IMSAI MFG. CORP USER MANUAL
 TMSA mea cobr USER manual

OTHER IMSAI PRODUCTS
8080 MICROCOMPUTER SYSTEM
FLOPPY DISK SYSTEM
DISK OPERATING SYSTEM
LINE PRINTER SYSTEM
MULTIPROCESSOR SYSTEM
INTELLIGENT BREADBOARD SYSTEM
AP-44 MINI-PRINTER
HIGH-LEVEL LANGUAGES
8080 SYSTEM SOFTWARE
PTR-30 CHARACTER PRINTER SYSTEM CRT TERMINAL SYSTEM COMPLETE LINE OF S-100 CARDS

CAUTION

FAILURE TO OBSERVE THESE IMPORTANT PRECAUTIONS WILL VOID WARRANTY

1. Read all material before beginning construction.
2. Use ONLY electronic quality rosin core solder.
3. Use extreme care with static-sensitive chips to prevent static discharge damage. (These chips are inserted in black conductive foam material in your kit.)
4. Do NOT plug or unplug boards while power is on.
5. Do NOT apply power to any board or circuit before checking each component and each trace.
6. Do NOT insert chips in socket before all soldering on the board is completed.
7. Do NOT use nonstandard parts such as fuses of a higher current rating.
8. Do NOT leave out any construction step.
9. Use only specified AC power.
10. Prevent flat cable end from touching areas of the system that may be carrying current.
11. Clean unit with soap and water or isopropyl alcohol only to prevent damage to plastic components.
12. Some repair operations are quite demanding. Do not attempt repairs beyond your level of skill to prevent damage to the board or the components.
13. Use ONLY a 25 watt electronic soldering iron for assembly of your IMSAI kit.
14. Do NOT perform any solder work on a board while power is applied.
15. Do NOT plug or unplug a chip from a socket while power is applied.
16. Check power supply voltages BEFORE inserting any boards into chassis.
17. For all assembled units, read USER GUIDE section for jumpering instructions.
18. To register your kit for warranty protection, fill out warranty cards and mail to IMSAI. Kits without warranty cards on file are NOT covered by warranty.

IMSAI
FLOPPY DISK SYSTEM

Copyright 1976 IMSAI Manufacturing Corporation 14860 Wicks Boulevard
San Leandro, Ca. 94577
Made in U. S. A.
All rights reserved worldwide.

IMPORTANT NOTICE

A Floppy Drive with Floppy Power Supply Rev. 3 is not compatible with a drive with FPS Rev.'s 0,1 and 2; i.e., a dual drive system will not operate with a FPS Rev. 3 and one of the others. FPS Rev.'s 0,1 and 2 are compatible, however. The difference is that with FPS Rev. 2 or earlier each drive requires a PLO Card, and with FPS Rev. 3 one PLO card is used for up to 4 drives. If you have recently purchased a drive with FPS Rev. 3 to modify a single drive system to dual, first check the Rev. \# on the power supply in your present system. If it isn't Rev. 3, please notify one of our salespeople at 415-483-2093 before installing the new drive.

TABLE OF CONTENTS

PART 1 SYSTEM MANUAL

FUNCTIONAL DESCRIPTION System Components

SYSTEM THEORY OF OPERATION Operation of a Simple Floppy Disk System IMSAI Floppy Disk System

SYSTEM CONFIGURATION AND TESTING
System Configuration
System Testing
SYSTEM USER GUIDE
User Controls
System Initialization
System Bootstrap
Programming Guide

PART 2
 COMPONENTS OF THE SYSTEM

THE CONTROLLER

INTERFACE MASTER
Functional Description
Theory of Operation
Assembly Instructions User Guide

FLOPPY INTERFACE BOARD Functional Description Theory of Operation Assembly Instructions User Guide

