer 1 and
timer 2. Baud rates are detailed in ."Baud Rates" on page 9-10.

The serial port signals are defined in Table 9-1, and the serial port special function registers are
described in Table 9-2. Figure 9-1 is a block diagram of the serial port.

For the three asynchronous modes, the UART transmits on the TXD pin and receives on the RXD
pin. For the synchronous mode (mode 0), the UART outputs a clock signal on the TXD pin and
sends and receives messages on the RXD pin (Figure 9-1). The SBUF register, which holds re
ceived bytes and bytes to be transmitted, actually consists of two physically different registers.
To send, software writes a byte to SBUF; to receive, software reads SBUF. The receive shift reg
ister allows reception of a second byte before the first byte has been read from SBUF. However,
if software has not read the first byte by the time the second byte is received, the second byte will
overwrite the first. The UART sets interrupt bits TI and RI on transmission and reception, respec
tively. These two bits share a single interrupt request and interrupt vector.

Table 9-1. Serial Port Signals

Function Type Description Multiplexed
,Name With

TXD 0 Transmit Data. In mode 0, TXD transmits the clock signal. In P3.1
modes 1, 2, and 3, TXD transmits serial data.

RXD I/O Receive Data. In mode 0, RXD transmits and receives serial P3.0
data. In modes 1, 2, and 3, RXD receives serial data.

9-1

SERIAL I/O PORT

Table 9-2. Serial Port Special Function Registers

Mnemonic Description

SBUF

SCON

SADDR

SADEN

9-2

Serial Buffer. Two separate registers comprise the SBUF register. Writing
to SBUF loads the transmit buffer; reading SBUF accesses the receive
buffer.

Serial Port Control. Selects the serial port operating mode. SCON enables
and disables the receiver, framing bit error detection, multiprocessor
communication, automatic address recognition, and the serial port Interrupt
bits.

Serial Address. Defines the individual address for a slave device.

Serial Address Enable. Specifies the mask byte that is used to define the
given address for a slave device.

TxD

RxD

Serial 110
Control

IB Bus

Mode 0
Transmit

ReadSBUF

Figure 9-1. Serial Port Block Diagram

Interrupt
Request

int:et

Address

99H

98H

A8H

B8H

A4123·01

_1

in1:el~ SERIAL 1/0 PORT

The serial port control (SCON) register (Figure 9-2) configures and controls the serial port.

seON Address: 98H
Reset State: 0000 OOOOB

7 o
~F_8_S_M_0~ __ S_M_1 __ ~_S_M_2 __ ~ __ R_EN __ ~1 ~1 __ T_B_8 __ ~_R_B_8 __ ~ __ T_I __ ~ __ R_I __ ~

Bit Bit Function Number Mnemonic

7 FE Framing Error Bit:

To select this function, set the SMODO bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by software.

SMO
Serial Port Mode Bit 0:

To select this function, clear the SMODO bit in the PCON register.
Software writes to bits SMO and SM1 to select the serial port operating
mode. Refer to the SM 1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Software writes to bits SM1 and SMO (above) to select the serial port
operating mode.

SMO SM1 Mode Description Baud Rate
0 0 0 Shift register Fosd12
0 1 1 8-bitUART Variable
1 0 2 9-bit UART FosJ32t or Fosc/64t
1 1 3 9-bit UART Variable

tSelect by programming the SMOD bit in the PCON register (see "Baud
Rates" on page 9-10).

5 SM2 Serial Port Mode Bit 2:

Software writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:

To enable reception, set this bit. To enable transmission, clear this bit.

3 TB8 Transmit Bit 8:

In modes 2 and 3, software writes the 9th data bit to be transmitted to
TB8. Not used in modes 0 and 1.

2 RB8 Receiver Bit 8:

Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the 9th
bit received.

Figure 9-2. Serial Port Special Function Register

9-3

I

I
1

il
I"

'.I

l
I

11
i
~

SERIAL I/O PORT

1 TI Transmit Interrupt Flag Bit:

Set by the transmitter after the last data bit is transmitted. Cleared by
software.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by software.

Figure 9·2. Serial Port Special Function Register (Continued)

9.2 MODES OF OPERATION

The serial 110 port can operate in one synchronous and three asynchronous modes.

9.2.1 Synchronous Mode (Mode 0)

Mode 0 is a half-duplex, synchronous mode, which is commonly used to expand the 110 capabil
ities of a device with shift registers. The transmit data (TXD) pin outputs a set of eight clock puls
es while the receive data (RXD) pin transmits or receives a byte of data. The eight data bits are
transmitted and received least-significant bit (LSB) first Shifts occur in the last phase (S6P2) of
every peripheral cycle, which corresponds to a baud rate ofFosd12. Figure 9-3 shows the timing
for transmission and reception in mode o.

9.2.1.1 Transmission (Mode 0)

Follow these steps to begin a transmission:

1. Write to the SCON register, clearing bits SMO, SMl, and REN.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmission.

Hardware executes the write to SBUF in the last phase (S6P2) of a peripheral cycle. At S6P2 of
the following cycle, hardware shifts the LSB (DO) onto the RXD pin. At S3Pl of the next cycle,
the TXD pin goes low for the first clock-signal pulse. Shifts continue every peripheral cycle. In
the ninth cycle after the write to SB UF, the MSB (D7) is on the RXD pin. At the beginning of the
tenth cycle, hardware drives the RXD pin high and asserts RI to indicate the end of the transmis
sion.

9-4

intet~ SERIAL 1/0 PORT

Transmit

TxD

Write to -.n SBUF
I ~------------------------~S~s---------------

S6P2 n Shift
S6P2 !:'!:"'"----....,S...!6~~

AxD I K DO X D1
S6P2 S6P2

'--____ ~~ D7 7
TI ------------------------~S~\ ________ ~r___

I
Receive

S1P1

TxD

Write to -.n Set AEN, Clear AI
SCON

I --------------------------~\S~--------------
S6P2 n Shift

S6P2

DO D1 D6 D7
AxD I I D

S6P2 S6P2 I

I
S5P2

AI

1-----1DI----ssr[]----IDI---

~--------------------..... SI~S--------~r---I
S5P2

A4124-01

Figure 9-3. Mode 0 Timing

9.2.1.2 Reception (Mode 0)

To start a reception in mode 0, write to the SCaN register. Clear bits SMO, SMl, and RI and set
the REN bit.

Hardware executes the write to SCaN in the last phase (S6P2) of a peripheral cycle (Figure 9-3).
In the second peripheral cycle following the write to SCaN, TXD goes low at S3Pl for the first
clock-signal pulse, and the LSB (DO) is sampled on the RXD pin at S5P2. The DO bit is then shift
ed into the shift register. After eight shifts at S6P2 of every peripheral cycle, the LSB (D7) is shift
ed into the shift register, and hardware asserts RI to indicate a completed reception. Software can
then read the received byte from SBUF.

9-5

il I.
I~
.\

SERIAL 1/0 PORT intet
9.2.2 Asynchronous Modes (Modes 1, 2, and 3)

The serial port has three asynchronous modes of operation.

• Mode 1. Mode 1 is a full-duplex, asynchronous mode. The data frame (Figure 9-4) consists
of 10 bits: one start bit, eight data bits, and one stop bit. Serial data is transmitted on the
TXD pin and received on the RXD pin. When a message is received, the stop bit is read in
the RB8 bit in the SCON register. The baud rate is generated by overflow of timer 1 or timer
2 (see "Baud Rates" on page 9-10).

• Modes 2 and 3. Modes 2 and 3 are full-duplex, asynchronous modes. The data frame
(Figure 9-4) consists of 11 bits: one start bit, eight data bits (transmitted and received LSB
first), one programmable ninth data bit, and one stop bit. Serial data is transmitted on the
TXD pin and received on the RXD pin. On receive, the ninth bit is read from the RB8 bit in
the SCON register. On transmit, the ninth data bit is written to the 1B8 bit in the SCON
register. (Alternatively, you can use the ninth bit as a command/data flag.)

In mode 2, the baud rate is programmable to 1/32 or 1164 of the oscillator frequency.

- In mode 3, the baud rate is generated by overflow of timer 1 or timer 2.

9.2.2.1

Data Byte .1).1l1li(.1
Ninth Data Bit (Modes 2 and 3 only) I ~ t ~ I ~t

StoPBit~
A2261-01

Figure 9-4. Data Frame (Modes 1, 2, and 3)

Transmission (Modes 1, 2, 3)

Follow these steps to initiate a transmission:

1. Write to the SCON register. Select the mode with the SMO and SMl bits, and clear the
REN bit. For modes 2 and 3, also write the ninth bit to the TB8 bit.

2. Write the byte to be transmitted to the SBUP register. This write starts the transmission.

9.2.2.2 Reception (Modes 1, 2, 3)

To prepare for a reception, set the REN bit in the SCON register. The actual reception is then ini
tiated by a detected high-to-Iow transition on the RXD pin.

9-6 _1

intet~ SERIAL 1/0 PORT

9.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)

Framing bit error detection is provided for the three asynchronous modes. To enable the framing
bit error detection feature, set the SMODO bit in the PCON register (see Figure 11-1 on page
11-2). When this feature is enabled, the receiver checks each incoming data frame for a valid stop
bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission
by two CPUs. If a valid stop bit is not found, the software sets the FE bit in the SCON register
(see Figure 9-2 on page 9-3).

Software may examine the FE bit after each reception to check for data errors. Once set, only soft
ware or a reset can clear the FE bit. Subsequently received frames with valid stop bits cannot clear
the FE bit.

9.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)

Modes 2 and 3 provide a ninth-bit mode to facilitate multiprocessor communication. To enable
this feature, set the SM2 bit in the SCON register (see Figure 9-2 on page 9-3). When the multi
processor communication feature is enabled, the serial port can differentiate between data frames
(ninth bit clear) and address frames (ninth bit set). This allows the microcontroller to function as
a slave processor in an environment where multiple slave processors share a single serial line.

When the multiprocessor communication feature is enabled, the receiver ignores frames with the
ninth bit clear. The receiver examines frames with the ninth bit set for an address match. If the
received address matches the slave's address, the receiver hardware sets the RB8 bit and the RI
bit in the SCON register, generating an interrupt.

NOTE

The ES bit must be set in the IE register to allow the RI bit to generate im
interrupt. The IE register is described in Chapter 8, Interrupts.

The addressed slave's software then clears the SM2 bit in the SCON register and prepares to re
ceive the data bytes. The other slaves are unaffected by these data bytes because they are waiting
to respond to their own addresses.

9.5 AUTOMATIC ADDRESS RECOGNITION

The automatic address recognition feature is enabled when the multiprocessor communication
feature is enabled (the SM2 bit is set in the SCON register).

9-7

~ ;
'c

SERIAL I/O PORT intet~

Implemented in hardware, automatic address recognition enhances the multiprocessor communi
cation feature by allowing the serial port to examine the address of each incoming command
frame. Only when the serial port recognizes its own address does the receiver set the RI bit in the
SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command
frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configu
ration, the stop bit takes the place of the ninth data bit. The RI bit is set only when the received
command frame address matches the device's address and is terminated by a valid stop bit.

NOTE

The mUltiprocessor communication and automatic address recognition features
cannot be enabled in mode 0 (Le., setting the SM2 bit in the SCON register in
mode 0 has no effect).

To support automatic address recognition, a device is identified by a given address and a broad
cast address.

9.5.1 Given Address

Each device has an individual address that is specified in the SADDR register; the SADEN reg
ister is a mask byte that contains don't-care bits (defined by zeros) to form the device's given ad
dress. These don't-care bits provide the flexibility to address one or more slaves at a time. The
following example illustrates how a given address is formed. (To address a device by its individ
ual address, the SADEN mask byte must be 1111 1111.)

SADDR = 0101 0110

SADEN = 1111 1100

Given 0101 01XX

The following is an example of how to use given addresses to address different slaves:

Slave A: SADDR 1111 0001 Slave C: SADDR = 11110010

SADEN 11111010 SADEN 1111 1101

Given = 1111 OXOX Given 1111 00X1

Slave B: SADDR = 11110011

SAD EN = 11111001

Given = 1111 OXX1

9-8

int'et SERIAL 1/0 PORT

The SADEN byte is selected so that each slave may be addressed separately. For Slave A, bit 0
(the LSB) is a don't-care bit; for Slaves Band C, bit 0 is a 1. To communicate with Slave A only,
the master must send an address where bit 0 is clear (e.g., 1111 0000).

For Slave A, bit 1 is a 0; for Slaves Band C, bit 1 is a don't care bit. To communicate with Slaves
Band C, but not Slave A, the master must send an address with bits 0 and 1 both set (e.g.,
1111 0011).

For Slaves A and B, bit 2 is a don't care bit; for Slave C, bit 2 is a O. To communicate with Slaves
A and B, but not Slave C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 set
(e.g., 11110101).

To communicate with Slaves A, B, and C, the master must send an address with bit 0 set, bit 1
clear, and bit 2 clear (e.g., 1111 0001).

9.5.2 Broadcast Address

A broadcast address is formed from the logical OR of the SADDR and SADEN registers with
zeros defined as don't-care bits, e.g.:

SADDR

SADEN

(SADDR) OR (SADEN)

01010110

11111100

1111111X

The use of don't-care bits provides flexibility in defining the broadcast address, however, in most
applications, a broadcast address is OFFH.

The following is an example of using broadcast addresses:

Slave A: SADDR 1111 0001 Slave C: SADDR 1111 0010

SADEN 1111 1010 SADEN 11111101

Broadcast 1111 1X11 Broadcast 11111111

Slave B: SADDR 1111 0011

SADEN 1111 1001

Broadcast = 11111X11

For Slaves A and B, bit 2 is a don't care bit; for Slave C, bit 2 is set. To communicate with all of
the slaves, the master must send an address FFH.

To communicate with Slaves A and B, but not Slave C, the master can send an address FBH.

9-9

II
I'

SERIAL I/O PORT

9.5.3 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to OOH, i.e., the given and broadcast
addresses are XXXX XXXX (all don't-care bits). This ensures that the serial port is backwards
compatible with MCS® 51 microcontrollers that do not support automatic address recognition.

9.6 BAUD RATES

You must select the baud rate for the serial port transmitter and receiver when operating in modes
1,2, and 3. (The baud rate is preset for mode 0.) In its asynchronous modes, the serial port can
transmit and receive simultaneously. Depending on the mode, the transmission and reception
rates can be the same or different. Table 9-3 summarizes the baud rates that can be used for the
four serial I/O modes.

Table 9-3. Summary of Baud Rates

Mode No. of Send and Receive Send and Receive
Baud Rates at the Same Rate at Different Rates

0 1 N/A N/A

1 Many! Yes Yes

2 2 Yes

3 Many! Yes Yes

t Baud rates are determined by overflow of timer 1 and/or timer 2.

9.6.1 Baud Rate for Mode 0

The baud rate for mode 0 is fixed at Fosdl2.

9.6.2 Baud Rates for Mode 2

Mode 2 has two baud rates, which are selected by the SMODI bit in the PCON register (Figure
11-1 on page 11-2). The following expression defines the baud rate:

. SMODl Fosc
SenaillO Mode 2 Baud Rate = 2 x --s;r

9.6.3 Baud Rates for Modes 1 and 3

In modes 1 and 3, the baud rate is generated by overflow of timer 1 (default) and/or timer 2. You
may select either or both timer(s) to generate the baud rate(s) for the transmitter and/or the receiv
er.

9-10

__ 1

infel '" SERIAL 1/0 PORT

9.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3)

Timer 1 is the default baud rate generator for the transmitter and the receiver in modes 1 and 3.
The baud rate is determined by the timer 1 overflow rate and the value of SMOD, as shown in the
following formula:

Serial 110 Modes 1 and 3 Baud Rate = 2SMODl x Timer 1 O~~rfIOW Rate

9.6.3.2 Selecting Timer 1 as the Baud Rate Generator

To select timer 1 as the baud rate generator:

• Disable the timer interrupt by clearing the Ell bit in the lEO register (Figure 5-2 on page
5-6).

• Configure timer 1 as a timer or an event counter (set or clear the C/T# bit in the TMOD
register). The TMOD register is described in Chapter 7, Timers/Counters.

• Select timer mode 0-3 by programming the MI, MO bits in the TMOD register.

In most applications, timer 1 is configured as a timer in auto-reload mode (high nibble of TMOD
= OOlOB). The resulting baud rate is defined by the following expression:

. SMODl Fosc
Senall/O Modes 1 and 3 Baud Rate = 2 x 32 x 12 x [256 _ (TH 1)]

Timer 1 can generate very low baud rates with the following setup:

• Enable the timer 1 interrupt by setting the ETl bit in the IE register.

• Configure timer 1 to run as a 16-bit timer (high nibble ofTMOD = OOOlB).

• Use the timer I interrupt to initiate a I6-bit software reload.

Table 9-4 lists commonly used baud rates and shows how they are generated by timer 1.

9-11

I

II
I~
II

SERIAL I/O PORT

Table 9-4. Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3

Oscillator Timer 1
Baud

Frequency SMOD1
Rate Reload

(Fosc) CIT# Mode
Value

62.5 Kbaud (Max) 12.0 MHz 1 0 2 FFH

19.2 Kbaud 11.059 MHz 1 0 2 FDH

9.6 Kbaud 11.059 MHz 0 0 2 FDH

4.S Kbaud 11.059 MHz 0 0 2 FAH

2.4 Kbaud 11.059 MHz 0 0 2 F4H

1.2 Kbaud 11.059 MHz 0 0 2 ESH

137.5 Baud 11.986 MHz 0 0 2 1DH

110.0 Baud 6.0 MHz 0 0 2 72H

110.0 Baud 12.0 MHz 0 0 1 FEEBH

9.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3)

Timer 2 may be selected as the baud rate generator for the transmitter and/or receiver (Figure 9-5
on page 9-13). The timer 2 baud rate generator mode is similar to the auto-reload mode. A roll
over in the TH2 register reloads registers TH2 and TL2 with the 16-bit value in registers
RCAP2H and RCAP2L, which are preset by software.

The timer 2 baud rate is expressed by the following formula:

9.6.3.4

Serial 110 Modes 1 and 3 Baud Rate = Timer 2 O~:rflOW Rate

Selecting Timer 2 as the Baud Rate Generator

NOTE

Turn the timer off (clear the TR2 bit in the TIC ON register) before accessing
registers TH2, TL2, RCAP2H, and RCAP2L.

To select timer 2 as the baud rate generator for the transmitter and/or receiver, program the
RCLCK and TCLCK bits in the TIC ON register as shown in Table 9-5. (You may select different
baud rates for the transmitter and receiver.) Setting RCLK and/or TCLK puts timer 2 into its baud
rate generator mode(Figure 9-5). In this mode, a rollover in the TH2 register does not set the TF2
bit in the TIC ON register. Also, a high-to-Iow transition at the T2EX pin sets the EXF2 bit in the
TICON register but does not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). You can
use the TIEX pin as an additional external interrupt by setting the EXEN2 bit in TICON.

9·12

int"et SERIAL I/O PORT

You may configure timer 2 as a timer or a counter. In most applications, it is configured for timer
operation (i.e., the Cff2# bit is clear in the T2CON register).

XTAL1

T2

Table 9-5. Selecting the Baud Rate Generator(s)

RCLCK TCLCK
Bit Bit

0 0

0 1

1 0

1 1

Note:
Oscillator frequency
is divided by 2, not 12.

crr2#

Receiver
Baud Rate Generator

Timer 1

Timer 1

Timer 2

Timer 2

Timer 1
Overflow

Transmitter
Baud Rate Generator

Timer 1

Timer 2

Timer 1

Timer 2

T2EX 0--1'-11----I~>----IL--.E_X_F_2~-~.~ ~!~~~~~
EXEN2

Note availability of additional external interrupt.

Figure 9-5. Timer 2 in Baud Rate Generator Mode

A412D-01

9-13

II

SERIAL 1/0 PORT

Note that timer 2 increments every state time (2Tosc) when it is in the baud rate generator mode.
In the baud rate formula that follows, "RCAP2H, RCAP2L" denotes the contents of RCAP2H
and RCAP2L taken as a 16-bit unsigned integer:

. Fosc
SenalllO Modes 1 and 3 Baud Rates = 32 x [553 _ (RCAP2H, RCAP2L)]

NOTE

When timer 2 is configured as a timer and is in baud rate generator mode, do
not read or write the TH2 or TL2 registers. The timer is being incremented
every state time, and the results of a read or write may not be accurate. In
addition, you may read, but not write to, the RCAP2 registers; a write may
overlap a reload and cause write and/or reload errors.

Table 9-6 lists commonly used baud rates and shows how they are generated by timer 2.

Table 9-6. Timer 2 Generated Baud Rates

Oscillator
Baud Rate Frequency RCAP2H RCAP2L

(Fosd

375.0 Kbaud 12 MHz FFH FFH

9.S Kbaud 12 MHz FFH D9H

4.S Kbaud 12 MHz FFH B2H

2.4 Kbaud 12 MHz FFH S4H

1.2 Kbaud 12 MHz FEH CSH

300.0 baud 12MHz FBH 1EH

110.0 baud 12 MHz F2H AFH

300.0 baud SMHz FDH SFH

110.0 baud SMHz F9H 57H

9-14

1

Minimum Hardware
Setup

10

.~

It
It

It
I
'j

.1
J

,j
I

I
il

I

CHAPTER 10
MINIMUM HARDWARE SETUP

This chapter discusses the basic operating requirements of the MCS® 251 microcontroller and de
scribes a minimum hardware setup. Topics covered include power, ground, clock source, and de
vice reset. For parameter values, refer to the device data sheet.

10.1 MINIMUM HARDWARE SETUP

Figure 10-1 shows a minimum hardware setup that employs the on-chip oscillator for the system
clock and provides power-on reset. Control signals and Ports 0, 1,2, and 3 are not shown. See
"Clock Sources" on page 10-3 and "Power-on Reset" on page 10-7.

L

8XC251SB

r---..... ----t XTAL 1 RST

L..---4t---+--I XTAL2

Note:
VCC2 is a secondary power pin that reduces power supply noise. VSS1 and VSS2 are
secondary ground pins that reduce ground bounce and improve power supply by-passing.
Connections to these pins are not required for proper device operation.

Figure 10-1. Minimum Setup

A4141-01

10-1

."
!,;

Ii
l

MINIMUM HARDWARE SETUP intel~

10.2 ELECTRICAL ENVIRONMENT

The 8XC251SB is a high-speed CHMOS device. To achieve satisfactory performance, its oper
ating environment should accommodate the device signal waveforms without introducing distor
tion or noise. Design considerations relating to device performance are discussed in this section.
See the device data sheet for voltage and current requirements, operating frequency, and wave
form timing.

10.2.1 Power and Ground Pins

Power the 8XC251 SB from a well-regulated power supply designed for high-speed digital loads.
Use short, low impedance connections to the power (V cc and V cc2) and ground (V ss' V ssl, and
Vss2) pins.

Vcc2 is a secondary power pin that reduces power supply noise. Vssl and Vss2 are secondary
ground pins that reduce ground bounce and improve power supply bypassing. The secondary
power and ground pins are not substitutes for V cc and Vss' They are not required for proper de
vice operation; thus, the 8XC251SB is compatible with designs that do not provide connections
to these pins.

10.2.2 Unused Pins

To provide stable, predictable performance, connect unused input pins to V ss or V cc' Untermi
nated input pins can float to a mid-voltage level and draw excessive current. Unterminated inter
rupt inputs may generate spurious interrupts.

10.2.3 Noise Considerations

The fast rise and fall times of high-speed CHMOS logic may produce noise spikes on the power
supply lines and signal outputs. To minimize noise and waveform distortion follow good board
layout techniques. Use sufficient decoupling capacitors and transient absorbers to keep noise
within acceptable limits. Connect 0.01 ~ bypass capacitors between Vee and each V ss piQ. Place
the capacitors close to the device to minimize path lengths.

Multilayer printed circuit boards with separate V cc and ground planes help minimize noise. For
additional information on noise reduction, see Application Note AP-125, "Designing Microcon
troller Systems for Noisy Environments."

10-2

intel~ MINIMUM HARDWARE SETUP

10.3 CLOCK SOURCES

The 8XC251SB can obtain the system clock signal from an external clock source (Figure 10-3)
or it can generate the clock signal using the on-chip oscillator amplifier and external capacitors
and resonator (Figure 10-2).

10.3.1 On-chip Oscillator (Crystal)

This clock source uses an external quartz crystal connected from XTALI to XTAL2 as the fre
quency-determining element (Figure 10-2). The crystal operates in its fundamental mode as an
inductive reactance in parallel resonance with capacitance external to the crystal. Oscillator de
sign considerations include crystal specifications, operating temperature range, and parasitic
board capacitance. Consult the crystal manufacturer's data sheet for parameter values. With high
quality components, Cl = C2 = 30 pF is adequate for this application.

Pins XTALl and XTAL2 are protected by on-chip electrostatic discharge (ESD) devices, Dl and
D2, which are diodes parasitic to the Rp FETs. They serve as clamps to Vee and V ss' Feedback
resistor Rp in the inverter circuit, formed from paralleled n- and p- channel FETs, permits the PD
bit in the PCON register (Figure 11-1 on page 11-2) to disable the clock during powerdown.

Noise spikes at XTALl and XTAL2 can disrupt microcontroller timing. To minimize coupling
between other digital circuits and the oscillator, locate the crystal and the capacitors near the chip
and connect to XTALl, XTAL2, and V ss with short, direct traces. To further reduce the effects of
noise, place guard rings around the oscillator circuitry and ground the metal crystal case.

Quartz Crystal
or Ceramic Resonator

\

1

'm
'W , ...
,10
,~
'x ,00

Vee

To Internal
Timing Circuit

Figure 10-2. CHMOS On-chip Oscillator

A4143·01

10-3

I
I
I

MINIMUM HARDWARE SETUP intet

For a more in-depth discussion of crystal specifications, ceramic resonators, and the selection of
Cl and C2 see Applications Note AP-155, "Oscillators for Microcontrollers" in the Embedded
Applications handbook.

10.3.2 On-chip Oscillator (Ceramic Resonator)

In cost-sensitive applications, you may choose a ceramic resonator instead of a crystal. Ceramic
resonator applications may require slightly different capacitor values and circuit configuration.
Consult the manufacturer's data sheet for specific information.

1 0.3.3 External Clock

To operate the CHMOS 8XC251SB from an external clock, connect the clock source to the
XTALl pin as shown in Figure 10-3. Leave the XTAL2 pin floating. The external clock driver
can be a CMOS gate. If the clock driver is a TTL device, its output must be connected to Vee
through a 4.7 ill pullup resister.

8XC251SB

Extemal XTAL1
Clock

CMOS
Clock Driver

N/C XTAL2

Vss

-

Note: If TIL clock driver is used, connect a 4.7kO pull up resistor from driver output to Vee.

A4142-01

Figure 10-3. External Clock Connection

10-4 . _ J

intet~ MINIMUM HARDWARE SETUP

For external clock drive requirements, see the device data sheet. Figure 10-4 shows the clock
drive waveform. The external clock source must meet the minimum high and low times (TCHCX

and TCLCX) and the maximum rise and fall times (TCLCH and TCHCL) to minimize the effect of ex
ternal noise on the clock generator circuit. Long rise and fall times increase the chance that ex
ternal noise will affect the clock circuitry and cause unreliable operation.

The external clock driver may encounter increased capacitance loading at XTALI due to the
Miller effect of the internal inverter as the clock waveform builds up in amplitude following
power on. Once the input waveform requirements are met, the input capacitance remains under
20pP.

TCHCX

Vee - 0.5 ----r------"I
0.7 Vee

0.45 V
TCLCL

A4119·01

Figure 10-4. External Clock Drive Waveforms

10.4 RESET

A device reset initializes the 8XC251SB and vectors the CPU to address FF:OOOOH. A reset is
required after applying power at turn-on. A reset is a means of exiting the idle and powerdown
modes or recovering from software malfunctions.

To achieve a valid reset, V cc must be within its normal operating range (see device data sheet)
and the reset signal must be maintained for 64 clock cycles (64Tosc) after the oscillator has sta
bilized.

Device reset is initiated in two ways:

• externally, by asserting the RST pin

• internally, if the hardware WDT or the PCA WDT expires

1
10-5

MINIMUM HARDWARE SETUP int:et

The power off flag (POF) in the PCON register indicates whether a reset is a warm start or a cold
start. A cold start reset (POF = 1) is a reset that occurs after power has been off or V cc has fallen
below 3 V, so the contents of volatile memory are indeterminate. POF is set by hardware when
V cc rises from less than 3V to its normal operating level. See "Power Off Flag" on page 11-1. A
warm start reset (pOF = 0) is a reset that occurs while the chip is at operating voltage, for exam
ple, a reset initiated by a WDT overflow or an external reset used to terminate the idle or power
down modes.

10.4.1 Externally Initiated Resets

To reset the 8XC251SB, hold the RST pin at a logic high for at least 64 clock cycles (64Tosc)
while the oscillator is running. Reset can be accomplished automatically at the time power is ap
plied by capacitively coupling RST to V cc (see Figure 10-1 and "Power-on Reset" on page 10-7).
The RST pin has a Schmitt trigger input and a pull down resistor.

10.4.2 WDT Initiated Resets

Expiration of the hardware WDT (overflow) or the PCA WDT (comparison match) generates a
reset signal. WDT initiated resets have the same effect as an external reset. See "Watchdog Tim
er" on page 7-16 and "PCA Watchdog Timer Mode" on page 8-9.

1 0.4.3 Reset Operation

When a reset is initiated, whether externally or by a WDT, the port pins are immediately forced
to their reset condition as a fail-safe precaution, whether the clock is running or not.

The external reset signal and the WDT initiated reset signals are combined internally. For an ex
ternal reset the voltage on the RST pin must be held high for 64Tosc. For WDT initiated resets, a
5-bit counter in the reset logic maintains the signal for the required 64Tosc.

The CPU checks for the presence of the combined reset signal every 2Tosc. When a reset is de
tected, the CPU responds by triggering the internal reset routine. The reset routine loads the SFR's
with their reset values (see Table 3-4 on page 3-13). Reset does not affect on-chip data RAM or
the register file. (However following a cold start reset, these are indeterminate because V cc has
fallen too low or has been off.) Following a synchronizing operation and the configuration fetch,
the CPU vectors to address FF:OOOO. Figure 10-5 shows the reset timing sequence.

10-6

I

intet MINIMUM HARDWARE SETUP

While the RST pin is high ALE, PSEN#, and the port pins are weakly pulled high. The first ALE
occurs 32Tosc after the reset signal goes low. For this reason, other devices can not be synchro
nized to the internal timings of the 8XC251SB.

NOTE

Externally driving the ALE and/or PSEN# pins to 0 during the reset routine
may cause the device to go into an indeterminate state.

Powering up the 8XC251 SB without a reset may improperly initialize the
program counter and SFRs and cause the CPU to execute instructions from an
undetermined memory location.

10.4.4 Power-on Reset

To automatically generate a reset on power up, connect the RST pin to the V cc pin through a 1-~
capacitor as shown in Figure 10-1.

When V cc is applied, the RST pin rises to V cc' then decays exponentially as the capacitor charg
es. The time constant must be such that RST remains high (above the turn-off threshold of the
Schmitt trigger) long enough for the oscillator to start and stabilize, plus 64Tosc. At power up,
V cc should rise within approximately 10 ms. Oscillator start-up time is a function the crystal fre
quency; typical start-up times are 1 ms for a 10 MHz crystal and 10 IDS for a 1 Mhz crystal.

During power up, the port pins are in a random state until forced to their reset state by the asyn
chronous logic.

Reducing V cc quickly to 0 causes the RST pin voltage to momentarily fall below 0 V. This volt
age is internally limited and does not harm the device.

10·7

I I
1

l
11

II

MINIMUM HARDWARE SETUP intet

loll(~ 64 Tosc ~ I
RST J/I/--------\\\I...-_______ _

XTAL

Internal Reset \1

~I Routine

\S \1
PSEN# LJ

ALE I \1 s~

FirstALE~
A4103-01

Figure 10-5. Reset Timing Sequence

10-8

I

Special Operating
Modes

I

11
I.
~ '~

1
il
Ii
'j

1 ~

I:
i'1
:1
Ij 'I

j
I

intet

CHAPTER 11
SPECIAL OPERATING MODES

This chapter describes the power control (PC ON) register and three special operating modes: idle,
powerdown, and on-circuit emulation (ONCE).

11.1 GENERAL

The idle and powerdown modes are power reduction modes for use in applications where power
consumption is a concern. User instructions activate these modes by setting bits in the PCON reg
ister. Program execution halts, but resumes when the mode is exited by an interrupt. While in idle
or power-down, the Vee pin is the input for backup power.

ONCE is a test mode that electrically isolates the 8XC251SB from the system in which it oper
ates.

11.2 POWER CONTROL REGISTER

The PCON special function register (Figure 11-1) provides two control bits for the serial 110
function, bits for selecting the idle and powerdown modes, the power off flag, and two general
purpose flags.

11.2.1 Serial 110 Control Bits

The SMODI bit in the PCON register is a factor in determining the serial 110 baud rate. See Fig
ure 11-1 and "Baud Rates" on page 9-10.

The SMODO bit in the PCON register determines whether bit 7 of the SCON register provides
read/write access to the framing error (FE) bit (SMODO = 1) or to SMO, a serial 110 mode select
bit (SMODO = 0). See Figure 11-1 and Figure 9-2, "Serial Port Special Function Register" on
page 9-3.

11.2.2 Power Off Flag

Hardware sets the Power Off Flag (POP) in PCON when Vee rises from < 3 V to > 3 V to indicate
that on-chip volatile memory is indeterminate, e.g., at power on. The POF can be set or cleared
by software. In general after a reset, check the status of this bit to determine whether a cold start
reset or a warm start reset occurred (see "Reset" on page 10-5). After a cold start, user software
should clear the POE If POF = 1 is detected at other times, do a reset to reinitialize the chip, since
for Vee < 3 V data may have been lost or some logic may have malfunctioned.

11-1

SPECIAL OPERATING MODES

peON

7

Address:
Reset State:

S:87H
OOxxOOOOB

o
~S_M_O_D_1-L_S_M_O_D_0-L ____ ~~_PO __ F~I~1 __ G_F_1 __ ~_G_F_0~~_P_D __ '~ __ ID_L __ ~

Bit Bit
Function Number Mnemonic

7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
31s selected in the SCON register. See "Baud Rates" on page 9-10.

6 SMODO SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, readlwrite accesses to SCON.7 are to the SMO bit.
See Figure 9-2 on page 9-3.

5 - Reserved:

The value read from this bit is indeterminate. Do not write a "1" to this bit.

4 POF Power Off Flag:

Set by hardware as Vee rises above 3 V to Indicate that power has been
off or Vee had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by software.

3 GF1 General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

,
2 GFO General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode.
Cleared by hardware when an interrupt or reset occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.

Figure 11-1. Power Control (PCON) Register

11-2

Mode

Reset

Idle

Idle

Powerdown

Powerdown

ONCE

SPECIAL OPERATING MODES

Table 11-1. Pin Conditions in Various Modes

Program ALE PSEN# PortO
Memory Pin Pin Pins

Don't Care Weak High Weak High Floating

Intemal 1 1 Data

Extemal 1 1 Floating

Intemal 0 0 Data

Extemal 0 0 Floating

Don'teare Floating Floating Floating

,
'XTAL1

PDt

Port 1 Port 2 Port 3
Pins Pins Pins

Weak High Weak High Weak High

Data Data Data

Data Data Data

Data Data Data

Data Data Data

Weak High Weak High Weak High

Interrupt,
t--+-----i~ Serial Port,

Timer Block

CPU

IDL#

A4160-01

Figure 11-2. Idle and Powerdown Clock Control

11-3

SPECIAL OPERATING MODES

11.3 IDLE MODE

Idle mode is a power reduction mode that reduces power consumption to about 40% of normal.
In this mode, program execution halts. Idle mode freezes the clocks to the CPU at known states
while the peripherals continue to be clocked (Figure 11-2). The CPU status before entering idle
mode is preserved, i.e., the program counter, program status word register, and register file retain
their data for the duration of idle mode. The contents of the SFRs and RAM are also retained. The
status of the port pins depends upon the location of the program memory:

• Internal program memory: the ALE and PSEN# pins are pulled high and the ports 0, 1,2,
and 3 pins are reading data (Table 11-1).

• External program memory: the ALE and PSEN# pins are pulled high; the port 0 pins are
floating; and the pins of ports 1,2, and 3 are reading data (Table 11-1).

NOTE

If desired, the PCA may be instructed to pause during idle mode by setting the
CIDL bit in the CMOD register (Figure 8-7 on page 8-13).

11.3.1 Entering Idle Mode

To enter idle mode, set the PCON register IDL bit The 8XC251SB enters idle mode upon exe
cution of the instruction that sets the IDL bit The instruction that sets the IDL bit is the last in
struction executed.

11-4

CAUTION

If the IDL bit and the PD bit are set simultaneously, the 8XC251 SB enters
powerdown mode

infel~ SPECIAL OPERATING MODES

11.3.2 Exiting Idle Mode

There are two ways to exit idle mode:

• Generate an enabled interrupt. Hardware clears the PCON register IDL bit which restores
the clocks to the CPU. Execution resumes with the interrupt service routine. Upon
completion of the interrupt service routine, program execution resumes with the instruction
immediately following the instruction that activated idle mode. The general purpose flags
(GFI and GFO in the PCON register) may be used to indicate whether an interrupt occurred
during normal operation or during idle mode. When idle mode is exited by an interrupt, the
interrupt service routine may examine GFI and GFO.

• Reset the chip. See "Reset" on page 10-5. A logic high on the RST pin clears the IDL bit in
the PCON register directly and asynchronously. This restores the clocks to the CPU.
Program execution momentarily resumes with the instruction immediately following the
instruction that activated the idle mode and may continue for a number of clock cycles
before the internal reset algorithm takes control. Reset initializes the 8XC251SB and
vectors the CPU to address FF:OOOOH.

NOTE

During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated idle mode should not write to a port pin or to the external RAM.

11.4 POWER DOWN MODE

The powerdown mode places the 8XC251SB in a very low power state. Powerdown mode stops
the oscillator and freezes all clocks at known states (Figure 11-2). The CPU status prior to enter
ing powerdown mode is preserved, i.e., the program counter, program status word register, and
register file retain their data for the duration of powerdown mode. In addition, the SFRs and RAM
contents are preserved. The status of the port pins depends on the location of the program mem
ory:

• Internal program memory: the ALE and PSEN# pins are pulled low and the ports 0, 1,2,
and 3 pins are reading data (Table 11-1).

• External program memory: the ALE and PSEN# pins are pulled low; the port 0 pins are
floating; and the pins of ports 1,2, and 3 are reading data (Table 11-1).

NOTE

Vee may be reduced to as low as 2 V during powerdown to further reduce
power dissipation. Take care, however, that Vee is not reduced until power
down is invoked.

l ~ .. __ .
11-5

I'
I
I,

SPECIAL OPERATING MODES

11.4.1 Entering Powerdown Mode

To enter powerdown mode, set the PCON register PD bit. The 8XC251SB enters the power-down
mode upon execution of the instruction that sets the PD bit. The instruction that sets the PD bit is
the last instruction executed.

11.4.2 Exiting Powerdown Mode

CAUTION

If Vee was reduced during the powerdown mode, do not exit powerdown until
V cc is restored to the normal operating level.

There are two ways to exit the powerdown mode:

• Generate an enabled external interrupt. Hardware clears the PD bit in the PCON register
which starts the oscillator and restores the clocks to the CPU and peripherals. Execution
resumes with the interrupt service routine. Upon completion of the interrupt service routine,
program execution resumes with the instruction immediately following the instruction that
activated powerdown mode.

NOTE

To enable an external interrupt, set the IE register EXO and/or EXI bit[s]. The
external interrupt used to exit powerdown mode must be configured as level
sensitive and must be assigned the highest priority. In addition, the duration of
the interrupt must be of sufficient length to allow the oscillator to stabilize.

• Generate a reset. See "Reset" on page 10-5. A logic high on the RST pin clears the PD bit in
the PCON register directly and asynchronously. This starts the oscillator and restores the
clocks to the CPU and peripherals. Program execution momentarily resumes with the
instruction immediately following the instruction that activated powerdown and may
continue for a number of clock cycles before the internal reset algorithm takes control.
Reset initializes the 8XC251SB and vectors the CPU to address FF:OOOOH.

11-6

NOTE

During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated the powerdown mode should not write to a port pin or to the
external RAM.

intet SPECIAL OPERATING MODES

11.5 ON-CIRCUIT EMULATION (ONCE) MODE

The on-circuit emulation (ONCE) mode permits external testers to test and debug 8XC251SB
based systems without removing the chip from the circuit board. A clamp-on emulator or test
CPU is used in place of the SXC251 SB which is electrically isolated from the system.

11.5.1 Entering ONCE Mode

To enter the ONCE mode:

1. Assert RST to initiate a device reset. See "Externally Initiated Resets" on page 10-6 and
the reset waveforms in Figure 10-5 on page 10-S.

2. While holding RST asserted, apply and hold logic levels to I/O pins as follows: PSEN# =
low, PO.7:5 = low, PO.4 = high, P0.3:0 = low (i.e., port 0 = IOH).

3. Deassert RST, then remove the logic levels from PSEN# and port O.

These actions cause the SXC251SB to enter the ONCE mode. Port 1, 2, and 3 pins are weakly
pulled high and port 0, ALE, and PSEN# pins are floating (Table 11-1). Thus the device is elec
trically isolated from the remainder of the system which can then be tested by an emulator or test
CPU. Note that in the ONCE mode the device oscillator remains active.

11.5.2 Exiting ONCE Mode

To exit ONCE mode, reset the device.

11-7

External Memory
Interface

I

12

CHAPTER 12
EXTERNAL MEMORY INTERFACE

The external memory interface comprises the external bus (ports 0 and 2) and the bus control sig
nals. Chip configuration bytes determine several interface options: page mode or nonpage mode
for external code fetches, the number of external address bits (16 or 17), the address ranges for
PSEN# and RD#, and external wait states. You can use these options to tailor the interface to your
application. This chapter describes the external memory interface, its configuration, and the ex
ternal bus cycles. Examples illustrate several types of external memory designs.

12.1 EXTERNAL MEMORY INTERFACE SIGNALS

Table 12-1 describes the external memory interface signals. The address and data signals (AD7:0
on port 0 and A15:8 on port 2) are defined for nonpage mode. Address bits A7:0 are multiplexed
with the data (D7:0) on port 0, and address bits A15:8 are on port 2. In page mode, address bits
A7:0 are on port 0, and address bits A15:8 are multiplexed with the data (D7:0) on port 2 (see
"Page Mode Bus Cycles" on page 12-10).

Table 12-1. External Memory Interface Signals

Signal
Type Description Multiplexed

Name With

A16 0 Address Line 16. See RD#. N.A.

A15:8t 0 Address Lines. Upper address lines for the external bus. P2.7:0

AD7:0t 1/0 Address/Data Lines. Multiplexed lower address lines and data lines PO.7:0
for the external bus.

ALE 0 Address Latch Enable. ALE signals the start of an external bus cycle PROG#
and indicates that valid address information is available on lines A15:8
and AD7:0. An external latch can use ALE to demultiplex the address
from the address/data bus.

EA# I External Access. Directs program memory accesses to on-chip or off- Vpp

chip code memory. For EA# strapped to ground, all program memory
accesses are off-chip. For EA# = strapped to Vee, an access is to on-
chip OTPROM/ROM if the address is within the range of the on-Chip
OTPROMIROM; otherwise the access is off-chip. The value of EA# is
latched at reset. For a ROM less part, EA# must be strapped to ground.

tThe descriptions of A15:8/P2.7:0 and AD7:0/PO.7:0 are for the nonpage-mode chip configuration
(compatible with 44-lds PLCC MCSID 51 microcontrollers). If the chip is configured for page-mode
operation, port 0 carries the lower address bits (A7:0), and port 2 carries the upper address bits (A 15:8) and
the data (D7:0).

12-1

EXTERNAL MEMORY INTERFACE intet
Table 12-1. External Memory Interface Signals (Continued)

Signal
Type Description Multiplexed

Name With

PSEN# 0 Program Store Enable. Read signal output. This output is asserted -
for a memory address range that depends on bits ROO and RD1 in
configuration byte CONFIG1 (see also RD#):

RD1 RDO Address Range for Assertion
0 0 Reserved
0 1 All addresses
1 0 All addresses
1 1 All addresses ~ BO:OOOOH

RD# 0 Read or 17th Address Bit (A16). Read signal output to extemal data P3.7
memory or 17th extemal address bit (A 16), depending on the values of
bits ROO and RD1 In configuration byte CONFIG1. (See also PSEN#):

RD1 RDO Function
0 0 Reserved
0 1 The pin functions as A 16 only.
1 0 The pin functions as P3.7 only.
1 1 RD#: asserted for reads at all addresses £ 7F:FFFFH

WR# 0 Write. Write signal output to extemal memory. For configuration bits P3.6
RD1 = ROO = 1, WR# is strobed only for writes to locations 00 OOOOH-
01 FFFFH. For other values of RD1 and RDO, WR# Is strobed for
writes to all memory locations.

tThe descriptions of A15:B/P2.7:0 and AD7:0/PO.7:0 are for the nonpage-mode chip configuration
(compatible with 44-lds PLCC MCsa> 51 microcontrollers). If the chip Is configured for page-mode
operation, port 0 carries the lower address bits (A7:0), and port 2 carries the upper address bits (A 15:8) and
the data (07:0).

12.2 CONFIGURING THE EXTERNAL MEMORY INTERFACE

This section describes the configuration options that affect the external memory interface. ("Con
figuration Bytes" on page 13-6 describes the configuration bytes.) The configuration bits de
scribed here determine the following interface features:

• page mode or nonpage mode

• the number of external address pins (16 or 17)

• the memory regions assigned to the read signals RD# and PSEN#

• the external wait states

• mapping a portion of on-chip code memory to data memory

12-2

- I

intet EXTERNAL MEMORY INTERFACE

12.2.1 Page Mode and Nonpage Mode (PAGE Bit)

The PAGE bit (bit 1 in CONFIGO) selects page-mode or nonpage-mode code fetches and deter
mines the structure of the external bus. See "Page Mode Bus Cycles" on page 12-10 for a descrip
tion of page mode and the bus structure.

• PAGE = 1. The 8XC251SB operates in nonpage mode. The bus structure is the same as for
the MCS 51 architecture, and external code fetches require two state times (4Tosd.

• PAGE = O. The 8XC251SB operates in page mode. The bus structure is different from the
bus structure in MCS 51 controllers, and under certain conditions, external code fetches
require only one state time (2Tosc).

12.2.2 RD#, PSEN#, and the Number of External Address Pins (Bits RD1 :0)

The RD1:0 configuration bits (bits 2 and 3 in CONFIGO) determine the number of external ad
dress lines and the address ranges for strobing the read signals PSEN# and RD#. These selec
tions offer different ways of addressing external memory.

A key to using the memory interface is the relationship between internal memory addresses and
external memory addresses. While the 8XC251SB has 24 internal address bits, it has only 16 ex
ternal address pins, A15:0 on ports 0 and 2. Therefore, internal addresses that differ only in their
upper eight bits are indistinguishable at the external address pins. For example, if you write to
location 00:6000H and location 01:6000H, the same address (6000H) appears at the external ad
dress pins. The 16 pins can address only 64 Kbytes of external memory. The options provided by
bits RD 1 :0, offer ways to expand the external memory space beyond 64 Kbytes.

Table 12-2 describes how RD# and PSEN# function for the values of RD1:0. RD# can function
as a read signal, as a general-purpose 110 signal, or as the seventeenth external address bit A16.
PSEN# always functions as a read signal, and in two cases PSEN# is a read strobe for data mem
ory as well as code memory. For a design that is compatible with MCS 51 microcontrollers,
select RDI = 1 and RDO = 1.

Table 12-2. Configuration Bits RD1:0

R01 ROO External RO# PSEN#
Address Bits

0 0 - Reserved

0 1 17 RD# is the 17th address bit (A 16). PSEN# is strobed for all addresses.

1 0 16 RD# is a general-purpose 110 signal PSEN# is strobed for all addresses.
(P3.7).

1 1 16 RD# is strobed for locations PSEN# is strobed for locations
OO:OOOOH-7F:FFFFH. 80:0000H-FF:FFFFH.

L-
12-3

EXTERNAL MEMORY INTERFACE

12.2.2.1 Sixteen External Address Bits and a Single Read Signal (RD1 = 1, ROO = 0)

For RD 1 = 1 and RDO = 0, PSEN# is strobed for all external reads, and pin RD#1P3. 7 is devoted
exclusively to general-purpose 110, i.e., it does not function as RD#. With this configuration you
can address the minimum amount of external memory (64 Kbytes), but you gain an extra 110
channel (P3.7). Figure 12-1 illustrates the difference between the internal and external memory
spaces for these values ofRD1:0. Regions 00:,01:, FE:, and FF: of internal memory are mapped
into a single 64-Kbyte region of external memory. This selection of RD1:0 can be used, for ex
ample, in a design where the 87C251 SB/83C251 SB executes from on-chip code memory and ac
cesses 64 Kbytes of external RAM.

