

MCS-51[™] Family of Single Chip Microcomputers User's Manual

Part No. 121517-001

intel

MCS-51[®] FAMILY OF SINGLE CHIP MICROCOMPUTERS USER'S MANUAL

JANUARY 1981

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9). Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Intel Corporation.

The following trademarks of Intel Corporation and its affiliates may only be used to describe their products:

BXP	Intelevision	MULTIBUS*
CREDIT	Intellec	MULTIMODULE
i	iSBC	PROMPT
ICE	iSBX	Promware
ICS	Library Manager	RMX
im	MCS	UPI
Insite	Megachassis	µScope
Intel	Micromap	

and the combinations of ICE, iCS, iSBC, MCS or RMX and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS[®] is a registered trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department Intel Corporation 3065 Bowers Avenue Santa Clara, CA 95051

Table of Contents

CHAPTER 1

Introduction	
Manual Organization	1-1
Product Overview	1-1

CHAPTER 2

Functional Description	
8051 CPU Architecture	2-1
CPU Hardware	2-2
On-Chip Peripherals	2-5

CHAPTER 3

Memory Organization, Addressing Modes and Instruction Set	
Memory Organization	3-1
Addressing Modes	3-2
Instruction Set Overview	3-5

CHAPTER 4

Expanded 8051 Family		4-1
----------------------	--	-----

CHAPTER 5

8051 Software Routines	
8051 Programming Techniques	. 5-1
Peripheral Interfacing Techniques	5-9

CHAPTER 6

Device Specifications	• • • • • • • • • • • • • • • • • • • •	6-1
-----------------------	---	-----

CHAPTER 7

Component Data Sheets

8048 Family

•
8021 Single Component 8-Bit Microcomputer
8021L Single Component 8-Bit Low Power (10mA)
Microcomputer
8022 Single Component 8-Bit Microcomputer with On-chip
A/D Converter
8022H High Performance Single Component 8-Bit Micro-
computer with On-chip A/D Converter
8048H/8048H-1/8035HL/8035HL-1 HMOS Single Component
8-bit Microcomputer 7-13
8048L Special Low Power Consumption Single Component
8-Bit Microcomputer
8049H/8039HL HMOS Single Component 8-Bit
Microcomputer
8243 MCS-48 [®] Input/Output Expander

8085 Peripherals

8155/8156/8155-2/8156-2 2048 Bit Static MOS RAM with I/C	C
Ports and Timer	7-40
8185/8185-2 1024 x 8-Bit Static RAM for MCS-85 [®]	7-47
8355/8355-2 16,384-Bit ROM with I/O	7-51
8755A/8755A-2 16,384-Bit EPROM with I/O	7-56

Standard Peripherals

8041A/8641A/8741A Universal Peripheral Interface 8-Bit	
Microcomputer	65
8205 High Speed 1 out of 8 Binary Decoder 7-7	'4
8251A/S2657 Programmable Communication Interface 7-7	'8
8253/8253-5 Programmable Interval Timer	33
8255A/8255A-5 Programmable Peripheral Interface 7-9) 2
8271/8271-6/8271-8 Programmable Floppy Disk	
Controller 7-10)0
8273/8273-4/8273-8 Programmable HDLC/SDLC Protocol	
Controller 7-10)8
8275 Programmable CRT Controller 7-11	5
8279/8279-5 Programmable Keyboard/Display Interface. 7-13	39
8282/8283 Octal Latch	18
8286/8287 Octal Bus Transceiver	53
8291 GPIB Talker/Listener 7-15	6
8292 GPIB Controller 7-17	'3
8293 GPIB Transceiver 7-17	'5
8294 Data Encryption Unit 7-18	38
8295 Dot Matrix Printer Controller	39

RAM

2114A 1024 x 4-Bit Static RAM	7-198
2142 1024 x 4-Bit Static RAM	7-202
2148 1024 x 4-Bit Static RAM	7-206
2148H 1024 x 4-Bit Static RAM	7-210
2118 Family 16,384 x 1-Bit Dynamic RAM	7-214
2147H High Speed 4096 x 1-Bit Static RAM	7-225

EPROM

2716 16K (2K x 8) UV Erasable PROM	7-229
2732 32K (4K x 8) UV Erasable PROM	7-234
2732A 32K (4K x 8) UV Erasable PROM	7-238
2758 8K (1K x 8) UV Erasable Low Power PROM	7-239

CHAPTER 8

Development Support Tools

Intellec [®] Series II/85 Model 225	. 8-2
Intellec [®] Single/Double Density Flexible Disk System	. 8-7
8051 Software Development Package	8-11
ICE-51 [™] 8051 In-Circuit Emulator	8-14
UPP 103 Universal PROM Programmer	8-20
SDK-51 MCS-51 System Design Kit	8-22

ł

APPENDIX A PL/M-80 Description of 8051 Instruction Set A-1
APPENDIX B An Introduction to the Intel MCS-51 Single-Chip Microcomputer Family
APPENDIX C

APPENDIX C Using the Intel MCS-51 Boolean Processing Capabilities C-1 .

•

CHAPTER 1 INTRODUCTION

MANUAL ORGANIZATION

This publication describes Intel's 8051 family of single chip microcomputers. It is written for engineers, technicians and students who understand basic microcomputer operating principles. The manual provides a comprehensive reference guide for the 8051 family.

The manual organization is by chapters and appendices. Chapter 1 provides a brief introduction to the MCS-51[®] family, its software tools, and its development support in the most general terms.

The second chapter provides a functional description of the 8051 family hardware.

The third chapter describes the 8051's family memory organization, addressing modes, data types and its instruction set.

The fourth chapter is an expanded 8051 family configured system using peripherals and external program and external data memories.

Chapter 5 lists software routines that handle programming applications such as radix conversions and stack manipulations.

The chapter following, the sixth, is the specification section for the 8051 family. A.C. and D.C. characteristics of the 8051 family are located here.

Chapter 7 provides data sheets on Intel products that can be used in conjunction with the 8051.

The next chapter describes the development support available for the 8051 family.

That's the end of the chapters, but there are two appendices. Appendix A is a PL/M-80 description of the 8051 instruction set. Appendix B is the AP Note section where AP-69 and AP-70 are reproduced in their entirety. AP-69 is titled, "An Introduction to the Intel[®] MCS-51[®] Single-Chip Microcomputer Family" and AP-70 is titled, "Using the Intel[®] MCS-51[®] Boolean Processing Capabilities."

PRODUCT OVERVIEW

Introduced in May, 1980, Intel's 8051 family of singlechip microcomputers is the next generation microcomputer for the controller marketplace. With an expandable and flexible architecture the 8051 family provides high performance for the applications of the future.

8051 Family

The 8051 family has three members: The 8031, 8051, and 8751. The 8031 is a CPU-only device, the 8051 has 4K bytes of factory-masked ROM and the 8751 has 4K bytes of EPROM. The generic term "8051" is used to refer collectively to the 8031, 8051 and 8751.

Supporting the applications of the '80s is the target of the 8051 family. On a single die the 8051 microcomputer combines CPU; non-volatile 4K x 8 read-only program memory (8051 and 8751); volatile 128 x 8 read/write data memory; 32 I/O línes; two 16-bit timer/event counters; a five-source, two-priority-level, nested interrupt structure; serial I/O channel for either multiprocessor communications, I/O expansion, or full duplex UART; and on-chip oscillator and clock circuits.

The CPU is in a 40-pin package and uses a single 5V power supply. Intel's HMOS process technology is the driving force behind the 8051's ability to bring many peripheral functions on-board a single-chip microcomputer.

Along with 4K program memory on-board, the 8051 can address another 60K of external program memory. If external data memory is needed the 8051 can also address 64K of external RAM. When an 8031 is used, all program memory execution is external and it, too, can address 64K of both external program and data memory. The 8051 contains many features for ease of manipulating variables in Internal Data Memory. The stack may be located anywhere within the internal RAM space. There are 4 banks of registers (eight registers in each bank) that facilitate context switching and provide byte efficiency. Also within the Internal Data Memory are the Special Function Registers. These are memorymapped locations for the ports, arithmetic registers, control and status registers and the timer/counters.

Within the Internal Data Memory are 256 individually addressable bits. 128 bits are located in the Internal Data RAM and the second 128 bits are located in the Special Function Register. These 256 addressable bits provide a new dimension in controller applications. The programmer/designer may now manipulate individual bits with specific bit instructions! This new feature is the Boolean Processor, which is actually a bit processor with its own accumulator, I/O and instruction set.

To increase programming ease the 8051 added new addressing modes. Direct Addressing was added to manipulate variables within the 128-byte Data RAM and the Special Function Registers. Base-Register plus Index-Register Indirect Addressing gives the programmer the ability to easily manipulate constants in program memory for table look-ups. Table look-ups are supported over the entire 64K range by using 16-bit registers.

A more in-depth explanation of the 8051's memory spaces, addressing modes and instruction set is provided in Chapter 3.

The 8051 hardware and on-chip peripherals have been briefly described a few paragraphs earlier. Let's add a little more detail in the following paragraphs. For complete operational and functional explanation of the following features please read Chapter 2.

MCS-51 family has two independent, 16-bit timer/ counters. Under software control, each timer/counter may be placed in one of four modes:

- 0) An 8-bit timer/counter with a divide-by-32 prescaler
- 1) A 16-bit timer/counter
- 2) An auto-reload 8-bit timer/counter
- 3) A mode which provides the programmer/designer with two timers and a counter for added flexibility

There is a five-source interrupt system. The user has software control over enabling/disabling the interrupts and assigning priority levels to the interrupt sources. The two external interrupts, under software control, can be either transition or low-level activated.

Two of the three internal interrupt sources generate an interrupt request when the overflow of the timer/ counters occurs. The third interrupt source generates an interrupt request from the serial channel when the receiver register is full or when the transmitter register is empty.

Serial data communication is accomplished by the 8051's serial channel. Operation is flexible by providing user-programmable baud rates, two choices of frame size and multiprocessor communications. There are four modes of operation:

- 0) An 8-bit frame, synchronous mode which allows I/O expansion using shift registers. A clock output is provided by the 8051.
- An 8-bit frame, asynchronous mode handling programmable baud rates from 122 to 31,250 bits per second (12MHz operation).
- A 9-bit frame, asynchronous mode that has a fixed baud rate of 187.5K bits per second (12MHz operation)

3) A programmable baud rate from 122 to 31,250 bits per second (12MHz operation) for a 9-bit frame and asynchronous operation.

Since microcontrollers are real-time oriented, the 8051 has four 8-bit ports for interfacing to the external world. Three of the four ports, under software control, can have additional capabilities. Port 0 is a time multiplexed bus. It outputs the lower 8 bits of the 16-bit address and also receives data and instruction during an external RAM read or external program memory operation. Port 0 also outputs the data when a write operation is performed. Port 2 emits the upper 8-bits of the 16-bit address when external memories are being accessed. Port 3 contains the special control signals such as the read and write strobes, the two external interrupt inputs, the two counter inputs and the transmit and receive pins of the serial channel. Port 1 is strictly an 8-bit quasi-bidirectional port.

Development Support Tools

Intel provides the tools needed for efficient, low risk development of products using the 8051 family. These development tools are based on the Intellec[®] Series II Microcomputer Development System. The Intellec system runs ISIS-II, a disk-based operating system being used in thousands of customer installations. This same hardware and operating system can also be used to develop systems based on other Intel microprocessor families such as the iAPX 86, iAPX 88, 8085 and 8048.

ASM-51, the 8051 macro assembler provides assembly language programming for the 8051. Symbolic references (i.e., names) to 8051 hardware features are supported.

The Universal PROM Programmer can program any of Intel's PROM memories. To program and verify the 8751, an 8751 personality card adapter should be used. Programming and verification operations are initiated from the Intellec development system console and are controlled by the Universal PROM Mapper program.

The SDK-51, System Design Kit, is an 8031-based prototyping and evaluation kit. It includes the CPU, RAM, I/O ports and a breadboard area for interfacing to customer circuits. A ROM-based monitor program, single-line assembler and disassembler are supplied with the kit. Monitor commands may be entered from an onboard keypad or from a terminal. Monitor commands allow programs to be entered, run, stopped and singlestepped; memory contents can be altered as well as displayed.

The ICE-51[™] In-Circuit Emulator provides real-time

symbolic debugging support for the 8051 microcomputer. A 40-pin probe replaces the 8051 in the system under test. This probe is connected to a specifically configured 8051 "bond-out" chip which makes internal 8051 hardware available to ICE-51 circuitry. The ICE-51 module emulates the 8051 in the system under test in response to commands entered through the Intellec console. These commands allow the user to debug the system by setting breakpoints, tracing the flow of execution, single-stepping, examining and altering memory and I/O, etc.

All references to program variables and labels are symbolic (i.e., their ASM-51 names). Software testing can also map "system under test" memory into the full speed ICE-51 memory to permit software testing to begin before prototype hardware has been developed.

Functional Description

2

CHAPTER 2 FUNCTIONAL DESCRIPTION

This chapter explains the functions of the 8051. The first part begins with a brief description of the memory spaces and addressing modes. (For more in-depth information, please see Chapter 3.) The chapter then explains the hardware registers, the ALU, and Boolean Processor.

The second part of Chapter 2 explains in detail the workings of the on-chip peripherals: the interrupt system, the I/O pins, the timer/counters and the serial channel.

8051 CPU ARCHITECTURE

The 8051 CPU manipulates operands in four memory spaces. These are the 64K-byte Program Memory, 64K-byte External Data Memory, 384-byte Internal Data Memory and 16-bit Program Counter spaces. The Internal Data Memory address space is further divided into the 256-byte Internal Data RAM and 128-byte Special Function Register (SFR) address spaces shown in Figure 2-1. Four Register Banks (each bank has eight registers), 128 addressable bits, and the stack reside in the Internal Data RAM. The stack depth is limited only by the available Internal Data RAM. Its location is determined by the 8-bit Stack Pointer. All registers except the Program Counter and the four 8-Register Banks reside in the Special Function Register address space. These memory mapped registers include arithmetic registers, pointers, I/O ports, and registers for the interrupt system, timers and serial channel. 128 bit locations in the SFR address space are addressable as bits. The 8051 currently contains 128 bytes of Internal Data RAM and 20 Special Function Registers.

Conditional branches are performed relative to the Program Counter. The register-indirect jump permits branching relative to a 16-bit base register with an offset provided by an 8-bit index register. Sixteen-bit jumps and calls permit branching to any location in the contiguous 64K Program Memory address space.

The 8051 has five methods for addressing source operands: Register, Direct, Register-Indirect, Immediate, and Base-Register-plus Index Register-Indirect Addressing.

The first three methods can be used for addressing destination operands. Most instructions have a "destination, source" field that specifies the data type, addressing methods and operands involved. For operations other than moves, the destination operand is also a source operand.

Registers in the four 8-Register Banks can be accessed through Register, Direct, or Register-Indirect Addressing; the 128 bytes of Internal Data RAM through Direct or Register-Indirect Addressing; and the Special Function Registers through Direct Addressing. External Data Memory is accessed through Register-Indirect Addressing. Look-up Tables resident in Program memory can be accessed through Base Register-plus Index Register-Indirect Addressing.

The 8051 is classified as an 8-bit machine since the internal ROM, RAM, Special Function Registers, Arithmetic/Logic Unit and external data bus are each 8-bits wide. The 8051 performs operations on bit, nibble, byte and double-byte data types.

Figure 2-1. 8051 Family Memory Organization

The 8051 has extensive facilities for byte transfer, logic, and integer arithmetic operations. It excels at bit handling since data transfer, logic and conditional branch operations can be performed directly on Boolean variables.

The 8051's instruction set is an enhancement of the instruction set familiar to MCS-48 users. It is enhanced to allow expansion of on-chip CPU peripherals and to optimize byte efficiency and execution speed. Op codes were reassigned to add new high-power operations and to permit new addressing modes which make the old operations more orthogonal. Efficient use of program memory results from an instruction set consisting of 49 single-byte, 45 two-byte and 17 three-byte instructions. When using a 12MHz crystal, 64 instructions execute in 1 μ s and 45 instructions execute in 2 μ s. The remaining instructions (multiply and divide) require only 4 μ s. The number of bytes in each instruction and the number of oscillator periods required for execution are listed in the Instruction Set in Chapter 3 in Table 3-2.

CPU HARDWARE

This section describes the hardware architecture of the 8051's CPU in detail. The interrupt system and on-chip functions peripheral to the CPU are described in subsequent sections. A detailed 8051 Functional Block Diagram is displayed in Figure 2-2.

Instruction Decoder

Each program instruction is decoded by the instruction decoder. This unit generates the internal signals that control the functions of each unit within the CPU section. These signals control the sources and destination of data, as well as the function of the Arithmetic/Logic Unit (ALU).

Program Counter

The 16-bit Program Counter (PC) controls the sequence in which the instructions stored in program memory are executed. It is manipulated with the Control Transfer instructions listed in Chapter 3.

Internal Program Memory

The 8051/8751 have 4K bytes of program memory resident on-chip.

Internal Data Memory

The 8051 contains a 128-byte Internal Data RAM (which includes registers R7-R0 in each of four Banks), and twenty memory-mapped Special Function Register.

INTERNAL DATA RAM

The Internal Data RAM provides a convenient 128-byte scratch pad memory.

Register Banks

There are four Register Banks within the Internal Data RAM. Each Register Bank contains registers R7-R0.

128 Addressable Bits

There are 128 addressable software flags in the Internal Data RAM. They are located in the 16 byte locations starting at byte address 32 and ending with byte location 47 of the RAM address space.

Stack

The stack may be located anywhere within the Internal Data RAM address space. The stack may be as large as 128 bytes on the 8051.

SPECIAL FUNCTION REGISTERS

The Special Function Registers include arithmetic registers (A, B, PSW), pointers (SP, DPH, DPL) and registers that provide an interface between the CPU and the on-chip peripheral functions. There are also 128 addressable bits within the Special Function Registers. The memory-mapped locations of these registers and bits are discussed in Chapter 3.

A Register

The A register is the accumulator.

B Register

The B register is dedicated during multiply and divide and serves as both a source and a destination. During all other operations the B register is simply another location of the Special Function Register space.

Program Status Word Register

The carry (CY), auxiliary carry (AC), user flag 0 (F0), register bank select (RS0 and RS1), overflow (OV) and parity (P) flags reside in the Program Status Word (PSW) Register. These flags are bit-memory-mapped within the byte-memory-mapped PSW. The PSW flags record processor status information and control the operation of the processor.

The CY, AC, and OV flags generally reflect the status of the latest arithmetic operations. The P flag always reflects the parity of the A register. The carry flag is also the Boolean accumulator for bit operations. Specific details on these flags are provided in the Arithmetic Flags section of Chapter 3. F0 is a general purpose flag which is pushed onto the stack as part of a PSW save. The two Register Bank select bits (RS1 and RS0) determine which one of the four Register Banks is selected.

Stack Pointer

The 8-bit Stack Pointer (SP) contains the address at which

Figure 2-2. 8051 Family Functional Block Diagram

the last byte was pushed onto the stack. This is also the address of the next byte that will be popped. The SP is incremented during a push. SP can be read or written to under software control.

Data Pointer (High) and Data Pointer (Low)

The 16-bit Data Pointer (DPTR) register is the concatenation of registers DPH (data pointer's high-order byte) and DPL (data pointer's low-order byte). The DPTR is used in Register-Indirect Addressing to move Program Memory constants, to move External Data Memory variables, and to branch over the 64K Program Memory address space.

Port 3, Port 2, Port 1, Port 0

The four ports provide 32 I/O lines to interface to the external world. All four ports are both byte and bit addressable. The 8051 also allows memory expansion using Port 0 (P0) and Port 2 (P2) while Port 3 (P3) contains special control signals such as the read and write strobes. Port 1 (P1) is used for I/O only.

Interrupt Priority Register

The Interrupt Priority (IPC) register contains the control bits to set an interrupt to a desired level. A bit set to a one gives the particular interrupt a high priority listing.

Interrupt Enable Register

The Interrupt Enable (IEC) register stores the enable bits for each of the five interrupt sources. Also included is a global enable/disable bit of the interrupt system.

Timer/Counter Mode Register

Within the Timer Mode (TMOD) register are the bits that select which operations each timer/counter will do.

Timer/Counter Control Register

The timer/counters are controlled by the Timer/ Counter Control (TCON) register bits. The start/stop bits for the timer/counters along with the overflow and interrupt request flags are mapped in TCON.

Timer/Counter 1 (High), Timer/Counter 1 (Low), Timer/Counter 0 (High), Timer/Counter 0 (Low)

There are four register locations for the two 16-bit timer/ counters. These registers can be read or written to, to give the programmer easy access to the timer/counters. TH1 and TH0 refer to the 8 high-order bits of timer/counter 1 and 0, respectively. TL1 and TL0 refer to the low-order bits of both timer/counter 1 and 0.

Serial Control Register

This control register (SCON) has bits that enable reception of the serial port. Selecting the operating mode of the serial port is accomplished with bits in this register also.

Serial Data Buffer

The Serial Data Buffer (SBUF) register is used to hold serial port input or output data depending on whether the serial port is receiving or transmitting data.

•

ARITHMETIC SECTION

The arithmetic section of the processor performs many data manipulation functions and is comprised of the Arithmetic/Logic Unit (ALU), A register, B register and PSW register. The ALU accepts 8-bit data words from one or two sources and generates an 8-bit result under the control of the instruction decoder. The ALU performs the arithmetic operations of add, subtract, multiply, divide, increment, decrement, BCD-decimal-add-adjust and compare, and the logic operations of and, or, exclusiveor, complement and rotate (right, left, or nibble swap (left four)).

PROGRAM CONTROL SECTION

The program control section controls the sequence in which the instructions stored in program memory are executed. The conditional branch logic enables conditions internal and external to the processor to cause a change in the sequence of program execution.

OSCILLATOR AND TIMING CIRCUITRY

Timing generation for the 8051 is completely selfcontained, except for the frequency reference which can be a crystal or external clock source. The on-board oscillator is a parallel anti-resonant circuit with a frequency range of 1.2MHz to 12MHz. There is a divide-by-12 internal timing which gives the 8051 a minimum instruction cycle of 1 μ sec. with a 12MHz crystal. The XTAL2 pin is the output of a high-gain amplifier, while XTAL1 is its input. A crystal connected between XTAL1 and XTAL2 provides the feedback and phase shift required for oscillation. If XTAL1 is being driven by an external frequency source, XTAL2 should be a no connect. The 1.2MHz to 12MHz range is also accommodated when an external clock is applied to XTAL1 as the frequency source.

BOOLEAN PROCESSOR

The Boolean Processor is an integral part of the 8051's architecture. It is an independent bit processor with its own instruction set, its own accumulator (the carry register) and its own bit-addressable RAM and I/O. The bit manipulation instructions allow the Direct Addressing of 128 bits within the Internal Data RAM and 128 bits within the Special Function Registers as shown in Figures 2-3 and 2-4. The Special Function Registers with an address evenly divisable by eight (P0, TCON, P1, SCON, P2, IEC, P3, IPC, PSW, A, and B) contain Directly Addressable bits. a.) RAM Bit Addresses.

Figure 2-3. Data RAM Bit Address Space

On any addressable bit, the Boolean processor can perform the bit operations of set, clear, complement, jumpif-set, jump-if-not-set, jump-if-set-then-clear and move to/from carry. Between any addressable bit (or its complement) and the carry flag it can perform the bit operation of logical and/or logical or with the result returned to the carry flag.

ON-CHIP PERIPHERALS

The second section of Chapter 2 describes the on-chip peripherals and external memory timing. This section begins with the interrupt system.

Interrupt System

Interrupts result in a transfer of control to a new program location. The program servicing the request begins at this address. In the 8051 there are five hardware resources that can generate an interrupt request. The starting address of the interrupt service program for each interrupt source is shown in Table 2-1. A resource requests an interrupt by setting its associated interrupt request flag in the TCON or SCON register, as detailed in Table 2-2. The interrupt request will be acknowledged if its interrupt enable bit in the Interrupt Enable register (shown in Table 2-3) is set and if it is the highest priority level as established by the polarity of a bit in the Interrupt Priority register. These bit assignments are shown in Table 2-4. Setting the resource's associated bit to a one (1) programs it to the higher level. The priority of multiple interrupt requests occurring simultaneously and assigned to the same priority level is also shown in Table 2.4.

The servicing of a resource's interrupt request occurs at the end of the instruction-in-progress. The processor transfers control to the starting address of this resource's interrupt service program and begins execution.

Within the Interrupt Enable register (IE) there are six addressable flags. Five flags enable/disable the five interrupt sources when set/cleared. Setting/clearing the sixth flag permits a global enable/disable of each enabled interrupt request. Setting/clearing a bit in the Interrupt Priority (IP) register establishes its associated interrupt request as a high/low priority. If a low-priority level interrupt is being serviced, a high-priority level interrupt will interrupt it. However, an interrupt source cannot interrupt a service program of the same or higher level.

The processor records the active priority level(s) by setting internal flip-flop(s). One of these non-addressable flip-flops is set while a low-level interrupt is being serviced. The other flip-flop is set while the high-level interrupt is being serviced. The appropriate flip-flop is set when the processor transfers control to the service program. The flip-flop corresponding to the interrupt level being serviced is reset when the processor executes an RETI Instruction. To summarize, the sequence of events for an interrupt is: A resource provokes an interrupt by setting its associated interrupt request bit to let the processor know an interrupt condition has occurred. The CPU's internal hardware latches the internal request near the falling-edge of ALE in the tenth, twentysecond, thirty-fourth and forty-sixth oscillator period of the instruction-in-progress. The interrupt request is conditioned by bits in the interrupt enable and interrupt priority registers. The processor acknowledges the interrupt by setting one of the two internal "priority-level active" flip-flops and performing a hardware subroutine call. This call pushes the PC (but not the PSW) onto the stack and, for most sources, clears the interrupt request flag. The service program is then executed. Control is returned to the main program when the RETI instruction is executed. The RETI instruction also clears one of the internal "priority-level active" flip-flops. Most inter-

Table 2-1. Starting Address for Interrupt Service Programs

Interrupt Source	Starting Address
External Request 0	3 (0003 H)
Internal Timer/Counter 0	11 (000B H)
External Request 1	19 (0013 H)
Internal Timer/Counter 1	27 (001B H)
Internal Serial Port	35 (0023 H)

Table	2.2.	Interrupt	Request	Flags
10010				

Interrupt Source	Request Flag	Bit Location
External Request 0	IE0	TCON .1
Internal Timer/Counter 0	TF0	TCON.5
External Request 1	IE1	TCON.3
Internal Timer/Counter 1	TF1	TCON.7
Internal Serial Port (xmit)	TI	SCON.1
Internal Serial Port (rcvr)	RI	SCON.0

rupt request flags (IE0, IE1, TF0 and TF1) are cleared when the processor transfers control to the first instruction of the interrupt service program. The TI and RI interrupt request flags are the exceptions and must be cleared as part of the serial port's interrupt service program.

Table 2-3. Interrupt Enable Flags

Interrupt Source	Enable Flag	Bit Location
External Request 0	EX0	IE.0
Internal Timer/Counter 0	ET0	IE.1
External Request 1	EXI	IE.2
Internal Timer/Counter 1	ET1	IE.3
Internal Serial Port	ES	IE.4
Reserved	None	IE.5
Reserved	None	IE.6
All Enabled	EA	IE.7

Table 2-4. Interrupt Priority Flags

Interrupt Source	Priority Flag	Priority Within Level	Bit Location
External Request 0	PX0	.0 (highest)	IP.0
Internal Timer/			
Counter 0	PT0	.1	IP.1
External Request 1	PX1	.2	IP.2
Internal Timer/			
Counter 1	PT1	.3	IP.3
Internal Serial Port	PS	.4 (lowest)	IP.4
Reserved	None		IP.5
Reserved	None		IP.6
Reserved	None		IP.7

The process whereby a high-level interrupt request interrupts a low-level interrupt service program is called nesting. In this case the address of the next instruction in the low-priority service program is pushed onto the stack, the stack pointer is incremented by two (2) and processor control is transferred to the Program Memory location of the first instruction of the high-level service program. The last instruction of the high-priority interrupt service program must be an RETI instruction. This instruction clears the higher "priority-level-active" flip-flop. RETI also returns processor control to the next instruction of the low-level interrupt service program. Since the lower "priority-level-active" flip-flop has remained set, high priority interrupts are re-enabled while further lowpriority interrupts remain disabled.

The highest-priority interrupt request gets serviced at the end of the instruction-in-progress unless the request is made in the last fourteen oscillator periods of the instruction-in-progress. Under this circumstance, the next instruction will also execute before the interrupt's subroutine call is made. The first instruction of the service program will begin execution twenty-four oscillator periods (the time required for the hardware subroutine call) after the completion of the instruction-in-progress or, under the circumstances mentioned earlier, twentyfour oscillator periods after the next instruction.

Thus, the greatest delay in response to an interrupt request is 86 oscillator periods (approximately 7μ sec @ 12MHz). Examples of the best and worst case conditions are illustrated in Table 2-5.

Table 2.5.	Best and	Worst	Case	Response	to
	Interrupt	Reques	st		

	Time (Oscillator Periods)			
Instruction	Best Case	Worst Case		
 External interrupt request generated immediately before (best)/after (worst) the pin is sampled. (Time until end of bus cycle.) 	2 + <i>€</i>	2 - e		
 Current or next instruction finishes in 12 oscillator periods 	12	12		
3) Next instruction is MUL or DIV	don't care	48		
 Internal latency for hard- ware subroutine call 	24	24		
	38	86		

EXTERNAL INTERRUPTS

The external interrupt request inputs ($\overline{INT0}$ and $\overline{INT1}$) can be programmed for either transition-activated or level-activated operation. Control of the external interrupts is provided by the four low-order bits of TCON as shown in Table 2-6.

Table 2-6. Function of Bits in TCON (Lower Nibble)

Function	Flag	Bit Location
External Interrupt Request Flag 1	IE1	TCON.3
Input INT1 Transition-Activated	IT1	TCON.2
External Interrupt Request Flag 0	IE0 ·	TCON.1
Input INTO Transition Activated	IT0	TCON.0

When IT0 and IT1 are set to one (1), interrupt requests on $\overline{INT0}$ and $\overline{INT1}$ are transition-activated (high-to-low), or else they are low-level activated. IE0 and IE1 are the interrupt request flags. These flags are set when their corresponding interrupt request inputs at $\overline{INT0}$ and $\overline{INT1}$, respectively, are low when sampled by the 8051 and the transition-activated scheme is selected by IT0 and IT1. When IT0 and IT1 are programmed for level-activated interrupts, the IE0 and IE1 flags are not affected by the inputs at $\overline{INT0}$ and $\overline{INT1}$, respectively.

Transition-Activated Interrupts

The external interrupt request inputs (INTO and INTI) can be programmed for high-to-low transition-activated operation. For transition-activated operation, the input must remain low for greater than twelve oscillator periods, but need not be synchronous with the oscillator. It is internally latched by the 8051 near the falling-edge of ALE during an instruction's tenth, twenty-second, thirtyfourth and forty-sixth oscillator periods and, if the input is low, IEO and IE1 is set. The upward transition of a transition-activated input may occur at any time after the twelve oscillator period latching time, but the input must remain high for twelve oscillator periods before reactivation.

Level-Activated Interrupts

The external interrupt request inputs (INT0 and INT1) can be programmed for level-activated operation. The input is sampled by the 8051 near the falling-edge of ALE during the instruction's tenth, twenty-second, thirtyfourth and forty-sixth oscillator periods. If the input is low during the sampling that occurs fourteen oscillator periods before the end of the instruction in progress, an interrupt subroutine call is made. The level-activated input need be low only during the sampling that occurs fourteen oscillator periods before the end of the instruction-inprogress and may remain low during the entire execution of the service program. However, the input must be raised before the service program completes to avoid possibly envoking a second interrupt.

Ports and I/O Pins

There are 32 I/O pins configured as four 8-bit ports. Each pin can be individually and independently programmed as input or output and each can be configured dynamically (i.e., on-the-fly) under software control.

An instruction that uses a port's bit/byte as a source operand reads a value that is the logical and of the last value written to the bit/byte and the polarity being applied to the pin/pins by an external device (this assumes that none of the 8051's electrical specs are being violated). An instruction that reads a bit/byte, operates on the content, and writes the result back to the bit/byte, reads the last value written to the bit/byte instead of the logic level at the pin/pins. Pins comprising a single port can be made a mixed collection of inputs and outputs by writing a "one" to each pin that is to be an input. Each time an instruction uses a port as the destination, the operation must write "ones" to those bits that correspond to the input pins. An input to a port pin need not be synchronized to the oscillator. Each port pin is sampled near the falling-edge of ALE during the read instruction's tenth or twenty-second oscillator period. If an input is in transition when it is sampled near the falling-edge of ALE it will be read as an indeterminate value.

The instructions that perform a read of, operation on, and write to a port's bit/byte are INC, DEC, CPL, JBC, CJNE, DJNZ, ANL, ORL, and XRL. The source read by these operations is the last value that was written to the port, without regard to the levels being applied at the pins. This insures that bits written to a one (1) for use as inputs are not inadvertently cleared; see Figure 2-5.

Figure 2-5. "Bidirectional" Port Structure

When used as a port, Port 0 has an open-drain output. When used as a bus, it has a standard three-state driver. The Port 0 output driver can sink/source two TTL loads.

Ports 1, 2 and 3 have quasi-bidirectional output drivers which incorporate a pull-up resistor of 10K-to-20K Ohms as shown in Figure 2-6.

Figure 2-6. "Quasi-Bidirectional" Port Structure

In Ports 1, 2 and 3 the output driver provides source current for two oscillator periods if, and only if, software updates the bit in the output latch from a zero (0) to a one (1). Sourcing current only on "zero to one" transition prevents a pin, programmed as an input, from sourcing current into the external device that is driving the input pin. The output drivers in Ports 1, 2 and 3 can sink/source one TTL load.

Secondary functions (\overline{RD} , \overline{WR} , etc.) can be selected individually and independently for the pins of Port 3. Port 3 generates these secondary control signals automatically as long as the pin corresponding to the appropriate signal is programmed as an input.

Accessing External Memory

When accessing external memory the 8051 emits the upper address byte from Port 2 and the lower address byte, as well as the data, from Port 0. It uses ALE, PSEN and two pins from Port 3 (\overline{RD} and \overline{WR}) for memory control. ALE is used for latching the address into the external memory. The PSEN signal enables the external Program Memory to Port 0, the \overline{RD} signal enables External Data Memory to Port 0 and the \overline{WR} signal latches the data byte emitted by Port 0 into the External Data Memory. Externally the \overrightarrow{PSEN} and \overrightarrow{RD} signals can be combined logically if a contiguous external program and data memory space (similar to a "von Neuman" machine) is desired. The P3.7 (\overline{RD}) and P3.6 (\overline{WR}) output latches must be programmed to a one (1) if External Data Memory is to be accessed. When P3.7 and P3.6 are programmed as \overline{RD} and \overline{WR} , respectively, the remaining pins of Port 3 may be individually programmed as desired. The 8051 can address 64K bytes of external Program Memory when the \overline{EA} pin is tied low. When \overline{EA} is high, the 8051 fetches instructions from internal Program Memory when the address is between 0 and 4095, and from external Program Memory when the addressed memory location is between 4096 and 64K. In either case, Ports 2 and 0 are automatically configured as an external bus, based on the value of the PC. Instruction execution times are the same for code fetched from internal or external Program Memory.

Up to 64K of External Data Memory can be accessed using the MOVX instructions. These instructions automatically configure Port 0, and often Port 2, as an external bus. The MOVX instructions use the DPTR, R1 or R0 register as a pointer into the External Data Memory. The 16-bit DPTR register is used when successive accesses cover a wide range of the 64K space. The 8-bit R1 and R0 registers provide greatest byte efficiency when successive accesses are constrained to a 256-byte block of the External Data Memory space. When using R1 and R0, a subsequent block can be accessed by updating the output latch of Port 2. Port 2 is not affected by execution of a MOVX instruction that uses R1 or R0. If, for example, 32K or less of external data memory is present, only part of Port 2 needs to be used for selecting the desired block; the remaining pins of Port 2 can be used for I/O. When a MOVX using DPTR is executed, the value in Port 2's output latch is altered only during the external access and then is returned to its prior value. This permits efficient external block moves by interleaving MOVX instructions that use DPTR and R1 and R0.

The ALE signal is generated every sixth oscillator period during reads from either internal or external Program Memory. The \overrightarrow{PSEN} signal is generated every sixth oscillator period when reading from the external Program Memory. When a read or write from External Data Memory is being performed, a single ALE and a \overline{RD} or a \overline{WR} signal is generated during a twelve oscillator period interval. The 8051 always fetches an even number of bytes from its Program Memory. If an odd number of bytes are executed prior to a branch or to an External Data Memory access, the nonexecuted byte is ignored by the 8051. If an instruction requires more oscillator periods for its execution than for its fetch, the first byte of the next instruction is fetched repeatedly while the first instruction completes execution. If the CPU does not address External Data Memory, then ALE is generated every sixth oscillator period and can be used as an external clock. When External Data Memory is present, external logic may be used to combine the occurrence of \overline{RD} , \overline{WR} , and ALE to generate an external clock with a period equal to six oscillator periods.

ACCESSING EXTERNAL MEMORY—OPERATION OF PORTS

The Port 0 bus is time-multiplexed to permit transfer of both addresses and data. This bus is used directly by memory and peripheral devices that incorporate on-chip address latching (MCS-85 memories with peripherals), or it can be de-multiplexed with an address latch to generate a non-multiplexed bus (MCS-80 peripherals and memory). During an external access, the low-order byte of the address and the data (for a write) is emitted by the Port 0 output drivers. Ones (1's) are automatically written to Port 0 at the very end of the bus cycle. Since the Port 0 output latches will contain ones (1's) at the end of the bus cycle, Port 0 will be in its high impedance state when a bus cycle is not in progress. Port 2 emits the upper 8-bits of the address when a MOVX instruction using DPTR is executed. Port 2's output drivers provide source current for two oscillator periods when emitting the address. Port 2's internal pull-up resistors sustain the high level.

ACCESSING EXTERNAL MEMORY—BUS CYCLE TIMING

(The following section is a description of the 8051's timings. For design purposes, please refer to the specification section in Chapter 6 for 8051 timing parameters.)

Each Program Memory bus cycle consists of six oscillator periods. These are referred to as T1, T2, T3, T4, T5 and T6 on Figure 2-7. The address is emitted from the processor during T3. Data transfer occurs on the bus during T5, T6, and the following bus cycle's T1. When fetching from external Program Memory, the 8051 will always fetch an even number of bytes. If an odd number of bytes are executed prior to a branch, or an External Data Memory access, the non-executed byte will be ignored by the 8051. An even number of idle bus cycles (each 6 oscillator periods in duration) can occur between external bus cycles when the processor is fetching from internal Program Memory. The read cycle begins during T2, with the assertion of address latch enable signal ALE (1). The falling edge of ALE (2) is used to latch the address information, which is present on the bus at this time (3), into the 8282 latch if a nonmultiplexed bus is required. At T5, the address is removed from the Port 0 bus and the processor's bus drivers go to the high-impedance state (4). The program memory read control signal (PSEN) (5) is also asserted during T5. PSEN causes the addressed device to enable its bus drivers to the now-released bus. At some later time, valid instruction data will become available on the bus (6). When the 8051 subsequently returns \overrightarrow{PSEN} to the high level $(\overline{\mathcal{D}})$, the addressed device will then float its bus drivers, relinquishing the bus again (8).

Figure 2-7. Program Memory Read Cycle Timing

Figure 2-8. Data Memory Read Cycle Timing

For the MOVC instruction, the op-code is fetched in the first six-oscillator period, the first byte of the next instruction is fetched during the second six-oscillator period, the table entry is fetched in a third six-oscillator period and the first byte of the next instruction is again fetched in the fourth six-oscillator period.

Each External Data Memory bus cycle consists of twelve oscillator periods. These are shown as T1 through T12 on Figure 2-8. The twelve-period External Data Memory cycle allows the 8051 to use peripherals that are relatively slower than its program memories. The address is emitted from the processor during T3. Data transfer occurs on the bus during T7 through T12. T5 and T6 is the period during which the direction of the bus is changed for the read operation. The read cycle begins during T2, with the assertion of address latch enable signal ALE ①. The falling edge of ALE ② is used to latch the address information, which is present on the bus at this time ③, into the 8282 latch if a nonmultiplexed bus is required. At T5, the address is removed from the Port 0 bus and the processor's bus drivers go to the high-impedance state ④. The data memory read control signal \overline{RD} ⑤, is asserted during T7. \overline{RD} causes the addressed device to enable its bus drivers to the now-released bus. At some later time, valid data will be available on the bus ⑥. When the 8051 subsequently returns \overline{RD} to the high level ⑦, the addressed device will then float its bus drivers, relinquishing the bus again ([®]).

The write cycle, like the read cycle, begins with the assertion of ALE ① and the emission of an address ② as shown in Figure 2-9. In T6, the processor emits the data to be written into the addressed data memory location ③. This data remains valid on the bus until the end of the following bus cycle's T2 ④. The write signal \overline{WR} goes low at T6 ⑤ and remains active through T12 ⑥.

Timer/Counters

Two independent 16-bit timer/counters are on-board the 8051 for use in measuring time intervals, measuring pulse widths, counting events, and causing periodic (repetitious) interrupts.

TIMER/COUNTER MODE SELECTION

Counter 1 can be configured in one of four modes:

Mode 0) Provides an 8-bit counter with a divideby-32 prescaler or an 8-bit timer with a divide-by-32 prescaler. A read/write of TH1 accesses counter 1's bits 12-5. A read/write of TL1 accesses counter 1's bits 7-0. TL1 bits 4-0 are the prescalar (counter 1's bits 4-0), while bits 7-5 are indeterminate and should be ignored. The programmer should clear the prescaler (counter 1's bits 4-0) before setting the run flag.

- Mode 1) Configures counter 1 as a 16-bit timer/ counter.
- Mode 2) Configures counter 1 as an 8-bit autoreload timer/counter. TH1 holds the reload value. TL1 is incremented. The value in TH1 is reloaded into TL1 when TL1 overflows from all ones (1's). An 8048 compatible counter is achieved by configuring to mode 2 after zeroing TH1.
- Mode 3) When counter 1's mode is reprogrammed to mode 3 (from mode 0, 1 or 2), it disables the incrementing of the counter. This mode is provided as an alternative to using the TR1 bit (TCON.6) to start and stop counter 1.

The serial port receives a pulse each time that counter 1 overflows. The standard UART modes divide this pulse rate to generate the transmission rate.

Counter 0 can also be configured in one of four modes:

Modes 0-2) Modes 0-2 are the same as for counter 1.

Mode 3) In Mode 3, the configuration of TH0 is not affected by the bits in TMOD or TCON (see next section). It is configured solely as an 8-bit timer that is enabled for incrementing by TCON's TR1 bit. Upon TH0's overflow, the TF1 flag gets set. Thus, neither TR1 nor TF1 is available to counter 1 when counter 0 is in Mode 3. The function of TR1 can be done by placing counter

Figure 2-9. Data Memory Write Cycle Timing

1 in Mode 3, so only the function of TF1 is actually given up by counter 1. In Mode 3, TL0 is configured as an 8-bit timer/counter and is controlled, as usual, by the Gate (TMOD.3) C/T (TMOD.2), TRO (TCON.4) and TF0 (TCON.5) control bits.

CONFIGURING THE TIMER/COUNTER INPUT

The use of the timer/counter is determined by two 8-bit registers, TMOD (timer mode) and TCON (timer control). The counter input circuitry is shown in Figures 2-10 and 2-11. The input to the counter circuitry is from an external reference (for use as a counter), or from the on-chip oscillator (for use as a timer), depending on whether TMOD's C/\overline{T} bit is set or cleared, respectively. When used as a time base, the on-chip oscillator frequency is divided by twelve (12) before being input to the counter circuitry. When TMOD's Gate bit is set (1), the external reference input (T1, T0) or the oscillator input is gated to the counter conditional upon a second external input (INT0), (INT1) being high. When the Gate bit is zero (0), the external reference, or oscillator input, is unconditionally enabled. In either case, the normal interrupt function of INTO and INT1 is not affected by the counter's operation. If enabled, an interrupt will occur when the input at INTO or INTI is low. The counters are enabled for incrementing when TCON's TR1 and TR0 bits are set. When the counters overflow, the TF1 and TF0 bits in TCON get set, and interrupt requests are generated. The functions of the bits in TCON are shown in Table 2-7.

Table 2-7. Function of Bits in TCON (Upper Nibble)

Function	Flag	Bit Location
Counter interrupt request and overflow Flag	TF1	TCON.7
Counter enable/disable bit	TR1	TCON.6
Counter interrupt request and overflow Flag	TF0	TCON.5
Counter enable/disable bit	TRO	TCON.4

The functions of the bits in TMOD are shown in Table 2-8. Recall that the bits in TMOD are not bit addressable.

Table 2-8. Functions of Bits in TMOD

Function	Flag	Bit Location
Enable input at T1 using INT1	Gate	TMOD.7
Counter 1/Timer 1 select	C/T	TMOD.6
C 1/T 1 Mode select MSb	MI	TMOD.5
C 1/T 1 Mode select LSb	M0	TMOD.4
Enable input to T0 using INT0	Gate	TMOD.3
Counter 0/Timer 0 select	C/\overline{T}	TMOD.2
C 0/T 0 Mode select MSb	M1	TMOD.1
C 0/T 0 Mode select LSb	M0	TMOD.0

Figure 2-10. Timer/Event Counter 0 Control and Status Flag Circuitry

Figure 2-11. Timer/Event Counter 1 Control and Status Flag Circuitry

OPERATION

The counter circuitry counts up to all 1's and then overflows to either 0's or the reload value. Upon overflow, TF1 or TF0 gets set. When an instruction changes the timer's mode or alters its control bits, the actual change occurs at the end of the instruction's execution.

The T1 and T0 inputs are sampled near the falling-edge of ALE in the tenth, twenty-second, thirty-fourth and forty-sixth oscillator periods of the instruction-inprogress. They are also sampled in the twenty-second oscillator period of MOVX, despite the absence of ALE. Thus, an external reference's high and low times must each be a minimum of twelve oscillator periods in duration. There is a twelve oscillator period delay from the time when a toggled input (transition from high to low) is sampled to the time when the counter is incremented.

Serial Channel

The 8051 has a serial channel useful for serially linking UART (universal asynchronous receiver/transmitter) devices and for expanding I/O. This full-duplex serial I/O port can be programmed to function in one of four operating modes:

- Mode 0) Synchronous I/O expansion using TTL or CMOS shift registers
- Mode 1) UART interface with 10-bit frame and variable transmission rate

Figure 2-12. UART Interface Technique

- Mode 2) UART interface with 11-bit frame and fixed transmission rate
- Mode 3) UART interface with 11-bit frame and variable transmission rate

Modes 2 and 3 also provide automatic wake-up of slave processors through interrupt driven address-frame recognition for multiprocessor communications. Several schemes of UART interfacing are shown in Figure 2-12, and an I/O expansion technique is shown in Figure 2-13.

Figure 2-13. I/O Expansion Technique

SERIAL CHANNEL CONTROL AND DATA REGISTERS

Data for transmission and from reception reside in the serial port buffer register (SBUF). A write to SBUF updates the transmitter register, while a read from SBUF reads a buffer that is updated by the receiver register if/when flag RI is reset. The receiver is double-buffered to eliminate the overrun that would occur if the CPU failed to respond to the receiver's interrupt before the beginning of the next frame. In general, double buffering of the transmitter is not needed for the high performance 8051 to maintain the serial link at its maximum rate. A minor degradation in data rate can occur in rare events, such as when the servicing of the transmitter has to wait for a lengthy interrupt service program to complete. In asynchronous mode, false start-bit rejection is provided on received frames. A two-out-of-three vote is taken on each received bit for noise rejection. The serial port's control and the monitoring of its status is provided by the serial port control register (SCON). The contents of the 8-bit SCON register are shown in Table 2-9.

Function	Flag	Bit Location
Serial Port Operation Mode (MSb)	SM0	SCON. 7
Serial Port Operation Mode (LSb)	SM1	SCON. 6
Conditional Receiver Enable	SM2	SCON. 5
Receiver Enable	REN	SCON. 4
Transmitter Data Bit 8	TB 8	SCON. 3
Received Data Bit 8	RB8	SCON. 2
Transmission Complete Interrupt Flag	ΤI	SCON. 1
Reception Complete Interrupt Flag	RI	SCON. 0

Mode control bits SM0 and SM1 program the serial port in one of four operating modes. A detailed description of the modes is provided later in the text. The receiverenable bit (REN) resets the receiver's start/stop logic. When software sets REN to one (1), the receiver's transmission-rate generator is initialized and reception is enabled. REN must be set as part of the serial channel's initialization program. When REN is cleared, reception is disabled.

The CPU is informed that the transmitter portion of SBUF is empty, or the receiver portion is full, by TI and RI, respectively. TI and RI must be cleared as part of the interrupt service program so as not to continuously interrupt the CPU. Since TI and RI are "or-ed" together to generate the serial port's interrupt request, they must be polled to determine the source of the interrupt.

OPERATING MODES

Operating Mode 0

The I/O expansion mode, Mode 0, is used to expand the number of input and output pins. In this mode, a clock output is provided for synchronizing the shifting of bits into, or from, an external register. Eight bits will be shifted out each time a data byte is written to the serial channel's data buffer (SBUF), even if TI is set. Each time software clears the RI flag, eight bits are shifted into SBUF before the RI flag is again set. The receiver must be enabled [i.e., REN set to (1)] for reception to occur.

The synchronizing clock is output on pin P3.1 and toggles from high to low near the falling-edge of ALE in the fifteenth oscillator period following execution of the

Table 2-9. Functions of Bits in SCON

instruction that updated SBUF or cleared the RI flag. It then toggles near the falling-edge of ALE in each subsequent sixth oscillator period until 8-bits are transferred. The eighth rising-edge of clock (P3.1) sets the RI or TI flag. At this point, shifting is complete and the clock is once again high. The first bit is shifted out of P3.0 at the beginning of the eighteenth oscillator period, following the instruction that updated SBUF. The first bit shifted in from P3.0 is latched by the clock's rising-edge in the twenty-fourth oscillator period, following the instruction that cleared the RI flag. One bit is shifted every twelfth oscillator period, until all eight bits have been shifted.

Operating Modes 1 through 3

In the UART Modes (i.e., 1 through 3), the transmission rate is subdivided into 16 "ticks." The value of a received bit is determined by taking a majority vote after it has been sampled during the seventh, eighth and ninth "ticks." If two or three ones (1's) are detected, the bit will be given a one (1) value; if two or three zeros (0's) are detected, the bit will be given a zero (0) value.

Until a start bit arrives, the receiver samples the RXD input pin (P3.0) every "tick." Approximately one-half bit time (eight "ticks") after the start bit is detected (i.e., a low input level was sampled on "tick" one), the serial port checks its validity (majority vote from "ticks" seven, eight and nine) and accepts or rejects it. This provides rejection of false start bits.

The contents of the receiver's input shift register is moved to SBUF and RB8 (Modes 2 and 3), and RI is set when a frame's ninth (Mode 1) or tenth (Modes 2 and 3) bit is received. Upon reception of a second frame's ninth or tenth bit, the data bits in the shift register are again transferred to SBUF and RB8, but only if software has reset the RI flag. If RI has not been reset, then overrun will occur, since the shift register will continue to accept bits. Double buffering the receiver provides the CPU with one frame-time in which to empty the SBUF and RB8 registers. The RI flag is set and bit RB8 is loaded during the ninth "tick" of the received frame's ninth or tenth bit. The serial port begins looking for the next start bit approximately one-half bit time after the center of a stop bit is received.

Data is transmitted from the TXD output pin (P3.1) each time a byte is written to SBUF, even if TI is set. Transmission of the start bit begins at the end of the instruction that updates SBUF. TI is set at the beginning of the transmitted tenth (Mode 1) or eleventh (Mode 2 or 3) bit. After TI becomes set, if SBUF is written-to prior to the end of the stop (tenth or eleventh) bit, the transmission of the next frame's start bit will not begin until the end of the stop bit. In Modes 2 and 3, if SM2 is set, frames are received, but an interrupt request is generated only when the received data bit 8 (RB8) is a one (1). This feature permits interrupt generated wake-up during interprocessor communications when multiple 8051's are connected to a serial bus. Thus, data bit 8 (RB8) awakens all processors on the serial bus only when the master is changing address to a different processor. Each processor not addressed then ignores the subsequent transmission of control information and data. A protocol for multi-8051 serial communications is shown in Figure 2-14. The SM2 bit has no effect in Modes 0 and 1.

- The hardware in each slave's serial port begins by listening for an address. Receipt of an address frame will force an interrupt if the slave's SM2 bit is set to one (1) to enable "interrupt on address frame only".
- The master then transmits a frame containing the 8-bit address of the slave that is to receive the subsequent commands and data. A transmitted address frame has its ninth data bit (TB8) set equal to one (1).
- 3. When the address frame is received, each slave's serial port interrupts its CPU. The CPU then compares the address sent to its own.
- 4. The 8051 slave which has been addressed then resets its SM2 bit to zero (0) to receive all subsequent transmissions. All other 8051's leave their SM2 bits at a one (1) to ignore transmissions until a new address arrives.
- 5. The master device then sends control information and data, which in turn is accepted by the previously addressed 8051 [i.e., the one that had set its SM2 bit to zero (0)].

Figure 2-14. Protocol for Multi-Processor Communications

THE SERIAL FRAME

A frame is a string of bits. The frame transmitted and received in Mode 0 is 8 bits in length. The data bits of the frame are transmitted SBUF.0 first and SBUF.7 last.

The frame transmitted and received in Mode 1 is ten bits in length. The frame transmitted and received in Modes 2 and 3 is eleven bits in length. These frames consist of one start bit, eight or nine data bits and a stop bit. Data bits 0-7 are loaded into SBUF.0-SBUF.7, respectively, and data bit 8 into RB8 (receive) or TB8 (transmit). With nominal software overhead, the last data bit can be made a parity bit, as shown in Figure 2-15.

Figure 2-16 shows some typical frame formats for different applications. The data bits of the frame are transmitted least significant bit first (SBUF.0) and TB8 last.

MOV C, P	; Parity moved to carry (byte already in A).
MOV TB8, C	; Put carry into Transmitter Bit 8
MOV SBUF, A	A; Load Transmit Register

Figure 2-15. Generating Parity and Transmitting Frame

Figure 2-16. Typical Frame Formats

TRANSMISSION RATE GENERATION

The proper timing for the serial I/O data is provided by a transmission-rate generator. On-board the 8051, three different methods of transmission rate generation are provided. The transmission-rate achievable is dependent upon the operating mode of the serial port.

In the I/O expansion mode (Mode 0) the oscillator frequency is simply divided by 12 to generate the transmission rate. This produces a transmission rate of 1M bits per second at 12MHz. If Modes 1 or 3 are being used, the transmission rate can be generated from the oscillator frequency or from an external reference frequency. In these modes, either one-twelfth the oscillator frequency, or the T1 input frequency, is divided by 256-minus-the-value-in-TH1 (counter 1 must be configured in auto-reload mode by software) and then divided by 32 to generate the transmission rate. When the oscillator frequency input (rather than T1) is selected, this method produces a transmission rate of 122 to 31,250 bits per second (including start and stop bits) at 12MHz. The T1 external input is selected by setting the C/ \overline{T} bit to one (1). When Mode 2 is used, the oscillator frequency is simply divided by 64 to generate the transmission rate. This produces a transmission rate of 187,500 bits per second (including start and stop bits) at 12MHz.

UART ERROR CONDITIONS

There are two UART error conditions that should be accounted for when designing systems that use the serial channel. First, the 8051's serial channel provides no indication that a valid stop bit has been received. However, since a start bit is detected as a high-level to low-level transition, the UART will not receive additional frames if a stop bit is not received. Second, the RI flag is set and SBUF and RB8 are loaded from the receiver's input shift register when the received last data bit (i.e., ninth or tenth received bit) is sampled. As long as RI is set, the loading of SBUF, the updating of RB8, and the generation of further receiver interrupts is inhibited. Thus, overrun will occur if the programmer does not reset RI before reception of the next frame's last data bit, since the receiver's input shift register will shift in a third frame.

Processor Reset and Initialization

Processor initialization is accomplished with activation of the RST/VPD pin. To reset the processor, this pin should be held high for at least twenty-four oscillator periods. Upon powering up, RST/VPD should be held high for at least 24 oscillator periods, after the power supply stabilizes, to allow the oscillator to stabilize. Crystal operation below 6MHz will increase the time necessary to hold RST/VPD high. 24 oscillator periods after receipt of RST, the processor ceases instruction execution and remains dormant for the duration of the pulse. The low-going transition then initiates a sequence which requires approximately twelve oscillator periods to execute before ALE is generated and normal operation commences with the instruction at absolute location 0000H. Program Memory locations 0000H through 0003H are reserved for the initialization routine of the microcomputer. This sequence ends with registers initialized as shown in Table 2-10.

Table 2-10. Register Initialization

Register	Content
PC SP PSW, DPH, DPL, A, B, IP, IE, SCON, TCON, TMOD, TH1, TH0, TL1, TL0 IP IE SBUF Port 3-Port 0	0000H 07H 00H 00H 00H E0H 60H Indeterminate FFH (configures all I/O
Internal RAM	pins as inputs) Unchanged if VPD applied; else indeterminate

In addition, certain of the control pins are driven to a high level during reset. These are ALE/PROG and PSEN. Thus, no ALE or PSEN signals are generated while RST/VPD is high. After the processor is reset, all ports are written with one (1's). Outputs are undefined until the reset period is complete. An external reset circuit, such as that in Figure 2-17, can be used to reset the microcomputer.

Figure 2-17. External Reset

Power Down (Standby) Operation of Internal RAM

Data can be maintained valid in the Internal Data RAM while the remainder of the 8051 is powered down. When powered down, the 8051 consumes about 10% of its normal operating power. During normal operation, both the CPU and the internal RAM derive their power from VCC. However, the internal RAM will derive its power from RST/VPD when the voltage of VCC is zero.

When a power-supply failure is imminent, the user's system generates a "power-failure" signal to interrupt the processor via $\overline{INT0}$ or $\overline{INT1}$. This power-failure signal must be early enough to allow the 8051 to save all data that is relevant for recovery before VCC falls below its operating limit. The program servicing the power-failure interrupt request may save any important data and machine status into the Internal Data RAM. The service program must also enable the backup power

supply to RST/VPD pin. Applying power to the RST/VPD pin resets the 8051 and retains the internal RAM data valid as the VCC power supply falls below limit. Normal operation resumes when RST/VPD is returned low. Figure 2-18 shows the waveforms for the power-down sequence.

Figure 2-18. Power-Down Sequence

EPROM Programming

The 8751 is programmed, and the 8051 and 8751 are verified, using the UPP-851 programming card. For programming and verification, address is input on Port 1 and Port pins 2.0-2.3. Pins P2.4 and P2.5 are held to a TTL low (VII). Data is input and output through Port 0. RST/VPD is held at a TTL high level (VIH1) and PSEN is held at TTL low level (VII) during program and verify. To program, ALE/PROG is held at a TTL low level (VII). The programming supply voltage is held at 21V. The EA/VDD pin receives this programming supply voltage. ALE/PROG is held at TTL high level (VIH) to verify the program. Port pin 2.7 forces the Port 0 output drivers to the high impedance state when held at a TTL high level and is held at a TTL low level for verification. Erasure of an 8751 will leave the EPROM programmed to an all one's (1's) state.

Data is introduced by programming "0's" into the desired bit locations. Although only "0's" will be programmed, both "1's" and "0's" can be presented in the data word. The only way to change a "0" to a "1" is by ultra-violet light erasure.

When \overline{EA}/VDD is at 21V, the 8751 is in the programming mode. It is necessary to put a capacitor between \overline{EA}/VDD and ground to block spurious voltage transients. ALE/PROG receives the 50 msec, active low TTL program pulse when the address and data are stable. A program pulse must be applied at each address location to be programmed. You can program any location at any time-either sequentially or at random. A verify may be performed on the programmed bits to ensure correct programming. Data is output on Port 0 when pin 2.7 is at a TTL low level (VIH). Pull-up resistors must be provided on Port 0 pins during verification. This verification mode can also be used to check the 8051's ROM pattern.

Table 2-11 describes the levels needed on the pins to program and verify the 8751.

PINS	VPD/RST	PSEN	PROG/ALE	VDD/EA	P24-26	P27
PROGRAM VERIFY	V _{IH1} V _{IH1}	v _{IL} v _{IL}	$v_{IH} \ v_{IL}$	V _{PP} V _{CC}	v _{IL} v _{IL}	V _{IL} V _{IL} (enable) V _{IH} (disable)

Table 2-11. Voltage Inputs for EPROM Programming/Verifying

Memory Organization, Addressing Modes and Instruction Set

CHAPTER 3 MEMORY ORGANIZATION, ADDRESSING MODES AND INSTRUCTION SET

Chapter 3 is divided into these categories:

- Memory Organization
- Addressing Modes
- Instruction Set

The first part, Memory Organization, describes the memory spaces of the 8051. The Addressing Modes section describes addressing techniques used to reach the memory spaces. The final section explains the instruction set, including functional groupings, opcodes and a software example.

MEMORY ORGANIZATION

In the 8051 family the memory is organized over three address spaces and the program counter. The memory spaces shown in Figure 3-1 are the:

- 16-bit Program Counter
- 64K-byte Program Memory address space
- 64K-byte External Data Memory address space
- 384-byte Internal Data Memory address space

The 16-bit Program Counter register provides the 8051 with its 64K addressing capabilities. The Program Counter allows the user to execute calls and branches to any locations within the Program Memory space. There are no instructions that permit program execution to move from the Program Memory space to any of the data memory spaces.

In the 8051 and 8751, the lower 4K of the 64K Program Memory address space is filled by internal ROM and EPROM, respectively. By tying the \overline{EA} pin high, the processor can be forced to fetch from the internal ROM/EPROM for Program Memory addresses 0 through 4K. Bus expansion for accessing Program Memory beyond 4K is automatic, since external instruction fetches occur automatically when the Program Counter increases above 4095. If the \overline{EA} pin is tied low, all Program Memory fetches are from external memory. The execution speed of the 8051 is the same, regardless of whether fetches are from internal or external Program Memory. If all program storage is on-chip, byte location 4095 should be left vacant to prevent an undesired pre-fetch from external Program Memory address 4096.

Certain locations in Program Memory are reserved for specific programs. Locations 0000 through 0002 are reserved for the initialization program. Following reset, the CPU always begins execution at location 0000. Locations 0003 through 0042 are reserved for the five interrupt-request service programs.

The 64K-byte External Data Memory address space is automatically accessed when the MOVX instruction is executed.

Functionally, the Internal Data Memory is the most flexible of the address spaces. The Internal Data Memory space is subdivided into a 256-byte Internal Data RAM address space and a 128-byte Special Function Register address space. Within these address spaces are 256 individually addressable bits. Figure 3-2 shows the locations of the address spaces.

Figure 3-1. 8051 Family Memory Organization
The Internal Data RAM address space is 0 to 255. Four banks of eight registers occupy locations 0 through 31. The stack can be located anywhere in the Internal Data RAM address space. In addition, 128 bit locations of the on-chip RAM are accessible through Direct Addressing. (See next section, Addressing Modes.) These bits reside in Internal Data RAM at byte locations 32 through 47, as shown in Figure 3-3. Currently locations 0 through 127 of the Internal Data RAM address space are filled with on-chip RAM. Locations 128 through 255 may be filled on later products without affecting existing software.

The stack depth is limited only by the available Internal Data RAM, thanks to an 8-bit reloadable Stack Pointer. The stack is used for storing the Program Counter during subroutine calls, and may be used for passing parameters. Any byte of Internal Data RAM or Special Function Register's accessible through Direct Addressing can be pushed/popped.

The Special Function Register address space is 128 to 255. All registers except the Program Counter and the four banks of eight working registers reside here. Memory mapping the Special Function Registers allows

Figure 3-2. Internal Data Memory Address Space

them to be accessed as easily as internal RAM. As such, they can be operated on by most instructions. In addition, 128 bit locations within the Special Function Register address space can be accessed using Direct Addressing as shown in Figure 3-4. These bits reside in the Special Function Register address space and can be accessed using Direct Addressing. The addressable bits are located at byte addresses divisible by eight. An easy way to determine which byte locations are bit addressable are those byte locations ending in zero (0) or eight (8) when represented in hexadecimal notation. The twenty Special Function Registers are listed in Table 3-1. Their mapping in the Special Function Register address space is shown in Figure 3-5.

ADDRESSING MODES

Since the MCS-51 architecture differentiates between Data Memory and Program Memory, there are different addressing modes for each. These are explained below.

Figure 3-3. RAM Bit Addresses

There are five general addressing modes operating on bytes. One of these five addressing modes, however, operates on both bytes and bits.

Register Addressing

Register addressing encodes, in the low-order three bits of the instruction opcode, the number of a register in the currently enabled register bank. RS1 (PSW.4) and RS0 (PSW.3) determine which register bank is enabled. In the MCS-51 assembly language, register addressing is indicated by the register symbols R0 through R7, or by a symbolic name defined earlier as a register. The instruction set mnemonic for Register Addressing is "Rn" where n can be any value from 0 to 7.

Direct Addressing

BYTE OPERANDS

Direct Byte addressing specifies an on-chip RAM location or a Special Function Register. An additional byte

S F R	Special Function Register		Byte Location in Memory
		Symbolic Name	
Arithmetic Registers	Accumulator* B register* Program Status Word*	ACC B PSW	224(E0H) 240(F0H) 208(D0H)
Pointers	Stack Pointer Data Pointer (high) Data Pointer (low)	SP DPH DPL	129(81H) 131(83H) 130(82H)
Parallel I/O Ports	Port 3* Port 2* Port 1* Port 0*	P3 P2 P1 P0	176(B0H) 160(A0H) 144(90H) 128(80H)
Interrupt System	Interrupt Priority Control* Interrupt Enable Control*	IPC IEC	184(B8H) 168(A8H)
Timers	Timer Mode Timer Control* Timer 1 (high) Timer 1 (low) Timer 0 (high) Timer 0 (low)	TMOD TCON TH1 TH0 TH0 TL0	137(89H) 136(88H) 141(8DH) 139(8BH) 140(8CH) 138(8AH)
Serial I/O Channel	Serial Control* Serial Data Buffer	SCON SBUF	152(98H) 153(99H)

Table 3-1. Special Function Registers

is appended to the instruction opcode to provide the memory location address. The highest-order bit of this byte selects one of two groups of addresses: values between 0 and 127 (00H-7FH) access internal RAM locations, while values between 128 and 255 (80H-0FFH) access one of the Special Function Registers. In the assembly language, direct addresses are specified with the address of the variable or register, or a symbolic name defined earlier as a direct address. The instruction set mnemonic for Direct Byte Addressing is "direct".

BIT OPERANDS

Direct Bit addressing (bit) lets a number of instructions manipulate or test any of 128 user-defined software flags in internal data RAM, and manipulate or test 128 bits in the Special Functions Registers address space. An additional byte appended to the opcode specifies the flag or bit to be accessed. Values between 0 and 127 (00H-7FH) correspond to software flags in sixteen internal RAM locations, addresses 20H-2FH. Bit addresses 00H-07H correspond to bits 0-7 of RAM location 20H, respectively; addresses 77H-7FH correspond to bits 0-7 of RAM location 2FH. Bit address values between 128

Figure 3-4. Special Function Register Bit Address

*Bit addressable byte location

Figure 3-5. Special Function Registers Address Space

and 255 (80H-0FFH) select bits in the special function registers; the high-order five-bit field of the address byte is the same as that of the register used, while the low order three bits give the bit position within that register. The assembly language allows three representations for a direct bit address: by the bit's sequential number (0-255), by specifying the register or RAM location which contains the bit, and the bit's position therein (e.g., 32.6), separated by a period (.) or by a symbol previously defined as a direct bit address. The instruction set signifies a bit location by the mnemonic "bit".

Base-Register-Plus Index Register-Indirect Addressing

Base-Register-plus Index Register-Indirect Addressing simplifies accessing look-up tables (LUT) resident in Program Memory. A byte may be accessed from an LUT via an indirect move from a location whose address is the sum of a base register (the DPTR or PC) and the index register (A).

Register-Indirect Addressing

Register-Indirect Addressing (@Ri) accesses a RAM location whose address is determined by the current

contents of R0 or R1, according to bit 0 of the instruction opcode. In the 8051 assembly language, indirect addressing is represented by a commercial "at" sign ("@") preceding R0, R1, or a symbol defined by the user to be equal to R0 or R1. The instruction set mnemonic for Register-Indirect Addressing uses the "at" ("@") also.

Immediate Addressing

Immediate Addressing (#data) appends an additional byte to the instruction to hold the source variable. In the 8051 assembly language and the 8051 instruction set, a number sign (#) precedes the value to be used, which may refer to a constant, an expression, or a symbolic name. Since the value used is fixed at the time of ROM manufacture or EPROM programming, it may not be altered during program execution. (A special case of immediate addressing exists for the instruction MOV DPTR, #data16. Two bytes following the opcode hold the 16 bits of data loaded into the data pointer.)

Figure 3-6 illustrates how the addressing modes reach different Internal Data Memory.

Figure 3-6. Internal Data Memory Addressing Modes

Branch Destination Addressing Modes

Three program memory addressing modes are used by conditional and unconditional branch operations.

RELATIVE ADDRESSING (rel)

Relative addressing (rel) encodes an 8-bit signed displacement value in the last instruction byte. During execution, the CPU computes the destination address by extending the sign-bit of this byte to 16 bits and adding this value to the incremented program counter. In the 8051 assembly language, the programmer only needs to specify the address or label assigned to the desired destination instruction. The assembler will compute the signed displacement needed and produce an error message if the destination is "out of range."

ABSOLUTE ADDRESSING (addr11)

Absolute Addressing (addr11) encodes the low-order 11 bits of the destination address in three bits of the opcode and the second instruction byte. The high-order five bits of the destination address are taken from the high-order five bits of the incremented program counter. Note that this means that an AJMP or ACALL instruction located in addresses 07FEH, for example, will reach a destination between addresses 0800H and 0FFFH.

LONG ADDRESSING (addr16)

Long Addressing (addr16) uses the second and third byte of the instruction to hold the high-order and loworder bytes of the 16-bit destination address, respectively. The destination can be anywhere in the full 64 kilobyte program memory address space.

In the MCS-51 assembly language, only the address or label of the destination instruction is given in each case. The assembler computes the address encoding needed by the operation mnemonic and produces an error message if the destination is "out of range."

Special Addressing Considerations

If an indirect on-chip RAM or stack address is greater than the amount of RAM provided (e.g., greater than 127 on the 8051), or if no special function register corresponds to a direct byte or bit address, then the result of the instruction is undefined.

Note also that the two accumulators, the byte accumulator and the bit accumulator, (the Boolean Processor) can be addressed in two ways using different ASM-51 mnemonics.

When using Register Addressing, the byte accumulator may be reached using the "A" mnemonic, while the bit accumulator may be reached using the "C" mnemonic. If both accumulators are accessed as memory locations using Direct Addressing, different mnemonics are used. "ACC" is the symbol for the byte accumulator and "CY" is the symbol for the bit accumulator.

Even though there are two different addressing modes and a set of mnemonics for each accumulator, both accumulators have only one physical space on the chip.

When an I/O port or pin is the destination of a data move instruction, data is written into a corresponding data latch. When an I/O port or pin is the source for a data transfer, or other two operand instructions, the data present at the input pins is read.

Instructions which use the port as both a source and destination (such as INC P1 or ORL P1, #20H) read the internal buffer rather than the input pins, so only the desired output latch bits will be affected.

When an I/O pin is the destination of a SETB, CLR, CPL, or MOV instruction, the on-chip data latch corresponding to that pin is affected. When an I/O pin is the source operand for a Boolean move or two-operand instruction, the instruction reads the data present at the input pin. The CPL and JBC instructions read the internal buffer rather than the input pin state.

Since the parity flag (PSW.0) is updated after every instruction cycle, instructions which explicitly alter the PSW or this bit will have no apparent effect on P, as if PSW.0 is a read-only bit. Bits 7, 6, and 5 of register IPC, and bits 6 and 5 of register IEC are not implemented on the 8051 and are reserved.

INSTRUCTION SET OVERVIEW

The MCS-51 instruction set includes 51 fundamental operations broken into five functional groupings. Combining them with various addressing modes for Boolean (1-bit), nibble (4-bit), byte (8-bit), and address (16-bit) data types produces the 111 instructions listed in Table 3-2.

Each assembly language instruction consists of an operation mnemonic and (depending on the operation) up to four operands. The mnemonic abbreviates the basic function or operation to be performed, while the operands, separated by commas, clarify which variables are involved, what data to use, or what instruction to execute next. Instructions which need two data operands always specify the destination first, followed by the source variable, except for the move operation between two Directly addressable bytes. In this case the source operand is first and the destination operand is second.

Table 3-2. 8051 Instruction Set Summary

Interrupt Response Time: To finish execution of current instruction, respond to the interrupt request, push the PC and to vector to the first instruction of the interrupt service program requires 38 to 81 oscillator periods (3 to 7µs @ 12 MHz).

INSTRUCTIONS THAT AFFECT FLAG SETTINGS¹

INSTRUCTION	FLAG	INSTRUCTION	FLAG
	C OV AC		C OV AC
ADD	XXX	CLR C	0
ADDC	XXXX	CPL C	X
SUBB	X X X	ANL C, bit	X
MUL	O X	ANL C,/bit	X
DIV	0 X	ORL C, bit	X
DA	Х	ORL C,bit	Х
RRC	Х	MOV C,bit	Х
RLC	X	CJNE	Х
SETB C	1		

'Note that operations on SFR byte address 208 or bit addresses 209-215 (i.e. the PSW or bits in the PSW) will also affect flag settings.

ARITHMETIC OPERATIONS

Mnemonic

A, direct

A,@Ri

A,#data

A,Rn

ADD

ADD

ADD

ADD

ADDC A,Rn

ADDC A, direct

ADDC A,@Ri

ADDC A,#data

A,Rn

SUBB

Not	es on instruction set and addressing modes:
Rn	- Register R7-R0 of the currently selected
	Register Bank.
data	a = -8-bit internal data location's address. This
	could be an Internal Data RAM location
	(0-127) or a SFR [i.e. I/O port, control
	register, status register, etc. (128-255)].
@ R	4. — 8-bit internal data RAM location (0-255) ad-
	dressed indirectly through register R1 or R0.
#da	ta – 8-bit constant included in instruction.
#da	ta 16 – 16-bit constant included in instruction
add	r16 – 16-bit destination address. Used by LCALL &
	LJMP. A branch can be anywhere within the
	64K-byte Program Memory address space.
add	r11 – 11-bit destination address. Used by ACALL &
	AJMP. The branch will be within the same
	2K-byte page of program memory as the first
	byte of the following instruction.
rel	-Signed (two's complement) 8-bit offset byte.
	Used by SJMP and all conditional jumps.
	Range is -128 to $+127$ bytes relative to first
	byte of the following instruction.
bit	- Direct Addressed bit in Internal Data RAM or
	Special Function Register.
*	- New operation not provided by 8048/8049.

ARITHMETIC OPERATIONS Cont.

Description	Byte	Oscillator Period			Mnemonic	Description	By
Add register to	1	12		SUBB	A, direct	Subtract direct	2
Accumulator						byte from Acc	
Add direct	2	12				with borrow	
byte to		•••		SUBB	A,@Ri	Subtract	1
Accumulator						indirect RAM	
Add indirect	1	12				from Acc with	
Ram to				CUDD	A 11 A .	borrow	~
Accumulator	•			SORR	A,#data	Subtract	2
Add immediate	2	12				from A or with	
data to						hom Acc with	
Accumulator	1	10		INC		Ingroment	1
Add register to	1	12		INC	A	Accumulator	1
Accumulator				INC	Pn	Increment	1
Add direct	2	1.1.2		INC	KI	register	1
hyte to	2	12		INC	direct	Increment	2
Accumulator				inte	uncer	direct byte	-
with Carry			(·	INC	@Ri	Increment	1
Add indirect	1	12			(g th	indirect RAM	
RAM to		12		DEC	A	Decrement	1
Accumulator			ļ			Accumulator	
with Carry				DEC	Rn	Decrement	1
Add immediate	2	12				Register	
data to Acc				DEC	direct	Decrement	2
with Carry						direct byte	
Subtract	1	12		DEC	@Ri	Decrement	1
register from			i 1	1		indirect RAM	
Acc with			· ·	L		<u> </u>	
borrow				All mnen	nonics copyright	ed «Intel Corporation 1	980

÷....

Oscillator Byte Period

12

12

12

12

12

12

12

12

12

12

12

2

1

2

1

1

2

1

1

2

1

ARITHMETIC OPERATIONS Cont.					
	Mnemonic	Description	Byte	Oscillator Period	
INC	DPTR	Increment Data Pointer	1	24	
MUL	AB	Multiply A & B	1	48	
DIV	AB	Divide A by B	1	48	
DA	Α	Decimal Adjust Accumulator	1	12	

	Mnemonic	Description	Byte	Oscillator Period
١C	DPTR	Increment	1	24
		Data Pointer		
IUL	AB	Multiply A & B	1	48
IV	AB	Divide A by B	1	48
	•	Destinal		10

LOGICAL OPERATIONS Oscillator Mnemonic Description Byte Period ANL A,Rn AND register 12 1 Accumulator ANL A.direct AND direct 2 12 byte to Accumulator ANL A,@Ri AND indirect 1 12 RAM to Accumulator ANL A,#data AND 2 12 immediate data 10 Accumulator ANL AND direct.A 2 12 Accumulator to direct byte ANL direct,#data AND 3 24 immediate data to direct byte ORL A,Rn OR register to 1 12 Accumulator ORL A, direct OR direct byte 2 12 10 Accumulator ORL A,@Ri OR indirect 1 12 RAM to Accumulator ORL A,#data OR immediate 12 2 data to Accumulator ORL direct,A OR 2 12 Accumulator to direct byte ORL direct,#data OR immediate 3 24 data to direct byte XRL A,Rn Exclusive-OR 12 1 register to Accumulator XRL A, direct Exclusive-OR 2 12 direct byte to Accumulator XRL Exclusive-OR A,@Ri 1 12 indirect RAM to Accumulator

Exclusive-OR

to Accumulator

immediate data

2

12

XRL

A,#data

LOGIC	LOGICAL OPERATIONS Cont.					
	Mnemonic	Description	Byte	Oscillator Period		
XRL	direct, A	Exclusive-OR	2	12		
XRL	direct,#data	Accumulator to direct byte Exclusive-OR immediate data to direct byte	3	24		
CLR	А	Clear	1	12		
		Accumulator	-			
CPL	А	Complement	1	12		
		Accumulator				
RL	А	Rotate	1	12		
RLC	A	Accumulator Left Rotate Accumulator Left through	1	12		
RR	A	the Carry Rotate Accumulator Right	1	12		
RRC	А	Rotate	1	12		
SWAP	A	Accumulator Right through the Carry Swap nibbles within the Accumulator	1	12		

Table 3-2.	Instruction	Set	Summarv	(continued)
			ounnury	(ooninaoa)

DATA T	RANSFER			
				Oscillator
N	Inemonic	Description	Bvte	Period
MOV	A,Rn	Move register	1	12
		to		
		Accumulator		
MOV	A,direct	Move direct	2	12
		byte to		
моу	A @Ri	Move indirect	1	12
1101	A,@AI	RAM to	1	12
		Accumulator		
MOV	A,#data	Move	2	12
		immediate data		
		to		
MOV	Dn A	Accumulator	1	12
NO V	KII,A	Accumulator	1	12
		to register		
MOV	Rn,direct	Move direct	2	24
		byte to register		
MOV	Rn,#data	Move	2	12
		immediate data		
MOV	direct A	to register	h	12
MOV	ullect,A	Accumulator	2	12
		to direct byte		
MOV	direct, Rn	Move register	2	24
		to direct byte		
MOV	direct, direct	Move direct	3	24
NOV	11 D1	byte to direct		•
MOV	direct,@Ri	Move indirect	2	24
		hyte		
MOV	direct #data	Move	2	24
INIO V	uneci,#uaia	immediate data	3	24
		to direct byte		
MOV	@Ri,A	Move	1	12
		Accumulator		
		to indirect		
MON		RAM		
MOV	@Ri,direct	Move direct	2	24
		RAM		
моу	@Ri.#data	Move	2	12
	Grindente	immediate data	-	12
		to indirect		
		RAM		
MOV	DPTR,#data16	Load Data	3	24
		Pointer with a		
MOVC	A @ A + DPTR	Move Code	1	24
111010	n,@ATDITK	byte relative to		24
		DPTR to Acc		
MOVC	A,@A+PC	Move Code	1	24
		byte relative to		
MONN	1 OD:	PC and Acc		~ .
MOVX	A,@KI	Nove External	1	24
		addr) to Acc		
MOVX	A,@DPTR	Move External	1	24
	,0=	RAM (16-bit	•	_ ·
		addr) to Acc		

]	Mnemonic	Description	Byte	Oscillator Period
ΜΟΥΧ	@Ri,A	Move Acc to External RAM (8-bit addr)	1	24
MOVX	@DPTR,A	Move Acc to External Ram (16-bit addr)	1	24
PUSH	direct	Push direct byte onto stack	2	24
POP	direct	Pop direct byte from stack	2	24
ХСН	A,Rn	Exchange register with Accumulator	1	12
ХСН	A, direct	Exchange direct byte with Accumulator	2	12
ХСН	A,@Ri	Exchange indirect RAM with Accumulator	1	12
XCHD	A,@Ri	Exchange low- order Digit indirect RAM with Acc	1	12

Table 3-2. Instruction Set Summary (continued)

All mnemonics copyrighted @Intel Corporation 1980

BOOL	EAN VARIA	BLE MANIPULATIO	N	
				Oscillator
	Mnemonic	Description	Byte	Period
CLR	С	Clear Carry	1	12
CLR	bit	Clear direct bit	2	12
SETB	С	Set Carry	1	12
SETB	bit	Set direct bit	2	12
CPL	С	Complement Carry	1	12
CPL	bit	Complement direct bit	2	12
ANL	C,bit	AND direct bit	2	24
ANL	C,/bit	AND complement of direct bit to Carry	2	24
ORL	C,bit	OR direct bit	2	24
ORL	C,/bit	OR complement of direct bit to	2	24
MOV	C,bit	Move direct bit	2	12
MOV	bit,C	Move Carry to direct bit	2	24
JC	rel	Jump if Carry	2	-4
JNC	rel	Jump if Carry	2	24
JB	bit,rel	Jump if direct Bit is set	3	24
JNB	bit,rel	Jump if direct Bit is Not set	3	24
JBC	bit,rel	Jump if direct Bit is set & clear bit	3	24

Table 3-2. Instruction Set Summary (continued)

PROGI	PROGRAM BRANCHING Cont.					
	Mnemonic	Description	Byte	Period		
JNZ	rel	Jump if Accumulator is Not Zero	2	24		
CJNE	A,direct,rel	Compare direct byte to Acc and Jump if Not Equal	3	24		
CJNE	A,#data,rel	Comare immediate to Acc and Jump if Not Equal	3	24		
CJNE	RN,#data,rel	Compare immediate to register and Jump if Not Equal	3	24		
CJNE	@Ri,#data,rel	Compare immediate to indirect and Jump if Not Equal	3	24		
DJNZ	Rn,rel	Decrement register and Jump if Not Zero	3	24		
DJNZ	direct,rel	Decrement direct byte and Jump if Not Zero	3	24		
NOP		No Operation	1	12		

PROGRAMING BRANCHING

				Oscillator
]	Mnemonic	Description	Byte	Period
ACALL	addr11	Absolute	2	24
		Subroutine		
		Call		
LCALL	addr16	Long	3	24
		Subroutine		
		Call		
RET		Return for	1	24
		Subroutine		
RETI		Return for	1	24
		interrupt		
AJMP	addr11	Absolute Jump	2	24
LJMP	addr16	Long Jump	3	24
SJMP	rel	Short Jump	2	24
		(relative addr)		
JMP	@A+DPTR	Jump indirect	1	24
	0	relative to the		
		DPTR		
JZ	rel	Jump if	2	24
		Accumulator is		
		Zero		

All mnemonics copyrighted @Intel Corporation 1980

Functional Groupings

The five functional groupings are as follows:

ARITHMETIC OPERATIONS

The 8051 implements the arithmetic operations of add, increment, decrement, compare-to-zero, decrement-andcompare-to-zero, decimal-add-adjust, subtract-withborrow, compare, multiply and divide.

Only unsigned binary integer arithmetic is performed in the Arithmetic/Logic Unit. In the two-operand operations of add, add-with-carry and subtract-with-borrow, the A register (the accumulator) is the first operand and receives the result of the operation. The second operand can be an immediate byte, a register in the selected Register Bank, a Register-Indirect Addressed byte or a Direct Addressed byte. These instructions affect the overflow (OV), carry (C), auxiliary-carry (AC), and parity (P) flags in the Program Status Word (PSW). The carry flag facilitates nonsigned integer arithmetic and multi-precision rotations. Handling two's-complement-integer (signed) addition and subtraction can easily be accommodated with software's monitoring of the PSW's overflow flag. The auxiliary-carry flag simplifies BCD arithmetic. An operation that has an arithmetic aspect similar to a subtract is the compare-and-jump-if-not-equal operation. This operation performs a conditional branch if a register in the selected Register Bank, or a Register-Indirect Addressed byte of Internal Data RAM, does not equal an immediate value; or if the A register does not equal a byte in the Direct Addressable Internal Data RAM, or a Special Function Register. While the destination operand is not updated and neither source operand is affected by the compare operation, the carry flag is set if the first operand is less

than the second operand; otherwise it is cleared. A summary of the two-operand add/subtract operations is shown in Figure 3-7.

There are three arithmetic operations that operate exclusively on the A register (the accumulator). These are the decimal-adjust for BCD addition and the two-test conditions shown in Figure 3-8. The decimal-adjust operation converts the result from a binary addition of two two-digit BCD values to yield the correct two-digit BCD result. During this operation the auxiliary-carry flag helps effect the proper adjustment. Conditional branches may be taken based on the value in the accumulator being zero or not zero.

The 8051 simplifies the implementation of software counters since the increment and decrement operations can be performed on the accumulator, a register in the selected Register Bank, Register-Indirect Addressed byte in the Internal Data RAM or a byte in the Direct Addressed Internal Data RAM or Special Function Register. The 16-bit Data Pointer can be incremented. For efficient loop control, the decrement-and-jump-if-not-zero operation is provided. This operation can decrement a register in the selected Register Bank, any Special Function Register or any byte of Internal Data RAM accessible through Direct Addressing, and force a branch if the result is not zero. The increment/decrement operations are summarized in Figure 3-9.

The multiply operation multiplies the one-byte A register by the one-byte B register and returns a double-byte result

Figure 3-8. Internal Data Memory Arithmetic Operations (Register A Specific)

Figure 3-9. Internal Data Memory Arithmetic Operations

(MSB in B, LSB in A). The divide operation divides the one-byte accumulator by the one-byte B register and returns a byte quotient to the A register and a byte remainder to the B register. These are shown in Figure 3-10.

Figure 3-10. Internal Data Memory Arithmetic Operations (Register A with Register B)

LOGIC OPERATIONS

The 8051 permits the logic operations of and, or, and exclusive-or to be performed on the A register by a second operand which can be an immediate value, a register in the selected Register Bank, a Register-Indirect Addressed byte of Internal Data RAM or a Direct Addressed byte of Internal Data RAM or Special Function Register. In addition, these logic operations can be performed on a Direct Addressed byte of the Internal Data RAM or Special Function Register using the A Register as the second operand. Also, use of Immediate Addressing with Direct Addressing permits these logic operations to set, clear or complement any bit anywhere in the Internal Data RAM or Special Function Registers without affecting the PSW, Register Bank registers or accumulator. When one takes into account that the registers R7-R0 and the accumulator can be Direct Addressed, the two-operand logic operations allow the destination (first operand) to be a byte in the Internal Data RAM, a Special Function Register, Register Bank registers (R7-R0) or the accumulator, while the choice of the second operand can be any of the aforementioned or an immediate value. The 8051 can also perform a logical or, or a logical and, between the Boolean accumulator (i.e., the carry register) and any bit, or its complement, that can be accessed through Direct Addressing. The and, or, and exclusive-or logic operations are summarized in Figure 3-11.

In addition to the logic operations that are performed on Internal Data Memory as shown in Figure 3-11, there are also logic operations that are performed specifically on the accumulator. These are summarized in Figure 3-12.

In addition to the "and" and "or" bit logicals shown in Figure 3-11, there are logicals that can operate exclusively on a Direct Addressed bit. These operations are listed in Figure 3-13. The carry flag is also addressed as a register and can be set, cleared, or complemented with one-byte instructions.

Figure 3-11. Internal Data Memory Logic Operations

Figure 3-12. Internal Data Memory Logic Operations (Register A Specific)

Figure 3-13. Internal Data Memory Logic Operations (Bit-Specific)

DATA TRANSFER OPERATIONS

Look-up tables resident in Program Memory can be accessed by indirect moves. A byte constant can be transferred to the A register (i.e., accumulator) from the Program Memory location whose address is the sum of a base register (the PC or DPTR) and the index register (A). This provides a convenient means for programming translation algorithms such as ASCII to seven segment conversions. The Program Memory move operations are shown diagrammatically in Figure 3-14.

A byte location within a 256-byte block of External Data Memory can be accessed using R1 or R0 in Register-Indirect Addressing. Any location within the full 64K External Data Memory address space can be accessed through Register-Indirect Addressing using a 16-bit base

Figure 3-14. Program Memory Move Operations

Figure 3-15. External Data Memory Move Operations

register (i.e., the Data Pointer). These moves are shown in Figure 3-15.

The byte in-code-constant (immediate) moves and byte variable moves within the 8051 are highly orthogonal as detailed in Figure 3-16. When one considers that the accumulator and the registers in the Register Banks can be Direct Addressed, the two-operand data transfer operations allow a byte to be moved between any two of the Register Bank registers, Internal Data RAM, accumulator and Special Function Registers. Also, immediate operands can be moved to any of these locations. Of particular interest is the Direct Address to Direct Address move which permits the value in a port to be moved to the Internal Data RAM without using any Register Bank registers or the accumulator. The Data Pointer register can be loaded with a double-byte immediate value.

The A Register can be exchanged with a register in the selected Register Bank, with a Register-Indirect Addressed byte in the Internal Data RAM, or with a Direct Addressed byte in the Internal Data RAM, or Special Function Register. The least significant nibble of the A register can also be exchanged with the least significant nibble of a Register-Indirect Addressed byte in the Internal Data RAM. The exchange operation is shown in Figure 3-17.

BOOLEAN VARIABLE OPERATIONS

A powerful set of instructions perform data transfer, conditional and logical operations on Boolean (1-bit) variables. The 8051's Boolean Processor can move any of 256 bits to or from the carry register (C) using Direct Addressing. Individual instructions will set, clear, or complement these 256 addressable bits or the carry register with Direct Addressing. In conjunction with the bit-test instructions described below, these instructions provide direct 8051 code for logic equations and Boolean expressions.

The carry register is a "Boolean Accumulator" for logical "and" or logical "or" operations on Boolean variables. The carry register acts as a source operand and the destination for the logical operations. The source operand can be one of the 256 addressable bits or its complement.

The 8051 also provides test operations of jump-if-bit-set, jump-if-bit-not-set and jump-if-bit-set-then-clear. These branching instructions are relative to the address of the next instruction (PC + 127 to PC - 128). Jumps can also be taken on the status of the Carry register. A jump can be taken if the carry is set or not set.

CONTROL TRANSFER

The 8051 has a non-paged Program Memory to accommodate relocatable code. The advantage of a non-paged memory is that a minor change to a program that causes a shift of the code's position in memory will not cause page boundary readjustments to be necessary. This also makes relocation possible. Relocation is desirable since it permits several programmers to write relocatable modules in various assembly and high-level languages which can later be linked together to form the machine-object code.

Sixteen-bit jumps and calls are provided to allow branching to any location in the contiguous 64K Program Memory address space and pre-empt the need for Program Memory bank switching. Eleven-bit jumps and calls are also provided to maintain compatibility with the 8048 and to provide an efficient jump within a 2K program module. Unlike the 8048, the 8051's call operations do not push the Program Status Word (PSW) to the stack along with the Program Counter, since many subroutines written for the 8051 do not affect the PSW. Hence the 8051 return operations pop only the Program Counter. The 8051's branch, call and return operations are shown diagrammatically in Figures 3-18, 3-19, and 3-20, respectively.

The 8051 also provides a method for performing condi-

Figure 3-16. Internal Data Memory Move Operations

Figure 3-17. Internal Data Memory Exchange Operations

Figure 3-18. Unconditional Branch Operations

Figure 3-19. Call Operations

Figure 3-20. Return Operations

tional and unconditional branching, relative to the starting address of the next instruction (PC + 127 to PC – 128). The accumulator test operations allow a conditional branch based on the accumulator being zero or non-zero. Also provided are compare-and-jump-if-not-equal and decrement-and-jump-if-not-zero. These are shown in Figure 3-21. The register-indirect jump in the 8051 permits branching relative to a base register (DPTR) with an offset provided by the non-signed integer value in the index register (A). This accommodates N-way branching. The indirect jump is shown in Figure 3-22.

Figure 3-21. Unconditional Short Branch and Conditional Branch Operations

Figure 3-22. Unconditional Branch (Indirect) Operation

Arithmetic Flags

The program status word (PSW) contains eight bits. Four bits are hardware status flags set or cleared by the CPU to show the result of certain calculations. In general, these flags are used for the following purposes:

Carry: The carry flag (CY) is set by an arithmetic instruction if there is a carry-out of the highest order bit (from addition) or if a borrow is needed for the highest-order bit (from subtraction or a comparison); otherwise it is cleared. It is also affected by several rotate operations. The carry flag is also the Boolean accumulator. When treated as a Boolean accumulator, the carry mnemonic is "C"; otherwise it is CY which denotes an address.

Auxiliary Carry: The auxiliary-carry flag (AC) is set if an arithmetic instruction results in a carry-out of bit 3 (from addition) or a borrow into bit 3 (for subtraction); otherwise it is cleared. This flag is useful for BCD arithmetic.

Overflow: The overflow flag (OV) is set if the addition or subtraction of signed variables produces an overflow error (i.e., if the magnitude of the sum or difference is too great for the seven magnitude bits in two's complement representation); otherwise it is cleared. The same flag also indicates when the product resulting from multiplication overflows one byte, and if division by zero was attempted.

Parity: The parity flag (P) is updated after *every* instruction cycle to indicate the parity of the accumulator. It is set if the number of "1" bits in the accumulator is odd, otherwise, it is cleared.

The other four PSW bits consist of a general purpose flag, F0, two bits, RS1 and RS0, which select one of four working register banks, and a reserved bit location.

Instruction Definitions

The rest of this chapter defines all the instructions and operations which the MCS-51 CPU can perform. There is a separate section for each of the 51 basic operations, ordered alphabetically according to the operation mnemonic.

When an operation may apply to more than one data type (generally bit and byte data), the MCS-51 assembly language uses the same mnemonic for each, reducing the number of mnemonics the programmer must remember. The assembler determines which instruction is appropriate from the operands specified. Thus, the mnemonic "CLR" can operate on the eight-bit accumulator ("CLR A"), or on one-bit variables ("CLR F0"). The mnemonics ANL, ORL, CPL, and MOV can relate to more than one data type as well. These operations present each data type in a separate section.

Each section then describes the action taken by the operation, the flags and registers affected, and shows a short example of how an instruction might be used in a program. Next comes the number of bytes and machine cycles required, the corresponding binary machine-language encoding, and a symbolic description or restatement of the function implemented.

Note: Only the carry, auxiliary-carry, and overflow flags are discussed in these instruction descriptions. Since the parity bit (PSW.0) is recomputed *after every instruction cycle* any instruction that alters the accumulator — either inherently or as a special function register — could affect the parity flag. Similarly, instructions which alter directly addressed registers could affect the other status flags if the

instruction is applied to the PSW. Status flags can also be modified by the generalized bit-manipulation instructions.

Nineteen operations allow more than one addressing mode for the source and/or destination operand. The headings for these sections show the instruction format with such operands enclosed in angle brackets (for example, MOV <dest-byte> , <src-byte>). The operation description tells what modes (or combinations of modes) are allowed, and gives the assembly language notation, byte and cycle counts, encoding format, and a symbolic description for each.

The information in this chapter is directed towards defining the capabilities of the MCS-51 architecture and hardware. For details on the assembly language or ASM51 capabilities refer to the MCS-51 Macro Assembler User's Guide, publication number 9800937.

ACALL addr11

Function: Description: Example:	Absolute Call ACALL unconditionally calls a subroutine located at the indicated address. The instruction increments the PC twice to obtain the address of the following instruction, then pushes the 16-bit result onto the stack (low-order byte first) and increments the stack pointer twice. The destination address is obtained by successively concatenating the five high-order bits of the incremented PC, opcode bits 7-5, and the second byte of the instruction. The subroutine called must therefore start within the same 2K block of the program memory as the first byte of the instruction following ACALL. No flags are affected. Initially SP equals 07H. The label "SUBRTN" is at program memory location 0345H. After executing the instruction,
	ACALL SUBRTN
Bytes: Cycles:	at location 0123H, SP will contain 09H, internal RAM locations 08H and 09H will contain 25H and 01H, respectively, and the PC will contain 0345H. 2 2
Encoding:	a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0
Operation:	ACALL $(PC) \longleftarrow (PC) + 2$ $(SP) \longleftarrow (SP) + 1$ $((SP)) \longleftarrow (PC_{7-0})$ $(SP) \longleftarrow (SP) + 1$ $((SP)) \longleftarrow (PC_{15-8})$ $(PC_{10-0}) \longleftarrow page address$

ADD A,<src-byte>

Function: Description:	Add ADD adds the byte variable indicated to the accumulator, leaving the result in the accumulator. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occurred.		
	OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit 6; otherwise OV is cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive operands, or a positive sum from two negative operands.		
Example:	Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate. The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B). The instruction,		
	ADD A,R0		
	will leave 6DH (01101101B) in the accumulator with the AC flag cleared and both the carry flag and OV set to 1.		
ADD A,Rn Bytes: Cycles:	1 1		
Encoding:	0 0 1 0 1 r r r		
Operation:	$\begin{array}{l} \text{ADD} \\ \text{(A)} \longleftarrow \text{(A)} + (\text{Rn}) \end{array}$		
ADD A,direct Bytes: Cycles:	2 1		
Encoding:	0 0 1 0 0 1 0 1 direct address		
Operation:	ADD (A) \leftarrow (A) + (direct)		
ADD A,@Ri Bytes: Cycles:	1 1		
Encoding:	0 0 1 0 0 1 1 i		
Operation:	$\begin{array}{l} \text{ADD} \\ \text{(A)} \bigstar (\text{A}) \bigstar (\text{(R_i)}) \end{array}$		
ADD A,#data Bytes: Cycles:	2 1		
Encoding:	0 0 1 0 0 1 0 0 immediate data		
Operation:	ADD (A) $(A) + #data$		

ADDC A, <src-byte>

Function: Description:	Add with Carry ADDC simultaneously adds the byte variable indicated, the carry flag and the accumulator contents, leaving the result in the accumulator. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag in- dicates an overflow occurred.			
	OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carryout of bit 7 but not out of bit 6; other- wise OV is cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive operands or a positive sum from two negative operands.			
Example:	Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate. The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) with the carry flag set. The instruction,			
	ADDC A,R0			
	will leave $6EH(01101110B)$ in the accumulator with AC cleared and both the carry flag and OV set to 1.			
ADDC A,Rn Bytes: Cycles:	1 1			
Encoding:	0 0 1 1 1 r r r			
Operation:	ADDC (A) \leftarrow (A) + (C) + (R _n)			
ADDC A,dired	t .			
Bytes: Cycles:	2 1			
Encoding:	0 0 1 1 0 1 0 1 direct address			
Operation:	ADDC (A) \leftarrow (A) + (C) + (direct)			
ADDC A,@Ri Bytes: Cycles:	1 1			
Encoding:	0 0 1 1 0 1 1 i			
Operation:	ADDC (A) \leftarrow (A) + (C) + ((R _j))			
ADDC A,#data	3			
Bytes: Cycles:	2 1			
Encoding:	0 0 1 1 0 1 0 0 immediate data			
Operation:	ADDC (A) \leftarrow (A) + (C) + #data			

AJMP addr11

Function: Description: Example:	Absolute Jump AJMP transfers program execution to the indicated address, which is formed at run-time by con- catenating the high-order five bits of the PC (<i>after</i> incrementing the PC twice), opcode bits 7-5, and the second byte of the instruction. The destination must therefore be within the same 2K block of program memory as the first byte of the instruction following AJMP. The label "JMPADR" is at program memory location 0123H. The instruction,		
	AJMP JMPADR		
Bytes: Cycles:	is at location 0345H and will load the PC with 0123H. 2 2		
Encoding:	a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0		
Operation:	AJMP $(PC) \leftarrow (PC) + 2$ $(PC_{10-0}) \leftarrow page address$		

ANL <dest-byte> , <src-byte>

Function: Logical-AND for byte variables

Description: ANL performs the bitwise logical-AND operation between the variables indicated and stores the results in the destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the accumulator, the source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the source can be the accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, *not* the input pins.

Example: If the accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) then the instruction,

ANL A,R0

will leave 41H (01000001B) in the accumulator.

When the destination is a directly addressed byte, this instruction will clear combinations of bits in any RAM location or hardware register. The mask byte determining the pattern of bits to be cleared would either be a constant contained in the instruction or a value computed in the accumulator at run-time. The instruction,

ANL P1,#01110011B

will clear bits 7, 3, and 2 of output port 1.

ANL A,Rn							
Bytes:	1						
Cycles:	1						
Encoding:	0	10	1	1	r	r	r
Operation:	ANL			,	. .		
	(A) ⊲	⊷(A	s) /	<u>۱</u>	Kn)		

ANL A,direct Bytes: Cycles:	2 1
Encoding:	0 1 0 1 0 1 0 1 direct address
Operation:	ANL (A) \leftarrow (A) \land (direct)
ANL A,@Ri Bytes: Cycles:	1 1
Encoding:	0 1 0 1 0 1 1 i
Operation:	ANL (A) \leftarrow (A) \land ((Ri))
ANL A,#data Bytes: Cycles:	2 1
Encoding:	0 1 0 1 0 1 0 0 immediate data
Operation:	ANL (A) \leftarrow (A) \wedge #data
ANL direct,A Bytes: Cycles:	2 1
Encoding:	0 1 0 1 0 0 1 0 direct address
Operation:	ANL $(direct) \leftarrow (direct) \land (A)$
ANL direct,#d Bytes: Cycles:	ata 3 2
Encoding:	0 1 0 1 0 0 1 1 direct address immediate data
Operation:	ANL

 $(direct) \longleftarrow (direct) \land #data$

ANL C, <src·bit>

Function: Description:	Logical-AND for bit variables If the Boolean value of the source bit is a logical 0 then clear the carry flag; otherwise leave the carry flag in its current state. A slash ("/") preceding the operand in the assembly language indicates that the logical complement of the addressed bit is used as the source value, <i>but the source bit itself is not</i> <i>affected</i> . No other flags are affected.			
Example:	Only direct bit addressing is allowed for the source operand. Set the carry flag if, and only if, $P1.0 = 1$, ACC. $7 = 1$, and $OV = 0$:			
	MOV C,P1.0 ANL C,ACC.7 ANL C,/OV	;LOAD CARRY WITH INPUT PIN STATE ;AND CARRY WITH ACCUM. BIT 7 ;AND WITH INVERSE OF OVERFLOW FLAG		
ANL C,bit Bytes: Cycles:	2 2			
Encoding:	1 0 0 0 0 0 1 0	bit address		
Operation:	ANL (C) \leftarrow (C) \land (bit)			
ANL C,/bit Bytes: Cycles:	2 2			
Encoding:	1 0 1 1 0 0 0 0	bit address		
Operation:	ANL (C) \leftarrow (C) \neg (bit)			

CJNE <dest-byte>,<src·byte>,rel

Function: Compare and Jump if Not Equal. Description: CJNE compares the magnitudes of the first two operands, and branches if their values are not equal. The branch destination is computed by adding the signed relative-displacement in the last instruction byte to the PC, after incrementing the PC to the start of the next instruction. The carry flag is set if the unsigned integer value of <dest-byte> is less than the unsigned integer value of <srcbyte>; otherwise, the carry is cleared. Neither operand is affected. The first two operands allow four addressing mode combinations: the accumulator may be compared with any directly addressed byte or immediate data, and any indirect RAM location or working register can be compared with an immediate constant. Example: The accumulator contains 34H. Register 7 contains 56H. The first instruction in the sequence, CJNE R7,#60H, NOT_EQ ; R7 = 60H. ; IF R7<60H. NOT_EQ: JC REQ_LOW ; R7>60H. sets the carry flag and branches to the instruction at label NOT_EQ. By testing the carry flag, this instruction determines whether R7 is greater or less than 60H. If the data being presented to port 1 is also 34H, then the instruction, WAIT: CJNE A, P1, WAIT clears the carry flag and continues with the next instruction in sequence, since the accumulator does equal the data read from P1. (If some other value was being input on P1, the program will loop at this point until the P1 data changes to 34H.) CJNE A,direct,rel Bytes: 3 Cycles: 2 Encoding: 1 0 1 0 1 0 direct address rel. address 1 1 **Operation:** CJNE $(PC) \leftarrow (PC) + 3$ IF (direct) < (A) THEN (PC) \leftarrow (PC) + rel and (C) \leftarrow 0 OR IF (direct) > (A) THEN (PC) \leftarrow (PC) + rel and (C) \leftarrow 1 CJNE A.#data.rel Bytes: 3 2 Cycles: **Encoding:** 0 1 immediate data rel. address 1 0 1 1 0 0 **Operation:** CJNE (PC) **←** (PC) + 3 IF #data < (A) THEN (PC) \leftarrow (PC) + rel and (C) \leftarrow 0 OR IF #data > (A)

THEN (PC) \leftarrow (PC) + rel and (C) \leftarrow -1

CLR A

Function: Description: Example:	Clear Accumulator The accumulator is cleared (all bits set to zero). No flags are affected. The accumulator contains 5CH (01011100B). The instruction,			
	CLR A			
	will leave the accumulator set to 00H (00000000B).			
Bytes: Cycles:	1 1			
Encoding:	1 1 1 0 0 1 0 0			
Operation:	CLR (A) ← 0			

MEMORY, ADDRESSING, INSTRUCTION SET

CLR bit

Function: Description: Example:	Clear bit The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on the carry flag or any directly addressable bit. Port 1 has previously been written with 5DH (01011101B). The instruction,
,	CLR P1.2
	will leave the port set to 59H (01011001B).
CLR C Bytes: Cycles:	1 1
Encoding:	1 1 0 0 0 0 1 1
Operation:	CLR (C) $\leftarrow 0$
CLR bit Bytes: Cycles:	2
Encoding:	1 1 0 0 0 1 0 bit address
Operation:	CLR (bit) ← 0

CPL A

Function: Description: Example:	 Complement Accumulator Each bit of the accumulator is logically complemented (one's complement). Bits which previ contained a one are changed to zero and vice-versa. No flags are affected. The accumulator contains 5CH (01011100B). The instruction, 		
	CPL A		
	will leave the accumulator set to 0A3H (10100011B).		
Bytes:	1		
Cycles:			
Encoding:			
Operation:	$\begin{array}{c} \text{CPL} \\ \text{(A)} \checkmark \neg \text{(A)} \end{array}$		

CPL	bit				
Fun Descri	ction: ption:	Complement bit The bit variable specified is complemented. A bit which had been a one is changed to zero and vice- versa. No other flags are affected. CLR can operate on the carry or any directly addressable bit.			
Exa	mple:	 Note: When this instruction is used to modify an output pin, the value used as the original data where the bernead from the output data latch, not the input pin. Port 1 has previously been written with 5BH (01011101B). The instruction sequence, 			
		CPL P1.1 CPL P1.2			
		will leave the port set to 5BH (01011011B).			
CPL (E Cy	C Bytes: ycles:	1 1			
Enco	oding:	1 0 1 1 0 0 1 1			
Oper	ation:	CPL (C) ← , (C)			
CPL E E Cy	oit Bytes: ycles:	2 1			
Enco	oding:	1 0 1 1 0 0 1 0 bit address			
Opera	ation:	CPL (bit) ← ┐ (bit)			

DA A

Function:Decimal-adjust Accumulator for AdditionDescription:DA a adjusts the eight-bit value in the accumulator resulting from the earlier addition of two
variables (each in packed-BCD format), producing two four-bit digits. Any ADD or ADDC instruc-
tion may have been used to perform the addition.

If accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag is one, six is added to the accumulator producing the proper BCD digit in the low-order nibble. This internal addition would set the carry flag if a carry-out of the low-order four-bit field propagated through all high-order bits, but it would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-1111xxxx), these high-order bits are incremented by six, producing the proper BCD digit in the high-order nibble. Again, this would set the carry flag if there was a carry-out of the high-order bits, but wouldn't clear the carry. The carry flag thus indicates if the sum of the original two BCD variables is greater than 100, allowing multiple precision decimal addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the decimal conversion by adding 00H, 06H, 60H, or 66H to the accumulator, depending on initial accumulator and PSW conditions.

Note: DA A *cannot* simply convert a hexadecimal number in the accumulator to BCD notation, nor does DA A apply to decimal subtraction.

Example: The accumulator holds the value 56H (01010110B) representing the packed BCD digits of the decimal number 56. Register 3 contains the value 67H (01100111B) representing the packed BCD digits of the decimal number 67. The carry flag is set. The instruction sequence,

ADDC A,R3 DA A

will first perform a standard twos-complement binary addition, resulting in the value OBEH (10111110) in the accumulator. The carry and auxiliary carry flags will be cleared.

The Decimal Adjust instruction will then alter the accumulator to the value 24H (00100100B), indicating the packed BCD digits of the decimal number 24, the low-order two digits of the decimal sum of 56, 67, and the carry-in. The carry flag will be set by the Decimal Adjust instruction, indicating that a decimal overflow occurred. The true sum 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the accumulator initially holds 30H (representing the digits of 30 decimal), then the instruction sequence,

ADD A,#99H DA A

will leave the carry set and 29H in the accumulator, since 30 + 99 = 129. The low-order byte of the sum can be interpreted to mean 30 - 1 = 29.

Bytes: Cycles: 1 1

1

DA

Encoding:

1 0 1 0 1 0 0

Operation:

-contents of Accumulator are BCD IF [[(A₃₋₀) >9] ∨ [(AC) = 1]] THEN (A₃₋₀) ← (A₃₋₀) + 6 AND IF [[(A₇₋₄) >9] ∨ [(C) = 1]]

THEN $(A_{7-4}) - (A_{7-4}) + 6$

DEC byte

Function:	Decrement
Description:	The variable indicated is decremented by 1. An original value of 00H will underflow to 0FFH. No flags are affected. Four operand addressing modes are allowed: accumulator, register, direct, or register = indirect.
Example:	<i>Note:</i> When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, <i>not</i> the input pins. Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH contain 00H and 40H, respectively. The instruction sequence,
	DEC @R0 DEC R0 DEC @R0
	will leave register 0 set to 7EH and internal RAM locations 7EH and 7FH set to 0FFH and 3FH.
DEC A	
Cycles:	1
Encoding:	0 0 0 1 0 1 0 0
Operation:	$\begin{array}{l} \text{DEC} \\ \text{(A)} \longleftarrow \text{(A)} & -1 \end{array}$
Function: Description:	Divide DIV AB divides the unsigned eight-bit integer in the accumulator by the unsigned eight-bit integer in register B. The accumulator receives the integer part of the quotient; register B receives the integer remainder. The carry and OV flags will be cleared.
Example:	<i>Exception:</i> if B had originally contained 00H, the values returned in the accumulator and B-register will be undefined and the overflow flag will be set. The carry flag is cleared in any case. The accumulator contains 251 (0FBH or 11111011B) and B contains 18 (12H or 00010010B). The instruction,
	DIV AB
_ .	will leave 13 in the accumulator (0DH or 00001101B) and the value 17 (11H or 00010001B) in B, since $251 = (13 \times 18) + 17$. Carry and OV will both be cleared.
Bytes: Cycles:	
Encoding:	1 0 0 0 0 1 0 0
Operation:	DIV
	$(A)_{15-8} - (A) / (B)$
DEC Rn Bytes:	1

Cycles: 1

Encoding:	0 0 0 1 1 r r r	
Operation:	$\frac{\text{DEC}}{(\text{Rn})} - 1$	
DEC direct Bytes: Cycles:	2 1	
Encoding:	0 0 0 1 0 1 0 1	lirect address
Operation:	DEC $(direct) \leftarrow (direct) - 1$	
DEC @Ri Bytes: Cycles:	1 1	
Encoding:	0 0 0 1 0 1 1 i	
Operation:	DEC ((Ri))← ((Ri)) - 1	

DJNZ <byte>,<rel-addr>

Function: Decrement and Jump if Not Zero DJNZ decrements the location indicated by 1, and branches to the address indicated by the second Description: operand if the resulting value is not zero. An original value of 00H will underflow to 0FFH. No flags are affected. The branch destination would be computed by adding the signed relativedisplacement value in the last instruction byte to the PC, after incrementing the PC to the first byte of the following instruction. The location decremented may be a register or directly addressed byte. Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins. Example: Internal Ram locations 40H, 50H, and 60H contain the values 01H, 70H, and 15H, respectively. The instruction sequence, DJNZ 40H,LABEL_1 DJNZ 50H,LABEL_2 DJNZ 60H,LABEL_3 will cause a jump to the instruction at label LABEL__2 with the values 00H, 6FH, and 15H in the three RAM locations. The first jump was not taken because the result was zero. This instruction provides a simple way of executing a program loop a given number of times, or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction. The instruction sequence. MOV R2.#8 TOGGLE: CPL P1.7 DJNZ **R2.TOGGLE** will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of output port 1. Each pulse will last three machine cycles; two for DJNZ and one to alter the pin. DJNZ Rn,rel Bytes: 2 2 Cycles: **Encoding:** 1 1 0 1 1 r r direct address r **Operation:** DJNZ $(PC) \leftarrow (PC) + 2$ $(Rn) \leftarrow (Rn) - 1$ IF (Rn) > 0 or (Rn) < 0THEN $(PC) \leftarrow (PC) + rel$ DJNZ direct.rel Bytes: 3 Cycles: 2 Encoding: 0 0 0 direct address rel. address 1 1 1 1 1 **Operation:** DJNZ $(PC) \leftarrow (PC) + 2$ $(direct) \leftarrow (direct) - 1$ IF (direct) > 0 or (direct) < 0THEN $(PC) \leftarrow (PC) + rel$

MEMORY, ADDRESSING, INSTRUCTION SET

INC	<byte></byte>			
Func Descrip	tion: tion:	Increment INC increments the indicated variable by 1. An original value of 0FFH will overflow to 00H. No flags are affected. Three addressing modes are allowed: register, direct, or register = indirect. <i>Note:</i> When this instruction is used to modify an output port, the value used as the original port		
Example:		data will be read from the output data latch, <i>not</i> the input pins. Register 0 contains 7EH (011111110B). Internal RAM locations 7EH and 7FH contain 0FFH and 40H, respectively. The instruction sequence,		
		INC @R0 INC R0 INC @R0		
		will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH holding (respectively) 00H and 41H.		
INC A B Cy	ytes: cles:	1 1		
Enco	ding:	0 0 0 0 1 0 0		
Opera	ition:	INC $(A) \longleftarrow (A) + 1$		
INC R B Cy	n ytes: cles:			
Enco	ding:	0 0 0 0 1 r r r		
Opera	ition:	INC (Rn) \leftarrow (Rn) + 1		
INC di By Cyc	rect ytes: cles:	2 1		
Encod	ding:	0 0 0 0 0 1 0 1 direct address		
Opera	tion:	INC $(direct) \leftarrow (direct) + 1$		
INC @ By Cyc	Ri /tes: cles:	1 1 1		
Encod	ling:	0 0 0 0 1 1 i		
Operat	tion:	INC $((Ri)) \leftarrow ((Ri)) + 1$		

MEMORY, ADDRESSING, INSTRUCTION SET

INC DPTR

Av. 4	
Function: Description:	Increment Data Pointer Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 2 ¹⁶) is performed; an overflow of the low-order byte of the data pointer (DPL) from 0FFH to 00H will increment the high-order byte (DPH). No flags are affected.
Example:	This is the only 16-bit register which can be incremented. Registers DPH and DPL contain 12H and 0FEH, respectively. The instruction sequence,
	INC DPTR INC DPTR INC DPTR
Bytes: Cycles:	will change DPH and DPL to 13H and 01H. 1 2
Encoding:	1 0 1 0 0 0 1 1
Operation:	INC $(DPTR) \leftarrow (DPTR) + 1$
JB bit,rel	
Function: Description: Example:	Jump if Bit set If the indicated bit is a one, jump to the address indicated; otherwise proceed with the next instruc- tion. The branch destination is computed by adding the signed relative-displacement in the third in- struction byte to the PC, after incrementing the PC to the first byte of the next instruction. <i>The bit</i> <i>tested is not modified</i> . No flags are affected. The data present at input port 1 is 11001010B. The accumulator holds 56 (01010110B). The instruc- tion sequence,
	JB P1.2,LABEL1 JB ACC.2,LABEL2
Bytes: Cycles:	will cause program execution to branch to the instruction at label LABEL2. 3 2
Encoding:	0 0 1 0 0 0 0 0 bit address rel. address
Operation:	JB $(PC) \leftarrow (PC) + 3$ IF (bit) = 1 THEN $(PC) \leftarrow (PC) + rel$

JBC bit,rel

Eunction:	Jump if Bit is set and Clear hit	
Example:	If the indicated bit is one, branch to the address indicated: otherwise proceed with the next instruction. In either case, clear the designated bit. The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction. No flags are affected. Note: When this instruction is used to test an output pin, the value used as the original data will be read from the output data latch, not the input pin. The accumulator holds 56H (01010110B). The instruction sequence,	
	JBC ACC.3,LABEL1 JBC ACC.2,LABEL2	
Bytes: Cycles: Encoding:	will cause program execution to continue at the instruction identified by the label LABEL2, with the accumulator modified to 52H (01010010B). 3 2 0 0 0 1 0 0 0 0 bit address rel. address	
Operation:	JBC $(PC) \leftarrow (PC) + 3$ IF (bit) = 1 THEN (bit) \leftarrow 0 (PC) \leftarrow (PC) + rel	
JC rel		

Function: Description: Example:	Jump if Carry is set If the carry flag is set, branch to the address indicated; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second in- struction byte to the PC, after incrementing the PC twice. No flags are affected. The carry flag is cleared. The instruction sequence,			
	JC LABEL1 CPL C JC LABEL2			
	will set the carry and cause program execution to continue at the instruction identified by the label			
Bytes: Cycles:	2 2 2			
Encoding:	0 1 0 0 0 0 0 0 rel. address			
Operation:	JC $(PC) \leftarrow (PC) + 2$ IF $(C) = 1$ THEN			
	$(PC) \longrightarrow (PC) + rel$			

JMP @A+DPTR

Function: Description: Example:	Jump indirect Add the eight-bit unsigned contents of the accumulator with the sixteen-bit data pointer, and load the resulting sum to the program counter. This will be the address for subsequent instruction fetches. Sixteen-bit addition is performed (modulo 2^{16}): a carry-out from the low-order eight bits propagates through the higher-order bits. Neither the accumulator nor the data pointer is altered. No flags are affected. An even number from 0 to 6 is in the accumulator. The following sequence of instructions will branch to one of four A IMP instructions in a jump table starting at IMP. TBL			
		MOV	DPTR.#JMP_TBL	
		JMP	@A+DPTR	
	JMP_TBL:	AJMP	LABEL0	
		AJMP	LABEL1	
		AJMP	LABEL2	
		AJMP	LABEL3	
	If the accumu Remember th dress.	llator equals 04H at AJMP is a tw	when starting this sequence, execution o-byte instruction, so the jump instruct	will jump to label LABEL2. ions start at every other ad-
Bytes:	1			
Cycles:	2			
Encoding:	0 1 1 1	0 0 1 1		
Operation:	JMP (PC) ∢ →(A)	+ (DPTR)		

JNB bit,rel

Function: Description: Example:	Jump if Bit Not set If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next in- struction. The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction. <i>The bit tested is not modified.</i> No flags are affected. The data present at input port 1 is 11001010B. The accumulator holds 56H (01010110B). The in- struction sequence,
	JNB P1.3,LABEL1 JNB ACC.3,LABEL2
Bytes: Cycles:	will cause program execution to continue at the instruction at label LABEL2. 3 2
Encoding:	0 0 1 1 0 0 0 0 bit address rel. address
Operation:	JNB $(PC) \leftarrow (PC) + 3$ IF (bit) = 0 THEN $(PC) \leftarrow (PC) + rel.$

MEMORY, ADDRESSING, INSTRUCTION SET

JNC	rel			
Fun Descri Exa	nction: ption: mple:	Jump if Carry not set If the carry flag is a zero, branch to the address indicated; otherwise proceed with the next instruc- tion. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice to point to the next instruction. The carry flag is not modified. The carry flag is set. The instruction sequence,		
-		JNC LABEL1 CPL C JNC LABEL2		
L C	Bytes: ycles:	will clear the carry and cause program execution to continue at the instruction identified by the label LABEL2. 2 2		
Ence	oding:	0 1 0 1 0 0 0 0 rel. address		
Oper	ation:	JNC $(PC) \leftarrow (PC) + 2$ IF $(C) = 0$ THEN $(PC) \leftarrow (PC) + rel$		
JNZ	rel			
Fun Descri Exa	ption:	Jump if accumulator Not Zero If any bit of the accumulator is a one, branch to the indicated address; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice. The accumulator is not modified. No flags are affected. The accumulator originally holds 00H. The instruction sequence,		
	•	JNZ LABEL1 INC A JNZ LABEL2		
L C	Bytes: ycles:	will set the accumulator to 01H and continue at label LABEL2. 2 2		
Enco	oding:	0 1 1 1 0 0 0 0 rel. address		
Oper	ation:	JNZ $(PC) \leftarrow (PC) + 2$ IF $(A) \neq 0$ THEN $(PC) \leftarrow (PC) + rel$		

MEMORY, ADDRESSING, INSTRUCTION SET

JZ rel

Function: Description: Example:	Jump if Accumulator Zero If all bits of the accumulator are zero, branch to the address indicated; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice. The accumulator is not modified. No flags are affected. The accumulator originally contains 01H. The instruction sequence,	
	JZ LABEL1 DEC A JZ LABEL2	
Bytes: Cycles:	will change the accumulator to 00H and cause program execution to continue at the instruction identified by the label LABEL2. 2 2 2	
Encoding:	0 1 1 0 0 0 0 0 rel. address	
Operation:	JZ $(PC) \leftarrow (PC) + 2$ IF $(A) = 0$ THEN $(PC) \leftarrow (PC) + rel$	

LCALL addr16

Function: Description: Example:	Long Call LCALL calls a subroutine located at the indicated address. The instruction adds three to the pro- gram counter to generate the address of the next instruction and then pushes the 16-bit result onto the stack (low byte first), incrementing the stack pointer by two. The high-order and low-order bytes of the PC are then loaded, respectively, with the second and third bytes of the LCALL in- struction. Program execution continues with the instruction at this address. The subroutine may therefore begin anywhere in the full 64K-byte program memory address space. No flags are af- fected. Initially the stack pointer equals 07H. The label "SUBRTN" is assigned to program memory loca- tion 1234H. After executing the instruction,		
	LCALL SUBRTN		
Bytes: Cycles:	at location 0123H, the stack pointer will contain 09H, internal RAM locations 08H and 09H will contain 26H and 01H, and the PC will contain 1235H. 3 2		
Encoding:	0 0 0 1 0 0 1 0 addr15 - addr8 addr7 - addr0		
Operation:	LCALL $(PC) \longleftarrow (PC) + 3$ $(SP) \longleftarrow (SP) + 1$ $((SP)) \longleftarrow (PC_{7-0})$ $(SP) \longleftarrow (SP) + 1$ $((SP)) \longleftarrow (PC_{15-8})$ $(PC) \longleftarrow addr_{15-0}$		

,

LJMP addr16

Function: Description: Example:	Long Jump LJMP causes an unconditional branch to the indicated address, by loading the high-order and lo order bytes of the PC (respectively) with the second and third instruction bytes. The destinati may therefore be anywhere in the full 64K program memory address space. No flags are affected The label "JMPADR" is assigned to the instruction at program memory location 1234H. The	
	struction,	
	LJMP JMPADR	
Bytes: Cycles:	at location 0123H will load the program counter with 1234H. 3 2	
Encoding:	0 0 0 0 0 1 0 addr15 - addr8 addr7 - addr0	
Operation:	LJMP $(PC) = addr_{15-0}$	

MOV <dest-byte>,<src-byte>

Function: Move byte variable **Description:** The byte variable indicated by the second operand is copied into the location specified by the first operand. The source byte is not affected. No other register or flag is affected. This is by far the most flexible operation. Fifteen combinations of source and destination addressing modes are allowed. Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The data present at input port 1 is 11001010B (0CAH). MOV R0,#30H ;R0<= 30H MOV A,@R0 ;A <= 40HMOV **R1.A** :R1 < = 40HMOV R,@R1 ;B < = 10HMOV @R1,P1 ;RAM (40H) <= 0CAH MOV P2,P1 ;P2 #0CAH leaves the value 30H in register 0, 40H in both the accumulator and register 1, 10H in register B, and 0CAH (11001010B) both in RAM location 40H and output on port 2. MOV A,Rn Bytes: 1 Cycles: 1 Encoding: 1 1 1 0 1 r r r **Operation:** MOV (A)**◄**—(Rn) MOV A,direct Bytes: 2 Cycles: 1 Encoding: 1 1 1 0 0 1 0 direct address 1 **Operation:** MOV (A) ← (direct)

MOV A,@RI Bytes:	1	
Cycles:	1	
Encoding:	1 1 1 0 0 1 1 i	
Operation:	MOV (A) ◄ — ((Ri))	
MOV A,#data		
Bytes: Cycles:	2 1	
Encoding:	0 1 1 1 0 1 0 0	immediate data
Operation:	MOV (A) ≪ #data	
MOV Rn,A		
Bytes:	1	
Cycles.	1	
Encoding:	1 1 1 1 1 r r r	
Operation:	MOV	
MOV De diese	$(Rn) \longleftarrow (A)$	
MOV Rh,dired Bytes:	2	
Cycles:	2	
Encoding:	10101rrr	direct addr.
Operation:	MOV (Rn) ∢ →(direct)	
MOV Rn,#data	1	
Bytes: Cycles:	2	
Encoding:	0 1 1 1 1 r r r	immediate data
Operation:	MOV (Rn) ← #data	
MOV direct,A		
Bytes: Cvcles:	2	
Freedings		
Encoding:		direct address
Operation:	MOV (direct) ← (A)	
MOV direct,R	n	
Bytes: Cycles:	2 2	
Encoding:	1 0 0 0 1 r r r	direct address

Operation:	MOV (direct) — (Rn)
MOV direct,d Bytes: Cycles:	irect 3 2
Encoding:	1 0 0 1 0 1 dir. addr. (src) dir. addr. (dest)
Operation:	MOV (direct)
MOV direct,@ Bytes: Cycles:	2 2
Encoding:	1 0 0 0 0 1 1 i direct addr.
Operation:	MOV (direct) — ((Ri))
MOV direct,# Bytes: Cycles:	data 3 2
Encoding:	0 1 1 0 1 0 1 direct address immediate data
Operation:	MOV (direct) ← #data
MOV @Ri,A Bytes: Cycles:	1 1 .
Encoding:	1 1 1 1 0 1 1 i
Operation:	MOV ((Ri)) ∢ (A)
MOV @Ri,dir Bytes: Cycles:	ect 2 2
Encoding:	1 0 1 0 0 1 1 i direct addr.
Operation:	MOV ((Ri))
MOV @Ri,#da Bytes: Cycles:	ata 2 1
Encoding:	0 1 1 1 0 1 1 i immediate data
Operation:	MOV ((RI)) ← #data
MOV <dest-bit>,<src-bit>

Function: Description: Example:	Move bit data The Boolean variable indicated by the second operand is copied into the locatior first operand. One of the operands must be the carry flag; the other may be any dir bit. No other register or flag is affected. The carry flag is originally set. The data present at input port 3 is 11000101B. Th written to output port 1 is 35H (00110101B).	n specified by the rectly addressable e data previously
	MOV P1.3,C MOV C,P3.3 MOV P1.2,C	
	will leave the carry cleared and change port 1 to 39H (00111001B).	
MOV C,bit Bytes: Cycles:	2 1	
Encoding:	1 0 1 0 0 0 1 0 bit address	
Operation:	MOV (C)← (bit)	
MOV bit,C Bytes: Cycles:	2 2	
Encoding:	1 0 0 1 0 0 1 0 bit address	
Operation:	MOV (bit) ← (C)	

MOV DPTR,#data16

Function: Description:	Load Data Pointer with a 16-bit constant The data pointer is loaded with the 16-bit constant indicated. The 16-bit constant is loaded into t second and third bytes of the instruction. The second byte (DPH) is the high-order byte, while t third byte (DPL) holds the low-order byte. No flags are affected.			
Example:	This is the only instruction which moves 16 bits of data at once. The instruction,			
	MOV DPTR,#1234H			
Bytes: Cycles:	will load the value 1234H into the data pointer: DPH will hold 12H and DPL will hold 34H. 3 2			
Encoding:	1 0 0 1 0 0 0 0 immed. data15 - 8 immed. data7 - 0			
Operation:	MOV (DPTR) — #data ₁₅₋₀			

MOVC A,@A+<base-reg>

Function:Move Code byteDescription:The MOVC instructions load the accumulator with a code byte, or constant from program memory.
The address of the byte fetched is the sum of the original unsigned eight-bit accumulator contents
and the contents of a sixteen-bit base register, which may be either the data pointer or the PC. In the
latter case, the PC is incremented to the address of the following instruction before being added
with the accumulator: otherwise the base register is not altered. Sixteen-bit addition is performed so
a carry-out from the low-order eight bits may propagate through higher-order bits. No flags are affected.

Example: A value between 0 and 3 is in the accumulator. The following instructions will translate the value in the accumulator to one of four values defined by the DB (define byte) directive.

REL_PC:	INC	Α
	MOVC	A,@A + PC
	RET	
	DB	66H
	DB	77H
	DB	88H
	DB	99H

If the subroutine is called with the accumulator equal to 01H, it will return with 77H in the accumulator. The INC A before the MOVC instruction is needed to "get around" the RET instruction above the table. If several bytes of code separated the MOVC from the table, the corresponding number would be added to the accumulator instead.