FIRMWARE
Functional Description
Theory of Operation
User Guide

FLOPPY POWER SUPPLY
Functional Description
Theory of Operation
Assembly Instructions
User Guide
FLOPPY LIGHT BOARD
Functional Description
Theory of Operation
Assembly Instructions
User Guide
FLOPPY CABINET
Functional Description,
Assembly Instructions

APPENDICES--------------------------------------
APPENDIX A
CalComp OEM Reference Manual
PURPOSE The IMSAI FLOPPY DISK MANUAL was designed as an aid and reference source to be used in understanding, assembling, and using the IMSAI FLOPPY DISK SYSTEM.
SCOPE It is assumed that the Useris familiar with the operationof the IMSAI 8080 MICROCOMPUTERSYSTEM. Recommended references:

1. IMSAI 8080 USER MANUAL2. INTEL 8080 MicrocomputerSystems User Manual3. Introduction To Micro-processors - Osborne andAssociates
ORGANIZATION The IMSAI FLOPPY DISK MANUALis organized into two majorsections:
2. THE SYSTEM
3. COMPONENTS OF THE
SYSTEM
THE SYSTEM section covers the operation of the IMSAI FIOPPY DISK as a SYSTEM.
THE COMPONENTS OF THE SYSTEM section covers the operation of the individual components which make up the IMSAI FLOPPY DISK SYSTEM.

* If you ordered an assembled FIF and FDC, proceed as follows:
a. Turn to SYSTEM CONFIGURATION AND TESTING (p. 1-19).
* If you ordered and FIF kit and an assembled FDC, proceed as follows:
a. Assemble the IFM as per the IFM

ASSEMBLY INSTRUCTIONS (p. 2 - 17).
b. Assemble the FIB as per the FIB

ASSEMBLY INSTRUCTIONS (p. 3-23).
c. Turn to SYSTEM CONFIGURATION AND TESTING (p. 1 - 19).

* If you ordered an FIF kit and an FDC kit, proceed as follows:
a. Assemble the IFM as per the IFM

ASSEMBIY INSTRUCTIONS (p. 2 - 17).
b. Assemble the FIB as per the FIB

ASSEMBLY INSTRUCTIONS (p. 3 - 23).
c. Assemble the FPS as per the FPS

ASSEMBLY INSTRUCTIONS (p. 5 - 29).
d. Assemble the FLB as per the FLB

ASSEMBLY INSTRUCTIONS (p. 6 - 17).
e. Assemble the Floppy Cabinet as per the FLOPPY CABINET ASSEMBLY INSTRUCTIONS (p. 7 - 11).
f. Turn to SYSTEM CONFIGURATION AND TESTING (p. 1-19).

IMSAI FIOPPY DISK SYSTEM

PART 1

SYSTEM MANUAL

The IMSAI Floppy Disk System provides for control of up to 4 flexible disk drives from the IMSAI 8080 System.

Data formats are fully compatible with the IBM 3740 format, providing a total storage capacity of 1.94 M bits per flexible disk. This is organized as 77 tracks with 26 sectors per track. Each sector contains 128 bytes of data.

To allow for non 3740 compatible formats, provision is made for reading all clock and data bits in an unformatted mode. The firmware may also be changed by reprogramming to support varying densities and formats.

The IMSAI Floppy Disk System utilizes an intelligent dedicated controller with a DMA capability to free the main processor from the overhead associated with floppy disk control processing.

Commands to the Floppy Disk System are initiated from the main processor by means of an output instruction to the controller (Byte Command). The actual command is executed from a command string located in the main system memory. Up to lf different command string pointers may co-exist at any one time, with the values of these command string pointers being User definable.

The IMSAI Floppy Disk System consists of a Controller Set and a Drive Assembly.

The Controller Set is composed of two boards, the IFM (Interface Master) and the FIB (Floppy Interface Board).

The IFM is a separate 8080 based processor used to control floppy disk functions. It contains the 8080 , 512 bytes of RAM, 2 K bytes of EPROM, and all support logic for the 8080 chip. Communications with the main system processor takes place through the DMA channel or the single output port.