Internal Space
(256 Kbytes)

PSEN# 8jF'
. ~ External Space

FE: ~ (64 Kbytes)

8j~=~ PSEN#

A4171·01

Figure 12-1. Internal and External Memory Spaces for RD1 = 1, ROO = 0

12.2.2.2 Seventeen External Address Bits and a Single Read Signal (RD1 = 0, ROO = 1)

For RDI = 0 and RDO = 1, the RD# signal becomes the seventeenth external address bit (AI6)
and PSEN# is strobed for all external reads. The 17 external address bits can address 128 Kbytes
of external memory. As illustrated in Figure 12-2, internal memory regions 00: and FE: are
mapped into external memory region 0, and internal memory regions 01: and FF: are mapped into
external memory region 1. This option provides supports three basic designs:

• 128 Kbytes of external code memory (addressed as regions FE: and FF:)

• 128 Kbytes of external data memory (addressed as regions 00: and 01:)

• 64 Kbytes of external code memory (addressed as region FF:) and 64Kbytes of external
data memory (addressed as region 00:).

Sections 12.6.2 and 12.6.5 show examples of memory designs with this option.

12-4

PSEN#

PSEN#

Internal Space
(256 Kbytes)

EXTERNAL MEMORY INTERFACE

17 External Address Bits
M172-01

Figure 12-2. Internal and External Memory Spaces for R01 = 0, ROO = 1

12.2.2.3 Sixteen External Address Bits and Two Read Signals (R01 = 1, ROO = 1)

For RD 1 = 1 and RDO = 1, there are 16 external address bits; however, RD# is strobed for regions
00: and 01:, and PSEN# is strobed for regions FE: and FF:. As illustrated in Figure 12-3, regions
00: and 01: are mapped into 64 Kbytes of data memory (strobed by RD#), and regions FE: and
FF: are mapped into 64 Kbytes of code memory (strobed by PSEN#). This selection is compatible
with MCS 51 microcontrollers and supports designs that use both external code memory and ex
ternal data memory.

For this selection of RD1:0, WR# is strobed for writes to regions 00: and 01: but is not strobed
for writes to regions FE: and FF:. This is compatible with MCS 51 microcontrollers, which can
not write to external code memory. Sections 12.6.1 and 12.6.4 show examples of memory designs
with this option.

12-5

EXTERNAL MEMORY INTERFACE

PSEN#

RD#

Internal Space
(256 Kbytes)

............... (128 Kbytes) ffiF: External Space

FE: _ ~ ..
16 External Address Bits

Figure 12-3. Internal and External Memory Spaces for RD1 = 1, RDO = 1

12.2.3 Wait States (WSA, WSB, XALE)

A4173-01

You can add wait states to external bus cycles by extending the PSEN#/RD#IWR# pulse and/or
extending the ALE pulse:

• The WSA bit (bit 5 in CONFIGO) and the WSB bit (bit 3 in CONFIGl) specify the wait
states (0 or 1) added by extending the time that PSEN#IRD#IWR# is asserted from Tosc to
3Tosc. This wait state accommodates slower external devices and allows the 8XC251SB to
directly replace the 8XC51FB in a system design. The combinations of WSA and WSB
select the memory regions to be accessed with one wait state (Table 12-3). The option of a
wait state for region 01: is for accessing a slow external device addressed in region 01:
without slowing down accesses to other external devices. "Extending PSEN#IRD#IWR#"
on page 12-13 shows bus cycles with PSEN#IRD# extended and WR# extended.

Table 12-3. Wait State Selection

WSB WSA Memory Regions with 1 Walt State

0 0 All regions (00:, 01:, FE:, FF:)

0 1 Region 01:

1 0 Regions 00:, FE:, FF:

1 1 None

• Clearing XALE (bit 4 in CONFIGO) extends the time ALE is asserted from Tosc to 3Tosc.

12-6

This accommodates an address latch that is too slow for the normal ALE signal. "Extending
ALE" on page 12-14 shows a bus cycle with ALE extended.

1.

EXTERNAL MEMORY INTERFACE

You can add two wait states by extending both ALE and the read/write signals (PSEN#, RD#,
WR#).

12.2.4 Mapping On-chip Code Memory to Data Memory (87C251SB/83C251SB)

For the 87C251SB/83C251SB, the EMAP bit (bit 0 in CONFlG 1) provides the option of access
ing the upper 8 Kbytes of on-chip code memory as data memory.

EMAP = O. The upper 8 Kbytes of the on-chip code memory (FF:2000H-FF:3FFFH) are mapped
to locations OO:EOOOH-OO:FFFFH (in addition to locations FF:2000H-FF:3FFFH). This allows
code constants to be accessed as data in region 00:. See "On-chip Code Memory
(87C251SB/83C251SB)" on page 3-6 for the exact conditions required for this mapping to be ef
fective.

EMAP = 1. Locations FF:2000H-FF:3FFFH are not mapped to region 00:. Locations
OO:EOOOH-OO:FFFFH are implemented by external RAM.

12.3 EXTERNAL BUS CYCLES

The 8XC251SB executes external bus cycles to fetch code, read data, and write data in external
memory. This section uses bus waveforms with idealized timings to describe the external bus cy
cles in nonpage mode and page mode. The bus cycles in this section have no wait states. (For bus
cycles with wait states, see "Wait States" on page 12-13.) Timing parameters for the bus cycles
are given in "External Bus AC Timing Specifications" on page 12-24.

"Inactive External Bus" describes the situations where the bus is not executing external bus cy
cles.

12.3.1 Inactive External Bus

The external bus is inactive (not executing external bus cycles) under any of these three condi
tions:

• The chip is in normal operating mode but no external read or write cycles are executing (the
bus-idle condition).

• The chip is in idle mode.

• The chip is in powerdown mode.

L
12-7

EXTERNAL MEMORY INTERFACE

12.3.2 Bus Cycle Definitions

Table 12-4 summarizes the activity on the bus for bus cycles in nonpage mode and page mode
with no wait states. Nonpage mode has only two types of bus cycles: a code/data read cycle and
a write cycle. Page mode has four types of bus cycles: a code-read cycle for a page miss, a code
read cycle for a page hit, a data-read cycle, and a write cycle. The data-read and write cycles are
the same for page mode and nonpage mode (except for the different signals on ports 0 and 2).

Table 12-4. Bus Cycle Definitions (No Wait States)

Bus ActIvity
Mode Bus Cycle

State 1 State 2 State 3

Nonpage Mode 1-====':'==-~~":"::=-==:":"" __ +-=:"'::::":"":':"::"":'::'::-=-+ciJtl~. !f~~~

Page Mode

NOTES:
1. The code/data read cycle in non page mode and the data-read cycle in page mode are the same,

except for the different signals on ports 0 and 2.
2. The write cycle is the same in page mode and non page mode, except for the difference in bus struc

ture.
3. Only write cycles have a third state.
4. A page hit requires only one state.

12.3.3 Nonpage Mode Bus Cycles

In nonpage mode, the external bus structure is the same as for MCS 51 microcontrollers. The up
per address bits (A15:8) are on port 2, and the lower address bits (A7:0) are multiplexed with the
data (D7:0) on port O. External code fetches and data reads use the two-state bus cycle shown in
Figure 12-4. For the write cycle (Figure 12-5), a third state is appended to provide recovery time
for the bus. Note that the write signal WR# is strobed for all memory regions, except for the case
of RD1 = 1 and RDO = 1, where WR# is strobed for regions 00: and 01: but not for regions FE:
andFF:.

12-8

1

intet~

XTAL

ALE

PSEN# or RD#

PO

P2

State 1

EXTERNAL MEMORY INTERFACE

State 2

A2B07-02

Figure 12-4. External Code Fetch or Data Read Bus Cycle (Non page Mode)

XTAL

ALE

WR#

PO

State 1

P2 A15:8

A7:0

State 2 State 3

07:0

Figure 12-5. External Write Bus Cycle (Nonpage Mode)

A2B0B-02

12-9

EXTERNAL MEMORY INTERFACE intet

12.3.4 Page Mode Bus Cycles

Page mode increases performance by reducing the time for external code fetches. Under certain
conditions the controller fetches an instruction from external memory in one state time instead of
two. Page mode does not affect internal code fetches.

The first code fetch to a 256-byte "page" of memory always uses a two-state bus cycle. Subse
quent successive code fetches to the same page (page hits) require only a one-state bus cycle.
When a subsequent fetch is to a different page (a page miss) it again requires a two-state bus cy
cle. The following external code fetches are always page-miss cycles:

• the frrst external code fetch after a page rollover t

• the first external code fetch after an external data bus cycle

• the first external code fetch after powerdown or idle mode

• the first external code fetch after a branch, return, interrupt, etc.

In page mode, the 8XC251 SB bus structure is different from the bus structure in MCS 51 control
lers (Figure 12-6). The upper address bits A15:8 are multiplexed with the data D7:0 on port 2,
and the lower address bits (A 7:0) are on port O.

8XC251SB RAMI
EPROM!

8XC251SB RAMI
EPROMI

A15:8 Flash Flash

P2 A15:8 07:0

A07:0 A7:0

PO A7:0 P2 A15:8

07:0 PO A7:0
A7:0

Nonpage Mode Page Mode

A4159:01

Figure 12-6. Bus Structure in Nonpage Mode and Page Mode

t A page rollover occurs when the address increments from the top of one 256-byte page to the bottom of the next (e.g.,
from FF:FAFFH to FF:FBOOH).

12-10

intet EXTERNAL MEMORY INTERFACE

Figure 12-7 shows the two types of external bus cycles for code fetches in page mode. The page
miss cycle is the same as a code fetch cycle in nonpage mode (except for the different signals on
ports 0 and 2). For the page-hit cycle, the upper eight address bits are the same as for the preced
ing cycle. Therefore, ALE is not strobed, and the values of A15:8 are retained in the address latch
es. In a single state, the new values of A7:0 are placed on port 0, and memory places the
instruction byte on port 2. Notice that a page hit reduces the available address access time by one
state. Therefore, faster memories may be required to support page mode.

Cycle 1, Page-Miss Cycle 2, Page-Hit

State 1 State 2 State 3

XTAL

ALE

PSEN#

PO

P2

A2809-02

Figure 12-7. External Code Fetch Bus Cycle (Page Mode)

Figure 12-8 and Figure 12-9 show the bus cycles for data reads and writes in page mode. These
cycles are identical to those for nonpage mode, except for the different signals on ports 0 and 2.

l
12-11

EXTERNAL MEMORY INTERFACE

12-12

XTAL

ALE

PSEN#or RO#

PO

P2

State 1 State 2

A7:0

A15:8

Figure 12-8. External Data Read Bus Cycle (Page Mode)

XTAL

ALE

WR#

PO

P2

State 1 State 2 State 3

A7:0

A15:8 07:0

Figure 12-9. External Write Bus Cycle (Page Mode)

A2811-02

A2810-02

EXTERNAL MEMORY INTERFACE

12.4 WAIT STATES

The 8XC251SB can be configured to add an external wait state by extending the
RD#fPSEN#IWR# pulses or by extending the ALE pulse (see "Wait States (WSA, WSB,
XALE)" on page 12-6). You can also configure the chip to use both types of wait states for a total
of two external wait states. Accesses to on-chip code and data memory always use zero wait
states.

12.4.1 Extending PSEN#/RD#IWR#

Figures 12-10 and 12-11 show bus cycles with an extended RD#fPSEN# wait state and an extend
ed WR# wait state.

XTAL

ALE

PSEN#
orRD#

PO

P2

State 1 State 2 State 3

A2B12-02

Figure 12-10. External Code Fetch or Data Read Bus Cycle with One PSEN#/RD# Wait
State (Non page Mode)

12-13

EXTERNAL MEMORY INTERFACE intel~

State 1 State 2 State 3 State 4

XTAL

ALE

WR#

PO A7:0 07:0

P2 A15:8

A4174-01

Figure 12-11. External Write Bus Cycle with One WR# Wait State (Non page Mode)

12.4.2 Extending ALE

Figure 12-12 shows a bus cycle for a code-fetch or a data-read with an extended ALE wait state.
The wait state extends the bus cycle from two states to three. For an external write, the extended
ALE extends the bus cycle from three states to four.

State 1 State 2 State 3

XTAL

ALE

PSEN# ~------------~------------r-------------~--------~~---------;
orRO#

PO A7:0

P2 A15:8

A2813-02

Figure 12-12. External Code Fetch or Data Read Bus Cycle with One ALE Wait State
(Nonpage Mode)

12-14

EXTERNAL MEMORY INTERFACE

12.5 PORT 0 AND PORT 2 STATUS

This section summarizes the status of the port 0 and port 2 pins when these ports are used as the
external bus. A more comprehensive description of the ports and their use is given in Chapter 6,
"Input/Output Ports."

When port 0 and port 2 are used as the external memory bus, the signals on the port pins can orig
inate from three sources:

• the 8XC251SB CPU (address bits, data bits)

• the port SFRs: PO and P2 (logic levels)

• an external device (data bits)

The port 0 pins (but not the port 2 pins) can also be held in a high-impedance state. Table 12-5
lists the status of the port 0 and port 2 pins when the chip in is the normal operating mode and the
external bus is idle or executing a bus cycle.

Table 12-5. Port 0 and Port 2 Pin Status In Normal Operating Mode

8-bltl16-blt Nonpage Mode Page Mode
Port Addressing Bus Cycle Bus Idle Bus Cycle Bus Idle

Port 0 8 or 16 AD7:0 (1) High Impedance A7:0 (1) High Impedance

8 P2 (2) P2 P2ID7:0 (2) High Impedance
Port 2

16 A15:8 P2 A15:8/D7:0 High Impedance

NOTES:
1. During extemal memory accesses, the CPU writes FFH to the PO register and the register con

tents are lost.
2. The P2 register can be used to select 256-byte pages in extemal memory.

12.5.1 Port 0 and Port 2 Pin Status in Nonpage Mode

In nonpage mode the port pins have the same signals as those on the 8XC51FX. For an external
memory instruction using a 16-bit address, the port pins carry address and data bits during the bus
cycle. However, if the instruction uses an 8-bit address (e.g., MOVX @Ri), the contents ofP2 are
driven onto the pins. These pin signals can be used to select 256-bit pages in external memory.

During a bus cycle, the CPU always writes FFH to PO, and the former contents of PO are lost. A
bus cycle does not change the contents of P2. When the bus is idle, the port 0 pins are held at high
impedance, and the contents of P2 are driven onto the P2 pins.

12-15

EXTERNAL MEMORY INTERFACE . intet~

12.5.2 Port 0 and Port 2 Pin Status in Page Mode

In a page-mode bus cycle, the data is multiplexed with the upper address byte on port 2. However,
if the instruction uses an 8-bit address (e.g., MOVX @Ri), the contents ofP2 are driven onto the
pins when data is not on the pins. These logic levels can be used to select 256-bit pages in external
memory. During bus idle, the port 0 and port 2 pins are held at high impedance.

(For port pin status when the chip in is idle mode, powerdown mode, or reset, see Chapter 11,
"Special Operating Modes.")

12.6 EXTERNAL MEMORY DESIGN EXAMPLES

This section shows five examples of external memory designs for 8XC251SB systems. The ex
amples illustrate the design flexibility provided by the configuration options, especially for the
PSEN# and RD# signals. Many other designs are possible.

12.6.1 Nonpage Mode, 64 Kbytes External EPROM, 64 Kbytes External RAM

Figure 12-13 shows an 80C251SB in nonpage mode with 64 Kbytes of external EPROM and 64
Kbytes of external RAM. The 8OC251SB is configured so that RD# strobes for addresses
~ 7F:FFFFH and PSEN# strobes for addresses ~ 80:0000H (RDI = 1 and ROO = 1). Figure 12-14
shows two ways to address the external memory in the internal memory space.

The lower 1056 bytes of the external RAM must be addressed in region 01:. Addressing the other
external RAM locations in either region 00: or region 01: produces the same address at the exter
nal bus pins. However, if the external EPROM and the external RAM require different numbers
of wait states, the external RAM must be addressed entirely in region 01:. (Recall that regions
00:, FE:, and FF: always have the same number of wait states. See "Wait States (WSA, WSB,
XALE)" on page 12-6.)

The examples that follow illustrate two possibilities for addressing the external RAM.

12.6.1.1 An Application Requiring Fast Access to the Stack

If an application requires fast access to the stack, the stack can reside in the fast on-chip data
RAM (OO:0020H-OO:041FH) and, when necessary, roll out into the slower external RAM. In this
case, the external RAM can have a wait state only if the EPROM has a wait state. Otherwise, if
the stack rolls out above location OO:041FH, the external RAM would be accessed with no wait
state. Regions 00: and 01: on the left side of Figure 12-14 apply to this example.

12-16 ._1_-

intet EXTERNAL MEMORY INTERFACE

12.6.1.2 An Application Requiring Fast Access to Data

If fast access to a block of data is more important than fast access to the stack, the data can be
stored in the on-chip data RAM, and the stack can be located entirely in external memory. If the
external RAM has a wait state and the EPROM has no wait state, the external RAM must be ad
dressed entirely in region 01:. Regions 00: and 01: on the right side of Figure 12-14 apply to this
example.

B0C251SB

EA#

A15:8

EPROM
(64 Kbytes)

CE#

·'·'i"", .. '.'-'" A15:8

Al07:0 .1 I A7:0

PO ~~;:I:~ Latch ~::,:;~ (', I .. I I ~~~
'.::'
:;',

1':%,", ,,;i~<,: "'lit,.'· ::·jW ~ ... ~

WR# RO# PSEN#

Code

A7:0

07:0

OE#

I

RAM
(64 Kbytes)

CE#

Data

07:0

A4145·01

Figure 12-13. 80C251SB in Nonpage Mode with External EPROM and RAM

L-
12-17

EXTERNAL MEMORY INTERFACE

Memory Address Space
256 Kbytes

FFFFH FF:FFFFH

64 Kbytes External EPROM

01:0000H

OO:0420H

OO:OOOOH

FF:OOOOH .. o .. O_OO .. H ______

FE:OOOOH '--________ ---'

64 Kbytes External RAM

OOOOH

01:FFFFH

A4175-01

Figure 12-14. The Memory Space for the Systems of Figure 12-13 and Figure 12-18

12-18 J __

intet EXTERNAL MEMORY INTERFACE

12.6.2 Nonpage Mode, 128 Kbytes External RAM

Figure 12-15 shows an 87C251SB/83C251SB in nonpage mode with 128 Kbytes of external
RAM. The 87C251SB/83C251SB is configured so that RD# functions as A16, and PSEN# is
strobed for all addresses (RDI = 0, RDO = 1). Figure 12-16 shows how the external RAM is ad
dressed in the internal memory space. The lower 1056 bytes of external RAM are unavailable be
cause accesses to the lower 1056 bytes in region 00: are directed to on-chip RAM.

83C251SBI
87C251SB Vcc

EA# ~
~

A16
A16

A15:8
P2 ~~~""~ ... ' .;xUt .,:.,:,~;-.-,: . ,:~t~(':~~~::f:: ,"'t"'~,

AD7:0--_---, A7:0

PO f'1):,,~,,:, Latch l@"' .. ;."~,
~-:-~
... :'i
:»:

'"

WR# PSEN#

I I

RAM
(128 Kbytes)

eE#

A16

Data

A15:8

A7:0

OE# WEI

I I
A414H11

Figure 12-15. 87C251SB/83C251SB in Nonpage Mode with 128 Kbytes of External RAM

12-19

EXTERNAL MEMORY INTERFACE intet,

12-20

FF:4000H

FF:OOOOH

Memory Address Space
256 Kbytes

FE:OOOOH '--_________

FF:FFFFH

16 Kbytes On-chip
OTPROMIROM

1FFFFH 01:FFFFH

128 Kbytes External RAM
(1056 Bytes Unavailable)

1056 Bytes On-chip RAM

A4169-01

Figure 12-16. The Memory Space for the System of Figure 12-15

EXTERNAL MEMORY INTERFACE

12.6.3 Page Mode, 128 Kbytes External Flash

Figure 12-17 shows the 80C251SB in page mode with 128 Kbytes of external flash. Note that
port 2 carries both the upper address bits (AI5:0) and the data (D7:0), while port 0 carries only
the lower address bits (A7:0). The 8OC251SB is configured for 17 external address bits and a sin
gle read signal (PSEN#). The 128 Kbytes of external flash are accessed in pages FE: and FF: in
the internal memory space.

80C251SB FLASH
(128 Kbytes)

EA#

* ~
CE#

A16
A16 A16

Code

'. .. .' D7:0

P2 b i:'~ Latch . ' :~,. '. ,* A15:8

A15:8/D7:0 A15:8

PO . ':~::"*:" ;:.;! :~. '.' ':-':';;:"~::" .. ,. '".::.~' "'·,1.;W::':: .. :f:1:-'!;1' A7:0

A7:0

WR# PSEN# OE# WE#

I I I I
A4151·01

Figure 12-17. 80C251SB in Page Mode with External Flash

12.6.4 Page Mode, 64 Kbytes External EPROM, 64 Kbytes External RAM

Figure 12-18 shows an 8OC251SB in page mode with 64 Kbytes of external EPROM and 64
Kbytes of external RAM. The 8OC251SB is configured so that RD# strobes for addresses ::;;
7F:FFFFH, and PSEN# strobes for addresses ~ 80:0000H (RDl = 1 and RDO = 1).

This system is the same as the system in Figure 12-13 on page 12-17, except that this design op
erates in page mode. Accordingly, the two systems have the same memory map (Figure 12-14 on
page 12-18), and the comments on addressing external RAM apply here also.

12-21

EXTERNAL MEMORY INTERFACE

80C251SB

P2

A15:8107:0

PO
A7:0

EA#

WR# RO# PSEN# -

A7:0

CE#

- OE#

RAM
(64 Kbytes)

07:0

lIiE~ A15:8

Data

ILiiItl A7;O

CE#

OE# WEi

Figure 12-18. 80C251SB in Page Mode with External EPROM and RAM

12.6.5 Page Mode, 64 Kbytes External Flash, 32 Kbytes External RAM

Figure 12-19 shows an 80C251SB in page mode with 64 Kbytes of external flash memory for
code storage and 32 Kbytes of external RAM. The 8OC251SB is configured so that PSEN# is
strobed for all reads, and RD# functions as A16 (RD1 = 0, RDO = 1). Figure 12-20 shows how
the external flash and RAM are addressed in the internal memory space. The external RAM is
accessed for internal addresses OO:0420H-OO:7FFFH. The first 1056 bytes of external RAM are
unused because accesses to locations OO:OOOOH-OO:041FH are directed to on-chip RAM.

12-22

.. I

80C251SB

A16 -

".',

: '.~

Latch r::;'.~
r

A 15:8107:0 '--_-' A15:8

WR#

A7:0

EA# ~

PSEN#

J

A15:8

Data

EXTERNAL MEMORY INTERFACE

~.:

eE#

FLASH
(64 Kbytes)

07:0

Code

A7;0

OE# WE#

A4148-01

Figure 12-19. 80C251SB in Page Mode with External Flash and RAM

12·23

EXTERNAL MEMORY INTERFACE

Memory Address Space
256 Kbytes

infel~

FFFFH FF:FFFFH

FF:OOOOH ,.OaO_OO~H ________

FE:OOOOH

00:0420H

OO:OOOOH

64 Kbytes External Flash

01:FFFFH

00:7FFFH

31,712 bytes External RAM
(32 Kbytes -1056 bytes)

1056 Bytes On-chip RAM
A4168·01

Figure 12-20. The Memory Space for the System of Figure 12-19

12.7 EXTERNAL BUS AC TIMING SPECIFICATIONS

This section defines the AC timing specifications for the external bus. Refer to the latest data
sheet to be sure that your system meets specifications. Figure 12-21 shows the bus waveforms for
instruction or data reads and data writes in nonpage mode. Figure 12-22 shows the bus waveforms
for data reads and data writes in page mode, and Figure 12-23 shows the bus waveforms for in
struction fetches in page mode. Table 12-6 on page 12-28 defines the symbols used in the timing
diagrams. Tables 12-8 and 12-7 define the timing parameters.

12-24

EXTERNAL MEMORY INTERFACE

DataJlnstruction Read Cycle (Nonpage Mode)
Tose

XTAU

-
ALE I

TLHLLt
\

_ -
TLHIRLt TRLRHt TRHLH

--
, - I'

PSEN#/RO#

TRLOVt
;;- -.,; - ,

TRLAZ-..

r - TLHAXt~
,;RHOZ" _I

1 }AVLLtl TLLAX ~RHOX; -' - , -
PO J AO A7 00-07 }

P2 --{~ ____________ A~8_-~A~15~ ____________ ><=
Write Cycle (Nonpage Mode) Tose

XTAL1

-
ALE TLHLLt \ J J -- ~ TWLWHt

TWHLH
\

WR#

~ TLHAXt~~
- tl_ 1 ~TQVWH 1 ~TAVl.!- ~TLLAX" .-, - , - , ~ TWHQX

~-

PO
"

AO A7 } DO 07

~TAVWL1r~ Data Out

loe: TAVWL2t " TWHAX .-1
P2 --< A8-A15 ~

~-------------------------------~
t The value of this parameter depends on wait states. See the table of AC characteristics.

A4107-02

Figure 12-21. External Bus Cycles for Data/lnstruction Read and Data Write in Nonpage
Mode

12-25

EXTERNAL MEMORY INTERFACE intel~

Data Read Cycle (Page Mode) Tose

XTAL1

-
ALE I \

TLHLLt I

- TLH~Lt ... TRLRHt JRHLH '" ,;' - ,

PSEN#/RD#

TRLDvt

TRLAZ'" r TLHAXt---')
TRHDZ ...

TAVLLtl - ,
I TLLAX TRHDX 1

P2 AS A15 >H DO-D7 } r
Data In

PO --< _______ A_0_-_A_7 _______ >-C
Write Cycle (Page Mode) Tose

XTAL1

r---
ALE TLHLLt I

TWLWHt
.;. " TWHLH -WR#

TLHAXt---')
I

TAVLLtl TLLAX 1 ~TOVWH :.1 , , - TWHOX -
P2 ,'\ AS A15 DO D7

~TAVWL1t~ Data Out

I'" TAVWL2t '" -- TWHAX :.1 ,

PO --< AO - A7 L..r--
~-------------------------------~

t The value of this parameter depends on wait states. See the table of AC characteristics.

A4126-02

Figure 12-22. External Bus Cycles for Data Read and Data Write in Page Mode

12-26

intet EXTERNAL MEMORY INTERFACE

Instruction Read Cycle (Page Mode)
TOSC

XTAL1

ALE J \
TLHLLt J .- -... - ~ I

TRLRHt .- TLHRLt
~

PSEN#/RO# I \ I

TRLOVt
,;,- -",; - ~

TRLAZ-..

r .- TLHAXt
TRHOZ ~

I TAVL~tl TLLAX ~RHOXI I L- ~

P2 AS A15 H 00-07 } DO 07 }

~TAVOV1 TAVOV3

~ TAVRLt t~ Instruction I~ Instruction In

I""" _.E--------TAVOV2t

PO -< AO-A7 }{ AO A7)

""1_..._---- Page Misstt-------'~~I .. _.IE---page Hittt--.j

t The value of this parameter depends on wait states. See the table of AC characteristics.
tt A page hit (Le., a code fetch to the same 256-byte 'page" as the previous code fetch) requires one

state (2T osc>; a page miss requires two states (4T osC>.

A4127-02

Figure 12-23. External Bus Cycles for Instruction Read in Page Mode

12-27

I,'

EXTERNAL MEMORY INTERFACE

12.7.1 Explanation of AC Symbols

Each symbol consists of two pairs of letters prefixed by "T" (for time). The characters in a pair
indicate a signal and its condition, respectively. Symbols represent the time between the two sig
nal/condition points. For example, TLHRL is the time between signal L (ALE) condition H (high)
and R (RD#) condition L (Low). Table 12-6 defines the signal and condition codes

Table 12-6. AC TIming Symbol Definitions

Signals Conditions

A Address H High

D DATA L Low

L ALE V Valid

Q Data Out X No Longer Valid

R RDH/PSENH Z Floating

W WRH

12.7.2 AC Timing Definitions

This section defines the timing parameters shown in Figures 12-21, 12-22, and 12-23. Tables 12-8
and 12-7 list the definitions oftiming specifications on the memory system and the 8XC251SB.

12-28

infel~ EXTERNAL MEMORY INTERFACE

Table 12-7. AC Timing Definitions for Specifications on the 8XC251SB

THE 8XC251 S8 MEETS THESE SPECIFICATIONS

Symbol Definition Notes

Fosc Frequency on XTAL: Frequency of the signal input on the XTAL 1 input.

Tosc 1/Fosc: Period of the signal on XTAL 1/XTAL2: AC TImings are referenced to Tosc.

TLHLL ALE Pulse Width: Length of time ALE is asserted. (2)

TLHRL ALE High to RD# or PSEN# Low: Time after ALE goes high until RD# or PSEN# goes (1)
low.

TRLRH RD# or PSEN# Pulse Width: Length of time RD# or PSEN# is asserted. (3)

TRHLH RD# High to ALE Asserted: Time after RD# goes high until the next ALE pulse goes (1)
high.

TRLAZ RD# Low to Address Float: Time after RD# goes low until the 8XC251 SB stops driving
the address on the bus.

TAVLL Address Valid to ALE Low. Length of time the lower byte of the address is valid (on port (2)
0) before ALE goes low.

TLHAX ALE High to Address Hold. Length of time the 8XC251 SB holds the lower byte of the (2)
address on the bus (port 0) after ALE goes high.

TLLAX Address Hold after ALE Low: Length of time the 8XC251 SB holds the lower byte of the
address on the bus (port 0) after ALE goes low.

TAVRL Address Valid to RD# or PSEN# Low: Length of time the lower byte of the address is (1,2)
valid on the bus (port 0) before RD# or PSEN# goes low.

TWLWH WR# Pulse Width: Length of time WR# is asserted. (3)

TWHLH WR# High to ALE High: Time after WR# goes high until the next ALE pulse is goes high.

TAVWL1 Address (port 0) Valid to WR# Low: Length of time that the 8XC251SB drives the (2)
address onto the bus (port 0) before WR# goes low.

TAVWL2 Address (port 2) Valid to WR# Low: Length of time that the 8XC251SB drives the (2)
address onto the bus (port 2) before WR# goes low.

TWHAX Address Hold after WR# High: Time the 8XC251 SB holds the upper byte of the address
on the bus (port 2) after WR# goes high.

NOTES:
1. Specifications for PSEN# are identical to those for RD#.
2. If a walt state is added by extending ALE, this time increases by 2Tosc.
3. If a walt state is added by extending RD#/PSEN#IWR#, this time increases by 2Tosc.
4. If wait states are added as described in both Note 2 and Note 3, this time increases by a total of 4Tosc.

12-29

EXTERNAL MEMORY INTERFACE intet

Table 12-8. AC Timing Definitions for Specifications on the Memory System

THE EXTERNAL MEMORY SYSTEM MUST MEET THESE SPECIFICATIONS

Symbol Definition Notes

TRHDZ Data/Instruction Float After RD# or PSEN# High: Time after RD# or PSEN# goes high (1)
until memory system must float the bus. If this timing is not met, bus contention occurs.

TRHDX Data/lnstruction Hold After RD#! PSEN# High: Length of time the memory system must (1)
hold data on the bus after RD# or PSEN# goes high.

TRLDV RD# Low to Input Data Valid: Time after RD# goes low until the memory system must (1,3)
output valid data/instruction.

TOVWH Data Valid to WR# High: Length of time the memory system must output valid data
before WR# goes high.

TWHOX Data Hold after WR# High: Length of time the memory system must hold data on the
bus after WR# goes high.

TAVDV1 Address (port 0) valid to Valid Datallnstruction In: lime after the 8XC251 SB places a (2,3,4)
valid address on the bus (port 0) until the memory system must place valid data on the
bus (port 0).

TAVDV2 Address (port 2) Valid to Valid Data/lnstruction In: Time after the 8XC251 SB places a (2,3,4)
valid address on the bus (port 2) until the memory system must place valid
data/instruction on the bus (port 0). If the bus cycle is an instruction fetch, this applies to
a page miss.

TAVDV3 Address (port 2) Valid to Valid Instruction In: lime after the 8XC251SB places a valid
address on the bus (port 2) until the memory system must place a valid instruction on
the bus (port 0). This applies to a page hit.

NOTES:
1. Specifications for PSEN# are identical to those for RD#.
2. If a wait state is added by extending ALE, this time increases by 2Tosc.
3. If a wait state is added by extending RD#!PSEN#IWR#, this time increases by 2Tosc.
4. If wait states are added as described in both Note 2 and Note 3, this time increases by a total of 4Tosc

12-30 J_

intet

Programming and
Verifying Nonvolatile
Memory

I

13

intet~

CHAPTER 13
PROGRAMMING AND VERIFYING

NONVOLATILE MEMORY

This chapter provides instructions for programming and verifying on-chip nonvolatile memory
on the 8XC251SB. The programming instructions cover the entry of program code into on-chip
code memory and other categories of information into nonvolatile memory outside the memory
address space. The verify instructions permit reading these memory locations to verify their con-
tents. The operations covered in this chapter are: .

• programming and verifying the on-chip code memory (16 Kbytes)

• programming and verifying the configuration bytes (4 bytes)

• programming and verifying the lock bits (3 bits)

• programming the encryption array (128 bytes)

• verifying the signature bytes (3 bytes)

The programming instructions apply to the one-time-programmable 87C251SB (OTPROM). The
verify instructions apply to the 87C251SB, the 83C251SB (ROM), and the configuration bytes
on the 80C251SB (ROMless). In the unprogrammed state, OTPROM contains allIs.

13.1 GENERAL

The 87C251SB OTPROM device is programmed and verified in the same manner as the
87C51FX, using the same quick-pulse programming algorithm, which programs at V pp = 12.75 V
using a series of five 100 ~ PROG# pulses per byte. This results in a programming time of ap
proximately 16 seconds for the 16-Kbyte on-chip code memory.

Programming and verifying operations differ from normal controller operation. Memory accesses
are made one byte at a time, input/output ports are used in a different manner, and some pins
(EA#N pp and ALEIPROG#) assume their alternative (programming) functions. For a complete
list of signal descriptions, see Appendix B.

In some microcontroller applications, it is desirable that user program code be secure from unau
thorized access. The 8XC251 SB offers two types of protection for program code stored in the on
chip array.

• Program code in the on-chip code memory is encrypted when read out for verification if the
encryption array is programmed.

• A three-level lock bit system restricts external access to the on-chip code memory.

13-1

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY int:et
It is recommended that user program code be located starting at address FF:O 1 OOH. Since the first
instruction following device reset is fetched from FF:OOOOH, use a jump instruction to FF:OlOOH
to begin execution of the user program. For information on address spaces, see Chapter 3.

CAUTION

Execution of user code located in the top eight bytes of the on-chip user
memory (i.e., FF:3FF8H-FF:3FFFH) may cause prefetches from the next
higher addresses, which are in external memory. External memory fetches
make use of port 0 and port 3 and may disrupt program execution if the
program uses ports 0 or 3 for a different purpose.

13.2 PROGRAMMING AND VERIFYING MODES

Table 13-1 defines the programming and verifying modes and provides details about the setup.
The modes correspond to the nonvolatile memory functions, i.e. on-chip code memory, encryp
tion array, configuration bytes, etc. The configuration bytes, signature bytes, encryption array,
and lock bits reside in nonvolatile memory outside the memory address space. The value applied
to port 0 (see Table 13-1) specifies program or verify and provides the base address for the func
tion. Addresses in the Address column are with respect to the base address.

Table 13-1. Programming and Verifying Modes

Address
Mode RST PSEN# Vpp PROG# Port Port Port 1 (high) Notes

0 2 Port 3 (low)

Program - On-chip Code High Low 5V, 5 Pulses 68H data OOOOH-3FFFH
Memory 12.75 V

Verify - On-chip Code High Low 5V High , 28H data OooOH-3FFFH
Memory

Program - Configuration High Low 5V, 5 Pulses 69H data OOBOH-OOB3H
Bytes 12.75 V

Verify - Configuration Bytes High Low 5V High 29H data OOBOH-OOB3H

Program - Lock Bits High Low 5V, 25 Pulses 6BH data 0001 H-0003H
12.75 V

Verify - Lock bits High Low 5V High 2BH data OOooH

Program - Encrypfion Array High Low 5V, 25 Pulses 6CH data OOOOH-007FH
12.75 V

Verify - Signature Bytes High Low 5V High 29H data 0030H, 0031 H,
0060H

NOTES:
1. To program, raise V pp to 12.75 V and pulse the PROG# pin. See Figure 13-2 for waveforms.
2. No data input. Identify the lock bits with the address lines as follows: LB3 - 0003H, LB2 - 0002H,

LB1 - 0001H

1

1

1,2

3

1

3. The three lock bits are verified in a single operation. The states of the lock bits appear simultaneously
at port 2 as follows: LB3 - P2.3, LB2 - P2.2. LB1 - P2.1. High = programmed.

13-2 .____ L

intet PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

13.3 GENERAL SETUP

Figure 13-1 shows the general setup for programming and verifying the OTPROM areas on the
87C251SB. The figure also applies to verifying the 83C251SB and reading the configuration
bytes on the 80C251SB.

The controller must be running with an oscillator frequency of 4 MHz to 6 MHz. To program, set
up the controller as shown in Table 13-1 with the mode of operation (program/verify and memory
area) specified on port 0, the address with respect to the starting address of the memory area ap
plied to ports 1 and 3, and the data on port 2. Apply a logic high to the RST pin and Vee to
EA#N pp. ALElPSEN#, normally an output pin, must be held low externally.

To perform the write operation, raise Vpp to 12.75 V and pulse the PROG# pin per Table 13-1.
Then return V pp to 5 V. Waveforms are shown in Figure 13-2.

CAUTION

The V pp source must be well regulated and free of glitches. The voltage on the
V pp pin must not exceed the specified maximum, even under transient
conditions. See latest data sheet.

Verification is performed in a similar manner but without increasing V pp and without pulsing
PROG#. Figure 13-2 shows the OTPROM programming and verifying waveforms. For wave
form timing information, refer to Figure 13-5 and Table 13-5 at the end ofthis section.

Address
(16 Bits)

l-

AO-A7 P3

AS - A15 Pl

XTALl

XTAL2

vss

-

8XC251SB Vee

RST

P2

EA#Npp

ALEIPROG#

PSEN#

PO

Vee

Data
(8 Bits)

}
Programming

14-- Signals

-
ProgramlVerify Mode
(8 Bits)

A4122-01

Figure 13-1. Setup for Programming and Verifying

13-3

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

Programming Cycle Verification Cycle

P1, P3 ---<:===~A~d~dre~SS~(1~6-~B~it)====)---«==1A~dd~re~ss~.==}-

P2 (Data In (a-Bit)) (Data Out }--

PROG# lIV1IUlJ
12345

EA#Npp 5V ~ \~-----------------

PO j(~ _______ M_Od_e~(a_-_Bi~n ______ -JX Mode XI.... __
A4129-01

Figure 13-2. OTPROM Programming Waveforms

13.4 OTPROM PROGRAMMING ALGORITHM

The procedure for programming the 87C251SB is as follows:

L Set up the controller for operation in the appropriate mode according to Table 13-1.

2_ Input the 16-bit address on ports 1 and 3.

3. Input the data byte on port 2.

4. Raise the voltage on the Vpp pin from 5 V to 12.75 V.

5. Pulse the PROG# pin 5 times for the on-chip code memory and the configuration bytes,
and 25 times for the encryption array and the lock bits.

6. Reduce the voltage on the V pp pin to 5 V.

13-4

1

intet PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

7. If the procedure is program/immediate-verify, go to "Verify Algorithm" on page 13-5 and
perform steps 1 through 4 to verify the currently addressed byte. Make sure the voltage on
the EA#N pp pin has been lowered to 5 V before performing the verifying procedure.

8. Repeat steps 1 through 7 until all memory locations are programmed.

13.5 VERIFY ALGORITHM

Use this procedure to verify user program code, signature bytes, configuration bytes and lock bits
stored in nonvolatile memory on the 8XC251SB. To preserve the secrecy of the encryption key
byte sequence, the encryption array can not be verified. Verification can be performed on bytes
as they are programmed, or on a block of bytes that have been previously programmed. The pro
cedure for verifying the 8XC251 SB is as follows:

1. Set up the controller for operation in the appropriate mode according to Table 13-1.

2. Input the 16-bit address on ports PI and P3.

3. Wait for the data on port P2 to become valid (TAVQV = 48 clock cycles, Figure 13-5), then
compare the data with the expected value.

4. If the procedure is program/immediate-verify, return to step 8 of "OTPROM
Programming Algorithm" on page 13-4 to program the next byte.

5. Repeat steps 1 through 5 until all memory locations are verified.

13.6 PROGRAMMABLE FUNCTIONS

This section discusses factors related to programming and verifying the various nonvolatile mem
ory functions.

13.6.1 On-Chip Code Memory

The 16-Kbyte on-chip code memory is located in the top region ofthe memory space starting at
address FF:OOOOH. At reset, the 87C251SB and 83C251SB devices vector to this address. See
Chapter 3 for detailed information on the 8XC251SB memory space.

To enter user program code and data in the on-chip code memory, perform the procedure de
scribed in "OTPROM Programming Algorithm" on page 13-4 using the program on-chip code
memory mode (Table 13-1).

To verify that the on-chip code memory is correctly programmed, perform the procedure de
scribed in "Verify Algorithm" on page 13-5 using the verify on-chip code memory mode (Table
13-1).

L
13-5

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY intel~

13.6.2 Configuration Bytes

The MCS® 251 microcontroller contains four configuration bytes, CONFIGO through CONFIG3,
implemented in OTPROM. CONFIGO through CONFIG3 correspond to addresses 0080H
through 0083H in Table 13-1. The configuration bytes are located in nonvolatile memory outside
the memory address space and are inaccessible by user code. CONFIGO and CONFIG 1 specify
the following:

• WSA,WSB. Wait states

• RDO, RDl. This two-bit code determines the address ranges for RD# and PSEN# and
selects a 16-bit or 17-bit external bus. RD# as 17th address bit (AI6), P3.7 as general
purpose pin.

• XALE. Extends ALE pulse.

• SRC. Source code/ binary code

• EMAP. Maps upper 8 Kbytes of on-chip code memory to region OOH.

• PAGE. Page mode select, external bus structure

• INTR. Return from interrupt

CONFIG2 and CONFIG3 are reserved for future use. See Figure 13-3 and Figure 13-4 for
CONFIGO and CONFIG 1 bit assignments and definitions. These figures also give the configura
tion values for making the 8XC251SB pin compatible with the 8XC51FB and 8XC54. Table 13-2
lists the CONFIGO and CONFIGl values for the 8OC251SB.

To program the configuration bytes, perform the procedure described in "OTPROM Program
ming Algorithm" on page 13-4 using the program configuration byte mode (Table 13-1).

To verify that the configuration bytes are correctly programmed, perform the procedure described
in "Verify Algorithm" on page 13-5 using the verify configuration byte mode (Table 13-1).

13-6

1.

CONFIGO

7

Bit
Number

7:6

5

4

3:2

1

0

Bit
Mnemonic

-

WSA

XALE

RD1, ROO

PAGE

SRC

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

o
WSA XALE 1 1....1 _R_D_1 ---,,--_R_D_O ---'_R_'A_G_E----' __ SR_C_-'

Function

Reserved:

Set these bits when writing to CONFIGO.

Wait State A:

Clear this bit to generate one external wait state for memory regions 00:,
FE:, and FF:. Set this bit for no wait states for these regions.

Extend ALE:

If this bit is set, the time of the ALE pulse is Tosc. Clearing this bit
extends the time of the ALE pulse from Tosc to 3Tosc, which adds one
external wait state.

RD# and PSEN# Function Select:

RD1 RDO RD#Range PSEN# Range Features
0 0 Reserved Reserved Reserved
0 1 RD#=A16 All addresses 128-Kbyte External

Address Space
1 0 P3.70nly All addresses One additional port pin
1 1 ~7F:FFFFH ~ 80:0000H Compatible with MCS 51

microcontrollers

Page Mode Select:

Clear this bit for page-mode (A15:8/D7:0 on P2, and A7:0 on PO). Set
this bit for nonpage-mode (A15:8 on P2, and A7:0/D7:0 on PO
(compatible with 44-lead PLCC MCS 51 microcontrollers».

Source Mode/Binary Mode Select:

Set this bit for source mode. Clear this bit for binary mode (binary-code
compatible with MCS 51 microcontrollers).

NOTE: To make the 8XC251SB pin compatible with 44-lead PLCC MCS 51 microcontrollers, use
the following bit values in CONFIGO: 1101 1110B.

Figure 13-3. Configuration Byte 0

13-7

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

CONFIG1

7 o
~ ____ ~ ____ ~ ______ ~_IN_T_R~I~I __ W_S_B~ ______ ~ ____ ~ __ EM_A_P~

Bit Bit Function Number Mnemonic

7:5 - Reserved:

Set these bits when writing to CONFIG1.

4 INTR Interrupt Mode:

If this bit is set, interrupts push 4 bytes onto" the stack (the 3 bytes of the
PC register and the PSW1 register). If this byte is clear, interrupts push 2
bytes onto the stack (the 2 lower bytes of the PC register).

3 WSB Wait State B:

Clear this bit to generate one external wait state for memory region 01:.
Set this bit for no wait states for region 01 :.

2:1 Reserved:

Set these bits when writing to CONFIG1.

0 EMAP EPROM MAP:

Clearing this bit maps the upper 8 Kbytes of on-chip code memory
(FF:2000H-FF:3FFFH) to OO:EOOOH-OO:FFFFH. If this bit is set, the
upper 8 Kbytes of on-chip code memory are mapped only to FF:2000H-
FF:3FFFH.

NOTE: To make the 8XC251SB pin compatible with 44-lead PLCC MCS 51 microcontrollers, use the
following bit values in CONFIG1: 1110 0111B.

Figure 13-4. Configuration Byte 1

13-8 __________ J

intet~ PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

Table 13-2. Configuration Byte Values for 80C251SB and 80C251SB-16

Bit
CONFIGO(1) CONFIG1 (1)

Number
Bit Mnemonic Value Bit Mnemonic Value

7 Reserved 1 Reserved 1

6 Reserved 1 Reserved 1

5 WSA (2) Reserved 1

4 XALE 1 INTR 0

3 RD1 1 WSB (2)

2 ROO 1 Reserved 1

1 PAGE 1 Reserved 1

0 SRC 0 EMAP 1

NOTE:
1. In addition to the configuration given in the table, the BOC251 SB and BOC251 SB-16

are available in user-defined configurations.
2. The BOC251SB is available with no wait states (,'NSA = WSB = 1).

The BOC251SB-16 is available with one wait state (WSA = WSB = 0).

13.6.3 Lock Bit System

The 87C251 SB provides a three-level lock system for protecting user program code stored in the
on-chip code memory from unauthorized access. On the 83C251SB, only LB 1 protection is avail
able. Table 13-3 describes the levels of protection.

To program the lock bits, perform the procedure described in "OTPROM Programming Algo
rithm" on page 13-4 using the program lock bits mode (Table 13-1).

To verify that the lock bits are correctly programmed, perform the procedure described in "Verify
Algorithm" on page 13-5 using the verify lock bits mode (Table 13-1).

Table 13-3. Lock Bit Function

Lock Bits Programmed Protection Type

LB3 LB2 LB1

Level 1 U U U No program lock features are enabled. On-chip user code is
encrypted when verified, if encryption array is programmed.

Level 2 U U P External code is prevented from fetching code bytes from on-
chip code memory. Further programming of the on-Chip
OTPROM is disabled.

Level 3 U P P Same as level 2, plus on-chip code memory verify is disabled.

Level 4 P P P Same as level 3, plus external memory execution is disabled.

NOTE: Other combinations of the lock bits are not defined.

.. L. ___ _ 13-9

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY intel~

13.6.4 Encryption Array

The 87C251SB and 83C251SB controllers include a 128-byte encryption array located in non
volatile memory outside the memory address space. During verification of the on-chip code
memory, the seven low-order address bits also address the encryption array. As the byte of the
code memory is read, it is exclusive-NOR'ed (XNOR) with the key byte from the encryption ar
ray. If the encryption array is not programmed (still all Is), the user program code is placed on
the data bus in its original, unencrypted form. If the encryption array is programmed with key
bytes, the user program code is encrypted and can't be used without know the key byte sequence.

CAUTION

If the encryption feature is implemented, the portion of the on-chip code
memory that does not contain program code should be filled with "random"
byte values other than FFH to prevent the encryption key sequence from being
revealed.

To program the encryption array, perform the procedure described in "OTPROM Programming
Algorithm" on page 13-4 using the program encryption array mode (Table 13-1).

To verify that the configuration bytes are correctly programmed, perform the procedure described
in "Verify Algorithm" on page 13-5 using the verify encryption array mode (Table 13-1).

13.6.5 Signature Bytes

The 87C251SB and 83C251SB contain factory-programmed signature bytes. These bytes are lo
cated at 30H, 31H, and 60H in nonvolatile memory outside the memory address space. To read
the signature bytes, perform the procedure described in "Verify Algorithm" on page 13-5 using
the verify signature mode (Table 13-1). Signature byte values are listed in Table 13-4.

Table 13-4. Contents of the Signature Bytes

Address
Device

30H 31H 60H

83C251SB 89H 40H 7BH

87C251SB 89H 40H FBH

13.7 VERIFYING THE 83C251SB (ROM)

Nonvolatile memory on the 83C251SB controller is factory programmed. The verification pro
cedure for the 83C251SB is exactly the same as for the 87C251SB OTPROM version. The setup
shown in Figure 13-1 applies as do the waveform and timing diagrams. Like the 87C251SB, the
83C251SB contains a 16-Kbyte on-chip code memory and a 128-byte encryption array.