MOVC A,@A+DPTR

Bytes:	1							
Cycles:	2							
Encoding:	1	0	0	1	0	0	1	1
Operation:	M((A)		- ((A	() +	- ([OPT	`R))	
MOVC A,@A	+ PC	;						
Bytes: Cycles:	1 2							
Encoding:	1	0	0	0	0	0	1	1
Operation:	M	ovo	2					
-	(P0	C)ৰ	(PC)	+	1		
	(A)	-	-((A	() +	- (F	PC))		

Function: Description:	Move External The MOVX instructions transfer data between the accumulator and a byte of external data memory, hence the "X" appended to MOV. There are two types of instructions, differing in whether they provide an eight-bit or sixteen-bit indirect address to the external data RAM.					
	In the first type, the contents of R0 or R1 in the current register bank provide an eight-bit address multiplexed with data on P0. Eight bits are sufficient for external I/O expansion decoding or a relatively small RAM array. For somewhat larger arrays, any output port pins can be used to output higher-order address bits. These pins would be controlled by an output instruction preceding the MOVX.					
	In the second type of MOVX instruction, the data pointer generates a sixteen-bit address. P2 outputs the high-order eight address bits (the contents of DPH) while P0 multiplexes the low-order eight bits (DPL) with data. P2 retains the high-order bits; any data previously on P2 is lost. This form is faster and more efficient when accessing very large data arrays (up to 64K bytes), since no additional instructions are needed to set up the output ports.					
Example:	It is possible in some situations to mix the two MOVX types. A large RAM array with its high- order address lines driven by P2 can be addressed via the data pointer, or with code to output high- order address bits to P2 followed by a MOVX instruction using R0 or R1. An external 256 byte RAM using multiplexed address/data lines (e.g., an Intel [®] 8155 RAM/I/O/Timer) is connected to the 8051 Port 0. Port 3 provides control ones for the external RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1 contain 12H and 34H. Location 34H of the external RAM holds the value 56H. The instruction sequence,					
	MOVX A,@R1 MOVX @R0,A					
	copies the value 56H into both the accumulator and external RAM location 12H.					
MOVX A,@Ri Bytes:						
Cycles:	2					
Encoding:	1 1 1 0 0 0 1 i					
Operation:	$MOVX (A) \leftarrow ((Ri))$					
MOVX A.@DF	TR					
Bytes:	1 .					
Cycles:	2					
Encoding:						
Operation:	MOVX (A)—((DPTR))					
MOVX @Ri,A Bytes: Cycles:	1 2					

MOVX <dest-byte>,<src-byte>

Encoding:

Operation:

1 1 1 1 0 0 1 i

MOVX

((Ri)) - (A)

MOVX @DPT Bytes: Cycles:	R,A 1 2								
Encoding:	1	1	1	1	0	0	0	0	
Operation:	MC (Di	OVX PTF	< ₹))◄	-	(A)				

MUL A

Function: Description: Example:	Multiply MUL AB multiplies the unsigned eight-bit integers in the accumulator and register B. The low-order byte of the sixteen-bit product is left in the accumulator, and the high-order byte in B. If the pro- duct is greater than 255 (0FFH) the overflow flag is set; otherwise it is cleared. The carry flag is always cleared. Originally the accumulator holds the value 80 (50H). Register B holds the value 160 (0A0H). The in- struction,				
	MUL AB				
Bytes: Cycles:	will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the accumulator is cleared. The overflow flag is set, carry is cleared. 1 4				
Encoding:	1 0 1 0 0 1 0 0				
Operation:	MUL (B) $_{15-8}$ (A) X (B) (A) $_{7-0}$				

NOP

Function:	No Operation
Description:	Execution continues at the following instruction. Other than the PC, no registers or flags are affected.
Example:	It is desired to produce a low-going output pulse on bit 7 of port 2 lasting exactly 5 cycles. A simple SETB/CLR sequence would generate a one-cycle pulse, so four additional cycles must be inserted. This may be done (assuming no interrupts are enabled) with the instruction sequence,
	CLR P2.7 NOP NOP NOP SETB P2.7
Bytes: Cycles:	1 1
Encoding:	0 0 0 0 0 0 0 0
Operation:	NOP $(PC) \leftarrow (PC) + 1$

3-41

ORL <dest-byte> <src-byte>

Function: Description:	Logical-OR for byte variables ORL performs the bitwise logica in the destination byte. No flags	ll-OR operation bet are affected.	ween the indicated varia	bles, storing the results
	The two operands allow six ad cumulator, the source can use rea destination is a direct address, t	dressing mode con gister, direct, registe he source can be th	nbinations. When the c r-indirect, or immediate e accumulator or immed	lestination is the ac- addressing; when the liate data.
Example:	<i>Note:</i> When this instruction is a data will be read from the outp If the accumulator holds 0C3H	used to modify an out data latch, <i>not</i> the (11000011B) and R	output port, the value us ne input pins. 0 holds 55H (01010101H	ed as the original port 3) then the instruction,
	ORL A,R0			
	will leave the accumulator holdin	g the value 0D7H (1	1010111B).	
	When the destination is a directly RAM location or hardware regist may be either a constant data valu time. The instruction,	addressed byte, the er. The pattern of b e in the instruction o	e instruction can set com its to be set is determined r a variable computed in	binations of bits in any l by a mask byte, which the accumulator at run-
	ORL P1,#00110010B			
	will set bits 5, 4, and 1 of output	port 1.		
ORL A,Rn Bytes: Cycles:	1 1			
Encoding:	0 1 0 0 1 r r r			
Operation:	$\begin{array}{l} \text{ORL} \\ \text{(A)} \checkmark \text{(A)} \lor \text{(Rn)} \end{array}$			
ORL A,direct Bytes: Cycles:	2 1			
Encoding:	0 1 0 0 0 1 0 1	direct address		
Operation:	ORL (A) \leftarrow (A) \lor (direct)		Second and a second s	
ORL A,@Ri Bytes: Cycles:	1			
Encoding:	0 1 0 0 0 1 1 i			1. N ¹
Operation:	ORL (A) ∢ →(A) ∨ ((Ri))			
ORL A,#data Bytes: Cycles:	2 1		an a	
Encoding:	0 1 0 0 0 1 0 0	immediate data		

Operation:	ORL (A) ← (A) ∨ #data
ORL direct,A Bytes: Cycles:	2 1
Encoding:	0 1 0 0 0 0 1 0 direct address
Operation:	ORL (direct) ← (direct) ∨ (A)
ORL direct,#d Bytes: Cycles:	ata 3 2
Encoding:	0 1 0 0 0 0 1 1 direct addr. immediate data
Operation:	ORL (direct)←(direct ∨ #data

ORL C, <src-bit>

Function: Description Example:	Logical-OR for bit variables Set the carry flag if the Boolean value is a logical l; leave the carry in its current state otherwise. A slash ("/") preceding the operand in the assembly language indicates that the logical complement of the ad- dressed bit is used as the source value, but the source bit itself is not affected. No other flags are affected. Set the carry flag if and only if $P1.0 = 1$, ACC.7 = 1, or $OV = 0$:			
	MOVC,P1.0;LOAORLC,ACC.7;ORORLC,/OV:OR	AD CARRY WITH INPUT PIN P10 CARRY WITH THE ACC. BIT 7 CARRY WITH THE INVERSE OF OV		
ORL C,bit Bytes: Cycles:	2 2			
Encoding:	0 1 1 1 0 0 1 0 bit a	ddress		
Operation:	ORL (C) \leftarrow (C) \lor (bit)			
ORL C,/bit Bytes: Cycles:	2 2			
Encoding:	1 0 1 0 0 0 0 0 bit a	ddress		
Operation:	ORL (C) ← (C) ∨ /(bit)			

MEMORY, ADDRESSING, INSTRUCTION SET

POP direct

Function: Description: Example:	Pop from stack The contents of the internal RAM location addressed by the stack pointer is read, and the stack pointer is decremented by one. The value read is the transfer to the directly addressed byte indicated. No flags are affected. The stack pointer originally contains the value 32H, and internal RAM locations 30H through 32H contain the values 20H, 23H, and 01H, respectively. The instruction sequence,
	POP DPH POP DPL
	will leave the stack pointer equal to the value 30H and the data pointer set to 0123H. At this point the instruction,
	POP SP
Bytes: Cycles:	will leave the stack pointer set to 20H. Note that in this special case the stack pointer was decremented to 2FH before being loaded with the value popped (20H). 2 2
Encoding:	1 1 0 1 0 0 0 0 direct address
Operation:	POP (direct) \leftarrow ((SP)) (SP) \leftarrow (SP) $- 1$

PUSH direct

Function: Description: Example:	Push onto stack The stack pointer is incremented by one. The contents of the indicated variable is then copied into the in- ternal RAM location addressed by the stack pointer. Otherwise no flags are affected. On entering an interrupt routine the stack pointer contains 09H. The data pointer holds the value 0123H. The instruction sequence,			
	PUSH DPL PUSH DPH			
∺ Bytes: Cycles:	will leave the stack pointer set to 0BH and store 23H and 01H in internal RAM locations 0AH and 0BH, respectively. 2 2			
Encoding:	1 1 0 0 0 0 0 0 direct address			
Operation:	PUSH (SP) ← (SP) + 1 ((SP)) ← (direct)			

٠

RET					
Function: Description:	Return from subroutine RET pops the high- and low-order bytes of the PC successively from the stack, decrementing the stack pointer by two. Program execution continues at the resulting address, generally the instruction im- mediately following an ACALL or LCALL. No flags are affected.				
Example:	The stack pointer originally contains the value 0BH. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The instruction,				
	RET				
Bytes: Cycles:	will leave the stack pointer equal to the value 09H. Program execution will continue at location 0123H. 1 2				
Encoding:	0 0 1 0 0 0 1 0				
Operation:	RET $(PC_{15-8}) \leftarrow ((SP))$ $(SP) \leftarrow (SP) - 1$ $(PC_{7-0}) \leftarrow ((SP))$ $(SP) \leftarrow (SP) - 1$				

RETI

Function: Description: Example:	Return from interrupt RETI pops the high- and low-order bytes of the PC successively from the stack, and restores the inter- rupt logic to accept additional interrupts at the same priority level as the one just processed. The stack pointer is left decremented by two. No other registers are affected; the PSW is <i>not</i> automatically restored to its pre-interrupt status. Program execution continues at the resulting address, which is generally the instruction immediately after the point at which the interrupt request was detected. If a lower- or same-level interrupt had been pending when the RETI instruction is executed, that one in- struction will be executed before the pending interrupt is processed. The stack pointer originally contains the value 0BH. An interrupt was detected during the instruction ending at location 01224. Internal RAM locations 0AH and 0BH contain the values 23H and 01H				
	respectively. The instruction, RETI				
Bytes: Cycles:	will leave the stack pointer equal to 09H and return program execution to location 0123H. 1 2				
Encoding:	0 0 1 1 0 0 1 0				
Operation:	RETI $(PC_{15-8}) \leftarrow ((SP))$ $(SP) \leftarrow (SP) - 1$ $(PC_{7-0}) \leftarrow ((SP))$ $(SP) \leftarrow (SP) - 1$				

RL Α Function: Rotate accumulator Left **Description:** The eight bits in the accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0 position. No flags are affected. Example: The accumulator holds the value 0C5H (11000101B). The instruction, RL Α leaves the accumulator holding the value 8BH (10001011B) with the carry unaffected. Bytes: 1 Cycles: 1 **Encoding:** 0 0 1 0 0 0 1 1 **Operation:** RL n = 0 - 6 $(A_{n+1}) \leftarrow (A_n)$ (A0)**◄** (A7) RLC Α Function: Rotate accumulator Left through the Carry flag **Description:** The eight bits in the accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves into the carry flag; the original state of the carry flag moves into the bit 0 position. No other flags are affected. Example: The accumulator holds the value 0C5H (11000101B), and the carry is zero. The instruction, RLC Α leaves the accumulator holding the value 8BH (10001010B) with the carry set. Bytes: 1 Cycles: 1 Encoding: 0 0 1 1 0 0 1 1 RLC **Operation:** n = 0 - 6 $(A_n+1) \leftarrow (A_n)$ (A0)←(C) (C)**◄**—(A7) Α RR Function: Rotate accumulator Right The eight bits in the accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7 posi-**Description:** tion. No flags are affected. Example: The accumulator holds the value 0C5H (11000101B). The instruction, RR Α leaves the accumulator holding the value 0E2H (11100010B) with the carry unaffected. Bytes: 1 Cycles: 1 Encoding: 0 0 0 0 0 0 1 1

Operation: RR (An) ← (A_{n + 1}) n = 0 - 6 (A7) ← (A0)

RRC	Α	
Fun Descri Exa	ction: ption: mple:	Rotate accumulator Right through Carry flag The eight bits in the accumulator and the carry flag are together rotated one bit to the right. Bit 0 moves into the carry flag; the original value of the carry flag moves into the bit 7 position. No other flags are affected. The accumulator holds the value 0C5H (11000101B), the carry is zero. The instruction,
		RRC A
E Cy	Bytes: ycles:	leaves the accumulator holding the value 62 (01100010B) with the carry set. 1 1
Enco	oding:	0 0 0 1 0 0 1 1
Opera	ation:	RRC (An) \leftarrow (A _{n+1}) n=0-6 (A7) \leftarrow (C) (C) \leftarrow (A0)
SETB	 bit	>

Function: Set Bit **Description:** SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable bit. No other flags are affected. The carry flag is cleared. Output port 1 has been written with the value 34H (00110100B). The in-Example: structions, С SETB SETB P1.0 will leave the carry flag set to 1 and change the data output on port 1 to 35H (00110101B). SETB C Bytes: 1 Cycles: 1 Encoding: 1 1 0 1 0 0 1 1 **Operation:** SETB (C)**←**1 SETB bit Bytes: 2 Cycles: 1

bit address

 $0 \ 0 \ 1$

0

0

1

1 1

SETB (bit) -1

Encoding:

Operation:

SJMP rel

Function: Description: Example:	Short Jump Program control branches unconditionally to the address indicated. The branch destination is com- puted by adding the signed displacement in the second instruction byte to the PC, after incremen ting the PC twice. Therefore, the range of destinations allowed is from 128 bytes preceding this in struction to 127 bytes following it. The label "RELADR" is assigned to an instruction at program memory location 0123H. The in struction,				
	SJMP RELADR				
	will assemble into location 0100H. After the instruction is executed, the PC will contain the value 0123 H.				
Bytes:	(<i>Note:</i> Under the above conditions the instruction following SJMP will be at 102H. Therefore, the displacement byte of the instruction will be the relative offset (0123H-0102H) = 21H. Put another way, an SJMP with a displacement of 0FEH would be a one-instruction infinite loop.) 2				
Cycles:	$\frac{1}{2}$				
Encoding:	1 0 0 0 0 0 0 0 rel. address				
Operation:	SJMP $(PC) \blacktriangleleft (PC) + 2$ $(PC) \bigstar (PC) + rel$				

SUBB A, <src-byte>

Function: Subtract with borrow

Description:

SUBB subtracts the indicated variable and the carry flag together from the accumulator, leaving the result in the accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit 7, and clears C otherwise. (If C was set *before* executing a SUBB instruction, this indicates that a borrow was needed for the previous step in a multiple precision subtraction, so the carry is subtracted from the accumulator along with the source operand.) AC is set if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit 6, but not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers OV indicates a negative number produced when a negative value is subtracted from a positive value, or a positive result when a positive number is subtracted from a negative number.

Example: The source operand allows four addressing modes: register, direct, register-indirect, or immediate. The accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the carry flag is set. The instruction,

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due to the carry (borrow) flag being set before the operation. If the state of the carry is not known before starting a single or multiple-precision subtraction, it should be explicitly cleared by a CLR C instruction.

SUBB A,Rn Bytes: Cycles:	1
Encoding:	1 0 0 1 1 r r r
Operation:	SUBB $(A) \leftarrow (C) - (Rn)$
SUBB A,direc Bytes: Cycles:	t 2 1
Encoding:	1 0 0 1 0 1 0 1 direct address
Operation:	SUBB $(A) \leftarrow (A) - (C) - (direct)$
SUBB A,@Ri Bytes: Cycles:	1 1
Encoding:	1 0 0 1 0 1 1 i
Operation:	SUBB (A) $-$ (C) - ((Ri))
SUBB A,#data Bytes: Cycles:	2
Encoding:	1 0 0 1 0 1 0 0 immediate data
Operation:	SUBB $(A) \leftarrow (A) - (C) - #data$

SWAP

Α

Function: Description: Example:	Swap nibbles within the Accumulator SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the accumulator (bits 3-0 and bits 7-4). The operation can also be thought of as a four-bit rotate instruction. No flags are af- fected. The accumulator holds the value 0C5H (11000101B). The instruction,			
-	SWAP A			
Bytes: Cycles:	leaves the accumulator holding the value 5CH (01011100B). 1 1			
Encoding:	1 1 0 0 0 1 0 0			
Operation:	SWAP (A3-0) $(A_{7-4}), (A_{7-4}) \leftarrow (A_{3-0})$			

XCH A,<byte>

Function: Description:	Exchange Accumulator with byte variable XCH loads the accumulator with the contents of the indicated variable, at the same time writing the original accumulator contents to the indicated variable. The source/destination operand can use register, direct, or register-indirect addressing.					
Example:	R0 contains the address 20H. The accumulator holds the value 3FH (00111111B). Internal RAM location 20H holds the value 75H (01110101B). The instruction,					
	XCH A,@R0					
	will leave RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in the ac- cumulator.					
XCH A,Rn Bytes: Cycles:	1 1					
Encoding:	1 1 0 0 1 r r r					
Operation:	XCH (A) (Rn)					
XCH A,direct Bytes: Cycles:	2 1					
Encoding:	1 1 0 0 0 1 0 1 direct address					
Operation:	$\begin{array}{c} \text{XCH} \\ \text{(A)} \underbrace{\longrightarrow} (\text{direct}) \end{array}$					
XCH A,@Ri Bytes: Cycles:	1 1					
Encoding:	1 1 0 0 0 1 1 i					
Operation:	$\begin{array}{c} \text{XCH} \\ \text{(A)} \overbrace{\longleftarrow} \\ \end{array} \\ \hline \\ \hline$					
XCHD A,@F	₹i					
Function: Description:	Exchange Digit XCHD exchanges the low-order nibble of the accumulator (bits 3-0), generally representing a hex- adecimal or BCD digit) with that of the internal RAM location indirectly addressed by the specified register. The high-order nibbles (bits 7-4) of each register are not affected. No flags are affected.					
Example:	R0 contains the address 20H. The accumulator holds the value 36H (00110110B). Internal RAM location 20H holds the value 75H (0111010B). The instruction,					
	XCHD A,@R0					
Bytes: Cycles:	will leave RAM location 20H holding the value 76H (01110110B) and 35H (00110101B) in the ac- cumulator. 1 1					
Encoding:	1 1 0 1 0 1 1 i					
Operation:	$\begin{array}{c} \hline \\ XCHD \\ (A_{3-0}) \\ \hline \end{array} ((Ri_{3-0})) \end{array}$					

XRL <dest-byte>,<src-byte>

Function: Logical Exclusive-OR for byte variables XRL performs the bitwise logical Exclusive-OR operation between the indicated variables, storing **Description:** the results in the destination. No flags are affected. The two operands allow six addressing mode combinations. When the destination is the accumulator, the source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the source can be the accumulator or immediate data. (Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins.) Example: If the accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) then the instruction, XRL A,R0 will leave the accumulator holding the value 69H (01101001B). When the destination is a directly addressed byte, this instruction can complement combinations of bits in any RAM location or hardware register. The pattern of bits to be complemented is then determined by a mask byte, either a constant contained in the instruction or a variable computed in the accumulator at run-time. The instruction. XRL P1,#00110001B will complement bits 5, 4, and 0 of output port 1. XRL A.Rn Bytes: 1 Cycles: 1 Encoding: 0 1 1 0 1 r r r **Operation:** XRL $(A) \leftarrow (A) \oplus (Rn)$ XRL A.direct Bytes: 2 Cycles: 1 Encoding: 0 1 1 0 0 1 0 1 direct address **Operation:** XRL. $(A) \leftarrow (A) \oplus (direct)$ XRL A,@Ri Bytes: 1 Cycles: 1 **Encoding:** 0 1 1 0 0 1 1 i XRL **Operation:** $(A) \leftarrow (A) \oplus ((Ri))$ XRL A,#data Bytes: 2 Cycles: 1 Encoding: 0 1 1 0 0 1 0 0 immediate data

Operation:	XRL (A)← (A) ⊕ #data			
XRL direct,A Bytes: Cycles:	2 1			
Encoding:	0 1 1 0 0 0 1 0 direct address			
Operation:	$\begin{array}{l} XRL \\ (direct) \longleftarrow (A) \end{array}$			
XRL direct,#d Bytes: Cycles:	ata 3 2			
Encoding:	0 1 1 0 0 0 1 1 direct address immediate data]		
Operation:	XRL (direct) ← (direct) ⊕ #data			

Ехр	ande	ed 8(051	Fam	ily	4

Chapter 4 EXPANDED 8051 FAMILY

This chapter shows in very general terms some basic circuits for expanding the 8051 Family. As the product matures and Intel tests specific circuits, the User Manual will be updated. Also application notes will be published to help show actual, tested circuits designed by Intel personnel. The schematics included in this chapter should give the designer an insight into connecting external peripherals and memories to the 8051.

EXPANDED 8051 FAMILY

Figure 4-1. The Standalone 8051

Figure 4-2. I/O Expansion Using an 8243

Figure 4-3. Expanding Input Lines via Serial Port

Figure 4-4. Expanding Output Lines via Serial Port

Figure 4-5. External Program Memory Using a 2716

4-6

Figure 4-6. External Program Memory Using a 2732

EXPANDED 8051 FAMILY

4-7

Figure 4-7. Adding a Data Memory and I/O Expander

Figure 4-8. The Three-Chip System

Figure 4-9. Multiple 8051's Using Half-Duplex Serial Communication

Figure 4-10. Multiple Interrupt Sources

CHAPTER 5 8051 SOFTWARE ROUTINES

Chapter 5 contains two sections:

- 8051 Programming Techniques
- Peripheral Interfacing Techniques

The first section has 8051 software examples for some common routines in controller applications. Some routines included are multiple-precision arithmetic and table look-up techniques.

Peripheral Interfacing Techniques include routines for handling the 8051's I/O ports, serial channel and timer/counters. Discussed in this section is I/O port reconfiguration, software delay timing, and transmitting serial port character strings along with other routines.

8051 PROGRAMMING TECHNIQUES

Radix Conversion Routines

The divide instruction can be used to convert a number from one radix to another. BINBCD is a short subroutine to convert an eight-bit unsigned binary integer in the accumulator (between 0 & 255) to a threedigit (two byte) BCD representation. The hundred's digit is returned in one variable (HUND) and the ten's and one's digits returned as packed BCD in another (TENONE).

; BINBCD	CONVEI TO 3-DIO HUNDRI TENS' A	RT 8-BIT BINARY VA GIT PACKED BCD FO EDS' PLACE LEFT IN ND ONES' PLACES	RIABLE IN ACCUMULATOR DRMAT. I VARIABLE 'HUND', IN 'TENONE'.	
; HUND TENONE	DATA DATA	21H 22H		
; BINBCD:	MOV DIV MOV XCH DIV SWAP ADD MOV RET	B,#100 AB HUND,A A,#10 A,B AB A A,B TENONE,A	;DIVIDED BY 100 TO ;DETERMINE NUMBER OF HUNDREDS ;DIVIDE REMAINDER BY TEN TO ;DETERMINE NUMBER OF TENS LEFT ;TEN'S DIGIT IN ACC, REMAINDER IS ;ONE'S DIGIT ;PACK BCD DIGITS IN ACC	
;				

The divide instruction can also separate data in the accumulator into sub-fields. For example, dividing packed BCD data by 16 will separate the two nibbles, leaving the high-order digit in the accumulator and the loworder digit (remainder) in B. Each is right-justified, so the digits can be processed individually. This example receives two packed BCD digits in the accumulator, separates the digits, computes their product, and returns the product in packed BCD format in the accumulator.

MULBCD

;

UNPACK TWO BCD DIGITS RECEIVED IN ACCUMULATOR, FIND THEIR PRODUCT, AND RETURN PRODUCT IN PACKED BCD FORMAT IN ACCUMULATOR

MULBCD:	MOV	B,#10H	DIVIDE INPUT BY 16
	DIV	AB	A & B HOLD SEPARATED DIGITS
			(EACH RIGHT JUSTIFIED IN REGISTER).
	MUL	AB	A HOLDS PRODUCT IN BINARY FORMAT (0-
			(99 (DECIMAL) = 0 - 63H)
	MOV	B,#10	DIVIDE PRODUCT BY 10
	DIV	AB	A HOLDS NUMBER OF TENS, B HOLDS
			REMAINDER
	SWAP	Α	
	ORL	A,B	PACK DIGITS
	RET		·

Multiple Precision Arithmetic

The ADDC and SUBB instructions incorporate the previous state of the carry (borrow) flag to allow multiple-precision calculations by repeating the operation with successively higher-order operand bytes. If the input data for a multiple-precision operation is an unsigned string of integers, the carry flag will be set upon

completion if an overflow (for ADDC) or underflow (for SUBB) occurs. With two's complement signed data, the most significant bit of the original input data's most significant byte indicates the sign of the string, so the overflow flag (OV) will indicate if overflow or underflow occurred.

SUBSTR	SUBTRACT STRING INDICATED BY R1 FROM STRING INDICATED BY R0 TO PRECISION INDICATED BY R2. CHECK FOR SIGNED UNDERFLOW WHEN DONE.		
; SUBSTR: SUBS1:	CLR MOV SUBB MOV INC INC DJNZ	C A,@R0 A,@R1 @R0,A R0 R1 R2,SUBS1	;BORROW = 0. ;LOAD MINUEND BYTE ;SUBTRACT SUBTRAHEND BYTE ;STORE DIFFERENCE BYTE ;BUMP POINTERS TO NEXT PLACE ;LOOP UNTIL DONE
,	WHEN DONE, TEST IF OVERFLOW OCCURRED ON LAST ITERATION OF LOOP.		
;	JNB OV-OK:	OV,OVOK RET	(OVERFLOW RECOVERY ROUTINE) ;RETURN

Table Look-Up Sequences

The two versions of the MOVC instructions are used as part of a three-step sequence to access look-up tables in ROM. To use the DPTR version, load the Data Pointer with the starting address of a look-up table; load the accumulator with (or compute) the index of the entry desired; and execute MOVC A,@A + DPTR. The data pointer may be loaded with a constant for short tables, or to allow more complicated data structures, and tables with more than 256 entries, the values for DPH and DPL may be computed or modified with the standard arithmetic instruction set.

The PC-based version is used with smaller, "local" tables, and has the advantage of not affecting the data pointer. This makes it useful in interrupt routines or other situations where the DPTR contents might be significant. Again, a look-up sequence takes three steps: load the accumulator with the index; compensate for the offset from the look-up instruction's address to the start of the table by adding that offset to the accumulator; then execute the MOVC A,@A + PC instruction.

As a non-trivial situation where this instruction would be used, consider applications which store large multidimensional look-up tables of dot matrix patterns, nonlinear calibration parameters, and so on in the linear (one-dimensional) program memory. To retrieve data from the tables, variables representing matrix indices must be converted to the desired entry's memory address. For a matrix of dimensions (MDIMEN x NDIMEN) starting at address BASE and respective indices INDEXI and INDEXJ, the address of element (INDEXI, INDEXJ) is determined by the formula,

Entry Address = [BASE + (NDIMEN x INDEXI) + INDEXJ]

The subroutine MATRX1 can access an entry in any array with less than 255 elements (e.g., an 11x21 array with 231 elements). The table entries are defined using the Data Byte ("DB") directive, and will be contained in the assembly object code as part of the accessing subroutine itself.

To handle the more general case, subroutine MATRX2 allows tables to be unlimited in size, by combining the MUL instruction, double-precision addition, and the data pointer-based version of MOVC. The only restriction is that each index be between 0 and 255.

MATRX1	LOAD CONSTANT READ FROM TWO DIMENSIONAL LOOK-UP TABLE IN PROGRAM MEMORY INTO ACCUMULATOR USING LOCAL TABLE LOOK-UP INSTRUCTION, 'MOVC A,@A+PC'. THE TOTAL NUMBER OF TABLE ENTRIES IS ASSUMED TO BE SMALL, I.E. LESS THAN ABOUT 255 ENTRIES. TABLE USED IN THIS EXAMPLE IS 11 x 21. DESIRED ENTRY ADDRESS IS GIVEN BY THE FORMULA,			
;	[(BASE A	ADDRESS) + (21 X INDE	EXI) + (INDEXJ)]	
INDEXI INDEXJ	EQU DATA	R6 23H	;FIRST COORDINATE OF ENTRY (0-10). ;SECOND COORDINATE OF ENTRY (0-20).	
MATRX1:	MOV MOV MUL ADD	A,INDEXI B, #21 AB A,INDEXJ	;(21 X INDEXI) ;ADD IN OFFSET WITHIN ROW	
,	ALLOW ENTRY (FOR INSTRUCTION BY	TE BETWEEN "MOVC" AND	
,	INC MOVC RET	A A,@A+PC		
BASE1:	DB DB	1 2	;(entry 0,0) ;(entry 0,1)	
,	 DB DB	21 22	;(entry 0,20) ;(entry 1,0)	
;	 DB	42	;(entry 1,20)	
; ; MATRX2:	 DB MOV MOV	231 A,INDEXI B,#NDIMEN	;(entry 10,20) ;LOAD FIRST COORDINATE	
	MUL ADD MOV MOV ADDC	AB A,#LOW(BASE2) DPL,A A,B A.#HIGH(BASE2)	:INDEXI X NDIMEN ;ADD IN 16-BIT BASE ADDRESS	
	MOV	DPH,A A,INDEXJ	;DPTR = (BASE ADDR) + (INDEXI + NDIMEN)	
	MOVC RET	A,@A+DPTR	;ADD INDEXJ AND FETCH BYTE	

BASE2:	DB	0	;(entry 0,0)
	DB	0	;(entry 0,1)
;	DB	0	;(entry 0, NDIMEN-1)
	DB	0	;(entry 1,0)
;	 DB	 0	;(entry 1, NDIMEN-1)
;	 DB	 0	;(entry MDIMEN-1, NDIMEN-1)

Saving CPU Status during Interrupts

When the 8051 hardware recognizes an interrupt request, program control branches automatically to the corresponding service routine, by forcing the CPU to process a Long CALL (LCALL) instruction to the appropriate address. The return address is stored on the top of the stack. After completing the service routine, an RETI instruction returns the processor to the background program at the point from which it was interrupted.

Interrupt service routines must not change any variable or hardware registers modified by the main program, or else the program may not resume correctly. (Such a change might look like a spontaneous random error. An example of this will be given later in this section, in the second method of I/O port reconfiguration.) Resources used or altered by the service routine (Accumulator, PSW, etc.) must be saved and restored to their previous value before returning from the service routine. PUSH and POP provide an efficient and convenient way to save such registers on the stack.

If the SP register held 1FH when the interrupt was detected, then while the service routine was in progress the stack would hold the registers shown in Figure 5-1; SP would contain 26H. This is the most general case; if the service routine doesn't alter the B-register and data pointer, for example, the instructions saving and restoring those registers could be omitted.

; LOC_TMP	EQU	\$	REMEMBER LOCATION COUNTER
;	ORG LJMP	0003H SERVER	;STARTING ADDRESS FOR INTERRUPT ROUTINE ;JUMP TO ACTUAL SERVICE ROUTINE LOCATE ;ELSEWHERE
; SERVER:	 ORG PUSH	LOCTMP PSW	RESTORE LOCATION COUNTER
	PUSH PUSH PUSH	B DPL DPH	;SAVE ACCOMULATOR (NOTE DIRECT ADDRESS ;NOTATION) ;SAVE B REGISTER ;SAVE DATA POINTER
:	MOV	PSW,#00001000B	SELECT REGISTER BANK 1
;	 POP POP POP POP	DPH DPL B ACC	RESTORE REGISTERS IN REVERSE ORDER
	POP	PŚW	;RESTORE PSW AND RE-SELECT ORIGINAL ;REGISTER BANK ;RETURN TO MAIN PROGRAM AND RESTORE ;INTERRUPT LOGIC

Passing Parameters on the Stack

The stack may also pass parameters to and from subroutines. The subroutine can indirectly address the parameters derived from the contents of the stack pointer, or simply pop the stack into registers before processing.

One advantage here is simplicity. Variables need not be allocated for specific parameters, a potentially large number of parameters may be passed, and different calling programs may use different techniques for determining or handling the variables.

For example, the subroutine HEXASC converts a hexadecimal value to ASCII code for its low-order digit. It first reads a parameter stored on the stack by the calling program, then uses the low-order bits to access a local 16-entry look-up table holding ASCII codes, stores the appropriate code back in the stack and then returns. The accumulator contents are left unchanged.

Figure 5-1. Stack contents during interrupt

HEXASC:	MOV DEC	R0,SP R0	;ACCESS LOCATION PARAMETER PUSHED INTO
	VCH		BEAD INDUT DARAMETER AND SAVE ACCUMULATOR
			MASK ALL BUT LOW ORDER 4 BITS
		Δ #2	ALLOW FOR OFFSET FROM MOVE TO TABLE
	MOVC	A @ A + PC	READ LOOK JIP TABLE ENTRY
	XCH		PASS BACK TRANSLATED VALUE AND RESTORE
	XOII	A,@N0	
	RET		RETURN TO BACKGROUND PROGRAM
ASCTRU		' ∩'	ASCIL CODE FOR 10H
ASCIDE.	DB	· · · ·	
		· · · · · · · · · · · · · · · · · · ·	
		2 (2)	
		с (л)	
		5 (c)	
		0 (7)	
		/ (0)	
		0	
		9 (A)	
	DB		
	DB		
	DB		
	UВ	·F.	

The background program may reach this subroutine with several different calling sequences, all of which PUSH a value before calling the routine and POP the result to any destination register or port later. There is even the option of leaving a value on the stack if it won't be needed until later. The example below converts the three-digit BCD value computed in the Radix Conversion example above to a three-character string, calling a subroutine SP_OUT to output an eight-bit code in the accumulator.
;	 PUSH	HUND	
	CALL	HEXASC	CONVERT HUNDREDS DIGIT
	POP	ACC	
	CALL	SP_OUT	TRANSMIT HUNDREDS CHARACTER
	PUSH	TENONE	
	CALL	HEXASC	CONVERT ONE'S PLACE DIGIT
			;BUT LEAVE ON STACK!
	MOV	A, TENONE	
	SWAP	A	;RIGHT-JUSTIFY TEN'S PLACE
	PUSH	ACC	CONVERT TEN'S PLACE DIGIT
	CALL	HEXASC	
	POP	ACC	
	CALL	SP OUT	TRANSMIT TEN'S PLACE CHARACTER
	POP	ACC	
	CALL	SPOUT	TRANSMIT ONE'S PLACE CHARACTER

N-Way Branching

There are several different means for branching to sections of code determined or selected at run time. (The single destination addresses incorporated into conditional and unconditional jumps are, of course, fixed at assembly time.) Each has advantages for different applications.

In a typical N-way branch situation, the potential destinations are generally known at assembly time. One of a number of small routines is selected according to the value of an index variable determined while the program is running. The most efficient way to solve this problem is with the MOVC and an indirect jump instruction, using a short table of offset values in ROM to indicate the relative starting addresses of the several routines.

JMP @A + DPTR is an instruction which performs an indirect jump to an address determined during program

execution. The instruction adds the eight-bit unsigned accumulator contents with the contents of the sixteenbit data pointer, just like MOVC A,@A + DPTR. The resulting sum is loaded into the program counter and is used as the address for subsequent instruction fetches. Again, a sixteen-bit addition is performed: a carry-out from the low-order eight-bits may propagate through the higher-order bits. In this case, neither the accumulator contents nor the data pointer is altered.

The example subroutine below reads a byte of RAM into the accumulator from one of four alternate address spaces, as selected by the contents of the variable MEMSEL. The address of the byte to be read is determined by the contents of R0 (and optionally R1). It might find use in a printing terminal application, where four different model printers all use the same ROM code but use different types (and sizes) of buffer memory for different speeds and options.

;			
MEMSEL	EQU	R3	
ĴUMP4:	MOV MOV MOVC	A,MEMSEL DPTR,#JMPTBL A,@A+DPTR	
JMPTBL:	JMP DB DB DB DB	@A+DPTR MEMSP0-JMPTBL MEMSP1-JMPTBL MEMSP2-JMPTBL MEMSP3-JMPTBL	
MEMSP0:	MOV	A,@R0	READ FROM INTERNAL RAM
MEMSP1:	MOVX	A,@R0	;READ 256 BYTE EXTERNAL RAM
MEMSP2:	MOV MOV MOVX RET	DPL,R0 DPH,R1 A,@DPTR	;READ 64K BYTE EXTERNAL RAM

MEMSP3:	MOV	A,R1	;READ 4K BYTE EXTERNAL RAM	
	ANL	A,#07H		
	ANL	P1,#11111000B		
	ORL	P1,A		
	ΜΟΥΧ	A,@R0		
	RET			

To use this approach, the size of the jump table plus the length of the alternate routines must be less than 256 bytes. The jump table and routines may be located anywhere in program memory and are independent of 256-byte program memory pages.

For applications where up to 128 destinations must be selected, all residing in the same 2K page of program memory, the following technique may be used. In the printing terminal example, this sequence could process 128 different codes for ASCII characters arriving via the 8051 serial port.

; OPTION ;	EQU 	R3 	
; JMP128:	 RL MOV JMP	A,OPTION A DPTR,#INSTBL @A + DPTR	;MULTIPLY BY 2 FOR 2-BYTE JUMP TABLE ;FIRST ENTRY IN JUMP TABLE ;JUMP INTO JUMP TABLE
; INSTBL:	AJMP AJMP AJMP	PROC00 PROC01 PROC02	; 128 CONSECUTIVE ;AJMP INSTRUCTIONS
, ,	 AJMP AJMP	PROC7E PROC7F	

The destinations in the jump table (PROC00-PROC7F) are not all necessarily unique routines. A large number of special control codes could each be processed with their own unique routine, with the remaining printing characters all causing a branch to a common routine for entering the character into the output queue.

Computing Branch Destinations at Run Time

In some rare situations, 128 options are insufficient, the destination routines may cross a 2K page boundary, or a branch destination is not known at assembly time (for whatever reason), and therefore cannot be easily included in the assembled code. These situations can all be

handled by computing the destination address at runtime with standard arithmetic or table look-up instructions, then performing an indirect branch to that address. There are two simple ways to execute this last step, assuming the 16-bit destination address has already been computed. The first is to load the address into the DPH and DPL registers, clear the accumulator and branch using the JMP @A + DPTR instruction; the second is to push the destination address onto the stack, low-order byte first (so as to mimic a call instruction) then pop that address into the PC by performing a return instruction. This also adjusts the stack pointer to its previous value. The code segment below illustrates the latter possibility.

, RTEMP	EQU	R7	
; JMP256:	MOV MOV	DPTR,#ADRTBL A,OPTION	;FIRST ADDRESS TABLE ENTRY ;LOAD INDEX INTO TABLE
	RLC	C A LOW128	;MULTIPLY BY 2 FOR 2-BYTE JUMP TABLE
	INC	DPH	;FIX BASE IF INDEX >127.

LOW128:	MOV INC PUSH MOV MOVC PUSH	RTEMP,A A A,@A + DPTR ACC A,RTEMP A,@A + DPTR ACC	;SAVE ADJUSTED ACC FOR SECOND READ ;READ LOW-ORDER BYTE FIRST ;GET LOW-ORDER BYTE FROM TABLE ;RELOAD ADJUSTED ACC ;GET HIGH-ORDERED BYTE FROM TABLE
;	THE TWO A "RETUR TO THE D IT MAY BE INTO THE RET	ACC PUSHES HAVE PRO N ADDRESS" ON THE ST ESIRED STARTING ADDR E REACHED BY POPPING PC.	DUCED ACK WHICH CORRESPONDS ESS. THE STACK
; ; ADRTBL: ; ;	 DW DW DW	PROC00 PROC01 PROCFF	;UP TO 256 CONSECUTIVE DATA ;WORDS INDICATING STARTING ADDRESSES

In-Line-Code Parameter-Passing

Parameters can be passed by loading appropriate registers with values before calling the subroutine. This technique is inefficient if a lot of the parameters are constants, since each would require a separate register to carry it, and a separate instruction to load the register each time the routine is called.

If the routine is called frequently, a more code-efficient way to transfer constants is "in-line-code" parameterpassing. The constants are actually part of the program code, immediately following the call instruction. The subroutine determines where to find them from the return address on the stack, and then reads the parameters it needs from program memory.

For example, assume a utility named ADDBCD adds a 16-bit packed-BCD constant with a two-byte BCD

variable in internal RAM and stores the sum in a different two-byte buffer. The utility must be given the constant and both buffer addresses. Rather than using four working registers to carry this information, all four bytes could be inserted into program memory each time the utility is called. Specifically, the calling sequence below invokes the utility to add 1234 (decimal) with the string at internal RAM address 56H, and store the sum in a buffer at location 78H.

The ADDBCD subroutine determines at what point the call was made by popping the return address from the stack into the data pointer high- and low-order bytes. A MOVC instruction then reads the parameters from program memory as they are needed. When done, ADD-BCD resumes execution by jumping to the instruction following the last parameter.

	CALL DW DB DB 	ADDBCD 1234H 56H 78H	;BCD CONSTANT ;SOURCE STRING ADDRESS ;DESTINATION STRING ADDRESS ;CONTINUATION OF PROGRAM	
;				
;				

ADDBCD:	POP	DPH	;POP RETURN ADDRESS INTO DPTR
	MOV		INDEX FOR SOURCE STRING PARAMETER
	MOVC	A.@A + DPTR	GET SOURCE STRING LOCATION
	MOV	R0,A	,
	MOV	A,#3	INDEX FOR DESTINATION STRING PARAMETER
	MOVC	A,@A+DPTR	GET DESTINATION ADDRESS
	MOV	R1,A	
	MOV	A,#1	;INDEX FOR 16-BIT CONSTANT LOW BYTE
	MOVC	A,@A+DPTR	;GET LOW-ORDER VALUE
	ADD	A,@R0	COMPUTE LOW ORDER BYTE OF SUM
	DA	Α	DECIMAL ADJUST FOR ADDITION
	MOV	@R1,A	;SAVE IN BUFFER
	INC	RO	
	INC	R1.	
	CLR	Α	;INDEX FOR HIGH-BYTE = 0
	MOVC	A,@A+DPTR	GET HIGH-ORDER CONSTANT
	ADDC	A,@R0	
	DA		DECIMAL ADJUST FOR ADDITION
	MOV	@R1,A	
	MOV		
	JIVIP	@A+DPIR	JUMP BACK INTO MAIN PROGRAM

This example illustrates several points:

- The "subroutine" does not end with a normal return statement; instead, an indirect jump relative to the data pointer returns execution to the first instruction following the parameter list. The two initial POP instructions correct the stack pointer contents.
- 2) Either an ACALL or LCALL works with the subroutine, since each pushes the address of the *next* instruction or data byte onto the stack. The call may be made from anywhere in the full 8051 address space, since the MOVC instruction accesses all 64K bytes.
- 3) The parameters passed to the utility can be listed in whatever order is most convenient, which may not be that in which they're used. The utility has essentially "random access" to the parameter list, by loading the appropriate constant into the accumulator before each MOVC instruction.
- 4) Other than the data pointer, the whole calling and processing sequence only affects the accumulator, PSW and pointer registers. The utility could have

pushed these registers onto the stack (after popping the parameter list starting address), and popped before returning.

Passing parameters through in-line-code can be used in conjunction with other variable passing techniques.

The utility can also get input variables from working registers or from the stack, and return output variables to registers or to the stack.

PERIPHERAL INTERFACING TECHNIQUES

I/O Port Reconfiguration (First Approach)

I/O ports must often transmit or receive parallel data in formats other than as eight-bit bytes. For example, if an application requires three five-bit latched output ports (called X, Y, and Z), these "virtual" ports could be mapped onto the pins of "physical" ports 1 and 2 as shown below:

	PORT "Z"			PORT "Y"			PORT "X"								
P2.7	PZ0	PZ1	PZ2	PZ3	PZ4	PY4	PY3	PY2	PY1	PY0	PX4	PX3	PX2	PX1	PX0
	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0

This pin assignment leaves P2.7 free for use as a test pin, input data pin, or control output through software. Notice that the bits of port Z are reversed. The highestorder port Z pin corresponds to pin P2.2, and the lowest-order pin of port Z is P2.6, due to P.C. board layout considerations. When connecting an 8051 to an immediately adjacent keyboard column decoder or another device with weighted inputs, the corresponding pins may not be aligned. The interconnections must be "scrambled" to compensate either with interwoven circuit board traces or through software (as shown below). Writing to the virtual ports must not affect any other pins. Since the virtual output algorithms are non-trivial, a subroutine is needed for each port: OUT_PX, OUT_PY and OUT_PZ. Each is called with data to output right-justified in the accumulator, and any data in bits ACC.7-ACC.5 is insignificant. Each subroutine saves the data in a "map" variable for the virtual port, then calls other subroutines which use the data in the various map bytes to compute and output the eight-bit pattern needed for each physical port affected.

PXMAP PYMAP PZMAP	DATA DATA DATA	20H 21H 22H			
; OUTPX:	 ANL MOV ACALL RET	 A,#000111111B PXMAP,A OUTP1	н История С	;CLEAR BITS ACC.7 · ACC. 5 ;SAVE DATA IN MAP BYTE ;UPDATE PORT 1 OUTPUT LATCH	
; OUTPY:	MOV ACALL ACALL RET	 PYMAP,A OUTP1 OUTP2	^а . н.	;SAVE IN MAP BYTE ;UPDATE PORT 1 ;AND PORT 2 OUTPUT LATCHES	
; OUTPZ:	MOV ACALL RET	 PZMAP,A OUTP2		;SAVE DATA IN MAP BYTE ;UPDATE PORT 2.	
;					
, OUTP1:	MOV SWAP RL	 A,PYMAP A A		;OUTPUT ALL P1 BITS ;SHIFT PYMAP LEFT 5 BITS	
	ANL ORL MOV RET	A,#11100000B A,PXMAP P1,A		MASK OUT GARBAGE	
; OUT_P2:	MOV RLC MOV RLC MOV RLC MOV RLC MOV RLC MOV RLC SETB MOV BET	C,PZMAP.0 A C,PZMAP.1 A C,PZMAP.2 A C,PZMAP.3 A C,PZMAP.4 A C,PZMAP.4 A C,PZMAP.4 A A C,PZMAP.3 A ACC.7 P2.A		;LOAD CY WITH P2.6 BIT ;AND SHIFT INTO ACC. ;LOAD CY WITH P2.5 BIT ;AND SHIFT INTO ACC. ;LOAD CY WITH P2.4 BIT ;AND SHIFT INTO ACC. ;LOAD CY WITH P2.3 BIT ;AND SHIFT INTO ACC. ;LOAD CY WITH P2.2 BIT ;AND SHIFT INTO ACC. ;LOAD CY WITH P2.1 BIT ;AND SHIFT INTO ACC. ;LOAD CY WITH P2.0 BIT ;AND SHIFT INTO ACC. ;LOAD CY WITH P2.0 BIT ;AND SHIFT INTO ACC. ;(ASSUMING INPUT ON P2.7)	

The two level structure of the above subroutines can be modified somewhat if code efficiency and execution speed are critical: incorporate the code shown as subroutines OUT_P1 and OUT_P2 directly into the code for OUT_PX and OUT_PZ, in place of the corresponding ACALL instructions. OUT_PY would not be changed, but now the destinations for its ACALL instructions would be alternate entry points in OUT_PX and OUT_PZ, instead of isolated subroutines.

I/O Port Reconfiguration (Second Approach)

A trickier situation arises if two sections of code which write to the same port or register, or call virtual output routines like those above, need to be executed at different interrupt levels. For example, suppose the background program wants to rewrite Port X (using the port associations in the previous example), and has computed the bit pattern needed for P1. An interrupt is detected just before the MOV P1,A instruction, and the service routine tries to write Port Y. The service routine would correctly update P1 and P2, but upon returning to the background program P1 is immediately re-written with the data computed *before* the interrupt! Now pins P2.1 and P2.0 indicate (correctly) data written to port Y in the interrupt routine, but the earlier data written to P1.7-P1.5 is no longer valid. The same sort of confusion could arise if a high-level interrupt disrupted such an output sequence.

One solution is to disable interrupts around any section of code which must not be interrupted (called a "critical section"), but this would adversely affect interrupt latency. Another is to have interrupt routines set or clear a flag ("semaphore") when a common resource is altered - a rather complex and elaborate system.

An easier way to ensure that any instruction which writes the port X field of P1 does not change the port Y field pins from their state *at the beginning of that instruction*, is shown next. A number of 8051 operations read, modify, and write the output port latches all in one instruction. These are the arithmetic and logical instructions (INC, DEC, ANL, ORL, etc.), where an addressed byte is both the destination variable and one of the source operands. Using these instructions, instead of data moves, eliminates the critical section problem entirely.

OUTPX:	ANL ORL RET	P1,#11100000B P1,A	;CLEAR BITS P1.4 · P1.0 ;SET P1 PIN FOR EACH ACC BIT SET.
;			
OUT_PY:	MOV MUL ANL ORL MOV ANL ORL RET	B,#20H AB P1,#00011111B P1,A A,B P2,#11111100B P2,A	;SHIFT <a>LEFT 5 BITS. ;CLEAR PY FIELD OF PORT 1 ;SET PY BITS ON PORT 1 ;LOAD 2 BITS SHIFTED INTO B ;AND UPDATE P2
;			
; OUT_PZ:	RRC MOV RRC MOV RCC MOV RRC MOV RRC MOV RET	A P2.6,C A P2.5,C A P2.4,C A P2.3,C A P2.2,C	MOVE ORIGINAL ACC.0 INTO CY AND STORE TO PIN P2.6. MOVE ORIGINAL ACC.1 INTO CY AND STORE TO PIN P2.5. MOVE ORIGINAL ACC.2 INTO CY AND STORE TO PIN P2.4. MOVE ORIGINAL ACC.3 INTO CY AND STORE TO PIN P2.3. MOVE ORIGINAL ACC.4 INTO CY AND STORE TO PIN P2.2.

8243 Interfacing

The 8051's quasi-bidirectional port structure lets each I/O pin input data, output data, or serve as a test pin or output strobe under software control. An example of these modes operating in conjunction is the host-processor interface expected by an 8243 I/O expander.

Even though the 8051 does not include 8048-type instructions for interfacing with an 8243, the parts can be interconnected and the protocol may be emulated with simple software; see Figure 5.2.

; ;IN8243 ;	INPUT I CONNE P25 & P P27-P26 PORT T	DATA FROM AN 8243 I/(CTED TO <u>P23</u> -P20. 24 MIMIC CS &PROG. 5 USED AS INPUTS. COI 0 BE READ IN ACC.1-A	D EXPANDER DE FOR CC.0	
PROG	BIT	P2.4	SYMBOLIC PIN DESCRIPTION	
; IN8243:	ORL MOV CLR ORL MOV ORL	A,#11010000B P2,A PROG P2,#00001111B A,P2 P2,#00110000B	SET PROG AND PINS USED AS INPUT SOUTPUT PORT CODE AND OPERATION CODE LOWER PROG TO LATCH ADDRESS SET LOW ORDER PINS FOR INPUT READ IN PORT DATA SET PROG AND CS HIGH	

Software Delay Timing

Many 8051 applications involve exact control over output timing. A software-generated output strobe, for instance, might have to be *exactly* 50 μ sec. wide. The DJNZ operation can insert a one instruction software

delay into a piece of code, adding a moderate time delay of two instruction cycles per iteration. For example, two instructions can add a 49- μ sec. software delay loop to code to generate a pulse on the \overline{WR} pin.

CLR	WR
MOV	R2,#24
DJNZ	\$2,\$
SETB	WR

The dollar sign in this example is a special character meaning "the address of this instruction." It can be used to eliminate instruction labels on nearby source lines.

Serial Port and Timer Mode Configuration

Configuring the 8051's Serial Port for a given data rate and protocol requires essentially three short sections of software. On power-up or hardware reset the serial port and timer control words must be initialized to the appropriate values. Additional software is also needed in the transmit routine to load the serial port data register and in the receive routine to unload the data as it arrives.

To choose one arbitrary example, assume the 8051 should communicate with a standard CRT operating at 2400 baud (bits per second). Each character is transmitted as seven data bits, odd parity, and one stop bit. The resulting character rate is 2400 baud/9bits, approximately 265 characters per second.

For the sake of clarity, the transmit and receive subroutines here are driven by simple-minded software status polling code rather than interrupts. The serial port must be initialized to 8-bit UART mode (SM0, SM1 = 01), enabled to receive all messages (SM2=0, REN=1). The flag indicating that the transmit register is free for more data will be artificially set in order to let

Figure 5-2. Connecting an 8051 with an 8243 I/O Expander

the output software know the output register is available. All this can be set up with instruction at label SPINIT.

Timer 1 will be used in auto-reload mode as a baud rate generator. To achieve a data rate of 2400 baud, the timer must divide the 1MHz internal clock by

$$\frac{1 \times 106}{(32) (2400)}$$

which equals 13 (actually, 13.02) instruction cycles. The

timer must reload the value -13, or 0F3H, as shown by the code at label TIINIT. (ASM51 will accept both the signed decimal or hexadecimal representations.)

;		
;	INITIALIZE	E SERIAL PORT
;	FOR 8-BIT	UART MODE
	& SET TR/	ANSMIT READY FLAG.
SPINIT:	MOV	SCON,#01010010B
;	INITIALIZE	E TIMER 1 FOR
	AUTO-REL	OAD AT 32 X 2400HZ
:	(T0 USED	AS GATED 16-BIT COUNTER.)
THNIT:	MOV	TCON,#11010010B
	MOV	TH1.#-13
	SETB	TR1
:		
,		

Simple Serial I/O Drivers

SP_OUT is a simple subroutine to transmit the character passed to it in the accumulator. First it must compute the parity bit, insert it into the data byte, wait until the transmitter is available, output the character, and then return.

SP_IN is an equally simple routine which waits until a character is received, sets the carry flag if there is an odd-parity error, and returns the masked seven-bit code in the accumulator.

; ;SP_OUT ;	ADD OD TRANSN	D PARITY TO 11T WHEN SEF	ACC AND RIAL PORT	READY.				
; SP_OUT:	MOV CPL MOV JNB CLR MOV RET	C,P C ACC.7,C TI,\$ TI SBUF,A						
; ; ;SP_IN ;	INPUT N SET CAF	EXT CHARAC	TER FROM ARITY ERR	I SERIAL OR	PORT.			
, SPIN:	JNB CLR MOV MOV CPL ANL RET	RI,\$ RI A,SBUF C,P C A,#7FH						

Transmitting Serial Port Character Strings

Any application which transmits characters through a serial port to an ASCII output device will on occasion need to output "canned" messages, including error messages, diagnostics, or operator instructions. These character strings are most easily defined with in-line data bytes defined with the DB directive.

				-
CR	EQU	ODH	;ASCII CARRIAGE RET	
LF	EQU	0AH	ASCII LINE-FEED	
ESC	EQU	1BH	ASCII ESCAPE CODE	
;				
-	CALL	XSTRING		
	DB	CR.LF	:NEW LINE	
	DB	'INTEL DELIVERS'	MESSAGE	
	DB	ESC	ESCAPE CHARACTER	
:			,	
:	(CONTIN	UATION OF PROGRAM)		
:	(,		
:				
, XSTRING:	POP	DPH	LOAD DPTR WITH FIRST CHARACTER	
	POP	DPL	,	
XSTR 1:	CLR	Ā	:(ZERO OFFSET)	
	MOVC		FETCH FIRST CHARACTER OF STRING	
XSTR 2	JNB	TIS	WAIT UNTIL TRANSMITTER READY	
	CLB	TI	MARK AS NOT READY	
	MOV	SBUE A	OUTPUT NEXT CHARACTER	
	INC	DPTR	BUMP POINTER	
	CLB	Δ		
	MOVC		GET NEXT OUTPUT CHARACTER	
	CINE	A #ESC XSTB 2	LOOP UNTIL ESCAPE READ	
	MOV	Δ #1		
	IMP		BETURN TO CODE AFTER ESCAPE	

Recognizing and Processing Special Cases

Before operating on the data it receives, a subroutine might give "special handling" to certain input values. Consider a word processing device which receives ASCII characters through the 8051 serial port and drives a thermal hard-copy printer. A standard routine translates most printing characters to bit patterns, but certain control characters (, <CR>, <LF>,

<BEL>,<ESC>, or <SP>) must invoke corresponding special routines. Any other character with an ASCII code less than 20H should be translated into the <NUL> value, 00H, and processed with the printing characters. The CJNE operation provides essentially a oneinstruction CASE statement.

;			
CHAR	EQU	R7	CHARACTER CODE VARIABLE
INTERP:	CJNE RET	CHAR,#7FH, INTP_1	;SKIP UNLESS RUBOUT (SPECIAL ROUTINE FOR RUBOUT CODE)
INTP1: ;	CJNE RET	CHAR,#07H,INTP_2 	;SKIP UNLESS BELL (SPECIAL ROUTINE FOR BELL CODE)
INTP2: ;	CJNE RET	CHAR,#0AH,INTP_3	;SKIP UNLESS LFEED (SPECIAL ROUTINE FOR LFEED CODE)
INTP3: ;	CJNE RET	CHAR,#0DH,INTP4	;SKIP UNLESS RETURN (SPECIAL ROUTINE FOR RETURN CODE)
INTP4: ;	CJNE RET	CHAR,#1BH,INTP5	;SKIP UNLESS ESCAPE (SPECIAL ROUTINE FOR ESCAPE CODE)
INTP_5: ;	CJNE RET	CHAR,#20H,INTP6 	;SKIP UNLESS SPACE (SPECIAL ROUTINE FOR SPACE CODE)
INTP_6:	MOA NC	PRINTC Char,#0	;JUMP IF CODE > 20 H ;REPLACE CONTROL CHARACTER WITH ;NULL CODE

PRINTC:

; ... RET ;PROCESS STANDARD PRINTING ;CHARACTER

Buffering Serial Port Output Characters

.

It is not always efficient to transmit characters through the serial port one-at-a-time. Most applications generate a short burst of characters all at once (English words or multi-digit numbers, for instance), with the bursts themselves occurring at longer intervals. Instead of waiting while the UART outputs each character, it would be more efficient if the background program could enter all the characters into a first-in first-out (FIFO) data structure, and continue about its business, letting an interrupt routine transmit each character as the serial port becomes available.

Assume there is a 16-byte output data buffer starting at 70H. QHEAD and QTAIL keep track of the head and tail portion of the buffer being used. The subroutine ENTERQ waits until there is space in the queue, then copies a character code from the accumulator to the queue.

QHEAD QTAIL BOTLIM TOPLIM	DATA DATA EQU EQU	6EH 6FH 70H 7FH	LAST BYTE ENTERED INTO QUEUE LAST BYTE READ FROM QUEUE.
, , ,	QUEUE IS FULL WHI MOV MOV	EMPTY WHEN QHEAD = EN QHEAD + 1 (WITHIN F QHEAD,#TOPLIM QTAIL,#TOPLIM	QTAIL AND RANGE) = QTAIL.
;			
ENTERQ:	MOV MOV INC CJNE MOV	R0,A A,QHEAD A A,#TOPLIM + 1,ENTQ_1 A,#BOTLIM	;SAVE ACC DATA ;LOAD HEAD POINTER ;PRE-INCREMENT POINTER :RELOAD ON OVERFLOW
ENTQ_1:	CJNE SJMP	A,QTAIL,ENTQ_2 ENTQ_1	TEST IF QUEUE FULL
ENTQ_2:	XCH MOV MOV SETB RET	A,R0 @R0,A QHEAD,R0 ES	STORE POINTER AND RELOAD ACC ENTER INTO QUEUE UPDATE HEAD POINTER ENABLE SERIAL PORT INTERRUPTS

The interrupt routine DQUEUE is invoked when the transmitter is ready for another character. First it determines if any characters are available for transmission, indicated by QHEAD and QTAIL being not equal. If more data is available, it is written to the transmit buf-

fer (SBUF) and the pointers are updated. If not, DQUEUE disables serial port interrupts and returns to the background program. ENTERQ will re-enable such interrupts as more data is available. (This example does not consider interrupt-driven serial input.)

	ORG	0023H	
	PUSH	ACC	;SAVE CPU STATUS
	PUSH	PSW	
	MOV	PSW,#30Q	SELECT BANK 3
DQUEUE:	MOV	A,QTAIL	
	CJNE	A,QHEAD,DQ_1	TEST IF QUEUE EMPTY
	CLR	ES	IF SO, CLEAR ENABLE BIT AND RETURN
	SJMP	TIRET	, ,

DQ_1:	CLR INC CJNE	TI A A.#TOPLIM + 1.DQ 2	ELSE ACKNOWLEDGE REQUEST COMPUTE NEXT BYTE'S ADDRESS
	MOV	A.#BOTLIM	REVISE ACC IF POINTER OVERFLOWED
DQ_2:	MOV	R0,A	;LOAD INDEX REGISTER
	ΜΟΥ	SBUF.@R0	RELOAD TRANSMITTER
	MOV	QTAIL,A	SAVE LAST POINTER USED.
TI_RET:	POP	PSW	RESTORE STATUS AND RETURN
	POP	Α	
	RETI		

Synchronizing Timer Overflows

8051 timer overflows automatically generate an internal interrupt request, which will vector program execution to the appropriate interrupt service routine if interrupts are enabled and no other service routines are in progress at the time. However, it is not predictable exactly how long it will take to reach the service routine. The service routine call takes two instruction cycles, but 1, 2, or 4 additional cycles may be needed to complete the instruction in progress. If the background program ever disables interrupts, the response latency could further increase by a few instruction cycles. (Critical sections generally involve simple instruction sequences - rarely multiplies or divides.) Interrupt response delay is generally negligible, but certain time-critical application must take the exact delay into account. For example, generating interrupts with timer 1 every millisecond (1000 instruction cycles) or so would normally call for reloading it with the value -1000 (0FC30H). But if the interrupt interval (averaged over time) must be accurate to 1 instruction cycle, the 16-bit value reload into the timer must be computed, taking into account when the timer actually overflowed.

This simply requires reading the appropriate timer, which has been incremented each cycle since the overflow occurred. A sequence like the one below can stop the timer, compute how much time should elapse before the next interrupt, and reload and restart the timer. The double-precision calculation shown here compensates for any amount of timer overrun within the maximum interval. Note that it also takes into account that the timer is stopped for seven instruction cycles in the process. All interrupts are disabled, so a higher priority request will not be able to disrupt the time-critical code section.

CLR	EA	;DISABLE ALL INTERRUPTS	
CLR	TR1	STOP TIMER 1	
MOV	A,#LOW(-1000 + 7)	LOAD LOW ORDER DESIRED COUNT	
ADD	A.TL1	CORRECT FOR TIMER OVERRUN	
MOV	TL1.A	RELOAD LOW-ORDER BYTE.	
MÓV	A.#ĤIGH(—1000+7)	REPEAT FOR HIGH ORDER BYTE.	
ADDC	A.TH1	,	
MOV	TH1.A		
SETB	THI	RESTART TIMER	
		,	

Reading a Timer/Counter "On-the-Fly"

The preceding example simply stopped the timer before changing its contents. This is normally done when reloading a timer so that the time at which the timer is started (i.e. the "run" flag is set) can be exactly controlled. There are situations, though, when it is desired to read the current count without disrupting the timing process. The 8051 timer/counter registers can all be read or written while they are running, but a few precautions must be taken.

Suppose the subroutine RDTIME should return in <R1>

<R0> a sixteen-bit value indicating the count in timer 0. The instant at which the count was sampled is not as critical as the fact that the value returned must have been valid at some point while the routine was in progress. There is a potential problem that between reading the two halves, a low-order register overflow might increment the high-order register, and the two data bytes returned would be "out of phase." The solution is to read the high-order byte first, then the low-order byte, and then confirm that the high-order byte has not changed. If it has, repeat the whole process. RDTIME: MOV A,TH0 MOV R0,TL0 CJNE A,TH0,RDTIME MOV R1,A RET ;SAMPLE TIMER0 (HIGH) ;SAMPLE TIMER0 (LOW) ;REPEAT IF NECESSARY ;STORE VALID READ

8031/8051/8751 SINGLE-COMPONENT 8-BIT MICROCOMPUTER

- 8031 Control Oriented CPU With RAM and I/O
- 8051 An 8031 With Factory Mask-Programmable ROM
- 8751 An 8031 With User Programmable/Erasable EPROM
- 4K x 8 ROM/EPROM
- 128 x 8 RAM
- Four 8-Bit Ports, 32 I/O Lines
- Two 16-Bit Timer/Event Counters
- High-Performance Full-Duplex Serial Channel
- External Memory Expandable to 128K
- Compatible with MCS-80[®] /MCS-85[®] Peripherals

- Boolean Processor
- MCS-48[®] Architecture Enhanced with:
 - Non-Paged Jumps
 - Direct Addressing
 - Four 8-Register Banks
 - Stack Depth Up to 128-Bytes
 - Multiply, Divide, Subtract, Compare
- Most Instructions Execute in 1µs
- 4µs Multiply and Divide

The Intel® 8031/8051/8751 is a stand-alone, high-performance single-chip computer fabricated with Intel's highly-reliable + 5 Volt, depletion-load, N-Channel, silicon-gate HMOS technolgy and packaged in a 40-pin DIP. It provides the hardware features, architectural enhancements and new instructions that are necessary to make it a powerful and cost effective controller for applications requiring up to 64K bytes of program memory and/or up to 64K bytes of data storage.

The 8051/8751 contains a non-volatile 4K x 8 read only program memory; a volatile 128 x 8 read/write data memory; 32 I/O lines; two 16-bit timer/counters; a five-source, two-priority-level, nested interrupt structure; a serial I/O port for either multiprocessor communications, I/O expansion, or full duplex UART; and on-chip oscillator and clock circuits. The 8031 is indentical, except that it lacks the program memory. For systems that require extra capability, the 8051 can be expanded using standard TTL compatible memories and the byte oriented MCS-80 and MCS-85 peripherals.

The 8051 microcomputer, like its 8048 predecessor, is efficient both as a controller and as an arithmetic processor. The 8051 has extensive facilities for binary and BCD arithmetic and excels in bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 12 MHz crystal, 58% of the instructions execute in 1 µs, 40% in 2µs and multiply and divide require only 4 µs. Among the many instructions added to the standard 8048 instruction set are multiply, divide, subtract and compare.

Intel Corporation Assumes No Responsibility for the Use of any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied.

8051 FAMILY PIN DESCRIPTION

Vss

Circuit ground potential.

VCC

+5V power supply during operation, programming and verification.

Port 0

Port 0 is an 8-bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus when using external memory. It is used for data input and output during programming and verification. Port 0 can sink/source two TTL loads.

Port 1

Port 1 is an 8-bit quasi-bidirectional I/O port. It is used for the low-order address byte during programming and verification. Port 1 can sink/source one TTL load.

Port 2

Port 2 is an 8-bit quasi-bidirectional I/O port. It also emits the high-order 8 bits of address when accessing external memory. It is used for the high-order address and the control signals during programming and verification. Port 2 can sink/source one TTL load.

Port 3

Port 3 is an 8-bit quasi-bidirectional I/O port. It also contains the interrupt, timer, serial port and RD and WR pins that are used by various options. The output latch corresponding to a special function must be programmed to a one (1) for that function to operate. Port 3 can sink/source one TTL load. The special functions are assigned to the pins of Port 3, as follows:

- —RXD/data (P3.0). Serial port's receiver data input (asynchronous) or data input/output (synchronous).
- TXD/clock (P3.1). Serial port's transmitter data output (asynchronous) or clock output (synchronous).
- INT0 (P3.2). Interrupt 0 input or gate control input

for counter 0.

- INT1 (P3.3). Interrupt 1 input or gate control input for counter 1.
- T0 (P3.4). Input to counter 0.
- --- T1 (P3.5). Input to counter 1.
- WR (P3.6). The write control signal latches the data byte from Port 0 into the External Data Memory.
- RD (P3.7). The read control signal enables External Data Memory to Port 0.

RST/VPD

A low to high transition on this pin (at approximately 3V) resets the 8051. If V_{PD} is held within its spec (approximately +5V), while V_{CC} drops below spec, V_{PD} will provide standby power to the RAM. When V_{PD} is low, the RAM's current is drawn from V_{CC}.

ALE/PROG

Provides Address Latch Enable output used for latching the address into external memory during normal operation. Receives the program pulse input during EPROM programming.

PSEN

The Program Store Enable output is a control signal that enables the external Program Memory to the bus during normal fetch operations.

EA/VDD

When held at a TTL high level, the 8051 executes instructions from the internal ROM/EPROM when the PC is less than 4096. When held at a TTL low level, the 8051 fetches all instuctions from external Program Memory. The pin also receives the 21V EPROM programming supply voltage.

XTAL1

Input to the oscillator's high gain amplifier. A crystal or external source can be used.

XTAL2

Output from the oscillator's amplifier. Required when a crystal is used.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	0° C to 70° C
Storage Temperature	65° C to +150° C
Voltage on Any Pin With	
Respect to Ground (VSS)	0.5V to +7V
Power Dissipation	2 Watts

*NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS $T_A = 0^{\circ}C TO 70^{\circ}C; V_{CC} = 5V \pm 5\%; V_{SS} = 0V$

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
VIL	Input Low Voltage (All except XTAL1)	-0.5		0.8	V	
VIL1	Input Low Voltage (XTAL1)	-0.5		TBD	V	
VIH	Input High Voltage (All Except XTAL1, RST/VPD)	2.0		V _{CC} +0.5	V	
Vін1	Input High Voltage (XTAL1)	TBD		VCC+0.5	V	
VIH2	Input High Voltage (RST)	3.0		V _{CC} + 0.5	V	
Viнз	Input High Voltage (V _{PD})	4.5		5.5	V	Power Down Only (V _{CC} = 0)
VOL	Output Low Voltage (All Outputs Except Port 0)			0.45	V	1.6 mA
VOL1	Output Low Voltage (Port 0)			0.45	V	3.2 mA
∨он	Output High Voltage (All Outputs Except Port 0, ALE and PSEN)	2.4			V	I _{OH} =-100µA
VOH1	Output High Voltage (ALE and PSEN, Port 0 In External Bus Mode)	2.4			V	I _{OH} ≖-400µA
^I LO	Pullup Resistor Current (P1, P2, P3)			-500	μA	.45V≤VIN≤VCC
'LO1	Output Leakage Current (P0)			<u>+</u> 10	μA	.45V ≤ VIN ≤ VCC
lcc	Power Supply Current (All Outputs Disconnected)			150	mA	T _A =25° C
IPD	Power Down Supply Current			20	mA	T _A =25° C, V _{PD} =5V, V _{CC} =0V
CIO	Capacitance Of I/O Buffer	1		10	pF	fc=1MHz

A.C. CHARACTERISTICS

 $T_{A} = 0^{\circ}C \text{ TO } 70^{\circ}C; V_{CC} = 5V \pm 5\%$ Port 0, ALE and PSEN Outputs - C_L = 150 PF; All Other Outputs - C_L = 80PF

Program Memory Characteristics

		12MHz Clock			Variable Clock 1/TCLCL=1.2 MHz to 12 MHz		
Symbol	Parameter	Min.	Max.	Units	Min.	Max.	Units
TCLCL	Oscillator Period	83		ns			ns
ТСҮ	Min Instruction Cycle Time	1.0		μs	12TCLCL	12TCLCL	ns
TLHLL	ALE Pulse Width	140		ns	2TCLCL-30		ns
TAVLL	Address Set Up To ALE	60		ns	TCLCL-25		ns
TLLAX	Address Hold After ALE	50		ns	TCLCL-35		ns
TPLPH	PSEN Width	230		ns	3TCLCL-20		ns
TLHLH	PSEN, ALE Cycle Time	500		ns	6TCLCL		ns
TPLIV	PSEN To Valid Data In		150	ns		3TCLCL-100	ns
TPHDX	Input Data Hold After PSEN	0		ns	0		ns
TPHDZ	Input Data Float After PSEN		75	ns		TCLCL-10	ns
TAVIV,	Address To Valid Data In		320	ns		5TCLCL-100	ns
TAZPL	Address Float To PSEN	0		ns	0		ns

External Data Memory Characteristics

		1:	12MHz Clock			Variable Clock			
Symbol	Parameter	Min.	Max.	Units	Min.	Max.	Units		
TRLRH	RD Pulse Width	400		ns	6TCLCL-100		ns		
TWLWH	WR Pulse Width	400		ns	6TCLCL-100		ns		
TRLDV	RD To Valid Data In		250	ns		5TCLCL-170	ns		
TRHDX	Data Hold After RD	0		ns	0		ns		
TRHDZ	Data Float After RD		100	ns		2TCLCL-70	ns		
TAVDV	Address To Valid Data In		600	ns		9TCLCL-150	ns		
TAVWL	Address To WR or RD	200		ns	4TCLCL-130		ns		
толмн	Data Setup Before WR	400		ns	7TCLCL-180		ns		
тwнqх	Data Held After WR	80		ns	2TCLCL-90		ns		

NOTE:

There are 2 to 8 ALE cycles per instruction. Clocks and state timing are shown on the timing diagram for reference purposes only. They are not accessible outside the package. TCY is the minimum instruction cycle time which consists of 12 oscillator clocks or two ALE cycles. Address setup and hold time from ALE are the same for data and program memory.

intel

Serial Port Characteristics

Cumbel	Desembles	12 MHz	Clock	Variable Clock		
Symbol	Parameter	Min.	Max.	Min.	Max.	
TDVPL TPHDX TAVQV TELQV TEHQZ TVHPL TPHVL TPLPH	Data Setup to PROG Data Hold from PROG Address to Data Valid Output Enable (P27) to Data Valid Output Enable Off to Data Float VDD Setup to PROG VDD Hold after PROG PROG Width	10µs 10µs 0 10µs 10µs 49ms	10µs 10µs 10µs 51ms	3 TCY + 10µs 3 TCY + 10µs 0 10µs 10µs 49ms	3 TCY + 10μs 3 TCY + 10μs 3 TCY + 10μs 3 TCY + 10μs 51ms	

Component Data Sheets

8021 SINGLE COMPONENT 8-BIT MICROCOMPUTER

- 8-Bit CPU, ROM, RAM, I/O in Single 28-Pin Package
- Single 5V Supply (+4.5V to 6.5V)
- 8.38 µsec Cycle With 3.58 MHz XTAL; All Instructions 1 or 2 Cycles
- Instructions 8048 Subset
- High Current Drive Capability—2 Pins

- IK x 8 ROM 64 x 8 RAM 21 I/O Lines
- Interval Timer/Event Counter
- Clock Generated With Single Inductor or Crystal
- Zero-Cross Detection Capability
- Easily Expandable I/O

The Intel® 8021 is a totally self-sufficient 8-bit parallel computer fabricated on a single silicon chip using Intel's Nchannel silicon gate MOS process. The features of the 8021 include a subset of the 8048 optimized for low cost, high volume applications, plus additional I/O flexibility and power.

The 8021 contains 1K X 8 program memory, a 64 X 8 data memory, 21 I/O lines, and an 8-bit timer/event counter, in addition to on-board oscillator and clock circuits. For systems that require extra I/O capability, the 8021 can be expanded using the 8243 or discrete logic.

This microprocessor is designed to be an efficient controller as well as an arithmetic processor. The 8021 has bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting mostly of single byte instructions and no instructions over two bytes in length.

To minimize the development problems and maximize flexibility, an 8021 system can be easily designed using the 8021 emulation board, the EM-1. The EM-1 contains a 40-pin socket which can accommodate either the 8748 shipped with the board or an ICE-49 plug. Also, the necessary discrete logic to reproduce the 8021's additional I/O features is included.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	0° C to 70° C
Storage Temperature	°C to +150°C
Voltage on Any Pin with Respect to Ground	0.5V to +7V
Power Dissipation	1 W

*NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to 70°C, $V_{CC} = 5.5V \pm 1V$, $V_{SS} = 0V$

Symbol	Parameter		Limits			Test Candidiana	
	· · · · · · · · · · · · · · · · · · ·	Min.	Min. Typ. Max.		Unit	lest Conditions	
VIL	Input Low Voltage	-0.5		0.8	V		
∨ін	Input High Voltage (All except XTAL 1 & 2, T1 RESET)	3.0		VCC	V		
VIH1	Input High Voltage (XTAL 1 & 2, T1 RESET)	3.8		VCC	V		
VIH(10%)	Input high voltage (All except XTAL 1 & 2, T1, RESET)	2.0		VCC	V	VCC = 5.0V ± 10%	
VIH1(10%)	Input high voltage (XTAL 1 & 2, T1, RESET)	3.5		VCC	V	VCC = 5.0V ± 10%	
VOL	Output Low Voltage			0.45	V	IOL = 1.6 mA	
VOL1	Output Low Voltage (P10, P11)			2.5	V	IOL = 7 mA	
∨он	Output High Voltage (All unless Open Drain)	2.4			V	IOH = 40 μA	
ILO	Output Leakage Current (Open Drain Option—Port 0)			± 10	μA	VSS+0.45≤VIN≤VCC	
ICC	VCC Supply Current		40	75	mA		

T1 ZERO CROSS CHARACTERISTICS $T_A = 0^{\circ}C$ to 70°C, $V_{CC} = 5.5V \pm 1V$, $V_{SS} = 0V$, $C_L = 80 \, pF$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
Vzx	Zero-Cross Detection Input (T1)	1	3	VPP	AC Coupled, C = 2µF
AZX	Zero-Cross Accuracy		± 135	mV	60 Hz Sine Wave
FZX	Zero-Cross Detection Input Frequency (T1)	0.05	1	kHZ	

Desig- nation	Pin No.	Function
VSS	14	Circuit GND potential
vcc	28	+5V power supply
PROG	3	Output strobe for 8243 I/O Expander
P00-P07	4-11	8-bit quasi-bidirectional port
Port 0		
P10-P17	18-25	8-bit quasi-bidirectional port
Port 1		
P20-P23	26-27	4-bit quasi-bidirectional port
Port 2	1-2	P20-P23 also serve as a 4-bit I/O expander bus for 8243
Τ1	13	Input pin testable using the JT1 and JNT1 instructions. Can be designated the timer/event counter input using the STRT

Table	1.	Pin	Description
-------	----	-----	-------------

Desig- nation	Pin No.	Function
		CNT instruction. Also allows zero-crossover sensing of slowly moving inputs.
RESET	17	Input used to initialize the proc- essor by clearing status flip-flops and setting program counters to zero.
ALE	12	Address Latch Enable. Signal occurring once every 30 input clocks, used as an output clock.
XTAL1	15	One side of crystal or inductor input for internal oscillator. Also input for external source. (Not TTL compatible.)
XTAL2	16	Other side of timing control element.

Table 2. Instruction Set Summary

		· · · · · · · · · · · · · · · · · · ·			Hexadecimal
	Mnemonic	Description	Bytes	Cycle	Opcode
	ADD A,Rr	Add register to A	1	1	68-6F
	ADD A,@ R	Add data memory to A	. f 🖄	1.	60-61
	ADD A,#data	Add immediate to A	2	2	03
	ADDC A.R.	Add register with carry	1.1	1.1	78-7F
	ADDC A.@ R	Add data memory with	1	. 1	70-71
		CAILY			
	ADDC A #data	Add immediate with	2 1	2	13
		Carry	1.1		
	ANI A R.	And register to A	1		58.5F
		And data memory to A			50.51
	ANI A #data	And immediate to A	3	<u> </u>	53
	ORLAR.	Or register to A	1	1	18.4E
		Or data memory to A			40-41
12		Or immediate to A		0	40-41
12		Exclusive Or register	2	- <u>-</u>	43 09 DE
15	AUF VUL	to A	- · * - ;		DO'DF
١ŭ		to A Evolution On data			D0 D1
	ARE A,@ H	Exclusive of uata	14		00-01
	VPI A #date	Exclusive Or immediate	`	`	Do.
	AILE A, # Uala	to A	2	2	53
	INC A	Increment A	1 ·	.1	17
	DEC A	Decrement A	1		07
	CLR A	Clear A	4	1	27
	CPI A	Complement A	1	ിപ്പ	37
	DAA	Decimal adjust A	1		57
	SWAPA	Swap ribbles of A	1		47
1	RIA	Rotate A left	1	1	F7
		Rotate A left through			E7
	NEO A	notate A left through	1.1	1	
		Botate A right		1 1 (77
		Potate A right through			67
	nno A	cotry	1	1.1	
-	· · · · · · · · · · · · · · · · · · ·	curry	· · · ·	· · ·	
1	IN A, Pp	Input port to A	1	2	08,09,0A
Ħ	OUTL P _p A	Output A to port	1. ¹ .	2	90,39,3A
18	MOVD Á, Pp	Input expander port	1.	2	0C-0F
ĮŌ		to A			
ĮĘ	MOVD P _p ,A	Output A to expander	1	2	3C-3F
Ē		port			
	ANLD P _p ,A	And A to expander port	1	2	9C-9F
	ORLD P _P ,A	Or A to expander port	i (111.	2	8C-8F
2		······································	1.		
ste	INC R _r	Increment register	1	ter.	18-1F
Regi	INC @ R	Increment data memory	E 🛍	્યોટ્	10-11

	Mnemonic	Description	Bytes	Cycle	Hexadecimal Opcode
	JMP addr	Jump unconditional	2	2	04,24,44,64,
£	JMPP @ A DJNZ R,,, addr	Jump indirect Decrement register and	1 2	2 2	B3 E8-EF
anc		jump on R not zero			
m.	JC addr	Jump on carry=1	2	2	F6
	JNC addr	Jump on carry=0	2	2	E6
	JZ addr	Jump on A zero	2	2	C6
	JNZ addr	Jump on A not zero	2	2	96
	JT1 addr	Jump on T1=1	2	2	56
	JNT1 addr	Jump on 11=0	2	2	46
	JIF addr	Jump on timer flag	2	2	16
outine	CALL addr	Jump to subroutine	1	2	14,34,54,74
Subr	RET	Return	1	. 2	83
S 6	CLR C	Clear carry	1	1	97
Ē	CPL C	Complement carry	1	1	Α7
	MOV A,Rr	Move register to A	1	ें 1	F8-FF
	MOV A,@ R	Move data memory to A	1	. 1	F0-F1
	MOV A,#data	Move immediate to A	2	2	23
	MOV R _r ,A	Move A to register	1	1.	A8-AF
	MOV @ R,A	Move A to data memory	1	1	A0-A1
Se	MOV R _r ,#data	Move immediate to register	2	2	88-BF
a Mov	MOV@R,#data	Move immediate to data memory	2	2	B 0-B1
Dat	XCH A,R _r	Exchange A and register	1	1	28-2F
	XCH A,@ R	Exchange A and data memory	1	1	20-21
	XCHD A,@ R	Exchange nibble of A and register	1	1	30-31
	MOVP A,@ A	Move to A from current page	1	2	A3
ē		Read timer / counter	1		42
ŝ		Load timer/counter	1	1	62
õ	STRUT	Start timer	1		55
2	STRT CNT	Start counter	1	1	45
Ĩ	STOP TONT	Stop timer/counter	t,	1	65
	NOP	No operation	1	1	00

8021L SINGLE COMPONENT 8-BIT MICROCOMPUTER LOW POWER 10mA

- 8-Bit CPU, ROM, RAM, I/O in Single 28-Pin Package
- Single 5V Supply (+4.5V to 8V)
- 8.38 µsec Cycle With 3.58 MHz XTAL; All instructions 1 or 2 Cycles
- 1K x 8 ROM 64 x 8 RAM 21 I/O Lines
- Interval Timer/Event Counter
- Clock Generated With Single Inductor or Crystal
- Zero-Cross Detection Capability Instructions — 8048 Subset
- Easily Expandable I/O ■ High Current Drive Capability — 2 Pins

The Intel® 8021L is a totally self-sufficient 8-bit parallel computer fabricated on a single silicon chip using Intel's N-channel silicon gate MOS process. The features of the 8021L include a subset of the 8048 optimized for low cost, high volume applications, plus additional I/O flexibility and power.

The 8021L contains 1K X 8 program memory, a 64 X 8 data memory, 21 I/O lines, and an 8-bit timer/event counter, in addition to on-board oscillator and clock circuits. For systems that require extra I/O capability, the 8021L can be expanded using the 8243 or discrete logic.

This microprocessor is designed to be an efficient controller as well as an arithmetic processor. The 8021L has bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting mostly of single byte instructions and no instructions over two bytes in length.

To minimize the development problems and maximize flexibility, an 8021L system can be easily designed using the 8021L emulation board, the EM-1. The EM-1 contains a 40-pin socket which can accommodate either the 8748 shipped with the board or an ICE-49 plug. Also, the necessary discrete logic to reproduce the 8021L's additional I/O features is included.

ABSOLUTE MAXIMUM RATINGS*

 *NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5.5V \pm 1V$, $V_{SS} = 0V$

Symbol	Parameter	Parameter Limits			Unit	Test Conditions
		Min.	Тур.	Max.		
VIL	Input Low Voltage	-0.5		0.8	V	
۷ін	Input High Voltage (All except XTAL 1 & 2, T1 RESET)	3.0		vcc	v	
VIH1	Input High Voltage (XTAL 1 & 2, T1 RESET)	3.8		VCC	v	
VIH(10%)	Input high voltage (All except 1 & 2, T1, RESET)	2.0		vcc	V	VCC = 5.0V ± 10%
VIH1(10%)	Input high voltage (XTAL 1 & 2, T1, RESET)	3.5		vcc	V	VCC = 5.0V ± 10%
VOL	Output Low Voltage			0.45	V	IOL + 1.6 mA
VOL1	Output Low Voltage (P10, P11)			2.5	V	IOL = 7 mA
∨он	Output High Voltage (All unless Open Drain)	2.4			v	IOH = 40 µA
ILO	Output Leakage Current (Open Drain Option—Port 0)			± 10	μA	VSS+0.45≪VIN≪VCC
ICC	VCC Supply Current		40	75	mA	

T1 ZERO CROSS CHARACTERISTICS T_A = 0°C to 70°C, V_{CC} = 5.5V \pm 1V, V_{SS} = 0V, C_L = 80 pF

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
VZX	Zero-Cross Detection Input (T1)	1	3	VPP	AC Coupled, C = $.2\mu$ F
AZX	Zero-Cross Accuracy		± 135	mV	60 Hz Sine Wave
FZX	Zero-Cross Detection Input Frequency (T1)	0.05	1	kHZ	
tCY	Cycle Time	8.38	50.0		3.58 MHz XTAL = 8.38 μs tCγ

8022

SINGLE COMPONENT 8-BIT MICROCOMPUTER WITH ON-CHIP A/D CONVERTER

- 8-Bit CPU, ROM, RAM, I/O in Single 40-Pin Package
- On-Chip 8-Bit A/D Converter; Two Input Channels
- 8 Comparator Inputs (Port 0)
- Zero-Cross Detection Capability
- Single 5V Supply (4.5V to 6.5V)
- High Current Drive Capability—2 Pins

- 2K x 8 ROM, 64 x 8 RAM, 28 I/O Lines
- 8.38 µsec Cycle; All Instructions 1 or 2 Cycles
- Instructions—8048 Subset
- Interval Timer/Event Counter
- Clock Generated with Single Inductor or Crystal
- Two Interrupts—External and Timer
- Easily Expanded I/O

The Intel[®] 8022 is the newest member of the MCS-48TM family of single chip 8-bit microcomputers. It is designed to satisfy the requirements of low cost, high volume applications which involve analog signals, capacitive touchpanel keyboards, and / or large ROM space. The 8022 addresses these applications by integrating many new functions onchip, such as A/D conversion, comparator inputs and zero-cross detection.

The features of the 8022 include 2K bytes of program memory (ROM), 64 bytes of data memory (RAM), 28 I/O lines, an on-chip A/D converter with two input channels, an 8-bit port with comparator inputs for interfacing to low voltage capacitive touchpanels or other non-TTL interfaces, external and timer interrupts, and zero-cross detection capability. In addition, it contains the 8-bit interval timer/event counter, on-board oscillator and clock circuitry, single 5V power supply requirement, and easily expandable I/O structure common to all members of the MCS-48 family.

The 8022 is designed to be an efficient controller as well as an arithmetic processor. It has bit handling capability plus facilities for both binary and BCD arithmetic. Efficient use of program memory results from using the MCS-48 instruction set which consists mostly of single byte instructions and has extensive conditional jump and direct table lookup capability. Program memory usage is further reduced via the 8022's hardware implementation of the A/D

Intel Corporation Assumes No Responsibility for the Use of any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied. ©INTELCORPORATION, 1980 AEN-00187A-01 7-6

Desig- nation	Pin No.	Function		Desig- nation	
VSS	20	Circuit GND potential.]	RESET	
VCC	40	+ 5V circuit power supply.			
PROG	37	Output strobe for Intel® 8243 I/O expander.		AVSS	
P00-P07 Port 0	10-17	8-bit open-drain port with com- parator inputs. The switching			
	[VTH. Optional pull-up resistors		AVCC	
		may be added via ROM mask selection.		SUBST	
∨тн	9	Port 0 threshold reference pin.			
P10-P17	25-32	8-bit quasi-bidirectional port.		VAREE	
Port 1				, AUE	
P20-P27	33-36	8-bit quasi-bidirectional port.			i i
Port 2	38-39 1-2	P20-23 also serve as a 4-bit I/O expander for Intel® 8243.		AN0, AN1	
то	8	Interrupt input and input pin testable using the conditional transfer instructions JTO and JNTO. Initiates an interrupt fol- lowing a low level input if inter- rupt is enabled. Interrupt is disabled after a reset.		ALE	
Τ1	19	Input pin testable using the JT1 and JNT1 conditional transfer instructions. Can be designated the timer/event counter input using the STRT CNT instruction. Also serves as the zero-cross detection input to allow zero- crossover sensing of slowly mov-		XTAL 2	
		ing AC inputs. Optional pull-up resistor may be added via ROM mask selection.			

Table 1. Pin Description

Desig	Dim	I
nation	No.	Function
RESET	24	Input used to initialize the pro- cessor by clearing status flip- flops and setting the program counter to zero.
AVSS	7	A/D converter GND Potential. Also establishes the lower limit of the conversion range.
AVCC	3	A/D + 5V power supply.
SUBST	21	Substrate pin used with a bypass capacitor to stabilize the sub- strate voltage and improve A/D accuracy.
VAREF	4	A/D converter reference voltage. Establishes the upper limit of the conversion range.
ANO, AN1	6,5	Analog inputs to A/D converter. Software selectable on-chip via SEL AN0 and SEL AN1 instruc- tions.
ALE	18	Address Latch Enable. Signal occurring once every 30 input clocks (once every cycle), used as an output clock.
XTAL 1	22	One side of crystal or inductor input for internal oscillator. Also input for external frequency source. (Not TTL compatible.)
XTAL 2	23	Other side of timing control ele- ment. This pin is not connected when an external frequency source is used.
ľ		

Figure 3. The Stand Alone 8022

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	0°C to 70°C
Storage Temperature	-65° C to +150° C
Voltage on Any Pin with	
Respect to Ground	0.5V to +7V
Power Dissipation	1 Watt

*NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Limits Unit **Test Conditions** Symbol Parameter Min. Typ. Max. v VIL Input Low Voltage -0.5 0.8 VTH Floating v -0.5 VIH1 Input Low Voltage (Port 0) VTH-0.1 ٧н ۷ High Voltage 2.0 VCC VCC = 5.0V ± 10% (All except XTAL 1, RESET) VTH Floating ٧ VIH1 Input High Voltage 3.0 VCC VCC = 5.5V ± 1V (All except XTAL 1, RESET) VTH Floating VIH2 Input High Voltage (Port 0) VTH+0.1 VCC ٧ VIH3 Input High Voltage (RESET, XTAL 1) 3.0 VCC v $\textrm{VCC} = 5.0\textrm{V} \pm 10\%$ ٧тн 0 ٧ Port 0 Threshold Reference Voltage 4VCC VOL ۷ **Output Low Voltage** 0.45 IOL = 1.6 mA v VOL1 Output Low Voltage (P10, P11) 2.5 IOL = 7 mA VOH v Output High Voltage (all unless 2.4 IOH = 50 µA Open Drain Option - Port 0) ILI. Input Current (T1) ± 200 μA VCC≥VIN≥VSS+.45V ILO Output Leakage Current ± 10 VCC≥VIN≥VSS+0.45V μA (Open Drain Option - Port 0) 50 100 ICC VCC Supply Current mA

D.C. CHARACTERISTICS T_A = 0°C to 70°C, V_{CC} = 5.5V \pm 1V, V_{SS} = 0V

A.C. CHARACTERISTICS T_{A} = 0° C to 70° C, V_{CC} = 5.5V \pm 1V, V_{SS} = 0V

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
tCY	Cycle Time	8.38	50.0	μS	3 MHz XTAL = 10 µs tCY
VZX	Zero-Cross Detection Input (T1)	1	3	VACpp	AC Coupled
AZX	Zero-Cross Accuracy		± 135	mV	60 Hz Sine Wave
FZX	Zero-Cross Detection Input Frequency (T1)	0.05	1	kHz	

A.C. CHARACTERISTICS T_A = 0° C to 70° C, V_{CC} = 5.5V \pm 1V, V_{SS} = 0V

Test Conditions: CL=80 pF t_{CY} =8.38 μ s

	Symbol	Parameter	Min.	Max.	Unit	Notes
	t _{CP}	Port Control Setup Before Falling Edge of PROG	0.5		μs	
	t _{PC}	Port Control Hold After Falling Edge of PROG	0.8		μs	
Expander	tpR	PROG to Time P2 Input Must Be Valid		1.0	μs	
Operation	t _{DP}	Output Data Setup Time	7.0		μs	
	t _{PD}	Output Data Hold Time	8.3		μs	
	tPF	Input Data Hold Time	0	.150	μs	
	tpp	PROG Pulse Width	8.3		μs	
	tPRL	ALE to Time P2 Input Must Be Valid		3.6	μs	
Normai	t _{PL}	Output Data Setup Time	0.8		μs	
Operation	t _{LP}	Output Data Hold Time	1.6		μs	
	tPFL	Input Data Hold Time	0		μs	
	tLL	ALE Pulse Width	3.9	23.0	μs	t_{CY} =8.38 μ s for min

Port 2 Timing

A/D CONVERTER CHARACTERISTICS T_A = 0° C to 70° C, V_{CC} = $5.5V \pm 1V$, V_{SS} = 0V, AV_{CC} = $5.5V \pm 1V$, AV_{SS} = 0V, AV_{CC}

Parameter	Min.	Тур.	Max.	Unit	Comments
Resolution	8		· · · · ·	Bits	
Absolute Accuracy			.8% FSR ± ½ LSB	LSB	(Note 1)
Sample Setup Before Falling Edge of ALE (t_{SS})		0.20		t _{CY}	
Sample Hold After Falling Edge of ALE (t _{SH})		0.10		t _{CY}	
Input Capacitance (AN0, AN1)		1		pF	
Conversion Time	4	1	4	t _{CY}	

Analog Input Timing

NOTE:

1. The analog input must be maintained at a constant voltage during the sample time ($t_{SS} + t_{SH}$).

Table 2. Instruction Set Summary

ADD A,Rr ADD A,@ RAdd register to A Add data memory to A ADD A,# data ADD A,# data Add immediate to A ADD C, A,# data Add immediate with carry ADDC A,@ R Add data memory with carry ADDC A,# data Add immediate with carry ADDC A,# data Add immediate with carry ADDC A,# data Add immediate with carry ANL A,Rr ANL A,@ R And register to A And register to A Ant A,# data And register to A Ant A,# data And register to A Ant A,# data And immediate to A CRL A,# data And add immediate to A CRL A,# data ORL A,# data ORL A,# data ORL A,# data ORL A,# data Or register to A Ant A, add register to A CRL A,@ R Exclusive Or register to A1 1 1 48-4F 2 2 43Vor Tor Tor CLR A CLR A <b< th=""><th></th><th>Mnemonic</th><th>Description</th><th>Bytes</th><th>Cycle</th><th>Hexadecimal Opcode</th></b<>		Mnemonic	Description	Bytes	Cycle	Hexadecimal Opcode
ADD A,@ R ADD A,@ R ADD A,# dataAdd data memory to A A dd immediate to A 		ADD A.R.	Add register to A	1	1	68-6F
ADD A,# data Add immediate to A 2 2 03 ADDC A,R, Add register with carry 1 1 78-7F ADDC A,@ R Add data memory with 1 1 70-71 carry ADDC A,# data Add immediate with 2 2 13 carry ADDC A,# data Add immediate with 2 2 13 ANL A,R, And register to A 1 1 58-5F ANL A,@ R And data memory to A 1 1 40-41 ORL A,# data Add immediate to A 2 2 53 ORL A,R Or register to A 1 1 48-4F ORL A,@ R Or data memory to A 1 1 40-41 ORL A,# data Or immediate to A 2 2 43 VOTE XRL A,R Exclusive Or register 1 1 D8-DF to A XRL A,@ R Exclusive Or ata 1 1 00-D1 memory to A XRL A,# data Exclusive Or immediate 2 2 D3 to A XRL A,# data Exclusive Or immediate 2 2 D3 XRL A,# data Exclusive Or immediate 2 2 D3 XRL A,# data Exclusive Or immediate 2 2 D3 to A INC A Increment A 1 1 1 77 DEC A Decrement A 1 1 37 DA DA Decimal adjust A 1 1 57 SWAP A Swap nibbles of A 1 1 477 RL A Rotate A left 1 1 E7 RLC A Rotate A left 1 1 E7 RLC A Rotate A left 1 1 F7 CAR Cotate A left 1 1 F7 carry RR A Rotate A right 1 1 77 RRC A Rotate A right 1 1 77 RRC A Rotate A right 1 1 77 RRC A Rotate A right through 1 1 67 carry IN A, Pp Input port to A 1 2 06.09,0A OUTL Pp,A Output A to port 1 2 90,39,3A MOVD A,Pp Input expander port 1 2 90,39,3A MOVD P,A Output A to expander 1 2 3C-3F port ANLD Pp,A Or A to expander port 1 2 9C-9F IN C, Rr Increment register 1 1 18-1F INC @ R Increment register 1 1 18-1F INC @ R Increment register 1 1 18-1F INC @ R Increment register 1 2 8C-8F Set INC R , Jump indirect 1 2 8B-3F JMPP @ A Jump indirect 1 2 7 JMP addr		ADD A.@ B	Add data memory to A	1	1	60-61
ADDC A, R _r Add register with carry 1 178-7F ADDC A, @ R Add data memory with 1 170-71 carry ADDC A, #data Add immediate with 2 2 13 carry ANL A, R _r And register to A 1 1 58-5F ANL A, @ R And data memory to A 1 1 50-51 ANL A, #data And immediate to A 2 2 53 ORL A, #data And immediate to A 2 2 53 ORL A, #data And immediate to A 2 2 43 ORL A, #data And immediate to A 2 2 43 VRL A, @ R Or data memory to A 1 1 40-41 ORL A, #data Crimmediate to A 2 2 43 XRL A, @ R Exclusive Or register 1 1 D8-DF to A XRL A, @ R Exclusive Or data 1 1 D0-D1 memory to A XRL A, # data Exclusive Or data 1 1 00-D1 memory to A XRL A, # data Exclusive Or immediate 2 2 D3 INC A Increment A 1 1 177 DEC A Decrement A 1 1 177 DEC A Decrement A 1 1 377 DA A Decimal adjust A 1 577 SWAP A Swap nibbles of A 1 1 477 RL C A Rotate A left 1 1 E77 RR A Rotate A left 1 1 F77 carry RR A Rotate A right through 1 1 F77 carry RR A Rotate A right through 1 1 677 carry IN A, P _p Input port to A 1 2 068.09.0A MOVD A, P _p A Output A to expander port 1 2 90.39.3A MOVD A, P _p And A to expander port 1 2 90.39.3A MOVD A, P _p And A to expander port 1 2 90.39.3A INC R _r Increment register 1 1 18-1F INC @ R Increment data memory 1 1 10-11 JMP addr Jump unconditional 2 2 04.24,44,64, 84,A4,C4,E4 B3 JMPP @ A Jump indirect 1 2 B3 JMPP @ A Jump indirect 1 2 B3 HOP DA R, addr Jump unconditional 2 2 E8-EF jC addr Jump on Carry 2 2 F6		ADD A.#data	Add immediate to A	2	2	03
ADDC A, @ RAdd data memory with carry1170-71ADDC A, # dataAdd immediate with carry213ANL A, RrAnd register to A1158-5FANL A, @ RAnd data memory to A1150-51ANL A, @ RAnd data memory to A1148-4FORL A, @ ROr register to A1140-41ORL A, @ ROr data memory to A1140-41ORL A, # dataOr immediate to A2243XRL A, # dataOr immediate to A2233XRL A, # dataCrimeenta11D0-D1memory to A1177CLR AIncrement A1117DEC ADecrement A1137DA ADecrement A1157SWAP ASwap nibbles of A1147RL ARotate A left1177RR ARotate A right1177RRC ARotate A right through167CarryNutput to port12MOVD P, AOutput to A1290.93,3AMOVD P, AOutput to expander port1290.93,3AMOVD P, AOr A to expander port1290.93,3AMOVD P, AOr A to expander port1290.93,3AMOVD P, AOr A to expander port2263-68F		ADDC A.R.	Add register with carry	1	1	78-7F
$\begin{tabular}{ c c c c c } \hline Carry & Carry & ADDC A, # data Add immediate with & 2 & 2 & 13 & Carry & ANL A, Rr & And register to A & 1 & 1 & 58-5F & ANL A, @ R & And data memory to A & 1 & 1 & 50-51 & ANL A, # data & And immediate to A & 2 & 2 & 53 & ORL A, Rr & Cregister to A & 1 & 1 & 49-4F & ORL A, @ R & Or data memory to A & 1 & 1 & 49-4F & ORL A, @ R & Or data memory to A & 1 & 1 & 49-4F & ORL A, @ R & Or data memory to A & 1 & 1 & 49-4F & ORL A, @ R & Or data memory to A & 1 & 1 & 40-41 & ORL A, # data & Crimmediate to A & 2 & 2 & 43 & VRL A, # data & Exclusive Or register & 1 & 1 & D8-DF & to A & VRL A, # data & Exclusive Or immediate & 2 & D3 & VRL A, # data & Exclusive Or immediate & 2 & D3 & VRL A, # data & Exclusive Or immediate & 2 & D3 & VRL A, # data & Exclusive Or immediate & 2 & D3 & VRL A, # data & Exclusive Or immediate & 2 & D3 & VRL A, # data & Exclusive Or immediate & 2 & D3 & VRL A, # data & Exclusive Or immediate & 2 & D3 & VRL A, # data & Exclusive Or immediate & 2 & D3 & VRL A, # data & Increment A & 1 & 1 & 17 & DEC A & Decrement A & 1 & 1 & 07 & CLR A & Clear A & 1 & 1 & 27 & CPL A & Complement A & 1 & 1 & 37 & DA A & Decimal adjust A & 1 & 1 & 57 & SWAP A & Swap nibbles of A & 1 & 1 & 47 & RL A & Rotate A left through & 1 & F7 & Carry & RR A & Rotate A left through & 1 & F7 & Carry & RR A & Rotate A right through & 1 & 67 & Carry & VRR A & NoVD A, Pp & Input port to A & 1 & 2 & 08,09,0A & OUTU + Pp, A & Or A to expander port & 2 & 3C-3F & port & ORLD Pp, A & Or A to expander port & 2 & 3C-3F & port & NLD Pp, A & Or A to expander port & 1 & 2 & 9C-9F & ORLD Pp, A & Jump unconditional & 2 & 2 & 04,24,44,64, & 84,A4,C4,E4 & 44,A4,C4,E4 & 44,A4,C4,E4 & 44,A4,C4,E4 & 44,A4,C4,E4 & 44,A4,C4,E4 & JMPP @ A & Jump indirect & 1 & 2 & B3 & CARF & CA$		ADDC A.@ R	Add data memory with	1	1	70-71
ADDC A, # data Add immediate with 2 2 1 3 carry ANL A, Rr And register to A 1 1 58-5F ANL A, @ R And data memory to A 1 1 50-51 ANL A, # data And immediate to A 2 2 53 ORL A, @ R Or data memory to A 1 1 48-4F ORL A, @ R Or data memory to A 1 1 40-41 ORL A, # data Or immediate to A 2 2 43 XRL A, Rr Exclusive Or register 1 1 D8-DF to A XRL A, @ R Exclusive Or data 1 1 D0-D1 memory to A XRL A, @ R Exclusive Or immediate 2 2 D3 to A INC A Increment A 1 1 17 DEC A Decrement A 1 1 17 DEC A Decrement A 1 1 07 CLR A Complement A 1 1 37 DA A Decimal adjust A 1 57 SWAP A Swap nibbles of A 1 1 47 RL C A Rotate A left 1 1 E7 RLC A Rotate A left 1 1 F7 carry RR A Rotate A right Hrough 1 F7 carry RR A Rotate A right through 1 67 carry IN A, Pp Input port to A 1 2 08,09,0A MOVD P _p , A Output A to expander port 1 2 90,39,3A MOVD P _p , A Output A to expander port 1 2 90-39,3A MOVD P _p , A Or A to expander port 1 2 90-9F NLD P _p , A Or A to expander port 1 2 9C-9F NLD P _p , A Or A to expander port 1 2 8C-8F Set INC Rr NLD P _p , A Durp unconditional 2 2 04,24,44,64, 44,A4,C4,E4 JMPP @ A Jump unconditional 2 2 04,24,44,64, JMPP @ A Jump indirect 1 2 B3 JMPP @ A Jump indirect 1 2 B3 JMPP @ A Jump indirect 1 2 B3 MOVD R, Po Input port not a 2 2 E8-EF JC addr Jump on Carry 2 2 F6		e e e e e e e e e e e e e e e e e e e	carry			
ANL A,R, ANL A,@ RAnd register to A1158-5FANL A,@ RAnd data memory to A1150-51ANL A,# dataAnd immediate to A2253ORL A,R, ORL A,@ ROr register to A1148-4FORL A,# dataOr immediate to A2243ORL A,# dataOr immediate to A2243ORL A,# dataOr immediate to A2243XRL A,# dataExclusive Or register11D0-D1memory to A1117DEC ADecrement A1117DEC ADecrement A1177CLR AClear A1157SWAP ASwap nibbles of A1157SWAP ASwap nibbles of A1177RR ARotate A left1177RRC ARotate A right1177RRC ARotate A right through167CarryCarry1206,09,0AOUTL Pp,AOutput A to expander port1290,39,3AMOVD P,AOr A to expander port129C-9FORLD Pp,AOr A to expander port128C-8FSettionINC R, INC Q RIncrement register1118-1FIND Pp,AJump unconditional2204,24,44,64, 84,A4,C4,E4JMPP @ AJump indirect1		ADDC A,#data	Add immediate with carry	2	2	13
ANL A,@ R And data memory to A 1 1 50-51 ANL A,#data And immediate to A 2 53 ORL A,R Or register to A 1 1 48-4F ORL A,@ R Or data memory to A 1 1 40-41 ORL A,#data Or immediate to A 2 2 43 XRL A,R Exclusive Or register 1 1 D8-DF to A XRL A,# data Exclusive Or data 1 1 D0-D1 memory to A XRL A,# data Exclusive Or immediate 2 2 D3 XRL A,# data Exclusive Or immediate 1 1 07 CLR A Clear A 1 1 27 CPL A Complement A 1 1 07 CLR A Clear A 1 1 27 CPL A Complement A 1 1 57 SWAP A Swap nibbles of A 1 1 47 RL A Rotate A left 1 1 E7 RL C A Rotate A left 1 1 F7 RR A Rotate A left 1 1 F7 RR C A Rotate A right 1 1 777 RR A Rotate A right 1 1 777 RR A Rotate A right through 1 1 67 carry IN A, Pp Input port to A 1 2 08.09,0A OUTL Pp,A Output A to port 1 2 90.39,3A MOVD A,Pp Input expander port 1 2 0C-OF to A MOVD Pp,A Output A to expander 1 2 3C-3F port ANLD Pp,A Or A to expander port 1 2 9C-9F INC R, Increment register 1 1 18-1F INC @ R Increment register 1 1 18-1F INC @ R Increment register 1 1 18-1F INC @ R Jump unconditional 2 2 04.24,44,64, 44,A4,C4.E4 JMPP @ A Jump indirect 1 2 B3 JMPP @ A Jump indirect 1 2 B3 JMPP @ A Jump indirect 1 2 B3 JMPP @ A Jump indirect 1 2 B3- JMPP @ A Jump indirect 1 2 B3- INC B, JUMP @ A Jump indirect 1 2 B3- INC B, JUMP addr Jump indirect 1 2 B3- INC B, JUMP m R not zero JC addr Jump on Carry = 1 2 2 F6		ANL A,Rr	And register to A	1	1	58-5F
ANL A, # dataAnd immediate to A2253ORL A, Rr ORL A, @ ROr register to A1148-4FORL A, @ ROr data memory to A1140-41ORL A, # dataOr immediate to A2243XRL A, RrExclusive Or register11D0-D1to ATTD0-D1memory to AXRL A, @ RExclusive Or immediate22D3XRL A, # dataExclusive Or immediate22D3INC AIncrement A1117DEC ADecrement A1137DA ADecimal adjust A1157SWAP ASwap nibbles of A1177RLC ARotate A left1177RCARotate A left through1177RR ARotate A right1177RRC AOutput A to port1206.09.0AOUTL P, AOutput A to port1290.39.3AMOVD A, PpInput port to A1290.39.3AMOVD A, PpAnd A to expander port129C-9FANLD P, AOr A to expander port129C-9FORL D, P, AOr A to expander port129C-9FMOVD P, AOr A to expander port128C-8FSetting MC R, INC @RIncrement register1110-11JMP addrJump unconditional		ANL A @ R	And data memory to A	1	1	50-51
ORL A.R. ORL A.@ ROr register to A1148-4FORL A.@ ROr data memory to A1140-41ORL A.@ ROr data memory to A1140-41ORL A.# dataOr immediate to A2243XRL A.R.Exclusive Or register11D0-D1memory to A11100-D1XRL A.@ RExclusive Or immediate22D3XRL A.# dataExclusive Or immediate22D3INC AIncrement A1117DEC ADecrement A1137DA ADecimal adjust A1157SWAP ASwap nibbles of A1147RL ARotate A left1177RR ARotate A left through1177RR ARotate A right through1167CarryCarryInput port to A1206.09.0AMOVD A.P.pInput port to A1290.39.3AMOVD A.P.pAnd A to expander port1290.39.3AMOVD P.p.AOr A to expander port129C-9FAnLD P.p.AOr A to expander port129C-9FANLD P.p.AJump unconditional2204.24.44.64.JMPP @ AJump unconditional22E8-EFJMPP @ AJump indirect12B3JMP addrJump on arry =		ANL A,#data	And immediate to A	2	2	53
ORL A.@ R ORL A.@ R ORL A.# dataOr data memory to A 11140-41 2ORL A.# dataOr immediate to A Exclusive Or register11D8-DFto A11D0-D1 memory to A11D0-D1XRL A.@ RExclusive Or data memory to A111D0-D1XRL A.# dataExclusive Or immediate22D3INC AIncrement A1117DEC ADecrement A1107CLR AClear A1157SWAP ASwap nibbles of A1147RL ARotate A left1177RR ARotate A left1177RR ARotate A right1177RR ARotate A right1177RR ARotate A right through167CarryUntput A to port1290,39,3AMOVD A.PpInput port to A1290,39,3AMOVD Pp,AOutput A to expander port129C-9FORLD Pp,AOr A to expander port129C-9FNLD Pp,AJump unconditional2204,24,44,64, 84,A4,C4,E4JMPP @ AJump indirect1282-8FSetting INC R, DJNZ R,addrJump indirect122JMP or MJump on Carry=122F6		ORL A,Rr	Or register to A	1	1	48-4F
OPEL A, # data OPEL A, # dataOr immediate to A Exclusive Or register2243to AExclusive Or register11DB-DFto A11DO-D1XRL A, @ RExclusive Or data memory to A11DO-D1XRL A, # dataExclusive Or immediate to A22D3INC AIncrement A1117DEC ADecrement A1117CPL AComplement A1137DA ADecimal adjust A1157SWAP ASwap nibbles of A1177RL ARotate A left1177RC ARotate A left1177RR ARotate A right1177RR ARotate A right through carry167OUTL Pp,AOutput A to port1290.39.3AMOVD A,PpInput port to A1290.39.3AMOVD A,PpAnd A to expander port129C-9FANLD Pp,AOutput A to expander port129C-9FORLD Pp,AOr A to expander port128C-8FSettingINC RrIncrement register Increment data memory1110-11JMP addrJump unconditional2204.24.44.64, 84.A4.C4.E43A.C4.E4JMPP @ AJump indirect12E8-EF3GJMP Q addrJump on Carry =12 <td< td=""><td></td><td>ORL A,@ R</td><td>Or data memory to A</td><td>1</td><td>1</td><td>40-41</td></td<>		ORL A,@ R	Or data memory to A	1	1	40-41
Image: Second system 1 1 D8-DF Image: Second system 1 1 D9-DF Image: Second system 1 1 D9-DF Image: Second system 1 1 D0-D1 Image: Second system 1 1 1 D0-D1 Image: Second system 1 1 1 D0-D1 Image: Second system 1 1 1 1 Image: Second system 1 1 1 1 Image: Second system 1 1 1 1 1 Image: Second system 1 1 1 1 1 1 Image: Second system Image: Second system 1 1 1 1 1 Image: Second system Image: Second s	<u>ـ</u>	ORL A,#data	Or immediate to A	2	2	43
	ulato	XRL A,R _r	Exclusive Or register to A	1	1	D8-DF
XRL A,#dataExclusive Or immediate to A22D3INC AIncrement A1117DEC ADecrement A1107CLR AClear A1127CPL AComplement A1137DA ADecimal adjust A1157SWAP ASwap nibbles of A1147RL ARotate A left11F7RR ARotate A left1177RR ARotate A right1177RRC ARotate A right through1167CarryCarry0utput port to A1208,09,0AOUTL Pp,AOutput A to port1290,39,3AMOVD A,PpInput port to A123C-3FMOVD Pp,AOutput A to expander port129C-9FANLD Pp,AOr A to expander port129C-9FMOVD Pp,AOr A to expander port128C-8FSettin INC @ RIncrement register1118-1FINC R,Increment data memory1110-11JMP addrJump indirect12204,24,44,64,GettinJump indirect128B-EFJJMP @ AJump indirect122E8-EFJC addrJump on carry=122F6	vccum	XRL A,@ R	Exclusive Or data memory to A	1	1	D0-D1
INC A Increment A 1 1 17 DEC A Decrement A 1 1 07 CLR A Clear A 1 1 27 CPL A Complement A 1 1 37 DA A Decimal adjust A 1 1 57 SWAP A Swap nibbles of A 1 1 47 RL A Rotate A left 1 1 F7 RCA Rotate A right 1 1 77 RR A Rotate A right through 1 67 Carry Input port to A 1 2 08,09,0A OUTL P,A Output A to port 1 2 90,39,3A OUTL P,A Output A to port 1 2 00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	•	XRL A,#data	Exclusive Or immediate	2	2	D3
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		INC A	Increment A	1	1	17
CLR A Clear A 1 1 27 CPL A Complement A 1 1 37 DA A Decimal adjust A 1 1 57 SWAP A Swap nibbles of A 1 1 57 RL A Rotate A left 1 1 47 RL A Rotate A left through 1 1 77 RR A Rotate A left through 1 1 77 RR A Rotate A right 1 1 77 RR A Rotate A right through 1 1 67 Carry Input port to A 1 2 08.09.0A OUTL Pp,A Output A to port 1 2 90.39.3A MOVD A,Pp Input expander port 1 2 9C-0F to A 1 2 3C-3F port MOVD P,A Output A to expander port 1 2 9C-9F ORLD Pp,A Or A to expander port 1 2 8C-8F Set INC R, Increment register 1 1 18-1F <td></td> <td>DECA</td> <td>Decrement A</td> <td>1</td> <td>1</td> <td>07</td>		DECA	Decrement A	1	1	07
CPL A Complement A 1 1 37 DA A Decimal adjust A 1 1 37 DA A Decimal adjust A 1 1 57 SWAP A Swap nibbles of A 1 1 47 RL A Rotate A left 1 1 77 RL A Rotate A left through 1 1 77 RR A Rotate A right 1 1 77 RR A Rotate A right through 1 67 carry IN A, Pp Input port to A 1 2 08,09,0A OUTL Pp,A Output A to port 1 2 09,39,3A OUTL Pp,A Output A to expander port 1 2 00-0F MOVD A,Pp Input expander port 1 2 3C-3F port And A to expander port 1 2 9C-9F ORLD Pp,A Or A to expander port 1 2 8C-8F Stip INC @R Increment register 1 <		CLRA	Clear A	,	1	27
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		CPL A	Complement A	1	1	37
Swap nibbles of A1147RL ARotate A left1117RL ARotate A left111F7RL ARotate A left through111F7RR ARotate A right11177RR ARotate A right through1167CarryInput port to A1208,09,0AOUTL Pp,AOutput A to port1290,39,3AMOVD A,PpInput expander port120C-0Fto A0VD Pp,AOutput A to expander123C-3FMOVD Pp,AOutput A to expander port129C-9FANLD Pp,AOr A to expander port128C-8FSin INC RrIncrement register1118-1FINC @ RJump unconditional2204,24,44,64, 84,A4,C4,E4JMPP @ AJump indirect12B3JMPP @ AJump indirect122E8-EFJC addrJump on Carry=122F6		DAA	Decimal adjust A	1	1	57
RL A Rotate A left 1 1 F7 RL A Rotate A left through 1 1 F7 RL A Rotate A left through 1 1 F7 RR A Rotate A right 1 1 77 RR A Rotate A right 1 1 77 RR A Rotate A right 1 1 67 carry 0 1 2 90,39,3A OUTL Pp,A Output A to port 1 2 0C-OF to A 0 0.01put A to expander port 1 2 0C-OF MOVD Pp,A Output A to expander port 1 2 9C-9F ORLD Pp,A Output A to expander port 1 2 9C-9F ORLD Pp,A Or A to expander port 1 2 9C-9F INC @ R Increment register 1 1 18-1F INC @ R Jump unconditional 2 2 04,24,44,64, 84, 64, 64, 64, 64, 64, 64, 64, 64, 64, 6		SWAP A	Swan nibbles of A	i	1	47
RLC ARotate A left through carry11F7RR ARotate A right carry1177RR ARotate A right range1177RR ARotate A right carry1167IN A, Pp OUTL Pp,AInput port to A Output A to port1208.09,0AOUTL Pp,AOutput A to port to A1209.39,3AMOVD A,Pp DerInput expander port to A120C-OFMOVD Pp,AOutput A to expander port129C-9FANLD Pp,AAnd A to expander port ORLD Pp,A129C-9FINC Rr DINC @ RIncrement register Increment data memory Decrement register and DOINZ R,addr1118-1FJMPP @ A JUMP M AddrJump unconditional22004,24,44,64, B4,A4,C4,E4JMPP @ A JUMP n R not zero JC addrJump on any error Jump on carry = 122F6		BL A	Rotate A left	1	1	E7
RR A Rotate A right 1 1 77 RRC A Rotate A right through 1 1 67 IN A, Pp Input port to A 1 2 08,09,0A OUTL Pp,A Output A to port 1 2 90,39,3A MOVD A, Pp Input expander port 1 2 0C-0F to A Output A to expander 1 2 3C-3F MOVD Pp,A Output A to expander port 1 2 9C-9F ANLD Pp,A And A to expander port 1 2 9C-9F ORLD Pp,A Or A to expander port 1 2 8C-8F st INC Rr Increment register 1 1 18-1F INC @ R Increment register 1 1 10-11 JMP addr Jump unconditional 2 2 04,24,44,64, 84,A4,C4,E4 JMPP @ A Jump indirect 1 2 2 E8-EF JUNZ R,addr Jump on carry=1 2 2 F6		RLC A	Rotate A left through	1	1	F7
IN A. Notate A right through in the intervence of the in		BB A	Rotate A right	1	1	77
Induct of right integring in the orgin of carry IN A, Pp Input port to A 1 2 08,09,0A OUTL Pp,A Output A to port 1 2 90,39,3A MOVD A,Pp Input expander port 1 2 0C-OF MOVD Pp,A Output A to expander port 1 2 3C-3F MOVD Pp,A Output A to expander port 1 2 9C-9F ANLD Pp,A And A to expander port 1 2 9C-9F ANLD Pp,A Or A to expander port 1 2 8C-8F INC Rr Increment register 1 1 18-1F INC @R Increment data memory 1 1 10-11 JMP addr Jump unconditional 2 2 04,24,44,64, 84, 64, 64, 64, 64, 64, 64, 64, 64, 64, 6		BBC A	Rotate A right through	1	1	67
IN A, P _p IN A, P _p OUTL P _p ,A OUTL P _p ,A OUTL A p _p ,A OUTL A p _p ,A Input expander port to A MOVD P _p ,A OUtput A to expander port ANLD P _p ,A OUTL A to expander port ANLD P _p ,A OUTL A to expander port ORLD P _p ,A OR A to expander port I 2 3C-3F port ANG A to expander port 1 2 3C-3F 0C-9F I 2 3C-3F 0C-9F I 2 3C-3F D-9F I 1 1 1 1 1 1 1 1 1 1 1 1 1			carry		,	
OUTL Pp.A Output A to port 1 2 90.39.3A MOVD A,Pp Input expander port 1 2 0C-0F to A to A 2 0C-0F MOVD Pp.A Output A to expander port 1 2 3C-3F port port 1 2 9C-9F ANLD Pp.A Or A to expander port 1 2 9C-9F ORLD Pp.A Or A to expander port 1 2 8C-8F INC @ R Increment register 1 1 18-1F JMP addr Jump unconditional 2 2 04,24,44,64, 84,A4,C4.E4 JMPP @ A Jump indirect 1 2 B3 Upp Do carry = 1 2 2 E8-EF JMP addr Jump on R not zero 2 2 F6		IN A, Pp	Input port to A	1	2	08,09,0A
MOVD A,Pp to A MOVD Pp,A ANLD Pp,A ANLD Pp,A Output A to expander port ANLD Pp,A ORLD Pp,A Or A to expander port I INC Rr INC Rr INC RR INC RR INC RR Increment register INC RR INC RR I	÷	OUTL P _p ,A	Output A to port	1	2	90,39,3A
MOVD Pp,A Output A to expander 1 2 3C-3F port port 1 2 9C-9F ANLD Pp,A And A to expander port 1 2 9C-9F ORLD Pp,A Or A to expander port 1 2 8C-8F INC Rr Increment register 1 1 18-1F INC @ R Jump unconditional 2 2 04,24,44,64, 84, 44, 64, 64, 64, 64, 64, 64, 64, 64, 6	Outpu	MOVD A,Pp	Input expander port to A	1	2	0C-0F
E ANLD Pp,A And A to expander port 1 2 9C-9F ORLD Pp,A Or A to expander port 1 2 8C-8F INC Rr Increment register 1 1 18-1F INC @ R Increment data memory 1 1 10-11 JMP addr Jump unconditional 2 2 04,24,44,64, 84,A4,C4,E4 JMPP @ A Jump indirect 1 2 B3 DJNZ R,addr Decrement register and pump on carry = 1 2 2 E8-EF JC addr Jump on R not zero 2 2 F6	put/(MOVD P _p ,A	Output A to expander port	1	2	3C-3F
ORLD P _p ,A Or A to expander port 1 2 8C-8F Increment register 1 1 18-1F Increment data memory 1 1 10-11 JMP addr Jump unconditional 2 2 04,24,44,64, 84,A4,C4,E4 JMPP @ A Jump indirect 1 2 B3 UND R,addr Decrement register and jump on R not zero 2 2 E8-EF JC addr Jump ncorrest 2 2 56	-	ANLD P _D ,A	And A to expander port	1	2	9C-9F
JMP addr Jump unconditional 2 2 04,24,44,64, 84,A4,C4,E4 JMPP @ A Jump unconditional 2 2 04,24,44,64, 84,A4,C4,E4 JMPP @ A Jump indirect 1 2 2 84,A4,C4,E4 JMPP @ A Jump indirect 1 2 2 84,E4 JJMP @ A Jump indirect 1 2 2 2 JL C addr Jump on Carry=1 2 2 F6		ORLD P _p ,A	Or A to expander port	1	2	8C-8F
is INC @ R Increment data memory 1 1 10-11 JMP addr Jump unconditional 2 2 04,24,44,64, 84,A4,C4,E4 JMPP @ A Jump indirect 1 2 B3 JDJNZ R,addr Decrement register and jump on R not zero 2 E8-EF JC addr Jump indirect 2 2 F6	ters	INC Rr	Increment register	1	1	18-1F
JMP addr Jump unconditional 2 04,24,44,64, 84,A4,C4,E4 JMPP @ A Jump indirect 1 2 B3 5 DJNZ R,addr Decrement register and jump on R not zero 2 E8-EF JC addr Jump on carry=1 2 2 F6	egist	INC @ R	Increment data memory	1	1	10-11
JMP addr Jump unconditional 2 2 04,24,44,64, 84,A4,C4,E4 JMPP @ A Jump indirect 1 2 B3 5 DJNZ R,addr Decrement register and 2 2 E8-EF jump on R not zero JC addr Jump on carry=1 2 2 F6	æ					
JMPP @ A Jump indirect 1 2 B3		JMP addr	Jump unconditional	2	2	04,24,44,64, 84,A4,C4,E4
g DJNZ R, addr Decrement register and 2 2 E8-EF jump on R not zero jump on carry=1 2 2 F6		JMPP @ A	Jump indirect	1	2	B3
jump on R not zero Jump on carry=1 2 2 F6	÷	DJNZ R.addr	Decrement register and	2	2	E8-EF
JC addr Jump on carry=1 2 2 F6	aŭ	.,===-	jump on R not zero	-	-	
	a	JC addr	Jump on carry=1	2	2	F6
JNC addr Jump on carry=0 2 2 E6		JNC addr	Jump on carry=0	2	2	E6
JZ addr Jump on A zero 2 2 C6		JZ addr	Jump on A zero	2	2	C6
JNZ addr Jump on A not zero 2 2 96		JNZ addr	Jump on A not zero	2	2	96

	Mnemonic	Description	Bytes	Cycle	Hexadecimal Opcode
	JTO addr	Jump on TO=1	2	2	36
	JNTO addr	Jump on TO=0	2	2	26
	JT1 addr	Jump on T1=1	2	2	56
	JNT1 addr	Jump on T1=0	2	2	46
	JTF addr	Jump on timer flag	2	2	16
routine	CALL addr	Jump to subroutine	1	2	14,34,54,74 94,B4,D4,F4
Sub	RET	Return	1	2	83
gs	CLR C	Clear carry	1	1	97
Fla	CPL C	Complement carry	1	1	A7
	MOV A,Rr	Move register to A	1	1	F8-FF
	MOV A.@ R	Move data memory to A	1	1	F0-F1
	MOV A #data	Move immediate to A	2	2	23
	MOV B. A	Move A to register	1	1	48-AF
	MOVARA	Move A to data memory	- 1		A0-A 1
		Move A to data memory	2	2	DO DE
ves	MOV H _r ,#data	register	2	2	D0-DF
ta Mo	MOV@R,#data	Move immediate to data memory	2	2	B0-B1
Dat	XCH A,R _r	Exchange A and register	1	1	28-2F
	XCH A,@ R	Exchange A and data memory	1	1	20-21
	XCHD a,@ R	Exchange nibble of A and register	1	1	30-31
	MOVP A,@ A	Move to A from current page	1	2	A3
er	MOV A,T	Read timer / counter	1	1	42
ŝ	MOV T.A	Load timer/counter	1	1	62
ŝ	STRT T	Start timer	1	1	55
N.	STRT CNT	Start counter	t	1	45
ň	STOP TONT	Ston timer/counter	1	1	65
F					
erter	RAD	Move conversion result register to A	1	2	80
Conv	SEL ANO	Select analog input zero	1	1	85
A/D	SEL AN1	Select analog input one	1	1	95
	ENI	Enable external	1	1	05
errupts	DIS I	Disable external	1	1	15
	EN TCNTI	Enable timer/counter	1	1	25
<u>n</u> t	DIS TCNTI	Disable timer/counter	1	1	35
	RETI	Return from interrupt	1	2	93
	NOP	No operation	1	1	00

SYMBOLS AND ABBREVIATIONS USED

		Р	Mnemonic for "in-page" Operation
А	Accumulator	Pp	Port Designator (P=0, 1, 2 or 4-7)
addr	11-Bit Program Memory Address	Rr	Register Designator (r=0-7)
ANO, AN1	Analog Input 0, Analog Input 1	Т	Timer
CNT	Event Counter	TO, T1	Test 0, Test 1
data	8-Bit Number or Expression	#	Immediate Data Prefix
1	Interrupt	0	Indirect Address Prefix

intel

8022H HIGH PERFORMANCE SINGLE COMPONENT 8-BIT MICROCOMPUTER WITH ON-CHIP A/D CONVERTER

- 8-Bit CPU, ROM, RAM, I/O in Single 40-Pin Package
- On-Chip 8-Bit A/D Converter; Two Input Channels
- 8 Comparator Inputs (Port 0)
- Zero-Cross Detection Capability
- Single 5V Supply (4.5V to 6.5V)
- Two Interrupts—External and Timer

- 2K x 8 ROM, 64 x 8 RAM, 28 I/O Lines
- 5 µsec Cycle; All Instructions 1 or 2 Cycles (6 MHz Clock)
- Instructions—8048 Subset
- Interval Time/Event Counter
- Clock Generated with Single Inductor or Crystal
- Easily Expanded I/O

The Intel® 8022H is designed to satisfy the requirements of low cost, high volume applications which involve analog signals, capacitive touchpanel keyboards, and/or large ROM space. The 8022H addresses these applications by integrating many new functions on-chip, such as A/D conversion, comparator inputs and zero-cross detection.

The features of the 8022H include 2K bytes of program memory (ROM), 64 bytes of data memory (RAM), 28 I/O lines, an on-chip A/D converter with two input channels, an 8-bit port with comparator inputs for interfacing to low voltage capacitive touchpanels or other non-TTL interfaces, external timer interrupts, and zero-cross detection capability. In addition, it contains the 8-bit interval timer/event counter, on-board oscillator and clock circuitry, single 5V power supply requirement, and easily expandable I/O structure common to all members of the MCS-48 family.

The 8022H is designed to be an efficient controller as well as an arithmetic processor. It has bit handling capability plus facilities for both binary and BCD arithmetic. Efficient use of program memory results from using the MCS-48 instruction set which consists mostly of single byte instructions and has extensive conditional jump and direct table lookup capability. Program memory usage is further reduced via the 8022H's hardware implementation of the A/D converter which simplifies interfacing to analog signals.

Intel Corporation Assumes No Responsibility for the Use of any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied. ©INTEL CORPORATION, 1980 7-12 7-12

intel

8048H/8048H-1/8035HL/8035HL-1 HMOS SINGLE COMPONENT 8-BIT MICROCOMPUTER

8048H/8048H-1 Mask Programmable ROM
 8035HL/8035HL-1 CPU Only with Power Down Mode

- 8-BIT CPU, ROM, RAM, I/O in Single Package
- High Performance HMOS
- Reduced Power Consumption
- 1.4 µsec and 1.9 µsec Cycle Versions All Instructions 1 or 2 Cycles
- Over 90 Instructions: 70% Single Byte
- 1K x 8 ROM
 64 x RAM
 27 I/O Lines
- Interval Timer/Event Counter
- Easily Expandable Memory and I/O
- Compatible with 8080/8085 Series Peripherals
- Two Single Level Interrupts

The Intel® 8048H/8048H-1/8035HL/8035HL-1 are totally self-sufficient, 8-bit parallel computers fabricated on single silicon chips using Intel's advanced N-channel silicon gate HMOS process.

The 8048H contains a 1K X 8 program memory, a 64 X 8 RAM data memory, 27 I/O lines, and an 8-bit timer/counter in addition to on-board oscillator and clock circuits. For systems that require extra capability the 8048H can be expanded using standard memories and MCS-80[®] /MCS-85[®] peripherals. The 8035HL is the equivalent of the 8048H without program memory and can be used with external ROM and RAM.

To reduce development problems to a minimum and provide maximum flexibility, a logically and functionally pin compatible version of the 8048H with UV-erasable user-programmable EPROM program memory is available. The 8748 will emulate the 8048H up to 6 MHz clock frequency with minor differences.

The 8048H is fully compatible with the 8048 when operated at 6MHz.

These microcomputers are designed to be efficient controllers as well as arithmetic processors. They have extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting mostly of single byte instructions and no instructions over 2 bytes in length.

Function

Symbol	Pin No.	Function		Symbol	Pin No.
VSS	20	Circuit GND potential			
VDD	26	Low power standby pin			
Vcc	40	Main power supply; +5V during operation.		RD	8
PROG	25	Output strobe for 8243 I/O expander.			
P10-P17 Port 1	27-34	8-bit quasi-bidirectional port.	-	PESET	
P20-P27 Port 2	21-24	8-bit quasi-bidirectional port.		RESET	4
	35-38	P20-P23 contain the four high order program counter bits dur- ing an external program memory fetch and serve as a 4-bit I/O expander bus for 8243.		WR	10
DB0-DB7 BUS	12-19	True bidirectional port which can be written or read synchronously using the RD, WR strobes. The port can also be statically latched.		ALE	11
		Contains the 8 low order pro- gram counter bits during an external program memory fetch, and receives the addressed instruction under the control of		PSEN	9
		PSEN. Also contains the address and data during an external RAM data store instruction, under control of ALE, RD, and WR.		SS	5
TO	1	Input pin testable using the conditional transfer instructions JT0 and JNT0. T0 can be designated as a clock output using ENT0 CLK instruction.		EA	7
T1	39	Input pin testable using the JT1, and JNT1 instructions. Can be designated the timer/counter input using the STRT CNT instruction.		XTAL1	2
INT	6	Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled after a reset.		XTAL2	3

Table 1. Pin Description

		Also testable with conditional jump instruction. (Active low)
RD	8	Output strobe activated during a BUS read. Can be used to enable data onto the bus from an external device.
		Used as a read strobe to external data memory. (Active low)
RESET	4	Input which is used to initialize the processor. (Active low) (Non TTL VIH)
WR	10	Output strobe during a bus write. (Active low)
		Used as write strobe to external data memory.
ALE	11	Address latch enable. This signal occurs once during each cycle and is useful as a clock output.
		The negative edge of ALE strobes address into external data and program memory.
PSEN	9	Program store enable. This out- put occurs only during a fetch to external program memory. (Active low)
SS	5	Single step input can be used in conjunction with ALE to "single step" the processor through each instruction. (Active low)
EA	7	External access input which forces all program memory fetches to reference external memory. Useful for emulation and debug, and essential for testing and program verification. (Active high)
XTAL1	2	One side of crystal input for internal oscillator. Also input for external source. (Non TTL V _{IH})
XTAL2	3	Other side of crystal input.

Table 2. Instruction Set

Accumulator			
Mnemonic	Description	Bytes	Cycles
ADD A, R	Add register to A	1	1
ADD A, @R	Add data memory to A	1	1
ADD A, # data	Add immediate to A	2	2
ADDC A, R	Add register with carry	1	1
ADDC A, @R	Add data memory with carry	1	1
ADDC A, # data	Add immediate with carry	2	2
ANL A. R	And register to A	1	1
ANL A, @R	And data memory to A	1	1
ANL A, # data	And immediate to A	2	2
ORL A, R	Or register to A	1	1
ORL A @R	Or data memory to A	1	1
ORL A, # data	Or immediate to A	2	2
XRL A, R	Exclusive or register to A	1	1
XRL A. @R	Exclusive or data memory to A	1	1
XRL, A, # data	Exclusive or immediate to A	2	2
INC A	Increment A	1	1
DEC A	Decrement A	1	1
CLR A	Clear A	1	1
CPL A	Complement A	1	1
DA A	Decimal adjust A	1	1
SWAP A	Swap nibbles of A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1

Mnemonic	Description	Bytes	Cycles
IN A, P	Input port to A	1 '	2
OUTL P, A	Output A to port	1	2
ANL P, # data	And immediate to port	2	2
ORL P, # data	Or immediate to port	2	2
INS A, BUS	Input BUS to A	1	2
OUTL BUS, A	Output A to BUS	1	2
ANL BUS, # data	And immediate to BUS	2	2
ORL BUS, # data	a Or immediate to BUS	2	2
MOVD A,P	Input expander port to A	1	2
MOVD P, A	Output A to expander port	1	2
ANLD P, A	And A to expander port	1	2
ORLD P, A	Or A to expander port	1	2

Registers			
Mnemonic	Description	Bytes	Cycles
INC R	Increment register	1	1
INC @R	Increment data memory	1	1
DEC R	Decrement register	1	1

Branch

Mnemonic	Description	Bytes	Cycles
JMP addr	Jump unconditional	2	2
JMPP @A	Jump indirect	1	2
DJNZ R, addr	Decrement register and skip	2	2
JC addr	Jump on carry = 1	2	2
JNC addr	Jump on carry = 0	2	2
JZ addr	Jump on A zero	2	2
JNZ addr	Jump on A not zero	2	2
JTO addr	Jump on TO = 1	2	2
JNTO addr	Jump on TO = 0	2	2
JT1 addr	Jump on T1 = 1	2	2
JNT1 addr	Jump on T1 = 0	2	2
JF0 addr	Jump on F0 = 1	2	2
JF1 addr	Jump on F1 = 1	2	2
JTF addr	Jump on timer flag	2	2
JN1 addr	Jump on INT = 0	2	2
JBb addr	Jump on accumulator bit	2	2

Subroutine			
Maamania	Description	Butoe	Cycles
CALL addr	CALL addr Jump to subroutine		2
BETR	Return	1	2
RETR	Return and restore status	1	2
· · · · · · · · · · · · · · · · · · ·			
Flags			
Mnemonic	Description	Bytes	Cycles
CLR C	Clear carry	1	1
CPL C	Complement carry	1	1
CLR FO	CLear flag 0	1	1
	Complement flag U	1	1
	Complement flag 1	1	1
GIETT			
Data Moves			
Mnemonic	Description	Bytes	Cycles
MOV A, R	Move register to A	1	1
MOV A, @R	Move data memory to A	1	1
MOV A, # data	Move immediate to A	2	2
MOV R, A	Move A to register	1	1
MOV @R, A	Move A to data memory	1	1
MOV R, # data	Move immediate to register	2	2
MOV @R, #data	Move immediate to data memory	2	2
MOV A, PSW	Move PSW to A	1	1
MOV PSW, A	Move A to PSW	1	1
	Exchange A and register	1	1
	Exchange A and data memory		
ACHD A, WA	register		
MOVX A @B	Move external data memory to A	1	2
MOVX @R. A	Move A to external data memory	1	2
MOVP A, @A	Move to A from current page	1	2
MOVP3 A, @	Move to A from page 3	1	2
	······································		
Timer/Counter			
Mnemonic	Description	Bytes	Cycles
MOV A, T	Read timer/counter	1	1
MOV T, A	Load timer/counter	1	1
STRT T	Start timer	1	1
STRT CNT	Start counter	1	1
STOP TONT	Stop timer/counter	1	1
EN IONII	Enable timer/counter interrupt	1	1
Control			
Mnemonic	Description	Bytes	Cycles
EN 1	Enable external interrupt	1	1
DIS 1	Disable external interrupt	1	1
SEL RB0	Select register bank 0	1	1
SEL RB1	Select register bank 1	1	1
SEL MB0	Select memory bank 0	1	1
SEL MB1	Select memory bank 1	1	1

Mnemonic	Description	Bytes Cycles
NOP	No operation	1 1

Enable clock output on T0

1 1

1

ENT 0 CLK

ABSOLUTE MAXIMUM RATINGS*

 Ambient Temperature Under Bias
 0°C to 70°C

 Storage Temperature
 -65°C to +150°C

 Voltage On Any Pin With Respect
 -0.5V to +7V

 Yower Dissipation
 1.5 Watt

*NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. CHARACTERISTICS (TA = 0°C to 70°C, $V_{CC} = V_{DD} = 5V + 10\%$, $V_{SS} = 10\%$	= 0V)
--	-------

			Limits				
Symbol	Parameter	Min.	Тур.	Max.	Unit	lest Conditions	
VIL	Input Low Voltage (All Except RESET, X1, X2)	5		.8	v		
V _{IL1}	Input Low Voltage (RESET, X1, X2)	5		.6	. V		
VIH	Input High Voltage (All Except XTAL1, XTAL2, RESET)	2.0		Vcc	V		
V _{IH1}	Input High Voltage (X1, X2, RESET)	3.8		Vcc	v		
VOL	Output Low Voltage (BUS)			.45	V	I _{OL} = 2.0 mA	
V _{OL1}	Output Low Voltage (RD, WR, PSEN, ALE)			.45	V	I _{OL} = 1.8 mA	
VOL2	Output Low Voltage (PROG)			.45	v	^I OL = 1.0 mA	
V _{OL3}	Output Low Voltage (All Other Outputs)			.45	V	I _{OL} = 1.6 mA	
voн	Output High Voltage (BUS)	2.4			v	^I OH = -400µА	
V _{OH1}	Output High Voltage (RD, WR, PSEN, ALE)	2.4			V	I _{OH} = -100µА	
V _{OH2}	Output High Voltage (All Other Outputs)	2.4			v	^I OH ^{= - 40} µА	
IL1	Input Leakage Current (T1, INT)			± 10	μΑ	V _{SS} ≼V _{IN} ≼V _{CC}	
ILI1	Input Leakage Current (P10-P17, P20-P27, EA, SS)			-500	μΑ	V _{SS} + .45≤V _{IN} ≤V _{CC}	
'LO	Output Leakage Current (BUS, TO) (High Impedance State)			± 10	μΑ	V _{SS} + .45≤V _{IN} ≤V _{CC}	
ססי	V _{DD} Supply Current		4	8	mA		
IDD + ICC	Total Supply Current	· ·	40	80	mA		
VDD	RAM Standby Pin Voltage	2.2		5.5	V	Standby Mode, Reset ≤0.6V	

8048H 8048H-1 8035HL 8035HL-1 Conditions 6 MHz 8 MHz 11 MHz Symbol Parameter F (tcy) Min. Max. Min. Max. Min. Max. Unit (Note 1) ALE Pulse Width 150 7/30 tCY -170 410 260 tLL 260 Addr Setup to ALE 390 160 **tAL** 1/5 tCY -110 Addr Hold from ALE 1/15 tCY -40 120 tLA 80 50 Control Pulse Width 1/2 tCY -200 1050 730 480 tCC1 (RD, WR) Control Pulse Width (PSEN) 2/5 tCY -200 800 550 350 tCC2 tDW Data Setup before WR 13/30 tCY -200 880 610 390 Data Hold after WR 1/5 tcy -150 350 220 120 (Note 2) twp Data Hold (RD, PSEN) 1/10 tCY -30 0 220 0 160 0 110 ^tDR RD to Data in 2/5 t_{CY} -200 800 550 350 ^tRD1 PSEN to Data in 550 360 210 tRD2 3/10 tCY -200 Addr Setup to WR 2/5 tCY -150 850 600 300 taw Addr Setup to Data (RD) 23/30 tCY -250 1670 1190 750 tAD1 880 480 Addr Setup to Data (PSEN) 3/5 tCY -250 1250 tAD2 Addr Float to RD, WR tAFC1 2/15 tCY -40 290 210 140 Addr Float to PSEN tAFC2 1/30 tCY -40 40 20 10 ALE to Control (RD, WR) 300 tLAFC1 1/5 t_{CY} -75 420 200 ALE to Control (PSEN) 170 tLAFC2 1/10 tcy -75 110 60 tCA1 Control to ALE 1/15 tCY -40 120 80 50 (RD, WR, PROG) Control to ALE (PSEN) 320 620 460 4/15 tCY -40 tCA2 Port Control Setup to PROG 1/10 tCY -40 tCP 210 140 100 Port Control Hold to PROG 4/15 tcy -200 460 300 160 ^tPC 17/30 tCY PROG to P2 Input Valid 1300 940 650 ^tPR -120 Input Data Hold from PROG 1/10 toy 250 190 140 **t**PF 0 0 Output Data Setup ^tDP 2/5 t_{CY} -150 850 600 400 Output Data Hold 1/10 tCY -50 200 130 90 ^tPD PROG Pulse Width 7/10 tcy -250 1500 1060 700 tpp Port 2 I/O Setup to ALE 300 **tPL** 4/15 tCY -200 460 160 Port 2 I/O Hold to ALE 40 t_LP 1/10 tCY -100 150 80 Port Output from ALE tpv 3/10 tCY +100 850 660 510 Cycle Time 2.5 1.875 tCY 1.36 T0 Rep Rate 3/15 tCY 500 370 270 tOPBR

A.C. CHARACTERISTICS (TA = 0°C to 70°C, V_{CC} = V_{DD} = 5V ± 10%, V_{SS} = OV)

Notes:

1. Control Outputs CL = 80pF

BUS Outputs CL = 150pF

2. BUS High Impedance Load 20pF

WAVEFORMS

PORT 2 TIMING

I/O PORT TIMING

8048L SPECIAL LOW POWER CONSUMPTION SINGLE COMPONENT 8-BIT MICROCOMPUTER

- Typical Power Consumption 100mW
- Typical Standby Power 10mW V_{DD} minimum of 2.2V
- 8-Bit CPU, ROM, RAM, I/O in Single Package
- 4.17 µsec Instruction Cycle. All Instructions 1 or 2 Cycles.