The FIB contains all the control logic necessary to drive the floppy disk from the IFM processor.

The Drive Assembly is composed of the Floppy Disk Drive, the Floppy Disk Cabinet, the FPS (Floppy Power Supply), the FLB (Floppy Light Board), and the PLO (data separator).

Each Floppy Cabinet houses up to two complete floppy drives with power supplies and a single FLB. In addition, the cabinet which houses Drive 0 contains a single PLO board which may be shared by up to 4 drives.

The Floppy Drive used in the system is the CalComp Model 140 providing up to 3.21 M bits of storage space (1.94 M bits with the IBM 3740 Format). Access times are 6 ms track to track with a loms head stabilization.

The FPS provides all power needed to run the floppy disk drives and FLB. Provision is also made to terminate all control and signal lines from the Floppy Controller Set.

The PLO Board ensures a high level of data integrity and allows for the detection of missing clock patterns as used with the IBM 3740 Data and Address Marks.

PREFACE

This section is intended to help the User gain a general understanding of how the IMSAI Floppy Disk System functions as a whole. The operation of a theoretical floppy disk system is first presented to convey a general understanding of the principles involved in floppy disk transfers. Once this is achieved the operation of the IMSAI Floppy Disk System is explained.

Systems Operation does not cover the detailed logic and timing functions. If this information is desired the User should reference the Theory of Operations section for the individual system component.

I. FLOPPY DISK SYSTEMS IN GENERAI

A floppy disk system allows for the storage and retrieval of blocks of data between the main system memory and a storage medium, the floppy diskette.

The floppy disk system shown in Figure 1 provides the framework for a discussion of the processes involved in general floppy disk transfers. This floppy disk system is assumed to interface to a main processing. system and is composed of two major elements:

1) a controller
2) a drive

FIGURE I, a simple floppy disk system

The controller contains all of the logic necessary to interface the floppy disk drive with the main processing system. All transfer routines are taken care of by the main processor. Note that control resides with the main processor only.

The drive contains the floppy disk storage unit which utilizes a moveable read/write head to access information stored on a flexible diskette.

DATA FORMATS
The data on the diskette is organized into tracks and sectors.

A track can be conceived of as a circular ring with its center located at the physical center of the diskette. If the read/write head is located a "distance" n from the center of the diskette, the nth track is defined as the area passing directly under the head in one complete, revolution of the diskette.

Each track consists of a number of sectors. A sector is composed of preamble information, a data block, and postamble information. (See figure 2.)

A preamble information will normally contain: 1) a set pattern to indicate the start of a sector; 2) the track address; and 3) the sector address.

The data block contains the actual data transferred from the system's main memory.

The postamble information will normally include: 1) a number of check characters and 2) a gap to fill the end of a sector.

WRITE PROCESSES in a simple floppy disk system.
Assume there exists a block of data located in the system RAM which is to be stored on a floppy diskette. For simplicity, assume that the block size is equal to the sector data block size. In order to set up the transfer, the processor needs to get the address of the data block in system RAM and the location of the destination on the diskette (track and sector). Prior to executing the transfer, the processor needs to compute check characters for the block of data to be

FIGURE 2, tracks and sectors

transferred. The check characters are used to verify the validity of the data when the block is read back into memory.

At this point the processor tells the floppy controller to position the head over the destination track and sector on the diskette. Once the floppy acknowledges it has positioned the head over the correct location, the processor sets the write enable and executes the transfer a word at a time until the block transfer is complete.

The check characters are then stored in the postamble, and the write enable is turned off. The process of writing onto the diskette is complete.

READ PROCESSES in a simple floppy disk system.
Transferring a block of data stored on diskette to the main processor's memory involves a similar process. The processor first needs to get the location of the data block on the diskette (track and sector) and the address of the destination in the system RAM.

The processor then commands the floppy to position the head over the desired track and sector. When the floppy acknowledges it has found the requested track and sector, the processor begins reading the data from the diskette into a previously defined storage area until the block read is complete.