13-10

int"et PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

For information on verifying the contents of nonvolatile memory on the 83C251SB, see "Pro
grammable Functions" on page 13-5 for each function desired. Or more directly, perform the ver
ification procedure described in "Verify Algorithm" on page 13-5 using the appropriate verify
mode (Table 13-1).

13.8 VERIFYING THE 80C251SB (ROM LESS)

The configuration bytes stored in nonvolatile memory on the 8OC251SB can be read using the
verify procedure presented in this chapter. For information regarding the configuration bytes see
"Configuration Bytes" on page 13-6.

Programming Cycle Verification Cycle

P1,P3 ----{========~A~d~dr~e~SS~(~16~B~~~)========)------~(=====A~d~d~re~ss~==~>--
I ~Avav

----+-<=====~~~~~====~_1----------«==ED~am~O~u~t:J}---P2

TDVGL TGHDX

TGHAX

TGHGL

~
PROG#

TSHGL

~ ~
EA#N

pp
5V L '---~-TE-La-v-:-I--:-EH-az-:-I-
->I TEHSH -J h --I I<-

PO)(__________ M_od_e~(8_B_itS..:..) ______ __.JX Mode X"-___ _
A4128-01

Figure 13-5. OTPROM Timing

1
13-11

PROGRAMMING AND VERIFYING NONVOLATILE MEMORY

Table 13-5. OTPROM Timing Definitions

Symbol Definition Symbol Definition

1fTcLCL Oscillator Frequency TGHAX Address Hold after PAOG#:

T AVGL Address Setup to PROG# Low T GHOX Data Hold after PROG#

T AVQV Address to Data Valid T GHSL Vpp Hold after PAOG#

T OVGL Data Setup to PROG# Low T GHGL PROG# High to PROG# Low

T EHSH ENABLE High to Vpp T GLGH PROG#Width

T EHQZ Data Float after ENABLE TSHGL V pp Setup to PROG# Low:

T ELQV ENABLE Low to Data Valid

NOTE: A = Address, D = Data, E = Enable, G = PROG#, H = High, L = Low, Q = Data out,
S = Supply (Vpp), V = Valid, X = No longer valid, Z = Floating.

13-12

intet~

l

intel·

Instruction Set
Reference

I

A

APPENDIX A
INSTRUCTION SET REFERENCE

This appendix contains reference material for the instructions in the MCS® 251 architecture. It
includes an opcode map, a summary of the instructions - with instruction lengths and execution
times - and a detailed description of each instruction. It contains the following tables:

• Tables A-I through A-4 describe the notation used for the instruction operands.

• Table A-6 on page A-4 and Table A-7 on page A-5 comprise the opcode map for the
instruction set.

• Table A-8 on page A-6 through Table A-17 on page A-lO contain supporting material for
the opcode map.

• Table A-18 on page A-12 lists execution times for a group of instructions that access the
port SFRs.

• The following tables list the instructions with their lengths in bytes and their execution
times:

Add and Subtract Instructions, Table A-19 on page A-14

Compare Instructions, Table j\-20 on page A-IS

Increment and Decrement Instructions, Table A-21 on page A-16

Multiply, Divide, and Decimal-adjust Instructions, Table A-22 on page A-16

Logical Instructions, Table A-23 on page A-17

Move Instructions, Table A-24 on page A-19

Exchange, Push, and Pop Instructions, Table A-24 on page A-19

Bit Instructions, Table A-26 on page A-23

Control Instructions, Table A-27 on page A-24

"Instruction Descriptions" on page A-26 contains a detailed description of each instruction.

I

NOTE

The instruction execution times given in this appendix are for code executing
from on-chip code memory and for data that is read from and written to on
chip RAM. Execution times are increased by executing code from external
memory, accessing peripheral SFRs, accessing data in external memory, using
a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRs, Px, x = 0-3, increases the
execution time. These cases are listed in Table A-18 on page A-12 and are
noted in the instruction summary tables and the instruction descriptions.

A-1

INSTRUCTION SET REFERENCE

A.1 NOTATION FOR INSTRUCTION OPERANDS

Table A-1. Notation for Register Operands

Register Notation MC.251 MCS51
Arch. Arch.

@Ri A memory location (OOH-FFH) addressed Indirectly via byte register
1/ RO or R1

Rn Byte register Ro-R7 of the currently selected register bank

n Byte register index: n = 0-7 1/

r r r Binary representation of n

Rm Byte register Ro-R15 of the currently selected register file
Rmd Destination register
Rms Source register

1/
m, md, ms Byte register index: m, md, ms = 0-15
ssss Binary representation of m or md

SSSS Binary representation of ms

WRj Word register WRO, WR2, ... , WR30 of the currently selected register
file

WRjd Destination register

WRjs Source register
@WRj A memory location (OO:OOOOH-oO:FFFFH) addressed Indirectly

through word register WRo-WR30 1/
@WRj Data RAM location (OO:OOOOH-oO:FFFFH) addressed indirectly
+dis16 through a word register (WRo-WR30) + displacement value
j, jd, js Word register index: j, jd, js = 0-30
tttt Binary representation of j or jd
TTTT Binary representation of js

DRk Dword register DRO, DR4, ... , DR28, DR56, DR60 of the currently
selected register file

DRkd Destination Register
DRks Source Register
@DRk A memory location (OO:OOOOH-FF:FFFFH) addressed Indirectly

through dword register DRo-DR28, DR56, DR60
1/

@DRk Data RAM location (OO:OOOOH-FF:FFFFH) addressed Indirectly
+dis24 through a dword register (DRo-DR28, DR56, DR60) + displacement

value ,

k,kd, ks Dword register index: k, kd, ks = 0,4,8, ... ,28,56,60

uuuu Binary representation of k or kd

UUUU Binary representation of ks

A-2

J

intet~ INSTRUCTION SET REFERENCE

Table A-2. Notation for Direct Addresses

Direct
Description

MCS-251 MCS51
Address. Arch. Arch.

dirB An B-bit direct address. This can be a memory address

'" '" (OO:OOOOH-OO:OOFFH) or an SFR address (S:OOH - S:FFH).

dir16 A 16-bit memory address (OO:OOOOH-OO:FFFFH) used in direct

'" addressing.

Table A-3. Notation for Immediate Addressing

Immediate Description
MCS- 251 MCS51

Data Arch. Arch.

#data An B-bit constant that is immediately addressed in an instruction. '" '"
#data16 A 16-bit constant that is immediately addressed in an instruction. '" #Odata16 A 32-bit constant that is immediately addressed in an instruction. The

'" #1data16 upper word is filled with zeros (#Odata16) or ones (#1data16).

#short A constant, equal to 1, 2, or 4, that is immediately addressed in an
instruction. '" vv Binary representation of #short.

Table A-4. Notation for Bit Addressing

Bit Description
MCS'D 251 MCS51

Address Arch. Arch.

bit A directly addressed bit in memory locations OO:0020H-OO:007FH or in
any defined SFR. '" yyy A binary representation of the bit number (0-7) within a byte.

bit51 A directly addressed bit (bit number = OOH-FFH) in memory or an SFR.
Bits OOH-7FH are the 12B bits in byte locations 20H-2FH in the on-chip

'" RAM. Bits BOH-FFH are the 12B bits in the 16 SFR's with addresses
that end in OH or BH: S:BOH, S:BBH, S:90H, ... , S:FOH, S:FBH.

Table A-5. Notation for Destinations in Control Instructions

Destination Description
MCS- 251 MCS51

Address Arch. Arch.

rei A signed (two's complement) B-bit relative address. The destination is

'" '" -12B to + 127 bytes relative to first byte of the next instruction.

addr11 An 11-bit destination address. The destination is in the same 2-Kbyte

'" '" block of memory as the first byte of the next instruction.

addr16 A 16-bit destination address. A destination can be anywhere within

'" '" the same 64-Kbyte region as the first byte of the next instruction.

addr24 A 24-bit destination address. A destination can be anywhere within

'" the 16-Mbyte address space.

L
A-3

II
it
1

I

t I;

I:

I
'j
l

Iii'
Ii

I

i

!
I~

INSTRUCTION SET REFERENCE intet
A.2 OPCODE MAP AND SUPPORTING TABLES

Table A-S. Instructions for MCSCI!> 51 Microcontrollers

Sin. 0 1 2 3 4 5 6-7 8-F

Src. 0 1 2 3 4 5 A5.x6-A5x7 A5x8-A5xF

0 NOP AJMP LJMP RR INC INC INC INC
addrll addr16 A A dirB @Ri Rn

1 JBC ACALL LCALL RRC DEC DEC DEC DEC
bit,rel addrll addr16 A A dirB @Ri Rn

2 JB AJMP RET RLA ADD ADD ADD ADD
bit, rei addr11 A,#data A,dirB A,@Ri A,Rn

3 JNB ACALL RETI RLCA AD DC ADDC ADDC ADDC
bit,rel addr11 A,#data A,dirB A,@Ri A,Rn

4 JC AJMP ORL ORL ORL ORL ORL ORL
rei addr11 dirB,A dirB,#data A,#data A,dirB A,@Ri A,Rn

5 JNC ACALL ANL ANL ANL ANL ANL ANL
rei addr11 dirB,A dirB,#data A,#data A,dirB A,@Ri A,Rn

6 JZ AJMP XRL XRL XRL XRL XRL XRL
rei addr11 dirB,A dirB,#data A,#data A,dirB A,@Ri A,Rn

7 JNZ ACALL ORL JMP MOV MOV MOV MOV
rei addr11 CY,bit @A+DPTR A,#data dirB,#data @Ri,#data Rn,#data

B SJMP AJMP ANL MOVC DIV MOV MOV MOV
rei addr11 CY,bit A,@A+PC AB dirB,dirB dirB,@Ri dirB,Rn

9 MOV ACALL MOV MOVC SUBS SUBB SUSB SUBS
DPTR,#data 16 addr11 bit,CY A,@A+DPTR A,#data A,dirB A,@Ri A,Rn

A ORL AJMP MOV INC MUL ESC MOV MOV
CY,bit addr11 CY,bit DPTR AB @Ri,dirB Rn,dirB

B ANL ACALL CPL CPL CJNE CJNE CJNE CJNE
CY,bit addr11 bit CY A,#data,rel A,dirB,rel @Ri,#data,rel Rn,#data,rel

C PUSH AJMP CLR CLR SWAP XCH XCH XCH
dirB addr11 bit CY A A,dirB A,@Ri A,Rn

0 POP ACALL SETB SETB DA DJNZ XCHD DJNZ
dirB addr11 bit CY A dirB,rel A,@Ri Rn,rel

E MOVX AJMP MOVX CLR MOV MOV MOV
A,@DPTR addr11 A,@Ri A A,dirB A,@Ri A,Rn

F MOV ACALL MOVX CPL MOV MOV MOV
@DPT,A addr11 @Ri,A A dirB,A @Ri,A Rn,A

A-4

I

intet INSTRUCTION SET REFERENCE
II'
I

Table A-7. New Instructions for the MCsGD 251 Architecture

Bin. A5x11 A5.x9 A5xA A5xB A5xC A5xC A5n A5.xF

Src. xii .x9 xA xB xC xC n xF "
0 JSLE MOV MOVZ INC R,#short (1) SRA

!i
rei Rm,@WRj+dis WRj,Rm MOVreg,ind reg

1 JSG MOV MOVS DEC R,#short (1) SRL
rei @WRj+dis,Rm WRj,Rm MOVind,reg reg

2 JLE MOV ADD ADD ADD ADD
rei Rm,@DRk+dis Rm,Rm WRj,WRj reg,op2 (2) DRk,DRk

3 JG MOV SLL
rei @DRk+dis,Rm reg

4 JSL MOV ORL ORL ORL
rei WRj,@WRj+dis Rm,Rm WRj,WRj reg,op2 (2)

5 JSGE MOV ANL ANL ANL
rei @WRj+dis,WRj Rm,Rm WRj,WRj reg,op2(2)

6 JE MOV XRL XRL XRL
rei WRj,@DRk+dis Rm,Rm WRj,WRj reg,op2 (2)

7 JNE MOV MOV MOV MOV MOV MOV
rei @DRk+dis,WRj op1,reg (2) Rm,Rm WRj,WRj reg,op2(2) DRk,DRk

8 LJMP@WRj EJMP DIV DIV
EJMP @DRk addr24 Rm,Rm WRj,WRj

9 LCALL@WRj ECALL SUB SUB SUB SUB
ECALL@DRk addr24 Rm,Rm WRj,WRj reg,op2(2) DRk,DRk

A Bit ERET MUL MUL
Instructions (3) Rm,Rm WRj,WRj

B TRAP CMP CMP CMP CMP
Rm,Rm WRj,WRj reg,op2(2) DRk,DRk

C PUSH op1 (4)
MOVDRk,PC

D POP
op1 (4)

E

F

I,

I!
"

:1
NOTES:
1. R = RmIWRJ/DRk.
2. op1, op2 are defined in Table A-B on page A-S.
3. See Tables A-10 and A-11 on page A-7.
4. See Table A-12 on page A-B.

.L
A-S

INSTRUCTION SET REFERENCE

Instruction

Oper Rmd,Rms

Oper WRjd,WRjs

Oper DRkd,DRks

Oper Rm,#data

Oper WRj,#data 16

Oper DRk,#data16

MOV DRk(h),#data16

MOV DRk,#1data16

CMP DRk,#1data16

Oper Rm,dlrS

Oper WRj,dir8

Oper DRk,dir8

Oper Rm,dir16 ,

Oper WRj,dir16

Oper DRk,dlr16

Oper Rm,@WRj

Oper Rm,@DRk

A-6

Table A-S. Data Instructions

Byte 0 Byte 1

x C md ms

x D jcll2 jS/2

x F kcll4 ks/4

x E m 0000

x E j/2 0100

x E kl4 1100

7 A kl4 1000

7 E

B E

x E m 0001

x E V2 0101

x E kl4 1101

x E m 0011

x E j/2 0111

x E kl4 1111

x E V2 1001

x E kl4 1011

~ ___ B_yt_e_2 __ ~1 ~I ___ B_yte __ 3 __ ~

#data

#data (high)

#data (high)

#data (high)

dir8 addr

dir8 addr

dir8 addr

dir16 addr (high)

dir16 addr (high)

dir16 addr (high)

m I 00

m I 00

#data (low)

#data (low)

#data (low)

dir16 addr (low)

dir16 addr (low)

dir16 addr (low)

Table A-9. High Nibble, Byte 0 of Data Instructions

x Operation Notes

2 ADD reg,op2

9 SUB reg,op2

B CMP reg,op2

4 ORLreg,op2
All addressing modes are
supported.

5 ANL reg,op2

6 XRL reg,op2

7 MOVreg,op2

8 DIVreg,op2 Two modes only:

A MUL reg,op2
reg,op2 = Rmd,Rms
reg,op2 = Wjd,Wjs

I

INSTRUCTION SET REFERENCE

All of the bit instructions in the MeS 251 architecture (Table A-7) have opcode A9, which serves
as an escape byte (similar to AS). The high nibble of byte 1 specifies the bit instruction, as given
in Table A-tO.

Table A-10. Bit Instructions

IB~tl A 9

Byte 1 Byte 2 Byte 3 Instruction

xxxx 10 I bit 1 Bit Instr (dirB) dirB addr

Table A-11. Byte 1 (High Nibble) for Bit Instructions

xxxx Bit Instruction

0001 JBC bit

0010 JB bit

0011 JNB bit

0111 ORL CY,bit

1000 ANL CY,bit

1001 MOVbit,CY

1010 MOVCY,bit

1011 CPLblt

1100 CLR bit

1101 SETB bit

1110 ORL CY, /bit

1111 ANL CY, Ibit

A-7

I

i

.~ ,
.~

INSTRUCTION SET REFERENCE

Instruction

PUSH #data C

PUSH #data16 C

PUSH Rm C

PUSH WRJ C

PUSH DRk C

MOVDRk,PC C

POP Rm D

POP WRj D

POP DRk D

Instruction

EJMPaddr24

ECALL addr24

LJMP @WRj

LCALL@WRj

EJMP @DRk

ECALL @DRk

ERET

JE rei

JNE rei

JLE rei

JG rei

JSL rei

JSGE rei

JSLE rei

"I~r.: .01

A·a

Table A-12. PUSH/POP Instructions

ByteO(x) Byte 1 Byte 2

A 0000 0010 #data

A 0000 0110 #data16 (high)

A m 1000

A j/2 1001

A kl4 1011

A kl4 0001

A m 1000

A]/2 1001

A kl4 1011

Table A-13. Control Instructions

ByteO(x)

8 A

9 A

8 9

9 9

8 9

8 9

A A

8 8

7 8

2 8

3 8

4 8

5 8

0 8

1 R

Byte 1

addr[23:16)

addr[23:16]

j/2 0100

j/2 0100

kl4 1000

kl4 1000

rei

rei

rei

rei

rei

rei

rei

.01

Byte 2

addr[15:8]

addr[15:8]

Byte 3

#data 16 (low)

Byte 3

addr[7:0)

addr[7:0]

int"et~

Instruction

MOV Rm,@WRj+CIis

MOV WRk,@WRj+dis

MOV Rm,@ORk+dis

MOV WRj,@ORk+dis

MOV @WRj+dis,Rm

MOV @WRj+CIis,WRk

MOV @ORk+CIis,Rm

MOV@ORk+dis,WRj

MOVSWRj,Rm

MOVZWRj,Rm

MOVWRj,@WRj

MOV WRj,@ORk

MOV @WRj,WRj

MOV @ORk,WRj

MOVdirS,Rm

MOV dirS,WRj

MOV dirS,ORk

MOV dir16,Rm

MOV dir16, WRj

MOV dlr16,ORk

MOV@WRj,Rm

MOV@ORk,Rm

l

INSTRUCTION SET REFERENCE

Table A-14. DisplacementlExtended MOVs

Byte 0 Byte 1

0 9 m V2
4 9 V2 k2

2 9 m kl4

6 9 j/2 kl4

1 9 m]/2

5 9 V2 k2

3 9 m kl4

7 9 j/2 kl4

1 A V2 m

0 A V2 m

0 B j/2 1000

0 B kl4 1010

1 B V2 1000

1 B kl4 1010

7 A m 0001

7 A V2 0101

7 A kl4 1101

7 A m 0011

7 A V2 0111

7 A kl4 1111

7 A j/2 1001

7 A kl4 1011

Byte 2

dis[15:S)

dis[15:S)

dis[15:S)

dis[15:S)

dls[15:S)

dis[15:S)

dis[15:S)

dis[15:S)

j/2 0000

V2 0000

V2 0000

j/2 0000

dlrS addr

dirS addr

dirS addr

dir16 addr (high)

dir16 addr (high)

dir16 addr (high)

m 0000

m 0000

Byte 3

dis[7:0)

dis[7:0)

dis[7:0)

dis[7:0)

dls[7:0)

dis[7:0)

dis[7:0)

dis[7:0)

dir16 addr (low)

dir16 addr (low)

dir16 addr (low)

A-9

I

I
/1

I

INSTRUCTION SET REFERENCE intet,
Table A-15. INCIDEC

Instruction Byte 0 Byte 1

1 INC Rm,#short 0 B m 00 ss

2 INC WRJ,#short 0 B V2 01 ss
3 INC DRk,#short 0 B k14 11 ss
4 DEC Rm,#short 1 B m 00 ss

5 DEC WRj,#short 1 B V2 01 ss

6 DEC DRk,#short 1 B k14 11 ss

Table A-16. Encoding for INCIDEC

ss #short

00 1

01 2

10 4

Table A-17. Shifts

Instruction Byte 0 Byte 1

1 SRARm 0 E m 0000

2 SRAWRj 0 E V2 0100

3 SRLRm 1 E m 0000

4 SRLWRj 1 E V2 0100

5 SLLRm 3 E m 0000

6 SLLWRj 3 E V2 0100

A-10

intet INSTRUCTION SET REFERENCE

A.3 INSTRUCTION SET SUMMARY

This section contains tables that summarize the instruction set. For each instruction there is a
short description, its length in bytes, and its execution time in states.

NOTE

The instruction execution times given in the tables are for code executing from
on-chip code memory and for data that is read from and written to on-chip
RAM. Execution times are increased by executing code from external
memory, accessing peripheral SFRs, accessing data in external memory, using
a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRs, Px, x = 0-3, increases the
execution time. These cases are noted individually in the tables.

A.3.1 Execution Times for Instructions that Access the Port SFRs

The execution times for some instructions increase when the instruction accesses a port SFR (Px,
x = 0-3) as opposed to any other SFR. Table A-18 lists these instructions and the execution times
for Case 0:

• Case O. Code executes from on-chip OTPROM/ROM and accesses locations in on-chip data
RAM. The port SFRs are not accessed.

In Cases 1-4, the instructions access a port SFR:

• Case 1. Code executes from on-chip OTPROM/ROM and accesses a port SFR.

• Case 2. Code executes from external memory with no wait state and a short ALE (not
extended) and accesses a port SFR.

• Case 3. Code executes from external memory with one wait state and a short ALE (not
extended) and accesses a port SFR.

• Case 4. Code executes from external memory with one wait state and an extended ALE, and
accesses a port SFR.

The times for Cases 1 through 4 are expressed as the number of state times to add to the state
times for given for Case O.

1.
A-11

II

"

I'l r~

I ~
!~
" I,
Ii

I

INSTRUCTION SET REFERENCE

Table A-18. State Times to Access the Port SFRs

Case 0 Additional State Times
Instruction Execution Times

Binary Source Case 1 Case 2 Case 3 Case 4

ADDA,dirB 1 1 1 2 3 4

ADD Rm,dirB 3 2 1 2 3 4

ADDCA,dirB 1 1 1 2 3 4

ANLA,dirB 1 1 1 2 3 4

ANL CY,bit 3 2 1 2 3 4

ANL CY,bit51 1 1 1 2 3 4

ANLCY,lbit 3 2 1 2 3 4

ANL CY,lbit51 1 1 1 2 3 4

ANL dirB,#data 3 3 2 4 6 B

ANLdirB,A 2 2 2 4 6 B

ANL Rm,dirB 3 2 1 2 3 4

CLR bit 4 3 2 4 6 B

CLR bit51 2 2 2 4 6 B

CMP Rm,dirB 3 2 1 2 3 4

CPL bit 4 3 2 4 6 B

CPL bit51 2 2 2 4 6 B

DEC dirB 2 2 2 4 6 B

INC dirB 2 2 2 4 6 B

MOVA,dirB 1 1 1 2 3 4

MOVbit,CY 4 3 2 4 6 B

MOV bit51,CY 2 2 2 4 6 B

MOVCY,bit 3 2 1 2 3 4

MOV CY,bit51 1 1 1 2 3 4

MOV dirB,#data 3 3 1 2 3 4

MOVdirB,A 2 2 1 2 3 4

MOVdirB,Rm 4 3 1 2 3 4

MOVdirB,Rn 2 3 1 2 3 4

MOVRm,dirB 3 2 1 2 3 4

MOVRn,dirB 1 2 1 2 3 4

ORLA,dirB 1 1 1 2 3 4

ORLCY,bit 3 2 1 2 3 4

ORL CY,bit51 1 1 1 2 3 4

ORL CY/bit 3 2 1 2 3 4

A-12

I

INSTRUCTION SET REFERENCE

Table A-18. State Times to Access the Port SFRs (Continued)

Case 0 Additional State Times
Instruction

Execution Times

Binary Source Case 1 Case 2 Case 3 Case 4

ORL CY,Ibit51 1 1 1 2 3 4

ORL dirB,#data 3 3 1 2 3 4

ORLdirB,A 2 2 2 4 6 B

ORL Rm,dirB 3 2 1 2 3 4

SETB bit 4 3 2 4 6 B

SETB bit51 2 2 2 4 6 B

SUB Rm,dirB 3 2 1 2 3 4

SUBB A,dirB 1 1 1 2 3 4
I

XCH A,dirB 3 3 2 4 6 B i

XRLA,dirB 1 1 1 2 3 4

XRL dirB,#data 3 3 2 4 6 B

XRL dirB,A 2 2 2 4 6 B

XRL Rm,dirB 3 2 1 2 3 4

A-13

INSTRUCTION SET REFERENCE

A.3.2 Instruction Summaries

Table A-19. Summary of Add and Subtract Instructions

Add
Subtract
Add with Carry
Subtract with Borrow

Mnemonic <dest>,<src>

ADD

ADD;

SUB

ADDC;

SUBB

NOTES:

ADD <dest>,<src>
SUB <dest>,<src>
ADDC <dest>,<src>
SUBB <dest>,<src>

Notes

dest opnd +- dest opnd + src opnd
dest opnd +- dest opnd - src opnd
(A) +- (A) + src opnd + carry bit
(A) +- (A) - src opnd • carry bit

Binary Mode Source Mode

Bytes States Bytes States

1. A shaded cell denotes an Instruction In the MC~ 51 architecture.
2. If this instruction addresses an VO port (Px, X= 0-3), add 1 to the number of states.

A-14

INSTRUCTION SET REFERENCE

Table A-20. Summary of Compare Instructions

Compare CMP <dest>,<src> dest opnd - src opnd

Binary Mode Source Mode
Mnemonic <dest>,<src> Notes

Bytes States Bytes States

Rmd,Rms Reg with reg 3 2 2 1

WRJd,WRJs Word reg with word reg 3 3 2 2

ORkd,ORks Oword reg with dword reg 3 5 2 4

Rm,#data Reg with immediate data 4 3 3 2

WRj,#data16 Word reg with immediate 16-bit data 5 4 4 3

ORk,#Odata16 Oword reg with zero-extended 16-bit 5 6 4 5-
immediate data

CMP ORk,#1data16 Oword reg with one-extended 16-bit 5 6 4 5
immediate data

Rm,dirS Oir addr from byte reg 4 3t 3 2t

WRj,dir8 Oir addr from word reg 4 4 3 3

Rm,dir16 Oir addr (64K) from byte reg 5 3 4 2

WRj,dir16 Oir addr (64K) from word reg 5 4 4 3

Rm,@WRj Indir addr (64K) from byte reg 4 3 3 2

Rm,@ORk Indir addr (16M) from byte reg 4 4 3 3

tlf this instruction addresses an I/O port (Px, x= 0-3), add 1 to the number of states.

I
A-15

I
I
'I "

I

!.,.,

i.~
! ,
'I

I ' ~

L
Ij
I:
I.',
II

Ii

INSTRUCTION SET REFERENCE

Table A-21. Summary of Increment and Decrement Instructions

Increment
Increment
Increment
Decrement
Decrement

INC DPTR
INC byte
INC <dest>,<src>
DEC byte
DEC <dest>,<src>

(DPTR) +- (DPTR) + 1
byte +- byte + 1
dest opnd +- dest opnd + src opnd
byte +- byte - 1
dest opnd +- dest opnd - src opnd

intet,

Binary Mode Source Mode
Mnemonic <dest>,<src> Notes

Bytes States Bytes States

NOTES:
1. A shaded cell denotes an instruction In the MC~ 51 architecture.
2. If this instruction addresses an I/O port (Px, X= 0-3), add 2 to the number of states.

Table A-22. Summary of Multiply, Divide, and Decimal-adjust Instructions

Multiply

Divide

Decimal-adJust ACC
for Addition (BCD)

Mnemonic <dest>,<src>

NOTES:

MUL <reg1,reg2>
MULAB
DIV <reg1>,<reg2>
DIVAB
DAA

Notes

(2)
(B:A) =A x B
(2)
(A) = Quotient; (B) =Remalnder
(2)

Binary Mode Source Mode

Bytes States Bytes States

1. A shaded cell denotes an Instruction in the MCSR> 51 architecture.
2. See "Instruction Descriptions' on page A-26

A-16

INSTRUCTION SET REFERENCE

Logical AND
Logical OR
Logical Exclusive OR
Clear
Complement
Rotate
Shift
SWAP

Table A-23. Summary of Logical Instructions

ANL <dest>,<src>
ORL <dest>,<src>
XRL <dest>,<src>
CLRA
CPLA
RXXA
SXXRmorWj
A

dest opnd +-dest opnd A src opnd
dest opnd +- dest opnd V src opnd
dest opnd +- dest opnd 'It src opnd
(A) +- 0
(Ai) +- "(Ai)
(1)
(1)
A3:0~A7:4

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

NOTES:
1. See "Instruction Descriptions" on page A-26.
2. A shaded cell denotes an instruction in the MCSfl> 51 architecture.
3. If this instruction addresses an 110 port (Px, x = 0-3), add 1 to the number of states.
4. If this instruction addresses an 110 port (Px, x = 0-3), add 2 to the number of states.

A-17

I

INSTRUCTION SET REFERENCE

Table A-23. Summary of Logical Instructions (Continued)

Logical AND
Logical OR
Logical Exclusive OR
Clear
Complement
Rotate
Shift
SWAP

Mnemonic <desb,<src>

SRA

SRL

SWAP

NOTES:

ANL <desb,<src>
ORL <dest>,<src>
XRL <dest>,<src>
CLRA
CPLA
RXXA
SXXRmorWj
A

Notes

1. See "Instruction Descriptions" on page A-26.

dest opnd ~dest opnd A src opnd
dest opnd ~ dest opnd V src opnd
dest opnd ~ dest opnd "I src opnd
(A)~O
(Ai) ~ 0(Ai)
(1)
(1)
A3:0HA7:4

Binary Mode Source Mode

Bytes States Bytes States

2. A shaded cell denotes an instruction in the MC~ 51 architecture.
3. If this instruction addresses an I/O port (P x, x = 0-3), add 1 to the number of states.
4. If this instruction addresses an I/O port (Px, x = 0-3), add 2 to the number of states.

A-18

INSTRUCTION SET REFERENCE

Table A-24. Summary of Move Instructions

Move (2)
Move with Sign Extension
Move with Zero Extension
Move Code Byte .
Move to External Mem
Move from External Mem

Mnemonic <dest>,<src>

MOV

DRk,#Odata 16

DRk,#1 data 16

NOTES:

MOV <dest>,<src>
MOVS <dest>,<src>
MOVZ <dest>,<src>
MOVC <dest>,<src>
MOVX <dest>,<src>
MOVX <dest>,<src>

Notes

destination ~ src opnd
destination ~ src opnd with sign extend
destination ~ src opnd with zero extend
A~codebyte
external mem ~ (A)
A ~ source opnd in external mem

Binary Mode Source Mode

Bytes States Bytes States

zero-extended 16-bit immediate data
to dword reg

5 5 4 4

one-extended 16-bit Immediate data
todword reg

5 5 4 4

1. A shaded cell denotes an instruction in the MC9ID 51 architecture.
2. Instructions that move bits are in Table A-26 on page A-23.
3. If this instruction addresses an 1/0 port (Px, x = 0-3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region speCified by

DPXL (reset value = 01 H). See "Compatibility with the MCS® 51 Architecture" on page 3-2.

L
A-19

Ii
if

INSTRUCTION SET REFERENCE

Table A-24. Summary of Move Instructions (Continued)

Move (2) MOV <desb,<src> destination +- src opnd
Move with Sign Extension MOVS <desb,<src> destination +- src opnd with sign extend
Move with Zero Extension MOVZ <desb,<src> destination +- src opnd with zero extend
Move Code Byte MOVC <desb,<src> A +- code byte
Move to External Mem MOVX <desb,<src> external mem +- (A)
Move from External Mem MOVX <desb,<src> A +- source opnd In external mem

Binary Mode Source Mode
Mnemonic <desb,<src> Notes

Bytes States Bytes States

DRk,dirB Dir addr to dword reg 4 6 3 5

DRk,dir16 Dir addr (64K) to dword reg 5 6 4 5

Rm,dirB Dir addr to byte reg 4 3 (3) 3 2 (3)

WRj,dirS Dir addr to word reg 4 4 3 3

Rm,dir16 Dir addr (64K) to byte reg 5 3 4 2

WRj,dir16 Dir addr (64K) to word reg 5 4 4 3

Rm,@WRj Indir addr (64K) to byte reg 4 2 3 2

Rm,@DRk Indir addr (16M) to byte reg 4 4 3 3

WRjd,@WRjs Indir addr(64K) to word reg 4 4 3 3

WRj,@DRk Indir addr(16M) to word reg 4 5 3 4

dirB,Rm Byte reg to dir addr 4 4 (3) 3 3 (3)

dirB,WRj Word reg to dir addr 4 5 3 4

MOV dir16,Rm Byte reg to dir addr (64K) 5 4 4 3

dir16,WRj Word reg to dir addr (64K) 5 5 4 4

@WRj,Rm Byte reg to indir addr (64K) 4 4 3 3

@DRk,Rm Byte reg to indir addr (16M) 4 5 3 4

@WRjd,WRjs Word reg to indir addr (64K) 4 5 3 4

@DRk,WRj Word reg to indir addr (16M) 4 6 3 5

dirS,DRk Dword reg to dir addr 4 7 3 6

dir16,DRk Dword reg to dir addr (64K) 5 7 4 6

Rm,@WRj+dis16 Indir addr with disp (64K) to byte reg 5 6 4 5

WRj,@WRj+dis16 Indir addr with disp (64K) to word reg 5 7 4 6

c.."" /R) ncr, J. rlil!"I)A I","i "" .. ulith ",iro"", l-t C:l'" .,.., hut,., .. "",.. 5 7 4 6 11I •• ' __ .I1 ,...WO "'",,11 ~W"'" "11''''1 '-'I1~t' \ '."'.11"/, t.lY"~ I~~

WRj,@DRk+dis24 Indir addr with disp (16M) to word reg 5 B 4 7

@WRj+dis16,Rm Byte reg to Indir addr with disp (64K) 5 6 4 5

NOTES:
1. A shaded cell denotes an instruction in the MC~ 51 architecture.
2. Instructions that move bits are in Table A-26 on page A-23.
3. If this instruction addresses an I/O port (Px, x= 0-3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01 H). See "Compatibility with the MCS® 51 Architecture" on page 3-2.'

A-20

I

INSTRUCTION SET REFERENCE

Table A-24. Summary of Move Instructions (Continued)

Move (2)
Move with Sign Extension
Move with Zero Extension
Move Code Byte
Move to External Mem
Move from External Mem

Mnemonic <desb,<src>

MOV

MOV <desb,<src>
MOVS <desb,<src>
MOVZ <desb,<src>
MOVC <desb,<src>
MOVX <desb,<src>
MOVX <desb,<src>

Notes

destination ~ src opnd
destination ~ src opnd with sign extend
destination ~ src opnd with zero extend
A~codebyte
external mem ~ (A)
A ~ source opnd in external mem

Binary Mode Source Mode

Bytes States Bytes States

@DRk+dis24,WRj Word reg to Indir addr with disp 5 8 4 7
(16M)

MOVH
DRk(hi), #data16 16-bit immediate data into upper 5 3 4 2

word of dword reg

MOVS WRj,Rm Byte reg to word reg with sign 3 2 2
extension

MOVZ
WRj,Rm Byte reg to word reg with zeros 3 2 2

extension

MOVC

MOVX

NOTES:
1. A shaded cell denotes an instruction in the MCSIll 51 architecture.
2. Instructions that move bits are in Table A-26 on page A-23.
3. If this instruction addresses an 110 port (Px, x= 0-3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01 H). See "Compatibility with the MCS® 51 Architecture" on page 3-2.

1 ____ _ A-21

INSTRUCTION SET REFERENCE

Table A-25. Summary of Exchange, Push, and Pop Instructions

Exchange Contents
Exchange Digit
Push
Pop

XCH <dest>,<Src>
XCHD <dest>,<src>
PUSH <src>
POP <dest>

A~srcopnd
A3:0 ~ on-chlp RAM bits 3:0
SP ~ SP + 1; (SP) ~ src
dest ~ (SP); SP ~ SP - 1

Binary Mode Source Mode
Mnemonic <dest>,<src> Notes

Bytes States Bytes States

XCH

XCHD

PUSH

POP

NOTES:
1. A shaded cell denotes an instruction in the MC~ 51 architecture.
2. If this instruction addresses an 1/0 port (P x, x = 0-3), add 2 to the number of states.

A-22 _L

intel~ INSTRUCTION SET REFERENCE

Table A-26. Summary of Bit Instructions

Clear Bit
Set Bit
Complement Bit
AND Carry with Bit
AND Carry with Complement of Bit
OR Carry with Bit
ORl Carry with Complement of Bit
Move Bit to Carry
Move Bit from Carry

ClR bit
SETB bit
CPl bit
ANlCY,blt
ANl CY,lbit
ORlCY,bit
ORl CY,lbit
MOVCY,bit
MOVblt,CY

bit+- 0
bit +-1
bit+- "bit
CY+-CY A bit
CY +- CY A "bit
CY +- CY V bit
CY +- CY V "bit
CY +- bit
blt+-CY

Mnemonic <src>,<dest> Notes
Binary Mode Source Mode

Bytes States Bytes States

CLR

SETS

CPL

ANL

ANU

ORL

ORU

MOV

NOTES:
1. A shaded celi denotes an instruction in the MCSH' 51 architecture.
2. If this instruction addresses an VO port (Px. x = 0-3). add 2 to the number of states.
3. If this instruction addresses an VO port (Px. x = 0-3). add 1 to the number of states.

l
A-23

INSTRUCTION SET REFERENCE intet~

Table A-27. Summary of Control Instructions

Binary Mode Source Mode
Mnemonic <dest>,<src> Notes

Bytes States (2) Bytes States (2)

NOTES:
1. A shaded celi denotes an instruction in the MC~ 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.

A-24

INSTRUCTION SET REFERENCE

Table A-27. Summary of Control Instructions (Continued)

Binary Mode Source Mode
Mnemonic <desb,<src> Notes

Bytes States (2) Bytes States (2)

Compare dir byte to ace and jump 3 2/5 3 2/5
if not equal

Compare immediate to ace and 3 2/5 3 2/5
jump if not equai

il,1'

CJNE i!
Compare immediate to reg and 3 2/5 4 3/6 1'1
jump H not equal

Compare immediate to indir and 3 3/6 4 417
::1 jump H not equal

II 3 2/5 3 3/6
I:'

DJNZ I" 3 3/6 3 3/6

~
j

NOTES: II
1. A shaded cell denotes an instruction in the MC~ 51 architecture.

11 2. For conditional jumps, times are given as not-taken/taken.
I'
I,
'"

A-25

INSTRUCTION SET REFERENCE int"et~

A.4 INSTRUCTION DESCRIPTIONS

This section describes each instruction in the MCS 251 architecture. See the note on page A-ll
regarding execution times.

Table A-28 defines the symbols (-,./, 1,0, ?) used to indicate the effect of the instruction on the
flags in the PSW and PSWI registers. For a conditional jump instruction, "!" indicates that a flag
influences the decision to jump.

Table A-28. Flag Symbols

Symbol Description

- The instruction does not modify the flag.

./ The instruction sets or clears the flag, as appropriate .

1 The instruction sets the flag.

0 The instruction clears the flag.

? The instruction leaves the flag in an indeterminate state.

I For a conditional jump instruction: The state of the flag before the
instruction executes influences the decision to jump or not jump.

ACALL <addr11>

Function: Absolute call

Description: Unconditionally calls a subroutine at the specified address. The instruction increments the 3-
byte PC twice to obtain the address of the following instruction, then pushes bytes 0 and 1 of
the result onto the stack (byte 0 first) and increments the stack pointer twice. The destination
address is obtained by successively concatenating bits 15-11 of the incremented PC,
opcode bits 7-5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2-Kbyte "page" of the program memory as the first byte of the
instruction following ACALL.

Flags:

Example:

A-26

CY AC ov N z

The stack pOinter (SP) contains 07H and the label 'SUBRTN" is at program memory location
0345H. After executing the instruction

ACALL SUBRTN

at location 0123H, SP contains 09H; on-chip RAM locations OSH and 09H contain 01 H
and 25H, respectively; and the PC contains 0345H.

1

intet~

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

Binary Mode

2

Source Mode

2

9 9

~a_10 __ a9 __ a8 __ 1~ ___ 0_0_0_1 __ ~1 I a7a6a5a4

Binary Mode = [Encoding]
Source Mode = [Encoding]

ACALL
(PC) +- (PC) + 2
(SP) +- (SP) + 1
«SP)) +- (PC.7:0)
(SP) +- (SP) + 1
«SP)) +- (PC.15:8)
(PC.10:0) +- page address

INSTRUCTION SET REFERENCE

a3 a2 a1 aO

ADD <dest>,<src>

Function:

Description:

Flags:

Example:

Variations

ADDA,#data

Bytes:

States:

[Encoding]

_J __

Add

Adds the source operand to the destination operand, which can be a register or the accumu
lator, leaving the result in the register or accumulator. If there is a carry out of bit 7 (Cy), the
CY flag is set. If byte variables are added, and if there is a carry out of bit 3 (AC), the AC flag
is set. For addition of unsigned integers, the CY flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

CY AC OV N z
./ ./ ./ ./

Register 1 contains OC3H (11000011B) and register 0 contains OAAH (10101010B). After
executing the instruction

ADD R1,RO

register 1 contains 6DH (01101101 B), the AC flag is clear, and the CY and OV flags are set.

Binary Mode

2

1

Source Mode

2

1

0010 0100 I immed. data

A-27

t

I

I

Il
!\
i ~

'j
J

i:

i:
I,

11

I

INSTRUCTION SET REFERENCE

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADD

ADDA,dlr8

Bytes:

States:

[Encoding]

(A) f- (A) + #data

Binary Mode

2

1t

Source Mode
2

1t
tlf this instruction addresses a port (Px, x= 0-3), add 1 state.

,--_0_0_1_0_--I...._O_1_0_1_...J1 1 dlrectaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADD

ADDA,@RI

Bytes:
States:

[Encoding]

(A) f- (A) + (dir8)

Binary Mode

1

2

Source Mode

2
3

0010 011 I

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodlng]

Operation: ADD

ADDA,Rn

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

A-28

(A) f- (A) + «Ri»

Binary Mode

1

0010

Source Mode

2
2

1 r r r

Binary Mode = [Encoding]
Source Mode = [A5][Encodlng]

ADD
(A) f- (A) + (Rn)

intet

I

intet INSTRUCTION SET REFERENCE

ADD Rmd,Rms

Bytes:

States:

Binary Mode

3

2

Source Mode

2

[Encoding] ~_O_O __ 1_0 __ ~ __ 1_1_0 __ o __ ~1 I ssss

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rmd) ~ (Rmd) + (Rms)

ADD WRjd,WRjs

Bytes:

States:

Binary Mode

3

3

Source Mode

2

2

SSSS

[Encoding] L-_O_O_1_0_---L._1_1_0_1_---l1 LI __ t _t t_t_---L._T_T_T_T~

Hex Code in: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: ADD
(WRjd) ~ (WRjd) + (WRjs)

ADD DRkd,DRks

Bytes:

States:

Binary Mode

3

5

Source Mode

2

4

[Encoding] L--_O_O_1_0_--,-__ 1_1_1_1 _~I I u u u u

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: ADD
(DRkd) ~ (DRkd) + (DRks)

ADD Rm,#data

Bytes:

States:

Binary Mode

4

3

Source Mode

3
2

uuuu

[Encoding] L-_O_O_1_0_L-_1_1_1_0_~1 LI _s_s_s_s_-L_o_o_o_o_~1 IL-_#_d_ru_a __ ~

A-29

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: ADD
(Rm) +- (Rm) + #data

ADD WRj,#data16

Binary Mode Source Mode
Bytes: 5 4

States: 4 3

[Encoding]

0010 1 1 1 0 1 I t t t t

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(WRj) +- (WRj) + #data16

ADD DRk,#Odata16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5
[Encoding]

0010 111 0 I I uuuu

Hex Code In: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(DRk) +- (DRk) + #data16

ADD Rm,dlr8

Binary Mode Source Mode

Bytes: 4 3

States: 3t 2t

intet~

0100 I I #data hi I I #data low

1000 I I #data hi I I #datalow

tlf this instruction addresses a port (Px, X= 0-3). add 1 state.

[Encoding] '--_0_0_1_0_---'-_1_1_1_0_----'1 Iss s s

Hex Code In: . Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: ADD
(Rm) +- (Rm) + (dlr8)

A-30

0001 I I direct addr

J.

intet INSTRUCTION SET REFERENCE

ADD WRj,dir8

Binary Mode Source Mode
Bytes: 4 3

States: 4 3

[Encoding] L-_0_0_1_0_...I...-_1_1_1_0_---l11 '-__ 1 1_1 _1 _-'--_0_1_0_1_---'1 1 direct addr

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding

Operation: ADD
(WRj) E- (WRj) + (dir8)

ADD Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

0010 1 1 1 0 1 I ssss

Hex Code In: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) E- (Rm) + (dir16)

ADD WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

0010 1 1 1 0 I I 1 tt 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(WRj) E- (WRj) + (dir16)

ADDRm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

__ 1

001 1 I I direct addr I I direct add

01 1 1 I I direct addr I I direc1addr

A-31

il
I"

"

I'

INSTRUCTION SET REFERENCE int'et
[Encoding]

~_0_0_1_0 __ ~ __ 1_1_1_0 __ ~1 ~I ___ tt_t_t __ ~ __ 1_0_0_1~1 I~_s_s_s_s __ ~ __ o_o_o_o __ ~

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Am) ~ (Rm) + «WAj))

ADD Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

0010 1 1 1 0 I I uuuu 1 01 1 I I ssss 0000

Hex Code In: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) ~ (Rm) + «DRk))

ADDC A,<src>

Function: Add with carry

Description: Simultaneously adds the specified byte variable, the CY flag, and the accumulator contents,
leaving the result in the accumulator. If there Is a carry out of bit 7 (Cy), the CY flag is set; if
there is a carry out of bit 3 (AC), the AC flag is set. When adding unsigned integers, the CY
flag indicates that an overflow occurred.

Flags:

Example:

A-32

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

./

Ar
MV

./

,,,,
vv

./

..
I~

./

The accumulator contains OC3H (110000118), register 0 contains OAAH (101010108), and
the CY flag is set. After executing the instruction

ADDCA,AO

the accumulator contains 6EH (011011108), the AC flag is clear, and the CY and OV flags
are set.

_1

intet~

Variations

ADDC A,#data

Bytes:
States:

[Encoding]

Binary Mode

2

Source Mode

2

001 1 0100 , immed. data

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADDC
(A) ~ (A) + (CY) + #data

ADDCA,dir8

Bytes:

States:

Binary Mode
2

1t

Source Mode
2

1t

INSTRUCTION SET REFERENCE

tlf this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] ,--_0_0_1_1 _-'-_0_1_0_1_---" , direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADDC

ADDCA,@RI

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

1_

(A) ~ (A) + (CY) + (dir8)

Binary Mode

1

2

001 1

Source Mode

2
3

01 1 i

Binary Mode = [Encoding]
Source Mode = [ASJ[Encoding]

AD DC
(A) ~ (A) + (CY) + ((Ri»

A-33

I

I' 11

INSTRUCTION SET REFERENCE

ADDCA,Rn

Bytes:

States:

Binary Mode

1

Source Mode

2

2

[Encoding] 0011 1 r r r

Hex Code In: Binary Mode = [Encoding]
Source Mode = [A5][Encodlng]

Operation: AD DC
(A) ~ (A) + (Cy) + (Rn)

AJMPaddr11

Function: Absolute Jump

intet

Description: Transfers program execution to the specified address, which is formed at run time by
concatenating the upper five bits of the PC (after incrementing the PC twice), opcode bits 7-
5, and the second byte of the instruction. The destination must therefore be within the same
2-Kbyte ·page" of program memory as the first byte of the instruction following AJMP.

Flags:

Cy AC ov N z

Example: The label "JMPADR" Is at program memory location 0123H. After executing the instruction

AJMPJMPADR

at location 0345H, the PC contains 0123H.

Bytes:

Binary Mode

2

Source Mode

2
States: 3 3

[Encoding] I L. _a_10_a_9_a_8_0_L--_0_0_ 0_ 1_.....J

Hex Code In: Binary Mode = [Encoding]
SUurCIII mode = [iEnlOodingj

Operation: AJMP
(PC) ~ (PC) + 2
(PC. 1 0:0) ~ page address

A-34

I a7 a6 a5 a4 I a3 a2 a1 aO

J

intet INSTRUCTION SET REFERENCE

ANL <dest>,<src>

Function: Logical-AND

Description: Performs the bitwise logical-AND (A) operation between the specified variables and stores
the results in the destination variable.

Flags:

Example:

Variations

ANLdlr8,A

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

The two operands allow 10 addressing mode combinations. When the destination is the
register or accumulator, the source can use register, direct, register-indirect, or immediate
addressing; when the destination is a direct address, the source can be the accumulator or
immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

CY AC OV N z

Register 1 contains OC3H (110000118) and register 0 contains 55H (010101018). After
executing the instruction

ANL R1,RO

register 1 contains 41H (010000018).

When the destination is a directly addressed byte, this instruction clears combinations of bits
in any RAM location or hardware register. The mask byte determining the pattern of bits to
be cleared would either be an immediate constant contained in the instruction or a value
computed in the register or accumulator at run time. The instruction

ANL P1,#011100118

clears bits 7, 3, and 2 of output port 1.

Binary Mode

2

2t

Source Mode

2

2t
tit this instruction addresses a port (Px, x= Q-3), add 2 states.

,--_0_1 _0_1_--'-__ 0_0_1_0_---'1 1 direct addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

ANL
(dir8) ~ (dir8) A (A)

A-35

II
1.1

: ~
I,~ ,.