- 1K x 8 ROM
 64 x 8 RAM
 27 I/O Lines
- Interval Timer/Event Counter
- Easily Expandable Memory and I/O
- Compatible with 8080/8085 Series

Peripherals

- Two Single Level Interrupts
- Over 90 Instructions: 70% Single Byte

The Intel® 8048L is a totally self-sufficient 8-bit parallel computer fabricated on a single silicon chip using Intel's advanced N-channel silicon gate HMOS process, using special techniques to reduce operating and standby power consumption. The 8048L contains a 1K X 8 program memory, a 64 X 8 RAM data memory, 27 I/O lines, and an 8-bit timer/counter in addition to on-board oscillator and clock circuits. For systems that require extra capability the 8048L can be expanded using standard memories and MCS-80®/MCS-85® peripherals. The 8048L can be used with external ROM and RAM.

To reduce development problems to a minimum and provide maximum flexibility, a logically and functionally pin compatible version of the 8048L with UV-erasable user-programmable EPROM program memory is available. The 8748 will emulate the 8048L with greater power and other minor differences.

This microcontroller is designed to be an efficient controller as well as an arithmetic processor. The 8048L has extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting mostly of single byte instructions and no instructions over two bytes in length.

intط

PIN DESCRIPTION

Designation	Pin =	Function	Designation	Pin =	Function
v _{ss}	20	Circuit GND potential			testable with conditional
v _{DD}	26	Low power standby pin			jump instruction. (Active low)
Vcc	40	Main power supply; +5V during operation.	RD	8	Output strobe activated during a BUS read. Can be
PROG	25	Output strobe for 8243 I/O expander.			used to enable data onto the bus from an external device.
P10-P17 Port 1 P20-27	27-34	8-bit quasi-bidirectional port. 8-bit quasi-bidirectional			Used as a read strobe to external data memory.
Port 2	35-38	port. P20-P23 contain the four high order program counter bits during an external pro- gram memory fetch and	RESET	4	(Active low) Input which is used to initialize the processor. (Active low) (Non TTL VIH)
		serve as a 4-bit I/O expander bus for 8243.	WR	10	Output strobe during a bus write. (Active low)
DB0-DB7 BUS	12-19	True bidirectional port which can be written or read			Used as write strobe to external data memory.
		synchronously using the RD, WR strobes. The port can also be statically latched. Contains the 8 low order program counter bits during an external program memory fetch, and receives	ALE	11	Address latch enable. This signal occurs once during each cycle and is useful as a clock output.
					The negative edge of ALE strobes address into ex- ternal data and program memory.
		under the control of PSEN. Also contains the address and data during an external BAM data store instruction	PSEN	9	Program store enable. This output occurs only during a fetch to external program memory. (Active low)
		under control of ALE, \overline{RD} , and \overline{WR} .	SS	5	Single step input can be used in conjunction with
ТО	1	Input pin testable using the conditional transfer in-			ALE to "single step" the processor through each instruction. (Active low)
		can be designated as a clock output using ENT0 CLK instruction.	EA	7	External access input which forces all program memory fetches to reference external
Τ1	39	Input pin testable using the JT1, and JNT1 instructions. Can be designated the timer/counter input using the STRT CNT instruction.			memory. Useful for emula- tion and debug, and essential for testing and program verification. (Active high)
INT	6	Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is dis- abled after a reset. Also	XTAL1	2	One side of crystal input for internal oscillator. Also input for external source. (Non TTL V_{IH})
			XTAL2	3	Other side of crystal input.

INSTRUCTION SET

Accumulator				
Mnemonic	Description	Bytes	Cycles	
ADD A, R	Add register to A	1	1	
ADD A, @R	Add data memory to A	1	1	
ADD A, # data	Add immediate to A	2	2	
ADDC A, R	Add register with carry	1	1	
ADDC A, @R	Add data memory with carry	1	1	
ADDC A, # data	Add immediate with carry	2	2	
ANL A, R	And register to A	1	1	
ANL A, @R	And data memory to A	1	1	
ANL A, # data	And immediate to A	2	2	
ORLA, R	Or register to A	1	1	
ORLA@R	Or data memory to A	1	1	
ORL A, # data	Or immediate to A	2	2	
XRLA, R	Exclusive or register to A	1	1	
XRL A, @R	Exclusive or data memory to A	1	1	
XRL, A, # data	Exclusive or immediate to A	2	2	
INC A	Increment A	1	1	
DEC A	Decrement A	1	1	
CLR A	Clear A	1	1	
CPL A	Complement A	1	1	
DA A	Decimal adjust A	1	1	
SWAP A	Swap nibbles of A	1	1	
RL A	Rotate A left	1	1	
RLC A	Rotate A left through carry	1	1	
BR A	Rotate A right	1	1	
RRC A	Rotate A right through carry	1	1	
 				-
Input/Output				-
Mnemonic	Description	Bytes	Cycles	
IN A, P	Input port to A	1	2	
OUTL P, A	Output A to port	1	2	
ANL P, # data	And immediate to port	2	2	
ORL P, # data	Or immediate to port	2	2	
INS A, BUS	Input BUS to A	1	2	
OUTL BUS, A	Output A to BUS	1	2	
ANL BUS, # data	And immediate to BUS	2	2	
ORL BUS, # data	Or immediate to BUS	2	2	
MOVD A,P	Input expander port to A	1	2	
MOVD P, A	Output A to expander port	1	2	
ANLD P, A	And A to expander port	1	2	
ORLD P, A	Or A to expander port	1	2	

Rea	ietore
neg	191619

neglatera				
Mnemonic	Description	Bytes	Cycles	
INC R	Increment register	1	1	
INC @R	Increment data memory	1	1	
DEC R	Decrement register	1	1	

Branch

Mnemonic	Description	Bytes	Cycles
JMP addr	Jump unconditional	2	2
JMPP @A	Jump indirect	1	2
DJNZ R, addr	Decrement register and skip	2	2
JC addr	Jump on carry = 1	2	2
JNC addr	Jump on carry = 0	2	2
JZ addr	Jump on A zero	2	2
JNZ addr	Jump on A not zero	2	2
JTO addr	Jump on TO = 1	2	2
JNTO addr	Jump on TO = 0	2	2
JT1 addr	Jump on T1 = 1	2	2
JNT1 addr	Jump on T1 = 0	2	2
JF0 addr	Jump on F0 = 1	2	2
JF1 addr	Jump on F1 = 1	2	2
JTF addr	Jump on timer flag	2	2
JN1 addr	Jump on INT = 0	2	2
JBb addr	Jump on accumulator bit	2	2

	Subroutine			
		Deseri-di-a	D	Cualas
	Mnemonic	Description	oytes	Cycles
		Jump to subroutine	4	2
	DETR	Return and restore status	1	2
			· · · · · ·	<u>د</u>
	Flags			
	Mnemonic	Description	Bytes	Cvcles
	CLRC	Clear carry	1	1
	CPL C	Complement carry	1	1
	CLR F0	CLear flag 0	1	1
	CPL F0	Complement flag 0	1	1
	CLR F1	Clear flag 1	1	1
	CPL F1	Complement flag 1	1	1
	······			
	Data Mayor			
	Data Moves			
	Mnemonic	Description	Bytes	Cycles
	MOV A, R	Move register to A	1	1
	MOV A, @R	Move data memory to A	1	1
	MOV A, # data	Move immediate to A	2	2
	MOV R, A	Move A to register	1	1
	MOV @R, A	Move A to data memory	1	1
	MOV R, # data	Move immediate to register	2	2
	MOV @R, #data	Move immediate to data memory	2	2
	MOV A, PSW	Move PSW to A	1	1
	MOV PSW, A	Move A to PSW	1	1
	XCH A, R	Exchange A and register	1	1
	XCH A, @R	Exchange A and data memory	1	1
	XCHD A, @R	Exchange nibble of A and	1	
		register		
	MOVX A, @R	Move external data memory to A	1	2
	MOVX @R, A	Move A to external data memory	1	2
	MOVP A. @A	Move to A from current page	1	2
	MOVP3 A, @	Move to A from page 3	1	2
		······································		
	Timer/Counter			
	Mnemonic	Description	Bytes	Cycles
	MOV A, T	Read timer/counter	1	1
	MOV T. A	Load timer/counter	1	1
	STRT T	Start timer	1	1
	STRT CNT	Start counter	1	1
	STOP TONT	Stop timer/counter	1	1
	EN TCNTI	Enable timer/counter interrupt	1	1
	DIS TONTI	Disable timer/counter interrupt	1	1
	Control			
	Maamania	Description	Butoe	Cueles
	Mnemonic	Description	Bytes	Cycles
	ENT	Enable external interrupt	1	1
	DIST	Disable external interrupt	1	
	SEL HBU	Select register bank u	1	1
	SEL HB1	Select register bank i	1	+
	SEL MBU	Select memory bank u	1	1
	SELIVIDI	Select memory bank i	1	1
			·	· · · · · · · · · ·
_				
	Mnemonic	Description	Bytes	Cycles
	NOP	No operation	1	1

ABSOLUTE MAXIMUM RATINGS*

 Ambient Temperature Under Bias
 0°C to 70°C

 Storage Temperature
 -65°C to + 125°C

 Voltage On Any Pin With Respect
 -0.5V to +7V

 Yower Dissipation
 1.5 Watt

* COMMENT Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. AND OPERATING CHARACTERISTICS TA = 0° C to 70° C, VCC = VDD = 5V ± 10%, VSS = 0V

Symbol	D	Limits				Test Conditions	
Symbol	Parameter	Min.	Тур.	Max.		Test Conditions	
VIL	Input Low Voltage (All Except RESET, X1, X2)	5		.8	V		
V _{IL1}	Input Low Voltage (RESET, X1, X2)	5		.6	V		
v _{IH}	Input High Voltage (All Except XTAL1, XTAL2, RESET)	2.0		Vcc	V		
V _{IH1}	Input High Voltage (X1, X2, RESET)	3.8		Vcc	- V		
VOL	Output Low Voltage (BUS)			.45	V	VOL = 2.0 mA	
V _{OL1}	Output Low Voltage (RD, WR, PSEN, ALE)			.45	V	I _{OL} = 1.8 mA	
V _{OL2}	Output Low Voltage (PROG)			.45	V	I _{OL} = 1.0 mA	
V _{OL3}	Output Low Voltage (All Other Outputs)			.45	V	I _{OL} = 1.6 mA	
v _{он}	Output High Voltage (BUS)	2.4			V	I _{OH} = -400 μ A	
V _{OH1}	Output High Voltage (RD, WR, PSEN, ALE)	2.4			V	^I OH ⁼ -100 μA	
V _{OH2}	Output High Voltage (All Other Outputs)	2.4			v	I _{OH} = -40 μA	
L1	Input Leakage Current (T1, INT)			± 10	μA	$V_{SS} \leq V_{IN} \leq V_{CC}$	
ILI1	Input Leakage Current (P10-P17, P20-P27, EA, SS)			-500	μA	V _{SS} + .45≤V _{IN} ≤V _{CC}	
IL0	Output Leakage Current (BUS, TO) (High Impedance State)			± 10	μA	$v_{SS} + .45 \le v_{IN} \le v_{CC}$	
IDD	V _{DD} Supply Current		2	4	mA		
I _{DD} + I _{CC}	Total Supply Current		20	40	mA		
V _{DD}	Ram Standby Pin Voltage	2.2		5.5	V	Standby Mode, Reset≤0.6V	

A.C. CHARACTERISTICS (PORT 2 TIMING)

 $T_{A} = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5V + 10\%, V_{SS} - 0V$ $TCY = 4.17 \ \mu\text{S}$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{CP}	Port Control Setup Before Falling Edge of PROG	185		ns	
t _{PC}	Port Control Hold After Falling Edge of PROG	160		ns	
t _{PR}	PROG to Time P2 Input Must Be Valid		1.35	μs	
t _{PF}	Input Data Hold Time	0	250	ns	
t _{DP}	Output Data Setup Time	420		ns	
t _{PD}	Output Data Hold Time	110		ns	
tpp	PROG Pulse Width	2.0		μs	
t _{PL}	Port 2 I/O Data Setup	585		ns	
t _{LP}	Port 2 I/O Data Hold	250		ns	

PORT 2 TIMING

BUS TIMING AS A FUNCTION OF TCY *

SYMBOL	FUNC	TION OF	тсү		SYMBOL	FUNC	TION O	FTCY	
TIL	7/30	TCY	MIN		T _{RD} (1)	2/5	ТСҮ	MAX	T _{RD} (1) :RD
TAL	2/15	TCY	MIN		T _{RD} (2)	3/10	TCY	MAX	T _{RD} (2) : PSEN
TLA	1/15	TCY	MIN		TAW	1/3	TCY	MIN	
TCC (1)	1/2	TCY	MIN	T_{CC} (1) : $\overline{RD}/\overline{WR}$	T _{AD} (1)	11/15	ТСҮ	MAX	T _{AD} (1) : RD
TCC (2)	2/5	TCY	MIN	T _{CC} (2) : PSEN	T _{AD} (2)	8/15	тсү	MAX	T _{AD} (2) : <u>PS</u> EN
TDW	13/30	TCY	MIN		TAFC (1)	2/15	тсү	MIN	T _{AFC} (1): <u>RD</u>
TWD	1/15	ТСҮ	MIN		TAFC (2)	1/30	т _{СҮ}	MIN	T _{AFC} (2): <u>PSEN</u>
TDR	0		MIN		T _{CA} (1)	1/15	TCY	MIN	T _{CA} (1) : <u>RD, W</u> R
* APPROXIMA	TE VALUE	S NOT IN	CLUDIN	G GATE DELAYS.	T _{CA} (2)	2/15	ТСҮ	MIN	T _{CA} (2) : PSEN

WAVEFORMS

A.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = V_{DD} = 5V + 10\%$, $V_{SS} = 0V$

Symbol	Parameter			Unit	Conditions (Note 1)
Symbol	Farameter	Min.	Max.	Unit	Conditions (Note 1)
t _{LL}	ALE Pulse Width	600		ns	
t _{AL}	Address Setup to ALE	150		ns	
t _{LA}	Address Hold from ALE	80		ns	
t _{CC}	Control Pulse Width (PSEN, RD, WR)	1500		ns	
t _{DW}	Data Setup before WR	640		ns	
t _{WD}	Data Hold After WR	120		ns	C _L = 20pF
t _{CY}	Cycle Time	4.17	15.0	μs	
	Detaile				
^t DR	Data Hold	0	200	ns	
t _{RD}	PSEN, RD to Data In		750	ns	
t _{AW}	Address Setup to WR	260		ns	
t _{AD}	Address Setup to Data In		1450	ns	
t _{AFC}	Address Float to RD, PSEN	0		ns	
t _{CA}	Control Pulse to ALE	20		ns	

Note 1: Control outputs: $C_L = 80 \text{ pF}$ BUS Outputs: $C_L = 150 \text{ pF}$

CRYSTAL OSCILLATOR MODE

C1 = 5pF \pm 1/2pF + STRAY < 5pF

C2 = CRYSTAL + STRAY < 8pF

C3 = 20pF ± 1pF + STRAY < 5pF

CRYSTAL SERIES RESISTANCE SHOULD BE LESS THAN 75 ${\cal Q}$ AT 6 MHz LESS THAN 180 ${\cal Q}$ AT 3.6MHz

LC OSCILLATOR MODE

EACH C SHOULD BE APPROXIAMTELY 20pF. INCLUDING STRAY CAPACITANCE

DRIVING FROM EXTERNAL SOURCE

XTAL 1 MUST BE HIGH 35-65% OF THE PERIOD AND XTAL 2 MUST BE HIGH 35-65% OF THE PERIOD. RISE AND FALL TIMES MUST NOT EXCEED 20ns.

8049H/8039HL HMOS SINGLE COMPONENT 8-BIT MICROCOMPUTER

- 8049H Mask Programmable ROM
- 8039HL CPU Only with Power Down Mode
- 8-BIT CPU, ROM, RAM, I/O in Single Package
- High Performance HMOS
- Reduced Power Consumption
- 1.4 usec and 1.9 µsec Cycle Versions All Instructions 1 or 2 Cycles.
- Over 90 instructions: 70% Single Byte

- 1K x 8 ROM 64 x 8 RAM 27 I/O Lines
- Interval Timer/Event Counter
- Easily Expandable Memory and I/O
- Compatible with 8080/8085 Series Peripherals
- Two Single Level Interrupts

The Intel® 8049H/8039HL are totally self-sufficient, 8-bit parallel computers fabricated on single silicon chips using Intel's advanced N-channel silicon gate HMOS process.

The 8049H contains a 2K X 8 program memory, a 128 X 8 RAM data memory, 27 I/O lines, and an 8-bit timer/counter in addition to on-board oscillator and clock circuits. For systems that require extra capability the 8049H can be expanded using standard memories and MCS-80®/MCS-85® peripherals. The 8039HL is the equivalent of the 8049H without program memory and can be used with external ROM and RAM.

To reduce development problems to a minimum and provide maximum flexibility, a logically and functionally pin compatible version of the 8049H with UV-erasable user-programmable EPROM program memory will soon be available. The 8749 will emulate the 8049H up to 1 MHz clock frequency with minor differences.

The 8049H is fully compatible with the 8049.

These microcomputers are designed to be efficient controllers as well as arithmetic processors. They have extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting mostly of single byte instructions and no instructions over 2 bytes in length.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied. 'INTEL CORPORATION, 1980 7-27 AFN-01784A-01

Symbol	Pin No.	Function	Symbol	Pin No.	Function
V _{SS} V _{DD} V _{CC}	20 26 40	Circuit GND potential Low power standby pin Main power supply; +5V during	RD	. 8	Output strobe activated during a BUS read. Can be used to enable data onto the bus from an external device.
PROG	25	operation. Output strobe for 8243 I/O			Used as a read strobe to external data memory. (Active low)
P10-P17 Port 1	27-34	8-bit quasi-bidirectional port.	RESET	4	Input which is used to initialize the processor. (Active low) (Non TTL Vuu)
P20-P27 Port 2	21-24	8-bit quasi-bidirectional port.	WR	. 10	Output strobe during a bus write. (Active low)
	35-38	P20-P23 contain the four high order program counter bits dur-			Used as write strobe to external data memory.
		fetch and serve as a 4-bit I/O expander bus for 8243.	ALE	11	Address latch enable. This signal occurs once during each cycle and is useful as a clock output
DB0-DB7 BUS	12-19	True bidirectional port which can be written or read synchronously using the RD, WR strobes. The port can also be			The negative edge of ALE strobes address into external data and program memory.
		statically latched. Contains the 8 low order pro- gram counter bits during an external program memory fatch	PSEN	9	Program store enable. This out- put occurs only during a fetch to external program memory. (Active low)
		instruction under the control of PSEN. Also contains the address and data during an external RAM	SS	5	Single step input can be used in conjunction with ALE to "single step" the processor through each instruction. (Active low)
то	4	control of ALE, RD, and WR.	EA	7	External access input which forces all program memory
10	T.	conditional transfer instructions JT0 and JNT0. T0 can be designated as a clock output using ENT0 CLK instruction.			fetches to reference external memory. Useful for emulation and debug, and essential for testing and program verification. (Active high)
T1	39	Input pin testable using the JT1, and JNT1 instructions. Can be designated the timer/counter	XTAL1	2	One side of crystal input for internal oscillator. Also input for external source. (Non TTL V _{IH})
		input using the STRT CNT instruction.	XTAL2	3	Other side of crystal input.
ÎNT	6	Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled after a reset. Also testable with conditional jump instruction. (Active low)			

Table 1. Pin Description

Table 2. Instruction Set

Accumulator			
Mnemonic	Description	Bytes	Cycles
ADD A, R	Add register to A	1	1
ADD A, @R	Add data memory to A	1	1
ADD A, # data	Add immediate to A	2	2
ADDC A, R	Add register with carry	1	1
ADDC A, @R	Add data memory with carry	1	1
ADDC A, # data	Add immediate with carry	2	2
ANL A, R	And register to A	1	1
ANL A, @R	And data memory to A	1	1
ANL A, # data	And immediate to A	2	2
ORL A, R	Or register to A	1	1
ORL A @R	Or data memory to A	1	1
ORL A, # data	Or immediate to A	2	2
XRL A, R	Exclusive or register to A	1	1
XRL A, @R	Exclusive or data memory to A	1	1
XRL, A, # data	Exclusive or immediate to A	2	2
INC A	Increment A	1	1
DEC A	Decrement A	1	1
CLR A	Clear A	1	1
CPL A	Complement A	1	1
DA A	Decimal adjust A	1	1
SWAP A	Swap nibbles of A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1
Input/Output			
mput/output		. .	- .

Mnemonic	Description	Bytes	Cycles
IN A, P	Input port to A	1	2
OUTL P, A	Output A to port	1	2
ANL P, # data	And immediate to port	2	2
ORL P, # data	Or immediate to port	2	2
INS A, BUS Input BUS to A		1	2
OUTL BUS, A	Output A to BUS	1	2
ANL BUS, # dat	a And immediate to BUS	2	2
ORL BUS, # da	ta Or immediate to BUS	2	2
MOVD A,P	Input expander port to A	1	2
MOVD P, A Output A to expander port		1	2
ANLD P. A	And A to expander port	1	2
ORLD P. A	Or A to expander port	1	2

Registers

Mnemonic	Description	Bytes	Cycles
INC R	Increment register	1	1
INC @R	Increment data memory	1	1
DEC R	Decrement register	1	1

Branch

Mnemonic	Description	Bytes	Cycles
JMP addr	Jump unconditional	2	2
JMPP @A	Jump indirect	1	2
DJNZ R, addr	Decrement register and skip	2	2
JC addr	Jump on carry = 1	2	2
JNC addr	Jump on carry = 0	2	2
JZ addr	Jump on A zero	2	2
JNZ addr	Jump on A not zero	2	2
JTO addr	Jump on TO = 1	2	2
JNTO addr	Jump on TO = 0	2	2
JT1 addr	Jump on T1 = 1	2	2
JNT1 addr	Jump on T1 = 0	2	2
JF0 addr	Jump on F0 = 1	2	2
JF1 addr	Jump on F1 = 1	2	2
JTF addr	Jump on timer flag	2	2
JN1 addr	Jump on INT = 0	2	2
JBb addr	Jump on accumulator bit	2	2

Subroutine			
Mnemonic	Description	Bytes	Cycles
CALL addr	Jump to subroutine	2	2
RETR	Return	1	2
RETR	1	2	
Flags			
Mnemonic	Description	Bytes	Cycles
CLBC	Clear carry	1	1
CPL C	Complement carry	1	1
CPL C CLR F0	Complement carry CLear flag 0	1 1	1
CLR C CPL C CLR F0 CPL F0	Complement carry CLear flag 0 Complement flag 0	1 1 1	1 1 1
CPL C CLR F0 CPL F0 CLR F1	Complement carry CLear flag 0 Complement flag 0 Clear flag 1	1 1 1 1	1 1 1

Data Moves

Mnemonic	Description	Bytes	Cycles
MOV A, R	Move register to A	1	1
MOV A, @R	Move data memory to A	1	1
MOV A, # data	Move immediate to A	2	2
MOV R, A	Move A to register	1	1
MOV @R, A	Move A to data memory	1	1
MOV R, # data	Move immediate to register	2	2
MOV @R, #data	Move immediate to data memory	2	2
MOV A, PSW	Move PSW to A	1	1
MOV PSW, A	Move A to PSW	1	1
XCH A, R	Exchange A and register	1	1
XCH A, @R	Exchange A and data memory	1	1
XCHD A, @R	Exchange nibble of A and register	1	1
MOVX A, @R	Move external data memory to A	1	2
MOVX @R, A	Move A to external data memory	1	2
MOVP A, @A	Move to A from current page	1	2
MOVP3 A, @	Move to A from page 3	1	2

Timer/Counter

Mnemonic	Inemonic Description		Cycles
MOV A, T	Read timer/counter	1	1
MOV T, A	Load timer/counter	1	1
STRT T	Start timer	1	1
STRT CNT	Start counter	1	1
STOP TONT	Stop timer/counter	1	. 1
EN TONT1	Enable timer/counter interrupt	1	1
DIS TCNT1	Disable timer/counter interrupt	1	1

	Disable external interrupt	1	1
SEL RB0	Select register bank 0 Select register bank 1	1	1
SEL MB0	Select memory bank 0	1	1
ENT 0 CLK	Enable clock output on T0	1	1

ABSOLUTE MAXIMUM RATINGS*

 Ambient Temperature Under Bias
 0°C to 70°C

 Storage Temperature
 -65°C to + 150°C

 Voltage On Any Pin With Respect
 -0.5V to +7V

 Power Dissipation
 1.5 Watt

*NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. CHARACTERISTICS (TA = 0°C to 70°C, $V_{CC} = V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$)

Symbol	Deremeter		Limits			Test Conditions	
Symbol	Faranteler	Min.	Тур.	Max.	Unit	Test Conditions	
VIL	Input Low Voltage (All Except RESET, X1, X2)	5		.8	V		
V _{IL1}	Input Low Voltage (RESET, X1, X2)	5		.6	V		
V _{IH}	Input High Voltage (All Except XTAL1, XTAL2, RESET)	2.0		V _{CC}	v		
V _{IH1}	Input High Voltage (X1, X2, RESET)	3.8		Vcc	V		
VOL	Output Low Voltage (BUS)			.45	v	I _{OL} = 2.0 mA	
VOL1	Output Low Voltage (RD, WR, PSEN, ALE)			.45	v	I _{OL} = 1.8 mA	
V _{OL2}	Output Low Voltage (PROG)			.45	v	I _{OL} = 1.0 mA	
V _{OL3}	Output Low Voltage (All Other Outputs)			.45	v	I _{OL} = 1.6 mA	
∨он	Output High Voltage (BUS)	2.4			v	I _{OH} =-400 μA	
V _{OH1}	Output High Voltage (RD, WR, PSEN, ALE)	2.4			v	I _{OH} =-100 μA	
V _{OH2}	Output High Voltage (All Other Outputs)	2.4			v	l _{OH} =-40 μ A	
¹ L1	Input Leakage Current (T1, INT)			<u>+</u> 10	μΑ	$v_{SS} \le v_{IN} \le v_{CC}$	
I _{LI1}	Input Leakage Current (P10-P17, P20-P27, EA, SS)			-500	μΑ	V_{SS} + .45 \leq $V_{IN} \leq$ V_{CC}	
IL0	Output Leakage Current (BUS, TO) (High Impedance State)			<u>+</u> 10	μΑ	$V_{SS} + .45 \leq V_{IN} \leq V_{CC}$	
IDD	V _{DD} Supply Current		5	10	mA		
I _{DD} +	Total Supply Current		50	100	mA		

A.C. CHARACTERISTICS (T_A = 0°C to 70°C, V_{CC} = V_{DD} = 5V \pm 10%, V_{SS} = OV)

		f (tcy)	11	11 MHz		Conditions
Symbol	Parameter	(Note 3)	Min.	Max.	Unit	(Note 1)
t _{LL}	ALE Pulse Width	7/30 t _{CY} -170	150		ns	
t _{AL}	Addr Setup to ALE	1/5 t _{CY} -110	160		ns	
t _{LA}	Addr Hold from ALE	1/15 t _{CY} -40	50		ns	
^t CC1	Control Pulse Width (RD, WR)	1/2 t _{CY} -200	480		ns	
tCC2	Control Pulse Width (PSEN)	2/5 t _{CY} -200	350		ns	
^t DW	Data Setup before WR	13/30 t _{CY} -200	390		ns	
^t WD	Data Hold after WR	1/5 t _{CY} -150	120		ns	(Note 2)
^t DR	Data Hold (RD, PSEN)	1/10 t _{CY} -30	0	110	ns	
^t RD1	RD to Data in	2/5 t _{CY} -200		350	ns	
^t RD2	PSEN to Data in	3/10 t _{CY} -200		210	ns	
^t AW	Addr Setup to WR	2/5 t _{CY} -150	300		ns	
^t AD1	Addr Setup to Data (RD)	23/30 t _{CY} -250		750	ns	
^t AD2	Addr Setup to Data (PSEN)	3/5 t _{CY} -250		480	ns	
^t AFC1	Addr Float to RD, WR	2/15 t _{CY} -40	140		ns	
^t AFC2	Addr Float to PSEN	1/30 t _{CY} -40	10		ns	
^t LAFC1	ALE to Control, $(\overline{RD}, \overline{WR})$	1/5 t _{CY} -75	200		ns	
^t LAFC2	ALE to Control (PSEN)	1/10 t _{CY} -75	60		ns	
^t CA1	Control to ALE (RD, WR, PROG)	1/15 t _{CY} -40	50		ns	
^t CA2	Control to ALE (PSEN)	4/15 t _{CY} -40	320		ns	
^t CP	Port Control Setup to PROG	1/10 t _{CY} -40	100		ns	
^t PC	Port Control Hold to PROG	4/15 t _{CY} -200	160		ns	
^t PR	PROG to P2 Input Valid	17/30 t _{CY} -120		650	ns	
t _{PF}	Input Data Hold from PROG	1/10 t _{CY}	0	140	ns	
t _{DP}	Output Data Setup	2/5 t _{CY} -150	400		ns	
^t PD	Output Data Hold	1/10 t _{CY} -50	90		ns	
t _{PP}	PROG Pulse Width	7/10 t _{CY} -250	700		ns	
tPL	Port 2 I/O Setup to ALE	4/15 t _{CY} -200	160		ns	
t _{LP}	Port 2 I/O Hold to ALE	1/10 t _{CY} -100	40		ns	
t _{PV}	Port Output from ALE	3/10 t _{CY} +100		510	ns	
^t CY	Cycle Time		1.36		μs	
^t 0PRR	t0 Rep Rate	3/15 t _{CY}	270		ns	

Notes:

1. Control Outputs CL = 80pF BUS Outputs CL = 150pF 2. BUS High Impedance Load 20pF

3. Calculated values will be equal to or better than published 8049 values.

WAVEFORMS

PORT 2 EXPANDER TIMING

I/O PORT TIMING

8243 MCS-48® INPUT/OUTPUT EXPANDER

- Low Cost
- Simple Interface to MCS-48® Microcomputers
- Four 4-Bit I/O Ports
- AND and OR Directly to Ports
- 24-Pin DIP
- Single 5V Supply
- High Output Drive
- Direct Extension of Resident 8048 I/O Ports

The Intel® 8243 is an input/output expander designed specifically to provide a low cost means of I/O expansion for the MCS-48® family of single chip microcomputers. Fabricated in 5 volts NMOS, the 8243 combines low cost, single supply voltage and high drive current capability.

The 8243 consists of four 4-bit bidirectional static I/O ports and one 4-bit port which serves as an interface to the MCS-48 microcomputers. The 4-bit interface requires that only 4 I/O lines of the 8048 be used for I/O expansion, and also allows multiple 8243's to be added to the same bus.

The I/O ports of the 8243 serve as a direct extension of the resident I/O facilities of the MCS-48 microcomputers and are accessed by their own MOV, ANL, and ORL instructions.

		~ ~		
P50 🗖	1	\cup	24 VCC	′cc
P40 🗖	2		23 🛛 P51	51
P41 [3		22 🗍 P52	52
P42	4		21 🗍 P53	53
P43 [5	8243	20 🗍 P60	60
टड 🗆	6		19 🗍 P61	61
PROG 🗌	7		18 D P62	62
P23 🗋	8		17 P63	63
P22 🗌	9		16 🗍 P73	73
P21	10		15 P72	72
P20 🗌	11		14 🗆 P71	71
	12		13 P70	70

Figure 2. 8243 Pin Configuration

Figure 1. 8243 Block Diagram

Symbol	Pin No.	Function
PROG	7	Clock Input. A high to low transi- tion on PROG signifies that ad- dress and control are available on P20-P23, and a low to high transi- tion signifies that data is available on P20-P23.
ĈŜ	6	Chip Select Input. A high on CS inhibits any change of output or internal status.
P20-P23	11-8	Four (4) bit bi-directional port con- tains the address and control bits on a high to low transition of PROG. During a low to high tran- sition contains the data for a sel- ected output port if a write opera- tion, or the data from a selected port before the low to high transi- tion if a read operation.
GND	12	0 volt supply.
P40-P43 P50-P53 P60-P63 P70-P73	2-5 1, 23-21 20-17 13-16	Four (4) bit bi-directional I/O ports. May be programmed to be input (during read), low impedance latched output (after write), or a tri- state (after read). Data on pins P20-P23 may be directly written, ANDed or ORed with previous data.
Vcc	24	+5 volt supply.

Table 1. Pin Description

FUNCTIONAL DESCRIPTION

General Operation

The 8243 contains four 4-bit I/O ports which serve as an extension of the on-chip I/O and are addressed as ports 4-7. The following operations may be performed on these ports:

- Transfer Accumulator to Port.
- Transfer Port to Accumulator.
- AND Accumulator to Port.
- OR Accumulator to Port.

All communication between the 8048 and the 8243 occurs over Port 2 (P20-P23) with timing provided by an output pulse on the PROG pin of the processor. Each transfer consists of two 4-bit nibbles:

The first containing the "op code" and port address and the second containing the actual 4-bits of data. A high to low transition of the PROG line indicates that address is present while a low to high transition indicates the presence of data. Additional 8243's may be added to the 4-bit bus and chip selected using additional output lines from the 8048/8748/ 8035.

Power On Initialization

Initial application of power to the device forces input/output ports 4, 5, 6, and 7 to the tri-state and port 2 to the input mode. The PROG pin may be either high or low when power is applied. The first high to low transition of PROG causes device to exit power on mode. The power on sequence is initiated if VCC drops below 1V.

Address					Instruction
P21	P20	Code	P23	P22	Code
0	0	Port 4	0	0	Read
0	1	Port 5	0	1	Write
1	0	Port 6	1	0	ORLD
1	1	Port 7	1	1	ANLD

Write Modes

The device has three write modes. MOVD Pi, A directly writes new data into the selected port and old data is lost. ORLD Pi, A takes new data, OR's it with the old data and then writes it to the port. ANLD Pi, A takes new data, AND's it with the old data and then writes it to the port. Operation code and port address are latched from the input port 2 on the high to low transition of the PROG pin. On the low to high transition of PROG data on port 2 is transferred to the logic block of the specified output port.

After the logic manipulation is performed, the data is latched and outputed. The old data remains latched until new valid outputs are entered.

Read Mode

The device has one read mode. The operation code and port address are latched from the input port 2 on the high to low transition of the PROG pin. As soon as the read operation and port address are decoded, the appropriate outputs are tri-stated, and the input buffers switched on. The read operation is terminated by a low to high transition of the PROG pin. The port (4, 5, 6 or 7) that was selected is switched to the tri-stated mode while port 2 is returned to the input mode.

Normally, a port will be in an output (write mode) or input (read mode). If modes are changed during operation, the first read following a write should be ignored; all following reads are valid. This is to allow the external driver on the port to settle after the first read instruction removes the low impedance drive from the 8243 output. A read of any port will leave that port in a high impedance state.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	0°C to 70°C
Storage Temperature65°	°C to +150°C
Voltage on Any Pin	
With Respect to Ground	-0.5 V to +7V
Power Dissipation	1 Watt

*NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS	TA = 0°C to 70°C, V _{CC} = 5V	10%
----------------------	--	-----

Symbol	Parameter Min. Typ. Max.		Units	Test Conditions		
VIL	Input Low Voltage	-0.5		0.8	V	
VIH	Input High Voltage	2.0		VCC+0.5	V	
VOL1	Output Low Voltage Ports 4-7			0.45	V	IOL = 4.5 mA*
VOL2	Output Low Voltage Port 7			1	V	IOL = 20 mA
VOH1	Output High Voltage Ports 4-7	2.4			V	IOH = 240µA
IIL1	Input Leakage Ports 4-7	-10		20	μA	Vin = VCC to OV
IIL2	Input Leakage Port 2, CS, PROG	-10		10	μA	Vin = VCC to OV
VOL3	Output Low Voltage Port 2			.45	V	IOL = 0.6 mA
ICC	VCC Supply Current		10	20	mA	
VOH2	Output Voltage Port 2	2.4				IOH = 100µA
IOL	Sum of all IOL from 16 Outputs			72	mA	4.5 mA Each Pin

*See following graph for additional sink current capability

A.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V$ 10%

Symbol	Parameter	Min.	Max.	Units	Test Conditions
tA	Code Valid Before PROG	100		ns	80 pF Load
tB	Code Valid After PROG	60		ns	20 pF Load
tC	Data Valid Before PROG	200		ns	80 pF Load
tD	Data Valid After PROG	20		ns	20 pF Load
tн	Floating After PROG	0	150	ns	20 pF Load
tK	PROG Negative Pulse Width	700		ns	
tCS	CS Valid Before/After PROG	50		ns	
tPO	Ports 4-7 Valid After PROG		700	ns	100 pF Load
tLP1	Ports 4-7 Valid Before/After PROG	100		ns	
tACC	Port 2 Valid After PROG		650	ns	80 pF Load

WAVEFORMS

Figure 3

Sink Capability

The 8243 can sink 5 mA @ .45V on each of its 16 I/O lines simultaneously. If, however, all lines are not sinking simultaneously or all lines are not fully loaded, the drive capability of any individual line increases as is shown by the accompanying curve.

For example, if only 5 of the 16 lines are to sink current at one time, the curve shows that each of those 5 lines is capable of sinking 9 mA @ .45V (if any lines are to sink 9 mA the total IOL must not exceed 45 mA or five 9 mA loads).

Example: How many pins can drive 5 TTL loads (1.6 mA) assuming remaining pins are unloaded?

IOL = 5 x 1.6 mA = 8 mA ∈IOL = 60 mA from curve # pins = 60 mA ÷ 8 mA/pin = 7.5 = 7

In this case, 7 lines can sink 8 mA for a total of 56mA. This leaves 4 mA sink current capability which can be divided in any way among the remaining 8 I/O lines of the 8243.

Example: This example shows how the use of the 20 mA sink capability of Port 7 affects the sinking capability of the other I/O lines.

> An 8243 will drive the following loads simultaneously.

2 loads – 20 mA @ 1V (port 7 only) 8 loads – 4 mA @ .45V 6 loads – 3.2 mA @ .45V Is this within the specified limits?

 ϵIOL = (2 x 20) + (8 x 4) + (6 x 3.2) = 91.2 mA. From the curve: for IOL = 4 mA, $\epsilon IOL \approx$ 93 mA. since 91.2 mA < 93 mA the loads are within specified limits.

Although the 20 mA @ 1V loads are used in calculating ϵ IOL, it is the largest current required @ .45V which determines the maximum allowable ϵ IOL.

NOTE: A10 to 50K Ω pullup resistor to +5V should be added to 8243 outputs when driving to 5V CMOS directly.

Figure 6. Using Multiple 8243's

8155/8156/8155-2/8156-2 2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER

- 256 Word x 8 Bits
- Single +5V Power Supply
- Completely Static Operation
- Internal Address Latch
- **2** Programmable 8 Bit I/O Ports

- 1 Programmable 6-Bit I/O Port
- Programmable 14-Bit Binary Counter/ Timer
- Compatible with 8085A and 8088 CPU
- Multiplexed Address and Data Bus
- 40 Pin DIP

The 8155 and 8156 are RAM and I/O chips to be used in the 8085A and 8088 microprocessor systems. The RAM portion is designed with 2048 static cells organized as 256×8 . They have a maximum access time of 400 ns to permit use with no wait states in 8085A CPU. The 8155-2 and 8156-2 have maximum access times of 330 ns for use with the 8085A-2 and the full speed 5 MHz 8088 CPU.

The I/O portion consists of three general purpose I/O ports. One of the three ports can be programmed to be status pins, thus allowing the other two ports to operate in handshake mode.

A 14-bit programmable counter/timer is also included on chip to provide either a square wave or terminal count pulse for the CPU system depending on timer mode.

8155/8156 PIN FUNCTIONS

<u>Symbol</u>	Function	<u>Symbol</u>	Function
RESET (input)	Pulse provided by the 8085A to ini- tialize the system (connect to 8085A RESET OUT). Input high on this line resets the chip and initializes the three I/O ports to input mode. The	ALE (input)	Address Latch Enable: This control signal latches both the address on the AD_{0-7} lines and the state of the Chip Enable and IO/ \overline{M} into the chip at the falling edge of ALE.
	width of RESET pulse should typically be two 8085A clock cycle times.	IO/M (input)	Selects memory if low and I/O and command/status registers if high.
AD ₀₋₇ (input/output)	3-state Address/Data lines that inter- face with the CPU lower 8-bit Ad- dress/Data Bus. The 8-bit address is latched into the address latch inside	PA ₀₋₇ (8) (input/output)	These 8 pins are general purpose I/O pins. The in/out direction is selected by programming the command register.
	ALE. The address can be either for the memory section or the I/O section depending on the IO/\overline{M} input. The 8-bit data is either written into the	PB ₀₋₇ (8) (input/output)	These 8 pins are general purpose I/O pins. The in/out direction is selected by programming the command register.
	chip or read from the chip, depending on the $\overline{\text{WR}}$ or $\overline{\text{RD}}$ input signal.	PC ₀₋₅ (6) (input/output)	These 6 pins can function as either input port, output port, or as control
CE or CE (input)	Chip Enable: On the 8155, this pin is CE and is ACTIVE LOW. On the 8156, this pin is CE and is ACTIVE HIGH.		signals for PA and PB. Programming is done through the command reg- ister. When PC_{0-5} are used as control
RD (input)	Read control: Input low on this line with the Chip Enable active enables and AD_{0-7} buffers. If IO/\overline{M} pin is low, the RAM content will be read out to the AD bus. Otherwise the content of the selected I/O port or command/ status registers will be read to the AD bus		Signals, they will provide the fol- lowing: $PC_0 - A$ INTR (Port A Interrupt) $PC_1 - ABF$ (Port A Buffer Full) $PC_2 - A$ STB (Port A Strobe) $PC_3 - B$ INTR (Port B Interrupt) $PC_4 - BBF$ (Port B Buffer Full) $PC_5 - B$ STB (Port B Strobe)
WR (input)	Write control: Input low on this line with the Chip Enable active causes the data on the Address/Data bus to be written to the BAMort/O ports and	TIMER IN (input) TIMER OUT (output)	Input to the counter-timer. Timer output. This output can be either a square wave or a pulse de-
	command/status register depending	Vee	pending on the timer mode.
		Vcc Vss	Ground Reference.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias 0°C to +70°C
Storage Temperature65°C to +150°C
Voltage on Any Pin
With Respect to Ground
Power Dissipation 1.5W

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS ($T_A = 0^{\circ}C \text{ to } 70^{\circ}C; V_{CC} = 5V \pm 5\%$)

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	TEST CONDITIONS
VIL	Input Low Voltage	-0.5	0.8	V	· '
VIH	Input High Voltage	2.0	V _{CC} +0.5	V	
VOL	Output Low Voltage		0.45	V	I _{OL} = 2mA
Voн	Output High Voltage	2.4		V	l _{OH} = -400μA
կլ	Input Leakage		±10	μA	V _{IN} = V _{CC} to 0V
ILO	Output Leakage Current		± 10	μA	$0.45V \leq V_{OUT} \leq V_{CC}$
lcc	V _{CC} Supply Current		180	mA	
I _{IL} (CE)	Chip Enable Leakage 8155 8156		+100 -100	μΑ μΑ	V _{IN} = V _{CC} to 0V

			5/8156	8155-2 (Preli		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNITS
t _{AL}	Address to Latch Set Up Time	50		30		ns
tLA	Address Hold Time after Latch	80		30		ns
tLC	Latch to READ/WRITE Control	100		40		ns
t _{RD}	Valid Data Out Delay from READ Control		170		140	ns
t _{AD}	Address Stable to Data Out Valid		400		330	ns
t _{LL}	Latch Enable Width	100		70		ns
t _{RDF}	Data Bus Float After READ	0	100	0	80	ns
t _{CL}	READ/WRITE Control to Latch Enable	20		10		ns
tcc	READ/WRITE Control Width	250		200		ns
t _{DW}	Data In to WRITE Set Up Time	150		100		ns
twp	Data In Hold Time After WRITE	0		0		ns
t _{RV}	Recovery Time Between Controls	300		200		ns
t _{WP}	WRITE to Port Output		400		300	ns
t _{PR}	Port Input Setup Time	70		50		ns
tRP	Port Input Hold Time	50		10		ns
t _{SBF}	Strobe to Buffer Full		400		300	ns
t _{SS}	Strobe Width	200		150	1	ns
t _{RBE}	READ to Buffer Empty		400		300	ns
t _{SI}	Strobe to INTR On		400		300	ns
t _{RDI}	READ to INTR Off		400		300	ns
t _{PSS}	Port Setup Time to Strobe Strobe	50		0		ns
tPHS	Port Hold Time After Strobe	120		100		ns
t _{SBE}	Strobe to Buffer Empty		400		300	ns
twbf	WRITE to Buffer Full		400		300	ns
twi	WRITE to INTR Off		400		300	ns
t _{TL}	TIMER-IN to TIMER-OUT Low		400		300	ns
t _{TH}	TIMER-IN to TIMER-OUT High		400		300	ns
tRDE	Data Bus Enable from READ Control	10		10	1	ns
t ₁	TIMER-IN Low Time	80		40		ns
t ₂	TIMER-IN High Time	120		70		ns

A.C. CHARACTERISTICS ($T_A = 0^{\circ}C \text{ to } 70^{\circ}C$; $V_{CC} = 5V \pm 5\%$)

Input Waveform for A.C. Tests:

2.4 2.0 TEST POINTS 2.0 0.45

WAVEFORMS

a. Read Cycle

b. Write Cycle

Figure 12. 8155/8156 Read/Write Timing Diagrams

a. Strobed Input Mode

b. Strobed Output Mode

Figure 13. Strobed I/O Timing

a. Basic Input Mode

Figure 15. Timer Output Waveform Countdown from 5 to 1

8185/8185-2 1024 x 8-BIT STATIC RAM FOR MCS-85"

 Multiplexed Address and Data Bus
 Directly Compatible with 8085A and 8088 Microprocessors
 Low Operating Power Dissipation
 High Density 18-Pin Package

The Intel® 8185 is an 8192-bit static random access memory (RAM) organized as 1024 words by 8-bits using N-channel Silicon-Gate MOS technology. The multiplexed address and data bus allows the 8185 to interface directly to the 8085A and 8088 microprocessors to provide a maximum level of system integration.

The low standby power dissipation minimizes system power requirements when the 8185 is disabled.

The 8185-2 is a high-speed selected version of the 8185 that is compatible with the 5 MHz 8085A-2 and the full speed 5 MHz 8088.

PIN CONFIGURATION

	1		٦	-		
AD ₀	q	1	Ŭ	18	Þ	v_{cc}
AD1	d	2		17	Þ	RD
AD2	q	3		16	þ	WR
AD_3	q	4		15	Þ	ALE
AD4	d	5	8185	14	Þ	cs
AD5	q	6		13	Þ	CE1
AD ₆	q	7		12	Þ	CE2
AD7	С	8		11	Þ	Ag
v _{ss}	q	9		10	Þ	A ₈

PIN NAMES

ſ	1
AD0-AD7	ADDRESS/DATA LINES
A8, A9	ADDRESS LINES
CS	CHIP SELECT
CE1	CHIP ENABLE (IO/M)
CE2	CHIP ENABLE
ALE	ADDRESS LATCH ENABLE
RD	READ ENABLE
WR	WRITE ENABLE

BLOCK DIAGRAM

OPERATIONAL DESCRIPTION

The 8185 has been designed to provide for direct interface to the multiplexed bus structure and bus timing of the 8085A microprocessor.

At the beginning of an 8185 memory access cycle, the 8bit address on AD₀₋₇, A₈ and A₉, and the status of \overline{CE}_1 and CE₂ are all latched internally in the 8185 by the falling edge of ALE. If the latched status of both \overline{CE}_1 and CE₂ are active, the 8185 powers itself up, but no action occurs until the CS line goes low and the appropriate \overline{RD} or \overline{WR} control signal input is activated.

The \overline{CS} input is not latched by the 8185 in order to allow the maximum amount of time for address decoding in selecting the 8185 chip. Maximum power consumption savings will occur, however, only when $\overline{CE_1}$ and $\overline{CE_2}$ are activated selectively to power down the 8185 when it is not in use. A possible connection would be to wire the 8085A's IO/M line to the 8185's $\overline{CE_1}$ input, thereby keeping the 8185 powered down during I/O and interrupt cycles.

TABLE 1. TRUTH TABLE FOR POWER DOWN AND FUNCTION ENABLE

CE2	ĊS	(CS*) ^[2]	8185 Status
х	x	0	Power Down and Function Disable(1)
0	х	0	Power Down and Function Disable(1)
1	1	0	Powered Up and Function Disable(1)
1	0	1	Powered Up and Enabled
	CE ₂ X 0 1	CE2 CS X X 0 X 1 1 1 0	\overline{CE}_2 \overline{CS} $(CS^*)^{[2]}$ X X 0 0 X 0 1 1 0 1 0 1

Notes:

- X: Don't Care.
- 1: Function Disable implies Data Bus in high impedance state and not writing.
- 2: $CS^* = (\overline{CE}_1 = 0) \cdot (CE_2 = 1) \cdot (\overline{CS} = 0)$

CS* = 1 signifies all chip enables and chip select active

TABLE 2. TRUTH TABLE FOR CONTROL AND DATA BUS PIN STATUS

(CS*)	RD	WR	AD ₀₋₇ During Data Portion of Cycle	8185 Function
0	х	Х	Hi-Impedance	No Function
1	0	1	Data from Memory	Read
1	1	0	Data to Memory	Write
1	1	.1	Hi-Impedance	Reading, but not Driving Data Bus

Note: X: Don't Care.

Figure 1. 8185 in an MCS-85 System.

4 Chips: 2K Bytes ROM 1.25K Bytes RAM 38 I/O Lines 1 Counter/Timer 2 Serial I/O Lines 5 Interrupt Inputs

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	0°C to +70°C
Storage Temperature6	5°C to +150°C
Voltage on Any Pin	
with Respect to Ground	-0.5V to +7V
Power Dissipation	1.5W

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C; V_{CC} = 5V \pm 5\%)$

Symbol	Parameter	Min.	Max.	Units	Test Conditions
VIL	Input Low Voltage	-0.5	0.8	V	
ViH	Input High Voltage	2.0	Vcc+0.5	v	
Vol	Output Low Voltage		0.45	V	IOL = 2mA
Vон	Output High Voltage	2.4			$I_{OH} = -400 \mu A$
hi.	Input Leakage		±10	μΑ	VIN = VCC to 0V
ILO	Output Leakage Current		±10	μA	0.45V ≤ Vout ≤ Vcc
lcc	V _{CC} Supply Current Powered Up		100	mA	
	Powered Down		35	mA	

A.C. CHARACTERISTICS ($T_A = 0^{\circ}C$ to 70°C; $V_{CC} = 5V \pm 5\%$)

	Parameter ^[1]	8185 Preliminary		8185-2 Preliminary		
Symbol		Min.	Max.	Min.	Max.	Units
tal	Address to Latch Set Up Time	50		30		ns
tLA	Address Hold Time After Latch	80		30		ns
tLC	Latch to READ/WRITE Control	100		40		ns
tRD	Valid Data Out Delay from READ Control		170		140	ns
tLD	ALE to Data Out Valid		300		200	ns
tLL	Latch Enable Width	100		70		ns
tRDF	Data Bus Float After READ	0	100	0	80	ns
tcL	READ/WRITE Control to Latch Enable	20		10		ns
tcc	READ/WRITE Control Width	250		200		ns
tow	Data In to WRITE Set Up Time	150		150		ns
twp	Data In Hold Time After WRITE	20		20		ns
tsc	Chip Select Set Up to Control Line	10		10		ns
tcs	Chip Select Hold Time After Control	10		10		ns
TALCE	Chip Enable Set Up to ALE Falling	30		10		ns
t LACE	Chip Enable Hold Time After ALE	50		30		ns

Notes:

1. All AC parameters are referenced at

a) 2.4V and .45V for inputs

b) 2.0V and .8V for outputs.

Input Waveform for A.C. Tests:

Figure 3. 8185 Timing.

intel

8355/8355-2 16,384-BIT ROM WITH I/O

- 2048 Words × 8 Bits
- Single + 5V Power Supply
- Directly compatible with 8085A and 8088 Microprocessors
- 2 General Purpose 8-Bit I/O Ports
- Each I/O Port Line Individually Programmable as Input or Output
- Multiplexed Address and Data Bus
- Internal Address Latch
- 40-Pin DIP

The Intel® 8355 is a ROM and I/O chip to be used in the 8085A and 8088 microprocessor systems. The ROM portion is organized as 2048 words by 8 bits. It has a maximum acess time of 400 ns to permit use with no wait states in the 8085A CPU.

The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 port lines and each I/O port line is individually programmable as input or output.

The 8355-2 has a 300ns access time for compatibility with the 8085A-2 and full speed 5 MHz 8088 microprocessors.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied

Symbol	Function	Symbol	Function		
ALE (Input)	When ALE (Address Latch Enable is high, AD_{0-7} , IO/\overline{M} , A_{8-10} , CE, and \overline{CE} enter address latched. The signals (AD, IO/\overline{M} , A_{8-10} , CE, \overline{CE}) are latched	CLK (Input)	The CLK is used to force the READY into its high impedance state after it has been forced low by \overline{CE} low, CE high and ALE high.		
AD ₀₋₇ (Input)	in at the trailing edge of ALE. Bidirectional Address/Data bus. The lower 8-bits of the ROM or I/O address are applied to the bus lines when ALE is high. During an I/O cycle, Port A or B are	READY (Output)	$\frac{Rea}{CE_1}$ dy is a 3-state output controlled by $\overline{CE_1}$, CE_2 , ALE and CLK. READY is forced low when the Chip Enables are active during the time ALE is high, and remains low until the rising edge of the next CLK (see Figure 6).		
	selected based on the latched value of AD ₀ . If RD or IOR is low when the latched chip enables are active, the output buffers present data on the bus.	PA ₀₋₇ (Input/ Output)	These are general purpose I/O pins. Their input/output direction is deter- mined by the contents of Data Direction Register (DDR). Port A is selected for		
A8–10 (Input)	These are the high order bits of the ROM address. They do not affect I/O oper- ations.		write operations when the Chip Enables are active and IOW is low and a 0 was previously latched from AD ₀ .		
CE1 CE2 (Input)	Chip Enable Inputs: \overline{CE}_1 is active low and CE_2 is active <u>high</u> . The 8355 can be accessed only when <u>BOTH</u> Chip En- ables are active at the time the ALE		Read operation is selected by either \overline{IOR} low and active Chip Enables and AD ₀ low, <u>or</u> IO/ \overline{M} high, \overline{RD} low, active chip enables, and AD ₀ low.		
	signal latches them up. If either Chip Enable input is not active, the AD_{0-7} and READY outputs will be in a high impactance state.	PB ₀₋₇ (Input/ Output)	This general purpose I/O port is identical to Port A except that it is selected by a 1 latched from AD ₀ .		
IO/M	If the latched IO/ \overline{M} is high when \overline{RD} is	RESET (Input)	An input high on RESET causes all pins in Port A and B to assume input mode.		
(Input)	 low, the output data comes from an I/O port. If it is low the output data comes from the ROM. If the latched Chip Enables are active when RD goes low, the AD₀₋₇ output buffers are enabled and output either the selected ROM location or I/O port. When both RD and IOR are high, the AD₀₋₇ output buffers are active active active selected ROM location or I/O port. 	IOR (Input)	When the Chip Enables are active, a low on IOR will output the selected I/O port onto the AD bus. IOR low performs the		
RD (Input)			same function as the combination IO/N high and RD low. When IOR is not use in a system, IOR should be tied to V _C ("1")		
		Vcc	+5 volt supply.		
ÎOW (Input)	If the latched Chip Enables are active, a low on \overline{IOW} causes the output port pointed to by the latched value of AD ₀ to be written with the data on AD ₀₋₇ . The state of IO/\overline{M} is ignored.	Vss	Ground Reference.		

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	0°C to +70°C
Storage Temperature	65°C to +150°C
Voltage on Any Pin	
With Respect to Ground	0.5V to +7V
Power Dissipation	1.5W

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS ($T_A = 0^{\circ}C$ to 70°C; $V_{CC} = 5V \pm 5\%$)

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	TEST CONDITIONS
VIL	Input Low Voltage	-0.5	0.8	V	V _{CC} = 5.0V
VIH	Input High Voltage	2.0	V _{CC} +0.5	V	V _{CC} = 5.0V
VOL	Output Low Voltage		0.45	V	l _{OL} = 2mA
Voн	Output High Voltage	2.4		V	i _{OH} = -400μA
կլ	Input Leakage		10	μΑ	$V_{IN} = V_{CC}$ to 0V
ILO	Output Leakage Current		±10	μΑ	0.45V ≪V _{OUT} ≪V _{CC}
lcc	V _{CC} Supply Current		180	mA	

A.C. CHARACTERISTICS (T_A = 0°C to 70°C; V_{CC} = 5V \pm 5%)

		8355		83	55-2	
Symbol	Parameter	Min.	Max.	Min.	Max.	Units
tcyc	Clock Cycle Time	320		200		ns
T ₁	CLK Pulse Width	80		40		ns
T ₂	CLK Pulse Width	120		70	-	ns
t _f ,t _r	CLK Rise and Fall Time		30		30	ns
tAL	Address to Latch Set Up Time	50		30		ns
tLA	Address Hold Time after Latch	80		30		ns
tLC	Latch to READ/WRITE Control	100		40		ns
tRD	Valid Data Out Delay from READ Control		170		140	ns
tAD	Address Stable to Data Out Valid		400		330	ns
tLL	Latch Enable Width	100		70		ns
tRDF	Data Bus Float after READ	0	100	0	85	ns
tcL	READ/WRITE Control to Latch Enable	20		10		ns
tcc	READ/WRITE Control Width	250		200		ns
tow	Data In to Write Set Up Time	150		150	, i i i i i i i i i i i i i i i i i i i	ns
twp	Data In Hold Time After WRITE	10		10		ns
twp	WRITE to Port Output		400		400	ns
tPR	Port Input Set Up Time	50		50		ns
tRP	Port Input Hold Time	50		50		ns
t RYH	READY HOLD Time	0	160	0	160	ns
tARY	ADDRESS (CE) to READY		160		160	ns
tRV	Recovery Time Between Controls	300		200		ns
tRDE	READ Control to Data Bus Enable	10		10		ns

Note: CLOAD = 150pF

Input Waveform for A.C. Tests:

2.4 TEST POINTS 0.45

a. Input Mode

\$

8755A/8755A-2 16,384-BIT EPROM WITH I/O

- 2048 Words × 8 Bits
- Single + 5V Power Supply (V_{cc})
- Directly Compatible with 8085A and 8088 Microprocessors
- U.V. Erasable and Electrically Reprogrammable

Internal Address Latch

- 2 General Purpose 8-Bit I/O Ports
- Each I/O Port Line Individually Programmable as Input or Output
- Multiplexed Address and Data Bus
- 40-Pin DIP

The Intel® 8755A is an erasable and electrically reprogrammable ROM (EPROM) and I/O chip to be used in the 8085A and 8088 microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits. It has a maximum access time of 450 ns to permit use with no wait states in an 8085A CPU.

The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 port lines, and each I/O port line is individually programmable as input or output.

The 8755A-2 is a high speed selected version of the 8755A compatible with the 5 MHz 8085A-2 and the full speed 5 MHz 8088.

Figure 1. Block Diagram

Figure 2. Pin Configuration

Symbol	Туре	Name and Function
ALE	I	Address Latch Enable: When Address Latch Enable goes high, AD_{0-7} , IO/M, A_{8-10} , CE ₂ , and CE ₁ enter the address latches. The signals (AD, IO/M, A_{8-10} , CE) are latched in at the trailing edge of ALE.
AD ₀₋₇	1	Bidirectional Address/Data Bus: The lower 8-bits of the PROM or I/O address are applied to the bus lines when ALE is high. During an I/O cycle, Port A or B are selected based on the latched value of AD _o . IFRD or IOR is low when the latched Chip Enables are active, the output buf- fers present data on the bus.
A ₈₋₁₀	1	Address: These are the high order bits of the PROM address. They do not affect I/O operations.
PROG/ĈE ₁ CE ₂		Chip Enable Inputs: $\overline{CE_1}$ is active low and CE_2 is active high. The 8755A can be accessed only when <i>both</i> Chip Enables are active at the time the ALE signal latches them up. If either Chip Enable input is not active, the AD ₀₋₇ and READY outputs will be in a hig mpe- dance state. $\overline{CE_1}$ is also used as a pro- gramming pin. (See section on programming.)
IO/M	I	I/O Memory: If the latched IO/\overline{M} is high when \overline{RD} is low, the output data comes from an I/O port. If it is low the output data comes from the PROM.
ŘD	I	Read: If the <u>latched</u> Chip Enables are active when \overline{RD} goes low, the AD_{0-7} output buffers are enabled and output either the selected PROM location or I/O port. When both \overline{RD} and \overline{IOR} are high, the AD_{0-7} output buffers are 3-stated.
IOW		I/O Write: If the latched Chip Enables are active, a low on IOW causes the output port pointed to by the latched value of AD ₀ to be written with the data on AD ₀₋₇ . The state of IO/\overline{M} is ignored.
CLK	I	Clock: The CLK is used to force the READY into its high impedance state after it has been forced low by $\overline{CE_1}$ low, CE_2 high, and ALE high.

Table 1. Pin Description

Symbol	Туре	Name and Function
READY	0	Ready is a 3-state output controlled by CE_2, \overline{CE}_1 , ALE and CLK. READY is forced low when the Chip Enables are actove during the time ALE is high, and remains low until the rising edge of the next CLK. (See Figure 6.)
PA ₀₋₇	1/0	Port A: These are general purpose I/O pins. Their input/output direction is determined by the contents of Data Direction Register (DDR). Port A is selected for write operations when the Chip Enables are active and \overline{IOW} is low and a 0 was previously latched from AD ₀ , AD ₁ .
		Read Operation is selected by either \overline{IOR} low and active Chip Enables and AD ₀ and AD ₁ low, <i>or</i> IO/M high, \overline{RD} low, active Chip Enables, and AD ₀ and AD ₁ low.
PB ₀₇	I/O	Port B: This general purpose I/O port is identical to Port A except that it is selected by a 1 latched from AD_0 and a 0 from AD_1 .
RESET	I	Reset: In normal operation, an input high on RESET causes all pins in Ports A and B to assume input mode (clear DDR register).
IOR	J	I/O Read: When the Chip Enables are active, a low on \overline{IOR} will output the selected I/O port onto the AD bus. \overline{IOR} low performs the same function as the combination of IO/\overline{M} high and \overline{RD} low. When \overline{IOR} is not used in a system, \overline{IOR} should be tied to V_{CC} ("1").
V _{CC}		Power: +5 volt supply.
V _{SS}		Ground: Reference.
V _{DD}		Power Supply: V _{DD} is a programming voltage, <u>and must be tied to V_{CC} when</u> the 8755A is being read.
		For programming, a high voltage is supplied with $V_{DD} = 25V$, typical. (See section on programming.)

FUNCTIONAL DESCRIPTION

PROM Section

The 8755A contains an 8-bit address latch which allows it to interface directly to MCS-48, MCS-85 and iAPX 88/10 Microcomputers without additional hardware.

The PROM section of the chip is addressed by the 11-bit address and CE. The address, \overline{CE}_1 and CE_2 are latched into the address latches on the falling edge of ALE. If the latched Chip Enables are active and IO/M is low when RD goes low, the contents of the PROM location addressed by the latched address are put out on the AD₀₋₇ lines (provided that V_{DD} is tied to V_{CC}.)

I/O Section

The I/O section of the chip is addressed by the latched value of AD₀₋₁. Two 8-bit Data Direction Registers \cdot DDR in 8755A determine the input/output status of each pin in the corresponding ports. A "0" in a particular bit position of a DDR signifies that the corresponding I/O port bit is in the input mode. A "1" in a particular bit position signifies that the corresponding I/O port bit is in the output mode. In this manner the I/O ports of the 8755A are bit-by-bit programmable as inputs or outputs. The table summarizes port and DDR designation. DDR's cannot be read.

AD ₁	AD ₀	Selection
0	0	Port A
0	1	Port B
1	0	Port A Data Direction Register (DDR A)
1	1	Port B Data Direction Register (DDR B)

When \overline{IOW} goes low and the Chip Enables are active, the data on the AD is written into I/O port selected by the latched value of AD_{0-1} . During this operation all I/O bits of the selected port are affected, regardless of their I/O mode and the state of IO/M. The actual output level does not change until \overline{IOW} returns high. glitch free output

A port can be read out when the latched Chip Enables are active and either \overline{RD} goes low with IO/ \overline{M} high, or IOR goes low. Both input and output mode bits of a selected port will appear on lines AD₀₋₇.

To clarify the function of the I/O Ports and Data Directior-Registers, the following diagram shows the configuration of one bit of PORT A and DDR A. The same logic applies to PORT B and DDR B.

$$\label{eq: end_states} \begin{split} & \text{write PA} + (\overline{10W} \cdot 0) + (CHIP ENABLES ACTIVE) + (PORT A ADDRESS SELECTED) \\ & \text{write DDR A} - (\overline{10W} \cdot 0) + (CHIP ENABLES ACTIVE) + (DDR A ADDRESS SELECTED) \\ & \text{READ PA} - \left\{ \left((10 \overline{M} \cdot 1) + (\overline{10}\overline{D} \cdot 0) \right) + (\overline{10}\overline{M} \cdot 0) \right) + (CHIP ENABLES ACTIVE) + (PORT A ADDRESS SELECTED) \\ & \text{NOTE: white PA IS NOT QUALIFIED BY 10/M. \end{split}$$

Note that hardware RESET or writing a zero to the DDR latch will cause the output latch's output buffer to be disabled, preventing the data in the Output Latch from being passed through to the pin. This is equivalent to putting the port in the input mode. Note also that the data can be written to the Output Latch even though the Output Buffer has been disabled. This enables a port to be initialized with a value prior to enabling the output.

The diagram also shows that the contents of PORT A and PORT B can be read even when the ports are configured as outputs.

TABLE 1. 8755A PROGRAMMING MODULE CROSS REFERENCE

MODULE NAME	USE WITH
UPP 955 UPP UP2(2)	UPP(4) UPP 855
PROMPT 975 PROMPT 475	PROMPT 80/85(3) PROMPT 48(1)
NOTES: 1. Described on p 2. Special adaptor	. 13-34 of 1978 Data Catalog. socket.
 Described on p Described on p 	. 13-39 of 1978 Data Catalog. . 13-71 of 1978 Data Catalog.

ERASURE CHARACTERISTICS

The erasure characteristics of the 8755A are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000Å range. Data show that constant exposure to room level fluorescent lighting could erase the typical 8755A in approximately 3 years while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the 8755A is to be exposed to these types of lighting conditions for extended periods of time, opaque labels are available from Intel which should be placed over the 8755 window to prevent unintentional erasure.

The recommended erasure procedure for the 8755A is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (Å). The integrated dose (i.e., UV intensity X exposure time) for erasure should be a minimum of 15W-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a 12000 μ W/cm² power rating. The 8755A should be placed within one inch from the lamp tubes during erasure. Some lamps have a filter on their tubes and this filter should be removed before erasure.

PROGRAMMING

Initially, and after each erasure, all bits of the EPROM portions of the 8755A are in the "1" state. Information is introduced by selectively programming "0" into the desired bit locations. A programmed "0" can only be changed to a "1" by UV erasure.

The 8755A can be programmed on the Intel® Universal PROM Programmer (UPP), and the PROMPT[™] 80/85 and PROMPT-48[™] design aids. The appropriate programming modules and adapters for use in programming both 8755A's and 8755's are shown in Table 1.

The program mode itself consists of programming a single address at a time, giving a single 50 msec pulse for every address. Generally, it is desirable to have a verify cycle after a program cycle for the same address as shown in the attached timing diagram. In the verify cycle (i.e., normal memory read cycle) 'V_{DD}' should be at +5V.

Preliminary timing diagrams and parameter values pertaining to the 8755A programming operation are contained in Figure 7.

SYSTEM APPLICATIONS

System Interface with 8085A and 8088

A system using the 8755A can use either one of the two I/O Interface techniques:

- Standard I/O
- Memory Mapped I/O

If a standard I/O technique is used, the system can use the feature of both CE₃ and \overline{CE}_1 . By using a combination of unused address lines A₁₁₋₁₅ and the Chip Enable inputs, the 8085A system can use up to 5 each 8755A's without requiring a CE decoder. See Figure 2a and 2b.

If a memory mapped I/O approach is used the 8755A will be selected by the combination of both the Chip Enables and IO/\overline{M} using the AD₈₋₁₅ address lines. See Figure 1.

Figure 3. 8755A in 8085A System (Memory-Mapped I/O)

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	°C
Storage Temperature	°C
Voltage on Any Pin	
With Respect to Ground	7V
Power Dissipation 1.5	śW

*NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS (T_A = 0°C to 70°, V_{CC} = V_{DD} = 5V \pm 5%; $V_{CC} = V_{DD} = 5V \pm 10\%$ for 8755A-2)

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	TEST CONDITIONS
VIL	Input Low Voltage	-0.5	0.8	V	V _{CC} = 5.0V
VIH	Input High Voltage	2.0	V _{CC} +0.5	V	V _{CC} = 5.0V
Vol	Output Low Voltage	· <u>····</u> ·····	0.45	V	I _{OL} = 2mA
Voн	Output High Voltage	2.4		V	I _{OH} = -400μA
կլ	Input Leakage		10	μΑ	$V_{SS} \leq V_{IN} \leq V_{CC}$
ILO	Output Leakage Current		±10	μΑ	$V_{SS} \le 0.45V \le V_{OUT} \le V_{CC}$
lcc	V _{CC} Supply Current		180	mA	
I _{DD}	V _{DD} Supply Current		30	mA	$V_{DD} = V_{CC}$
CIN	Capacitance of Input Buffer		10	pF	$f_{C} = 1 \mu Hz$
C _{I/O}	Capacitance of I/O Buffer		15	pF	$f_{C} = 1 \mu Hz$

$\textbf{D.C. CHARACTERISTICS} \label{eq:constraint} \textbf{PROGRAMMING} \quad (\textbf{T}_{\textbf{A}} = 0^{\circ}\text{C to } 70^{\circ}, \textbf{V}_{\textbf{CC}} = 5\text{V} \pm 5\%, \textbf{V}_{\textbf{SS}} = 0\text{V}, \textbf{V}_{\textbf{DD}} = 25\text{V} \pm 1\text{V};$

 $V_{CC} = V_{DD} = 5V \pm 10\%$ for 8755A-2)

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Programming Voltage (during Write to EPROM)	24	25	26	v
IDD	Prog Supply Current		15	30	mA

A.C. CHARACTERISTICS (T_A = 0°C to 70°, V_{CC} = 5V \pm 5%;

 $V_{CC} = V_{DD} = 5V \pm 10\%$ for 8755A-2)

			755A	8755A-2 (Preliminary)		
Symbol	Parameter	Min.	Max.	Min.	Max.	Units
tcyc	Clock Cycle Time	320		200		ns
Τ1	CLK Pulse Width	80		40		ns
T ₂	CLK Pulse Width	120		70		ns
t _f ,tr	CLK Rise and Fall Time		30		30	ns
tal	Address to Latch Set Up Time	50		30		ns
tla	Address Hold Time after Latch	80		45		ns
tLC	Latch to READ/WRITE Control	100		40		ns
trd	Valid Data Out Delay from READ Control		170*		140*	ns
tad	Address Stable to Data Out Valid		450		330	ns
tLL	Latch Enable Width	100		70		ns
trdf	Data Bus Float after READ	0	100	0	85	ns
tcL	READ/WRITE Control to Latch Enable	20		10		ns
tcc	READ/WRITE Control Width	250		200		ns
tow	Data In to Write Set Up Time	150		150		ns
twp	Data In Hold Time After WRITE	30		10		ns
twp	WRITE to Port Output		400		300	ns
t _{PR}	Port Input Set Up Time	50		50		ns
tRP	Port Input Hold Time to Control	50		50		ns
t ryh	READY HOLD Time to Control	0	160	0	160	ns
tary	ADDRESS (CE) to READY		160		160	ns
t _{RV}	Recovery Time Between Controls	300		200		ns
tRDE	READ Control to Data Bus Enable	10		10		ns
t _{LD}	ALE to Data Out Valid		350		270	ns

NOTE:

 $C_{LOAD} = 150 pF.$

*Or T_{AD} – (T_{AL} + $T_{LC}),$ whichever is greater.

$\textbf{A.C. CHARACTERISTICS} \label{eq:constraint} \textbf{PROGRAMMING} \quad (\textbf{T}_{\textbf{A}} = 0^{\circ} C \text{ to } 70^{\circ}, \textbf{V}_{\textbf{CC}} = 5 \textbf{V} \pm 5\%, \textbf{V}_{\textbf{SS}} = 0 \textbf{V}, \textbf{V}_{\textbf{DD}} = 25 \textbf{V} \pm 1 \textbf{V};$

 $V_{CC} = V_{DD} = 5V \pm 10\%$ for 8755A-2)

Symbol	Parameter	Min.	Тур.	Max.	Unit
tps	Data Setup Time	10			ns
tPD	Data Hold Time	0			ns
ts	Prog Pulse Setup Time	2			μs
tн	Prog Pulse Hold Time	2			μS
tPR	Prog Pulse Rise Time	0.01	2		μs
tPF	Prog Pulse Fall Time	0.01	2		μs
tprg	Prog Pulse Width	45	50		msec

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. TESTING LOAD CIRCUIT

WAVEFORMS

WAVEFORMS (Continued)

WAVEFORMS (Continued)

8041A/8641A/8741A UNIVERSAL PERIPHERAL INTERFACE 8-BIT MICROCOMPUTER

8-Bit CPU plus ROM, RAM, I/O, Timer and Clock in a Single Package

intel

- One 8-Bit Status and Two Data Registers for Asynchronous Slave-to-Master Interface
- DMA, Interrupt, or Polled Operation Supported
- 1024 × 8 ROM/EPROM, 64 × 8 RAM,
 8-Bit Timer/Counter, 18 Programmable
 I/O Pins

- Fully Compatible with MCS-48[™], MCS-80[™], MCS-85[™], and MCS-86[™] Microprocessor Families
- Interchangeable ROM and EPROM Versions
- 3.6 MHz 8741A-8 Available
- Expandable I/O
- RAM Power-Down Capability
- Over 90 Instructions: 70% Single Byte
- Single 5V Supply

The Intel® 8041A/8741A is a general purpose, programmable interface device designed for use with a variety of 8-bit microprocessor systems. It contains a low cost microcomputer with program memory, data memory, 8-bit CPU, I/O ports, timer/counter, and clock in a single 40-pin package. Interface registers are included to enable the UPI device to function as a peripheral controller in MCS-48TM, MCS-80TM, MCS-85TM, MCS-86TM, and other 8-bit systems.

The UPI-41A[™] has 1K words of program memory and 64 words of data memory on-chip. To allow full user flexibility the program memory is available as ROM in the 8041A version or as UV-erasable EPROM in the 8741A version. The 8741A and the 8041A are fully pin compatible for easy transition from prototype to production level designs. The 8641A is a one-time programmable (at the factory) 8741A which can be ordered as the first 25 pieces of a new 8041A order. The substitution of 8641A's for 8041A's allows for very fast turnaround for initial code verification and evaluation results.

The device has two 8-bit, TTL compatible I/O ports and two test inputs. Individual port lines can function as either inputs or outputs under software control. I/O can be expanded with the 8243 device which is directly compatible and has 16 I/O lines. An 8-bit programmable timer/counter is included in the UPI device for generating timing sequences or counting external inputs. Additional UPI features include: single 5V supply, low power standby mode (in the 8041A), single-step mode for debug (in the 8741A), and dual working register banks.

Because it's a complete microcomputer, the UPI provides more flexibility for the designer than conventional LSI interface devices. It is designed to be an efficient controller as well as an arithmetic processor. Applications include keyboard scanning, printer control, display multiplexing and similar functions which involve interfacing peripheral devices to microprocessor systems.

Maamaala

PIN DESCRIPTION

Signal Description

- D₀-D₇ Three-state, bidirectional DATA BUS BUFFER lines (BUS) used to interface the UPI-41A to an 8-bit master system data bus.
- P10-P17 8-bit, PORT 1 quasi-bidirectional I/O lines.
- P₂₀-P₂₇ 8-bit, PORT 2 quasi-bidirectional I/O lines. The lower 4 bits (P₂₀-P₂₃) interface directly to the 8243 I/O expander device and contain address and data information during PORT 4-7 access. The upper 4 bits (P₂₄-P₂₇) can be programmed to provide Interrupt Request and DMA Handshake capability. Software control can configure P₂₄ as OBF (Output Buffer Full), P₂₅ as IBF (Input Buffer Full), P₂₆ as DRQ (DMA Request), and P₂₇ as DACK (DMA ACKnowledge).
- WR I/O write input which enables the master CPU to write data and command words to the UPI-41A IN-PUT DATA BUS BUFFER.
- RD I/O read input which enables the master CPU to read data and status words from the OUTPUT DATA BUS BUFFER or status register.
- CS Chip select input used to select one UPI-41A out of several connected to a common data bus.
- A₀ Address input used by the master processor to indicate whether byte transfer is data or command.
- TEST 0, Input pins which can be directly tested using condi-TEST 1 tional branch instructions.

 T_1 also functions as the event timer input (under software control). T_0 is used during PROM programming and verification in the 8741A.

- XTAL1,Inputs for a crystal, LC or an external timing signalXTAL2to determine the internal oscillator frequency.
- SYNC Output signal which occurs once per UPI-41A instruction cycle. SYNC can be used as a strobe for external circuitry; it is also used to synchronize single step operation.
- EA External access input which allows emulation, testing and PROM/ROM verification.
- PROG Multifunction pin used as the program pulse input during PROM programming.

During I/O expander access the PROG pin acts as an address/data strobe to the 8243.

RESET Input used to reset status flip-flops and to set the program counter to zero.

RESET is also used during PROM programming and verification.

- SS Single step input used in the 8741A in conjunction with the SYNC output to step the program through each instruction.
- V_{CC} + 5V main power supply pin.
- V_{DD} +5V during normal operation. +25V during programming operation. Low power standby pin in ROM version.
- V_{SS} Circuit ground potential.

UPI™ INSTRUCTION SET

Description

Bytee Cycles

MINUMUC	Description		0,0100
ACCUMULATOR			
ADD A Br	Add register to A	1	1
ADD A @Br	Add data memory to A	1	1
ADD A #data	Add immediate to A	2	2
ADDC A.Rr	Add register to A with carry	1	1
ADDC A.@Rr	Add data memory to A with carr	y 1	. 1
ADDC A.#data	Add immed, to A with carry	2	2
ANL A.Rr	AND register to A	1	1
ANL A,@Rr	AND data memory to A	1	1
ANL A,#data	AND immediate to A	2	2
ORL A,Rr	OR register to A	1	1
ORL A.@Rr	OR data memory to A	1	1
ORL A #data	OR immediate to A	2	2
XRL A,Rr	Exclusive OR register to A	1	1
XRL A.@Rr	Exclusive OR data memory to A	× 1	1
XRL A,#data	Exclusive OR immediate to A	2	2
INC A	Increment A	1	1
DEC A	Decrement A	1	1
CLR A	Clear A	1	1
CPL A	Complement A	1	1
DA A	Decimal Adjust A	1	1
SWAP A	Swap nibbles of A	1	1
RLA	Rotate A left	1	1
RLC A	Rotate A left through carry	1	1
RRA	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1
IN A.Pp	Input port to A	1	2
OUTL Pp.A	Output A to port	· 1	2
ANL Pp,#data	AND immediate to port	2	2
ORL Pp.#data	OR immediate to port	2	2
IN A,DBB	Input DBB to A, clear IBF	1	1
OUT DBB.A	Output A to DBB, set OBF	1	1
MOV STS,A	$A_4 - A_7$ to Bits 4-7 of Status	1	· 1
MOVD A, Pp	Input Expander port to A	1	2
MOVD Pp.A	Output A to Expander port	1	2
ANLD Pp.A	AND A to Expander port	1	2
ORLD Pp.A	OR A to Expander port	1	2
DATA MOVES			
MOV A.Rr	Move register to A	. 1	1
MOV A @Rr	Move data memory to A	1	1
MOV A.#data	Move immediate to A	2	2
MOV Rr.A	Move A to register	1	1
MOV @Rr.A	Move A to data memory	1	1
MOV Rr,#data	Move immediate to register	2	2
MOV @Rr.#data	Move immediate to data memor	ry 2	2
MOV A,PSW	Move PSW to A	1	1
MOV PSW,A	Move A to PSW	1	1
XUH A,Hr	Exchange A and register	1	1
	Exchange A and data memory	_ 1	1
	Exchange digit of A and registe	r 1	1
	Move to A from current page	1	2
WUVPS, A, WA	wove to A from page 3	1	2

TIMER/COUNTER

MOV A,T	Read Timer/Counter	1	1
MOV T,A	Load Timer/Counter	1	1
STRT T	Start Timer	1	1
STRT CNT	Start Counter	1	1
STOP TCNT	Stop Timer/Counter	1	1
EN TCNTI	Enable Timer/Counter Interrupt	1	1
DIS TONTI	Disable Timer/Counter Interrupt	1	1

8041A/8641A/8741A

Mnemonic	Description	Bytes	Cycles	Mnemonic	Description	Bytes	Cycles
CONTROL				CPL F0	Complement Flag 0	1	1
EN DMA	Enable DMA Handshake Lines	1	1	CLR F1	Clear F1 Flag	1	1
EN I	Enable IBF Interrupt	1	1	CPL F1	Complement F1 Flag	1	1
DIS I	Disable IBF Interrupt	1	1		3		
EN FLAGS	Enable Master Interrupts	1	1				
SEL RB0	Select register bank 0	1	1	BRANCH			
SEL RB1	Select register bank 1	1	1	iMD addr	lump unconditional	2	2
NOP	No Operation	1	1		Jump indirect	1	2
				DINZ Braddr	Decrement register and jump	2	2
REGISTERS				IC addr	lump on Carpy = 1	2	5
INC Rr	Increment register	1	1	INC addr	Jump on Carry = 0	2	2
INC @ Rr	Increment data memory	1	1	17 addr	lump on A Zero	2	2
DEC Rr	Decrement register	1	1	JNZ addr	Jump on A not Zero	2	2
	•			JTD addr	Jump on T0 = 1	2	2
SUBROUTINE				JNT0 addr	Jump on T0 = 0	2	2
CALL addr	Jump to subroutine	2	2	JT1 addr	$J_{\rm ump}$ on T1 = 1	2	2
RET	Return	1	2	JNT1 addr	Jump on $T1 = 0$	2	2
RETR	Return and restore status	1	2	JF0 addr	Jump on F0 Flag = 1	2	2
				JF1 addr	Jump on F1 Flag = 1	2	2
FLAGS				JTF addr	Jump on Timer Flag = 1. Clear Flag	2	2
CLBC	Clear Carry	1	1	JNIBF addr	Jump on IBF Flag = 0	2	2
CPI C	Complement Carry	1	1	JOBF addr	Jump on OBF Flag = 1	2	2
CLR F0	Clear Flag 0	1	1	JBb addr	Jump on Accumulator Bit	2	2

APPLICATIONS

Figure 1. 8085A-8041A Interface

Figure 2. 8048-8041A Interface

Figure 4. 8041A Matrix Printer Interface

Figure 3. 8041A-8243 Keyboad Scanner

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	0°C to 70°C
Storage Temperature	– 65°C to + 150°C
Voltage on Any Pin With Respect	
to Ground	0.5V to +7V
Power Dissipation	1.5 Watt

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS

$T_A = 0^{\circ}C$ to 70°C. V	$s_{ss} = 0V. 8041A; V_{CC} = V$	$4 = +5V \pm 10\%$. 874	$1A: V_{CC} = V_{DD} = +5V \pm 5\%$
A = 0 = 0 = 0 = 0, 0	55 - •••, •••••••••••••••	$00 - 100 \pm 1000$	

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
VIL	Input Low Voltage (Except XTAL1, XTAL2, RESET)	- 0.5	0.8	V	
V _{IL1}	Input Low Voltage (XTAL1, XTAL2, RESET)	- 0.5	0.6	V	
VIH	Input High Voltage (Except XTAL1, XTAL2, RESET)	2.2	V _{CC}		
V _{IH1}	Input High Voltage (XTAL1, XTAL2, RESET)	3.8	V _{cc}	V	
VOL	Output Low Voltage (D ₀ -D ₇)		0.45	٧	I _{OL} = 2.0 mA
V _{OL1}	Output Low Voltage (P ₁₀ P ₁₇ , P ₂₀ P ₂₇ , Sync)		0.45	V	l _{OL} = 1.6 mA
V _{OL2}	Output Low Voltage (Prog)		0.45	V	I _{OL} = 1.0 mA
V _{OH}	Output High Voltage (D ₀ -D ₇)	2.4		V	I _{OH} = - 400 μA
V _{OH1}	Output High Voltage (All Other Outputs)	2.4		V	I _{OH} = - 50 μA
I _{IL}	Input Leakage Current ($T_0, T_1, \overline{RD}, \overline{WR}, \overline{CS}, A_0, EA$)		± 10	μA	$V_{SS} \le V_{IN} \le V_{CC}$
I _{OZ}	Output Leakage Current (D0-D7, High Z State)		± 10	μA	$V_{SS} + 0.45 \le V_{IN} \le V_{CC}$
I _{LI}	Low Input Load Current (P10P17, P20P27)		0.5	mA	$V_{IL} = 0.8V$
I _{LI1}	Low Input Load Current (RESET, SS)		0.2	mA	$V_{IL} = 0.8V$
I _{DD}	V _{DD} Supply Current		15	mA	Typical = 5 mA
I _{CC} +I _{DD}	Total Supply Current	1	125	mA	Typical = 60 mA

A.C. CHARACTERISTICS

 T_{A} = 0°C to 70°C, V_{SS} = 0V, 8041A: V_{CC} = V_{DD} = + 5V \pm 10%, 8741A: V_{CC} = V_{DD} = + 5V \pm 5% DBB READ

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{AR}	CS, A ₀ Setup to RDI	0		ns	
t _{RA}	CS, A ₀ Hold After RD1	0		ns	
t _{RR}	RD Pulse Width	250		ns	
t _{AD}	CS, A ₀ to Data Out Delay		225	ns	C _L = 150 pF
t _{RD}	RDI to Data Out Delay		225	ns	C _L = 150 pF
t _{DF}	RDt to Data Float Delay		100	ns	
t _{CY}	Cycle Time (Except 8741A-8)	2.5	15	μS	6.0 MHz XTAL
tcy	Cycle Time (8741A-8)	4.17	15	μS	3.6 MHz XTAL

DBB WRITE

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{AW}	CS, A ₀ Setup to WRI	0		ns	
twa	CS, A ₀ Hold After WR1	0		ns	· ·
tww	WR Pulse Width	250		ns	
t _{DW}	Data Setup to WR1	150		ns	
twp	Data Hold After WR1	0		ns	

INPUT AND OUTPUT WAVEFORMS FOR A.C. TESTS

WAVEFORMS

1. READ OPERATION-DATA BUS BUFFER REGISTER.

2. WRITE OPERATION-DATA BUS BUFFER REGISTER.

TYPICAL 8041/8741A CURRENT

A.C. CHARACTERISTICS—PORT 2

Symbol	Parameter	- Min. "	Max.	Unit	Test Conditions
tCP	Port Control Setup Before Falling Edge of PROG	110		ns	
tPC .	Port Control Hold After Falling Edge of PROG	100		ns	-*
tPR	PROG to Time P2 Input Must Be Valid		810	ns	
tPF	Input Data Hold Time	0	150	ns	
tDP	Output Data Setup Time	250		ns	
tPD	Output Data Hold Time	65		ns	
tpp	PROG Pulse Width	1200	1	ns	

 $T_A = 0^{\circ}C$ to 70 °C, 8041A: $V_{CC} = +5V_1 \pm 10\%$, 8741A: $V_{CC} = +5V_1 \pm 5\%$

PORT 2 TIMING

A.C. CHARACTERISTICS-DMA

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
tACC	DACK to WR or RD	0		ns	
t _{CAC}	RD or WR to DACK	0		ns	
t _{ACD}	DACK to Data Valid		225	ns	C _L = 150 pF
t _{CRQ}	RD or WR to DRQ Cleared		200	ns	

WAVEFORMS-DMA

CRYSTAL OSCILLATOR MODE

CRYSTAL SERIES RESISTANCE SHOULD BE <750 AT 6 MHz; <1800 AT 3.6 MHz.

BOTH XTAL1 AND XTAL2 SHOULD BE DRIVEN. RESISTORS TO $V_{\rm CC}$ are needed to ensure $V_{\rm IH}$ = 3.8V IF TTL CIRCUITRY IS USED.

XTAL2

EACH C SHOULD BE APPROXIMATELY 20 pF, INCLUDING STRAY CAPACITANCE.

PROGRAMMING, VERIFYING, AND ERASING THE 8741A EPROM

Programming Verification

In brief, the programming process consists of: activating the program mode, applying an address, latching the address, applying data, and applying a programming pulse. Each word is programmed completely before moving on to the next and is followed by a verification step. The following is a list of the pins used for programming and a description of their functions:

Pin	Function
XTAL 1	Clock Input (1 to 6MHz)
Reset	Initialization and Address Latching
Test 0	Selection of Program or Verify Mode
EA	Activation of Program/Verify Modes
BUS	Address and Data Input
	Data Output During Verify
P20-1	Address Input
V _{DD}	Programming Power Supply
PROG	Program Pulse Input

WARNING:

An attempt to program a missocketed 8741A will result in severe damage to the part. An indication of a properly socketed part is the appearance of the SYNC clock output. The lack of this clock may be used to disable the programmer.

The Program/Verify sequence is:

- 1. $A_0 = 0V, \overline{CS} = 5V, EA = 5V, \overline{RESET} = 0V, TEST0 = 5V, V_{DD} = 5V, clock applied or internal oscillator operating, BUS and PROG floating.$
- 2. Insert 8741A in programming socket
- 3. TEST 0 = 0v (select program mode)
- 4. EA = 23V (activate program mode)
- 5. Address applied to BUS and P20-1
- 6. RESET = 5v (latch address)
- 7. Data applied to BUS
- 8. V_{DD} = 25v (programming power)
- 9. PROG = 0v followed by one 50ms pulse to 23V
- 10. Vnn = 5v
- 11. TEST 0 = 5v (verify mode)
- 12. Read and verify data on BUS
- 13. TEST 0 = 0v
- 14. RESET = 0v and repeat from step 5
- 15. Programmer should be at conditions of step 1 when 8741A is removed from socket.

DRIVING FROM EXTERNAL SOURCE

8741A Erasure Characteristics

The erasure characteristics of the 8741A are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000Å range. Data show that constant exposure to room level fluorescent lighting could erase the typical 8741A in approximately 3 years while it would take approximately one week to cause erasure when exposed to direct sunlight. If the 8741A is to be exposed to these types of lighting conditions for extended periods of time, opaque labels are available from Intel which should be placed over the 8741A window to prevent unintentional erasure.

The recommended erasure procedure for the 8741A is exposure to shortwave ultraviolet light which has a wavelength of 2537Å. The integrated dose (i.e., UV intensity × exposure time) for erasure should be a minimum of 15 w-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a 12,000 μ W/cm² power rating. The 8741A should be placed within one inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure.

A.C. TIMING SPECIFICATION FOR PROGRAMMING

 $T_A = 25^{\circ}C \pm 5^{\circ}C, V_{CC} = 5V \pm 5\%, V_{DD} = 25V \pm 1V$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
taw	Address Setup Time to RESET 1	4tCy			
twa	Address Hold Time After RESET 1	4tCy			
tow	Data in Setup Time to PROG 1	4tCy			
twp	Data in Hold Time After PROG I	41Cy			
tрн	RESET Hold Time to Verify	4tCy			
tvddw	V _{DD} Setup Time to PROG t	4tCy			
tvddh	VDD Hold Time After PROG 1	0			
tpw	Program Pulse Width	50	60	mS	
tīw	Test 0 Setup Time for Program Mode	4tCy			
twr	Test 0 Hold Time After Program Mode	4tCy			
tDO	Test 0 to Data Out Delay		4tCy		
tww	RESET Pulse Width to Latch Address	4tCy			
tr, tf	VDD and PROG Rise and Fall Times	0.5	2.0	μS	
tCY	CPU Operation Cycle Time			μs	
tre	RESET Setup Time Before EA 1.	4tCy			

Note: If TEST 0 is high, t_{DO} can be triggered by RESET 1.

D.C. SPECIFICATION FOR PROGRAMMING

 $T_A = 25^{\circ}C \pm 5^{\circ}C, V_{CC} = 5V \pm 5\%, V_{DD} = 25V \pm 1V$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
VDOH	VDD Program Voltage High Level	24.0	26.0	v	
VDDL	VDD Voltage Low Level	4.75	5.25	V	
Vpн	PROG Program Voltage High Level	21.5	24.5	V	
VPL	PROG Voltage Low Level		0.2	v	
VEAH	EA Program or Verify Voltage High Level	21.5	24.5	v	
VEAL	EA Voltage Low Level		5.25	V	
loo	VDD High Voltage Supply Current		30.0	mA	
IPROG	PROG High Voltage Supply Current		16.0	mA	
IEA	EA High Voltage Supply Current		1.0	mA	

WAVEFORMS FOR PROGRAMMING

COMBINATION PROGRAM/VERIFY MODE (EPROM'S ONLY)

ABLE FOR 8741A-8 PARTS AS WELL AS STANDARD PARTS. 3. AO MUST BE HELD LOW (I.e., = 0V) DURING PROGRAM/VERIFY MODES.

The 8741A EPROM can be programmed by either of two Intel products:

- 1. PROMPT-48 Microcomputer Design Aid, or
- 2. Universal PROM Programmer (UPP series) peripheral of the Intellec® Development System with a UPP-848 Personality Card.

8205 HIGH SPEED 1 OUT OF 8 BINARY DECODER

- I/O Port or Memory Selector
- Simple Expansion Enable Inputs
- High Speed Schottky Bipolar Technology — 18 ns Max Delay
- Directly Compatible with TTL Logic Circuits

- Low Input Load Current 0.25 mA Max, 1/6 Standard TTL Input Load
- Minimum Line Reflection Low Voltage Diode Input Clamp
- Outputs Sink 10 mA Min
- 16-Pin Dual In-Line Ceramic or Plastic Package

The Intel® 8205 decoder can be used for expansion of systems which utilize input ports, output ports, and memory components with active low chip select input. When the 8205 is enabled, one of its 8 outputs goes "low", thus a single row of a memory system is selected. The 3-chip enable inputs on the 8205 allow easy system expansion. For very large systems, 8205 decoders can be cascaded such that each decoder can drive 8 other decoders for arbitrary memory expansions.

The 8205 is packaged in a standard 16-pin dual in-line package, and its performance is specified over the temperature range of 0°C to +75°C, ambient. The use of Schottky barrier diode clamped transistors to obtain fast switching speeds results in higher performance than equivalent devices made with a gold diffussion process.

PIN NAMES

A0. A2	ADDRESS INPUTS
Ē1. Ē3	ENABLE INPUTS
00. 07	DECODED OUTPUTS

AD	ADDRESS			ENABLE			LE OUTPUTS						
A_0	Α1	Α2	Ε,	E2	Ε3	0	1	2	3	4	5	6	7
L	L	L	٤	L	н	L	н	н	н	н	н	н	н
н	L	L	L	L	н	н	٤	н	н	н	н	н	́н
L	н	L	L	L	н	н	н	L	н	н	н	н	н
н	н	L	L	Ł	н	н	н	н	L	н	н	н	н
L	L	н	L L	L	н	н	н	н	н	L	н	н	н
н	L	н	Ł	Ц. 1	н	н	н	н	н	н	ι	н	н
L	н	н	L	L	н	н	н	н	н	н	н	L	н
н	н	н	L	L	H	н	н	н	н	н	н	н	L
x	х	х	L	L	Ł	н	н	н	н	н	н	н	н
x	х	х	н	L	L	н	н	- H	н	н	н	н	н
х	х	х	L	н	L	н	н	н	н	н	н	н	н
х	х	х	н	н	L	н	н	н	н	н	н	н	н
х	х	х	н	L	н	н	н	н	н	н	н	н	н
х	х	х	L	н	н	н	н	н	н	н	н	н	н
х	х	х	н	н	н	н	н	н	н	н	н	н	н

FUNCTIONAL DESCRIPTION

Decoder

The 8205 contains a one out of eight binary decoder. It accepts a three bit binary code and by gating this input, creates an exclusive output that represents the value of the input code.

For example, if a binary code of 101 was present on the A0, A1 and A2 address input lines, and the device was enabled, an active low signal would appear on the $\overline{05}$ output line. Note that all of the other output pins are sitting at a logic high, thus the decoded output is said to be exclusive. The decoders outputs will follow the truth table shown below in the same manner for all other input variations.

Enable Gate

When using a decoder it is often necessary to gate the outputs with timing or enabling signals so that the exclusive output of the decoded value is synchronous with the overall system.

The 8205 has a built-in function for such gating. The three enable inputs ($\overline{E1}$, $\overline{E2}$, $\overline{E3}$) are ANDed together and create a single enable signal for the decoder. The combination of both active "high" and active "low" device enable inputs provides the designer with a powerfully flexible gating function to help reduce package count in his system.

Figure 1. Enable Gate

AD	ADDRESS ENABLE			OUTPUTS									
A ₀	Α1	A ₂	Εı	E2	E_3	0	1	2	3	4	5	6	7
L	L	L	L	L	н	L	н	н	н	н	н	н	н
н	L	L	L	L	н	н	L	н	н	н	н	н	н
L	н	L	L	L	H	н	н	L	н	н	н	н	н
н	н	L	L	L	H	н	н	н	L	н	н	н	н
L	L	н	L	L	н '	н	н	H	н	L	н	н	н
н	L	н	L	L	н	н	н	н	н	н	L	н	н
L	н	н	L	L	н	н	н	н	н	н	н	L	н
н	H	н	L	L	н	н	н	н	н	н	н	н	L
X	х	х	L	L	L	н	н	н	н	· H	н	н	н
X	х	х	н	L	L,	н	н	н	н	н	н	н	н
X	х	х	L	н	L	н	н	н	н	н	н	н	н
X	х	х	н	н	L	н	н	н	н	н	н	н	н
X	х	х	н	L	н	н	н	H	н	н	н	н	н
X	х	х	L	н	H	н	н	н	н	н	н	н	н
X	х	х	н	н	н	н	н	н	н	н	н	н	н

8205

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias:	Ceramic Plastic	−65°C to +125°C −65°C to +75°C
Storage Temperature		-65°C to +160°C
All Output or Supply Volta	ages	-0.5 to +7 Volts
All Input Voltages		-1.0 to +5.5 Volts
Output Currents		125 mA

*COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

 $T_A = 0$ °C to + 75 °C, $V_{CC} = 5V \pm 5\%$

8205

		LI	МІТ	LINUT	TEST CONDITIONS
STMBUL	PARAMETER	MIN.	MAX.	UNIT	TEST CONDITIONS
I _F	INPUT LOAD CURRENT		-0.25	mA	V _{CC} = 5.25V, V _F = 0.45V
I _R	INPUT LEAKAGE CURRENT		10	μΑ	V _{CC} = 5.25V, V _R = 5.25V
V _c	INPUT FORWARD CLAMP VOLTAGE		-1.0	V	$V_{\rm CC} = 4.75 V, I_{\rm C} = -5.0 {\rm mA}$
V _{OL}	OUTPUT "LOW" VOLTAGE		0.45	V	V _{CC} = 4.75V, I _{OL} = 10.0 mA
V _{OH}	OUTPUT HIGH VOLTAGE	2.4		V	$V_{\rm CC} = 4.75V, I_{\rm OH} = -1.5 \rm mA$
V _{IL}	INPUT "LOW" VOLTAGE		0.85	V	V _{CC} = 5.0V
VIH	INPUT "HIGH" VOLTAGE	2.0		v	V _{CC} = 5.0V
lsc	OUTPUT HIGH SHORT CIRCUIT CURRENT	-40	-120	mA	V _{CC} = 5.0V, V _{OUT} = 0V
v _{ox}	OUTPUT "LOW" VOLTAGE @ HIGH CURRENT		0.8	V	V _{CC} = 5.0V, I _{OX} = 40 mA
I _{CC}	POWER SUPPLY CURRENT		70	mA	V _{CC} = 5.25V

TYPICAL CHARACTERISTICS

SWITCHING CHARACTERISTICS

A.C. CHARACTRISTICS

 $T_A = 0$ °C to +75 °C, $V_{CC} = 5V \pm 5\%$ unless otherwise specified.

SYMBOL	PARAMETER		MAX. LIMIT	UNIT	TEST CONDITIONS
t _{+ +}			18	ns	
t_+	ADDRESS OR ENABLE TO)	18	ns	
t _{+ _}	OUTPUT DELAY		18	ns	
t			18	ns	
C _{IN} (1)	INPUT CAPACITANCE P8	3205	4(typ.)	pF	f = 1 MHz, V _{CC} = 0V
	CE	3205	5(typ.)	pF	VBIAS = 2.0V, TA = 25°C

1. This parameter is periodically sampled and is not 100% tested.

TYPICAL CHARACTERISTICS

ADDRESS OR ENABLE TO OUTPUT DELAY VS. LOAD CAPACITANCE

ADDRESS OR ENABLE TO OUTPUT DELAY VS. AMBIENT TEMPERATURE

PROGRAMMABLE COMMUNICATION INTERFACE

- Synchronous and Asynchronous Operation
- Synchronous 5-8 Bit Characters; Internal or External Character Synchronization; Automatic Sync Insertion
- Asynchronous 5-8 Bit Characters; Clock Rate—1, 16 or 64 Times Baud Rate; Break Character Generation; 1, 1½, or 2 Stop Bits; False Start Bit Detection; Automatic Break Detect and Handling.
- Synchronous Baud Rate DC to 64K Baud

- Asynchronous Baud Rate DC to 19.2K Baud
- Full Duplex, Double Buffered, Transmitter and Receiver
- Error Detection Parity, Overrun and Framing
- Fully Compatible with 8080/8085 CPU
- 28-Pin DIP Package
- All Inputs and Outputs are TTL Compatible
- Single + 5V Supply
- Single TTL Clock

The Intel® 8251A is the enhanced version of the industry standard, Intel® 8251 Universal Synchronous/Asynchronous Receiver/Transmitter (USART), designed for data communications with Intel's new high performance family of microprocessors such as the 8085. The 8251A is used as a peripheral device and is programmed by the CPU to operate using virtually any serial data transmission technique presently in use (including IBM "bi-sync"). The USART accepts data characters from the CPU in parallel format and then converts them into a continuous serial data stream for transmission. Simultaneously, it can receive serial data streams and convert them into parallel data characters for the CPU. The USART will signal the CPU whenever it can accept a new character for transmission or whenever it has received a character for the CPU. The CPU can read the complete status of the USART at any time. These include data transmission errors and control signals such as SYNDET, TxEMPTY. The chip is constructed using N-channel silicon gate technology.

FEATURES AND ENHANCEMENTS

8251A is an advanced design of the industry standard USART, the Intel[®] 8251. The 8251A operates with an extended range of Intel microprocessors that includes the new 8085 CPU and maintains compatibility with the 8251. Familiarization time is minimal because of compatibility and involves only knowing the additional features and enhancements, and reviewing the AC and DC specifications of the 8251A.

The 8251A incorporates all the key features of the 8251 and has the following additional features and enhancements:

- 8251A has double-buffered data paths with separate I/O registers for control, status, Data In, and Data Out, which considerably simplifies control programming and minimizes CPU overhead.
- In asynchronous operations, the Receiver detects and handles "break" automatically, relieving the CPU of this task.
- A refined Rx initialization prevents the Receiver from starting when in "break" state, preventing unwanted interrupts from a disconnected USART.
- At the conclusion of a transmission, TxD line will always return to the marking state unless SBRK is programmed.

- Tx Enable logic enhancement prevents a Tx Disable command from halting transmission until all data previously written has been transmitted. The logic also prevents the transmitter from turning off in the middle of a word.
- When External Sync Detect is programmed, Internal Sync Detect is disabled, and an External Sync Detect status is provided via a flip-flop which clears itself upon a status read.
- Possibility of false sync detect is minimized by ensuring that if double character sync is programmed, the characters be contiguously detected and also by clearing the Rx register to all ones whenever Enter Hunt command is issued in Sync mode.
- As long as the 8251A is not selected, the RD and WR do not affect the internal operation of the device.
- The 8251A Status can be read at any time but the status update will be inhibited during status read.
- The 8251A is free from extraneous glitches and has enhanced AC and DC characteristics, providing higher speed and better operating margins.
- Synchronous Baud rate from DC to 64K.
- Fully compatible with Intel's new industry standard, the MCS-85.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	\dots 0°C to 70°C
Storage Temperature	65°C to +150°C
Voltage On Any Pin	
With Respect to Ground	0.5V to +7V
Power Dissipation	1 Watt

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = 5.0V \pm 5\%$; GND = 0V

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
VIL	Input Low Voltage	-0.5	0.8	v	
VIH	Input High Voltage	2.2	V _{CC}	V	
V _{OL}	Output Low Voltage		0.45	v	I _{OL} = 2.2 mA
V _{OH}	Output High Voltage	2.4		v	I _{OH} = -400 μA
OFL	Output Float Leakage		±10	μΑ	V _{OUT} = V _{CC} TO 0.45V
 ۱ _{۱L}	Input Leakage		±10	μΑ	V _{IN} = V _{CC} TO 0.45V
Icc	Power Supply Current		100	mA	All Outputs = High

CAPACITANCE

 $T_A = 25^{\circ}C; V_{CC} = GND = 0V$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
C _{IN}	Input Capacitance		10	pF	fc = 1MHz
C _{I/O}	I/O Capacitance		20	pF	Unmeasured pins returned to GND

Figure 16. Test Load Circuit

A.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = 5.0V \pm 5\%$; GND = 0V

Bus Parameters (Note 1)

Read Cycle:

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	TEST CONDITIONS
tAR	Address Stable Before \overline{READ} (\overline{CS} , C/ \overline{D})	50	· · ·	ns	Note 2
t _{RA}	Address Hold Time for $\overline{\text{READ}}$ ($\overline{\text{CS}}$, C/ $\overline{\text{D}}$)	50		ns	Note 2
t _{RR}	READ Pulse Width	250		ns	
t _{RD}	Data Delay from READ		250	ns	3, C _L = 150 pF
t _{DF}	READ to Data Floating	10	100	ns	

Write Cycle:

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	TEST CONDITIONS
t _{AW}	Address Stable Before WRITE	50		ns	
t _{WA}	Address Hold Time for WRITE	50		ns	
tww	WRITE Pulse Width	250		ns	
tDW	Data Set Up Time for WRITE	150		ns	
t _{WD}	t _{WD} Data Hold Time for WRITE			ns	
t _{RV}	Recovery Time Between WRITES	6		t _{CY}	Note 4

NOTES: 1. AC timings measured V_{OH} = 2.0, V_{OL} = 0.8, and with load circuit of Figure 1. 2. Chip Select (\overline{CS}) and Command/Data ($\overline{C/D}$) are considered as Addresses.

3. Assumes that Address is valid before $\overline{R_D}\downarrow$.

4. This recovery time is for Mode Initialization only. Write Data is allowed only when TxRDY = 1. Recovery Time between Writes for Asynchronous Mode is 8 t_{CY} and for Synchronous Mode is 16 t_{CY}.

Input Waveforms for AC Tests

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	TEST CONDITIONS
tCY	Clock Period	320	1350	ns	Notes 5, 6
tφ	Clock High Pulse Width	140	t _{CY-90}	ns	
tō	Clock Low Pulse Width	90		ns	
t _R , t _F	Clock Rise and Fall Time		20	ns	
t _{DTx}	TxD Delay from Falling Edge of TxC		1	μs	
f _{Tx}	Transmitter Input Clock Frequency				
	1x Baud Rate	DC	64	kHz	
	16x Baud Rate	DC	310	kHz	
	64x Baud Rate	DC	615	kHz	
t _{TPW}	Transmitter Input Clock Pulse Width				
	1x Baud Rate	12	1	tCY	
	16x and 64x Baud Rate	1		tCY	
t _{TPD}	Transmitter Input Clock Pulse Delay				
	1x Baud Rate	15		tCY	
	16x and 64x Baud Rate	3		tCY	
f _{Rx}	Receiver Input Clock Frequency				
	1x Baud Rate	DC	64	kHz	
	16x Baud Rate	DC	310	kHz	
	64x Baud Rate	DC	615	kHz	
tRPW	Receiver Input Clock Pulse Width				
	1x Baud Rate	12		tCY	
	16x and 64x Baud Rate	1		tcy	
tRPD	Receiver Input Clock Pulse Delay				
	1x Baud Rate	15		tCY	
	16x and 64x Baud Rate	3	[tCY	
t _{TxRDY}	TxRDY Pin Delay from Center of last Bit		8	tcy	Note 7
^t TxRDY CLEAR	TxRDY ↓ from Leading Edge of WR		6	t _{CY}	Note 7
t _{RxRDY}	RxRDY Pin Delay from Center of last Bit		24	tCY	Note 7
tRxRDY CLEAR	$R \times RDY \downarrow $ from Leading Edge of \overline{RD}		6	t _{CY}	Note 7
t _{IS}	Internal SYNDET Delay from Rising		24	+	Note 7
	Edge of RxC		24	·CΥ	Note 7
t _{ES}	External SYNDET Set-Up Time Before	16		tev	Note 7
	Falling Edge of RxC				
TxEMPTY	TxEMPTY Delay from Center of Last Bit	20		tcy	Note 7
^t WC	Control Delay from Rising Edge of WRITE (TxEn, DTR, RTS)	8		tCY	Note 7
t _{CR}	Control to READ Set-Up Time (DSR, CTS)	20		tCY	Note 7

Other Timings:

5. The TxC and RxC frequencies have the following limitations with respect to CLK.

For 1x Baud Rate , f_{Tx} or $f_{Rx} \leqslant 1/(30~t_{CY})$ For 16x and 64x Baud Rate , f_{Tx} or $f_{Rx} \leqslant 1/(4.5~t_{CY})$

6. Reset Pulse Width = 6 t_{CY} minimum; System Clock must be running during Reset.

7. Status update can have a maximum delay of 28 clock periods from the event affecting the status.

8253/8253-5 PROGRAMMABLE INTERVAL TIMER

- MCS-85TM Compatible 8253-5
- 3 Independent 16-Bit Counters
- DC to 2 MHz

int

Programmable Counter Modes

Count Binary or BCD

■ Single + 5V Supply

■ 24-Pin Dual In-Line Package

The Intel® 8253 is a programmable counter/timer chip designed for use as an Intel microcomputer peripheral. It uses nMOS technology with a single +5V supply and is packaged in a 24-pin plastic DIP.

It is organized as 3 independent 16-bit counters, each with a count rate of up to 2 MHz. All modes of operation are software programmable.

PIN CONFIGURATION

	_		_	
₀,⊂	1		24	
₽₀C	2		23	W Ř
D ₅ C	3		22	D RD
D₄□	4		21] CS
₽₃d	5		20	□^,
₽₂□	6	8253	19	
₽,□	7		18	CLK 2
₽₀□	8		17	0UT 2
CLK O	9		16	GATE 2
	10		15	CLK 1
GATE	11		14	GATE
	12		13	0071

PIN NAMES

D ₇ ·D ₀	DATA BUS (8 BIT)
CLKN	COUNTER CLOCK INPUTS
GATE N	COUNTER GATE INPUTS
OUT N	COUNTER OUTPUTS
RD	READ COUNTER
WR	WRITE COMMAND OR DATA
CS	CHIP SELECT
A ₀ A ₁	COUNTER SELECT
Vcc	+5 VOLTS
GND	GROUND

C1 K 0 DATA COUNTER GATEO 8 BUS :0 BUFFER OUT 0 RD CLK 1 WR READ COUNTER WRITE GATE 1 LOGIC OUT 1 cs CLK 2 CONTROL COUNTER WORD GATE 2 *:* 2 + OUT 2 INTERNAL BUS

ċ

INTEL CORPORATION ASSUMES NO RESPONSIBILITY FOR THE USE OF ANY CIRCUITRY OTHER THAN CIRCUITRY EMBODIED IN AN INTEL PRODUCT. NO OTHER CIRCUIT PATENT LICENSES ARE IMPLIED. © INTEL CORPORATION, 1979 7-83

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION General

The 8253 is a programmable interval timer/counter specifically designed for use with the Intel[™] Microcomputer systems. Its function is that of a general purpose, multi-timing element that can be treated as an array of I/O ports in the system software.

The 8253 solves one of the most common problems in any microcomputer system, the generation of accurate time delays under software control. Instead of setting up timing loops in systems software, the programmer configures the 8253 to match his requirements, initializes one of the counters of the 8253 with the desired quantity, then upon command the 8253 will count out the delay and interrupt the CPU when it has completed its tasks. It is easy to see that the software overhead is minimal and that multiple delays can easily be maintained by assignment of priority levels.

Other counter/timer functions that are non-delay in nature but also common to most microcomputers can be implemented with the 8253.

- Programmable Rate Generator
- · Event Counter
- · Binary Rate Multiplier
- · Real Time Clock
- Digital One-Shot
- Complex Motor Controller

Data Bus Buffer

This 3-state, bi-directional, 8-bit buffer is used to interface the 8253 to the system data bus. Data is transmitted or received by the buffer upon execution of INput or OUTput CPU instructions. The Data Bus Buffer has three basic functions.

- 1. Programming the MODES of the 8253.
- 2. Loading the count registers.
- 3. Reading the count values.

Read/Write Logic

The Read/Write Logic accepts inputs from the system bus and in turn generates control signals for overall device operation. It is enabled or disabled by CS so that no operation can occur to change the function unless the device has been selected by the system logic.

RD (Read)

A "low" on this input informs the 8253 that the CPU is inputting data in the form of a counters value.

WR (Write)

A "low" on this input informs the 8253 that the CPU is outputting data in the form of mode information or loading counters.

A0, A1

These inputs are normally connected to the address bus. Their function is to select one of the three counters to be operated on and to address the control word register for mode selection.

CS (Chip Select)

A "low" on this input enables the 8253. No reading or writing will occur unless the device is selected. The \overline{CS} input has no effect upon the actual operation of the counters.

Figure 1. Block Diagram Showing Data Bus Buffer and Read/Write Logic Functions

ĊŚ	RD	WR	A ₁	A ₀	
0	1	0	0	0	Load Counter No. 0
0	1	0	0	1	Load Counter No. 1
0	1	0	1	0	Load Counter No. 2
0	1	0	1	1	Write Mode Word
0	0	1	0	0	Read Counter No. 0
0	0	1	0	1	Read Counter No. 1
0	0	1	1	0	Read Counter No. 2
0	0	1	1	1	No-Operation 3-State
1	X	Х	X	X	Disable 3-State
0	1	1	X	X	No-Operation 3-State

Control Word Register

The Control Word Register is selected when A0, A1 are 11. It then accepts information from the data bus buffer and stores it in a register. The information stored in this register controls the operational MODE of each counter, selection of binary or BCD counting and the loading of each count register.

The Control Word Register can only be written into; no read operation of its contents is available.

Counter #0, Counter #1, Counter #2

These three functional blocks are identical in operation so only a single Counter will be described. Each Counter consists of a single, 16-bit, pre-settable, DOWN counter. The counter can operate in either binary or BCD and its input, gate and output are configured by the selection of MODES stored in the Control Word Register.

The counters are fully independent and each can have separate Mode configuration and counting operation, binary or BCD. Also, there are special features in the control word that handle the loading of the count value so that software overhead can be minimized for these functions.

The reading of the contents of each counter is available to the programmer with simple READ operations for event counting applications and special commands and logic are included in the 8253 so that the contents of each_ counter can be read "on the fly" without having to inhibit the clock input.

8253 SYSTEM INTERFACE

The 8253 is a component of the Intel[™] Microcomputer Systems and interfaces in the same manner as all other peripherals of the family. It is treated by the systems software as an array of peripheral I/O ports; three are counters and the fourth is a control register for MODE programming.

Basically, the select inputs A0, A1 connect to the A0, A1 address bus signals of the CPU. The \overline{CS} can be derived directly from the address bus using a linear select method. Or it can be connected to the output of a decoder, such as an Intel® 8205 for larger systems.

Figure 2. Block Diagram Showing Control Word Register and Counter Functions

Figure 3. 8253 System Interface
MODE 0: Interrupt on Terminal Count

MODE 1: Programmable One-Shot

MODE 3: Square Wave Generator

MODE 4: Software Triggered Strobe

MODE 2: Rate Generator

MODE 5: Hardware Triggered Strobe

Figure 5. 8253 Timing Diagrams

8253 READ/WRITE PROCEDURE

Write Operations

The systems software must program each counter of the 8253 with the mode and quantity desired. The programmer must write out to the 8253 a MODE control word and the programmed number of count register bytes (1 or 2) prior to actually using the selected counter.

The actual order of the programming is quite flexible. Writing out of the MODE control word can be in any sequence of counter selection, e.g., counter #0 does not have to be first or counter #2 last. Each counter's MODE control word register has a separate address so that its loading is completely sequence independent. (SC0, SC1)

The loading of the Count Register with the actual count value, however, must be done in exactly the sequence programmed in the MODE control word (RL0, RL1). This loading of the counter's count register is still sequence independent like the MODE control word loading, but when a selected count register is to be loaded it <u>must</u> be loaded with the number of bytes programmed in the MODE control word (RL0, RL1). The one or two bytes to be loaded in the count register do not have to follow the associated MODE control word. They can be programmed at any time following the MODE control word loading as long as the correct number of bytes is loaded in order.

All counters are down counters. Thus, the value loaded into the count register will actually be decremented. Loading all zeroes into a count register will result in the maximum count (2¹⁶ for Binary or 10⁴ for BCD). In MODE 0 the new count will not restart until the load has been completed. It will accept one of two bytes depending on how the MODE control words (RL0, RL1) are programmed. Then proceed with the restart operation.

	MODE Control Word Counter n
LSB	Count Register byte Counter n
MSB	Count Register byte Counter n

Note: Format shown is a simple example of loading the 8253 and does not imply that it is the only format that can be used.

			A1	A0
No. 1		MODE Control Word Counter 0	1	1
No. 2		MODE Control Word Counter 1	1	1
No. 3		MODE Control Word Counter 2	1	1
No. 4	LSB	Count Register Byte Counter 1	0	1
No. 5	MSB	Count Register Byte Counter 1	0	1
No. 6	LSB	Count Register Byte Counter 2	1	0
No. 7	MSB	Count Register Byte Counter 2	1	0
No. 8	LSB	Count Register Byte Counter 0	0	0
No. 9	MSB	Count Register Byte Counter 0	0	0

Note: The exclusive addresses of each counter's count register make the task of programming the 8253 a very simple matter, and maximum effective use of the device will result if this feature is fully utilized.

Figure	7.	Alternate	Programming	Formats
FIQUIO		AILEINALE	riogramming	rumau

Read Operations

In most counter applications it becomes necessary to read the value of the count in progress and make a computational decision based on this quantity. Event counters are probably the most common application that uses this function. The 8253 contains logic that will allow the programmer to easily read the contents of any of the three counters without disturbing the actual count in progress.

There are two methods that the programmer can use to read the value of the counters. The first method involves the use of simple I/O read operations of the selected counter. By controlling the A0, A1 inputs to the 8253 the programmer can select the counter to be read (remember that no read operation of the mode register is allowed A0, A1-11). The only requirement with this method is that in order to assure a stable count reading the actual operation of the selected counter <u>must be inhibited</u> either by controlling the Gate input or by external logic that inhibits the clock input. The contents of the counter selected will be available as follows:

first I/O Read contains the least significant byte (LSB).

second I/O Read contains the most significant byte (MSB).

Due to the internal logic of the 8253 it is absolutely necessary to complete the entire reading procedure. If two bytes are programmed to be read then two bytes <u>must</u> be read before any loading WR command can be sent to the same counter.

Read Operation Chart

A1	A0	RD	
0	0	0	Read Counter No. 0
0.	1	0	Read Counter No. 1
1	0	0	Read Counter No. 2
1	1	0	Illegal

Reading While Counting

In order for the programmer to read the contents of any counter without effecting or disturbing the counting operation the 8253 has special internal logic that can be accessed using, simple WR commands to the MODE register. Basically, when the programmer wishes to read the contents of a selected counter "on the fly" he loads the MODE register with a special code which latches the present count value into a storage register so that its contents contain an accurate, stable quantity. The programmer then issues a normal read command to the selected counter and the contents of the latched register is available.

MODE Register for Latching Count

A0, A1 = 11

D7	D6	D5	D4	D3	D2	D1	D0
SC1	SC0	0	0	X	х	X	х

SC1,SC0 - specify counter to be latched.

D5,D4 - 00 designates counter latching operation.

X — don't care.

The same limitation applies to this mode of reading the counter as the previous method. That is, it is mandatory to complete the entire read operation as programmed. This command has no effect on the counter's mode.

*If an 8085 clock output is to drive an 8253-5 clock input, it must be reduced to 2 MHz or less.

Figure 8. MCS-85TM Clock Interface*

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	0° C to 70° C
Storage Temperature	65° C to +150° C
Voltage On Any Pin	
With Respect to Ground	0.5 V to +7 V
Power Dissipation	1 Watt

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS ($T_A = 0^{\circ}C \text{ to } 70^{\circ}C; V_{CC} = 5V \pm 5\%$)

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	TEST CONDITIONS
VIL	Input Low Voltage	-0.5	0.8	V	
VIH	Input High Voltage	2.2	V _{CC} +.5V	V	
V _{OL}	Output Low Voltage		0.45	V	Note 1
V _{OH}	Output High Voltage	2.4		V	Note 2
μL	Input Load Current		±10	μA	V _{IN} = V _{CC} to 0V
IOFL	Output Float Leakage		±10	μA	$V_{OUT} = V_{CC}$ to $0V$
Icc	V _{CC} Supply Current		140	mA	

Note 1: 8253, I_{OL} = 1.6 mA; 8253-5, I_{OL} = 2.2 mA.

Note 2: 8253, $I_{OH} = -150 \ \mu\text{A}$; 8253-5, $I_{OH} = -400 \ \mu\text{A}$.

CAPACITANCE $T_A = 25^{\circ}C; V_{CC} = GND = 0V$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
CIN	Input Capacitance			10	pF	fc = 1 MHz
C _{I/O}	I/O Capacitance			20	pF	Unmeasured pins returned to V_{SS}

8253/8253-5

A.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = 5.0V \pm 5\%$; GND = 0V

Bus Parameters (Note 1)

Read Cycle:

		82	53	82		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT
t _{AR}	Address Stable Before READ	50		30		ns
t _{RA}	Address Hold Time for READ	5		5		ns
t _{RR}	READ Pulse Width	400		300		ns
t _{RD}	Data Delay From READ ^[2]		300		200	ns
tDF	READ to Data Floating	25	125	25	100	ns
t _{RV}	Recovery Time Between READ and Any Other Control Signal	1		1		μs

Write Cycle:

		82	253	8253-5		
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT
tAW	Address Stable Before WRITE	50		30		ns
t _{WA}	Address Hold Time for WRITE	30		30		ns
tww	WRITE Pulse Width	400		300		ns
t _{DW}	Data Set Up Time for WRITE	300		250		ns
twD	Data Hold Time for WRITE	40		30		ns
t _{RV}	Recovery Time Between WRITE and Any Other Control Signal	1		1		μs

Notes: 1. AC timings measured at V_{OH} = 2.2, V_{OL} = 0.8 2. Test Conditions: 8253, C_L = 100pF; 8253-5: C_L = 150pF.

Write Timing:

Read Timing:

Input Waveforms for A.C. Tests:

Clock and Gate Timing:

		82	253	82	53-5	
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT
^t CLK	Clock Period	380	dc	380	dc	ns
tPWH	High Pulse Width	230		230		ns
tPWL	Low Pulse Width	150		150		ns
t _{GW}	Gate Width High	150		150		ns
t _{GL}	Gate Width Low	100		100		ns
t _{GS}	Gate Set Up Time to CLK↑	100		100		ns
tGH	Gate Hold Time After CLK1	50		50		ns
t _{OD}	Output Delay From CLK↓ ^[1]		400		400	ns
todg	Output Delay From Gate↓[1]	<u> </u>	300		300	ns

Note 1: Test Conditions: 8253: C_L = 100pF; 8253-5: C_L = 150pF.

8255A/8255A-5 **PROGRAMMABLE PERIPHERAL INTERFACE**

- MCS-85TM Compatible 8255A-5
- 24 Programmable I/O Pins

Ċ\$

RD

WR

Vcc

GND

- Completely TTL Compatible
- Fully Compatible with Intel[®] Microprocessor Families
- Improved Timing Characteristics

- Direct Bit Set/Reset Capability Easing **Control Application Interface**
- 40-Pin Dual In-Line Package
- Reduces System Package Count
- Improved DC Driving Capability

The Intel® 8255A is a general purpose programmable I/O device designed for use with Intel® microprocessors. It has 24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first mode (MODE 0), each group of 12 I/O pins may be programmed in sets of 4 to be input or output. In MODE 1, the second mode, each group may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used for handshaking and interrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8 lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking.

8255A FUNCTIONAL DESCRIPTION

General

The 8255A is a programmable peripheral interface (PPI) device designed for use in Intel[®] microcomputer systems. Its function is that of a general purpose I/O component to interface peripheral equipment to the microcomputer system bus. The functional configuration of the 8255A is programmed by the system software so that normally no external logic is necessary to interface peripheral devices or structures.

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to interface the 8255A to the system data bus. Data is transmitted or received by the buffer upon execution of input or output instructions by the CPU. Control words and status information are also transferred through the data bus buffer.

Read/Write and Control Logic

The function of this block is to manage all of the internal and external transfers of both Data and Control or Status words. It accepts inputs from the CPU Address and Control busses and in turn, issues commands to both of the Control Groups.

(CS)

Chip Select. A "low" on this input pin enables the communiction between the 8255A and the CPU.

(RD)

Read. A "low" on this input pin enables the 8255A to send the data or status information to the CPU on the data bus. In essence, it allows the CPU to "read from" the 8255A.

(WR)

Write. A "low" on this input pin enables the CPU to write data or control words into the 8255A.

(A₀ and A₁)

Port Select 0 and Port Select 1. These input signals, in conjunction with the RD and WR inputs, control the selection of one of the three ports or the control word registers. They are normally connected to the least significant bits of the address bus (A_0 and A_1).

8255A BASIC OPERATION

Α1	A ₀	RD	WR	ĈŜ	INPUT OPERATION (READ)
0	0	0	1	0	PORT A → DATA BUS
0	1	0	1	0	PORT B → DATA BUS
1	0	0	1	0	PORT C ⇒ DATA BUS
					OUTPUT OPERATION (WRITE)
0	0	1	0	0	DATA BUS → PORT A
0	1	1	0	0	DATA BUS → PORT B
1	0	1	0	0	DATA BUS ⇒ PORT C
1	1	1	0	0	DATA BUS → CONTROL
					DISABLE FUNCTION
x	х	х	х	1	DATA BUS ⇒ 3-STATE
1	1	0	1	0	ILLEGAL CONDITION
х	X	1	1	0	DATA BUS ⇒ 3-STATE

Figure 1. 8255A Block Diagram Showing Data Bus Buffer and Read/Write Control Logic Functions

(RESET)

Reset. A "high on this input clears the control register and all ports (A, C, C) are set to the input mode.

Group A and Group B Controls

The functional configuration of each port is programmed by the systems software. In essence, the CPU "outputs" a control word to the 8255A. The control word contains information such as "mode", "bit set", "bit reset", etc., that initializes the functional configuration of the 8255.

Each of the Control blocks (Group A and Group B) accepts "commands" from the Read/Write Control Logic, receives "control words" from the internal data bus and issues the proper commands to its associated ports.

Control Group A – Port A and Port C upper (C7-C4) Control Group B – Port B and Port C lower (C3-C0)

The Control Word Register can **Only** be written into. No Read operation of the Control Word Register is allowed.

Ports A, B, and C

The 8255A contains three 8-bit ports (A, B, and C). All can be configured in a wide variety of functional characteristics by the system software but each has its own special features or "personality" to further enhance the power and flexibility of the 8255A.

Port A. One 8-bit data output latch/buffer and one 8-bit data input latch.

Port B. One 8-bit data input/output latch/buffer and one 8-bit data input buffer.

Port C. One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input). This port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains a 4-bit latch and it can be used for the control signal outputs and status signal inputs in conjunction with ports A and B.

Figure 2. 8225A Block Diagram Showing Group A and Group B Control Functions

PIN CONFIGURATION

PA 3 [\mathcal{O}^{-}	40 D PA4
PAZ	2		39 🗖 PA5
PA1 [3		38 🗋 PA6
PA0 [1.		37 D PA7
RD	5		36 🗌 WR
cs [6		35 RESE
GND [1		34 🖸 Do
A1 [8		33 🗋 D,
A0 [9		32 🗋 D2
PC 7 [10		31 🗖 D3
PC6 [11	8255A	30 🗋 D4
PC5 [12		29 D 5
PC4 []	13		28 🗋 D ₆
PC0 []	14		27 Dy
PC 1	15		26 Vcr
PC2 [16		25 P87
РС З 🗌	17		24 🗋 P66
PB0 [18		23 P85
PB1 []	19		22 🗋 PB4
PB2 [20		21 PB3
	been merely and the second sec		

PIN NAMES

D, D ₀	DATA BUS (BI DIRECTIONAL)
RESET	RESET INPUT
CŠ	CHIP SELECT
RD	READ INPUT
WR	WRITE INPUT
A0, A1	PORT ADDRESS
PA7 PA0	PORT A (BIT)
PB7 PB0	PORT B (BIT)
PC7-PC0	PORT C (BIT)
Vcc	+5 VOLTS
GND	VOLTS

8255A/8255A-5

ABSOLUTE MAXIMUM RATINGS*

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = +5V \pm 5\%$; GND = 0V

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	TEST CONDITIONS
VIL	Input Low Voltage	-0.5	0.8	V	
V _{1H}	Input High Voltage	2.0	V _{CC}	V	
V _{OL} (DB)	Output Low Voltage (Data Bus)		0.45	V	I _{OL} = 2.5mA
V _{OL} (PER)	Output Low Voltage (Peripheral Port)		0.45	V	I _{OL} = 1.7mA
V _{OH} (DB)	Output High Voltage (Data Bus)	2.4		V	I _{OH} = -400μA
V _{OH} (PER)	Output High Voltage (Peripheral Port)	2.4		V	I _{OH} = -200μA
IDAR ^[1]	Darlington Drive Current	-1.0	-4.0	mA	R _{EXT} = 750Ω; V _{EXT} = 1.5V
I _{CC}	Power Supply Current		1 20	mA	
 IL	Input Load Current		±10	μA	$V_{IN} = V_{CC}$ to 0V
IOFL	Output Float Leakage		±10	μA	$V_{OUT} = V_{CC} \text{ to } 0V$

Note 1: Available on any 8 pins from Port B and C.