The check characters (CRC) are then read and checked to insure the validity of the data. If the CRC is correct, the processor transfers the data from the storage area to the desired destination in the system RAM, thus completing the block read process.

ADDITIONAL HARDWARE FEATURES
With a basic understanding of the processes involved in floppy disc transfers, we can upgrade and improve the floppy disc system shown in figure 1 by:

1) using a separate processor in the controller; and 2) providing the controller with a DMA channel to the main system RAM.

Use of a separate processor in the controller to control floppy disc transfers will free up the main processor from the overhead associated with the previously discussed control processes and floppy housekeeping routines.

Introducing a DMA channel into the proposed design of the controller allows for a direct access into the main system memory. The process of accessing system RAM then becomes essentially transparent to the main processor.

II

 THE IMSAI FLOPPY DISK SYSTEMThe IMSAI Floppy Disk System consists of a Controller and Drive Assembly shown in figure 4.

The Controller contains an 8080 based processor and all logic necessary to interface up to four floppy disk drives from the 8080 microprocessor. The firmware, located in the Controller's 2 K bytes of EPROM, contains the driving program for the IFM processor and supports the IBM 3740 Data Format.

FIGURE 4, IMSAI Floppy Disk System

The IBM 3740 format is organized into 77 tracks. Track 0 is used for Data Set Labels which contain descriptive information regarding data residing on tracks 01 through 76. Tracks 01 through 73 and 75 to 76 contain 26 sectors each with 128 data bytes per sector. Track 74 is not used.

Each data track has an Index Mark, a preamble, 26 sectors and a postamble. The organization of each sector is shown in figure 5. Both the ID Address Mark and the Data Address Mark consist of a particular pattern of missing clock pulses. These are used by the controller for synchronization.

For more detailed imformation refer to IBM publication GA21-9190.

FIGURE 5, IBM Data Format

FLOPPY DISK SYSTEM
Theory of Operation

RECORDING FORMAT

In the IMSAI Floppy Disk System, both clocks and data are recorded on the disk utilizing a double frequency (FM) recording format. This format utilizes clocks to define bit cell times. The presence of a flux reversal between clocks is defined as a "one" bit. The absence of a flux reversal between clocks is defined as a "zero" bit. Figure 6 is an example of FM encoded data written on the disk.

RAW DATA

FIGURE 6, Raw Data

Data Recovery with the IBM 3740 Format
To allow recovery of data when using IBM 3740 formats, a PLO data separator is used. When synchronized, the PLO takes raw data from the disk and provides separated, coincident data and clock pulses to the FIB board. Figure 7 is an example of data and clock outputs from the PLO. A "one" bit may be detected as coincident pulses occurring on the data and clock lines.

Separated data and clock lines allow for the detection of ID and Data Address Marks which utilize a missing clock pattern. All missing clock patterns of significance in the 3740 format have a missing clock pulse in bit 5. Therefore, an ID or Data Address Mark is detected by checking for a missing clock pulse in this bit position.

FIGURE 7, PLO outputs

MAIN PROCESSOR CONTROL OF FLOPPY DISK FUNCTIONS

Execution of a disk transfer operation is determined by Command Strings which reside in the main processor's memory. The execution of these command Strings are initiated from the Main Processor by means of an output instruction.

The byte output to the IFM processor will contain a BYTE COMMAND number of 0 in the high 4 order bits and a pointer number to a particular Command String in the low 4 order bits.

Upon receipt of this Byte Command, the IFM processor will DMA the Command String pointed to in main memory and execute the command defined therein.

MAIN SYSTEM PROCESSES
Assume there exists a block of data located in the main system RAM to be transferred to floppy disk. The main processor needs to first set-up the COMMAND STRING in main memory with l) the command number for a sector write; 2) zero in the Status Byte; 3) the destination track and sector number and 4) the address in memory of the data block to be transferred.