INSTRUCTION SET REFERENCE

ANL dlr8,#data

Binary Mode Source Mode

Bytes: 3 3
States: 3t 3t

tit this Instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] 1-_0_1_0_1_-1..._0_0_1 _1_....J1 1 direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(dlr8) ~ (dlr8) A #data

ANLA,#data

Bytes:

Binary Mode

2

Source Mode

2

States:

[Encoding] 0101 0100

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(A) ~ (A) A #data

ANLA,dlr8

1

Ilmmed. data

Bytes:

Binary Mode

2

Source Mode

2
States: 1t 1t

1 immed. data

tit this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] ,--_0_1 _o_1_--'-__ o_1_o_1_----'1 1 direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(A) ~ (A) A (dir8)

A-36

intet

_L

ANLA,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

[Encoding] 01 01 o 1 1 i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

Operation: ANL

ANLA,Rn

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

ANL Rmd,Rms

Bytes:

States:

[Encoding]

(A) ~ (A) A ((Ri))

Binary Mode Source Mode

1 2

2

0101 1rrr

Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

ANL
(A) ~ (A) A (Rn)

Binary Mode Source Mode

3 2
2

~_0_1_0_1 __ ~ __ 1_1_0_0 __ ~1 I ssss

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rmd) ~ (Rmd) A (Rms)

ANL WRjd,WRjs

Bytes:

States:

Binary Mode

3

3

Source Mode

2

2

INSTRUCTION SET REFERENCE

ssss

[Encoding] ~_0_1_0_1 __ ~ __ 1_1_0_1 __ ~1 ~I ___ tt_t_t __ ~ __ T_T_T_T __ ~

A-37

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: ANL
(WRjd) f- (WRjd) A (WRjs)

ANL Rm,#data

Bytes:
States:

Binary Mode

4
3

Source Mode

3
2

[Encoding] ~_0_1_0_1 __ ~ __ 1_1_1_0 __ ~1 I ssss

Hex Code in: Binary Mode = [A5J[Encodlng]
Source Mode = [Encoding]

Operation: ANL
(Rm) f- (Rm) A #data

ANL WRj,#data16

Bytes:
States:

[Encoding]

Binary Mode

5
4

Source Mode

4
3

intet~

0000 #data

0101 1 1 1 0 I 1 __ t t_t_t _"",,--_0 _1 _0 _0 ----,I I #data hi I I #data low

Hex Code In: Binary Mode = [A5J[Encodlng]
Source Mode = [Encoding]

Operation: . ANL
(WRj) f- (WRj) A #data16

ANL Rm,dlr8

Bytes:

States:

Binary Mode
4

3t

Source Mode

3

2t
tlf this instruction addresses a port (Px, X= 0-3), add 1 state.

[Encoding]

Hex Code in:

Operation:

A-38

0101 1 1 1 0 I I ssss
~--------~------~

Binary Mode = [A5J[Encoding]
Source Mode = [Encoding]

ANL
(Rm) f- (Rm) A (dir8)

0001 direct addr

I

INSTRUCTION SET REFERENCE

ANL WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding] ~_O __ 1_0_1 __ ~ ___ 1_1_1_0 __ ~1 ~I ___ t_t_tt ____ ~ __ O_1_0_1 __ ~ __ d_iffi_c_t_a_dd_r~

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: ANL

ANL Rm,dir16

Bytes:

States:

[Encoding]

01 01

Hex Code in:

Operation:

ANL WRj,dir16

Bytes:

States:

[Encoding]

01 01

Hex Code in:

Operation:

ANLRm,@WRj

Bytes:

States:

(WRj) ~ (WRj) A (dir8)

Binary Mode Source Mode

5 4

3 2

1 1 1 0 I I ssss

Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

ANL
(Rm) ~ (Rm) A (dir16)

Binary Mode Source Mode

5 4

4 3

1 1 1 0 I I t t tt

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

ANL
(WRj) ~ (WRj) A (dir16)

Binary Mode

4

3

Source Mode

3

2

001 1 I I direct I I direct

01 1 1 I I direct I I direct

A-39

I

INSTRUCTION SET REFERENCE

[Encoding]

01 01 1 1 1 ° I 1...1 __ t_tt_t_....L-_1_0_0_1 ---II 1 _S_S_S_S_-,-_O_O_O_O_-,

Hex Code In: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL

ANLRm,@DRk

Bytes:
States:

[Encoding]

(Rm) ~ (Rm) A «WRj»

Binary Mode

4

4

Source Mode

3
3

,--_0_1_0_1_-,-_1_1_1_0_ 11 __ u_u_u_u __ ~ ___ 1_0_1_1---'1 ~I ___ s_ss_s __ -'-__ o_o_o_o __

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: ANL
(Rm) ~ (Rm) A «DRk»

ANL CY,<src-bit:>

Function: Logical-AND for bit variables

Description: If the Boolean value of the source bit is a logical 0, clear the CY flag; otherwise leave the CY
flag in its current state. A slash ('J") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit Is used as the source value, but
the source bit itself is not affected.

Flags:

Example:

A-40

Only direct addressing Is allowed for the source operand.

CY AC OV N

Set the CY flag If, and only if, P1.0 = 1, ACC. 7 = 1, and OV = 0:

MOV CY.P1.0 :Load carrv with inout Din stste
ANL CY,ACC.7 ;AND carrY with accumulator bit 7
ANL CY,JOV ;AND with inverse of overflow flag

z

INSTRUCTION SET REFERENCE

ANL CY,blt51

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

ANL CY,lbitS1

Bytes:
States:

[Encoding]

Binary Mode

2

1t

Source Mode
2

1t
tit this instruction addresses a port (Px, X= 0-3), add 1 state.

L...-_1_0_0_0_--L-_O_O_1_0_ 1 I bit addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

ANL
(CY) f- (CY) A (bitS1)

Binary Mode

2

1t

Source Mode

2

1t
tit this instruction addresses a port (Px, x= 0-3), add 1 state.

L...-_1_O_1_1_--,-_0_0_0_0_ 1 I bit addr

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL

ANLCY,blt

Bytes:

States:

[Encoding]

(CY) f- (CY) A 121 (bitS1)

Binary Mode

4

3t

Source Mode

3

2t
tit this instruction addresses a port (Px, x= 0-3), add 1 state.

1.--_1_0_1_0_--L-_1_0_0_1_ 1 LI _1_0_0_0_-1.... __ 0 _----l_---=-y.:...y.:...y -----,I I dir addr

Hex Code In:

Operation:

Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

ANL
(CY) f- (CY) A (bit)

A-41

I,
I

I
i

INSTRUCTION SET REFERENCE in1et

ANL CY,lbit

Bytes:

States:

[Encoding]

Binary Mode

4

3t

Source Mode

3

2t
tlf this instruction addresses a port (Px, x = Q-3), add 1 state.

L...-_1_0_1_0_-,--_1 _0_0 _1 ---II ,-I _1_1_1_1_-'--__ 0 __ '--_Y_Y_y-----'1 1 dlr addr

Hex Code In: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: ANL
(CY) E- (CY) A 0 (bit)

CJNE <dest>,<src>,rel

Function: Compare and jump if not equal.

Description: Compares the magnitudes of the first two operands and branches If their values are not
equal. The branch destination Is computed by adding the signed relative displacement In the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction. If
the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src
byte>, the CY flag is set. Neither operand is affected.

Flags:

Example:

A-42

The first two operands allow four addressing mode combinations: the accumulator may be
compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.

CY AC OV N z
./ ./

The accumulator contains 34H and R7 contains 56H. After executing the first Instruction In
the sequence

CJNE R7,#60H,NOT_EQ

JC

;R7 = 60H

; IF R7 < 60H

;R7 > 60H

th~ CY flag is s~t am:! program execution continues at label NOT_Ea. By testing the CY ~!ag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then executing the instruction,

WAIT: CJNE A,P1 ,WAIT

clears the CY flag and continues with the next instruction in the sequence, since the
accumulator does equal the data read from P1. (If some other value was being input on P1,
the program loops at this point until the P1 data changes to 34H.)

J

INSTRUCTION SET REFERENCE

Variations

CJNE A,#data,rel

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3
States: 2 5 2 5

[Encoding] 1011 0100 I immed. data reI. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation:

CJNE A,dlr8,rel

Bytes:

States:

(PC) +- (PC) + 3
IF (A) ¢ #data
THEN

(PC) +- (PC) + relative offset
IF (A) < #data
THEN

(CY) +-1
ELSE

(CY) +- 0

Binary Mode

Not Taken Taken

3 3
3 6

Source Mode

Not Taken Taken

3 3

3 6

[Encoding] L...-_1_0_1_1_....J...._0_1_0_1_ 1 I direct addr reI. addr

Hex Code In:

Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

(PC) +- (PC) + 3
IF (A) ¢dirS
THEN

(PC) +- (PC) + relative offset
IF (A) < dirB
THEN

(CY) +- 1
ELSE

(CY) +- 0

A-43

INSTRUCTION SET REFERENCE

CJNE @RI,#data,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 4 4
States: 3 6 4 7

[Encoding] 1 011 0111 I immed. data reI. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodlng]

Operation: (PC) ~ (PC) + 3
IF «Ri» * #data
THEN

(PC) ~ (PC) + relative offset
IF «Ri» < #data
THEN

(CY) ~ 1
ELSE

(CY) ~ 0

CJNE Rn,#data,rel
Binary Mode

Not Taken Taken

Bytes: 3 3

States: 2 5

Source Mode
Not Taken Taken

4 4

3 6

[Encoding] 1 011 1 r r r Ilmmed. data reI. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encodlng]

Operation: (PC) ~ (PC) + 3
IF (Rn) * #data
THEN

A-44

(PC) ~ (PC) + relative offset
IF (Rn) < #data
THEN

(CY) ~ 1
ELSE

(CY) ~ 0

intet~

I

INSTRUCTION SET REFERENCE

CLRA

Function: Clear accumulator

Description: Clears the accumulator (i.e., resets all bits to zero).

Aags:

CY AC OV N

./

Example: The accumulator contains 5CH (010111008). The instruction

Bytes:
States:

[Encoding]

CLRA

clears the accumulator to OOH (000000008).

Binary Mode

1

Source Mode
1

111 0 0100

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(A) +- 0

CLRblt

Function: Clear bit

z

Description: Clears the specified bit. CLR can operate on the CY flag or any directly addressable bit.

Flags: Only for instructions with CY as the operand.

Example:

CY AC ov N

./

Port 1 contains 5DH (010111018). After executing the instruction

CLR P1.2

port 1 contains 59H (01011001B).

z

A-45

INSTRUCTION SET REFERENCE

Variations

CLRbit51

Bytes:
States:

[Encoding]

Binary Mode

4

2t

Source Mode

3

2t
tit this instruction addresses a port (Px, x= 0-3), add 2 states.

,--_1_1_0_0_--,-_0_0_1_0_ 1 1 Bit addr

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR

CLRCY

Bytes:
States:

[Encoding]

(bitS1) +- 0

Binary Mode Source Mode

1

1 100 001 1

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(CY) +- 0

CLR bit

Bytes:
States:

[Encoding]

Binary Mode
4

4t

Source Mode

4

3t
tit this instruction addresses a port (Px, x= 0-3), add 2 states.

intet

1010 1 001 1 L...I _1_1_0_0_...L-__ 0 __ L..---':"Y":"'Y":"'Y--I1 1 dir addr

Hex Code in:

Operation:

A-46

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CLR
(bit) +- 0

I

INSTRUCTION SET REFERENCE

CMP <dest:>,<src>

Function: Compare

Description: Subtracts the source operand from the destination operand. The result is not stored in the
destination operand. If a borrow is needed for bit 7, the CY (borrow) flag is set; otherwise it is
clear.

Flags:

Example:

Variations

When subtracting signed integers, the OV flag indicates a negative result when a negative
value is subtracted from a positive value, or a positive result when a positive value is
subtracted from a negative value.

The source operand allows four addressing modes: register, direct, immediate and indirect.

CY AC OV N z
,/ ,/ ,/

Register 1 contains OC9H (110010018) and register 0 contains 54H (010101008). The
instruction

CMP R1,RO

clears the CY and AC flags and sets the OV flag.

CMPRmd,Rms

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

Binary Mode

3
2

Source Mode

2

1-_1_0_1_1_---1..._1_1_0_0_---11 L...I _s_s_s_s_---I..._S_S_S_S----'

Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

CMP
(Rmd) - (Rms)

CMP WRjd,WRjs

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

L-

Binary Mode

3

3

Source Mode

2

2

1-_1_0_1_1_~_1_1_1_0_~1 L...I __ tt_t_t_~_T_T_T_T_~

Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

CMP
(WRjd) - (WRjs)

A-47

INSTRUCTION SET REFERENCE intel®

CMP DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

[Encoding] 1 01 1 1 1 1 1 I I uuuu UUUU

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: CMP
(ORkd) - (ORks)

CMP Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding] 1 01 1 1 1 1 0 I I ssss 0000 I I # data

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) -#data

CMP WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

1 0 1 1 1 1 1 0 I I tttt 0100 I I #data hi I I #data low

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRD - #data16

CMP DRk,#Odata16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

1 0 1 1 1 1 1 0 I I uuuu 1000 I I #data hi I I #data hi

A-48 J -----------

-
i ntel® INSTRUCTION SET REFERENCE

Hex Code In: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: CMP
(ORk) - #Odata 16

CMP DRk,#1data16

Bytes:

States:
[Encoding]

Binary Mode

5

6

Source Mode
4

5

1 ° 1 1 1 1 1 ° 1 LI _U_U_U_U_....I..-_1 _1 _0 _0 ----JI 1 #data hi 1 1 #data hi

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation:

CMP Rm,dir8

Bytes:

States:

CMP
(ORk) - #1data16

Binary Mode
4

3t

Source Mode

3

2t
tlf this instruction addresses a port (Px, X= 0-3), add 1 state.

[Encoding] L-_1_0_1_1_---I..._1_1_1_O_---I1 1 s s s s 0001 1 IL....-d_ir_ad_d_r----'

Hex Code In: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation:

CMP WRj,dirB

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

1 __ _

CMP
(Rm) - (dir8)

Binary Mode

4

4

Source Mode

3

3

'---_1_0_1 _1 _....1..-_1_1_1_°_ 1 I'---_t t_t _t _....1...-_o_1_o_1_ 1 1 dir addr

Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

CMP
(WRj) - (dir8)

A-49

INSTRUCTION SET REFERENCE intet

CMP Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

1 01 1 1 1 1 0 I I ssss 0011 I I diraddr I I diraddr

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: CMP
(Rm) - (dir16)

CMP WRJ,dlr16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

1 01 1 111 0 I I tt t t 01 1 1 I I dir addr I I dir addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRj) - (dir16)

CMPRm,@WRJ

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

1 01 1 1 1 1 0 I I t t t t 1 001 I I ssss I I 0000

Hex Code In: Binary Mode = [A5][Encodlng]
e: 8 'Ift..f'la _ rc ... ~"""","'I , --_. -- ... --- - L-· . ___ u -::1.1

Operation: CMP
(Rm) - «WRj))

CMP Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

A-50

1 - ~-------- ------ ------

-
in1"et INSTRUCTION SET REFERENCE

[Encoding]

L-_1_0_1_1_--L..._1_1_1_o_--,1 1 _u_u_u_u_...L-_1 _0 _1 _1 ----II 1 __ s s_s_s_--,I 1,--_0_0_0_0_--,

Hex Code in: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: CMP
(Rm) - ((ORk))

CPLA

Function: Complement accumulator

Description: Logically complements (0) each bit of the accumulator (one's complement). Clear bits are
set and set bits are cleared.

Flags:

Example:

Bytes:

States:

[Encoding]

CY AC OV N z

The accumulator contains 5CH (01011100B). After executing the Instruction

CPLA

the accumulator contains OA3H (10100011 B).

Binary Mode

1

Source Mode

1

1 1 1 1 0100

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CPL
(A) ~0(A)

CPL bit

Function: Complement bit

Description: Complements (0) the specified bit variable. A clear bit is set, and a set bit is cleared. CPL
can operate on the CY or any directly addressable bit.

Flags:

L

Note: When this instruction is used to modify an output pin, the value used as the original
data is read from the output data latch, not the input pin.

Only for instructions with CY as the operand.

CY AC OV N z

A-51

. ~

I

INSTRUCTION SET REFERENCE

Example:

Variations

CPLbitS1

Bytes:

States:

[Encoding]

Port 1 contains SBH (01011101B). After executing the instruction sequence

CPL P1.1
CPL P1.2

port 1 contains SBH (01011011B).

Binary Mode

2

2t

Source Mode

2

2t
tlf this instruction addresses a port (Px, x = 0-3), add 2 states:

L...-_1_0_1_1_....L.._o_o_1_0_...J1 I bit addr

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CPL

CPLCY

Bytes:
States:

(bitS1) f- 0(bitS1)

Binary Mode
1

Source Mode

1

[Encoding] 1 01 1 0011

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CPL
(CY) f- 0(CY)

CPL bit

Bytes:

States:

[Encoding]

Binary Mode

4

4t

Source Mode

3

3t
Tit tnlS Instruction aaaresses a port (PX, X= 0-3), add 2 states.

L...-_1_0_1_0_....L.._1_0_0_1_ 1 1 _1_0_1_1_-,-__ 0 _--,-__ Y_Y _Y ---,I I dir addr

Hex Code In:

A-52

Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

_1

-
INSTRUCTION SET REFERENCE

Operation: CPL
(bit) ~ 0(bit)

DAA

Function: Decimal-adjust accumulator for addition

Description: Adjusts the 8-bit value in the accumulator that resulted from the earlier addition of two
variables (each in packed-BCD format), producing two 4-bit digits. Any ADD or AD DC
instruction may have been used to perform the addition.

Flags:

Example:

If accumulator bits 3:0 are greater than nine (XXXX101 O-XXXX1111), or if the AC flag is set,
six is added to the accumulator, producing the proper BCD digit in the low nibble. This
internal addition sets the CY flag if a carry out of the lowest 4 bits propagated through all
higher bits, but it does not clear the CY flag otherwise.

If the CY flag is now set, or if the upper four bits now exceed nine (1010XXXX-1111XXXX),
these four bits are incremented by six, producing the proper BCD digit in the high nibble.
Again, this sets the CY flag if there was a carry out of the upper four bits, but does not clear
the carry. The CY flag thus indicates if the sum of the original two BCD variables Is greater
than 100, allowing multiple-precision decimal addition. The OV flag is not affected.

All of this occurs during one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding OOH, 06H, 60H, or 66H to the accumulator, depending on
initial accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator to BCD
notation, nor does DA A apply to decimal subtraction.

CY AC OV N z

The accumulator contains 56H (0101011 OB), which represents the packed BCD digits of the
decimal number 56. Register 3 contains 67H (01100111B), which represents the packed
BCD digits of the decimal number 67. The CY flag is set. After executing the instruction
sequence

ADDCA,R3
DAA

the accumulator contains OBEH (10111110) and the CY and AC flags are clear.
The Decimal Adjust instruction then alters the accumulator to the value 24H (001001 OOB),
indicating the packed BCD digits of the decimal number 24, the lower two digits of the
decimal sum of 56,67, and the carry-in. The CY flag is set by the Decimal Adjust instruction,
indicating that a decimal overflow occurred. The true sum of 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01 H or 99H. If the
accumulator contains 30H (representing the digits of 30 decimal), then the instruction
sequence,

ADDA,#99H
DAA

leaves the CY flag set and 29H in the accumulator, since 30 + 99 = 129. The low byte of the
sum can be interpreted to mean 30 - 1 = 29.

A-53

INSTRUCTION SET REFERENCE intet

Bytes:

States:

[Encoding]

Binary Mode

1

1

Source Mode

1

1 101 0100

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DA

DEC byte

(Contents of accumulator are BCD)
IF [[(A.3:0) > 9] V HAC) = 1]]

THEN (A.3:0) ~ (A,3:0) + 6
AND

IF [[(A,7:4) > 9] V [(CY) = 1]]
THEN (A.7:4) ~ (A.7:4) + 6

Function: Decrement

Description: Decrements the specified byte variable by 1. An original value of OOH undElrflows to OFFH.

Flags:

Example:

Variations

DEC A

Bytes:

States:

[Encoding]

A-54

Four operands addressing modes are allowed: accumulator, register, direct, or register
indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data Is read from the output data latch, not the input pins.

CY AC OV N z
,/

Register 0 contains 7FH (01111111B). On-chip RAM locations 7EH and 7FH contain OOH
and 40H, respectively. After executing the instruction sequence

DEC@RO
DECRO
DEC@RO

register 0 contains 7EH and on-chip RAM locations 7EH and 7FH are set to OFFH and 3FH,
respectively.

Binary Mode

1

1

Source Mode

1

0001 0100

I

-
i nfel® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DEC

DECdir8

Bytes:

States:

(A) t- (A)-1

Binary Mode

2

2t

Source Mode

2

2t
tlf this instruction addresses a port (Px, x= 0-3), add 2 states.

[Encoding] '---_0_0_0_1_---'-_0_1_0_1_--'1 1 dir addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DEC
(dir8) t- (dir8) - 1

DEC@RI

Bytes:

States:

Binary Mode

1

3

Source Mode

2

4

[Encoding] 0001 011 i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: DEC

DECRn

Bytes:

States:

[Encoding]

«Ri)) t- «Ri)) - 1

Binary Mode

1

1

0001

Source Mode

2
2

1 r r r

Hex Code In: Binary Mode = [Encoding]
Source Mode = [A5)[Encodlng]

Operation: DEC
(Rn) t- (Rn) - 1

L _____ _ A·55

INSTRUCTION SET REFERENCE

DEC <desb,<src>

Function: Decrement

Description: Decrements the specified variable at the destination operand by 1, 2, or 4. An original value
of OOH underflows to OFFH.

Flags:

CY AC ov N z
./

Example: Register 0 contains 7FH (01111111 B). After executing the instruction sequence

DEC RO,#1

register 0 contains 7EH.

Variations

DEC Rm,#short

Bytes:

States:

Binary Mode

3

2

Source Mode

2

[Encoding] ~_0_0_0_1 __ ~ __ 1_0_1_1 __ ~1 I ssss

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: DEC
(Rm) +- (Rm) - #short

DEC WRj,#short

Bytes:

States:

Binary Mode

3
2

Source Mode

2

01 vv

[Encoding] ~_0_0_0_1 __ ~ __ 1_0_1_1 __ ~1 ~I ___ tt_t_t __ ~ ___ 0_1 __ ~ ____ v_v __ ~

Hex Code in:

Operation:

A-56

Binary Mode = rA5UEncodinal
SourCe Mode = -[Encoding] --

DEC
(WRD +- (WRD - #short

1

-
INSTRUCTION SET REFERENCE

DEC DRk,#short

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

[Encoding] '--_0_0_0_1_---'-_1_0_1_1_--'1 1 u u u u 1 1 vv

Hex Code In: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DEC
(DRk) ~ (DRk) - #short

DIV <desb,<src>

Function: Divide

Description: Divides the unsigned integer in the register by the unsigned integer operand in register
addressing mode and clears the CY and OV flags.

Flags:

I

For byte operands «desb,<src> = Rmd,Rms) the result Is 16 bits. The 8-bit quotient is in
R(md+ 1), and the 8-blt remainder is in Rmd. For example: Register 1 contains 251 (OFBH or
11111011 B) and register 5 contains 18 (12H or 0001 001 OB). After executing the instruction

DIV R1,R5

register 0 contains 13 (ODH or 00001101 B); register 1 contains 17 (11 H or 00010001 B),
since 251 = (13 X 18) + 17; and the CY and OV bits are clear.(see Flags).

The CY flag is cleared. The N flag Is set if the MSB of the quotient is set. The Z flag is set if
the quotient is zero.:

CY AC OV N Z

o ./ ./ ./

Exception: if <src> contains OOH, the values returned in both operands are undefined; the
CY flag is cleared, OV flag is set, and the rest of the flags are undefined.:

CY AC OV N Z

o ? ? ?

A-57

I:
I

INSTRUCTION SET REFERENCE

Variations

DIVRmdRms

Bytes:

States:

[Encoding]

Binary Mode

3
11

Source Mode

2
10

,--_1_0_0_0_--,-_1_1_0...;.0_--,1 1 s s s s SSSS

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: DIV (8-bit operands)

DIV WRJd,WRJs

Bytes:

States:

(Rmd) +- quotient (Rmd) I (Rms) if <dest> md = 0.2.4 14
(Rmd+1) +- remainder (Rmd) I (Rms)

(Rmd-1) +- quotient (Rmd) I (Rms) if <dest> md = 1.3.5 •..• 15
(Rmd) +- remainder (Rmd) I (Rms)

Binary Mode

3
22

Source Mode

2
21

[Encoding] ,--_1_0_0_0 __ ~_1_1_0_1 __ ~1 ~I ___ tt_t_t __ ~_T_T_T_T __ ~

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: DIV (16-bit operands)
(WRjd) +- quotient (WRjd) I (WRjs) if <dest> jd = 0. 4. 8 28
(WRjd+2) +- remainder (WRjd) I (WRjs)

(WRjd-2) +- quotient (WRjd) I (WRjs) if <dest> jd = 2. 6. 10 30
(WRjd) +- remainder (WRjd) I (WRjs)

For word operands «dest>.<src> = WRjd.WRjs) The 16-bit quotient is in WRGd+2). and the
16-bit remainder is in WRjd. For example. for a destination register WR4. assume the
quotient is 1122H and the remainder is 3344H. Then. the results are stored in these register
file locations:

A-58

J

-
in1et INSTRUCTION SET REFERENCE

DIVAB

Function: Divide

Description: Divides the unsigned 8-bit integer in the accumulator by the unsigned 8-bit integer in register
B. The accumulator receives the integer part of the quotient; register B receives the integer
remainder. The CY and OV flags are cleared.

Flags:

Hex Code in:

Example:

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

1_

Exception: if register B contains OOH, the values returned in the accumulator and register B
are undefined; the CY flag is cleared and the OV flag is set.

CY AC OV N z
0 ,/ ,/

For division by zero:

CY AC OV N Z

0 ? ? ?

Binary Mode = [Encoding]
Source Mode = [Encoding]

The accumulator contains 251 (OFBH or 11111011 B) and register B contains 18 (12H or
00010010B). After executing the instruction

DIVAB

the accumulator contains 13 (OOH or 00001101 B); register B contains 17 (11H or
0001 0001 B), since 251 = (13 X 18) + 17; and the CY and OV flags are clear.

Binary Mode

1

Source Mode

1

10

1000 0100

Binary Mode = [Encoding]
Source Mode = [Encoding]

DIV
(A) ~ quotient (A)/(B)
(B) ~ remainder (A)/(B)

10

A-59

I

I

I

('

I
"

i ~
!I
I!i
I

'1 Ii

INSTRUCTION SET REFERENCE

DJNZ <byte>,<rel-addr>

Function: Decrement and jump if not zero

Description: Decrements the specified location by 1 and branches to the address specified by the second
operand if the resulting value is not zero. An original value of OOH underflows to OFFH. The
branch destination is computed by adding the signed relative-displacement value In the last
instruction byte to the PC, after incrementing the PC to the first byte of the following
instruction.

Flags:

Example:

Variations

DJNZ dlr8,rel

Bytes:
States:

[Encoding]

A-SO

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the Input pins.

CY AC OV N Z

The on-chip RAM locations 40H, 50H, and 60H contain 01H, 70H, and 15H, respectively.
After executing the Instruction sequence

DJNZ 40H,LABEL 1
DJNZ 50H,LABEL2
DJNZ 60H,LABEL

on-chip RAM locations 40H, 50H, and 60H contain OOH, 6FH, and 14H, respectively, and
program execution continues at label LABEL2. (The first jump was not taken because the
result was zero.)

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction.

The instruction sequence,

MOVR2,#8
TOGGLE: CPL P1.7

DJNZ R2,TOGGLE

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each
pulse lasts three states: two for DJNZ and one to alter the pin.

Binary Mode
Not Taken Taken

3 3

3 6

Source Mode
Not Taken

3

3

Taken
3
6

1101 0101 L..-___ -L-___ -..II I direct addr I I rei. addr

.1.

-

-

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation:

DJNZ Rn,rel

Bytes:

States:

DJNZ
(PC) ~ (PC) + 2
(dirB) ~ (dirB) - 1
IF (dirB > 0 or (dirB) < 0

THEN
(PC) ~ (PC) + rei

Binary Mode

Not Taken

3

2

Taken

3

5

INSTRUCTION SET REFERENCE

Source Mode

Not Taken Taken

3 3

3 6

[Encoding] ~_1 _1_0_1 __ '--_1_r_r_r_----'1 I reI. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

Operation: DJNZ

ECALL <des!>

(PC) ~ (PC) + 2
(Rn) ~ (Rn) - 1
IF (Rn) > 0 or (Rn) < 0

THEN
(PC) ~ (PC) + rei

Function: Extended call

Description: Calls a subroutine located at the specified address. The instruction adds four to the program
counter to generate the address of the next instruction and then pushes the 24-bit result
onto the stack (high byte first), incrementing the stack pointer by three. The B bits of the high
word and the 16 bits of the low word of the PC are then loaded, respectively, with the
second, third and fourth bytes of the ECALL instruction. Program execution continues with
the instruction at this address. The subroutine may therefore begin anywhere in the full 16-
Mbyte memory space.

Flags:

Example:

_1

CY AC ov N Z

The stack pOinter contains 07H and the label "SUBRTN" is assigned to program memory
location 123456H. After executing the instruction

ECALL SUBRTN

at location 012345H, SP contains 09H; on-chip RAM locations OBH, 09H and OAH contain
01H, 23H and 45H, respectively; and the PC contains 123456H.

A-61

I ~
It

I'

II

INSTRUCTION SET REFERENCE intet.
Variations

ECALL addr24

Bytes:

States:

[Encoding]

Binary Mode

5
14

Source Mode

4
13

1001 1 010 addr23-
addr16

laddr15-addrSl I addr7-addrO

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: ECALL

ECALL@DRk

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

EJMP<dest>

Function:

Description:

A-62

(PC) ~ (PC) + 4
(SP) ~ (SP) + 1
«SP» ~ (PC.23:16)
(SP) ~ (SP) + 1
«SP» ~ (PC.15:8)
(SP) ~ (SP) + 1
«SP» ~ (PC.7:0)
(PC) ~ (addr.23:0)

Binary Mode Source Mode

3 2
12 11

1 001 1001 I I
Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

ECALL
(PC) ~ (PC) + 4
(SP) ~ (SP) + 1
«SP» ~ (PC.23:16)
(SP) ~ (SP) + 1
«SP» ~ (PC.15:8)
(SP) ~ (SP) + 1
«SP» ~ (PC.7:0)
(PC) ~ «ORk»

Extended jump

uuuu

Causes an unconditional branch to the specified address by loading the 8 bits of the high
order and 16 bits of the low order words of the PC with the second, third, and fourth
instruction bytes. The destination may be therefore be anywhere In the tull 16-Mbyte
memory space.

1

--

Flags:

Example:

Variations

EJMP addr24

Bytes:

States:

[Encoding]

INSTRUCTION SET REFERENCE

CY AC OV N z

The label "JMPADR" is assigned to the instruction at program memory location 123456H.
The instruction is

EJMPJMPADR

Binary Mode

5

6

Source Mode

4
5

1000 1 010 addr23-
addr16

I addr15-addrB I addr7-addrO

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: EJMP

EJMP@DRk

Bytes:

States:

[Encoding]

(PC) +- (addr.23:0)

Binary Mode

3

7

Source Mode

2

6

1...-_1_0_0_0_.....L._1_0_0_1_---I1 1 u u u u

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: EJMP

ERET

Function:

Description:

Flags:

Example:

L

(PC) +- «DRk»

Extended return

Pops byte 2, byte 1, and byte 0 of the 3-byte PC successively from the stack and
decrements the stack pOinter by 3. Program execution continues at the resulting address,
which normally is the instruction immediately following ECALL.

No flags are affected.

The stack pointer contains OBH. On-chip RAM locations OSH, 09H and OAH contain 01H,
23H and 49H, respectively. After executing the instruction

ERET

the stack pointer contains 07H and program execution continues at location 012349H.

A-63

!

i

" I

INSTRUCTION SET REFERENCE

Bytes:

States:

Binary Mode

3
10

Source Mode

2
9

[Encoding] 1010 1 010

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: ERET

INC <Byte>

(PC.7:0) +- «SP»
(SP) +- (SP) - 1
(PC.1S:8) +- «SP»
(SP) +- (SP) - 1
(PC.23:16) +- «SP»
(SP) +- (SP) - 1

Function: Increment

Description: Increments the specified byte variable by 1. An original value of FFH overflows to OOH.
Three addressing modes are allowed for 8-bit operands: register, direct, or register-indirect.

Flags:

Example:

Variations

INCA

Bytes:

States:

[Encoding]

A-64

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the Input pins.

Cy AC OV N z

Register 0 contains 7EH (0111111108) and on-Chip RAM locations 7EH and 7FH contain
OFFH and 40H, respectively. After executing the instruction sequence

INC@RO
INCRO
INC@RO

register 0 contains 7FH and on-Chip RAM locations 7EH and 7FH contain OOH and 41 H,
respectively.

Binary Mode

1

1

Source Mode

1

0000 0100

L

-
intet~

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC
(A) ~ (A) + 1

INC dirB

Bytes:

States:

Binary Mode

2

2t

Source Mode

2

2t

INSTRUCTION SET REFERENCE

tit this instruction addresses a port (P x, x = 0-3), add 2 states.

[Encoding]

Hex Code In:

Operation:

INC@RI

Bytes:

States:

[Encoding]

L...-_0_0_0_0_---l..._0_1_0_1_----I1 I direct addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

INC
(dir8) ~ (dir8) + 1

Binary Mode

1

Source Mode

2

3 4

0000 01 1 i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: INC

INCRn

Bytes:

States:

[Encoding]

«Ri) ~ «Ri)) + 1

Binary Mode

1

0000

Source Mode

2
2

1 r r r

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: INC
(Rn) ~ (Rn) + 1

L_
A-65

II
l~
i

i'
I

I

II
i

-
INSTRUCTION SET REFERENCE

INC <desb,<src>

Function: Increment

Description: Increments the specified variable by 1, 2, or 4. An original value of OFFH overflows to OOH.

Flags:

CY AC OV N Z

,/ ,/

Example: Register 0 contains 7EH (0111111108). After executing the Instruction

INC RO,#1

register 0 contains 7FH.
Variations

INC Rm,#short

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

[Encoding] 0000 1 01 1 I I ssss 00 vv

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: INC
(Rm) +- (Rm) + #short

INC WRJ,#short

Binary Mode Source Mode

Bytes: 3 2

States: 2

[Encoding] 0000 1 01 1 I I tttt 01 vv

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: INC
(WRJ) +- (WRj) + #short

INC DRk,#short

Binary Mode Source Mode

Bytes: 3 2
States: 4 3

[Encoding] 0000 1 01 1 I I uuuu 11 vv

A-66 J_

-
intet INSTRUCTION SET REFERENCE

Hex Code In: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: INC
(DRk) f- (DRk) + #shortdata pOinter

INC DPTR

Function: Increment data pointer

Description: Increments the 16-blt data pointer by one. A 16-bit increment (modulo 216) is performed; an
overflow of the low byte of the data pOinter (DPL) from OFFH to OOH Increments the high
byte of the data pOinter (DPH) by one. An overflow of the high byte (DPH) does not
increment the high word of the extended data pOinter (DPX = DRS6).

Flags:

CY AC ov N z
,/

Example: Registers DPH and DPL contain 12H and OFEH, respectively. After the instruction
sequence

Bytes:

States:

[Encoding]

INC DPTR
INC DPTR
INC DPTR

DPH and DPL contain 13H and 01 H, respectively.

Binary Mode

1

1

Source Mode

1

1 010 001 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC

JB blt51,rel
JB bit,rel

(DPTR) f- (DPTR) + 1

Function: Jump if bit set

Description: If the specified bit is a one, jump to the address specified; otherwise proceed with the next
instruction. The branch destination Is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

Flags:

CY AC ov N z

L_
A-S7

INSTRUCTION SET REFERENCE

Example:

Variations

JB bit51,rel

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

JB bit,rel

Bytes:

States:

[Encoding]

I 1010

Hex Code In:

Operation:

A-68

Input port 1 contains 11001010B and the accumulator contains 56 (01010110B). After the
Instruction sequence

JB P1.2,LABEL 1
JB ACC.2,LABEL2

program execution continues at label LABEL2.

Binary Mode

Not Taken Taken

3 3

2 5

Source Mode

Not Taken

3

2

Taken

3

5

0010 0000 '--__ ----''--__ ---', , bit addr " rei. addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

JB
(PC) +- (PC) + 3
IF (bIt51) = 1

THEN
(PC) +- (PC) + rei

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

5 5 4 4

4 7 3 6

1001 I I 0010 0 yy I direct addr I I reI. addr

Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

JB
(PC) +- (PC) + 3
IF (bit) = 1

THEN
(PC) +- (PC) + rei

_l

-
intet

JBC bit51,rel
JBC bit,rel

Function:
Description:

Flags:

Example:

Variations

JBC bit51,rel

Bytes:

States:

[Encoding]

INSTRUCTION SET REFERENCE

Jump if bit is set and clear bit
If the specified bit is one, branch to the specified address; otherwise proceed with the next
instruction. The bit is not cleared if it is already a zero. The branch destination is computed
by adding the signed relative displacement in the third instruction byte to the PC, after incre
menting the PC to the first byte of the next instruction.

Note: When this instruction is used to test an output pin, the value used as the original data
is read from the output data latch, not the input pin.

CY AC OV N z

The accumulator contains 56H (01010110B). After the instruction sequence

JBC ACC.3,LABEL 1
JBC ACC.2,LABEL2

the accumulator contains 52H (0101001 OB) and program execution continues at label
LABEL2.

Binary Mode

Not Taken

3

4

Taken

3

7

Source Mode

Not Taken Taken

3 3

4 7

L-_0_0_0_1_-L_0_0_0_0_---I1 I bit addr I I reI. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JBC

JBC bit,rel

Bytes:

States:

(PC) r (PC) + 3
IF (bit51) = 1

THEN
(bit51) r 0

(PC) r (PC) + rei

Binary Mode

Not Taken

5
4

Taken

5

7

Source Mode

Not Taken

4

3

Taken

4

6

A-69

INSTRUCTION SET REFERENCE int:et
[Encoding]

~I _1_0_1_0~~1_0_0_1~1 ~1_O_O_O_1 __ ~ __ O __ ~ __ Y_Y_Y~ I direct addr I I reI. addr

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: JBC

JC rei

(PC) ~ (PC) + 3
IF (bitS1) = 1
THEN
(bitS1) ~ 0
(PC) ~ (PC) + rei

Function: Jump if carry is set

Description: If the CY flag is set, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

Example:

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

A-70

CY AC ov N

The CY flag is clear. After the instruction sequence

JC
CPLCY
JC LABEL 2

LABEL1

the CY flag is set and program execution continues at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

2 2 2 2
1 4 4

L--_O_1_0_0 __ --.l..... __ 0_0_o_o __ ...J1 I reI. addr

Binary Mode = [Encoding]
'Source Mode = [Encoding]

JC
(PC) ~ (PC) + 2
IF (CY) = 1

THEN
(PC) ~ (PC) + rei

z

I

-
intet

JE rei

Function:

Description:

Flags:

Example:

Bytes:

States:

[Encoding]

INSTRUCTION SET REFERENCE

Jump if equal

If the Z flag is set, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

CY AC ov N Z

The Z flag is set. After executing the instruction

JE LABEL1

program execution continues at label LABEL 1.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

3 3 2 2

2 5 1 4

,--_1_0_1_0 __ ,-_1 _0_0_0_----'1 1 reI. addr

Hex Code in: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: JE

JG rei

(PC) t- (PC) + 2
IF (Z) = 1

THEN (PC) t- (PC) + rei

Function: Jump if greater than

Description: If the Z flag and the CY flag are both clear, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the Signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice.

Flags:

CY AC ov N Z

L
A-71

ji

INSTRUCTION SET REFERENCE intet

Example: The instruction

JG LABEL1

causes program execution to continue at label LABEL 1 if the Z flag and the CY flag are both
clear.

Bytes:

States:

Binary Mode

Not Taken

3

2

Taken

3

5

Source Mode

Not Taken

2
Taken

2
4

[Encoding] '--_0_0_1_1_---'-_1_0_0_0_---'1 1 reI. addr

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: JG
(PC) +- (PC) + 2
IF (Z) = 0 AND (CY) = 0

THEN (PC) +- (PC) + rei

JLE rei

Function: Jump if less than or equal

Description: If the Z flag or the CY flag Is set, branch to the address specified; otherwise proceed with the
next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

CY AC ov N Z

Example: The instruction

JLE LABEL1

causes program execution to continue at LABEL 1 if the Z flag or the CY flag is set.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: ' 3 3 2 2

States: 2 5 4

[Encoding] OQ10 1000 I I rei. addr

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

A-72 J

-

-
intet~ INSTRUCTION SET REFERENCE

Operation: JLE
(PC) ~ (PC) + 2
IF (Z) = 1 OR (CY) = 1

THEN (PC) ~ (PC) + rei

JMP@A+DPTR

Function: Jump indirect

Description: Add the 8-bit unsigned contents of the accumulator with the 16-bit data pOinter and load the
resulting sum into the lower 16 bits of the program counter. Load FFH into bits 16-23 of the
program counter. This is the address for subsequent instruction fetches. The contents of the
accumulator and the data pointer are not affected.

Rags:

Example:

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

_1

CY AC OV N z

The accumulator contains an even number from 0 to 6. The following sequence of instruc
tions branch to one of four AJMP instructions in a jump table starting at JMP _ TBL:

JMP_TBL:

MOV
JMP
AJMP
AJMP
AJMP
AJMP

DPTR,#JMP _TBL
@A+DPTR
LABELO
LABEL1
LABEL2
LABEL3

If the accumulator contains 04H at the start this sequence, execution jumps to LABEL2.
Remember that AJMP is a twO-byte instrUction, so the jump instructions start at every other
address.

Binary Mode

1

Source Mode

1

5

01 1 1 001 1

Binary Mode = [Encoding]
Source Mode = [Encoding]

JMP
(PC.15:0) ~ (A) + (DPTR)
(PC.23: 16) ~ FFH

5

A-73

INSTRUCTION SET REFERENCE

JNB bit51,rel
JNB blt,rel

Function: Jump if bit not set

in1'et~

Description: If the specified bit is clear, branch to the specified address; otherwise proceed with the next
Instruction. The branch destination Is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not mOdified.

Flags:

Example:

Variations

JNB bit51,rel

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

JNB bit,rel

Bytes:

States:

[Encoding]

CY AC ov N z

Input port 1 contains 11001010B and the accumulator contains 56H (01010110B). After
executing the instruction sequence -

JNB P1.3,LABEL1
JNB ACC.3,LABEL2

program execution continues at label LABEL2.

Binary Mode

Not Taken Taken

3 3

2 5

0011 0000

Binary Mode = [Encoding]
Source Mode = [Encoding]

JNB
(PC) +- (PC) + 3
IF (blt51) = 0

THEN (PC) +- (PC) + rei

Binary Mode

Not Taken

5

4

Taken

5

7

Source Mode

Not Taken

3

2

Taken

3

5

I I bit addr I I reI. addr

Source Mode.

Not Taken Taken

4 4

3 6

0 yy ~1_0_1_0 __ ~_1_0_0_1~1 ~I _0_0_1_1 __ ~ ____ ~ ______ ~ I direct addr I I reI. addr

A-74

-

-
INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JNB

JNC rei

Function:

(PC) E- (PC) + 3
IF (bit) = °

THEN
(PC) E- (PC) + rei

Jump if carry not set

Description: If the CY flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The CY flag is not modified.

Flags:

Example:

Bytes:

States:

[Encoding]

CY AC ov

The CY flag is set. The instruction sequence

JNC LABEL1
CPLCY
JNC LABEL2

N z

clears the CY flag and causes program execution to continue at label LABEL2.

Binary Mode

Not Taken Taken

2 2
4

Source Mode

Not Taken

2

Taken

2
4

,--_O_1_0_1_....L..._O_O_o_o_--,1 I reI. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNC

JNE rei

Function:

Description:

1

(PC) E- (PC) + 2
IF (CY) = °

THEN (PC) E- (PC) + rei

Jump if not equal

If the Z flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

A-75

if
I
1

!

I.

'j
I,

INSTRUCTION SET REFERENCE

Flags:

CY AC ov N

Example: The instruction

JNE LABEL1

causes program execution to continue at LABEL 1 if the Z flag Is clear.

Binary Mode

Not Taken Taken

Bytes: 3 3

States: 2 5

[Encoding] 011 1 1000 I
Hex Code In: Binary Mode = [A5][Encodlng]

Source Mode = [Encoding]

Operation: JNE

JNZrel

(PC) E- (PC) + 2
IF (Z) = 0

TH EN (PC) E- (PC) + rei

Function: Jump if accumulator not zero

I

Source Mode

Not Taken Taken

2 2

1 4

reI. addr

Z

Description: If any bit of the accumulator is set, branch to the specified address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified.

Flags:

Example:

A-76

CY AC ov N

The accumulator contains OOH. After executing the instruction sequence

JNZ LABEL1
INCA
JNZ LABEL2

Z

the accumulator contains 01 H and program execution continues at label LABEL2.

J

int"et INSTRUCTION SET REFERENCE

Bytes:

States:

Binary Mode

Not Taken

2

2

Taken

2

5

Source Mode

Not Taken Taken

2 2

2 5

[Encoding] L..-_O_1_1_ 1 _-,-_0_0_0_0_ 1 1 reI. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNZ

JSG rei

(PC) +- (PC) + 2
IF (A);t °

THEN (PC) +- (PC) + rei

Function: Jump if greater than (signed)

Description: If the Z flag is clear AND the N flag and the OV flag have the same value, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the

Flags:

Example:

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

PC, after incrementing the PC twice. .

CY AC OV N Z

The instruction

JSG LABEL1

causes program execution to continue at LABEL 1 if the Z flag is clear AND the N flag and
the OV flag have the same value.

Binary Mode

Not Taken

3

2

Taken

3

5

Source Mode

Not Taken

2

Taken

2

4

'--_0_0_0_1_----''--_1_0_o_o_--'1 1 reI. addr

Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

JSG
(PC) +- (PC) + 2
IF [(N) = ° AND (N) = (OV)]

THEN (PC) +- (PC) + rei

A-77

Iii ,t
I~
I

I

I

INSTRUCTION SET REFERENCE intel~

JSGE rei

Function: Jump if greater than or equal (signed)

Description: If the N flag and the OV flag have the same value, branch to the address specified;
otherwise proceed with the next instruction. The branch destination is computed by adding
the signed relative displacement in the second Instruction byte to the PC, after incrementing
the PC twice.

Flags:

CY AC OV N z

Example: The instruction

JSGE LABEL1

causes program execution to continue at LABEL 1 If the N flag and the OV flag have the
same value.

Bytes:

States:

Binary Mode

Not Taken

3

2

Taken

3

5

Source Mode

Not Taken

2

Taken

2

4

[Encoding] '--_0_1_0_1_---'-_1_0_o_o_--'1 1 reI. addr

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: JSGE

JSL rei

(PC) +- (PC) + 2
IF [(N) = (OV)]

THEN (PC) +- (PC) + rei

Function: Jump if less than (Signed)

Description: If the N flag and the OV flag have different values, branch to the address specified;
otherwise proceed with the next instruction. The branch destination is computed by adding
the signed relative displacement In the second instruction byte to the PC, after incrementing
the PC twice.

Flags:

CY AC OV N z

A-78

I

-

Example:

Bytes:

States:

[Encoding]

Hex Code In:

INSTRUCTION SET REFERENCE

The instruction

JSL LABEL1

causes program execution to continue at LABEL 1 if the N flag and the OV flag have different
values.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

3 3 2 2
2 5 4

1-_0_1_0_0_--1..._1_0_0_0_---11 l,--r_e_1. a_d_d_r --'

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JSL

JSLE rei

(PC) ~ (PC) + 2
IF (N) 7:-(OV)

THEN (PC) ~ (PC) + rei

Function: Jump if less than or equal (signed)

Description: If the Z flag is set OR if the the N flag and the OV flag have different values, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

Example:

Bytes:

States:

[Encoding]

Hex Code In:

CY AC OV N Z

The instruction

JSLE LABEL1

causes program execution to continue at LABEL 1 if the Z flag is set OR if the the N flag and
the OV flag have different values.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

3 3 2 2

2 5 4

0000 1000 I I reI. addr

Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

A-79

I
I,

i'
I ',
, ,~

l
iil
!
I

I:

! ,I

I:
I

INSTRUCTION SET REFERENCE

Operation:

JZ rei

JSLE
(PC) +- (PC) + 2
IF {(Z) = 1 OR [(N) '" (OV)]}

THEN (PC) +- (PC) + rei

Function: Jump if accumulator zero

Description: If all bits of the accumulator are clear (zero), branch to the address specified; otherwise
proceed with the next Instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice. The accumulator is not modified.

Flags:

Example:

Bytes:

States:

[Encoding]

CY AC OV N

The accumulator contains 01 H. After executing the Instruction sequence

JZ LABEL1
DEC A
JZ LABEL2

Z

the accumulator contains OOH and. program execution continues at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

2 2 2 2

2 5 2 5

,--_0_1_1_0_--L-_O_o_o_o_ 1 I reI. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JZ

LCALL <dest>

Function:

Description:

A-SO

(PC) +- (PC) + 2
IF (A) = °

THEN (PC) +- (PC) + rei

Long call

Calls a subroutine located at the specified address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (lOW byte first). The stack pointer is incremented by two. The high and
low bytes of the PC are then loaded, respectively, with the second and third bytes of the
LCALL instruction. Program execution continues with the Instruction at this address. The
subroutine may therefore begin anywhere in the 64-Kbyte region of memory where the next
instruction is located.