CAPACITANCE

 $T_A = 25^{\circ}C; V_{CC} = GND = 0V$

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
C _{IN}	Input Capacitance			10	pF	fc = 1MHz
C _{I/O}	I/O Capacitance			20	pF	Unmeasured pins returned to GND

*VEXT is set at various voltages during testing to guarantee the specification.

A.C. CHARACTERISTICS

Bus Parameters

• ---

; V _{CC} = +5V ±5%; GND = 0V			NC	DTE:	
5	The 8255A tions are no parametric l ject to chan				
	82	55A	825	5A-5	
PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT
Address Stable Before READ	0		0		ns
Address Stable After READ	0		0		ns
READ Pulse Width	300		300		ns
Data Valid From READ ^[1]		250		200	ns
Data Float After READ	10	150	10	100	ns
Time Between READs and/or WRITEs		850		ns	
	; V _{CC} = +5V ±5%; GND = 0V PARAMETER Address Stable Before READ Address Stable After READ READ Pulse Width Data Valid From READ ^[1] Data Float After READ Time Between READs and/or WRITEs	; V _{CC} = +5V ±5%; GND = 0V PARAMETER MIN. Address Stable Before READ 0 Address Stable After READ 0 READ Pulse Width 300 Data Valid From READ ^[1] Data Float After READ 10 Time Between READs and/or WRITEs 850	; V _{CC} = +5V ±5%; GND = 0V PARAMETER MIN. MAX. Address Stable Before READ 0 Address Stable After READ 0 READ Pulse Width 300 Data Valid From READ ^[1] 250 Data Float After READ 10 150 Time Between READs and/or WRITEs 850	$V_{CC} = +5V \pm 5\%; GND = 0V$ The B255A tions are no parametric 1 pect to chan PARAMETER MIN. MAX. MIN. Address Stable Before READ 0 0 Address Stable After READ 0 0 READ Pulse Width 300 300 Data Valid From READ ^[1] 250 Data Float After READ 10 150 10 Time Between READs and/or WR ITEs 850 850	$V_{CC} = +5V \pm 5\%; GND = 0V$ NOTE: The B255A-5 specifica- tions are not final. Some parametric limits are sub- ject to change. PARAMETER MIN. MAX. MIN. MAX. Address Stable Before READ 0 0 0 Address Stable After READ 0 0 0 READ Pulse Width 300 300 200 Data Valid From READ ^[1] 250 200 Data Float After READ 10 150 10 Time Between READs and/or WRITEs 850 850 850

Write:

		82	825			
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT
t _{AW}	Address Stable Before WR ITE	0		0		ns
t _{WA}	Address Stable After WRITE	20		20		ns
tww	WRITE Pulse Width	400		300		ns
t _{DW}	Data Valid to WRITE (T.E.)	100		100		ns
t _{WD}	Data Valid After WRITE	30		30		ns

Other Timings:

	· · · · · · · · · · · · · · · · · · ·			1			
		82	55A	8255A-5			
SYMBOL	PARAMETER	MIN.	MAX.	MIN. MAX.		UNIT	
t _{WB}	WR = 1 to Output ^[1]		350		350	ns	
t _{IR}	Peripheral Data Before RD	0		0		ns	
t _{HR}	Peripheral Data After RD	0		0		ns	
t _{AK}	ACK Pulse Width	300		300		ns	
t _{ST}	STB Pulse Width	500		500		ns	
tps	Per. Data Before T.E. of STB	0		0		ns	
tPH	Per. Data After T.E. of STB	1 80		180		ns	
tAD	ACK = 0 to Output ^[1]		300		300	ns	
t _{KD}	ACK = 1 to Output Float	20	250	20	250	ns	
twoв	WR = 1 to OBF = $0^{[1]}$		650		650	ns	
^t AOB	ACK = 0 to OBF = 1 ^[1]		350		350	ns	
t _{SIB}	STB = 0 to $1BF = 1^{[1]}$		300		300	ns	
t _{R IB}	$RD = 1$ to $IBF = 0^{[1]}$		300		300	ns	
t _{RIT}	$RD = 0$ to $INTR = 0^{[1]}$		400		400	ns	
t _{SIT}	STB = 1 to INTR = $1^{[1]}$	7	300		300	ns	
tAIT	ACK = 1 to INTR = 1 ^[1]		350		350	ns	
twit	$WR = 0$ to $INTR = 0^{[1]}$		850		850	ns	

Notes: 1. Test Conditions: 8255A: CL = 100pF; 8255A-5: CL = 150pF.

2. Period of Reset pulse must be at least 50µs during or after power on.

٠

Subsequent Reset pulse can be 500 ns min.

Figure 25. Input Waveforms for A.C. Tests

Figure 28. MODE 1 (Strobed Inut)

Figure 29. MODE 1 (Strobed Output)

Figure 30. MODE 2 (Bidirectional)

NOTE: Any sequence where \overline{WR} occurs before \overline{ACK} and \overline{STB} occurs before \overline{RD} is permissible. (INTR = IBF • \overline{MASK} • \overline{STB} • \overline{RD} + \overline{OBF} • \overline{MASK} • \overline{ACK} • \overline{WR})

intel

8271/8271-6/8271-8 PROGRAMMABLE FLOPPY DISK CONTROLLER

- IBM 3740 Soft Sectored Format Compatible
- Programmable Record Lengths
- Multi-Sector Capability
- Maintain Dual Drives with Minimum Software Overhead Expandable to 4 Drives
- Automatic Read/Write Head Positioning and Verification

- Internal CRC Generation and Checking
- Programmable Step Rate, Settle-Time, Head Load Time, Head Unload Index Count
- Fully MCS-80TM and MCS-85TM Compatible
- Single + 5V Supply
- 40-Pin Package

The Intel® 8271 Programmable Floppy Disk Controller (FDC) is an LSI component designed to interface one to 4 floppy disk drives to an 8-bit microcomputer system. Its powerful control functions minimize both hardware and software overhead normally associated with floppy disk controllers.

8271 BASIC FUNCTIONAL DESCRIPTION

General

The 8271 Floppy Disk Controller (FDC) interfaces either two single or one dual floppy drive to an eight bit microprocessor and is fully compatible with Intel's new high performance MCS-85 microcomputer system. With minimum external circuitry, this innovative controller supports most standard, commonly-available flexible disk drives including the mini-floppy.

The 8271 FDC supports a comprehensive soft sectored format which is IBM 3740 compatible and includes provision for the designating and handling of bad tracks. It is a high level controller that relieves the CPU (and user) of many of the control tasks associated with implementing a floppy disk interface. The FDC supports a variety of high level instructions which allow the user to store and retrieve data on a floppy disk without dealing with the low level details of disk operation.

In addition to the standard read/write commands, a scan command is supported. The scan command allows the user program to specify a data pattern and instructs the FDC to search for that pattern on a track. Any application that is required to search the disk for information (such as point of sale price lookup, disk directory search, etc.), may use the scan command to reduce the CPU overhead. Once the scan operation is initiated, no CPU intervention is required.

Hardware Description

The 8271 is packaged in a 40 pin DIP. The following is a functional description of each pin.

Pin Name	Pin No.	I/O	Description
V _{cc}	(40)		+5V supply
GND	(20)		Ground
Clock	(3)	I	A square wave clock
Reset	(4)	I	A high signal on the reset input forces the 8271 to an idle state. The 8271 remains idle until a com- mand is issued by the CPU. The output signals of the drive inter- face are forced inactive (LOW). Reset must be active for 10 or more clock cycles.
CS	(24)	Ι	The I/O Read and I/O Write inputs are enabled by the chip select signal.
DB7-DB0	(19-12)	I/O	The Data Bus lines are bidirection- al, three-state lines (8080 data bus compatible).
WR	(10)	1	The Write signal is used to signal the control logic that a transfer of data from the data bus to the 8271 is required.
RD	(9)	I	The Read signal is used to signal the control logic that a transfer of data from the 8271 to the data bus is required.
INT	(11)	0	The interrupt signal indicates that the 8271 requires service.

Pin Name	Pin No.	I/O	Description
A ₁ -A ₀	(22-21)	I	These two lines are CPU Inter- face Register select lines.
DRQ	(8)	0	The DMA request signal is used to request a transfer of data between the 8271 and memory.
DACK	(7)	1	The DMA acknowledge signal notifies the 8271 that a DMA cycle has been granted. For non-DMA transfers, this signal should be driven in the manner of a "Chip Select".
Select 1– Select 0	(6) (2)	0	These lines are used to specify the selected drive. These lines are set by the command byte.
Fault Reset. OPO	/ (1)	0	The optional fault reset output line is used to reset an error condition which is latched by the drive. If this line is not used for a fault reset it can be used as an optional output line. This line is set with the write special register com- mand.
Write Enable	9 (35)	0,	This signal enables the drive write logic.
Seek/Step	(36)	0	This multi-function line is used dur- ing drive seeks.
Direction	(37)	Ο	The direction line specifies the seek direction. A high level on this pin steps the R/W head toward the spindle (step-in), a low level steps the head away from the spindle (step-out).
Load Head	(38)	0	The load head line causes the drive to load the Read/Write head against the diskette.
Low Current	(39)	0	This line notifies the drive that track 43 or greater is selected.
Ready 1, Ready 0	(5) (32)	I	These two lines indicate that the specified drive is ready.
Fault	(28)	ł	This line is used by the drive to specify a file unsafe condition.
Count/OPI	(30)	I	If the optional seek/direction/ count seek mode is selected, the count pin receives pulses to step the R/W head to the desired track. Otherwise, this line can be used as an optional input.
Write Protect	(33)	I	This signal specifies that the diskette inserted is write pro- tected.
TRK0	(31)	I	This signal indicates when the R/W head is positioned over track zero.
Index	(34)	I	The index signal gives an indication of the relative position of the diskette.
PLO/SS	(25)	. I .	This pin is used to specify the type of data separator used. Phase- Locked Oscillator/Single Shot.
Write Data	(29)	0	Composite write data.

Pin Name	Pin No.	I/O	Description
Unseparated Data	ī (27)	I	This input is the unseparated data and clocks.
Data Window	w (26)	I	This is a data window established by a single-shot or phase-locked oscillator data separator.
INSYNC	(23)	0	This line is high when 8271 has attained input data synchroni- zation, by detecting 2 bytes of zeros followed by an expected Address Mark. It will stay high until the end of the ID or data field.

CPU Interface Description

This interface minimizes CPU involvement by supporting a set of high level commands and both DMA and non-DMA type data transfers and by providing hierarchical status information regarding the result of command execution.

The CPU utilizes the control interface (see the Block diagram) to specify the FDC commands and to determine the result of an executed command. This interface is supported by five Registers which are addressed by the CPU via the A1, A0, $\overline{\text{RD}}$ and $\overline{\text{WR}}$ signals. If an 8080 based system is used, the $\overline{\text{RD}}$ and $\overline{\text{WR}}$ signals can be driven by the 8228's $\overline{\text{I/OR}}$ and $\overline{\text{I/OW}}$ signals. The registers are defined as follows:

Command Register

The CPU loads an appropriate command into the Command Register which has the following format:

Parameter Register

Accepts parameters of commands that require further description; up to five parameters may be required, example:

Result Register

The Result Register is used to supply the outcome of FDC command execution (such as a good/bad completion) to the CPU. The standard Result byte format is:

Figure 1. 8271 Block Diagram Showing CPU Interface Functions

Status Register

Reflects the state of the FDC.

Reset Register

Allows the 8271 to be reset by the program. Reset must be active for 11 or more chip clocks.

INT (Interrupt Line)

Another element of the control interface is the Interrupt line (INT). This line is used to signal the CPU that an FDC operation has been completed. It remains active until the result register is read.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias.	0°C to 70°C ¹
Storage Temperature	65°C to + 150°C
Voltage on Any Pin with	
Respect to Ground	– 0.5V to + 7V
Power Dissipation	1 Watt

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

 $V_{CC} = +5.0V \pm 5\%$

8721 and 8271-8: $T_A = 0$ °C to 70 °C; 8271-6: $T_A = 0$ °C to 50 °C

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
VIL	Input Low Voltage	- 0.5	0.8	v	
VIH	Input High Voltage	2.0	(V _{CC} + 0.5)	V	
VOLD	Output Low Voltage (Data Bus)		0.45	v	I _{OL} = 2.0 mA
VOLI	Output Low Voltage (Interface Pins)		0.5	v	l _{OL} = 1.6 mA
V _{OH}	Output High Voltage	2.4		v	I _{OH} = - 220 μA
I _{IL}	Input Load Current		± 10	μA	$V_{IN} = V_{CC}$ to 0V
l _{oz}	Off-State Output Current		± 10	μA	$V_{OUT} = V_{CC} \text{ to } 0V$
Icc	V _{CC} Supply Current		180	mA	

CAPACITANCE

 $T_A = 25 \degree C$, $V_{CC} = GND = 0V$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
C _{IN}	Input Capacitance			10	pF	t _c = 1 MHz
C _{I/O}	I/O Capacitance			20	pF	Unmeasured Pins Returned to GND

NOTE: 1. Ambient temperature under bias for 8271-6 is 0°C to 50°C.

A.C. CHARACTERISTICS

 V_{CC} = + 5.0V ± 5% 8271 and 8271-8: T_A = 0°C to 70°C; 8271-6: T_A = 0°C to 50°C

Read Cycle

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{AC}	Select Setup to RD	0		ns	Note 2
t _{CA}	Select Hold from RD	0		ns	Note 2
t _{RR}	RD Pulse Width	250		ns	
t _{AD}	Data Delay from Address		250	ns	Note 2
t _{RD}	Data Delay from RD		150	ns	C _L = 150 pF, Note 2
t _{DF}	Output Float Delay	20	100	ns	C _L = 20 pF for Minimum; 150 pF for Maximum
t _{DC}	DACK Setup to RD	25		ns	
t _{CD}	DACK Hold from RD	25		ns	
t _{KD}	Data Delay from DACK		250	ns	

Write Cycle

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{AC}	Select Setup to WR	0		ns	
t _{CA}	Select Hold from WR	0		ns	· · · · · · · · · · · · · · · · · · ·
tww	WR Pulse Width	250		ns	
t _{DW}	Data Setup to WR	150		ns	
t _{WD}	Data Hold from WR	0		ns	
t _{DC}	DACK Setup to WR	25		ns	
t _{CD}	DACK Hold from WR	25		ns	

DMA

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
tco	Request Hold from WR or RD (for Non-Burst Mode)		150	ns	

Other Timing

Symbol		8271/8271-6		8271-8			
	Parameter	Min.	Max.	Min.	Max.	Unit	Test Conditions
t _{RSTW}	Reset Pulse Width	10		10		t _{CY}	
t _r	Input Signal Rise Time		20		20 ⁺	ns	
t _f	Input Signal Fall Time		20		20	ns	
t _{RSTS}	Reset to First IOWR	2		2		t _{CY}	
t _{CY}	Clock Period	250		500			Note 3
t _{CL}	Clock Low Period	110		215		ns	
t _{сн}	Clock High Period	125		250		ns	
t _{DS}	Data Window Setup to Unseparated Clock and Data	50		50		ns	
t _{DH}	Data Window Hold from Unseparated Clock and Data	0		0		ns	

NOTES:

1. All timing measurements are made at the reference voltages unless otherwise specified: Input "1" at 2.0V, "0" at 0.8V Output "1" at 2.0V, "0" at 0.8V

2. t_{AD}, t_{RD}, t_{AC}, and t_{CA} are not concurrent specs.

3. Standard Floppy: $t_{CY} = 250 \text{ ns } \pm 0.4\%$ Mini-Floppy: $t_{CY} = 500 \text{ ns } \pm 0.4\%$

WAVEFORMS

Read Waveforms

Write Waveforms

DMA Waveforms

Figure 25. Read Data

*STANDARD FLEXIBLE DISK DRIVE TIMING **MINI-FLOPPY TIMING

Figure 26. Single-Shot Data Separator

IN PLO DATA SEPARATION MODE.

Figure 27. PLO Data Separator

intപ്രീ

8273, 8273-4, 8273-8 PROGRAMMABLE HDLC/SDLC PROTOCOL CONTROLLER

- CCITT X.25 Compatible
- HDLC/SDLC Compatible
- Full Duplex, Half Duplex, or Loop SDLC Operation
- Up to 64K Baud Synchronous Transfers
- Automatic FCS (CRC) Generation and Checking
- Up to 9.6K Baud with On-Board Phase Locked Loop

- Programmable NRZI Encode/Decode
- Two User Programmable Modem Control Ports
- Digital Phase Locked Loop Clock Recovery
- Minimum CPU Overhead
- Fully Compatible with 8048/8080/8085/ 8088/8086 CPUs
- Single +5V Supply

The Intel® 8273 Programmable HDLC/SDLC Protocol Controller is a dedicated device designed to support the ISO/ CCITT's HDLC and IBM's SDLC communication line protocols. It is fully compatible with Intel's new high performance microcomputer systems such as the MCS-88/86TM. A frame level command set is achieved by a unique microprogrammed dual processor chip architecture. The processing capability supported by the 8273 relieves the system CPU of the low level real-time tasks normally associated with controllers.

A BRIEF DESCRIPTION OF HDLC/SDLC PROTOCOLS

General

The High Level Data Link Control (HDLC) is a standard communication link protocol established by International Standards Organization (ISO). HDLC is the discipline used to implement ISO X.25 packet switching systems.

The Synchronous Data Link Control (SDLC) is an IBM communication link protocol used to implement the System Network Architecture (SNA). Both the protocols are bit oriented, code independent, and ideal for full duplex communication. Some common applications include terminal to terminal, terminal to CPU, CPU to CPU, satellite communication, packet switching and other high speed data links. In systems which require expensive cabling and interconnect hardware, any of the two protocols could be used to simplify interfacing (by going serial), thereby reducing interconnect hardware costs. Since both the protocols are speed independent, reducing interconnect hardware could become an important application.

Network

In both the HDLC and SDLC line protocols, according to a pre-assigned hierarchy, a PRIMARY (Control) STATION controls the overall network (data link) and issues commands to the SECONDARY (Slave) STATIONS. The latter comply with instructions and respond by sending appropriate RESPONSES. Whenever a transmitting station must end transmission prematurely it sends an ABORT character. Upon detecting an abort character, a receiving station ignores the transmission block called a FRAME. Time fill between frames can be accomplished by transmitting either continuous frame preambles called FLAGS or an abort character. A time fill within a frame is not permitted. Whenever a station receives a string of more that fifteen consecutive ones, the station goes into an IDLE state.

Frames

A single communication element is called a FRAME which can be used for both Link Control and data transfer purposes. The elements of a frame are the beginning eight bit FLAG (F) consisting of one zero, six ones, and a zero, an eight bit ADDRESS FIELD (A), an eight bit CONTROL FIELD (C), a variable (N-bit) INFORMATION FIELD (I), a sixteen bit FRAME CHECK SEQUENCE (FCS), and an eight bit end FLAG (F), having the same bit pattern as the beginning flag. In HDLC the Address (A) and Control (C) bytes are extendable. The HDLC and the SDLC use three types of frames; an Information Frame is used to transfer data, a Supervisory Frame is used for control purposes, and a Non-sequenced Frame is used for initialization and control of the secondary stations.

Frame Characteristics

An important characteristic of a frame is that its contents are made code transparent by use of a zero bit insertion and deletion technique. Thus, the user can adopt any format or code suitable for his system — it may even be a computer word length or a "memory dump". The frame is bit oriented that is, bits, not characters in each field, have specific meanings. The Frame Check Sequence (FCS) is an error detection scheme similar to the Cyclic Redundancy Checkword (CRC) widely used in magnetic disk storage devices. The Command and Response information frames contain sequence numbers in the control fields identifying the sent and received frames. The sequence numbers are used in Error Recovery Procedures (ERP) and as implicit acknowledgement of frame communication, enhancing the true fullduplex nature of the HDLC/SDLC protocols.

In contrast, BISYNC is basically half-duplex (two way alternate) because of necessity to transmit immediate acknowledgement frames. HDLC/SDLC therefore saves propagation delay times and have a potential of twice the throughput rate of BISYNC.

It is possible to use HDLC or SDLC over half duplex lines but there is a corresponding loss in throughput because both are primarily designed for full-duplex communication. As in any synchronous system, the bit rate is determined by the clock bits supplied by the modem, protocols themselves are speed independent.

A byproduct of the use of zero-bit insertion-deletion technique is the non-return-to-zero invert (NRZI) data transmission/reception compatibility. The latter allows HDLC/SDLC protocols to be used with asynchronous data communication hardware in which the clocks are derived from the NRZI encoded data.

References

IBM Synchronous Data Link Control General Information, IBM, GA27-3093-1.

- Standard Network Access Protocol Specification, DATAPAC, Trans-Canada Telephone System CCG111
- Recommendation X.25, ISO/CCITT March 2, 1976.
- IBM 3650 Retail Store System Loop Interface OEM Information, IBM, GA 27-3098-0
- Guidebook to Data Communications, Training Manual, Hewlett-Packard 5955-1715
- IBM Introduction to Teleprocessing, IBM, GC 20-8095-02

System Network Architecture, Technical Overview, IBM, GA 27-3102 System Network Architecture Format and Protocol, IBM GA 27-3112

OPENING	ADDRESS	CONTROL	INFORMATION	FRAME CHECK	CLOSING
FLAG (F)	FIELD (A)	FIELD (C)	FIELD (I)	SEQUENCE (FCS)	FLAG (F)
01111110	8 BITS	8 BITS	VARIABLE LENGTH (ONLY IN I FRAMES)	16 BITS	01111110

FUNCTIONAL DESCRIPTION General

The Intel® 8273 HDLC/SDLC controller is a microcomputer peripheral device which supports the International Standards Organization (ISO) High Level Data Link Control (HDLC), and IBM Synchronous Data Link Control (SDLC) communications protocols. This controller minimizes CPU software by supporting a comprehensive frame-level instruction set and by hardware implementation of the low level tasks associated with frame assembly/disassembly and data integrity. The 8273 can be used in either synchronous or asynchronous applications. In asynchronous applications the data can be programmed to be encoded/decoded in NRZI code. The clock is derived from the NRZI data using a digital phase locked loop. The data transparency is achieved by using a zerobit insertion/deletion technique. The frames are automatically checked for errors during reception by verifying the Frame Check Sequence (FCS); the FCS is automatically generated and appended before the final flag in transmit.

The 8273 recognizes and can generate flags (0111110), Abort, Idle, and GA (EOP) characters.

The 8273 can assume either a primary (control) or a secondary (slave) role. It can therefore be readily implemented in an SDLC loop configuration as typified by the IBM 3650 Retail Store System by programming the 8273 into a one-bit delay mode. In such a configuration, a two wire pair can be effectively used for data transfer between controllers and loop stations. The digital phase locked loop output pin can be used by the loop station without the presence of an accurate Tx clock.

Hardware Description

The 8273 is packaged in a 40 pin DIP. The following is a functional description of each pin.

Pin Name	(No.)	1/0	Description
----------	-------	-----	-------------

Vcc (40)		+5V Supply
GND (20)		Ground
RESET (4)	1	A high signal on this pin will force the 8273 to an idle state. The 8273 will remain idle until a command is issued by the CPU. The modem interface output signals are forc- ed high. Reset must be true for a
CS (24)	I	The RD and WR inputs are en- abled by the chip select input.
DB7-DB0 (19-12)	I/O	The Data Bus lines are bidirec- tional three-state lines which in- terface with the system Data Bus
WR (10)	ł	The Write signal is used to con- trol the transfer of either a com- mand or data from CPU to the 8273.
RD (9)	I	The Read signal is used to con- trol the transfer of either a data byte or a status word from the 8273 to the CPU.
TxINT (2)	0	The Transmitter interrupt signal indicates that the transmitter logic requires service.
RxINT (11)	0	The Receiver interrupt signal in- dicates that the Receiver logic re- quires service.

TxDRQ (6)	0	Requests a transfer of data be- tween memory and the 8273 for a transmit operation.
RxRDQ (8)	0	Requests a transfer of data be- tween the 8273 and memory for a receive operation.
TxDACK (5)	I	The Transmitter DMA acknow- ledge signal notifies the 8273 that the TxDMA cycle has been granted.
RXDACK (7)	I	The Receiver DMA acknowledge signal notifies the 8273 that the RxDMA cycle has been granted.
A1-A0 (22-21)	Ι	These two lines are CPU Inter- face Register Select lines.
TxD (29)	0	This line transmits the serial data to the communication channel.
TxC (28)	i	The transmitter clock is used to synchronize the transmit data.
RxD (26)	I	This line receives serial data from the communication channel.
RxC (27)	Ι	The Receiver Clock is used to synchronize the receive data.
32X CLK (25)	Ι	The 32X clock is used to provide clock recovery when an asyn- chronous modem is used. In loop configuration the loop station can run without an accurate 1X clock by using the 32X CLK in conjunction with the DPLL out- put. (This pin must be grounded when not used).
DPLL (23)	0	Digital Phase Locked Loop out- put can be tied to RxC and/or TxC when 1X clock is not avail- able. DPLL is used with 32X CLK.
FLAG DET (1)	0	Flag Detect signals that a flag (01111110) has been received by an active receiver.
RTS (35)	0	Request to Send signals that the 8273 is ready to transmit data.
CTS (30)	Ι	Clear to Send signals that the modem is ready to accept data from the 8273.
CD (31)	I	Carrier Detect signals that the line transmission has started and the 8273 may begin to sample data on RxD line.
PA ₂₋₄ (32-34)	· 1	General purpose input ports. The logic levels on these lines can be Read by the CPU through the Data Bus Buffer.
PB ₁₋₄ (36-39)	0	General purpose output ports. The CPU can write these output lines through Data Bus Buffer.

I A square wave TTL clock.

CLK (3)

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	0°C to 70°C
Storage Temperature	°C to +150°C
Voltage on Any Pin With	
Respect to Ground	-0.5V to +7V
Power Dissipation	1 Watt

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS (8273, 8273-4, 8273-8)

 $T_A = 0$ °C to 70 °C, $V_{CC} = +5.0V \pm 5\%$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
VIL	Input Low Voltage	-0.5	0.8	V	
V _{IH}	Input High Voltage	2.0	V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage		0.45	v	I_{OL} = 2.0 mA for Data Bus Pins I_{OL} = 1.0 mA for Output Port Pins I_{OL} = 1.6 mA for All Other Pins
V _{OH}	Output High Voltage	2.4		v	$I_{OH} = -200 \mu\text{A}$ for Data Bus Pins $I_{OH} = -100 \mu\text{A}$ for All Other Pins
IIL	Input Load Current		± 10	μA	$V_{IN} = V_{CC}$ to 0V
I _{OZ}	Off-State Output Current		± 10	μA	$V_{OUT} = V_{CC} \text{ to } 0 \text{ V}$
I _{CC}	V _{CC} Supply Current		180	mA	

CAPACITANCE (8273, 8273-4, 8273-8)

 $T_A = 25 \degree C$, $V_{CC} = GND = 0V$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
CIN	Input Capacitance			10	pF	t _c = 1 MHz
C _{I/O}	I/O Capacitance			20	pF	Unmeasured Pins Returned to GND

A.C. CHARACTERISTICS

 $T_A = 0$ °C to 70 °C, $V_{CC} = +5.0V \pm 5\%$

Clock Timing (8273)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
t _{CY}	Clock	250			ns	
t _{CL}	Clock Low	120			ns	64K Baud Max Operating Rate
t _{CH}	Clock High	120			ns	

Clock Timing (8273-4)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
t _{CY}	Clock	286			ns	
t _{CL}	Clock Low	135			ns	56K Baud Max Operating Rate
t _{CH}	Clock High	135			ns	

Clock Timing (8273-8)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
t _{CY}	Clock	330			ns	
t _{CL}	Clock Low	150			ns	48K Baud Max Operating Rate
tсн	Clock High	150			ns	

A.C. CHARACTERISTICS (8273, 8273-4, 8273-8) $T_A = 0$ °C to 70 °C, $V_{CC} = +5.0V \pm 5\%$

Read Cycle

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{AC}	Select Setup to RD	0		ns	Note 3
t _{CA}	Select Hold from RD	0		ns	Note 3
t _{RR}	RD Pulse Width	250		ns	
t _{AD}	Data Delay from Address		300	ns	Note 3
t _{RD}	Data Delay from RD		200	ns	C _L = 150 pF, Note 3
t _{DF}	Output Float Delay	20	100	ns	C _L = 20 pF for Minimum; 150 pF for Maximum
t _{DC}	DACK Setup to RD	25		ns	
t _{CD}	DACK Hold from RD	25		ns	
t _{KD}	Data Delay from DACK		300	ns	

Write Cycle

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{AC}	Select Setup to WR	0		ns	
t _{CA}	Select Hold from WR	0		ns	
tww	WR Pulse Width	250		ns	
t _{DW}	Data Setup to WR	150		ns	
t _{WD}	Data Hold from WR	0		ns	
t _{DC}	DACK Setup to WR	25		ns	
t _{CD}	DACK Hold from WR	25		ns	

DMA

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{CQ}	Request Hold from WR or RD (for Non-Burst Mode)		200	ns	

Other Timing

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{RSTW}	Reset Pulse Width	10		t _{CY}	
t _r	Input Signal Rise Time		20	ns	
t _f	Input Signal Fall Time		20	ns	
t _{RSTS}	Reset to First IOWR	2		t _{CY}	
t _{CY32}	32X Clock Cycle Time	9.7 · t _{CY}		ns	
t _{CL32}	32X Clock Low Time	4 · t _{CY}		ns	
t _{CH32}	32X Clock High Time	4 · t _{CY}		ns	
t _{DPLL}	DPLL Output Low	$1 \cdot t_{CY} - 50$		ns	· · · · · · · · · · · · · · · · · · ·
t _{DCL}	Data Clock Low	$1 \cdot t_{CY} - 50$		ns	
t _{DCH}	Data Clock High	2 · t _{CY}	-	ns	
t _{DCY}	Data Clock	62.5 · t _{CY}		ns	
t _{TD}	Transmit Data Delay		200	ns	
t _{ps}	Data Setup Time	200		ns	
t _{DH}	Data Hold Time	100		ns	
t _{FLD}	FLAG DET Output Low	8 · t _{CY} ± 50		ns	

NOTES:

1. All timing measurements are made at the reference voltages unless otherwise specified: Input "1" at 2.0V, "0" at 0.8V; Output "1" at 2.0V, "0" at 0.8V.

2. $t_{\text{AD}}, t_{\text{RD}}, t_{\text{AC}},$ and t_{CA} are not concurrent specs.

WAVEFORMS Read Waveforms

Write Waveforms

DMA Waveforms

.

Transmit Data Waveforms

Receive Data Waveforms

DPLL Output Waveform

Flag Detect Output Waveform

8275 PROGRAMMABLE CRT CONTROLLER

- Programmable Screen and Character Format
- 6 Independent Visual Field Attributes
- 11 Visual Character Attributes (Graphic Capability)
- Cursor Control (4 Types)
- Light Pen Detection and Registers

- Fully MCS-80TM and MCS-85TM Compatible
- Dual Row Buffers
- Programmable DMA Burst Mode
- Single + 5V Supply
- 40-Pin Package

The Intel® 8275 Programmable CRT Controller is a single chip device to interface CRT raster scan displays with Intel® microcomputer systems. Its primary function is to refresh the display by buffering the information from main memory and keeping track of the display position of the screen. The flexibility designed into the 8275 will allow simple interface to almost any raster scan CRT display with a minimum of external hardware and software overhead.

PIN DESCRIPTIONS

Pin #	Fin Name	I/O	Pin Description
1 2 3 4	LC3 LC2 LC1 LC0	0	Line count. Output from the line count- er which is used to address the character generator for the line positions on the screen.
5	DRQ	0	DMA request. Output signal to the 8257 DMA controller requesting a DMA cycle.
6	DACK	I	DMA acknowledge. Input signal from the 8257 DMA controller acknowledging that the requested DMA cycle has been granted.
7	HRTC	0	Horizontal retrace. Output signal which is active during the programmed hori- zontal retrace interval. During this peri- od the VSP output is high and the LTEN output is low.
8	VRTC	0	Vertical retrace. Output signal which is active during the programmed vertical retrace interval. During this period the VSP output is high and the LTEN output is low.
9	RD	I	Read input. A control signal to read registers.
10	WR	I	Write input. A control signal to write commands into the control registers or write data into the row buffers during a DMA cycle.
11	LPEN	I	Light pen. Input signal from the CRT system signifying that a light pen signal has been detected.
12 13 14 15 16 17 18 19	DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7	1/0	Bi-directional three-state data bus lines. The outputs are enabled during a read of the C or P ports.
20	Ground		Ground

Pin 7	# Pin Nam	e I/O	Pin Description
40	Vcc		+5V power supply
39 38	LA0 LA1	0	Line attribute codes. These attribute codes have to be decoded externally by the dot/timing logic to generate the horizontal and vertical line combinations for the graphic displays specified by the character attribute codes.
37	LTEN	0	Light enable. Output signal used to enable the video signal to the CRT. This output is active at the programmed underline cursor position, and at posi- tions specified by attribute codes.
36	RVV	0	Reverse video. Output signal used to indicate the CRT circuitry to reverse the video signal. This output is active at the cursor position if a reverse video block cursor is programmed or at the positions specified by the field attribute codes.
35	VSP	0	Video suppression. Output signal (ed to blank the video signal to the CRT. This output is active:
			 during the horizontal and vertical re- trace intervals.
			 at the top and bottom lines of rows if underline is programmed to be number 8 or greater.
			 when an end of row or end of screen code is detected.
			 When a DMA underrun occurs. at regular intervals (1/16 frame frequency for cursor, 1/32 frame frequency for character and field attributes) – to create blinking displays as specified by cursor, character attribute, or field attribute programming.
34 33	GPA ₁ GPA ₀	0	General purpose attribute codes. Out- puts which are enabled by the general purpose field attribute codes.
32	HLGT	0	Highlight. Output signal used to intensi- fy the display at particular positions on the screen as specified by the character attribute codes or field attribute codes.
31	IRQ	0	Interrupt request.
30	CCLK	I.	Character clock (from dot/timing logic).
29 28 27 26 25 24 23	CC6 CC5 CC4 CC3 CC2 CC1 CC0	Q	Character codes. Output from the row buffers used for character selection in the character generator.
22	CS	I	Chip select. The read and write are enabled by $\overline{\text{CS}}.$
21	A ₀	I	Port address. A high input on A_0 selects the "C" port or command registers and a low input selects the "P" port or parameter registers.

FUNCTIONAL DESCRIPTION

Data Bus Buffer

This 3-state, bidirectional, 8-bit buffer is used to interface the 8275 to the system Data Bus.

This functional block accepts inputs from the System Control Bus and generates control signals for overall device operation. It contains the Command, Parameter, and Status Registers that store the various control formats for the device functional definition.

A ₀	OPERATION	REGISTER
0	Read	PREG
0	Write	PREG
1	Read	SREG
1	Write	CREG

RD (Read)

A "low" on this input informs the 8275 that the CPU is reading data or status information from the 8275.

WR (Write)

A "low" on this input informs the 8275 that the CPU is writing data or control words to the 8275.

CS (Chip Select)

A "low" on this input selects the 8275. No reading or writing will occur unless the device is selected. When \overline{CS} is high, the Data Bus in the float state and \overline{RD} and \overline{WR} will have no effect on the chip.

DRQ (DMA Request)

A "high" on this output informs the DMA Controller that the 8275 desires a DMA transfer.

DACK (DMA Acknowledge)

A "low" on this input informs the 8275 that a DMA cycle is in progress.

IRQ (Interrupt Request)

A "high" on this output informs the CPU that the 8275 desires interrupt service.

Figure 1. 8275 Block Diagram Showing Data Bus Buffer and Read/Write Functions

A ₀	RD	WR	CS	
0	0	1	0	Write 8275 Parameter
0	1	0	0	Read 8275 Parameter
1	0	1	0	Write 8275 Command
1	1	0	0	Read 8275 Status
Х	1	1	0	Three-State
Х	Х	Х	1	Three-state

Character Counter

The Character Counter is a programmable counter that is used to determine the number of characters to be displayed per row and the length of the horizontal retrace interval. It is driven by the CCLK (Character Clock) input, which should be a derivative of the external dot clock.

Line Counter

The Line Counter is a programmable counter that is used to determine the number of horizontal lines (Sweeps) per character row. Its outputs are used to address the external character generator ROM.

Row Counter

The Row Counter is a programmable counter that is used to determine the number of character rows to be displayed per frame and length of the vertical retrace interval.

Light Pen Registers

The Light Pen Registers are two registers that store the contents of the character counter and the row counter whenever there is a rising edge on the LPEN (Light Pen) input.

Note: Software correction is required.

Raster Timing and Video Controls

The Raster Timing circuitry controls the timing of the HRTC (Horizontal Retrace) and VRTC (Vertical Retrace) outputs. The Video Control circuitry controls the generation of LA_{0-1} (Line Attribute), HGLT (Highlight), RVV (Reverse Video), LTEN (Light Enable), VSP (Video Suppress), and GPA_{0-1} (General Purpose Attribute) outputs.

Row Buffers

The Row Buffers are two 80 character buffers. They are filled from the microcomputer system memory with the character codes to be displayed. While one row buffer is displaying a row of characters, the other is being filled with the next row of characters.

Figure 2. 8275 Block Diagram Showing Counter and Register Functions

FIFOs

There are two 16 character FIFOs in the 8275. They are used to provide extra row buffer length in the Transparent Attribute Mode (see Detailed Operation section).

Buffer Input/Output Controllers

The Buffer Input/Output Controllers decode the characters being placed in the row buffers. If the character is a character attribute, field attribute or special code, these controllers control the appropriate action. (Examples: An "End of Screen-Stop DMA" special code will cause the Buffer Input Controller to stop further DMA requests. A "Highlight" field attribute will cause the Buffer Output Controller to activate the HGLT output.)

SYSTEM OPERATION

The 8275 is programmable to a large number of different display formats. It provides raster timing, display row buffering, visual attribute decoding, cursor timing, and light pen detection.

It is designed to interface with the 8257 DMA Controller and standard character generator ROMs for dot matrix decoding. Dot level timing must be provided by external circuitry.

Figure 3. 8275 Systems Block Diagram Showing Systems Operation

General Systems Operational Description

The 8275 provides a "window" into the microcomputer system memory.

Display characters are retrieved from memory and displayed on a row by row basis. The 8275 has two row buffers. While one row buffer is being used for display, the other is being filled with the next row of characters to be displayed. The number of display characters per row and the number of character rows per frame are software programmable, providing easy interface to most CRT displays. (See Programming Section.)

The 8275 requests DMA to fill the row buffer that is not being used for display. DMA burst length and spacing is programmable. (See Programming Section.)

The 8275 displays character rows one line at a time.

The number of lines per character row, the underline position, and blanking of top and bottom lines are programmable. (See Programming Section.)

The 8275 provides special Control Codes which can be used to minimize DMA or software overhead. It also provides Visual Attribute Codes to cause special action or symbols on the screen without the use of the character generator (see Visual Attributes Section).

The 8275 also controls raster timing. This is done by generating Horizontal Retrace (HRTC) and Vertical Retrace (VRTC) signals. The timing of these signals is programmable.

The 8275 can generate a cursor. Cursor location and format are programmable. (See Programming Section.)

The 8275 has a light pen input and registers. The light pen input is used to load the registers. Light pen registers can be read on command. (See Programming Section.)

Figure 4. Display of a Character Row

Display Row Buffering

Before the start of a frame, the 8275 requests DMA and one row buffer is filled with characters.

Figure 5. First Row Buffer Filled

When the first horizontal sweep is started, character codes are output to the character generator from the row buffer just filled. Simultaneously, DMA begins filling the other row buffer with the next row of characters.

Figure 6. Second Buffer Filled, First Row Displayed

After all the lines of the character row are scanned, the roles of the two row buffers are reversed and the same procedure is followed for the next row.

Figure 7. First Buffer Filled with Third Row, Second Row Displayed

This is repeated until all of the character rows are displayed.
Display Format

Screen Format

The 8275 can be programmed to generate from 1 to 80 characters per row, and from 1 to 64 rows per frame.

Figure 8. Screen Format

The 8275 can also be programmed to blank alternate rows. In this mode, the first row is displayed, the second blanked, the third displayed, etc. DMA is not requested for the blanked rows.

Figure 9. Blank Alternate Rows Mode

Row Format

The 8275 is designed to hold the line count stable while outputting the appropriate character codes during each horizontal sweep. The line count is incremented during horizontal retrace and the whole row of character codes are output again during the next sweep. This is continued until the whole character row is displayed.

The number of lines (horizontal sweeps) per character row is programmable from 1 to 16.

The output of the line counter can be programmed to be in one of two modes.

In mode 0, the output of the line *counter* is the same as the line *number*.

In mode 1, the line *counter* is offset by one from the line *number*.

Note: In mode 1, while the *first* line (line number 0) is being displayed, the *last* count is output by the line counter (see examples).

Line Number									Line Counter Mode 0	Line Counter Mode 1
0		Ο		٥	Ο	0	۵		0000	1111
1	Ο					۵			0001	0000
2									0010	0001
3				۵		•			0011	0010
4	۵								0100	0011
5									0101	0100
6			•						0110	0101
7		•							0111	0110
8		•							1000	0111
9								۵	1001	1000
10				D	Ο			۵	1010	1001
11								۵	1011	1010
12		Ο		۵					1100	1011
13									1101	1100
14									1110	1101
15			۵	۵	۵	۵		٥	1111	1110

Figure 10. Example of a 16-Line Format

				 				_
Line Number						Line Counter Mode 0	Line Counter Mode 1	
0	0	o		۵.		0000	1001	
1						0001	0000	
2		۵				0010	0001	
3			0			0011	0010	
4					۰	0100	0011	
5	Ö	•				0101	0100	
6			Ο			0110	0101	
7						0111	0110	
8						1000	0111	
9						1001	1000	

Figure 11. Example of a 10-Line Format

Mode 0 is useful for character generators that leave address zero blank and start at address 1. Mode 1 is useful for character generators which start at address zero.

Underline placement is also programmable (from line *number* 0 to 15). This is independent of the line *counter* mode.

If the line *number* of the underline is greater than 7 (line *number* MSB = 1), then the top and bottom lines will be blanked.

Line Number										Line Counter Mode 0	Line Counter Mode 1
0	0					Ω	۵			0000	1011
1	Ο	۵							D	0001	0000
2					Ο					0010	0001
3						C			Ω	0011	0010
4	۵				Π					0100	0011
5										0101	0100
6										0110	0101
7			. 🗆			Ο			Ċ	0111	0110
8			۵					,		1000	0111
9										1001	1000
10										1010	1001
11										1011	1010
		Ta Li	op a nes	nd are	Bot Bla	ton Inke	n ed				

Figure 12. Underline in Line Number 10

If the line *number* of the underline is less than or equal to 7 (line *number* MSB = 0), then the top and bottom lines will *not* be blanked.

Line Number								Line Counter Mode 0	Line Counter Mode 1
0		D						0000	0111
1								0001	0000
2								0010	0001
3								0011	0010
4								0100	0011
5								0101	0100
6		•						0110	0101
7								0111	0110
7	•	To Li	p ar	nd E	Boti not	tom Bia	• anked	0111	0110

Figure 13. Underline in Line Number 7

If the line *number* of the underline is greater than the maximum number of lines, the underline will not appear.

Blanking is accomplished by the VSP (Video Suppression) signal. Underline is accomplished by the LTEN (Light Enable) signal.

Dot Format

Dot width and character width are dependent upon the external timing and control circuitry.

Dot level timing circuitry should be designed to accept the parallel output of the character generator and shift it out serially at the rate required by the CRT display.

Figure 14. Typical Dot Level Block Diagram

Dot width is a function of dot clock frequency.

Character width is a function of the character generator width.

Horizontal character spacing is a function of the shift register length.

Note: Video control and timing signals must be synchronized with the video signal due to the character generator access delay.

Raster Timing

The character counter is driven by the character clock input (CCLK). It counts out the characters being displayed (programmable from 1 to 80). It then causes the line counter to increment, and it starts counting out the horizontal retrace interval (programmable from 2 to 32). This is constantly repeated.

Figure 15. Line Timing

The line counter is driven by the character counter. It is used to generate the line address outputs (LC_{0-3}) for the character generator. After it counts all of the lines in a character row (programmable from 1 to 16), it increments the row counter, and starts over again. (See Character Format Section for detailed description of Line Counter functions.)

The row counter is an internal counter driven by the line counter. It controls the functions of the row buffers and counts the number of character rows displayed.

Figure 16. Row Timing

After the row counter counts all of the rows in a frame (programmable from 1 to 64), it starts counting out the vertical retrace interval (programmable from 1 to 4).

Figure 17. Frame Timing

The Video Suppression Output (VSP) is active during horizontal and vertical retrace intervals.

Dot level timing circuitry must synchronize these outputs with the video signal to the CRT Display.

DMA Timing

The 8275 can be programmed to request burst DMA transfers of 1 to 8 characters. The interval between bursts is also programmable (from 0 to 55 character clock periods \pm 1). This allows the user to tailor his DMA overhead to fit his system needs.

The first DMA request of the frame occurs one row time before the end of vertical retrace. DMA requests continue as programmed, until the row buffer is filled. If the row buffer is filled in the middle of a burst, the 8275 terminates the burst and resets the burst counter. No more DMA requests will occur until the *beginning* of the *next* row. At that time, DMA requests are activated as programmed until the other buffer is filled.

The first DMA request for a row will start at the first character clock of the preceding row. If the burst mode is used, the first DMA request may occur a number of character clocks later. This number is equal to the programmed burst space.

If, for any reason, there is a DMA underrun, a flag in the status word will be set.

Figure 18. DMA Timing

The DMA controller is typically initialized for the next frame at the end of the current frame.

Interrupt Timing

The 8275 can be programmed to generate an interrupt request at the end of each frame. This can be used to reinitialize the DMA controller. If the 8275 interrupt enable flag is set, an interrupt request will occur at the *beginning* of the *last display row*.

IRQ will go inactive after the status register is read.

Figure 20. End of Interrupt Request

A reset command will also cause IRQ to go inactive, but this is not recommended during normal service.

Another method of reinitializing the DMA controller is to have the DMA controller itself interrupt on terminal count. With this method, the 8275 interrupt enable flag should not be set.

Note: Upon power-up, the 8275 Interrupt Enable Flag may be set. As a result, the user's cold start routine should write a reset command to the 8275 before system interrupts are enabled.

VISUAL ATTRIBUTES AND SPECIAL CODES

The characters processed by the 8275 are 8-bit quantities. The character code outputs provide the character generator with 7 bits of address. The Most Significant Bit is the extra bit and it is used to determine if it is a normal display character (MSB = 0), or if it is a Visual Attribute or Special Code (MSB = 1).

There are two types of Visual Attribute Codes. They are Character Attributes and Field Attributes.

Character Attribute Codes

Character attribute codes are codes that can be used to generate graphics symbols without the use of a character generator. This is accomplished by selectively activating the Line Attribute outputs (LA_{0-1}) , the Video Suppression output (VSP), and the Light Enable output. The dot level timing circuitry can use these signals to generate the proper symbols.

Character attributes can be programmed to blink or be highlighted individually. Blinking is accomplished with the Video Suppression output (VSP). Blink frequency is equal to the screen refresh frequency divided by 32. Highlighting is accomplished by activating the Highlight output (HGLT).

Character Attributes

Figure 21. Typical Character Attribute Logic

CHAR	CHARACTER ATTRIBUTE		OUT	PUTS				
(CODE "CCCC"	LA ₁	LA ₀	VSP	LTEN	SYMBOL	DESCRIPTION	
	Above Underline	0	0	1	0			
0000	Underline	1	0	0	0	•	Top Left Corner	
	Below Underline	0	1	0	0			
	Above Underline	0	0	1	0			
0001	Underline	1	1	0	0		Top Right Corner	
	Below Underline	0	1	0	0			
	Above Underline	0	1	0	0			
0010	Underline	1	0	0	0	L.	Bottom Left Corner	
	Below Underline	0	0	1	0			
	Above Underline	0	1	0	0	STATE OF STATE		
0011	Underline	1	1	0	0		Bottom Right Corner	
	Below Underline	0	0	1	0	State of the second second		
[Above Underline	0	0	1	0	and the state		
0100	Underline	0	0	0	1		Top Intersect	
	Below Underline	0	1	0	0			
	Above Underline	0	1	0	0	and the second		
0101	Underline	1	1	0	0		Right Intersect	
	Below Underline	0	1	0	0	Sectore and a sectore and		
	Above Underline	0	1	0	0			
0110	Underline	1	0	0	0		Left Intersect	
	Below Underline	0	1	0	0	CONTRACTOR DESCRIPTION		
l	Above Underline	0	1	0	0	14630 (1993)		
0111	Underline	0	0	0	1	-	Bottom Intersect	
	Below Underline	0	0	1	0			
	Above Underline	0	0	1	0	CARE STOR		
1000	Underline	0	0	0	1		Horizontal Line	
	Below Underline	0	0	1	0	Sector sectors.		
	Above Underline	0	1	0	0			
1001	Underline	0	1	0	0		Vertical Line	
	Below Underline	0	1	0	0	Approximation and an ordered		
	Above Underline	0	1	0	0			
1010	Underline	. 0	0	0	1		Crossed Lines	
	Below Underline	0	1	0	0	C. Brington and Brington		
	Above Underline	0	0	0	0		·	
1011	Underline	0	0	0	0		Not Recommended *	
	Below Underline	0	0	0	0			
	Above Underline	0	0	1	0			
1100	Underline	0	0	1	0		Special Codes	
	Below Underline	0	0	1	0			
	Above Underline							
1101	Underline		Unde	fined			Illegal	
	Below Underline							
	Above Underline		L		L			
1110	Underline		Unde	tined			Illegal	
ļ	Below Underline							
	Above Underline							
1111	Underline		Unde	fined			Illegal	
	Below Underline							

Character attributes were designed to produce the following graphics:

*Character Attribute Code 1011 is not recommended for normal operation. Since none of the attribute outputs are active, the character Generator will not be disabled, and an indeterminate character will be generated.

Character Attribute Codes 1101, 1110, and 1111 are illegal. Blinking is active when B = 1. Highlight is active when H = 1.

Special Codes

Four special codes are available to help reduce memory, software, or DMA overhead.

Special Control Character

MSB LSB 1 1 1 1 0 0 <u>S S</u> SPECIAL CONTROL CODE

S	S	FUNCTION
0	0	End of Row
0	1	End of Row-Stop DMA
1	0	End of Screen
1	1	End of Screen-Stop DMA

The End of Row Code (00) activates VSP and holds it to the end of the line.

The End of Row-Stop DMA Code (01) causes the DMA Control Logic to stop DMA for the rest of the row when it is written into the Row Buffer. It affects the display in the same way as the End of Row Code (00).

The End of Screen Code (10) activates VSP and holds it to the end of the frame.

The End of Screen-Stop DMA Code (11) causes the DMA Control Logic to stop DMA for the rest of the frame when it is written into the Row Buffer. It affects the display in the same way as the End of Screen Code (10).

If the Stop DMA feature is not used, all characters after an End of Row character are ignored, except for the End of Screen character, which operates normally. All characters after an End of Screen character are ignored.

Note: If a Stop DMA character is not the last character in a burst or row, DMA is not stopped until after the next character is read. In this situation, a dummy character must be placed in memory after the Stop DMA character.

Field Attributes

The field attributes are control codes which affect the visual characteristics for a field of characters, starting at the

character following the code up to, and including, the character which precedes the *next* field attribute code, or up to the end of the frame. The field attributes are reset during the vertical retrace interval.

There are six field attributes:

- Blink Characters following the code are caused to blink by activating the Video Suppression output (VSP). The blink frequency is equal to the screen refresh frequency divided by 32.
- Highlight Characters following the code are caused to be highlighted by activating the Highlight output (HGLT).
- Reverse Video Characters following the code are caused to appear with reverse video by activating the Reverse Video output (RVV).
- Underline -- Characters following the code are caused to be underlined by activating the Light Enable output (LTEN).
- 5,6. General Purpose -- There are two additional 8275 outputs which act as general purpose, independently programmable field attributes. GPA₀₋₁ are active high outputs.

Field Attribute Code

*More than one attribute can be enabled at the same time. If the blinking and reverse video attributes are enabled simultaneously, only the reversed characters will blink. The 8275 can be programmed to provide visible or invisible field attribute characters.

If the 8275 is programmed in the visible field attribute mode, all field attributes will occupy a position on the screen. They will appear as blanks caused by activation of the Video Suppression output (VSP). The chosen visual attributes are activated after this blanked character.

Figure 22. Example of the Visible Field Attribute Mode (Underline Attribute)

If the 8275 is programmed in the invisible field attribute mode, the 8275 FIFO is activated.

Figure 23. Block Diagram Showing FIFO Activation

Each row buffer has a corresponding FIFO. These FIFOs are 16 characters by 7 bits in size.

When a field attribute is placed in the row buffer during DMA, the buffer input controller recognizes it and places the *next* character in the proper FIFO.

When a field attribute is placed in the Buffer Output Controller during display, it causes the controller to immediately put a character from the FIFO on the Character Code outputs (CC_{0-6}). The chosen Visual Attributes are also activated.

Since the FIFO is 16 characters long, no more than 16 field attribute characters may be used per line in this mode. If more are used, a bit in the status word is set and the first characters in the FIFO are written over and lost.

Note: Since the FIFO is 7 bits wide, the MSB of any characters put in it are stripped off. Therefore, a Visual Attribute or Special Code must *not* immediately follow a field attribute code. If this situation does occur, the Visual Attribute or Special Code will be treated as a normal display character.

Figure 24. Example of the Invisible Field Attribute Mode (Underline Attribute)

Field and Character Attribute Interaction

Character Attribute Symbols are affected by the Reverse Video (RVV) and General Purpose (GPA_{0-1}) field attributes. They are not affected by Underline, Blink or Highlight field attributes; however, these characteristics can be programmed *individually* for Character Attribute Symbols.

Cursor Timing

The cursor location is determined by a cursor row register and a character position register which are loaded by command to the controller. The cursor can be programmed to appear on the display as:

- 1. a blinking underline
- 2. a blinking reverse video block
- 3. a non-blinking underline
- 4. a non-blinking reverse video block

The cursor blinking frequency is equal to the screen refresh frequency divided by 16.

If a non-blinking reverse video *cursor* appears in a nonblinking reverse video *field*, the cursor will appear as a normal video block.

If a non-blinking underline *cursor* appears in a non-blinking underline *field*, the cursor will not be visible.

Light Pen Detection

A light pen consists of a micro switch and a tiny light sensor. When the light pen is pressed against the CRT screen, the micro switch enables the light sensor. When the raster sweep reaches the light sensor, it triggers the light pen output.

If the output of the light pen is presented to the 8275 LPEN input, the row and character position coordinates are stored in a pair of registers. These registers can be read on command. A bit in the status word is set, indicating that the light pen signal was detected. The LPEN input must be a 0 to 1 transition for proper operation.

Note: Due to internal and external delays, the character position coordinate will be off by at least three character positions. This has to be corrected in software.

Device Programming

The 8275 has two programming registers, the Command Register (CREG) and the Parameter Register (PREG). It also has a Status Register (SREG). The Command Register can only be written into and the Status Registers can only be read from. They are addressed as follows:

A ₀	OPERATION	REGISTER
0	Read	PREG
0	Write	PREG
1	Read	SREG
1	Write	CREG

The 8275 expects to receive a command and a sequence of 0 to 4 parameters, depending on the command. If the proper number of parameter bytes are not received before another command is given, a status flag is set, indicating an improper command.

Instruction Set

The 8275 instruction set consists of 8 commands.

COMMAND	NO. OF PARAMETER BYTES
Reset	4
Start Display	0
Stop Display	0
Read Light Pen	2
Load Cursor	2
Enable Interrupt	0
Disable Interrupt	0
Preset Counters	0

In addition, the status of the 8275 (SREG) can be read by the CPU at any time.

1. Reset Command:

	OPERATION	Ao	DESCRIPTION	M	5 B	D	АТ /	A B	US	L	SB
Command	Write	1	Reset Command	0	0	0	0	0	0	0	0
	Write	0	Screen Comp Byte 1	s	н	н	н	н	н	н	н
Parameters	Write	0	Screen Comp Byte 2	v	v	R	R	R	R	R	R
	Write	0	Screen Comp Byte 3	υ	υ	U	U	L	L	L	L
	Write	0	Screen Comp Byte 4	м	۶	с	с	z	z	z	z

Action – After the reset command is written, DMA requests stop, 8275 interrupts are disabled, and the VSP output is used to blank the screen. HRTC and VRTC continue to run. HRTC and VRTC timing are random on power-up.

As parameters are written, the screen composition is defined.

Parameter - S Spaced Rows

S	FUNCTIONS
0	Normal Rows
1	Spaced Rows

Parameter -- HHHHHHH Horizontal Characters/Row

н	н	н	н	н	н	н	NO. OF CHARACTERS PER ROW
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	2
0	0	0	0	0	1	0	3
			••				
			•				· .
1	0	0	1	1	1	1	80
1	0	1	0	0	0	0	Undefined
							1.
1	1	1	1	1	1	1	Undefined

Parameter - VV Vertical Retrace Row Count

<u>v</u> v	NO. OF ROW COUNTS PER VRTC
0 0	1
01	2
10	3
1 1	4

Parameter - RRRRRR Vertical Rows/Frame

R	R	R	R	R	R	NO. OF ROWS/FRAME
0	0	0	0	0	0	1
0	0	0	0	0	1	2
0	0	0	0	1	0	3
						Ι.
						1.
1	1	1	1	1	1	64

Parameter – UUUU Underline Placement

υ	υ	U	υ	LINE NUMBER OF UNDERLINE
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
			I	•
			l	· •
1	1	1	1	16

Parameter	-	LLLL	Number of Lines per Character R	ow
			• • • • • • • • • • • • • • • •	

L	L	L	L	NO. OF LINES/ROW
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
1	1	1	1	16

Parameter – M Line Counter Mode

M	LINE COUNTER MODE							
0	Mode 0 (Non-Offset)							
1	Mode 1 (Offset by 1 Count)							

Parameter – F Field Attribute Mode

F	FIELD ATTRIBUTE MODE
0	Transparent
1	Non-Transparent

Parameter - CC Cursor Format

С	С	CURSOR FORMAT
0	0	Blinking reverse video block
0	1	Blinking underline
1	0	Nonblinking reverse video block
1	1	Nonblinking underling

Parameter - ZZZZ Horizontal Retrace Count

z	z	z	z	NO. OF CHARACTER COUNTS PER HRTC
0	0	0	0	2
0	0	0	1	4
0	0	1	0	6
	•			
				1.
1	1	1	1	32

Note: uuuu MSB determines blanking of top and bottom lines (1 = blanked, 0 = not blanked).

2. Start Display Command:

	OPERATION	Ao	DESCRIPTION	м	SB	D	AT.	ATA BUS			SB
Command	Write	1	Start Display	0	0	1	s	s	s	в	в
Nop	arameters		······	-							

SSS BURST SPACE CODE

S	s	s	NO. OF CHARACTER CLOCKS BETWEEN DMA REQUESTS
0	0	0	0
0	0	1	7
0	1	0	15
0	1	1	23
1	0	0	31
1	0	1	39
1	1	0	47
1	1	1	55

B B BURST COUNT CODE											
BB	NO. OF DMA CYCLES PER BURST										
0 0	1										
01	2										
1 0	4										
1 1	8										

Action – 8275 interrupts are enabled, DMA requests begin, video is enabled, Interrupt Enable and Video Enable status flags are set.

3. Stop Display Command:

	OPERATION	A0	DESCRIPTION	M	SB	DATA BUS				LSB		
Command	Write	1	Stop Display	0	1	0	0	0	0	0	0	
No	parameters											

Action – Disables video, interrupts remain enabled, HRTC and VRTC continue to run, Video Enable status flag is reset, and the "Start Display" command must be given to re-enable the display.

4. Read Light Pen Command

	OPERATION	A0	DESCRIPTION	MSB L							
Command	Write	1	Read Light Pen	0	1	1	0	0	0	0	0
Parameters	Read Read	0 0	Char. Number Row Number	(C (R	har. ow	. Po Nu	siti mb	on i er)	n R	ow)

Action - The 8275 is conditioned to supply the contents of the light pen position registers in the next two read cycles of the parameter register. Status flags are not affected.

Note: Software correction of light pen position is required.

5. Load Cursor Position:

	OPERATION	AO	DESCRIPTION	M	SB	D	4 T #	A BI	US	L	SB
Command	Write	1	Load Cursor	1	0	0	0	0	0	0	0
Parameters	Write Write	0 0	Char. Number Row Number	(C (F	har. Iow	. Po Nu	siti mb	on i er)	n R	ow)

Action – The 8275 is conditioned to place the next two parameter bytes into the cursor position registers. Status flags not affected.

6. Enable Interrupt Command:

	OPERATION	A0	DESCRIPTION	м	SB	D	A T <i>I</i>	B	US	L	SB
Command	Write	1	Enable Interrupt	1	0	1	0	0	0	0	0
No	parameters										

Action - The interrupt enable status flag is set and interrupts are enabled.

7. Disable Interrupt Command:

	OPERATION	A0	DESCRIPTION	M	SB	D	AT A	8	US	L	SB
Command	Write	1	Disable Interrupt	1	1	0	0	0	0	0	0
No	parameters										

Action – Interrupts are disabled and the interrupt enable status flag is reset.

8. Preset Counters Command:

	OPERATION	Ao	DESCRIPTION	M	SB	D	A T <i>I</i>	B	US	L	SB
Command	Write	1	Preset Counters	1	1	1	0	0	0	0	0
No	parameters										

Action – The internal timing counters are preset, corresponding to a screen display position at the top left corner. Two character clocks are required for this operation. The counters will remain in this state until any other command is given.

This command is useful for system debug and synchronization of clustered CRT displays on a single CPU.

Status Flags

	OPERATION	Ao	DESCRIPTION	DATA BUS MSB	.SB
Command	Read	1	Status Word	0 IE IR LP IC VE OU	FO

- IE (Interrupt Enable) Set or reset by command. It enables vertical retrace interrupt. It is automatically set by a "Start Display" command and reset with the "Reset" command.
- IR (Interrupt Request) This flag is set at the beginning of display of the last row of the frame if the interrupt enable flag is set. It is reset after a status read operation.
- LP This flag is set when the light pen input (LPEN) is activated and the light pen registers have been loaded. This flag is automatically reset after a status read.

- IC (Improper Command) This flag is set when a command parameter string is too long or too short. The flag is automatically reset after a status read.
- VE (Video Enable) This flag indicates that video operation of the CRT is enabled. This flag is set on a "Start Display" command, and reset on a "Stop Display" or "Reset" command.
- DU (DMA Underrun) This flag is set whenever a data underrun occurs during DMA transfers. Upon detection of DU, the DMA operation is stopped and the screen is blanked until after the vertical retrace interval. This flag is reset after a status read.
- FO (FIFO Overrun) This flag is set whenever the FIFO is overrun. It is reset on a status read.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	0°C to 70°C
Storage Temperature	65°C to +150°C
Voltage On Any Pin	
With Respect to Ground	0.5V to +7V
Power Dissipation	1 Watt

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to 70°C; $V_{CC} = 5V \pm 5\%$

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	TEST CONDITIONS
VIL	Input Low Voltage	-0.5	0.8	v	
VIH	Input High Voltage	2.0	V _{CC} +0.5V	v	· · · · · · · · · · · · · · · · · · ·
VOL	Output Low Voltage		0.45	v	I _{OL} = 2.2 mA
V _{OH}	Output High Voltage	2.4		v	I _{OH} = -400 μA
կլ	Input Load Current		±10	μA	V _{IN} = V _{CC} to 0V
IOFL	Output Float Leakage		±10	μA	V _{OUT} = V _{CC} to 0V
Icc	V _{CC} Supply Current		160	mA	

CAPACITANCE

 $T_A = 25^{\circ}C; V_{CC} = GND = 0V$

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	TEST CONDITIONS
CIN	Input Capacitance		10	pF	f _c = 1 MHz
C _{I/O}	I/O Capacitance		20	pF	Unmeasured pins returned to V _{SS} .

Other Timing:

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	TEST CONDITIONS
tcc	Character Code Output Delay		150	ns	C _L = 50 pF
tHR	Horizontal Retrace Output Delay		200	ns	C _L = 50 pF
tLC	Line Count Output Delay		400	ns	C _L = 50 pF
tAT	Control/Attribute Output Delay		275	ns	C _L = 50 pF
tvR	Vertical Retrace Output Delay		275	ns	C _L = 50 pF
tRI	IRQ↓ from RD↑		250	ns	C _L = 50 pF
two	DRQ1 from WR1		250	ns	C _L = 50 pF
tRQ	DRQ↓ from WR↓		200	ns	C _L = 50 pF
tLR	DACK↓ to WR↓	0		ns	
tRL	WR↑ to DACK↑	0		ns	
tPR	LPEN Rise		50	ns	
t _{PH}	LPEN Hold	100		ns	

Note: Timing measurements are made at the following reference voltages: Output "1" = 2.0V, "0" = 0.8V. Input "1"=2.4V, "0"=0.45V

WAVEFORMS

Figure 25. Typical Dot Level Timing

8275

CCLK

Figure 29. Interrupt Timing

A.C. CHARACTERISTICS

Bus Parameters (Note 1)

Read Cycle:

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	TEST CONDITIONS
t _{AR}	Address Stable Before READ	0		ns	
t _{RA}	Address Hold Time for READ	0		ns	· · ·
t _{RR}	READ Pulse Width	250		ns	
t _{RD}	Data Delay from READ		200	ns	C _L = 150 pF
tDF	READ to Data Floating	20	100	ns	

8275

Write Cycle:

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	TEST CONDITIONS
tAW	Address Stable Before WRITE	0		ns	
twa	Address Hold Time for WRITE	0		ns	
tww	WRITE Pulse Width	250		ns	
tDW	Data Setup Time for WRITE	150		ns	
twD	Data Hold Time for WRITE	0		ns	

Clock Timing:

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	TEST CONDITIONS
^t CLK	Clock Period	480		ns	-
tкн	Clock High	240		ns	
t _{KL}	Clock Low	160		ns	· · · · · · · · · · · · · · · · · · ·
tKR	Clock Rise	5	30	ns	
tKF	Clock Fall	5	30	ns	····

Note 1: AC timings measured at V_{OH} = 2.0, V_{OL} = 0.8 V_{IH}=2.4, V_{IL}=0.45

Write Timing

Read Timing

Input Waveforms (For A.C. Tests)

Clock Timing

7-138

8279/8279-5 PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

- MCS-85TM Compatible 8279-5
- Simultaneous Keyboard Display Operations
- Scanned Keyboard Mode
- Scanned Sensor Mode
- Strobed Input Entry Mode
- 8-Character Keyboard FIFO
- 2-Key Lockout or N-Key Rollover with Contact Debounce

- Dual 8- or 16-Numerical Display
- Single 16-Character Display
- Right or Left Entry 16-Byte Display RAM
- Mode Programmable from CPU
- Programmable Scan Timing
- Interrupt Output on Key Entry

The Intel® 8279 is a general purpose programmable keyboard and display I/O interface device designed for use with Intel® microprocessors. The keyboard portion can provide a scanned interface to a 64-contact key matrix. The keyboard portion will also interface to an array of sensors or a strobed interface keyboard, such as the hall effect and ferrite variety. Key depressions can be 2-key lockout or N-key rollover. Keyboard entries are debounced and strobed in an 8-character FIFO. If more than 8 characters are entered, overrun status is set. Key entries set the interrupt output line to the CPU.

The display portion provides a scanned display interface for LED, incandescent, and other popular display technologies. Both numeric and alphanumeric segment displays may be used as well as simple indicators. The 8279 has 16x8 display RAM which can be organized into dual 16x4. The RAM can be loaded or interrogated by the CPU. Both right entry, calculator and left entry typewriter display formats are possible. Both read and write of the display RAM can be done with auto-increment of the display RAM address.

		T V _{cc}	
RL3 [2 39] RL1 CLK [3 78] RL0 IRQ [4 37] CNTL/STB RL4 [5 36] SHIFT [00	PIN NAMES	IRQ RL07 BUS SHIFT	Y DATA
RL6 7 36 SL3 RL RL7 34 SL2 R RL7 34 SL2 R RESET 9 32 SL1 R RESET 9 8279 32 SL0 A REG 10 8279 31 OUT B0 IR WR 11 30 OUT B1 R R DB6 12 29 OUT B2 SF	ESET 1 RESET IPERED S 1 CHIP SELECT IPERED S 1 READ INPUT IPERED R WRITE INPUT IPERED IPERED 0 1 BUFFER ADDRESS IPERED V0 0 INTERNUPT REQUEST OUTPUT IPERED L0 0 SCAN UNES IPERED IPERED L0 1 RETURN LINES IPERED IPERED L1FT 1 SHIFT INPUT IPUT IPUT		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	UT 60.3 0 DISPLAY (A) OUTPUTS UT 60.3 0 DISPLAY (B) OUTPUTS 0 BLANK DISPLAY OUTPUT		PLAY TA

HARDWARE DESCRIPTION

The 8279 is packaged in a 40 pin DIP. The following is a functional description of each pin.

~			•••	~.	
N	о.	Of			

o. Of Pins	Designation	Function
8 ·	DB0-DB7	Bi-directional data bus. All data and commands between the CPU and the 8279 are trans- mitted on these lines.
1	CLK	Clock from system used to gen-
1	RESET	A high signal on this pin resets the 8279. After being reset the 8279 is placed in the following mode: 1) 16 8-bit character display —left entry.
		 key lockout. Along with this the program clock prescaler is set to 31.
1	CS	Chip Select. A low on this pin enables the interface functions to receive or transmit.
1	Ao	Buffer Address. A high on this line indicates the signals in or out are interpreted as a com- mand or status. A low indicates that they are data.
2	RD, WR	Input/Output read and write. These signals enable the data buffers to either send data to the external bus or receive it from the external bus.
1	IRQ	Interrupt Request. In a keyboard mode, the interrupt line is high when there is data in the FIFO/ Sensor RAM. The interrupt line goes low with each FIFO/
·		Sensor RAM read and returns high if there is still informa- tion in the RAM. In a sensor mode, the interrupt line goes high whenever a change in a sensor is detected.
2	v_{ss} , v_{cc}	Ground and power supply pins. re
4	SL0-SL3	Scan Lines which are used to scan the key switch or sensor matrix and the display digits. These lines can be either en- coded (1 of 16) or decoded (1 of 4).er de de the coded (1 of 16)
8	RL ₀ -RL7	Return line inputs which are connected to the scan lines through the keys or sensor switches. They have active in- ternal pullups to keep them high until a switch closure pulls one low. They also serve as an

8-bit input in the Strobed Input

mode.

1	SHIFT	The shift input status is stored along with the key position on key closure in the Scanned
No.	Of	Firm off an
	Designation	Function
		Keyboard modes. It has an ac- tive internal pullup to keep it high until a switch closure pulls it low.
1	CNTL/STB	For keyboard modes this line is used as a control input and stored like status on a key clo- sure. The line is also the strobe line that enters the data into the FIFO in the Strobed Input mode.
		(Rising Edge). It has an active internal pullup to keep it high until a switch closure pulls it low.
4	OUT A0-OUT A3 OUT B0-OUT B3	These two ports are the outputs for the 16 x 4 display refresh registers. The data from these outputs is synchronized to the scan lines (SL ₀ -SL ₃) for multi- plexed digit displays. The two 4 bit ports may be blanked inde- pendently. These two ports may also be considered as one 8 bit port.
1	BD	Blank Display. This output is used to blank the display during digit switching or by a display blanking command.

PRINCIPLES OF OPERATION

The following is a description of the major elements of the 8279 Programmable Keyboard/Display interface device. Refer to the block diagram in Figure 1.

I/O Control and Data Buffers

The I/O control section uses the \overline{CS} , A_0 , \overline{RD} and \overline{WR} lines to control data flow to and from the various internal registers and buffers. All data flow to and from the 8279 is enabled by \overline{CS} . The character of the information, given or desired by the CPU, is identified by Ao. A logic one means the information is a command or status. A logic zero means the information is data. \overline{RD} and \overline{WR} determine the direction of data flow through the Data Buffers. The Data Buffers are bi-directional buffers that connect the internal bus to the external bus. When the chip is not selected ($\overline{CS} = 1$), the devices are in a high impedance state. The drivers input during $\overline{WR} \bullet \overline{CS}$ and output during $\overline{RD} \bullet \overline{CS}$.

Control and Timing Registers and Timing Control

These registers store the keyboard and display modes and other operating conditions programmed by the CPU. The modes are programmed by presenting the proper command on the data lines with $A_0 = 1$ and then sending a \overline{WR} . The command is latched on the rising edge of \overline{WR} .

FUNCTIONAL DESCRIPTION

Since data input and display are an integral part of many microprocessor designs, the system designer needs an interface that can control these functions without placing a large load on the CPU. The 8279 provides this function for 8-bit microprocessors.

The 8279 has two sections: keyboard and display. The keyboard section can interface to regular typewriter style keyboards or random toggle or thumb switches. The display section drives alphanumeric displays or a bank of indicator lights. Thus the CPU is relieved from scanning the keyboard or refreshing the display.

The 8279 is designed to directly connect to the microprocessor bus. The CPU can program all operating modes for the 8279. These modes include:

Input Modes

 Scanned Keyboard — with encoded (8 x 8 key keyboard) or decoded (4 x 8 key keyboard) scan lines. A key depression generates a 6-bit encoding of key position. Position and shift and control status are stored in the FIFO. Keys are automatically debounced with 2-key lockout or N-key rollover.

- Scanned Sensor Matrix with encoded (8 x 8 matrix switches) or decoded (4 x 8 matrix switches) scan lines. Key status (open or closed) stored in RAM addressable by CPU.
- Strobed Input -- Data on return lines during control line strobe is transferred to FIFO.

Output Modes

- 8 or 16 character multiplexed displays that can be organized as dual 4-bit or single 8-bit (B₀ = D₀, A₃ = D₇).
- · Right entry or left entry display formats.

Other features of the 8279 include:

- · Mode programming from the CPU.
- Clock Prescaler
- Interrupt output to signal CPU when there is keyboard or sensor data available.
- An 8 byte FIFO to store keyboard information.
- 16 byte internal Display RAM for display refresh. This RAM can also be read by the CPU.

The command is then decoded and the appropriate function is set. The timing control contains the basic timing counter chain. The first counter is a \div N prescaler that can be programmed to yield an internal frequency of 100 kHz which gives a 5.1 ms keyboard scan time and a 10.3 ms debounce time. The other counters divide down the basic internal frequency to provide the proper key scan, row scan, keyboard matrix scan, and display scan times.

Scan Counter

The scan counter has two modes. In the encoded mode, the counter provides a binary count that must be externally decoded to provide the scan lines for the keyboard and display. In the decoded mode, the scan counter decodes the least significant 2 bits and provides a decoded 1 of 4 scan. Note than when the keyboard is in decoded scan, so is the display. This means that only the first 4 characters in the Display RAM are displayed.

In the encoded mode, the scan lines are active high outputs. In the decoded mode, the scan lines are active low outputs.

Return Buffers and Keyboard Debounce and Control

The 8 return lines are buffered and latched by the Return Buffers. In the keyboard mode, these lines are scanned, looking for key closures in that row. If the debounce circuit detects a closed switch, it waits about 10 msec to check if the switch remains closed. If it does, the address of the switch in the matrix plus the status of SHIFT and CONTROL are transferred to the FIFO. In the scanned Sensor Matrix modes, the contents of the return lines is directly transferred to the corresponding row of the Sensor RAM (FIFO) each key scan time. In Strobed Input mode, the contents of the return lines are transferred to the FIFO on the rising edge of the CNTL/STB line pulse.

FIFO/Sensor RAM and Status

This block is a dual function 8 x 8 RAM. In Keyboard or Strobed Input modes, it is a FIFO. Each new entry is written into successive RAM positions and each is then read in order of entry. FIFO status keeps track of the number of characters in the FIFO and whether it is full or empty. Too many reads or writes will be recognized as an error. The status can be read by an RD with CS low and A₀ high. The status logic also provides an IRQ signal when the FIFO is not empty. In Scanned Sensor Matrix mode, the memory is a Sensor RAM. Each row of the Sensor RAM is loaded with the status of the corresponding row of sensor in the sensor matrix. In this mode, IRQ is high if a change in a sensor is detected.

Display Address Registers and Display RAM

The Display Address Registers hold the address of the word currently being written or read by the CPU and the two 4-bit nibbles being displayed. The read/write addresses are programmed by CPU command. They also can be set to auto increment after each read or write. The Display RAM can be directly read by the CPU after the correct mode and address is set. The addresses for the A and B nibbles are automatically updated by the 8279 to match data entry by the CPU. The A and B nibbles can be entered independently or as one word, according to the mode that is set by the CPU. Data entry to the display can be set to either left or right entry. See Interface Considerations for details.

SOFTWARE OPERATION

8279 commands

The following commands program the 8279 operating modes. The commands are sent on the Data Bus with \overline{CS} low and $\underline{A_0}$ high and are loaded to the 8279 on the rising edge of \overline{WR} .

Keyboard/Display Mode Set

Where DD is the Display Mode and KKK is the Keyboard Mode.

DD

- 0 0 8 8-bit character display Left entry
- 0 1 16 8-bit character display Left entry*
- 1 0 8 8-bit character display Right entry
- 1 1 16 8-bit character display Right entry

For description of right and left entry, see Interface Considerations. Note that when decoded scan is set in keyboard mode, the display is reduced to 4 characters independent of display mode set.

ккк

- 0 0 0 Encoded Scan Keyboard 2 Key Lockout*
- 0 0 1 Decoded Scan Keyboard 2-Key Lockout
- 0 1 0 Encoded Scan Keyboard N-Key Rollover
- 0 1 1 Decoded Scan Keyboard N-Key Rollover
- 1 0 0 Encoded Scan Sensor Matrix
- 1 0 1 Decoded Scan Sensor Matrix
- 1 1 0 Strobed Input, Encoded Display Scan
- 1 1 1 Strobed Input, Decoded Display Scan

Program Clock

	_							
Code:	0	0	1	Ρ	P	Ρ	Ρ	Ρ
		_			_			_

All timing and multiplexing signals for the 8279 are generated by an internal prescaler. This prescaler divides the external clock (pin 3) by a programmable integer. Bits PPPPP determine the value of this integer which ranges from 2 to 31. Choosing a divisor that yields 100 kHz will give the specified scan and debounce times. For instance, if Pin 3 of the 8279 is being clocked by a 2 MHz signal, PPPPP should be set to 10100 to divide the clock by 20 to yield the proper 100 kHz operating frequency.

Read FIFO/Sensor RAM

The CPU sets up the 8279 for a read of the FIFO/Sensor RAM by first writing this command. In the Scan Key-

*Default after reset.

board Mode, the Auto-Increment flag (AI) and the RAM address bits (AAA) are irrelevant. The 8279 will automatically drive the data bus for each subsequent read ($A_0 = 0$) in the same sequence in which the data first entered the FIFO. All subsequent reads will be from the FIFO until another command is issued.

In the Sensor Matrix Mode, the RAM address bits AAA select one of the 8 rows of the Sensor RAM. If the AI flag is set (AI = 1), each successive read will be from the subsequent row of the sensor RAM.

Read Display RAM

Code:	0	1	1	AI	A	A	A	A	
-------	---	---	---	----	---	---	---	---	--

The CPU sets up the 8279 for a read of the Display RAM by first writing this command. The address bits AAAA select one of the 16 rows of the Display RAM. If the AI flag is set (AI = 1), this row address will be incremented after each following read *or write* to the Display RAM. Since the same counter is used for both reading and writing, this command sets the next read *or write* address and the sense of the Auto-Increment mode for both operations.

Write Display RAM

			_		_			
Code:	1	0	0	AI	Α	A	A	Α

The CPU sets up the 8279 for a write to the Display RAM by first writing this command. After writing the command with $A_0 = 1$, all subsequent writes with $A_0 = 0$ will be to the Display RAM. The addressing and Auto-Increment functions are identical to those for the Read Display RAM. However, this command does not affect the source of subsequent Data Reads; the CPU will read from whichever RAM (Display or FIFO/Sensor) which was last specified. If, indeed, the Display RAM was last specified, the Write Display RAM will, nevertheless, change the next Read location.

Display Write Inhibit/Blanking

The IW Bits can be used to mask nibble A and nibble B in applications requiring separate 4-bit display ports. By setting the IW flag (IW = 1) for one of the ports, the port becomes marked so that entries to the Display RAM from the CPU do not affect that port. Thus, if each nibble is input to a BCD decoder, the CPU may write a digit to the Display RAM without affecting the other digit being displayed. It is important to note that bit B₀ corresponds to bit D₀ on the CPU bus, and that bit A₃ corresponds to bit D₇.

If the user wishes to blank the display, the BL flags are available for each nibble. The last Clear command issued determines the code to be used as a "blank." This code defaults to all zeros after a reset. Note that both BL flags must be set to blank a display formatted with a single 8-bit port.

Clear

The C_D bits are available in this command to clear all rows of the Display RAM to a selectable blanking code as follows:

C		CD	I
1	0	x	All Zeros (X = Don't Care)
	1	0	AB = Hex 20 (0010 0000)
	1	1	All Ones
l		Enat	ble clear display when = 1 (or by $C_A = 1$)

During the time the Display RAM is being cleared (\sim 160 µs), it may not be written to. The most significant bit of the FIFO status word is set during this time. When the Display RAM becomes available again, it automatically resets.

If the C_F bit is asserted (C_F = 1), the FIFO status is cleared and the interrupt output line is reset. Also, the Sensor RAM pointer is set to row 0.

 C_A , the Clear All bit, has the combined effect of C_D and C_F ; it uses the C_D clearing code on the Display RAM and also clears FIFO status. Furthermore, it resynchronizes the internal timing chain.

End Interrupt/Error Mode Set

For the sensor matrix modes this command lowers the IRQ line and enables further writing into RAM. (The IRQ line would have been raised upon the detection of a change in a sensor value. This would have also inhibited further writing into the RAM until reset).

For the N-key rollover mode — if the E bit is programmed to "1" the chip will operate in the special Error mode. (For further details, see Interface Considerations Section.)

Status Word

The status word contains the FIFO status, error, and display unavailable signals. This word is read by the CPU when A_0 is high and \overline{CS} and \overline{RD} are low. See Interface Considerations for more detail on status word.

Data Read

Data is read when A_0 , \overrightarrow{CS} and \overrightarrow{RD} are all low. The source of the data is specified by the Read FIFO or Read Display commands. The trailing edge of \overrightarrow{RD} will cause the address of the RAM being read to be incremented if the Auto-Increment flag is set. FIFO reads always increment (if no error occurs) independent of AI.

Data Write

Data that is written with A₀, \overrightarrow{CS} and \overrightarrow{WR} low is always written to the Display RAM. The address is specified by the latest Read Display or Write Display command. Auto-Incrementing on the rising edge of \overrightarrow{WR} occurs if AI set by the latest display command.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature	0° C to 70° C
Storage Temperature6	5°C to 125°C
Voltage on any Pin with	
Respect to Ground	-0.5V to +7V
Power Dissipation	1 Watt

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol Min. **Test Conditions** Parameter Max. Unit VIL1 Input Low Voltage for Shift Control -0.5 1.4 V and Return Lines Input Low Voltage for All Others -0.5 0.8 v V_{IL2} VIH1 Input High Voltage for Shift, Control v 2.2 and Return Lines VIH2 Input High Voltage for All Others 2.0 v 0.45 ٠V VOL Output Low Voltage Note 2 v Vон Output High Voltage on Interrupt 3.5 Note 3 Line IL1 Input Current on Shift, Control and +10 $V_{IN} = V_{CC}$ μA -100 $V_{IN} = 0V$ Return Lines μA Input Leakage Current on All Others ±10 μA $V_{IN} = V_{CC}$ to 0VIIL2 ±10 OFL Output Float Leakage μA $V_{OUT} = V_{CC}$ to 0V120 Power Supply Current mΑ Icc

D.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{SS} = 0V$, Note 1

Notes:

1. 8279, V_{CC} = +5V ±5%; 8279-5, V_{CC} = +5V ±10%.

2. 8279, IOL = 1.6mA; 8279-5, IOL = 2.2mA.

3. 8279, $I_{OH} = -100\mu A$; 8279-5, $I_{OH} = -400\mu A$.

CAPACITANCE

SYMBOL	TEST	TYP.	MAX.	UNIT	TEST CONDITIONS
C _{in}	Input Capacitance	5	10	pF	V _{in} =V _{CC}
Cout	Output Capacitance	10	20	pF	V _{out} =V _{CC}

A.C. CHARACTERISTICS

 T_{A} = 0°C to 70°C, V_{SS} = 0V, (Note 1)

BUS PARAMETERS

READ CYCLE:

		82	79	827		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t _{AR}	Address Stable Before READ	50		0		ns
tRA	Address Hold Time for READ	5		0		ns
t _{RR}	READ Pulse Width	420		250		ns
t _{RD} ^[2]	Data Delay from READ		300		150	ns
t _{AD} [2]	Address to Data Valid		450		250	ns
t _{DF}	READ to Data Floating	10	100	10	100	ns
tRCY	Read Cycle Time	1		1		μs

WRITE CYCLE:

Symbol	Parameter	8279		8279-5		
		Min.	Max.	Min.	Max.	Unit
t _{AW}	Address Stable Before WRITE	50		0		ns
twa	Address Hold Time for WRITE	20		0		ns
tww	WRITE Pulse Width	400		250		ns
t _{DW}	Data Set Up Time for WRITE	300		1 50		ns
twp	Data Hold Time for WRITE	40		0		ns

Notes:

1. 8279, V_{CC} = +5V ±5%; 8279-5, V_{CC} = +5V ±10%.

2. 8279, C_L = 100pF; 8279-5, C_L = 150pF.

OTHER TIMINGS:

		8279		8279-5		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t _{¢W}	Clock Pulse Width	230		120		nsec
t _{CY}	Clock Period	500		320		nsec

Keyboard Scan Time:	5.1 msec	Digit-on Time:	480 µsec
Keyboard Debounce Time:	10.3 msec	Blanking Time:	160 µsec
Key Scan Time:	80 µsec	Internal Clock Cycle:	10 µsec
Display Scan Time:	10.3 msec		

INPUT WAVEFORMS FOR A.C. TESTS:

WAVEFORMS

1. Read Operation

2. Write Operation

3. Clock Input

DISPLAY WAVEFORMS

NOTE: SHOWN IS ENCODED SCAN LEFT ENTRY

S2-S3 ARE NOT SHOWN BUT THEY ARE SIMPLY S1 DIVIDED BY 2 AND 4

8282/8283 OCTAL LATCH

- Address Latch for iAPX 86,88, MCS-80[™], MCS-85[™], MCS-48[™] Families
- High Output Drive Capability for Driving System Data Bus
- Fully Parallel 8-Bit Data Register and Buffer
- Transparent during Active Strobe

- 3-State Outputs
- 20-Pin Package with 0.3" Center
- No Output Low Noise when Entering or Leaving High Impedance State

The 8282 and 8283 are 8-bit bipolar latches with 3-state output buffers. They can be used to implement latches, buffers, or multiplexers. The 8283 inverts the input data at its outputs while the 8282 does not. Thus, all of the principal peripheral and input/output functions of a microcomputer system can be implemented with these devices.

Figure 1. 8282 Pin Configuration

Figure 3. Logic Diagrams

PIN DEFINITIONS

Pin	Description
STB	STROBE (Input). STB is an input control pulse used to strobe data at the data input pins (A_0-A_7) into the data latches. This signal is active HIGH to admit input data. The data is latched at the HIGH to LOW transition of STB.
ŌĒ	OUTPUT ENABLE (Input). \overline{OE} is an input control signal which when active LOW enables the contents of the data latches onto the data output pin (B ₀ -B ₇). OE being inactive HIGH forces the output buffers to their high impedance state.
DI ₀ -DI ₇	DATA INPUT PINS (Input). Data presented at these pins satisfying setup time re- quirements when STB is strobed and latched into the data input latches.
DO ₀ -DO ₇ (8282) DO ₀ -DO ₇ (8283)	DATA OUTPUT PINS (Output). When \overline{OE} is true, the data in the data latches is pre- sented as inverted (8283) or non-inverted (8282) data onto the data output pins.

OPERATIONAL DESCRIPTION

The 8282 and 8283 octal latches are 8-bit latches with 3-state output buffers. Data having satisfied the setup time requirements is latched into the data latches by strobing the STB line HIGH to LOW. Holding the STB line in its active HIGH state makes the latches appear transparent. Data is presented to the data output pins by activating the \overline{OE} input line. When \overline{OE} is inactive HIGH the output buffers are in their high impedance state. Enabling or disabling the output buffers will not cause negative-going transients to appear on the data output bus.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	0°C to 70°C
Storage Temperature	- 65°C to + 150°C
All Output and Supply Voltages	– 0.5V to + 7V
All Input Voltages	1.0V to + 5.5V
Power Dissipation	1 Watt

*NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

Conditions: $V_{CC} = 5V \pm 10\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Min	Max	Units	Test Conditions
Vc	Input Clamp Voltage		-1	V	$I_{\rm C} = -5 \mathrm{mA}$
lcc	Power Supply Current		160	mA	
١ _F	Forward Input Current		- 0.2	mA	$V_{F} = 0.45V$
I _R	Reverse Input Current		50	μΑ	V _R = 5.25V
VoL	Output Low Voltage		.45	v	$I_{OL} = 32 \text{ mA}$
V _{он}	Output High Voltage	2.4		V	$I_{OH} = -5 \text{ mA}$
IOFF	Output Off Current		± 50	μA	V _{OFF} = 0.45 to 5.25V
V _{IL}	Input Low Voltage		0.8	V	V _{CC} = 5.0V See Note 1
V _{IH}	Input High Voltage	2.0		V	V _{CC} = 5.0V See Note 1
C _{IN}	Input Capacitance		12	pF	F = 1 MHz V _{BIAS} = 2.5V, V _{CC} = 5V T _A = 25°C

NOTE: 1. Output Loading $I_{OL} = 32 \text{ mA}$, $I_{OH} = -5 \text{ mA}$, $C_L = 300 \text{ pF}$.

A.C. CHARACTERISTICS

Conditions: $V_{CC} = 5V \pm 10\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Loading: Outputs – $I_{OL} = 32 \text{ mA}, I_{OH} = -5 \text{ mA}, C_L = 300 \text{ pF}$

Symbol	Parameter	Min	Max	Units	Test Conditions
TIVOV	Input to Output Delay —Inverting —Non-Inverting	5 5	22 30	ns ns	(See Note 1)
TSHOV	STB to Output Delay —Inverting —Non-Inverting	10 10	40 45	ns ns	
TEHOZ	Output Disable Time	5	18	ns	
TELOV	Output Enable Time	10	30	ns	
TIVSL	Input to STB Setup Time	0		ns	
TSLIX	Input to STB Hold Time	25		ns	
TSHSL	STB High Time	15		ns	

NOTE: 1. See waveforms and test load circuit on following page.

WAVEFORMS

Figure 6. Output Delay vs. Capacitance

7-152

8286/8287 OCTAL BUS TRANSCEIVER

- Data Bus Buffer Driver for iAPX 86,88, MCS-80TM, MCS-85TM, and MCS-48TM Families
- High Output Drive Capability for Driving System Data Bus
- Fully Parallel 8-Bit Transceivers

- 3-State Outputs
- 20-Pin Package with 0.3" Center
- No Output Low Noise when Entering or Leaving High Impedance State

The 8286 and 8287 are 8-bit bipolar transceivers with 3-state outputs. The 8287 inverts the input data at its outputs while the 8286 does not. Thus, a wide variety of applications for buffering in microcomputer systems can be met.

Figure 1. 8286 Pin Configuration

Figure 2. 8287 Pin Configuration

Figure 3. Logic Diagrams

Table 1. Pin Description

Pin	Description
т	TRANSMIT (Input). T is an input control signal used to control the direction of the transceivers. When HIGH, it configures the transceiver's B_0-B_7 as outputs with A_0-A_7 as inputs. T LOW con- figures A_0-A_7 as the outputs with B_0-B_7 serving as the inputs.
ŌĒ	OUTPUT ENABLE (Input). \overrightarrow{OE} is an input control signal used to enable the appropriate output driver (as selected by T) onto its respective bus. This signal is active LOW.
A ₀ -A ₇	LOCAL BUS DATA PINS (Input/Output). These pins serve to either present data to or accept data from the processor's local bus depending upon the state of the T pin.
<u>B</u> ₀ - <u>B</u> ₇ (8286) B ₀ -B ₇ (8287)	SYSTEM BUS DATA PINS (Input/Output). These pins serve to either present data to or accept data from the system bus depending upon the state of the T pin.

FUNCTIONAL DESCRIPTION

The 8286 and 8287 transceivers are 8-bit transceivers with high impedance outputs. With T active HIGH and \overline{OE} active LOW, data at the A₀-A₇ pins is driven onto the B₀-B₇ pins. With T inactive LOW and \overline{OE} active LOW, data at the B₀-B₇ pins is driven onto the A₀-A₇ pins. No output low glitching will occur whenever the transceivers are entering or leaving the high impedance state.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	0°C to 70°C
Storage Temperature	– 65°C to + 150°C
All Output and Supply Voltages	0.5V to + 7V
All Input Voltages	1.0V to + 5.5V
Power Dissipation	1 Watt

*NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS FOR 8286/8287

Conditions: $V_{CC} = 5V \pm 10\%$ T_A = 0°C to 70°C

Symbol	Parameter	Min	Max	Units	Test Conditions
Vc	Input Clamp Voltage		-1	v	I _C = -5 mA
I _{CC}	Power Supply Current—8287 —8286		130 160	mA mA	
١ _F	Forward Input Current		-0.2	mA	V _F = 0.45V
I _R	Reverse Input Current		50	μΑ	V _R = 5.25V
V _{OL}	Output Low Voltage — B Outputs —A Outputs		.45 .45	v v	I _{OL} = 32 mA I _{OL} = 16 mA
V _{OH}	Output High Voltage —B Outputs —A Outputs	2.4 2.4		v v	I _{OH} = -5 mA I _{OH} = -1 mA
I _{OFF} I _{OFF}	Output Off Current Output Off Current		l _F I _R		V _{OFF} = 0.45V V _{OFF} = 5.25V
VIL	Input Low Voltage — A Side — B Side		0.8 0.9	v v	$V_{CC} = 5.0V$, See Note 1 $V_{CC} = 5.0V$, See Note 1
VIH	Input High Voltage	2.0		v	V _{CC} = 5.0V, See Note 1
C _{IN}	Input Capacitance		12	pF	$F = 1 \text{ MHz}$ $V_{\text{BIAS}} = 2.5 \text{V}, V_{\text{CC}} = 5 \text{V}$ $T_{\text{A}} = 25 \text{°C}$

NOTE: 1. B Outputs — $I_{OL} = 32 \text{ mA}$, $I_{OH} = -5 \text{ mA}$, $C_L = 300 \text{ pF}$; A Outputs — $I_{OL} = 16 \text{ mA}$, $I_{OH} = -1 \text{ mA}$, $C_L = 100 \text{ pF}$.

A.C. CHARACTERISTICS FOR 8286/8287

Conditions: $V_{CC} = 5V \pm 10\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Loading: B Outputs – I_{OL} = 32 mA, I_{OH} = -5 mA, C_L = 300 pF A Outputs – I_{OL} = 16 mA, I_{OH} = -1 mA, C_L = 100 pF

Symbol	Parameter	Min	Max	Units	Test Conditions
TIVOV	Input to Output Delay Inverting Non-Inverting	5 5	22 30	ns ns	(See Note 1)
TEHTV	Transmit/Receive Hold Time	5		ns	
TTVEL	Transmit/Receive Setup	10		ns	
TEHOZ	Output Disable Time	5	18	ns	
TELOV	Output Enable Time	10	30	ns	

NOTE: 1. See waveforms and test load circuit on following page.

intel

WAVEFORMS

NOTE: 1. All timing measurements are made at 1.5V unless otherwise noted.

Figure 5. Output Delay vs. Capacitance

Figure 5. Test Load Circuits
intel

8291 GPIB TALKER/LISTENER

- Designed to Interface Microprocessors (e.g., 8080, 8085, 8086, 8048) to an IEEE Standard 488 Digital Interface Bus
- Programmable Data Transfer Rate
- Complete Source and Acceptor Handshake
- Complete Talker and Listener Functions with Extended Addressing
- Service Request, Parallel Poll, Device Clear, Device Trigger, Remote/Local Functions
- Selectable Interrupts
- On-Chip Primary and Secondary Address Recognition
- Automatic Handling of Addressing and Handshake Protocol
- Provision for Software Implementation of Additional Features

- 1-8 MHz Clock Range
- 16 Registers (8 Read, 8 Write), 2 for Data Transfer, the Rest for Interface Function Control, Status, etc.
- Directly Interfaces to External Non-Inverting Transceivers for Connection to the GPIB
- Provides Three Addressing Modes, Allowing the Chip to be Addressed Either as a Major or a Minor Talker/ Listener with Primary or Secondary Addressing
- DMA Handshake Provision Allows for Bus Transfers without CPU Intervention
- Trigger Output Pin

BLOCK DIAGRAM

 On-Chip EOS (End of Sequence) Message Recognition Facilitates Handling of Multi-Byte Transfers

The 8291 GPIB Talker/Listener is a microprocessor-controlled chip designed to interface microprocessors (e.g., 8048, 8080, 8085, 8086) to an IEEE Standard 488 Instrumentation Interface Bus. It implements all of the Standard's interface functions except for the controller.

PIN CONFIGURATION

PIN DESCRIPTION

Symbol	1/0	Pin No.	Function	Symbol	I/O	Pin No.	Function
D ₀ -D ₇	1/0	12-19	Data bus port, to be connected to microprocessor data bus.	NRFD	1/0	37	Not ready for data; GPIB hand- shake control line. Indicates the
RS ₀ -RS ₂	₀ -RS ₂ I 21-		Register select inputs, to be con- nected to three non-multiplexed microprocessor address bus				vice(s) connected to the bus to accept data.
			lines. Select which of the 8 in- ternal read (write) registers will be read from (written into) with the execution of \overline{RD} (WR).	NDAC	I/O	38	Not data accepted; GPIB hand- shake control line. Indicates the condition of acceptance of data by the device(s) connected to the hus
cs	1	8	Chip select. When low, enables reading from or writing into the register selected by RS0-RS2.	ATN	ł	26	Attention; GPIB command line. Specifies how data on DIO lines
RD	I	9	Read strobe. When low, selected register contents are read by the CPU.	ÎFC	I	24	Interface clear; GPIB command line. Places the interface func-
WR	I	10	Write strobe. When low, data is written into the selected register.	SRQ	о	27	tions in a known quiescent state. Service request; GPIB command
INT (INT)	0	11	Interrupt request to the micro- processor, set high for request and cleared when the appropri- ate register is accessed by the				line. Indicates the need for attention and requests an inter- ruption of the current sequence of events on the GPIB.
0050	•		CPU. May be software config- ured to be active low.	REN	i	25	Remote enable; GPIB command line. Selects (in conjunction with other messages) remote or local
DREQ	0 6	6	high to indicate byte output or	F 01			control of the device.
		by Ē	by DACK.	EOI	1/0	39	line. Indicates the end of a
DACK	I	7	DMA acknowledge. When low, resets DREQ and selects data in/data out register for DMA				or, in conjunction with ATN, addresses the device during a polling sequence.
			done by RD/WR pulse). Must be high if DMA is not used.	T/R1	0	1	External transceivers control line. Set high to indicate output
TRIG	0	5	Trigger output, normally low; generates a triggering pulse with 1µsec min. width in response to the GET bus command or Trigger auxiliary command.				and DAV lines and input signals on the NRFD and NDAC lines (active source handshake). Set low to indicate input data/ signals on the DIO1-DIO8 and
CLOCK	I	3	External clock input, used only for T ₁ delay generator. May be any speed in 1-8 MHz range.				DAV lines and output signals on the NRFD and NDAC lines (ac- tive acceptor handshake).
RESET	I,	4	Reset input. When high, forces the device into an "Idle" (initiali- zation) mode. The device will re- main at "Idle" until released by the microprocessor.	T/Ŕ2	0	2	External transceivers control line. Set high to indicate output signals on the EOI line. Set low to indicate expected input signal on the EOI line during parallel
DIO ₁ -DIO ₈	I/O	28-35	8-bit GPIB data port, used for bidirectional data byte transfer between 8291 and GPIB via non-	Vcc	P.S.	40	poll. Positive power supply (5V ± 10%).
			inverting external line trans- ceivers.	GND	P.S.	20	Potential ground circuit.
DAV	I/O	36	Data valid; GPIB handshake control line. Indicates the avail- ability and validity of infor- mation on the DIO lines.				

Note: All signals on the 8291 pins are specified with positive logic. However, IEEE 488 specifies negative logic on this 16 signal lines. Thus, the data is inverted once from D₀-D₇ to \overline{DIO}_1 - \overline{DIO}_8 and non-inverting bus transcelvers should be used.

8291 SYSTEM DIAGRAM

THE GENERAL PURPOSE INTERFACE BUS (GPIB)

The General Purpose Interface Bus (GPIB) is defined in the IEEE Standard 488-1978 "Digital Interface for Programmable Instrumentation." Although a knowledge of this standard is assumed, Figure 1 provides the bus structure for quick reference. Also, Tables 1 and 2 reference the interface state mnemonics and the interface messages respectively. Modified state diagrams for the 8291 are presented in Appendix A.

GENERAL DESCRIPTION

The 8291 is a microprocessor controlled device designed to interface microprocessors e.g., 8048, 8080, 8085, 8086 to the GPIB. It implements all of the interface functions defined in the IEEE 488 Standard. If an implementation of the Standard's Controller function is desired, it can be connected with an Intel[®] 8292 to form a complete interface.

The 8291 handles communication between a microprocessor controlled device and the GPIB. Its capabilities include data transfer, handshake protocol, talker/listener addressing procedures, device clearing and triggering, service request, and both serial and parallel polling schemes. In most procedures, it does not disturb the microprocessor unless a byte is waiting on input or a byte sent on output (output buffer empty).

The 8291 architecture includes 16 registers. Eight of these registers may be written into by the microprocessor. The other eight registers may be read by the microprocessor. One each of these read and write registers is for direct data transfers. The rest of the write registers control the various features of the chip, while the rest of the read registers provide the microprocessor with a monitor of GPIB states, various bus conditions, and device conditions.

Figure 1. Interface Capabilities and Bus Structure.

GPIB Addressing

Each device connected to the GPIB must have at least one address whereby the controller device in charge of the bus can configure it to talk, listen, or send status. An 8291 implementation of the GPIB offers the user three addressing modes from which the device can be initialized for each application. The first of these modes allows for the device to have two separate primary addresses. The second mode allows the user to implement a single talker/listener with a two byte address (primary address + secondary address). The third mode again allows for two distinct addresses but in this instance, they can each have a two-byte address. However, this mode requires that the secondary addresses be passed to the microprocessor for verification. These three addressing schemes are described in more detail in the discussion of the Address registers.

 TABLE 1.

 IEEE 488 INTERFACE STATE MNEMONICS

Mnemonic	State Represented	Mnemonic	State Represented
ACDS	Accept Data State	PACS	Parallel Poll Addressed to Configure State
ACRS	Acceptor Ready State	PPAS	Parallel Poll Active State
AIDS	Acceptor Idle State	PPIS	Parallel Poll Idle State
ANRS	Acceptor Not Ready State	PPSS	Parallel Poll Standby State
APRS	Affirmative Poll Response State	PUCS	Parallel Poll Unaddressed to Configure State
AWNS	Acceptor Wait for New Cycle State	REMS	Remote State
CACS	Controller Active State	RWLS	Remote With Lockout State
CADS	Controller Addressed State	SACS	System Control Active State
CAWS	Controller Active Wait State	SDYS	Source Delay State
CIDS	Controller Idle State	SGNS	Source Generate State
	Controller Parallel Poll State	SIAS	System Control Interface Clear Active State
	Controller Parallel Poll Wait State	SIDS	Source Idle State
CSBS	Controller Standby State	SIIS	System Control Interface Clear Idle State
CSNS	Controller Service Not Requested State	SINS	System Control Interface Clear Not Active State
	Controller Service Requested State	SIWS	Source Idle Wait State
	Controller Synchronous wait State	SNAS	System Control Not Active State
		SPAS	Serial Poll Active State
DCAS	Device Clear Active State	SPIS	Serial Poll Idle State
DCIS	Device Clear Idle State	SPMS	Serial Poll Mode State
DTAS	Device Trigger Active State	SRAS	System Control Remote Enable Active State
DTIS	Device Trigger Idle State	SRIS	System Control Remote Enable Idle State
LACS	Listener Active State	SRNS	System Control Remote Enable Not Active State
LADS	Listener Addressed State	SRQS	Service Request State
LIDS	Listener Idle State	STRS	Source Transfer State
LOCS	Local State	SWNS	Source Wait for New Cycle State
LPAS	Listener Primary Addressed State	TACS	Talker Active State
LPIS	Listener Primary Idle State	TADS	Talker Addressed State
LWLS	Local With Lockout State	TIDS	Talker Idle State
NPRS	Negative Poll Response State	TPIS	Talker Primary Idle State

---- The Controller function is implemented on the Intel® 8292.

Mnemonic	Message	Interface Function(s)
LOCAL MESSA	GES RECEIVED (By Interface Ful	nctions)
∙gts	go to standby	C
ist	individual status	PP
Ion	listen only	L, LE
Ipe	local poll enable	PP
pon rdy • rpp • rsc rsv	power on ready request parallel poll request system control request service	SH SH,AH,T,TE,L,LE,SR,RL,PP,C AH C C SR
rtl	return to local	RL
* sic	send interface clear	C
* sre	send remote enable	C
* tca	take control asynchronously	C
* tcs	take control synchronously	AH, C
ton	talk only	T, TE
REMOTE MESS	AGES RECEIVED	
ATN	Attention	SH,AH,T,TE,L,LE,PP,C
DAB	Data Byte	(Via L, LE)
DAC	Data Accepted	SH
DAV	Data Valid	AH
DCL	Device Clear	DC
END	End	(via L, LE)
GET	Group Execute Trigger	DT
GTL	Go to Local	RL
IDY	Identify	L,LE,PP
IFC	Interface Clear	T,TE,L,LE,C
LLO	Local Lockout	RL
MLA	My Listen Address	L,LE,RL,T,TE
MSA	My Secondary Address	TE,LE,RL
MTA	My Talk Address	T,TE,L,LE
OSA	Other Secondary Address	TE
OTA	Other Talk Address	T, TE
PCG	Primary Command Group	TE,LE,PP
† PPC	Parallel Poll Configure	PP
† [PPD)	Parallel Poll Disable	PP
† [PPE]	Parallel Poll Enable	PP
* PPR _N	Parallel Poll Response N	(via C)
† PPU	Parallel Poll Unconfigure	PP
REN	Remote Enable	RL
RFD	Ready for Data	SH
RQS	Request Service	(via L, LE)
[SDC]	Select Device Clear	DC
SPD	Serial Poll Disable	T, TE
SPE	Serial Poll Enable	T, TE
*SQR	Service Request	(via C)
STB	Status Byte	(via L, LE)
*TCT or [TCT]	Take Control	C
UNL	Unlisten	L, LE

TABLE 2. IEEE 488 INTERFACE MESSAGE REFERENCE LIST

*These messages are handled only by Intel's 8292.

†Undefined commands which may be passed to the microprocessor.

Mnemonic	Message	** Interface Function(s)
REMOTE MESS	AGES SENT	
ATN	Attention	C
DAB	Data Byte	(via T, TE)
DAC	Data Accepted	AH
DAV	Data Valid	SH
DCL	Device Clear	(via C)
END	End	(via T)
GET	Group Execute Trigger	(via C)
GTL	Go to Local	(via C)
IDY	Identify	C
IFC	Interface Clear	C
LLO	Local Lockout	(via C)
MLA or [MLA]	My Listen Address	(via C)
MSA or [MSA]	My Secondary Address	(via C)
MTA or [MTA]	My Talk Address	(via C)
OSA	Other Secondary Address	(via C)
OTA	Other Talk Address	(via C)
PCG	Primary Command Group	(via C)
PPC	Parallel Poll Configure	(via C)
[PPD]	Parallel Poll Disable	(via C)
[PPE]	Parallel Poll Enable	(via C)
PPRN	Parallel Poll Response N	PP
PPU	Parallel Poll Unconfigure	(via C)
REN	Remote Enable	C
RFD	Ready for Data	AH
RQS	Request Service	T, TE
(SDC)	Selected Device Clear	(via C)
SPD	Serial Poll Disable	(via C)
SPE	Serial Poll Enable	(via C)
SRQ	Service Request	SR
STB	Status Byte	(via T, TE)
TCT	Take Control	(via C)
UNL	Unlisten	(via C)

TABLE 2. (Cont'd) IEEE 488 INTERFACE MESSAGE REFERENCE LIST

**All Controller messages must be sent via Intel's 8292.

 $T_A = 0^{\circ}C$ to 70°C; $V_{CC} = 5V \pm 10\%$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
VIL	Input Low Voltage	-0.5	0.8	v	
ViH	Input High Voltage	2	Vcc+0.5	V	
Vol	Output Low Voltage		0.45	V	I _{OL} =2mA (4mA for TR1 pin)
Vон	Output High Voltage	2.4		v	$I_{OH} = -400 \mu A (-150 \mu A \text{ for SRQ pin})$
Voh-int	Interrupt Output High Voltage	2.4		v	I _{OH} =-400µА
		3.5		v	I _{OH} =-50µА
liL.	Input Leakage		10	μA	VIN=0V to VCC
LOL	Output Leakage Current		-10	μA	V _{OUT} =0.45V
LOH	Output Leakage Current		10	μA	Vout=Vcc
Icc	V _{CC} Supply Current		180	mA	T _A =0°C

8291

A.C. CHARACTERISTICS

 V_{CC} = 5V \pm 10%, Commercial: T_A = 0°C to 70°C

Symbol	Parameter	Min.	Max.	Unit
t _{AR}	Address Stable Before READ	0		nsec ^[1]
t _{RA}	Address Hold After READ	0		nsec ^[1]
t _{RR}	READ width	140		nsec ^[2]
tad	Address Stable to Data Valid		250	nsec ¹
t _{RD}	READ to Data Valid		100	nsec ^[2]
tRDF	Data Float After READ	0	60[2]	nsec
taw	Address Stable Before WRITE	0		nsec ^[1]
twa	Address Hold After WRITE	0		
tww	WRITE Width	170		nsec ^[1]
tow	Data Set Up Time to the Trailing Edge of WRITE	150		nsec ^[1]
twp	Data Hold Time After WRITE	0		nsec ^[1]
t AKRQ	DACKI to DREQI		130	nsec
tDKDA6	DACK↓ to Up Data Valid		200	nsec

Notes:

1. 8080 System $C_{Lmax} = 100 pF$; $C_{Lmin} = 15 pF$; 3 MHz clock.

2. 8085 System $C_L = 150pF$; 4 MHz clock.

TIMING WAVEFORMS

READ

8291

WRITE

<u>DMA</u>

GPIB TIMINGS^[1]

Symbol	Parameter	Max.	Unit	Test Conditions
TEOT13	EOIL to TR11	135	nsec	PPSS, ATN=0.45V
TEODI6	EOI+ to DIO Valid	155	nsec	PPSS, ATN=0.45V
TEOT12	EOI to TR1	155	nsec	PPSS, ATN=0.45V
TATND4	ATNI to NDACI	155	nsec	TACS, AIDS
TATT14	ATN↓ to TR1↓	155	nsec	TACS, AIDS
TATT24	ATNI to TR21	155	nsec	TACS, AIDS
TDVND3-C	DAVI to NDAC1	650	nsec	AH, CACS
TNDDV1	NDACt to DAVt	350	nsec	SH, STRS
TNRDV2	NRFDt to DAVI	350	nsec	SH, T1 True
TNDDR1	NDACt to DREQ1	400	nsec	SH
TDVDR3	DAVI to DREQ1	600	nsec	AH, LACS, ATN=2.4V
TDVND2-C	DAV! to NDAC	350	nsec	AH,LACS
TDVNR1-C	DAVt to NRFDt	350	nsec	AH, LACS, rdy=True
TRDNR3	RD↓ to NRFD↑	500	nsec	AH, LACS
TWRDI5	WR to DIO Valid	250	nsec	SH, TACS, $RS = 0.4V$
TWRDV2	WR⁺ to DAV↓	$830 + t_{SYNC}$	nsec	High Speed Transfers Enabled, N _F = f _C , t _{SYNC} = 1/2·f _C

Notes:

1. All GPIB timings are at the pins of the 8291.

Appendix A

8291

MODIFIED STATE DIAGRAMS

Figure A.1 presents the interface function state diagrams. It is derived from IEEE Std. state diagrams, with the following changes:

A. The 8291 supports the complete set of IEEE-488 interface functions except for the controller. These include: SH1, AH1, T5, TE5, L3, LE3, SR1, RL1, PP1, DC1, DT1, and C0.

B. Addressing modes included in T,L state diagrams.

Note that in Mode 3, MSA, OSA are generated only after secondary address validity check by the microprocessor (APT interrupt).

C. In these modified state diagrams, the IEEE-488 convention of low true logic is followed. Thus, DAV is log-

ically true at <0.8V and is equivalent to pin 36 on the 8291.

D. All remote multiline messages decoded are conditioned by ACDS. The multiplication by ACDS is not drawn to simplify the diagrams.

E. The symbol

indicates:

- 1. When event X occurs, the function will return to state S.
- 2. X overrides any other transition condition in the function.

Statement 2 simplifies the diagram, avoiding the explicit use of \overline{X} to condition all transitions from S to other states.

Figure A.1. 8291 State Diagrams (Continued next page)

Figure A.1. 8291 State Diagrams (Continued next page)

Appendix B

IEEE 488 TIME VALUES

Time Value Identifier*	Function (Applies to)	Description	Value
T1	SH	Settling Time for Multiline Messages	$\geq 2\mu s^{\dagger}$
t2	LC,IC,SH,AH,T,L	Response to ATN	≤ 200ns
T ₃	АН	Interface Message Accept Time +	> 0 δ
t4	T,TE,L,LE,C,CE	Response to IFC or REN False	< 100µs
t5	PP	Response to ATN+EOI	\leq 200ns
T ₆	С	Parallel Poll Execution Time	$\ge 2\mu s$
Τ7	С	Controller Delay to Allow Current Talker to see ATN Message	≥ 500ns
Τ8	С	Length of IFC or REN False	> 100µs
T9	С	Delay for EOI**	$\geq 1.5 \mu s^{\dagger}$ †

* Time values specified by a lower case t indicate the maximum time allowed to make a state transition. Time values specified by an upper case T indicate the minimum time that a function must remain in a state before exiting.

† If three-state drivers are used on the DIO, DAV, and EOI lines, T1 may be:

1. ≥ 1100ns

2. Or \geq 700ns if it is known that within the controller ATN is driven by a three-state driver.

3. Or \geq 500ns for all subsequent bytes following the first sent after each false transition of ATN (the first byte must be sent in accordance with (1) or (2).

4. Or \geq 350ns for all subsequent bytes following the first sent after each false transition of ATN under conditions specified in Section 5.2.3 and warning note. See IEEE Standard 488.

+ Time required for interface functions to accept, not necessarily respond to interface messages.

 δ Implementation independent.

** Delay required for EOI, NDAC, and NRFD signal lines to indicate valid states.

 $\dagger\dagger \, \geq 600 ns$ for three-state drivers.

Appendix C THE THREE WIRE HANDSHAKE

Figure C-1. 3-Wire Handshake Timing at 8291.

FLOW DIAGRAM OUTLINES SEQUENCE OF EVENTS DURING TRANSFER OF DATA BYTE. MORE THAN ONE LISTENER AT A TIME CAN ACCEPT DATA BECAUSE OF LOGICAL AND CONNECTION OF NFFD AND NDAC LINES.

Figure C.2. Handshake Flowchart.

Appendix D FUNCTIONAL PARTITIONS

Figure D.1. Functional Partition Within a Device.

8292 GPIB CONTROLLER

- Complete IEEE Standard 488 Controller Function
- Interface Clear (IFC) Sending Capability Allows Seizure of Bus Control and/or Initialization of the Bus
- Responds to Service Requests (SRQ)
- Sends Remote Enable (REN), Allowing Instruments to Switch to Remote Control
- Complete Implementation of Transfer Control Protocol
- Synchronous Control Seizure Prevents the Destruction of Any Data Transmission in Progress
- Connects with the 8291 to Form a Complete IEEE Standard 488 Interface Talker/Listener/Controller

The 8292 GPIB Controller is a microprocessor-controlled chip designed to function with the 8291 GPIB Talker/Listener to implement the full IEEE Standard 488 controller function, including transfer control protocol. The 8292 is a preprogrammed Intel[®] 8041A.

PIN CONFIGURATION

IFCL		1	\cup	40	Þ	Vcc
X1		2		39	Þ	COUNT
X2		3		38	Þ	REN
RESET		4		37	Þ	DAV
Vcc		5		36	Þ	IBFI
cs		6		35	Þ	OBFI
GND		7		34	þ	EOI
RD		8		33		SPI
A0		9		32		тсі
WR		10	8292	31	Þ	CIC
SYNC		11		30	Þ	NC
Do		12		29		ATNO
D1		13		28		NC
D2		14		27		CLTH
D3		15		26		Vcc
D4		16		25		NC
D5		17		24	Ь	SYC
D6		18		23		IFC
D7		19		22	Ь	ATNI
Vss	С	20		21	þ	SRQ

8291, 8292 SYSTEM DIAGRAM

PIN DESCRIPTION

Symbol	1/0	Pin No.	o. Function		
IFCL	1	1	IFC Received (latched) — The 8292 monitors the IFC Line (when not system controller) through this pin.		
X ₁ , X ₂	I	2, 3	Inputs for a crystal, LC or an exter- nal timing signal to determine the internal oscillator frequency.		
RESET	5. I.	4	Used to initialize the chip to a known state during power on.		
CS	I	6	Chip Select Input — Used to select the 8292 from other devices on the common data bus.		
RD	1	8	I/O write input which allows the master CPU to read from the 8292.		
A ₀		9	Address Line — Used to select be- tween the data bus and the status register during read operations and to distinguish between data and commands written into the 8292 during write operations.		
WR	1	10	I/O read input which allows the master CPU to write to the 8292.		
SYNC	0	11	8041A instruction cycle synchro- nization signal; it is an output clock with a frequency of XTAL + 15.		
D ₀ -D ₇	I/O	12-19	8 bidirectional lines used for com- munication between the central processor and the 8292's data bus buffers and status register.		
V _{SS}	P.S.	7, 20	Circuit ground potential.		
SRQ	1	21	Service Request — One of the IEEE control lines. Sampled by the 8292 when it is controller in charge. If true, SPI interrupt to the master will be generated.		
ATNI	ł.	22	Attention In — Used by the 8292 to monitor the GPIB ATN control line. It is used during the transfer control procedure.		
ĪFC	1/0	23	Interface Clear — One of the GPIB management lines, as defined by IEEE Std. 488-1978, places all de- vices in a known quiescent state.		
SYC	I	24	System Controller — Monitors the system controller switch.		
CLTH	0	27	CLEAR LATCH Output — Used to clear the IFCR latch after being recognized by the 8292. Usually low (except after hardware Reset), it will be pulsed high when IFCR is recognized by the 8292.		
ATNO	0	29	Attention Out — Controls the ATN control line of the bus through ex- ternal logic for tcs and tca pro- cedures. (ATN is a GPIB control line, as defined by IEEE Std. 488-1978.)		

Symbol	1/0	Pin No.	n No. Function	
V _{CC}	P.S.	5, 26, 40	+5V supply input. ±10%.	
COUNT	-	39	Count Input — When enabled by the proper command the internal counter will count external events through this pin. High to low tran- sition will increment the internal counter by one. The pin is sampled once per three internal instruction cycles (7.5μ sec sample period when using 6 MHz XTAL). It can be used for byte counting when con- nected to NDAC, or for block counting when connected to the EOI.	
REN	0	38	The Remote Enable bus signal selects remote or local control of the device on the bus. A GPIB bus management line, as defined by IEEE Std. 488-1978.	
DAV	1/0	37	DAV Handshake Line — Used dur- ing parallel poll to force the 8291 to accept the parallel poll status bits. It is also used during the tcs procedure.	
IBFI	0	36	Input Buffer Not Full — Used to interrupt the central processor while the input buffer of the 8292 is empty. This feature is enabled and disabled by the interrupt mask register.	
OBFI	0	35	Output Buffer Full — Used as an interrupt to the central processor while the output buffer of the 8292 is full. The feature can be enabled and disabled by the interrupt mask register.	
EOI2	1/0	34	End Or Identify — One of the GPIB management lines, as defined by IEEE Std. 488-1978. Used with ATN as Identify Message during paral- lel poll.	
SPI	0	33	Special Interrupt — Used as an interrupt on events not initiated by the central processor.	
TCI	0	32	Task Complete Interrupt — Inter- rupt to the control processor used to indicate that the task requested was completed by the 8292 and the information requested is ready in the data bus buffer.	
CIC	0	31	Controller In Charge — Controls the S/R input of the SRQ bus transceiver. It can also be used to indicate that the 8292 is in charge of the GPIB bus.	

intel

8293 GPIB TRANSCEIVER

- Nine Open-collector or Three-state Line Drivers
- 48 mA Sink Current Capability on Each Line Driver
- Nine Schmitt-type Line Receivers
- High Capacitance Load Drive Capability
- Single 5V Power Supply
- 28-Pin Package
- Low Power HMOS Design

- On-chip Decoder for Mode Configuration
- Power Up/Power Down Protection to Prevent Disrupting the IEEE Bus
- Connects with the 8291 and 8292 to Form an IEEE Standard 488 Interface Talker/Listener/Controller with no Additional Components
- Only Two 8293's Required per GPIB Interface
- On-Chip IEEE-488 Bus Terminations

The Intel® 8293 GPIB Transceiver is a high current, non-inverting buffer chip designed to interface the 8291 GPIB Talker/Listener or the 8292 GPIB Controller with the 8291 to the IEEE Standard 488-1978 Instrumentation Interface Bus. Each GPIB interface would contain two 8293 Bus Transceivers. In addition, the 8293 can also be used as a general purpose bus driver.

PIN CONFIGURATION

8291, 8292, 8293 SYSTEM DIAGRAM

PIN DE	SCF	RIPTIO	N	Symbol	1/0	Pin No.	Function
Symbol	I/O	Pin No.	Function	EOI	1/0	3	End or Identify; this pin indi-
BUS1- BUS9	1/0	12, 13, 15-19, 21, 22	These are the IEEE-488 bus interface driver/receivers. Using the mode select pins, they can be configured differ- ently to allow direct connec- tions between the 8291 GPIB Talker/Listener and the 8292 GPIB Controller.				cates the end of a multiple byte transfer or, in conjunc- tion with ATN, addresses the device during a polling se- quence. It connects to the 8291 and is switched between transmit and receive by T/R2. This pin is TTL compatible.
DATA1- DATA10	I/O	5-11, 23-25	These are the pins to be con- nected to the 8291 and 8292 to interface with the GPIB bus. Their use is programmed by the two mode select pins, OPTA and OPTB. All these	ATN	0	4	Attention; this pin is used by the 8291 to monitor the GPIB ATN control line. It specifies how data on the DIO lines is to be interpreted. This output is TTL compatible.
			pins are TTL compatible.	OPTA	I	27	These two pins are to control
T/R1	I	1	Transmit receive 1; this pin controls the direction for NDAC, NRFD, DAV, and DIO1- DIO8. Input is TTL compatible.	OPTB	I	26	the function of the 8293. A truth table of how this pro- grams the various modes is in Table 1.
T/R2	I	2	Transmit receive 2; this pin controls the direction for FOL	V _{CC}	P.S.	28	Positive power supply (5V ±10%).
			Input is TTL compatible.	GND	P.S.	14, 20	Circuit ground potential.

Table 1. 8293 Mode Selection Pin Mapping

<u></u>		IEEE Implementation Name						
Pin Name	Pin No.	Mode 0	Mode 1	Mode 2	Mode 3			
ΟΡΤΑ	27	0	1	0	1			
OPTB	26	0	0	1	1			
DATA1	5	IFC		IFC	DIO8			
BUS1	12	IFC*	DI08*	IFC*	DI08*			
	6	REN		REN				
BUS2	13	BEN*	0107*	REN*	DI07*			
DATA3	7	NC	D106	FOI2				
BUS3	15	FOI*	DI06*	FOI*	DI06*			
DATA4	8	SBO	DIO5	SBO	DIOS			
BUS4	16	SRQ*	DI05*	SRQ*	DIO5*			
DATA5	9	NRFD	DIO4	NRFD	DIO4			
BUS5	17	NRFD*	DIO4*	NRFD*	DIO4*			
DATA6	10	NDAC	DIO3	NDAC	DIO3			
BUS6	18	NDAC*	DIO3*	NDAC*	DIO3*			
DATA7	11	T/RIO1	NC	ATNI	ATNO			
DATA8	23	T/RIO2	DIO2	ATNO	DIO2			
BUS7	19	ATN*	DIO2*	ATN*	DIO2*			
DATA9	24	GIO1	DAV	CIC	DAV			
BUS8	21	GIO1*	DAV*	CLTH	DAV*			
DATA10	25	GIO2	DIOT	IFCL	DIO1			
BUS9	22	GIO2*	DIO1*	SYC	DIO1*			
T/D1	1	T/D1	T/01	T/D1	T/01			
T/D2		T/D2	NC	T/D2				
	2							
ALIN	4		ATTN .		AIN			

• Note: These pins are the IEEE-488 bus non-inverting driver/receivers. They include all the bus terminations required by the Standard and may be connected directly to the GPIB bus connector.

GENERAL DESCRIPTION

The 8293 is a bidirectional transceiver. It was designed to interface the Intel 8291 GPIB Talker/Listener and the Intel[®] 8292 GPIB Controller to the IEEE Standard 488-1978. Instrumentation Bus (also referred to as the GPIB Bus). The Intel GPIB Bus Transceiver meets or exceeds all of the electrical specifications defined in the IEEE Standard 488-1978, Section 3.3-3.5, including the required bus termination specifications.

The 8293 can be hardware programmed to one of four modes of operation. These modes allow the 8293 to be configured to support both a Talker/Listener/Controller environment and Talker/Listener environment. In addition, the 8293 can be used as a general purpose threestate (push-pull) or open-collector bus transceiver with nine receiver/drivers. Two modes are used to support a Talker/Listener environment (see Figure 1), and to support a Talker/Listener/Controller environment (see Figure 2). Mode 1 is the general purpose mode.

Figure 3. Talker/Listener Control Configuration

MODE 0 PIN DESCRIPTION

Symbol	I/O	Pin No.	Function
T/R1	I	1	Transmit receive 1; direction control for NDAC and NRFD. If $T/\overline{R}1$ is high, then NDAC [*] and NRFD [*] are receiving. Input is TTL compatible.
NDAC	I/O	10	Not Data Accepted; processor GPIB bus handshake control line; used to indicate the con- dition of acceptance of data by device(s). It is TTL compati- ble.
NDAC⁺	I/O	18	Not Data Accepted; IEEE GPIB bus handshake control line. When an input, it is a TTL compatible Schmitt-trigger. When an output, it is an open- collector driver with 48 mA sinking capability.
NRFD	I/O	9	Not Ready For Data; proc- essor GPIB handshake control line; used to indicate the con- dition of readiness of de- vice(s) to accept data. This pin is TTL compatible.

Symbol	1/0	Pin No.	Function					
NRFD*	1/0	17	Not Ready For Data; IEEE GPIB bus handshake control line, When an input, it is a TTL compatible Schmitt-trigger. When an output, it is an open- collector driver with a 48 mA current sinking capability.					
T/R2	I	2	Transmit receive 2; direction control for EOI. If T/R2 is high, EOI* is sending. Input is TTL compatible.					
EOI	I/O	3	End or Identify; processo GPIB bus control line; is use by a talker by indicate the en of a multiple byte transfe This pin is TTL compatible.					
EOI*	I/O	15	End or Identify; IEEE GPIB bus control line; is used by a talker to indicate the end of a multi- ple byte transfer. This pin is a three-state (push-pull) driver capable of sinking 48 mA and a TTL compatible receiver with hysteresis.					
SRQ	I	8	Service Request; processor GPIB bus control line; used by a device to indicate the need for service and to request an interruption of the current se- quence of events on the GPIB. It is a TTL compatible input,					
SRQ*	0	16	Service Request; IEEE GPIB bus control line; it is an open collector driver capable of sinking 48 mA.					
REN	0	6	Remote Enable; processor GPIB bus control line; used by a controller (in conjunction with other messages) to select between two alternate sources of device program- ming data (remote or local control). This output is TTL compatible.					
REN*	I	13	Remote Enable; IEEE GPIB bus control line. This input is a TTL compatible Schmitt- trigger.					
ATN	0	4	Attention; processor GPIB bus control line; used by the 8291 to determine how data on the DIO signal lines are to be interpreted. This is a TTL compatible output					
ATN*	l.	19	Attention; IEEE GPIB bus con- trol line; this input is a TTL compatible Schmitt-trigger.					

Symbol	I/O	Pin No.	Function
IFC	0	5	Interface Clear; processor GPIB bus control line; used by a controller to place the inter- face system into a known quiescent state. It is a TTL compatible output.
IFC*	ł	12	Interface Clear; IEEE GPIB bus control line. This input is a TTL compatible Schmitt- trigger.
T/ŘIO1 T/ŘIO2	1	11 23	Transmit receive General IO; direction control for the two spare transceivers. Input is TTL compatible.
<u>GIO1</u> GIO2	1/0 1/0	24 25	General IO; this is the TTL side of the two spare tran- sceivers. These pins are TTL compatible.
GIO1* GIO2*	1/0 1/0	21 22	General IO; these are spare three-state (push-pull) drivers/ Schmitt-trigger receivers. The drivers can sink 48 mA.

MODE 1 PIN DESCRIPTION

Symbol	I/O	Pin No.	Function
T/R1	ļ	1	Transmit receive 1; controls the direction for DAV and the DIO lines. If $T/\overline{R}1$ is high, then all these lines are sending in- formation to the IEEE GPIB lines. This input is TTL com- patible.
EOI ATN	1	34	End of Sequence and Atten- tion; processor GPIB control lines. These two control signals are ANDed together to determine whether all the transceivers in the 8293 are three-state (push-pull) or open-collector. When both signals are low (true), then the controller is performing a parallel poll and the tran- sceivers are all open- collector. These inputs are TTL compatible.
DAV	I/O	24	Data Valid; processor GPIB bus handshake control line; used to indicate the condition (availability and validity) of in- formation on the DIO signals. It is TTL compatible.
DAV*	I/O	21	Data Valid; IEEE GPIB bus handshake control line. When an input, it is a TTL compati- ble Schmitt-trigger. When DAV* is an output, it can sink 48 mA.
DIO1- DIO8	1/0	25, 23, 10, 9, 8, 7, 6, 5	Data Input/Output; processor GPIB bus data lines; used to carry message and data bytes in a bit-parallel byte-serial form controlled by the three handshake signals. These lines are TTL compatible.
DIO1* DIO8*	1/0	22, 19, 18, 17, 16, 15, 13, 12	Data Input/Output; IEEE GPIB bus data lines. They are TTL compatible Schmitt-triggers when used for input and can sink 48 mA when used for out- put. See ATN and EOI descrip- tion for output mode.

MODE 2 PIN DESCRIPTION

Symbol	I/O	Pin No.	Function
T/Rī	I	1	Transmit receive 1; direction control for NDAC and NRFD. If T/R1 is high, then NDAC and NRFD are receiving. Input is TTL compatible.
NDAC	I/O	10	Not Data Accepted; processor GPIB bus handshake control line; used to indicate the con- dition of acceptance of data by device(s). This pin is TTL compatible.
NDAC*	I/O	18	Not Data Accepted; IEEE GPIB bus handshake control line. It is a TTL compatible Schmitt-trigger when used for input and an open-collector driver with a 48 mA current sink capability when used for output.

Symbol	I/O	Pin No.	Function	Symbol	I/O	Pin No.	Function
NRFD	I/O	9	Not Ready For Data; processor GPIB bus handshake control				is recognized by the 8292. This input is TTL compatible.
			line; used to indicate the con- dition of readiness of device(s) to accept data. This pin is TTL compatible.	IFCL	0	25	IFC Received Latched; the 8292 monitors the IFC line when it is not the active con troller through this pin.
NRFD⁺	I/O	17	Not Ready For Data; IEEE GPIB bus handshake control line. It is a TTL compatible Schmitt-trigger when used for input and an open-collector driver with a 48 mA current sink capability when used for	SRQ	I/O	8	Service Request; processon GPIB control line; indicates the need for attention and re quests the active controller to interrupt the current sequence of events on the GPIB bus This pin is TTL compatible.
SYC	I 1/0	22 6	System Controller; used to monitor the system controller switch and control the direc- tion for IFC and REN. This pin is a TTL compatible input. Remote Enable; processor	SRQ*	I/O	16	Service Request; IEEE GPIE bus control line. When used as an input, this pin is a TTL compatible Schmitt-trigger When used as an output, it is an open-collector driver with a 48 mA current sinking capa
			GPIB control line; used by the active controller (in conjunc- tion with other messages) to select between two alternate	T/R2	ļ	2	bility. Transmit receive 2; controls the direction for EOI. This in put is TTL compatible.
			sources of device program- ming data (remote or local con- trol). This pin is TTL compa- tible.	ATNO	ł	23	Attention Out; processo GPIB bus control line; used by the 8292 for ATN control o the IEEE bus during "take
REN*	I/O	13	Remote Enable; IEEE GPIB bus control line. When used as an input, this is a TTL compati- ble Schmitt-trigger. When an output, it is a three-state driver with a 48 mA current sinking				control synchronously" opera tions. A low on this inpu causes ATN to be asserted i CIC indicates that this 8292 is in charge. ATNO is a TTL com patible input.
IFC	I/O	5	capability. Interface Clear; processor GPIB bus control line; used by the active controller to place	ATNI	0	11	Attention In; processor GPIE bus control line; used by the 8292 to monitor the ATN line This output is TTL compatible
			the interface system into a known quiescent state. This pin is TTL compatible.	ATN	0	4	Attention; processor GPIE bus control live; used by the 8292 to monitor the ATN line
IFC*	I/O	12	Interface Clear; IEEE GPIB bus control line. This is a TTL com- patible Schmitt-trigger when	ATN*	I/O	19	This output is TTL compatible. Attention; IEEE GPIB bus con- trol line; used by a controller
			state driver capable of sinking 48 mA current when used for output.				to specify how data on the DIO signal lines are to be in- terpreted and which devices
CIC	1	24	Controller in Charge; used to control the direction of the SRQ and to indicate that the 8292 is in charge of the bus. CIC is a TTL compatible input.				used as an output, this pin is three-state driver capable of sinking 48 mA current. As an input, it is a TTL compatible Schmitt-trigger.
CLTH	I	21	Clear Latch; used to clear the IFC Received latch after it has been recognized by the 8292. Normally low (except after a hardware reset), it will be pulsed low when IFC Received	EOI2	' I/O	7	End or Identify 2; processor GPIB bus control line; used in conjunction with ATN by the active controller (the 8292) to execute a polling sequence This pin is TTL compatible.