The main processor then outputs a BYTE INSTRUCTION 0 to the IFM output port to initiate the execution of the write. The acknowledgement of a completed operation will be indicated by a nonzero value being stored in the status word of the COMMAND STRING. Thus once the processor issues the BYTE COMMAND 0 , it only need wait for the status word to go non-zero before proceeding with another disk operation.

CONTROLLER PROCESSES
When the IFM board receives the output instruction (BYTE COMMAND 0), it lowers the Main Processor's Ready line. The Main Processor goes into a WAIT state and the IFM Processor reads the output word from the system data bus into its own accumulator. Once the BYTE COMMAND is read the IFM Processor raises the System READY line to allow the SYSTEM to continue. The output word 0 is decoded by the IFM firmware as being a command to execute from the COMMAND STRING located in the System RAM.

DMA FUNCTIONS
The IFM processor will present a HOLD REQUEST to the System, and the System will respond with HOLD ACKNOWLEDGED. At this point the System is in a HOLD STATE and the IFM processor will disable all of the Main Processor's address, data, and status lines (with the exception of PHIDA). The IFM processor then gates its own address, data and status lines onto the System Bus.

The COMMAND STRING is now transferred to the IFM RAM from the System RAM, and the HOLD REQUEST is released, allowing the System to continue with its own processing activity.

FLOPPY DISK SYSTEM Theory of Operation

The Command Number is decoded as a Write operation. The IFM processor transfers the Data block to the IFM RAM. This transfer is accomplished by DMA'ing a Byte at a time in the HOLD MODE during state $T 3$ (or the state following T3) of the main processor's machine cycle.

To proceed with the WRITE operation, the IFM processor computes and stores the CRC characters in its own RAM.

TRACK POSITIONING
A request is issued to the $F I B$ to load the head, sync the PLO, and then to synchronize on the ID Address Mark. The FIB then places the IFM Processor in a WAIT State until it has found the desired missing clock pattern.

Once the FIB has recognized the Address Mark, it raises the IFM READY line, allowing the IFM processor to read and check the track address. .A compare is made to see if the head is positioned over the desired track. If not, the direction and Step lines are used to reposition the head over the destination track.

SECTOR POSITIONING

Once again the IFM Processor issues a request to the FIB to synchronize on the ID Address Mark. The IFM is again placed in a WAIT State until the ID Address Mark is recognized. Once the IFM is allowed to continue, it reads and checks track and sector number, this time looking for the destination sector. If the head is verified to be positioned over the desired sector, the IFM processor waits 12 bytes before writing the remaining five 0 bytes, the Data Address Mark, 128 bytes of data, and the 2 CRC characters according to the IBM 3740 Data Format.

COMPLETION OF THE OPERATION
At this point, the Write operation is complete and the IFM board will indicate the results of the operation to the Main System by storing a non-zero value in the Status Word of the COMMAND STRING, via the DMA channel.

READ PROCESSES IN THE IMSAI FLOPPY DISK SYSTEM

MAIN SYSTEM PROCESSES
To prepare for a Read operation the main processor sets up the COMMAND WORD in its RAM with:

1) The Command Number for a sector Read;
2) zero in the Status Byte;
3) the track and sector number for the data block to be read from the diskette;
4) the Address of the destination in Main memory.

The main processor then issues an output instruction (BYTE COMMAND 0) to initiate the READ operation. The main processor waits until the Status Byte of the COMMAND STRING goes nonzero before proceeding with another disk operation.

CONTROLLER PROCESSES
As before, the IFM processor will receive the output instruction from the main processor and decode it as an execute from COMMAND STRING.

The COMMAND STRING will be transferred from the System RAM to the IFM memory via the DMA access channel. The Command Number is decoded as a READ operation and the IFM processor positions the read/write head over the desired track and sector as before. Once the head is correctly positioned, the IFM processor waits for the Data Address Mark.