1_

Flags:

Example:

LCALL addr16

Bytes:

States:

[Encoding]

INSTRUCTION SET REFERENCE

CY AC ov N z

The stack pOinter contains 07H and the label 'SUBRTN' is assigned to program memory
location 1234H. After executing the instruction

LCALL SUBRTN

at location 0123H, the stack pointer contains 09H, on-chip RAM locations 08H and 09H
contain 01H and 26H, and the PC contains 1234H.

Binary Mode

3

9

Source Mode

3

9

0001 0010 laddr15-addr8 1 1 addr7-addrO

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: LCALL

LCALL@WRJ

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

L

(PC) ~ (PC) + 3
(SP) ~ (SP) + 1
«SP» ~ (PC.7:0)
(SP) ~ (SP) + 1
«SP» ~ (PC.15:8)
(PC) ~ (addr.15:0)

Binary Mode

3

9

Source Mode

2

8

1....-_1_0_0_1_-,--_1_0_0_1_ 1 1...1 _t_t_t t_ 1 1 0 1 0 0

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

LCALL
(PC) ~ (PC) + 3
(SP) ~ (SP) + 1
«SP» ~ (PC.7:0)
(SP) ~ (SP) + 1
«SP» ~ (PC.15:8)
(PC) ~ «WRj))

A-81

I.

!~
:1\

I

I

INSTRUCTION SET REFERENCE int:et

LJMP <desl>

Function: . Long Jump

Description: Causes an unconditional branch to the specified address, by loading the high and low bytes
of the PC (respectively) with the second and third instruction bytes. The destination maY
therefore be anywhere in the 64-Kbyte memory region where the next instruction is located.

Flags:

CY AC ov N z

Example: The label "JMPADR" is assigned to the instruction at program memory location 1234H. After
executing the instruction

LJMPJMPADR

at location 0123H, the program counter contains 1234H.

LJMP addr16

Bytes:

States:

Binary Mode

3

5

Source Mode

3

5

[Encoding] 0000 0010 1 addr15-addrS

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: LJMP
(PC) ~ (addr.15:0)

LJMP @WRj

Bytes:

States:

Binary Mode

3

6

Source Mode

2

5

1 addr7-addrO

[Encoding] L...-_1 _0_0_0_-'---_1_0_0_1_--11 I,--_t_t _t t_.....J1 1 0 1 0 0

Hex Code in:

Operation:

A-82

Binary Mode = [Encoding]
Source Mode = [Encoding]

LJMP
(PC) ~ «WRj))

I

-

-
INSTRUCTION SET REFERENCE

MOV <desl>,<src>

Function: Move byte variable

Description: Copies the byte variable specified by the second operand into the location specified by the
first operand. The source byte is not affected.

Flags:

Example:

Variations

MOVA,#data

Bytes:

States:

[Encoding]

This is by far the most flexible operation. Twenty-four combinations of source and
destination addressing modes are allowed.

CY AC OV N z

On-chip RAM location 30H contains 40H, on-chip RAM location 40H contains 10H, and
input port 1 contains 1100101 OB (OCAH). After executing the instruction sequence

MOV
MOV
MOV
MOV
MOV
MOV

RO,#30H
A,@RO
R1,A
B,@R1
@R1,P1
P2,P1

;RO < = 30H
;A<=40H
;R1 < =40H
;B < = 10H
;RAM (40H) < = OCAH
;P2#OCAH

register 0 contains 30H, the accumulator and register 1 contain 40H, register B contains
10H, and on-Chip RAM location 40H and output port 2 contain OCAH (11001 01 OB).

Binary Mode

2

Source Mode

2

01 1 1 0100 1 immed. data

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(A) +- #data

MOV dirB,#data

Binary Mode Source Mode

Bytes: 3 3
States: 3t 3t

tlf this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] ,--_0_1_1_1 __ ,--_0_1_0_1_--,1 1 direct addr Ilmmed. data

1
A-83

"

II

11

I,

INSTRUCTION SET REFERENCE

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dlrS) +- #data

MOV @RI,#data

Bytes:
Binary Mode

2

Source Mode

3

States: 3 4

[Encoding] 01 1 1 01 1 I

Hex Code In: Binary Mode = [Encoding]
Source Mode = [AS][Encodlng]

Operation: MOV
«Ri)) +- #data

MOV Rn,#data

1 Immed. data

Bytes:

Binary Mode

2

Source Mode
3

States: 2

[Encoding] 01 1 1 1 r r r r 1 Immed. data

Hex Code In: Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

Operation: MOV

MOV dir8,dir8

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

A·84

(Rn) +- #data

Binary Mode

3

3

Source Mode

3

3

'---_1_0_0_0_---'-_0_1_0_1_--'1 1 direct addr 1 1 direct addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOV
(dlr8) +- (dlr8)

intel~

-
intet~

MOV dir8,@Ri

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

MOVdir8,Rn

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

MOV @Ri,dir8

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

MOVRn,dlr8

Bytes:

States:

[Encoding]

L_

INSTRUCTION SET REFERENCE

Binary Mode

2

3

Source Mode

3
4

'--_1_0_0_0_---'-__ 0_1_1 _i _--,I I direct addr

Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

MOV
(dirS) E- «Ri»

Binary Mode

2

2t

Source Mode

3

3t
tlf this instruction addresses a port (Px, x= 0-3), add 1 state.

L-._1_0_0_0_---'-__ 1_r_r_r_---'1 I direct addr

Binary Mode = [Encoding]
Source Mode = [AS][Encodlng]

MOV
(dir8) E- (Rn)

Binary Mode

2

3

Source Mode

3

4

1--_1_0_1_0_----L __ 0_1_1_i_---'1 I direct addr

Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

MOV
«Ri» E- (dir8)

Binary Mode

2

1t

Source Mode

3

2t

ttlf this instruction addresses a port (Px, x= 0-3), add 1 state.

'--_1_0_1_0_---'-__ 1_r r_r_----JI I direct addr

A-8S

I'

II

INSTRUCTION SET REFERENCE

Hex Code In: Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

Operation: MOV

MOVA,dlr8

Bytes:

States:

[Encoding]

(Rn) ~ (dirB)

Binary Mode

2

1t

Source Mode

2

ttlf this instruction addresses a port (Px, x= 0-3), add 1 state.

'--_1_1_1_0_---L __ o_1_0_1_ 1 1 direct addr

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV

MOVA,@RI

Bytes:

States:

[Encoding]

(A) ~ (dir8)

Binary Mode

1

2

Source Mode

2

3

1 11 0 011 i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [AS][Encodlng]

Operation: MOV

MOVA,Rn

Bytes:
States:

[Encoding]

Hex Code In:

Operation:

A-8S

(A) ~ ((Ri»

Binary Mode
1

1

1 1 1 0

Source Mode
2

2

1 r r r

Binary Mode = [Encoding]
Source Mode = [AS][Encodlng]

MOV
(A) ~ (Rn)

intet

J

INSTRUCTION SET REFERENCE

MOVdirS,A

Binary Mode Source Mode

Bytes: 2 2
States: 2t 2t

tlf this instruction addresses a port (Px, x= Q-3), add 1 state.

[Encoding]

Hex Code in:

Operation:

MOV@Ri,A

Bytes:

States:

[Encoding]

1...-_1 _1_1_1_~I...-_O_1_0_1_-.l1 I direct addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOV
(dirB) f- (A)

Binary Mode Source Mode

1 2

3 4

1 1 1 1 o 1 1 i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

Operation: MOV
«Ri» f- (A)

MOVRn,A

Bytes:

States:

Binary Mode

1

1

Source Mode

2

2

[Encoding] 1 1 1 1 1 1 1 r

Hex Code in: Binary Mode = [Encoding]
Source Mode = [AS][Encoding)

Operation: MOV
(Rn) f- (A)

MOVRmd,Rms

Bytes:

States:

Binary Mode

3

2

Source Mode

2

i
I I:

[Encoding] I...-_O __ 1_1_1 __ -L ___ 1_1_0_0 __ ~1 LI ___ s_s_s_s __ -L ___ S_S_S __ S __ ~

1
A-87

I.
I;
i"

INSTRUCTION SET REFERENCE

Hex Code In: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rmd) +- (Rms)

MOV WRjd,WRjs

Bytes:
States:

Binary Mode

3

2

Source Mode

2

[Encoding] ~_0_1_1_1 __ ~ __ 1_1_0_1 __ ~1 ~1 ___ tt_t_t __ ~_T_T_T_T __ ~

Hex Code in: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: MOV
(WRjd) +- (WRJs)

MOV DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2
States: 3 2

[Encoding] 0111 1 1 1 1 I I
Hex Code in: Binary Mode = [AS][Encodlng]

Source Mode = [Encoding]

Operation: MOV
(DRkd) +- (ORks)

MOV Rm,#data

Binary Mode Source Mode
Bytes: 4 3

States: 3 2

[Encoding] 011 1 1 1 1 0 I I
Hex Code In: Binary Mode = [AS][Encodlng]

Source Mode = [Encoding]

Operation: MOV
(Rm) +- #data

A-88

uuuu UUUU

ssss 0000 I

int'et.

I #data

in1et INSTRUCTION SET REFERENCE

MOV WRI,#data16

Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]

011 1 1 11 0 I I tt t t 0100 I I #data hi I I #data low

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MOV
(WRD ~ #data16

MOV DRk,#Odata16

Binary Mode Source Mode
Bytes: 5 4

i'
States: 5 4 II >,
[Encoding] I';

1,\,

01 1 1 1 11 0 I I uuuu 1000 I I #data hi I I #data low

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MOV
(ORk) ~ #Odata16

MOV DRk,#1data16

Binary Mode Source Mode

Bytes: 5 4

States: 5 4
[Encoding]

011 1 1110 I I uuuu 1100 I I #data hi I I #data low

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MOV
(ORk) ~ #1data16

A-89

INSTRUCTION SET REFERENCE infel·
MOVRm,dlr8

Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t

tit this Instruction addresses a port (Px. x= 0-3). add 1 state.

[Encoding] 0111 1 110 I I ssss 0001 I I directaddr

Hex Code In: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) +- (dirB)

MOV WRJ,dlrS

Binary Mode Source Mode

Bytes: 4 3
States: 4 3

[Encoding] 011 1 111 0 I I t ttt 0101 I I direct addr

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MOV
(WRJ) +- (dlrB)

MOV DRk,dlrS

Binary Mode Source Mode
Bytes: 4 3
States: 6 5

[Encoding] 01 1 1 111 0 I I uuuu 1101 I I direct addr

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MOV
(ORk) +- (dir8)

MOV Rm,dlr16

Binary Mode Source Mode
Bytes: 5 4
States: 3 2

A-90 _L

infel®
il
I

INSTRUCTION SET REFERENCE i :,
I

I' [,

[Encoding]

01 1 1 1 1 1 0 I I ssss 001 1 I I direct addr I I direct addr

Hex Code in: Binary Mode = [AS][Encoding] !! Source Mode = [Encoding]

i
Operation: MaV t

(Rm) ~ (dir16)
I MOV WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

01 1 1 1 1 1 0 I I tt t t 01 1 1 I I direct addr I I direct addr

I

Hex Code in: Binary Mode = [AS][Encoding] 1,,'1

Source Mode = [Encoding]

Operation: MaV
(WRD ~ (dir16)

MOV DRk,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

o 1 1 1 1 1 1 0 I I uuuu 1 1 1 1 I I direct addr I I direct addr

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

I"

Operation: MaV i
(ORk) ~ (dir16) i

,'~

MOVRm,@WRj

Binary Mode Source Mod~

Bytes: 4 3

States: 2 2

[Encoding]

01 1 1 1 1 1 0 I I tttt 1 001 I I ssss 0000

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

L
A-91

INSTRUCTION SET REFERENCE in1et~

Operation: MOV
(Rm) +- «(WRJ))

MOYRm,@ORk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

011 1 1 11 0 I I uuuu 1 011 I I ssss 0000

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MOV
(Rm) +- «ORk»

MOV WRJd,@WRJs

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

0000 1 011 I I TTTT 1000 I I t t t t 0000

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MOV
(WRjd) +- «(WRjs»

MOV WRJ,@ORk

Binary Mode Source Mode
Bytes: 4 3

States: 5 4

[Encoding]

0000 1 01 1 I I uuuu 1 01 0 I I t ttt 0000

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MOV
(WRj) +- «ORk»

A-92

intet INSTRUCTION SET REFERENCE

MOVdir8,Rm

Binary Mode Source Mode

Bytes: 4 3

States: 4t 3t
tit this instruction addresses a port (Px, X= 0-3), add 1 state.

[Encoding] L-_O __ 1_1_1 __ ~~_1_0 __ 1_0 __ ~1 ~I ___ S_S_S_5 __ ~ ___ O_O __ 1_1 __ ~1 ~I_d_ir_e_ct_a_d_d_r~

Hex Code in:

Operation:

MOV dir8,WRj

Bytes:

States:

Binary Mode = [AS][Encoding]
Source Mode = [Encoding]
MOV
(dirB) ~ (Rm)

Binary Mode Source Mode

4 3

5 4

[Encoding] ,--_O_1_1_1_--,-_1_0_1_0_~1 1 __ t _t t_t_--,-_O_1_0_1_~1 1 direct addr

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV

MOV dir8,DRk

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

MOV dir16,Rm

Bytes:

States:
[Encoding]

(dirB) ~ (WRD

Binary Mode Source Mode

4 3
7 6

,--_O_1_1_1_--,-_1_0_1_0_~1 1 u u u u

Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

MOV
(dirB) ~ (ORk)

Binary Mode

5

4

Source Mode

4

3

1 1 01 1 1 direct addr

'--_O __ 1_1_1 ____ '--_1 __ 0_1_0 __ ~1 ,-1 ___ s_s_s_s __ ~ ___ O_O __ 1_1 __ ~1 1 direct addr 1 1 direct addr

1
A-93

,
I'

'I
i

I'

!

il ,
"

"

i
:!

i I,

INSTRUCTION SET REFERENCE intel~

Hex Code in: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: MOV
(dlr16) f-- (Rm)

MOV dir16,WRj

Binary Mode Source Mode

Bytes: 5 4

States: 5 4

[Encoding]

01 1 1 1 010 I I ttt t 011 1 I I direct addr I I direct addr

Hex Code In: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: MOV
(dlr16) f-- (WRIl

MOV dlr16,DRk
Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

01 1 1 1 010 I I uuuu 1 1 1 1 I I direct addr I I direct addr

Hex Code In: Binary Mode = [AS][Encodlng]
Source Mode = [EncOding]

Operation: MOV
(dir16) f-- (ORk)

MOV@WRj,Rm

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

011 1 1 01 0 I I t t t t 1001 I I 5555 0000

Hex Code in: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: MOV
«WRj)) f-- (Rm)

A-94

J

MOV@DRk,Rm

Binary Mode Source Mode

Bytes: 4 3
States: 5 4

[Encoding]

01 1 1 1 01 0 I I uuuu

Hex Code in: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: MOV
«DRk» f- (Rm)

MOV @WRjd,WRjs

Binary Mode Source Mode

Bytes: 4 3
States: 5 4

[Encoding]

0001 1 01 1 I I tttt

Hex Code in: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: MOV
«WRjd» f- (WRjs)

MOV@DRk,WRj

Binary Mode Source Mode

Bytes: 4 3

States: 6 5
[Encoding]

0001 1 01 1 I I uuuu

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
«DRk» f- (WRD

MOV Rm,@WRj+dis16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

INSTRUCTION SET REFERENCE

1 01 1 I I ssss 0000

1000 I I TTTT 0000

1 01 0 I I tttt 0000

A-95

il
[I
1
I

I

I
;~
Ii i,
I

I

" I'
Ii

INSTRUCTION SET REFERENCE intet.
[Encoding]

0000 1 001 I I ssss tttt I I dis hi I I dis low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) f- «WRj)) + (dis)

MOV WRJ,@WRJ + dls16
Binary Mode Source Mode

Bytes: 5 4

States: 7 6
[Encoding]

0100 1 001 I I t t t t TTTT I I dis hi I I dis low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRJ) f- «WRj)) + (dis)

MOV Rm,@ORk+dis24

Binary Mode Source Mode
Bytes: 5 4

States: 7 6

[Encoding]

0010 1 001 I I ssss uuuu I I dis hi I I dis low

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MOV
(Rm) f- «ORk» + (dis)

MOV WRJ,@ORk+dis24

Binary Mode Source Mode
Bytes: 5 4

States: 8 7

[Encoding]

01 1 0 1 001 I I t tt t uuuu I I dis hi I I dis low

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

A-96

_I _

INSTRUCTION SET REFERENCE

Operation: MOV
(WRD ~ «ORk» + (dis)

MOV @WRj+dis16,Rm

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

0001 1 001 I I t t t t ssss I I dis hi I I dis low

Operation: MOV
«WRj)) + (dis) ~ (Rm)

'I:
MOV @WRj + dis16,WRj

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

0101 1 001 I I tttt TTTT I I dis hi I I dis low

Hex Code In: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
«WRj)) + (dis) ~ (WRD

MOV @DRk + dis24,Rm

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

001 1 1 001 I I uuuu ssss I I dis hi I I dis low

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
«ORk» + (dis) ~ (Rm)

L
A-97

INSTRUCTION SET REFERENCE

MOV@DRk+dis24,WRJ

Bytes:

States:
[Encoding]

Binary Mode

5

8

Source Mode
4

7

,--_0_1_1_1_--L-_1_0_0_1_-,1 1 u u u u tt t t 1 ,-I _d_IS_hl_-,1 1 dis low

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MOV
«DRk» + (dis) +- (WRj)

MOV <dest-blt>,<src-blt>

Function: Move bit data

Description: Copies the Boolean variable specified by the second operand into the location specified by
the first operand. One of the operands must be the CY flag; the other may be any directly
addressable bit. Does not affect any other register.

Flags:

Example:

Variations

MOV bit51,CY

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

A-98

CY AC OV N z

The CY flag Is set, input Port 3 contains 11000101B, and output Port 1 contains 35H
(00110101 B). After executing the Instruction sequence

MOVP1.3,CY
MOVCY,P3.3
MOVP1.2,CY

the CY flag Is clear and Port 1 contains 39H (00111001B).

Binary Mode

2

Source Mode

2

2t 2t
tlf this instruction addresses a port (Px, x = 0-3), add 2 states.

1 001 0010 1 1 bit addr ~ ________ L-______ ~

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOV
(bltS1) +- (Cy)

_t

INSTRUCTION SET REFERENCE

MOV CY,bitS1

Bytes:

States:

Binary Mode

2

1t

Source Mode

2

1t
tit this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] '--_1_0_1_0_---'-_0_0_1_0_--'1 1 bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(CY) f- (bitS1)

MOV bit,CY

Bytes:

States:

Binary Mode

4

4t

Source Mode

3

3t
tit this instruction addresses a port (Px, x= 0-3), add 2 states.

[Encoding]

L-_1_0_1_0_-L_1_0_0_1_~1 1 1001

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: MOV
(bit) f- (CY)

MOVCY,bit

Bytes:

States:

Binary Mode

4

3t

Source Mode

3

2t

o yyy

tit this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding]

L-_1_0_1_0_-L_1_0_0_1_~1 1 1 0 1 0

Hex Code in:

Operation:

L

Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

MOV
(CY) f- (bit)

o yyy

1 1 direct addr

1 1 direct addr

A-99

INSTRUCTION SET REFERENCE

MOV DPTR,#data16

Function: Load data pointer with a 16-bit constant

Description: Loads the 16-bit data pOinter (OPTA) with the specified 16-blt constant. The high byte of the
constant is loaded into the high byte of the data pointer (OPH). The low byte of the constant
is loaded Into the low byte of the data pOinter (OPL).

Flags:

Cy AC OV N

Example: After executing the instruction

MOV OPTA,#1234H

OPTA contains 1234H (OPH contains 12H and OPL contains 34H).

Binary Mode Source Mode

Bytes: 3 3
States: 2 2

[Encoding] ,--_1_0_0_1_--,-_0_0_0_0_--,1 1 data hi

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(OPTA) ~ #data16

MOVC A,@A+<base-reg>

Function: Move code byte

1 1 datalow

z

Description: Loads the accumulator with a code byte or constant from program memory. The address of
the byte fetched is the sum of the original unsigned 8-bit accumulator contents and the
contents of a 16-bit base register, which may be the 16 LSBs of the data pointer or PC. In
the latter case, the PC is incremented to the address of the following instruction before being
added with the accumulator; otherwise the base register is not altered. Sixteen-bit addition Is
performed.

Flags:

Cy AC OV N z

A-100 J

Example:

Variations

INSTRUCTION SET REFERENCE

The accumulator contains a number between 0 and 3. The following instruction sequence
translates the value in the accumulator to one of four values defined by the DB (define byte)
directive.

RELPC: INC A
MOVC A,@A+PC
RET
DB 66H
DB 77H
DB aaH
DB 99H

If the subroutine is called with the accumulator equal to 01 H, it returns with 77H in the
accumulator. The INC A before the MOVC instruction is needed to "get around" the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the accumulator instead.

MOVC A,@A+PC

Bytes:

States:

[Encoding]

Binary Mode

1

6

Source Mode

1

6

1000 001 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVC
(PC) ~ (PC) + 1
(A) ~ «A) + (PC))

MOVC A,@A+DPTR

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

I

Binary Mode

1

Source Mode

1

6

1 001 001 1

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOVC
(A) ~ «A) + (DPTR))

6

A-101

I
",f I,

V

~

I

i-';
1:1

I','

INSTRUCTION SET REFERENCE

MOVH DRk,#data16

Function: Move immediate 16-blt data to the high word of a dword (double-word) register.

Description: Moves 16-bit immediate data to the high word of a dword (32-blt) register. The low word of
the dword register is unchanged.

Flags:

CY AC OV N

Example: The dword register OAk contains 5566 7788H. After the instruction

MOVH OAk,#1122H

executes, OAk contains 1122 7788H.
Variations

MOVH DRk,#data16

Bytes:

States:

[Encoding]

Binary Mode

5

3

Source Mode

4

2

z

,--_0_1_1_1_....L..._1_O_1_O_...J1 I u u u u 1 100 I I #data hi I I #data low

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MOVH
(OAk).31:16 f- #data16

MOVSWRJ,Rm

Function: Move 8-bit register to 16-bit register with sign extension

Description: Moves the contents of an 8-bit register to the low byte of a 16-blt register. The high byte of
the 16-bit register is filled with the sign extension, which is obtained from the MSB of the 8-
bit source register.

Flags:

Example:

A-102

CY AC OV N z

Eight-bit register Am contains 055H (010101018) and the 16-blt reglsterWAj contains
OFFFFH (11111111111111118). The instruction

MOVSE WRj,Am

moves the contents of register Am (010101018) to register WAj (I.e., WAj contains
00000000010101018).

intet
Variations

MOVSWRJ,Rm

Bytes:

States:

[Encoding]

Binary Mode

3
2

Source Mode

2

INSTRUCTION SET REFERENCE

~_O __ O_O_1 ____ ~_1 __ 0_1_0 __ ~1 ~I ___ t_t_t_t __ ~~ __ s_s_s_s __ ~

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MOVS
(WRj).7-Q +- (Rm).7-Q
(WRj).15-8 +- MSB

MOVX <dest:>,<src>

Function: Move external

Description: Transfers data between the accumulator and a byte in external data RAM. There are two
types of instructions. One provides an 8-bit indirect address to extemal data RAM; the
second provides a 16-bit indirect address to external data RAM.

Flags:

Example:

L

In the first type of MOVX Instruction, the contents of RO or R1 in the current register bank
provides an 8-bit address on port O. Eight bits are sufficient for external 1/0 expansion
decoding or for a relatively small RAM array. For larger arrays, any port pins can be used to
output higher address bits. These pins would be controlled by an output instruction
preceding the MOVX.

In the second type of MOVX instruction, the data pOinter generates a 16-blt address. Port 2
outputs the upper eight address bits (from DPH) while port 0 outputs the lower eight address
bits (from DPL).

For both types of moves in nonpage mode, the data is multiplexed with the lower address
bits on port O. In page mode, the data is multiplexed with the contents of P2 on port 2 (8-bit
address) or with the upper address bits on port 2 (16-bit address).

It is possible in some situations to mix the two MOVX types. A large RAM array with its
upper address lines driven by P2 can be addressed via the data pointer, or with code to
output upper address bits to P2 followed by a MOVX instruction using RO or R1.

CY AC OV N z

The MCS 251 controller is operating in nonpage mode. An external 256-byte RAM using
multiplexed address/data lines (e.g., an Intel 8155 RAMIIIOmmer) is connected to port O.
Port 3 provides control lines for the external RAM. ports 1 and 2 are used for normal I/O. RO
and R1 contain 12H and 34H. Location 34H of the external RAM contains 56H. After
executing the instruction sequence

A-103

INSTRUCTION SET REFERENCE

Variations

MOVXA,@R1
MOVX@RO,A

the accumulator and external RAM location 12H contain 56H.

MOVX A,@OPTR

Bytes:
States:

[Encoding]

Binary Mode
1

4

Source Mode
1

4

1 11 0 0000

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVX

MOVXA,@RI

Bytes:

States:

[Encoding]

(A) +- «DPTR»

Binary Mode
1

3

Source Mode
1

3

111 0 001 i

Hex Code In: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOVX
(A) +- «Ri»

MOVX @OPTR,A

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

A-104

Binary Mode

1

Source Mode

1

5

1 1 1 1 0000

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOVX
«OPTR» +- (A)

5

intel~

I

intel~

MOVX@RI,A

Bytes:

States:

[Encoding]

Binary Mode

1

4

Source Mode

1

4

1 1 1 1 001 i

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOVX
«Ri» (- (A)

MOVZWRj,Rm

Function: Move 8-bit register to 16-bit register with zero extension

Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The upper byte of
the 16-bit register is filled with zeros.

Flags:

Example:

Variations

MOVZWRj,Rm

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

L

CY AC OV N Z

Eight-bit register Rm contains 055H (01010101 B) and 16-bit register WRj contains OFFFFH
(11111111 11111111B). The instruction

MOVZWRj,Rm

moves the contents of register Rm (01010101 B) to register WRJ. At the end of the operation,
WRj contains 00000000 01010101B.

Binary Mode

3
2

Source Mode

2

L-_0_0 __ 0_0 __ ~ ___ 1_0_1_0 __ ~11 L ___ t_t_t_t __ ~ ___ s_s_s_s __ ~

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

MOVZ
(WRj)7-Q (- (Rm)7-Q
(WRj)15-8 (- 0

A-105

I'

i~
!~

INSTRUCTION SET REFERENCE

MUL <desb,<src>

Function: Multiply

Description: Multiplies the unsigned integer In the register with the other unsigned Integer operand. Only
register addressing mode is allowed. For 8-bit operands, the result is 16 bits with the low
byte stored In low byte of the destination register and high byte of the result stored in the
following byte register. The OV flag is set if the product Is greater than 255 (OFFH),
otherwise it is cleared. If both operands are 16 bit, the result Is 32 bit with the low word
stored In the low word of the destination register and high word of the result stored In the
following word register. In this operation, the OV flag Is set If the product is greater than
OFFFFH, otherwise It is cleared. The CY flag is always cleared. The N flag is set when the
MS8 of the result Is set. The Z flag is set when the result is zero.

Flags:

Example:

CY AC OV N Z

o

Register t contains 80 (50H or 100100008) and register 0 contains 160 (OAOH or
100100008). After executing the Instruction

MUL R1,RO

which gives the product 12,800 (3200H), register 1 contains 32H (001100108), register 0
contains OOH, the OV flag is set, and the CY flag Is clear.

MUL Rmd,Rms

Bytes:

States:

[Encoding]

Binary Mode

3
6

Source Mode

2

5

~_1_0_1_0 __ ~ __ 1_1_0_0 __ ~1 I ssss

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MUL (8-bit operands)
if <dest> md = 0, 2, 4, .. , 14
Rmd +- low byte of the Rmd X Rms
Rmd+ 1 +- high byte of the Rmd X Rms
if <dest> md = 1, 3, 5, .. , 15
Rmd~ 1 +- low byte of the Rmd X Rms
Rmd +- high byte of the Rmd X Rms

MUL WRJd,WRJs

Bytes:

States:

Binary Mode

3
12

Source Mode

2
11

SSSS

[Encoding] ~_1_0_1_0 __ ~_1_1_0_1 __ ~1 I~ __ tt_t_t __ ~ __ t_tt_t __ ~

A-106

J

INSTRUCTION SET REFERENCE

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: MUL (16-blt operands)

MULAB

Function:

if <dest> jd = 0, 4, 8, .. , 28
WRjd ~ low byte of the WRjd X WRjs
WRjd+2 ~ high byte of the WRjd X WRjs
if <dest> jd = 2, 6, 10, .. ,30
WRjd-2 ~ low byte of the WRjd X WRjs
WRjd ~ high byte of the WRjd X WRjs

Multiply

Description: Multiplies the unsigned 8-bit integers in the accumulator and register B. The low byte of the
16-bit product is left in the accumulator, and the high byte is left in register in B. If the product
is greater than 255 (OFFH) the OV flag is set; otherwise it is clear. The CY flag is always
clear.

Flags:

CY AC OV N z
o

Example: The accumulator contains 80 (SOH) and register B contains 160 (OAOH). After executing the
instruction

MULAB

which gives the product 12,800 (3200H), register B contains 32H (00110010B), the
accumulator contains OOH, the OV flag is set, and the CY flag is clear.

Binary Mode Source Mode

Bytes: 1

States: 5 5

[Encoding] 1010 0100

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MUL

NOP

(A) ~ low byte of (A) X (B)
(B) ~ high byte of (A) X (B)

Function: No op~ration

Description: Execution continues at the following instruction. Affects the PC register only.

Flags:

CY AC OV N z

L
A-107

1 . .1
I~
:1
I~

INSTRUCTION SET REFERENCE intet

Example:

Bytes:

States:

[Encoding]

You want to produce a low-going output pulse on bit 7 of Port 2 that lasts exactly 11 states. A
simple CLR-SETB sequence generates an eight-state pulse. (Each instruction requires four
states to write to a port SFR.) You can insert three additional states (if no interrupts are
enabled) with the following instruction sequence: .

CLR P2.7
NOP
NOP
NOP
SETB P2.7

Binary Mode

1

Source Mode

1

0000 0000

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: NOP
(PC) ~ (PC) + 1

ORL <dest> <src>

Function: Logical-OR for byte variables

Description: Performs the bitwise logical-OR operation (V) between the specified variables, storing the
results in the destination operand.

Flags:

Example:

A-108

The destination operand can be a register, an accumulator or direct address.

The two operands allow twelve addressing mode combinations. When the destination Is the
accumulator, the source can be register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the accumulator or immediate
data. When the destination is register the source can be register, immediate, direct and
indirect addressing.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

I
CY AC OV N z

.t

The accumulator contains OC3H (11000011 B) and RO contains 55H (01010101 B). After
executing the instruction,

ORLA,RO

the accumulator contains OD7H (11010111B).

infel~ INSTRUCTION SET REFERENCE

When the destination is a directly addressed byte, the instruction can set combinations of
bits in any RAM location or hardware register. The pattern of bits to be set is determined by
a mask byte, which may be a constant data value in the instruction or a variable computed in
the accumulator at run time. After executing the instruction

Variations

ORLdirB,A

Bytes:

States:

ORL P1,#00110010B

sets bits 5, 4, and 1 of output Port 1.

Binary Mode

2

2t

Source Mode

2

2t
tlf this instruction addresses a port (Px, X= 0-3), add 2 states.

[Encoding] 1..-_0_1_0_0_-.1. __ 0_0_1_0_---11 1 direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) +- (dir8) V (A)

ORL dirB,#data

Bytes:

States:

Binary Mode

3

3t

Source Mode

3

3t
tlf this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] '---_0_1_0_0_---'-_0_0_1_1_---'1 1 direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL

ORLA,#data

Bytes:

States:

[Encoding]

Hex Code in:

1

(dirB) +- (dirB) V #data

Binary Mode

2

Source Mode

2

0100 0100

Binary Mode = [Encoding]
Source Mode = [Encoding]

1 immed. data

1 immed. data

A-109

INSTRUCTION SET REFERENCE

Operation:

ORLA,dir8

Bytes:

States:

[Encoding]

ORL
(A) ~ (A) V #data

Binary Mode

2

1t

Source Mode

2

1t
tlf this Instruction addresses a port (Px, X= 0-3), add 1 state.

,--_0_1_0_0_-,-_0_1_0_1_ 1 1 direct addr

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL

ORLA,@RI

Bytes:

States:

[Encoding]

(A) ~ (A) V (dirS)

Binary Mode

1

2

Source Mode

2

3

0100 011 i

Hex Code In: Binary Mode = [Encoding]
Source Mode = [A5][Encodlng]

Operation: ORL

ORLA,Rn

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

A-110

(A) ~ (A) V «Ri»

Binary Mode

1

0100

Source Mode

2
2

1 r r r

Binary Mode = [Encoding]
Source Mode = [A5][Encodlng]

ORL
(A) ~ (A) V (Rn)

in1:et

... 1

ORLRmd,Rms

Bytes:

States:

Binary Mode

3

2

Source Mode

2

[Encoding] ,--_0_1 _0_0_--,-__ 1_1_0_0_--,1 1 5 5 5 5

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rmd) ~ (Rmd) V (Rms)

ORL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

[Encoding] 0100 1 1 01 I I
Hex Code in: Binary Mode = [AS][Encoding]

Source Mode = [Encoding]

Operation: ORL
(WRjd)~(WRjd) V (WRjs)

ORL Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding] 0100 1 1 1 0 I I
Hex Code in Binary Mode = [AS][Encoding]

Source Mode = [Encoding]

Operation: ORL
(Rm) ~ (Rm) V #data

ORL WRj,#data16

Bytes:

States:

1

Binary Mode

5
4

Source Mode

4

3

t t t t

5555

INSTRUCTION SET REFERENCE

ssss

TTTT

I.
I' I;
!

0000 I I #data

A-111

INSTRUCTION SET REFERENCE

[Encoding]

0100 1 1 1 0 1 I __ t t_t_t _~_O _1 0_0_ 1 1 #data hi 1 1 #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRj) ~ (WRj) V #data16

ORL Rm,dir8

Binary Mode Source Mode

Bytes: 4 3
States: 3t 2t

tit this instruction addresses a port (Px, X= 0-3), add 1 state.

[Encoding] 0100 1 1 1 0 I I
Hex Code in: Binary Mode = [A5][Encodlng]

Source Mode = [Encoding]

Operation: ORL
(Rm) ~ (Rm) V (dirS)

ORL WRj,dlrS

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding] 0100 1 1 1 1 I I
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

Operation: ORL
(WRj) ~ (WRj) V (dirS)

ORL Rm,dlr16

Binary Mode Source Mode

Bytes: 5 4
States: 3 2

[Encoding]

0100 1 1 1 0 I I ssss

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

A-112

ssss 0001 I

t tt t 0101 I

0011 I I direct addr

I direct addr

I direct addr

I I direct addr

intel~ it
INSTRUCTION SET REFERENCE It

Operation: ORL
(Rm) +- (Rm) V (dir16)

ORL WRJ,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

0100 1 1 1 0 I I t t tt 0111 I I direct addr I I direct addr

Hex Code In: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: ORL
(WRj) +- (WRj) V (dir16)

ORLRm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2
[Encoding]

0100 111 0 I I t t t t 1001 I I ssss 0000

Hex Code In: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) +- (Rm) V «WRj))

ORLRm,@DRk

Binary Mode Source Mode

Bytes: 4 3
States: 4 3

[Encoding]

0100 1 1 1 0 I I uuuu 1 01 1 I I ssss 0000

Hex Code in: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: ORL
(Rm) +- (Rm) V «ORk»

1_- A-113

INSTRUCTION SET REFERENCE

ORL CY,<src-blt:>

Function: Logical-OR for bit variables

Description: Sets the CY flag It the Boolean value Is a logical 1 ; leaves the CY flag In Its current state
otherwise. A slash ("I") preceding the operand In the assembly language Indicates that the
logical complement ot the addressed bit Is used as the source value, but the source bit Itself
Is not affected.

Flags:

Example:

Variations

ORL CY,blt51

Bytes:

States:

[Encoding]

CY AC OV N

Set the CYtlag if and only if P1.0 = 1, ACC. 7 = 1, orOV = 0:

MOV CY,P1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL CY,ACC.7 ;OR CARRY WITH THE ACC. BIT 7
ORL CY/OV ;OR CARRY WITH THE INVERSE OF OV.

Binary Mode

2

1t

Source Mode

2

1t
tit this Instruction addresses a port (Px, x= 0-3), add 1 state.

'--_0_1_1_1_--'-_0_0_1_0_ 1 1 bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL

ORL CYJbit51

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

A-114

(CY) +- (CY) V (bitS1)

Binary Mode

2

1t

Source Mode

2

1t
tit this Instruction addresses a port (Px, x= 0-3), add 1 state.

1--_1_0_1_0_...1.-_0_0_0_0_.....J1 1 bit addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

ORL
(CY) +- (CY) V.., (bitS1)

z

J

intet INSTRUCTION SET REFERENCE

ORLCY,blt

Binary Mode Source Mode

Bytes: 4 3
States: 3t 2t

tlf this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding]

'--_1_0_1_0_-'--_1_0_0_1_---'1 1 ° 1 1 1

Hex Code in:

Operation:

ORL CY,lbit

Bytes:

States:

Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

ORL
(CY) +- (CY) V (bit)

Binary Mode
4

3t

Source Mode
3

2t

° yyy 1 1 direct addr

tlf this instruction addresses a port (Px, X= 0-3), add 1 state.

[Encoding]

,--_1_0_1_0_--,-_1_0_0_1_--,1 1 1110

Hex Code In: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) +- (CY) V, (bit)

POP <src>

Function: Pop from stack.

° yyy 1 1 direct addr

Description: Reads the contents of the on-chip RAM location addressed by the stack pOinter, then
decrements the stack pOinter by one. The value read at the original RAM location is
transferred to the newly addressed location, which can be 8-bit or 16-bit.

Flags:

CY AC OV N z

Example: The stack pOinter contains 32H and on-chip RAM locations 30H through 32H contain 01H,
23H, and 20H, respectively. After executing the instruction sequence

1
A-115

f
il
:\ I,

I
'I,

INSTRUCTION SET REFERENCE

POP DPH
POP DPL

the stack pOinter contains 30H and the data pOinter contains 0123H. After executing the
instruction

POPSP

the stack pointer contains 20H. Note that In this special case the stack pointer was
decremented to 2FH before it was loaded with the value popped (20H).

Variations

POPdir8

Bytes:
States:

[Encoding]

Binary Mode

2
3

Source Mode

2
3

L...-_1_1_0_1_---L._0_0_0_0_---I1 I direct addr

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: POP

POPRm

Bytes:

States:

(dir8) f- «SP»
(SP) f- (SP) - 1

Binary Mode

3
3

Source Mode

2
2

[Encoding] L...-_1_1_0_1_-L_1_0_1_0_~1 I ssss

Hex Code in: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: POP

POPWRJ

Bytes:

States:

(Rm) f- «SP»
(SP) f- (SP) - 1

Binary Mode

3

5

Source Mode

2
4

1000

[Encoding] L...-_1_1_0_1_~_1_0_1_0_~1 ~I __ tt_t_t_~ __ 1_0_0_1 __ ~

Hex Code in:

A-116

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

1

INSTRUCTION SET REFERENCE

Operation:

POP DRk

Bytes:

States:

[Encoding]

POP
(WRD f-- «SP»
(SP) f-- (SP) - 2

Binary Mode

3

10

Source Mode

2

9

,--_1_1_0_1_--,-_1_0_1_0_--,' , u u u u

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation:

PUSH <dest>

POP
(DRk) f-- «SP»
(SP) f-- (SP) - 2

Function: Push onto stack

1 1 01

Description: Increments the stack pOinter by one. The contents of the specified variable are then copied
into the on-chip RAM location addressed by the stack pOinter.

Flags:

Example:

Variations

PUSH dirS

Bytes:

States:

[Encoding]

CY AC OV N z

On entering an interrupt routine, the stack pointer contains 09H and the data pointer
contains 0123H. After executing the instruction sequence

PUSH DPL
PUSH DPH

the stack pOinter contains OBH and on-chip RAM locations OAH and OSH contain 01 Hand
23H, respectively.

Binary Mode

2
4

Source Mode

2

4

,--_1_1_0_0_--,-_0_0_0_0_--,' , direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

L
A-117

:1
Ii
t
i'
i'

[I

INSTRUCTION SET REFERENCE

Operation:

PUSH #data

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

PUSH #data16

Bytes:

States:
[Encoding]

1 1 00

Hex Code in:

Operation:

PUSHRm

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

A-118

PUSH
(SP) +- (SP) + 1
«SP» +- (dir8)

Binary Mode Source Mode
4 3
4 3

1 100 101 0 I I
Binary Mode = [Encoding]
Source Mode = [Encoding]

PUSH
(SP) +- (SP) + 1
«SP» +- #data

Binary Mode Source Mode
5 4

6 5

1 01 0 I I 0000

Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

PUSH
(SP) +- (SP) + 2
«SP» +- #data16

Binary Mode Source Mode

3 2

4 3

1 100 1 010 I I
Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

PUSH
(SP) +- (SP) + 1
«SP» +- (Rm)

intel~

0000 0010 I I #data

01 10 I I #data hi I I #data 10

ssss 1000

1

intet INSTRUCTION SET REFERENCE

PUSHWRj

Bytes:

States:

[Encoding]

Binary Mode

3

5

Source Mode

2

4

L...-_1_1_o_o_---I...._1_0_1_0_---I� L...I __ t t_t_t _---1...._1_0_0_1_---1

Hex Code In: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH

PUSH DRk

Bytes:

States:

(SP) ~ (SP) + 2
((SP» ~ (WRj)

Binary Mode

3

9

Source Mode

2

8

[Encoding] ~_1 __ 1_0_0 __ ~ ___ 1_0_1_0 __ ~1 ~1 __ u __ u_u_U __ ~ ___ 1_1_0_1 __ ~

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation:

RET

PUSH
(SP) ~ (SP) + 4
((SP» ~ (ORk)

Function: Return from subroutine

Description: Pops the high and low bytes of the PC successively from the stack, decrementing the stack
pointer by two. Program execution continues at the resulting address, which normally is the
instruction immediately following ACALL or LCALL.

Flags:

Example:

I

CY AC ov N z

The stack pOinter contains OSH and on-Chip RAM locations OAH and OSH contain 01 Hand
23H, respectively. After executing the instruction,

RET

the stack pointer contains 09H and program execution continues at location 0123H.

A-119

i~
I
r

INSTRUCTION SET REFERENCE

Bytes:

States:

[Encoding]

Binary Mode

1

7

Source Mode

1

7

0010 0010

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RET

RETI

(PC).15-8 ~ «SP»
(SP) ~ (SP) - 1
(PC).7-8 ~ «SP»
(SP) ~ (SP) - 1

Function: Return from interrupt

Description: This instruction pops two or four bytes from the stack, depending on the INTR bit in the
CONFIG1 register.

Rags:

Example:

A-120

If INTR = 0, RETI pops the high and low bytes of the PC successively from the stack and
uses them as the 16-bit return address in region FF:.The stack pOinter Is decremented by
two. No other registers are affected, and neither PSW nor PSW1 is automatically restored to
its pre-interrupt status.

If I NTR = 1, RETI pops four bytes from the stack: PSW1 and the three bytes of the PC. The
three bytes of the PC are the return address, which can be anywhere In the 16-Mbyte
memory space. The stack pOinter is decremented by four. PSW1 is restored to Its pre
Interrupt status, but PSW Is not restored to its pre-Interrupt status. No other registers are
affected.

For either value of INTR1, hardware restores the interrupt logiC to accept additional
interrupts at the same priority level as the one just processed. Program execution continues
at the return address, which normally Is the instruction immediately after the point at which
the interrupt request was detected. If an interrupt of the same or lower priority is pending
when the RETI instruction is executed, that one instruction is executed before the pending
interrupt is processed.

Cy AC OV N z

INTR1 = O. The stack pOinter contains OSH. An interrupt was detected during the instruction
ending at location 0122H. On-chip RAM locations OAH and OSH contain 01H and 23H,
respectively. After executing the instruction,

RETI

the stack pOinter contains 09H and program execution continues at location 0123H.

INSTRUCTION SET REFERENCE

Bytes:

Binary Mode

1

Source Mode

1

States (INTR = 0): 9

States (INTR = 1): 12

[Encoding] 0011 0010

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation for for INTR1 = 0:
RETI
(PC).7:0 +- «SP»
(SP) +- (SP) - 1
(PC).15:8 +- «SP»
(SP) +- (SP) - 1

Operation for INTR1 = 1:

RLA

RETI
X+- «SP»
(SP) +- (SP) - 1
X+- «SP»
(SP) +- (SP) - 1
X+- «SP»
(SP) +- (SP) - 1
X+- «SP»
(SP) +- (SP) - 1

Function: Rotate accumulator left

9

12

Description: Rotates the eight bits in the accumulator one bit to the left. Bit 7 is rotated Into the bH 0
position.

Flags:

Example:

Bytes:

States:

[Encoding]

I

CY AC ov N z
./

The accumulator contains OC5H (11000101B). After executing the Instruction, .

RLA

the accumulator contains 8BH (10001011 B); the CY flag is unaffected.

Binary Mode

1

1

Source Mode

1

0010 001 1

A·121

I~
I'
I
!

INSTRUCTION SET REFERENCE

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RL

RLCA

(A).a+1 +- (A).a
(A).O +- (A).7

Function: Rotate accumulator left through the carry flag

Description: Rotates the eight bHs In the accumulator and the CY flag one bH to the left. Bit 7 moves into
the CY flag posHlon and the original state of the CY flag moves Into bit 0 position.

Flags:

CY AC ov N z
,/ ,/

Example: The accumulator contains OC5H (11000101B) and the CY flag Is clear. After executing the
Instruction

Bytes:

States:

[Encoding]

RLCA

the accumulator contains 8AH (10001010B) and the CY flag is set.

Binary Mode

1

Source Mode

1

0011 0011

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RLC

RRA

(A).a+1 +- (A).a
(A).O +- (CY)
(CY) +- (A) .7

Function: Rotate accumulator right

Description: Rotates the 8 or 16 bits in the accumulator one bit to the right. Bit 0 is moved Into the bit 7 or
15 position.

Flags:

CY AC ov N z
,/ ,/

A-122

__ L

INSTRUCTION SET REFERENCE

Example:

Bytes:

States:

[Encoding]

The accumulator contains OC5H (11000101B). After executing the Instruction,

RRA

the accumulator contains OE2H (11100010B) and the CY flag is unaffected.

Binary Mode

1

Source Mode

1

0000 001 1

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RR

RRCA

(A).a +- (A).a+1
(A).7 +- (A) .0

Function: Rotate accumulator right through carry flag

Description: Rotates the eight bits in the accumulator and the CY flag one bit to the right. Bit 0 moves into
the CY flag position; the original value of the CY flag moves into the bH 7 position.

Flags:

CY AC ov N z

Example: The accumulator contains OC5H (11000101B) and the CY flag Is clear. After executing the
instruction

Bytes:

States:

[Encoding]

RRCA

the accumulator contains 62 (011 0001 OB) and the CY flag is set.

Binary Mode

1

Source Mode

1

0001 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RRC
(A).a +- (A).a+1
(A).7 +- (CY)
(CY) +- (A).O

A-123

II

INSTRUCTION SET REFERENCE

SETB <bit>

Function: Set bit

Description: Sets the specified bit to one. SETB can operate on the CY flag or any directly addressable
bit.

Flags: No flags are affected except the CY flag for Instruction with CY as the operand.

CY AC ov N z

Example: The CY flag is clear and output Port 1 contains 34H (001101 OOB). After executing the
instruction sequence,

SETB blt51

Bytes:
States:

[Encoding]

SETBCY
SETB P1.0

the CY flag is set and output Port 1 contains 35H (00110101B).

Binary Mode

2

2t

Source Mode

2

2t
tlf this Instruction addresses a port (Px, X= 0-3), add 2 states.

1...-_1_1_0_1_--1...._0_0_1_0_-,1 1 bit addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SETB

SETBCY

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

A-124

(bit51) ~ 1

Binary Mode

1

Source Mode

1

1 101 0011

Binary Mode = [Encoding]
Source Mode = [Encoding]

SETB
(CY) ~ 1

1

intet~ INSTRUCTION SET REFERENCE

SETB bit

Binary Mode Source Mode

Bytes: 4 3

States: 4t 3t
tlf this instruction addresses a port (P x, x = 0-3), add 2 states.

[Encoding]

LI_1 _0 _1 °_--1.-_1 _0 _0 _1 -.II I 1 1 ° 1 ° yyy I I direct addr

Hex Code in: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: SETS
(bit) ~ 1

SJMP rei

Function: Short jump

Description: Program control branches unconditionally to the specified address. The branch destination
is computed by adding the signed displacement in the second instruction byte to the PC,
after incrementing the PC twice. Therefore, the range of destinations allowed is from 128
bytes preceding this instruction to 127 bytes following it

Flags:

Example:

Bytes:

States:

[Encoding]

Hex Code in:

l

CY AC ov N z

The label 'RELADR" is assigned to an instruction at program memory location 0123H. The
instruction

SJMP RELADR

assembles into location 0100H. After executing the instruction, the PC contains 0123H.

(Note: In the above example, the instruction following SJMP is located at 102H. Therefore,
the displacement byte of the instruction is the relative offset (0123H-Q102H) = 21 H. Put
another way, an SJMP with a displacement of OFEH would be a one-instruction infinite loop.)