Symbol	I/O	Pin No.	. Function					
EOI	I/O	3	End or Identify; processor GPIB bus control line; used by a talker to indicate the end of a multiple byte transfer se- quence. This pin is TTL com- patible.					
EOI*	I/O	15	End or Identify; IEE control line; used to indicate the end ple byte transfer se by a controller in c with ATN, to execu sequence. When this pin can sink or rent. When an inpur compatible Schmit	E GPIB bus by a talker of a multi- aquence or, conjunction te a polling an output, 48 mA cur- t, it is a TTL t-trigger.				
			MODE 3	т				
ATNO	LT	\sum		ΟΡΤΑ				
IFCL	┟╹┻━╸	\overline{A}		— ортв				
DAV	┣	┵┣┵	S/R T/C	DAV*				
T/R1		⊳₋₽	┛ ╋┛╵└╴					
DIO1	'		S/R T/C	DI01*				
DIO ₂				DIO2*				
DIO ₃			S/R T/C	DIO3*				
DIO ₄			S/R T/C	DIO4*				
DIO ₅			S/R T/C	DI05*				
DIO6		<u> </u>	S/R T/C	DIO6*				
DIO7			S/R T/C	DI07*				
DIO8				DIO8*				
EOI								
ATN	┝┥Ĺ							

Figure 6. Talker/Listener/Controller Data Configuration

MODE 3 PIN DESCRIPTION

Symbol	Function							
T/R1	I	1	Transmit receive 1; controls the direction for DAV and the DIO lines. If $T/\overline{R}1$ is high, then all these lines are sending information to the IEEE GPIB lines. This input is TTL com- patible.					
EOI ATN	1	3 4	End of Sequence and Atten- tion; processor GPIB control lines. These two control lines are ANDed together to deter- mine whether all the tran- sceivers in the 8293 are push- pull or open-collector. When both signals are low (true), then the controller is perform- ing a parallel poll and the transceivers are all open- collector. These inputs are TTL compatible.					
ATNO	I	23	Attention Out; processor GPIB control line; used by the 8292 during "take control syn- chronously" operations. This pin is TTL compatible.					
IFCL	I	2	Interface Clean Latched; used to make DAV received after the system controller asserts IFC. This input is TTL compatible.					
DAV	I/O	24	Data Valid; processor GPIB handshake control line; used to indicate the condition (availability and validity) of in- formation on the DIO signals. This pin is TTL compatible.					
DAV*	I/O	21	Data Valid; IEEE GPIB hand- shake control line. When an input, this pin is a TTL com- patible Schmitt-trigger. When DAV* is an output, it can sink 48 mA.					
DIO1- DIO8	I/O	25, 23, 10, 9, 8, 7, 6, 5	Data Input/Output; processor GPIB bus data lines; used to carry message and data bytes in a bit-parallel byte-serial form controlled by the three handshake signals. These lines are TTL compatible.					
DIO1*- DIO8*	I/O	22, 19, 18, 17, 16, 15, 13, 12	Data Input/Output; IEEE GPIB bus data lines. They are TTL compatible Schmitt-triggers when used for input and can sink 48 mA when used for out- put.					

Figure 7. 8291 and 8293 System Configuration

8293

Figure 8. 8291, 8292, and 8293 System Configuration

8293

Absolute Maximum Ratings*

Ambient Temperature Under Bias	0°C to 70°C
Storage Temperature	65°C to + 150°C
Voltage on any Pin with	
Respect to Ground	– 1.0V to + 7V
Power Dissipation	1 Watt

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and Operating Characteristics

 $T_A = 0^{\circ}C$ to 70°C; $V_{CC} = 5.0V \pm 10\%$; GND = 0V

SYMBOL	PARAMETER		LIMITS		UNIT	TEST CONDITIONS	
		MIN.	TYP.	MAX.			
V _{IL1}	Input Low Voltage (GPIB Bus Pins)			0.8	v		
V _{IL2}	Input Low Voltage (Option Pins)	-0.1		0.1	v		
V _{IL3}	Input Low Voltage (All Others)			0.8	v		
V _{IH1}	Input High Voltage (GPIB Bus Pins)	2.0			v		
V _{IH2}	Input High Voltage (Option Pins)	4.5		5.5	V		
V _{IH3}	Input High Voltage (All Others)	2.0			V		
V _{OL1}	Output Low Voltage (GPIB Bus Pins)			0.5	V	I _{OL} = 48 mA	
V _{OL2}	Output Low Voltage (All Others)			0.5	V	I _{OL} = 16 mA	
V _{OH1}	Output High Voltage (GPIB Bus Pins)	2.4			V	I _{OH} = -5.2 mA	
V _{OH2}	Output High Voltage (All Others)	2.4			V	I _{OH} = ~400 μA	
V _{IH4}	Receiver Input Hysteresis	400	600		mV		
Vit	Beceiver Input Threshold High to Low	0.8	1.0		v		
	Low to High		1.6	2.0	•		
I _{LI1}	Low Input Load Current (GPIB Bus Pins)	- 3.2		0.0	mA	$V_{1L} = 0.8V$	
I _{LI2}	Low Input Load Current (All Others)			10	μA	$V_{1L} = 0.8V$	
IPD	Bus Power Down Leakage Current			10	μA	$V_{CC} = 0V$	
I _{CC}	Power Supply Current			100	mA		

Capacitance

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
C _{IN}	Input Capacitance		5	10	pF	$V_{IN} = V_{CC}$
C _{OUT}	Output Capacitance		10	20	pF	$V_{OUT} = V_{CC}$

A.C. Characteristics

 $T_A = 0$ °C to 70 °C; $V_{CC} = 5.0V \pm 10$ %; GND = 0V

SYMBOL	PARAMETER	TYP.*	MAX.	UNITS
t _{PLH1}	Driver Propagation Delay (Low to High)	20	35	ns
t _{PHL1}	Driver Propagation Delay (High to Low)	17	30	ns
t _{PLH2}	Receiver Propagation Delay (Low to High)	22	35	ns
t _{PHL2}	Receiver Propagation Delay (High to Low)	18	30	ns
t _{PHZ1}	Driver Enable Delay (High to 3-State)	20	35	ns
t _{PZH1}	Driver Enable Delay (3-State to High)	15	30	ns
t _{PLZ1}	Driver Enable Delay (Low to 3-State)	20	35	ns
t _{PZL1}	Driver Enable Delay (3-State to Low)	15	30	ns
t _{PHZ2}	Receiver Enable Delay (High to 3-State)	25	40	ns
t _{PZH2}	Receiver Enable Delay (3-State to High)	20	35	ns
t _{PLZ2}	Receiver Enable Delay (Low to 3-State)	25	40	ns
t _{PZL2}	Receiver Enable Delay (3-State to Low)	20	35	ns

*Typical @ $T_A = 25$ °C.

Figure 9. Typical Bus Load Line

Figure 10. Typical Receiver Hysteresis Characteristics

7-186

8293 WAVEFORMS

intപ്രീ

8294 DATA ENCRYPTION UNIT

- Certified by National Bureau of Standards
- 80 Byte/Sec Data Conversion Rate
- 64-Bit Data Encryption Using 56-Bit Key
- DMA Interface
- 3 Interrupt Outputs to Aid in Loading and Unloading Data

- 7-Bit User Output Port
- Single 5V ± 10% Power Supply
- Peripheral to MCS-86[™], MCS-85[™], MCS-80[™] and MCS-48[™] Processors
- Implements Federal Information Processing Data Encryption Standard
- Encrypt and Decrypt Modes Available

DESCRIPTION

The Intel® 8294 Data Encryption Unit (DEU) is a microprocessor peripheral device designed to encrypt and decrypt 64-bit blocks of data using the algorithm specified in the Federal Information Processing Data Encryption Standard. The DEU operates on 64-bit text words using a 56-bit user-specified key to produce 64-bit cipher words. The operation is reversible: if the cipher word is operated upon, the original text word is produced. The algorithm itself is permanently contained in the 8294; however, the 56-bit key is user-defined and may be changed at any time.

The 56-bit key and 64-bit message data are transferred to and from the 8294 in 8-bit bytes by way of the system data bus. A DMA interface and three interrupt outputs are available to minimize software overhead associated with data transfer. Also, by using the DMA interface two or more DEUs may be operated in parallel to achieve effective system conversion rates which are virtually any multiple of 80 bytes/second. The 8294 also has a 7-bit TTL compatible output port for user-specified functions.

Because the 8294 implements the NBS encryption algorithm it can be used in a variety of Electronic Funds Transfer applications as well as other electronic banking and data handling applications where data must be encrypted.

8295 DOT MATRIX PRINTER CONTROLLER

- Interfaces Dot Matrix Printers to MCS-48[™], MCS-80/85[™], MCS-86[™] Systems
- 40 Character Buffer On Chip
- Serial or Parallel Communication with Host
- DMA Transfer Capability

int

 Programmable Character Density (10 or 12 Characters/Inch)

- Programmable Print Intensity
- Single or Double Width Printing
- Programmable Multiple Line Feeds
- 3 Tabulations
- 2 General Purpose Outputs

The Intel® 8295 Dot Matrix Printer Controller provides an interface for microprocessors to the LRC 7040 Series dot matrix impact printers. It may also be used as an interface to other similar printers.

The chip may be used in a serial or parallel communication mode with the host processor. In parallel mode, data transfers are based on polling, interrupts, or DMA. Furthermore, it provides internal buffering of up to 40 characters and contains a 7×7 matrix character generator accommodating 64 ASCII characters.

со	NF	PIN GUF	ATION
CO PFEED [] XTAL1 [] XTAL2 [] RESET [] GND [] GND [] GND [] VCC [] WR [] SYNC []	1 2 3 4 5 6 7 8 9 10 11	8295	ATION 40 Vcc 30 DicoME 30 DACKISIN 31 DIAQUTS 32 DIAQUTS 33 DIATS 33 DIATS 35 T 35 DIATS 30 DIS 35 T 35 S 30 ST 35 S 30 ST 35 S 30 ST 35 S 30 ST 35 S 30 ST 35 S 35
D0 0 D1 0 D2 0 D3 0 D4 0 D4 0 D4 0 D5 0 D6 0 D7 0 GND 0	12 73 14 15 16 17 18 19 20		22 D\$3 28 D\$2 7 D\$1 26 DVDD 25 DNC 24 D0P1 23 D6P2 22 DYDF 10FFH

PIN DESCRIPTION

Name	I/O	Pin #	Description	Name	i/O	Pin#	Description
PFEED XTAL1	 	1 2	Paper feed input switch. Inputs for a crystal to set internal exciliator frequency. For proper	HOME	I	39	Home input switch, used by the 8295 to detect that the print head is in the home position.
RESET	I	4	operation use 6 MHz crystal. Reset input, active low. After	DACK/SIN	1	38	In the parallel mode used as DMA acknowledgement; in the serial mode used as input for data
			reset the 8295 will be set for 12 characters/inch single width printing, solenoid strobe at 320 msec.	DRQ/CTS	0	37	In the parallel mode used as DMA request output pin to indicate to the 8257 that a DMA transfer is re-
NC	—	5	No connection or tied high.				as clear-to-send signal.
ĊŚ	I	6	Chip select input used to enable the RD and WR inputs except dur- ing DMA.	IRQ/SER	0	36	In parallel mode it is an interrupt request input to the master CPU; in serial mode it should be
GND		7	This pin must be tied to ground.				strapped to V _{SS} .
RD	1	8	Read input which enables the	MOT	0	35	Main motor drive, active low.
		master CPU to read data and status. In the serial mode this pin must be tied to V_{CC} .	STB	0	34	Solenoid strobe output. Used to determine duration of solenoids activation.	
V _{CC}	_	9	+ 5 volt power input: + 5V \pm 10%.	S ₇	0	33	Solenoid drive outputs; active
WR	I	10	Write input which enables the master CPU to write data and commands to the 8295. In the serial mode this pin must be tied to V_{SS} .	ରେ ଚୁର୍ବାର୍ଥ ଅନ୍ଥାର ଅନ୍ଥାର ଅନ୍ଥାର		32 31 30 29 28 27	low.
SYNC	0	11	2.5 μ s clock output. Can be used as a strobe for external circuitry.	V _{DD}		26	+ 5V power input (+ 5V ± 10%). Low power standby pin.
D ₀	I/O	12 13	Three-state bidirectional data bus	NC	_	25	No connection.
D_1 D_2		14	8295 to the host processor in the	GP1	о	24	General purpose output pins.
D_3		15	parallel mode. In the serial mode	GP2	0	23	
D₄ D ₅ D ₆ D ₇		16 17 18 19	$D_0 - D_2$ sets up the baud rate.	TOF	ł	22	Top of form input, used to sense top of form signal for type T printer.
GND	-	20	This pin must be tied to ground.	PFM	о	21	Paper feed motor drive, active
V _{CC}	_	40	+ 5 volt power input: + 5V \pm 10%.				low.

FUNCTIONAL DESCRIPTION

The 8295 interfaces microcomputers to the LRC 7040 Series dot matrix impact printers, and to other similar printers. It provides internal buffering of up to 40 characters. Printing begins automatically when the buffer is full or when a carriage return character is received. It provides a modified 7x7 matrix character generator. The character set includes 64 ASCII characters.

COMMAND SUMMARY

Hex Code

Description

- 00 Set GP1. This command brings the GP1 pin to a logic high state. After power on it is automatically set high.
- 01 Set GP2. Same as the above but for GP2.
- 02 Clear GP1. Sets GP1 pin to logic low state, inverse of command 00.
- 03 Clear GP2. Same as above but for GP2. Inverse command 01.
- 04 Software Reset. This is a pacify command. This command is not effective immediately after commands requiring a parameter, as the Reset command will be interpreted as a parameter.
- 05 Print 10 characters/in. density.
- 06 Print 12 characters/in. density.
- 07 Print double width characters. This command prints characters at twice the normal width, that is, at either 17 or 20 characters per line.
- 08 Enable DMA mode; must be followed by two bytes specifying the number of data characters to be fetched. Least significant byte accepted first.

PROGRAMMABLE PRINTING OPTIONS

CHARACTER DENSITY

The character density is programmable at 10 or 12 characters/inch (32 or 40 characters/line). The 8295 is automatically set to 12 characters/inch at power-up. Invoking the Print Double-Width command halves the character density (5 or 6 characters/inch). The 10 char/in or 12 char/in command must be re-issued to cancel the Double-Width mode. Different character density modes may not be mixed within a single line of printing.

PRINT INTENSITY

The intensity of the printed characters is determined by the amount of time during which the solenoid is on. This on-time is programmable via the Set Strobe-Width command. A byte following this command sets the solenoid on-time according to Table 1. Note that only the three least significant bits of this byte are important. Communication between the 8295 and the host processor can be implemented in either a serial or parallel mode. The parallel mode allows for character transfers into the buffer via DMA cycles. The serial mode features selectable data rates from 110 to 4800 baud.

The 8295 also offers two general purpose output pins which can be set or cleared by the host processor. They can be used with various printers to implement such functions as ribbon color selection, enabling form release solenoid, and reverse document feed.

Hex Code Description

- 09 Tab character.
- 0A Line feed.
- 0B Multiple Line Feed; must be followed by a byte specifying the number of line feeds.
- 0C Top of Form. Enables the line feed output until the Top of Form input is activated.
- 0D Carriage Return. Signifies end of a line and enables the printer to start printing.
- 0E Set Tab #1, followed by tab position byte.
- 0F Set Tab #2, followed by tab position byte. Should be greater than Tab #1.
- 10 Set Tab #3, followed by tab position byte. Should be greater than Tab #2.
- 11 Print Head Home on Right. On some printers the print head home position is on the right. This command would enable normal left to right printing with such printers.
- 12 Set Strobe Width; must be followed by strobe width selection byte. This command adjusts the duration of the strobe activation.

D7—D3	D2	D1	DO	Solenoid On (microsec)
x	0	0	0	200
x	0	0	1	240
x	0	1	0	280
x	0	1	1	320
x	1	0	0	360
x	1	0	1	400
X	1	1	0	440
x	1	1	1	480

Table 1.

TABULATIONS

Up to three tabulation positions may be specified with the 8295. The column position of each tabulation is selected by issuing the Set Tab commands, each followed by a byte specifying the column. The tab positions will then remain valid until new Set Tab commands are issued.

Sending a tab character (09H) will automatically fill the character buffer with blanks up to the next tab position. The character sent immediately after the tab character will thus be stored and printed at that position.

CPU TO 8295 INTERFACE

Communication between the CPU and the 8295 may take place in either a serial or parallel mode. However, the selection of modes is inherent in the system hardware; it is not software programmable. Thus, the two modes cannot be mixed in a single 8295 application.

PARALLEL INTERFACE

Two internal registers on the 8295 are addressable by the CPU; one for input, one for output. The following table describes how these registers are accessed.

RD	WR CS R		Register
1	0	0	Input Data Register
0	1	0	Output Status Register

Input Data Register-Data written to this register is interpreted in one of two ways, depending on how the data is coded.

- 1. A command to be executed (0XH or 1XH).
- 2. A character to be stored in the character buffer for printing (2XH, 3XH, 4XH, or 5XH). See the character set, Table 2.

Output Status Register-8295 status is available in this register at all times.

STATUS BIT:	7	6	5	4	3	2	1	0
FUNCTION:	X	x	PA	DE	x	x	IBF	X

PA-Parameter Required; PA = 1 indicates that a command requiring a parameter has been received. After the necessary parameters have been received by the 8295, the PA flag is cleared.

DE-DMA Enabled; DE = 1 whenever the 8295 is in DMA mode. Upon completion of the required DMA transfers, the DE flag is cleared.

IBF-Input Buffer Full; IBF = 1 whenever data is written to the Input Data Register. No data should be written to the 8295 when IBF = 1.

A flow chart describing communication with the 8295 is shown in Figure 1.

The interrupt request output (IRQ, Pin 36) is available on the 8295 for interrupt driven systems. This output is asserted true whenever the 8295 is ready to receive data.

To improve bus efficiency and CPU overhead, data may be transferred from main memory to the 8295 via DMA cycles. Sending the Enable DMA command (08H) activates the DMA channel of the 8295. This command must be followed by two bytes specifying the length of the data string to be transferred (least significant byte first). The 8295 will then assert the required DMA requests to the 8257 DMA controller without further CPU intervention. Figure 2 shows a block diagram of the 8295 in DMA mode

Figure 1. Host to 8295 Protocol Flowchart

Figure 2. Parallel System Interface

Data transferred in the DMA mode may be either commands or characters or a mixture of both. The procedure is as follows:

- 1. Set up the 8257 DMA controller channel by sending a starting address and a block length.
- 2. Set up the 8295 by issuing the "Enable DMA" command (08H) followed by two bytes specifying the block length (least significant byte first).

The DMA enabled flag (DE) will be true until the assigned data transfer is completed. Upon completion of the transfer, the flag is cleared and the interrupt request (IRQ) signal is asserted. The 8295 then returns to the non-DMA mode of operation.

SERIAL INTERFACE

The 8295 may be hardware programmed to operate in a serial mode of communication. By connecting the IRQ/SER pin (pin 36) to logic zero, the serial mode is enabled immediately upon power-up. The serial Baud rate is also hardware programmable; by strapping pins 14, 13, and 12 according to Table 2, the rate is selected. \overline{CS} , \overline{RD} , and \overline{WR} must be strapped as shown in Figure 3.

Pin 14	Pin 13	Pin 12	Baud Rate
0	0	0	110
0	0	1	150
0	1	0	300
0	1	1	600
1	0	0	1200
1	0	1	2400
1	1	0	4800
1	1	1	4800

Table 2.

The serial data format is shown in Figure 3. The CPU should wait for a clear to send signal $(\overline{\text{CTS}})$ from the 8295 before sending data.

8295 TO PRINTER INTERFACE

The strobe output signal of the 8295 determines the duration of the solenoid outputs, which hold the data to the printer. These solenoid outputs cannot drive the printer solenoids directly. They should be buffered through solenoid drivers as shown in Figure 4. Recommended solenoid and motor driver circuits may be found in the printer manufacturer's interface guide.

Figure 4. 8295 To Printer Solenoid Interface

OSCILLATOR AND TIMING CIRCUITS

The 8295's internal timing generation is controlled by a self-contained oscillator and timing circuit. A 6 MHz crystal is used to derive the basic oscillator frequency. The resident timing circuit consists of an oscillator, a state counter and a cycle counter as illustrated in Figure 5. The recommended crystal connection is shown in Figure 6.

Figure 5. Oscillator Configuration

Hex Code	Print Char.	Hex Code	Print Char.	Hex Code	Print Char.	Hex Code	Print Char.
20	space	30	0	40	@	50	Р
21	. !	31	1	41	Α	51	Q
22		32	2	42	В	52	R
23	#	33	3	43	С	53	S
24	\$	34	4	44	D	54	Т
25	%	35	5	45	E	55	U
26	&	36	6	46	F	56	v
27		37	7	47	G	57	W
28	í	38	8	48	н	58	Х
29	ĵ	39	9	49	I	59	Y
2A	*	3A	:	5A	J	5A	Z
2B	+	3B	;	4B	к	5 B	[
2C	1	3C	<	4C	L	5C	λ
2D	-	3D	=	4D	М	5D]
2E		3E	>	4E	N	5E	Ť
2F	1	3F	?	4F	0	5F	_

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	.0°C to 70°C
Storage Temperature	° to + 150°C
Voltage on Any Pin With	
Respect to Ground	.0.5V to + 7V
Power Dissipation	1.5 Watt

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sectional soctions of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS

 $T_A = 0$ °C to 70 °C, $V_{CC} = V_{DD} = +5V \pm 10\%$, $V_{SS} = 0V$

Symbol Parameter			Limits		Unit	Test Conditions	
Symbol	Faranieter	Min.	Тур.	Max.		Test Conditions	
VIL	Input Low Voltage (All Except X ₁ , X ₂ , RESET)	-0.5		0.8	v		
V _{IL1}	Input Low Voltage (X ₁ , X ₂ , RESET)	-0.5		0.6	V		
VIH	Input High Voltage (All Except X ₁ , X ₂ , RESET)	2.2		V _{CC}	v		
V _{IH1}	Input High Voltage (X ₁ , X ₂ , RESET)	3.8		V _{cc}	V		
VOL	Output Low Voltage (D0-D7)			0.45	V	$I_{OL} = 2.0 \text{ mA}$	
V _{OL1}	Output Low Voltage (All Other Outputs)			0.45	V	I _{OL} = 1.6 mA	
V _{OH}	Output High Voltage (D0-D7)	2.4			V	$I_{OH} = -400 \mu A$	
V _{OH1}	Output High Voltage (All Other Outputs)	2.4			V	$I_{OH} = -50 \mu A$	
IIL	Input Leakage Current (RD, WR, CS, A ₀)			±10	μΑ	$V_{SS} \leq V_{IN} \leq V_{CC}$	
l _{oz}	Output Leakage Current (D ₀ -D ₇ , High Z State)			±10	μΑ	$V_{SS} + 0.45 \le V_{IN} \le V_{CC}$	
IDD	V _{DD} Supply Current		5	15	mA		
IDD + ICC	Total Supply Current		60	125	mA		
I _U	Low Input Load Current (Pins 24, 27-38)			0.5	mA	$V_{IL} = 0.8 V$	
l _{LI1}	Low Input Load Current (RESET)			0.2	mA	$V_{IL} = 0.8 V$	

A.C. CHARACTERISTICS

 $T_{A}\!=\!0\,^{\circ}\text{C}$ to 70 $^{\circ}\text{C},\,V_{CC}\!=\!V_{DD}\!=\!+5V\pm10\,\%,\,V_{SS}\!=\!0V$

DBB READ

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{AR}	\overline{CS} , A ₀ Setup to $\overline{RD} \downarrow$	0		ns	
t _{RA}	CS, A ₀ Hold After RD †	0		ns	
t _{RR}	RD Pulse Width	250		ns	
t _{AD}	CS, A ₀ to Data Out Delay		225	ns	C _L = 150 pF
t _{RD}	RD ↓ to Data Out Delay		225	ns	C _L = 150 pF
t _{DF}	RD t to Data Float Delay		100	ns	
t _{CY}	Cycle Time	2.5	15	μs	

DBB WRITE

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{AW}	CS, A ₀ Setup to WR ↓	0		ns	
t _{WA}	CS, A ₀ Hold After WR ↑	0		ns	
tww	WR Pulse Width	250		ns	
t _{DW}	Data Setup to WR 1	150		ns	
t _{WD}	Data Hold to WR ↑	0		ns	

DMA AND INTERRUPT TIMING

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
t _{ACC}	DACK Setup to Control	0		ns	-
tCAC	DACK Hold After Control	0		ns	
tCRQ	WR to DRQ Cleared		200	ns	
t _{ACD}	DACK to Data Valid		225	ns	

WAVEFORMS

1. READ OPERATION - OUTPUT BUFFER REGISTER.

2. WRITE OPERATION - INPUT BUFFER REGISTER.

DMA AND INTERRUPT TIMING

8295

PRINTER INTERFACE TIMING AND WAVEFORMS

Symbol	Parameter	Typical
P _{DH}	Print delay from home inactive	1.8 ms
S _{DS}	Solenoid data setup time before strobe active	25 µs
S _{HS}	Solenoid data hold after strobe inactive	>1 ms
M _{HA}	Motor hold time after home active	3.2 ms
P _{SP}	PFEED setup time after PFM active	58 ms
P _{HP}	PFM hold time after PFEED active	9.75 ms

00231B

2114A 1024 X 4 BIT STATIC RAM

	2114AL-1	2114AL-2	2114AL-3	2114AL-4	2114A-4	2114A-5
Max. Access Time (ns)	100	120	150	200	200	250
Max. Current (mA)	40	40	40	40	70	70

- HMOS Technology
- Low Power, High Speed
- Identical Cycle and Access Times
- Single +5V Supply ±10%
- High Density 18 Pin Package

- Completely Static Memory No Clock or Timing Strobe Required
- Directly TTL Compatible: All Inputs and Outputs
- Common Data Input and Output Using Three-State Outputs
- 2114 Upgrade

The Intel® 2114A is a 4096-bit static Random Access Memory organized as 1024 words by 4-bits using HMOS, a high performance MOS technology. It uses fully DC stable (static) circuitry throughout, in both the array and the decoding, therefore it requires no clocks or refreshing to operate. Data access is particularly simple since address setup times are not required. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.

The 2114A is designed for memory applications where the high performance and high reliability of HMOS, low cost, large bit storage, and simple interfacing are important design objectives. The 2114A is placed in an 18-pin package for the highest possible density.

It is directly TTL compatible in all respects: inputs, outputs, and a single +5V supply. A separate Chip Select (CS) lead allows easy selection of an individual package when outputs are or-tied.

INTEL CORPORATION ASSUMES NO RESPONSIBILITY FOR THE USE OF ANY CIRCUITRY OTHER THAN CIRCUITRY EMBODIED IN AN INTEL PRODUCT. NO OTHER CIRCUIT PATENT LICENSES ARE IMPLIED.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	10°C to 80°C
Storage Temperature	65°C to 150°C
Voltage on any Pin	
With Respect to Ground	3.5V to +7V
Power Dissipation	1.0W
D.C. Output Current	5mA

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied Exposure is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS

 $T_A = 0^{\circ}C$ to 70°C, $V_{CC} = 5V \pm 10\%$, unless otherwise noted.

SYMBOL	PARAMETER	2114AL Min.	-1/L-2/L Typ.[1]	-3/L-4 Max.	Min.	2114A-4/- Typ.[1]	•5 Max.	UNIT	CONDITIONS
I _{LI}	Input Load Current (All Input Pins)			10			10	μΑ	V _{IN} = 0 to 5.5V
I _{LO}	I/O Leakage Current			10			10	μΑ	$\overline{CS} = V_{IH}$ $V_{I/O} = GND$ to VCC
Icc	Power Supply Current		25	40		50	70	mA	$V_{cc} = max, I_{1/O} = 0 mA,$ $T_A = 0^{\circ}C$
VIL	Input Low Voltage	-3.0		0.8	-3.0		0.8	V	
VIH	Input High Voltage	2.0		6.0	2.0		6.0	V	
IOL	Output Low Current	2.1	9.0		2.1	9.0		mA	$V_{OL} = 0.4V$
юн	Output High Current	-1.0	-2.5		-1.0	-2.5		mA	V _{OH} = 2.4V
l _{OS} [2]	Output Short Circuit Current			40			40	mA	

NOTE: 1. Typical values are for $T_A = 25^{\circ} C$ and $V_{CC} = 5.0 V$. 2. Duration not to exceed 30 seconds.

CAPACITANCE

T_A = 25°C, f = 1.0 MHz

SYMBOL	TEST	MAX	UNIT	CONDITIONS
C _{I/O}	Input/Output Capacitance	5	pF	V _{I/O} = OV
CIN	Input Capacitance	5	pF	V _{IN} = OV

NOTE: This parameter is periodically sampled and not 100% tested.

A.C. CONDITIONS OF TEST

Input Pulse Levels	0.8 Volt to 2.0 Volt
Input Rise and Fall Times	10 nsec
Input and Output Timing Levels	1.5 Volts
Output Load	1 TTL Gate and C_L = 100 pF

A.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted.

READ CYCLE [1]

		2114AL-1		2114AL-2		2114AL-3		2114A-4/L-4		2114A-5			
SYMBOL	PARAMETER	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	UNIT	
t _{RC}	Read Cycle Time	100		120		150		200		250		ns	
t _A	Access Time		100		120		150		200		250	ns	
t _{co}	Chip Selection to Output Valid		70		70		70		70		85	ns	
t _{cx}	Chip Selection to Output Active	10		10		10		10		10		ns	
tord	Output 3-state from Deselection		30		35		40		50		60	ns	
t _{oha}	Output Hold from Address Change	15		15		15		15		15		ns	

WRITE CYCLE ^[2]

		2114A	L-1	2114A	2	2114AI	3	2114A-	4/L-4	2114A-	-5	
SYMBOL	PARAMETER	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	UNIT
twc	Write Cycle Time	100		120		150		200		250		ns
tw	Write Time	75		75		90		120		135		ns
twn	Write Release Time	0		0		0		0		0		ns
torw	Output 3-state from Write		30		35		40		50		60	ns
tow	Data to Write Time Overlap	70		70		90		120		135		ns
t _{DH}	Data Hold from Write Time	0		0		0		0		0		ns

NOTES:

A Read occurs during the overlap of a low CS and a high WE.
 A Write occurs during the overlap of a low CS and a low WE. tw is measured from the latter of CS or WE going low to the earlier of CS or WE going high.

WAVEFORMS

READ CYCLE³

NOTES:

- 3. WE is high for a Read Cycle.
- 4. If the $\overline{\text{CS}}$ low transition occurs simultaneously with the $\overline{\text{WE}}$ low

transition, the output buffers remain in a high impedance state. 5. WE must be high during all address transitions.

WRITE CYCLE

TYPICAL D.C. AND A.C. CHARACTERISTICS

NORMALIZED ACCESS TIME VS. OUTPUT LOAD CAPACITANCE

C_L (pF)

OUTPUT SOURCE CURRENT VS. OUTPUT VOLTAGE

NORMALIZED POWER SUPPLY CURRENT VS. AMBIENT TEMPERATURE

OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE

2142 1024 X 4 BIT STATIC RAM

	2142-2	2142-3	2142	2142L2	2142L3	2142L
Max. Access Time (ns)	200	300	450	200	300	450
Max. Power Dissipation (mw)	525	525	525	370	370	370

- High Density 20 Pin Package
- Access Time Selections From 200-450ns
- Identical Cycle and Access Times
- Low Operating Power Dissipation .1mW/Bit Typical
- Single +5V Supply

- No Clock or Timing Strobe Required
- Completely Static Memory

BLOCK DIAGRAM

- Directly TTL Compatible: All Inputs and Outputs
- Common Data Input and Output Using Three-State Outputs

The Intel® 2142 is a 4096-bit static Random Access Memory organized as 1024 words by 4-bits using N-channel Silicon-Gate MOS technology. It uses fully DC stable (static) circuitry throughout — in both the array and the decoding — and therefore requires no clocks or refreshing to operate. Data access is particularly simple since address setup times are not required. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.

The 2142 is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives. It is directly TTL compatible in all respects: inputs, outputs, and a single +5V supply.

The 2142 is placed in a 20-pin package. Two Chip Selects (\overline{CS}_1 and CS_2) are provided for easy and flexible selection of individual packages when outputs are OR-tied. An Output Disable is included for direct control of the output buffers.

The 2142 is fabricated with Intel's N-channel Silicon-Gate technology — a technology providing excellent protection against contamination permitting the use of low cost plastic packaging.

PIN CONFIGURATION LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	–10°C to 80°C
Storage Temperature	-65°C to +150°C
Voltage on Any Pin	
With Respect to Ground	0.5V to +7V
Power Dissipation	1.0 W
D.C. Output Current	10mA

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$, unless otherwise noted.

SYMBOL	PARAMETER	2142-2, Min.	, 2142-3, Typ.[1]	, 2142 Max.	2142L2 Min.	, 2142L Typ.[1	3, 2142L Max.	UNIT	CONDITIONS
I _{LI}	Input Load Current (All Input Pins)			10			10	μA	V _{IN} = 0 to 5.25V
ILO	I/O Leakage Current			10			10	μA	$\overline{\text{CS}}$ = 2.4V, V _{I/O} = 0.4V to V _{CC}
I _{CC1}	Power Supply Current		80	95			65	mA	V _{IN} = 5.25V, I _{I/O} = 0 mA, T _A = 25°C
I _{CC2}	Power Supply Current			100			70	mA	$V_{IN} = 5.25V, I_{I/O} = 0 mA, T_A = 0^{\circ}C$
VIL	Input Low Voltage	-0.5		0.8	-0.5		0.8	V	
VIH	Input High Voltage	2.0		6.0	2.0		6.0	v	
IOL	Output Low Current	2.1	6.0		2.1	6.0		mA	V _{OL} = 0.4V
I _{OH}	Output High Current	-1.0	-1.4		-1.0	-1.4		mA	V _{OH} = 2.4V
l _{os} [2]	Output Short Circuit Current			40			40	mA	$V_{I/O} = GND$ to V_{CC}

NOTE: 1. Typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 5.0V$. 2. Duration not to exceed 30 seconds.

CAPACITANCE

 $T_A = 25^{\circ}C, f = 1.0 \text{ MHz}$

SYMBOL	TEST	MAX	UNIT	CONDITIONS
C _{1/O}	Input/Output Capacitance	5	pF	V _{I/O} = OV
CIN	Input Capacitance	5	pF	V _{IN} = OV

NOTE: This parameter is periodically sampled and not 100% tested.

A.C. CONDITIONS OF TEST

Input Pulse Levels		0.8	Volt to 2.4 Volt
Input Rise and Fall Times			10 nsec
Input and Output Timing Levels		• • · • •	1.5 Volts
Output Load	1 TT	L Gate	and $C_L = 100 pF$

TEST NOTE: This circuit employs a self starting oscillator and a charge pump which require a certain amount of time after POWER ON to start functioning properly. This 2142 circuit is conservatively specified as requiring 500 μ sec after V_{CC} reaches its specified limit (4.75V).

2142 FAMILY

A.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$, unless otherwise noted.

SYMBOL	PARAMETER	2142-2, 2142L2 Min. Max.	2142-3, 2142L3 Min. Max.	2142, 2142L Min. Max.	UNIT
tRC	Read Cycle Time	200	300	450	ns
t _A	Access Time	200	300	450	ns
tod	Output Enable to Output Valid	70	100	120	ns
todx	Output Enable to Output Active	20	20	20	ns
t _{CO}	Chip Selection to Output Valid	70	100	120	ns
tcx	Chip Selection to Output Active	20	20	20	ns
^t OTD	Output 3-state from Disable	60	80	100	ns
toha	Output Hold from Address Change	50	50	50	ns

READ CYCLE^[1]

WRITE CYCLE^[2]

		2142-2,	2142L2	2142-3,	2142L3	2142,	2142L	
SYMBOL	PARAMETER	Min.	Max.	Min.	Max.	Min.	Max.	UNIT
twc	Write Cycle Time	200		300		450		ns
tw	Write Time	120		150		200		ns
twR	Write Release Time	0		0		0		ns
tотр	Output 3-state from Disable		60		80		100	ns
t _{DW}	Data to Write Time Overlap	120		150		200		ns
t _{DH}	Data Hold From Write Time	0		0		0		ns

NOTES:

1. A Read occurs during the overlap of a low \overline{CS} and a high \overline{WE} .

2. A Write occurs during the overlap of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$.

WAVEFORMS

READ CYCLE³

NOTES:

(3) $\overline{\text{WE}}$ is high for a Read Cycle.

(4) $\overline{\text{WE}}$ must be high during all address transitions.

WRITE CYCLE

TYPICAL D.C. AND A.C. CHARACTERISTICS

NORMALIZED ACCESS TIME VS. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME VS. OUTPUT LOAD CAPACITANCE 1.2 1.1 1.0 NORMALIZED t_A 0.9 0.8 0.7 0.6 0.5 200 300 400 500 600 CL (pF)

OUTPUT SOURCE CURRENT VS. OUTPUT VOLTAGE

NORMALIZED POWER SUPPLY CURRENT VS. AMBIENT TEMPERATURE

OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE

intel

2148 1024 × 4 BIT STATIC RAM

	2148-3	2148	2148-6
Max. Access Time (ns)	55	70	85
Max. Active Current (mA)	125	125	125
Max. Standby Current (mA)	30	30	30

HMOS Technology

- Completely Static Memory

 No Clock or Timing Strobe Required
- Automatic Power-Down
- High Density 18-Pin Package
- Directly TTL Compatible
 All Inputs and Outputs
- Equal Access and Cycle Times
- Common Data Input and Output

■ Single +5V Supply

Three-State Output

The Intel® 2148 is a 4096-bit static Random Access Memory organized as 1024 words by 4 bits using HMOS, a highperformance MOS technology. It uses a uniquely innovative design approach which provides the ease-of-use features associated with non-clocked static memories and the reduced standby power dissipation associated with clocked static memories. To the user this means low standby power dissipation without the need for clocks, address setup and hold times, nor reduced data rates due to cycle times that are longer than access times.

 \overline{CS} controls the power-down feature. In less than a cycle time after \overline{CS} goes high — disabling the 2148 — the part automatically reduces its power requirements and remains in this low power standby mode as long as \overline{CS} remains high. This device feature results in system power savings as great as 85% in larger systems, where the majority of devices are disabled.

The 2148 is assembled in an 18-pin package configured with the industry standard $1K \times 4$ pinout. It is directly TTL compatible in all respects: inputs, outputs, and a single +5V supply. The data is read out nondestructively and has the same polarity as the input data.

INTEL CORPORATION ASSUMES NO RESPONSIBILITY FOR THE USE OF ANY CIRCUITRY OTHER THAN CIRCUITRY EMBODIED IN AN INTEL PRODUCT. NO OTHER CIRCUIT PATENT LICENSES ARE IMPLIED

2148

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	. – 10 °C to + 85 °C
Storage Temperature	–65°C to +150°C
Voltage on Any Pin with	
Respect to Ground	3.5V to +7V
D.C. Output Current	20mA
Power Dissipation	

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS⁽¹⁾

 $T_A = 0$ °C to +70 °C, $V_{CC} = +5V \pm 10\%$ unless otherwise noted.

		2148,	2148-3,	2148-6				
Symbol	Parameter	Min.	Typ. ^[2]	Max.	Unit	Tes	t Conditions	
ILI	Input Load Current (All Input Pins)		0.01	10	μA	V _{CC} = max,	$V_{IN} = GND$ to V_{CC}	
I _{LO}	Output Leakage Current		0.1	50	μA	$\overline{CS} = V_{IH}, V_{CC} = max,$ $V_{OUT} = GND \text{ to } 4.5 V$		
· · · · ·	Operating Current		75	115	mA	T _A = 25 °C	$V_{CC} = max, \overline{CS} = V_{1L},$	
'CC	operating current			125	mA	T _A =0°C	Outputs Open	
I _{SB}	Standby Current		12	30	mA	V _{CC} = min	to max, CS = V _{IH}	
PO ⁽³⁾	Peak Power-On Current		25	50	mA	V _{CC} = GND CS = Lower	to V _{CC} min, r of V _{CC} or V _{IH} min	
VIL	Input Low Voltage	- 3.0		0.8	V			
VIH	Input High Voltage	2.0		6.0	V			
V _{OL}	Output Low Voltage			0.4	v	I _{OL} = 8 mA		
V _{OH}	Output High Voltage	2.4			v	I _{OH} = -2.01	mA	
los	Output Short Circuit Current	TBD		TBD	mA	V _{OUT} = GNI	D to V _{CC}	

Notes:

1. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.

2. Typical limits are at $V_{CC} = 5V$, $T_A = +25$ °C, and Load A.

3. A pull-up resistor to V_{CC} on the CS input is required to keep the device deselected; otherwise, power-on current approaches I_{CC} active.

A.C. TEST CONDITIONS

Input Pulse Levels	GND to 3.0 Volts
Input Rise and Fall Times	10 nsec
Input and Output Timing	
Reference Levels	1.5 Volts
Output Load	See Load A.

CAPACITANCE ^[4]

T_A = 25 °C, f = 1.0 MHz

Symbol	Parameter	Max.	Unit	Conditions
CIN	Input Capacitance	5	pF	V _{IN} = 0 V
C _{OUT}	Output Capacitance	7	pF	$V_{OUT} = 0 V$

Load B.

Note 4. This parameter is sampled and not 100% tested.

A.C. CHARACTERISTICS

 $T_A = 0$ °C to +70 °C, $V_{CC} = +5V \pm 10\%$ unless otherwise noted.

READ CYCLE

			2148-3		2148		2148-6		Teet
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Conditions
t _{RC}	Read Cycle Time	55		70		85		ns	
t _{AA}	Address Access Time		55		70		85	ns	
t _{ACS1}	Chip Select Access Time		55		70		85	ns	Note 1
t _{ACS2}	Chip Select Access Time		65		80		95	ns	Note 2
t _{он}	Output Hold from Address Change	5		5		5		ns	
t _{LZ} ⁽⁶⁾	Chip Selection Output in Low Z	10		10		10		ns	Note 7
t _{HZ} [6]	Chip Deselection to Output in High Z	0	40	0	40	0	40	ns	Note 7
t _{PU}	Chip Selection to Power Up Time	0		0		0		ns	
t _{PD}	Chip Deselection to Power Down Time		30		30		30	ns	

WAVEFORMS

Notes:

- 1. Chip deselected for greater than 55 ns prior to \overline{CS} transition low.
- 2. Chip deselected for a finite time that is less than 55ns prior to CS transition low. (If the deselect time is 0ns, the chip is by definition selected and access occurs according to Read Cycle No. 1.)
- 3. WE is high for Read Cycles.
- 4. Device is continuously selected, $\overline{CS} = V_{IL}$.
- 5. Addresses valid prior to or coincident with $\overline{\text{CS}}$ transition low.
- 6. At any given temperature and voltage condition, t_{HZ} max. is less than t_{LZ} min. both for a given device and from device to device.
- 7. Transition is measured ± 500mV from high impedance voltage with Load B. This parameter is sampled and not 100% tested.

A.C. CHARACTERISTICS (continued)

WRITE CYCLE

		214	48-3	21	48	214	18-6		Test
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Conditions
t _{WC}	Write Cycle Time	55		70		85		ns	
t _{cw}	Chip Selection to End of Write	50		65		80		ns	
t _{AW}	Address Valid to End of Write	-50		65		80		ns	
t _{AS}	Address Setup Time	0		0		0		ns	
t _{WP}	Write Pulse Width	40		50		60		ns	
t _{WR}	Write Recovery Time	5		5		5		ns	
t _{DW}	Data Valid to End of Write	25		25		30		ns	
t _{DH}	Data Hold Time	5		5		5		ns	
t _{wz}	Write Enabled to Output in High Z	0	15	0	25	0	30	ns	Note 2
tow	Output Active from End of Write	0		0		0		ns	Note 2

WAVEFORMS

WRITE CYCLE #1 (WE CONTROLLED)

Notes: 1. If \overline{CS} goes high simultaneously with \overline{WE} high, the output remains in a high impedance state.

2. Transition is measured ±500 mV from high impedance voltage with Load B. This parameter is sampled and not 100% tested.

2148H 1024 x 4-BIT STATIC RAM

	2148H-3	2148H	2148HL-3	2148HL
Maximum Access Time (ns)	55	70	55	70
Maximum Active Current (mA)	180	180	125	125
Maximum Standby Current (mA)	30	30	20	20

- Automatic Power-Down
- Industry Standard 2114A and 2148 Pinout
- **HMOS II Technology**
- **Functionally Compatible to the 2148**
- Completely Static Memory—No Clock or Timina Strobe Required

- Equal Access and Cycle Times
- **High Density 18-Pin Package**
- **Common Data Input and Output**
- Three-State Output
- Single + 5V Supply
- Fast Chip Select Access 2149H **Available**

The Intel® 2148H is a 4096-bit static Random Access Memory organized as 1024 words by 4 bits using HMOS II, a high performance MOS technology. It uses a uniquely innovative design approach which provides the ease-of-use features associated with non-clocked static memories and the reduced standby power dissipation associated with clocked static memories. To the user this means low standby power dissipation without the need for clocks, address setup and hold times, or reduced data rates due to cycle times that are longer than access times.

CS controls the power-down feature. In less than a cycle time after CS goes high—disabling the 2148H—the part automatically reduces its power requirements and remains in this low power standby mode as long as \overline{CS} remains high. This device feature results in system power savings as great as 85% in larger systems, where the majority of devices are disabled. A non-power-down companion, the 2149H, is available to provide a fast chip select access time for speed critical applications.

The 2148H is assembled in an 18-pin package configured with the industry standard 1K x 4 pinout. It is directly TTL compatible in all respects: inputs, outputs, and a single +5V supply. The data is read out nondestructively and has the same polarity as the input data.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied **INTEL CORPORATION, 1980** AFN2148H/PDS/0980

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	. – 10°C to + 85°C
Storage Temperature	– 65°C to + 150°C
Voltage on Any Pin with	
Respect to Ground	– 3.5V to + 7V
D.C. Continuous Output Current	
Power Dissipation	

* COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS"

 $T_A = 0$ °C to +70 °C, $V_{CC} = +5V \pm 10\%$ unless otherwise noted.

		2148H/H-3		2148H/H-3 2148HL/HL-3		2148HL/HL-3			
Symbol	Parameter	Min.	Typ ⁽²⁾	Max.	Min.	Тур ⁽²⁾	Max.	Unit	Test Conditions
lu	Input Load Current (All Input Pins)		0.01	10		0.01	10	μA	$V_{CC} = max$, $V_{IN} = GND$ to V_{CC}
IL0	Output Leakage Current		0.1	50		0.1	50	μΑ	$\overline{CS} = V_{IH}, V_{CC} = max, V_{OUT} = GND to 4.5V$
Icc	Operating Current		120	180		90	125	mA	V _{CC} = max, CS = V _{IL} , Outputs Open
ISB	Standby Current		15	30		10	20	mA	$V_{CC} = min to max, \overline{CS} = V_{IH}$
1 _{PO} ⁽³⁾	Peak Power-On Current		25	50		15	30	mA	$\frac{V_{CC}}{CS} = GND \text{ to } V_{CC} \text{ min,}$ $\frac{V_{CS}}{CS} = Lower \text{ of } V_{CC} \text{ or } V_{IH} \text{ min}$
VIL	Input Low Voltage	-3.0		0.8	-3.0		0.8	v	
Vін	Input High Voltage	2.1		6.0	2.1	-	6.0	v	
Vol	Output Low Voltage			0.4			0.4	V	I _{OL} = 8 mA
Vон	Output High Voltage	2.4			2.4			v	l _{он} = -4.0 mA
los	Output Short Circuit Current		±150	±200		±150	±200	mA	Vout = GND to Vcc

Notes:

1. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute. Typical thermal resistance values of the package at maximum temperatures are:

$$\theta_{JA}$$
 (@ 400 fpm air flow) = 40° C/W
 θ_{JA} (still air) = 70° C/W

$$\theta_{\rm HC} = 25^{\circ} \, {\rm C/W}$$

2. Typical limits are at V_{CC} = 5V, T_A = +25°C, and Load A.

3. A pull-up resistor to V_{CC} on the CS input is required to keep the device deselected during power-on. Otherwise, power-on current approaches I_{CC} active.

A.C. TEST CONDITIONS

Input Pulse Levels	GND to 3.0 Volts
Input Rise and Fall Times	5 nsec
Input and Output Timing Reference Levels	1.5 Volts
Output Load	See Load A.

CAPACITANCE^[4]

T_A = 25 °C, f = 1.0 MHz

Symbol	Parameter	Max.	Unit	Conditions
Cin	Address/Control Capacitance	5	pF	$V_{1N} = 0V$
Сю	Input/Output Capacitance	7	pF	$V_{OUT} = 0V$

Note 4. This parameter is sampled and not 100% tested.

A.C. CHARACTERISTICS

 $T_A = 0$ °C to +70 °C, $V_{CC} = +5V \pm 10\%$ unless otherwise noted.

READ CYCLE

		2148H	-3/HL-3	2148	H/HL		Test
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	Conditions
t _{RC}	Read Cycle Time	55		70		ns	
t _{AA}	Address Access Time		55		70	ns	
t _{ACS1}	Chip Select Access Time		55		70	ns	Note 1
t _{ACS2}	Chip Select Access Time		65		80	ns	Note 2
t _{он} .	Output Hold from Address Change	5		5		ns	
t _{LZ}	Chip Selection Output in Low Z	20		20		ns	Note 6
t _{HZ}	Chip Deselection to Output in High Z	0	20	0	20	ns	Note 6
t _{PU}	Chip Selection to Power Up Time	0		0		ns	
teo	Chip Deselection to Power Down Time		30		30	ns	

WAVEFORMS

Notes:

- 1. Chip deselected for greater than 55 ns prior to \overline{CS} transition low.
- 2. Chip deselected for a finite time that is less than 55 ns prior to CS transition low. (If the deselect time is 0 ns, the chip is by definition selected and access occurs according to Read Cycle No. 1.)
- 3. WE is high for Read Cycles.
- 4. Device is continuously selected, $\overline{CS} = V_{IL}$.
- 5. Addresses valid prior to or coincident with CS transition low.
- Transition is measured ±500mV from high impedance voltage with Load B. This parameter is sampled and not 100% tested.

A.C. CHARACTERISTICS (continued)

WRITE CYCLE

					1
		2148H-3/HL-3	2148H/HL		Test
Symbol	Parameter	Min. Max.	Min. Max.	Unit	Conditions
twc	Write Cycle Time	55	70	ns	
tcw	Chip Selection to End of Write	50	65	ns	
taw	Address Valid to End of Write	50	65	ns	
tas	Address Setup Time	0	0	ns	
twp	Write Pulse Width	40	50	ns	
twe	Write Recovery Time	5	5	ns	
tow	Data Valid to End of Write	20	25	ns	
t _{DH}	Data Hold Time	0	0	ns	
t _{wz}	Write Enabled to Output in High Z	0 20	0 25	ns	Note 2
tow	Output Active from End of Write	0	0	ns	Note 2

WAVEFORMS

WRITE CYCLE No. 1 (WE CONTROLLED)

WRITE CYCLE No. 2 (CS CONTROLLED)

Notes: 1. If CS goes high simultaneously with WE high, the output remains in a high impedance state. 2. Transition is measured ±500mV from high impedance voltage with Load B. This parameter is sampled and not 100% tested.

intel

2118 FAMILY 16,384 x 1 BIT DYNAMIC RAM

	2118-3	2118-4	2118-7
Maximum Access Time (ns)	100	120	150
Read, Write Cycle (ns)	235	270	320
Read-Modify-Write Cycle (ns)	285	320	410

- Single +5V Supply, ±10% Tolerance
- HMOS Technology
- Low Power: 150 mW Max. Operating 11 mW Max. Standby
- Low V_{DD} Current Transients
- All Inputs, Including Clocks, TTL Compatible

- CAS Controlled Output is Three-State, TTL Compatible
- RAS Only Refresh
- 128 Refresh Cycles Required Every 2ms
- Page Mode and Hidden Refresh Capability
- Allows Negative Overshoot V_{IL} min = -2V

The Intel® 2118 is a 16,384 word by 1-bit Dynamic MOS RAM designed to operate from a single +5V power supply. The 2118 is fabricated using HMOS — a production proven process for high performance, high reliability, and high storage density.

The 2118 uses a single transistor dynamic storage cell and advanced dynamic circuitry to achieve high speed with low power dissipation. The circuit design minimizes the current transients typical of dynamic RAM operation. These low current transients contribute to the high noise immunity of the 2118 in a system environment.

Multiplexing the 14 address bits into the 7 address input pins allows the 2118 to be packaged in the industry standard 16-pin DIP. The two 7-bit address words are latched into the 2118 by the two TTL clocks, Row Address Strobe (RAS) and Column Address Strobe (CAS). Non-critical timing requirements for RAS and CAS allow use of the address multiplexing technique while maintaining high performance.

The 2118 three-state output is controlled by \overline{CAS} , independent of \overline{RAS} . After a valid read or read-modify-write cycle, data is latched on the output by holding \overline{CAS} low. The data out pin is returned to the high impedance state by returning \overline{CAS} to a high state. The 2118 hidden refresh feature allows \overline{CAS} to be held low to maintain latched data while \overline{RAS} is used to execute \overline{RAS} -only refresh cycles.

The single transistor storage cell requires refreshing for data retention. Refreshing is accomplished by performing \overline{RAS} -only refresh cycles, hidden refresh cycles, or normal read or write cycles on the 128 address combinations of A_0 through A_6 during a 2ms period. A write cycle will refresh stored data on all bits of the selected row except the bit which is addressed.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias10°C to +80°C
Storage Temperature
Voltage on Any Pin Relative to Vss 7.5V
Data Out Current 50mA
Power Dissipation 1.0W

*COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS^[1]

 $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted.

			Limits				
Symbol	Parameter	Min.	Typ.[2]	Max.	Unit	Test Conditions	Notes
ILI	Input Load Current (any input)		0.1	10	μA	VIN=VSS to VDD	
ILO	Output Leakage Current for High Impedance State		0.1	10	μA	Chip Deselected: CAS at VIH, VOUT = 0 to 5.5V	
IDD1	VDD Supply Current, Standby		1.2	2	mA	CAS and RAS at VIH	
IDD2	VDD Supply Current, Operating		23	27	mA	2118-3, tRC = tRCMIN	3
			21	25	mA	2118-4, t _{RC} = t _{RCMIN}	3
			19	23	mΑ	2118-7, t _{RC} = t _{RCMIN}	3
IDD3	VDD Supply Current, RAS-Only		16	18	mA	2118-3, t _{RC} = t _{RCMIN}	3
	Cycle		14	16	mA	2118-4, tRC = tRCMIN	3
	·		12	14	mΑ	2118-7, tRC = tRCMIN	3
IDD5	V _{DD} Supply Current, Standby, Output Enabled		2	4	mA	CAS at VIL, RAS at VIH	3
VIL	Input Low Voltage (all inputs)	-2.0		0.8	V		
VIH	Input High Voltage (all inputs)	2.4		7.0	V		
Vol	Output Low Voltage			0.4	V	I _{OL} = 4.2mA	
Vон	Output High Voltage	2.4			V	I _{ОН} = -5mA	

NOTES:

1. All voltages referenced to $V_{\mbox{\scriptsize SS}}$

2. Typical values are for $TA = 25^{\circ}C$ and nominal supply voltages.

3. I_{DD} is dependent on output loading when the device output is selected. Specified I_{DD} MAX is measured with the output open.

 $T_A = 25^{\circ}$ C, $V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted.

Symbol	Parameter	Тур.	Max.	Unit
CI1	Address, Data In	3	5	pF
Ci2	RAS, CAS, WE, Data Out	4	7	pF

NOTES:

I. Capacitance measured with Boonton Meter or effective capacitance calculated from the equation: $C = \frac{1\Delta t}{\Delta V}$ with ΔV equal to 3 volts and power supplies at nominal levels.

A.C. CHARACTERISTICS^[1,2,3]

 T_{A} = 0°C to 70°C, V_{\text{DD}} = 5V ±10%, V $_{\text{SS}}$ = 0V, unless otherwise noted.

READ, WRITE, READ-MODIFY-WRITE AND REFRESH CYCLES

			18-3	2118-4		2118-7			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Notes
tRAC	Access Time From RAS		100	-	120		150	ns	4,5
tCAC	Access Time From CAS		55		65		80	ns	4,5,6
tREF	Time Between Refresh		2		2		2	ms	
trp	RAS Precharge Time	110		120		135		ns	
tCPN	CAS Precharge Time non-page cycles	50		55		70		ns	
tCRP	CAS to RAS Precharge Time	0		0		0		nś	
tRCD	RAS to CAS Delay Time	25	45	25	55	25	70	ns	7
trsh	RAS Hold Time	70		85		105		ns	
tcsh	CAS Hold Time	100		120		165		ns	
tasr	Row Address Set-Up Time	0		0		0		ns	
t RAH	Row Address Hold Time	15		15		15		ns	
tasc	Column Address Set-Up Time	0		0		0		ns	
tCAH	Column Address Hold Time	15		15		20		ns	
tar	Column Address Hold Time, to RAS	60		70		90		ns	
tT	Transition Time (Rise and Fall)	3	50	3	50	3	50	ns	8
toff	Output Buffer Turn Off Delay	0	45	0	50	0	60	ns	
READ AND	REFRESH CYCLES								
tRC	Random Read Cycle Time	235		270		320		ns	
tras	RAS Pulse Width	115	10000	140	10000	175	10000	ns	
tCAS	CAS Pulse Width	55	10000	65	10000	95	10000	ns	
tRCS	Read Command Set-Up Time	0		0		0		ns	
tRCH	Read Command Hold Time	0		0		0		ns	
WRITE CYC	CLE								
tec	Random Write Cycle Time	235		270		320		ns	l
teas	RAS Pulse Width	115	10000	140	10000	175	10000	ns	
tcas	CAS Pulse Width	55	10000	65	10000	95	10000	ns	
twcs	Write Command Set-Up Time	0		0		0		ns	9
twcs	Write Command Hold Time	25		30		45		ns	
twcp	Write Command Hold Time to BAS	70		85		115		ns	
twp	Write Command Pulse Width	25		30		50		ns	l
tewi	Write Command to BAS Lead Time	60		65	. <u>.</u>	110		ns	
towi	Write Command to CAS Lead Time	45		50		100		ns	
tos	Data-In Set-Up Time	0		0		0		กร	
ton	Data-In Hold Time	25		30		45		ns	
tone	Data-In Hold Time, to BAS	70		85		115.		ns	
		005		200		410			
TRWC	Head-Modify-Write Cycle Time	285	40000	320	10000	410	10000	ns	
TRRW	HMW Cycle HAS Pulse Width	165	10000	190	10000	265	10000	ns	
tCRW	HMW Cycle CAS Pulse Width	105	10000	120	10000	185	10000	ns	
trwD	HAS to WE Delay	100		120		150		ns	9
tcwD	CAS to WE Delay	55		65		80		ns	9

NOTES

1. All voltages referenced to Vss.

2 Eight cycles are required after power-up or prolonged periods ligreater than 2ms) of RAS inactivity before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose.

3. A.C. Characteristics assume tr = 5ns 4. Assume that tRCD \leq tRCD (max.). If tRCD is greater than tRCD (max.) then tRAC will increase by the amount that tRCD exceeds tRCD (max.)

5. Load = 2 TTL loads and 100pF 6. Assumes tRCD ≥ tRCD (max.)

7 tRCD (max.) is specified as a reference point only; if tRCD is less Incommaxing specified as a reference protony. Introductions that incom
 Introduction maxing access time is Incommaxing access time is Incommaxing access time is Incommaxing access time is Incommaxing and Victom and Victom access time is the specified as reference points only If
 It is measured between Viel Mining and Victom access time is the specified as reference points only If

twcs 2 twcs (min.) the cycle is an early write cycle and the data out pin will remain high impedance throughout the entire cycle. If tcwp 2 tcwp (min.) and tawp 2 tawp (min.), the cycle is a read-modify-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions is satisfied, the condition of the data out is

WAVEFORMS

NOTES: 1.2. V_{IH} MIN AND V_{IL} MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF INPUT SIGNALS. 3.4. V_{OH MIN} AND V_{OL MAX} ARE REFERENCE LEVELS FOR MEASURING TIMING OF D_{OUT}. 5. topF IS MEASURED TO 1_{OUT} < ||to]. 6. tops AND topH ARE REFERENCED TO CAS OR WE, WHICHEVER OCCURS LAST. 7. tocH IS REFERENCED TO THE TRAILING EDGE OF CAS OR RAS, WHICHEVER OCCURS FIRST. 8. topR FREQUIREMENT IS ONLY APPLICABLE FOR RAS/CAS CYCLES PRECEEDED BY A CAS-0. TOPR COLORMENTER SOLLY APPLICABLE FOR RAS/CAS CYCLES PRECEEDED BY A CAS-0. TOPL CYCLE (i.e., FOR SYSTEMS WHERE CAS HAS NOT BEEN DECODED WITH RAS).

WAVEFORMS

READ-MODIFY-WRITE CYCLE

HIDDEN REFRESH CYCLE

VOL

(For Hidden Refresh Operation order 2118-3 S6445, 2118-4 S6446 or 2118-7 S6447)

IMPEDANCE

NOTES: 1.2. V_{IH} MIN AND V_{IL MAX} ARE REFERENCE LEVELS FOR MEASURING TIMING OF INPUT SIGNALS.
3.4. V_{OH} MIN AND V_{OL MAX} ARE REFERENCE LEVELS FOR MEASURING TIMING OF D_{OUT}.
5. topF IS MEASURED TO IOUT < ||Lo.|.
6. tops AND toph ARE REFERENCED TO CAS OR WE, WHICHEVER OCCURS LAST.
7. trach. IS REFERENCED TO THE TRAILING EDGE OF CAS OR RAS, WHICHEVER OCCURS FIRST.
8. topP REOURDEMENT IS ONLY APPLICABLE FOR RAS/CAS CYCLES PRECEEDED BY A CAS-ONLY CYCLE (i.e., FOR SYSTEMS WHERE CAS HAS NOT BEEN DECODED WITH RAS).

D.C. AND A.C. CHARACTERISTICS, PAGE MODE^[7,8,11]

 $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted. For Page Mode Operation order 2118-3 S6329, 2118-4 S6330, or 2118-7 S6331.

		21 S	2118-4 S6330		2118-7 S6331				
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Notes
tPC	Page Mode Read or Write Cycle	125		145		190		ns	
t PCM	Page Mode Read Modify Write Cycle	175		200		280		ns	
tCP	CAS Precharge Time, Page Cycle	60		70		85		ns	
t RPM	RAS Pulse Width, Page Mode	115	10000	140	10000	175	10000	ns	
tCAS	CAS Pulse Width	55	10000	65	10000	95	10000	ns	
IDD4	V _{DD} Supply Current Page Mode, Minimum t _{PC} , Minimum t _{CAS}		20		17		15	mA	

WAVEFORMS

NOTES: 1,2. VIH MIN AND VIL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF INPUT SIGNALS. 3.4. VOH MIN AND VOL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF DOUT

5. topf IS MEASURED TO IOUT - IILOI. 6. tRCH IS REFERENCED TO THE TRAILING EDGE OF CAS OR RAS, WHICHEVER OCCURS FIRST.

7. ALL VOLTAGES REFERENCED TO VSS 8. AC CHARACTERISTIC ASSUME tr = 5ns

9. SEE THE TYPICAL CHARACTERISTICS SECTION FOR VALUES OF THIS PARAMETER

UNDER ALTERNATE CONDITIONS.

UNDER ACTEMATE CONDITIONS. 10. CRAP. REQUIREMENT IS ONLY APPLICABLE FOR RAS/CAS CYCLES PRECEEDED BY A CAS-ONLY CYCLE (i.e., FOR SYSTEMS WHERE CAS HAS NOT BEEN DECODED WITH RAS). 11. ALL PREVIOUSLY SPECIFIED A.C. AND D.C. CHARACTERISTICS ARE APPLICABLE TO THEIR RESPECTIVE PAGE MODE DEVICE (i.e., 2118-3, \$6329 WILL OPERATE AS A 2118-3).

PAGE MODE READ-MODIFY-WRITE CYCLE

NOTES: 1,2. VIH MIN AND VIL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF INPUT SIGNALS. 3,4. VOH MIN AND VOL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF DOUT

- 5. TOFF IS MEASURED TO IOUT . ILO
- 5. TOFF IS MEASURED TO TOUT · |I(0)· 6. TOS AND LONG ARE REFERENCED TO CAS OR WE, WHICHEVER OCCURS LAST. 7. TRCH IS REFERENCED TO THE TRAILING EDGE OF CAS OR TAS, WHICHEVER OCCURS FIRST. 8. TCCM REQUIREMENT IS ONLY APPLICABLE FOR RAS/CAS CYCLES PRECEEDED BY A CAS-ONLY CYCLE (i.e., FOR SYSTEMS WHERE CAS HAS NOT BEEN DECODED WITH RAS).

TYPICAL SUPPLY CURRENT WAVEFORMS

Typical power supply waveforms vs. time are shown for the $\overrightarrow{RAS}/\overrightarrow{CAS}$ timings of Read/Write, Read/Write (Long $\overrightarrow{RAS}/\overrightarrow{CAS}$), and \overrightarrow{RAS} -only refresh cycles. I_{DD} current transients at the \overrightarrow{RAS} and \overrightarrow{CAS} edges require adequate decoupling of these supplies.

temperature on the I_{DD} current are shown in graphs included in the Typical Characteristics Section. Each family of curves for I_{DD1}, I_{DD2}, and I_{DD3} is related by a common point at V_{DD} = 5.0V and T_A = 25° C for two given t_{RAS} pulse widths. The typical I_{DD} current for a given condition of cycle time, V_{DD} and T_A can be determined by combining the effects of the appropriate family of curves.

The effects of cycle time, V_{DD} supply voltage and ambient

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

DEVICE DESCRIPTION

The Intel® 2118 is produced with HMOS, a high performance MOS technology which incorporates on chip substrate bias generation. This process, combined with new circuit design concepts, allows the 2118 to operate from a single +5V power supply, eliminating the +12V and -5V requirements. Pins 1 and 9 are not connected, which allows P.C.B. layout for future higher density memory generations.

The 2118 is functionally compatible with the industry standard 16-pin 16K dynamic RAMs, except for the power supply requirements. Replacing the +12V supply with a +5V supply and eliminating the -5V bias altogether, allows simple upgrade both in power and performance. To achieve total speed performance upgrade, however, the timing ciruitry must be modified to accommodate the higher performance.

READ CYCLE

A Read cycle is performed by maintaining Write Enable (\overline{WE}) high during a RAS/CAS operation. The output pin of a selected device will remain in a high impedance state until valid data appears at the output at access time.

Device access time, tACC, is the longer of the two calculated intervals:

1. $t_{ACC} = t_{RAC}$ OR 2. $t_{ACC} = t_{RCD} + t_{CAC}$

Access time from \overline{RAS} , t_{RAC}, and access time from \overline{CAS} , t_{CAC}, are device parameters. Row to column address strobe delay time, t_{RCD}, are system dependent timing

parameters. For example, substituting the device parameters of the 2118-3 yields:

3. t_{ACC} = t_{RAC} = 100nsec for 25nsec \leq t_{RCD} \leq 45nsec OR

4. $t_{ACC} = t_{RCD} + t_{CAC} = t_{RCD} + 55$ nsec for $t_{RCD} > 45$ nsec Note that if 25nsec $\leq t_{RCD} \leq 45$ nsec device access time is determined by equation 3 and is equal to tRAC. If $t_{RCD} > 45$ nsec access time is determined by equation 4. This 20nsec interval (shown in the tRCD inequality in equation 3) in which the falling edge of CAS can occur without affecting access time is provided to allow for system timing skew in the generation of CAS.

REFRESH CYCLES

Each of the 128 rows of the 2118 must be refreshed every 2 milliseconds to maintain data. Any memory cycle:

- 1. Read Cycle
- 2. Write Cycle (Early Write, Delayed Write or Read-Modify-Write)
- 3. RAS-only Cycle

refreshes the selected row as defined by the low order (\overline{RAS}) addresses. Any Write cycle, of course, may change the state of the selected cell. Using a Read, Write, or Read-Modify-Write cycle for refresh is not recommended for systems which utilize "wire-OR" outputs since output bus contention will occur.

A RAS-only refresh cycle is the recommended technique for most applications to provide for data retention. A RASonly refresh cycle maintains the Dout in the high impedance state with a typical power reduction of 30% over a Read or Write cycle.

RAS/CAS TIMING

RAS and CAS have minimum pulse widths as defined by tRAS and tCAS respectively. These minimum pulse widths must be maintained for proper device operation and data integrity. A cycle, once begun by bringing RAS and/or CAS low must not be ended or aborted prior to fulfilling the minimum clock signal pulse width(s). A new cycle can not begin until the minimum precharge time, tRP, has been met.

DATA OUTPUT OPERATION

The 2118 Data Output (D_{OUT}), which has three-state capability, is controlled by CAS. During CAS high state (CAS at V_{IH}) the output is in the high impedance state. The following table summarizes the D_{OUT} state for various types of cycles.

Intel 2118 Data Output Operation for Various Types of Cycles

Type of Cycle	D _{OUT} State
Read Cycle	Data From Addressed Memory Cell
Early Write Cycle	HI-Z
RAS-Only Refresh Cycle	HI-Z
CAS-Only Cycle	HI-Z
Read/Modify/Write Cycle	Data From Addressed Memory Cell
Delayed Write Cycle	Indeterminate

HIDDEN REFRESH

An optional feature of the 2118 is that refresh cycles may be performed while maintaining valid data at the output pin. This feature is referred to as Hidden Refresh. Hidden Refresh is performed by holding \overline{CAS} at V_{IL} and taking \overline{RAS} high and after a specified precharge period (t_{RP}), executing a " \overline{RAS} -Only" refresh cycle, but with \overline{CAS} held low (see Figure 1.)

Figure 1. Hidden Refresh Cycle.

This feature allows a refresh cycle to be "hidden" among data cycles without affecting the data availability.

POWER ON

After the application of the V_{DD} supply, or after extended periods of bias (greater than 2ms) without clocks, the device must perform a minimum of eight (8) initialization cycles (any combination of cycles containing a RAS clock such as RAS-only refresh) prior to normal operation.

The V_{DD} current (I_{DD}) requirement of the 2118 during power on is, however, dependent upon the input levels of RAS and CAS. If the input levels of these clocks are at V_{IH} or V_{DD}, whichever is lower, the I_{DD} requirement per device is I_{DD1} (I_{DD} standby). If the input levels for these clocks are than V_{IH} or V_{DD} the I_{DD} requirement will be greater than I_{DD1}, as shown in Figure 2.

Figure 2. Typical I_{DD} VS V_{DD} during power up.

For large systems, this current requirement for IDD could be substantially more than that for which the system has been designed. A system which has been designed, assuming the majority of devices to be operating in the refresh/standby mode, may produce sufficient I_{DD} loading such that the power supply may current limit. To assure that the system will not experience such loading during power on, a pullup resistor for each clock input to V_{DD} to maintain the non-selected current level (I_{DD1}) for the power supply is recommended.

2147H HIGH SPEED 4096 × 1 BIT STATIC RAM

	2147H-1	2147H-2	2147H-3	2147HL-3	2147H	2147HL
Max. Access Time (ns)	35	45	55	55	70	70
Max. Active Current (mA)	180	180	180	125	160	140
Max. Standby Current (mA)	30	30	30	15	20	10

- Pinout, Function, and Power Compatible to Industry Standard 2147
- HMOS II Technology

int

- Completely Static Memory—No Clock or Timing Strobe Required
- Equal Access and Cycle Times
- Single + 5V Supply
- 0.8-2.0V Output Timing Reference Levels

- Direct Performance Upgrade for 2147
- Automatic Power-Down
- High Density 18-Pin Package
- Directly TTL Compatible—All Inputs and Output
- Separate Data Input and Output

Three-State Output

The Intel[®] 2147H is a 4096-bit static Random Access Memory organized as 4096 words by 1-bit using HMOS-II, Intel's next generation high-performance MOS technology. It uses a uniquely innovative design approach which provides the ease-of-use features associated with non-clocked static memories and the reduced standby power dissipation associated with clocked static memories. To the user this means low standby power dissipation without the need for clocks, address setup and hold times, nor reduced data rates due to cycle times that are longer than access times.

 $\overline{\text{CS}}$ controls the power-down feature. In less than a cycle time after $\overline{\text{CS}}$ goes high—deselecting the 2147H —the part automatically reduces its power requirements and remains in this low power standby mode as long as $\overline{\text{CS}}$ remains high. This device feature results in system power savings as great as 85% in larger systems, where the majority of devices are deselected.

The 2147H is placed in an 18-pin package configured with the industry standard 2147 pinout. It is directly TTL compatible in all respects: inputs, output, and a single + 5V supply. The data is read out nondestructively and has the same polarity as the input data. A data input and a separate three-state output are used.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied. Intel Corporation, 1979, 1980

inte

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	– 10°C to 85°C
Storage Temperature 6	5°C to + 150°C
Voltage on Any Pin	
With Respect to Ground	- 3.5V to + 7V
Power Dissipation	1.2W
D.C. Output Current	20 mA

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS^[1]

(T_A = 0 °C to 70 °C, V_{CC} = + 5V \pm 10%, unless otherwise noted.)

		214	17H-1, 2	2, 3	2	147HL	3			2147H			2147HL	
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Min.	Тур. ^[2]	Max.	Min.	Typ. ^[2]	Max.
I _{LI}	Input Load Current (All Input Pins)		0.01	10		0.01	10	μA		0.01	10		0.01	10
I _{LO}	Outut Leakage Current		0.1	50		0.1	50	μA		0.1	50		0.1	50
Icc	Operating Current		120	170			115	mA		100	150		100	135
	<u>.</u>			180			125	mA			160			140
I _{SB}	Standby Current		18	30		6	15	mA		12	20		7	10
I _{PO} ^[3]	Peak Power-On Current		35	70		25	50	mA		25	50		15	30
V _{IL}	Input Low Voltage	- 3.0		0.8	- 3.0		0.8	V	- 3.0		0.8	- 3.0		0.8
VIH	Input High Voltage	2.0		6.0	2.0		6.0	V	2.0		6.0	2.0		6.0
VOL	Output Low Voltage			0.4			0.4	V			0.4			0.4
V _{OH}	Output High Voltage	2.4			2.4			V	2.4			2.4		
los	Output Short Circuit Current	- 150		+ 150	- 150		+ 150	mA	- 150		+ 150	- 150	P	+ 150

NOTES:

1. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.

2. Typical limits are at $V_{CC} = 5V$, $T_A = +25$ °C, and specified loading.

A pull-up resistor to V_{CC} on the CS input is required to keep the device deselected; otherwise, power-on current approaches I_{CC} active.

A.C. TEST CONDITIONS

Input Pulse Levels	GND to 3 0V
Input Rise and Fall Times	5 ns
Input Timing Reference Levels	1.5V
Output Timing Reference Level (2147H-1)	1.5V
Output Timing Reference Levels	
(2147H, H-2, H-3, HL, HL-3)	0.8-2.0V
Output Load	See Figure 1

CAPACITANCE^[4] ($T_A = 25 \,^{\circ}C$, f = 1.0 MHz)

Symbol	Parameter	Max.	Unit	Conditions
CIN	Input Capacitance	5	pF	V _{IN} = 0V
C _{OUT}	Output Capacitance	6	pF	$V_{OUT} = 0V$

NOTE:

4. This parameter is sampled and not 100% tested.

A.C. CHARACTERISTICS ($T_A = 0$ °C to 70 °C, $V_{CC} = +5V \pm 10\%$, unless otherwise noted.)

Read Cycle

			7H-1	214	7H-2	2147 H	7H-3, L-3	2147H, 2147HL			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
t _{RC^[1]}	Read Cycle Time	35		45		55		70		ns	
t _{AA}	Address Access Time		35		45		55		70	ns	
t _{ACS1} [8]	Chip Select Access Time		35		45		55		70	ns	
t _{ACS2} [9]	Chip Select Access Time		35		45		65		80	ns	
t _{OH}	Output Hold from Address Change	5		5		5		5		ns	
t _{LZ} [2,3,7]	Chip Selection to Output in Low Z	5		5		10		10		ns	
t _{HZ} [2,3,7]	Chip Deselection to Output in High Z	0	30	0	30	0	30	0	40	ns	
t _{PU}	Chip Selection to Power Up Time	0		0		0		0		ns	
t _{PD}	Chip Deselection to Power Down Time		20		20		20		30	ns	

WAVEFORMS

Read Cycle No. 2^[4,6]

NOTES:

- 1. All Read Cycle timings are referenced from the last valid address to the first transitioning address.
- 2. At any given temperature and voltage condition, t_{HZ} max. is less than t_{LZ} min. both for a given device and from device to device.
- 3. Transition is measured ± 500 mV from steady state voltage with specified loading in Figure 2.
- 4. WE is high for Read Cycles.
- 5. Device is continuously selected, $\overline{CS} = V_{IL}$.
- 6. Addresses valid prior to or coincident with $\overline{\text{CS}}$ transition low.
- 7. This parameter is sampled and not 100% tested.
- 8. Chip deselected for greater than 55 ns prior to selection.
- 9. Chip deselected for a finite time that is less than 55 ns prior to selection. If the deselect time is 0 ns, the chip is by definition selected and access occurs according to Read Cycle No. 1. Applies to 2147H, 2147HL, 2147H-3, and 2147HL-3.

A.C. CHARACTERISTICS (Continued) Write Cycle

Symbol	Parameter	214 Min.	7H-1 Max.	214 Min.	7H-2 Max.	214) H Min.	7H-3, L-3 Max.	214 214 Min.	7H, 7HL Max.	Unit
twc[2]	Write Cycle Time	35		45		55		70		ns
t _{CW}	Chip Selection to End of Write	35		45		45		55		ns
t _{AW}	Address Valid to End of Write	35		45		45		55		ns
t _{AS}	Address Setup Time	0		0		0		0		ns
t _{WP}	Write Pulse Width	20		25		25		40		ns
t _{WR}	Write Recovery Time	0		0		10		15		ns
t _{DW}	Data Valid to End of Write	20		25		25		30		ns
t _{DH}	Data Hold Time	10		10		10		10		ns
t _{wz} [3]	Write Enabled to Output in High Z	0	20	0	25	0	25	0	35	ns
t _{ow} [3]	Output Active from End of Write	0		0		0		0		ns

WAVEFORMS Write Cycle No. 1 (WE CONTROLLED)^[4]

Write Cycle No. 2 (CS CONTROLLED)^[4]

NOTES:

- 1. If \overline{CS} goes high simultaneously with \overline{WE} high, the output remains in a high impedance state.
- 2. All Write Cycle timings are referenced from the last valid address to the first transitioning address.
- 3. Transition is measured ± 500 mV from steady state voltage with specified loading in Figure 2.
- 4. $\overline{\text{CS}}$ or $\overline{\text{WE}}$ must be high during address transitions.

2716 16K (2K × 8) UV ERASABLE PROM

Fast Access Time

Inta

- 350 ns Max. 2716-1
- 390 ns Max. 2716-2
- 450 ns Max. 2716
- 490 ns Max. 2716-5
- 650 ns Max. 2716-6
- Single + 5V Power Supply

Low Power Dissipation 525 mW Max. Active Power 132 mW Max. Standby Power

Pin Compatible to Intel[®] 2732 EPROM

- Simple Programming Requirements
 - Single Location Programming
 - Programs with One 50 ms Pulse
- Inputs and Outputs TTL Compatible during Read and Program

Completely Static

The Intel[®] 2716 is a 16,384-bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The 2716 operates from a single 5-volt power supply, has a static standby mode, and features fast single address location programming. It makes designing with EPROMs faster, easier and more economical.

The 2716, with its single 5-volt supply and with an access time up to 350 ns, is ideal for use with the newer high performance +5V microprocessors such as Intel's 8085 and 8086. A selected 2716-5 and 2716-6 is available for slower speed applications. The 2716 is also the first EPROM with a static standby mode which reduces the power dissipation without increasing access time. The maximum active power dissipation is 525 mW while the maximum standby power dissipation is only 132 mW, a 75% savings.

The 2716 has the simplest and fastest method yet devised for programming EPROMs – single pulse TTL level programming. No need for high voltage pulsing because all programming controls are handled by TTL signals. Program any location at any time—either individually, sequentially or at random, with the 2716's single address location programming. Total programming time for all 16,384 bits is only 100 seconds.

†Refer to 2732 data sheet for specifications

PIN NAMES

A0- A10	ADDRESSES
CE/PGM	CHIP ENABLE/PROGRAM
ŌE	OUTPUT ENABLE
0,-0,	OUTPUTS

MODE SELECTION

PINS	CE/PGM (18)	OE (20)	Vpp (21)	V _{CC} (24)	OUTPUTS (9-11, 13-17)
Read	VIL	VIL	+5	+5	DOUT
Standby	VIH	Don't Care	+5	+5	High Z
Program	Pulsed VIL to VIH	VIH	+25	+5	DIN
Program Verify	VIL	VIL	+25	+5	DOUT
Program Inhibit	VIL	VIH	+25	+5	High Z

BLOCK DIAGRAM DATA OUTPUTS VCC O 00.07 GND o OUTPUT ENABLE CHIP ENABLE AND PROG LOGIC OF -CE/PGM OUTPUT BUFFERS Y GATING DECODER A0-A10 ADDRESS INPUTS 16.384 BIT DECODER CELL MATHIX

AFN-00811A-01
PROGRAMMING

The programming specifications are described in the Data Catalog PROM/ROM Programming Instructions Section.

Absolute Maximum Ratings*

Temperature Under Bias	°C
Storage Temperature	°C
All Input or Output Voltages with	
Respect to Ground	3V
V _{PP} Supply Voltage with Respect	
to Ground During Program \ldots	37

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC and AC Operating Conditions During Read

	2716	2716-1	2716-2	2716-5	2716-6
Temperature Range	$0^{\circ}C - 70^{\circ}C$	0°C – 70°C	0°C – 70°C	$0^{\circ}C - 70^{\circ}C$	$0^{\circ}C - 70^{\circ}C$
V _{CC} Power Supply ^[1,2]	5V ±5%	5V ±10%	5V ±5%	5V ±5%	5V ±5%
V _{PP} Power Supply ^[2]	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}

READ OPERATION

D.C. and Operating Characteristics

			Limits		Linia	Conditions
Symbol	Parameter	Min.	Түр. ^[3]	Max.	Unit	Conditions
ILI	Input Load Current			10	μA	V _{IN} = 5.25V
LO	Output Leakage Current			10	μA	V _{OUT} = 5.25V
I _{PP1} ^[2]	V _{PP} Current			5	mA	V _{PP} = 5.25V
Icc1 ^[2]	V _{CC} Current (Standby)		10	25	mA	$\overline{CE} = V_{IH}, \overline{OE} = V_{IL}$
¹ cc2 ^[2]	V _{CC} Current (Active)		57	100	mA	$\overline{OE} = \overline{CE} = V_{IL}$
V _{IL}	Input Low Voltage	-0.1	·	0.8	v	
VIH	Input High Voltage	2.0		V _{CC} +1	V	
VOL	Output Low Voltage			0.45	v	I _{OL} = 2.1 mA
V _{OH}	Output High Voltage	2.4			V	I _{OH} = -400 μA

NOTES: 1. V_{CC} must be applied simultaneously or before Vpp and removed simultaneously or after Vpp.

2. Vpp may be connected directly to V_{CC} except during programming. The supply current would then be the sum of I_{CC} and Ipp1.

3. Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltages.

4. This parameter is only sampled and is not 100% tested.

Typical Characteristics

7-230

TEMPERATURE ('C)

A.C. Characteristics

		Limits (ns)										
		27	716	271	6-1	27	16-2	271	6-5	271	6-6	Test
Symbol	Parameter	Min.	Max.	Min.	Max.	Min,	Max.	Min.	Max.	Min,	Max.	Conditions
[†] ACC	Address to Output Delay		450		350		390		450		450	$\overline{CE} = \overline{OE} = V_{ L}$
^t CE	CE to Output Delay		450		350		390		490		650	ŌĒ = VIL
^t OE	Output Enable to Output Delay		120		120		120		160		200	CE = VIL
^t DF	Output Enable High to Output Float	0	100	0	100	0	100	0	100	0	100	ĈĒ = V _{IL}
^t он	Output Hold from Addresses, $\overrightarrow{\text{CE}}$ or $\overrightarrow{\text{OE}}$ Whichever Occurred First	0		0		0		0		0		CE = OE = VIL

Capacitance [4] T_A = 25°C, f = 1 MHz

Symbol	Parameter	Тур.	Max.	Unit	Conditions
C _{IN}	Input Capacitance	4	6	pF	V _{IN} = 0V
COUT	Output Capacitance	8	12	рF	V _{OUT} = 0V

A.C. Test Conditions:

Output Load: 1 TTL gate and $C_L = 100 \text{ pF}$ Input Rise and Fall Times: $\leq 20 \text{ ns}$ Input Pulse Levels: 0.8V to 2.2V Timing Measurement Reference Level: Inputs 1V and 2V Outputs 0.8V and 2V

NOTE: 1. V_{CC} must be applied simultaneously or before Vpp and removed simultaneously or after Vpp.

2. Vpp may be connected directly to V_{CC} except during programming. The supply current would then be the sum of I_{CC} and Ipp1.

- 3. Typical values are for $T_A = 25^{\circ}$ C and nominal supply voltages.
- 4. This parameter is only sampled and is not 100% tested.
- 5. OE may be delayed up to tACC tOE after the falling edge of CE without impact on tACC.
- 6. tDF is specified from OE or CE, whichever occurs first.

TYPICAL 16K EPROM SYSTEM

- This scheme accomplished by using CE (PD) as the primary decode. OE (CS) is now controlled by previously unused signal. RD now controls data on and off the bus by way of OE.
- A selected 2716 is available for systems which require CE access of less than 450 ns for decode network operation.
- · The use of a PROM as a decoder allows for:
 - a) Compatibility with upward (and downward) memory expansion.
 - b) Easy assignment of ROM memory modules, compatible with PL/M modular software concepts.

8K, 16K, 32K, 64K 5V EPROM/ROM FAMILY PRINTED CIRCUIT BOARD LAYOUT

ERASURE CHARACTERISTICS

The erasure characteristics of the 2716 are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000Å range. Data show that constant exposure to room level fluorescent lighting could erase the typical 2716 in approximately 3 years, while it would take approximatley 1 week to cause erasure when exposed to direct sunlight. If the 2716 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels are available from Intel which should be placed over the 2716 window to prevent unintentional erasure.

The recommended erasure procedure (see Data Catalog PROM/ROM Programming Instruction Section) for the 2716 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (Å). The integrated dose (i.e., UV intensity X exposure time) for erasure should be a minimum of 15 W-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a 12000 μ W/cm² power rating. The 2716 should be placed within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure.

DEVICE OPERATION

The five modes of operation of the 2716 are listed in Table I. It should be noted that all inputs for the five modes are at TTL levels. The power supplies required are a +5V V_{CC} and a V_{PP}. The V_{PP} power supply must be at 25V during the three programming modes, and must be at 5V in the other two modes.

PINS	CE/PGM	ŌĒ	Vpp	Vcc	OUTPUTS
MODE	(18)	(20)	(21)	(24)	(9-11, 13-17)
Read .	VIL	VIL	+5	+5	DOUT
Standby	VIH	Don't Care	+5	+5	High Z
Program	Pulsed VIL to VIH	VIH	+25	+5	DIN
Program Verify	VIL	VIL	+25	+5	DOUT
Program Inhibit	VIL	VIH	+25	+5	High Z

TABLE I. MODE SELECTION

READ MODE

The 2716 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs 120 ns (t_{OE}) after the falling edge of \overline{OE} , assuming that \overline{CE} has been low and addresses have been stable for at least $t_{ACC} - t_{OE}$.

STANDBY MODE

The 2716 has a standby mode which reduces the active power dissipation by 75%, from 525 mW to 132 mW. The 2716 is placed in the standby mode by applying a TTL high signal to the \overline{CE} input. When in standby mode, the outputs are in a high impedence state, independent of the \overline{OE} input.

OUTPUT OR-TIEING

Because 2716's are usually used in larger memory arrays, Intel has provided a 2 line control function that accomodates this use of multiple memory connections. The two line control function allows for:

- a) the lowest possible memory power dissipation, and
- b) complete assurance that output bus contention will not occur.

To most efficiently use these two control lines, it is recommended that \overline{CE} (pin 18) be decoded and used as the primary device selecting function, while \overline{OE} (pin 20) be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAMMING

Initially, and after each erasure, all bits of the 2716 are in the "1" state. Data is introduced by selectively programming "0's" into the desired bit locations. Although only "0's" will be programmed, both "1's" and "0's" can be presented in the data word. The only way to change a "0" to a "1" is by ultraviolet light erasure.

The 2716 is in the programming mode when the V_{PP} power supply is at 25V and \overline{OE} is at V_{IH}. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

When the address and data are stable, a 50 msec, active high, TTL program pulse is applied to the \overline{CE}/PGM input. A program pulse must be applied at each address location to be programmed. You can program any location at any time – either individually, sequentially, or at random. The program pulse has a maximum width of 55 msec. The 2716 must not be programmed with a DC signal applied to the \overline{CE}/PGM input.

Programming of multiple 2716s in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the paralleled 2716s may be connected together when they are programmed with the same data. A high level TTL pulse applied to the $\overline{\text{CE}}/\text{PGM}$ input programs the paralleled 2716s.

PROGRAM INHIBIT

Programming of multiple 2716s in parallel with different data is also easily accomplished. Except for \overline{CE}/PGM , all like inputs (including \overline{OE}) of the parallel 2716s may be common. A TTL level program pulse applied to a 2716's \overline{CE}/PGM input with V_{PP} at 25V will program that 2716. A low level \overline{CE}/PGM input inhibits the other 2716 from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify may be performed wth V_{PP} at 25V. Except during programming and program verify, V_{PP} must be at 5V.

intel

2732 32K (4K x 8) UV ERASABLE PROM

- Fast Access Time:
 450 ns Max. 2732
 550 ns Max. 2732-6
- **Single** $+5V \pm 5\%$ Power Supply
- Output Enable for MCS-85[™] and MCS-86[™] Compatibility
- Low Power Dissipation: 150mA Max. Active Current 30mA Max. Standby Current

- Pin Compatible to Intel® 2716 EPROM
- Completely Static
- Simple Programming Requirements
 Single Location Programming
 - Programs with One 50ms Pulse
- Three-State Output for Direct Bus Interface

The Intel® 2732 is a 32,768-bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The 2732 operates from a single 5-volt power supply, has a standby mode, and features an output enable control. The total programming time for all bits is three and a half minutes. All these features make designing with the 2732 in microcomputer systems faster, easier, and more economical.

An important 2732 feature is the separate output control, Output Enable (\overline{OE}) from the Chip Enable control (\overline{CE}). The OE control eliminates bus contention in multiple bus microprocessor systems. Intel's Application Note AP-72 describes the microprocessor system implementation of the \overline{OE} and \overline{CE} controls on Intel's 2716 and 2732 EPROMs. AP-72 is available from Intel's Literature Department.

The 2732 has a standby mode which reduces the power dissipation without increasing access time. The maximum active current is 150mA, while the maximum standby current is only 30mA, an 80% savings. The standby mode is achieved by applying a TTL-high signal to the \overline{CE} input.

PIN CONFIGURATION

A7□	$\overline{,}$	24	□v _{cc}
A6	2	23	□ A ₈
A₅□	3	22	□ A9
A₄□	4	21	A11
A 3□	5	20	
A2C	6	19	A 10
A1	7	18] ČĒ
^₀□	8	17	_ 07
00□	9	16	0°
01	10	15	_0₅
0₂[11	14	.] 0₄
SND	12	13	□ 0₃

PIN NAMES

A0-A11	ADDRESSES
CÉ	CHIP ENABLE
ŌĒ	OUTPUT ENABLE
0 ₀ -0 ₇	OUTPUTS

MODE SELECTION

PINS MODE	CE (18)	0E/V _{PP} (20)	V _{CC} (24)	OUTPUTS (9-11,13-17)
Read	V_{IL}	VIL	+5	D _{OUT}
Standby	VIH	Don't Care	+5	High Z
Program	VIL	Vpp	+5	D _{IN}
Program Verify	V_{IL}	VIL	+5	D _{OUT}
Program Inhibit	V _{IH}	VPP	+5	High Z

BLOCK DIAGRAM

INTEL CORPORATION ASSUMES NO RESPONSIBILITY FOR THE USE OF ANY CIRCUITRY OTHER THAN CIRCUITRY EMBODIED IN AN INTEL PRODUCT. NO OTHER CIRCUIT PATENT LICENSES ARE IMPLIED. INTEL CORPORATION, 1980 7-234 FEBRUARY 1980

PROGRAMMING

The programming specifications are described in the Data Catalog PROM/ROM Programming Instructions Section.

2732

ABSOLUTE MAXIMUM RATINGS*

 Temperature Under Bias
 -10° C to +80° C

 Storage Temperature
 -65° C to +125° C

 All Input or Output Voltages with

 Respect to Ground
 +6V to -0.3V

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS

 T_A = 0°C to 70°C, V_{CC} = +5V \pm 5%

READ OPERATION

Limits Symbol Parameter Typ.^[1] Max. Unit Conditions Min. LIT Input Load Current (except OE/VPP) 10 μA $V_{IN} = 5.25V$ μA I_{LI2} OE/VPP Input Load Current $V_{IN} = 5.25V$ 10 VOUT = 5.25VIL0 Output Leakage Current 10 μA $\overline{CE} = V_{IH}, \ \overline{OE} = V_{IL}$ 30 Vcc Current (Standby) 15 mΑ ICC1 $\overline{OE} = \overline{CE} = V_{II}$ ICC2 Vcc Current (Active) 85 150 mΑ VIL Input Low Voltage -0.1 0.8 V VIH Input High Voltage 2.0 Vcc+1 V Vol Output Low Voltage 0.45 ٧ $I_{OL} = 2.1 mA$ 2.4 v Vон Output High Voltage $I_{OH} = -400 \mu A$

Note: 1. Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltages.

TYPICAL CHARACTERISTICS

CE TO OUTPUT DELAY (t_{CF})

C_L (pF)

CE TO OUTPUT DELAY (t_{CE}) VS. TEMPERATURE

A.C. CHARACTERISTICS

 T_A = 0°C to 70°C, V_{CC} = +5V \pm 5%

	Parameter	2732	Limits	2732-6	Limits		Test
Symbol		Min.	Max.	Min.	Max.	Unit	Conditions
tACC	Address to Output Delay		450		550	ns	$\overline{CE} = \overline{OE} = V_{IL}$
t _{CE}	CE to Output Delay		450		550	ns	$\overline{OE} = V_{IL}$
t _{OE}	Output Enable to Output Delay		120		120	ns	$\overline{CE} = V_{IL}$
t _{DF}	Output Enable High to Output Float	0	100	0	100	ns	$\overline{CE} = V_{IL}$
t _{он}	Output Hold from Addresses, CE or OE, Whichever Occurred First	0		0		ns	$\overline{CE} = \overline{OE} = V_{IL}$

CAPACITANCE [1] $T_A = 25^{\circ}C$, f = 1MHz

Symbol	Parameter	Тур.	Max.	Unit	Conditions
CIN1	Input Capacitance Except OE/VPP	4	6	pF	V _{IN} = 0V
CIN2	OE/V _{PP} Input Capacitance		20	pF	$V_{IN} = 0V$
Соит	Output Capacitance		12	pF	Vout = 0V

A.C. TEST CONDITIONS

Output Load: 1 TTL gate and $C_L = 100 pF$ Input Rise and Fall Times: ≤ 20ns Input Pulse Levels: 0.8V to 2.2V Timing Measurement Reference Level: Inputs 1V and 2V Outputs 0.8V and 2V

A.C. WAVEFORMS^[2]

NOTES:

1. THIS PARAMETER IS ONLY SAMPLED AND IS NOT 100% TESTED.

2 ALL TIMES SHOWN IN PARENTHESES ARE MINIMUM TIMES AND ARE NSEC UNLESS OTHERWISE SPECIFIED. 3. OE MAY BE DELAYED UP TO 330ns AFTER THE FALLING EDGE OF CE WITHOUT IMPACT ON 1ACC. 4. t_{DF} IS SPECIFIED FROM OE OR CE, WHICHEVER OCCURS FIRST.

ERASURE CHARACTERISTICS

The erasure characteristics of the 2732 are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000Å range. Data show that constant exposure to room level fluorescent lighting could erase the typical 2732 in approximately 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the 2732 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels are available from Intel which should be placed over the 2732 window to prevent unintentional erasure.

The recommended erasure procedure (see Data Catalog) for the 2732 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (,). The integrated dose (i.e., UV intensity X exposure time) for erasure should be a minimum of 15 W-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a 12000 μ W/cm² power rating. The 2732 should be placed within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure.

DEVICE OPERATION

The five modes of operation of the 2732 are listed in Table 1. A single 5V power supply is required in the read mode. All inputs are TTL levels except for $\overrightarrow{OE}/V_{PP}$ during programming. In the program mode the $\overrightarrow{OE}/V_{PP}$ input is pulsed from a TTL level to 25V.

PINS	CE (18)	OE/V _{PP} (20)	V _{CC} (24)	OUTPUTS (9-11,13-17)
Read	VIL	V _{IL}	+5	D _{OUT}
Standby	VIH	Don't Care	+5	High Z
Program	VIL	V _{PP}	+5	D _{IN}
Program Verify	VIL	VIL	+5	D _{OUT}
Program Inhibit	VIH	V _{PP}	+5	High Z

TABLE 1. Mode Selection

Read Mode

The 2732 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs 120ns (t_{OE}) after the falling edge of \overline{OE} , assuming that \overline{CE} has been low and addresses have been stable for at least $t_{ACC} - t_{OE}$.

Standby Mode

The 2732 has a standby mode which reduces the active power current by 80%, from 150mA to 30mA. The 2732 is placed in the standby mode by applying a TTL high signal to the \overline{CE} input. When in standby mode, the out-

puts are in a high impedance state, independent of the $\overline{\text{OE}}$ input.

Output OR-Tieing

Because EPROMs are usually used in larger memory arrays, Intel has provided a 2 line control function that accommodates this use of multiple memory connections. The two line control function allows for:

 a) the lowest possible memory power dissipation, and
 b) complete assurance that output bus contention will not occur.

To most efficiently use these two control lines, it is recommended that \overline{CE} (pin 18) be decoded and used as the primary device selecting function, while \overline{OE} (pin 20) be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is desired from a particular memory device.

Programming

Initially, and after each erasure, all bits of the 2732 are in the "1" state. Data is introduced by selectively programming "0's" into the desired bit locations. Although only "0's" will be programmed, both "1's" and "0's" can be presented in the data word. The only way to change a "0" to a "1" is by ultraviolet light erasure.

The 2732 is in the programming mode when the \overline{OE}/V_{PP} input is at 25V. It is required that a 0.1μ F capacitor be placed across \overline{OE}/V_{PP} and ground to suppress spurious voltage transients which may damage the device. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

When the address and data are stable, a 50msec, active low, TTL program pulse is applied to the \overline{CE} input. A program pulse must be applied at each address location to be programmed. You can program any location at any time — either individually, sequentially, or at random. The program pulse has a maximum width of 55msec. The 2732 must not be programmed with a DC signal applied to the \overline{CE} input.

Programming of multiple 2732s in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the paralleled 2732s may be connected together when they are programmed with the same data. A low level TTL pulse applied to the CE input programs the paralleled 2732s.

Program Inhibit

Programming of multiple 2732s in parallel with different data is also easily accomplished. Except for \overline{CE} , all like inputs (including \overline{OE}) of the parallel 2732s may be common. A TTL level program pulse applied to a 2732's \overline{CE} input with \overline{OE}/VPP at 25V will program that 2732. A high level \overline{CE} input inhibits the other 2732s from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with \overline{OE}/V_{PP} and \overline{CE} at V_{IL} . Data should be verified toy after the falling edge of \overline{CE} .

intel

2732A 32K (4K × 8) UV ERASABLE PROM

- 200 ns (2732A-2) Maximum Access Time . . . HMOS*•E Technology
- Compatible to High Speed 8mHz 8086-2 MPU . . .Zero WAIT State

Two Line Control

■ Pin Compatible to 2764 EPROM

Industry Standard Pinout ... JEDEC Approved

■ Low Standby Current . . . 35mA Max.

The Intel 2732A is a 5V only, 32,384 bit ultraviolet erasable and electrically programmable read-only memory (EPROM). It is pin compatible to Intel's 450ns 2732. The standard 2732A's access time is 250ns with speed selection (2732A-2) available at 200ns. The access time is compatible to high performance microprocessors, such as the 8mHz 8086-2. In these systems, the 2732A allows the microprocessor to operate without the addition of WAIT states.

An important 2732A feature is the separate output control, Output Enable (\overline{OE}), from the Chip Enable control (\overline{CE}). The \overline{OE} control eliminates bus contention in multiple bus microprocessor systems. Intel's Application Note AP-72 describes the microprocessor system implementation of the \overline{OE} and \overline{CE} controls on Intel's EPROMs. AP-72 is available from Intel's Literature Department.

The 2732A has a standby mode which reduces the power dissipation without increasing access time. The maximum active current is 150mA, while the maximum standby current is only 35mA, a 75% saving. The standby mode is achieved by applying a TTL-high signal to the \overline{CE} input.

The 2732A is fabricated with HMOS*-E technology, Intel's high speed N-channel MOS Silicon Gate Technology.

*HMOS is a patented process of Intel Corporation.

ĈĒ OUTPUTS PINS OE/VPP Vcc (18)(20) (24) (9-11,13-17) MODE Read VIL VIL +5 DOUT Standby VIH Don't Care +5 High Z Program VIL Vpp +5 DIN Program Verify +5 VIL VIL DOUT High Z Program Inhibit VIH VPP +5

MODE SELECTION

BLOCK DIAGRAM

inte

2758 8K (1K × 8) UV ERASABLE LOW POWER PROM

- Single + 5V Power Supply
- Simple Programming Requirements
 Single Location Programming
 Programs with One 50 ms Pulse
 - Programs with One 50 ms Pulse
- Low Power Dissipation
 525 mW Max. Active Power
 132 mW Max. Standby Power

- Fast Access Time: 450 ns Max. in Active and Standby Power Modes
- Inputs and Outputs TTL Compatible during Read and Program
- Completely Static
- Three-State Outputs for OR-Ties

The Intel® 2758 is a 8192-bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The 2758 operates from a single 5-volt power supply, has a static standby mode, and features fast single address location programming. It makes designing with EPROMs faster, easier and more economical. The total programming time for all 8192 bits is 50 seconds.

The 2758 has a static standby mode which reduces the power dissipation without increasing access time. The maximum active power dissipation is 525 mW, while the maximum standby power dissipation is only 132 mW, a 75% savings. Powerdown is achieved by applying a TTL-high signal to the \overline{CE} input.

A 2758 system may be designed for total upwards compatibility with Intel's 16K 2716 EPROM (see Applications Note 72). The 2758 maintains the simplest and fastest method yet devised for programming EPROMs — single pulse TTL-level programming. There is no need for high voltage pulsing because all programming controls are handled by TTL signals. Program any location at any time — either individually, sequentially, or at random, with the single address location programming.

PIN CONFIGURATION		MODE SE	LEC	TION	L, j		
A7 1 24 VCC A6 2 23 A8 A5 3 22 A9 A4 0 4 21 VPP A3 0 5 20 OE	PINS	CE/PGM (18)	A _R (19)	04 (29)	∀ _{₽Р} (21)	∀ _{6C} (24)	OUTPUTS (9-11, 13-17)
	Read	VIL	VIL	VIL	+5	+5	DOUT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Standby	VIH	VIL	Don't Care	+5	+5	High Z
02 11 14 04	Program	Pulsed VIL to VIH	VIL	VIH	+25	+5	D _{IN}
	Program Verify	VIL	VIL	VIL	+25	+5	DOUT
	Program Inhibit	VIL	VIL	VIH	+25	+5	High Z

PIN NAMES

Ao-Ag	ADDRESSES
CE/PGM	CHIP ENABLE/PROGRAM
ŌE	OUTPUT ENABLE
00-07	OUTPUTS
AR	SELECT REFERENCE

BLOCK DIAGRAM

PROGRAMMING

The programming specifications are described in the Data Catalog PROM/ROM Programming Instructions section.

Absolute Maximum Ratings*

Temperature Under Bias	°C
Storage Temperature	°C
All Input or Output Voltages with	
Respect to Ground	3V
VPP Supply Voltage with Respect	
to Ground During Programming +26.5V to -0.	зv

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

READ OPERATION

D.C. and Operating Characteristics

 $T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC}^{[1,2]} = +5V \pm 5\%, V_{PP}^{[2]} = V_{CC}$

0	Parameter		Limits				
Symbol		Min.	Typ. ^[3]	Max.	Unit	Conditions	
ILI	Input Load Current			10	μA	V _{IN} = 5.25V	
ILO	Output Leakage Current			10	μA	V _{OUT} = 5.25V	
I _{PP1} ^[2]	V _{PP} Current			5	mA	V _{PP} = 5.25V	
I _{CC1} [2]	V _{CC} Current (Standby)		10	25	mA	$\overline{CE} = V_{IH}, \overline{OE} = V_{IL}$	
1 _{CC2} [2]	V _{CC} Current (Active)		57	100	mA	$\overline{OE} = \overline{CE} = V_{1L}$	
A _R ^[4]	Select Reference Input Level	-0.1		0.8	V	Ι _{IN} = 10 μΑ	
VIL	Input Low Voltage	-0.1		0.8	V		
ViH	Input High Voltage	2.0		V _{CC} + 1	V		
VOL	Output Low Voltage			0.45	V	I _{OL} = 2.1 mA	
V _{OH}	Output High Voltage	2.4			V	I _{OH} = -400 μA	

NOTES: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.

2. Vpp may be connected directly to V_{CC} except during programming. The supply current would then be the sum of I_{CC} and Ipp1.

3. Typical values are for $T_A = 25 \,^{\circ}C$ and nominal supply voltages.

 A_R is a reference voltage level which requires an input current of only 10 μA. The 2758 S1865 is also available which has a reference voltage level of V_{IH} instead of V_{IL}.

Typical Characteristics

A.C. Characteristics

$T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC}^{[1]} = +5V \pm 5\%, V_{PP}^{[2]} = V_{CC}$

Symbol	Parameter	Limits					
		Min.	Typ. ^[3]	Max.	Unit	lest Conditions	
tACC	Address to Output Delay		250	450	ns	$\overline{CE} = \overline{OE} = V_{IL}$	
t _{CE}	CE to Output Delay		280	450	ns	OE = VIL	
t _{OE}	Output Enable to Output Delay			120	ns	CE = V _{IL}	
t _{DF}	Output Enable High to Output Float	0		100	ns	$\overline{CE} = V_{1L}$	
t _{OH}	Output Hold From Addresses, CE or OE Whichever Occurred First	0			ns	CE = OE = V _{IL}	

Capacitance^[4] $T_A = 25 \degree C$, f = 1 MHz

Symbol	Parameter	Тур.	Max.	Unit	Conditions
C _{IN}	Input Capacitance	4	6	pF	V _{IN} = 0V
C _{OUT}	Output Capacitance	8	12	pF	V _{OUT} = 0V

NOTE: Please refer to page 2 for notes.

A.C. Waveforms^[5]

A.C. Test Conditions:

Output Load: 1 TTL gate and $C_L = 100 \text{ pF}$ Input Rise and Fall Times: $\leq 20 \text{ ns}$ Input Pulse Levels: 0.8V to 2.2V Timing Measurement Reference Level: Inputs 1V and 2V Outputs 0.8V and 2V

NOTES: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.

2. Vpp may be connected directly to V_{CC} except during programming. The supply current would then be the sum of I_{CC} and Ipp1.

- 3. Typical values are for $T_A = 25$ °C and nominal supply voltages.
- 4. This parameter is only sampled and is not 100% tested.
- 5. All times shown in parentheses are minimum times and are nsec unless otherwise specified.
- 6. DE may be delayed up to 330 ns after the falling edge of DE without impact on tACC.
- 7. tDF is specified from OE or CE, whichever occurs first.

ERASURE CHARACTERISTICS

The erasure characteristics of the 2758 are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000Å range. Data show that constant exposure to room level fluorescent lighting could erase the typical 2758 in approximately 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the 2758 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels are available from Intel which should be placed over the 2758 window to prevent unintentional erasure.

The recommended erasure procedure (see Data Catalog Programming Section) for the 2758 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (Å). The integrated does (i.e., UV intensity X exposure time) for erasure should be a minimum of 15 W-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with 12,000 μ W/cm² power rating. The 2758 should be placed within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure.

DEVICE OPERATION

The five modes of operation of the 2758 are listed in Table 1. It should be noted that all inputs for the five modes are at TTL levels. The power supplied required are a +5V V_{CC} and a V_{PP}. The V_{PP} power supply must be at 25V during the two programming modes, and must be at 5V in the other three modes. In all operational modes, A_R must be at V_{IL} (except for the 2758 S1865 which has A_R at V_{IH}).

PINS MODE	CE/PGM (18)	A _R (19)	0E (20)	V _{PP} (21)	V _{CC} (24)	OUTPUTS (9-11, 13-17)
Read	VIL	VIL	VIL	+5	+5	D _{OUT}
Standby	V _{IH}	VIL	Don't Care	+5	+5	High Z
Program	Pulsed VIL to VIH	VIL	VIH	+25	+5	D _{IN}
Program Verify	VIL	VIL	VIL	+25	+5	D _{OUT}
Program Inhibit	VIL	VIL	VIH	+25	+5	High Z

TABLE I. MODE SELECTION

READ MODE

The 2758 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at

the outputs 120 ns (t_{OE}) after the falling edge of \overline{OE} , assuming that \overline{CE} has been low and addresses have been stable for at least t_{ACC} - t_{OE}.

STANDBY MODE

The 2758 has a standby mode which reduces the active power dissipation by 75%, from 525 mW to 132 mW. The 2758 is placed in the standby mode by applying a TTL high signal to \overline{CE} input. When in standby mode, the outputs are in a high impedence state, independent of the OE input.

OUTPUT OR-TIEING

Because EPROMs are usually used in larger memory arrays, Intel has provided a 2 line control function that accommodates this use of multiple memory connections. The two line control function allows for:

- a) the lowest possible memory Power dissipation, and
- b) complete assurance that output bus contention will not occur.

To most efficiently use these two control lines, it is recommended that \overline{CE} (pin 18) be decoded and used as the primary device selecting function, while \overline{OE} (pin 20) be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAMMING

Initially, and after each erasure, all bits of the 2758 are in the "1" state. Data is introduced by selectively programming "0's" into the desired bit locations. Although only "0's" will be programmed, both "1's" and "0's" can be presented in the data word. The only way to change a "0" to a "1" is by ultraviolet light erasure.

The 2758 is in the programming mode when the V_{PP} power supply is at 25V and \overline{OE} is at V_{IH}. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

When the address and data are stable, a 50 msec, active high, TTL program pulse is applied to the \overline{CE}/PGM input. A program pulse must be applied at each address location to be programmed. You can program any location at any time — either individually, sequentially, or at random. The program pulse has a maximum width of 55 msec.

The 2758 must be programmed with a DC signal applied to the $\overline{\text{CE}}/\text{PGM}$ input.

Programming of multiple 2758s in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the parallelled 2758s may be connected together when they are programmed with the same data. A high level TTL pulse applied to the \overline{CE}/PGM input programs the paralleled 2758s.

PROGRAM INHIBIT

Programming of multiple 2758s in parallel with different data is also easily accomplished. Except for \overline{CE}/PGM , all like inputs (including \overline{OE}) of the parallel 2758s may be common. A TTL level program pulse applied to a 2758's \overline{CE}/PGM input with V_{PP} at 25V will program that 2758. A low level \overline{CE}/PGM input inhibits the other 2758 from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify may be performed with V_{PP} at 25V. Except during programming and program verify, V_{PP} must be at 5V.

Development Support Tools 8

CHAPTER 8 DEVELOPMENT SUPPORT TOOLS

INTELLEC SERIES II/85 MODEL 235

Complete 8051 application development support is based on the Intellec Model 235 development system. A Model 235 system is configured from a Model 225 system and Model 720 Flexible Disk Subsystem, described in the following pages. The Model 235 provides the ISIS-II operating system, supported by integral CRT and keyboard, 1.25M bytes of flexible disk storage and 64K bytes of RAM.

The Model 225 system without the additional disk drives can support limited 8051 development tasks which require only a single drive and 250K bytes of storage.

.....

intel MODEL 225 INTELLEC® SERIES II/85 MICROCOMPUTER DEVELOPMENT SYSTEM

- Complete microcomputer development system for MCS[®]-86, MCS[®]-85, MCS[®]-80, MCS[®]-48, and MCS[®]-51 microprocessor families
- High performance 8085A-2 CPU, 64K bytes RAM memory, and 4K bytes ROM memory
- Self-test diagnostic capability
- Built-in interfaces for high speed paper tape reader/punch, printer, and universal PROM programmer

- Integral 250K byte floppy disk drive with total storage capacity expandable to over 2M bytes of floppy disk storage and 7.3M bytes of hard disk storage
- Powerful ISIS-II Disk Operating System with relocating macroassembler, linker, locater, and CRT based editor CREDIT
- Supports PL/M, FORTRAN, BASIC, PASCAL and COBOL high level languages
- Software compatible with previous Intellec[®] systems

The Intellec Series II/85 Model 225 Microcomputer Development System is a performance enhanced, complete microcomputer development system integrated into one compact package. The Model 225 includes a CPU with 64K bytes of RAM, 4K bytes of ROM, a 2000-character CRT, detachable full ASCII keyboard with cursor controls and upper/lower case capability, and a 250K-byte floppy disk drive. Powerful ISIS-II Disk Operating System software allows the Model 225 to be used quickly and efficiently for assembling and debugging programs for Intel's MCS-86, MCS-85, MCS-80, MCS-48, or MCS-51 microprocessor families. ISIS-II performs all file handling operations for the user, leaving him free to concentrate on the details of his own application. When used with an optional in-circuit emulator (ICE[™]) module, the Model 225 provides all of the hardware and software development tools necessary for the rapid development of a microcomputer-based product. Optional storage peripherals provide over 2 million bytes of floppy disk, and 7.3 million of hard disk storage capacity.

The following are trademarks of Intel Corporation and may be used only to identify Intel products: BXP, Intellec, Multibus, i, ISBC, Multimodule, ICE, ISBX, PROMPT, iCS, Library Manager, Promware, Insite, MCS, RMX, Intel, Megachassis, UPI, Intelevision, Micromap, µScope and the combination of ICE, iCS, ISBC, ISBX, MCS, or RMX and a numerical suffix.

FUNCTIONAL DESCRIPTION

Hardware Components

The Intellec Series II/85 Model 225 is a highlyintegrated microcomputer development system consisting of a CRT chassis with a 6-slot cardcage, power supply, fans, cables, single floppy disk drive, and two printed circuit cards. A separate, full ASCII keyboard is connected with a cable. A block diagram of the Model 225 is shown in Figure 1.

CPU Cards — The master CPU card contains its own microprocessor, memory, I/O, interrupt and bus interface circuitry implemented with Intel's high technology LSI components. Known as the integrated processor card (IPC), it occupies the first slot in the cardcage. A second slave CPU card is responsible for all remaining I/O control including the CRT and keyboard interface. This card, mounted on the rear panel, also contains its own microprocessor, RAM and ROM memory, and I/O interface logic, thus, in effect, creating a dual processor environment. Known as the I/O controller (IOC), the slave CPU card communicates with the IPC over an 8-bit bidirectional data bus.

Expansion — Five remaining slots in the cardcage are available for system expansion. Additional expansion of 4 slots can be achieved through the addition of an Intellec Series II expansion chassis.

Figure 1. Intellec Series II/85 Model 225 Microcomputer Development System Block Diagram

System Components

The heart of the IPC is an Intel NMOS 8-bit microprocessor, the 8085A-2, running at 4.0 MHz. 64K bytes of RAM memory are provided on the board using 16K RAMs. 4K of ROM is provided, preprogrammed with system bootstrap "self-test" diagnostics and the Intellec Series II/85 System Monitor. The eight-level vectored priority interrupt system allows interrupts to be individually masked. Using Intel's versatile 8259A interrupt controller, the interrupt system may be user programmed to respond to individual needs.

Input/Output

IPC Serial Channels - The I/O subsystem in the Model 225 consists of two parts: the IOC card and two serial channels on the IPC itself. Each serial channel is RS232 compatible and is capable of running asynchronously from 110 to 9600 baud or synchronously from 150 to 56K baud. Both may be connected to a user defined data set or terminal. One channel contains current loop adapters. Both channels are implemented using Intel's 8251A USART. They can be programmed to perform a variety of I/O functions. Baud rate selection is accomplished through an Intel 8253 interval timer. The 8253 also serves as a real-time clock for the entire system. I/O activity through both serial channels is signaled to the system through a second 8259A interrupt controller, operating in a polled mode nested to the primary 8259A.

IOC Interface — The remainder of system I/O activity takes place in the IOC. The IOC provides interface for the CRT, keyboard, and standard Intellec peripherals including printer, high speed paper tape reader/punch, and universal PROM programmer. The IOC contains its own independent microprocessor, an 8080A-2. The CPU controls all I/O operations as well as supervising communications with the IPC. 8K bytes of ROM contain all I/O control firmware. 8K bytes of RAM are used for CRT screen refresh storage. These do not occupy space in Intellec Series II main memory since the IOC is a totally independent microcomputer subsystem.

Integral CRT

Display — The CRT is a 12-inch raster scan type monitor with a 50/60 Hz vertical scan rate and 15.5kHz horizontal scan rate. Controls are provided for brightness and contrast adjustments. The interface to the CRT is provided through an Intel 8275 single-chip programmable CRT controller. The master processor on the IPC transfers a character for display to the IOC, where it is stored in RAM. The CRT controller reads a line at a time into its line buffer through an Intel 8257 DMA controller and then feeds one character at a time to the character generator to produce the video signal. Timing for the CRT control is provided by an Intel 8253 interval timer. The screen display is formatted as 25 rows of 80 characters. The full set of ASCII characters is displayed, including lower case alphas.

Keyboard — The keyboard interfaces directly to the IOC processor via an 8-bit data bus. The keyboard contains an Intel UPI-41[™] Universal Peripheral Interface, which scans the keyboard, encodes the characters, and buffers the characters to provide N-key rollover. The keyboard itself is a high quality typewriter style keyboard containing the full ASCII character set. An upper/lower case switch allows the system to be used for document preparation. Cursor control keys are also provided.

Peripheral Interface

A UPI-41 Universal Peripheral Interface on the IOC board provides interface for other standard Intellec peripherals including a printer, high speed paper tape reader, high speed paper tape punch, and universal PROM programmer. Communication between the IPC and IOC is maintained over a separate 8-bit bidirectional data bus. Connectors for the four devices named above, as weli as the two serial channels, are mounted directly on the IOC itself.

Control

User control is maintained through a front panel, consisting of a power switch and indicator, reset/boot switch, run/halt light, and eight interrupt switches and indicators. The front panel circuit board is attached directly to the IPC, allowing the eight interrupt switches to connect to the primary 8259A, as well as to the Intellec Series II bus.

Integral Floppy Disk Drive

The integral floppy disk is controlled by an Intel 8271 single chip, programmable floppy disk controller. It transfers data via an Intel 8257 DMA controller between an IOC RAM buffer and the diskette. The 8271 handles reading and writing of data, formatting diskettes, and reading status, all upon appropriate commands from the IOC microprocessor.

MULTIBUS[™] Interface Capability

All Intellec Series II/85 models implement the industry standard MULTIBUS protocol. The MULTIBUS protocol enables several bus masters, such as CPU and DMA devices, to share the bus

and memory by operating at different priority levels. Resolution of bus exchanges is synchronized by a bus clock signal derived independently from processor clocks. Read/write transfers may take place at rates up to 5 MHz. The bus structure is suitable for use with any Intel microcomputer family.

SPECIFICATIONS

Host Processor (IPC)

8085A-2 based, operating at 4.0 MHz. **RAM** — 64K on the CPU card **ROM** — 4K (2K in monitor, 2K in boot/diagnostic)

Bus — MULTIBUS[™] bus, maximum transfer rate of 5 MHz

Clocks — Host processor, crystal controlled at 4.0 MHz, bus clock, crystal controlled at 9.8304 MHz

I/O Interfaces

Two Serial I/O Channels, RS232C, at 110-9600 baud (asynchronous) or 150-56K baud (synchronous). Baud rates and serial format fully programmable using Intel 8251A USARTs. Serial Channel 1 additionally provided with 20 mA current loop. Parallel I/O interfaces provided for paper tape punch, paper tape reader, printer, and UPP-103 Universal PROM Programmer.

Interrupts

8-level, maskable, nested priority interrupt network initiated from front panel or user selected devices.

Direct Memory Access (DMA)

Standard capability on MULTIBUS interface; implemented for user selected DMA devices through optional DMA module—maximum transfer rate of 5 MHz.

Memory Access Time

RAM — 470 ns max **PROM** — 540 ns max

Integral Floppy Disk Drive

- Floppy Disk System Capacity 250K bytes (formatted) Floppy Disk System Transfer Rate — 160K bits/sec
- Floppy Disk System Access Time Track to Track: 10 ms max Average Random Positioning: 260 ms Rotational Speed: 360 rpm Average Rotational Latency: 83 ms Recording Mode: FM

Physical Characteristics

CHASSIS

Width — 17.37 in. (44.12 cm) Height — 15.81 in. (40.16 cm) Depth — 19.13 in. (48.59 cm) Weight — 73 lb. (33 kg)

KEYBOARD

Width — 17.37 in. (44.12 cm) Height — 3.0 in. (7.62 cm) Depth — 9.0 in. (22.86 cm) Weight — 6 lb. (3 kg)

Electrical Characteristics

DC POWER SUPPLY

Volts Supplied	Amps Supplied	Typical System Requirements
$\begin{array}{r} + 5 \pm 5\% \\ + 12 \pm 5\% \\ - 12 \pm 5\% \\ - 10 \pm 5\% \\ + 15 \pm 5\%^{*} \\ + 24 \pm 5\%^{*} \end{array}$	30.0 2.5 0.3 1.0 1.5 1.7	17.0 1.1 0.1 0.08 1.5 1.7

*Not available on bus.

AC REQUIREMENTS FOR MAINFRAME

110V, 60 Hz — 5.9 Amp 220V, 50 Hz — 3.0 Amp

Environmental Characteristics

Operating Temperature — 16°C to 32°C (61°F to 90°F) **Humidity** — 20% to 80%

Equipment Supplied

Model 225 Chassis including:
Integrated Processor Card (IPC)
I/O Controller Board (IOC)
CRT
ROM-Resident System Monitor
Detachable keyboard
ISIS-II System Diskette with MCS-80/MCS-85
Macroassembler
ISIS-II CREDIT Diskette CRT-Based Text Editor

Documentation Supplied

A Guide to Microcomputer Development Systems, 9800558

Intellec[®] Series II Model 22X/23X Installation Manual, 9800559

ISIS-II System User's Guide, 9800306

Intellec® Series II Hardware Reference Manual, 9800556

8080/8085 Assembly Language Programming Manual, 9800301

ISIS-II 8080/8085 Assembler Operator's Manual, 9800292

Intellec[®] Series II Systems Monitor Source Listing, 9800605

Intellec® Series II Schematic Drawings, 9800554

ISIS-II CREDIT (CRT-Based Text Editor) User's Guide, 9800902

Additional manuals may be ordered from any Intel sales representative or distributor office, or from Intel Literature Department, 3065 Bowers Avenue, Santa Clara, California 95051.

ORDERING INFORMATION

Part Number	Description
MDS-225*	Intellec [®] Series II/85 Model 225 Microcomputer Development System (110V/60 Hz)
MDS-226*	Intellec® Series II/85 Model 226 Microcomputer

Development System (220V/50 Hz)

*"*MDS*" is an ordering code only, and is not used as a product name or trademark. MDS[®] is a registered trademark of Mohawk Data Sciences Corp.

INTELLEC® SINGLE/DOUBLE DENSITY FLEXIBLE DISK SYSTEM

- Flexible Disk System Providing High Speed Input/Output and Data Storage for Intellec[®] Microcomputer Development Systems
- Available in Both Single Density and Double Density Systems
- Data Recorded on Single Density Flexible Disk Is in IBM Soft-Sectored Format Which Allows ¼ Million Byte Data Capacity with Up to 200 Files Per Flexible Disk
- Data Recorded on Double Density Flexible Disk is in Soft-Sectored Format Which Allows ½ Million Byte Data Capacity with Up to 200 Files Per Flexible Disk
- Associated Software Supports Up to Four Double Density Drives and Two Single Density Drives, Providing Up to 2.5 Megabytes of Storage in One System
- Dynamic Allocation and Deallocation of Flexible Disk Sectors for Variable Length Files

The Intellec Flexible Disk System is a sophisticated, general purpose, bulk storage peripheral for use with the Intellec Microcomputer Development System. The use of a flexible disk operating system significantly reduces program development time. The software system known as ISIS-11 (Intel System Implementation Supervisor), provides the ability to edit, assemble, compile, link, relocate, execute and debug programs, and performs all file management tasks for the user.

The following are trademarks of Intel Corporation and may be used only to identify Intel products: i, Int_{el}, INTEL, INTELLEC, MCS, ^Im, ICS, ICE, UPI, BXP, ISBC, ISBX, iNSITE, IRMX, CREDIT, RMX/80, µScope, Multibus, PROMPT, Promware, Megachassis, Library Manager, MAIN MULTI MODULE, and the combination of MCS, ICE, SBC, RMX or ICS and a numerical suffix; e.g., ISBC-80.

intel

HARDWARE

The Intellec[®] flexible disk system provides direct access bulk storage, intelligent controller, and two flexible disk drives. Each single density drive provides $\frac{1}{4}$ million bytes of storage with a data transfer rate of 250,000 bits/second. The double density drive provides $\frac{1}{2}$ million bytes of storage with a data transfer rate of 500,000 bits/second. The controllers are implemented with Intel's powerful Series 3000 Bipolar Microcomputer Set. The controllers provide interface to the Intellec System bus. Each single density controller will support two drives. The flexible disk system records all data in soft sector format.

The single/double density flexible disk controllers each consists of two boards, the Channel Board and the Interface Board. These two printed circuit boards reside in the Intellec System chassis. The boards are shown in the photograph, and are described in more detail in the following paragraphs.

SINGLE/DOUBLE DENSITY CHANNEL BOARD

DOUBLE DENSITY INTERFACE BOARD (SINGLE DENSITY INTERFACE BOARD IS SIMILAR TO THE ONE SHOWN ABOVE)

CHANNEL BOARD

The Channel Board is the primary control module within the flexible disk system. The Channel Board receives, decodes, and responds to channel commands from the Central Processor Unit (CPU) in the Intellec system. The Channel Board can access a block of Intellec system memory to determine the particular flexible disk operations to be performed and fetch the parameters required for the successful completion of the specified operation.

The control functions of the Channel Board have been achieved with an 8-bit microprogrammed processor, designed with Intel's Series 3000 Bipolar Microcomputer Set. This 8-bit processor includes four 3002 Central Processing Elements (2-bit slice per CPE), a 3001 Microprogram Control Unit, and 512 × 32 bits of 3604 programmable-read-only-memory (PROM) which stores the microprogram. It is the execution of the microprogram by the microcomputer set which actually effects the control capability of the Channel Board.

This board is the same for either single or double density drives, except that the Series 3000 microcode is different.

INTERFACE BOARD

The Interface Board provides the flexible disk controller with a means of communication with the flexible disk drives, as well as with the Intellec system bus. Under control of the microprogram being executed on the Channel Board, the Interface Board generates those signals which cause the read/write head on the selected drive to be loaded (i.e., to come in contact with the flexible disk platter), cause the head to move to the proper track and verify successful operation. The Interface Board accepts the data being read off the flexible disk, interprets synchronizing bit patterns, checks the validity of the data using a cyclic redundancy check (CRC) polynomial, and then transfers the data to the Channel Board.

During write operations, the Interface Board outputs the data and clock bits to the selected drive at the proper times, and generates the CRC characters which are then appended to the data.

When the flexible disk controller requires access to Intellec system memory, the Interface Board requests the DMA master control of the system bus, and generates the appropriate memory command. The Interface Board also acknowledges I/O commands as required by the Intellec bus.

The Flexible Disk System is capable of performing seven different operations: recalibrate, seek, format track, write data, write deleted data, read data, and verify CRC.

The channel board is different for single and double density drives, due to the different recording techniques used. The single density controller boards support one set of dual single density drives. The double density controller boards support up to two sets of dual double density drives (four drives total).

The double density controller may co-reside with the Intel single density controller to allow conversion of single density flexible disk to double density format, and provide up to 2.5M bytes of storage.

FLEXIBLE DISK DRIVE MODULES

Each flexible disk drive consists of read/write and control electronics, drive mechanisms, read/write head, track positioning mechanism, and the removable flexible disk platter. These components interact to perform the following functions:

- · Interpret and generate control signals
- Move read/write head to selected track
- Read and write data

int_eľ

ASSOCIATED SOFTWARE — INTEL SYSTEMS IMPLEMENTATION SUPERVISOR (ISIS-II)

The Flexible Disk Drive System is to be used in conjunction with the ISIS-II Operating System. ISIS-II provides total file management capabilities, file editing,

ISIS-II OPERATIONAL ENVIRONMENTAL

32K bytes RAM memory 48K bytes when using Assembler Macro feature 64K bytes when using PL/M or Fortran System Console Single or Double density Flexible Disk Drive

HARDWARE SPECIFICATIONS

MEDIA

Single DensityDouble DensityFlexible DiskDouble Density Specified
Flexible DiskOne Recording SurfaceOne Recording SurfaceIBM Soft Sector FormatSoft Sector Format77 Tracks/Diskette77 Tracks/Diskette26 Sectors/Track52 Sectors/Track128 Bytes/Sector128 Bytes/Sector

PHYSICAL CHARACTERISTICS

CHASSIS AND DRIVES

Mounting:	Table-Top
Height:	5.7 in. (14.5 cm)
Width:	17.6 in. (44.7 cm)
Depth:	19.4 in. (49.3 cm)
Weight:	43.0 lb. (19.5 kg)

ELECTRICAL CHARACTERISTICS

CHASSIS

DC Power Supplies

Supplied Internal to the Cabinet

AC Power Requirements 3-wire input with center conductor (earth ground) tied

to chassis Single-phase, 115 VAC; 60 Hz; 1.2 Amp Maximum (For

a Typical Unit)

230 VAC; 50 Hz; 0.7 Amp Maximum (For a Typical Unit)

FLEXIBLE DISK OPERATING SYSTEM CONTROLLER

DC Power Requirements (All power supplied by Intellec Development System)

CHANNEL BOARD

Single Density	Double Density		
5V @ 3.75A (typ), 5A (max)	5V @ 3.75A (typ), 5A (max)		
INTERFACE BOARD Single Density	Double Density		
5V @ 1.5A (typ), 2.5A (max)	5V @ 1.5A (typ), 2.5A (max) - 10V @ 0.1A (typ).		

0.2A (max)

library management, run-time supports, and utility management.

ISIS-II provides automatic implementation of random access disk files. Up to 200 files may be stored on each 14 million byte flexible disk for single density system or on each 1/2 million byte flexible disk for double density system. For more information, see the ISIS-II data specification sheet.

FLEXIBLE DISK DRIVE PERFORMANCE SPECIFICATION

	Single Density	Double Density
Capacity (Unformatted):		
Per Disk	3.1 megabits	6.2 megabits
Per Track	41 kilobits	82 kilobits
Capacity (Formatted):		
Per Disk	2.05M bits	4.10 megabits
Per Track	26.6K bits	53.2 kilobits
Data Transfer Rate	250 kilobits/	500 kilobits/
	sec	sec
Access Time:		
Track-to-Track	10 ms	10 ms
Head Settling Time	10 ms	10 ms
Average Random		
Positioning Time	260 ms	260 ms
Rotational Speed	360 rpm	360 rpm
Average Latency	83 ms	83 ms
Recording Mode	Frequency	M ² FM
	Modulation	

ENVIRONMENTAL CHARACTERISTICS

MEDIA

Temperature:Operating:15.6 °C to 51.7 °CNon-Operating:5 °C to 55 °CHumidity:0perating:Operating:8 to 80% (Wet bulb 29.4 °C)Non-Operating:8 to 90%

DRIVES AND CHASSIS

10°C to 38°C
– 35°C to 65°C
20% to 80% (Wet bulb 26.7°C)
5% to 95%

CONTROLLER BOARDS

Temperature:	
Operating:	0 to 55°C
Non-Operating:	– 55°C to 85°C
Humidity:	
Operating:	Up to 95% relative humidity without
	condensation
Non-Operating:	All conditions without condensa-
	tion of water or frost

EQUIPMENT SUPPLIED

SINGLE DENSITY

Cabinet, Power Supplies, Line Cord, Two Drives Single Density FDC Channel Board Single Density FDC Interface Board Dual Auxiliary Board Connector Flexible Disk Controller Cable Flexible Disk Peripheral Cable Hardware Reference Manual Reference Schematics\ ISIS-II Single Density System Disk ISIS-II System User's Guide

DOUBLE DENSITY

Cabinet, Power Supplies, Line Cord, Two Drives Double Density FDC Channel Board Double Density FDC Interface Board Dual Auxiliary Board Connector Flexible Disk Controller Cable Flexible Disk Peripheral Cable Hardware Reference Manual Reference Schematics ISIS-II Double Density System Disk ISIS-II System User's Guide

OPTIONAL EQUIPMENT

MDS-BLD* 10 Blank Flexible Disks MDS-730/731* Second Drive Cabinet with two additional drives

ORDERING INFORMATION

Part Number	Description
MDS-710/110V* 711/220V	Flexible Disk drive unit with two drives, single density drive con- troller, software, and cables.
MDS-720-110V* 721/220V	Flexible Disk drive unit with two drives, double density drive con- troller, software, and cables.
MDS-730/110V* 731/220V	Add-on drive unit with two drives and double density cable, without controller and software. Can be used with double density con- troller.

*MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk Data Sciences Corporation.

intel

8051 SOFTWARE DEVELOPMENT PACKAGE

- Symbolic assembly language programming for 8051 microcontrollers
- Extends Intellec[®] Microcomputer
 Development System to support 8051
 program development
- Provides assembler output in standard Intel hex format
- Macro Assembler features conditional assembly and macro capabilities

- CONV51 Converter for translation of 8048 assembly language source code to 8051 assembly language source code
- Provides upward compability from the MCS-48[™] family of single-chip microcontrollers
- Supports conversion of ASM48 source code macro definitions

The 8051 software development package provides development system support for the powerful 8051 family of single chip microcomputers. The package contains a symbolic macro assembler and MCS-48 source code converter.

The assembler produces absolute machine code from 8051 macro assembly language instructions. This object code may be used to program the 8751 EPROM version of the chip. The assembler output may also be debugged using the ICE-51[™] in-circuit emulator.

The converter translates 8048 assembly language instructions into 8051 source instructions to provide software compatibility between the two families of microcontrollers.

This diskette-based software package runs under ISIS-II on an Intellec Microcomputer Development System with 64K bytes of memory.

8051 SOFTWARE DEVELOPMENT PACKAGE

8051 MACRO ASSEMBLER

- Supports 8051 family program development on Intellec[®] Microcomputer Development Systems
- Gives symbolic access to powerful 8051 hardware features
- Produces object file, listing file and error diagnostics
- Provides software support for many addressing and data allocation capabilities
- Symbolic Assembler supports symbol table, cross-reference, macro capabilities, and conditional assembly

The 8051 Macro Assembler (ASM51) translates symbolic 8051 macro assembly language instructions into machine executable object code. These assembly language mnemonics are easier to program and are more readable than binary or hexadecimal machine instructions. Also, by allowing the programmer to give symbolic names to memory locations rather than absolute addresses, software design and debug are performed more quickly and reliably.

The assembler supports macro definitions and calls. This is a convenient way to program a frequently used code sequence only once. The assembler also provides conditional assembly capabilities.