When the Data Address Mark is recognized, 128 bytes of data are read into the IFM RAM. The two CRC characters are then read and checked to verify the data block. If the data block is verified, it is written into the main processor's RAM via the DMA channel.

To acknowledge completion of the READ operation, the IFM processor will store a non-zero value in the Status Byte. This value is then passed to the COMMAND STRING located in the main system RAM via the DMA channel.

SYSTEM CONFIGURATION

AND TESTING

CONFIGURATION INFORMATION

FIF-1 CONSISTING OF:
ORDER:
1 IFM
1 CABINET
1 FIF
1 FIB
1 CABLE A
1 CABLE C
1 FPS (\#0)
1 FDC 2-1 (\#O)
1 CABLE C
1 FLB (\#0-1)
1 Cl40 DRIVE UNIT
1 CABLE E

TWO DISK SYSTEM

FIF-1 AS PER ABOVE

1 CABINET
2 FPS (\#O)
(\#1)
1 FLB (\#0-1)
2 CABLE E
2 C140 DRIVE UNITS

ORDER:
1 FIF $\quad 1$ FIF
1 FDC 2-1 OR I FDC 2-2
1 FDC
(DRIVE 0,1)

THREE DISK SYSTEM-

FIF-1 AS PER ABOVE

CABINET WITH 2 DRIVES AS PER ABOVE AND...

1 CABINET
1 FPS (\#2)
1 FLB (\#2-3)
1 Cl40 DRIVE UNIT
1 CABLLE E
1 CABLE C

ORDER:

1 FIF $\quad 1$ FIF
2 FDC 2-1 1 FDC 2-2
1 FDC OR 1 FDC 2-1
1 CABLE C
(DRIVE 0,1,2)

FOUR DISK SYSTEM-

FIF-I AS PER
ABOVE

CABINET WITH 2 DRIVES
AS PER ABOVE AND...
1 CABINET
2 FPS (\#2)
(\#3)
1 FLB (\#2-3)
2 Cl40 DRIVE UNITS
2 CABLE E
1 CABLE C

ORDER:

1 FIF $\quad 1$ FIF
2 FDC 2-1 OR 2 FDC 2-2
2 FDC
1 CABLE C
(DRIVE 0,1,2,3)

The information here is presented to serve as a reference in configuring an IMSAI Floppy Disk System once its components have been assembled.

1. SET THE ADDRESS for the IFM output port by configuring the header for the address jumper socket in position C3 (IFM). IMSAI standard Floppy address is FD (Hex):

- 2. INSERT THE IFM AND FIB BOARDS into two slots in the IMSAI 8080 Motherboard.

3. IDENTIFY THE THREE CABLES used in the System as follows:

CABLE A- CABIE A is a $12^{\prime \prime}, 25$ conductor cable with an EIA D Type connector on one end and a 26 pin board edge connector on the other end.

CABLE C- CABLE C is a $3^{\prime}, 25$ conductor cable with an EIA D Type connector on each end. NOTE: 3 and 4 Drive systems require 2 -Cable C's.

CABLE F-CABLE F is a $4^{\prime \prime}$, 50 conductor cable with a 50 pin board edge connector on each end.
4. ATTACH CABLE F between the IFM and FIB Boards. When attaching Cable F, verify that pin 1 on each connector corresponds to pin 1 on the board edge connector.
5. MOUNT THE EIA D TYPE CONNECTOR of Cable A to the rear of the 8080 chassis with the hardware provided.
6. ATTACH THE REMAINING END OF CABLE A to the FIB BOard. The 26 pin edge connector mates with the edge connector located in the upper left hand corner of the FIB Board. Verify that pin 1 of the connector mates with pin 1 of the board edge connector.

SINGIE DRIVE SYSTEM

7. CONNECT CABLE C between the rear of the IMSAI 8080 Chassis and the Floppy Drive Chassis as follows. Attach one end of Cable C to the D Type connector of Cable A. The remaining end will connect to the D Type connector located at the rear of the Floppy Chassis BEHIND DRIVE 0, (located on the right as you face the front of the Floppy Chassis).