Binary Mode

2
4

Source Mode

2

4

,--_1_0_0_0 __ ,--_0_0_0_0_--,1 I reI. addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

A-125

INSTRUCTION SET REFERENCE

Operation:

SLL<src>

SJMP
(PC) ~ (PC) + 2
(PC) ~ (PC) + rei

Function: Shift logical left by 1 bit

Description: Shifts the specified variable to the left by 1 bit, replacing the lSB wHh,zero.

Rags:

Example:

Variations

SLLRm

Bytes:
States:

[Encoding]

Hex Code In:

Operation:

SLLWRJ

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

A-126

CY AC ov N

./

Register 1 contains OC5H (11000101B). After executing the instruction

Sll register 1

Register 1 contains BAH (10001010B).

Binary Mode Source Mode

3 2
2

0011 1 11 0 I I ssss 0000

Binary Mode = [A5](Encodlng]
Source Mode = [Encoding]

Sll
(Rm).a+1 ~ (Rm).a
(Rm).O~O

Binary Mode Source Mode

3 2
2

0011 1 1 1 0 I I t tt t 0100

Binary Mode = [A5](Encodlng]
Source Mode = [Encoding]

Sll
(WRj).b+1 ~ (WRj).b
(WRj).O~O

z
./

intet.·

INSTRUCTION SET REFERENCE

SRA<src>

Function: Shift arithmetic right by 1 bit

Description: Shifts the specified variable to the arithmetic right by 1 bit. The MSB is unchanged.

Flags:

Example:

Variations

SRARm

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

SRAWRj

Bytes:
States:

[Encoding]

Hex Code In:

Operation:

L

CY AC ov N

,/

Register 1 contains OC5H (11000101B). After executing the instruction

SRA register 1

Register 1 contains OE2H (11100010B).

Binary Mode Source Mode

3 2

2

0000 1 1 1 0 I I ssss 0000

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SRA
(Rm).7 ~ (Rm).7
(Rm).a ~ (Rm).a+ 1

Binary Mode Source Mode

3 2
2

0000 1110 I I t tt t 0100

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

SRA
(WRj).15 ~ (WRj).15
(WRj).b ~ (WRj).b+1

z
,/

A-127

I:

INSTRUCTION SET REFERENCE intet.

SRL <src>

Function: Shift logical right by 1 bH

Description: SRL shifts the specified variable to the right by 1 bit, replacing the MSB with a zero.

Flags:

Example:

Variations

SRLRm

Bytes:

States:

[Encoding]

Hex Code in:

Operation:

SRLWRj

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

A-128

CY AC OV N

Register 1 contains OC5H (11 0001 01 B). After executing the instruction

SRL register 1

Register 1 contains 62H (01100010B).

Binary Mode Source Mode

3 2

2

0001 11 10 I I ssss 0000

Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

SRL
(Rm).7 f- 0
(Rm).a f- (Rm).a+1

Binary Mode Source Mode
3 2
2

0001 111 0 I I tttt 0100

Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

SRL
(WRJ).15 f- 0
(WRj).b f- (WRj).b+1

z

_J ..

INSTRUCTION SET REFERENCE

SUB <dest>,<src>

Function: Subtract

Description: Subtracts the specified variable from the destination operand, leaving the result in the
destination operand. SUB sets the CY (borrow) flag if a borrow is needed for bit 7.
Otherwise, CY Is clear.

Flags:

Example:

Variations

SUB Rmd,Rms

Bytes:

States:

[Encoding]

When subtracting signed integers, the OV flag indicates a negative number produced when
a negative value Is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

The source operand allows four addressing modes: immediate, indirect, register and direct.

CY AC OV N z
,/ ,/t ,/ ,/

tFor word and dword subtractions, AC is not affected.

Register 1 contains OC9H (11001001B) and register 0 contains 54H (01010100B). After
executing the instruction

SUB R1,RO

register 1 contains 75H (01110101B), the CY and AC flags are clear, and the OV flag is set.

Binary Mode

3
2

Source Mode

2

,--_1_0_0_1_--,-_1_1_0_0_--,1 ... 1 _s_s_s_s_--'-_S_S_S_S----'

Hex Code In: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: SUB
(Rmd) f- (Rmd) - (Rms)

SUB WRld,WRls

Bytes:

States:

Binary Mode

3

3

Source Mode

2

2

[Encoding] ~_1_0_0_1 _ _L_1_1_0_1_~1 LI __ tt_t_t_-L_T_T_T_T_~

L
A-129

INSTRUCTION SET REFERENCE

Hex Code In: Binary Mode = [AS](Encodlng]
Source Mode = [Encoding]

Operation: SUB
(WRjd) ~ (WRjd) - (WRjs)

SUB DRkd,DRks

Binary Mode Source Mode
Bytes: 3 2
States: 5 4

[Encoding] 1001 1 1 1 1 I I
Hex Code In: Binary Mode = [A5][Encodlng]

Source Mode = [Encoding]

Operation: SUB
(ORkd) ~ (ORkd) - (ORks)

SUB Rm,#data

Binary Mode Source Mode
Bytes: 4 3
States: 3 2

[Encoding] 1001 1110 I I
Hex Code In: Binary Mode = [A5][Encodlng]

Source Mode = [Encoding]

Operation: SUB
(Rm) ~ (Rm) - #data

SUB WRJ,#data16

Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]

1001 1110 I I t ttt

Hex Code In: Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

Operation: SUB
(WRj) ~ (WRj) -#data16

A-130

intel·

uuuu UUUU

ssss 0000 I I #data

0100 I I #data hi #datalow

1

intet INSTRUCTION SET REFERENCE

SUB DRk,#data16

Bytes:
States:

[Encoding]

Binary Mode Source Mode

5 4

6 5

L-_1_0_0_1 __ ~ __ 1_1_1_0 __ ~1 1 uuuu

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: SUB
(ORk) ~ (ORk) - #data16

SUB Rm,dir8

Bytes:
States:

Binary Mode
4

3t

Source Mode

3

2t

1000 1 1 #data hi #data low

tit this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] '---_1_0_0_1 __ ---'-__ 1_1_1_0 __ ---'1 I s ss s

Hex Code In: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: SUB
(Rm) ~ (Rm) - (dirB)

SUB WR/,dlr8

Bytes:

States:

Binary Mode
4

4

Source Mode

3
3

0001 I I direct addr

[Encoding] '---_1_0_0_1 __ --'-__ 1_1_1_0 __ 1 L..1 __ t_tt_t_---'-_0_1_0_1_---'1 1 directaddr

Hex Code in: Binary Mode = [AS][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRj) ~ (WRj) - (dire)

SUB Rm,dir16

Bytes:

States:

L

Binary Mode

5

3

/

Source Mode
4

2

A-131

INSTRUCTION SET REFERENCE infel·
[Encoding]

1001 111 0 I I ssss 001 1 I I direct addr I I direct addr

Hex Code In: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: SUB
(Rm) ~ (Rm) - (dir16)

SUB WRJ,dlr16

Binary Mode Source Mode
Bytes: 5 4

States: 4 3

[Encoding]

1 001 1 1 1 0 I 1 t tt t 01 11 I 1 direct addr I 1 direct addr

Hex Code In: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: SUB
(WRj) ~ (WRj) - (dir16)

SUBRm,@WRJ

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding]

1001 1110 I I t ttt 1001 I ·1
ssss 0000

Hex Code in: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: SUB
(Rm) ~ (Rm) - «WRJ))

SUBRm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

1001 1 110 I 1 uuuu 101 1 I 1 ssss I I 0000

A-132

i ntel ® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) f- (Rm) - ({ORk»

SUBB A,<src-byte>

Function: Subtract with borrow

Description: SUBB subtracts the specified variable and the CY flag together from the accumulator,
leaving the result in the accumulator. SUBB sets the CY (borrow) flag if a borrow is needed
for bit 7, and clears CY otherwise. (If CY was set before executing a SUBB Instruction, this
indicates that a borrow was needed for the previous step in a mUltiple precision subtraction,
so the CY flag is subtracted from the accumulator along with the source operand.) AC is set
if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit
6, but not Into bit 7, or Into bit 7, but not bit 6.

Flags:

Example:

Variations

SUBB A,#data

Bytes:

States:

[Encoding]

Hex Code In:

t

When subtracting signed integers the OV flag Indicates a negative number produced when a
negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register-indirect, or
immediate.

CY AC OV N z

The accumulator contains OC9H (11 001 001 B), register 2 contains 54H (01 01 01 OOB), and
the CY flag is set. After executing the instruction

SUBBA,R2

the accumulator contains 74H (01110100B), the CY and AC flags are clear, and the OV flag
is set.

Notice that OC9H minus 54H is 75H. The difference between this and the above result is due
to the CY (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a
CLR CY instruction.

Binary Mode

2

Source Mode

2

1

1 001 0100

Binary Mode = [Encoding]
Source Mode = [Encoding]

I immed. data

A-133

INSTRucnON SET REFERENCE

Operation:

SUBBA,dlrS

Bytes:
States:

[Encoding]

SUBB
(A) ~ (A) - (ey) - #data

Binary Mode
2

1t

Source Mode
2

1t
tlf this Instruction addresses a port (Px, X= 0-3), add 1 state.

L...-_1_0_0_1_....L..._0_1_0_1_...J1 I direct addr

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SUBB
(A) ~ (A) - (ey) - (dirB)

SUBBA,ORi

Binary Mode Source Mode
Bytes: 1 2

States: 2 3

[Encoding] 1001 011 I

Hex Code In: Binary Mode = [Encoding]
Source Mode = [A5][Encodlng]

Operation: SUBB

SUBBA,Rn

Bytes:
States:

[Encoding]

Hex Code In:

Operation:

A-134

(A) ~ (A) - (ey) - «Ri»

Binary Mode
1

1001

Source Mode
2
2

1 r r r

Binary Mode = [Encoding]
Source Mode = [A5][Encodlng]

SUBB
(A) ~ (A) - (ey) - (Rn)

infel·

INSTRUCTION SET REFERENCE

SWAP A

Function: Swap nibbles within the accumulator

Description: Interchanges the low and high nibbles (4-bit fields) of the accumulator (bits 3-0 and bits 7-
4). This operation can also be thought of as a 4-bit rotate instruction.

Flags:

CY AC ov N z

Example: The accumulator contains OC5H (11000101 B). After executing the instruction

SWAP A

the accumulator contains 5CH (01011100B).

Bytes:

Binary Mode

1

Source Mode

1

States: 2

[Encoding] 1 1 00 0100

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SWAP
(A).3:0 ~ ~ (A).7:4

TRAP

Function: Causes interrupt cali

2

Description: Causes an interrupt cali that is vectored through location OFF007BH. The operation of this
instruction is not affected by the state of the interrupt enable flag in PSWO and PSW1.
Interrupt calis can not occur immediately foliowing this instruction. This instruction is
intended for use by Intel-provided development tools. These tools do not support user
application of this instruction.

Flags:

CY AC ov N z

Example: The instruction

TRAP

causes an interrupt cali to location OFF007BH during normal operation.

l
A-135

INSTRUCTION SET REFERENCE intet

Bytes:

States (2 bytes):

States (4 bytes):

Binary Mode

2

11

16

Source Mode

1

10

15

[Encoding] 1 01 1 1 001

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: TRAP

XCH A,<byte>

SP~SP-2
(SP)~ PC
PC ~ (OFF0076H)

Function: Exchange accumulator with byte variable

Description: Loads the accumulator with the contents of the specified variable, at the same time writing
the original accumulator contents to the specified variable. The source/destination operand
can use register, direct, or register-indirect addressing.

Flags:

Example:

Variations

XCH A,dlr8

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

A-136

CY AC OV N z

RO contains the address 20H, the accumulator contains 3FH (001111116) and on-chip RAM
location 20H contains 75H (011101016). After executing the instruction

XCH A,@RO

RAM location 20H contains 3FH (001111116) and the accumulator contains 75H
(011101016).

Binary Mode

2

3t

Source Mode

2

3t
tlf this instruction addresses a port (Px, x= 0-3), add 2 states.

L-_1_1_0_0_--L __ 0_1_0_1_---l1 I direct addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

XCH
(A) ~ ~ (dir8)

I

XCHA,@RI

Bytes:

States:

Binary Mode

1

4

Source Mode

2

5

[Encoding] 1 100 011 i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [AS][Encodlng]

Operation: XCH

XCHA,Rn

Bytes:

States:

[Encoding]

(A) ~ to- «Ai»

Binary Mode

1

3

1100

Source Mode

2

4

1 r r r

Hex Code In: Binary Mode = [Encoding]
Source Mode = [AS][Encoding]

Operation: XCH
(A) ~ to- (An)

Variations

XCHDA,@Ri

Function: Exchange digit

INSTRUCTION SET REFERENCE

Description: Exchanges the low nibble of the accumulator (bits 3-0), generally representing a
hexadecimal or BCD digit, with that of the on-chip AAM location Indirectly addressed by the
specHled register. Does not affect the high nibble (bits 7-4) of either register.

Flags:

Example:

CY AC ov N z

AO contains the address 20H, the accumulator contains 36H (0011011 OB), and on-chip AAM
location 20H contains 75H (01110101B). After executing the Instruction,

XCHDA,@AO

on-chip AAM location 20H contains 76H (01110110B) and 3SH (00110101B) in the accumu
lator.

A-137

INSTRUCTION SET REFERENCE i ntel ®

Bytes:

States:

[Encoding]

Binary Mode Source Mode

4

1 1 0 1 01 1 i

2

5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XCHD
(A).3:0 ~ ~ «Ri».3:0

XRL <dest>,<src>

Function: Logical Exclusive-OR for byte variables

Description: Performs the bitwise logical Exclusive-QR operation (\7') between the specified variables,
storing the results in the destination. The destination operand can be the accumulator, a
register, or a direct address.

Flags:

Example:

A-138

The two operands allow 12 addressing mode combinations. When the destination is the
accumulator or a register, the source addressing can be register, direct, register-indirect, or
immediate; when the destination is a direct address, the source can be the accumulator or
immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.)

CY AC OV N z
,/

The accumulator contains OC3H (110000118) and RO contains OAAH (101010108). After
executing the instruction,

XRLA,RO

the accumulator contains 69H (011010018).

When the destination is a directly addressed byte, this instruction can complement combina
tions of bits in any RAM location or hardware register. The pattern of bits to be comple
mented is then determined by a mask byte, either a constant contained in the instruction or
a variable computed in the accumulator at run time. The instruction

XRL Pl ,#0011 0001 8

complements bits 5, 4, and 0 of output Port 1.

I

INSTRUCTION SET REFERENCE

Variations

XRLdir8,A

Bytes:
States:

Binary Mode

2

2t

Source Mode

2

2t
tit this instruction addresses a port (Px, X= 0-3), add 2 states.

[Encoding] '---_0_1_1_0_-.!. __ 0_0_1_0_----" , direct addr

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(dir8) ~ (dirB) V (A)

XRL dlr8,#data

Bytes:
States:

Binary Mode

3

3t

Source Mode

3

3t
tit this instruction addresses a port (Px, x= 0-3), add 1 state.

[Encoding] '---_0_1 _1_0_-.!. __ 0_0_1_1_----'1 I direct addr

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL

XRLA,#data

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

L

(dir8) ~ (dirB) V #data

Binary Mode

2

Source Mode

2

011 ° 0100

Binary Mode = [Encoding]
Source Mode = [Encoding]

XRL
(A) ~ (A) V #data

, immed. data

I immed. data

A-139

INSTRUCTION SET REFERENCE

XRLA,dlr8

Bytes:
States:

Binary Mode
2

1t

Source Mode
2

1t
tit this Instruction addresses a port (Px, x= 0--3), add 1 state.

[Encoding] '-_0_1_1_0_ __ 0_1_0_1_--'1 1 direct addr

Hex Code In: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(A) ~ (A) 'rI (dirS)

XRLA,ORI

Bytes:
States:

Binary Mode
1

2

Source Mode
2

3

[Encoding] 0110 0111

Hex Code In: Binary Mode = [Encoding]
Source Mode = [A5][Encodlngl

Operation: XRL

XRLA,Rn

Bytes:
States:

[Encoding]

(A) ~ (A) 'rI «RI»

Binary Mode

1

011 0

Source Mode

2
2

1 r r r

Hex Code In: Binary Mode = [Encoding]
Source Mode = [A5][Encodlngl

Operation: XRL

XRLRmd,Rms

Bytes:
States:

[Encoding]

A-140

(A) ~ (A) 'rI (Rn)

Binary Mode

3
2

Source Mode

2

~_0_1_1_0 __ ~ __ 1_1_0_0 __ ~1 I ssss SSSS

Hex Code In: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: XRL
(Rmd) +- (Rmd) '<I (Rms)

XRL WRld,WRls

Binary Mode Source Mode
Bytes: 3 2
States: 3 2

[Encoding] 0110 1 1 01 I I
Hex Code In: Binary Mode = [AS][Encodlng]

Source Mode = [Encoding]

Operation: XAL
(WAds) +- (WAjd) '<I (WAjs)

XRL Rm,#data

Binary Mode Source Mode
Bytes: 4 3
States: 3 2

[Encoding] 0110 1 1 1 0 I I
Hex Code In: Binary Mode = [AS][Encodlng]

Source Mode = [Encoding]

Operation: XAL
(Am) +- (Am) '<I #data

XRL WRI,#data16

Binary Mode Source Mode
Bytes: 5 4

States: 4 3
[Encoding]

011 0 1 11 0 I I t t t t

Hex Code In: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: XAL
(WAD +- (WAD '<I #data16

INSTRUCTION SET REFERENCE

t t t t TTTT

ssss 0000 I I #data

"

II ,

0100 I I #data hi I I #data low

A-141

INSTRUCTION SET REFERENCE

XRL Rm,dlr8

Binary Mode Source Mode
Bytes: 4 a
States: at 2t

tit this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding]

Hex Code In:

Operation:

XRL WRJ,dlr8

Bytes:

States:

[Encoding]

Hex Code In:

Operation:

XRL Rm,dlr16

Bytes:

States:

[Encoding]

0110 1110 I I
Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

XRL
(Rm) ~ (Rm) "V (dlr8)

Binary Mode Source Mode
4 a
4 a

0110 1 11 0 I I
Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

XRL
(WRj) ~ (WRJ) "V (dlrB)

Binary Mode

5

Source Mode
4

a 2

~_0_1_1_0 __ -L __ 1_1_1_0 __ ~1 I ssss

Hex Code In:

Operation:

A-142

Binary Mode = [A5][Encodlng]
Source Mode = [Encoding]

XRL
(Rm) ~ (Rm) "V (dlr16)

ssss 0001 I I dlrectaddr

tt It 0101 I I dlrectaddr

0011 I I direct addr I I dirB addr

intet INSTRUCTION SET REFERENCE

XRL WRJ,dlr16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3
[Encoding]

01 1 0 1 1 1 0 I I tttt 011 1 I I direct addr I I direct addr

Hex Code In: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: XRL
(WRD +- (WRD 'V (dir16) ,~\

,I
XRLRm,@WrJ If

i' I,"

Binary Mode Source Mode "

",

Bytes: 4 3 1:1

"I

States: 3 2 11
[Encoding]

I
~

01 1 0 1 1 1 0 I I tttt 1001 I I 0000
" ssss

Hex Code In: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: XRL
(Rm) +- (Rm) 'V ((WRj»

XRL Rm,@Drk

Binary Mode Source Mode

Bytes: 4 3 i
States: 4 3 II
[Encoding] j,~ I)

011 0 1 1 1 0 I I uuuu 1 01 1 I I ssss I I 0000

Hex Code In: Binary Mode = [AS][Encodlng]
Source Mode = [Encoding]

Operation: XRL
(Rm) +- (Rm) 'V ((ORk»

l
A·143

infel.

Signal Descriptions

J

B

i.'
I'
I.
i:
!:

intel~

APPENDIX B
SIGNAL DESCRIPTIONS

This appendix provides reference information for the pin functions ofthe 8XC251SB. Table B-1
lists the signals, grouped by function. Table B-2 defines the columns used in Table B-3, which
describes the signals.

Table 8-1. Signals Arranged by Functional Categories

Address & Data Input/Output Processor Control

Name Name Name

ADO/PO.O T2/P1.0 INTO#/P3.2

AD1/PO.1 T2EXlP1.1 INT1#/P3.3

AD2/PO.2 ECI/P1.2 EA#Npp

AD3/PO.3 CEXO/P1.3 RST

AD4/PO.4 CEX1/P1.4 XTAL1

AD5/PO.5 CEX2/P1.5 XTAL2

AD6/PO.6 CEX3/P1.6

AD7/PO.7 CEX4/P1.7 Power & Ground

AS/P2.0 RXD/P3.0 Name

A9/P2.1 TXD/P3.1 Vee

A10/P2.2 TO/P3.4 Vee2

A11/P2.3 T1/P3.5 Vss

A121P2.4 Vss1

A13/P2.5 Bus Control & Status VSS2

A14/P2.6 Name

A15/P2.7 WR#/P3.6

RD#/P3.7

ALE/PROG#

PSEN#

L-
8-1

SIGNAL DESCRIPTIONS int"et

Table 8-2. Description of Columns of Table 8-3

Column Heading Description

Signal Name Lists the signals, arranged alphabetically. Many pins have two functions, so
there are more entries in this column than there are pins. Every signal is
listed in this column; for each signal, the alternate function that shares the
pin is listed in the Multiplexed With column.

Type Identifies the pin function listed in the Signal Name column as an input (I),
output (0), bidirectional (I/O), power (PWR), or ground (GND).

Note that all inputs except RESET# are sampled inputs. RESET# is a level-
sensitive input. During powerdown mode, the powerdown circuitry uses
EXTINTx as a level-sensitive input.

Description Briefly describes the function of the pin for the specific signal listed in the
Signal Name column.

Multiplexed With Lists the multiplexed signal name for the alternate function that the pin
provides (if applicable).

Table 8-3. Signal Descriptions

Signal
Type Description

Multiplexed
Name With

A16 0 Address Line 16. See RD#. N.A.

A15:Bt 0 Address Lines. Upper address lines for the external bus. P2.7:0

AD7:Ot I/O Address/Data Lines. Multiplexed lower address lines and data lines for PO.7:0
external memory.

ALE 0 Address Latch Enable. ALE signals the start of an external bus cycle PROG#
and indicates that valid address information is available on lines A 15:8
and AD7:0. An external latch can use ALE to demultiplex the address
from the address/data bus. (

CEX4:0 I/O Programmable Counter Array (PCA) Input/Output Pins. These are P1.7:3
input Signals for the PCA capture mode and output signals for the PCA
compare mode and PCA PWM mode.

EA# I External Access. Directs program memory accesses to on-chip or off- Vpp

chip code memory. For EA# = 0, all program memory accesses are off-
chip. For EA# = 1, an access is to on-chip OTPROM/ROM if the
address is within the range of the on-chip OTPROM/ROM; otherwise
the access is off-chip. The value of EA# is latched at reset. For a
ROMless part, EA# must be strapped to ground.

EC1 I PCA External Clock Input. External clock input to the 16-bit PCA timer. P1.2

INT1:0# I External Interrupts 0 and 1. These inputs set bits IE1:0 in the TCON P3.3:2
register. If bits IT1:0 in the TCON register are set, bits IE1 :0 are set by a
falling edge on INT1#/INTO#. If bits INT1:0 are clear, bits IE1:0 are set
by a low level on INT1 :0#.

tThe descriptions of A 15:8/P2.7:0 and AD7:0/PO.7:0 are for the non page-mode chip configuration
(compatible with PLCC MCS 51 microcontrollers). If the chip is configured for page-mode operation, port 0
carries the lower address bits (AO-A7), and port 2 carries the upper address bits (A8-A15) and the data
(DO-D7).

B-2

.L

SIGNAL DESCRIPTIONS

Table B-3. Signal Descriptions (Continued)

Signal
Type Description

Multiplexed
Name With

PO.7:0 1/0 Port O. This is an 8-bit, open-drain, bidirectional 1/0 port. A07:0

P1.0 1/0 Port 1. This is an 8-bit, bidirectional 1/0 port with internal pullups. T2
P1.1 T2EX
P1.2 ECI
P1.7:3 CEX4:0

P2.7:0 1/0 Port 2. This is an 8-bit, bidirectional 1/0 port with internal pull ups. A15:8

P3.0 1/0 Port 3. This is an 8-bit, bidirectional 1/0 port with internal pullups. RXO
P3.1 TXO
P3.3:2 INT1:0#
P3.5:4 T1:0
P3.6 WR#
P3.7 RO#

PROG# I Programming Pulse. The programming pulse is applied to this pin for ALE
programming the on-chip OTPROM.

PSEN# 0 Program Store Enable. Read signal output. This output is asserted for -
a memory address range that depends on bits ROO and R01 in configu-
ration byte CONFIG1 (see also RO#):

RD1 RDOAddress Range for Assertion
OOReserved
01AII addresses
10AII addresses
11 All addresses ~ 80:0000H

RO# 0 Read or 17th Address Bit (A16). Read signal output to external data P3.7
memory or 17th external address bit (A16), depending on the values of
bits ROO and R01 in configuration byte CONFIG1. (See also PSEN#):

RD1 RDOFunction
OOReserved
01The pin functions as A 16 only.
10The pin functions as P3.7 only.
11 RO#: asserted for reads at all addresses :s: 7F:FFFFH

RST I Reset. Reset input to the chip. Holding this pin high for 64 oscillator -
periods while the oscillator is running resets the device. The port pins
are driven to their reset conditions when a voltage greater than VIH1 is
applied, whether or not the oscillator is running. This pin has an internal
pulldown resistor, which allows the device to be reset by connecting a
capacitor between this pin and Vee.

Asserting RST when the chip is in idle mode or powerdown mode
returns the chip to normal operation.

RXO 1/0 Receive Serial Data. RXO sends and receives data in serial 1/0 mode 0 P3.0
and receives data in serial 1/0 modes 1, 2, and 3.

T1:0 I Timer 1:0 External Clock Inputs. When timer 1 :0 operates as a P3.5:4
counter, a falling edge on the T1:0 pin increments the count.

tThe descriptions of A 15:8/P2.7:0 and A07:0/PO.7:0 are for the nonpage-mode chip configuration
(compatible with PLCC MCS 51 microcontrollers). If the chip is configured for page-mode operation, port 0
carries the lower address bits (AD-A7), and port 2 carries the upper address bits (AB-A 15) and the data
(0D-07).

t
8-3

SIGNAL DESCRIPTIONS intet
Table B-3. Signal Descriptions (Continued)

Signal Type Description Multiplexed
Name With

T2 I/O Timer 2 Clock Input/Output. For the timer 2 capture mode, this signal P1.0
is the external clock input. For the clock·out mode, It is the timer 2 clock
output.

T2EX I Timer 2 External Input. In timer 2 capture mode, a falling edge initiates P1.1
a capture of the timer 2 registers. In auto· reload mode, a falling edge
causes the timer 2 registers to be reloaded. In the up-down counter
mode, this signal determines the count direction: 1 = up, 0 = down.

TXD 0 Transmit Serial Data. TXD outputs the shift clock in serial I/O mode 0 P3.1
and transmits serial data in serial I/O modes 1, 2, and 3.

Vee PWR Supply Voltage. Connect this pin to the +5V supply voltage. -
Vee2 PWR Secondary Supply Voltage 2. This supply voltage connection is -

provided to reduce power supply noise. Connection of this pin to the
+5V supply voltage is recommended. However, when using the
8XC251 58 as a pin-for-pin replacement for the 8XC51 FX, VSS2 can be
unconnected without loss of compatibility.

Vpp I Programming Supply Voltage. The programming supply voltage is EA#
applied to this pin for programming the on-chip OTPROM.

Vss GND Circuit Ground. Connect this pin to ground. -
VSSl GND Secondary Ground. This ground is provided to reduce ground bounce -

and improve power supply bypassing. Connection of this pin to ground
is recommended. However, when using the 8XC2515B as a pin-for-pin
replacement for the 8XC51 BH, V ssl can be unconnected without loss of
compatibility.

VSS2 GND Secondary Ground 2. This ground is provided to reduce ground -
bounce and improve power supply bypassing. Connection of this pin to
ground is recommended. However, when using the 8XC251SB as a pin-
for-pin replacement for the 8XC51 FX, V ss2 can be unconnected without
loss of compatibility.

WR# 0 Write. Write Signal output to external memory. For configuration bits P3.6
RD1 = RDO = 1, WR# is strobed only for writes to locations 00 OOOOH-
01 FFFFH. For other values of R01 and ROO, WR# is strobed for writes
to all memory locations.

XTAL1 I Input to the On-chip, Inverting, Oscillator Amplifier. To use the -
internal oscillator, a crystal/resonator circuit is connected to this pin. If
an external oscillator is used, its output is connected to this pin. XTAL 1
is the clock source for internal timing.

XTAL2 0 Output of the On-chip, Inverting, Oscillator Amplifier. To use the -
internal oscillator, a crystal/resonator circuit is connected to this pin. If
an external oscillator is used, leave XTAL2 unconnected.

tThe descriptions of A 15:8/P2.7:0 and A07:0/PO.7:0 are for the nonpage-mode chip configuration
(compatible with PLCC MC5 51 microcontrollers). If the chip is configured for page-mode operation, port 0
carries the lower address bits (AO-A7), and port 2 carries the upper address bits (A8-A15) and the data
(00-07).

8-4

L

intel.

c
Registers

'I·',
:~,

I

int:et

SFR
Mnemonic

ACCt

Bt

CCAPOH

CCAPOL

CCAP1H

CCAP1L

CCAP2H

CCAP2L

CCAP3H

CCAP3L

CCAP4H

CCAP4L

CCAPMO

CCAPM1

CCAPM2

CCAPM3

CCAPM4

CCON

REGISTERS

APPENDIX C
REGISTERS

Table C-1. 8XC251SB Special Function Registers (SFRs)

Binary Reset Value
SFR Name Hex Address

I High Low

Accumulator S:EOH 0000 0000

B Register S:FOH 0000 0000

PCA Module 0 Compare/Capture S:FAH XXXX XXXX
Register High Byte

PCA Module 0 Compare/Capture S:EAH XXXX XXXX
Register Low Byte

PCA Module 1 Compare/Capture S:FBH XXXX XXXX
Register High Byte

PCA Module 1 Compare/Capture S:EBH XXXX XXXX
Register Low Byte

PCA Module 2 Compare/Capture S:FCH XXXX XXXX
Register High Byte

PCA Module 2 Compare/Capture S:ECH XXXX XXXX
Register Low Byte

PCA Module 3 Compare/Capture S:FDH XXXX XXXX
Register High Byte

PCA Module 3 Compare/Capture S:EDH XXXX XXXX
Register Low Byte

PCA Module 4 Compare/Capture S:FEH XXXX XXXX
Register High Byte

PCA Module 4 Compare/Capture S:EEH XXXX XXXX
Register Low Byte

PCA Compare/Capture Module 0 S:DAH XOOO 0000
Mode Register

PCA Compare/Capture Module 1 S:DBH XOOO 0000
Mode Register

PCA Compare/Capture Module 2 S:DCH XOOO 0000
Mode Register

PCA Compare/Capture Module 3 S:DDH XOOO 0000
Mode Register

PCA Compare/Capture Module 4 S:DEH XOOO 0000
Mode Register

PCA 'Timer/Counter Control S:D8H OOXO 0000
Register

fThis register resides in the register file. It can also be accessed as an SFR.

C-1

I
I)
i~ Ii
II
;1

REGISTERS

Table C-1. 8XC251SB Special Function Registers (SFRs)

SFR Binary Reset Value

Mnemonic SFR Name Hex Address

J High Low

CH PCA Timer/Counter High Byte S:F9H 0000 0000

CL PCA Timer/Counter Low Byte S:E9H 0000 0000

CMOD PGA Timer/Counter Mode Register S:D9H OOXX XOOO

DPHt Data Pointer High S:83H 0000 0000

DPLt Data Pointer Low S:82H 0000 0000

DPXLt Data Pointer Extended Low S:84H 0000 0001

lEO Interrupt Enable Control Register 0 S:ABH 0000 0000

IPHO Interrupt Priority High Control S:B7H XOOO 0000
Register 0

IPLO Interrupt Priority Low Control S:BBH XOOO 0000
Register 0

PO Port 0 S:BOH 1111 1111

P1 Port 1 S:90H 1111 1111

P2 Port 2 S:AOH 1111 1111

P3 Port 3 S:BOH 1111 1111

PCON Power Control Register S:B7H OOXX 0000

PSW Program Status Word S:DOH 0000 0000

PSW1 Program Status Word 1 S:D1H 0000 0000

RCAP2H limer 2 Reload/Capture Register S:CBH 0000 0000
High Byte

RCAP2L Timer 2 Reload/Capture Register S:CAH 0000 0000
Low Byte

SADDR Slave Individual Address Register S:A9H 0000 0000

SADEN Mask Byte Register S:B9H 0000 0000

SBUF Serial Data Buffer S:99H XXXX XXXX

SCON Serial Control Register S:9BH 0000 0000

spt Stack Pointer - LS byte of SPX S:B1H 0000 0111

SPHt Stack Pointer High - MSB of SPX S:BDH 0000 0000

T2CON limer 2 Control Register S:CBH 0000 0000

T2MOD Timer 2 Mode Control Register S:C9H. XXXX XXOO

TCON Timer 0/1 Control Register S:88H 0000 0000

TMOD Timer 0/1 Mode Control Register S:B9H 0000 0000

THO Timer 0 Timer Register High Byte S:BCH 0000 0000

TLO Timer 0 Timer Register Low Byte S:BAH 0000 0000

tThis register resides in the register file. It can also be accessed as an SFR.

C-2 _1

intet REGISTERS

Table C-1. 8XC251 S8 Special Function Registers (SFRs)

SFR
Binary Reset Value

Mnemonic SFR Name Hex Address

I High Low

TH1 Timer 1 Timer Register High Byte S:8DH 0000 0000

TL1 Timer 1 Timer Register Low Byte S:8BH 0000 0000

TH2 Timer 2 Timer Register High Byte S:CDH 0000 0000

TL2 Timer 2 Timer Register Low Byte S:CCH 0000 0000

WDTRST Watchdog Timer Reset Register S:A6H XXXX XXXX
Tfhis register resides in the register file. It can also be accessed as an SFR.

C-3

REGISTERS intet

ACC Address: EOH
Reset State: OOOOOooOB

Accumulator. ACC provides SFR access to the accumulator, which resides in the register file as byte
register R11 (also named ACC). Instructions in the MCSH> 51 architecture use the accumulator as both
source and destination for calculations and moves. Instructions in the MCS 251 architecture assign no
special significance to R11. These instructions can use byte registers Rm (m = 0-15) interchangeably.

7 0

~n_a_m_e_._7~ __ n_am __ e_.6 __ ~_na_m_e_._5~ __ n_am __ e_.4~1 ~1_n_a_m_e_._3~ __ na __ m_e_.2 __ ~n_am __ e_._1~ __ na __ m_e_.0~

Bit Bit Function Number Mnemonic

7:0 ACC.7:0 Accumulator.

C-4

_L

intet REGISTERS

B Address: FOH
Reset State: 0000 OOOOB

B Register. The B register provides SFR access to byte register R10 (also named B) in the register
file. The B register is used as both a source and destination in multiply and divide operations. For all
other operations, the B register is available for use as one of the byte registers Rm, m = 0-15.

7 0

~n_a_m_e_._7~ __ n_a_m_e_.6 __ ~_na_m __ e._5~ __ n_am __ e_.4~1 l~n_am __ e_._3-i __ na __ m_e_.2~~n_a_m_e_._1-i __ na_m __ e_.0~

Bit Bit Function
Number Mnemonic

7:0 B.7:0 B Register.

C-5

REGISTERS

CCAPxH, CCAPxL (x = 0-4) Address: CCAPOH,L S:FAH, S:EAH
CCAP1 H,L S:FBH, S:EBH
CCAP2H,L S:FCH, S:ECH
CCAP3H,L S:FDH, S:EDH
CCAP4H,L S:FEH, S:EEH

Reset State: XXXX XXXXB

PCA Module Compare/Capture Registers. These five register pairs store the 16-blt comparison value
or captured value for the corresponding compare/capture modules. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

7 o
~n_am __ e_.7 __ ~na __ m_e_.6 __ ~_na_m_e_._5~ __ na_m __ e._4~1 l~na __ m_e_.3 __ ~na __ m_e_.2 __ ~n_a_m_e_._1~ __ nam __ e_._0~

Bit Bit Function Number Mnemonic

7:0 CCAP~.7:0 High byte of PCA comparison or capture values.
CCAPxL.7:0 Low byte of PCA comparison or capture values.

C-6

J

CCAPMx (x = 0-4)

REGISTERS

Address: CCAPMO S:DAH
CCAPM1 S:D8H
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: XOOO 00008

PCA Compare/Capture Module Mode Registers. These five registers select the operating mode of the
corresponding compare/capture module. Each register also contains an enable interrupt bit (ECCFx)
for generating an interrupt request when the module's compare/capture flag (CCFx in the CCON
register) is set. See Table 8-3 on page 8-15 for mode select bit combinations.

7 o
~ ______ ~_E_C_O_M_X~ __ C_A_P_P_X~ __ C_A_P_N_X~I ~I __ M_A_~_x __ L-_T_O_G_x __ ~_P_W_M_x __ ~_E_C_C_F_x~

Bit Bit
Function

Number Mnemonic

7 - Reserved:

The value read from this bit is indeterminate. Do not write a "1" to this bit.

6 ECOMx Compare Modes:

ECOMx= 1 enables the module comparator function. The comparator is
used to implement the software timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPx Capture Mode (Positive):

CAPPx= 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNx Capture Mode (Negative):

CAPNx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MATx Match:

Set ECOMxand MATxto implement the software timer mode. When
MATx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.

2 TOGx Toggle:

Set ECOMx, MATx, and TOGxto implement the high-speed output
mode. When TOGx= 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:

PWMx= 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:

Enables compare/capture flag CCFxin the CCON register to generate
an interrupt request.

C-7

REGISTERS intet

CCON Address: S:DBH
Reset State: OOXO OOOOB

PCA l1mer/Counter Control Register. Contains the run control bit and overflow flag for the PCA
timer/counter, and the compare/capture flags for the five PCA compare/capture modules.

7 o
~_C_F __ ~ __ C_R __ ~ ____ ~~C_C_F_4~1 I~C_C_F_3~~C_C_F_2~ __ C_C_F_1~ __ C_C_F_0~

Bit Bit Function
Number Mnemonic

7 CF PCA l1mer/Counter Overflow Flag:

Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or software but can be cleared only by software.

6 CR PCA Timer/Counter Run Control Bit:

Set and cleared by software to turn the PCA timer/counter on and off.

5 - Reserved:

The value read from this bit is indeterminate. Do not write a "1" to this bit.

4:0 CCF4 PCA Module Compare/Capture Flags:
CCF3 Set by hardware when a match or capture occurs. This generates a PCA
CCF2 interrupt request if the ECCFx interrupt enable bit in the corresponding
CCF1 CCAPMx register is set. Must be cleared by software.
CCFO

C-B J_

int'et~

CH,CL Address:

REGISTERS

S:F9H
S:E9H

Reset State: 0000 00008

CH, CL Registers. These registers operate in cascade to form the l6-bit PCA timer/counter.

7 0

name.7 I name.6 I name.5 I name.4 II name.3 I name.2 I name.l I name.O I

Bit Bit Function Number Mnemonic

7:0 CH.7:0 High byte of the PCA timer/counter

CL.7:0 Low byte of the PCA timer/counter

1
C-9

REGISTERS

CMOD Address: S:D9H
Reset State: OOXX XOOOB

PCA Timer/Counter Mode Register. Contains bits for selecting the PCA timer/counter input, disabling
the PCA timer/counter during idle mode, enabling the PCA WDT reset output (module 4 only), and
enabling the PCA timer/counter overflow interrupt.

7 o
~_C_ID_L __ ~W __ DT_E __ ~ ____ ~ ____ ~I ~I ______ ~C_P_S_1~~C_P_S_O~~_E_CF __ ~

Bit Bit
Function

Number Mnemonic

7 CIDL PCA Timer/Counter Idle Control:

CI DL = 1 disables the PCA timer/counter during idle mode. CI DL = 0
allows the PCA timer/counter to run during idle mode.

6 WDTE Watchdog Timer Enable:

WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.

5:3 - Reserved:

The values read from these bits are indeterminate. Do not write a "1" to
these bits.

2:1 CPS1:0 PCA Timer/Counter Input Select:

CPS1 CPSO

0 0 Fosc/12
0 1 Fosc/4
1 0 Timer 0 overflow
1 1 External dock at ECI pin (maximum rate = Fosc /8)

0 ECF PCA Timer/Counter Interrupt Enable:

ECF = 1 enables the CF bit in the CCON register to generate an interrupt
request.

C-10

1

intet REGISTERS

DPH Address: S:83H
Reset State: 0000 OOOOB

Data Pointer High. DPH provides SFR access to register file location 58 (also named DPH). DPH Is
the upper byte of the 16-bit data painter, DPTR. Instructions in the MeSH> 51 architecture use DPTR
for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPL and DPXL.

7 o
~_nam ___ e._7~ __ n_am __ e_.6 __ ~_na_m __ e._5~ __ n_a_m_e_.4~1 ~1_n_am __ e_._3~ __ na __ m_e_.2 __ ~n_am __ e_._1~ __ na __ m_e_.0~

Bit Bit Function Number Mnemonic

7:0 DPH.7:0 Data Pointer High:

Bits 8-15 of the extended data pointer, DPX (DR56).

L
C-11

REGISTERS infel~

DPL Address: S:82H
Reset State: OOOOOOOOB

Data Pointer Low. DPL provides SFR access to register file location 59 (also named DPL). DPL is the
low byte of the 16-bit data pOinter, DPTR. Instructions in the MCSB>51 architecture use the 16-bit data
pOinter for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPH and
DPXL.

7 o
L-n_am __ e_._7~ __ n_am __ e_.6 __ ~_na_m_e_._5~ __ n_am __ e_.4~1 LI_n_am __ e_._3~ __ na __ m_e_.2 __ L-n_am __ e_._1~ __ na __ m_e_.0~

Bit Bit Function
Number Mnemonic

7:0 DPL.7:0 Data Pointer Low:

Bits 0-7 of the extended data pOinter, DPX (DR56).

C-12

J

intet REGISTERS

DPXL Address: S:84H
Reset State: 00000001B

Data Pointer Extended Low. DPXL provides SFR access to register file location 57 (also named
. DPXL). Location 57 is the lower byte of the upper word of the extended data pointer, DPX = DR56,
whose lower word is the 16-bit data pointer, DPTR. See also DPH and DPL.

7 0

~n_a_m __ e._7~ __ n_a_m_e_.6 __ ~_na_m __ e._5~ __ n_a_m_e_.4~1 ~1_n_a_m_e_._3~ __ na __ m_e_.2~~n_a_m_e_._1~ __ na __ m_e_.0~

Bit Bit Function Number Mnemonic

7:0 DPL.7:0 Data Pointer Extended Low:

Bits 16-23 of the extended data pOinter, DPX (DR56).

1
C-13

REGISTERS

lEO Address: S:A8H
Reset State: 0000 00008

Interrupt Enable Register o. lEO contains two types of interrupt enable bits. The global enable bit (EA)
enables/disables all of the interrupts, except the TRAP interrupt, which is always enabled. The
remaining bits enableldisable the other Individual Interrupts.

7 0

L-_E_A __ ~ __ E_C __ ~ __ ET __ 2 __ ~_E_S __ ~1 ~I __ E_T_1 __ ~_E_X_1~~_E_TO __ ~ __ EX_0 __ ~

Bit Bit Function
Number Mnemonic

7 EA Global Interrupt Enable:

Setting this bit enables all interrupts that are individually enabled by bits
0-6. Clearing this bit disables all interrupts, except the TRAP interrupt,
which is always enabled.

6 EC PCA Interrupt Enable:

Setting this bit enables the PCA interrupt.

S ET2 TImer 2 Overflow Interrupt Enable:

Setting this bit enables the timer 2 overflow interrupt.

4 ES Serial 1/0 Port Interrupt Enable:

Setting this bit enables the serial 110 port interrupt.

3 ET1 TImer 1 Overflow Interrupt Enable:

Setting this bit enables the timer 1 overflow interrupt.

2 EX1 Extemallnterrupt 1 Enable:

Setting this bit enables external interrupt 1.

1 ETO TImer 0 Overflow Interrupt Enable:

Setting this bit enables the timer 0 overflow interrupt.

0 EXO External Interrupt 0 Enable:

Setting this bit enables external interrupt O.

C-14

L

REGISTERS

IPHO Address: S:B7H
Reset State: XOOO OOOOB

Interrupt Priority High Control Register o. IPHO, together with IPLO, assigns each interrupt a priority
level from 0 (lowest) to 3 (highest):

7

IPHO.x IPLO.x

o 0
o

Priority Level

o (lowest priority)

1

o 2
3 (highest priority)

o
~ ____ ~~I_P_H_0_.6~ __ I_PH_0_._5~ __ IP_H_0_.4~1 ~I _1_P_H_0_.3~ __ I_PH_0_._2~ __ IP_H_0_.1 __ ~_IP_H_0_.0~

Bit Bit Function
Number Mnemonic

7 - Reserved. The value read from this bit is indeterminate. Do not write a
"1" to this bit.

6 IPHO.6 peA Interrupt Priority Bit High

5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High

4 IPHO.4 Serial 110 Port Interrupt Priority Bit High

3 IPHO.3 Timer 1 Overflow Interrupt Priority Bit High

2 IPHO.2 Extemal Interrupt Priority Bit High

1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High

0 IPHO.O Extemal Interrupt 0 Priority Bit High

C-15

REGISTERS intet.

IPLO Address: S:B8H
Reset State: XOOO OooOB

Interrupt Priority Low Control Register o. IPLO, together with IPHO, a~igns each Interrupt a priority
level from 0 (lowest) to 3 (highest):

7

IPHO.x IPLO.x

o 0
o

o
1

Priority Level

o (lowest priority)

1

2

3 (highest priority)

o
~ ____ ~ __ IP_L_0_.6 __ L-_IP_L_0._5~ __ IP_L_0_.4~1 1~I_P_LO_.3 __ ~_IP_L_0_.2~~I_P_LO_._1~ __ IP_L_0_.0~

Bit Bit
Function Number Mnemonic

7 - Reserved. The value read from this bit is indeterminate. Do not write a
"1" to this bit.

6 IPLO.6 PCA Interrupt Priority Bit Low

5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low

4 IPLO.4 Serial 1/0 Port Interrupt Priority Bit Low

3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low

2 IPLO.2 External Interrupt Priority Bit Low

1 IPLO.1 Timer 0 Overflow Interrupt Priority Bit Low

0 IPLO.O External Interrupt 0 Priority Bit Low

C-16 _L

intel~

PO Address:
Reset State:

REGISTERS

S:80H
1111 11118

Port O. PO is the SFR that contains data to be driven out from the port 0 pins. Read-modify-write
instructions that read port 0 read this register. The other instructions that read port 0 read the port 0
pins. When port 0 is used for an extemal bus cycle, the CPU always writes FFH to PO, and the former
contents of PO are lost.

7 o
L-n_a_m_e_._7~ __ n_am __ e_.6 __ L-_na_m_e_._5~ __ n_a_m_e_.4~1 IL_n_a_m_e_._3~ __ n_a_m_e_.2~L-n_am __ e_._1~ __ na_m __ e_.0~

Bit Bit Function Number Mnemonic

7:0 PO.7:0 Port 0 Register:

Write data to be driven onto the port 0 pins to these bits.

C-17

REGISTERS

P1 Address:
Reset State:

S:90H
1111 11118

Port 1. P1 is the SFR that contains data to be driven out from the port 1 pins. Read-write-modify
instructions that read port 1 read this register. Other Instructions that read port 1 read the port 1 pins.

7 0

name.7 name.6 name.5 I name.4 IIL..-n_am_e_.3_L-na_m_8_.2_L-n_am_e_._1--L._na_m_e._o.....J

Bit Bit Function Number -Mnemonic

7:0 P1.7:0 Port 1 Register:

Write data to be driven onto the port 1 pins to these bits.

C-18

I

int'et~

P2 Address:
Reset State:

REGISTERS

S:AOH
1111 1111B

Port 2. P2 is the SFR that contains data to be driven out from the port 2 pins. Read-modify-write
instructions that read port 2 read this register. Other instructions that read port 2 read the port 2 pins.

7 0

~n_mn __ e_.7 __ ~_nmn __ e_._6~ __ na_m __ e._5~ __ n_mn __ e_.4~1 ~I _n_mn __ e_.3 __ L-na __ m_e_.2 __ ~_na_m_e_._1~ __ na_m __ ~_0~

Bit Bit Function Number Mnemonic

7:0 P2.7:0 Port 2 Register:
Write data to be driven onto the port 2 pins to these bits.

_L ..
C-19

REGISTERS

P3 Address:
Reset State:

S:BOH
11111111B

Port 3. P3 Is the SFR that contains data to be driven out from the port 3 pins. Read-modify-write
instructions that read port 3 read this register. Other instructions that read port 3 read the port 3 pins.

7 0

~n_am __ e_._7~ __ n_am __ e_.6 __ ~_na_m_e_._5~ __ n_am __ e_.4~1 ~1_n_a_m_e_._3~ __ na __ m_e_.2 __ L-n_am __ e_._1~ __ na __ m_e_.0~

Bit Bit Function Number Mnemonic

7:0 P3.7:0 Port 3 Register:

Write data to be driven onto the port 3 pins to these bits.