Cross referencing is provided in the symbol table listing, showing the user the lines in which each symbol was defined and referenced.

ASM51 provides symbolic access to the many useful addressing features of the 8051 architecture. These features include referencing for bit and byte locations, and for providing 4-bit operations for BCD arithmetic. The assembler also provides symbolic access to hardware registers, I/O ports, control bits, and RAM addresses.

Math routines are enhanced by the MULtiply and DIVide instructions.

If an 8051 program contains errors, the assembler provides a comprehensive set of error diagnostics, which are included in the assembly listing or on another file. Program testing may be performed by using the Universal PROM Programmer and 8751 personality card to program the 8751 EPROM version of the chip, or by using the ICE-51 in-circuit emulator.

 MCS-51 NACRO ASSEMBL	LER		PAGE	1
ISIS-II NCS-51 MACRO Object nodule placed Assembler invoked by	0 ASSEMBLE D IN :F1:C Y: :F1:AS	R Onart Mex M51 :F1:Convrt 51 Symbols Xref		
LOC OBJ	LINE	SOURCE		
0180 0180 C7 0180 C7 0180 C7 0180 C7 0180 S4F8 0180 S4F8 0180 S4F8 0180 S4F 0180 S4F 0180 S4F 0180 S4F 0180 C7 0180 S4F 0180 C7 0180	1 3 4 5 6 7 8 9 10 11 13 4 15 6 17 8 9 9 10 11 13 4 15 6 7 8 9 9 10 11 2 3 4 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	: This routine converts BCD to binary and binary to BCD. ORC 1884 - COMVET NOV wilk? TO UNIT NOV wilk? COMVET NOV wilk? BCDB:UT AND wilk? SUBC SUBC SUBC SUBC I AUX SUBC SUBC NOV AND SUBC SUBC SUBC NOV AND SUBC SUBC SUBC SUBC SUBC SUBC SUBC SUBC		
NC0-81 NACOD A00EM01	£9	CNV	PAGE	2
XREF SYMBOL TABLE LI	IST ING			
NAME TYPE VAL	UE AND REI	FERENCES		
8 H DSEG BBF BCDBIN. L CSEG B18 BIMBCD. L CSEG B11 Convrt L CSEG B18	8H 11 24 6H 13# 18H 12 22 8BH 180			*
ASSEMBL/ COMPLETE, F	NO ERRORS	round Sample ASM51 Listing		

CONV51 8048 TO 8051 ASSEMBLY LANGUAGE CONVERTER UTILITY PROGRAM

- Enables software written for the MCS-48[™] family to be upgraded to run on the 8051
- Maps each 8048 instruction to a corresponding 8051 instruction
- Preserves comments; translates 8048 macro definitions and calls
- Provides diagnostic information and warning messages embedded in the output listing

The 8048 to 8051 Assembly Language Converter is a utility to help users of the MCS-48 family of microcomputers upgrade their designs with the high performance 8051 architecture. By converting 8048 source code to 8051 source code, the software investment developed for the 8048 is maintained when the system is upgraded.

The goal of the converter (CONV51) is to attain functional equivalence with the 8048 code by mapping each 8048 instruction to a corresponding 8051 instruction. In some cases a different instruction is produced because of the enhanced instruction set (e.g., bit CLR instead of ANL).

Although CONV51 tries to attain functional equivalence with each instruction, certain 8048 code sequences cannot be automatically converted. For example, a delay routine which depends on 8048 execution speed would require manual adjustment. A few instructions, in fact, have no 8051 equivalent (such as those involving P4-P7). Finally, there are a few areas of possible intervention such as PSW manipulation and interrupt processing, which at least require the user to confirm proper translation. The converter always warns the user when it cannot guarantee complete conversion.

CONV51 produces two files. The output file contains the ASM51 source program produced from the 8048 instructions. The listing file produces correlated listings of the input and output files, with warning messages in the output file to point out areas that may require users' intervention in the conversion.

SPECIFICATIONS

OPERATING ENVIRONMENT

Required Hardware:

Intellec Microcomputer Development System with

64K Bytes of RAM

Flexible Disk Drive(s)

System Console

-CRT or hard copy device

Optional Hardware:

Universal PROM Programmer Line Printer ICE-51 In-Circuit Emulator

Required Software:

ISIS-II Diskette Operating System (V3.4 or later)

Documentation Package:

MCS-51 Macro Assembler User's Guide

MCS-51 Macro Assembly Language Pocket Reference

MCS-51 8048-to-8051 Assembly Language Converter Operating Instructions for ISIS-II Users

ORDERING INFORMATION

Part Number Description

MCI-51-ASM 8051 Software Development Package

intel

ICE-51™ 8051 IN-CIRCUIT EMULATOR

- Precise, full-speed, real-time emulation
 Load, drive, timing characteristics
 - Full-speed program RAM
 - Serial and parallel ports
- User-specified breakpoints
- Execution trace
 - User-specified qualifier registers
 - Conditional trigger
 - Symbolic groupings and display
 - Instruction and frame modes
- Emulation timer

- Full symbolic debugging
- Single-line assembly and disassembly for program instruction changes
- Macro commands and conditional block constructs for automated debugging sessions
- HELP facility: ICE-51 command syntax reference at the console
- User confidence test of ICE-51 hardware

The ICE-51 module resides in the Intellec[®] Microcomputer Development System and interfaces to any user-designed 8051 system through a cable terminating in an 8051 emulator microprocessor and a pincompatible plug. The emulator processor, together with 8K bytes of user program RAM located in the ICE-51 buffer box, replaces the 8051 device in the user system while maintaining the 8051 electrical and timing characteristics. Powerful Intellec debugging functions are thus extended into the user system. Using the ICE-51 module, the designer can emulate the system's 8051 in real-time or single-step mode. Breakpoints allow the user to stop emulation on user-specified conditions, and a trace qualifier feature allows the conditional collection of 1000 frames of trace data. Using the single-line 8051 assembler the user may alter program memory using ASM51 mnemonics and symbolic references, without leaving the emulator environment. Frequently used command sequences can be combined into compound commands and identified as macros with user-defined names.

The following are trademarks of Intel Corporation and may be used only to describe Intel products: Intel, Intellec, MCS and ICE, and the combination of MCS or ICE and a numerical suffix. Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied.

FUNCTIONAL DESCRIPTION

Integrated Hardware and Software Development

The ICE-51 emulator allows hardware and software development to proceed interactively. This approach is more effective than the traditional method of independent hardware and software development followed by system integration. With the ICE-51 module, prototype hardware can be added to the system as it is designed. Software and hardware integration occurs while the product is being developed.

The ICE-51 emulator assists four stages of development:

SOFTWARE DEBUGGING

It can be operated without being connected to the user's system before any of the user's hardware is available. In this stage ICE-51 debugging capabilities can be used in conjunction with the Intellec text editor and 8051 macroassembler to facilitate program development.

HARDWARE DEVELOPMENT

The ICE-51 module's precise emulation characteristics and full-speed program RAM make it a valuable tool for debugging hardware, including timecritical serial port, parallel port, and timer interfaces.

SYSTEM INTEGRATION

Integration of software and hardware can begin when any functional element of the user system hardware is connected to the 8051 socket. As each section of the user's hardware is completed, it is added to the prototype. Thus, each section of the hardware and software is "system" tested in real-time operation as it becomes available.

SYSTEM TEST

When the user's prototype is complete, it is tested with the final version of the user system software. The ICE-51 module is then used for real-time emulation of the 8051 to debug the system as a completed unit.

The final product verification test may be performed using the 8751 EPROM version of the 8051 microcomputer. Thus, the ICE-51 module provides the user with the ability to debug a prototype or production system at any stage in its development without introducing extraneous hardware or software test tools.

Symbolic Debugging

The ICE-51 emulator permits the user to define and use symbolic, rather than absolute, references to program and data memory addresses; additional symbols are predefined by the ICE-51 software for referencing registers, flags, and input/ output ports. Thus, the user need not recall or look up the addresses of key locations in his program as they change with each assembly, or become involved with machine code.

When a symbol is used for memory reference in an ICE-51 emulator command, the emulator supplies the corresponding location as stored in the ICE-51 emulator symbol table. This table can be loaded with the symbol table produced by the assembler during application program assembly. The user can obtain the symbol table during software preparation simply by using the "DEBUG" switch in the ASM51 macroassembler. Furthermore, the user can interactively modify the emulator symbol table by adding new symbols or changing or deleting old ones. This feature provides great flexibility in debugging and minimizes the need to work with hexadecimal values.

Through symbolic references in combination with other features of the emulator, the user can easily:

- Interpret the results of emulation activity collected during trace.
- Disassemble program memory to mnemonics, or assemble mnemonic instructions to executable code.
- Examine or modify 8051 internal registers, data memory, or port contents.
- Reference labels or addresses defined in a user program.

Automated Debugging and Testing

MACRO COMMAND

A macro is a set of commands which is given a name. A group of commands which is executed frequently can be defined as a macro. The user can execute the group of commands by typing a colon followed by the macro name. Up to ten parameters may be passed to the macro.

Macro commands can be defined at the beginning of a debug session and then used throughout the whole session. The user can save one or more macro definitions on diskette for later use. The Intellec text editor may be used to edit the macro file. The macro definitions are easy to include in any later emulation session. The power of the development system can be applied to manufacturing testing as well as development by writing test sequences as macros. The macros are stored on diskettes for use during system test.

COMPOUND COMMAND

Compound commands provide conditional execution of commands (IF command) and execution of commands repeatedly until certain conditions are met (COUNT, REPEAT commands).

Compound commands may be nested any number of times, and may be used in macro commands.

Example:

*DEFINE .I = 0 *COUNT 100H	; Define symbol .I to 0 ; Repeat the following commands 100H times.
.*IF .I AND 1 THEN	; Check if .I is odd
*BYTE .I = .I	; Fill the memory at location .I to value .I
*END	
.*.I=.I+1	; Increment .I by 1.
.*END	; Command executes upon carriage-return after END

(The characters *, .*, and ..* shown in this example are system prompts which include an indication of the nesting level of compound commands.)

Operating Modes

The ICE-51 software is an Intellec RAM-based program that provides the user with easy-to-use commands for initiating emulation, defining breakpoints, controlling trace data collection, and displaying and controlling system parameters. ICE-51 commands are configured with a broad range of modifiers which provide the user with maximum flexibility in describing the operation to be performed.

EMULATION

The ICE-51 module can emulate the operation of a prototype 8051 system, at real-time speed (1.2 to 12 MHz) or in single steps. Emulation commands to the ICE-51 module control the process of setting up, running, and halting an emulation of the user's 8051-based system. Breakpoints and tracepoints enable the ICE-51 emulator to halt emulation and provide a detailed trace of execution in any part of the user's program. A summary of the emulation commands is shown in Table 1.

Breakpoints

The ICE-51 hardware includes two breakpoint registers that allow the user to halt emulation when specified conditions are met. The emulator continuously compares the values stored in the breakpoint registers with the status of specified address, opcode, operand, or port values, and halts emulation when this comparison is satisfied. When an instruction initiates a break, that instruction is executed completely before the break takes place. The ICE-51 emulator then regains control of the console and enters the Interrogation Mode. With the breakpoint feature, the user can request an emulation break when his program:

- Executes an instruction at a specific address or within a range of addresses.
- Executes a particular opcode.
- · Receives a specific signal on a port pin.
- Fetches a particular operand from the user program memory.
- Fetches an operand from a specific address in program memory.

Table 1. Major Emulation Commands

Command	Description
GO	Begins real-time emulation and op- tionally specifies break conditions.
BR0, BR1, BR	Sets or displays either or both Breakpoint Registers used for stop- ping real-time emulation.
STEP	Performs single-step emulation.
QR0, QR1	Specifies match conditions for qual- ified trace.
TR	Specifies or displays trace-data col- lection conditions and optionally sets Qualifier Register (QR0, QR1).
Synchroniza- tion Line Commands	Set and display status of synchroni- zation line outputs or latched in- puts. Used to allow real-time emula- tion or trace to start and stop syn- chronously with external events.

Trace and Tracepoints

Tracing is used with both real-time and singlestep emulation to record diagnostic information in the trace buffer as a program is executed. The information collected includes opcodes executed, port values, and memory addresses. The ICE-51 emulator collects 1000 frames of trace data.

This information can be displayed as assembler instruction mnemonics, if desired, for analysis during interrogation or single-step mode. The trace-collection facility may be set to run conditionally or unconditionally. Two unique trace qualifier registers, specified in the same way as breakpoint registers, govern conditional trace activity. The qualifiers can be used to condition trace data collection to take place as follows:

- Under all conditions (forever).
- Only while the trace qualifier is satisfied.
- For the frames or instructions preceding the time when a trace qualifier is first satisfied (pre-trigger trace).
- For the frames or instructions after a trace qualifier is first satisfied (post-triggered trace).

Table 2 shows an example of a trace display.

Table 2. Trace Display (Instruction Mode)

14 3*	I.							
FRAME	100	CPJ	INSTR	TUCTION	L)	F2	FΓ	TOVE
11111	66666	FC	MOVX	PEFTE,/	CCH	F8H	FFF	r
PCC7:	CCC1H	F? ·	MCV	PC.A	ር ር ዞ	261	FFF	r
:1132	86828	F ć	CFL.	A	666	493	FFF	r
6615:	C P C 3H	22	FLC	r	CCH	88H	FFF	r
6615:	66648	101020	MOV	.F1,#44P	C C H	650	FF#	P
8827:	66678	C?	CIF	c .	<u>ር ሮ ዞ</u>	rep	FFP	C
:1: 22	43333	65	51/8F	A,EC	119	88P	FFF	ſ
00251	66666	1111	POF	0.01	111	664	FFT	c
6642:	CCCFF	763406	MOV	248.8.EIVE	119	193	FFF	с
0051:	CCPEF	6156	1 OME	CULCE	44E	5.51.	F F F	C

INTERROGATION AND UTILITY

Interrogation and utility commands give the user convenient access to detailed information about the user program and the state of the 8051 that is useful in debugging hardware and software. Changes can be made in memory and in the 8051 registers, flags, and port values. Commands are also provided for various utility operations such as loading and saving program files, defining symbols, displaying trace data, controlling system synchronization and returning control to ISIS-II. A summary of the basic interrogation and utility commands is shown in Table 3. Two time-saving emulator features are discussed below.

SINGLE-LINE ASSEMBLER/DISASSEMBLER ---The single-line assembler/disassembler (ASM and DASM commands) permits the designer to examine and alter program memory using assembly language mnemonics, without leaving the emulator environment or requiring time-consuming program reassembly. When assembling new mnemonic instructions into program memory, previously defined symbolic references (from the original program assembly, or subsequently defined during the emulation session) may be used in the instruction operand field. The emulator will supply the absolute address or data values as stored in the emulator symbol table. These features eliminate user time spent translating to and from machine code and searching for absolute addresses, with a corresponding reduction in transcription errors.

Table 3. Major Interrogation and Utility Con	ommands
--	---------

Command	Description
HELP	Displays help messages for ICE-51 emulator command-entry assistance.
LOAD	Loads user object program (8051 code) into user program memory, and user symbols into ICE-51 emulator symbol table.
SAVE	Saves ICE-51 emulator symbol table and/or user object program in ISIS-II hexadecimal file.
LIST	Copies all emulator console input and output to ISIS-II file.
EXIT	Terminates ICE-51 emulator operation.
DEFINE	Defines ICE-51 emulator symbol or macro.
REMOVE	Removes ICE-51 emulator symbol or macro.
ASM	Assembles mnemonic instructions into user program memory.
DASM	Disassembles and displays user program memory contents.
Change/Display Commands	Change or display value of symbolic reference in ICE-51 emulator symbol table, contents of key-word references (including registers, I/O ports, and status flags), or memory references.
EVALUATE	Evaluates expression and displays resulting value.
MACRO	Displays ICE-51 macro or macros.
INTERRUPT	Displays serial, external, or timer interrupt register settings.
SECONDS	Displays contents of emulation timer, in microseconds.
Trace Commands	Position trace buffer pointer and select format for trace display.
PRINT	Displays trace data pointed to by trace buffer pointer.

HELP — The HELP file allows the user to display ICE-51 command syntax information at the Intellec console. By typing "HELP", a listing of all items for which help messages are available is displayed; typing "HELP <Item>" then displays relevant information about the item requested, including typical usage examples. Table 4 shows some sample HELP messages.

Figure 1. A Typical 8051 Development Configuration. The host system is an Intellec Model 225, plus 1 megabyte dual doubledensity flexible disk storage. The ICE-51 module is connected to an SDK-51 system design kit.

Emulation Accuracy

The speed and interface demands of a highperformance single-chip microcomputer require extremely accurate emulation, including fullspeed, real-time operation with the full function of the microcomputer. The ICE-51 emulator achieves accurate emulation with an 8051 bond-out chip, a special configuration of the 8051 microcomputer family, as its emulation processor.

Each of the 40 pins on the user plug is connected directly to the corresponding 8051 pin on the bond-out chip. Thus the user system sees the emulator as an 8051 microcomputer at the 8051 socket. The resulting characteristics provide extremely accurate emulation of the 8051, including speed, timing characteristics, load and drive values, and crystal operation. The emulator may draw more power from the user system than a standard 8051 family device.

Additional bond-out pins provide signals such as internal address, data, clock, and control lines to the emulator buffer box. These signals let static RAM in the buffer box substitute for on-chip program ROM or EPROM or external program memory. The 8K bytes of full-speed RAM in the buffer box can be mapped in 4K blocks to anywhere within the 64K program memory space of the 8051. The bond-out chip also gives the emulator "backdoor" access to internal chip operation, so that the emulator can break and trace execution without interfering with the values on the user-system pins.

Table 4. HELP Command

*HELP HelD is available for ti the item name. The helD information, type FFLP Fmulation: Trace Coll CO CR SYP TR CP CPC BR ERC PN STEF Trace Fiso TRACE MCVP OLIFET NEW Change/Display/Lefine/Pi	he following items items cannot be al PFIP or PFLF INFC, ection: Misc: CPI SYI RASE ICAN FISAPLE PRINT FROM PRINT FROM EST EVALUATE HFLP emove: INFC	. Type FELP followed by onreviated. (For more /address <cpuskeyword) <cpuskeyword) <icesiskeyword) <identifier <identifier <instruction) <meskedfoonstent) <metchcoud< th=""><th><pre>HELP IF IF - The conditional command z or more commands hased on the IF every (THEM) cry (PDIF every) crue(Sist) (PDIF every) cry (true(Sist)) (FLEE cr) (false(Sist)) END The (every) cre evaluated in o If one is reached whose value</pre></th><th><pre>clows conditional execution of one values of noolean conditions.</pre></th></metchcoud<></meskedfoonstent) </instruction) </identifier </identifier </icesiskeyword) </cpuskeyword) </cpuskeyword) 	<pre>HELP IF IF - The conditional command z or more commands hased on the IF every (THEM) cry (PDIF every) crue(Sist) (PDIF every) cry (true(Sist)) (FLEE cr) (false(Sist)) END The (every) cre evaluated in o If one is reached whose value</pre>	<pre>clows conditional execution of one values of noolean conditions.</pre>
Change/DisDisyllefine/Penove: INFC <pre>change/DisDisyllefine/Penove: INFC <pre>change/DisDisyllefine/Penove: INFC <pre>change/DisDisyllefine/Penove: ClGFTC <pre>change/DisDisyllefine/Penove: ClGFTC <pre>change/DisDisyllefine/Penove: ClGFTC <pre>change/DisDisyllefine/Penove: ClGFTC <pre>change/DisDisyllefine/Penove: ClGFTC <pre>change/DisDisyllefine/Penove: ClGFTC <pre>clGFTC <pre>clGFTC</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>		artors cond If one is trached whose Value has low-operations of the second and all commands in the other string? commainds in the structed and all commands in the other structed and all commands in the other string? structed and all commands in the other structed and all commands in the other structed structed and all commands in the other structed structed and all commands in the other structed and all commands and all commands in the other structed and all commands in the other structed and all commands in the other structed and all commands and all commands and all commands in the other structed and all commands and all comm		lloking that (expr) are then the other (trueflists and in the all (expr)s have value with lok- commends in all (trueflists)s are it, all commands in the (falseflist)

SPECIFICATIONS

ICE-51 Operating Requirements

Intellec® Microcomputer Development System (64K RAM required)

System console

Intellec® Diskette Operating System (single or double density) ISIS-II v. 3.4 or later

Equipment Supplied

- Printed circuit boards (2)
- Emulation buffer box, Intellec interface cables, and user-interface cable with 8051 emulation processor
- Crystal power accessory
- · Operating instructions manual
- Diskette-based ICE-51 software (single and double density)

Emulation Clock

User's system clock (1.2 to 12 MHz) or ICE-51 crystal power accessory (12 MHz)

Environmental Characteristics

Operating Temperature: 0° to 40°C **Operating Humidity:** Up to 95% relative humidity without condensation.

Physical Characteristics

Printed Circuit Boards

Width: 12.00 in. (30.48 cm) Height: 6.75 in. (17.15 cm) Depth: 0.50 in. (1.27 cm)

Buffer Box

Width: 8.00 in. (20.32 cm) Length: 12.00 in. (30.48 cm) Depth: 1.75 in. (4.44 cm) Weight: 4.0 lb (1.81 kg)

Electrical Characteristics

DC Power Requirements (from Intellec system)

$$\begin{split} &V_{CC}=\pm5V,\ \pm5\%,\ -1\%\\ &I_{CC}=13.2A\ max;\ 11.0A\ typical\\ &V_{DD}=\pm12V,\ \pm5\%\\ &I_{DD}=0.1A\ max;\ 0.05A\ typical\\ &V_{BB}=-10V,\ \pm5\%\\ &I_{BB}=0.05A\ max;\ 0.01A\ typical \end{split}$$

User plug characteristics at 8051 socket

Same as 8031, 8051, or 8751, except that the user system will see an added load of 25 pF capacitance and 50 μ A leakage from the ICE-51 emulator user plug at ports 0, 1, and 2.

ORDERING INFORMATION

Part Number Description

MCI-51-ICE

8051 Microcontroller In-Circuit Emulator, cable assembly and interactive diskette software
UPP-103* UNIVERSAL PROM PROGRAMMER

intel

*Replaces UPP-101, UPP-102 Universal PROM Programmers

Intellec development system peripheral for PROM programming and verification	Universal PROM mapper software pro- vides powerful data manipulation and programming commands
Provides personality cards for program- ming all Intel PROM families	Provides flexible power source for system logic and programming pulse generation
Provides zero insertion force sockets for both 16-pin and 24-pin PROMs	Holds two personality cards to facilitate programming operations using several PROM types
The UPP-103 Universal PROM Programmer is an Intellec sy	stem peripheral capable of programming and verifying all o

The UPP-103 Universal PROM Programmer is an Intellec system peripheral capable of programming and verifying all of the Intel programmable ROMs (PROMs). In addition, the UPP-103 programs the PROM memory portions of the 8748 microcomputer, 8741 UPI, the 8755 PROM and I/O chip and the 2920 signal processor. Programming and verification operations are initiated from the Intellec development system console and are controlled by the universal PROM mapper (UPM) program.

FUNCTIONAL DESCRIPTION

Universal PROM Programmer

The basic Universal PROM Programmer (UPP) consists of a controller module, two personality card sockets, a front panel, power supplies, a chassis, and an Intellec development system interconnection cable. An Intel 4040-based intelligent controller monitors the commands from the Intellec System and controls the data transfer interface between the selected PROM personality card and the Intellec memory. A unique personality card contains the appropriate pulse generation functions for each Intel PROM family. Programming and verifying any Intel PROM may be accomplished by selecting and plugging in the appropriate personality card. The front panel contains a power-on switch and indicator, a reset switch, and two zero-force insertion sockets (one 16-pin and one 24-pin or two 24-pin). A central power supply provides power for system logic and for PROM programming pulse generation. The Universal PROM Programmer may be used as a table top unit or mounted in a standard 19-inch RETMA cabinet.

SPECIFICATIONS

Hardware Interface

Data — Two 8-bit unidirectional buses Commands — 3 write commands, 2 read commands, one initiate command

Physical Characteristics

Width — 6 in. (14.7 cm) Height — 7 in. (17.2 cm) Depth — 17 in. (41.7 cm) Weight — 18 lb (8.2 kg)

Electrical Characteristics

AC Power Requirements - 50-60 Hz; 115/230V AC: 80W

Environmental Characteristics

Operating Temperature — 0°C to 55°C

Optional Equipment

Personality Cards

UPP-816: 2716 personality card UPP-832: 2732 personality card UPP-848: 8748, 8741 personality card with 40-pin adaptor socket UPP-865: 3602, 3622, 3602A, 3622A, 3621, 3604, 3624, 3604A, 3624A, 3604AL, 36046-6, 3605, 3605A, 3625, 3625A, 3608, 3628, 3636 UPP-872: 8702A/1702A personality card UPP-878: 8708/8704/2708/2704 personality card

ORDERING INFORMATION

Part Number Description

UPP-103 Universal PROM programmer with 16-pin/24-pin socket pair and 24-pin/24-pin socket pair.

Universal PROM Mapper

The Universal PROM Mapper (UPM) is the software program used to control data transfer between paper tape or diskette files and a PROM plugged into the Universal PROM Programmer. It uses Intellec system memory for intermediate storage. The UPM transfers data in 8-bit HEX, BNPF, or binary object format between paper tape or diskette files and the Intellec system memory. While the data is in Intellec system memory, it can be displayed and changed. In addition, word length, bit position, and data sense can be adjusted as required for the PROM to be programmed. PROMs may also be duplicated or altered by copying the PROM contents into the Intellec system memory. Easy to use program and compare commands give the user complete control over programming and verification operations. The UPM eliminates the need for a variety of personalized PROM programming routines because it contains the programming algorithms for all Intel PROM families. The UPM (diskette based version) is included with the Universal PROM Programmer.

UPP-955: 8755A personality card with 40-pin adaptor socket

PROM Programming Sockets

UPP-501: 16-pin/24-pin socket pair UPP-502: 24-pin/24-pin socket pair UPP-562: Socket adaptor for 3621, 3602, 3622, 3602A, 3622A UPP-555: Socket adaptor for 3604AL, 36046-6, 3608, 3628, 3636 UPP-566: Socket adaptor for 3605, 3625, 3605A, 3625A

Equipment Supplied

Cabinet Power supplies 4040 intelligent controller module Specified zero insertion force socket pair Intellec development system interface cable Universal PROM Mapper program (diskette-based version)

Reference Manuals

9800819 — Universal PROM Programmer User's Manual (SUPPLIED)

intel

SDK-51 MCS-51 SYSTEM DESIGN KIT

- Complete single-board microcomputer kit:
 - Intel 8031 CPU
 - ASCII keyboard and 24-character alpha-numeric display
 - Wire-wrap area for custom circuitry
 - --- User-configurable RAM
 - Serial and parallel interfaces

- Extensive system software in ROM:
 - Single-line assembler and disassembler
 - System debugging commands
 Go
 Step
 - Breakpoints
- Interface software:
 - Serial port
 - Audio cassette
 - Intellec® system
- User's guide, assembly manual, and MCS-51 design manuals

The SDK-51 MCS-51 System Design Kit contains all of the components required to assemble a complete single-board microcomputer based on Intel's high-performance 8051 single-chip microcomputer. SDK-51 uses the external ROM version of the 8051 (8031). Once you have assembled the kit and supplied + 5V power, you can enter programs in MCS-51 assembly language mnemonics, translate them into MCS-51 object code, and run them under control of the system monitor. The kit supports optional memory and interface configurations, including a serial terminal link, audio cassette storage, EPROM program memory, and Intellec[®] development system upload and download capability.

The following are trademarks of Intel Corporation and may be used only to describe Intel products: Intel, Intellec, MCS and ICE, and the combination of MCS or ICE and a numerical suffix. Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied.

FUNCTIONAL DESCRIPTION

The SDK-51 is a kit which includes hardware and software components to assemble a complete MCS-51 family single-board microcomputer. Only common laboratory tools and test equipment are required to assemble the kit. Assembly generally requires 5 to 10 hours, depending on the experience of the user.

The MCS-51 Microcomputer Series

MCS-51 is a series of high-performance singlechip microcomputers for use in sophisticated real-time applications such as instrumentation, industrial control and intelligent computer peripherals. The 8031, 8051, and 8751 microcomputers belong to the 8051 family, which is the first family in the MCS-51 series.

In addition to their advanced features for control applications, MCS-51 family devices have a microprocessor bus and arithmetic capability such as hardware multipy and divide instructions, which make the SDK-51 a versatile stand-alone microcomputer board.

The 8031, 8051, and 8751 CPUs

The 8031, 8051, and 8751 CPUs each combine, on a single chip, a 128×8 data RAM; 32 input/output lines; two 16-bit timer/event counters; a fivesource, two-level nested interrupt structure; a serial I/O port; and on-chip oscillator and clock circuits. An 8051 block diagram is shown in Figure 1.

The 8031, the SDK-51's CPU, is a CPU without onchip program memory. The 8031 can address 64K bytes of external program memory in addition to 64K bytes of external data memory. For systems requiring extra capability, each member of the 8051 family can be expanded using standard memories and the byte-oriented MCS-80 and MCS-85 peripherals. The 8051 is an 8031 with the lower 4K bytes of program memory filled with on-chip mask-programmable ROM while the 8751 has 4K bytes of ultraviolet light-erasable, electrically programmable ROM (EPROM).

The 8031 CPU operates at a 12 MHz clock rate, resulting in 4 μ s multiply and divide and other instructions of 1 μ s and 2 μ s.

For additional information on the 8051 family, see the 8051 User's Manual or MCS-51 Macroassembler User's Guide.

Figure 1. 8051 Block Diagram

System Software

A compact but powerful system monitor is contained in 8K bytes of pre-programmed ROM. The monitor includes system utilities such as command interpretation, user program debugging, and interface controls. Table 1 summarizes the SDK-51 monitor commands.

The ROM devices also include a single-line assembler and disassembler. The assembler lets you enter programs in MCS-51 assembly language mnemonics directly from the ASCII keyboard. The disassembler supports debugging by letting you look at MCS-51 instructions in mnemonic form during system interrogation.

Memory

The two 64K external memory spaces are combined into a single memory space which you can configure between program memory and data memory. The kit includes 1K-byte of static RAM. The board has space and printed circuitry for an additional 15K bytes of RAM and 8K bytes of ROM.

User Interface

The kit includes a typewriter-format, ASCII-subset keyboard and a 24-character, alpha-numeric LED

Command	Operation
Set breakpoint	Define addresses for breaking execution.
Display cause	Ask the system why execution stopped.
Upload, download	Transfer files to and from Intel- lec [®] development system.
Save, load	Transfer files to and from op- tional cassette interface.
Set top of program memory	Define partition between pro- gram memory and data mem- ory.
Set baud	Define baud rate value of serial port.
Display memory	Examine and change program memory or data locations.
Assemble	Translate an MCS-51 assembly mnemonic into object code.
Disassemble	Translate program memory into MCS-51 assembly language mnemonics.
Go	Start execution between a se- lected pair of addresses.
Step	Execute a specified number of instructions.

Table 1. SDK-51 Commands

Figure 2. Block Diagram of SDK-51 System Design Kit

display. The standard keyboard and display provide full access to all of the SDK-51's capabilities. All of the SDK-51 interfaces are controlled by a pre-programmed Intel 8041 Universal Peripheral Interface.

A 3×4 matrix keyboard can be jumpered to port 1 of the 8031.

Optional Interfaces

TERMINAL

An RS-232-compatible CRT or printing terminal or a current-loop-interface terminal may be used as a listing device by connecting it to the board's serial interface connector and supplying + 12 and - 12 volts to the board.

AUDIO CASSETTE

The kit includes hardware, software, and user's guide instructions to connect and operate an audio cassette tape recorder for low-cost program and data storage.

INTELLEC SYTSTEM

An SDK-51 and an Intellec Model 800 or Series II development system with ISIS-II can upload and download files through the serial interface without adding any software to the Intellec system.

Parallel I/O

The kit includes an Intel 8155 parallel I/O device which expands the 8031 I/O capability by providing 22 dedicated parallel lines. Three 40-pin headers between the 8031 and 8155 devices and the wire-wrap area facilitate interconnections with the user's custom circuitry.

Debugging

Hardware breakpoint logic in the SDK-51 checks the address of a program or external data-memory access against values defined by the user and stops execution when it sees a "break" condition. After a breakpoint, you can examine and modify registers, memory locations, and other points in the system. A step command lets you execute instructions in a single-step mode.

Assembly and Test

The SDK-51 assembly manual describes hardware assembly in a step-by-step process that includes checking each hardware subsystem as it is installed. Building the system requires only a few common tools and standard laboratory instruments.

Figure 3. SDK-51 Assembled with Additional RAM and ROM Devices Installed

SPECIFICATIONS

Control Processor

Intel 8031 microcomputer 12 MHz clock rate

Memory

RAM — 1K-byte static, expandable in 1K segments to 16K-byte with 2114 RAM devices; userconfigurable as program or data memory.

ROM — Printed circuitry for 8K bytes of program memory in 4K segments using 2732A EPROM devices.

Interfaces

Keyboard — 51-key, ASCII subset, typewriter format, 12-key (3×4) matrix

Display — 24-character, alpha-numeric

Serial — RS-232 with user-selectable baud rate. Printed circuitry for 110 baud 20 mA current loop interface. 8031 serial port.

Parallel - 22 lines, TTL compatible

Cassette — Audio cassette tape storage interface

Software

System monitor preprogrammed in on-board ROM MCS-51 assembler and disassembler preprogrammed in on-board ROM

Interface control software preprogrammed in 8041's on-chip ROM

Assembly and Test Equipment Required

Needle-nose pliers

Small Phillips screwdriver

Small diagonal wire cutters

Soldering pencil, \leq 30 watts, 1/16" diameter tip

Rosin-core, 60-40 solder, 0.05" diameter

Volt-Ohm-Milliammeter, 1 meg-ohm input impedance

Oscilloscope, 1 volt/division vertical sensitivity, 200 μ s/division sweep rate, single trace, internal and external triggering

Physical Characteristics

Length — 13.5 in. (34.29 cm) Width — 12 in. (30.48 cm) Height — 4 in. (10.16 cm) Weight — 3 lb (1.36 kg)

Electrical Characteristics

DC Power Requirement (supplied by user, cable included with kit)

Voltage	Current
$+ 5V \pm 5\%$	3A
+ 12V ± 5%*	100 mA
- 12V ± 5%*	100 mA

 $* \pm 12$ volts required only for operation with serial interface.

Environmental Characteristics

Operating Temperature — 0 to 40 °C **Relative Humidity** — 10% to 90%, non-condensing

Reference Manuals

SDK-51 User's Manual SDK-51 Assembly Manual SDK-51 Monitor Listing MCS-51 Macro Assembler User's Guide MCS-51 Macro Assembly Language Pocket Reference

ORDERING INFORMATION

Part Number Description

MCI-51-SDK MCS-51 System Design Kit

Appendix A PL/M Description of 8051 Instruction Set

ISIS-II PL/M-B0 V3.1 COMPILATION OF MODULE SIM51 OBJECT MODULE PLACED IN SIM51.0BJ COMPILER INVOKED BY: ::F1:PLM80 SIM51.PLM PRINT(::F1:SIM51.LST) XREF DATE(302)

\$TITLE('8051 INSTRUCTION SET SIMULATOR')

/* THE FOLLOWING IS A PLM-80 PROGRAM TO SIMULATE THE OPERATION OF THE INTEL 8051 INSTRUCTION SET. NO ATTEMPT HAS BEEN MADE TO SIMULATE THE 1/0 PORTS OR SPECIAL FUNCTION REGISTERS, THOUGH THERE ARE 'HOOKS' TO ACCESS EXTERNALLY-DEFINED PROCEDURES WHENEVER PO-P3 OR SBUF ARE READ OR WRITTEN.

RELEVANT ENTRY POINTS:

- 'INITIALIZE' SIMULATE HARDWARE RESET; SUBROUTINE WITH NO INPUT PARAMETERS.
- 'STEP' SIMULATE EXECUTION OF ONE INSTRUCTION. INPUT PARAMETER = STARTING ADDRESS; VALUE RETURNED = UPDATED PC.
- 'FETCH\$SIM' FETCH DATA FROM VARIOUS ADDRESS SPACES
 (SEE ROUTINE DEFINITION FOR PARAMETER DEFINITION).
- 'STORE\$SIM' STORE DATA INTO VARIOUS ADDRESS SPACES
 (SEE ROUTINE DEFINITION FOR PARAMETER DEFINITION).

ALL PARAMETERS PASSED TO AND FROM ALL ROUTINES ARE SIXTEEN-BIT.

\$EJECT i SIM51: DD; /* DEFINITIONS OF GLOBAL VARIABLES USED BY INDIVIDUAL INSTRUCTION SIMULATION PROCEDURES: */ DECLARE ROM\$SIZE LITERALLY '4096'; /* 4K ROM SUPPORTED */ 2 1 З 1 DECLARE INT\$RAM(128) BYTE: 4 1 DECLARE HARD\$REG(128) BYTE; 5 1 DECLARE USER\$CODE(ROM\$SIZE) BYTE PUBLIC; 6 1 DECLARE EXTERN\$RAM(256) BYTE; 7 1 DECLARE REG\$ADDR BYTE; 8 1 DECLARE DIR\$ADDR BYTE; 9 DECLARE SOURCE\$ADDR BYTE; 1 10 1 DECLARE DEST\$ADDR BYTE; 11 1 DECLARE BIT\$ADDR BYTE; 12 DECLARE CODE\$ADDR ADDRESS; 1 13 DECLARE PAGED\$EXTERNAL\$ADDR BYTE; 1 14 DECLARE REG\$DATA BYTE; 1 15 1 DECLARE DIR\$DATA BYTE; 16 1 DECLARE IND\$DATA BYTE; 17 1 DECLARE IMM\$DATA BYTE; 18 1 DECLARE BIT\$DATA BYTE; 19 1 DECLARE STACK\$DATA BYTE; 20 1 DECLARE PAGE\$CODE BYTE; 21 DECLARE PAGE OFFSET BYTE; 1 22 1 DECLARE DISPLACEMENT BYTE; 23 DECLARE LINK\$BIT BYTE; 1 24 DECLARE LOW\$NIB BYTE: 1 25 1 DECLARE HIGH\$NIB BYTE; 26 DECLARE LOW\$SOURCE\$NIB BYTE; 1 DECLARE ADD\$TEMP ADDRESS; 27 1 28 1 DECLARE SUB\$TEMP BYTE; 29 DECLARE MUL\$TEMP ADDRESS; 1 30 DECLARE DIV\$TEMP BYTE; 1 DECLARE PC ADDRESS; 31 1 32 DECLARE OPCODE BYTE: 1 33 DECLARE MACH\$CYC ADDRESS PUBLIC; 1 34 1 DECLARE BIT\$REG\$ADDR BYTE; 35 DECLARE BIT\$PATTERN BYTE; 1 36 DECLARE BIT\$MASK BYTE; 1

/* PREDEFINED SPECIAL SYMBOLS FOR HARDWARE REGISTERS
 (NOTE: VALUES OFFSET BY 80H TO CORRESPOND TO INDEX INTO
 HARD\$REG ARRAY(0-127). */

37	1	DECLARE	PO	LITERALLY	'HARD\$REG(OOH)';
38	1	DECLARE	SP	LITERALLY	'HARD\$REG(01H)';
39	1	DECLARE	DPL	LITERALLY	'HARD\$REG(02H)';
40	1	DECLARE	DPH	LITERALLY	'HARD\$REG(O3H)';
41	1	DECLARE	TCON	LITERALLY	'HARD\$REG(08H)';
42	1	DECLARE	TMOD	LITERALLY	'HARD\$REG(09H)';
43	1	DECLARE	TLO	LITERALLY	'HARD\$REG(OAH)';
44	1	DECLARE	TL1	LITERALLY	'HARD\$REG(OBH)';
45	1	DECLARE	тно	LITERALLY	'HARD\$REG(OCH)';
46	1	DECLARE	TH1	LITERALLY	'HARD\$REG(ODH)';
47	1	DECLARE	P1	LITERALLY	'HARD\$REG(10H)';
48	1	DECLARE	SCON	LITERALLY	'HARD\$REG(18H)';
49	1	DECLARE	SBUF	LITERALLY	'HARD\$REG(19H)';
50	1	DECLARE	P2	LITERALLY	'HARD\$REG(20H)';
51	1	DECLARE	IE	LITERALLY	'HARD\$REG(28H)';
52	1	DECLARE	PЗ	LITERALLY	'HARD\$REG(30H)';
53	1	DECLARE	IP	LITERALLY	'HARD\$REG(38H)';
54	1	DECLARE	PSW	LITERALLY	<pre>'HARD\$REG(50H)';</pre>
55	1	DECLARE	ACC	LITERALLY	'HARD\$REG(60H)';
56	1	DECLARE	в	LITERALLY	'HARD\$REG(70H)';

/* HARDWARE REGISTER TYPE CODES ARE ASSIGNED AS FOLLOWS:

- 0 REGISTER UNDEFINED OR BEYOND SCOPE OF SIMULATOR;
- 1 REGISTER WRITTEN OR READ SIMPLY BY DIRECT ADDRESSING;
- 2 I/O PORT;
- 3 ... (RESERVED FOR EXPANSION) */

57 1 DECLARE HARD\$REG\$ATTRIB(128) BYTE DATA

(2,1,1,1)	0,0,0,0,	1, 1, 1, 1,	1, 1, 0, 0,
2,0,0,0,	0,0,0,0,	1,2,0,0,	0,0,0,0,
5,0,0,0,	0,0,0,0,	1,0,0,0,	0,0,0,0,
2,0,0,0,	0,0,0,0,	1,0,0,0,	0,0,0,0,
0,0,0,0,	0,0,0,0,	0,0,0,0,	0,0,0,0,
1,0,0,0,	0,0,0,0,	0,0,0,0,	0,0,0,0,0,
1,0,0,0,	0,0,0,0,	0,0,0,0,	0,0,0,0,
1,0,0,0,	0,0,0,0,	0,0,0,0,	0,0,0,0);

58	1	DECLARE BIT\$REG\$MAP(32) BYTE DATA
		(20H, 21H, 22H, 23H, 24H, 25H, 26H, 27H,
		28H, 29H, 2AH, 2BH, 2CH, 2DH, 2EH, 2FH,
		вон, ввн, рон, рвн, олон, олвн, овон, оввн,
		осон, освн, орон, орвн, оеон, оевн, обон, обвн);

59	1	DECLARE MASK\$TABLE(8) BYTE DATA		
		(0000001B,	00000010B,	00000100B,	00001000B,
		00010000B,	0010000B,	01000008,	10000008);

- /* HOOKS FOR EXTERNAL I/O PORT AND ERROR HANDLING ROUTINES: */
- PORT\$OUTPUT: PROCEDURE(PORT\$NO, PORT\$DATA) EXTERNAL; 60 1 DECLARE (PORT\$NO, PORT\$DATA) BYTE; 61 2 2
- END PORT\$OUTPUT; 62
- PORT\$INPUT: PROCEDURE(PORT\$NO) BYTE EXTERNAL; 63 1 64 2 DECLARE PORT\$NO BYTE;
- 2 END PORT\$INPUT; 65
- 1 DIR\$ADDR\$ERR: PROCEDURE(HARD\$REG\$CODE) EXTERNAL; 66 67 2 DECLARE HARD\$REG\$CODE BYTE; 68 2 END DIR\$ADDR\$ERR;
- 69 1 IND\$ADDR\$ERR: PROCEDURE(ILLEGAL\$IND\$ADDR) EXTERNAL; 2 70 DECLARE ILLEGAL\$IND\$ADDR BYTE; 2 71 END IND\$ADDR\$ERR;
- 72 1 STACK\$ERR: PROCEDURE(ILLEGAL\$STACK\$ADDR) EXTERNAL; 73 2 DECLARE ILLEGAL\$STACK\$ADDR BYTE; 2 74 END STACK\$ERR;
- 75 FETCH\$PROG\$ERR: PROCEDURE(ILLEGAL\$CODE\$ADDR) EXTERNAL; 1 76 2 DECLARE ILLEGAL CODE ADDR ADDRESS;
- 77 2 END FETCH\$PROG\$ERR;

/*	VARIOUS	MEMORY	SPACE	ACCESS	ROUTINES:	

₩/

78	1	FETCH\$PROGRAM: PROCEDURE (CODE\$ADDR) BYTE;
79	2	DECLARE (CODE\$ADDR) ADDRESS;
80	2	IF CODE\$ADDR < ROM\$SIZE
		THEN RETURN USER\$CODE(CODE\$ADDR);
82	2	ELSE DO;
83	з	CALL FETCH\$PROG\$ERR(CODE\$ADDR);
84	з	RETURN OOH;
85	Э	END;
86	2	END FETCH\$PROGRAM;

87	1	FETCH\$REG: PROCEDURE (REG\$NO) BYTE;
88	2	DECLARE (REG\$ND, REG\$ADDR) BYTE;
89	2	REG\$ADDR=(PSW AND 00011000B) + REG\$NO;
90	2	RETURN INT\$RAM(REG\$ADDR);
91	2	END FETCH\$REG;

92	1	STORE\$REG: PROCEDURE (REG\$NO,DATA\$VALUE);
93	2	DECLARE (REG\$NO, REG\$ADDR, DATA\$VALUE) BYTE;
94	2	REG\$ADDR=(PSW AND 00011000B) + REG\$ND;
95	2	INT\$RAM(REG\$ADDR)=DATA\$VALUE;
96	2	END STORE\$REG;

97	1	FETCH\$DIR PROCEDURE(DIR\$ADDR\$ND) BYTE;
98	2	DECLARE(DIR\$ADDR\$NO,HARD\$REG\$INDEX,HARD\$REG\$TYPE) BYTE;
99	2	IF DIR\$ADDR\$NO <= 7FH THEN
100	2	RETURN INT\$RAM(DIR\$ADDR\$N());
101	2	ELSE DO;
102	З	HARD\$REG\$INDEX=DIR\$ADDR\$ND - 80H;
103	З	HARD\$REG\$TYPE=HARD\$REG\$ATTRIB(HARD\$REG\$INDEX);
104	з	DO CASE HARD\$REG\$TYPE;
105	4	DD;
106	5	CALL DIR\$ADDR\$ERR(DIR\$ADDR\$NO);
107	5	RETURN OOH;
108	5	END,
109	4	RETURN HARD#REG(HARD#REG#INDEX);
110	4	RETURN PORT\$INPUT(DIR\$ADDR\$NO);
111	4	END;
112	Э	END
113	2	END FETCH\$DIR;
114	1	FETCH\$DIR\$INT: PROCEDURE(DIR\$ADDR\$NO) BYTE;
115	2	DECLARE(DIR\$ADDR\$ND,HARD\$REG\$INDEX,HARD\$REG\$TYPE) BYTE;
116	2	IF DIR\$ADDR\$NO <= 7FH THEN
117	2	RETURN INT&RAM(DIR&ADDR&NO):

 117
 2
 RETUR

 118
 2
 ELSE DO;

.

119	З	HARD\$REG\$INDEX=DIR\$ADDR\$ND - 80H;
120	З	HARD\$REG\$TYPE=HARD\$REG\$ATTRIB(HARD\$REG\$INDEX);
121	з	DO CASE HARD\$REG\$TYPE;
122	4	DQ;
123	5	CALL DIR\$ADDR\$ERR(DIR\$ADDR\$ND);
124	5	RETURN QOH;
125	5	END;
126	4	RETURN HARD\$REG(HARD\$REG\$INDEX);
127	4	RETURN HARD\$REG(HARD\$REG\$INDEX);
128	4	END:
129	3	END
130	2	END FETCH\$DIR\$INT;
1 (7) 1		
100	1 ~)	DIGREPUTA FOULDURE (DIRPHDDAPIC) DATAPVALUE)
100	<u>د</u>	JECLARE(DIRPADDRADD), AARDAREGEINDEX, MARDAREGEIYE, DATAAVALUE)
104	ಷ ೧	IF DIR®ADDR®NU \≕ 7FT IMEN THITEDAM/DIDATADA/DIDATA#UALUE.
1.04	<u>ح</u>	TINT \$KAPT(DIK \$ADDR\$NU)=DATA\$VALUE;
100	2	
1.30	.3 .7	HARDAREGAINDEX=DIRAADDRAANO - 80H;
13/	5	HARD\$REG\$1YPE=HARD\$REG\$A1YRIB(HARD\$REG\$INDEX);
1.38	<u>ل</u>	DU CASE MARDAREGATIVES
137	4	CALL DIR\$ADDR\$ER(DIR\$ADDR\$NU))
140	4	HARD\$REG(HARD\$REG\$INDEX)=DATA\$VALUE;
141	4	
142	5	HARD\$REG(HARD\$REG\$INDEX)=DAIA\$∀ALOE;
143	5	CALL PORTSOUTPUT(DIRSADDRSND, DATASVALUE);
144	5	END;
145	4	END;
146	3	
14/	12	END STURE\$DIR;
148	1	FETCH#IND: PROCEDURE(REG#NO) BYTE;
149	2	DECLARE (REG\$NO, REG\$ADDR, RAM\$ADDR) BYTE;
150	2	REG = ADDR = (PSW AND 00011000B) + REG = ND;
151	2	RAM\$ADDR=INT\$RAM(REG\$ADDR);
152	2	IF RAM\$ADDR <= 7FH
		THEN RETURN INT\$RAM(RAM\$ADDR);
154	2	ELSE DO;
155	з	CALL IND#ADDR#ERR(RAM#ADDR);
156	Э	RETURN OOH;

1	57	Э	END;

158 2 END FETCH\$IND;

159	1	STORE\$IND: PROCEDURE(REG\$NO,DATA\$VALUE);
160	2	DECLARE (REG\$ND, REG\$ADDR, RAM\$ADDR, DATA\$VALUE) BYTE;
161	2	REG\$ADDR=(PSW AND OOO11000B) + REG\$NO;
162	2	RAM\$ADDR=INT\$RAM(REG\$ADDR);
163	2	IF RAM\$ADDR <= 7FH
		THEN INT#RAM(RAM#ADDR)=DATA#VALUE;
165	2	ELSE CALL IND\$ADDR\$ERR(RAM\$ADDR);
166	2	END STORE\$IND;

167	1	FETCH\$BIT: PROCEDURE(BIT\$ADDR) BYTE;
168	2	DECLARE BITSADDR BYTE;
169	2	BIT\$REG\$ADDR=BIT\$REG\$MAP(BIT\$ADDR / 8);
170	2	BIT\$PATTERN=FETCH\$DIR(BIT\$REG\$ADDR);
171	2	BIT\$MASK=MASK\$TABLE(BIT\$ADDR AND 00000111B);
172	2	IF (BITSPATTERN AND BITSMASK) = 0
	A-10	THEN BETURN OOH:
174	9	
175	5	END FETCHERIT:
170	f-m-	
• ••• /		
1/6	1	FEICHABIIAINT: PROCEDORE(BIIAADDR) BYIE;
1//	-	DECLARE BITHADDR BYTE;
178	2	BI \$REG\$ADDR=BI \$REG\$MAP (BI \$ADDR / B);
179	2	BIT\$PATTERN=FETCH\$DIR\$IN(BIT\$REG\$ADDR);
180	2	BIT\$MASK=MASK\$TABLE(BIT\$ADDR AND 00000111B);
181	2	IF (BIT\$PATTERN AND BIT\$MASK) = 0
		THEN RETURN OOH;
183	2	ELSE RETURN 1;
184	2	END FETCH\$BIT\$INT;
185	1	STURE\$BIT: PROCEDURE(BIT\$ADDR,BIT\$DATA);
186	2	DECLARE (BIT\$ADDR, BIT\$DATA) BYTE;
187	2	BIT\$REG\$ADDR=BIT\$REG\$MAP(BIT\$ADDR / 8);
188	2	BIT\$PATTERN=FETCH\$DIR\$INT(BIT\$REG\$ADDR);
187	2	BIT\$MASK=MASK\$TABLE(BIT\$ADDR AND 00000111B);
190	2	IF BITSDATA = 0
		THEN BITSPATTERN=BITSPATTERN AND (NOT BITSMASK);
192	2	ELSE BIT\$PATTERN=(BIT\$PATTERN OR BIT\$MASK);
193	2	CALL STORE\$DIR(BIT\$REG\$ADDR,BIT\$PATTERN);
194	2	END STORE\$BIT;
- · ·		
195	1	PUSH\$STACK: PROCEDURE (DATA\$VALUE);
196	2	DECLARE (DATA\$VALUE) BYTE:
197	2	SP=SP+1:
198	5	
. //	F	THEN INTERAM(SP)=DATAEVALUE:
200	3	
201	- - -	
~01	E	END FORTACKI
202	4	
202 202	1	DEPAINCE (NOCEDURE DIE)
203	e .	TECHARE (DATASVALUE) BYTE
<i>c</i> :04	<u> </u>	
-	-	THEN DATA\$VALUE=IN(\$KAM(SP))
206	2	ELSE DO
207	3	CALL STACK\$ERR(SP);
208	з	DATA\$VALUE=OOH;
209	з	END;
210	2	SP=SP-1;
211	2	RETURN DATA\$VALUE;
212	2	END POP\$STACK;

213 214 215 216	1 2 2 2	FETCH\$PAGED\$EXTERNAL: PROCEDURE (PAGED\$EXTERN\$ADDR) BYTE; DECLARE (PAGED\$EXTERN\$ADDR) BYTE; RETURN EXTERN\$RAM(PAGED\$EXTERN\$ADDR); END FETCH\$PAGED\$EXTERNAL;
217 218 219 220	1 2 2 2	<pre>STORE\$PAGED\$EXTERNAL: PROCEDURE (PAGED\$EXTERN\$ADDR, DATA\$BYTE); DECLARE (PAGED\$EXTERN\$ADDR) BYTE; DECLARE DATA\$BYTE BYTE; EXTERN\$RAM(PAGED\$EXTERN\$ADDR) = DATA\$BYTE;</pre>
221	2	END STORE\$PAGED\$EXTERNAL;
222 223 224 225	1 2 2 2	FETCH\$LONG\$EXTERNAL: PROCEDURE (LONG\$EXTERN\$ADDR) BYTE; DECLARE (LONG\$EXTERN\$ADDR) ADDRESS; RETURN EXTERN\$RAM(LONG\$EXTERN\$ADDR); END FETCH\$LONG\$EXTERNAL;
226 227 228 229 230	1 2 2 2 2 2	<pre>STORE\$LONG\$EXTERNAL: PROCEDURE (LONG\$EXTERN\$ADDR, DATA\$BYTE), DECLARE (LONG\$EXTERN\$ADDR) ADDRESS; DECLARE DATA\$BYTE BYTE; EXTERN\$RAM(LONG\$EXTERN\$ADDR) = DATA\$BYTE; END_STORE\$LONG\$EXTERN\$L;</pre>
231	1	SIGN\$EXTENDED: PROCEDURE (SIGNED\$BYTE) ADDRESS;
232	2	DECLARE SIGNED\$BYTE BYTE;
, 533	2	IF (SIGNED\$BYTE AND 10000000B) = 0 THEN RETURN SIGNED\$BYTE;
235	2	ELSE RETURN (SIGNED\$BYTE + OFFOOH);
236	2	END SIGN\$EXTENDED;
237	1	PARITY\$STATE: PROCEDURE (DATA\$BYTE) BYTE;
238	2	DECLARE (DATA\$BYTE, PARITY\$BIT) BYTE;
239	2	PARITY\$BIT=0;
240	2	IF (DATA\$BYTE AND 00000001B) <> 0 THEN PARITY\$BIT=PARITY\$BIT XDR_0000001B;
242	2	IF (DATA\$BYTE AND 00000010B) <> 0 THEN PARITY\$BIT=PARITY\$BIT XOR 0000001B;
244	2	IF (DATA\$BYTE AND 00000100B) <> 0 THEN PARITY\$BIT=PARITY\$BIT XOR 00000001B;
246	2	IF (DATA\$BYTE AND 00001000B) <> 0 THEN PARITY\$BIT=PARITY\$BIT XOR 0000001B;
248	2	IF (DATA\$BYTE AND 00010000B) <> 0 THEN PARITY\$BIT=PARITY\$BIT YOR 0000001B:
250	2	IF (DATA\$BYTE AND 00100000B) <> 0 THEN PARITY\$BIT=PARITY\$BIT XOR 0000001B;

252	2	IF (DATA\$BYTE AND 01000000B) <> 0
		THEN PARITY\$BIT=PARITY\$BIT XOR 0000001B;
254	2	IF (DATA\$BYTE AND 10000000B) <>/0
		THEN PARITY BIT= PARITY BIT XOR 00000001B;
256	2	RETURN PARITY\$BIT;
257	2	END PARITY#STATE;

- /* THE FOLLOWING CODE PROVIDES A SINGLE ENTRY POINT FOR AN EXTERNAL ROUTINE TO READ DATA FROM ALL SIMULATOR ADDRESS SF THE FIRST CALLING PARAMETER GIVES UP TO 16 BITS OF ADDRESS; THE SECOND SPECIFIES WHICH LOGICAL ADDRESS SPACE TO READ, USING THE SCHEME:
 - 0 = PROGRAM MEMORY
 - 1 = WORKING REGISTER
 - 2 = DIRECT ADDRESS (INPUTS FOR PORTS)
 - 3 = INDIRECT THROUGH REGISTER SPECIFIED
 - 4 = DIRECT BIT ADDRESS (DATA RIGHT-JUSTIFIED)
 - 5 = PAGED EXTERNAL MEMORY
 - 6 = 64K EXTERNAL MEMORY (ALL WRITES CURRENTLY TO PAGE 0)
 - 7 = TOP OF STACK (SP UPDATED)

THE FUNCTION CALL RETURNS THE BYTE SO ADDRESSED.

258	1	FETCH\$SIM: PROCEDURE (DATA\$ADDR,DATA\$TYPE) ADDRESS PUBLIC;
259	2	DECLARE (RETURN\$DATA,DATA\$ADDR,DATA\$TYPE) ADDRESS;
260	2	DECLARE DATA\$ADDR\$BYTE BYTE;
261	2	DATA\$ADDR\$BYTE=DATA\$ADDR;
262	2	DO CASE DATA\$TYPE;
263	з	RETURN\$DATA=FETCH\$PROGRAM(DATA\$ADDR);
264	з	RETURN\$DATA=FETCH\$REG(DATA\$ADDR\$BYTE);
265	з	RETURN\$DATA=FETCH\$DIR\$INT(DATA\$ADDR\$BYTE);
266	з	RETURN\$DATA=FETCH\$IND(DATA\$ADDR\$BYTE);
267	з	RETURN\$DATA=FETCH\$BIT\$INT(DATA\$ADDR\$BYTE);
268	з	RETURN\$DATA=FETCH\$PAGED\$EXTERNAL(DATA\$ADDR\$BYTE);
269	з	RETURN\$DATA=FETCH\$LONG\$EXTERNAL(DATA\$ADDR);
270	з	RETURN\$DATA=POP\$STACK;
271	з	END;
272	2	RETURN RETURN\$DATA;
273	2	END FETCH\$SIM;

- /* THE FOLLOWING CODE PROVIDES A SINGLE ENTRY POINT FOR AN EXTERNAL ROUTINE TO WRITE DATA INTO ALL SIMULATOR ADDRESS { THE FIRST CALLING PARAMETER GIVES UP TO 16 BITS OF ADDRESS; THE SECOND SPECIFIES WHICH LOGICAL ADDRESS SPACE TO READ, USING THE SCHEME:
 - O = PROGRAM MEMORY
 - 1 = WORKING REGISTER
 - 2 = DIRECT ADDRESS (OUTPUT LATCHES FOR PORTS)
 - 3 = INDIRECT THROUGH REGISTER SPECIFIED
 - 4 = DIRECT BIT ADDRESS (DATA RIGHT-JUSTIFIED)
 - 5 = PAGED EXTERNAL MEMORY
 - 6 = 64K EXTERNAL MEMORY (ALL WRITTEN CURRENTLY TO PAGE 0)
 - 7 = TOP OF STACK (SP UPDATED)

THE THIRD PARAMETER HOLDS THE BYTE VALUE TO BE WRITTEN. */

 274
 1
 STORE\$SIM: PROCEDURE (DATA\$ADDR, DATA\$TYPE, DATA\$VALUE) PUBLIC;

 275
 2
 DECLARE (DATA\$ADDR, DATA\$TYPE, DATA\$VALUE) ADDRESS;

 276
 2
 DECLARE (DATA\$ADDR\$BYTE, DATA\$VALUE\$BYTE) BYTE;

277	2	DATA\$ADDR\$BYTE=DATA\$ADDR;
278	2	DATA\$VALUE\$BYTE=DATA\$VALUE;
279	2	DO CASE DATA\$TYPE;
280	з	USER\$CODE(DATA\$ADDR MOD ROM\$SIZE)=DATA\$VALUE\$BYTE;
281	З	CALL STORE\$REG(DATA\$ADDR\$BYTE,DATA\$VALUE\$BYTE);
282	з	CALL STORE\$DIR(DATA\$ADDR\$BYTE,DATA\$VALUE\$BYTE);
283	з	CALL STORE\$IND(DATA\$ADDR\$BYTE,DATA\$VALUE\$BYTE);
284	з	CALL STORE\$BIT(DATA\$ADDR\$BYTE,DATA\$VALUE\$BYTE);
285	з	CALL STORE\$PAGED\$EXTERNAL(DATA\$ADDR\$BYTE,DATA\$VALUE\$BYTE);
286	з	CALL STORE\$LONG\$EXTERNAL(DATA\$ADDR,DATA\$VALUE\$BYTE);
287	з	CALL PUSH\$STACK(DATA\$VALUE\$BYTE);
288	з	END;
289	2	END STORE\$SIM;

\$EJECT \$INCLUDE (ISET51, PLM) /* INDIVIDUAL INSTRUCTION PROCEDURES: */ = -----------/* "ACALL addr16" INSTRUCTION: */ 290 ACALL\$ADDR11: PROCEDURE; 1 = 291 2 = PAGE\$CODE=(OPCODE AND 11100000B) / 32; 292 2 = PAGE\$OFFSET=FETCH\$PROGRAM(PC+1); 2 = 293 PC=PC+2; 294 2 = CALL PUSH\$STACK(LOW(PC)); 2 = 295 CALL PUSH\$STACK(HIGH(PC)); 296 2 = PC=(PC AND OFBOOH) + (PAGE\$CODE * 100H) + PAGE\$OFFSET; 297 2 = END ACALL\$ADDR11; ----..... = /* "ADD A, <src-bute>" FUNCTION: */ === 298 1 -----ADD\$A: PROCEDURE(DATA\$BYTE); 299 2 = DECLARE DATA\$BYTE BYTE; IF ((ACC AND OFH)+(DATA\$BYTE AND OFH)) > OFH 300 2 = == THEN PSW=PSW OR 0100000B; 302 ELSE PSW=PSW AND 10111111B; 2 = 303 2 = IF ((ACC AND 7FH)+(DATA\$BYTE AND 7FH)) > 7FH ----THEN PSW=PSW OR 00000100B; 2 = 305 ELSE PSW=PSW AND 11111011B; 306 2 = ADD\$TEMP = (ACC);307 2 = ADD\$TEMP = (ADD\$TEMP+DATA\$BYTE);308 2 = IF ADD\$TEMP > OFFH THEN PSW=(PSW OR 10000000B) XOR 00000100B; 310 2 = ELSE PSW=(PSW AND 01111111B); 2 = 311 ACC=LOW(ADD\$TEMP); 312 ---------/* "ADD A, Rn" INSTRUCTION: */ = 245 313 1 == ADD\$A\$REG: PROCEDURE; 314 2 = REG\$ADDR=OPCODE AND 00000111B; 2 = 315 REG\$DATA=FETCH\$REG(REG\$ADDR); CALL ADD\$A(REG\$DATA); 2 = 316 2 = 317 PC=PC+1; 318 2 = END ADD = A REG;..... ----/* "ADD A, direct" INSTRUCTION: */ 319 1 == ADD\$A\$DIR: PROCEDURE; 320 2 = DIR\$ADDR=FETCH\$PROGRAM(PC+1); 321 2 = DIR\$DATA=FETCH\$DIR(DIR\$ADDR); 2 = 322 CALL ADD\$A(DIR\$DATA); 323 2 = PC=PC+2; 324 2 = END ADD\$A\$DIR; /* "ADD A, @Ri" INSTRUCTION: */ 1.12

325	1		ADD\$A\$IND: PROCEDURE;
326	2	=	REG\$ADDR=DPCDDF AND 0000001B;
207	5	=	
220	 ~		
<i>ಎ೭೦</i>	~		
<i>ವ</i> ೭ ೫	ć	22	
330	2	==:	END ADD\$A\$IND;
		:=	
		6.2	
		=	/* "ADD A,#data" INSTRUCTION: */
331	1	==	
222	ō		
	5		
000	2	ret.	
334	<i>2</i>		
335	2		END ADD\$A\$1MM;
		122	
		==	/* "ADDC A, <src-bute>" FUNCTION: */</src-bute>
		24	
374	1		
000	5		
337	~		DECLARE DATAPETTE BTTE
338	<i>=</i>	=	LINK = (PSW AND 1000000B) / 128;
339	2	=	IF ((ACC AND OFH)+(DATA\$BYTE AND OFH)+LINK\$BIT) > OFH
		=	THEN PSW=PSW DR 01000000B;
341	2	=	ELSE PSW=PSW AND 10111111B;
342	2		IF ((ACC AND 7FH)+(DATA\$BYTE AND 7FH)+LINK\$BIT) > 7FH
			THEN ESWEESW DR 00000100B;
244	2		
045	-		ADDATION - (ACC).
345	2		$ADD \bullet TEMP = (ACC);$
346	E	-	ADD \$ I EMP = (ADD \$ I EMP + DA I A \$ B Y I E);
347	2	==	ADD\$TEMP = (ADD\$TEMP+LINK\$BIT);
348	2	==	IF ADD\$TEMP > OFFH
		=	THEN PSW=(PSW DR 10000000B) XDR 00000100B;
350	2		ELSE $PSW = (PSW AND 01111111B);$
351	2		$ACC = I \square W (ADD $ TEMP);$
350	5		
	f		
		2:2	
		:#	/* "ADDC A,Rn" INSTRUCTION: */
353	1	::: : :	ADDC#A#REG: PROCEDURE;
354	2	222	REG\$ADDR=OPCODE AND 00000111B;
355	2	=	REG\$DATA=FETCH\$REG(REG\$ADDR);
356	2		
357	5	7.00	
067	~		
300	e		END ADDC#A#REG)
		-12	
		122	
			/* "ADDC A,direct" INSTRUCTION: */
		5 2	
359	1		ADDC\$A\$DIR: PROCEDURE;
360	2	13	DIR\$ADDR=FETCH\$PROGRAM(PC+1);
361	2	==	DIR\$DATA=FFTCH\$DIR(DIR\$ADDR);
	5		$CAL = ANNC \pm A(NT \Box \pm NATA)$
	<u> </u>		いれに、 ポルルシャペトル 133 年ルバリアイン
ವರುವ	2		
. 16.4	_		END ADDUSASDIR:

		12					
		12	¢		00/11	* 6 10 10 10 1 10 10 10 10 10 10	. <i>1</i>
			/ R	"ADDC P	4 × 6 K 1	INSTRUCTION:	*/
365	1	-	ADD	SASIND: F	ROCEDUR	E	
366	2	==		REG\$ADDR=0	PCODE A	ND 00000018;	
367	2			IND\$DATA≕F	ETCH\$IN	ID(REG\$ADDR);	
368	2			CALL ADDC4	\$A(IND\$D	ATA);	
369	2	:22		PC=PC+1;	•		
370	2		END	ADDC\$A\$INI);		
		1.2					
			/*	"ADDC A	∖#data"	INSTRUCTION:	*/
		=					
371	1		ADDO	\$A\$IMM: F	PROCEDUR	E;	
372	2	-		IMM\$DATA=F	ETCH\$PR	OGRAM(PC+1);	
373	2	==		CALL ADDC	FA(IMM∳D	ATA);	
374	e 		END	ADDC#A#IMM	4.		
070	e.,		C. 1417	H0004H411	17		
		c2					
			/*	"AUMP a	addr11"	INSTRUCTION:	*/
		: 1					
376	1	1 27	AJMF	\$ADDR11:	PROCEDU	RE;	
377	2	22		PAGE\$CUDE=	= (UPCUDE	AND 11100000B	0732
378	ية 2			PAGE#UPPSE PC=PC+D:	LIFFEIGN	PROGRAMCECT17	
380	2			PC=(PC ANE) OF800H) + (PAGE\$CODE	* 100H) + PAGE\$OFFSET;
381	2	=	E.ND	AJMP \$ADDR1	11;		
		=					
		:::					<i>,</i>
			/*	"ANL A	4, Rn″ 1	NSTRUCTION: *	
382	1				OCEDURE	` 1 .	
383	2	# :	1.12.47	REG\$ADDR=C	DPCODE A	ND 00000111B	
384	2	==		REG#DATA=F	FETCH\$RE	G(REG\$ADDR);	
385	2	=		ACC=ACC AN	ND REG\$D	ATA	
386	2	12		PC=PC+1;			
387	2	=	END	ANL\$A\$REG;			
			/#	"ANL A	Adirect	" INSTRUCTION	*/
388	1		ANL.	ASDIR: PF	OCEDURE	;	
389	2	: #		DIR\$ADDR=F	FETCH\$PR	OGRAM(PC+1);	
390	2			DIR#DATA=F	FETCH#DI	R(DIR\$ADDR):	
371	2			AUU=AUU AN	ND DIKAD	ATA;	
393	ž	-	END	ANI SASDIR:			
		:=					
		-	/#	"ANL A	₩ @Ri"	INSTRUCTION:	*/
() () #				5 - T - T		·.	
374	5		HINL 9	95044000 Ph	NUCEDURE		
396	2	=		IND\$DATA=F	ETCHSIN	D(REG\$ADDR);	
397	2	4 211		ACC=ACC AN	ND IND\$D	ATA	

398	2	:::2	PC==PC+1;
799	2		END ANI \$A\$IND:
	h		
			/* "ANL A,#data" INSTRUCTION: */
400	1	=	ANL\$A\$IMM: PROCEDURE;
401	2	=	IMM#DATA=FETCH#PROGRAM(PC+1);
402	2	==	ACC=ACC AND IMM\$DATA;
407	5	1211	
100	~~~		
***	E		CND HNCPHP1000
		22	
		=	/* "ANL direct,A" INSTRUCTION: */
		. 52	
405	1		ANL\$DIR\$A: PROCEDURE;
406	2		DIR\$ADDR=FETCH\$PROGRAM(PC+1);
407	2	=	DIRSDATA=FFTCHSDIRSINT(DIRSADDR).
100	5		CALL CTOPECTOPICTOTOCATOR ACC AND TTOCATALS
400	~		CALL STOKEPDIK(DIKPADDK)AGG AND DIKPDATA))
409	<u>e.</u> .	2,2	
410	2	*	END ANL \$DIR\$A;
		=	
			/* "ANL direct,#data" INSTRUCTION: #/-
		:2	
411	1		
A 4 10	~		NTP#ANND-EETCU#DOCODAM(DC+1)
416	<u> </u>		DIR PHDDR-FEIGHPPROGRAM(CCTT))
413	<i>c</i> '		INM#DATA=FEICH#FRUGRAM(FC+2);
414	2	=	DIR\$DATA=FEICH\$DIR\$IN!(DIR\$ADDR);
415	2		CALL STORE\$DIR(DIR\$ADDR,IMM\$DATA AND DIR\$DATA);
416	2		PC=PC+3;
417	2	127	END ANL\$DIR\$IMM;
		222	
		17	
			A HINE CIDIC INCONCOLLON. */
	4		
418	1	200	ANL\$C\$BIT: PRUCEDURE;
419	2	H	BIT\$ADDR=FETCH\$PROGRAM(PC+1);
420	2		BIT\$DATA=FETCH\$BIT(BIT\$ADDR);
421	2	-	IF BIT\$DATA = O THEN PSW=PSW AND 01111111B;
423	2	=	PC=PC+2;
424	2	==	END ANL\$C\$BIT;
		::::	
		=	/* "ANL C//BIT" INSTRUCTION: */
425	1		ANL\$C\$COMP\$BIT: PROCEDURE;
426	2		BIT\$ADDR=FETCH\$PROGRAM(PC+1);
427	2	==	BIT\$DATA=FETCH\$BIT(BIT\$ADDR);
428	2	=	IF BIT\$DATA = 1 THEN PSW=PSW AND 01111111B;
430	2	122	PC=PC+2;
100	~~		
-1-1-1-	6		ne name in the second of the s
		122	
			/* "CJNE A,direct,rel" INSTRUCTION: */
432	1	=	CJNE\$A\$DIR\$REL: PROCEDURE;

	_		
433	2	112	DIR\$ADDR=FEICH\$PRUGRAM(PC+1);
434	<u> </u>		
430	e -		DISPLACEMENT=FEICH®FRUGRAM(FC+2);
400	<i>e</i> 2		IF ACC \ DIRPDATA THEN DEU-(DEU OD - 10000000);
100	' 7		THEN PSW=(PSW UK 1000000B);
400	2		CLSE PSW=(PSW AND OIIIIIIB/)
937 440	2 0		
440	e.'		IF AGG (2 DIR#DATA THEN DO-DO: 07/00000700000000000000000000000000000
4.00	<i>(</i> *)		
444	<i>e</i> .		END COMERARDIRAREL;
			/* COME AN#UAVANPET INSTRUCTION. */
1.4.17	1		
443			CONCERARITATIONCE, FRUCEDORES IMMEDATA-EETCHEDORODAM(DC+1).
444	~		THEFT ACCMENT-CETCHEDDOODAM(DC+C)
445	5		DISELACENENT-FEIGHPEROGRAMMETETT
740	<i>E</i> .		THEN BELL (BELL OF 10000000).
110	7		FICE DOU-(DOU AND 011111110)
440 AAO	<u>د</u> .		BC-BC+3
447	5		
400	17.		THEN DOWDONG TONESTENDED (DICOL ACEMENT)
450	5		CND CINEGACTMMCCC
-+ ./ <i>I</i>	<i>e</i> .,		
			A CONC REPARATEL INCRECTION. A
453	1		
454	ŝ		
455	5		RECADDR-DICODE HAD COCCOTID
456	2		IMM\$DATA=FFTCH\$PROQRAM(PC+1):
457	2		DISPLACEMENT=FETCH\$PROGRAM(PC+2);
458	2		IF REGIDATA < IMMSDATA
	~		THEN PSW=(PSW 0R 1000000B);
460	2		ELSE $PSW = (PSW AND 01111111B);$
461	2		PC=PC+3;
462	2	=	IE REGIDATA C> IMMIDATA
			THEN PC=PC+SIGN\$EXTENDED(DISPLACEMENT);
464	2		
			END CUNE\$REG\$IMM\$REL;
			END CJNE\$REG\$IMM\$REL;
		:=	END CJNE\$REG\$IMM\$REL;
			END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,re1" INSTRUCTION: */
			END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,rel" INSTRUCTION: */
465	1		END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,rel" INSTRUCTION: */ CJNE\$IND\$IMM\$REL: PROCEDURE;
465 466	12		END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,re1" INSTRUCTION: */ CJNE\$IND\$IMM\$REL: PROCEDURE; REG\$ADDR=OPCODE AND 00000001B;
465 466 467	1 2 2		<pre>END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,re1" INSTRUCTION: */ CJNE\$IND\$IMM\$REL: PROCEDURE; REG\$ADDR=OPCODE AND 00000001B; IND\$DATA=FETCH\$IND(REG\$ADDR);</pre>
465 466 467 468	1222		<pre>END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,re1" INSTRUCTION: */ CJNE\$IND\$IMM\$REL: PROCEDURE; REG\$ADDR=OPCODE AND 00000001B; IND\$DATA=FETCH\$IND(REG\$ADDR); IMM\$DATA=FETCH\$PROGRAM(PC+1);</pre>
465 466 467 468 469	1 2 2 2 2		<pre>END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,re1" INSTRUCTION: */ CJNE\$IND\$IMM\$REL: PROCEDURE; REG\$ADDR=OPCODE AND 00000001B; IND\$DATA=FETCH\$IND(REG\$ADDR); IMM\$DATA=FETCH\$PROGRAM(PC+1); DISPLACEMENT=FETCH\$PROGRAM(PC+2);</pre>
465 466 467 468 469 470	12222		<pre>END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,re1" INSTRUCTION: */ CJNE\$IND\$IMM\$REL: PROCEDURE; REG\$ADDR=OPCODE AND 00000001B; IND\$DATA=FETCH\$IND(REG\$ADDR); IMM\$DATA=FETCH\$PROGRAM(PC+1); DISPLACEMENT=FETCH\$PROGRAM(PC+2); IF IND\$DATA < IMM\$DATA</pre>
465 466 467 468 469 470	1 2 2 2 2 2		<pre>END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,re1" INSTRUCTION: */ CJNE\$IND\$IMM\$REL: PROCEDURE; REG\$ADDR=OPCODE AND 00000001B; IND\$DATA=FETCH\$IND(REG\$ADDR); IMM\$DATA=FETCH\$PROGRAM(PC+1); DISPLACEMENT=FETCH\$PROGRAM(PC+2); IF IND\$DATA < IMM\$DATA THEN PSW=(PSW DR 1000000B);</pre>
465 466 467 468 469 470 472	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,re1" INSTRUCTION: */ CJNE\$IND\$IMM\$REL: PROCEDURE; REG\$ADDR=OPCODE AND 00000001B; IND\$DATA=FETCH\$IND(REG\$ADDR); IMM\$DATA=FETCH\$PROGRAM(PC+1); DISPLACEMENT=FETCH\$PROGRAM(PC+2); IF IND\$DATA < IMM\$DATA THEN PSW=(PSW DR 1000000B); ELSE PSW=(PSW AND 01111111B);
465 466 467 468 469 470 472 472	1000000		END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,re1" INSTRUCTION: */ CJNE\$IND\$IMM\$REL: PROCEDURE; REG\$ADDR=OPCODE AND 00000001B; IND\$DATA=FETCH\$IND(REG\$ADDR); IMM\$DATA=FETCH\$PROGRAM(PC+1); DISPLACEMENT=FETCH\$PROGRAM(PC+2); IF IND\$DATA < IMM\$DATA THEN PSW=(PSW OR 1000000B); ELSE PSW=(PSW AND 0111111B); PC=PC+3;
465 466 467 468 469 470 470 472 473 473	NNNNNN NNN		<pre>END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,re1" INSTRUCTION: */ CJNE\$IND\$IMM\$REL: PROCEDURE; REG\$ADDR=OPCODE AND 00000001B; IND\$DATA=FETCH\$IND(REG\$ADDR); IMM\$DATA=FETCH\$PROGRAM(PC+1); DISPLACEMENT=FETCH\$PROGRAM(PC+2); IF IND\$DATA < IMM\$DATA THEN PSW=(PSW OR 1000000B); ELSE PSW=(PSW AND 01111111B); PC=PC+3; IF IND\$DATA <> IMM\$DATA</pre>
465 466 467 468 469 470 470 472 473 473	NNNNN NNN		<pre>END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,rel" INSTRUCTION: */ CJNE\$IND\$IMM\$REL: PROCEDURE; REG\$ADDR=OPCODE AND 00000001B; IND\$DATA=FETCH\$IND(REG\$ADDR); IMM\$DATA=FETCH\$PROGRAM(PC+1); DISPLACEMENT=FETCH\$PROGRAM(PC+2); IF IND\$DATA < IMM\$DATA THEN PSW=(PSW OR 10000000B); ELSE PSW=(PSW AND 01111111B); PC=PC+3; IF IND\$DATA <> IMM\$DATA THEN PC=PC+SIGN\$EXTENDED(DISPLACEMENT);</pre>
465 466 467 468 469 470 470 472 473 474	NNNNN NNN N		<pre>END CJNE\$REG\$IMM\$REL; /* "CJNE @Ri,#data,rel" INSTRUCTION: */ CJNE\$IND\$IMM\$REL: PROCEDURE; REG\$ADDR=OPCODE AND 00000001B; IND\$DATA=FETCH\$IND(REG\$ADDR); IMM\$DATA=FETCH\$PROGRAM(PC+1); DISPLACEMENT=FETCH\$PROGRAM(PC+2); IF IND\$DATA < IMM\$DATA THEN PSW=(PSW OR 10000000B); ELSE PSW=(PSW AND 0111111B); PC=PC+3; IF IND\$DATA <> IMM\$DATA THEN PC=PC+SIGN\$EXTENDED(DISPLACEMENT); END CJNE\$IND\$IMM\$REL;</pre>

PL/M-80 COMPILER 8051 INSTRUCTION SET SIMULATOR

<pre></pre>					
477 1 CLR*A: PROCEDURE; 478 2 ACC=0; 479 2 PC=PC+1; 480 2 END CLR*A; 7 * "CLR C" INSTRUCTION: */ 481 1 CLR*C: PROCEDURE; 482 2 PSM=PSW AND 01111111B; 483 2 PC=PC+1; 484 2 END CLR*C; 7* "CLR bit" INSTRUCTION: */ 485 1 CLR*BIT: PROCEDURE; 486 2 BIT#ADDR=FETCH#PROGRAM(PC+1); 487 2 END CLR*BIT; 488 2 PC=PC+2; 489 2 END CLR*BIT; 487 2 END CLR*BIT; 488 2 PC=PC+2; 489 2 END CLR*BIT; 491 2 ACC=ACC XOR 1111111B; 492 2 ACC=ACC XOR 1111111B; 492 2 PC=PC+1; 493 2 END CPL*A; 494 1 CPL*C: PROCEDURE; 497 2 END CPL*C;				• "CLR A" INSTE	UCTION: */
$\begin{array}{rcrcrc} 477 & 1 & = & CLR$A: PROCEDURE; \\ 478 & 2 & & PC=PC+1; \\ 480 & 2 & = & END CLR$A; \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$			222		
$\begin{array}{rcl} 478 & 2 & = & ACC=0; \\ 479 & 2 & = & PC=PC+1; \\ 480 & 2 & = & END CLR$A; \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & $	477	1		R\$A: PROCEDURE;	
$\begin{array}{rcrcrc} 479 & 2 & = & PC=PC+1; \\ 480 & 2 & = & END CLR4A; \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & $	478	2		ACC=0;	
$\begin{array}{rcl} 480 & 2 & = & \mbox{END CLR$A}; \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$	479	2		PC=PC+1;	
/# "CLR C" INSTRUCTION: */ 481 1 482 2 483 2 484 2 484 2 484 2 485 1 486 2 487 1 488 2 488 2 485 1 CLR*BIT: PROCEDURE; 486 2 9 CLR*BIT: 9 CALL STORE*BIT(BIT*ADDR.0); 487 2 9 2 9 2 9 2 489 2 9 1 CPL*A: STORE*BIT(BIT*ADDR.0); 489 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2	480	2	**	ID CLR\$A;	
*** '/* "CLR C" INSTRUCTION: */ 481 1 = CLR\$C: PROCEDURE; 482 2 PSW=PSW AND 01111111B; 483 2 = PC=PC+1; 484 2 = END CLR\$C; ** "CLR Dit" INSTRUCTION: */ 485 1 = CLR\$BIT: PROCEDURE; 486 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 487 2 = CLL STORE*BIT(BIT*ADDR.O); 488 2 = PC=PC+2; 489 2 = PC=PC+2; 489 2 = PC=PC+2; 491 2 = PC=PC+1; 492 2 = PC=PC+1; 493 2 = PC=PC+1; 494 1 = CPL\$A; PROCEDURE; 495 2 = PC=PC+1; 495 2 = PC=PC+1; 497 2 = END CPL\$A; 497 2 = DCPL\$A; 497			1 12	•	
<pre></pre>			53		
<pre>461 1 = CLR\$C: PROCEDURE; 462 2 = PSW=PSW AND 01111111B; 463 2 = PC=PC+1; 484 2 = END CLR\$C;</pre>				CLR C" INST	UCTION: */
<pre>481 1 = CLR*C: PROCEDURE; 482 2 = PSW=PSW AND 01111111B; 483 2 = PC=PC+1; 484 2 = END CLR*C;</pre>			22		
<pre>482 2 = PSW=PSW AND 01111111B; 483 2 = PC+1; 484 2 = END CLR*C;</pre>	481	1		R\$C: PROCEDURE;	
<pre>483 2 = PC=PC+1; 484 2 = END CLR*C;</pre>	482	2		PSW=PSW AND 01111	118;
<pre>484 2 = END CLR*C;</pre>	483	2	=	PC=PC+1;	
<pre> A = A = A = A = A = A = A = A = A =</pre>	484	2	==		
<pre> /* "CLR bit" INSTRUCTION: */ /* "CLR bit" INSTRUCTION: */ /* "CLR *BIT: PROCEDURE; BIT*ADDR=FETCH*PROGRAM(PC+1); CALL STORE*BIT(BIT*ADDR.0); PC=PC+2; PC=PC+2; /* "CPL A" INSTRUCTION: */</pre>	165 1		53		
<pre></pre>			===		
<pre>485 1 = CLR\$BIT: PROCEDURE; 486 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 487 2 = CALL STORE\$BIT(BIT\$ADDR,O); 488 2 = PC=PC+2; 489 2 = END CLR\$BIT; = /* "CPL A" INSTRUCTION: */ 490 1 = CPL\$A: PROCEDURE; 491 2 = ACC=ACC XOR 11111111B; 492 2 = PC=PC+1; 493 2 = END CPL\$A; = /* "CPL C" INSTRUCTION: */ = /* "CPL C" INSTRUCTION: */ = /* "CPL C" INSTRUCTION: */ 494 1 = CPL\$C: PROCEDURE; 495 2 = PSW=PSW XOR 10000000B; 496 2 = PC=PC+1; 497 2 = END CPL\$C; = /* "CPL bit" INSTRUCTION: */ = /* "CPL bit" INSTRUCTION: */ 498 1 = CPL\$BIT: PROCEDURE; 497 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 500 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 501 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 503 2 = PC=PC+2; 504 2 = PC=PC+2; 504 2 = END CPL\$BIT; = /* "DA A" INSTRUCTION: */ 505 1 = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > O9H) OR ((PSW AND 01000000B) <> 0)</pre>			=	CLR bit" INS	TRUCTION: */
<pre>485 1 = CLR\$BIT: PROCEDURE; 486 2 = BIT\$ADDR=FETCH\$FROGRAM(PC+1); 487 2 = CALL STORE\$BIT(BIT\$ADDR,O); 488 2 = PC=PC+2; 489 2 = END CLR\$BIT; </pre>			C2		
<pre>486 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 487 2 = CALL STURE\$BIT(BIT\$ADDR,0); 489 2 = END CLR\$BIT; </pre>	485	1	:22	R\$BIT PROCEDURE:	
<pre>487 2 = CALL STORE\$BIT(BIT\$ADDR,O); 488 2 = PC=PC+2; 489 2 = END CLR\$BIT; 489 2 = END CLR\$BIT; 490 1 = CPL\$A: PROCEDURE; 491 2 = ACC=ACC XOR 11111111B; 492 2 = PC=PC+1; 493 2 = END CPL\$A; 494 1 = CPL\$C: PROCEDURE; 495 2 = PSW=PSW XOR 10000000B; 495 2 = PC=PC+1; 497 2 = END CPL\$C; 497 2 = END CPL\$C; 497 2 = END CPL\$C; 498 1 = CPL\$BIT: PROCEDURE; 497 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 500 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 501 2 = SIT\$DATA=EITCH\$PIT\$DIT\$ADDR,BIT\$DATA); 503 2 = CALL STORE\$BIT(BIT\$ADDR,BIT\$DATA); 504 2 = PC=PC+2; 505 1 = DA\$A: PROCEDURE; 505 2 = IF ((ACC AND OFH) > OPH) CR ((PSW AND 01000000B) <> 0)</pre>	486	2		BITSADDR=FFTCHSPR	GRAM(PC+1);
488 2 = PC=PC+2; 489 2 = END CLR\$BIT; ** "CPL A" INSTRUCTION: */ 470 1 = CPL\$A: PROCEDURE; 471 2 = ACC=ACC XOR 1111111B; 472 2 = PC=PC+1; 473 2 = CPL\$A; ** "CPL C" INSTRUCTION: */ 473 2 = PC=PC+1; 473 2 = CPL\$A; ** "CPL C" INSTRUCTION: */ ** "CPL C" INSTRUCTION: */ ** "CPL bit" INSTRUCTION: */ ** "CPL *BIT: PROCEDURE; COO0000018; \$2 =	487	2		CALL STORESBIT(BI	\$ADDR, 0);
<pre>489 2 = END CLR\$BIT;</pre>	488	2		PC=PC+2;	
<pre></pre>	489	2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			==		
<pre>470 1 = CPL\$A: PROCEDURE; 491 2 = ACC=ACC XOR 1111111B; 492 2 = PC=PC+1; 493 2 = END CPL\$A;</pre>			1		
<pre>490 1 = CPL\$A: PROCEDURE; 491 2 = ACC=ACC XOR 11111111B; 492 2 = PC=PC+1; 493 2 = END CPL\$A;</pre>					urur, asterit, ····
491 2 ACC=ACC XOR 11111111B; 492 2 PC=PC+1; 493 2 END CPL\$A;	490	1		SA PROCEDURE:	
492 2 = PC=PC+1; 493 2 = END CPL\$A; = /* "CPL C" INSTRUCTION: */ = /* "CPL C" INSTRUCTION: */ = - = 494 1 = CPL\$C: PROCEDURE; 495 2 = PSW=PSW XOR 10000000B; 496 2 = PC=PC+1; 497 2 = END CPL\$C; = /* "CPL bit" INSTRUCTION: */ = /* "CPL bit" INSTRUCTION: */ = - = /* "CPL bit" INSTRUCTION: */ = - #98 1 CPL\$BIT: PROCEDURE; 500 2 = BIT\$DATA=FETCH\$PROGRAM(PC+1); = 501 2 = CALL STORE\$BIT(BIT\$ADDR, BIT\$DATA); = 503 2 = = /* "DA A" INSTRUCTION: */ = - = = /* "DA A" INSTRUCTION: */ = - = = = IF ((AC	491	ŝ		ACC=ACC XOR 11111	118:
<pre>493 2 = END CPL\$A; 493 2 = END CPL\$A; 494 1 = CPL\$C: PROCEDURE; 495 2 = PSW=PSW XOR 10000000B; 496 2 = PC=PC+1; 497 2 = END CPL\$C; 497 2 = END CPL\$C; 498 1 = CPL\$BIT: PROCEDURE; 499 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 500 2 = BIT\$DATA=ETCH\$BIT\$INT(BIT\$ADDR); 501 2 = BIT\$DATA=BIT\$DATA XOR 00000001B; 502 2 = CALL STORE\$BIT(BIT\$ADDR,BIT\$DATA); 503 2 = PC=PC+2; 504 2 = END CPL\$BIT; 478 1 = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > O9H) OR ((PSW AND 01000000B) <> 0)</pre>	492	2	-	PC=PC+1:	* * ** /
<pre></pre>	493	5	-	ID CPL \$A:	
<pre>/* "CPL C" INSTRUCTION: */ /* 474 1 = CPL\$C: PROCEDURE; 475 2 = PSW=PSW XOR 10000000B; 476 2 = PC=PC+1; 477 2 = END CPL\$C; /* "CPL bit" INSTRUCTION: */ /* 478 1 = CPL\$BIT: PROCEDURE; 479 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 500 2 = BIT\$DATA=FETCH\$PROGRAM(PC+1); 500 2 = BIT\$DATA=BIT\$DATA XOR 00000001B; 501 2 = BIT\$DATA=BIT\$DATA XOR 00000001B; 502 2 = CALL STORE\$BIT(BIT\$ADDR,BIT\$DATA); 503 2 = PC=PC+2; 504 2 = END CPL\$BIT; /* "DA A" INSTRUCTION: */ 505 1 = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > 09H) OR ((PSW AND 01000000B) <> 0)</pre>	· 7 7 GP	£	-		
<pre></pre>			-		
<pre>494 1 = CPL\$C: PROCEDURE; 495 2 = PSW=PSW XOR 10000000B; 496 2 = PC=PC+1; 497 2 = END CPL\$C; = /* "CPL bit" INSTRUCTION: */ = /* "CPL bit" INSTRUCTION: */ = CPL\$BIT: PROCEDURE; 499 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 500 2 = BIT\$DATA=FETCH\$DIT\$INT(BIT\$ADDR); 501 2 = BIT\$DATA=BIT\$DATA XOR 0000001B; 502 2 = CALL STORE\$BIT(BIT\$ADDR,BIT\$DATA); 503 2 = PC=PC+2; 504 2 = END CPL\$BIT; = /* "DA A" INSTRUCTION: */ = /* "DA A" INSTRUCTION: */</pre>			22		
<pre>494 1 = CPL\$C: PROCEDURE; 495 2 = PS₩=PS₩ XOR 10000000B; 496 2 = PC=PC+1; 497 2 = END CPL\$C; = /* "CPL bit" INSTRUCTION: */ = 498 1 = CPL\$BIT: PROCEDURE; 499 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 500 2 = BIT\$DATA=FETCH\$PROGRAM(PC+1); 501 2 = BIT\$DATA=BIT\$DATA XOR 00000001B; 502 2 = CALL STORE\$BIT(BIT\$ADDR,BIT\$DATA); 503 2 = PC=PC+2; 504 2 = END CPL\$BIT; =</pre>					
<pre>495 2 = PSW FOR IO00000B; 496 2 = PC=PC+1; 497 2 = END CPL\$C; =</pre>	494	1		PLAC PROCEDURE:	
<pre>496 2 = PC=PC+1; 497 2 = END CPL\$C; = /* "CPL bit" INSTRUCTION: */ 498 1 = CPL\$BIT: PROCEDURE; 499 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 500 2 = BIT\$DATA=FETCH\$BIT\$INT(BIT\$ADDR); 501 2 = BIT\$DATA=BIT\$DATA XOR 00000001B; 502 2 = CALL STORE\$BIT(BIT\$ADDR,BIT\$DATA); 503 2 = PC=PC+2; 504 2 = END CPL\$BIT; = /* "DA A" INSTRUCTION: */ 505 1 = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > 09H) OR ((PSW AND 01000000B) <> 0)</pre>	495	ŝ		PSW=PSW XOR 10000	008:
<pre>497 2 = END CPL\$C; = /* "CPL bit" INSTRUCTION: */ 498 1 = CPL\$BIT: PROCEDURE; 499 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 500 2 = BIT\$DATA=FETCH\$BIT\$INT(BIT\$ADDR); 501 2 = BIT\$DATA=BIT\$DATA XOR 00000001B; 502 2 = CALL STORE\$BIT(BIT\$ADDR,BIT\$DATA); 503 2 = PC=PC+2; 504 2 = END CPL\$BIT; = /* "DA A" INSTRUCTION: */ = 505 1 = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > 09H) OR ((PSW AND 01000000B) <> 0)</pre>	496	2	5.00	PC=PC+1:	
<pre>177 L End of Lto? = 177 L End of Lto? = 177 E End of Lto? = 178 1 = CPL*BIT: PROCEDURE; 179 2 = BIT*ADDR=FETCH*PROGRAM(PC+1); 179 2 = BIT*DATA=FETCH*BIT*INT(BIT*ADDR); 179 2 = BIT*DATA=BIT*DATA XOR 00000001B; 179 2 = CALL STORE*BIT*(BIT*ADDR, BIT*DATA); 170 3 2 = CALL STORE*BIT*(BIT*ADDR, BIT*DATA); 171 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</pre>	497	2	==	ND CPISC;	
<pre></pre>		les-	63		
<pre></pre>			2 22		
498 1 = CPL\$BIT: PROCEDURE; 499 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 500 2 = BIT\$DATA=FETCH\$PROGRAM(PC+1); 501 2 = BIT\$DATA=BIT\$DATA XOR 00000001B; 502 2 = CALL STORE\$BIT(BIT\$ADDR,BIT\$DATA); 503 2 = PC=PC+2; 504 2 = END CPL\$BIT; = /* "DA A" INSTRUCTION: */ = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > 09H) OR ((PSW AND 01000000B) <> 0)			==	e "CPL hit" INS	
<pre>498 1 = CPL\$BIT: PROCEDURE; 499 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 500 2 = BIT\$DATA=FETCH\$PROGRAM(PC+1); 501 2 = BIT\$DATA=BIT\$DATA XOR 00000001B; 502 2 = CALL STORE\$BIT(BIT\$ADDR,BIT\$DATA); 503 2 = PC=PC+2; 504 2 = END CPL\$BIT; </pre>			1.2		
<pre>499 2 = BIT\$ADDR=FETCH\$PROGRAM(PC+1); 500 2 = BIT\$DATA=FETCH\$PROGRAM(PC+1); 501 2 = BIT\$DATA=BIT\$DATA XOR 0000001B; 502 2 = CALL STORE\$BIT(BIT\$ADDR,BIT\$DATA); 503 2 = PC=PC+2; 504 2 = END CPL\$BIT; = /* "DA A" INSTRUCTION: */ = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > 09H) OR ((PSW AND 01000000B) <> 0)</pre>	498	1	1,000	LSBIT: PROCEDURE;	
500 2 = BIT\$DATA=FETCH\$BIT\$INT(BIT\$ADDR); 501 2 = BIT\$DATA=BIT\$DATA XOR 00000001B; 502 2 = CALL STORE\$BIT(BIT\$ADDR,BIT\$DATA); 503 2 = PC=PC+2; 504 2 = END CPL\$BIT; = /* "DA A" INSTRUCTION: */ = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > 09H) OR ((PSW AND 01000000B) <> 0)	499	2	=	BIT\$ADDR=FETCH\$PR(GRAM(PC+1);
501 2 = BIT\$DATA=BIT\$DATA XOR 0000001B; 502 2 = CALL STORE\$BIT(BIT\$ADDR,BIT\$DATA); 503 2 = PC=PC+2; 504 2 = END CPL\$BIT; = /* "DA A" INSTRUCTION: */ = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > 09H) OR ((PSW AND 01000000B) <> 0)	500	2	100	BIT\$DATA=FETCH\$BI	\$INT(BIT\$ADDR);
502 2 = CALL STORE\$BIT(BIT\$ADDR,BIT\$DATA); 503 2 = PC=PC+2; 504 2 = END CPL\$BIT; = /* "DA A" INSTRUCTION: */ = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > 09H) OR ((PSW AND 01000000B) <> 0)	501	2		BIT\$DATA=BIT\$DATA	XDR 0000001B;
503 2 = PC=PC+2; 504 2 = END CPL\$BIT; = /* "DA A" INSTRUCTION: */ = 505 1 = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > 09H) OR ((PSW AND 01000000B) <> 0)	502	2		CALL STORESBIT(BI	\$ADDR, BIT\$DATA);
504 2 = END CPL\$BIT; = /* "DA A" INSTRUCTION: */ = 000000000000000000000000000000000000	503	2	=	PC=PC+2;	
= /* "DA A" INSTRUCTION: */ = /* "DA A" INSTRUCTION: */ = 505 1 = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > 09H) OR ((PSW AND 01000000B) <> 0)	504	2	=	D CPL\$BIT;	
= /* "DA A" INSTRUCTION: */ =			=		
<pre>= /* "DA A" INSTRUCTION: */ = 505 1 = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > 09H) OR ((PSW AND 01000000B) <> 0)</pre>					
= 505 1 = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > 09H) OR ((PSW AND 01000000B) <> 0)				"DA A" INST	UCTION: */
505 1 = DA\$A: PROCEDURE; 506 2 = IF ((ACC AND OFH) > 09H) DR ((PSW AND 01000000B) <> 0)			52	·····	
506 2 = IF ((ACC AND OFH) > 09H) OR ((PSW AND 01000000B) <> 0)	505	1	=	AA: PROCEDURE;	
	506	2	=	IF ((ACC AND OFH)	> 09H) DR ((PSW AND 01000000B) <> 0)

		=		THEN DD;
508	З	=		IF ACC >= OFAH THEN PSW=PSW OR 10000000B;
511	з	=		ACC=ACC+6;
517	5			
01E	3			$L_{\rm MD}$
513	e.			IF ((ACC AND OFOH) > 90H) DR ((PSW AND 1000000B) (> 0)
		35		THEN DO;
515	З	==		IF ACC >= OAOH THEN PSW=PSW OR 10000000B;
		=		ACC=ACC+60H;
518	3	=		FND:
510	5			
517	~		(** K) (* S	
920 -	E.		END	
		=		
		=	/*	"DEC A" INSTRUCTION: */
		==		
521	1	==	DEC	
500	5		AN 100 10 1	
500	5			
JE 3	~		r* 6 195	
524	-	==	END	DEC\$A;
		==		
			/*	"DEC Rn" INSTRUCTION: */
525	1	22	DECS	
572	ŝ		A.7 6 1.7 4	
520				
24/	e. 			
258	-	=		REG\$DATA=REG\$DATA-1;
529	2	-		CALL STORE\$REG(REG\$ADDR,REG\$DATA);
530	2			PC=PC+1;
531	2	==	END	DEC\$REG;
		::=		
			1.4	
			/*	DEC ATTECT INSTRUCTION. */
532	1	22	DEC	JIR: PROCEDURE;
533	2	5 2 7		DIR\$ADDR=FETCH\$PROGRAM(PC+1);
534	2	=		DIR\$DATA=FETCH\$DIR\$INT(DIR\$ADDR);
535	2			DIR\$DATA=DIR\$DATA-1;
536	2	-		CALL STORFSDIR(DIRSADDR,DIRSDATA);
527	5			
500	5		C. 803	
100	<i>(</i>		C.14D	DEC #DIR)
		512		
		:25	/*	"DEC @Ri" INSTRUCTION: */
539	1	22	DEC	IND: PROCEDURE;
540	2			REG\$ADDR=DPCODE AND 00000001B;
541	5	122		IND\$DATA=FETCH\$IND(REG\$ADDR):
545	5			
いそに	Ľ			144/44/71/71/14/74///1/71/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/
543	2	=		UALL BIUKE#IND(REG#ADDR; IND#DA(A))
544	5	=		PC=PC+1;
545	2	==	END	DEC\$IND;
		::::		
		===	/*	"DIV AB" INSTRUCTION: */
				un a construir ann an tha ann an tha ann an tha ann an tha tha ann an tha an tha ann an tha an tha ann an tha an

546	1	=	DIV\$AB: PROCEDURE;
547	2	-	IF $B = 0$ THEN PSW=PSW OR 00000100B;
549	5	-	
550	5		PCL-PCL AND 111110118
550	2		NTUETEMP-ACC / P·
571	5	_	DIVETENCE / B)
002	3		
223	<u>ک</u>		ACC=DIV\$(EMP)
554	3		
222	_		PSW=PSW AND OIIIIIIIB;
556	2	-	PC=PC+1;
557	2		END DIV\$AB;
		12	
			/* "DJNZ Rn,rel" INSTRUCTION: */
		=	
558	1	æ	DJNZ\$REG\$REL: PROCEDURE;
559	2	=	REG\$ADDR=OPCODE AND 00000111B;
560	2	=	DISPLACEMENT=FETCH\$PROGRAM(PC+1);
561	2	=	REG\$DATA=FETCH\$REG(REG\$ADDR);
562	2		REG\$DATA=REG\$DATA-1;
563	2	=	CALL STORE\$REG(REG\$ADDR,REG\$DATA);
564	2	==	PC=PC+2;
565	2		IF REG\$DATA <> 0
	-	=	THEN PC=PC+SIGNSEXTENDED(DISPLACEMENT);
567	2	:::::	FND DUN7\$RFG\$RFI ;
	-		
			/# "DUN7 diment not" INCTRUCTION #/
		_	/* DONZ difel0) ei indikociidh. «/
540	•	_	
540	Ż		
507	-	_	DIR#MUDR=FEICH#FRUGRMHNFCTI/) RICD) ACEMENT=EETCH#RRCCAAM(RC+C).
570	2	-	DISFLACEMENT=FEICH⊅FROGRAM(FC+2))
5/1	2		DIR#DATA=PEICH#DIR#INI(DIR#ADDR);
5/2	2		DIR#DAIA=DIR#DAIA=I;
573	2	-	CALL STORE\$DIR(DIR\$ADDR,DIR\$DA(A);
574	2	100	PC=PC+3;
575	2		IF DIR\$DATA <> 0
	-	=	THEN PC=PC+SIGN\$EXTENDED(DISPLACEMENT);
577	2	-	END DJNZ\$DIR\$REL;
		132	/* "INC A" INSTRUCTION: */
578	1		INC\$A: PROCEDURE;
579	2		ACC=ACC+1;
580	2		PC=PC+1;
581	2	=	END INC\$A;
		==	
			/* "INC Rn" INSTRUCTION: */
		==	
582	1	=	INC\$REG: PROCEDURE;
583	2	m	REG\$ADDR=OPCODE AND 00000111B;
584	2		REG\$DATA=FETCH\$REG(REG\$ADDR);
585	2		REG\$DATA=REG\$DATA+1;
586	2		CALL STORESREG(REGSADDR, REGSDATA);
	~		

588	2	=	END	INC\$REG;	۰.				
		=	/*	"INC	direct'	INSTRU	CTION:	*/	
589 590 591 592 593 594	1 2 2 2 2 2 2		INC	DIR: PR DIR\$ADDR DIR\$DATA DIR\$DATA CALL STO PC=PC+2;	OCEDURE; =FETCH\$F =FETCH\$I =DIR\$DA1 RE\$DIR{I	PROGRAM(P)IR\$INT(D [A+1;)IR\$ADDR,	C+1); IR\$ADDR DIR\$DAT); A);	
595	2	# ***	END	INC\$DIR;					
		=	/*	"INC	@Ri"	INSTRUCTI	ON: */		
596 597 598 599 600 601 602	1 2 2 2 2 2 2 2		INC	\$IND: PR REG\$ADDR IND\$DATA IND\$DATA CALL STO PC=PC+1; INC\$IND;	OCEDURE; =OPCODE =FETCH\$] =IND\$DA] RE\$IND(F	AND 0000 IND(REG\$A FA+1; REG\$ADDR,	0001B; DDR); IND\$DAT	A);	
		:= =	/*	"INC	DPTR"	INSTRUCT	ION: *	./	
603 604 605 607	1222		INC	<pre>\$DPTR: P DPL=DPL+ IF DPL=0 PC=PC+1;</pre>	ROCEDURE 1; THEN DF	E; PH=DPH+1;			
608	2		END	INC\$DPTR	j .				
		=	/*	"'\B	bit, re:	L" INSTR	UCTION:	*/	
609 610 611 612 613 614 616	1 2 2 2 2 2		JB\$I END	BIT\$REL: BIT\$ADDR BIT\$DATA DISPLACE PC≕PC+3; IF BIT\$D THEN JB\$BIT\$R	PROCEDU =FETCH\$F =FETCH\$F MENT=FE ATA=1 PC=PC+{ EL;	JRE; PROGRAM(P 3IT(BIT\$A ICH\$PROGR GIGN\$EXTE	C+1); DDR); AM(PC+2 NDED(DI	SPLACEM	1ENT);
			/*	"JBC	bit, re:	L" INSTR	UCTION:	*/	
617 618 619 620 621 622 623	1 N N N N N N		JBC	<pre>\$BIT\$REL: BIT\$ADDR BIT\$DATA DISPLACE PC=PC+3; CALL STO IF BIT\$D THEN JBC\$BIT\$</pre>	PROCEI =FETCH\$F =FETCH\$I MENT=FE RE\$BIT(I ATA=1 PC=PC+S REL;	DURE; PROGRAM(P BIT\$INT(B CCH\$PROGR BIT\$ADDR, BIGN\$EXTE	C+1); IT\$ADDR AM(PC+2 O); NDED(DI); ?); SPLACEM	1ENT);

		512	
		==	/* "JC rel" INSTRUCTION: */
626	1	=	
407	5		DISPLACEMENT=EETCH&PROCRAM(PC+1);
100	5		
028	2		
629	2	=	IF (PSW AND 10000000B) <> 0
		=	THEN PC=PC+SIGN\$EXTENDED(DISPLACEMENT);
631	2	-	END JC\$REL;
632	1		JMP\$ADPTR: PRUCEDURE;
633	2		CODE\$ADDR=(DPH*256)+DPL+ACC;
634	2		PC=CDDE\$ADDR;
635	2	=	END JMP\$ADPTR;
		: =	
		12	
			/* OND DIGTEI INDIKOCTION. */
636	1		JNB\$BI \$REL: PRUCEDURE;
637	2		BIT\$ADDR=FETCH\$PROGRAM(PC+1);
638	2	=	DISPLACEMENT=FETCH\$PROGRAM(PC+2);
639	2	=	BIT\$DATA=FETCH\$BIT(BIT\$ADDR);
640	2		PC=PC+3;
641	2		IF BITSDATA=0
			THEN PC-PC+SIGNAEYTENDED(DISPLACEMENT);
640	~		
040	e.		
		1	
		:22	/* "JNC rel" INSTRUCTION: */
644	1	=	JNC\$REL: PROCEDURE;
645	2	=	DISPLACEMENT=FETCH\$PRDGRAM(PC+1);
646	2		PC=PC+2;
647	5		TE (PSW AND 1000000B) = 0
Q 17	liin		
140	~		
047	~		
		12	
		13	
			/* "JNZ rel" INSTRUCTION: */
		::::	
650	1	=	JNZ\$REL: PROCEDURE;
651	2	=	DISPLACEMENT=FETCH\$PROGRAM(PC+1);
450	5		
450	5		
0.7.3	<i>c</i> :		
,	<i></i>	*	THEN FUFFC+SIGN#EXTENDED(DISPLACEMENT);
655	2	=	END JNZ#REL:
		22	
		512	
		112	/* "JZ rel" INSTRUCTION: */
		::::	
656	1		JZ\$REL PROCEDURE:
257	÷		
0J/ /E0	4		изанцаусанын тестуларгацуаану гутэээ Вствого
608	<i>e</i> .	100	ru-rutzi

659	2	:22		IF ACC =	0			
				THEN	PC=PC+SI	GN\$EXTENDED()	DISPLACE	MENT);
661	2		END	JZ\$REL;				
		122						
		1172	/*	"I CALL	"Atabhe	INSTRUCTION	· */	
				haa Val 771 kaa kaa	auu, 10	11401110011014	,	
662	1	1000	LCAL	L\$ADDR16	: PRUCED	URE;		
663	2	H		PAGE\$COD	E=FETCH\$P	ROGRAM(PC+1)	i	
664	2			PAGE\$OFF	SET=FETCH	I\$PROGRAM(PC+)	2);	
665	2			PC=PC+3;				
666	2			CALL PUS	HSSTACK (OW(PC)):		
647	5			CALL PUC		ITCH(PC)):		
440	~				***********			
668	<i>2</i>			PU=(PAGE	\$CUDE * 1	UUH) + PAGE\$	JEFSEIS	
669	2	F	END	LCALL\$AD	DR16;			
		128						
		a. z						
		=	/*	"LJMP	addr16"	INSTRUCTION	: */	
		::::						
670	+		I IME		ppncent	IDC -		
0/0/ / ****			L.011					
0/1	~			PAGEACUL		RUGRAM(PC+1)	; 	
672	2			PAGESUFF	SET=FETCH	I\$PROGRAM(PC+)	2);	
673	2			PC=(PAGE	\$CODE * 1	00H) + PAGE\$	OFFSET;	
674	2	==	END	LJMP\$ADE	R16;			
		:=						
			/ж	HMM		NETRUCTION	× /	
			/ K	PRU V	minin 1	NOTIOUTUN.	*/	
		112				_		
675	1		MOV	FA\$REG:	PROCEDURE			
676	2	=		REG\$ADDR	=OPCODE A	ND 00000111B.	;	
677	2	===		ACC=FETC	H\$REG(REG	\$ADDR);		
678	2			PC≔PC+1;				
679	5		END	MOUSASPE	·C:			
<i></i> ,	F		1	1107 4114110				
		1						
		1.25	/*	MOV	A, direct	" INSTRUCTIO	UN: */	
		122						
680	1		MOV	₿A\$DIR:	PROCEDURE			
681	2	-		DIR\$ADDR	=FETCH\$PR	OGRAM(PC+1);		
682	2			ACC=FETC	HSDIR (DIR	SADDR);		
487	5	1:22		PC=PC+D:				
600	~		ENID	MOULAA	р .			
004	<i>c</i> .		1	HUV #M#D1	R)			
		22						
		111						
		=	/*	"MOV	A,@Ri"	INSTRUCTION:	*/	
		: ::						
685	1		MOV	FA\$IND:	PROCEDURE			
686	2	==		REGSADDE	=OPCODE A	ND 0000001B	i	
687	2	-		ACC=FFTC	HAINDIREC	\$\$ANDR):	•	
200	- 				·····	· · · · · · · · · · · · · · · · · · ·		
000	<u> </u>			FUMPUALS				
00Y	2	H.	END	MUV\$A\$IN	H73			
		1.31						
		-3						
		:=	/*	"MOV	A,#data"	INSTRUCTIO	N: */	
690	1	==	MOV	5A\$IMM∙	PROCEDURE			
491	Ĵ			ACCHEFT	HEPROOPAN	 (PC+1):		
test / che						1 S F W S & Z Z		

•

692	2	-		PC≔PC+2	2;				
693	2	-	END	MOV\$A\$1	MM;				
		173							
		22	/#	"MOV	Rn, A"	INSTRU	UCTION:	*/	
		:: : :							
694	1	==	MOV	\$REG\$A:	PROCEDU	RE			
695	2	==		REG\$ADI	R=OPCODE	AND O	0000111B	;	
696	2	:22		CALL ST	ORE\$REG(REG\$ADI	DR, ACC);		
697	2			PC=PC+1	.;				
698	2		END	MOV\$REG	}\$A;				
		12							
		12							
		-	/#	"MOV	Rn, dir	ect"	INSTRUCT	ION: */	
		=							
699	1	=	MOV	\$REG\$DIF	l: PROCE	DURE;			
700	2	=		REG\$ADI	R=OPCODE	AND O	0000111B	i	
701	2	=		DIR\$ADD	R=FETCH \$	PROGRAM	M(PC+1);		
702	2			DIR\$DA1	A=FETCH\$	DIR(DIF	R\$ADDR);		
703	2			CALL ST	ORE\$REG(REG\$ADI	DR, DIR\$D	ATA);	
704	2	11 1 1		PC=PC+2	2;				
705	2		END	MOV\$REG	\$DIR;				
		54							
		23							
		=	/*	"MOV	Rn,#da	ta" I	NSTRUCTI	ON: */	
706	1	=	MOV	\$REG\$IM	1: PROCE	DURE;			
707	2			REG\$ADI	R≈OPCODE	AND O	00001118	i i	
708	2	-		IMM#DA1	A=FETCH	PROGRAM	M(PC+1);		
709	2	==		CALL ST	ORE\$REG(REG\$AD	DR, IMM∳D	ATA);	
710	2			PC=PC+a	2;				
711	2		END	MOV\$REG	\$\$IMM;				
		-	/*	"MOV	direct	. A" I	NSTRUCTI	ON: */	
712	1		MOV	\$DIR\$A:	PROCEDU	RE			
713	2			DIR\$ADD	R=FETCH	PROGRAM	M(PC+1);		
714	2			CALL ST	ORE\$DIR(DIR\$AD	DR, ACC);		
715	2	=		PC=PC+2	2;				
716	2		END	MOV\$DIF	₹\$A;				
		=							
		1.2							
			/*	"MOV	direct	Rn"	INSTRUCT	ION: #/	
717	1		MOV	\$DIR\$REG	: PROCE	DURE;			
718	2			REGSADI		AND O	00001118		
719	2	=		REGEDAT		REGIRE	G\$ADDR);	•	
720	2	=		DIRSADI	R=FETCH	PROGRAM	M(PC+1):		
721	2	=		CALL ST	ORESDIR(DIRSADI	DR. REGSD	ATA):	
722	2			PC=PC+C););				
723	2		FND		 RSRFC:				
لاستا متيته و	411.			· 100 + + 40 £ 1	s ar tistaa Safiž				
		=	/*	"MOU	dinart	. direc	t" INST	RUCTION	*
		=	, .	, v		r srattiitu			,
724	1	-	MOV	\$DIR\$DIP		DURF			
7 mm	*			•	., լենդաժետ				

	725 726 727 728 729 730	N N N N N N		END	SOURCE\$AD DEST\$ADDR DIR\$DATA= CALL STOR PC=PC+3; MOV\$DIR\$D	DR=FETCH =FETCH\$PF FETCH\$DIF E\$DIR(DE IR;	\$PROGR ROGRAM R (SOUR ST\$ADD	AM(PC+1) ((PC+2); CE\$ADDR) R,DIR\$D4);); \TA);	
				/*	"MOV	direct,@F	Ri" I	NSTRUCT	ON:	*/
	731 732 733 734 735 736 737	1 2 2 2 2 2 2 2		MOV	DIR\$IND: REG\$ADDR= IND\$DATA= DIR\$ADDR= CALL STOR PC=PC+2; MOV\$DIR\$I	PROCEDUF OPCODE AN FETCH\$INI FETCH\$PR(E\$DIR(DIF ND;	RE; ND 000 D(REG\$ DGRAM(R\$ADDR	000001B; ADDR); PC+1); ; IND\$DA]	ΓΑ);	
				/*	"MOV	direct,#d	data"	INSTRUC	CTION:	*/
•	738 739 740 741 742	1 N N N N		MOV	DIR\$IMM: DIR\$ADDR= IMM\$DATA= CALL STOR	PROCEDUF FETCH\$PR(FETCH\$PR(E\$DIR(DIF	RE; DGRAM(DGRAM(R\$ADDR	PC+1); PC+2); ; IMM\$DA]	ΓΑ);	
	743	2		END	MOV\$DIR\$I	MM;				
			=	/*	"MUV	@R1, A"	INSTRU	CTIUN:	*/	
•	744 745 746 747 748	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			FIND\$A: P REG\$ADDR= CALL STOR PC=PC+1; MOV\$IND\$A	ROCEDURE; OPCODE AN E\$IND(RE(;	; ND OOC G\$ADDR	000001B; (,ACC);		
			a	/*	"MOV	@Ri,dire(ct" I	NSTRUCT	ION:	*/
	749 750 751 752 753 754	างงงงก		MOV	FIND\$DIR: DIR\$ADDR= DIR\$DATA= REG\$ADDR= CALL STOR PC=PC+2;	PROCEDUF FETCH\$PR(FETCH\$DIF OPCODE:A E\$IND(RE(RE; DGRAM(R(DIR\$ ND 000 G\$ADDR	PC+1); ADDR); 000001B; ;DIR\$DA1	ΓA);	
	755	2	**	END	MOV\$IND\$D	IR;			· · · · ·	
			-	/*	"MOV	@Ri,#data	a" IN	ISTRUCTIO	3N: +	ŧ/
•	756 757 758 759 740	างงง		MOV	FIND#IMM: IMM#DATA= REG#ADDR= CALL STOR	PROCEDU FETCH\$PR(OPCODE AN E\$IND(RE(RE; JGRAM(ND 000 G\$ADDR	PC+1); 000001B; ; IMM\$DA]	ſA);	
-	761	2	=	END	ru≔ru+2) MOV\$IND\$I	MM;				

PL/M-80 COMPILER 8051 INSTRUCTION SET SIMULATOR

		ra:	
		:2	/* "MOV C,bit" INSTRUCTION: */
767			MOU424DIT. 0000000000
762	5		RITAANNR-EETCHARPONCRAM(PC+1)
764	5		BITSDATA=FETCHSBIT(BITSADDB):
765	2	=	IF BITSDATA=0
100	1	:3	THEN $PSW = (PSW AND 01111111B);$
767	2		ELSE PSW=(PSW BR 1000000B);
768	2		PC≔PC+2;
769	2		END MOV\$C\$BIT;
		1.2	
		5	
		=	/* "MOV bit,C" INSTRUCTION: */
		501	
770	1		MOV\$BIT\$C: PROCEDURE;
771	2		BIT\$ADDR=FETCH\$PROGRAM(PC+1);
772	2		BIT\$DATA=((PSW AND 10000000B) / 128);
1/3	2		CALL STURE\$BIT(BIT\$ADDR, BIT\$DATA);
774	2		PC#PC+2; END_MOUTPITAC.
113	e.		END NUVABILAC;
			/* "MOV DPTR.#data16" INSTRUCTION: */
			
776	1		MOV\$DPTR\$IMM16; PROCEDURE;
777	2		DPH=FETCH\$PROGRAM(PC+1);
778	2		DPL=FETCH\$PROGRAM(PC+2);
779	2	: :: :	PC≔PC+3;
780	2	=	END MOV\$DPTR\$IMM16;
			
		272	
			7* "MUVC A, @A+DPTR" INSTRUCTION: *7
701	4	12	
782	5		
783	5	_	CODE#FDDN=\DPFN*2367*DFE*ACC; ACC=FETCH≉BBAC6BAM(CADE#AADBB);
784	5		PC=PC+1:
785	2	=	END MOVCSASADPTR:
		:::	/* "MOVC A,@A+PC" INSTRUCTION: */
		na	
786	1	=	MOVC\$A\$APC: PROCEDURE;
787	2		PC=PC+1;
788	2		CDDE ADDR = (PC + ACC);
789	2	=	ACC=FETCH\$PROGRAM(CODE\$ADDR);
790	2		END MUVC\$A\$APC;
			A UNCLY A GREET INCTOURTION &/
			A DOAY WEAT INSTRUCTION: */
791	1		
790	ż		REG\$ADDR=DPCDDF AND 0000001R:
793	2	==	PAGED\$EXTERNAL\$ADDR=FFTCH\$RFG(REG\$ADDR);
794	2	=	ACC=FETCH\$PAGED\$EXTERNAL(PAGED\$EXTERNAL\$ADDR);

795	2	==		PC=PC+1;
796	2	=	END	MOVX\$A\$IND;
		-	/*	"MOVX @Ri.A" INSTRUCTION: */
797	1	-	MOUY	
700	ŝ		1047	
770	2			
/ 77	<u> </u>	-		PAGEDBEXIERNALBADDR=FEICHBREG(REGBADDR);
800	5			CALL SIURE\$PAGED\$EXTERNAL(PAGED\$EXTERNAL\$ADDR; ACC);
801	2			PC=PC+1;
802	2	222	END	MOVX\$IND\$A;
		22	/*	"MOVX A, @DPTR" INSTRUCTION: */
		5- 2		
803	1		MOVX	\$A\$DPTR: PROCEDURE;
804	2	2 2		ACC=FETCH\$LONG\$EXTERNAL((DPH*256)+DPL);
805	2			PC=PC+1;
806	2		END	MOVX\$A\$DPTR;
1	-		La. I That	
		_	1 ж	
			/*	HOVA COPINIA INCINCUIUM. M
007				
807	-		MUVX	
808	2	-		CALL STUREPLUNGPEXTERNAL((DPM*200)+DPL;AUC);
804	2	-		PC=PC+1;
810	2	-	END	MOVX\$DPTR\$A;
		=		
		: #		
		#	/*	"MUL AB" INSTRUCTION: */
		==		
811	i		MUL\$	AB: PROCEDURE;
812	2			MUL\$TEMP=ACC * B;
813	2	÷.		B=HIGH(MUL\$TEMP);
814	2	=		ACC=LOW(MUL\$TEMP);
815	2	==		PSW=PSW AND 01111111B;
816	2	==		IF B = O
		272		THEN PSW=PSW AND 11111011B;
818	2			ELSE PSW=PSW OR 00000100B;
819	2			PC≔PC+1;
820	2		END	MUI SAR:
	-	51		
		-		
			1*	
			/ ^	
001	ł		NOD.	
000	-		14001.	
022	5		END	
ರಜನ	£	1944) 	CND	
		:=		11 (manual) A. (m.). 11 (m. 12 (m. 17 (m. 12 (m. 17 (m. 14 (m. 17 (m. 14 (m. 17 (m. 14 (m. 1
		25	/*	"UKL A, KN" INSTRUCTION: */
-	1	12		
824	1	-	ORL\$	A\$REG: PROCEDURE;
825	2			REG\$ADDR=DPCODE AND 00000111B;
826	2	2		REG\$DATA=FETCH\$REG(REG\$ADDR);
827	2	548		ACC=ACC OR REG\$DATA,

828	2	=	PC=PC+1;					
829	2	==	END ORL\$A\$REG;					
		=						
		===						
			/* "ORL A, direct" INSTRUCTION: */					
000								
030	1							
831	ź		DIR#ADDR=FEICH#PROGRAM(FC+1);					
832	2	==	DIR#DATA=FETCH#DIR(DIR#ADDR);					
833	2		ACC=ACC DR DIR\$DATA;					
834	2	=	PC=PC+2;					
835	2	=	END ORL\$A\$DIR;					
		===						
		=						
		=	/* "ORL A,@Ri" INSTRUCTION: */					
		=						
836	1	=	ORL\$A\$IND: PROCEDURE;					
837	2	=	REG\$ADDR≕OPCODE AND 00000001B;					
838	2	=	IND\$DATA=FETCH\$IND(REG\$ADDR);					
839	2		ACC=ACC OR IND\$DATA;					
840	2	=	PC≔PC+1;					
841	2	=	END ORL\$A\$IND;					
		==						
		==						
			/* "ORL A,#data" INSTRUCTION: */					
		=						
842	1	==	ORL\$A\$IMM: PROCEDURE;					
843	2	=	IMM\$DATA=FETCH\$PROGRAM(PC+1);					
844	2	=	ACC=ACC OR IMM\$DATA;					
845	2	==	PC=PC+2;					
846	2	=	END ORL\$A\$IMM;					
		::::						
		===						
		==	/* "ORL direct,A" INSTRUCTION: */					
		575						
847	1		ORL\$DIR\$A: PROCEDURE;					
848	2		DIR\$ADDR=FETCH\$PROGRAM(PC+1);					
849	2	=	DIR\$DATA=FETCH\$DIR\$INT(DIR\$ADDR);					
850	2	=	CALL STORE\$DIR(DIR\$ADDR,ACC OR DIR\$DATA);					
851	2		PC=PC+2;					
852	2		END ORL\$DIR\$A;					
		=						
		=	/* "ORL direct,#data" INSTRUCTION: */					
853	1		ORL\$DIR\$IMM: PROCEDURE;					
854	2	=	DIR\$ADDR=FETCH\$PROGRAM(PC+1);					
855	2	=	IMM\$DATA=FETCH\$PROGRAM(PC+2);					
856	2	=	DIR\$DATA=FETCH\$DIR\$INT(DIR\$ADDR);					
857	2	=	CALL STORE\$DIR(DIR\$ADDR, IMM\$DATA OR DIR\$DATA);					
858	2	=	PC=PC+3;					
859	2	=	END ORL\$DIR\$IMM;					
		=						
		==						
		=	/* "ORL C,bit" INSTRUCTION: */					
		25						
860	1		ORL\$C\$BIT: PROCEDURE;					
PL/M-80	CC	MPIL	ER	8051 IN	ISTRUCT	ION SET	SIMULATOR	2
---------------------------------	------------------------	----------	-------	---	--	------------------------------	-------------------------------------	------------------
861 862 863 865 866	N N N N N N N N N N		END	BIT\$ADDR= BIT\$DATA= IF BIT\$DA PC=PC+2; ORL\$C\$BIT	=FETCH\$ =FETCH\$ TA = 1	PROGRAM BIT(BIT THEN F	1(PC+1); *\$ADDR); ?SW=PSW OR	1000000B;
		=						
		=	/*	"ORL	C,/bit	" INST	RUCTION:	*/
867	1	=	ORL\$	C\$COMP\$B1	T: PR	OCEDURE	Ex	
868	2			BIT\$ADDR=	FETCH\$	PROGRAM	1(PC+1); (#ANDP):	
870	2	-		IF BIT\$DA	ATA = 0	THEN F	SW=PSW OR	1000000B;
872	2	=		PC=PC+2;				
873	2	=	END	ORL\$C\$CON	1P\$BIT;			
		=						
		== ==	/*	"POP	direct	" INST	RUCTION:	*/
874	1		POP\$	DIR: PRO			100111	
876	2			STACK\$DA1	A=POP\$	STACK;	NPC+175	
877	2	=		CALL STOP	E\$DIR(DIR\$ADD	R, STACK\$DA	ATA);
878	2		ENT	PC=PC+2;				
0/7	E	=	EIND	LOL DIV)				
		=	/*	"PUSH	direct	" INST	RUCTION:	*/
880	1		PUSH	STR: PF		E;	1/00+11	
882	2	==		DIR\$DATA=	FETCH\$	DIR(DIR	(\$ADDR);	
883	2	=		CALL PUSH	I\$STACK	(DIR\$DA	ATA);	
884 885	2	=	END	PC=PC+2; PUSH\$DIR:				
000		==		1 0011401111				
						T. 7 (3) 1.		
		=	/*	"REI " I	NSTRUC	IIUN:	*/	
886 887	1	=	RET:	PROCEDU	/RE; ====================================	TACK :		
888	2	=		PAGE\$0FFS	SET=POP	\$STACK;		
889	2	=		PC=(PAGE	CODE *	100H)	+ PAGE\$OFF	SET;
890	2		END	RET				
			/*	"RETI"]	NSTRUC	TION:	*/	
891	1	=	RETI	: PROCEI	URE			
892	2	=		PAGE\$CODE	=POP\$S	TACK;		
893	2	-		PAGE\$OFFE	ET=POP	STACK;		CET.
074	£.			FU-IFAGE	NUDE *	1004)	- FAGEDUPP	- 5 = 1 /
			/*	RESTORE I BEFORE LA	NTERRU	PT SYST ERRUPT	EM TO LEVE RECEIVED	L IN EFFECT
895	2		END	RETI;				

			/# "	RI	۵"	INSTRUCTION	*/
		=	/ ^	1 / 6	п	140110011014.	~ /
896 897 898	1 2 2		RL\$A: L A	PROCEI INK\$BIT= CC=(ACC	OURE; =(ACC + 2)	: AND 1000000 + LINK\$BIT;	OB) / 128;
877 700	22	=	P END R	C=PC+1; L\$A;			
			/* "	RLC	Α"	INSTRUCTION:	*/
901	1	=	RLC\$A	: PROCE	EDURE	;	
902	2	=	L	INK\$BIT	=(ACC	AND 1000000	OB) / 128;
903 904	2 2 2	=	A P	CC=(ACC SW=(PSW	* 2) AND	+ ((PSW AND 01111111B) +	10000000B) / 128); (LINK\$BIT * 128);
905 906	2	-	END R	C=PC+1; LC\$A;			
		==					
			/* "	RR	Α"	INSTRUCTION:	*/
907	1		RR\$A:	PROCEI	OURE;		
908	2		L	INK\$BIT=	=ACC	AND 0000001	B;
909	2	=	A	CC=(ACC	/ 2)	+ (LINK\$BIT	* 128);
910	2		P	C=PC+1;			
911	2		ENDR	K\$A;			
		=					
			/* "	RRC	Α"	INSTRUCTION:	*/
010	4	-	DDC&A		nupe	•.	
913	2	=		TNKSRTT:		AND 00000011	B:
914	2		Ā	CC=(ACC	/ 2)	+ (PSW AND	10000000B);
915	2	=	Р	SW=(PSW	AND	O111111B)+(LINK\$BIT * 128);
916	2	=	P	C≔PC+1;			
917	2		END R	RC\$A;			
		=					
			/* "	SETB	С"	INSTRUCTION:	*/
		===					
918	1	=	SETB\$	C: PRO	EDUR	E;	
919	2	=	P	SW=PSW (JR 10	0000008;	
920 921	2	=	END S	ETB#C;			
		1 22					
		F13					
			/* "	SETB	bit"	INSTRUCTIO	N: */
922	1	=	SETB\$	BIT: PF	ROCED	URE;	
923	2	=	B	IT\$ADDR=	FETC	H\$PROGRAM(PC	+1);
924	2	=	C	ALL STOP	RE\$BI	T(BIT\$ADDR, 1);
925	2	=	P	C=PC+2;			
926	2		END S	FIR#BIL:			
		=					

			* Solie Let TNSI	ROCITON. */
927	1			15
728	2	=	DISPLACEMENT=FETCH	PROGRAM(PC+1);
729	2		PC=PC+2;	
930	2		PC=PC+SIGN\$EXTENDED	(DISPLACEMENT);
931	2		ND SJMP\$REL;	
		5 2		
			* "SUBB A. <src-byt< td=""><td>e>" FUNCTION: */</td></src-byt<>	e>" FUNCTION: */
932	1	***	UBB\$A: PROCEDURE(DATA	\$BYTE);
933	2		DECLARE DATASBYTE B	YTE;
934	2	-	LINK\$BIT=(PSW AND 1	000000B) / 128;
935	2	12	SUB\$TEMP=DATA\$BYTE;	
936	2		SUB\$TEMP=SUB\$TEMP+L	INK\$BIT;
937	2		IF (ACC AND OFH) <	(SUB\$TEMP AND OFH)
	-	=	THEN PSW=PSW OR	0100000B;
939	2		ELSE PSW=PSW AN	
940	2		IF (ACC AND /FH) <	(SUB\$IEMP AND /FH)
~ ~ ~	~	52	THEN PSW=PSW UR	
742	~		ELSE PSW=PSW AN	
74.3	2		THEN BEHR (BEHR	
0/5	2		FICE DOW-(DOW A	ND 011111118)
74J 946	2			
947	5	_		
//	6.			
		:==	* "SUBB A, Rn" INS	STRUCTION: */
		==		
948	1	=	UBB\$A\$REG: PROCEDURE;	
949	2	:22	REG\$ADDR=OPCODE ANI) 00000111B;
950	2	=	REG\$DATA=FETCH\$REG	REG\$ADDR);
951	2		CALL SUBB\$A(REG\$DAT	A);
952	2	=	PC=PC+1;	
953	2	=	ND SUBB\$A\$REG;	
		12		
		112		
		=	* "SUBB A, direct"	INSTRUCTION: */
051				
704 055	1	-	UBB#A#DIR: PRUCEDURE;	DAM (DC+1)
700 054	2			RTP#ADDD)
7.70	5		CALL CHORES(DIREDA)	() (() () () () () () () () (
707 959	÷ ۲		PC=PC+2:	H7)
959	5	_	ND GURBSASDIR:	
//	F	=		
		=	* "SUBB A, @Ri" IN	STRUCTION: */
		:22		
960	1	=	UBB\$A\$IND: PROCEDURE;	
961	2	-	REG\$ADDR=OPCODE ANI) 0000001B;
962	2	=	IND\$DATA=FETCH\$IND	REG\$ADDR);
963	2		CALL SUBB\$A(IND\$DA]	(A);
964	2	=	PC=PC+1;	
965	2	-	ND SUBB\$A\$IND;	
				A-30