TWO DRIVE SYSTEM

7. CONNECT CABLE C between the rear of the IMSAI 8080 chassis and the Floppy Drive Chassis as follows. Attach one end of Cable C to the D Type connector of Cable A. The remaining end will connect to the D Type connector located at the rear of the Floppy Chassis BEHIND DRIVE 0, (located on the right as you face the front of the Floppy Chassis).

THREE DRIVE SYSTEM

7. CONNECT ONE CABLE C between the rear of the IMSAI 8080 chassis and the Floppy Drive Chassis as follows: Attach one end of Cable C to the D Type connector of Cable A. The remaining end will connect to the D Type connector located at the rear of the Floppy Chassis, (containing Drives 0 and 1), BEHIND DRIVE 0, (located on the right as you face the front of the Floppy Chassis).

CONNECT THE SECOND CABLE C between the two Floppy Drive Chassis' as follows. Attach one end of Cable C to the D Type connector BEHIND DRIVE l, (located on the left as you face the front of the Floppy Drive Chassis containing Drives 0 and 1). The remaining end of this Cable C will connect to the D Type connector BEHIND DRIVE 2, (located on the right as you face the Floppy Drive Chassis containing Drive 2).

FOUR DRTVE SYSTEM

7. CONNECT ONE CABLE C between the rear of the IMSAI 8080 chassis and the second Floppy Drive Chassis as follows. Attach one end of this Cable C to the D Type connector of Cable A. The remaining end will connect to the D Type connector located at the rear of the Floppy Chassis, (containing Drives 0 and 1), BEHIND DRIVE O, (located on the right as you face the front of the Floppy Drive Chassis).

CONNECT THE SECOND CABLE C between the two Floppy Drive Chassis' as follows. Attach one end of this Cable C to the D Type connector located at the rear of the Floppy Chassis BEHIND DRIVE 2, (located on the right as you face the front of the Floppy Chassis containg Drives 2 and 3). The remaining end will connect to the D Type connector located at the rear of the Floppy Chassis BEHIND DRIVE l, (located on the left as you face the front of the Floppy Chassis containing Drives 0 and 1).

THE IMSAI FLOPPY DISK SYSTEM IS NOW CONFIGURED AS REQUIRED FOR SYSTEM TESTING AND CP/M OPERATION.

CABLE C

THIS PORTION IS IDENTICAL FOR ALL DISK SYSTEMS. FIF \& CABLEC
8080 PARTS LIST

1 IFM

1 FIB
ifM-FIB CABLE
1 cablea
1 cablec

- FIF

FLOPPY DISK SYSTEM
CONFIGURATION INFORMATION

FLOPPY DISK SYSTEM
System Testing

The following procedure should be used when powering up the system.

1. Insure that the diskettes are removed from the Drives.
2. Power up the 8080 .
3. Connect the power cord from the Drive Assembly.
4. Insert a diskette in the Drive.
5. The following events should be observed:
a. When the drive becomes Ready, a faint, audible click should be heard as the drive is restored by the Firmware.
b. Status Lights: TRACK 00 should be active; WRITE ENABLED should be active; HEAD LOADED should be inactive; WRITE should be inactive.
c. Ready and Select:

Both SELECT's should be active. The READY should be active for the drive being used.

IF THESE EVENTS ARE NOT OBSERVED, check the following points:
a. Check all supply voltages on the IFM and FIB Boards.
b. Check and verify all cable connections.
c. Check and verify the EPROM located in position Al0 of the IFM Board (PROMOO).
d. Insure that an address jumper has been placed in socket C3 of the IFM Board.
e. Check and verify that the IFM processor is in the RUN state (Al-3).
f. If the problem still exists, use the firmware listing as a guide in troubleshooting the Scan Loop. The Scan Loop code begins at SCLP and is described in the FIB Firmware section under the heading STRAIGHT LINE DESCRIPTION OF THE PROGRAM.