C-20

J

REGISTERS

PCON Address: S:87H
Reset State: OOXX OOOOB

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes. Also contains two general-purpose flags and two bits that control serial 1/0
functions-the double baud rate bit and a bit that selects whether accesses to SCON.7 are to the FE
bit or the SMO bit.

7 o
~S_M_0_D_1~_S_M_0_D_0~ ______ ~ __ PO __ F~II~_G_F_1 __ ~_G_F_0 __ ~ __ P_D __ ~ __ ID_L __ ~

Bit Bit
Function Number Mnemonic

7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SeON register. See "Baud Rates" on page 9-10.

6 SMODO SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, readlwrite accesses to SCON.7 are to the SMO bit.
See Figure 9-2 on page 9-3.

5 - Reserved:

The value read from this bit is indeterminate. Do not write a "1" to this bit.

4 POF Power Off Flag:

Set by hardware as Vee rises above 3 V to indicate that power has been
off or Vee had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by software.

3 GF1 General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GFO General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode.
Cleared by hardware when an interrupt or reset occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.

C-21

REGISTERS

PSW Address: S:DOH
Reset State: ooOOOooOB

Program Status Word. PSW contains bits that reflect the results of operations, bits that select the
register bank for registers RQ-R7, and two general-purpose flags that are available to the user.

7 0

~_C_Y __ ~ __ A_C __ ~ __ F_0 __ ~ __ R_S_1~1~1 __ R_S_O~~_O_V __ ~ __ U_D __ ~ ___ P __ ~

Bit Bit Function
Number Mnemonic

7 CY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) If a borrow is needed for the MSB. The carry flag is also affected
by some rotate and shift instructions, logical bit instructions, bit move
instructions, and the multiply (MUL) and decimal adjust (DA) instructions
(see Table 4-11 on page 4-18).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic Instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise it is cleared. This flag is useful for BCD
arithmetic (see Table 4-11 on page 4-18).

5 FO Flag 0:

This general-purpose flag is available to the user.

4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers RO-R7).

RS1 RSO Bank Address

0 0 0 00H-07H
0 1 1 08H-OFH
1 0 2 10H-17H
1 1 3 18H-1FH

2 OV Overflow Flag:

This bit is set if an addition or subtraction of signed variables results In
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2's-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 UD User-definable Flag:

This general-purpose flag is available to the user.

0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all instruc-
tions update the parity bit.

C-22

L

REGISTERS

PSW1 Address: S:01 H
Reset State: 0000 OOOOB

Program Status Word 1. PSW1 contains bits that reflect the results of operations and bits that select
the register bank for registers RO-R7.

7 0

L-_C_Y __ ~ __ A_C __ ~ __ N __ ~ __ R_S_1~11L-_R_SO __ ~ __ O_V __ ~ __ Z __ -L ____ ~

Bit Bit Function
Number Mnemonic

7 CY Carry Flag:

Identical to the CY bit in the PSW register on page C-26.

6 AC Auxiliary Carry Flag:

Identical to the AC bit in the PSW register on page C-26.

5 N Negative Flag:

This bit is set if the result of the last logical or arithmetic operation was
negative. Otherwise it is cleared.

4:3 RS1:0 Register Bank Select Bits 0 and 1:

Identical to the RS1:0 bits in the PSW register on page C-26.

2 OV Overflow Flag:

Identical to the OV bit in the PSW register page C-26.

1 Z Zero Flag:

This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.

0 - Reserved:

The value read from this bit is indeterminate. Do not write a "1" to this bit.

L
C-23

REGISTERS

RCAP2H, RCAP2L Address: RCAP2H S:CBH
RCAP2L S:CAH

Reset State: 0000 OOOOB

limer 2 Reload/Capture Registers. This register pair stores 16-bit values to be loaded into or captured
from the timer register (TH2rrL2) In timer 2.

7 0

~n_am __ e_.7 __ ~_n_am __ a_6~ __ na_m __ e._5~ __ n_a_m_e_.4~1 ~1_n_a_m_e_.3 __ ~na __ m_e_.2 __ ~_nam __ e_._1~ __ na_m __ a_0~

Bit Bit Function Number Mnemonic

7:0 RCAP2H.7:0 High byte of the timer 2 reload/recapture register
RCAP2L.7:0 Low byte of the timer 2 reload/recapture register

C-24

_ L_

intet REGISTERS

SADDR Address: S:A9H
Reset State: 0000 00008

Slave Individual Address Register. SADDR contains the device's individual address for multiprocessor
communication.

7 o
~n_a_m __ e._7~ __ n_am __ e_.6 __ ~_na_m __ e._5~ __ n_a_m_e_.4~1 1~_n_a_m_e_._3~ __ na __ m_e_.2. __ ~n_am __ e_._1~ __ na __ m_e_.o~

Bit Bit Function Number Mnemonic

7:0 SADDR.7:0

C-25

REGISTERS intet.

SADEN Address: S:B9H
Reset State: OOOOOOOOB

Mask Byte Register. This register masks bits in the SADDR register to form the device's given address
for multiprocessor communication.

7 o
L-n_am __ e_._7~ __ n_a_m_e_.6 __ L-_na_m_e_._5~ __ n_am __ e_.4~1 ~1_n_am __ e_._3~ __ na __ m_e_.2 __ L-n_am __ e_._1~ __ na __ m_e_.0~

Bit Bit Function Number Mnemonic

7:0 SADEN.7:0

C-26

REGISTERS

SBUF Address: S:99H
Reset State: XXXX XXXXB

Serial Data Buffer. Writing to SBUF loads the transmit buffer of the serial 110 port. Reading SBUF
reads the receive buffer of the serial 1/0 port.

7 o
L-n_a_m_e_._7~ __ n_am __ e_.6 __ L-_na_m __ e._5~ __ n_a_m_e_.4~1 ~1 __ na_m_e_._3~ __ na __ m_e_.2 __ L-_na_m __ e._1~ __ na __ m_e_.0~

Bit Bit Function Number Mnemonic

7:0 SBUF.7:0

1
C-27

I

1
1 ., ,

REGISTERS

SCON Address: 98H
Reset State: OOOOOOOOB

Serial Port Control Register. SCON contains serial 1/0 control and status bits, including the mode
select bits and the interrupt flag bits.

7 0

L-F_~_S_M_0-L __ S_M_1 __ L-_S_M_2 __ L-_R_EN __ ~1 ~I __ T_B_8~L-_R_B_8~~_T_I __ ~ __ R_I __ ~

Bit Bit
Function Number Mnemonic

7 FE Framing Error Bit:

To select this function, set the SMODO bit in the PCON register. Set by
hardware to Indicate an invalid stop bit. Cleared by software, not by valid
frames.

SMO Serial Port Mode Bit 0:

To select this function, clear the SMODO bit in the PCON register.
Software writes to bits SMO and SM 1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Software writes to bits SM1 and SMO (above) to select the serial port
operating mode.

SMO SM1 Mode Description Baud Rate
0 0 0 Shift register Fosd12
0 1 1 8-bitUART Variable
1 0 2 9-bitUART Foscf32t or Fosd64t
1 1 3 9-bit UART Variable

tSelect by programming the SMOD bit in the PCON register (see "Baud
Rates· on page 9-10).

5 SM2 Serial Port Mode Bit 2:

Software writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:

To enable reception, set this bit. To enable transmission, clear this bit.

3 TB8 Transmit Bit 8:

In modes 2 and 3, software writes the ninth data bit to be transmitted to
TBB. Not used in modes 0 and 1.

2 RB8 Receiver Bit 8:

Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

C-28 J_

REGISTERS

seON Address: 98H
Reset State: OOOOOOOOB

Serial Port Control Register. SCON contains serial 1/0 control and status bits, including the mode
select bits and the interrupt flag bits.

7 o
~F_8_S_M_0~ __ S_M_1 __ ~_S_M_2 __ ~ __ R_EN __ ~II~_T_B_8 __ ~_R_B_8 __ ~ __ T_I __ ~ __ R_I __ ~

Bit Bit Function Number Mnemonic

1 TI Transmit Interrupt Flag Bit:

Set by the transmitter after the last data bit is transmitted. Cleared by
software.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by software.

L
C-29

REGISTERS

SP Address: S:81 H
Reset State: 0000 0111B

Stack Pointer. SP provides SFR access to location 63 in the register file (also named SP). SP is the
lowest byte of the extended stack pointer (SPX = DR60). The extended stack pOinter points to the
current top of stack. When a byte is saved (PUSHed) on the stack, SPX is incremented, and then the
byte is written to the top of stack. When a byte is retrieved (POPped) from the stack, it is copied from
the top of stack, and then SPX is decremented.

7 0

~n_am __ e_.7 __ ~_nam __ e_._6~ __ na_m __ e._5~ __ n_am __ a_4~1 l~n_a_m_e_.3 __ ~na __ m_e_.2 __ ~_nam __ e_._1-L __ na_m __ a_0~

Bit Bit
Function

Number Mnemonic

7:0 SP.7:0 Stack Pointer:

Bits 0-7 of the extended stack pointer, SPX (DR60).

C-30

L

intel~ REGISTERS

SPH Address: S:BDH
Reset State: 0000 OOOOB

Stack Pointer High. SPH provides SFR access to location 62 in the register file (also named SPH).
SPH is the upper byte of the lower word of DR60, the extended stack pOinter (SPX). The extended
stack pOinter points to the current top of stack. When a byte is saved (PUSHed) on the stack, SPX is
incremented, and then the byte is written to the top of stack. When a byte is retrieved (POPped) from
the stack, it is copied from the top of stack, and then SPX is decremented.

7 o
L-n_am __ e_.7 __ ~_na_m_e_._6~ __ na_m __ e._5~ __ n_am __ e._4~1 ~1_n_am __ e_.3 __ ~_na_m_e_.2 __ ~_na_m __ e._1~ __ na_m __ a_0~

Bit Bit Function Number Mnemonic

7:0 SPH.7:0 Stack Pointer High:

Bits 8-15 of the extended stack pOinter, SPX (DR(60».

L
C-31

REGISTERS

T2eON Address: S:C8H
Reset State: 0000 OooOB

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counterllimer select bit, overflow flag, external flag,
and external enable for timer 2.

7 o
~_T_F_2 __ ~_EX __ F2 __ ~_R_C_L_K~ __ T_C_L_K~1 ~I _E_X_E_N_2~ __ T_R_2 __ ~_C_"_2_#~_C_P_/R_~ __ #~

Bit Bit
Function Number Mnemonic

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by software. TF2 is not set if
RCLK= 1 or TGlK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN= 1)

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:

Setting this bit starts the timer.

1 CIT2# Timer 2 Countermmer Select:

CIT2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. Crr2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transltions at T2EX if EXEN2 = 1. The CP/R~# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.

C-32

L

intet REGISTERS

T2MOD Address: S:C9H
Reset State: XXXX XXOOB

Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer2.

7 o
~ ____ ~ ____ ~ ____ ~ ____ ~ILI ____ ~ ______ ~T_2_0_E~ __ DC_E_N~

Bit Bit
Function Number Mnemonic

7:2 - Reserved:

The values read from these bits are indeterminate. Do not write a "1" to
these bits.

1 T20E Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:

Configures timer 2 as an up/down counter.

C-33

REGISTERS infel~

TCON Address: S:88H
Reset State: OOOOOOOOB

l1mer/Counter Control Register. Contains the overflow and extemal interrupt flags and the run control
and interrupt transition select bits for timer 0 and timer 1.

7 0

TF1 TR1 TFO TRO 1 1...1 _1_E1_-L.._I_T1_....1...._IE_0_....1...._IT_0_....I

Bit Bit Function Number Mnemonic

7 TF1 l1mer 1 Overflow Flag:
Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 l1mer 1 Run Control Bit:
Set/cleared by software to tum timer 1 on/off.

5 TFO l1mer 0 Overflow Flag:
Set by hardware when the timer 0 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TRO l1mer 1 Run Control Bit:
Set/cleared by software to tum timer 1 on/off.

3 IE1 Interrupt 1 Flag:
Set by hardware when an extemal interrupt is detected on the INTfl# pin.
Edge- or level- triggered (see In). Cleared when interrupt Is processed
if edge-triggered.

2 In Interrupt 1 Type Control Bit:
Set this bit to select edge-triggered (high-to-Iow) for extemal interrupt 1.
Clear this bit to select level-triggered (active low).

1 lEO Interrupt 1 Flag:
Set by hardware when an extemal interrupt is detected on the INTO# pin.
Edge- or level- triggered (see ITO). Cleared when interrupt is processed
if edge-triggered.

0 ITO Interrupt 0 Type Control Bit:
Set this bit to select edge-triggered (high-to-Iow) for extemallnterrupt O.
Clear this bit to select level-triggered (active low).

C-34

1-

TMOD Address:
Reset State:

REGISTERS

S:89H
000000008

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer 0 and timer 1.

7 o
L...-G_A_T_E_l----"'---_C/_T_l_# ---, __ M_l_l_-,-_M_O_l -----,II GATEO CITO# MOl MOO

Bit Bit Function Number Mnemonic

7 GATEl Timer 1 Gate:

When GATEl = 0, run control bit TRl gates the input signal to the timer
register. When GATEl = 1 and TRl = 1, external signal INTl gates the
timer input.

6 CIT1# Timer 1 CounterlTimer Select:

CIT 1 # = 0 selects timer operation: timer 1 counts the divided-down
system clock. ClTl # = 1 selects counter operation: timer 1 counts
negative transitions on external pin Tl.

5,4 Mll, MOl Timer 1 Mode Select:

Mll MOl
0 0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL 1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL 1). Reloaded

from THl at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATEO Timer 0 Gate:

When GATEO = 0, run control bit TRO gates the input signal to the timer
register. When GAT EO = 1 and TRO = 1, external signal INTO gates the
timer input.

2 C/TO# Timer 0 CounterlTimer Select:

C/TO# = 0 selects timer operation: timer 0 counts the divided-down
system clock. CITO# = 1 selects counter operation: timer 0 counts
negative transitions on external pin TO.

1,0 MOl, MOO Timer 0 Mode Select:

Ml0 MOO
0 0 Mode 0: 8-bit timer/counter (TO) with 5-bit prescaler (TLO)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded

from THO at overflow
1 1 Mode 3: TLO is 8-bit timer/counter. THO is 8-bit timer only

using timer 1 TRl and TFl bits.

C-35

i""

REGISTERS

THO, TLO Address: THO S:8CH
TLO S:8AH

Reset State: 0000 00008

THO, TLO Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
o or separately as 8-bit timer/counters.

7 o
L-_na_m __ e._7~ __ n_a_m_e_.6 __ ~_na_m __ e._5~ __ n_a_m_e_.4~1 lL-n_a_m_e_._3~ __ n_a_m_e_.2 __ L-n_a_m_e_._1~ __ n_a_m_e_.0~

Bit Bit Function Number Mnemonic

7:0 THO.7:0 High byte of the timer 0 timer register.

TLO.7:0 Low byte of the timer 0 timer register.

C-36

I

in1et~

TH1, TL1

REGISTERS

Address: TH1 S:8DH
TL1 S:8BH

Reset State: 0000 OOOOB

TH1. TL 1 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
1 or separately as 8-bit timer/counters.

7 o
~n_a_m_e_._7~ __ n_a_m_e_.6 __ ~_na_m __ e._5~ __ n_a_m_e_.4~1 ~1 __ na_m_e_._3~ __ na __ m_e_.2 __ ~_na_m_e_._1~ __ na __ m_e_.0~

Bit Bit Function Number Mnemonic

7:0 TH1.7:0 High byte of the timer 1 timer register.

TL1.7:0 Low byte of the timer 1 timer register.

L C-37

REGISTERS intet.

TH2, TL2 Address: TH2 S:CDH
TL2 S:CCH

Reset State: 0000 OOOOB

TH2, TL2limer Registers. These registers operate In cascade to form the 16-blt timer register In timer
2.

7 o
~n_a_m_8_.7 __ ~_nam ___ a_6~ __ na_m __ 8._5~ __ n_am __ 8_.4~1 ~I _n_am __ 8_.3 __ ~_na_m_8_.2 __ ~_nam __ 8_._1~ __ na_m __ a_0~

Bit Bit Function Number Mnemonic

7:0 TH2.7:0 High byte of the timer 2 timer register.

Tl2.7:0 Low byte of the timer 2 timer register.

C-38

L

REGISTERS

WDTRST Address: S:A6H
Reset State: XXXX XXXXB

Watchdog Timer Reset Register. Writing the two-byte sequence 1 EH-E1 H to the WDTRST register
clears and enables the hardware WDT. The WDTRST register is a write-only register. Attempts to
read it retum FFH. The WDT itself is not read or write accessible. See "Watchdog Timer" on page
7-16.

7 o
L-n_am __ e_._7~ __ n_a_m_e_.6 __ L-_na_m_e_._5~ __ n_am __ e_.4~11 L_n_a_m_e_._3~ __ na __ m_e_.2 __ L-n_a_m_e_._1~ __ na __ m_e_.o~

Bit Bit
Function Number Mnemonic

7:0 WDTRST.7:0 Provides user control of the hardware WDT.

C-39

il
!

Glossary

I

int:et

GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in this man
ual. (Chapter 1, "Guide to this Manual," discusses notational conventions and general terminol
ogy.)

HOdata16 A 32-bit constant that is immediately addressed in an
instruction. The upper word is filled with zeros.

#ldata16

#data

#data16

#Short

accumulator

addrll

addr16

addr24

ALU

assert

A 32-bit constant that is immediately addressed in an
instruction. The upper word is filled with ones.

An 8-bit constant that is immediately addressed in an
instruction.

A I6-bit constant that is immediately addressed in an
instruction.

A constant, equal to 1, 2, or 4, that is immediately
addressed in an instruction.

A register or storage location that forms the result of
an arithmetic or logical operation.

An II-bit destination address. The destination can be
anywhere in the same 2-Kbyte block of memory as
the first byte of the next instruction.

A I6-bit destination address. The destination can be
anywhere within the same 64-Kbyte region as the first
byte of the next instruction.

A 24-bit destination address. The destination can be
anywhere within the 16-Mbyte address space.

Arithmetic-logic unit. The part of the CPU that
processes arithmetic and logical operations.

The term assert refers to the act of making a signal
active (enabled). The polarity (high/low) is defined by
the signal name. Active-low signals are designated by
a pound symbol (#) suffix; active-high signals have no
suffix. To aSsert RD# is to drive it low; to assert ALE
is to drive it high.

Glossary-1

GLOSSARY

binary-code compatibility

binary mode

bit

bit (operand)

bitS 1

byte

clear

code memory

configuration bytes

dirS

dir16

DPTR

DPX

deassert

Glossary-2

The ability of an MC~ 251 microcontroller to
execute, without modification, binary code written for
an MCS 51 microcontroller.

An operating mode, selected by a configuration bit,
that enables an MCS 251 microcontroller to execute,
without modification, binary code written for an MCS
51 microcontroller.

A binary digit.

An addressable bit in the MCS 251 architecture.

An addressable bit in the MCS 51 architecture.

Any 8-bit unit of data.

The term clear refers to the value of a bit or the act of
giving it a value. If a bit is clear, its value is "0";
clearing a bit gives it a "0" value.

See program memory.

Bytes, residing in on-chip OTPROMIROM, that
determine a set of operating parameters for the
8XC251SB.

An 8-bit direct address. This can be a memory address
or an SFR address.

A 16-bit memory address (OO:OOOOH-OO:FFFFH)
used in direct addres'sing.

The 16-bit data pointer. In MCS 251 microcontrollers,
DPTR is the lower 16 bits of the 24-bit extended data
pointer, DPX.

The 24-bit extended data pointer in MCS 251 micro
controllers. See also DPTR.

The term deassert refers to the act of making a signal
inactive (disabled). The polarity (highllow) is defined
by the signal name. Active-low signals are designated
by a pound symbol (#) suffix; active-high signals have
no suffix. To deassert RD# is to drive it high; to
deassert ALE is to drive it low.

L

doping

double word

dword

edge-triggered

encryption array

external address

FET

idle mode

input leakage

integer

internal address

interrupt handler

interrupt latency

interrupt response time

l

GLOSSARY

The process of introducing a periodic table Group III
or Group V element into a Group IV element (e.g.,
silicon). A Group III impurity (e.g., indium or
gallium) results in a p-type material. A Group V
impurity (e.g., arsenic or antimony) results in an n
type material.

A 32-bit unit of data. In memory, a double word
comprises four contiguous bytes.

See double word.

The mode in which a device or component recognizes
a falling edge (high-to-Iow transition), a rising edge
(low-to-high transition), or a rising or falling edge of
an input signal as the assertion of that signal. See also
level-triggered.

An array of key bytes used to encrypt user code in the
on-chip code memory as that code is read; protects
against unauthorized access to user's code.

A 16-bit or 17-bit address presented on the device
pins. The address decoded by an external device
depends on how many of these address bits the
external system uses. See also internal address.

Field-effect transistor.

The power conservation mode that freezes the core
clocks but leaves the peripheral clocks running.

Current leakage from an input pin to power or ground.

Any member of the set consisting of the positive and
negative whole numbers and zero.

The 24-bit address that the device generates. See also
external address.

The module responsible for handling interrupts that
are to be serviced by user-written interrupt service
routines.

The delay between an interrupt request and the time
when the first instruction in the interrupt service
routine begins execution.

The time delay between an interrupt request and the
resulting break in the current instruction stream.

Glossary-3

GLOSSARY

interrupt service routine (ISR)

level-triggered

LSB

maskable interrupt

MSB

multiplexed bus

n-channel FET

n-type material

nonmaskable interrupt

npn transistor

OTPROM

p-channel FET

p-type material

PC

program memory

Glossary-4

The software routine that services an interrupt.

The mode in which a device or component recognizes
a high level (logic one) or a low level (logic zero) of
an input signal as the assertion of that signal. See also
edge-triggered.

Least-significant bit of a byte or least-significant byte
ofa word.

An interrupt that can be disabled (masked) by its
individual mask bit in an interrupt enable register. All
8XC251SB interrupts, except the software trap
(TRAP), are maskable.

Most-significant bit of a byte or most-significant byte
ofa word.

A bus on which the data is time-multiplexed with
(some of) the address bits.

A field-effect transistor with an n-type conducting
path (channel).

Semiconductor material with introduced impurities
(doping) causing it to have an excess of negatively
charged carriers.

An interrupt that cannot be disabled (masked). The
software trap (TRAP) is the 8XC251SB's only
nonmaskable interrupt.

A transistor consisting of one part p-type material and
two parts n-type material.

One-time-programmable read-only memory, a version
of EPROM.

A field-effect transistor with a p-type conducting
path.

Semiconductor material with introduced impurities
(doping) causing it to have an excess of positively
charged carriers.

Program counter

A part of memory where instructions can be stored for
fetching and execution.

powerdown mode

PWM

rei

reserved bits

set

SFR

sign extension

sink current

source-code compatibility

source current

source mode

SP

SPX

I

GLOSSARY

The power conservation mode that freezes both the
core clocks and the peripheral clocks.

Pulse-width modulated (outputs).

A signed (two's complement) 8-bit, relative
destination address. The destination is -128 to +127
bytes relative to the first byte of the next instruction.

Register bits that are not used in this device but may
be used in future implementations. Avoid any
software dependence on these bits. In the 8XC251SB,
the value read from a reserved bit is indeterminate; do
not write a "I" to a reserved bit.

The term set refers to the value of a bit or the act of
giving it a value. If a bit is set, its value is "1"; setting
a bit gives it a "I" value.

Special-function register.

A method for converting data to a larger format by
filling the extra bit positions with the value of the
sign. This conversion preserves the positive or
negative value of signed integers.

Current flowing into a device to ground. Always a
positive value.

The ability of an MCS 251 microcontroller to execute
recompiled source code written for an MCS 51 micro
controller.

Current flowing out of a device from V cc' Always a
negative value.

An operating mode that is selected by a configuration
bit. In source mode, an MCS 251 microcontroller can
execute recompiled source code written for an MCS
51 microcontroller. In source mode, the MCS 251
microcontroller cannot execute unmodified binary
code written for an MCS 51 microcontroller. See
binary mode.

Stack pointer.

Extended stack pointer.

Glossary-5

11
l

GLOSSARY

state time (or state)

UART

WDT

word

wraparound

Glossary-6

The basic time unit of the device; the combined
period of the tyvo internal timing signals, PHI and
PH2. (The internal clock generator produces PHI and
PH2 by halving the frequency of the signal on
XTALl.) With a 16-MHz crystal, one state time
equals 125 ns. Because the device can operate at
many frequencies, this manual defines time require
ments in terms of state times rather than in specific
units of time.

Universal asynchronous receiver and transmitter. A
part of the serial 110 port.

Watchdog timer, an internal timer that resets the
device if the software fails to operate properly.

A 16-bit unit of data. In memory, a word comprises
two contiguous bytes.

The result of interpreting an address whose
hexadecimal expression uses more bits than the
number of available address lines. Wraparound
ignores the upper address bits and directs access to the
value expressed by the lower bits.

..... L

Index

I

I

!

I

ii:
I

I:

intet
#Odatal6, A-3
#ldataI6, A-3
#data

definition, A-3
#dataI6, A-3
#short, A-3
80C251SB, 13-1

configuration byte values, 13-9
83C251SB, 13-1

See also ROM
87C251SB, 13-1

See also OTPROM
8XC251SB, 2-1

applications, 2-1
block diagram, 2-2
features, 2-4
on-chip peripherals, 2-1,2-3

8XC51FX, 2-1

A
AI5:8, 6-1, B-2

description, 12-1
A16, B-2

configuring for, 13-6
description, 12-1

AC flag, 4-19,4-20
ACALL instruction, 4-16, A-24, A-26
ACC, 3-10,3-13,3-14, C-4
Accumulator, 3-12

in register file, 3-10
SeealsoACC

AD7:0, 6-1, B-2
description, 12-1

ADD instruction, 4-10, A-14
ADDC instruction, 4-10, A-14
addr11, 4-14, A-3
addrl6, 4-14, A-3
addr24, 4-14, A-3
Address spaces See Memory space, SFRs, Register

file, External memory, Compatibility
Addresses

internal vs external, 12-3
Addressing modes, 3-5, 4-5

See also Data instructions, Bit instructions,
Control instructions

AJMP instruction, 4-16, A-24
ALE, B-2

L

caution, 10-6
description, 12-1
extended, 12-6
following reset, 10-6
idle mode, 11-4

INDEX

programming for extension, 13-6
programming on-chip OTPROM, 13-3

ANL instruction, 4-11,4-12
for bits, A-23

ANU instruction, 4-12
for bits, A-23

Arithmetic instructions, 4-10, 4-11
table of, A-14, A-15, A-16

B
B register, 3-12, C-5

as SFR, 3-13,3-14
in register file, 3-10

Base address, 4-5
Baud rate See Serial VO port, Timer 1, Timer 2
Binary and source modes, 2-3,4-1-4-3

opcode maps, 4-1
selection guidelines, 2-3, 4-2

Bit address
addressing modes, 4-14
definition, A-3
examples, 4-13

Bit instructions, 4-4,4-12-4-14
addressing modes, 4-6,4-12

bit51 , 4-13, A-3
Broadcast address See Serial/fO port

C
Call instructions, 4-16
Capacitors

bypass, 10-2
CCAPIH-CCAP4H, CCAPIL-CCAP4L, 3-13,

3-16, C-6
CCAPMI-4, 3-13,3-15, C-7

interrupts, 5-5
CCON, 3-13,3-15, C-8
Ceramic resonator, 10-4
CEX4:0, 6-1, B-2
CH, CL, 3-13,3-16, C-9
CJNE instruction, A-25
Clock, 2-5

external, 10-4

Index-1

INDEX

external source, 10-3
idle and powerdown modes, 11-5
idle mode, 11-4
powerdown mode, 11-5,11-6
sources, 10-3

CLR instruction, 4-11,4-12, A-17, A-23
CMOD, 3-13,3-15, C-I0

interrupts, 5-5
CMP instruction, 4-10,4-15, A-15
Code constants, 12-7
Code fetches

external, 12-10
internal, 12-10
page hit and page miss, 12-11
page mode, 12-11

Code memory
MCS 51 architecture, 3-5
See also On-chip code memory, External code

memory
Compatibility (MCS 251 and MCS 51

architectures), 2-1,3-2-3-5
address spaces, 3-2, 3-4
external memory, 3-5
memory configuration for, 12-5
on-chip RAM, 3-5
SFR space, 3-5
See also Binary and source modes

CONFIGO
bit definitions, 13-7

CONFIGI
bit definitions, 13-8

Configuration bytes
programming, 13-1
programming and verifying, 13-6
setup for programming and verifying, 13-2-

13-3
Control instructions, 4-4, 4-14-4-17

addressing modes, 4-14,4-15
table of, A-24

Core, 2-4
SFRs, 3-14

CPL instruction, 4-11, 4-12, A-17, A-23
CPU, 2-4

block diagram, 2-5
Crystal

for on-chip oscillator, 10-3
CY flag, 4-19,4-20

Index-2

D
DA instruction, A-16
Data instructions, 4-4,4-6--4-12

addressing modes, 4-6
Data pointer See DPH, DPL, DPTR, DPX, DPXL
Data transfer instructions, 4-11-4-12

table of, A-22
See also Move instructions

Data types, 4-4
DEC instruction, 4-10, A-16
Destination register, 4-5
dir16, A-3
dir8, A-3
Direct addressing, 4-5

in control instructions, 4-14
Displacement addressing, 4-5, 4-9
DIY instruction, 4-10, A-16
Division, 4-10
DJNZ instruction, A-25
Documents, related, 1-5
DPH, DPL, 3-12, C-ll, C-12

as SFRs, 3-13,3-14
DPTR, 3-12

in jump instruction, 4-14
DPX, 3-5,3-10,3-12,4-7
DPXL, 3-12, C-13

E

as SFR, 3-13,3-14
external data memory mapping, 3-5,4-7,

4-11
reset value, 3-5

EA#, 3-6, B-2
description, 12-1

ECALL instruction, 4-16, A-24
ECI, 6-1, B-2
ElMP instruction, 4-16, A-24
EMAP bit, 3-6, 12-7
Encryption, 13-1
Encryption array

key bytes, 13-10
programming and verifying, 13-1, 13-10
setup for programming, 13-2-13-3

ERET instruction, 4-17, A-24
Escape prefix (A5H), 4-2
Extended stack pointer See SPX
External address lines

l

intet
number of, 12-3
See also External bus

External bus
AC timing definitions, 12-28
AC timing specifications, 12-24-12-27
bus-idle condition, 12-7
inactive, 12-7
pin status, 12-15, 12-16
structure in page mode, nonpage mode, 12-10

External bus cycles, 12-7
definitions, 12-8
extended ALE wait state, 12-14
extended PSEN#/RD#IWR# wait state, 12-13
nonpage mode, 12-8,12-9
page hit vs page miss, 12-10
page mode, 12-10-12-12

External code memory, 12-4,12-5
example, 12-16, 12-21.12-22
idle mode, 11-4
powerdown mode, . 11-5

External memory, 3-8
design examples, 12-16-12-24
MCS 51 architecture, 3-3,3-4,3-5

External memory interface, 12-1-12-30
configuring, 12-2-12-7
signals, 12-1

External RAM, 12-4, 12-5

F

example, 12-16, 12-19, 12-21, 12-22
exiting idle mode, 11-5

PO flag, 4-19
Flash memory

example, 12-21, 12-22

G
Given address See Serial liD port
Ground bounce, 10-2

H
Hardware

application.notes, 1-6

110 ports, 6-1-6-8
external memory access, 6-7, 6-8

I

latches, 6-2
loading, 6-7
pullups, 6-6
quasi-bidirectional, 6-5
SFRs, 3-14
See also Pons 0-3

Idle mode, 2-3, 11-1, 11-4-11-5
entering, 11-4
exiting, 10-5, 11-5
external bus, 12-7

IE, 5-3,5-5
lEO, 3-13,3-14,5-14,9-11, C-14
Immediate addressing, 4-5
INC instruction, 4-10, A-16
Indirect addressing, 4-5

in control instructions, 4-14
in data instructions, 4-9

Input pins
level-sensitive, B-2
sampled, B-2

INTl:O#, 5-1,6-1,7-1,7-3, B-2
pulse width measurements, 7-10

Interrupt request, 5-1
cleared by hardware, 5-4

Interrupt service routine
exiting idle mode, 11-5
exiting powerdown mode, 11-6

Interrupts, 5-1-5-15
blocking conditions, 5-14
detection, 5-3
edge-triggered, 5-4
enable/disable, 5-5
exiting idle mode, 11-5
exiting powerdown mode, 11-6
external, 5-3,5-11
global enable, 5-5
instruction completion time, 5-10
latency, 5-9-5-13
level-triggered, 5-4
PeA,5-5
polling, 5-9,5-10
priority, 5-1,5-3,5-4,5-6-5-8
priority within level, 5-7
processing, 5-9-5-15
request See Interrupt request
response time, 5-9,5-10
sampling, 5-3,5-10
serial port, 5-5

INDEX

Index-3

INDEX

service routine (ISR), 5-4,5-9,5-14,5-15
sources, 5-3
timer/counters, 5-4
vector cycle, 5-14
vectors, 3-5, 5-4

INTR bit
and RETI instruction, 4-17

IPHO, 3-13,3-14,5-3,5-6,5-14, C-15
bit definitions, 5-7

IPLO, 3-13,3-14,5-3,5-6,5-14, C-16
bit definitions, 5-7

ISR See Interrupts, service routine

J
JB instruction, 4-15, A-24
JBC instruction, 4-15, A-24
JC instruction, A-24
JE instruction, A-24
JO instruction, A-24
JLE instruction, A-24
JMP instruction, A-24
JNB instruction, 4-15, A-24
JNC instruction, A-24
JNE instruction, A-24
JNZ instruction, A-24
JSO instruction, A-25
JSOE instruction, A-25
JSL instruction, A-25
JSLE instruction, A-25
Jump instructions

bit-conditional, 4-15
compare-conditional, 4-15,4-16
unconditional, 4-16

JZ instruction, A-24

K
Key bytes See Encryption array

L
LCALLinstruction,4-16,A-24
Level-sensitive input, B-2
UMP instruction, 4-16, A-24
Lock bits

programming and verifying, 13-1,13-9
protection types, 13-9
setup for programming and verifying, 13-2-

13-3

Index-4

Logical instructions, 4-11
table of, A-17

M
MCS 251 microcontroller, 2-1

features, 2-1
MCS 51 microcontroller, 2-1
Memory space, 2-3,3-1,3-5-3-8

compatibility See Compatibility (MCS 251
and MCS 51 architectures)

hardware implementation, 3-5
internal vs external, 12-4-12-6
regions, 3-2, 3-5
reserved locations, 3-5

Miller effect, 10-4
MOV instruction, 4-11, A-19, A-20, A-21

for bits, 4-12, A-23
MOVC instruction, 3-3,4-11, A-21
Move instructions

table of, A-19
MOVH instruction, 4-12, A-21
MOVS instruction, 4-12, A-21
MOVX instruction, 3-3,4-11, A-21
MOVZ instruction, 4-12, A-21
MUL instruction, 4-10
Multiplication, 4-10

N
N flag, 4-11,4-20
Noise reduction, 10-2, 10-3, 10-4
Nonpage mode

bus cycles See External bus cycles, Nonpage
mode

bus structure, 12-1
configuring for, 12-3
design example, 12-16,12-19
port pin status, 12-15

Nonvolatile memory
programming and verifying, 13-1-13-12
See also On-chip code memory, Configuration

bytes, Lock bits, Encryption array,
Signature bytes

NOPinstruction, 4-16, A-25

o
ONCE mode, 11-1,11-7

entering, 11-7

1

int"et

exiting, 11-7
On-chip code memory, 3-2, 12-4, 12-13

accessing in data memory, 12-7
accessing in region 00:, 3-6
idle mode, 11-4
powerdown mode, 11-5
programming and verifying, 13-1, 13-5
remapping, 13-6
setup for programming and verifying, 13-2-

13-3
starting address, 3-6, 13-1, 13-2
top eight bytes, 3-6, 13-2
See also OTPROM, ROM

On-chip oscillator
hardware setup, 10-1

On-chip RAM, 3-2, 3-6
bit addressable, 3-6,4-13
bit addressable in MCS 51 architecture, 4-13
idle mode, 11-4
MCS 51 architecture, 3-2, 3-4
reset, 10-6

r Opcodes
for binary and source modes, 4-1
map, A-4
See also Binary and source modes

ORL instruction, 4-11,4-12
for bits, A-23

ORU instruction, 4-12
for bits, A-23

Oscillator, 2-5
at startup, 10-7
during reset, 10-5
ONCE mode, 11-7
on-chip, 10-3
powerdown mode, 11-5,11-6
programming and verifying on-chip

OTPROMIROM, 13-3
OTPROM (on-chip), 13-1

programming algorithm, 13-4
programming and verifying, 13-1-13-12
programming waveforms, 13-4
timing for programming and verifying, 13-11
verify algorithm, 13-5
See also On-chip code memory, Configuration

bytes, Lock bits, Encryption array,
Signature bytes

OV bit, 4-19,4-20
Overflow See OV bit

L

p
P bit, 4-19
PO, 3-13,3-14,6-2, C-17
PI, 3-13,3-14,6-2, C-18
P2, 3-13,3-14,6-2, C-19
P3, 3-13,3-14,6-2, C-20
PAGE bit, 12-3
Page mode, 2-4

address access time, 12-11

INDEX

bus cycles See External bus cycles, page mode
configuring for, 12-3, 13-6
design example, 12-21, 12-22
port pin status, 12-16

Parity See P bit
PCA

idle mode, 11-4
SFRs, 3-15

PCON, 3-13,3-14,9-7,11-1,11-2,11-5, C-21
idle mode, 11-4
powerdown mode, 11-6
reset, 10-5

Peripheral cycle, 2-5
Phase 1 and phase 2, 2-5
Pin conditions, 11-3
Pins

unused inputs, 10-2
Pipeline, 2-4
POP instruction, 3-11, 4-12, A-22
Port 0, 6-2, B-3

and top of on-chip code memory, 13-2
pullups, 6-7
structure, 6-3
See also External bus

Port 1, 6-2, B-3
structure, 6-3

Port 2, 6-2, B-3
and top of on-chip code memory, 13-2
structure, 6-4
See also External bus

Port 3, 6-2, B-3
structure, 6-3

Ports
at power on, 10-7
exiting idle mode, 11-5
exiting powerdown mode, 11-5
extended execution times, 4-1, A-I, A-II

Index-5

INDEX

programming and verifying on-chip
OTPROMIROM, 13-3,13-4,13-5

Power supply, 10-2
Powerdown mode, 2-3, 11-1, 11-5-11-6

accidental entry, 11-4
entering, 11-6
exiting, 10-5, 11-6
external bus, 12-7

PROG#, 13-1, B-3
Program status word See PSW, PSWI
PSEN#, 13-6, B-3

caution, 10-6
description, 12-2
idle mode, 11-4
programming on-chip OTPROM, 13-3
regions for strobe, 12-3

PSW, A-26
PSW, PSW1, 3-13,3-14,4-17-4-18, C-22, C-23

conditional jumps, 4-15
effects of instructions on flags, 4-18

PSW1, A-26
Pullups, 6-7

ports 1,2,3, 6-5
Pulse width measurements, 7-10
PUSH instruction, 3-11,4-12, A-22

Q
Quick-pulse algorithm, 13-1

R
RCAP2H, RCAP2L, 3-13,3-15,7-2,9-12, C-24
RD#, 6-1,13-6, B-3

as 17th address bit, 12-3, 12-4
described, 12-2
regions for strobe, 12-3

RD1:0 configuration bits, 12-3-12-6
table, 12-3

Read-modify-write instructions, 6-2, 6-5
Register addressing, 4-5, 4-8
Register banks, 3-2, 3-8

accessing in memory address space, 4-6
implementation, 3-8, 3-9
MCS 51 architecture, 3-2
selection bits (RS1:0), 4-19,4-20

Register file, 2-4,3-1,3-5,3-8-3-12
address space, 3-2
addressing locations in, 3-9

Index-6

and reset, 10-6
MCS 51 architecture, 3-4
naming registers, 3-8
register types, 3-8

Registers See Register addressing, Register banks,
Register file

reI, A-3
Relative addressing, 4-6,4-14
Reset, 10-5-10-7

cold start, 10-5, 11-1
entering ONCE mode, 11-7
exiting idle mode, 11-5
exiting powerdown mode, 11-6
externally initiated, 10-5
need for, 10-6
operation, 10-6
power on, 10-6
power-on setup, 10-1
timing sequence, 10-6,10-7
warm start, 10-5, 11-1

REf instruction, 4-17, A-24
RETI instruction, 5-1,5-14,5-15, A-24
Return instructions, 4-16
RL instruction, A-17
RLC instruction, A-17
ROM (on-chip), 13-1

verifying, 13-1-13-12
See also On-chip code memory, Configuration

bytes, Lock bits, Encryption array,
Signature bytes

Rotate instructions, 4-11
RR instruction, A-17
RRC instruction, A-17
RST, 10-5, 10-6, B-3

exiting idle mode, 11-5
exiting powerdown mode, 11-6
ONCE mode, 11-7
power-on reset, 10-6
programming and verifying on-chip

OTPROMIROM, 13-3
RXD, 6-1,9-1, B-3

mode 0, 9-4
modes 1, 2, 3, 9-6

S
SADDR, 3-13,3-15,9-2,9-8,9-9,9-10, C-25
SADEN, 3-13,3-15,9-2,9-8,9-9,9-10, C-26

Sampled input, B-2
SBUF, 3-13,3-15,9-2,9-4,9-5, C-27
SCON, 3-13,3-15,9-2,9-4,9-5,9-6,9-7, C-2S,

C-29
bit definitions, 9-3
interrupts, 5-5

Security, 13-1
Serial I/O port, 9-1-9-14

asynchronous modes, 9-6
automatic address recognition, 9-7-9-10
baud rate generator, 7-9
baud rate, mode 0, 9-4, 9-10
baud rate, modes 1,2,3, 9-6,9-10-9-14
broadcast address, 9-9.
data frame, modes 1,2,3, 9-6
framing bit error detection, 9-7
full-duplex, 9-6
given address, 9-S
half-duplex, 9-4
interrupts, 9-1, 9-S
mode 0, 9-4-9-5
modes 1,2,3, 9-6
multiprocessor communication, 9-7
SFRs, 3-15,9-1,9-2
synchronous mode, 9-4
timerl baud rate, 9-11, 9-12
timer 2 baud rate, 9-12-9-14
timing, mode 0, 9-5

SETB instruction, 4-12, A-23
SFRs

accessing, 3-12
address space, 3-1,3-2
idle mode, 11-4
map, 3-13
MCS 51 architecture, 3-4
powerdown mode, 11-5
reset initialization, 10-6
reset values, 3-12
tables of, 3-14
unimplemented, 3-2,3-12

Shift instruction, 4-11
Signal descriptions, S-4
Signature bytes

setup for verifying, 13-2-13-3
values, 13-10
verifying, 13-1, 13-10

SJMP instruction, 4-16, A-24
SLL instruction, 4-11, A-17

I

Software
application notes, 1-6

Source register, 4-5
SP, 3-11,3-12,3-13,3-14, C-30
Special function registers See SFRs
SPH, 3-11,3-12,3-13,3-14, C-31
SPX, 3-10,3-11,3-12
SRA instruction, 4-11, A-IS
SRL instruction, 4-11, A-IS
State time, 2-5
SUB instruction, 4-10, A-14
SUBB instruction, 4-10, A-14
SWAP instruction, 4-11, A-IS

T
T1:0, 6-1,7-3, B-3
T2, 6-1,7-3, B-4

INDEX

T2CON, 3-13,3-15,7-1,7-2,7-10,9-13, C-32
baud rate generator, 9-12
bit definitions, 7-17

T2EX, 6-1,7-3,7-11,9-12, B-4
T2MOD, 3-13,3-15,7-1,7-2,7-10, C-33

bit definitions, 7-16
Target address, 4-6
TCON, 3-13,3-15,7-1,7-2,7-4,7-6, C-34

bit definitions, 7-S
interrupts, 5-1

TH2,TL2
baud rate generator, 9-14
baud-rate generator, 9-12

THx, TLx (x = 0, 1,2), 3-13,3-15,7-2, C-36,
C-37, C-3S

Timer 0, 7-4-7-S
applications, 7-9
auto-reload, 7-5
counter/timer select, 7-7
interrupt, 7-4,7-S
modeO,7-4
mode I, 7-5
mode2, 7-5
mode 3, 7-5
mode selection, 7-7
pulse width measurements, 7-10

Timer 1
applications, 7-9
auto-reload, 7-9
baud rate generator, 7-6

Index-7

INDEX

counter/timer select, 7-7
interrupt, 7-6,7-8
modeO, 7-6
mode I, 7-9
mode2,7-9
mode3, 7-9
mode selection, 7-7
pulse width measurements, 7-10

Timer 2, 7-10--7-17
auto-reload mode, 7-12
baud rate generator, 7-14
capture mode, 7-11
clock out mode, 7-14
interrupt, 7-11
mode select, 7-15

Timer/counters, 7-1-7-17
external input sampling, 7-3
internal clock, 7-3
interrupts, 7-1
overview, 7-1-7-3
registers, 7-2
SFRs, 3-15
signal descriptions, 7-3
See also Timer 0, Timer 1, Timer 2

Timing
symbol definitions, 12-28

lMOD, 3-13,3-15,7-1,7-2,7-4,7-6,9-11, C-35
bit definitions, 7-7

Tosc, 2-5, 2-6
See also Oscillator

TRAP instruction, 4-17,5-3,5-5,5-15, A-25
TXD, 6-1,9-1, B-4

mode 0, 9-4
modes 1,2,3, 9-6

U
UART,9-1
UD flag, 4-19

v
Vee, 10-2, B-4

during reset, 10-5
power off flag, 11-1
powerdown mode, 11-5,11-6
power-on reset, 10-7
See also Power supply

Vcc2, 10-2, B-4

Index-8

Vpp, 13-1, B-4
requirements, 13-3

Vss, B-4
Vssl, 10-2, B-4
Vss2, 10-2, B-4

W
Wait state, 12-6

configuring for, 13-6
extended ALE, 12-6
PSEN#IRD#/WR#, 4-1, 12-6, A-I, A-ll

Watchdog timer
SFRs, 3-15

Watchdog timer (hardware), 7-16-7-18
enabling, disabling, 7-16
in idle mode, 7-18
in powerdown mode, 7-18
overflow, 7-16

WDT
initiating reset, 10-5

WDTRST, 3-13,3-15,7-2,7-16, C-39
WR#, 6-1, B-4

described, 12-2
WSA, WSB bits, 12-6

X
XALE bit, 12-6
XCH instruction, 4-12, A-22
XCHD instruction, 4-12, A-22
XRL instruction, 4-11
XTALl, B-4
XTALl, XTAL2, 10-3

capacitance loading, 10-4
XTAL2, B-4

z
Z flag, 4-11,4-20

_____ I

I

NORTH AMERICAN SALES OFFICES
ALABAMA Intel Corp. "tlntel Corp. "tlntel Corp.
Intel Corp.

2250 lucien Way Uncroft Center 6000 Quon.m Drive
Suite 100, Room 8 125 Hall Mile Road Suite 750 4024 Medlord Drivo Maitland 32751 Red Bank 07701

Huntsville 35802 Tel: (800) 628-8686 ~~~gg~mt=3NEW YORK

Da1l8& 75240
Tel: (205) 883-6137 FAX: (407) 660-1283GEORGIA Tel: (BOO) 628-8686
FAX: (205) 883-4826 FAX: (214) 233-1325

ARIZONA
tlntel Corp. *tntel Corp. "tlntel Corp. 20 Technology Park 860 Cross Keys Office Pam 20515 SH 249

tlntel Corp.
Sulto150 Fairport 14450 Suite 401 NorcrOS$ 30092

410 North 44th Sireot Tel: (800) 628-8686 ~~8g~~_~~_~~~~ Hou&ton 77070
Suite 500 ~~8gn_~~-_~~~ Phoenix 85008 FAX: (404) 448-0875 FAX: (716) 223-2561
Tel: (800) 628-8686 IDAHO

"tlntel Corp.
FAX: (713) 376-2891

FAX: (602) 244-0446
Intel Corp. 2950 Express Dr. South UTAH

CALIFORNIA 9456 Fairview Ave., Suite C Suite 130 tlntel Corp. BoI.e 83704 Islandia 11722
Intel Corp. Tol: (800) 628-8686 ~J~n-~~~"!~~~

428 Ea.t 6400 South
3550 Watt Avenue FAX: (208) 377-1052 Suite 135
Suite 140 Murray 84107
Sacramento 95821 ILUNOIS

FAX: (516) 348-7939 Tel: (800) 628-8686
Tol: (800) 628-8686 "tlntel Corp. 0110 FAX: (801) 268-1457
FAX: (916) 488-1473 Wooclield Corp. Center III

~~lroC:Dr .• Suite 205
Intel Corp.

tlntel Corp. 300 N. Marlngalo Road 2581 E. Cobblestono Way
9656 Granite Ridge Drive SUite 400 Hudson 44236 Sandy, UT 84093
3rd Floor, Suite 4A Schaumburg 60173 Tel: (800) 628-8886 Tol: (801) 942-8820
San Diego 92123 FAX: (216) 528-1026 FAX: (801) 942-8815
Tel: (800) 628-8686 Tell: (BOO) 628-8686
FAX: (619) 487-2460 FAX: (708) 605-9762 "tlntel Corp. WASHINGTON

Intel Corp.
3401 Park Center Drivo tlntel Corp. INDIANA Suite 220

1781 Fox Drive o:r,ton 45414
2800 156th Avenue SE

San Jose 95131 tlntel Corp. T : (800~ 628-8686
Suite 105

Tel: (800) 628-8686 8041 Knue Road TWX: 81 -450-2528 Bellevue 98007
FAX: (408) 441-9640 Indianapolis 46250 FAX: (513) 880-8858 Tel: (800) 628-8688

mf~g~~f~7~eg~9 FAX: (206) 746-4495
"tlntel Corp. OKLAHOMA WISCONSIN 1661 N. TUstin Avenue
Suite 800 MARYLAND Intel Corp.