		=:						
		==	/*	"SURR	A.#data	" INSTRUC	TION	*/
		=	,	0000		1401400	1 2 0/1.	,
966	1	=	SUB	3\$A\$IMM:	PROCEDU	RE;		
967	2	==		IMM\$DATA	=FETCH\$PI	ROGRAM(PC+	1);	
968	2	12		CALL SUB	B\$A(IMM\$)	DATA);		
969	2			PC=PC+2;				
970	2	===	END	SUBB\$A\$I	MM;			
		62						
					A.11 T.1.(D)			
			/*	"SWAP	A" INS	IRUCTION:	*/	
071	1		CLIA					
771	7		OWHI	**************************************	CEDURE,	00011118		
973	2	-		HICHSNIB:	=ACC AND	111100008	:	
974	2	=			SNTR + 1/	4) + (HIGH	, sintr /	16);
975	2	===		PC=PC+1;				
976	2		END	SWAP\$A;				
		122						
		=						
			/*	"ХСН	A,Rn"	INSTRUCTIO	N: */	
		=						
977	1	==	XCH	FA\$REG: I	PROCEDURE	Ξ;		
978	2	32		REG\$ADDR:	=OPCODE /	AND 000001	11B;	
979	2	32		REG\$DATA:	=FETCH\$RE	EG(REG\$ADD	R);	
980	2			CALL STO	RE\$REG(RE	EG\$ADDR, AC	С);	
981	2			ACC=REG\$	DATA;			
982	2			PC=PC+1;				
983	2		END	XCH\$A\$RE	G;			
			1 *	NVCH	A diman		0 T T (0N)	× /
		=	/*	76F1	m uirec	C INSTRO	CILUN.	*7
984	1		хсня	5A5DTR I	PROCEDUR	=:		
985	2			DIR\$ADDR	=FETCH\$P		1);	
986	2			DIR\$DATA	=FETCH\$D	IR(DIR\$ADD	R);	
987	2	=		CALL STO	RE\$DIR(D)	IR\$ADDR, AC	C);	
988	2	=		ACC=DIR\$	DATA;			
989	2	32		PC=PC+2;				
990	2	==	END	XCH\$A\$DI	R;			
		==						
			/*	"хсн	A,@Ri"	INSTRUCTI	ON: *.	/
001			VAL			 .		
771	1	-	XCH	PECATADDO		-; 	A+D.	
772	i C	_			-0-0005 /		0121	
773 994	2	_		- THU#UHIA		NU (REGPAUU) Fosanne, ac	к <i>))</i> С):	
995	2	=				/////////////////////////////////	u.73	
996	2	=		PC=PC+1:				
997	2	=	END	XCHSASTNI	Di			
		-		7. WT 1 + 13 + 4 1 41	~ ~			
		=	/*	"XCHD	A, @Ri"	INSTRUCTI	ON: *.	/
		=						
998	1	==	хсні)\$A\$IND:	PROCEDUR	RE;		

999 1000 1001 1002 1003 1004	N N N N N N			REG\$ADDR=OPCODE AND 00000001B; IND\$DATA=FETCH\$IND(REG\$ADDR); LOW\$SOURCE\$NIB=IND\$DATA AND 00001111B; IND\$DATA=(IND\$DATA AND 11110000B) + (ACC AND 00001111B); CALL STORE\$IND(REG\$ADDR, IND\$DATA); ACC=(ACC AND 11110000B) + LOW\$SOURCE\$NIB;
1005 1006	2		END	PC=PC+1; XCHD\$A\$IND;
			/*	"XRL A, Rn" INSTRUCTION: */
1007 1008 1009 1010 1011	100000		XRL#	A\$REG: PROCEDURE; REG\$ADDR=OPCODE AND 00000111B; REG\$DATA=FETCH\$REG(REG\$ADDR); ACC=ACC XOR REG\$DATA; PC=PC+1; VEL\$4\$\$PEC
1012	e.		CND	ARL#M#REG,
			/*	"XRL A, direct" INSTRUCTION: */
1013 1014 1015 1016	1 2 2 2		XRL\$	A\$DIR: PROCEDURE; DIR\$ADDR=FETCH\$PROGRAM(PC+1); DIR\$DATA=FETCH\$DIR(DIR\$ADDR); ACC=ACC XOR DIR\$DATA;
1017	5		END	PC=PC+2; XRL\$A\$DIR;
		=	/*	"XRL A,@Ri" INSTRUCTION: */
1019 1020 1021 1022	1222		XRL≇	A\$IND: PROCEDURE; REG\$ADDR=OPCODE AND 00000001B; IND\$DATA=FETCH\$IND(REG\$ADDR); ACC=ACC_XOR_IND\$DATA;
1023 1024	22		END	PC=PC+1; XRL\$A\$IND;
		=	/*	"XRL A,#data" INSTRUCTION: */
1025 1026 1027 1028	1222		XRL≇	A\$IMM: PROCEDURE; IMM\$DATA=FETCH\$PROGRAM(PC+1); ACC=ACC XOR IMM\$DATA; PC=PC+2;
1029	2	57 57 57	END	XRL\$A\$IMM;
			/*	ARL DIFECT, A" INSTRUCTION: */
1030 1031 1032 1033 1034	1 2 2 2 2		XRL≇	DIR\$A: PROCEDURE; DIR\$ADDR=FETCH\$PROGRAM(PC+1); DIR\$DATA=FETCH\$DIR\$INT(DIR\$ADDR); CALL STORE\$DIR(DIR\$ADDR,ACC XOR DIR\$DATA); PC=PC+2;
1035	2		END	XRL\$DIR\$A;

PL/M-BO COMPILER 8051 INSTRUCTION SET SIMULATOR

		:22	
		H	
		Ħ	/* "XRL direct,#data" INSTRUCTION: */
		::=	
1036	1		XRL\$DIR\$IMM: PROCEDURE;
1037	2		DIR\$ADDR=FETCH\$PROGRAM(PC+1);
1038	2	Ħ	IMM\$DATA=FETCH\$PROGRAM(PC+2);
1039	2	=	DIR\$DATA=FETCH\$DIR\$INT(DIR\$ADDR);
1040	2	::=:	CALL STORE\$DIR(DIR\$ADDR, IMM\$DATA XOR DIR\$DATA);
1041	2	:::::	PC≔PC+3;
1042	2	==	END XRL\$DIR\$IMM;
		=	

1043	1	INITIALIZE: PROCEDU	RE F	PUBLIC;
1044	2	PC=0000H;		
1045	2	PO=OFFH;		
1046	2	P1=OFFH;		
1047	2	P2=OFFH;		
1048	2	P3=OFFH;		
1049	2	PSW=00H;		
1050	2	SP=07H;		
1051	2	DPL=OOH;		
1052	2	DPH=OOH;		
1053	2	ACC=OOH;		
1054	2	B=OOH;		
1055	2	TL0=00H;		
1056	2	THO=00H;		
1057	2	TL1=00H;		
1058	2	TH1=00H;		
1059	2	TCON=OOH;		
1060	2	TMOD=OOH;		
1061	2	SCON=OOH;		
1062	2	IE=OOH;		
1063	2	IP=OOH;		
1064	2	MACH\$CYC=0000H;	/ 1	/* SIMULATION ELAPSED TIME REGISTER. */
1065	2	END INITIALIZE;		

1066 1 DECLARE EXECUTION\$TIME(256) BYTE DATA

(1)	2,	2,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,
2,	2,	2,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,
2,	2,	2,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,
2,	2,	2,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,
2,	2,	1,	2,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,
2,	2,	1,	2,	1,	1,	1,	1,	1,	1,	1.	1,	1,	1,	1,	1,
2,	2,	1,	2,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,
2,	2,	2,	2,	1,	2,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,
2,	2,	2,	2,	4,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,
2,	2,	2,	2,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,
2,	2,	1,	2,	4,	1,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,
2,	2,	1,	1,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,
2,	2,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,
2,	2,	1,	1,	1,	2,	1,	1,	2,	2,	2,	2,	2,	2,	2,	2,
2,	2,	2,	2,	1,	1,	1)	1,	1,	1,	1,	1,	1,	1,	1,	1,
2,	2,	2,	2,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1);

1067 1068 1069 1070 1071	12222	<pre>STEP: PROCEDURE (NEXT\$INSTRUCTION) ADDRESS PUBLIC; DECLARE NEXT\$INSTRUCTION ADDRESS; PC=NEXT\$INSTRUCTION; OPCODE=USER\$CODE(PC); DO CASE OPCODE;</pre>
		/* INSTRUCTIONS CORRESPONDING TO ROW O OF OPCODE MAP (FORM OXH): */
1072	з	
1073	3	CALL AJMP\$ADDR11;
1074	3	CALL LJMP\$ADDR16;
1075	з	CALL RR\$A;
1076	з	CALL INC\$A;
1077	з	CALL INC\$DIR;
1078	з	CALL INC\$IND;
1079	з	CALL INC\$IND;
1080	з	CALL INC\$REG;
1081	З	CALL INC\$REG;
1082	з	CALL INC\$REG;
1083	З	CALL INC\$REG;
1084	3	CALL INC\$REG;
1085	3	CALL INC\$REG;
1086	3	CALL INC\$REG;
1087	ك	CALL INCAREG;
		/* INSTRUCTIONS CORRESPONDING TO ROW 1 OF OPCODE MAR
		(FORM 1XH) · */
1088	з	CALL JBC\$BIT\$REL;
1089	ŝ	CALL ACALL\$ADDR11;
1090	з	CALL LCALL\$ADDR16;
1091	з	CALL RRC\$A;
1092	з	CALL DEC\$A;
1093	з	CALL DEC\$DIR;
1094	з	CALL DEC\$IND;
1095	з	CALL DEC\$IND;
1096	З	CALL DEC\$REG;
1097	3	CALL DEC\$REG;
1098	3	CALL DEC\$REG;
1099	3	CALL DEC\$REG;
1100	3	CALL DECSREG;
1101	3	UALL DECEREC;
1102	3	CALL DECHREG;
1103	J	UMLL DEUPKEGI

		/*	INSTRUCTI	ONS CORRESPONDING	то	ROW	2	OF	OPCODE	MAP
			(FORM 2XH)): */						
1104	З		CALL	JB\$BIT\$REL;						
1105	З		CALL	AJMP\$ADDR11;						
1106	З		CALL	RET;						
1107	З		CALL	RL\$A;						
1108	З		CALL	ADD\$A\$IMM;						
1109	З		CALL	ADD\$A\$DIR;						
1110	З		CALL	ADD\$A\$IND;						
1111	З		CALL	ADD\$A\$IND;						
1112	з		CALL	ADD\$A\$REG;						
1113	з		CALL	ADD\$A\$REG;						
1114	з		CALL	ADD\$A\$REG;						
1115	з		CALL	ADD\$A\$REG;						
1116	3		CALL	ADD\$A\$REG;						
1117	З		CALL	ADD\$A\$REG;						
1118	3		CALL	ADD\$A\$REG;						
1119	З		CALL	ADD\$A\$REG;						
		/*	INSTRUCT	ONS CORRESPONDING	то	ROW	з	OF	OPCODE	MAP
		/*	INSTRUCTI	ONS CORRESPONDING	то	ROW	з	OF	OPCODE	MAP
1120	з	/*	INSTRUCTI (FORM 3XH) CALL	ONS CORRESPONDING : */ JNB\$BIT\$REL;	то	ROW	3	OF	OPCODE	MAP
1120 1121	3	/*	INSTRUCTI (FORM 3XH) CALL CALL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11;	то	ROW	3	OF	OPCODE	MAP
1120 1121 1122	888	/*	INSTRUCTI (FORM 3XH) CALL CALL CALL CALL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11; RETI;	то	ROW	3	OF	OPCODE	MAP
1120 1121 1122 1123	ល ល ល ល	/*	INSTRUCTI (FORM 3XH) CALL CALL CALL CALL CALL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11; RETI; RLC\$A;	то	ROW	3	OF	OPCODE	MAP
1120 1121 1122 1123 1124	00000	/*	INSTRUCTI (FORM 3XH) CALL CALL CALL CALL CALL CALL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11; RETI; RLC\$A; ADDC\$A\$IMM;	то	ROW	З	OF	OPCODE	MAP
1120 1121 1122 1123 1124 1125	88888	/*	INSTRUCTI (FORM 3XH) CALL CALL CALL CALL CALL CALL CALL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11; RETI; RLC\$A; ADDC\$A\$IMM; ADDC\$A\$DIR;	то	ROW	3	OF	OPCODE	МАР
1120 1121 1122 1123 1124 1125 1126		/*	INSTRUCTI (FORM 3XH) CALL CALL CALL CALL CALL CALL CALL CAL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11; RETI; RLC\$A; ADDC\$A\$IMM; ADDC\$A\$DIR; ADDC\$A\$IND;	то	ROW	3	OF	OPCODE	MAP
1120 1121 1122 1123 1124 1125 1126 1127	00000000	/*	INSTRUCTI (FORM 3XH) CALL CALL CALL CALL CALL CALL CALL CAL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11; RETI; RLC\$A; ADDC\$A\$IMM; ADDC\$A\$DIR; ADDC\$A\$IND; ADDC\$A\$IND;	то	ROW	3	OF	OPCODE	МАР
1120 1121 1122 1123 1124 1125 1126 1127 1128		/*	INSTRUCTI (FORM 3XH) CALL CALL CALL CALL CALL CALL CALL CAL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11; RETI; RLC\$A; ADDC\$A\$IMM; ADDC\$A\$DIR; ADDC\$A\$IND; ADDC\$A\$IND; ADDC\$A\$REG;	то	ROW	3	OF	OPCODE	МАР
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129		/*	INSTRUCTI (FORM 3XH) CALL CALL CALL CALL CALL CALL CALL CAL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11; RETI; RLC\$A; ADDC\$A\$IMM; ADDC\$A\$DIR; ADDC\$A\$IND; ADDC\$A\$IND; ADDC\$A\$REG; ADDC\$A\$REG;	то	ROW	3	OF	OPCODE	MAP
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1129	00000000000	/*	INSTRUCTI (FORM 3XH) CALL CALL CALL CALL CALL CALL CALL CAL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11; RETI; RLC\$A; ADDC\$A\$IMM; ADDC\$A\$DIR; ADDC\$A\$DIR; ADDC\$A\$IND; ADDC\$A\$REG; ADDC\$A\$REG; ADDC\$A\$REG;	то	ROW	3	OF	OPCODE	MAP
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/*	INSTRUCTI (FORM 3XH) CALL CALL CALL CALL CALL CALL CALL CAL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11; RETI; RLC\$A; ADDC\$A\$IMM; ADDC\$A\$DIR; ADDC\$A\$DIR; ADDC\$A\$IND; ADDC\$A\$REG; ADDC\$A\$REG; ADDC\$A\$REG; ADDC\$A\$REG; ADDC\$A\$REG;	то	ROW	3	OF	OPCODE	MAP
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132		/*	INSTRUCTI (FORM 3XH) CALL CALL CALL CALL CALL CALL CALL CAL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11; RETI; RLC\$A; ADDC\$A\$IMM; ADDC\$A\$IND; ADDC\$A\$IND; ADDC\$A\$REG; ADDC\$A\$REC; ABCC; ABCC; ABCC; ABCC; ABCC; ABCC; ABCC; ABCC; ABCC; ABCC; ABCC; A	то	ROW	3	OF	OPCODE	MAP
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133		/*	INSTRUCTI (FORM 3XH) CALL CALL CALL CALL CALL CALL CALL CAL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11; RETI; RLC\$A; ADDC\$A\$INM; ADDC\$A\$DIR; ADDC\$A\$IND; ADDC\$A\$REG; ADDC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ACC\$A\$REC; ACC\$A\$REC; ACC\$A\$REC;	то	ROW	3	OF	OPCODE	MAP
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134		/*	INSTRUCTI (FORM 3XH) CALL CALL CALL CALL CALL CALL CALL CAL	CONS CORRESPONDING : */ JNB\$BIT\$REL; ACALL\$ADDR11; RETI; RLC\$A; ADDC\$A\$INM; ADDC\$A\$DIR; ADDC\$A\$IND; ADDC\$A\$REG; ADDC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ADC\$A\$REC; ACC\$A}REC; ADC\$A\$REC; ACC\$A}REC; ACC\$A}REC; ACC\$A}REC; A	то	ROW	3	OF	OPCODE	MAP

		/* INSTRUCTIONS CORRESPONDING TO ROW 4 OF OPCODE MAP	
		(FORM 4XH): */	
1136	з	CALL JC\$REL;	
1137	з	CALL AJMP\$ADDR11;	
1138	з	CALL ORL\$DIR\$A;	
1139	З	CALL ORL\$DIR\$IMM;	
1140	з	CALL ORL\$A\$IMM;	
1141	З	CALL ORL\$A\$DIR;	
1142	з	CALL ORL\$A\$IND;	
1143	з	CALL ORL\$A\$IND;	
1144	З	CALL ORL\$A\$REG;	
1145	з	CALL ORL\$A\$REG;	
1146	З	CALL ORL\$A\$REG;	
1147	3	CALL ORL\$A\$REG;	
1148	з	CALL ORL\$A\$REG;	
1149	з	CALL ORL\$A\$REG;	
1150	з	CALL ORL\$A\$REG;	
1151	з	CALL ORL\$A\$REG;	
		/* INSTRUCTIONS CORRESPONDING TO ROW 3 OF OFCODE MAR	
1150	-		
1102	3		
1123	ີ ຕ	CALL AND CDLARA	
1155	່ ຕ	CALL ANLEDIREA,	
1154	ວ ຕ		
1150	5		
1150	2		
1150	ວ ຕ	CALL AND AACTNO	
1140		CALL ANLEAEDEC.	
1120	ე		
1101	ີ ຕ	CALL = ANL = A + CC	
1160	.) 	CALL AND \$A\$PEC:	
1100	· · · ·		
1127	3		
1164	3		
1164 1165	333	CALL ANL\$A\$REG; CALL ANL\$A\$REG; CALL ANL\$A\$REG;	
1164 1165 1166	3 3 3 3 3	CALL ANL\$A\$REG; CALL ANL\$A\$REG; CALL ANL\$A\$REG; CALL ANL\$A\$REG;	

\$EUECT

1184

1185

1186

1187

1188

1189

1190

1191

1192 1193

1194

1195

1196

1197

1198

1199

	/*	INSTRUCT	ONS	CORRESP	PONDING	то	ROW	6	OF	OPCODE	MAP
		(FORM 6XH)): ·	*/							
3		CALL	JZ\$I	REL;							
з		CALL	AJM	P\$ADDR1:	1;						
З		CALL	XRL	\$DIR\$A;							
з		CALL	XRL	\$DIR\$IM	4;						
з		CALL	XRL	\$A\$IMM;							
з		CALL	XRL	\$A\$DIR;							
3		CALL	XRL	\$A\$IND;							
з		CALL	XRL	\$A\$IND;							
з		CALL	XRL	\$A\$REG;		ź					
З		CALL	XRL	\$A\$REG;							
З		CALL	XRL	\$A\$REG;							
з		CALL	XRL	\$A\$REG;				v			
З		CALL	XRL	\$A\$REG;							
з		CALL	XRL	\$A\$REG;							
з		CALL	XRL	\$A\$REG;							
3		CALL	XRL	\$A\$REG;							

/* INSTRUCTIONS CORRESPONDING TO ROW 7 OF OPCODE MAP (FORM 7XH): */ З CALL JNZ\$REL; З CALL ACALL\$ADDR11; З CALL ORL\$C\$BIT; З CALL JMP\$ADPTR; CALL MOV\$A\$IMM; З З CALL MOV\$DIR\$IMM; З CALL MOV\$IND\$IMM; З CALL MOV\$IND\$IMM; З CALL MOV\$REG\$IMM; з CALL MOV\$REG\$IMM;

		/* INSTRUCTIONS CORRESPONDING TO ROW 8 OF OPCODE MAP	
		(FORM BXH): */	
1200	з	CALL SJMP\$REL;	
1201	з	CALL AJMP\$ADDR11;	
1202	3	CALL ANL\$C\$BIT;	
1203	З	CALL MOVC\$A\$APC;	
1204	З	CALL DIV\$AB;	
1205	з	CALL MOV\$DIR\$DIR;	
1206	3	CALL MOV\$DIR\$IND;	
1207	з	CALL MOV\$DIR\$IND;	
1208	з	CALL MOV\$DIR\$REG;	
1209	з	CALL MOV\$DIR\$REG;	
1210	з	CALL MOV\$DIR\$REG;	
1211	з	CALL MOV\$DIR\$REG;	
1212	з	CALL MOV\$DIR\$REG;	
1213	з	CALL MOV\$DIR\$REG;	
1214	з	CALL MOV\$DIR\$REG;	
1215	з	CALL MOV\$DIR\$REG;	
		/* INSTRUCTIONS CORRESPONDING TO ROW 9 OF OPCODE MAP	
		(FORM 9XH): */	
1216	3	CALL MOV\$DPTR\$IMM16;	
1217	З	CALL ACALL\$ADDR11;	
1218	З	CALL MOV\$BIT\$C;	
1219	З	CALL MOVC\$A\$ADPTR;	
1220	3	CALL SUBB\$A\$IMM;	
1221	з	CALL SUBB\$A\$DIR;	
1222	3	CALL SUBB\$A\$IND;	
1223	з	CALL SUBB\$A\$IND;	
1224	3	CALL SUBB\$A\$REG;	
1225	з	CALL SUBB\$A\$REG;	
1226	З	CALL SUBB\$A\$REG;	
1227	З	CALL SUBB\$A\$REG;	
1228	з	CALL SUBB\$A\$REG;	
1229	3	CALL SUBB\$A\$REG;	
1 7770			
150	з	CALL SUBB\$A\$REG;	

*EJECT

/ ¥	INSTRUCTIONS	CORRESPONDING	то	ROW	Α	OF	OPCODE	MAP
	(FORM AXH): ·	¥/						

1232	з	CALL ORL\$C\$COMP\$BIT;
1233	З	CALL AJMP\$ADDR11;
1234	з	CALL MOV\$C\$BIT;
1235	з	CALL INC\$DPTR;
1236	з	CALL MUL\$AB;
1237	з	CALL NOP;
1238	з	CALL MOV\$IND\$DIR;
1239	з	CALL MOV\$IND\$DIR;
1240	з	CALL MOV\$REG\$DIR;
1241	З	CALL MOV\$REG\$DIR;
1242	з	CALL MOV\$REG\$DIR;
1243	з	CALL MOV\$REG\$DIR;
1244	з	CALL MOV\$REG\$DIR;
1245	3	CALL MOV\$REG\$DIR;
1246	3	CALL MOV\$REG\$DIR;
1247	3	CALL MOV\$REG\$DIR;

/*	INSTRUCTIONS	CORRESPONDING	то	ROW	В	OF	OPCODE	MAP
	(FORM BXH):	*/						

1248	3	CALL	ANL\$C\$COMP\$BIT;
1249	3	CALL	ACALL\$ADDR11;
1250	3	CALL	CPL\$BIT;
1251	З	CALL	CPL\$C;
1252	3	CALL	CJNE\$A\$IMM\$REL;
1253	З	CALL	CJNE\$A\$DIR\$REL;
1254	З	CALL	CUNE\$IND\$IMM\$REL;
1255	З	CALL	CJNE\$IND\$IMM\$REL;
1256	3	CALL	CJNE\$REG\$IMM\$REL;
1257	3	CALL	CJNE\$REG\$IMM\$REL;
1258	3	CALL	CUNE\$REG\$IMM\$REL;
1259	З	CALL	CUNE\$REG\$IMM\$REL;
1260	3	CALL	CUNE\$REG\$IMM\$REL;
1261	з	CALL	CJNE\$REG\$IMM\$REL;
1262	3	CALL	CJNE\$REG\$IMM\$REL;
1263	3	CALL	CJNE\$REG\$IMM\$REL;

/*	INSTRUCTIONS	CORRESPONDING	то	ROW	С	OF	OPCODE	MAP
	(FORM CXH):	¥/						

1264	з	CALL PUSH\$DIR;
1265	з	CALL AJMP\$ADDR11;
1266	З	CALL CLR\$BIT;
1267	З	CALL CLR\$C;
1268	З	CALL SWAP\$A;
1269	З	CALL XCH\$A\$DIR;
1270	з	CALL XCH\$A\$IND;
1271	З	CALL XCH\$A\$IND;
1272	з	CALL XCH\$A\$REG;
1273	з	CALL XCH\$A\$REG;
1274	з	CALL XCH\$A\$REG;
1275	з	CALL XCH\$A\$REG;
1276	З	CALL XCH\$A\$REG;
1277	з	CALL XCH\$A\$REG;
1278	з	CALL XCH\$A\$REG;
1279	З	CALL XCH\$A\$REG;

		/* INSTRUCT	IONS CORRESPOND	ING TO	ROW	D OF	OPCODE	MAP
		(FORM DXH): */					
1280	з	CALL	. POP\$DIR;					
1281	з	CALL	ACALL\$ADDR11;					
1282	з	CALL	SETB\$BIT;					
1283	з	CALL	SETB\$C;					
1284	З	CALL	DA\$A;					
1285	з	CALL	DJNZ\$DIR\$REL;					
1286	з	CALL	XCHD\$A\$IND;					
1287	з	CALL	XCHD\$A\$IND;					
1288	з	CALL	DJNZ\$REG\$REL;					
1289	з	CALL	DJNZ\$REG\$REL;					
1290	з	CALL	DJNZ\$REG\$REL;					
1291	З	CALL	DJNZ\$REG\$REL;					
1292	з	CALL	DJNZ\$REG\$REL;					
1293	з	CALL	DJNZ\$REG\$REL;					
1294	з	CALL	DJNZ\$REG\$REL;					
1295	з	CALL	DJNZ\$REG\$REL;					

		/*	INSTRUCTI	ONS	CORRES	PONDING	то	ROW	Ε	OF	OPCODE	MAP
1296 1297 1298	333		CALL CALL CALL	MOVX AJMF MOVX	\$A\$DPTI \$ADDR1 \$A\$IND	₹; 1;						
1299	3		CALL	MOVX	(\$A\$IND:	5						
1301	3		CALL	UCR∓ MOV⊈	ASDIR;							
1302	З		CALL	MOV\$	A\$IND;							
1303	3		CALL	MOV≇	A\$IND;							
1304	3		CALL	MOV⊈	A\$REG;							
1305	3			MUV¥ MUV4	ATREG;							
1307	з		CALL	MOV\$	A\$REG;							
1308	з		CALL	MOV\$	A\$REG;							
1309	3		CALL	MOV\$	A\$REG;							
1310	3		CALL	MOV\$	A\$REG;							
1311	3		CALL	MUVa	A\$REG;							
		/*	INSTRUCTI (FORM FXH)	ONS : *	CORRES	PONDING	то	ROW	F	OF	OPCODE	MAP
1312	з		CALL	MOVX	\$DPTR\$	4;						
1313	3		CALL	ACAL	L\$ADDR	11;						
1314	3		CALL	MUVX	(\$IND\$A. (#TND#A	i						
1316	3		CALL	CPLS	;≠1ND≠m; ;A;	1						
1317	З		CALL	MOV\$	DIR\$A;							
1318	з		CALL	MOV≇	IND\$A;							
1319	3		CALL	MOV\$	IND\$A;							
1320	ີ ສ ອ		CALL	MÜV⊈ MOU≉	REG\$A;							
1322	3		CALL	MUV¥ MNV¢	REGTA;							
1323	з		CALL	MOV\$	REG\$A;							
1324	з		CALL	MOV\$	REG\$A;							
1325	З		CALL	MOV\$	REG\$A;							
1326	3		CALL	MOV\$	REG\$A;							
1327	3		CALL	MOV\$	REG\$A;							
1328	з		END;									·
1329	2		PSW=(PSW	AND	111111	10B) + F	'AR	[TY\$	STA	TE	(ACC);	
1330	2		MACH\$CYC=	MACH	I\$CYC +	EXECUTI	ON	FIM	E (C	OPCC	JDE);	
1331	2	CAID	RETURN PC	j								
1005	2	CIND	a(Er)									
	4											
1333	1	END	SIM51;									

Appendix B An Introduction to the Intel[®] MCS-51[®] Single-Chip Microcomputer Family

Figure 1a. 8051 Microcomputer Pinout Diagram

1. INTRODUCTION

In 1976 Intel introduced the MCS-48[™] family, consisting of the 8048, 8748, and 8035 microcomputers. These parts marked the first time a complete microcomputer system, including an eight-bit CPU, 1024 8-bit words of ROM or EPROM program memory, 64 words of data memory, I/O ports and an eight-bit timer/counter could be integrated onto a single silicon chip. Depending only on the program memory contents, one chip could control a limitless variety of products, ranging from appliances or automobile engines to text or data processing equipment. Follow-on products stretched the MCS-48[™] architecture in several directions: the 8049 and 8039 doubled the amount of on-chip memory and ran 83% faster; the 8021 reduced costs by executing a subset of the 8048 instructions with a somewhat slower clock; and the 8022 put a unique two-channel 8-bit analog-to-digital converter on the same NMOS chip as the computer, letting the chip interface directly with analog transducers.

Now three new high-performance single-chip microcomputers—the Intel® 8051, 8751, and 8031—extend the advantages of Integrated Electronics to whole new product areas. Thanks to Intel's new HMOS technology, the MCS-51TM family provides four times the program memory and twice the data memory as the 8048 on a single chip. New I/O and peripheral capabilities both increase the range of applicability and reduce total system cost. Depending on the use, processing throughput increases by two and one-half to ten times.

This Application Note is intended to introduce the reader to the MCS-51TM architecture and features. While it does not assume intimacy with the MCS-48TM product line on the part of the reader, he/she should be familiar with

Figure 1b. 8051 Microcomputer Logic Symbol

some microprocessor (preferably Intel's, of course) or have a background in computer programming and digital logic.

Family Overview

Pinout diagrams for the 8051, 8751, and 8031 are shown in Figure 1. The devices include the following features:

- Single-supply 5 volt operation using HMOS technology.
- 4096 bytes program memory on-chip (not on 8031).
- 128 bytes data memory on-chip.
- Four register banks.
- 128 User-defined software flags.
- 64 Kilobytes each program and external RAM addressability.
- One microsecond instruction cycle with 12 MHz crystal.
- 32 bidirectional I/O lines organized as four 8-bit ports (16 lines on 8031).
- Multiple mode, high-speed programmable Serial Port.
- Two multiple mode, 16-bit Timer/Counters.
- Two-level prioritized interrupt structure.
- Full depth stack for subroutine return linkage and data storage.
- Augmented MCS-48[™] instruction set.
- Direct Byte and Bit addressability.
- Binary or Decimal arithmetic.
- Signed-overflow detection and parity computation.
- Hardware Multiple and Divide in 4 usec.
- Integrated Boolean Processor for control applications.
- Upwardly compatible with existing 8048 software.

All three devices come in a standard 40-pin Dual In-Line Package, with the same pin-out, the same timing, and the same electrical characteristics. The primary difference between the three is the on-chip program memory—different types are offered to satisfy differing user requirements.

The 8751 provides 4K bytes of ultraviolet-Erasable, Programmable Read Only Memory (EPROM) for program development, prototyping, and limited production runs. (By convention, 1K means $2^{10} = 1024$. 1k—with a lower case "k"—equals $10^3 = 1000$.) This part may be individually programmed for a specific application using Intel's Universal PROM Programmer (UPP). If software bugs are detected or design specifications change the same part may be "erased" in a matter of minutes by exposure to ultraviolet light and reprogrammed with the modified code. This cycle may be repeated indefinitely during the design and development phase.

The final version of the software must be programmed into a large number of production parts. The 8051 has 4K bytes of ROM which are mask-programmed with the customer's order when the chip is built. This part is considerably less expensive, but cannot be erased or altered after fabrication.

The 8031 does not have any program memory on-chip, but may be used with up to 64K bytes of external standard or multiplexed ROMs, PROMs, or EPROMs. The 8031 fits well in applications requiring significantly larger or smaller amounts of memory than the 4K bytes provided by its two siblings.

(The 8051 and 8751 automatically access external program memory for all addresses greater than the 4096 bytes on-chip. The External Access input is an override for all internal program memory—the 8051 and 8751 will each emulate an 8031 when pin 31 is low.)

Throughout this Note, "8051" is used as a generic term. Unless specifically stated otherwise, the point applies equally to all three components. Table 1 summarizes the quantitative differences between the members of the MCS- 48^{TM} and MCS- 51^{TM} families.

The remainder of this Note discusses the various MCS-51[™] features and how they can be used. Software and/or hard-

ware application examples illustrate many of the concepts. Several isolated tasks (rather than one complete system design example) are presented in the hope that some of them will apply to the reader's experiences or needs.

A document this short cannot detail all of a computer system's capabilities. By no means will all the 8051 instructions be demonstrated; the intent is to stress new or unique MCS-51TM operations and instructions generally used in conjunction with each other. For additional hardware information refer to the Intel MCS-51TM Family User's Manual, publication number 121517. The assembly language and use of ASM51, the MCS-51TM assembler, are further described in the MCS-51TM Macro Assembler User's Guide, publication number 9800937.

The next section reviews some of the basic concepts of microcomputer design and use. Readers familiar with the 8048 may wish to skim through this section or skip directly to the next, "ARCHITECTURE AND ORGANIZATION."

Microcomputer Background Concepts

Most digital computers use the binary (base 2) number system internally. All variables, constants, alphanumeric characters, program statements, etc., are represented by groups of binary digits ("bits"), each of which has the value 0 or 1. Computers are classified by how many bits they can move or process at a time.

The MCS-51[™] microcomputers contain an eight-bit central processing unit (CPU). Most operations process variables eight bits wide. All internal RAM and ROM, and virtually all other registers are also eight bits wide. An eight-bit ("byte") variable (shown in Figure 2) may assume one of 2⁸ = 256 distinct values, which usually represent integers between 0 and 255. Other types of numbers, instructions, and so forth are represented by one or more bytes using certain conventions.

For example, to represent positive and negative values, the most significant bit (D7) indicates the sign of the other seven bits—0 if positive, 1 if negative—allowing integer variables between -128 and +127. For integers with extremely large magnitudes, several bytes are manipulated together as "multiple precision" signed or unsigned integers—16, 24, or more bits wide.

EPROM Program Memory	ROM Program Memory	External Program Memory	Program Memory (Int/Max)	Data Memory (Bytes)	Instr. Cycle Time	Input/ Output Pins	Interrupt Sources	Reg. Banks
—	8021	-	1K/1K	64	8.4 µSec	21	0	1
	8022		2K/2K	64	8.4 µSec	28	2	1
8748	8048	8035	1K/4K	64	$2.5 \mu \text{Sec}$	27	2	2
·	8049	8039	2K/4K	128	$1.36 \mu \text{Sec}$	27	2	2
8751	8051	8031	4K/64K	128	1.0μ Sec	32	5.	4

Table 1. Features of Intel's Single-Chip Microcomputers

AFN-01502A

The letters "MCS" have traditionally indicated a system or family of compatible Intel® microcomputer components, including CPUs, memories, clock generators, I/O expanders, and so forth. The numerical suffix indicates the microprocessor or microcomputer which serves as the cornerstone of the family. Microcomputers in the MCS-48[™] family currently include the 8048-series (8035, 8048, & 8748), the 8049-series (8039 & 8049), and the 8021 and 8022; the family also includes the 8243, an I/O expander compatible with each of the microcomputers. Each computer's CPU is derived from the 8048. with essentially the same architecture, addressing modes, and instruction set, and a single assembler (ASM48) serves each.

The first members of the MCS-51[™] family are the 8051, 8751, and 8031. The architecture of the 8051-series, while derived from the 8048, is not strictly compatible; there are more addressing modes, more instructions, larger address spaces, and a few other hardware differences. In this Application Note the letters "MCS-51" are used when referring to architectural features of the 8051-series-features which would be included on possible future microcomputers based on the 8051 CPU. Such products could have different amounts of memory (as in the 8048/8049) or different peripheral functions (as in the 8021 and 8022) while leaving the CPU and instruction set intact. ASM51 is the assembler used by all microcomputers in the 8051 family.

Two digit decimal numbers may be "packed" in an eightbit value, using four bits for the binary code of each digit. This is called Binary-Coded Decimal (BCD) representation, and is often used internally in programs which interact heavily with human beings.

Alphanumeric characters (letters, numbers, punctuation marks, etc.) are often represented using the American Standard Code for Information Interchange (ASCII) convention. Each character is associated with a unique seven-bit binary number. Thus one byte may represent

a single character, and a word or sequence of letters may be represented by a series (or "string") of bytes. Since the ASCII code only uses 128 characters, the most significant bit of the byte is not needed to distinguish between characters. Often D7 is set to 0 for all characters. In some coding schemes, D7 is used to indicate the "parity" of the other seven bits—set or cleared as necessary to ensure that the total number of "1" bits in the eight-bit code is even ("even parity") or odd ("odd parity"). The 8051 includes hardware to compute parity when it is needed.

A computer program consists of an ordered sequence of specific, simple steps to be executed by the CPU one-ata-time. The method or sequence of steps used collectively to solve the user's application is called an "algorithm."

The program is stored inside the computer as a sequence of binary numbers, where each number corresponds to one of the basic operations ("opcodes") which the CPU is capable of executing. In the 8051, each program memory location is one byte. A complete instruction consists of a sequence of one or more bytes, where the first defines the operation to be executed and additional bytes (if needed) hold additional information, such as data values or variable addresses. No instruction is longer than three bytes.

The way in which binary opcodes and modifier bytes are assigned to the CPU's operations is called the computer's "machine language." Writing a program directly in machine language is time-consuming and tedious. Human beings think in words and concepts rather than encoded numbers, so each CPU operation and resource is given a name and standard abbreviation ("mnemonic"). Programs are more easily discussed using these standard mnemonics, or "assembly language," and may be typed into an Intel® Intellec® 800 or Series II® microcomputer development system in this form. The development system can mechanically translate the program from assembly language "source" form to machine language "object" code using a program called an "assembler." The MCS-51TM assembler is called ASM51.

There are several important differences between a computer's machine language and the assembly language used as a tool to represent it. The machine language or instruction set is the set of operations which the CPU can perform while a program is executing ("at run-time"), and is strictly determined by the microcomputer hardware design.

The assembly language is a standard (though more-orless arbitrary) set of symbols including the instruction set mnemonics, but with additional features which further simplify the program design process. For example, ASM51 has controls for creating and formatting a program listing, and a number of directives for allocating variable storage and inserting arbitrary bytes of data into the object code for creating tables of constants. In addition, ASM51 can perform sophisticated mathematical operations, computing addresses or evaluating arithmetic expressions to relieve the programmer from this drudgery. However, these calculations can only use information known at "assembly time."

For example, the 8051 performs arithmetic calculations at run-time, eight bits at a time. ASM51 can do similar operations 16 bits at a time. The 8051 can only do one simple step per instruction, while ASM51 can perform complex calculations in each line of source code. However, the operations performed by the assembler may only use parameter values fixed at assembly-time, not variables whose values are unknown until program execution begins.

For example, when the assembly language source line,

ADD $A,\#(LOOP_COUNT + 1) * 3$

is assembled, ASM51 will find the value of the previously-defined constant "LOOP_COUNT" in an internal symbol table, increment the value, multiply the sum by three, and (assuming it is between -256 and 255 inclusive) truncate the product to eight bits. When this instruction is *executed*, the 8051 ALU will just add that resulting constant to the accumulator.

Some similar differences exist to distinguish number system ("radix") specifications. The 8051 does all computations in binary (though there are provisions for then converting the result to decimal form). In the course of writing a program, though, it may be more convenient to specify constants using some other radix, such as base 10. On other occasions, it is desirable to specify the ASCII code for some character or string of characters without refering to tables. ASM51 allows several representations for constants, which are converted to binary as each instruction is assembled.

For example, binary numbers are represented in the

assembly language by a series of ones and zeros (naturally), followed by the letter "B" (for Binary); octal numbers as a series of octal digits (0-7) followed by the letter "O" (for Octal) or "Q" (which doesn't stand for anything, but *looks* sort of like an "O" and is less likely to be confused with a zero).

Hexadecimal numbers are represented by a series of hexadecimal digits (0-9,A-F), followed by (you guessed it) the letter "H." A "hex" number must begin with a decimal digit; otherwise it would look like a user-defined symbol (to be discussed later). A "dummy" leading zero may be inserted before the first digit to meet this constraint. The character string "BACH" could be a legal label for a Baroque music synthesis routine; the string "0BACH" is the hexadecimal constant BAC₁₆. This is a case where adding 0 makes a big difference.

Decimal numbers are represented by a sequence of decimal digits, optionally followed by a "D." If a number has no suffix, it is assumed to be decimal—so it had better not contain any non-decimal digits. "0BAC" is not a legal representation for anything.

When an ASCII code is needed in a program, enclose the desired character between two apostrophes (as in '#') and the assembler will convert it to the appropriate code (in this case 23H). A string of characters between apostrophes is translated into a series of constants; 'BACH' becomes 42H, 41H, 43H, 48H.

These same conventions are used throughout the associated Intel documentation. Table 2 illustrates some of the different number formats.

2. ARCHITECTURE AND ORGANIZATION

Figure 3 blocks out the MCS-51[™] internal organization. Each microcomputer combines a Central Processing Unit, two kinds of memory (data RAM plus program ROM or EPROM), Input/Output ports, and the mode,

Bit Pattern	Binary	Octal	Hexa- Decimal	Decimal	Signed Decimal
000000000000000000000000000000000000000	0B	0Q	00H	0	0
	1B	1Q	01H	1	+1
$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{array}$	111B	7Q	07H	7	+7
	1000B	10Q	08H	8	+8
	1001B	11Q	09H	9	+9
	1010B	12Q	0AH	10	+10
0 0 0 0 1 1 1 1	1111B	17Q	0FH	15	+15
0 0 0 1 0 0 0 0	10000B	20Q	10H	16	+16
0 1 1 1 1 1 1 1	1111111B	177Q	7FH	127	+127
1 0 0 0 0 0 0 0	10000000B	200Q	80H	128	-128
1 0 0 0 0	10000001B	201Q	81H	129	-127
	11111110B	376Q	0FEH	254	-2
	11111111B	377Q	0FFH	255	-1

Table 2. Notations Used to Represent Numbers	Table 2.	Notations	Used to	Represent	Numbers
--	----------	-----------	---------	-----------	---------

Figure 3. Block Diagram of 8051 Internal Structure

status, and data registers and random logic needed for a variety of peripheral functions. These elements communicate through an eight-bit data bus which runs throughout the chip, somewhat akin to indoor plumbing. This bus is buffered to the outside world through an I/Oport when memory or I/O expansion is desired.

Let's summarize what each block does; later chapters dig into the CPU's instruction set and the peripheral registers in much greater detail.

Central Processing Unit

The CPU is the "brains" of the microcomputer, reading the user's program and executing the instructions stored therein. Its primary elements are an eight-bit Arithmetic/ Logic Unit with associated registers A, B, PSW, and SP, and the sixteen-bit Program Counter and "Data Pointer" registers.

AFN-01502A

Arithmetic Logic Unit

The ALU can perform (as the name implies) arithmetic and logic functions on eight-bit variables. The former include basic addition, subtraction, multiplication, and division; the latter include the logical operations AND, OR, and Exclusive-OR, as well as rotate, clear, complement, and so forth. The ALU also makes conditional branching decisions, and provides data paths and temporary registers used for data transfers within the system. Other instructions are built up from these primitive functions: the addition capability can increment registers or automatically compute program destination addresses; subtraction is also used in decrementing or comparing the magnitude of two variables.

These primitive operations are automatically cascaded and combined with dedicated logic to build complex instructions such as incrementing a sixteen-bit register pair. To execute one form of the compare instruction, for example, the 8051 increments the program counter three times, reads three bytes of program memory, computes a register address with logical operations, reads internal data memory twice, makes an arithmetic comparison of two variables, computes a sixteen-bit destination address, and decides whether or not to make a branch—all in two microseconds!

An important and unique feature of the MCS-51 architecture is that the ALU can also manipulate one-bit as well as eight-bit data types. Individual bits may be set, cleared, or complemented, moved, tested, and used in logic computations. While support for a more primitive data type may initially seem a step backwards in an era of increasing word length, it makes the 8051 especially well suited for controller-type applications. Such algorithms *inherently* involve Boolean (true/false) input and output variables, which were heretofore difficult to implement with standard microprocessors. These features are collectively referred to as the MCS-51TM "Boolean Processor," and are described in the so-named chapter to come.

Thanks to this powerful ALU, the 8051 instruction set fares well at both real-time control and data intensive algorithms. A total of 51 separate operations move and manipulate three data types: Boolean (1-bit), byte (8-bit), and address (16-bit). All told, there are eleven addressing modes—seven for data, four for program sequence control (though only eight are used by more than just a few specialized instructions). Most operations allow several addressing modes, bringing the total number of instructions (operation/addressing mode combinations) to 111, encompassing 255 of the 256 possible eight-bit instruction opcodes.

Instruction Set Overview

Table 4 lists these 111 instructions classified into five groups:

- Arithmetic Operations
- Logical Operations for Byte Variables
- Data Transfer Instructions
- Boolean Variable Manipulation
- Program Branching and Machine Control

MCS-48[™] programmers perusing Table 4 will notice the absence of special categories for Input/Output, Timer/ Counter, or Control instructions. These functions are all still provided (and indeed many new functions are added), but as special cases of more generalized operations in other categories. To explicitly list all the useful instructions involving I/O and peripheral registers would require a table approximately four times as long.

Observant readers will also notice that all of the 8048's page-oriented instructions (conditional jumps, JMPP, MOVP, MOVP3) have been replaced with corresponding but non-paged instructions. The 8051 instruction set is entirely *non*-page-oriented. The MCS-48[™] "MOVP" instruction replacement and all conditional jump instructions operate relative to the program counter, with the actual jump address computed by the CPU during instruction execution. The "MOVP3" and "JMPP" replacements are now made relative to another sixteen-bit register, which allows the effective destination to be anywhere in the 64K program address space.

The instruction set is designed to make programs efficient both in terms of code size and execution speed. No instruction requires more than three bytes of program memory, with the majority requiring only one or two bytes. Virtually all instructions execute in either one or two instruction cycles—one or two microseconds with a 12-MHz crystal—with the sole exceptions (multiply and divide) completing in four cycles.

Many instructions such as arithmetic and logical functions or program control, provide both a short and a long form for the same operation, allowing the programmer to optimize the code produced for a specific application. The 8051 usually fetches two instruction bytes per instruction cycle, so using a shorter form can lead to faster execution as well.

For example, any byte of RAM may be loaded with a constant with a three-byte, two-cycle instruction, but the commonly used "working registers" in RAM may be initialized in one cycle with a two-byte form. Any bit anywhere on the chip may be set, cleared, or complemented by a single three-byte logical instruction using two cycles. But critical control bits, I/O pins, and software flags may be controlled by two-byte, single cycle instructions. While three-byte jumps and calls can "go anywhere" in program memory, nearby sections of code may be reached by shorter relative or absolute versions.

(MSB)		(LSB)	Symbol	Position	Name and Significance
СҮ	AC FO	RS1 RS0 OV — P	OV	PSW.2	Overflow flag.
Symb	ol Positio	Name and Significance			Set/cleared by hardware during arith- metic instructions to indicate overflow
CY	PSW.7	Carry flag.			conditions.
		Set/cleared by hardware or software		DOWN	· · · · · · · · · · · · · · · · · · ·
		instructions	_	PSW.1	(reserved)
		histi dettoris.	р	Parity flag	
AC	PSW.6	Auxiliary Carry flag.	1	1310.0	Set/cleared by hardware each instruc-
		Set/cleared by hardware during addition			tion cycle to indicate an odd/even
		or subtraction instructions to indicate			number of "one" bits in the accumu-
		carry or borrow out of bit 3.			lator, i.e., even parity.
F0	PSW 5	Flag		Note	the contents of (PSI_PS0) enable the
10	154.5	Set/cleared/tested by software as a		Note-	working register banks as follows:
		user-defined status flag.			working register banks as ronows.
					(0,0)—Bank 0 (00H-07H)
RS1	PSW.4	Register bank Select control bits 1 & 0.			(0,1)-Bank 1 (08H-0FH)
		Set/cleared by software to determine		÷	(1,0)—Bank 2 (10H-17H)
RS	PSW.3	working register bank (see Note).			(1,1)—Bank 3 (18H-1FH)

Figure 4. PSW—Program Status Word Organization

A significant side benefit of an instruction set more powerful than those of previous single-chip microcomputers is that it is easier to generate applications-oriented software. Generalized addressing modes for byte and bit instructions reduce the number of source code lines written and debugged for a given application. This leads in turn to proportionately lower software costs, greater reliability, and faster design cycles.

Accumulator and PSW

The 8051, like its 8048 predecessor, is primarily an accumulator-based architecture: an eight-bit register called the accumulator ("A") holds a source operand and receives the result of the arithmetic instructions (addition, subtraction, multiplication, and division). The accumulator can be the source or destination for logical operations and a number of special data movement instructions, including table look-ups and external RAM expansion. Several functions apply exclusively to the accumulator: rotates, parity computation, testing for zero, and so on.

Many instructions implicitly or explicitly affect (or are affected by) several status flags, which are grouped together to form the Program Status Word shown in Figure 4.

(The period within entries under the Position column is called the "dot operator," and indicates a particular bit position within an eight-bit byte. "PSW.5" specifies bit 5 of the PSW. Both the documentation and ASM51 use this notation.)

The most "active" status bit is called the carry flag (abbreviated "C"). This bit makes possible multiple precision arithmetic operations including addition, subtraction,

and rotates. The carry also serves as a "Boolean accumulator" for one-bit logical operations and bit manipulation instructions. The overflow flag (OV) detects when arithmetic overflow occurs on signed integer operands, making two's complement arithmetic possible. The parity flag (P) is updated after every instruction cycle with the evenparity of the accumulator contents.

The CPU does not control the two register-bank select bits, RS1 and RS0. Rather, they are manipulated by software to enable one of the four register banks. The usage of the PSW flags is demonstrated in the Instruction Set chapter of this Note.

Even though the architecture is accumulator-based, provisions have been made to bypass the accumulator in common instruction situations. Data may be moved from any location on-chip to any register, address, or indirect address (and vice versa), any register may be loaded with a constant, etc., all without affecting the accumulator. Logical operations may be performed against registers or variables to alter fields of bits—without using or affecting the accumulator. Variables may be incremented, decremented, or tested without using the accumulator. Flags and control bits may be manipulated and tested without affecting anything else.

Other CPU Registers

A special eight-bit register ("B") serves in the execution of the multiply and divide instructions. This register is used in conjunction with the accumulator as the second input operand and to return eight-bits of the result.

The MCS-51 family processors include a hardware stack within internal RAM, useful for subroutine linkage,

passing parameters between routines, temporary variable storage, or saving status during interrupt service routines. The Stack Pointer (SP) is an eight-bit pointer register which indicates the address of the last byte pushed onto the stack. The stack pointer is automatically incremented or decremented on all push or pop instructions and all subroutine calls and returns. In theory, the stack in the 8051 may be up to a full 128 bytes deep. (In practice, even simple programs would use a handful of RAM locations for pointers, variables, and so forth—reducing the stack depth by that number.) The stack pointer defaults to 7 on reset, so that the stack will start growing up from location 8, just like in the 8048. By altering the pointer contents the stack may be relocated anywhere within internal RAM.

Finally, a 16-bit register called the data pointer (DPTR) serves as a base register in indirect jumps, table look-up instructions, and external data transfers. The high- and low-order halves of the data pointer may be manipulated as separate registers (DPH and DPL, respectively) or together using special instructions to load or increment all sixteen bits. Unlike the 8048, look-up tables can therefore start anywhere in program memory and be of arbitrary length.

Memory Spaces

Program memory is separate and distinct from data memory. Each memory type has a different addressing mechanism, different control signals, and a different function.

The program memory array (ROM or EPROM), like an elephant, is extremely large and never forgets information, even when power is removed. Program memory is used for information needed each time power is applied: initialization values, calibration constants, keyboard layout tables, etc., as well as the program itself. The program memory has a sixteen-bit address bus; its elements are addressed using the Program Counter or instructions which generate a sixteen-bit address.

To stretch our analogy just a bit, data memory is like a mouse: it is smaller and therefore quicker than program memory, and it goes into a random state when electrical power is applied. On-chip data RAM is used for variables which are determined or may change while the program is running.

A computer spends most of its time manipulating variables, not constants, and a relatively small number of variables at that. Since eight-bits is more than sufficient to uniquely address 128 RAM locations, the on-chip RAM address register is only one byte wide. In contrast to the program memory, data memory accesses need a single eight-bit value—a constant or another variable to specify a unique location. Since this is the basic width of the ALU and the different memory types, those resources can be used by the addressing mechanisms, contributing greatly to the computer's operating efficiency.

The partitioning of program and data memory is extended to off-chip memory expansion. Each may be added independently, and each uses the same address and data busses, but with different control signals. External program memory is gated onto the external data bus by the **PSEN** (Program Store Enable) control output, pin 29. External data memory is read onto the bus by the \overline{RD} output, pin 17, and written with data supplied from the microcomputer by the WR output, pin 16. (There is no control pin to write external program ROM, which is by definition Read Only.) While both types may be expanded to up to 64K bytes, the external data memory may optionally be expanded in 256 byte "pages" to preserve the use of P2 as an I/O port. This is useful with a relatively small expansion RAM (such as the Intel® 8155) or for addressing external peripherals.

Single-chip controller programs are finalized during the project design cycle, and are not modified after production. Intel's single-chip microcomputers are not "von Neumann" architectures common among main-frame and mini-computer systems: the MCS-51TM processor *data* memory—on-chip and external—may *not* be used for program code. Just as there is no write-control signal for program memory, there is no way for the CPU to execute instructions out of RAM. In return, this concession allows an architecture optimized for efficient controller applications: a large, fixed program located in ROM, a hundred or so variables in RAM, and different methods for efficiently addressing each.

(Von Neumann machines are helpful for software development and debug. An 8051 system could be modified to have a single off-chip memory space by gating together the two memory-read controls (\overrightarrow{PSEN} and \overrightarrow{RD}) with a two-input AND gate (Figure 5). The CPU could then write data into the common memory array using \overrightarrow{WR} and $\overrightarrow{AFN-01502A}$

Figure 5. Combining External Program and Data Memory Arrays

external data transfer instructions, and read instructions or data with the AND gate output and data transfer or program memory look-up instructions.)

In addition to the memory arrays, there is (yet) another (albeit sparsely populated) physical address space. Connected to the internal data bus are a score of specialpurpose eight-bit registers scattered throughout the chip. Some of these—B, SP, PSW, DPH, and DPL—have been discussed above. Others—I/O ports and peripheral function registers—will be introduced in the following sections. Collectively, these registers are designated as the "special-function register" address space. Even the accumulator is assigned a spot in the special-function register address space for additional flexibility and uniformity.

Thus, the MCS-51[™] architecture supports several distinct "physical" address spaces, functionally separated at the hardware level by different addressing mechanisms, read and write control signals, or both:

- On-chip program memory;
- On-chip data memory;
- Off-chip program memory;
- Off-chip data memory;
- On-chip special-function registers.

What the *programmer sees*, though, are "logical" address spaces. For example, as far as the programmer is concerned, there is only one type of program memory, 64K bytes in length. The fact that it is formed by combining on- and off-chip arrays (split 4K/60K on the 8051 and 8751) is "invisible" to the programmer; the CPU automatically fetches each byte from the appropriate array, based on its address.

(Presumably, future microcomputers based on the MCS-51TM architecture may have a different physical split, with more or less of the 64K total implemented on-chip. Using the MCS-48TM family as a precedent, the 8048's 4K potential program address space was split 1K/3K between on- and off-chip arrays; the 8049's was split 2K/2K.)

Why go into such tedious details about address spaces? The logical addressing modes are described in the Instruction Set chapter in terms of physical address spaces. Understanding their differences now will pay off in understanding and using the chips later.

Input/Output Ports

The MCS-51TM I/O port structure is extremely versatile. The 8051 and 8751 each have 32 I/O pins configured as four eight-bit parallel ports (P0, P1, P2, and P3). Each pin will input or output data (or both) under software control, and each may be referenced by a wide repertoire of byte and bit operations.

In various operating or expansion modes, some of these I/O pins are also used for special input or output functions. Instructions which access external memory use Port 0 as a multiplexed address/data bus: at the beginning of an external memory cycle eight bits of the address are output on P0; later data is transferred on the same eight pins. External data transfer instructions which supply a sixteen-bit address, and any instruction accessing external program memory, output the high-order eight bits on P2 during the access cycle. (The 8031 *always* uses the pins of P0 and P2 for external addressing, but P1 and P3 are available for standard I/O.)

The eight pins of Port 3 (P3) each have a special function. Two external interrupts, two counter inputs, two serial data lines, and two timing control strobes use pins of P3 as described in Figure 6. Port 3 pins corresponding to functions not used are available for conventional I/O.

Even within a single port, I/O functions may be combined in many ways: input and output may be performed using different pins at the same time, or the same pins at different times; in parallel in some cases, and in serial in others; as test pins, or (in the case of Port 3) as additional special functions.

(MSB)							(LSB)				
RD	WR	Т1	TO	INT1	INTO	TXD	RXD				
Symb	ol Pa	sition	Na	me ar	nd Sig	nifica	nce		Symbol	Position	Name and Significance
RD	P3.7 Read data control output. Active low pulse generated by hardware when external data memory is read.		active low e when d.	INTI	P3.3	Interrupt 1 input pin. Low-level or falling-edge triggered.					
WR	Р3	.6	Wr pul	ite dat se gen	a cont erated	rol ou by ha	tput. rdwai	Active low when	INT0	P3.2	Interrupt 0 input pin. Low-level or falling-edge triggered.
			ext	ernal o	data m	emory	/ is wi	tten.	TXD	P3.1	Transmit Data pin for serial port in UART mode. Clock output in shift
[1	P3	.5	Tin pin	ner/co	unter 1	exter	nal in	put or test			register mode.
Т0	P3	.4	Tin pin	ner/co	unter () exte	nal in	put or test	RXD	P3.0	Receive Data pin for serial port in UART mode. Data I/O pin in shift register mode.

Figure 6. P3—Alternate Special Functions of Port 3

Special Peripheral Functions

There are a few special needs common among controloriented computer systems:

- keeping track of elapsed real-time;
- maintaining a count of signal transitions;
- measuring the precise width of input pulses;
- communicating with other systems or people;
- closely monitoring asynchronous external events.

Until now, microprocessor systems needed peripheral chips such as timer/counters, USARTs, or interrupt controllers to meet these needs. The 8051 integrates all of these capabilities on-chip!

Timer/Counters

There are two sixteen-bit multiple-mode Timer/Counters on the 8051, each consisting of a "High" byte (corresponding to the 8048 "T" register) and a low byte (similar to the 8048 prescaler, with the additional flexibility of being software-accessible). These registers are called, naturally enough, TH0, TL0, TH1, and TL1. Each pair may be independently software programmed to any of a dozen modes with a mode register designated TMOD (Figure 7), and controlled with register TCON (Figure 8).

The timer modes can be used to measure time intervals, determine pulse widths, or initiate events, with one-microsecond resolution, up to a maximum interval of 65,536 instruction cycles (over 65 milliseconds). Longer delays may easily be accumulated through software. Configured as a counter, the same hardware will accumulate external events at frequencies from D.C. to 500 KHz, with up to sixteen bits of precision.

Serial Port Interface

Each microcomputer contains a high-speed, full-duplex, serial port which is software programmable to function in four basic modes: shift-register I/O expander, 8-bit UART, 9-bit UART, or interprocessor communications link. The UART modes will interface with standard I/O devices (e.g. CRTs, teletypewriters, or modems) at data rates from 122 baud to 31 kilobaud. Replacing the standard 12 MHz crystal with a 10.7 MHz crystal allows 110 baud. Even or odd parity (if desired) can be included with simple bit-handling software routines. Inter-processor communications in distributed systems takes place at 187 kilobaud with hardware for automatic address/data message recognition. Simple TTL or CMOS shift registers provide low-cost I/O expansion at a super-fast 1 Megabaud. The serial port operating modes are controlled by the contents of register SCON (Figure 9).

Interrupt Capability and Control

(Interrupt capability is generally considered a CPU function. It is being introduced here since, from an applications point of view, interrupts relate more closely to peripheral and system interfacing.)

(MSB) (LSB)						(LSB)		M1	MO	Operating	Mode
GATE C/T M1 M0 GATE C/T M1 M0						0 0 MCS-48 Timer. "TLx" serves bit prescaler.			imer. "TLx" serves as five- er.		
					0 1 16-bit timer/counter. "THx" are cascaded; there is no pres						
GATE Gating control. When set, Tim					Timer/	ounter	1	0	8-bit auto- holds a val into "TLx'	reload timer/counter. "THx" lue which is to be reloaded ' each time it overflows.	
"x" is enabled only while "INTx" pin is high and "TRx" control bit is set. When cleared, timer/counter is enabled whenever "TRx" control bit is set.				1	1	(Timer 0)	TL0 is an eight-bit timer/ counter controlled by the standard Timer 0 control bits.				
C/T	T T S	imer o imer o ystem	or Cou operat clock)	inter S ion (ir . Set f	Selecto aput fi for Co	or. Clea rom int	ed for rnal era-				TH0 is an eight-bit timer only controlled by Timer 1 control bits.
	tion (input from "Tx" input pin).				1	1	(Timer 1)	Timer/counter 1 stopped.			

(MSB)							(LSB)
TF1	TR1	TFO	TRO	IE1	IT1	IE0	ITO

Symbol	Position	Name and Significance	Symbol IE1	Position TCON.3	Name and Significance Interrupt 1 Edge flag. Set by hardware
TFI TCON.7		Timer 1 overflow Flag. Set by hardware on timer/counter overflow. Cleared when interrupt processed.			when external interrupt edge detected. Cleared when interrupt processed.
			IT1	TCON.2	Interrupt 1 Type control bit. Set/cleared
TRI	TCON.6	Timer 1 Run control bit. Set/cleared by software to turn timer/counter on/off.			by software to specify falling edge/low level triggered external interrupts.
			IE0	TCON.1	Interrupt 0 Edge flag. Set by hardware
TF0	TCON.5	Timer 0 overflow Flag. Set by hardware on timer/counter overflow. Cleared when interrupt processed.			when external interrupt edge detected. Cleared when interrupt processed.
			IT0	TCON.0	Interrupt 0 Type control bit. Set/cleared
TR0	TCON.4	Timer 0 Run control bit. Set/cleared by software to turn timer/counter on/off.			by software to specify falling edge/low level triggered external interrupts.

Figure 8. TCON—Timer/Counter Control/Status Register

(MSB)							(LSB)						
SM0	SM1	SM2	REN	тва	RB8	ТІ	RI							
Symb	ol Pa	sition	Na	me an	nd Sig	nifica	nce				:	Symbol	Position	Name and Significance
SM0	SC	CON.7	Ser Set	ial poi /cleare	rt Mo ed by	de coi softwa	ntrol are (s	bit ee r	0. 10te).]	RB8	SCON.2	Receive Bit 8. Set/cleared by hardware to indicate state of ninth data bit received.
SMI	SC	CON.6	Ser	ial po	rt Mo	de cor	ntrol	bit	1.					
			Set	/cleare	ed by	softwa	are (s	ee r	note).	•	-	ΓI	SCON.1	Transmit Interrupt flag. Set by hard- ware when byte transmitted. Cleared
SM2	so	CON.5	Ser soft	ial po tware	rt Mo to dis	de con able re	ntrol cept	bit : ion	2. Se of fra	t by ames				by software after servicing.
			for	which	bit 8	is zero	э.				1	RI	SCON.0	Received Interrupt flag. Set by hard- ware when byte received. Cleared by
REN	so	CON.4	Rec by :	ceiver softwa	Enabl	e cont enable	rol b /disa	it. S able	Set/cl seria	eared al				software after servicing.
			dat	a rece	ption.								Note—	the state of (SM0,SM1) selects: (0,0)—Shift register I/O expansion.
TB8	SC	CON.3	Tra	nsmit	Bit 8.	Set/c	leare	d by	y har	d-				(0,1)-8 bit UART, variable data rate.
			wai bit	re to d	eterm	ine sta	ate of	f nir A R	nth d Tmo	ata de				(1,0)—9 bit UART, fixed data rate.
			510	ci all'sli		III 9=0		in	1 110	uc.				(1,1)> on OAK1, vallable data late.

Figure 9. SCON—Serial Port Control/Status Register

These peripheral functions allow special hardware to monitor real-time signal interfacing without bothering the CPU. For example, imagine serial data is arriving from one CRT while being transmitted to another, and one timer/counter is tallying high-speed input transitions while the other measures input pulse widths. During all of this the CPU is thinking about something else.

But how does the CPU know when a reception, transmission, count, or pulse is finished? The 8051 programmer can choose from three approaches.

TCON and SCON contain status bits set by the hardware when a timer overflows or a serial port operation is completed. The first technique reads the control register into the accumulator, tests the appropriate bit, and does a conditional branch based on the result. This "polling" scheme (typically a three-instruction sequence though additional instructions to save and restore the accumulator may sometimes be needed) will surely be familiar to programmers used to multi-chip microcomputer systems and peripheral controller chips. This process is rather cumbersome, especially when monitoring multiple peripherals.

As a second approach, the 8051 can perform a conditional branch based on the state of any control or status bit or input pin in a single instruction; a four instruction sequence could poll the four simultaneous happenings mentioned above in just eight microseconds.

Unfortunately, the CPU must still drop what it's doing to test these bits. A manager cannot do his own work well if he is continuously monitoring his subordinates; they should interrupt him (or her) only when they need attention or guidance. So it is with machines: ideally, the CPU would not have to worry about the peripherals until they require servicing. At that time, it would postpone the background task long enough to handle the appropriate device, then return to the point where it left off.

This is the basis of the third and generally optimal solution, hardware interrupts. The 8051 has five interrupt sources: one from the serial port when a transmission or reception is complete, two from the timers when overflows occur, and two from input pins INT0 and INT1. Each source may be independently enabled or disabled to allow polling on some sources or at some times, and each may be classified as high or low priority. A high priority source can interrupt a low priority service routine; the manager's boss can interrupt conferences with subordinates. These options are selected by the interrupt enable and priority control registers, IE and IP (Figures 10 and 11).

Each source has a particular program memory address associated with it (Table 3), starting at 0003H (as in the 8048) and continuing at eight-byte intervals. When an event enabled for interrupts occurs the CPU automatically executes an internal subroutine call to the corresponding address. A user subroutine starting at this location (or jumped to from this location) then performs the instructions to service that particular source. After completing the interrupt service routine, execution returns to the background program.

Table 3. 8051 Interrupt Sources and Service Vectors

Interrupt Source	Service Routine Starting Address
(Reset)	0000H
External 0	0003H
Timer/Counter 0	000BH
External 1	0013H
Timer/Counter 1	001BH
Serial Port	0023H

(MSB)							(LSB)				
EA	-		ES	ET1	EX1	ETO	EX0				
Sym	bol F	osition	Na	me an	nd Sig	nifica	nce	:	Symbol	Position	Name and Significance
EA	Ι	E.7 Enable All control bit. Cleared by software to disable all interrupts, independent of the state of IE.4-IE.0.					EXI	IE.2	Enable External interrupt 1 control bit. Set/cleared by software to enable/ disable interrupts from INT1.		
	I	E.6	(res	served)) .			1	ET0	IE.1	Enable Timer 0 control bit. Set/cleared
_	I	E.5	(res	served))						by software to enable/disable interrupts from timer/counter 0
ES	I	E.4	Ena	able So	erial p	ort co	ntrol bit.				
			Set/cleared by software to enable/ disable interrupts from TI or RI flags.)	EX0	IE.0	Enable External interrupt 0 control bit. Set/cleared by software to enable/ disable interrupts from INT0.	
ETI	I	E.3	Ena by : from	able T softwa m time	imer 1 ire to e er/cou	contr enable nter 1	ol bit. Set/cleare /disable interrup	ed pts			•

Figure 10. IE—Interrupt Enable Register

(MSB)		(LSB)			
-		PS PT1 PX1 PT0 PX0			
Symb	ol Position	Name and Significance	Symbol	Position	Name and Significance
	IP.7	(reserved)	PX1	IP.2	External interrupt 1 Priority control
	IP.6	(reserved)			bit. Set/cleared by software to specify
_	IP.5	(reserved)			high/low priority interrupts for INT1.
PS	IP.4	Serial port Priority control bit. Set/cleared by software to specify high/low priority interrupts for Serial port.	PT0	IP.I	Timer 0 Priority control bit. Set/cleared by software to specify high/low priority interrupts for timer/counter 0.
PT1	IP.3	Timer 1 Priority control bit. Set/cleared by software to specify high/low priority interrupts for timer/counter 1.	PX0	IP.0	External interrupt 0 Priority control bit. Set/cleared by software to specify high/low priority interrupts for INT0.

Figure 11. IP—Interrupt Priority Control Register

Table 4. MCS-51[™] Instruction Set Description

ARITH	METIC OPERAT			DATA 1	RANSFER (con	it.)			
Mnemor	nic	Description	Byte Cy	(C	Mnemor	nic	Description	Byte	Cyc
ADD	A.Rn	Add register to Accumulator	1 1	-	MOVC	A.@A+DPTR	Move Code byte relative to DPTR to A	1	2
ADD	A.direct	Add direct byte to Accumulator	2 i		MOVC	A @A+PC	Move Code byte relative to PC to A	i	2
ADD	A @Ri	Add indirect RAM to Accumulator	īi		MOVX	A.@Ri	Move External RAM (8-bit addr) to A	i	2
ADD	A.#data	Add immediate data to Accumulator	2 1		MOVX	A.@DPTR	Move External RAM (16-bit addr) to A	Í.	2
ADDC	A.Rn	Add register to Accumulator with Carry	1 1		MOVX	@Ri.A	Move A to External RAM (8-bit addr)	i	2
ADDC	A.direct	Add direct byte to A with Carry flag	2 1		MOVX	@DPTR.A	Move A to External RAM (16-bit addr)	1	2
ADDC	A.@Ri	Add indirect RAM to A with Carry flag	1 1		PUSH	direct	Push direct byte onto stack	2	2
ADDC	A,#data	Add immediate data to A with Carry flag	2 1		POP	direct	Pop direct byte from stack	2	2
SUBB	A,Rn	Subtract register from A with Borrow	1 1		ХСН	A,Rn	Exchange register with Accumulator	1	1
SUBB	A, direct	Subtract direct byte from A with Borrow	2 1		хсн	A, direct	Exchange direct byte with Accumulator	2	1
SUBB	A,@Ri	Subtract indirect RAM from A w/Borrow	1 1		хсн	A,@Ri	Exchange indirect RAM with A	1	1
SUBB	A,#data	Subtract immed. data from A w/Borrow	2 1		XCHD	A,@Ri	Exchange low-order Digit ind. RAM w/A	1	1
INC	A	Increment Accumulator	1 1						
INC	Kn .	Increment register			BOOLE	AN VARIABLE	MANIPULATION		
INC	direct	Increment direct byte	2 1		Mnemor	nic	Description	Ryte	Cvc
DEC		Decrement Accumulator			CLR	Č.	Clear Carry flag	1	i i
DEC	n Pr	Decrement Accumulator	1 1		CLR	bit	Clear direct bit	2	i
DEC	direct	Decrement direct byte	2 1		SETB	Ċ	Set Carry flag	ī	i
DEC	@Ri	Decrement indirect RAM	1 1		SETB	bit	Set direct Bit	2	1
INC	DPTR	Increment Data Pointer	1 2		CPL	С	Complement Carry flag	I.	1
MUL	AB	Multiply A & B	î ã		CPL	bit	Complement direct bit	2	1
DIV	AB	Divide A by B	i 4		ANL	C,bit	AND direct bit to Carry flag	2	2
DA	A	Decimal Adjust Accumulator	i i		ANL	C,/bit	AND complement of direct bit to Carry	2	2
					ORL	C,bit	OR direct bit to Carry flag	2	2
LOGIC	AL OPERATION	S			ORL	C,/bit	OR complement of direct bit to Carry	2	2
		D. 4. 4			MOV	C,bit	Move direct bit to Carry flag	2	
Mnemo	nic A Du	Destination	Byte Cy	yc	MOV	bit,C	Move Carry flag to direct bit	2	2
ANL	A, Kn	AND distant bute to Accumulator			DDOCD	AM AND MAC	UNE CONTROL		
ANL	A OP;	AND indirect Byte to Accumulator	4 1		PRUGR	AM AND MAC	HINE CONTROL		
ANI	A #data	AND immediate data to Accumulator	2 1		Mnemor	nic	Description	Byte	Cyc
ANL	direct A	AND Accumulator to direct byte	2 1		ACALL	addrll	Absolute Subroutine Call	2	Ž
ANL	direct #data	AND immediate data to direct byte	3 2		LCALL	addr16	Long Subroutine Call	3	2
ORL	A.Rn	OR register to Accumulator	ĨĨ		RET		Return from subroutine	1	2
ORL	A.direct	OR direct byte to Accumulator	2 1		RETI		Return from interrupt	1	2
ORL	A,@Ri	OR indirect RAM to Accumulator	1 1		AJMP	addrll	Absolute Jump	2	2
ORL	A,#data	OR immediate data to Accumulator	2 1		LJMP	addr16	Long Jump	3	2
ORL	direct,A	OR Accumulator to direct byte	2 1		SJMP	rel	Short Jump (relative addr)	2	2
ORL	direct,#data	OR immediate data to direct byte	32	2	JMP	@A+DPTR	Jump indirect relative to the DPTR	1	2
XRL	A,Rn	Exclusive-OR register to Accumulator	1 1		JZ IN 7	rei	Jump II Accumulator is Zero	4	2
XRL	A,direct	Exclusive-OR direct byte to Accumulator	2 1		IC	rel	Jump if Corry flag is set	2	2
XKL	A.@Ri	Exclusive-OR indirect RAM to A			INC	rel	Jump if No Carry flag	2	2
XKL	A,#data	Exclusive-OR immediate data to A	2 1		IR	hit rel	Jump if direct Rit set	ĩ	2
XRL VD1	direct,A	Exclusive-OR Accumulator to direct byte	2 1	,	INB	bit rel	Jump if direct Bit Not set	ž	2
CLP	A direct,#uata	Clear Accumulator	3 2		JBC	bit.rel	Jump if direct Bit is set & Clear bit	3	2
CPI	A .	Complement Accumulator	1		CJNE	A.direct.rel	Compare direct to A & Jump if Not Equal	3	2
RI	3	Rotate Accumulator Left	1 1		CJNE	A.#data.rel	Comp. immed. to A & Jump if Not Equal	3	2
RIC	A	Rotate A Left through the Carry flag	ii		CJNE	Rn,#data,rel	Comp. immed. to reg. & Jump if Not Equal	3	2
RR	A	Rotate Accumulator Right	i i		CJNE	@Ri,#data,rel	Comp. immed. to ind. & Jump if Not Equal	3	2
RRC	A	Rotate A Right through Carry flag	i i		DJNZ	Rn,rel	Decrement register & Jump if Not Zero	2	2
SWAP	A	Swap nibbles within the Accumulator	i i		DJNZ	direct, rel	Decrement direct & Jump if Not Zero	3	2
		•			NOP		No operation	1	1
DATA 1	RANSFER				N				1
Mnemo	nic	Description	Byte C.		P n	Working register	modes:		
MOV	ARn	Move register to Accumulator	J I	, c	direct	- 128 internal D A	M locations any L/O port control or status	regio	ter
MOV	A.direct	Move direct byte to Accumulator	2 1		@Ri	-Indirect interna	I RAM location addressed by register R0 or	RI	
MOV	A @Ri	Move indirect RAM to Accumulator	ĩi		#data	-8-bit constant in	ncluded in instruction		
MOV	A,#data	Move immediate data to Accumulator	2 1		#data16	-16-bit constant	included as bytes 2 & 3 of instruction		
MOV	Rn,A	Move Accumulator to register	1 1		bit	-128 software fla	ags, any I/O pin, control or status bit		
MOV	Rn,direct	Move direct byte to register	2 2	2					
MOV	Rn,#data	Move immediate data to register	2 1		Notes or	program address	sing modes:		
MOV	direct,A	Move Accumulator to direct byte	2 1		addr16	-Destination ad	dress for LCALL & LJMP may be anywh	nere v	vithin
MOV	direct,Rn	Move register to direct byte	2 2	2		the 64-Kilobyte	program memory address space.		
MOV	direct direct	Move direct byte to direct	3 2	-	addrll	-Destination ad	dress for ACALL & AJMP will be within	the	same
MOV	direct,@Ri	Move indirect RAM to direct byte	2 2			2-Kilobyte page	e of program memory as the first byte of the	e tollo	owing
MOV	OP: A	Move Accumulator to indirect BAM	3 2 1 1		ral	instruction.	anditional immediatelada on 8 hit -fft have	. D -	
MOV	@Ridirect	Move direct bute to indirect RAM	2 2	,	iei -	-55 MP and all C	conditional jumps include an s-bit offset byte	e. Kai	nge is
MOV	@Ri #data	Move immediate data to indirect RAM	2 1	i		·12//-128 Dyte	s relative to first byte of the following instru-	cuon.	
MOV	DPTR.#data16	Load Data Pointer with a 16-bit constant	3 2		All mpe	monics convright	ed © Intel Corporation 1979		
	2. Inc. durant	Sous Sula i onner with a ro-on constant	5 2	•	, in mile		ea e mei corporation 1777		

3. INSTRUCTION SET AND ADDRESSING MODES

The 8051 instruction set is extremely regular, in the sense that most instructions can operate with variables from several different physical or logical address spaces. Before getting deeply enmeshed in the instruction set proper, it is important to understand the details of the most common data addressing modes. Whereas Table 4 summarizes the instructions set broken down by functional group, this chapter starts with the addressing mode classes and builds to include the related instructions.

Data Addressing Modes

MCS-51 assembly language instructions consist of an operation mnemonic and zero to three operands separated by commas. In two operand instructions the destination is specified first, then the source. Many byte-wide data AFN-01502A operations (such as ADD or MOV) inherently use the accumulator as a source operand and/or to receive the result. For the sake of clarity the letter "A" is specified in the source or destination field in all such instructions. For example, the instruction,

ADD A,<source>

will add the variable<source>to the accumulator, leaving the sum in the accumulator.

The operand designated "<source>" above may use any of four common logical addressing modes:

- Register—one of the working registers in the currently enabled bank.
- Direct—an internal RAM location, I/O port, or special-function register.
- Register-indirect—an internal RAM location, pointed to by a working register.
- Immediate data—an eight-bit constant incorporated into the instruction.

The first three modes provide access to the internal RAM and Hardware Register address spaces, and may therefore be used as source or destination operands; the last mode accesses program memory and may be a source operand only.

(It is hard to show a "typical application" of any instruction without involving instructions not yet described. The following descriptions use only the self-explanatory ADD and MOV instructions to demonstrate how the four addressing modes are specified and used. Subsequent examples will become increasingly complex.)

Register Addressing

The 8051 programmer has access to eight "working registers," numbered R0-R7. The least-significant three-bits of the instruction opcode indicate one register within this logical address space. Thus, a function code and operand address can be combined to form a short (one byte) instruction (Figure 12.a).

The 8051 assembly language indicates register addressing with the symbol Rn (where n is from 0 to 7) or with a symbolic name previously defined as a register by the EQUate or SET directives. (For more information on assembler directives see the Macro Assembler Reference Manual.)

Example 1-Adding Two Registers Together

REGADR	ADD C	CONTENTS OF RE	EGISTER : GISTER O
; REGADR:	MOV	A, RO	
	ADD	A, R1	
	MOU	RO. A	

There are four such banks of working registers, only one of which is active at a time. Physically, they occupy the first 32 bytes of on-chip data RAM (addresses 0-1FH). PSW bits 4 and 3 determine which bank is active. A hardware reset enables register bank 0; to select a different bank the programmer modifies PSW bits 4 and 3 accordingly.

Example 2-Selecting Alternate Memory Banks

MOV PSW, #00010000B SELECT BANK 2

Register addressing in the 8051 is the same as in the 8048 family, with two enhancements: there are four banks rather than one or two, and 16 instructions (rather than 12) can access them.

Direct Byte Addressing

Direct addressing can access any on-chip variable or hardware register. An additional byte appended to the opcode specifies the location to be used (Figure 12.b).

Depending on the highest order bit of the direct address byte, one of two physical memory spaces is selected. When the direct address is between 0 and 127 (00H-7FH) one of the 128 low-order on-chip RAM locations is used. (Future microcomputers based on the MCS-51TM architecture may incorporate more than 128 bytes of on-chip RAM. Even if this is the case, only the low-order 128 bytes will be directly addressable. The remainder would be accessed indirectly or via the stack pointer.)

Example 3-Adding RAM Location Contents

All I/O ports and special function, control, or status registers are assigned addresses between 128 and 255 (80H-0FFH). When the direct address byte is between these limits the corresponding hardware register is accessed. For example, Ports 0 and 1 are assigned direct addresses 80H and 90H, respectively. A complete list is presented in Table 5. Don't waste your time trying to memorize the addresses in Table 5. Since programs using absolute addresses for function registers would be difficult to write or understand, ASM51 allows and understands the abbreviations listed instead.

Example 4-Adding Input Port Data to Output Port

D	ata		
; PRTADR ; ;	ADD DATA TO DATA ON PORT	A INPUT ON PORT 1 PREVIOUSLY OUTPUT 0.	
PRTADR	MOV ADD MOV	A, PO A, P1 P0, A	

Direct addressing allows all special-function registers in the 8051 to be read, written, or used as instruction operands. In general, this is the *only* method used for accessing I/O ports and special-function registers. If direct addressing is used with special-function register addresses other than those listed, the result of the instruction is undefined. The 8048 does not have or need any generalized direct addressing mode, since there are only five special registers (BUS, P1, P2, PSW, & T) rather than twenty. Instead, 16 special 8048 opcodes control output bits or read or write each register to the accumulator. These functions are all subsumed by four of the 27 direct addressing instructions of the 8051.

Table 5.	8051	Hardware	Register	Direct	Addresses
----------	------	----------	----------	--------	-----------

Register Add		Address	Function		
	P0	80H*	Port 0		
	SP	81H	Stack Pointer		
ļ	DPL	82H	Data Pointer (Low)		
	DPH	83H	Data Pointer (High)		
	TCON 4	88H*	Timer register		
	TMOD	89H	Timer Mode register		
	TL0	8AH	Timer 0 Low byte		
	TL1	8BH	Timer 1 Low byte		
	ТНО 8СН		Timer 0 High byte		
	THI 8DH		Timer 1 High byte		
	P1	90H*	Port I		
	SCON	98H*	Serial Port Control register		
SBUF 99H		99H	Serial Port data Buffer		
P2 0A0H*		0A0H*	Port 2		
IE 0A8H*		0A8H*	Interrupt Enable register		
P3 0B0H*		0B0H*	Port 3		
IP 0B8H*		0B8H*	Interrupt Priority register		
	PSW	0D0H*	Program Status Word		
	ACC	0E0H*	Accumulator (direct address)		
	B 0F0H*		B register		

* = bit addressable register.

Register-Indirect Addressing

How can you handle variables whose locations in RAM are determined, computed, or modified while the program is running? This situation arises when manipulating sequential memory locations, indexed entries within tables in RAM, and multiple precision or string operations. Register or Direct addressing cannot be used, since their operand addresses are fixed at assembly time.

The 8051 solution is "register-indirect RAM addressing." R0 and R1 of each register bank may operate as index or pointer registers, their contents indicating an address into RAM. The internal RAM location so addressed is the actual operand used. The least significant bit of the instruction opcode determines which register is used as the "pointer" (Figure 12.c).

In the 8051 assembly language, register-indirect addressing is represented by a commercial "at" sign ("@") preceding R0, R1, or a symbol defined by the user to be equal to R0 or R1.

Example 5-Indirect Addressing

INDADR	ADD CON ADDRESS TO CONT ADDRESS	TENTS OF MEMORY LOCATION ED BY REGISTER 1 ENTS OF RAM LOCATION ED BY REGISTER O
; INDADR:	MOV ADD MOV	A, ero A, eri ero, a

Indirect addressing on the 8051 is the same as in the 8048 family, except that all eight bits of the pointer register contents are significant; if the contents point to a non-existent memory location (i.e., an address greater than 7FH on the 8051) the result of the instruction is undefined. (Future microcomputers based on the MCS-51TM architecture could implement additional memory in the on-chip RAM logical address space at locations above 7FH.) The 8051 uses register-indirect addressing for five new instructions plus the 13 on the 8048.

Immediate Addressing

When a source operand is a constant rather than a variable (i.e.—the instruction uses a value known at assembly time), then the constant can be incorporated into the instruction. An additional instruction byte specifies the value used (Figure 12.d).

The value used is fixed at the time of ROM manufacture or EPROM programming and may not be altered during program execution. In the assembly language immediate operands are preceded by a number sign ("#"). The operand may be either a numeric string, a symbolic variable, or an arithmetic expression using constants.

Example 6—Adding Constants Using Immediate Addressing

; IMMADR ADD THE CONSTANT 12 (DECIMAL) ; TO THE CONSTANT 34 (DECIMAL), ; LEAVE SUM IN ACCUMULATOR, ; IMMADR, MOV A, #12 ADD A, #34

The preceding example was included for consistency; it has little practical value. Instead, ASM51 could compute the sum of two constants at assembly time.

Example 7—Adding Constants Using ASM51 Capabilities

ASMSUM LOAD ACC WITH THE SUM OF THE CONSTANT 12 (DECIMAL) AND THE CONSTANT 34 (DECIMAL). ASMSUM: MOV A,#(12+34)

Figure 12. Data Addressing Machine Code Formats

AFN-01502A

Addressing Mode Combinations

The above examples all demonstrated the use of the four data-addressing modes in two-operand instructions (MOV, ADD) which use the accumulator as one operand. The operations ADDC, SUBB, ANL, ORL, and XRL (all to be discussed later) could be substituted for ADD in each example. The first three modes may be also be used for the XCH operation or, in combination with the Immediate Addressing mode (and an additional byte), loaded with a constant. The one-operand instructions INC and DEC, DJNZ, and CJNE may all operate on the accumulator, or may specify the Register, Direct, and Register-indirect addressing modes. Exception: as in the 8048, DJNZ cannot use the accumulator or indirect addressing. (The PUSH and POP operations cannot inherently address the accumulator as a special register either. However, all three can *directly* address the accumulator as one of the twenty special-function registers by putting the symbol "ACC" in the operand field.)

Advantages of Symbolic Addressing

Like most assembly or higher-level programming languages, ASM51 allows instructions or variables to be given appropriate, user-defined symbolic names. This is done for instruction lines by putting a label followed by a colon (":") before the instruction proper, as in the above examples. Such symbols must start with an alphabetic character (remember what distinguished BACH from 0BACH?), and may include any combination of letters, numbers, question marks ("?") and underscores ("_"). For very long names only the first 31 characters are relevant.

Assembly language programs may intermix upper- and lower-case letters arbitrarily, but ASM51 converts both to upper-case. For example, ASM51 will internally process an "1" for an "i" and, of course, "A_TOOTH" for "a_tooth."

The underscore character makes symbols easier to read and can eliminate potential ambiguity (as in the label for a subroutine to switch two entires on a stack, "S_EXCHANGE"). The underscore is significant, and would distinguish between otherwise-identical character strings.

ASM51 allows *all* variables (registers, ports, internal or external RAM addresses, constants, etc.) to be assigned labels according to these rules with the EQUate or SET directives.

Example 8—Symbolic Addressing of Variables Defined as RAM Locations

VAR_0 VAR_1	SET	20H 21H
SYMB_1	ADD CONT	TENTS OF VAR_1 ENTS OF VAR_0
SYMB_1:	MOV ADD MOV	A, VAR_O A, VAR_1 VAR_0, A

Notice from Table 4 that the MCS-51[™] instruction set has relatively few instruction mnemonics (abbreviations) for the programmer to memorize. Different data types or addressing modes are determined by the operands specified, rather than variations on the mnemonic. For example, the mnemonic "MOV" is used by 18 different instructions to operate on three data types (bit, byte, and address). The fifteen versions which move byte variables between the logical address spaces are diagrammed in Figure 13. Each arrow shows the direction of transfer from source to destination.

Notice also that for most instructions allowing register addressing there is a corresponding direct addressing instruction and vice versa. This lets the programmer begin writing 8051 programs as if (s)he has access to 128 different registers. When the program has evolved to the point where the programmer has a fairly accurate idea how often each variable is used, he/she may allocate the working registers in each bank to the most "popular" variables. (The assembly cross-reference option will show exactly how often and where each symbol is referenced.) If symbolic addressing is used in writing the source program only the lines containing the symbol definition will need to be changed; the assembler will produce the appropriate instructions even though the rest of the program is left untouched. Editing only the first two lines of Example 8 will shrink the six-byte code segment produced in half.

How are instruction sets "counted"? There is no standard practice; different people assessing the same CPU using different conventions may arrive at different totals.

Each operation is then broken down according to the different addressing modes (or combinations of addressing modes) it can accommodate. The "CLR" mnemonic is used by two instructions with respect to bit variables ("CLR C" and "CLR bit") and once ("CLR A") with regards to bytes. This expansion yields the 111 separate instructions of Table 4.

The method used for the MCS-51® instruction set first breaks it down into "operations": a basic function applied to a single data type. For example, the four versions of the ADD instruction are grouped to form one operation addition of eight-bit variables. The six forms of the ANL instruction for *byte* variables make up a different operation; the two forms of ANL which operate on *bits* are considered still another. The MOV mnemonic is used by three different operation classes, depending on whether bit, byte; or 16-bit values are affected. Using this terminology the 8051 can perform 51 different operations.

Figure 13. Road map for moving data bytes

Example 9—Redeclaring Example 8 Symbols as Registers

Arithmetic Instruction Usage — ADD, ADDC, SUBB and DA

The ADD instruction adds a byte variable with the accumulator, leaving the result in the accumulator. The carry flag is set if there is an overflow from bit 7 and cleared otherwise. The AC flag is set to the carry-out from bit 3 for use by the DA instruction described later. ADDC adds the previous contents of the carry flag with the two byte variables, but otherwise is the same as ADD.

The SUBB (subtract with borrow) instruction subtracts the byte variable indicated and the contents of the carry flag together from the accumulator, and puts the result back in the accumulator. The carry flag serves as a "Borrow Required" flag during subtraction operations; when a greater value is subtracted from a lesser value (as in subtracting 5 from 1) requiring a borrow into the highest order bit, the carry flag is set; otherwise it is cleared.

When performing signed binary arithmetic, certain combinations of input variables can produce results which seem to violate the Laws of Mathematics. For example, adding 7FH (127) to itself produces a sum of 0FEH, which is the two's complement representation of -2 (refer back to Table 2)! In "normal" arithmetic, two positive values can't have a negative sum. Similarly, it is normally impossible to subtract a positive value from a negative value and leave a positive result — but in two's complement there are instances where this too may happen. Fundamentally, such anomolies occur when the magnitude of the resulting value is too great to "fit" into the seven bits allowed for it; there is no one-byte two's complement representation for 254, the true sum of 127 and 127. The MCS-51TM processors detect whether these situations occur and indicate such errors with the OV flag. (OV may be tested with the conditional jump instructions JB and JNB, described under the Boolean Processor chapter.)

At a hardware level, OV is set if there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not out of bit 6. When adding signed integers this indicates a negative number produced as the sum of two positive operands, or a positive sum from two negative operands; on SUBB this indicates a negative result after subtracting a negative number from a positive number, or a positive result when a positive number is subtracted from a negative number.

The ADDC and SUBB instructions incorporate the previous state of the carry (borrow) flag to allow multiple precision calculations by repeating the operation with successively higher-order operand bytes. In either case, the carry must be cleared before the first iteration.

If the input data for a multiple precision operation is an unsigned string of integers, upon completion the carry flag will be set if an overflow (for ADDC) or underflow (for SUBB) occurs. With two's complement signed data (i.e., if the most significant bit of the original input data indicates the sign of the string), the overflow flag will be set if overflow or underflow occurred.

Example 10-String Subtraction with Signed Overflow Detection

; SUBSTR ; ;	SUBTRAC FROM ST PRECISIO CHECK FO	I STRING INDICATED BY R1 Ring Indicated by R0 T0 DN INDICATED BY R2. DR SIGNED UNDERFLOW WHEN DONE.
SUBSTR	CLR	C ; BORROW= O.
SUBS1:	MOV	A, eRO
	SUBB	A, @R1 ; SUBTRACT NEXT PLACE
	MOV	ERO, A
	INC	RO ; BUMP POINTERS
	INC	R1
	DJNZ	R2, SUBS1 ; LOOP AS NEEDED
,		WHEN DONE, TEST IF OVERFLOW OCCURED
1		ON LAST ITERATION OF LOOP.
	JNB	סע, סע_מג
1		(OVERFLOW RECOVERY ROUTINE)
OV_OK:	RET	RETURN

Decimal addition is possible by using the DA instruction in conjunction with ADD and/or ADDC. The eight-bit binary value in the accumulator resulting from an earlier addition of two variables (each a packed BCD digit-pair) is adjusted to form two BCD digits of four bits each. If the contents of accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag had been set, six is added to the accumulator producing the proper BCD digit in the low-order nibble. (This addition might itself set — but would not clear — the carry flag.) If the carry flag is set, or if the four high-order bits now exceed nine (1010xxxx-1111xxxx), these bits are incremented by six. The carry flag is left set if originally set or if either addition of six produces a carry out of the highest-order bit, indicating the sum of the original two BCD variables is greater than or equal to decimal 100.

Example 11—Two Byte Decimal Add with Registers and Constants

; BCDADI	O ADD TH CONTEN (ALREA	E CONSTANT 1,234 (DECIMAL) TO THE TS OF REGISTER PAIR (R3>(R2> DY A 4 BCD-DIGIT VARIABLE)
BCDADD	MOV ADD DA MOV ADDC DA MOV RET	A, R2 A, #34H A R2, A A, R3 A, #12H A R3, A

Multiplication and Division

The instruction "MUL AB" multiplies the unsigned eight-bit integer values held in the accumulator and Bregisters. The low-order byte of the sixteen-bit product is left in the accumulator, the higher-order byte in B. If the high-order eight-bits of the product are all zero the overflow flag is cleared; otherwise it is set. The programmer can poll OV to determine when the B register is non-zero and must be processed.

"DIV AB" divides the unsigned eight-bit integer in the accumulator by the unsigned eight-bit integer in the B-register. The integer part of the quotient is returned in the accumulator; the remainder in the B-register. If the B-register originally contained 00H then the overflow flag will be set to indicate a division error, and the values returned will be undefined. Otherwise OV is cleared.

The divide instruction is also useful for purposes such as radix conversion or separating bit fields of the accumulator. A short subroutine can convert an eight-bit unsigned binary integer in the accumulator (between 0 & 255) to a three-digit (two byte) BCD representation. The hundred's digit is returned in one register (HUND) and the ten's and one's digits returned as packed BCD in another (TENONE).

Example 12—Use of DIV Instruction for Radix Conversion

; BINBCD	CONVERT TO 3-DI HUNDRED TENS' A	8-BIT B GIT PACK S' PLACE ND ONES'	INARY VARIABLE IN ACC ED BCD FORMAT LEFT IN VARIABLE 'HUND', PLACES IN 'TENONE'
	FOU	214	
TENONE	EGU	210	
TENUNE	EGO	2211	
4			
BINBCD	MOV	B,#100	; DIVIDE BY 100 TO
	DIV	AB	DETERMINE NUMBER OF HUNDREDS
	MOV	HUND, A	
	MOV	A, #10	DIVIDE REMAINDER BY 10 TO
	XCH `	A. R	DETERMINE # OF TENS LEFT
	DIV	AR	TENS DIGIT IN ACC. REMAINDER IS ONES
	514		BIOIT
			101011
	SWAP	A	
	ADD	A, B	PACK BCD DIGITS IN ACC
	MOV	TENONE,	A
	RET		

The divide instruction can also separate eight bits of data in the accumulator into sub-fields. For example, packed BCD data may be separated into two nibbles by dividing the data by 16, leaving the high-nibble in the accumulator and the low-order nibble (remainder) in B. The two digits may then be operated on individually or in conjunction with each other. This example receives two packed BCD digits in the accumulator and returns the product of the two individual digits in packed BCD format in the accumulator.

Example 13—Implementing a BCD Multiply Using MPY and DIV

; MULBCD	UNPACK FIND TH IN PACK	TWO BCD EIR PROD ED BCD F	DIGITS RECEIVED IN ACC, UCT, AND RETURN PRODUCT ORMAT IN ACC.
MULBCD:	MOV DIV	B,#10H AB	DIVIDE INPUT BY 16 A & B HOLD SEPARATED DIGITS (FACH RIGHT JUSTIFIED IN REGISTER).
	MUL	AB	; A HOLDS PRODUCT IN BINARY FORMAT (0 - ;99(DECIMAL) = 0 - 63H)
	MOV	B,#10	DIVIDE PRODUCT BY 10.
	DIV	AB	A HOLDS # OF TENS, B HOLDS REMAINDER
	SWAP	A	
	ORL RET	A, B	PACK DIGITS

Logical Byte Operations — ANL, ORL, XRL

The instructions ANL, ORL, and XRL perform the logical functions AND, OR, and/or Exclusive-OR on the two byte variables indicated, leaving the results in the first. No flags are affected. (A word to the wise — do not vocalize the first two mnemonics in mixed company.)

These operations may use all the same addressing modes as the arithmetics (ADD, etc.) but unlike the arithmetics, they are not restricted to operating on the accumulator. Directly addressed bytes may be used as the destination with either the accumulator or a constant as the source. These instructions are useful for clearing (ANL), setting (ORL), or complementing (XRL) one or more bits in a RAM, output ports, or control registers. The pattern of bits to be affected is indicated by a suitable mask byte. Use immediate addressing when the pattern to be affected is known at assembly time (Figure 14); use the accumulator versions when the pattern is computed at run-time.

I/O ports are often used for parallel data in formats other than simple eight-bit bytes. For example, the low-order five bits of port 1 may output an alphabetic character code (hopefully) without disturbing bits 7-5. This can be a simple two-step process. First, clear the low-order five pins with an ANL instruction; then set those pins corresponding to ones in the accumulator. (This example assumes the three high-order bits of the accumulator are originally zero.)

Example 14—Reconfiguring Port Size with Logical Byte Instructions

OUT_PX: ANL P1.#1100000B ;CLEAR BITS P1.4 - P1.0 ORL P1.A ;STP1 PINS CORRESONDING TO SET ACC RET ; BITS.

		<u> </u>
opcode	direct address	mask
ANL	P1,	#data

Figure 14. Instruction Pattern for Logical Operation Special Addressing Modes
In this example, low-order bits remaining high may "glitch" low for one machine cycle. If this is undesirable, use a slightly different approach. First, set all pins corresponding to accumulator one bits, then clear the pins corresponding to zeroes in low-order accumulator bits. Not all bits will change from original to final state at the same instant, but no bit makes an intermediate transition.

Example 15—Reconfiguring I/O Port Size without Glitching

Program Control — Jumps, Calls, Returns

Whereas the 8048 only has a single form of the simple jump instruction, the 8051 has three. Each causes the program to unconditionally jump to some other address. They differ in how the machine code represents the destination address.

LJMP (Long Jump) encodes a sixteen-bit address in the second and third instruction bytes (Figure 15.a); the destination may be anywhere in the 64 Kilobyte program memory address space.

The two-byte AJMP (Absolute Jump) instruction encodes its destination using the same format as the 8048: address bits 10 through 8 form a three bit field in the opcode and address bits 7 through 0 form the second byte (Figure 15.b). Address bits 15-12 are unchanged from the (incremented) contents of the P.C., so AJMP can only be used when the destination is known to be within the same 2K memory block. (Otherwise ASM51 will point out the error.)

A different two-byte jump instruction is legal with any nearby destination, regardless of memory block boundaries or "pages." SJMP (Short Jump) encodes the destination with a program counter-relative address in the second byte (Figure 15.c). The CPU calculates the

Figure 15. Jump Instruction Machine Code Formats destination at run-time by adding the signed eight-bit displacement value to the incremented P.C. Negative offset values will cause jumps up to 128 bytes backwards; positive values up to 127 bytes forwards. (SJMP with 00H in the machine code offset byte will proceed with the following instruction).

In keeping with the 8051 assembly language goal of minimizing the number of instruction mnemonics, there is a "generic" form of the three jump instructions. ASM51 recognizes the mnemonic JMP as a "pseudo-instruction," translating it into the machine instructions LJMP, AJMP, or SJMP, depending on the destination address.

Like SJMP, all conditional jump instructions use relative addressing. JZ (Jump if Zero) and JNZ (Jump if Not Zero) monitor the state of the accumulator as implied by their names, while JC (Jump on Carry) and JNC (Jump on No Carry) test whether or not the carry flag is set. All four are two-byte instructions, with the same format as Figure 15.c. JB (Jump on Bit), JNB (Jump on No Bit) and JBC (Jump on Bit then Clear Bit) can test any status bit or input pin with a three byte instruction; the second byte specifies which bit to test and the third gives the relative offset value.

There are two subroutine-call instructions, LCALL (Long Call) and ACALL (Absolute Call). Each increments the P.C. to the first byte of the following instruction, then pushes it onto the stack (low byte first). Saving both bytes increments the stack pointer by two. The subroutine's starting address is encoded in the same ways as LJMP and AJMP. The generic form of the call operation is the mnemonic CALL, which ASM51 will translate into LCALL or ACALL as appropriate.

The return instruction RET pops the high- and low-order bytes of the program counter successively from the stack, decrementing the stack pointer by two. Program execution continues at the address previously pushed: the first byte of the instruction immediately following the call.

When an interrupt request is recognized by the 8051 hardware, two things happen. Program control is automatically "vectored" to one of the interrupt service routine starting addresses by, in effect, forcing the CPU to process an LCALL instead of the next instruction. This automatically stores the return address on the stack. (Unlike the 8048, no status information is automatically saved.)

Secondly, the interrupt logic is disabled from accepting any other interrupts from the same or lower priority. After completing the interrupt service routine, executing an RETI (Return from Interrupt) instruction will return execution to the point where the background program was interrupted — just like RET — while restoring the interrupt logic to its previous state.

Operate-and-branch instructions — CJNE, DJNZ

Two groups of instructions combine a byte operation with a conditional jump based on the results.

CJNE (Compare and Jump if Not Equal) compares two byte operands and executes a jump if they disagree. The carry flag is set following the rules for subtraction: if the unsigned integer value of the first operand is less than that of the second it is set; otherwise, it is cleared. However, neither operand is modified.

The CJNE instruction provides, in effect, a oneinstruction "case" statement. This instruction may be executed repeatedly, comparing the code variable to a list of "special case" value: the code segment following the instruction (up to the destination label) will be executed only if the operands match. Comparing the accumulator or a register to a series of constants is a convenient way to check for special handling or error conditions; if none of the cases match the program will continue with "normal" processing.

A typical example might be a word processing device which receives ASCII characters through the serial port and drives a thermal hard-copy printer. A standard routine translates "printing" characters to bit patterns, but control characters ($\langle DEL \rangle, \langle CR \rangle, \langle LF \rangle, \langle BEL \rangle, \langle ESC \rangle, or \langle SP \rangle$) must invoke corresponding special routines. Any other character with an ASCII code less than 20H should be translated into the $\langle NUL \rangle$ value, 00H, and processed with the printing characters.

Example 16-Case Statements Using CJNE

CHAR	EQU	R7 / CH	ARACTER CODE V	ARIABLE
INTERP:	CUNE	CHAR, #7FH, I	NTP 1	
;	RET	(SP	ECIAL ROUTINE	FOR RUBOUT CODE)
INTP_1:	CUNE	CHAR, #07H, I	NTP_2	
, _	RET	(SP	ECIAL ROUTINE	FOR BELL CODE)
INTP_2:	CUNE	CHAR, #OAH, I	NTP 3	
	RET	(SP	ECIAL ROUTINE	FOR LFEED CODE)
INTP 3:	CUNE	CHAR, #ODH, I	NTP 4	
,	RET	(SP	ECIAL ROUTINE	FOR RETURN CODE)
INTP_4:	CUNE	CHAR, #1BH, I	NTP 5	
, –	RET	(SP	ECIAL ROUTINE	FOR ESCAPE CODE)
INTP_5:	CUNE	CHAR, #20H, 1	NTP_6	
· _	RET	(SP	ECIAL ROUTINE	FOR SPACE CODE)
INTP 6:	JC	PRINTC ; JU	MP IF CODE > 2	он
-	MOV	CHAR, #0 ; RE	PLACE CONTROL	CHARACTERS WITH
PRINTC		PR	DCESS STANDARD	PRINTING
,		; C	HARACTER	
	RET			

DJNZ (Decrement and Jump if Not Zero) decrements the register or direct address indicated and jumps if the result is not zero, without affecting any flags. This provides a simple means for executing a program loop a given number of times, or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction. For example, a 99-usec. software delay loop can be added to code forcing an I/O pin low with only two instructions.

Example 17-Inserting a Software Delay with DJNZ

MOV R2,#4	9
DJNZ R2, \$	
SETB WR	

The dollar sign in this example is a special character meaning "the address of this instruction." It is useful in eliminating instruction labels on the same or adjacent source lines. CJNE and DJNZ (like all conditional jumps) use program-counter relative addressing for the destination address.

Stack Operations — PUSH, POP

The PUSH instruction increments the stack pointer by one, then transfers the contents of the single byte variable indicated (direct addressing only) into the internal RAM location addressed by the stack pointer. Conversely, POP copies the contents of the internal RAM location addressed by the stack pointer to the byte variable indicated, then decrements the stack pointer by one.

(Stack Addressing follows the same rules, and addresses the same locations as Register-indirect. Future microcomputers based on the MCS-51TM CPU could have up to 256 bytes of RAM for the stack.)

Interrupt service routines must not change any variable or hardware registers modified by the main program, or else the program may not resume correctly. (Such a change might look like a spontaneous random error.) Resources used or altered by the service routine (Accumulator, PSW, etc.) must be saved and restored to their previous value before returning from the service routine. PUSH and POP provide an efficient and convenient way to save register states on the stack.

Example 18-Use of the Stack for Status Saving on Interrupts

LOC_TMP	EQU	\$	REMEMBER LOCATION COUNTER
,	ORG LJMP	0003H SERVER	STARTING ADDRESS FOR INTERRUPT ROUTINE JUMP TO ACTUAL SERVICE ROUTINE LOCATED JELSEWHERE
;	080		PERTORE LOCATION COUNTER
SERVER	PUSH	PSW 100	RESTORE LOCATION COUNTER
	PUSH	ACC	; SAVE ACCUMULATOR (NOTE DIRECT ADDRESSING ; NOTATION)
	PUSH	в	SAVE B REGISTER
	PUSH	DPL	SAVE DATA POINTER
	PUSH	DPH	1
	MOV	PSW, #000	DO1000B SELECT REGISTER BANK 1
1			
;	POP POP POP	DPH DPL B	RESTORE REGISTERS IN REVERSE ORDER
	POP	ACC	DESTORE BOU AND RE-SELECT ORIGINAL
	rur	FOW	; REGISTER BANK
	RETI		RETURN TO MAIN PROGRAM AND RESTORE

If the SP register held 1FH when the interrupt was detected, then while the service routine was in progress the stack would hold the registers shown in Figure 16; SP would contain 26H.

The example shows the most general situation; if the service routine doesn't alter the B-register and data pointer, for example, the instructions saving and restoring those registers would not be necessary.

The stack may also pass parameters to and from subroutines. The subroutine can indirectly address the parameters derived from the contents of the stack pointer.

Figure 16. Stack contents during interrupt

One advantage here is simplicity. Variables need not be allocated for specific parameters, a potentially large number of parameters may be passed, and different calling programs may use different techniques for determining or handling the variables.

For example, the following subroutine reads out a parameter stored on the stack by the calling program, uses the low order bits to access a local look-up table holding bit patterns for driving the coils of a four phase stepper motor, and stores the appropriate bit pattern back in the same position on the stack before returning. The accumulator contents are left unchanged.

Example 19—Passing Variable Parameters to Subroutines Using the Stack

NXTPOS	MOV	RO, SP
	DEC	RO ; ACCESS LOCATION PARAMETER PUSHED INTO
	DEC	RO
	хсн	A, GRO ; READ INPUT PARAMETER AND SAVE
		ACCUMULATUR
	ANL	A, #O3H ; MASK ALL BUT LOW-ORDER TWO BITS
	ADD	A, #2 ; ALLOW FOR OFFSET FROM MOVE TO TABLE
	MOVC	A, @A+PC ; READ LOOK-UP TABLE ENTRY
	хсн	A. GRO ; PASS BACK TRANSLATED VALUE AND RESTORE
		ACC
	RET	RETURN TO BACKGROUND PROGRAM
STPTBL	DB	01101111B ; POSITION 0
	DB .	01011111B ; POSITION 1
	DB	10011111B POSITION 2
	DB	10101111B ; POSITION 3

The background program may reach this subroutine with several different calling sequences, all of which PUSH a value before calling the routine and POP the result after. A motor on Port 1 may be initialized by placing the desired position (zero) on the stack before calling the subroutine and outputing the results directly to a port afterwards.

Example 20—Sending and Receiving Data Parameters Via the Stack

CLR	A
PUSH	ACC
CALL	NXTPOS
POP	P1

If the position of the motor is determined by the contents of variable POSM1 (a byte in internal RAM) and the position of a second motor on Port 2 is determined by the data input to the low-order nibble of Port 2, a sixinstruction sequence could update them both.

Example	21-Loading and	Unloading	Stack	Direct
	from I/O Po	rts		

L	EQU	51
	PUSH	POSM1
	CALL	NX TPOS
	POP	P1
	PUSH	P2
	CALL	NXTPOS
	POP	P2

POSM

Data Pointer and Table Look-up instructions — MOV, INC, MOVC, JMP

The data pointer can be loaded with a 16-bit value using the instruction MOV DPTR, #data16. The data used is stored in the second and third instruction bytes, highorder byte first. The data pointer is incremented by INC DPTR. A 16-bit increment is performed; an overflow from the low byte will carry into the high-order byte. Neither instruction affects any flags.

The MOVC (Move Constant) instructions (MOVC A,@A+DPTR and MOVC A,@A+PC) read into the accumulator bytes of data from the program memory logical address space. Both use a form of indexed addressing: the former adds the unsigned eight-bit accumulator contents with the sixteen-bit data pointer register, and uses the resulting sum as the address from which the byte is fetched. A sixteen-bit addition is performed; a carry-out from the low-order eight bits may propagate through higher-order bits, but the contents of the DPTR are not altered. The latter form uses the incremented program counter as the "base" value instead of the DPTR (figure 17). Again, neither version affects the flags.

Figure 17. Operation of MOVC instructions

Each can be part of a three step sequence to access lookup tables in ROM. To use the DPTR-relative version, load the Data Pointer with the starting address of a lookup table; load the accumulator with (or compute) the index of the entry desired; and execute MOVC A,@A+DPTR. Unlike the similar MOVP3 instructions in the 8048, the table may be located anywhere in program memory. The data pointer may be loaded with a constant for short tables. Or to allow more complicated data structures, or tables with more than 256 entries, the values for DPH and DPL may be computed or modified with the standard arithmetic instruction set.

The PC-relative version has the advantage of not affecting the data pointer. Again, a look-up sequence takes three steps: load the accumulator with the index; compensate for the offset from the look-up instruction to the start of the table by adding the number of bytes separating them to the accumulator; then execute the MOVC A,@A+PC instruction.

Let's look at a non-trivial situation where this instruction would be used. Some applications store large multidimensional look-up tables of dot matrix patterns, nonlinear calibration parameters, and so on in a linear (onedimensional) vector in program memory. To retrieve data from the tables, variables representing matrix indices must be converted to the desired entry's memory address. For a matrix of dimensions (MDIMEN x NDIMEN) starting at address BASE and respective indices INDEXI and INDEXJ, the address of element (INDEXI, INDEXJ) is determined by the formula,

Entry Address = BASE + (NDIMEN x INDEXI) + INDEXJ

The code shown below can access any array with less than 255 entries (i.e., an 11x21 array with 231 elements). The table entries are defined using the Data Byte ("DB") directive, and will be contained in the assembly object code as part of the accessing subroutine itself.

Example 22—Use of MPY and Data Pointer Instructions to Access Entries from a Multidimensional Look-Up Table in ROM

HATRX1	LOAD CO TABLE I USING L THE TOT BE SMAL TABLE U DESIRED [(BASE	NSTANT R N PROGRA OCAL TAB AL NUMBE L, I.E. SED IN T ENTRY A ADDRESS	EAD FROM THO DIMENSIONAL LOOK-UP M MEMORY INTO ACCUMULATOR LE LOOK-UP INSTRUCTION, MOVC A.@A+PC R OF TABLE ENTRIES IS ASSUMED TO LESS THAN ABOUT 250 ENTRIES.) HIS EXAMPLE IS (11 X 21) DDRESS IS CIVEN BY THE FORMULA,) + (21 X INDEXI) + (INDEXJ)]
	EQUI	P.6	EIRST COORDINATE OF ENTRY (0-10)
INDEX	FOU	234	SECOND COORDINATE OF ENTRY (0-20)
1			
MATRX1:	MOV	A, INDEX	I
	MOV	B.#21	
	MUL	AB	
	ADD	A, INDEX	J
;	ALLOW F	DR INSTR	UCTION BYTE BETWEEN "MOVC" AND
;	ENTRY (0,0).	
	INC	A	
	MOVC	A, @A+PC	
	RET		
BASE1:	DB	1	; (entry 0,0)
	DB	2	; (entry O, 1)
;	+ t;		
	DB	21	; (entry 0,20)
	DB	22	; (entry 1.0)
;	11		
	DB	42	; (entry 1,20)
1			
,			
	UB	231	; (entru 10, 20)

There are several different means for branching to sections of code determined or selected at run time. (The single destination addresses incorporated into conditional and unconditional jumps are, of course, determined at assembly time). Each has advantages for different applications.

The most common is an N-way conditional jump based on some variable, with all of the potential destinations known at assembly time. One of a number of small routines is selected according to the value of an index variable determined while the program is running. The most efficient way to solve this problem is with the MOVC and an indirect jump instruction, using a short table of one byte offset values in ROM to indicate the relative starting addresses of the several routines.

JMP @A+DPTR is an instruction which performs an indirect jump to an address determined during programi execution. The instruction adds the eight-bit unsigned accumulator contents with the contents of the sixteen-bit data pointer, just like MOVC A,@A+DPTR. The resulting sum is loaded into the program counter and is used as the address for subsequent instruction fetches. Again, a sixteen-bit addition is performed; a carry out from the low-order eight bits may propagate through the higher-order bits. In this case, neither the accumulator contents nor the data pointer is altered.

The example subroutine below reads a byte of RAM into the accumulator from one of four alternate address spaces, as selected by the contents of the variable MEMSEL. The address of the byte to be read is determined by the contents of R0 (and optionally R1). It might find use in a printing terminal application, where four different model printers all use the same ROM code but use different types and sizes of buffer memory for different speeds and options.

Example 23—N-Way Branch and Computed Jump Instructions via JMP @ ADPTR

MEMSEL	EQU	R3							
JUMP 4:	MOV	A, MEMSEL							
-	MOV	DPTR, #JP	PTBL						
	MOVC	A, CA+DPT	R						
	JMP	@A+DPTR							
JMPTBL:	DB	MEMSPO-	MPTBL						
	DB	MEMSP1-	MPTBL						
	DB	MEMSP2-	MPTBL						
	DB	MEMSP3-	MPTBL						
MEMSPO:	MOV	A, GRO	READ	FROM	INTE	RNAL P	MAF		
	RET								
MEMSP1:	MOVX	A, eRO	READ	FROM	256	BYTES	OF	EXTERNAL	RAM
	RET								
MEMSP2:	MOV	DPL, RO							
	MOV DPH,	R1							
	MOVX	A, EDPTR	READ	FROM	64K	BYTES	OF	EXTERNAL	RAM
	RET								
MEMSP3:	MOV	A, R1							
	ANL	A, #07H							
	ANL	P1,#1111	1000B						
	ORL	P1, A							
	MOVX	A, ERO	; READ	FROM	4K I	BYTES (JF 6	EXTERNAL I	RAM
	RET								

Note that this approach is suitable whenever the size of jump table plus the length of the alternate routines is less than 256 bytes. The jump table and routines may be located anywhere in program memory, independent of 256-byte program memory pages.

For applications where up to 128 destinations must be selected, all of which reside in the same 2K page of program memory which may be reached by the two-byte absolute jump instructions, the following technique may be used. In the above mentioned printing terminal example, this sequence could "parse" 128 different codes for ASCII characters arriving via the 8051 serial port.

Example 24—N-Way Branch with 128 Optional Destinations

OPTION	EQU	R3
1	1.12	and the second
; JMP128:	MDV RL MDV JMP	A, OPTION A , MULTIPLY BY 2 FOR 2 BYTE JUMP TABLE DPTR, #INSTBL , FIRST ENTRY IN JUMP TABLE GA-DPTR , JUMP INTD JUMP TABLE
;		A CARACTER AND A CARA
INSTBL	AJMP	PROCOO ; 128 CONSECUTIVE
	AJMP AJMP	PROCO1 ; AJMP INSTRUCTIONS PROCO2
;		A MARKET CONTRACTOR OF A MARKET CONTRACTOR OF A MARKET CONTRACTOR OF A MARKET CONTRACTOR OF A MARKET CONTRACTOR
, '	AJMP	PROCZE
1	AJMP	PRUC7F

The destinations in the jump table (PROC00-PROC7F) are not all necessarily unique routines. A large number of special control codes could each be processed with their own unique routine, with the remaining printing characters all causing a branch to a common routine for entering the character into the output queue.

In those rare situations where even 128 options are insufficient, or where the destination routines may cross a 2K page boundary, the above approach may be modified slightly as shown below.

Example 25-256-Way Branch Using Address Look-Up Tables

RTEMP	EQU	R7	
, JMP256:	MOV	DPTR, #ADRTBL A, OPTION	FIRST ENTRY IN TABLE OF ADDRESSES
		A LOW128	MULTIPLY BY 2 FOR 2 BYTE JUMP TABLE
LOW128:	MOV MOVC XCH.	DPH RTEMP, A A, @A+DPTR A, RTEMP	SAVE ACC FOR HIGH BYTE READ READ LOW BYTE FROM JUMP TABLE
	MOVC PUSH	A, @A+DPTR ACC	GET LOW-ORDER BYTE FROM TABLE
	MOVC	A, @A+DPTR ACC	GET HIGH-ORDER BYTE FROM TABLE
2 2	THE TWO	ACC PUSHES HA RN ADDRESS" ON DESIRED STARTI	VE PRODUCED THE STACK WHICH CORRESPONDS NG ADDRESS
;	IT MAY INTO TH RET	BE REACHED BY E PC:	POPPING THE STACK
; ADRTBL:	DW DW	PROCOO UP T PROCO1 WORD	0 256 CONSECUTIVE DATA S INDICATING STARTING ADDRESSES
а 1	DW	PROCFF	
1 1 1	DUMMY C	ODE ADDRESS DE MPLES:	FINITIONS NEEDED BY ABOVE
PROCOO PROCO1 PROCO2 PROCO2	NOP NOP NOP NOP		
PROC7F: PROCFF:	NOP		

4. BOOLEAN PROCESSING INSTRUCTIONS

The commonly accepted terms for tasks at either end of the computational vs. control application spectrum are, respectively, "number-crunching" and "bit-banging". Prior to the introduction of the MCS-51[™] family, nice number-crunchers made bad bit-bangers and vice versa. The 8051 is the industry's first single-chip microcomputer designed to crunch **and** bang. (In some circles, the latter technique is also referred to as "bit-twiddling". Either is correct.)

Direct Bit Addressing

A number of instructions operate on Boolean (one-bit) variables, using a direct bit addressing mode comparable to direct byte addressing. An additional byte appended to the opcode specifies the Boolean variable, I/O pin, or control bit used. The state of any of these bits may be tested for "true" or "false" with the conditional branch instructions JB (Jump on Bit) and JNB (Jump on Not Bit). The JBC (Jump on Bit and Clear) instruction combines a test-for-true with an unconditional clear.

As in direct byte addressing, bit 7 of the address byte switches between two physical address spaces. Values between 0 and 127 (00H-7FH) define bits in internal RAM locations 20H to 2FH (Figure 18a); address bytes between 128 and 255 (80H-0FFH) define bits in the 2 x "special-function" register address space (Figure 18b). If no 2 x "special-function" register corresponds to the direct bit address used the result of the instruction is undefined.

Bits so addressed have many wondrous properties. They may be set, cleared, or complemented with the two byte instructions SETB, CLR, or CPL. Bits may be moved to and from the carry flag with MOV. The logical ANL and ORL functions may be performed between the carry and either the addressed bit or its complement.

Bit Manipulation Instructions — MOV

The "MOV" mnemonic can be used to load an addressable bit into the carry flag ("MOV C, bit") or to copy the state of the carry to such a bit ("MOV bit, C"). These instructions are often used for implementing serial I/O algorithms via software or to adapt the standard I/O port structure.

It is sometimes desirable to "re-arrange" the order of I/O pins because of considerations in laying out printed circuit boards. When interfacing the 8051 to an immediately adjacent device with "weighted" input pins, such as keyboard column decoder, the corresponding pins are likely to be not aligned (Figure 19).

There is a trade-off in "scrambling" the interconnections with either interwoven circuit board traces or through software. This is extremely cumbersome (if not impossible) to do with byte-oriented computer architectures. The 8051's unique set of Boolean instructions makes it simple to move individual bits between arbitrary locations.

Example 26-Re-ordering I/O Port Configuration

OUT_PZ:	RRC	A	MOVE DRIGINAL ACC. O INTO CY
	MOV	P2. 6, C	STORE CARRY TO PIN P26
	RRC	A	MOVE ORIGINAL ACC. 1 INTO CY
	MOV	P2. 5, C	STORE CARRY TO PIN P25
	RRC	Α	; MOVE ORIGINAL ACC. 2 INTO CY
	MOV	P2. 4, C	STORE CARRY TO PIN P24
	RRC	A	; MOVE DRIGINAL ACC. 3 INTO CY
	MOV	P2. 3, C	STORE CARRY TO PIN P23
	RRC	A	MOVE ORIGINAL ACC. 4 INTO CY
	MOV	P2. 2, C	STORE CARRY TO PIN P22
	RET		

Solving Combinatorial Logic Equations - ANL, ORL

Virtually all hardware designers are familiar with the problem of solving complex functions using combinatorial logic. The technologies involved may vary greatly, from multiple contact relay logic, vacuum tubes, TTL, or CMOS to more esoteric approaches like fluidics, but in each case the goal is the same: a Boolean (true/false) function is computed on a number of Boolean variables.

Figure 20. Implementations of Boolean functions

Figure 20 shows the logic diagram for an arbitrary function of six variables named U through Z using standard logic and relay logic symbols. Each is a solution of the equation,

$$Q = (U \cdot (V + W)) + (X \cdot \overline{Y}) + \overline{Z}$$

(While this equation could be reduced using Karnaugh Maps or algebraic techniques, that is not the purpose of this example. Even a minor change to the function equation would require re-reducing from scratch.)

Most digital computers can solve equations of this type with standard word-wide logical instructions and conditional jumps. Still, such software solutions seem somewhat sloppy because of the many paths through the program the computation can take.

Assume U and V are input pins being read by different input ports; W and X are status bits for two peripheral controllers (read as I/O ports), and Y and Z are software flags set or cleared earlier in the program. The end result must be written to an output pin on some third port.

For the sake of comparison we will implement this function with software drawn from three proper subsets of the MCS-51[™] instruction set. The first two implementations follow the flow chart shown in Figure 21. Program flow would embark on a route down a testand-branch tree and leaves either the "True" or "Not True" exit ASAP. These exits then write the output port with the data previously written to the same port with the result bit respectively one or zero.

In the first case, we assume there are no instructions for addressing individual bits other than special flags like the carry. This is typical of many older microprocessors and mainframe computers designed for number-crunching. MCS-51TM mnemonics are used here, though for most other machines the issue would be even further clouded by their use of operation-specific mnemonics like INPUT, OUTPUT, LOAD, STORE, etc., instead of the universal MOV.

Figure 21. Flow chart for tree-branching logic implementation

Example 27—Software Solution to Logic Function of Figure 20, Using only Byte-Wide Logical Instructions

; BFUNC1	SOLVE A	RANDOM LOGIC FUNCTION OF 6
;	VARIABLE	S BY LOADING AND MASKING THE APPROPRIATE
j.	BITS IN	THE ACCUMULATOR, THEN EXECUTING CONDITIONAL
4	JUMPS BA	ASED ON ZERO CONDITION.
1	APPROA	CH USED BY BYTE-DRIENTED ARCHITECTURES.)
-	BYTE ANI	MASK VALUES CORRESPOND TO RESPECTIVE
-	BYTE AD	RESS AND BIT POSITION
i		
OUTBUE	EQU	22H JOUTPUT PIN STATE MAP
TESTV:	MOV	A, P2
	ANL	A, #00000100B
	JNZ	TESTU
	MOV	A, TCON
	ANL	A, #00100000B
	JZ	TESTX
TESTU:	MOV	A, P1
	ANL	A, #00000010B
	JNZ	SETQ
TESTX:	MOV	A, TCON
	ANL	A, #00001000B
	JZ	TESTZ
	MOV	A, 20H
	ANL	A, #00000001B
	JZ	SETQ
TESTZ	MOV	A, 21H
	ANL	A, #00000010B
	JZ	SETG
CLRQ:	MOV	A, OUTBUF
	ANL	A, #11110111B
	JMP	OUTQ
SETQ	MOV	A, OUTBUF
	ORL	A, #00001000B
OUTO:	MOV	OUTBUF, A
	MOV	P3. A

Cumbersome, to say the least, and error prone. It would be hard to prove the above example worked in all cases without an exhaustive test.

Each move/mask/conditional jump instruction sequence may be replaced by a single bit-test instruction thanks to direct bit addressing. But the algorithm would be equally convoluted.

Example 28 — Software Solution to Logic Function of Figure 20, Using only Bit-Test Instructions

; BFUNC2	SOLVE A	RANDOM LOGIC FUNCTION OF 6	
3	VARIABL	S BY DIRECTLY POLLING EACH BIT.	
;	(APPROA	H USING MCS-51 UNIQUE BIT-TEST	
1	INSTRUC	ION CAPABILITY)	
;	SYMBOLS	USED IN LOGIC DIAGRAM ASSIGNED TO	
3	CORRESPO	NDING 8051 BIT ADDRESSES.	
1			
U	BIT	P1. 1	
v	BIT	P2. 2	
W	BIT	TFO	
x	BIT	IE1	
Y	BIT	20H. 0	
z	BIT	21H. 1	
G	BIT	P3. 3	
÷			
TEST_V:	JB	V, TEST_U	
	JNB	W, TEST_X	
TEST_U:	JB	U. SET_Q	
TEST_X:	JNB	X, TEST_Z	
	JNB	Y, SET_Q	
TEST_Z:	JNB	Z, SET_Q	
CLR_Q:	CLR	Q	
	JMP	NXTTST	
SET_Q:	SETB	Q	
NXTTST:		(CONTINUATION OF PROGRAM)	

A more elegant and efficient 8051 implementation uses the Boolean ANL and ORL functions to generate the output function using straight-line code. These instructions perform the corresponding logical operations between the carry flag ("Boolean Accumulator") and the addressed bit, leaving the result in the carry. Alternate forms of each instruction (specified in the assembly language by placing a slash before the bit name) use the complement of the bit's state as the input operand. These instructions may be "strung together" to simulate a multiple input logic gate. When finished, the carry flag contains the result, which may be moved directly to the destination or output pin. No flow chart is needed — it is simple to code directly from the logic diagrams in Figure 20.

Example 29—Scftware Solution to Logic Function of Figure 20, Using the MCS-51 (TM)

Unique Logical Instructions on Boolean Variables

, BFUNC3 SOLVE A RANDOM LOGIC FUNCTION OF 6 , VARIABLES USING STRAIGHT-LINE LOGICAL INSTRUCTIONS , ON NGS-51 BODLEAN VARIABLES. MOV C,V ORL C,W , DUTPUT OF OR GATE ANL C,U , DUTPUT OF TOP AND GATE MOV FO,C ; SAVE INTERMEDIATE STATE MOV C,X ANL C,YY , OUTPUT OF BOTTOM AND GATE ORL C,FO , INCLUDE VALUE SAVED ABOVE ORL C,Z ; INCLUDE VALUE SAVED ABOVE MOV G,C ; DUTPUT COMPUTED NESULT

Simplicity itself. Fast, flexible, reliable, easy to design, and easy to debug.

The Boolean features are useful and unique enough to warrant a complete Application Note of their own. Additional uses and ideas are presented in Application Note AP-70, Using the Intel[®] MCS-51[®] Boolean Processing Capabilities, publication number 121519.

5. ON-CHIP PERIPHERAL FUNCTION OPERATION AND INTERFACING

I/O Ports

The I/O port versatility results from the "quasibidirectional" output structure depicted in Figure 22. (This is effectively the structure of ports 1, 2, and 3 for normal I/O operations. On port 0 resistor R2 is disabled except during multiplexed bus operations, providing

Figure 22. Pseudo-bidirectional I/O port circuitry

essentially open-collector outputs. For full electrical characteristics see the User's Manual.)

An output latch bit associated with each pin is updated by direct addressing instructions when that port is the destination. The latch state is buffered to the outside world by R1 and Q1, which may drive a standard TTL input. (In TTL terms, Q1 and R1 resemble an opencollector output with a pull-up resistor to Vcc.)

R2 and Q2 represent an "active pull-up" device enabled momentarily when a 0 previously output changes to a 1. This "jerks" the output pin to a 1 level more quickly than the passive pull-up, improving rise-time significantly if the pin is driving a capacitive load. Note that the active pull-up is **only** activated on 0-to-1 transitions at the output latch (unlike the 8048, in which Q2 is activated whenever a 1 is written out).

Operations using an input port or pin as the source operand use the logic level of the pin itself, rather than the output latch contents. This level is affected by both the microcomputer itself and whatever device the pin is connected to externally. The value read is essentially the "OR-tied" function of Q1 and the external device. If the external device is high-impedence, such as a logic gate input or a three state output in the third state, then reading a pin will reflect the logic level previously output. To use a pin for input, the corresponding output latch must be set. The external device may then drive the pin with either a high or low logic signal. Thus the same port may be used as both input and output by writing ones to all pins used as output on an input operation.

In one operand instructions (INC, DEC, DJNZ and the Boolean CPL) the output latch rather than the input pin level is used as the source data. Similarly, two operand instructions using the port as both one source and the destination (ANL, ORL, XRL) use the output latches. This ensures that latch bits corresponding to pins used as inputs will not be cleared in the process of executing these instructions.

The Boolean operation JBC tests the output latch bit, rather than the input pin, in deciding whether or not to jump. Like the byte-wise logical operations, Boolean operations which modify individual pins of a port leave the other bits of the output latch unchanged.

A good example of how these modes may play together may be taken from the host-processor interface expected by an 8243 I/O expander. Even though the 8051 does not include 8048-type instructions for interfacing with an 8243, the parts can be interconnected (Figure 23) and the protocol may be emulated with simple software.

Example 30—Mixing Parallel Output, Input, and Control Strobes on Port 2

; IN8243	INPUT D/	ATA FROM ED TO P23	AN 8243 1070 -P20.	EXPANDER
1	P25 & P2	24 MIMIC	CS^/ & PROG.	
4	P27-P26	USED AS	INPUTS.	
	PORT TO	BE READ	IN ACC	
IN8243:	URL	A, #11010	00008	
	MOV	P2, A	DUTPUT INST	RUCTION CODE
	CLR	Pi2. 4	; FALLING EDO	E OF PROG
	ORL	P2, #0000	01111B ; SET	FOR INPUT
	MOV	A, P2	READ INPUT	DATA
	SET9	P2 4	, RETURN PROC	HIGH
	SETR	P2 5	DE-SELECT (HIP

Serial Port and Timer applications

Configuring the 8051's Serial Port for a given data rate and protocol requires essentially three short sections of software. On power-up or hardware reset the serial port and timer control words must be initialized to the appropriate values. Additional software is also needed in the transmit routine to load the serial port data register and in the receive routine to unload the data as it arrives.

This is best illustrated through an arbitrary example. Assume the 8051 will communicate with a CRT operating at 2400 baud (bits per second). Each character is transmitted as seven data bits, odd parity, and one stop bit. This results in a character rate of 2400/10=240 characters per second.

For the sake of clarity, the transmit and receive subroutines are driven by simple-minded software status polling code rather than interrupts. (It might help to refer back to Figures 7-9 showing the control word formats.) The serial port must be initialized to 8-bit UART mode (M0, M1=01), enabled to receive all messages (M2=0, REN=1). The flag indicating that the transmit register is free for more data will be artificially set in order to let the output software know the output register is available. This can all be set up with one instruction.

Example 31-Serial Port Mode and Control Bits

;SPINIT INITIALIZE SERIAL PORT ; FOR 8-BIT UART MODE ; & SET TRANSMIT READY FLAG. ; SPINIT: MOV SCON,#01010010B

AFN-01502A

Timer 1 will be used in auto-reload mode as a data rate generator. To achieve a data rate of 2400 baud, the timer must divide the 1 MHz internal clock by 32 x (desired data rate):

$$\frac{1 \times 10^6}{(32) (2400)}$$

which equals 13.02 rounded down to 13 instruction cycles. The timer must reload the value -13, or 0F3H. (ASM51 will accept both the signed decimal or hexadecimal representations.)

Example 32-Initializing Timer Mode and Control Bits

TIINIT	INITIAL AUTO-REL (TO USEI	IZE TIMER 1 FOR LOAD AT 32*2400 HZ. D AS GATED 16-BIT COUNTER.)
TIINIT:	MOV MOV SETB	TCON, #11010010B TH1, #-13 TR1

A simple subroutine to transmit the character passed to it in the accumulator must first compute the parity bit, insert it into the data byte, wait until the transmitter is available, output the character, and return. This is nearly as easy said as done.

Example 33—Code for UART Output, Adding Parity, Transmitter Loading

A simple minded routine to wait until a character is received, set the carry flag if there is an odd-parity error, and return the masked seven-bit code in the accumulator is equally short.

Example 34—Code for UART Reception and Parity Verification

6. SUMMARY

This Application Note has described the architecture, instruction set, and on-chip peripheral features of the first three members of the MCS-51[™] microcomputer family. The examples used throughout were admittedly (and necessarily) very simple. Additional examples and techniques may be found in the MCS-51[™] User's Manual and other application notes written for the MCS-48[™] and MCS-51[™] families.

Since its introduction in 1977, the MCS-48TM family has become the industry standard single-chip microcomputer. The MCS-51TM architecture expands the addressing capabilities and instruction set of its predecessor while ensuring flexibility for the future, and maintaining basic software compatability with the past.

Designers already familiar with the 8048 or 8049 will be . able to take with them the education and experience gained from past designs as ever-increasing system performance demands force them to move on to state-ofthe-art products. Newcomers will find the power and regularity of the 8051 instruction set an advantage in streamlining both the learning and design processes.

Microcomputer system designers will appreciate the 8051 as basically a single-chip solution to many problems which previously required board-level computers. Designers of real-time control systems will find the high execution speed, on-chip peripherals, and interrupt capabilities vital in meeting the timing constraints of products previously requiring discrete logic designs. And designers of industrial controllers will be able to convert ladder diagrams directly from tested-and-true TTL or relay-logic designs to microcomputer software, thanks to the unique Boolean processing capabilities.

It has not been the intent of this note to gloss over the difficulty of designing microcomputer-based systems. To be sure, the hardware and software design aspects of any new computer system are nontrivial tasks. However, the system speed and level of integration of the MCS-51[™] microcomputers, the power and flexibility of the instruction set, and the sophisticated assembler and other support products combine to give both the hardware and software designer as much of a head start on the problem as possible.

Appendix C Using the Intel[®] MCS-51[®] Boolean Processing Capabilities

1. INTRODUCTION

The Intel microcontroller family now has three new members — the Intel® 8031, 8051, and 8751 single-chip microcomputers. These devices, shown in Figure 1, will allow whole new classes of products to benefit from recent advances in Integrated Electronics. Thanks to Intel's new HMOS® technology, they provide larger program and data memory spaces, more flexible I/O and peripheral capabilities, greater speed, and lower system cost than any previous-generation single-chip microcomputer.

P1.0 E	1	U,	
P1.1 C	2	:	9 - P0.0
P1.2 C	3	3	8 🗖 — P0.1
P1.3 — 🗖	4	3	7 🗖 P0.2
P1.4 — C	5	3	5 – P0.3
P1.5 — 🗖	6	3	5 🖵 — P0.4
P1.6 🗖	7	3	1 — P0.5
P1.7 — C	8	3	3 p - P0.6
VPD/RST — 🗖	9 10	3	2 1 P0.7
P3.0/RXD — 🗖		. 3	
P3.1/TXD C	11	3	0 🗖 — PROGIALE
P3.2/INTO - C	12	8031 2	9 - PSEN
P3.3/INTI — C	13	8051 8751 2	8 D — P2.7
P3.4/TO - C	14	2	7 🗖 — P2.6
P3.5/TI — C	15	2	6 p - P2.5
P3.6/WR - C	16	4	5 🗖 — P2.4
P3.7/RD — C	17	2	4 🗖 — P2.3
XTAL2 C	18	2	3 🗗 — P2.2
XTAL1 — C	19	2	2 p - P2.1
vss c	20	2	1 🔁 P2.0

Figure 1. 8051 Family Pinout Diagram.

Table 1 summarizes the quantitative differences between the members of the MCS-48[™] and 8051 families. The 8751 contains 4K bytes of EPROM program memory fabricated on-chip, while the 8051 replaces the EPROM with 4K bytes of lower-cost mask-programmed ROM. The 8031 has no program memory on-chip; instead, it accesses up to 64K bytes of program memory from external memory. Otherwise, the three new family members are identical. Throughout this Note, the term "8051" will represent all members of the 8051 Family, unless specifically stated otherwise. The CPU in each microcomputer is one of the industry's fastest and most efficient for numerical calculations on byte operands. But controllers often deal with bits, not bytes: in the real world, switch contacts can only be open or closed, indicators should be either lit or dark, motors are either turned on or off, and so forth. For such control situations the most significant aspect of the MCS-51[™] architecture is its complete hardware support for one-bit, or *Boolean* variables (named in honor of Mathematician George Boole) as a separate data type.

The 8051 incorporates a number of special features which support the direct manipulation and testing of individual bits and allow the use of single-bit variables in performing logical operations. Taken together, these features are referred to as the MCS-51[™] Boolean Processor. While the bit-processing capabilities alone would be adequate to solve many control applications, their true power comes when they are used in conjunction with the microcomputer's byte-processing and numerical capabilities.

Many concepts embodied by the Boolean Processor will certainly be new even to experienced microcomputer system designers. The purpose of this Application Note is to explain these concepts and show how they are used. It is assumed the reader has read Application Note AP-69, An Introduction to the Intel[®] MCS-51TM Single-Chip Microcomputer Family, publication number 121518, or has been exposed to Intel's single-chip microcomputer product lines.

For detailed information on these parts refer to the Intel MCS-51[™] Family User's Manual, publication number 121517. The instruction set, assembly language, and use of the 8051 assembler (ASM51) are further described in the MCS-51[™] Macro Assembler User's Guide, publication number 9800937.

2. BOOLEAN PROCESSOR OPERATION

The Boolean Processing capabilities of the 8051 are based on concepts which have been around for some time. Digital computer systems of widely varying designs all have four functional elements in common (Figure 2):

01489A

EPROM Program Memory	ROM Program Memory	External Program Memory	Program Memory (Int/Max)	Data Memory (Bytes)	Instr. Cycle Time	Input/ Output Pins	Interrupt Sources	Reg. Banks
_	8021	_	IK/1K	64	10 µSec	21	0	1
	8022	_	2K/2K	64	10 µSec	28	° 2	1
8748	8048	8035	1K/4K	64	2.5 µSec	27	2	2
·	8049	8039	2K/4K	128	1.36µSec	27	2	2
8751	8051	8031	4K/64K	128	1.0 µSec	32	5	4

Table 1. Features of Intel's Single-chip Microcomputers.

- a central processor (CPU) with the control, timing, and logic circuits needed to execute stored instructions;
- a memory to store the sequence of instructions making up a program or algorithm;
- data memory to store variables used by the program; and
- some means of communicating with the outside world.

Figure 2. Block Diagram for Abstract Digital Computer.

The CPU usually includes one or more accumulators or special registers for computing or storing values during program execution. The instruction set of such a processor generally includes, at a minimum, operation classes to perform arithmetic or logical functions on program variables, move variables from one place to another, cause program execution to jump or conditionally branch based on register or variable states, and instructions to call and return from subroutines. The program and data memory functions sometimes share a single memory space, but this is not always the case. When the address spaces are separated, program and data memory need not even have the same basic word width.

A digital computer's flexibility comes in part from combining simple fast operations to produce more complex (albeit slower) ones, which in turn link together eventually solving the problem at hand. A four-bit CPU executing multiple precision subroutines can, for example, perform 64-bit addition and subtraction. The subroutines could in turn be building blocks for floating-point multiplication and division routines. Eventually, the four-bit CPU can simulate a far more complex "virtual" machine.

In fact, *any* digital computer with the above four functional elements can (given time) complete *any* algorithm (though the proverbial room full of chimpanzees at word processors might first re-create Shakespeare's classics and this Application Note)! This fact offers little consolation to product designers who want programs to run as quickly as possible. By definition, a real-time control algorithm *must* proceed quickly enough to meet the preordained speed constraints of other equipment.

One of the factors determining how long it will take a microcomputer to complete a given chore is the number of instructions it must execute. What makes a given computer architecture particularly well-or poorly-suited for a class of problems is how well its instruction set matches the tasks to be performed. The better the "primative" operations correspond to the steps taken by the control algorithm, the lower the number of instructions needed, and the quicker the program will run. All else being equal, a CPU supporting 64-bit arithmetic directly could clearly perform floating-point math faster than a machine bogged-down by multiple-precision subroutines. In the same way, direct support for bit manipulation naturally leads to more efficient programs handling the binary input and output conditions inherent in digital control problems.

Processing Elements

The introduction stated that the 8051's bit-handling capabilities alone would be sufficient to solve some control applications. Let's see how the four basic elements of a digital computer - a CPU with associated registers, program memory, addressable data RAM, and I/O capability - relate to Boolean variables.

CPU. The 8051 CPU incorporates special logic devoted to executing several bit-wide operations. All told, there are 17 such instructions, all listed in Table 2. Not shown are 94 other (mostly byte-oriented) 8051 instructions.

Program Memory. Bit-processing instructions are fetched from the same program memory as other arithmetic and logical operations. In addition to the instructions of Table 2, several sophisticated program control features like multiple addressing modes, subroutine nesting, and a twolevel interrupt structure are useful in structuring Boolean Processor-based programs.

Boolean instructions are one, two, or three bytes long, depending on what function they perform. Those involving only the carry flag have either a single-byte opcode or an opcode followed by a conditional-branch destination byte (Figure 3.a). The more general instructions add a "direct address" byte after the opcode to specify the bit affected, yielding two or three byte encodings (Figure 3.b). Though this format allows potentially 256 directly addressable bit locations, not all of them are implemented in the 8051 family.

Table 2.	MCS-51™	Boolean	Processing	Instruction
Subset.				

Mnem	nonic	Description	Byte	Cyc				
SETB	C	Set Carry flag	1	1				
	C DIL	Clear Carry flag	1					
CLR	bit	Clear direct bit	2					
CPL	C	Complement Carry flag	1	i				
CPL	bit	Complement direct bit	2	1				
моу	C,bit	Move direct bit to Carry flag	2	1				
MOV	bit,C	Move Carry flag to direct bit	2	2				
ANL	C,bit	AND direct bit to Carry flag	2	2				
ANL	C,/bit	AND complement of direct bit to Carry flag	2	2				
ORL	C,bit	OR direct bit to Carry flag	2	2				
ORL	C,/bit	OR complement of direct bit to Carry flag	2	2				
JC	rel	Jump if Carry is flag is set	2	2				
JNC	rel	Jump if No Carry flag	2	2				
JB	bit,rel	Jump if direct Bit set	3	2				
JNB	bit,rel	Jump if direct Bit Not set	3	2				
JRC	bit,rel	Jump if direct Bit is set & Clear bit	. 3	2				
Addre	ss mo	de abbreviations:						
с _	Carry	r flag.						
bit — 128 software flags, any I/O pin, control or status bit								
rel —	All co Rang the fo	nditional jumps include an 8-bit e is +127/-128 bytes relative to f llowing instruction.	offset irst by	byte. /te of				

All mnemonics copyrighted[©] Intel Corporation 1980

Data Memory. The instructions in Figure 3.b can operate directly upon 144 general purpose bits forming the Boolean processor "RAM." These bits can be used as sofware flags or to store program variables. Two operand instructions use the CPU's carry flag ("C") as a special one-bit register; in a sense, the carry is a "Boolean accumulator" for logical operations and data transfers.

Input/Output. All 32 I/O pins can be addressed as individual inputs, outputs, or both, in any combination. Any pin can be a control strobe output, status (Test) input, or serial I/O link implemented via software. An additional 33 individually addressable bits reconfigure, control, and monitor the status of the CPU and all on-chip peripheral functions (timer/counters, serial port modes, interrupt logic, and so forth).

Figure 3. Bit Addressing Instruction Formats.

Direct Bit Addressing

The most significant bit of the direct address byte selects one of two groups of bits. Values between 0 and 127 (00H and 7FH) define bits in a block of 32 bytes of on-chip RAM, between RAM addresses 20H and 2FH (Figure 4.a). They are numbered consecutively from the lowestorder byte's lowest-order bit through the highest-order byte's highest-order bit.

Bit addresses between 128 and 255(80H and 0FFH) correspond to bits in a number of special registers, mostly used for I/O or peripheral control. These positions are numbered with a different scheme than RAM: the five high-order address bits match those of the register's own address, while the three low-order bits identify the bit position within that register (Figure 4.b).

Notice the column labeled "Symbol" in Figure 5. Bits with special meanings in the PSW and other registers have corresponding symbolic names. General-purpose (as opposed to carry-specific) instructions may access the carry like any other bit by using the mnemonic CY in place of C, P0, P1, P2, and P3 are the 8051's four 1/O ports; secondary functions assigned to each of the eight pins of P3 are shown in Figure 6.

Figure 7 shows the last four bit addressable registers. TCON (Timer Control) and SCON (Serial port Control) control and monitor the corresponding peripherals, while IE (Interrupt Enable) and IP (Interrupt Priority) enable and prioritize the five hardware interrupt sources. Like the reserved hardware register addresses, the five bits not implemented in IE and IP should not be accessed; they can *not* be used as software flags.

(MSB)							(LSB)					
СҮ	AC	F0	RS1	RS0	ov	-	Р	014	DOM 0	Quartian flag		
Symbol Position Name and CY PSW.7 Carry flag Set/clearc				nd sig ag. ared by ring ce	nificar / hard	nce	or soft-	00	1000.2	Set/cleared by hardware during arithmetic instructions to indicate overflow conditions.		
		lo	ogical i	nstruc	tions.			_	PSW.1	(reserved)		
AC	PSW	.6 A S a ti c	6 Auxiliary Carry flag. Set/cleared by hardware during addition or subtraction instruc- tions to indicate carry or borrow out of bit 3.				during nstruc- porrow	Ρ	PSW.0	Parity flag. Set/cleared by hardware each in- struction cycle to indicate an odd/- even number of "one" bits in the accumulator, i.e., even parity.		
F0	PSW	.5 F S a	ilag 0. set/clea user-c	ared/te lefined	sted b statu	y soft s flag.	vare as		Note -	the contents of (RS1, RS0) enable the working register banks as follows:		
RS1 RS0	PSW PSW	.4 F .3 1 d	Registe & 0. S letermi see No	r bank et/clea ne wor te).	Selec red b king	t cont y softv registe	rol bits vare to er bank			(0,0) - Bank 0 (00H-07H) (0,1) - Bank 1 (08H-0FH) (1,0) - Bank 2 (10H-17H) (1,1) - Bank 3 (18H-1FH)		

Figure 5. PSW - Program Status Word organization.

 (MSB)								<u></u>				
RD	WR	Т1	то	INT1	INTO	тхр	RXD					
Symbol Position Name and significance												
RD P3.7 Read data control output. Active low pulse generated hardware when external of memory is read							ed by data	INT1		P3.3	Interrupt 1 input pin. Low-level or falling-edge triggered.	
WR	P3.6	W A h	Write data control output. Active low pulse generate					INTO)	P3.2	Interrupt 0 input pin. Low-level or falling-edge triggered.	
Т1	memory is written.				putor	TXD		P3.1	Transmit Data pin for serial port in UART mode. Clock output in shift register mode.			
		te	est pin.					RXD		P3.0	Receive Data pin for serial port in	
T0 P3.4 Timer/counter 0 external inp test pin.				put or				UART mode. Data I/O pin in shift register mode.				

Figure 6. P3 - Alternate I/O Functions of Port 3.

(MSB)							(LSB)					
TF1 Symbol TF1	TR1 Posit	TF0 ion N N.7 Ti	TR0 ame al	IE1	IT1 hifican	IE0 ce g.	ITO	IE1	TCON.3	Interrupt 1 Edge flag. Set by hardware when external interrupt edge detected. Cleared when interrupt processed.		
TR1	TCO	tii W	ner/cc hen in	arowa ounter o terrupt	overflo proce	ow. Cle essed. bit	eared	IT1	TCON.2	Interrupt 1 Type control bit. Set/cleared by software to specify falling edge/low level		
1111	100	Si Si tii	et/clea mer/cc	red by ounter	softw on/off	are to	turn	IEO	TCON.1	Interrupt 0 Edge flag.		
TF0	тсо	N.5 Ti So tii	imer 0 et by h mer/cc	overflo ardwa	ow Fla re on overflo	g. ow. Cle	eared			Set by hardware when external interrupt edge detected. Cleared when interrupt processed.		
TR0	тсо	w N.4 Ti Si tii	hen in imer 0 et/clea mer/cc	terrupt Run co red by	proce ontrol softw	bit. are to	turn	IT0	TCON.0	Interrupt 0 Type control bit. Set/cleared by softrware to specify falling edge/low level triggered external interrupts.		
timer/counter on/off. a.) TCON - Timer/Counter Control/status register.												
(MSB)							(LSB)					
SM0	SM1	SM2	REN	тв8	RB8	ті	RI					
Symbo SM0	I Posi SCO	tion N N.7 S S n	lame a erial p et/clea ote).	nd sig ort Mo ared by	nificar de co v softw	n ce ntrol b vare (s	it 0. ee	RB8	SCON.2	Receive Bit 8. Set/cleared by hardware to indi- cate state of ninth data bit received		
SM1	SCO	N.6 S S n	erial p et/clea ote).	ort Mo ared by	de co v softw	ntrol b vare (s	ee	ті	SCON.1	Transmit Interrupt flag. Set by hardware when byte		
SM2	SCO	N.5 S	erial p et by s	ort Mo softwar	de co e to d	ntrol b isable	it 2. recep-			transmitted. Cleared by software after servicing.		
		ti z	on of f ero.	rames	for wi	ומ חסור	t 8 IS	RI	SCON.0	Receive Interrupt flag. Set by hardware when byte re-		
REN SCON.4 Receiver Enable control bit. Set/cleared by software to enable/disable serial data							it.			servicing.		
TDO	800	r	eceptio	on.					Note -	the state of (SM0,SM1) selects: (0,0) - Shift register I/O expansion. (0,1) - 8 bit UART variable data rate		
 TB8 SCON.3 Transmit Bit 8. Set/cleared by hardware to determine state of ninth data bit transmitted in 9-bit UART mode. b.) SCON - Serial Port Control/status register. 							deter- t trans- e. ister.			(1,0) - 9 bit UART, fixed data rate. (1,1) - 9 bit UART, variable data rate.		
			_	F	igure	7. Peri	pheral	Configuratio	on Registe	ers.		

01489A

-

(MSB)				(LSB)			
EA		- ES ET	EX1	ET1 EX0			
Symbo EA	IE.7	n Name and si Enable All co Cleared by s interrupts, in state of IE.4	gnifican ontrol bi oftware depende · IE.0.	t. to disable all ent of the	EX1	IE.2	Enable External interrupt 1 control bit. Set/cleared by software to enable/disable interrupts from INT1.
	IE.6 IE.5	(reserved)			ET0	IE.1	Enable Timer 0 control bit. Set/cleared by software to enable/ disable interrupts from
ES	IE.4	Enable Seria	l port co	ontrol bit.			timer/counter 0.
		enable/ disal	ble inter	rupts from	EX0	IE.0	Enable External interrupt 0 control bit. Set/cleared by software to enable/disable interrupts from INT0.
ET1	IE.3	Enable Time Set/cleared t enable/ disal	r 1 cont by softw ble inter r 1	rol bit. are to rupts from			
c.) IE	E - Interru	pt Enable Reg	ster.				
(MSB)				(LSB)			
		- PS PT	1 PX1	РТО РХО			
Symbo 	IP.7 IP.6 IP.5	n Name and si (reserved) (reserved) (reserved)	gnifican	ice	PX1	IP.2	External interrupt 1 Priority control bit. Set/cleared by software to specify high/low priority interrupts for INT1.
PS	IP.4	Serial port P Set/cleared I specify high interrupts fo	riority co by softw 'low pric ' Serial p	ontrol bit. vare to prity port.	РТ0	IP.1	Timer 0 Priority control bit. Set/cleared by software to specify high/low priority interrupts for timer/counter 0.
PT1	IP.3	Timer 1 Prio Set/cleared I specify high, interrupts fo	rity conf by softw low pric timer/c	trol bit. vare to prity counter 1.	PX0	IP.0	External interrupt 0 Priority control bit. Set/cleared by software to specify high/low priority interrupts for INT0.
d.) IF	- Interru	pt Priority Co	trol Reg	gister.			

Figure 7. (continued)

Addressable Register Set. There are 20 special function registers in the 8051, but the advantages of bit addressing only relate to the 11 described below. Five potentially bit-addressable register addresses (0C0H, 0C8H, 0D8H, 0E8H, & 0F8H) are being reserved for possible future expansion in microcomputers based on the MCS-51TM architecture. Reading or writing non-existent registers in the 8051 series is pointless, and may cause unpredictable results. Byte-wide logical operations can be used to manipulate bits in all *non*-bit addressable registers and RAM.

The accumulator and B registers (A and B) are normally involved in byte-wide arithmetic, but their individual bits can also be used as 16 general software flags. Added with the 128 flags in RAM, this gives 144 general purpose variables for bit-intensive programs. The program status word (PSW) in Figure 5 is a collection of flags and machine status bits including the carry flag itself. Byte operations acting on the PSW can therefore affect the carry.

Instruction Set

Having looked at the bit variables available to the Boolean Processor, we will now look at the four classes of instructions that manipulate these bits. It may be helpful to refer back to Table 2 while reading this section.

State Control. Addressable bits or flags may be set, cleared, or logically complemented in one instruction cycle with the two-byte instructions SETB, CLR, and CPL. (The "B" affixed to SETB distinguishes it from the assembler "SET" directive used for symbol definition.) SETB and CLR are analogous to loading a bit with a constant: 1 or 0. Single byte versions perform the same three operations on the carry.

The MCS-51TM assembly language specifies a bit address in any of three ways:

- by a number or expression corresponding to the direct bit address (0-255);
- by the name or address of the register containing the bit, the *dot operator* symbol (a period: "."), and the bit's position in the register (7-0);
- in the case of control and status registers, by the predefined assembler symbols listed in the first columns of Figures 5-7.

Bits may also be given user-defined names with the assembler "BIT" directive and any of the above techniques. For example, bit 5 of the PSW may be cleared by any of the four instructions,

USR_FLG BIT	PSW.5	: User Symbol Definition			
:					
CLR	0D5H	; Absolute Addressing			
CLR	PSW.5	; Use of Dot Operator			
CLR	F0	; Pre-Defined Assembler			
		; Symbol			
CLR	USR_FLG	; User-Defined Symbol			

Data Transfers. The two-byte MOV instructions can transport any addressable bit to the carry in one cycle, or copy the carry to the bit in two cycles. A bit can be moved between two arbitrary locations via the carry by combining the two instructions. (If necessary, push and pop the PSW to preserve the previous contents of the carry.) These instructions can replace the multi-instruction sequence of Figure 8, a program structure appearing in controller applications whenever flags or outputs are conditionally switched on or off.

Logical Operations. Four instructions perform the logical-AND and logical-OR operations between the carry and another bit, and leave the results in the carry. The instruction mnemonics are ANL and ORL; the absence or presence of a

Figure 8. Bit Transfer Instruction Operation.

slash mark ("/") before the source operand indicates whether to use the positive-logic value or the logical complement of the addressed bit. (The source operand itself is never affected.)

Bit-test Instructions. The conditional jump instructions "JC rel" (Jump on Carry) and "JNC rel" (Jump on Not Carry) test the state of the carry flag, branching if it is a one or zero, respectively. (The letters "rel" denote relative code addressing.) The three-byte instructions "JB bit, rel" and "JNB bit, rel" (Jump on Bit and Jump on Not Bit) test the state of *any* addressable bit in a similar manner. A fifth instruction combines the Jump on Bit and Clear operations. "JBC bit,rel" conditionally branches to the indicated address, then clears the bit in the same two cycle instruction. This operation is the same as the MCS-48TM "JTF" instructions.

All 8051 conditional jump instructions use program counter-relative addressing, and all execute in two cycles. The last instruction byte encodes a signed displacement ranging from -128 to +127. During execution, the CPU adds this value to the incremented program counter to produce the jump destination. Put another way, a conditional jump to the immediately following instruction would encode 00H in the offset byte.

A section of program or subroutine written using only relative jumps to nearby addresses will have the same machine code independent of the code's location. An assembled routine may be repositioned anywhere in memory, even crossing memory page boundaries, without having to modify the program or recompute destination addresses. To facilitate this flexibility, there is an unconditional "Short Jump" (SJMP) which uses relative addressing as well. Since a programmer would have quite a chore trying to compute relative offset values from one instruction to another, ASM51 automatically computes the displacement needed given only the destination address or label. An error message will alert the programmer if the destination is "out of range."

(The so-called "Bit Test" instructions implemented on many other microprocessors simply perform the logical-AND operation between a byte variable and a constant mask, and set or clear a zero flag depending on the result. This is essentially equivalent to the 8051 "MOV C,bit" instruction. A second instruction is then needed to conditionally branch based on the state of the zero flag. This does *not* constitute abstract bit-addressing in the MCS-51TM sense. A flag exists only as a field within a register; to reference a bit the programmer must know and specify both the encompassing register and the bit's position therein. This constraint severely limits the flexibility of symbolic bit addressing and reduces the machine's code-efficiency and speed.)

Interaction with Other Instructions. The carry flag is also affected by the instructions listed in Table 3. It can be rotated through the accumulator, and altered as a side effect of arithmetic instructions. Refer to the User's Manual for details on how these instructions operate.

Simple Instruction Combinations

By combining general purpose bit operations with certain addressable bits, one can "custom build" several hundred useful instructions. All eight bits of the PSW can be tested directly with conditional jump instructions to monitor (among other things) parity and overflow status. Programmers can take advantage of 128 software flags to keep track of operating modes, resource usage, and so forth.

The Boolean instructions are also the most efficient way to control or reconfigure peripheral and I/O registers. All 32 I/O lines become "test pins," for example, tested by conditional jump instructions. Any output pin can be toggled (complemented) in a single instruction cycle. Setting or clearing the Timer Run flags (TR0 and TR1) turn the timer/counters on or off; polling the same flags elsewhere lets the program determine if a timer is running. The respective overflow flags (TF0 and TF1) can be tested to determine when the desired period or count has elapsed, then cleared in preparation for the next repetition. (For the record, these bits are all part of the TCON register, Figure 7.a. Thanks to symbolic bit addressing, the programmer only needs to remember the mnemonic associated with each function. In other words, don't bother memorizing control word layouts.)

In the MCS-48® family, instructions corresponding to some of the above functions require specific opcodes. Ten different opcodes serve to clear/complement the software flags F0 and F1, enable/disable each interrupt, and start/stop the timer. In the 8051 instruction set, just three opcodes (SETB,

 Table 3. Other Instructions Affecting the Carry

 Flag.

Mnemonic	Description	Byte	Сус
ADD A,Rn	Add register to		
	Accumulator	1	1
ADD A,direct	Add direct byte to	2	1
ADD A.@Ri	Add indirect RAM to	2	·
-	Accumulator	1	1
ADD A,#data	Add immediate data to	n	1
ADDC A.Rn	Add register to	2	1
	Accumulator with Carry		
	flag	1	1
ADDC A, direct	Add direct byte to		
	flag	2	1
ADDC A,@Ri	Add indirect RAM to	2	
	Accumulator with Carry		
	flag	1	1
ADDC A,#data	Add immediate data to	2	
SUBB A Rn	Acc with Carry Hag	2	1
SUBB A,KI	Accumulator with		
	borrow	1	1
SUBB A, direct	Subtract direct byte		
	from Acc with borrow	2	1
SUBB A.@Ri	Subtract indirect RAM		1
SUBB A #data	Subtract immediate data	I	1
SODD A, Huata	from Acc with borrow	2	1
MUL AB	Multiply A & B	1	4
DIV AB	Divide A by B	1	4
DA A	Decimal Adjust		.
	Accumulator	I	I
RLC A	Rotate Accumulator		
	Left through the Carry		
	flag	1	1
RRC A	Rotate Accumulator	1	
	Right through Carry Hag	1	1
CJNE A,direct,rel	Compare direct byte to		
	Acc & Jump if Not		
	Equal	3	2
CJNE A,#data,rel	Compare immediate to		
	Foual	3	2
CJNE Rn.#data.rel	Compare immed to	.,	2
	register & Jump if Not		
	Equal	3	2
CJNE @Ri,#data.re	Compare immed to		
	indirect & Jump if Not	3	2
	Lyual	5	2

All mnemonics copyrighted © Intel Corporation 1980

CLR, CPL) with a direct bit address appended perform the same functions. Two test instructions (JB and JNB) can be combined with bit addresses to test the software flags, the 8048 1/O pins T0, T1, and INT, and the eight accumulator bits, replacing 15 more different instructions.

Table 4.a shows how 8051 programs implement software flag and machine control functions associated with special

using awkward sequences of other basic operations. As mentioned earlier, any CPU can solve any problem given enough time.

Quantitatively, the differences between a solution allowed by the 8051 and those required by previous architectures are numerous. What the 8051 Family buys you is a faster, cleaner, lower-cost solution to microcontroller applications.

The opcode space freed by condensing many specific 8048

8048 Instruction	Bytes	Cycles	uSec	8x51 Instruc	tion	Bytes	Cycles & uSec
Flag Control							
CLR C	1	1	2.5	CLR	С	1	1
CPL F0	1	1	2.5	CPL	F0	2	1
Flag Testing							
JNC offset	2	2	5.0	JNC	rel	2	2
JF0 offset	2	2	5.0	JB	F0, rel	3	2
JB7 offset	2	2	5.0	JB	ACC.7,rel	3	2
Peripheral Polling							
JT0 offset	2	2	5.0	JB	T0.rel	3	2
JNI offset	2	2	5.0	JNB	INT0.rel	3	2
JTF offset	2	2	5.0	JBC	TF0,rel	3	2
Machine and Periphera	al Control						
STRT T	1	1	2.5	SETB	TR0	2	1
EN I	1	1	2.5	SETB	EX0	2	1
DIS TCNTI	1	1	2.5	CIR	FT0	2	1

Table 4.a.	Contrasting	1 8048 and	8051 Bit	Control and	Testing	Instructions.
------------	-------------	------------	----------	-------------	---------	---------------

8048 Instructions	Bytes	Cycles	uSec	8051 Instructions	Bytes	Cycles & uSec
Flag Control Set carry: CLR C CPL C	= 2	2	5.0	SETB C	1	1
Set Software Flag: CLR F0 CPL F0	= 2	2	5.0	SETB F0	2	1

Table 4.b. Replacing 8048 instruction sequences with single 8x51 instructions.

opcodes in the 8048. In every case the MCS-51TM solution requires the same number of machine cycles, and executes 2.5 times faster.

3. BOOLEAN PROCESSOR APPLICATIONS

So what? Then what does all this buy you?

Qualitatively, nothing. All the same capabilities could be (and often have been) implemented on other machines instructions into a few general operations has been used to add new functionality to the MCS-51TM architecture - both for byte and bit operations. 144 software flags replace the 8048's two. These flags (and the carry) may be directly set, not just cleared and complemented, and all can be tested for either state, not just one. Operating mode bits previously inaccessible may be read, tested, or saved. Situations where the 8051 instruction set provides new capabilities are contrasted with 8048 instruction sequences in Table 4.b. Here the 8051 speed advantage ranges from 5x to 15x!

9049			<u> </u>	9451	/		
Instructions	Bytes	Cycles	uSec	Instru	uctions	Bytes	Cvcles & uSec
							• • • • • • • • • • • • • • • • • • • •
Turn Off Output Pin:							
ANL P1,#0FBH =	2	2	5.0	CLR	P1.2	2	1
Complement Output Pin:							
IN A.PI							
XRL A,#04H				1			
OUTL PI,A =	4	6	15.0	CPL	P1.2	2	1
Clear Flag in RAM:							
MOV R0,#FLGADR							
MOV A,@R0							
ANL A,#FLGMASK				1 A.			
MOV @R0,A =	6	6	15.0	CLR	USER_FLG	2	1
Flag Testing							
Jump if Software Flag is 0:							
JF0 \$+4							
JMP offset =	4	4	10.0	JNB	F0,rel	3	2
lumn if Accumulator bit is 0:							
CPI A							
IB7 offset							
CPL A =	4	4	10.0	JNB	ACC.7,rel	3	2
Perinheral Polling							
Test if Input Pin is Grounded	:						
IN A.PI				1			
CPL A							
JB3 offset =	4	5	12.5	JNB	P1.3,rel	3	2
Test if Interrupt Pin is High:							
JNI \$+4							
JMP offset =	4	4	10.0	JB	INT0,rel	3	2
				1			

Table 4b. (Continued)

Combining Boolean and byte-wide instructions can produce great synergy. An MCS-51[™] based application will prove to be:

- simpler to write since the architecture correlates more closely with the problems being solved;
- easier to debug because more individual instructions have no unexpected or undesirable side-effects;
- more byte efficient due to direct bit addressing and program counter relative branching;
- faster running because fewer bytes of instruction need to be fetched and fewer conditional jumps are processed;
- lower cost because of the high level of systemintergration within one component.

These rather unabashed claims of excellence shall not go unsubstantiated. The rest of this chapter examines less trivial tasks simplified by the Boolean processor. The first three compare the 8051 with other microprocessors; the last two go into 8051-based system designs in much greater depth.

Design Example #1 - Bit Permutation

First off, we'll use the bit-transfer instructions to permute a lengthy pattern of bits.

A steadily increasing number of data communication products use encoding methods to protect the security of sensitive information. By law, interstate financial transactions involving the Federal banking system must be transmitted using the Federal Information Processing *Data Encryption Standard* (DES).

Basically, the DES combines eight bytes of "plaintext" data (in binary, ASCII, or any other format) with a 56-bit "key", producing a 64-bit encrypted value for transmission. At the receiving end the same algorithm is applied to the incoming data using the same key, reproducing the original eight byte message. The algorithm used for these permutations is fixed; different user-defined keys ensure data privacy. It is not the purpose of this note to describe the DES in any detail. Suffice it to say that encryption/decryption is a long, iterative process consisting of rotations, exclusive -OR operations, function table look-ups, and an extensive (and quite bizarre) sequence of bit permutation, packing, and unpacking steps. (For further details refer to the June 21, 1979 issue of **Electronics** magazine.) The bit manipulation steps are included, it is rumored, to impede a general purpose digital supercomputer trying to "break" the code. Any algorithm implementing the DES with previous generation microprocessors would spend virtually all of its time diddling bits. The bit manipulation performed is typified by the Key Schedule Calculation represented in Figure 9. This step is repeated 16 times for each key used in the course of a transmission. In essence, a seven-byte, 56-bit "Shifted Key Buffer" is transformed into an eight-byte, "Permutation Buffer" without altering the shifted Key. The arrows in Figure 9 indicate a few of the translation steps. Only six bits of each byte of the Permutation Buffer are used; the two high-order bits of each byte are cleared. This means only 48 of the 56 Shifted Key Buffer bits are used in any one iteration.

Figure 10.a. Flowchart for Key permutation attempted with a byte processor.

Different microprocessor architectures would best implement this type of permutation in different ways. Most approaches would share the steps of Figure 10.a:

- Initialize the Permutation Buffer to default state (ones or zeroes);
- Isolate the state of a bit of a byte from the Key Buffer. Depending on the CPU, this might be accomplished by rotating a word of the Key Buffer through a carry flag or testing a bit in memory or an accumulator against a mask byte;
- Perform a conditional jump based on the carry or zero flag if the Permutation Buffer default state is correct;
- Otherwise reverse the corresponding bit in the permutation buffer with logical operations and mask bytes.

Each step above may require several instructions. The last three steps must be repeated for all 48 bits. Most microprocessors would spend 300 to 3,000 microseconds on each of the 16 iterations.

Notice, though, that this flow chart looks a lot like Figure 8. The Boolean Processor can permute bits by simply moving them from the source to the carry to the destination—a total of two instructions taking four bytes and three microseconds per bit. Assume the Shifted Key Buffer and Permutation Buffer both reside in bit-addressable RAM, with the bits of the former assigned symbolic names SKB_1, SKB_2, ... SKB_56, and that the bytes of the latter are named PB_1, ... PB_8. Then working from Figure 9, the software for the permutation algorithm would be that of Example 1.a. The total routine length would be 192 bytes, requiring 144 microseconds.

The algorithm of Figure 10.b is just slightly more efficient in this time-critical application and illustrates the synergy of an integrated byte and bit processor. The bits needed for each byte of the Permutation Buffer are assimilated by loading each bit into the carry (1 usec.) and shifting it into the accumulator (1 usec.). Each byte is stored in RAM when completed. Forty-eight bits thus need a total of 112 instructions, some of which are listed in Example 1.b.

Figure 10.b. DES Key Permutation with Boolean Processor.

Worst-case execution time would be 112 microseconds, since each instruction takes a single cycle. Routine length would also decrease, to 168 bytes. (Actually, in the context of the complete encryption algorithm, each permuted byte would be processed as soon as it is assimilated—saving memory and cutting execution time by another 8 usec.)

Example 1. DES Key Permutation Software.					
a.) "Brut	a.) "Brute Force" technique.				
моч	C,SKB_1				
MO	V PB_1.1,C				
МОУ	C,SKB_2				
MO	V PB_4.0,C				
MO	C,SKB_3				
MOV	V PB_2.5,C				
MOV	C,SKB_4				
MOV	V PB_1.0,C				
;					
; MO					
MON	V C,5KB				
MON	$V = \Gamma D \cup U, C$ $V = C S K B 56$				
MON	7 C,SKD_JU 7 DR 72C				
MOV	1 D_/.2,C				
b.) Using	Accumulator to Collect Bits.				
CLR	A				
MOV	C,SKB_14				
RLC	A				
MOV	C,SKB_17				
RLC	Α				
MOV	C,SKB_11				
RLC	Α				
MOV	/ C,SKB_24				
RLC	Α				
MOV	/ C,SKB_1				
RLC	A				
MOV	C,SKB_5				
RLC	A				
MOV	/ PB_1,A				
;					
, MON					
	4 C,SKD_29				
MOV					
	A C,5KB_52				
MOV					
NO V	1 D_0,/1				

To date, most banking terminals and other systems using the DES have needed special boards or peripheral controller chips just for the encryption/decryption process, and still more hardware to form a serial bit stream for transmission (Figure 11.a). An 8051 solution could pack most of the entire system onto the one chip (Figure 11.b). The whole DES algorithm would require less than one-

01489A

fourth of the on-chip program memory, with the remaining bytes free for operating the banking terminal (or whatever) itself.

Moreover, since transmission and reception of data is performed through the on-board UART, the unencrypted data (plaintext) never even exists outside the microcomputer! Naturally, this would afford a high degree of security from data interception.

Figure 11. Secure Banking Terminal Block Diagram.

Design Example #2 - Software Serial I/O

An exercise often imposed on beginning microcomputer students is to write a program simulating a UART. (See, for example, Application Notes AP24, AP29, and AP49.) Though doing this with the 8051 Family may appear to be a moot point (given that the hardware for a full UART is on-chip), it is still instructive to see how it would be done, and maintains a product line tradition.

As it turns out, the 8051 microcomputers can receive or transmit serial data via software very efficiently using the Boolean instruction set. Since any 1/0 pin may be a serial input or output, several serial links could be maintained at once.

Figures 12.a and 12.b show algorithms for receiving or transmitting a byte of data. (Another section of program would invoke this algorithm eight times, synchronizing it with a start bit, clock signal, software delay, or timer interrupt.) Data is received by testing an input pin, setting the carry to the same state, shifting the carry into a data buffer, and saving the partial frame in internal RAM. Data is transmitted by shifting an output buffer through the carry, and generating each bit on an output pin.

Figure 12. Serial I/O Algorithms.

A side-by-side comparison of the software for this common "bit-banging" application with three different microprocessor architectures is shown in Table 5.a and 5.b. The 8051 solution is more efficient than the others on every count!

Table 5. Serial I/O Programsfor Various Microprocessors.

	8085			8048		8051		
	IN	SERPORT				MOV	C,SERPIN	
	ANI	MASK		CLR	С		-,	
	JZ	LO		JNT0	LO			
	CMC			CPL	С			
LO:	LXI	HL,SERBUF		MOV	R0,#SERBUF			
	MOV	A,M		MOV	A,@R0	MOV	A,SERBUF	
	RR			RRC	Α	RRC	А	
	MOV	M,A		MOV	@R0,A	MOV	SERBUF,A	
RES	ULTS:							
	8 INS	TRUCTIONS		7 INS	STRUCTIONS	4 INS	TRUCTIONS	
	14 BY	ГES		9 BY	TES	7 BYT	ES	
	56 STATES			9 CYCLES		4 CYC	CLES	
19 uSEC.			22.5 uSEC.		4 uSEC.			
b.) O	utput R	outine.						
	8085			8048		8051		
	LXI	HL,SERBUF		MOV	R0,#SERBUF			
	MOV	A,M		MOV	A,@R0	MOV	A,SERBUF	
	RR			RRC	Α	RRC	А	
	MOV	M,A		MOV	@R0,A	MOV	SERBUF,A	
	IN	SERPORT						
	JC	HI		JC	HI			
LO:	ANI	NOT MASK		ANL	SERPRT,#NOT MASK	MOV	SERPIN,C	
	JMP	CNT		JMP	CNT			
HI: CNT	ORI OUT	MASK SERPORT	HI: CNT:	ORL	SERPRI,#MASK			
RES	ULTS:							
	10 INSTRUCTIONS			8 INS	TRUCTIONS	4 INS	TRUCTIONS	
				13 BV	TFS	7 BVT	FS	
	72 ST	ATES			CLES	5 CVC		
/2 STATES			11 CYCLES			5 CYCLES		

Design Example #3 - Combinatorial Logic Equations

Next we'll look at some simple uses for bit-test instructions and logical operations. (This example is also presented in Application Note AP-69.)

Virtually all hardware designers have solved complex functions using combinatorial logic. While the hardware involved may vary from relay logic, vacuum tubes, or TTL or to more esoteric technologies like fluidics, in each case the goal is the same: to solve a problem represented by a logical function of several Boolean variables. Figure 13 shows TTL and relay logic diagrams for a function of the six variables U through Z. Each is a solution of the equation,

$$\mathbf{Q} = (\mathbf{U} \cdot (\mathbf{V} + \mathbf{W})) + (\mathbf{X} \cdot \overline{\mathbf{Y}}) + \overline{\mathbf{Z}}$$

Equations of this sort might be reduced using Karnaugh Maps or algebraic techniques, but that is not the purpose of this example. As the logic complexity increases, so does the difficulty of the reduction process. Even a minor change to the function equations as the design evolves would require tedious re-reduction from scratch.

Figure 13. Hardware Implementations of Boolean functions.

a.) Using TTL:

For the sake of comparison we will implement this function three ways, restricting the software to three proper subsets of the MCS-51[™] instruction set. We will also assume that U and V are input pins from different input ports, W and X are status bits for two peripheral controllers, and Y and Z are software flags set up earlier in the program. The end result must be written to an output pin on some third port. The first two implementations follow the flow-chart shown in Figure 14. Program flow would embark on a route down a test-and-branch tree and leaves either the "True" or "Not True" exit ASAP — as soon as the proper result has been determined. These exits then rewrite the output port with the result bit respectively one or zero.

Other digital computers must solve equations of this type with standard word-wide logical instructions and conditional jumps. So for the first implementation, we won't use any generalized bit-addressing instructions. As we shall soon see, being constrained to such an instruction subset produces somewhat sloppy software solutions. MCS-51™ mnemonics are used in Example 2.a; other machines might further cloud the situation by requiring operation-specific mnemonics like INPUT, OUTPUT, LOAD, STORE, etc., instead of the MOV mnemonic used for all variable transfers in the 8051 instruction set.

The code which results is cumbersome and error prone. It would be difficult to prove whether the software worked for all input combinations in programs of this sort. Furthermore, execution time will vary widely with input data.

Thanks to the direct bit-test operations, a single instruction can replace each move/mask/conditional jump sequence in Example 2.a, but the algorithm would be equally convoluted (see Example 2.B). To lessen the confusion "a bit" each input variable is assigned a symbolic name.

A more elegant and efficient implementation (Example 2.c) strings together the Boolean ANL and ORL functions to generate the output function with straight-line code.

b.) Using Relay Logic:

Figure 14. Flow chart for tree-branching algorithm.

01489A

When finished, the carry flag contains the result, which is simply copied out to the destination pin. No flow chart is needed—code can be written directly from the logic diagrams in Figure 14. The result is simplicity itself: fast, flexible, reliable, easy to design, and easy to debug.

An 8051 program can simulate an N-input AND or OR gate with at most N+1 lines of source program—one for each input and one line to store the results. To simulate NAND and NOR gates, complement the carry after computing the function. When some inputs to the gate have "inversion bubbles," perform the ANL or ORL operation on inverted operands. When the first input is inverted, either load the operand into the carry and then complement it, or use DeMorgan's Theorem to convert the gate to a different form.

Example 2. Software Solutions to Logic Function of Figure 13.

a.) Using only byte-wide logical instructions.

;BFUNC1	SOLVE RANDOM LOGIC FUNCTION
;	OF 6 VARIABLES BY LOADING AND
;	MASKING THE APPROPRIATE BITS
;	IN THE ACCUMULATOR, THEN
;	EXECUTING CONDITIONAL JUMPS
;	BASED ON ZERO CONDITION.
;	(APPROACH USED BY BYTE-
;	ORIENTED ARCHITECTURES.)
;	BYTE AND MASK VALUES
;	CORRESPOND TO RESPECTIVE BYTE
;	ADDRESS AND BIT POSITIONS.
;	
OUTBUF	DATA 22H ;OUTPUT PIN STATE MAP

TESTV: MOV A,P2 A,#00000100B ANL JNZ TESTU MOV A,TCON ANL A,#00100000B JZ TESTX TESTU: MOV A.PI ANL A,#0000010B JNZ SETQ TESTX: MOV A.TCON ANL A,#00001000B JZ TESTZ MOV A,20H ANL A,#0000001B JZ SETQ MOV TESTZ: A,21H A,#00000010B ANL JZ SETQ

CLRQ:	MOV	A,OUTBUF
	ANL	A,#11110111B
	JMP	OUTQ
SETQ:	MOV	A,OUTBUF
	ORL	A,#00001000B
OUTQ:	MOV	OUTBUF,A
	MOV	P3,A

b.) Using only bit-test instructions.

;BFUNC2	SOLVE	ARA	NDOM LOGIC FUNCTION				
;	OF 6 V	ARIA	BLES BY DIRECTLY				
;	POLLING EACH BIT.						
	(APPR	ОАСН	USING MCS-51 UNIQUE				
;	BIT-TE	ST INS	STRUCTION CAPABILITY.				
;	SYMBO	DLS U	SED IN LOGIC DIAGRAM				
:	ASSIG	NED T	O CORRESPONDING 8x51				
:	BIT AE	DRES	SSES.				
:							
U	BIT	P1.1					
V	BIT	P2.2					
W	BIT	TF0					
Х	BIT	IEI					
Y	BIT	20H.0					
Z	BIT	21H.1					
Q	BIT	P3.3					
;							
TEST_V:	JB	V,TES	ST_U ·				
	JNB	W,TE	ST_X				
TEST_U:	JB	U,SET	Γ_Q				
TEST_X:	JNB	X,TES	ST_Z				
	JNB	Y,SET	Q				
TEST_Z:	JNB	Z,SET	<u>_</u> Q				
CLR_Q:	CLR	Q					
	JMP	NXTT	ST				
SET_Q:	SETB	Q					
NXTTST:			;(CONTINUATION OF ;PROGRAM)				

c.) Using logical operations on Boolean variables.

;FUNC	13 SO	LVE A RANDOM LOGIC FUNCTION
;	OF	6 VARIABLES USING
;	ST	RAIGHT_LINE LOGICAL
;	INS	STRUCTIONS ON MCS-51 BOOLEAN
;	VA	RIABLES.
;		
MOV	C,V	
ORL	C,W	OUTPUT OF OR GATE
ANL	C,U	OUPUT OF TOP AND GATE
MOV	F0,C	SAVE INTERMEDIATE STATE
MOV	C,X	
ANL	C,/Y	OUTPUT OF BOTTOM AND GATE
ORL	C,F0	INCLUDE VALUE SAVED ABOVE
ORL	C,/Z	;INCLUDE LAST INPUT VARIABLE
MOV	Q,C	;OUTPUT COMPUTED RESULT

An upper-limit can be placed on the complexity of software to simulate a large number of gates by summing the total number of inputs and outputs. The *actual* total should be somewhat shorter, since calculations can be "chained," as shown above. The output of one gate is often the first input to another, bypassing the intermediate variable to eliminate two lines of source.

Design Example #4 - Automotive Dashboard Functions

Now let's apply these techniques to designing the software for a complete controller system. This application is patterned after a familiar real-world application which isn't nearly as trivial as it might first appear: automobile turn signals.

Imagine the three position turn lever on the steering column as a single-pole, triple-throw toggle switch. In its central position all contacts are open. In the up or down positions contacts close causing corresponding lights in the rear of the car to blink. So far very simple.

Two more turn signals blink in the front of the car, and two others in the dashboard. All six bulbs flash when an emergency switch is closed. A thermo-mechanical relay (accessible under the dashboard in case it wears out) causes the blinking.

Applying the brake pedal turns the tail light filaments on constantly... unless a turn is in progress, in which case the blinking tail light is not affected. (Of course, the front turn signals and dashboard indicators are not affected by the brake pedal.) Table 6 summarizes these operating modes.

But we're not done yet. Each of the exterior turn signal (but not the dashboard) bulbs has a second, somewhat dimmer filament for the parking lights. Figure 15 shows TTL circuitry which could control all six bulbs. The signals labeled "High Freq." and "Low Freq." represent two square-wave inputs. Basically, when one of the turn switches is closed or the emergency switch is activated the low frequency signal (about 1 Hz) is gated through to the appropriate dashboard indicator(s) and turn signal(s). The rear signals are also activated when the brake pedal is depressed provided a turn is not being made in the same direction. When the parking light switch is closed the higher frequency oscillator is gated to each front and rear turn signal, sustaining a low-intensity background level. (This is to eliminate the need for additional parking light filaments.)

Figure 15. TTL logic implementation of automotive turn signals.

INPUT SIGNALS				OUTPUT SIGNALS			
BRAKE SWITCH	EMERG. SWITCH	LEFT TURN SWITCH	RIGHT TURN SWITCH	LEFT FRONT & DASH	RIGHT FRONT & DASH	LEFT REAR	RIGHT REAR
0	0	0	0	OFF	OFF	OFF	OFF
0	0	0	1	OFF	BLINK	OFF	BLINK
0	0	1	0	BLINK	OFF	BLINK	OFF
0	1	0	0	BLINK	BLINK	BLINK	BLINK
0	.1	0	1	BLINK	BLINK	BLINK	BLINK
0	1	1	0	BLINK	BLINK	BLINK	BLINK
1	0	0	0	OFF	OFF	ON	ON
1	0	0	1	OFF	BLINK	ON	BLINK
1	0	1	0	BLINK	OFF	BLINK	ON
1	1	0	0	BLINK	BLINK	ON	ON
1	1	0	1	BLINK	BLINK	ON	BLINK
1	1	1	0	BLINK	BLINK	BLINK	ON

Table 6.	Truth	table	for	turn-signal	operation
----------	-------	-------	-----	-------------	-----------

⁰¹⁴⁸⁹A

In most cars, the switching logic to generate these functions requires a number of multiple-throw contacts. As many as 18 conductors thread the steering column of some automobiles solely for turn-signal and emergency blinker functions. (The author discovered this recently to his astonishment and dismay when replacing the whole assembly because of one burned contact.)

A multiple-conductor wiring harness runs to each corner of the car, behind the dash, up the steering column, and down to the blinker relay below. Connectors at each termination for each filament lead to extra cost and labor during construction, lower reliability and safety, and more costly repairs. And considering the system's present complexity, increasing its reliability or detecting failures would be quite difficult.

There are two reasons for going into such painful detail describing this example. First, to show that the messiest part of many system designs is determining what the controller should do. Writing the software to solve these functions will be comparatively easy. Secondly, to show the many potential failure points in the system. Later we'll see how the peripheral functions and intelligence built into a microcomputer (with a little creativity) can greatly reduce external interconnections and mechanical part count.

The Single-chip Solution

The circuit shown in Figure 16 indicates five input pins to the five input variables—left-turn select, right-turn select, brake pedal down, emergency switch on, and parking lights on. Six output pins turn on the front, rear, and dashboard indicators for each side. The microcomputer implements all logical functions through software, which periodically updates the output signals as time elapses and input conditions change.

Figure 16. Microcomputer Turn-signal Connections.

Design Example #3 demonstrated that symbolic addressing with user-defined bit names makes code and documentation easier to write and maintain. Accordingly, we'll assign these I/O pins names for use throughout the program. (The format of this example will differ somewhat from the others. Segments of the overall program will be presented in sequence as each is described.)

;		
;	INPUT I	PIN DECLARATIONS:
; (ALL	INPUTS A	RE POSITIVE-TRUE LOGIC)
;		
BRAKE	BIT P1.0	; BRAKE PEDAL DEPRESSED
EMERG	BIT P1.1	; EMERGENCY BLINKER
		ACTIVATED
PARK	BIT P1.2	; PARKING LIGHTS ON
L_TURN	BIT P1.3	; TURN LEVER DOWN
R_TURN	BIT P1.4	; TURN LEVER UP
;		
;	OUTPUT	PIN DECLARATIONS:
;		
L_FRNT	BIT P1.5	; FRONT LEFT-TURN
		INDICATOR
R_FRNT	BIT P1.6	; FRONT RIGHT-TURN
		INDICATOR
L_DASH	BIT P1.7	; DASHBOARD LEFT-TURN
		INDICATOR
R_DASH	BIT P2.0	; DASHBOARD RIGHT-TURN
		INDICATOR
L_REAR	BIT P2.1	; REAR LEFT-TURN
		INDICATOR
R_REAR	BIT P2.2	; REAR RIGHT-TURN
		INDICATOR
:		

Another key advantage of symbolic addressing will appear further on in the design cycle. The locations of cable connectors, signal conditioning circuitry, voltage regulators, heat sinks, and the like all affect P.C. board layout. It's quite likely that the somewhat arbitrary pin assignment defined early in the software design cycle will prove to be less than optimum; rearranging the I/O pin assignment could well allow a more compact module, or eliminate costly jumpers on a single-sided board. (These considerations apply especially to automotive and other cost-sensitive applications needing single-chip controllers.) Since other architectures mask bytes or use "clever" algorithms to isolate bits by rotating them into the carry, re-routing an input signal (from bit 1 of port 1, for example, to bit 4 of port 3) could require extensive modifications throughout the software.

The Boolean Processor's direct bit addressing makes such changes absolutely trivial. The number of the port containing the pin is irrelevent, and masks and complex program structures are not needed. Only the initial Boolean varia-

: INTERRUPT RATE SUBDIVIDER SUB_DIV DATA 20H ; HIGH-FREQUENCY OSCILLATOR BIT HI_FREO BIT SUB_DIV.0 ; LOW-FREQUENCY OSCILLATOR BIT SUB_DIV.7 LO_FREQ BIT : ORG 0000H JMP INIT : ORG 100H ; PUT TIMER 0 IN MODE 1 INIT: MOV TMOD.#0000001B ; INITIALIZE TIMER REGISTERS MOV TL0.#0 MOV TH0,#-16 : SUBDIVIDE INTERRUPT RATE BY 244 MOV SUB_DIV,#244 ; ENABLE TIMER INTERRUPTS SETB ET0 ; GLOBALLY ENABLE ALL INTERRUPTS SETB FA ; START TIMER SETB TR0 : (CONTINUE WITH BACKGROUND PROGRAM)

; PUT TIMER 0 IN MODE 1 ; INITIALIZE TIMER REGISTERS

:

; SUBDIVIDE INTERRUPT RATE BY 244 ; ENABLE TIMER INTERRUPTS ; GLOBALLY ENABLE ALL INTERRUPTS ; START TIMER

ble declarations need to be changed; ASM51 automatically adjusts all addresses and symbolic references to the reassigned variables. The user is assured that no additional debugging or software verification will be required.

Timer 0 (one of the two on-chip timer/counters) replaces the thermo-mechanical blinker relay in the dashboard controller. During system initialization it is configured as a timer in mode 1 by setting the least significant bit of the timer mode register (TMOD). In this configuration the low-order byte (TL0) is incremented every machine cycle, overflowing and incrementing the high-order byte (TH0) every 256 μ Sec. Timer interrupt 0 is enabled so that a hardware interrupt will occur each time TH0 overflows. (For details of the numerous timer operating modes see the MCS-51TM User's Manual.)

An eight-bit variable in the bit-addressable RAM array will be needed to further subdivide the interrupts via software. The lowest-order bit of this counter toggles very fast to modulate the parking lights; bit 7 will be "tuned" to approximately 1 Hz for the turn- and emergencyindicator blinking rate.

Loading TH0 with -16 will cause an interrupt after 4.096 msec. The interrupt service routine reloads the high-order byte of timer 0 for the next interval, saves the CPU registers likely to be affected on the stack, and then decrements SUB_DIV. Loading SUB_DIV. with 244 initially and each time it decrements to zero will produce a 0.999 second period for the highest-order bit.

ORG	000BH	; TIMER 0 SERVICE VECTOR
MOV	TH0,#-16	
PUSH	PSW	
PUSH	ACC	
PUSH	В	
DJNZ	SUB_DIV	TOSERV
MOV	SUB_DIV	#244

The code to sample inputs, perform calculations, and update outputs—the real "meat" of the signal controller algorithm—may be performed either as part of the interrupt service routine or as part of a background program loop. The only concern is that it must be executed at least several dozen times per second to prevent parking light flickering. We will assume the former case, and insert the code into the timer 0 service routine.

First, notice from the logic diagram (Figure 15) that the subterm (PARK \cdot H_FREQ), asserted when the parking lights are to be on dimly, figures into four of the six output functions. Accordingly, we will first compute that term and save it in a temporary location named "DIM". The PSW contains two general purpose flags: F0, which corresponds to the 8048 flag of the same name, and PSW.1. Since The PSW has been saved and will be restored to its previous state after servicing the interrupt, we can use either bit for temporary storage.

DIM BIT	PSW.1 : DECLARE TEMP. STORAGE FLAG
MOV C,PARK	; GATE PARKING
	LIGHT SWITCH
ANL HI_FREQ	; WITH HIGH
	FREQUENCY
	SIGNAL
MOV DIM.C	: AND SAVE IN
	TEMP. VARIABLE.

This simple three-line section of code illustrates a remarkable point. The software indicates in very abstract terms exactly what function is being performed, independent of the hardware configuration. The fact that these three bits include an input pin, a bit within a program variable, and a software flag in the PSW is totally invisible to the programmer.

Now generate and output the dashboard left turn signal.

•			
,	MOV	C,L_TURN	; SET CARRY IF
	ORI	CEMERG	OR EMERGENCY
	OKL	CLEMERO	SELECTED.
	ANL	C,LO_FREQ	; GATE IN 1 HZ
			SIGNAL
	MOV	L_DASH,C	; AND OUTPUT TO
			DASHDOARD.

To generate the left front turn signal we only need to add the parking light function in F0. But notice that the function in the carry will also be needed for the rear signal. We can save effort later by saving its current state in F0.

.

•			
	MOV	F0,C	; SAVE FUNCTION
			SO FAR.
	ORL	C,DIM	; ADD IN PARKING
			LIGHT FUNCTION
	MOV	L_FRNT,C	; AND OUTPUT TO
			TURN SIGNAL.

Finally, the rear left turn signal should also be on when the brake pedal is depressed, provided a left turn is not in progress.

MOV C,BRAKE	; GATE BRAKE
	PEDAL SWITCH
ANL C,/L_TURN	; WITH TURN
	LEVER.
ORL C,F0	; INCLUDE TEMP.
	VARIABLE FROM
	DASH
ORL C,DIM	; AND PARKING
	LIGHT FUNCTION
MOV L_REAR,C	; AND OUTPUT TO
	TURN SIGNAL.

Now we have to go through a similar sequence for the right-hand equivalents to all the left-turn lights. This also gives us a chance to see how the code segments above look when combined.

MOV	C,R_TURN	; SET CARRY IF
		TURN
ORL	C,EMERG	; OR EMERGENCY
		SELECTED.
ANL	C,LO_FREQ	; IF SO, GATE IN 1
		HZ SIGNAL

MOV R_DASH,C	; AND OUTPUT TO
	DASHBOARD.
MOV F0,C	; SAVE FUNCTION
	SO FAR.
ORL C,DIM	; ADD IN PARKING
	LIGHT FUNCTION
MOV R_FRNT,C	; AND OUTPUT TO
	TURN SIGNAL.
MOV C, BRAKE	; GATE BRAKE
	PEDAL SWITCH
ANL C,/R_TURN	; WITH TURN
	LEVER.
ORL C,F0	; INCLUDE TEMP.
	VARIABLE FROM
	DASH
ORL C,DIM	; AND PARKING
	LIGHT FUNCTION
MOV R_REAR,C	; AND OUTPUT TO
	TURN SIGNAL.

(The perceptive reader may notice that simply rearranging the steps could eliminate one instruction from each sequence.)

Now that all six bulbs are in the proper states, we can return from the interrupt routine, and the program is finished. This code essentially needs to reverse the status saving steps at the beginning of the interrupt.

POP	В	; RESTORE CPU
		REGISTERS.
POP	ACC	
POP	PSW	
RETI		
		and the second

Program Refinements. The luminescence of an incandescent light bulb filament is generally non-linear; the 50% duty cycle of HL_FREQ may not produce the desired intensity. If the application requires, duty cycles of 25%, 75%, etc. are easily achieved by ANDing and ORing in additional low-order bits of SUB_DIV. For example, 30 Hz signals of seven different duty cycles could be produced by considering bits 2—0 as shown in Table 7. The only software change required would be to the code which sets-up variable DIM:

MOV C,SUB_DIV.1	; START WITH 50
ANL C SUB DIVO	MASK DOWN TO 25
ANL C,SUB_DIV.U	PERCENT
ORL C,SUB_DIV.2	; AND BUILD BACK TO
	62 PERCENT
MOV DIM,C	; DUTY CYCLE FOR
	PARKING LIGHTS.

01489A

		SL	JB_DI	V BIT	rs					DU	тү сүсі	ES		
7	6	5	4	3	2	1	0	12.5%	25.0 %	37.5%	50.0 %	62.5 %	75.0 %	87.5%
X	Х	Х	Х	Х	0	0	0	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Х	X	X	Х	Х	0	0	1	OFF	OFF	OFF	OFF	OFF	OFF	ON
Х	Х	Х	Х	Х	0	1	0	OFF	OFF	OFF	OFF	OFF	ON	ON
X	X	Х	Х	Х	0	1	1	OFF	OFF	OFF	OFF	ON	ON	ON
Х	Х	Х	Х	Х	1	0	0	OFF	OFF	OFF	ON	ON .	ON	ON
X	X	X	Х	Х	1 -	0	1	OFF	OFF	ON	ON	ON	ON	ON
Х	X	X	Х	Х	1	1	0	OFF	ON	ON	ON	ON	ON	ON
Х	X	Х	X	x	1	1	1	ON	ON	ON	ON	ON	ON	ON

Table 7. Non-trivial Duty Cycles.

Interconnections increase cost and decrease reliability. The simple buffered pin-per-function circuit in Figure 16 is insufficient when many outputs require higher-than-TTL drive levels. A lower-cost solution uses the 8051 serial port in the shift-register mode to augment 1/O. In mode 0, writing a byte to the serial port data buffer (SBUF) causes the data to be output sequentially through the "RXD" pin while a burst of eight clock pulses is generated on the "TXD" pin. A shift register connected to these pins (Figure 17) will load the data byte as it is shifted out. A number of special peripheral driver circuits combining shift-register inputs with high drive level outputs have been introduced recently.

Cascading multiple shift registers end-to-end will expand the number of outputs even further. The data rate in the 1/O expansion mode is one megabaud, or 8 usec. per byte. This is the mode which the serial port defaults to following a reset, so no initialization is required.

The software for this technique uses the B register as a "map" corresponding to the different output functions. The program manipulates these bits instead of the output pins. After all functions have been calculated the B register is shifted by the serial port to the shift-register/driver. (While some outputs may glitch as data is shifted through them, at 1 Megabaud most people wouldn't notice. Some shift registers provide an "enable" bit to hold the output states while new data is being shifted in.)

This is where the earlier decision to address bits symbolically throughout the program is going to pay off. This major 1/O restructuring is nearly as simple to implement as rearranging the input pins. Again, only the bit declarations need to be changed.

L_FRNT	BIT	B .0	: FRONT LEFT-TURN
			INDICATOR
R_FRNT	BIT	B .1	; FRONT RIGHT-TURN
			INDICATOR
L_DASH	BIT	B.2	; DASHBOARD LEFT-TURN
			INDICATOR
R_DASH	BIT	B .3	; DASHBOARD RIGHT-TURN
			INDICATOR

Figure 17. Output expansion using serial port.

L_REAR	BIT	B.4	; REAR LEFT-TURN
			: INDICATOR
R_REAR	BIT	B.5	: REAR RIGHT-TURN
			: INDICATOR

The original program to compute the functions need not change. After computing the output variables, the control map is transmitted to the buffered shift register through the serial port:

MOV SBUF, B ; LOAD BUFFER AND TRANSMIT

The Boolean Processor solution holds a number of advantages over older methods. Fewer switches are required. Each is simpler, requiring fewer poles and lower current contacts. The flasher relay is eliminated entirely. Only six filaments are driven, rather than 10. The wiring harness is therefore simpler and less expensive—one conductor for each of the six lamps and each of the five sensor switches. The fewer conductors use far fewer connectors. The whole system is more reliable.

And since the system is much simpler it would be feasible to implement redundancy and/or fault detection on the four main turn indicators. Each could **still** be a standard double filament bulb, but with the filaments driven in parallel to tolerate single-element failures.

Even with redundancy, the lights will eventually fail. To handle this inescapable fact current or voltage sensing

CLR L_DASH

circuits on each main drive wire can verify that each bulb and its high-current driver is functioning properly. Figure 18 shows one such circuit.

Figure 18.

Assume all of the lights are turned on except one; i.e., all but one of the collectors are grounded. For the bulb which is turned off, if there is continuity from ± 12 V through the bulb base and filament, the control wire, all connectors, and the P.C. board traces, and if the transistor is indeed not shorted to ground, then the collector will be pulled to ± 12 V. This turns on the base of Q8 through the corresponding resistor, and grounds the input pin, verifying that the bulb circuit is operational. The continuity of each circuit can be checked by software in this way.

Now turn *all* the bulbs on, grounding all the collectors. Q7 should be turned off, and the Test pin should be high. However, a control wire shorted to ± 12 V or an opencircuited drive transistor would leave one of the collectors at the higher voltage even now. This too would turn on Q7, indicating a different type of failure. Software could perform these checks once per second by executing the routine every time the software counter SUB_DIV is reloaded by the interrupt routine.

I	DJNZ	SUB_DIV, TOSERV	
l	MOV	SUB_DIV,#244	; RELOAD COUNTER
(ORL	P1,#11100000B	; SET CONTROL
			OUTPUTS HIGH
(ORL	P2,#00000111B	
(CLR	L_FRNT	; FLOAT DRIVE
			COLLECTOR
	JB	T0,FAULT	; TO SHOULD BE
			PULLED LOW
S	SETB	L_FRNT	; PULL COLLECTOR
			BACK DOWN

JB T0,	FAULT
SETB L_I	DASH
CLR L_F	REAR .
JB TO,	FAULT
SETB L_F	REAR
CLR R_F	RNT
JB TO,	FAULT
SETB R_F	FRNT
CLR R_I	DASH
JB TO,	FAULT
SETB R_I	DASH
CLR R_H	XEAR
JB TO,	FAULT
SETB R_H	REAR
;	
; WITH ALL CO	LLECTORS GROUNDED, 10
SHOULD BE H	ligh
; IF SO, CONTIN	NUE WITH INTERRUPT ROUTINE.
JB 10,108	ERV
FAULT:	: ELECTRICAL FAILURE
	PROCESSING ROUTINE
	: (LEFT TO READER'S
	: IMAGINATION)
T0SERV:	: CONTINUE WITH
	INTERRUPT PROCESSING
:	

The complete assembled program listing is printed in Appendix A. The resulting code consists of 67 program statements, not counting declarations and comments, which assemble into 150 bytes of object code. Each pass through the service routine requires (coincidently) 67 usec, plus 32 usec once per second for the electrical test. If executed every 4 msec as suggested this software would typically reduce the throughput of the background program by less than 2%.

Once a microcomputer has been designed into a system, new features suddenly become virtually free. Software could make the emergency blinkers flash alternately or at a rate faster than the turn signals. Turn signals could override the emergency blinkers. Adding more bulbs would allow multiple tail light sequencing and syncopation — true flash factor, so to speak.

Design Example #5 - Complex Control Functions

Finally, we'll mix byte and bit operations to extend the use of 8051 into extremely complex applications.

Programmers can arbitrarily assign I/O pins to input and output functions only if the total does not exceed 32, which is insufficient for applications with a very large number of input variables. One way to expand the number of inputs is with a technique similar to multiplexedkeyboard scanning.
Figure 19 shows a block diagram for a moderately complex programmable industrial controller with the following characteristics:

- 64 input variable sensors;
- 12 output signals;
- Combinational and sequential logic computations;
- Remote operation with communications to a host processor via a high-speed full-duplex serial link;
- Two prioritized external interrupts;
- Internal real-time and time-of-day clocks.

While many microprocessors could be programmed to provide these capabilities with assorted peripheral support chips, an 8051 microcomputer needs **no** other integrated circuits!

The 64 input sensors are logically arranged as an 8x8 matrix. The pins of Port I sequentially enable each column of the sensor matrix; as each is enabled Port 0 reads in the state of each sensor in that column. An eight-byte block in bit-addressable RAM remembers the data as it is read in so that after each complete scan cycle there is an internal map of the current state of all sensors. Logic functions can then directly address the elements of the bit map.

The computer's serial port is configured as a nine-bit UART, transferring data at 17,000 bytes-per-second. The ninth bit may distinguish between address and data bytes.

Figure 19. Block diagram of 64-input machine controller.

The 8051 serial port can be configured to detect bytes with the address bit set, automatically ignoring all others. Pins INT0 and INT1 are interrupts configured respectively as high-priority, falling-edge triggered and low-priority, lowlevel triggered. The remaining 12 I/O pins output TTLlevel control signals to 12 actuators.

There are several ways to implement the sensor matrix circuitry, all logically similar. Figure 20.a shows one possibility. Each of the 64 sensors consists of a pair of simple switch contacts in series with a diode to permit multiple contact closures throughout the matrix.

The scan lines from Port 1 provide eight un-encoded active-high scan signals for enabling columns of the matrix. The return lines on rows where a contact is closed are pulled high and read as logic ones. Open return lines are pulled to ground by one of the 40 kohm resistors and are read as zeroes. (The resistor values must be chosen to ensure all return lines are pulled above the 2.0 V logic threshold, even in the worst-case, where all contacts in an enabled column are closed.) Since P0 is provided opencollector outputs and high-impedance MOS inputs its input loading may be considered negligible.

The circuits in Figures 20.b—20.d are variations on this theme. When input signals must be electrically isolated from the computer circuitry as in noisy industrial environments, phototransistors can replace the switch/diode pairs **and** provide optical isolation as in Figure 20.b. Additional opto-isolators could also be used on the control output and special signal lines.

The other circuits assume that input signals are already at TTL levels. Figure 20.c uses octal three-state buffers enabled by active-low scan signals to gate eight signals onto Port 0. Port 0 is available for memory expansion or peripheral chip interfacing between sensor matrix scans. Eight-to-one multiplexers in Figure 20.d select one of eight inputs for each return line as determined by encoded address bits output on three pins of Port 1. (Five more output pins are thus freed for more control functions.) Each output can drive at least one standard TTL or up to 10 low-power TTL loads without additional buffering.

Going back to the original matrix circuit, Figure 21 shows the method used to scan the sensor matrix. Two complete bit maps are maintained in the bit-addressable region of the RAM: one for the current state and one for the previous state read for each sensor. If the need arises, the program could then sense input transitions and/or debounce contact closures by comparing each bit with its earlier value.

Figure 20. Sensor Matrix Implementation Methods.

Example 3.

The code in Example 3 implements the scanning algorithm for the circuits in Figure 20.a. Each column is enabled by setting a single bit in a field of zeroes. The bit maps are positive logic; ones represent contacts that are closed or isolators turned on.

INPUT_SCAN:	; SUBROUTINE TO READ
	CURRENT STATE
	; OF 64 SENSORS AND
	SAVE IN RAM 20H-27H.
MOV R0,#20H	; INITIALIZE
	; POINTERS
MOV R1,#28H	; FOR BIT MAP
	; BASES.

01489A

	MOV	A,#80H	; SET FIRST BIT IN
			ACC.
SCAN:	MOV	P1.A	; OUTPUT TO SCAN
			LINES.
	RR	А	; SHIFT TO ENABLE
			NEXT COLUMN
			NEXT.
	MOV	R2,A	; REMEMBER CUR-
			RENT SCAN
			POSITION.
	MOV	A,P0	; READ RETURN
			LINES.
	XCH	A,@R0	; SWITCH WITH
			PREVIOUS MAP
			BITS.
	MOV	@R1,A	; SAVE PREVIOUS
			STATE AS WELL.
	INC	R0	; BUMP POINTERS.
	INC	R1	
	MOV	A,R2	; RELOAD SCAN LINE
			MASK
	JNB	ACC.7,SCAN	: LOOP UNTIL ALL
			EIGHT COLUMNS
			READ.

What happens after the sensors have been scanned depends on the individual application. Rather than inventing some artificial design problem, software corresponding to commonplace logic elements will be discussed.

Combinatorial Output Variables. An output variable which is a simple (or not so simple) combinational function of several input variables is computed in the spirit of Design Example 3. All 64 inputs are represented in the bit maps; in fact, the sensor numbers in Figure 20 correspond to the absolute bit addresses in RAM! The code in Example 4 activates an actuator connected to P2.2 when sensors 12, 23, and 34 are closed and sensors 45 and 56 are open.

Example 4.

:

Simple Combinatorial Output Variables.

SET P2.2 = (1	2) (23) (34) (/45) (/56)
MOV	C,12
ANL	C,23
ANL	C,34
ANL	C,/45
ANL	C,/56
MOV	P2.2,C

Intermediate Variables. The examination of a typical relay-logic ladder diagram will show that many of the rungs control *not* outputs but rather relays whose contacts figure into the computation of other functions. In effect, these relays indicate the state of intermediate variables of a computation.

The MCS-51TM solution can use any directly addressable bit for the storage of such intermediate variables. Even when all 128 bits of the RAM array are dedicated (to input bit maps in this example), the accumulator, PSW, and B register provide 18 additional flags for intermediate variables.

For example, suppose switches 0 through 3 control a safety interlock system. Closing any of them should deactivate certain outputs. Figure 22 is a ladder diagram for this situation. The interlock function could be recomputed for every output affected, or it may be computed once and saved (as implied by the diagram). As the program proceeds this bit can qualify each output.

Example 5. Incorporating Override signal into actuator outputs.

CALL INPUT_SCAN MOV C,0 ORL C,1 ORL C,2 ORL C,3 MOV F0,C

....

01489A-28

;	COMPUTE FUNCTION 0	Example 6.
,	ANL C,/F0 MOV P1.0,C	;L_SET S L_SET:
; ;	COMPUTE FUNCTION 1	;
•	ANL C,/F0 MOV P1.1,C	;L_RSET R L_RSET:
;	COMPUTE FUNCTION 2	
,	ANL C,/F0	,
:	MOV P1.2,C	Time Delay

Figure 22. Ladder diagram for output override circuitry.

Latching Relays. A latching relay can be forced into either the ON or OFF state by two corresponding input signals, where it will remain until forced onto the opposite state analogous to a TTL Set/Reset flip-flop. The relay is used as an intermediate variable for other calculations. In the previous example, the emergency condition could be remembered and remain active until an "emergency cleared" button is pressed.

Any flag or addressable bit may represent a latching relay with a few lines of code (see Example 6).

Example 6. Simulating a latching relay. ;L_SET SET FLAG 0 IF C=1 L_SET: ORL C,F0 MOV F0,C ; ;L_RSET RESET FLAG 0 IF C=1 L_RSET: CPS C ANL C,F0 MOV F0,C ;

Time Delay Relays. A time delay relay does not respond to an input signal until it has been present (or absent) for some predefined time. For example, a ballast or load resistor may be switched in series with a D.C. motor when it is first turned on, and shunted from the circuit after one second. This sort of time delay may be simulated by an interrupt routine driven by one of the two 8051 timer/ counters. The procedure followed by the routine depends heavily on the details of the exact function needed; timeouts or time delays with resettable or non-resettable inputs are possible. If the interrupt routine is executed every 10 milliseconds the code in Example 7 will clear an intermediate variable set by the background program after it has been active for two seconds.

Example 7. Code to clear USRFLG after a fixed time delay.

	JNB	USR_FLG,NXTTST
	DJNZ	DLAY_COUNT,NXTTST
	CLR	USR_FLG
	MOV	DLAY_COUNT,#200
NXTTST:	;	

Serial Interface to Remote Processor. When it detects emergency conditions represented by certain input combinations (such as the earlier Emergency Override), the controller could shut down the machine immediately and/or alert the host processor via the serial port. Code bytes indicating the nature of the problem could be transmitted to a central computer. In fact, at 17,000 bytes-persecond, the entire contents of both bit maps could be sent to the host processor for further analysis in less than a millisecond! If the host decides that conditions warrant, it could alert other remote processors in the system that a problem exists and specify which shut-down sequence each should initiate. For more information on using the serial port, consult the MCS-51TM User's Manual.

Response Timing.

One difference between relay and programmed industrial controllers (when each is considered as a "black box") is their respective reaction times to input changes. As reflected by a ladder diagram, relay systems contain a large number of "rungs" operating in parallel. A change in input conditions will begin propagating through the system immediately, possibly affecting the output state within milliseconds.

Software, on the other hand, operates sequentially. A change in input states will not be detected until the next time an input scan is performed, and will not affect the outputs until that section of the program is reached. For that reason the raw speed of computing the logical functions is of extreme importance.

Here the Boolean processor pays off. Every instruction mentioned in this Note completes in one or two microseconds—the minimum instruction execution time for many other microcontrollers! A ladder diagram containing a hundred rungs, with an average of four contacts per rung can be replaced by approximately five hundred lines of software. A complete pass through the entire matrix scanning routine and all computations would require about a millisecond; less than the time it takes for most relays to change state.

A programmed controller which simulates each Boolean function with a subroutine would be less efficient by at least an order of magnitude. Extra software is needed for the simulation routines, and each step takes longer to execute for three reasons: several byte-wide logical instructions are executed per user program step (rather than one Boolean operation); most of those instructions take longer to execute with microprocessors performing multiple off-chip accesses; and calling and returning from the various subroutines requires overhead for stack operations.

In fact, the speed of the Boolean Processor solution is likely to be much faster than the system requires. The CPU might use the time left over to compute feedback parameters, collect and analyze execution statistics, perform system diagnostics, and so forth.

Additional functions and uses.

With the building-block basics mentioned above many more operations may be synthesized by short instruction sequences.

Exclusive-OR. There are no common mechanical devices or relays analogous to the Exclusive-OR operation, so this instruction was omitted from the Boolean Processor. However, the Exclusive-OR or Exclusive-NOR operation may be performed in two instructions by conditionally complementing the carry or a Boolean variable based on the state of any other testable bit. ; EXCLUSIVE-OR FUNCTION IMPOSED ON CARRY ; USING F0 IS INPUT VARIABLE. XOR_F0: JNB F0,XORCNT ; ("JB" FOR X-NOR) CPL C XORCNT:

XCH. The contents of the carry and some other bit may be exchanged (switched) by using the accumulator as temporary storage. Bits can be moved into and out of the accumulator simultaneously using the Rotate-through-carry instructions, though this would alter the accumulator data.

EXCHA	NGE CAR	RY WITH USRFLG
XCHBIT:	RLC	A
	MOV	C,USR_FLG
	RRC	A
	MOV	USR_FLG,C
	RLC	A

Extended Bit Addressing. The 8051 can directly address 144 general-purpose bits for all instructions in Figure 3.b. Similar operations may be extended to any bit anywhere on the chip with some loss of efficiency.

The logical operations AND, OR, and Exclusive-OR are performed on byte variables using six different addressing modes, one of which lets the source be an immediate mask, and the destination any directly addressable byte. Any bit may thus be set, cleared, or complemented with a three-byte, two-cycle instruction if the mask has all bits but one set or cleared.

Byte variables, registers, and indirectly addressed RAM may be moved to a bit addressable register (usually the accumulator) in one instruction. Once transferred, the bits may be tested with a conditional jump, allowing any bit to be polled in 3 microseconds—still much faster than most architectures—or used for logical calculations. (This technique can also simulate additional bit addressing modes with byte operations.)

Parity of bytes or bits. The parity of the current accumulator contents is always available in the PSW, from whence it may be moved to the carry and further processed. Error-correcting Hamming codes and similar applications require computing parity on groups of isolated bits. This can be done by conditionally complementing the carry flag based on those bits or by gathering the bits into the accumulator (as shown in the DES example) and then testing the parallel parity flag.

Multiple byte shift and CRC codes.

Though the 8051 serial port can accommodate eight- or nine-bit data transmissions, some protocols involve much longer bit streams. The algorithms presented in Design Example 2 can be extended quite readily to 16 or more bits by using multi-byte input and output buffers.

Many mass data storage peripherals and serial communications protocols include Cyclic Redundancy (CRC) codes to verify data integrity. The function is generally computed serially by hardware using shift registers and Exclusive-OR gates, but it can be done with software. As each bit is received into the carry, appropriate bits in the multi-byte data buffer are conditionally complemented based on the incoming data bit. When finished, the CRC register contents may be checked for zero by ORing the two bytes in the accumulator.

4. SUMMARY

A truly unique facet of the Intel MCS-51[™] microcomputer family design is the collection of features optimized for the one-bit operations so often desired in real-world, real-time control applications. Included are 17 special instructions, a Boolean accumulator, implicit and direct addressing modes, program and mass data storage, and many I/O options. These are the world's first single-chip microcomputers able to efficiently manipulate, operate on, and transfer either bytes or individual bits as data. This Application Note has detailed the information needed by a microcomputer system designer to make full use of these capabilities. Five design examples were used to contrast the solutions allowed by the 8051 and those required by previous architectures. Depending on the individual application, the 8051 solution will be easier to design, more reliable to implement, debug, and verify, use less program memory, and run up to an order of magnitude faster than the same function implemented on previous digital computer architectures.

Combining byte- and bit-handling capabilities in a single microcomputer has a strong synergistic effect: the power of the result exceeds the power of byte- and bit-processors laboring individually. Virtually all user applications will benefit in some ways from this duality. Data intensive applications will use bit addressing for test pin monitoring or program control flags; control applications will use byte manipulation for parallel 1/O expansion or arithmetic calculations.

It is hoped that these design examples give the reader an appreciation of these unique features and suggest ways to exploit them in his or her own application. ISIS-II MCS-51 MACRO ASSEMBLER V1.0 DBJECT MODULE PLACED IN :F0:AP70.HEX ASSEMBLER INVOKED BY: :f1:asm51 ap70.src date(328) LOC DBJ LINE SOURCE

	7/	,				الان بنان جيد جند جند فن الله جيد جي من جيد جن فنه بين الله التي جيد جن من الله عن الله عن الله عن الله عن
	46	;		,		
0001	44 45	; DTM	BIT	PSW 1		PARKING LICHTS ON ELAC
0007	43	LO_FREQ	BIT	SUB_DIV.	7	; LOW-FREQUENCY OSCILLATOR BIT
0000	42	HI_FREQ	BIT	SUB_DIV.	0	; HIGH-FREQUENCY OSCILLATOR BIT
0020	41	SUB_DIV	DATA	20H		; INTERRUPT RATE SUBDIVIDER
	40	;				
	39	;	INTERNA	L VARIABL	E	DEFINITIONS
6A00	37	S_FAIL	BIT	P2. 3	;	ELECTRICAL SYSTEM FAULT INDICATOR
	36	;				
00A2	35	R_REAR	BIT	P2. 2	;	REAR RIGHT-TURN INDICATOR
00A1	34	L REAR	BIT	P2. 1	;	REAR LEFT-TURN INDICATOR
00A0	33	R DASH	BIT	P2. 0	;	DASHBOARD RIGHT-TURN INDICATOR
0097	32	L DASH	BIT	P1.7	;	DASHBOARD LEFT-TURN INDICATOR
0096	31	R FRNT	BIT	P1.6	į	FRONT RIGHT-TURN INDICATOR
0095	30	L FRNT	BIT	P1.5	;	FRONT LEFT-TURN INDICATOR
	29	,	NOLD IS	S TORNED L	11.14	WHEN GVIEVI FIN IS FIGH. /
	28	,	RILE TO	S TURNED O	. г 1 м	WHEN DUTRUT PIN IS HIGH)
	20	,		TPUTS APP	1776 2	ALLOND. POSITIVE TRUE LOGIC
	25	,	питрит	PIN DECLA		AT LONS -
VV/ 1	25	i UKN	511	F 1. 4	,	
0074	24		BIT	P1 4	;	TURN LEVER UP
0093	23		BIT	P1 3		THRN I EVED DOWN
0092	22	PARK	BIT	P1 2	;	PARKING LIGHTS ON
0090	21	EMERC	511 617	P1.U	;	EMERCENCY DI INKER ACTIVATER
0090	17	, BBAKE	DIT	B1 0		BRAKE BEDAL DEGREGGED
	18	,	INPUIS	ARE HIGH	Wł	HEN RESPECTIVE SWITCH CUNTACT IS CLOSED.)
	17	i	(ALL]	NPUTS ARE	: F	USITIVE-TRUE LOGIC.
	16	;	INPUT F	IN DECLAR	(A)	FIONS:
	15	i				
	14	; ******	******	********	+*1	***********
	13	;				
	12	i		BOOLEAN	PF	ROCESSING CAPABILITIES"
	11	i		"USING	; '	THE INTEL MCS-51(TM)
	10	i	EXAMPLE	E #4 OF IN	ITE	EL APPLICATION NOTE AP-70,
	9	;	THE ALC	ORITHMS A	NI	D HARDWARE ARE DESCRIBED IN DESIGN
	8	i	CONTROL	, AND PAP	K:	ING LIGHT OPERATION.
	7	i	TURN SI	GNAL CONT	R	DL, EMERGENCY BLINKERS, BRAKE LIGHT
	6	;	AUTOMOT	IVE DASH	30/	ARD CONTROL FUNCTIONS RELATING TO
	5	j	OF THE	INTEL 805	51	MICROCOMPUTER TO PERFORM A NUMBER OF
	4	;	THE FOL	LOWING PR	200	GRAM USES THE BOOLEAN INSTRUCTION SET
	з	;				
	2	; *****	******	*********	+#+	******
	_					

Appendix A. Automobile Turn-Indicator Controller Program Listing.

APPLICATIONS

٢

LOC OBJ LINE SOURCE	
49 ORG 0000H ; RESET VECTOR	
0000 020040 50 LJMP INIT	
51 ;	
000B 52 DRG 000BH ; TIMER O SERVICE VECTOR	
000B 758CF0 53 MOV THO, #-16 ; HIGH TIMER BYTE ADJUSTED TO CONTROL I	NT. RATE
COOE CODO 54 PUSH PSW ; EXECUTE CODE TO SAVE ANY REGISTERS US	ED BELOW
0010 0154 55 AJMP UPDATE ; (CONTINUE WITH REST OF ROUTINE)	
56 ;	
0040 57 DRG 0040H	
0040 758A00 58 INIT: MOV TLO, #0 ; ZERO LOADED INTO LOW-DRDER BYTE AND	
0043 758CF0 59 MOV THO, #-16 ; -16 IN HIGH-DRDER BYTE GIVES 4 MSEC P	ERIOD
0046 758961 60 MOV TMOD, #01100001B; B-BIT AUTO RELOAD COUNTER MODE FOR TI	1ER 1,
61 ; 16-BIT TIMER MODE FOR TIMER O SELECT	ED
0049 7520F4 62 MOV SUB_DIV, #244 ; SUBDIVIDE INTERRUPT RATE BY 244 FUR 1	HZ
004C D2A9 63 SETB ETO ; USE TIMER O OVERFLOWS TO INTERRUPT PR	JGRAM
004E D2AF 64 SETB EA ; CONFIGURE IE TO GLOBALLY ENABLE INTER	RUPTS
0050 D28C 65 SETB TRO ; KEEP INSTRUCTION CYCLE COUNT UNTIL OV	ERFLOW
0052 BOFE 66 SJMP \$; START BACKGROUND PROGRAM EXECUTION	
67 ;	
68 ;	
0054 D52038 69 UPDATE: DJNZ SUB_DIV, TOSERV ; EXECUTE SYSTEM TEST DNLY DNCE PER SEC	DND
0057 7520F4 70 MOV SUB_DIV, #244 ; GET VALUE FOR NEXT ONE SECOND DELAY A	ND
71 ; ; GO THROUGH ELECTRICAL SYSTEM TEST COD	<u>.</u> :
005A 4390E0 72 ORL P1, #11100000B ; SET CONTROL DUTPUTS HIGH	
005D 43A007 73 ORL P2, #00000111B	
0060 C295 74 CLR L_FRNT ; FLOAT DRIVE COLLECTOR	
0062 208428 75 JB TO, FAULT ; TO SHOULD BE POLLED LUW	
0065 D295 76 SETE L_FRN1 ; POLL CULLECTOR BACK DUWN	
0067 C297 77 CLR L_DASH ; REPEAT SEGUENCE FUR L_DASH,	
ODDE C2A1 BU CLR L_REAR ; L_REAR;	
00/3 D2A1 82 SETB L_REAR	
UDB1 DZAU BB SEIB R_DASH	
73 ; WITH ALL COLLECTURS GROUNDED, TO SHOULD BE HIGH	
93 ; WITH ALL COLLECTORS GROUNDED, TO SHOULD BE HIGH 94 ; IF SO, CONTINUE WITH INTERRUPT ROUTINE.	
93 ; WITH ALL COLLECTORS GROUNDED, TO SHOULD BE HIGH 94 ; IF SO, CONTINUE WITH INTERRUPT ROUTINE. 95 ; 0084 208402 84 18 TO TOEERU	
93 ; WITH ALL COLLECTORS GROUNDED, TO SHOULD BE HIGH 94 ; IF SD, CONTINUE WITH INTERRUPT ROUTINE. 95 ; 008A 208402 96 JB TO, TOSERV 008D 8243 97 FAULT: CPU S FAULT: ELECTRICAL FAULUE PROCESSING POLITINE	
93 ; WITH ALL COLLECTORS GROUNDED, TO SHOULD BE HIGH 94 ; IF SD, CONTINUE WITH INTERRUPT ROUTINE. 95 ; 008A 208402 96 JB TO, TOSERV 008D B2A3 97 FAULT: CPL S_FAIL ; ELECTRICAL FAILURE PROCESSING ROUTINE 98 ; (TOGGLE INDICATOR ONCE REPROCESSING ROUTINE) ; (TOGGLE INDICATOR ONCE REPROCESSING ROUTINE)	

C-31

LOC	OBJ	LINE	SOURCE			
		100	;	CONTINUE	E WITH INTERRUPT	PROCESSING
		101	;			
		102	; 1)	COMPUTE	LOW BULB INTENS	ITY WHEN PARKING LIGHTS ARE ON.
		103	;			
008F	A201	104	TOSERV:	MOV	C, SUB DIV, 1	; START WITH 50 PERCENT,
0071	8200	105		ANL	C, SUB DIV. O	MASK DOWN TO 25 PERCENT,
0093	7202	106		ORL	C, SUB DIV. 2	; BUILD BACK TO 62.5 PERCENT,
0095	8292	107		ANL	C, PARK	GATE WITH PARKING LIGHT SWITCH
0097	9201	108		MOV	DIM, C	AND SAVE IN TEMP. VARIABLE.
		109	:			
		110	, ; 2)	COMPUTE	AND OUTPUT LEFT	-HAND DASHBOARD INDICATOR
		111		00/11 0/2		
0099	4293	112	,	MOU		SET CARRY TE TURN
0077	7701	117		0.81	C EMERO	
0075	9207	110				TE CO CATE IN 1 H7 STONAL
0070	0207	115				
0076	727/	115		MOV	L_DASH, C	AND UCTEVI TO DASHBUARD.
		110	,	OOMOUTE		LIAND COONT THEN STONAL
		117	(ای ن	COMPOSE	AND DUIPUI LEFT	-HAND FRUNT TURN SIGNAL.
		118	÷			
00A1	9205	119		MOV	FO, C	SAVE FUNCTION SO FAR.
00A3	72D1	120		ORL	C, DIM	ADD IN PARKING LIGHT FUNCTION
00A5	9295	121		MOV	L_FRNT, C	; AND OUTPUT TO TURN SIGNAL.
		122	;			
		123	; 4)	COMPUTE	AND OUTPUT LEFT	-HAND REAR TURN SIGNAL.
		124	;			
00A7	A290	125		MOV	C, BRAKE	; GATE BRAKE PEDAL SWITCH
00A9	B093	126		ANL	C, /L_TURN	; WITH TURN LEVER.
OOAB	72D5	127		ORL	C, F0	; INCLUDE TEMP. VARIABLE FROM DASH
OOAD	72D1	128		ORL	C, DIM	; AND PARKING LIGHT FUNCTION
OOAF	92A1	129		MOV	L_REAR, C	; AND OUTPUT TO TURN SIGNAL.
		130	;			
		131	; 5)	REPEAT #	ALL OF ABOVE FOR	RIGHT-HAND COUNTERPARTS.
		132	;			
00B1	A294	133		MOV	C, R_TURN	; SET CARRY IF TURN
00B3	7291	134		ORL	C, EMERG	; OR EMERGENCY SELECTED.
0085	8207	135		ANL	C,LO FREQ	; IF SD, GATE IN 1 HZ SIGNAL
0087	92A0	136		MOV	R DASH, C	AND OUTPUT TO DASHBOARD.
0089	9205	137		MOV	FO, C	SAVE FUNCTION SO FAR.
OOBB	7201	138			C. DIM	ADD IN PARKING LIGHT FUNCTION
OORD	9296	139		MOV	R FRNT, C	AND OUTPUT TO TURN SIGNAL
OORE	A290	140		MOV	C. BRAKE	GATE BRAKE PEDAL SWITCH
0001	8094	141		ANI	C. /R TURN	: WITH TURN I EVER
0001	7205	140		ORI	C. FO	INCLUDE TEMP VARIABLE FROM DASH
0000	7201	142			C DIM	
0007	9242	144		MOU	P PEAR.C	: AND OUTPUT TO TURN STONA
0007	7EME	144		110 V	R_REBUIC	AND DOTTON TO TORN STORAL.
		140		DESTOPE		
		140	,	RESIDRE	SIMIUS REGISTER	
0000	Dono	14/	j	000	DCU	PECTORE RCH
0009	0000	148		PUP	raw	AND DETUDN FOOM INTERDUCT DOUTING
OOCB	പ്പ്	149		REII		AND RETORN FROM INTERROPT ROUTINE
		150	;			
		151		END		

C-32

XREF SYMBOL TABLE LISTING

NAME	TYPE	VALUE	AND REFERENCES
BRAKE .	N BSEG	0090H	20# 125 140
DIM	N BSEG	00D1H	45# 108 120 128 138 143
EA	N BSEG	OOAFH	64
EMERG .	N BSEG	0091H	21# 113 134
ETO	N BSEG	00A9H	63
FO	N BSEG	00D5H	119 127 137 142
FAULT .	L CSEG	OOSDH	75 78 81 84 87 90 97#
HI_FREQ	N BSEG	0000H	42#
INIT.	L CSEG	0040H	50 58#
L_DASH.	N BSEG	0097H	32# 77 79 115
L_FRNT.	N BSEG	0095H	30# 74 76 121
L_REAR.	N BSEG	00A1H	34# 80 82 129
L_TURN.	N BSEG	0093H	23# 112 126
LO_FREQ	N BSEG	0007H	43# 114 135
P1	N DSEG	0090H	20 21 22 23 24 30 31 32 72
P2	N DSEG	OOAOH	33 34 35 37 73
PARK.	N BSEG	0092H	22# 107
PSW	N DSEG	OODOH	45 54 148
R_DASH.	N BSEG	OOAOH	33# 86 88 136
R_FRNT.	N BSEG	0096H	31# 83 85 139
R_REAR.	N BSEG	00A2H	35# 89 91 144
R_TURN.	N BSEG	0094H	24# 133 141
S_FAIL.	N BSEG	00A3H	37# 97
SUB_DIV	N DSEG	0020H	41# 42 43 62 69 70 104 105 106
то	N BSEG	00B4H	75 78 81 84 87 90 96
TOSERV.	L CSEG	008FH	69 9 6 104#
THO	N DOEC	OOBCH	53 59
TLO	N DSEC	OOBAH	58
TMOND.	N DSEC	0089H	60
〒〒₹1〇	N BSEC	00490CH	65
UPDATE.	L CSEG	005 4H	55 69#

ASSEMBLY COMPLETE, NO ERRORS FOUND

01489A

C-33

3065 Bowers Avenue Santa Clara, California 95051 Tel: (408) 987-8080 TWX: 910-338-0026 TELEX: 34-6372

ALABAMA

Intel Corp. 303 Williams Avenue, S.W. Suite 1422 Huntsville 35801 Tel: (205) 533-9353 Pen-Tech Associates, Inc. Holiday Office Center 3322 Memorial Pkwy., S.W. Huntsville 35801 Tel: (205) 881-9298

ARIZONA

intel Corp. 10210 N. 25th Avenue, Suite 11 Phoenix 85021 Tel: (602) 997-9695

BFA 4426 North Saddle Bag Trail Scottsdale 85251 Tel: (602) 994-5400

CALIFORNIA Intel Corp. 7670 Opportunity Bd Suite 135 San Diego 92111 Tel: (714) 268-3563 Intel Corp. 2000 East 4th Street Suite 100 Santa Ana 92705 Tel: (714) 835-9642 TWX: 910-595-1114 Intel Corp.* 15335 Morrison 15335 Morrison Suite 345 Sherman Oaks 91403 Tel: (213) 986-9510 TWX: 910-495-2045 Intel Corp.* 3375 Scott Blvd. Santa Clara 95051 Tel: (408) 987-8086 TWX: 910-339-9279 910-338-0255 Earle Associates, Inc 4617 Ruffner Street Suite 202 San Diego 92111 Tel: (714) 278-5441 Mac-I 2576 Shattuck Ave Suite 4B Berkeley 94704 Tel: (415) 843-7625 Mac-I P.O. Box 1420 Cupertino 95014 Tel: (408) 257-9880 Mac-I Mac-1 558 Valley Way Calaveras Business Park Milpitas 95035 Tel: (408) 946-8885 Mac-i P.O. Box 8763 Fountain Valley 92708 Tel: (714) 839-3341 Mac-I 1321 Centinela Avenue Suite 1 Santa Monica 90404 Tel: (213) 829-4797

Mac-I 20121 Ventura Blvd., Suite 240E Woodland Hills 91364 Tel: (213) 347-5900

COLORADO

Intel Corp.* 650 S. Cherry Street Suite 720 Denver 80222 Tel: (303) 321-8086 TWX: 910-931-2289 Westek Data Products, Inc. 25921 Fern Guich P.O. Box 1355 Evergreen 80439 Tel: (303) 674-5255 Westek Data Products, Inc. 1322 Arapahoe Boulder 80302 Tel: (303) 449-2620 Westek Data Products, Inc. 1228 W. Hinsdale Dr Littleton 80120 Tei: (303) 797-0482

CONNECTICUT Intel Corp. Peacock Alley 1 Padanaram Road, Suite 146 1 Padanaram Hoad, Danbury 06810 Tel: (203) 792-8366 TWX: 710-456-1199

EL OBIDA

Intel Corp. 1001 N.W. 62nd Street, Suite 406 Ft. Lauderdale 33309 Tel: (305) 771-0600 TWX: 510-956-9407 Intel Corp. 5151 Adanson Street, Suite 203 5151 Adanson Stree Oriando 32804 Tel: (305) 628-2393 TWX: 810-853-9219 Pen-Tech Associates, Inc. 201 S.E. 15th Terrace, Suite K Deerfield Beach 33441 Tel: (305) 421-4989 Pen-Tech Associates, Inc 111 So Maitland Ave Suite 202 P.O. Box 1475 Maitland 32751 Tel: (305) 645-3444

GEORGIA Pen Tech Associates, Inc. Cherokee Center, Suite 21 627 Cherokee Street Marietta 30060 Tel: (404) 424-1931

ILLINOIS Intel Corp.* 2550 Golf Road, Suite 815 Rolling Meadows 60008 Tel: (312) 981-7200 TWX: 910-651-5881

Technical Representation 1502 North Lee Street Bloomington 61701 Tel: (309) 829-8080 INDIANA

Intel Corp. 9101 Wesleyan Road Suite 204 Indianapolis 46268 Tel: (317) 299-0623

IOWA Technical Representatives, Inc. St. Andrews Building 1930 St. Andrews Drive N.E. Cedar Rapids 52405 Tel: (319) 393-5510

KANSAS

Intel Corp. 9393 W. 110th St., Ste. 265 Overland Park 66210 Tel: (913) 642-8080 Technical Representatives, Inc.

8245 Nieman Road, Suite 100 Lenexa 66214 Tel: (913) 888-0212, 3, & 4 TWX: 910-749-6412

Technical Representatives, Inc. 360 N. Rock Road Suite 4 Wichita 67206 Tel: (316) 681-0242

MARYLAND

Intel Corp.* 7257 Parkway Drive Hanover 21076 Tel: (301) 796-7500 TWX 710.862-1944

Mesa Inc. 11900 Parklawn Drive Rockville 20852 Tel: Washington (301) 881-8430 Baltimore (301) 792-0021

MASSACHUSETTS Intel Corp.* 27 Industrial Ave Chelmsford 01824 Tel: (617) 667-8126 TWX: 710-343-6333

EMC Corp. 381 Elliot Street Newton 02164 Tel: (617) 244-4740 TWX: 922531 MICHIGAN Intel Corp.* 26500 Northwestern Hwy. Suite 401 Southfield 48075 Tel: (313) 353-0920 TWX: 810-244-4915 Lowry & Associates, Inc. 135 W. North Street Suite 4 Brighton 48116 Tel: (313) 227-7067

Lowry & Associates, Inc. 3902 Costa NE Grand Rapids 49505 Tel: (616) 363-983

MINNESOTA

Intel Corp. 7401 Metro Bivd. Suite 355 Edina 55435 Tel: (612) 835-6722 TWX: 910-576-2867 MISSOURI

U.S. AND CANADIAN SALES OFFICES

Intel Corp. 502 Earth City Plaza Suite 121 Earth City 63045 Tel: (314) 291-1990 Technical Representatives 320 Brookes Drive, Suite 104 Hazelwood 63042

Tel: (314) 731-5200 TWX: 910-762-0618 NEW JERSEY

Intel Corp.*

Raritan Plaza 2nd Floor Raritan Center Edison 08817 Tel: (201) 225-3000 TWX: 710-480-6238

NEW MEXICO

BFA Corporation P.O. Box 1237 Las Cruces 88001 Tel: (505) 523-0601 TWX: 910-983-0543 BFA Corporation 3705 Westerfield, N.E

Albuquerque 87111 Tel: (505) 292-1212 TWX: 910-989-1157

NEW YORK Intel Corp.* 350 Vanderbilt Motor Pkwy Suite 402 Hauppauge 11787 Tel: (516) 231-3300 TWX: 510-227-6236

Intel Corp.

80 Washington St. Poughkeepsie 12601 Tel: (914) 473-2303 TWX: 510-248-0060 Intel Corp.* 2255 Lyell Aver

2255 Lyell Avenue Lower Floor East Suite Rochester 14606 Tel: (716) 254-6120 TWX: 510-253-7391 Measurement Technology, Inc. 159 Northern Boulevard Great Neck 11021 Tel: (516) 482-3500 T-Squared 4054 Newcourt Avenue 4054 Newcourt Ave Syracuse 13206 Tel: (315) 463-8592 TWX: 710-541-0554 T-Squared 2 E. Main

Victor 14564 Tel: (716) 924-9101 TWX: 510-254-8542 NORTH CAROLINA

Intel Corp. 154 Huffman Mill Rd. Burlington 27215 Tel: (919) 584-3631 Pen-Tech Associates, Inc. 1202 Eastchester Dr. Highpoint 27260 Tel: (919) 883-9125

оню

Intel Corp.* 6500 Poe Avenue Dayton 45415 Tei: (513) 890-5350 TWX: 810-450-2528 Intel Corp.* Chagrin-Brainard Bldg., No. 210 28001 Chagrin Blvd. Cleveland 44122 Tel: (216) 464-2736 TWX: 810-427-9298

OBEGON

Intel Corp. 10700 S.W. Beaverton Hillsdale Highway Suite 324 Suite 324 Beaverton 97005 Tel: (503) 641-8086 TWX: 910-467-874

PENNSYLVANIA

Intel Corp.* 275 Commerce Dr. 200 Office Center Suite 300 Fort Washington 19034 Tel: (215) 542-9444 TWX: 510-661-2077 Q.E.D. Electronics 300 N. York Road Hatboro 19040 Tel: (215) 674-9600

TEXAS Intel Corp.* 2925 L.B.J. Freeway Suite 175 Dailas 75234 Tel: (214) 241-9521 TWX: 910-860-5617 Intel Corp. 6420 Richmond Ave Suite 280 Houston 77057 Tel: (713) 784-3400 TWX: 910-881-2490 Industrial Digital Systems Corp.

5925 Sovereign Suite 101 Houston 77036 Tel: (713) 988-9421 Intel Corp. 313 E. Anderson Lane Suite 314 Austin 78752 Tel: (512) 454-3628

WASHINGTON

Intel Corp. Suite 114, Bldg. 3 1603 116th Ave. N.E. Bellevue 98005 Tel: (206) 453-8086 TWX: 910-443-3002

WISCONSIN

Intel Corp. 150 S. Sunnyslope Rd. Brookfield 53005 Tel: (414) 784-9060

CANADA

Intel Semiconductor Corp Intel semiconductor Corp. Suite 233, Bell Mews 39 Highway 7, Bells Corners Ottawa, Ontario K2H BR2 Tel: (613) 829-9714 TELEX: 053-4115 Intel Semiconductor Corp. 50 Galaxy Blvd. Unit 12 Rexdale, Ontario M9W 4Y5 Tel: (416) 675-2105 TELEX: 06983574 Multilek, Inc.* 15 Grenfeli Crescent Ottawa Ontario K2G 0G3 Tel: (613) 226-2365 TELEX: 053-4585 Multilek, Inc. Toronto Tel: (416) 245-4622 Multilek, Inc. Montrea

Tel: (514) 481-1350

intel

U.S. AND CANADIAN DISTRIBUTORS

ALABAMA

†Hamilton/Avnet Electronics 4812 Commercial Drive N.W. Huntsville 35805 Tel: (205) 837-7210

t Pioneer/Huntsville 1207 Putman Drive NW Huntsville 35805 Tel: (205) 837-9033 TWX: 810-726-2197

ARIZONA

†Hamilton/Avnet Electronics 505 S. Madison Drive Tempe 85281 Tel: (602) 275-7851

tWyle Distribution Group 8155 N. 24th Avenue Phoenix 85021 Tel: (602) 249-2232 TWX: 910-951-4282

CALIFORNIA

Arrow Electronics, Inc. Electronics Distribution Division 9511 Ridge Haven Court San Diego 92123 Tel: (714) 565-4800

Arrow Electronics, Inc. Electronics Distribution Division 720 Palomar Avenue Sunnyvale, California 94086 Tel: (408) 739-3011

†Avnet Electronics 350 McCormick Avenue Costa Mesa 92626 Tel: (714) 754-6111 TWX: 910-595-1928

Hamilton/Avnet Electronics 1175 Bordeaux Dr. Sunnyvale 94086 Tel: (408) 743-3355 TWX: 910-339-9332

tHamilton/Avnet Electronics 4545 Viewridge Ave. San Diego 92123 Tel: (714) 571-7510 TWX: 910-335-1216

†Hamilton/Avnet Electronics 10950 W. Washington Blvd. Culver City 90230 Tel: (213) 558-2809 TWX: 910-340-6364 or 7073

†Hamilton Electro Sales 3170 Pullman Street Costa Mesa 92626

Tel: (714) 641-4100

†Avnet Electronics 4942 Rosecrans Ave. Hawthorne 90250 Tel: (213) 970-0956

tWyle Distribution Group 124 Maryland Street El Segundo 90245 Tel: (213) 322-3826 TWX: 910-348-7140 or 7111

†Wyle Distribution Group 9525 Chesapeake Dr. San Diego 92123 Tel: (714) 565-9171 TWX: 910-335-1590

tWyle Distribution Group 3000 Bowers Avenue Santa Clara 95052 Tel: (408) 727-2500 TWX: 910-338-0451 or 0296

Hamilton/Avnet Electronics 3170 Pullman Costa Mesa 92626 Tel: (714) 641-1850

COLORADO

Arrow Electronics, Inc. Electronics Distribution Division 2121 South Hudson Street Denver 80222 Tei: (303) 758-2100 †Wyle Distribution Group 6777 E. 50th Avenue Commerce City 80022 Tei: (303) 267-9611 TWX: 910-931-0510

†Hamilton/Avnet Electronics 8765 E. Orchard Road Suite 708 Englewood 80111 Tel: (303) 740-1000 TWX: 910-931-0510

CONNECTICUT

 tArrow Electronics

 12 Beaumont Road

 Wallingford 06492

 Tel: (203) 265-7741

 TWX: 710-476-0162

 Hamilton/Avnet Electronics

 643 Danbury Road

 Georgetown 06829

 Tel: (203) 762-0361

 HArryey Electronics

 112 Main Street

 Norwalk 06851

 Tel: (203) 853-1515

 TWX: 710-486-3373

FLORIDA

†Arrow Electronics 1001 N.W. 62nd Street Suite 108 Ft. Lauderdale 33309 Tel: (305) 776-7790 **†Arrow Electronics** 115 Palm Bay Road, NW Suite 10, Bldg. 200 Palm Bay 32905 Tel: (305) 725-1480 TWX: 510-959-6337 +Hamilton/Avnet Electronics 6800 Northwest 20th Ave. Ft. Lauderdale 33309 Tel: (305) 971-2900 TWX: 510-955-3097 †Pioneer/Orlando 6220 S. Orange Blossom Trail Suite 412 Orlando 32809 Tel: (305) 859-3600 TWX: 810-850-0177 Hamilton/Avnet Electronics 3197 Tech. Drive North St. Petersburg 33702 Tel: (813) 576-3930 TWX: 810-863-0374

GEORGIA

Arrow Electronics 2979 Pacific Drive Norcross 30071 Tel: (404) 449-8252 TWX: 810-757-4213 1 Hamilton/Avnet Electronics 6700 1-85 Access Road, No. 11 Suite 1E Norcross 30071 Tel: (404) 448-0800

ILLINOIS

Arrow Electronics 492 Lunt Avenue P.O. Box 94248 Schaumburg 60193 Tel: (312) 893-9420 TWX: 910-222-1807

†Hamilton/Avnet Electronics 3901 No. 25th Avenue Schiller Park 60176 Tel: (312) 678-6310 TWX: 910-227-0060

Pioneer/Chicago 1551 Carmen Drive Elk Grove 60007 Tel: (312) 437-9680 TWX: 910-222-1834

INDIANA

†Pioneer/Indiana 6408 Castleplace Drive Indianapolis 46250 Tel: (317) 849-7300 TWX: 810-260-1794

KANSAS

†Hamilton/Avnet Electronics 9219 Quivira Road Overland Park 66215 Tel: (913) 888-8900

†Component Specialties, Inc. 8369 Nieman Road Lenexa 66214 Tel: (913) 492-3555

MARYLAND

Arrow Electronics, Inc. Electronics Distribution Division 4801 Benson Avenue Baltimore 21227 Tel: (301) 247-5200 (202) 737-1700

†Hamilton/Avnet Electronics 7235 Standard Drive Hanover 21076 Tel: (301) 796-5684 TWX: 710-862-1861

†Pioneer/Washington 9100 Gaither Road Gaithersburg 20760 Tel: (301) 948-0710 TWX: 710-828-0545

MASSACHUSETTS

†Hamilton/Avnet Electronics 50 Tower Office Park Woburn 01801 Tel: (617) 273-7500

†Arrow Electronics 96D Commerce Way Woburn 01801 Tel: (617) 933-8130

Harvey/Boston 44 Hartwell Ave. Lexington 02173 Tel: (617) 861-9200

MICHIGAN

†Arrow Electronics 3810 Varsity Drive Ann Arbor 48104 Tel: (313) 971-8220 TWX: 810-223-6020

†Pioneer/Michigan 13485 Stamford Livonia 48150 Tel: (313) 525-1800 TWX: 810-242-3271 †Hamilton/Avnet Electronics 32487 Schoolcraft Boad

32487 Schoolcraft Road Livonia 48150 Tel: (313) 522-4700 TWX: 810-242-8775

MINNESOTA

†Industrial Components 5229 Edina Industrial Blvd. Minneapolis 55435 Tel: (612) 831-2666 TWX: 910-576-3153

†Arrow Electronics 5230 W. 73rd Street Edina 55435 Tel: (612) 830-1800 TWX: 910-576-2726

†Hamilton/Avnet Electronics 7449 Cahill Road Edina 55435 Tel: (612) 941-3801 TWX: 910-576-2720

MISSOURI

†Hamilton/Avnet Electronics 396 Brookes Lane Hazelwood 63042 Tel: (314) 731-1144 TWX: 910-762-0606

NEW HAMPSHIRE

†Arrow Electronics 1 Perimeter Road Manchester 03103 Tel: (603) 668-6968

NEW JERSEY

†Arrow Electronics Pleasant Valley Avenue Moorestown 08057 Tel: (609) 235-1900 TWX: 710-897-0829

†Arrow Electronics 285 Midland Avenue Saddle Brook 07662 Tel: (201) 797-5800 TWX: 710-988-2206

Hamilton/Avnet Electronics 10 Industrial Road Fairfield 07006 Tel: (201) 575-3390 TWX: 710-734-4338

†Harvey Electronics 45 Route 46 Pinebrook 07058 Tel: (201) 575-3510 TWX: 710-734-4382

†Hamilton/Avnet Electronics 1 Keystone Ave. Bldg. 36 Cherry Hill 08034 Tel: (609) 424-0100 TWX: 710-897-1405

NEW MEXICO

† Alliance Electronics Inc. 11721 Central Ave. N.E. Albuquerque 87123 Tel: (505) 292-3360 TWX: 910-989-1151

Arrow Electronics, Inc. Electronics Distribution Division 2460 Alamo Avenue, Southeast Albuquerque 87106 Tel: (505) 243-4566

†Hamilton/Avnet Electronics 2524 Baylor Drive, S.E. Albuquerque 87106 Tel: (505) 765-1500

intel

U.S. AND CANADIAN DISTRIBUTORS

NEW YORK

Harvey Electronics P.O. Box 1208 Binghampton 13902 Tel: (607) 748-8211 TWX: 510-252-0893

Arrow Electronics 900 Broad Hollow Road Farmingdale 11735 Tel: (516) 694-6800 TWX: 510-224-6494

†Arrow Electronics 3000 South Winton Road Rochester 14623 Tel: (716) 275-0300 TWX: 910-338-0026

†Hamilton/Avnet Electronics 167 Clay Road Rochester 14623 Tel: (716) 475-9130 TWX: 910-340-6364

†Arrow Electronics 7705 Maltlage Drive Liverpool 13088 Tel: (315) 652-1000 TWX: 710-545-0230

Arrow Electronics 20 Oser Avenue Hauppauge 11787 Tel: (516) 231-1000 TWX: 510-224-6494

†Hamilton/Avnet Electronics 16 Corporate Circle E. Syracuse 13057 Tel: (315) 437-2641

t Hamilton/Avnet Electronics 5 Hub Drive Melville, Long Island 11746 Tel: (516) 454-6000 TWX: 510-252-0893

†Harvey Electronics 60 Crossways Park West Woodbury 11797 Tel: (516) 921-8700 TWX: 510-221-2184

Harvey/Rochester 840 Airport Park Fairport 14450 Tel: (716) 381-7070

NORTH CAROLINA

Pioneer/Carolina 106 Industrial Ave. Greensboro 27406 Tel: (919) 273-4441 TWX: 510-925-1114

†Hamilton/Avnet Electronics 2803 Industrial Drive Raleigh 27609 Tel: (919) 829-8030

Arrow Electronics 938 Burke Street Winston-Salem 27102 Tel: (919) 725-8711 TWX: 510-922-4765

OHIO

Arrow Electronics 7620 McEwen Road Centerville 45459 Tel: (513) 435-5563 TWX: 810-459-1611 Arrow Electronics 6238 Cochran Rd. Solon 44139 Tel: (216) 248-3990 †Hamilton/Avnet Electronics

Plational Drive Dayton 45459 Tel: (513) 433-0610 TWX: 910-340-2531 †Pioneer/Dayton 1900 Troy Street Dayton 45404

Tel: (513) 236-9900 TWX: 810-459-1622 Arrow Electronics 10 Knollcrest Dr. Cincinnati 45237

Tel: (513) 761-5432 TWX: 810-461-2670 †Pioneer/Cleveland 4800 E. 131st Street Cleveland 44105

Tel: (216) 587-3600 TWX: 810-422-2210 †Hamilton/Avnet Electronics 4588 Emery Industrial Parkway

4588 Emery industrial Parkway Warrensville Heights 44128 Tel: (216) 831-3500

OKLAHOMA

†Components Specialties, Inc. 7920 E. 40th Street Tulsa 74145 Tel: (918) 664-2820 TWX: 910-845-2215

OREGON

† Hamilton/Avnet Electronics 6024 SW Jean Rd. Bldg. C, Suite 10 Lake Oswego 97034 Tel: (503) 635-8157 † Almac/Stroum Electronics 8022 S.W. Nimbus, Bldg. 7 Beaverton 97005 Tel: (503) 641-9070

PENNSYLVANIA

Pioneer/Pittsburgh 560 Alpha Drive Pittsburgh 15238 Tel: (412) 782-2300 TWX: 710-795-3122

Pioneer/Delaware Valley 141 Gibraltar Road Horsham 19044 Tel: (215) 674-4000 TWX: 510-665-6778

†Arrow/ Electronics 4297 Greensburg Pike Suite 3114 Pittsburgh 15221 Tel: (412) 351-4000

TENNESSEE

†Arrow Electronics P.O. Box 129 W. Andrew Johnson Hwy. Talbott 37677 Tel: (615) 587-2137

TEXAS

Arrow Electronics 13715 Gamma Road Dallas 75234 Tel: (214) 386-7500 TWX: 910-861-5495

Arrow Electronics, Inc. Electronics Distribution Division 10700 Corporate Drive, Suite 100 Stafford 77477 Tel: (713) 491-4100

Component Specialties Inc. 8222 Jamestown Drive Suite 115 Austin 78757 Tel: (512) 837-8922 TWX: 910-874-1320

Hamilton/Avnet Electronics 10508A Boyer Blvd. Austin 78757 Tel: (512) 837-8911

tHamilton/Avnet Electronics 4445 Sigma Road Dallas 75240 Tel: (214) 661-8661 TWX: 910-860-5371

Hamilton/Avnet Electronics 3939 Ann Arbor Drive Houston 77063 Tel: (713) 780-1771

†Component Specialties, Inc. 10907 Shady Trail, Suite 101 Dallas 75220 Tel: (214) 357-6511 TWX: 910-861-4999

†Component Specialties, Inc. 8585 Commerce Park Drive, Suite 590 Houston 77036 Tel: (713) 771-7237 TWX: 910-881-2422

UTAH

†Hamilton/Avnet Electronics 1585 West 2110 South Salt Lake City 84119 Tel: (801) 972-2800

WASHINGTON

Arrow Electronics, Inc. Electronics Distribution Division 1059 Andover Park East Tukwila 98188 Tel: (206) 575-0907

†Hamilton/Avnet Electronics 14212 N.E. 21st Street Bellevue 98005 Tel: (206) 746-8750

†Almac/Stroum Electronics 5811 Sixth Ave. South Seattle 98108 Tel: (206) 763-2300 TWX: 910-444-2067

†Wyle Distribution Group 1750 132nd Avenue NE Bellevue 98005 Tel: (206) 453-8300 TWX: 910-443-2526

WISCONSIN

†Arrow Electronics 430 W. Rawson Avenue Oak Creek 53154 Tel: (414) 764-6600 TWX: 910-338-0026

†Hamilton/Avnet Electronics 2975 Moorland Road New Berlin 53151 Tel: (414) 784-4510 TWX: 910-262-1182

CANADA

ALBERTA Zentronics

Zentronics 9224 27th Avenue Edmonton T6N 1B2

†L.A. Varah Ltd. 4742 14th Street N.E. Calgary T2E 6L7 Tel: (403) 230-1235 TWX: 018-258-97

Zentronics 3651 21st N.E. Calgary T2E 6T5 Tel: (403) 230-1422

BRITISH COLUMBIA

†L.A. Varah Ltd. 2077 Alberta Street Vancouver V5Y 1C4 Tel: (604) 873-3211 TWX: 610-929-1068

Zentronics 550 Cambie St. Vancouver V6B 2N7 Tel: (604) 688-2533 TWX: 04-5077-89

MANITOBA

L.A. Varah 1-1832 King Edward Street Winnipeg R2R 0N1 Tel: (204) 633-6190 TWX: 07-55-365

Zentronics 590 Berry St. Winnipeg R3H 0S1 Tel: (204) 775-8661

ONTARIO

†L.A. Varah, Ltd. 505 Kenora Avenue Hamilton L8E 3P2 Tel: (416) 561-9311 TWX: 061-8349

†Hamilton/Avnet Electronics 3688 Nashua Drive, Units G & H Mississauga L4V 1M5 Tel: (416) 677-7432 TWX: 610-492-8860

†Hamilton/Avnet Electronics 1735 Courtwood Crescent Ottawa K2C 3J2 Tel: (613) 226-1700

†Zentronics 141 Catherine Street Ottawa K2P 1C3 Tel: (613) 238-6411 TWX: 053-3636

†Zentronics 1355 Meyerside Drive Mississauga, Ontario L5T 1C9 Tel: (416) 676-9000 Telex: 06-983-657

QUEBEC

†Hamilton/Avnet Electronics 2670 Sabourin Street St. Laurent H4S 1M2 Tel: (514) 331-6443 TWX: 610-421-3731

Zentronics 5010 Pare Street Montreal H4P 1P3 Tel: (514) 735-5361 TWX: 05-827-535

INTERNATIONAL SALES AND MARKETING OFFICES

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES

ARGENTINA

Micro Sistemas S.A. 9 De Julio 561 Cordoba Tel: 54-51-32-880 TELEX: 51837 BICCO

AUSTRALIA

A.J.F. Systems & Components Pty. Ltd. 310 Queen Street Melbourne Tel: TELEX: Warburton Franki Corporate Headquarters 372 Eastern Valley Way Chatswood, New South Wales 2067 Tel: 407-3261 TeLEX: AA 21299

AUSTRIA

Bacher Elektronische Geraete GmbH Rotenmulgasse 26 A 1120 Vienna Tel: (0222) 83 63 96 TELEX: (01) 1532 Rekirsch Elektronik Geraete GmbH Lichtensteinstrasse 97

Lichtensteinstrasse 97 A1000 Vienna Tel: (222) 347646 TELEX: 74759

BELGIUM

Inelco Belgium S.A. Ave. des Croix de Guerre 94 B1120 Brussels Tel: (02) 216 01 60 TELEX: 25441

BRAZIL

Icotron S.A. 0511-Av. Mutinga 3650 6 Andar Pirituba-Sao Paulo Tel: 261-0211 TELEX: (011) 222 ICO BR

CHILE

DIN Av. Vic. Mc kenna 204 Casilla 6055 Santiago Tel: 227 564 TELEX: 3520003

CHINA

C.M. Technologies 525 University Avenue Suite A-40 Palo Alto, CA 94301

COLOMBIA

International Computer Machines Adpo. Aereo 19403 Bogota 1 Tel: 232-6635 TELEX: 43439

CYPRUS

Cyprus Eltrom Electronics P.O. Box 5393 Nicosia Tel: 21-27982

DENMARK

STL-Lyngso Komponent A/S Ostmarken 4 DK-2860 Soborg -Tel: (01) 67 00 77 TELEX: 22990 Scandinavian Semiconductor Supply A/S Nannasgade 18 DK-2200 Copenhagen Tel: (01) 83 50 90 TeLEX: 19037

FINLAND

Oy Fintronic AB Melkonkatu 24 A SF-00210 Helsinki 21 Tel: 0-692 6022 TELEX: 124 224 Ftron SF

FRANCE Celdis S.A.*

53. Fue Charles Frerot F-94250 Gentilly Tel: (1) 581 00 20 TELEX: 200 485 Feutrier Rue des Trois Glorieuses F-42270 S1. Priest-en-Jarez Tel: (77) 74 67 33 TELEX: 300 0 21 Metrologie* La Tour d'Asnieres 4, Avenue Laurent Cely 92606-Asnieres 4, Avenue Laurent Cely 92606-Asnieres Tel: 791 44 44 TELEX: 611 448 Tekelec Airtronic* Cite des Bruyeres Rue Carle Vernet F-92310 Sevres Tel: (1) 534 75 35 TELEX: 204522

GERMANY

Electronic 2000 Vertriebs GmbH Neumarkter Strasse 75 D-8000 Munich 80 Tel: (089) 434061 TELEX: 522561 Jermyn GmbH Postfach 1180 D-6077 Camberg Tel: (06434) 231 TELEX: 484426 Kontron Elektronik GmbH **Breslauerstrasse 2** 8057 Eching B D-8000 Munich Tei: (89) 319.011 TELEX: 522122 Neye Enatechnik GmbH Schillerstrasse 14 D-2085 Quickborn-Hamburg Tel: (04106) 6121

GREECE

TELEX: 02-13590

American Technical Enterprises P.O. Box 156 Athens Tel: 30-1-8811271 30-1-8219470

HONG KONG

Schmidt & Co. 28/F Wing on Center Connaught Road Hong Kong Tel: 5-455-644 TELEX: 74766 Schmc Hx

INDIA

Micronic Davices 104/109C, Nirmal Industrial Estate Sion (E) Bombay 400022, India Tel: 486-170 TELEX: 011-5947 MDEV IN

ISRAEL Eastronics

Eastronics Ltd.* 11 Rozanis Street P.O. Box 39300 Tel Aviv 61390 Tel: 475151 TELEX: 33638 ITALY

Eledra 3S S.P.A.* Viale Elvezia, 18 I 20154 Milan Tel: (02) 34.93.041-31.85.441 TELEX: 332332

JAPAN

Asahi Electronics Co. Ltd. KMM Bidg. Room 407 2-14-1 Asano, Kokura Kita-Ku, Kitokyushu City 802 Tel: (093) 511-6471 TELEX: AECKY 7126-16 Hamilton-Avnet Electronics Japan Ltd. YU and YOU Bldg. 1-4 Horidome-Cho Nihonbashi Tel: (03) 662-9911 TELEX: 2523774 Nippon Micro Computer Co. Ltd. Mutsumi Bidg. 4-5-21 Kojimachi Chlyoda-ku, Tokyo 102 Tel: (03) 230-0041 Ryoyo Electric Corp Konwa Bidg. 1-12-22, Tsukiji, 1-Chome Chuo-Ku, Tokyo 104 Tel: (03) 543-7711 Tokyo Electron I to No. 1 Higashikata-Machi Midori-Ku, Yokohama 226 Tel: (045) 471-8811 TELEX: 781-4473

KOREA

Koram Digital Room 411 Ahil Bidg, 494 2-GA Hoehyun-Dong Chung-Ku Seoul Tei: 238123 TELEX: K23542 HANSINT Leewood International, Inc. C.P.O. Box 4046 112-25, Sokong-Dong Chung-Ku, Seoul 100 Tei: 285927 CABLE: "LEEWOOD" Seoul

NETHERLANDS

Inelco Nether. Comp. Sys. BV Turfstekerstraat 63 Aalsmeer 1431 D Tei: (2977) 28855 TELEX: 14693 Koning & Hartman Koperwerf 30 2544 EN Den Haag Tei: (70 210.101 TELEX: 31528

NEW ZEALAND

W. K. McLean Ltd. P.O. Box 18-065 Glenn Innes, Auckland, 6 Tel: 587-037 TELEX: NZ2763 KOSFY

NORWAY

Nordisk Elektronik (Norge) A/S Postoffice Box 122 Smedsvingen 4 1364 Hvalstad Tel: 02 78 62 10 TELEX: 17546

PORTUGAL

Ditram Componentes E Electronica LDA Av. Miguel Bombarda, 133 Lisboa 1 Tel: (19) 545313 TELEX: 14347 GESPIC

SINGAPORE

General Engineers Associates Blk 3, 1003-1008, 10th Floor P.S.A. Multi-Storey Complex Telok Blangah/Pasir Panjang Singapore 5 Tel: 271-3163 TELEX: RS23987 GENERCO

SOUTH AFRICA

Electronic Building Elements Pine Square 18th Street Hazelwood, Pretoria 0001 Tel: 789 221 TELEX: 30181SA

SPAIN

Interface Av. Generalisimo 51 9* E-Madrid 16 Tel: 456 3151 ITT SESA Miguel Angel 16 Madrid 10 Tel: (1) 4190957 TELEX: 27707/27661

SWEDEN

AB Gosta Backstrom Box 12009 10221 Stockholm Tel: (08) 541 080 TELEX: 10135

Nordisk Electronik AB Box 27301 S-10254 Stockholm Tel: (08) 635040 TELEX: 10547

SWITZERLAND

Industrade AG Gemsenstrasse 2 Postcheck 80 - 21190 CH-8021 Zurich Tel: (01) 60 22 30 TELEX: 56788

TAIWAN

Taiwan Automation Co.* 3d Floor #75, Section 4 Nanking East Road Taipei Tel: 771-0940 TELEX: 11942 TAIAUTO

TURKEY

Turkelek Electronics Apapurk Boulevard 169 Ankara Tel: 189483

UNITED KINGDOM

Comway Microsystems Ltd. Market Street 68-Bracknell, Berkshire Tel: (344) 51654 TELEX: 847201

G.E.C. Semiconductors Ltd. East Lane North Wembley Middlesex HA9 7PP Tel: (01) 904-9303/908-4111 TELEX: 28817

Jermyn Industries Vestry Estate Sevenoaks, Kent Tel: (0732) 501.44 TELEX: 95142

Rapid Recall, Ltd. 6 Soho Mills Ind. Park Wooburn Green Bucks, England Tei: (6285) 24961 TELEX: 849439

Sintrom Electronics Ltd.* Arkwright Road 2 Reading, Berkshire RG2 0LS Tel: (0734) 85464 TELEX: 847395

VENEZUELA

Componentes y Circuitos · Electronicos TTLCA C.A. Apartado 3223 Caracas 101 Tel: 718-100 TELEX: 21795 TELETIPOS

international sales and marketing offices

INTEL® MARKETING OFFICES

AUSTRALIA

Intel Australia Suite 2, Level 15, North Point 100 Miller Street North Sydney, NSW, 2060 Tel: 450-847 TELEX: AA 20097

BELGIUM

Intel Corporation S.A. Rue du Moulin a Papier 51 Boite 1 B-1160 Brussels Tel: (02) 660 30 10 TELEX: 24814

DENMARK

Intel Denmark A/S* Lyngbyvej 32 2nd Floor DK-2100 Copenhagen East Tel: (01) 18 20 00 TELEX: 19567

FINLAND

Intel Scandinavia Sentnerikuja 3 SF - 00400 Helsinki 40 Tel: (0) 558531 TELEX: 123 332

FRANCE

Intel Corporation, S.A.R.L.* 5 Place de la Balance Silic 223 94528 Rungis Cedex Tel: (01) 687 22 21 TELEX: 270475

GERMANY

Intel Semiconductor GmbH* Seidlstrasse 27 8000 Muenchen 2 Tei: (089) 53 891 TELEX: 523 177 Intel Semiconductor GmbH Mainzer Strasse 75 6200 Wiesbaden 1 Tel: (06121) 700874 TELEX: 04186183

Intel Semiconductor GmbH Wernerstrasse 67 P.O. Box 1460 7012 Fellbach Tel: (0711) 550082 TELEX: 7254826 Intel Semiconductor GmbH Hindenburgstrasse 28/29 3000 Hannover 1 Tel: (0511) 852051 TELEX: 923625

HONG KONG

Intel Trading Corporation 99-105 Des Voeux Rd., Central 18F, Unit B Hong Kong Tel: 5-450-847 TELEX: 63869

ISRAEL

Intel Semiconductor Ltd.* P.O. Box 2404 Haifa Tel: 972/452 4261 TELEX: 92246511

ITALY

Intel Corporation Italia, S.p.A. Corso Sempione 39 I-20145 Milano Tel: 2/34.93287 TELEX: 311271

JAPAN

Intel Japan K.K.* Flower Hill-Shinmachi East Bldg 1-23-9, Shinmachi, Setagaya-ku Tokyo 154 Tel: (03) 426-9261 TELEX: 781-28426

NETHERLANDS

Intel Semiconductor B.V. Cometongebouw Westblaak 106 3012 Km Rotterdam Tel: (10) 149122 TELEX: 22283

NORWAY

Intel Norway A/S P.O. Box 92 Hvamveien 4 N-2013 Skjetten Tel: (2) 742 420 TELEX: 18018

SWEDEN

Intel Sweden A.B.* Box 20092 Alpvagen 17 S-16120 Bromma Tel: (08) 98.53 90 TELEX: 12261

SWITZERLAND

Intel Semiconductor A.G. Forchstrasse 95 CH 8032 Zurich Tel: 1-55 45 02 TELEX: 557 89 ich ch

UNITED KINGDOM

Intel Corporation (U.K.) Ltd. Broadfield House 4 Between Towns Road Cowley, Oxford OX4 3NB Tel: (0865) 77 14 31 TELEX: 837203

Intel Corporation (U.K.) Ltd.* 5 Hospital Street Nantwich, Cheshire CW5 5RE Tel: (0270) 62 65 60 TELEX: 36620

Intel Corporation (U.K.) Ltd. Dorcan House Eldine Drive Swindon, Wiltshire SN3 3TU Tel: (0793) 26101 TELEX: 444447 INT SWN

Intel

U.S. AND CANADIAN SERVICE OFFICES

CALIFORNIA

Intel Corp. 1601 Old Bayshore Hwy. Suite 345 Burlingame 94010 Tef: (415) 692-4762 TWX: 910-375-3310

Intel Corp. 2000 E. 4th Street Suite 100 Santa Ana 92705 Tel: (714) 835-9642 TWX: 910-595-1114

Intel Corp. 7670 Opportunity Road San Diego 92111 Tel: (714) 268-3563

Intel Corp. 3375 Scott Blvd. Santa Clara 95051 Tel: (408) 987-8086

Intel Corp. 15335 Morrison Sherman Oaks 91403 Tel: (213) 986-9510

COLORADO

Intel Corp. 650 South Cherry Suite 720 Denver, 80222 Tel: (303) 321-8086 TWX: 910-931-2289

FLORIDA

Intel Corp. 1001 N.W. 62nd Street Suite 406 Ft. Lauderdale 33309 Tel: (305) 771-0600 TWX: 510-956-9407

ILLINOIS

Intel Corp. 2550 Golf Road Suite 815 Rolling Meadows 60008 Tel: (312) 981-7230 TWX: 910-253-1825

KANSAS

Intel Corp. 9393 W. 110th Street Suite 265 Overland Park 66210 Tel: (913) 642-8080

MARYLAND

Intel Corp. 7257 Parkway Drive Hanover 21076 Tel: (301) 796-7500 TWX: 710-862-1944

MASSACHUSETTS

Intel Corp. 27 Industrial Avenue Chelmsford 01824 Tel: (617) 667-8126 TWX: 710-343-6333

MICHIGAN

Intel Corp. 26500 Northwestern Hwy. Suite 401 Southfield 48075 Tel: (313) 353-0920 TWX: 810-244-4915

MINNESOTA

Intel Corp. 7401 Metro Blvd. Suite 355 Edina 55435 Tel: (612) 835-6722 TWX: 910-576-2867

MISSOURI

Intel Corp. 502 Earth City Plaza Suite 121 Earth City 63045 Tel: (314) 291-1990

NEW JERSEY

Intel Corp. 2450 Lemoine Avenue Ft. Lee 07024 Tel: (201) 947-6267 TWX: 710-991-8593

OHIO

Intel Corp. Chagrin-Brainard Bldg. #210 28001 Chagrin Blvd. Cleveland 44122 Tel: (216) 464-2736 TWX: 810-427-9298

Intel Corp. 6500 Poe Avenue Dayton 45414 Tel: (513) 890-5350 TWX: 810-450-2528

OREGON

Intel Corp. 10700 S.W. Beaverton-Hillsdale Hwy. Bldg. 2, Suite 324 Beaverton 97005 Tel: (503) 641-8086 TWX: 910-467-8741

PENNSYLVANIA

Intel Corp. 275 Commerce Drive 200 Office Center Suite 300 Fort Washington 19034 Tel: (215) 542-9444 TWX: 510-651-2077

TEXAS

Intel Corp. 313 E. Anderson Lane Suite 314 Austin 78752 Tel: (512) 454-3628 TWX: 910-874-1347

Intel Corp. 2925 L.B.J. Freeway Suite 175 Dallas 75234 Tel: (214) 241-2820 TWX: 910-860-5617

Intel Corp. 6420 Richmond Avenue Suite 280 Houston 77057 Tel: (713) 784-1300 TWX: 910-881-2490

VIRGINIA

Intel Corp. 7700 Leesburg Pike Suite 412 Falls Church 22043 Tel: (703) 734-9707 TWX: 710-931-0625

WASHINGTON

Intel Corp. 1603 116th Ave. N.E. Suite 114 Bellevue 98005 Tel: (206) 232-7823 TWX: 910-443-3002

WISCONSIN

Intel Corp. 150 S. Sunnyslope Road Suite 148 Brookfield 53005 Tel: (414) 784-9060

CANADA

Intel Corp. 50 Galaxy Blvd. Unit 12 Rexdale, Ontario M9W4Y5 Tel: (416) 675-2105 Telex: 069-83574

Intel Corp. 39 Hwy. 7, Bells Corners Ottawa, Ontario K2H 8R2 Tel: (613) 829-9714 Telex: 053-4115

Intel Corporation 3065 Bowers Avenue Santa Clara, CA 95051

Intel Corporation Rue du Moulin à Papier 51, Boite 1, B-1160 Brussels, Belgium No.1 and

Intel Corporation Flower Hill-Shinmachi East Bldg. 1-23-9, Shinmachi, Setagayu-ku Tokyo 154, Japan intel®

Intel Corporation 3065 Bowers Avenue Santa Clara, CA 95051

Intel Corporation Rue du Moulin à Papier 51, Boite 1, B-1160 Brussels, Belgium

Intel Corporation Flower Hill-Shinmachi East Bldg. 1-23-9, Shinmachi, Setagayu-ku Tokyo 154, Japan