~O~I ~O~eCUlive Dr. Sonia Ana 92701 "tlnlel Corp. 5601 N. Broadway

~J?g~~-~~~-~~~~ Suite 115 10010 Junction Dr. Oklahoma City 73162 Suite 401
Suite 200 Brookfield 53005 FAX: (714) 641-9157
Annapolis Junction 20701 ~~!~m)6:~S:~9 Tel: (800) 628-8686

tlntel Corp. Tel: (800) 628-8686 FAX: (414) 789-2746
15260 Ventura Boulevard FAX: (301) 208-3878 OREGON
Suite 360

MASSACHUSETTS CANADA Sherman Oak. 91403 tlntel Corp.
Tel: (800) B28-868B *tlntel Corp. 16254 NW Greenbrier PIMy.
FAX: (818) 995-6624 Bullclng B BRInSH COLUMBIA

Westford Corp. Center Beaverton 97006
Intel Corp. 5 Carlisle Road Tel: (800) 828-8888 Intel Semiconductor of
120 Birmingham ~!~~rOlt!B6 TWX: 910-467-8741 Canads, Ltd.
Suite 110-114 FAX: (503) 845-8181 999 Canada Place
Cardiff, CA 92007 ~f~~~-~"!~~~ Suite 404, #11
Tel: (819) 942-8938 PENNSYLVANIA Vancouver vee 3E2
FAX: (619) 942-2849 FAX: (508) 882-7887

"tlntel Corp.
Tel: (800) 628-8688

Intel Corp. MiCHIGAN 925 Harvest Drive
FAX: (604) 844-2813

300 N. Condnenlal Blvd. tlnteiCorp. Suite 200 ONTARIO
Suite 100 Blue Bell 19422
Et Segundo 90245 7071 Orchard Lake Road Tel: (800) 828-8686 tlntel Semiconductor of

TF"ll~lo~~g_~~~
Suite 100 FAX: (215) 841-0785 Canada, Ltd.
Wost Bloomlield 48322 2650 Queen.vlew Drive

~~~!~~~f~~~~o SOUTH CAROUNA Suite 250 
COLORADO 

Intel Corp. 
Ottawa K2B8H6 

"tlntel Corp. Intel Corp, 7403 Parklane Rd., Suite 4 ~~f~g~~f:O~~Zg6 
600 S. Cherry St. 32255 N. Western Hwy. Columbia 29223 
Suite 700 Suite 212, Tri Atria 

~~f=m~~g9 
tlntel Semiconductor of 

Denver 80222 Fannington Hills 48334 Canada, Ltd. 

~~8~~~~~~~~~ Tm?~13~2~~~~0 190 Attwell Drive 
Intel Corp. Suite 500 

FAX: (303) 322-8670 100 executive Center Drive Rexclale M9W 6Ha 
MINNESOTA Suite 109, B183 Tel: (800) 628-8688 

CONNECTICUT tlntel Corp. Greenville 29815 FAX: (416) 675-2438 
Tel: (800) 628-8686 

tin tel Corp. 3500 W. 80th SI. FAX: (803) 297-3401 QUEBEC 
40 Old Rldgebury Road Suite 380 
Suite 311 Bloomington 55431 TEXAS flntel Semiconductor of 
Danbury 08877 ~~gn-~~~~~~~ tlntel Corp. 

Canada, Ltd. 
Tel: (800) 628-6886 1 Rue Hotiday. TourWe.t 
FAX: (203) n8-2188 FAX: (612) 831-8497 8911 N. Capllal olTex .. Hwy. Suite 320 

Suite 4230 Pt Claire H9R 5N3 
FLORIDA NEW JERSEY Austin 78759 Tel: (800) 828-8688 

tlntel Corp. Intel Corp. Tel: (800) 828-8666 FAX: 514-694-0064 

800 Fairway Drive 2001 Route 46, Suite 310 
FAX: (512) 338-9335 

Suite 180 ~:I~Gror~~_~~~315 Deerfield Beach 33441 
Tel: (800) 628-8686 FAX: (201) 402-4893 
FAX: (305) 421-244 

tSale. and Service Office 
*Field Application Location 



NORTH AMERICAN DISTRIBUTORS 
ALABAMA Arrow/Schwaber Electronics Wyle Laboratories Hamiton Hallmark 

Arrow/Schwaber Electronics 
26707 W. Agoura Road 15370 Barranca Pkwy 125 Commerce Court, Unit 6 
Calabasas 91302 Irvine 92713 Cheshire 06410 

1015 HendeJ$on Road 
~~~~mf~2~:gO Tol: (714) 753-9953 Tel: (203) 271-2844 

Huntsville 35806 FAX: (714) 753-9877 FAX: (203) 272-1704
Tel: (205) 837-6955

Arrow/Schwaber electroniCS Wyle Laboratories Pioneer Slandard FAX: (205) 721-1581
48834.Kalo Rd., Suilel03 15360 Barranca Pkwy, #200 2 Trap Falls Road

HamUlon Hallmark Fremont 94538 Irvine 92713 Shellon 06484
4890 University Square, #1 Tel: (510) 490-9477 Tel: (714) 753-9953 Tel: (203) 929-5600
Huntsville 35816

Arrow/Schweber Electronics
FAX: (714) 753-9877

~A'ic(~gg~f~~~g5 6 Cromwell, #100 Wyle Laboratories
FLOR1DA

Irvine 92718 2951 Sunrise Blvd., #175 Anthem Electronics
MTISystem& Tel: (714) 838-5422 Rancho Cordova 95742 598 Soulh Northlake Blvd .• #1024
4960 Corporate Dr., #120 FAX: (714) 454-4206 Tel: (916) 638-5282 Altamonte Springs 32701
Huntsville 35805

Arrow/Schwaber Electronics FAX: (916) 638-1491 Tel: (813) 797-2900
Tel: (205) 830-9626 FAX: (813) 796-4880
FAX: (205) 830-9557 9511 Ridgehavon Court ~J5 ~~~~::: Drive San Diego 92123 Arrow/Schweber Electronics
Pioneer Technologies Group Tel: (619) 565-4800 San Diego 92123 400 Fairway Drive. #102
~~t.~~3~~5Square, #5 FAX: (619) 279-8062 Tel: (619) 565-9171 Deerfield Beach 33441

Arrow/Schweber Electronics
FAX: (619) 385-0512 Tol: (305) 429-8200

Tel: (205) 837-9300 FAX: (305) 428-3991
FAX: (205) 837-9358 1180 Murphy Avenue Wyle Laboratories

San Jose 95131 3000 Bowers Avenue Arrow/Schweber Electronics
Wyle Laboratories

~~~~~~~:U3~~~~0 Sanla Clara 95051 ~k~~:; gC;:b #3101 7800 Goveme" Drive Tel: (408) 727-2500 
Tower BuRding, 2nd Aoor FAX: (408) 727-5896 Tel: (407) 333-9300 
Huntsville 35806 Avnet Computer 

Wyle Laboratories 
FAX: (407) 333-9320 

Tel: (205) 830-1119 3170 Pullman Street 
FAX: (205) 830-1520 Costa Mesa 92626 17872 Cowan Avenue Avnet Computer 

Tel: (714) 641-4150 Irvine 92714 3343 W. Commercial Boulevard 
ARIZONA FAX: (714) 641-4170 Tel: (714) 863-9953 Bldg. ClD, Suile 107 

FAX: (714) 263-0473 FI. Lauderdale 33309 Anthem Electronics 
Avnet Computer Tol: (305) 730-9110 

1555 W. 10111 Place, #101 Wyle Laboratories FAX: (305) 730-0368 
Tempe 85281 1361B We.ll901h Sl ... l 26010 Mureau Road, #150 
Tel: (602) 966-6600 Gardena 90248 Calabasas 91302 Avnet Computer 
FAX: (602) 966-4826 ~~~~~g~~f:i.~~:9 Tol: (818) 880-9000 3247 Tech Drive North 

Arrow/Schweber ElectroniCS 
FAX: (818) 880-5510 st. Peterlburg 33716 

Tol: (813) 573-5524 
2415 W. Erie Drive Avnet Computer Zeus Arrow Electronics FAX: (813) 572-4324 

~:rr60~f~~ -0030 
755 Sunrise Blvd, #150 6276 San IgnaciO Ave., #E 
_evllle95661 San JO&8 95119 HamU10n Hallmall< 

FAX: (602) 262-9109 
~~~~~J~~m;~~:19 ~A'ic~1~~~~9~~~~2 3350 NW. 53rd Sl, #105-107 

Avnet Computer
Fl Laudo,dalo 33309
Tel: (305) 484-5482

1626 S. Edwards Drive Avnet Computer Zeus Arrow Bectronics FAX: (305) 484-2995
Tempe 85281 1175 Bordeaux Drive, #A 22700 Savi Ranch Pkwy.
Tel: (602) 902-4600 Sunnyvale 94089 Yolt>a Unda 92687-4613 Hamilton/Avnet
FAX: (602) 902-4640

~~~~(~m:t~g:8 
Tel: (714) 921-9000 10491 72nd St. North 

Hamilton Hallmal1< 
FAX: (714) 921-2715 Largo 34647 

Tol: (813) 541-7440 
4637 S. 36111 Placo :r~5~ ~~fau:;'et COLORADO FAX: (813) 544-4394 
Phoenix 85040 
Tel: (602) 437-1200 Woocland Hills 91376 Anthem Electronics Hamllton/Avnet 
FAX: (602) 437-2348 Tel: (818) 594-8301 373 Inverness Drive South 7079 unlveraity Boulevard 

Wyle Laboratories FAX: (818) 594-8333 Englewood 80112 WlnlO' Pall< 32792 
Tel: (303) 790-4500 

~A'ic~~m~~8~~~~ 4 4141 E. Raymond Hamilton Hallmal1< FAX: (303) 790-4532 
Phoenix 85040 3170 Pullman Street 
Tel: (602) 437-2088 Costa Mesa 92626 Arrow/Schwaber electroniCS Pioneer Technologies Group 
FAX: (602) 437-2124 Tel: (714) 641-4100 61 Inverness Or. East, #105 337 Northlake Blvd .• #1000 

FAX: (714) 641-4122 Englewood 80112 Al1a Monle Springs 32701 
CALIFORNIA Tel: (303) 799-0258 

~A'ic~~mf~~g~~ Anthem Electronics 
Hamilon Hallmall< FAX: (303) 373-5760 
1175 Bordeaux Drive. #A 

9131 Oakdale Avenue Sunnyvale 94089 Hamilton Hallmark :~~n:~M1r;~~~lies Group Chatsworth 91311 
~A'ic~(mf~~~g~9 12503 E. Euclid Drivo, #20 

Tel: (818) 775-1333 Englowood 80111 D .. rfield Beach 33442 
FAX: (818) 775-1302 

Hamlton Hallmal1< 
Tel: (303) 790-1662 Tel: (305) 428-8877 

Anthem Electronics 4545 Vlewridge Avenue FAX: (303) 790-4991 FAX: (305) 481-2950 
1 Oldfield Drive San Diego 92123 HamDton Hallmalk Pioneer Technologies Group 
Irvine 92718-2809 Tel: (619) 571-7540 710 Wooten Road, #102 8031-2 Phillips Highway 
Tel: (714) 768-4444 FAX: (619) 277-6136 Jacksonville 32256 
FAX: (714) 768-6456 Colorado Springs 80915 Tel: (904) 730-0065 

Hamilton Hallmark Tel: (719) 637-0055 
Anthem Electronl06 21150 Califa Sl FAX: (719) 637-0088 Wyle Laboratories 
580 Menlo Drive, #8 Woodland Hils 91367 1000 112 Circle North 
Rocldin 956n Tel: (818) 594-0404 Wyle Laboratories S1. PolO,sburg 33716 
Tel: (916) 624-9744 FAX: (818) 594-8234 461 E. 124th Avenue ~~~~~J~~f;~9~~g~ 8 FAX: (916) 624-9750 Thom1on 80241 

Anthem Electronics 
Hamlton Hallmal1< Tel: (303) 457-9953 
580 Menlo Drive, #2 FAX: (303) 457-4831 GEORCIIA 9369 Carroll Pall< Drive Rocklin 95762 

San Diego 92121 Tel: (916) 624-9781 CONNECTICUT ~~~w C~c~~~:~ w:;-ms Group Tel: (619) 453-9005 FAX: (916) 961-0922 
Anthem Electronics FAX: (619) 546-7893 Dululll 30136 

Anthem Electronics 
Pioneer Standard 61 Maltatuck Heights Road Tel: (404) 623-8825 
5850 Canoga Blvd., #400 WalOlt>urg 06705 FAX: (404) 623-8802 

1160 Ridder Pall< Drive Wood1and Hils 91367 Tel: (203) 575-1575 
San Jose 95131 Tel: (818) 883-4640 FAX: (203) 596-3232 Arrow/Schweber Electronics 

~~~~(~~f~;~Jg4 4250 E. Alvorg,een Pkwy., #E 
Pioneer Standard Arrow/Schweber Electronics Dululll 30136

Arrow Commercial Systems Group
217 Technology 0'.;#110 12 Beaumont Road Tel: (404) 497-1300
Irvine 92718 f:I~~~~~g~~l FAX: (404) 476-1493

1502 Crocker Avenue Tel: (714) 753-5090

~ffl)~~371 Pioneer Technologiea Group
FAX: (203) 265-7988 AVnet Computer

3425 CorporalO Way, #G
FAX: (510) 489-9393 134 Alo Robl .. Avnet Computer Dululll 30136
Arrow Commercial Systems Group

San Jose 95134 55 Federal Road, #103 Tol: (404) 623-5452

~A'ic~1~~f~:m~3 Danbury 06810 FAX: (404) 476-0125 14242 Charnbo .. Road Tol: (203) 797-2880
Tustin 92660 FAX: (203) 791-9050
Tel: (714) 544-0200
FAX: (714) 731-8438

NORTH AMERICAN DISTRIBUTORS (Contd.)
Hamilton Hallmark
3425 Corporate Way, #G &#A
Duluth 30136
Tel: (404) 623-5475
FAX: (404) 623-5490

Pioneer Technologies Group

6~r~~3~~3~green Parkway

Tel: (404) 623-1003
FAX: (404) 623-0665

Wyle Laboratories
6025 The Comers Pkwy 'j #111
Norcross 30092
Tel: (404) 441-9045
FAX: (404) 441-9086

ILUNOIS

Anthem Electronics
1300 Remington Road, Suite A
Schaumberg 60173
Tel: (708) 884-0200
FAX: (708) 885-0480

Arrow/Schweber Electronics
1140 W. Thomdale Rd.
Itasca 60143
Tel: (708) 250-0500

Avnet Computer
1124 Thorndale Avenue
Bensenville 60106
Tel: (708) 860-8572
FAX: (708) 773-7976

Hamiltonl Avnet
1130 Thorndale Avenue
Bensenville 60106
Tel: (708) 860-7780
FAX: (708) 860-8530

MTI Systems
1140 W. Thorndale Avenue
Itasca 60143
Tel: (708) 250-8222
FAX: (708) 250-8275

Pioneer~Standard

~~~~s~~e661ti~f Dr., #200 

Tel: (708) 495-9680 
FAX: (708) 495-9831 

Wyle Laboratories 
2055 Army Trail Road, #140 
Addison 60101 
Tel: (800) 853-9953 
FAX: (708) 620-1610 

INDIANA 

Arrow/Schweber Electronics 
7108 Lakeview Parkway West Dr. 
Indianapolis 46268 
Tel: (317) 299-2071 
FAX: (317) 299-2379 

Avnet Computer 
465 Gradle Drive 
Carmel 46032 
Tel: (317) 575-8029 
FAX: (317) 844-4964 

Hamilton Hallmali< 
4275 W. 961h 
Indianapolis 4626B 
Tel: (317) 872-8875 
FAX: (317) 876-7165 

Pioneer-Standard 
935Q Pljority Way West Dr. 
Indiilnapolis 46250 
Tel:' (317) 573-0880 
FAX: (317) 573-0979 

KANSAS 

Arrow/Schweber Electronics 
9801 Legler Road 
Lenexa 66219 
Tel: (913) 541-9542 
FAX: (913) 541-0328 

Avnet Computer 
15313 W. 95th Street 
Lenexa 61219 
Tel: (913) 541-7989 
FAX: (913) 541-7904 

Hamilton Hallmark 
10809 Lakeview Avenue 
Lenexa 66215 
Tel: (913) 888-4747 
FAX: (913) 888-0523 

KENTUCKY 

Hamilton Hallmali< 

~~~~~~~c4~~1d1' #G 
Tel: (800) 235-6039
FAX: (606) 288-4936

MARYLAND

Anthem Electronics

b~?~~~:~~0~6 Gateway Drive

Tel: (410) 995-6640
FAX: (410) 290-9862

Arrow Commercial Systems Group
200 Perry Pali<way
Gaithersburg 20B77
Tel: (301) 670-1600
FAX: (301) 670-0168

ArrowlSchweber Electronics
9BOOJ Patuxent Woods Dr.
Columbia 21046
Tel: (301) 596-7800
FAX: (301) 995-6201

AVnet Computer
7172 Columbia Gateway Dr., #G
Columbia 21045
Tel: (301) 995-3571
FAX: (301) 995-3515

Hamilton Hallmark
10240 Old Columbia Road
Columbia 21046
Tel: (410) 988-9800
FAX: (410) 381-2036

North Atlantic Industries
Systems Division
7125 River Wood Or.
Columbia 21046
Tel: (301) 312-5800
FAX: (301) 312-5850

Pioneer Technologies Group
9100 Gaither Road
Gaithersburg 20B77
Tel: (301) 921-0660
FAX: (301) 670-6746

Wyle Laboratories

b~?~mCb1au~1~:6Gateway Or.

Tel: (410) 312-4844
FAX: (410) 312-4953

MASSACHUSETTS

Anthem Electronics
36 Jonspin Road
Wilmington 01BB7
Tel: (508) 657-5170
FAX: (508) 657-6008

Arrow/Schweber Electronics
25 Upton Drive
Wilmington 01887
Tel: (508) 658-0900
FAX: (508) 694-1754

Avnet Computer
100 Centennial Drive
Peabody 01960
Tel: (508) 532-9886
FAX: (508) 532-9660

Hamilton Hallmark
10 D Centennial DriVe
Peabody 01960
Tel: (508) 531-7430
FAX: (508) 532-9802

Pioneer Standard
44 Hartwell Avenue
Lexington 02173
Tel: (617) 861-9200
FAX: (617) 863-1547

Wyle Laboratories
15 Third Avenue
Burlington 01803
Tel: (617) 272-7300
FAX: (617) 272-6809

MICHIGAN

Arrow/Schweber Electronics
19880 Haggerty Road
Livonia 48152
Tel: (800) 231-7902
FAX: (313) 462-2686

Avnet Computer
2876 28th Street, S.W., #5
Grandville 49418
Tel: (616) 531-9607
FAX: (616) 531-0059

Avnet Computer
41650 Garden Brook Rd. #120
Novi 48375
Tel: (313) 347-1820
FAX: (313) 347-4067

Hamilton Hallmark
44191 Plymouth Oaks Blvd., #1300
Plymouth 48170
Tel: (313) 416-5800
FAX: (313) 416-5811

Hamilton Hallmark
~~~~~~~en Brook Rd., #100 

Tel: (313) 347-4271 
FAX: (313) 347-4021 

Pioneer Standard 
4505 Broadmoor S.E. 
Grand Rapids 49512 
Tel: (616) 698-1800 
FAX: (616) 698-1831 

Pioneer Standard 
13485 Stamford Ct. 
Uvonia 48150 
Tel: (313) 525-1800 
FAX: (313) 427-3720 

MINNESOTA 

Anthem Electronics 
7646 Golden Triangle Drive 
Eden Prairie 55344 
Tel: (612) 944-5454 
FAX: (612) 944-3045 

Arrow/Schweber Electronics 
10100 Viking Drive, #100 
Eden Prairie 55344 
Tel: (612) 941-5280 
FAX: (612) 942-7803 

Avnet Computer 
10000 West 76th Street 
Eden Prairie 55344 
Tel: (612) 829-0025 
FAX: (612) 944-2781 

Hamilton Hallmark 
9401 James Ave. South, #140 
Bloomington 55431 
Tel: (612) 881-2600 
FAX: (612) 881-9461 

Pioneer Standard' 
7625 Golden Triangle Dr., #G 
Eden Prairie 55344 
Tel: (612) 944-3355 
FAX: (612) 944-3794 

Wyle Laboratories 
1325 E. 79th Street, -# 1 
Bloomington 55425 
Tel: (612) 853-2280 
FAX: (612) 853-2298 

MISSOURI 

Arrow/Schweber Electronics 
2380 Schuetz Road 
st. Louis 63141 
Tel: (314) 567-6886 
FAX: (314) 567-1164 

Avnet Computer 
741 Goddard Avenue 
Chesterfield 63005 
Tel: (314) 537-2725 
FAX: (314) 537-4248 

HamHton Hallmark 
3783 Rider Trail South 
Earth City 63045 
Tel: (314) 291-5350 
FAX: (314) 291-0362 

NEW HAMPSHIRE 

Avnet Computer 
2 Executive Pali< Drive 
Bedford 03102 
Tel: (800) 442-8638 
FAX: (603) 624-2402 

NEW JERSEY 

Anthem Electronics 
26 Chapin Road, Unit K 
Pine Brook 07058 
Tel: (201) 227-7960 
FAX: (201) 227-9246 

Arrow/Schweber Electronics 
4 East Stow Rd., Unit 11 
Marlton 08053 
Tel: (609) 596-8000 
FAX: (609) 596-9632 

Arrow/Schweber Electronics 
43 Route 46 East 
Pine Brook 07058 
Tel: (201) 227-7880 
FAX: (201) 538-4962 

Avnet Computer 
1-B Keystone Ave., Bldg. 36 
Cherry Hill 08003 
Tel: (609) 424-8961 
FAX: (609) 751-2502 

Hamilton Hallmark 
1 Keystone Ave., Bldg. 36 
Cherry Hill 08003 
Tel: (609) 424-0110 
FAX: (509) 751-2552 

Hamilton Hallmali< 
10 Lanidex Plaza West 
Parsippany 07054 
Tel: (201) 515-5300 
FAX: (201) 515-1601 

MTI Systems 
43 Route 46 East 
Pinebrook 07058 
Tel: (201) 882-8780 
FAX: (201) 539-6430 

Anthem Electronics 
19017 - 120th Ave., N.E. #102 
Bothell 98011 
Tel: (206) 483-1700 
FAX: (206) 486-0571 

Avnet Computer 
17761 N.E. 78th Place 
Redmond 98052 
Tel: (206) 867-0160 
FAX: (206) 867-0161 

Hamilton Hallmali< 
8630 154th Avenue 
Redmond 98052 
Tel: (206) 881-6697 
FAX: (206) 867-0159 

Wyle Laboratories 
15385 N.E. 90th Street 
Redmond 98052 
Tel: (206) 881-1150 
FAX: (206) 881-1567 

PioneerStandard 
14-A Madison Rd. 
Fairfield 07006 
Tel: (201) 575-3510 
FAX: (201) 575-3454 

Wyle laboratories 
20 Chapin Road, Bldg. 10-13 
Pinebrook 07058 
Tel: (201) 882-8358 
FAX: (201) 882-9109 

NEW MEXICO 

Alliance Electronics, Inc. 
10510 Research Ave. 
Albuquerque 87123 
Tel: (505) 292-3360 
FAX: (505) 275-6392 

Avnet Computer 
7801 Academy Rd. 
Bldg. 1, Suite 204 
Albuquerque 87109 
Tel: (505) 828-9725 
FAX: (505) 828-0360 

NEW YORK 

Anthem Electronics 
47 Mall Drive 
Commack 11725 
Tel: (516) 864-6600 
FAX: (516) 4S3-2244 



NORTH AMERICAN DISTRIBUTORS (Contd.) 
Arrow/Schweber Electronics Arrow/Sc::hweber Electronics Wyle Laboratories Pion •• r Standard 
3375 Brighton Henriotta 6573 Cochran Road, #E 9640 Sunshine Court 10530 Rockley Road, #100 
Townlln. Rd. Solon 44139 Bldg. G, Suito 200 Houston 77099 
Rochester 14623 Tel: (216) 248-3990 Beaverton 97005 Tel: (713) 495-4700 
T 01: (716) 427-0300 FAX: (216) 248-1106 Tel: (503) 643-7900 FAX: (713) 495-5642 
FAX: (716) 427-0735 

Arrow/Schweber Electronics 
FAX: (503) 646-5466 

Wyle Laboratories 
Arrow/Schwebe, Electronics 8200 Washington Village Dr. PENNSYLVANtA 1810 Greenville Avenue 
20 Ose, Avenue Centerville 45458 Richardson 75081 
Hauppauge 11788 Tel: (513) 435-5563 Anthem Electronics Tel: (214) 235-9953 
Tel: (516) 231-1000 FAX: (513) 435-2049 355 Business Center Dr. FAX: (214) 644-5064 
FAX: (516) 231-1072 Horsham 19044 

Avnet Computer 
~~~~~mf~5~J~~5 WyJe Laboratories 

Avnet Computer 7764 Washington Village Dr. 4030 West Braker Lane, #330
933 Motor Parkway Dayton 45459

Avnet Computer
Austin 78758

Hauppauge 11788 Tol: (513) 439-6756 Tel: (512) 345-8853
Tel: (516) 434-7443 FAX: (513) 439-6719 213 Executive Drive, #320 FAX: (512) 345-9330
FAX: (516) 434-7426 Mars 16046

Avnet Computer Tol: (412) n2-1BBB Wyle laboratories
Avnst Computer 30325 Bainbridge Rd., Bldg. A FAX: (412) n2-1B90 11001 South Wilcrest, #100
2060 T ownline Rd. Soton 44139

Pioneer Te¢hnologies Group Houston 77099
Rochester 14623 Tol: (216) 349-2505 Tel: (713) 879-9953
Tel: (716) 272-9110 FAX: (216) 349-1894 259 Kappa Drive

FAX: (713) 879-6540
FAX: (716) 272-96B5

Hamilton Hallmark
Pittsburgh 1523B
Tol: (412) 7B2-2300 UTAH HamiitonlAvnet 7760 Washington Vllage Dr. FAX: (412) 963-8255

933 Motor Parkway Dayton 45459
Pioneer Technologies Group Anthem Electronics

Hauppauge 11788 Tel: (513) 439-6735 1279 West 2200 South
Tel: (516) 434-7470 FAX: (513) 439-6711 500 Enterprise Road Salt Lake City B4119
FAX: (516) 434-7491

Hamilton Hallmark
Keith Valley Business Center Tel: (801) 973-B555
Horsham 19044 FAX: (B01) 973-B909 HamUlon Ha"mark 5821 Harper Road Tel: (215) 530-4700

1 057 E. Henrietta Road Soton 44139 Arrow/Schweber Electronics
Rochester 14623 Tel: (216) 49B-tl00 Wyle Laboratories 1946 W. Parkway Blvd.
Tot: (716) 475-9130 FAX: (216) 24B-4B03 1 Eves Drive, #111 Salt Lake City B4119
FAX: (716) 475-9119

Hamilton Hallrnali(
Ma~ton 08053-31B5 Tel: (B01) 973-6913

Hamilton Hallmark 777 Dearbom Park Lane, #L
Tel: (609) 9B5-7953 FAX: (B01) 972-0200

3075 Veterans Memorial Hwy. Worthington 43085
FAX: (609) 985-B757

Avnet Computer
Ronkonkcma 11779 Tel: (614) BBB-3313 TEXAS 1100 E. 6600 South, #150
Tel: (516) 737-0600 FAX: (614) BB8-0767

Anthem Electronics
Salt Lako City 84121

FAX: (516) 737-0B38 Tel: (B01) 266-1115 MTISy&tems 651 N. Plano Road, #401 FAX: (B01) 266-0362 MTI Systems 23404 Commerce Park Rd. Richardson 750B 1
1 Penn Plaza Beachwood 44122 Tel: (214) 23B-7100 Hamilton Hallmark
250 W. 34th Straot Tel: (216) 464-66BB FAX: (214) 23B-0237 1100 East 6600 South,#120
New York 10119 FAX: (216) 464-3564

Arrow/Schweber Electronics
Salt Lake City 84121

Tel: (212) 643-12BO Tel: (B01) 266-2022
FAX: (212) 643-12BB Pioneer Standard 11500 Metric Blvd., #160 FAX: (B01) 263-0104 4433 Interpoint Boulevard Austin 7B75B
Pioneer Standard Dayton 45424 Tol: (512) B35-41BO Wyle Laboratories
68 Corporate Drive Tol: (513) 236-9900 FAX: (512) 832-5921 1325 W8$t 2200 South, #E
Binghamton 13904 FAX: (513) 236-BI33

Arrow/Schweber 8ectronics
West Valley 84119

~~~~~~m2~~gg2 Tol: (B01) 974-9953 
Pioneer Slandard 3220 Commander Drive FAX: (B01) 972-2524 
4800 E. 131st Street Carrollton 75006 

Pioneer Standard Cleveland 44105 Tel: (214) 3B0-6464 WASHINGTON 
60 Cro&Sway Park West Tel: (216) 587-3600 FAX: (214) 24B-720B 
Woodbury, Long Island 11797 FAX: (216) 663-1004 Arrow/Schweber Electronics 

AlmacArrow Electronics 
Tel: (516) 921-B700 14360 S.E. Eastgate Way 
FAX: (516) 921-2143 OKLAHOMA U:~to~i~ra~rgt Dr., #100 Bellevue 98007 

Tel: (206) 643-9992 Pioneer Standard Arrow/Schweber Electronics Tol: (713) 530-4700 FAX: (206) 643-9709 840 Fairport Park 12101 East 51&t Street, #106 
Fairport 14450 Tulsa 74146 Avnet Computer WISCONSIN 
Tel: (716) 3BI-7070 Tel: (91B) 252-7537 4004 Beltllne, Suite 200 

Arrow/Schweber Electronics FAX: (716) 381-5955 FAX: (91B) 264-0917 Dallas 75244 
Tel: (214) 30B-B1Bl 200 N. Patrick, #100 

Zeus Arrow Electronics Hamilton Hallmark FAX: (214) 3OB-B129 Brookfield 53045 
100 Midland Avenue 5411 S.125th E. Avo., #305 Tol: (414) 792-0150 
Port Chester 10573 Tulsa 74146 Avnet Computer FAX: (414) 792-0156 
Tol: (914) 937-7400 Tel: (918) 264-6110 1235 North Loop West, #525 Avnet Computer FAX: (914) 937-2553 FAX: (918) 264-5207 Houston 77008 20875 Crossroads Circle, #400 
NORTH CAROLINA Pioneer Standard Tel: (713) 867-B572 Waukesha 53186 

9717 E. 42nd St .. #105 FAX: (713) 661-6651 Tel: (414) 7B4-B205 
Arrow/Schweber Electronics Tulsa 74146 Hamilton Hallmark FAX: (414) 784-8006 
5240 Greensdairy Road Tel: (91B) 665-7B40 12211 Technology Blvd. Hamilton Hallmark Raleigh 27604 FAX: (918) 665-1891 Austin 78727 Tol: (919) B76-3132 

Tel: (612) 26B-8B4B 
2440 S. 179th Street 

FAX: (919) 87B-9517 OREGON New Bedln 53146 
FAX: (512) 268-37n Tel: (414) 797-7B44 

Avnet Computer A1macArrow Electronics 
Hamlton Hallmark FAX: (414) 797-9259 

2725 Millbrook Rd., #123 lBB5 N.W. 169th ptace 
b~~~ ~~~ Mill Road Raloigh 27604 Beaverton 97006 Pioneer Standard 

Tel: (919) 790-1735 Tel: (503) 629-8090 120 Bishop Way #163 
FAX: (919) B72-4972 FAX: (503) 645-0611 Tel: (214) 553-4300 Brookfield 53005 FAX: (214) 553-4395 Tel: (414) 7B4-34BO 
Hamilton Hallmark Anthem Electronics 

HamRton Hallmark FAX: (414) 780-3613 
5234 GreensdaJry Road 9090 S.W. Gemini Drive 
Ralolgh 27604 Beaverton 97005 :~~:n~?o~ Wyle Laboratories 
Tel: (919) B7B-0819 Tel: (503) 643-1114 Tel: (713) 7BI-6100 W226 N555 Eastmound Drive 
FAX: (919) B78-8729 FAX: (503) 626-792B Waukesha 53186 

FAX: (713) 953-B420 Tel: (414) 521-9333 

;~~eG~=~~~r~;v:'~115 Avnet Computer 
Pioneer Standard FAX: (414) 521-949B 

9750 Southwest Nmbus Ave. 
18260 Kramer Lane Morrisville 27560 Beaverton 97005 
Austin 78758 ALASKA 

Tel: (919) 460-1530 Tol: (503) 627-0900 
Tel: (512) B35-4000 Avnet Computer FAX: (919) 460-1540 FAX: (503) 528-6242 
FAX: (512) 835-9B29 1400 West Benson Blvd., #400 

OHtO HamHton Hallmark Pioneer Standard Anchorage 99603 

Arrow Commercial Systems Group 9750 Southwest Nmbus Ave. 13765 Bota Road ~~~~~~~~.;lt~:9 
284 Cramer Creek Court Beaverton 97005 Dallas 75244 
Dublin 43017 Tel: (503) 526-6200 Tel: (214) 263-316B 
Tel: (614) BB9-9347 FAX: (503) 641-5939 FAX: (214) 490-6419 
FAX: (614) 889-96BO 

*Self Certified Small Business per Federal Acquisition Regulations 



NORTH AMERICAN DISTRIBUTORS (Contd.) 

CANADA 
ALBERTA 

::~: 2~:,gt=t, Northeast 

~1~~~J~~ff284 
FAX: (403) 250-1591 

Zentronlcs 
6815 8th streot N.E .. #100 

~~~~J~l.'~838 
FAX (403) 295-8714

BR111SH COLUMBIA

AlmacArrow Electronics
8544 Baxter Place
Bumaby V5A 4T8
Tel: (604) 421-2333
FAX (604) 421-5030

Hamilton Hallmark
8610 Commerce Court
Bumaby V5A 4N6
Tel: (604) 420-4101
FAX: (604) 420-5376

FINLAND

Intel FlniandOY
Ruosilantie2
00390 Helsinki

~~~~~:~mu~:a 
FRANCE 

\~%~0E";,~~pS3~:·L 
78054 Sl Quentin-en-Yvelnes 
Codex 
Tel: (33) (1) 30 57 70 00 
FAX: (33) (1) 30 64 60 32 

GERMANY 

Intel GmbH 
Oomacher StraUB 1 
85622 FelddrcheniMuenchen 
Tel: (49) 089190992-0 
FAX: (49) 08919043S48 

ZentroniC8 
11400 Bridgeport Rd., #108 
Richmond V6X lT2 
Tel: (604) 273-5575 
FAX: (604) 273-2413 

ONTARIO 

Arrow/Schweber Electronics 
1093 Mayeraide, Unit 2 
Miuissauga L5T 1 M4 
Tel: (416) 670-7769 
FAX: (416) 670-7781 

Arrow/SChweber Electronics 
36 Antares Dr., Unit 100 

·~:n:~3~~:'::03 
FAX: (613) 723-2018 

Avnet Computer 
Canada System Engineering Group 
151 SUperior Blvd. 
MISSI$$Ua~ L5T 2L 1 

~~~~~m) :~~~gl 

Avnet Computer
190 Colonade Road

~~3~~!.~~00
FAX: (613) 226-1184

HamHton Hallmark
151 Superior Blvd, Unit 1-6
Mississauga L5T 2L 1
Tel: (416) 564-6060
FAX: (416) 564-6033

Hamilton Hallmark
190 Colonade Road

~:<:~3~~:';~00
FAX: (613) 226-1164

Zentronlcs
5500 Keaton Crescent, #1
Mia&iseauga L5R 3SS
Tol: (416) 507-2600
FAX: (416) 507-2831

Zentronics
155 Colonnade Rd., South #17

~:n:~3~~:'~~
FAX: (613) 226-6352

QUEBEC

Arrow/Schweber Electronics
1100 Sl Regis Blvd.
Dorval H9P 2T5
Tel: (514) 421-7411
FAX: (514) 421-7430

Arrow Schwaber Electronics
500 Boul. Sl.Jean-Baptiste Ave.
Quebec H2E 5R9

~~~1mr~mg~6 
Avnet Computer 

~~:~~r"~TP8 
Tel: (514) 335-2463 
FAX: (514) 335-2461 

HamUton Hallmark 
7575 Tran&eanacta Highway #600 
Sl Laurent H4T 2V6 
Tol: (514) 335-1000 
FAX: (514) 335-2481 

Zentronics 
520 McCaffrey Street 
SI. Lourent H4T 1 N3 
Tel: (514) 737-9700 
FAX: (514) 737-5212 

EUROPEAN SALES OFFICES 
ISRAEL 

Intel Semiconductor Ltd. 
Alidm Indusbial Park-Neve Sharet 
P.O. Box 43202 
Tel-Aviv 61430 

~~~~~~~fg34~~:~0 
ITALY

Intel Corporation ltalla S.p.A.
Mlanonori Palazzo E
20094 Ae.ago
Milano
Tel: (39) (2) 576441
FAX: (39) (2) 34S6464

NETHERLANDS

Intel Semiconductor B.V.
POSibU584130
3009 CC Rotterdem
Tel: (31) 104071111
FAX: (31) 10455 4688

RUSSIA

Intel rechnologiea. Inc.
KrementshugBkaya en
121357 Moscow
Tol: 007-095-4439785
FAX: 007-095-4459420
TLX: 612092 omallau.

SPAIN

Intellberta SA
Zubaran,28
28010 Madrid
Tel: (34) (1) 308 2552
FAX: (34) (1) 410 7570

SWEDEN

Intel Sweden A.B.

~mrs:ln~
Tel: (46) 8 705 5600
FAX: (46) 8 278085

UNITED KINGDOM

Intel CorporaUon (U.K.) Ltd.
Pipe .. Way
SWindon, Wlllllhire SN3 1 RJ
Tel: (44) (0793) 696000
FAX: (44) (0793) 641440

EUROPEAN DISTRIBUTORS/REPRESENTATIVES
AUSTRIA "'Diode t*Fameil Electronic Services AS Farnell Electronic Services O.Y.

Keiberg 2 Neveriand29 TyopaJakatu 5
t"EIbatox GmbH MinalYaatrut, 141B2 OK-2600 Glostrup SF-00581 Helsinki
Ellnergasse 6 1930 Zayentem Tel: (45) 42 451 822 Tel: (358) 0 739100
A-1231 Wien Tot: (32) 2 725 46 60 FAX: (45) 42 450 786 FAX: (358) 0712414
Tel: (43) 1816020 FAX: (32) 2 725 45 11
FAX: (43) 181602201 ESTONIA FRANCE

omnilogic
Omnlloglc

*Amet Baltronlc AS ·Arrow Electronique Budasteenweg 2
:t'rl'OO~~ .. e 10-12 1830 Machelen Akacldemia tee 21F, EEOO26 73-79 Rue des Solem

~~~~~f i~~~ggo 
Tallinn Slilc 585 

Tel: (43~1 684646 Tol: (327) 2 527 349 94663 Rungl. Cedex 
FAX: (4 1 6842 0462 FAX: (372) 2 527 556 Tel: (33) (1) 4978 4978 

t"Spoede Eloktronlk 
CZECH REPUBUC FAX: (33) (1) 4978 0596 

FINLAND 
~Il~~::::ter Str. 52 E1batex "Avnet EMG SA 

Prechodni 1111600 t"C2oo0 Finland 79, Rue Pierre Semard 

~l'i(m)113~~i~g CS-140 00 Praha 4-Krc ~~~U::4 92322 Challllon 
Tel: (42) 2 692 8087 ~M~Mn::~~~ FAX: (42) 24718203 SF-02231 Eepoo 

BELGIUM ~~~~~~f ~~l~~343 
t"lnelco DENMARK tMetroiogie 

Tour d'Asnieres 
Avenue des Croix de Quene 94 *Avnet Nortec AlS Avnet Nortec OY 4, Avenue Laurent Cety 
1120 Bruxell .. Transformervej 17 ltalahdenkatu 22 92606 Asnieres Cedex 
Tel: (32) 2 244 2811 OK-273O Hartev SF-00210 Helalnkl Tel: (33) (1) 4080 9000 
FAX: (32) 2 216 3304 Tel: (45) 4264 2000 Tel: (358) 0 670277 FAX: (33) (1) 4791 0561 

FAX: (45) 4482 1552 FAX (358) 0 692 23 26 



EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
. (Cont'd) 

"Tekalec 
CUe des Bruyeres 
5, Rue Carle Vemet-BP 2 
92310 Sevrea 
Tel: (33) (~ 46232425 
FAX: (33) 1) 4507 2191 

In81co 
114 Avenue Louis Roche 
92230 Gennevilliers 
Tel: (33) 1 47947680 
FAX: (33) 1 47923468 

Omniloglc 
11 Rue ch Cambrai 
Bat. 28 
75019 Paris 

GERMANY 

·Avn •• E2000 
Stahlgrubonlng 12 
81829 Muenchen 
Tel: (49) 89 4511001 
FAX: (49) 89 45110129 

"Jormyn GmbH 
1m Dachsstueck 9 
65649 Umburg 
Tel: (49) 64315080 
FAX: (49) 6431 508289 

tMotrologio GmbH 
Stelneratrasse 15 
8 1369 Mllnchen 
Tel: (49) 89 74 21 70 
FAX: (49) 89 74 2171 11 

*Proeledron Vertrieba GmbH 
Max-Planck..strasse 1-3 
63303 Dreieich 
Tel: (49) 6103 304343 
FAX: (49) 6103 304425 

tRaab Karcher Eloktronik GmbH 
Loetsdler Weg 66 
41334 Nettetal 
Tel: (49) 2153 7330 
FAX: (49) 2153 733513 

ItosaGmbH 
Beethoven.tresse 26 
63626 Erlonsoo 
Tol: (49) 6183 830 
FAX: (49) 6183 8338 

GREECE 

tErgodata 

~!e~p~~~A 
Tel: (30) 1 95 10922 
FAX: (30) 19593160 

*Pouliacls Associates Corp. 
Ariatoteloua st. 3 
Sygrou Av. 150 
17671 Athena 
Tel: (30) 1 924 2072 
FAX: (30) 1 9241066 

HUNGARY 

ElbalOX 
Gabor Takacs 
Vaci u. 202 
H·1138 Budapest 
Tel: (36) 11409194 
FAX: (36) 1 120 9478 

IRELAND 

t"Mlcro Marketing 
Taney Hall 
Eglinton Terrace 
Oundrum 
Dublin 14 
Tel: (353) (1) 298 9400 
FAX: (353) (1) 298 9828 

ISRAEL 

t*Eastronica linited 
Rozanis 11 
P.0.B.39300 
Tel Baruch 
T~-Aviv 61392 
Tel: (972) 3 6458 7n 
FAX: (972) 3 8458 666 

*Technical Dlabibutor 
tVAD 

ITALY 

Avn_. Malsy SRL 
Via Novara, 570 
20100 Milano 
Tel: (39) 2 824701 
FAX: (39) 238002988 

Famell Electronic SeNices SpA 
Viale Milanofion El5 
1·20090 A ... go 

~~~~~~m~~~~31 
*Last Elettronlca
Pol. 00839000155
Viale Fulvio Testi, N.2BO
20126 Milano
Tel: (39) 2 661431
FAX: (39) 2 66101385

Omniloglc T alcorn
Via Lorenteggia 270/A
20152 Milano
Tel: (39) 2 48302640
FAX: (39) 2 48 302010

LATVIA

Avnet Baltronlc
Maskavas iela 40/42
New Bldg - Room 513
LV 1018 Riga
Tel: (371) 2 211 109
FAX: (371) 2 211109

NETHERLANDS

tDataloom B.V.
Meldoornkadae 22
3993 AE Hou"'n
Tel: (31) 3403 57222
FAX: (31) 3403 57220

'*Diode Components
Collbaan 17
3439 NG Nlouwegeln
Tel: (31) 3402 9 1234
FAX: (31) 3402 35924

t'*Koning en Hartman
Energleweg 1
2627 APDelft
Tel: (31) 15 609 906
FAX: (31) 15619194

NORWAY

*Avnet Nortec AlS
Postboka 123
N-1364 Hvaistad
Tel: (47) 66 84 6210
FAX: (47) 66 84 6545

tComputer System Integration AlS
Postbox 198
N·1384 Skje_
Tel: (47) 638 45 411
FAX: (47) 638 45 310

Famell Electronic Services
Dlvilion of Farnell Sweden AS
Nodre Kalbakkvei 88
N·l081 Oslo 10
Tel: (47) 22 321270
FAX: (47) 22 325120

POLAND

ElbalOX
ul. Hoze 29131 M6
PL-oO·6Bl Warsza.

~~~~~:&~2~~~g9 
PORTUGAL 

"ArrfN(/ATD Eloctronlca LOA 
Quinta Grande, La'" 20· RIC DTO 
Alfregido (Norte) 
2700 Amadora 
Tel: (351) 14714182 
FAX: (351) 1 4715886 

=~~~'a~a de Vasconcelos 3A 
TURKEY 

1900 Usboa *Empa Electronic 
Tel: (351) (1) 847 2202 Besyol Mah E-5 Karayolu Yani 
FAX: (351) (1) 847 2197 Rorya is Merkezi 

No.5 34630 Selakoy 
RUSSIA Istanbul 

Marisel Tel: (90) 212 599 3050 

3 Kroutilokly Val Sl FAX: (90) 212 598 5353 

Section 2 Info 
109044 Moocow Buyukdere Cad. 107/3 

~~~~~~~i~64m4 Bangun Han Gayerttepe 
80300 Istanbul

SLOVAKIA Tel: (90) 212 275 0780
FAX: (90) 212 272 3427

ElbalOX
UNITED KINGDOM Topol ctan&ka 23

SR 86105 8mti.ava "ArrowlMMD
Tel: (42) 7 831 320 3 Bennet Court
FAX: (42) 7831 320 Benne' Road
SOUTH AFRICA Readng RG2 OQX

Tel: (44) 734 313 232
t"EBE FAX: (44) 734313266
PO Box 912·1222
Silverton 0127 "Avnet Access

Mayerapafle Jubilee House

Pretoria 0184 Jubilee Road

Tel: (27~12 803 7680 Letchworth 5G6 lQH

FAX: (2 128038294 Tel: (44) 462 488 500
FAX: (44) 462488667

SPAIN '*Sytech E"ctronics
'*ArrCNIIATD Electronica 12a Cedarwood
Avenue de la Industria, 32-28 Chineham Business Park
28100 Alconbendas Crockford Lane
Madrid ~~~i(2:~~~ ~~mfW Tol: (34)(1) 661 6551
FAX: (34) (1) 6616300 FAX: (44) 256707162

tMetrologia By","" On Board
Avda. Industria, 32-2 128 Cedarwood
28100 Alconbendas Chineham Business Park
Madrid Basingstoke RG24 OWD
Tel: (34)(1) 6611142 Tol: (44) 256 707 386
FAX: (34) (1) 661 5755 FAX: (44) 256 707 486

SWEDEN tSytech Systems
5 The Sterting Centre

tAvnot Computer AB Eastern Road
Box 184 Bracknell RG 12 2PW
S·123 23 Farsta Tel: (44) 344 55 333
Tol: (46) 8 93 05 50 FAX: (44) 344867270
FAX: (46) 8 94 90 83

'*DBtrontech PlC
'*Avnet Nortec AS 42-44 Birchett Road
Box 1830 Aldel'8hot
8-17127 Soina Hanls-GUlllLU
Tel: (46) 8705 1800 Tel: (44) 252 313155
FAX: (46) 883 6918 FAX: (44) 252 341939

'*Famell 8ectronic Services AS tMotrologio UK Ltd.
Ankdammsgatan 32
Box 1330 ~~~O~:a~ClJ8e
8-171 26 Soina Hgh Wycombe HP11 2EE

~~~~:W~~~O 03 
Tel: (44) 494 526 271 
FAX: (44) 494421 860 

SWITZERLAND Otnnioglc CPU PLC 
Copse Road, Sl Johns, Waking 

tEibatexAG Surrey GU211SX 
Hardstruae 72 Tel: (44) 483 723 411 
CH-5430 Wettingen FAX: (44) 483729 974 
Tel: (41) 56 27 50 00 

UKRAINE FAX: (41) 56 27 1240 

tFabrimexAG Kvasar Micro 
KJrchenweg 5 Popudrenko Str, 52 
CH-8032 Zurich 253094 Kiev 
Tel: (41) 1386 86 86 ~~$f~ml~88~g8 FAX: (41) 1383 23 79 

tlMITEC UNITED ARAB EMIRATES 
Zurichstrasse 
CH-8185 Winkel-Rut ~baroi~071 B Tel: (41) (1) 8620055 
FAX: (41) (1) 8620266 Dubai 

Tel: (971) 434 8952 
t"lnduWodo A.G. FAX: (971) 434 6546 
Hertlatrasse 31 
CH-8304 Wallisellen 
Tel: (41) (1) 8328111 
FAX: (41) (1) 8307550 