TEST MODULES

System testing described in this section consists of : 1) testing a single track format operation; 2) testing a sector write; 3) testing a sector read; and 4) testing the head positioning operation.

The test procedure is written so that the User must start with Test Module 1 to test single track format operations. Each succeeding module may be added to the existing code to test succeeding disk functions.

The complete test procedure requires 512 bytes of RAM beginning at address 1800 H . The Command String resides at address 1880 H , and the 128 byte buffer begins at 1800 H .

If an error occurs when running the Test Modules, the Status Word in the Command String should indicate the type of error encountered. This information may be used to narrow down the possible sources of trouble given in the following section.

If the Status Word remains 0 when a failure occurs, the firmware has not completed, or perhaps even started, the operation. Check the DMA control circuits. Reference the IFM Theory of Operations.

TEST MODULE 1

1. Set the address jumper at C3 on the IFM board for the address $F D$ (Hex).

2. Load the Test Module 1 beginning at 1889H.
3. RESET
4. EXAMINE 1889 H .
5. Set the Drive Select Number in the Programmed Input Switches as follows:

01H to select Drive 0
02 H to select Drive 1
04 H to select Drive 2
08 H to select Drive 3
6. Load the Diskette and close the door on the Drive. Wait for the Drive to come READY.
7. RUN.

When operating correctly, Track 0 is continuously formatted.

TEST MODULE

1. Load the Test Module 2 beginning at 18 CDH .
2. Note that Test Module 1 MUST be loaded prior to using Test Module 2.
3. EXAMINE 1889H.
4. Set the Drive Select Number in the Programmed Input Switches.
5. Load the Diskette and wait for the Drive to come READY.
6. RUN.

Test Module 2 will Write from the buffer area at 1800H onto Track 0, Sector 1.

TEST MODULE 3

1. Load Test Module 3 beginning at 18 E 2 H .
2. Test Modules 1 and 2 MUST be loaded prior to using Test Module 3.
3. EXAMINE 1889H.
4. Set the Drive Select Number in the Programmed Input Switches.
5. Load the Diskette and wait for the Drive to come READY.
6. RUN.

Test Module 3 will Read from Track 0, Sector 1 into the Buffer Area at 1800H.

TEST MODULE 4

1. Load Test Module 4 beginning at 18FOH.
2. Test Modules 1,3 and 3 MUST be loaded prior to using Test Module 4.
3. EXAMINE 1889H.
4. Set the Drive Select Number in the Programmed Input Switches.
5. Load the Diskette and wait for the Drive to come READY.
6. RUN.

Test Module 4 will format Track 76 to test the head positioning routines.

ERROR DEBUGGING
If an error occurs when running Test Module l, the following points should be checked.

GROUP 1

1. Check FIF blue wire modifications (IFM Rev. 2 and 3, FIB Rev. 2 and 3).
2. Check and verify that the diskette is not damaged.
3. Check and verify the firmware in the IFM PROM.
4. Check the OUTPUT COMMAND CONTROL CIRCUIT on the IFM board. Use the IFM Theory of Operation as a reference in troubleshooting.
5. If the Status Word in the Command String remains

0 when the failure occurs, or if the test program is lost/destroyed when running the test module, check the DMA CONTROL CIRCUIT. Use the IFM Theory of Operations as a reference in troubleshooting.
6. Insure that the address jumpers have been correctly configured in position C3 of the IFM board.
7. Check the LOAD CONTROL CIRCUITS on the FIB Board. Reference the FIB Theory of Operations.
8. Check the INDEX MARK DETECTION CIRCUIT on the FIB board. Reference FIB Theory of Operations.
9. Check the IFM RAM CHIPS B9 and B12.

IF AN ERROR OCCURS with the addition of Test Module 2, check all items listed in GROUP 1 and the following.

GROUP 2

1. Check the SYNCH READ DATA CIRCUIT on the FIB Board. Reference the FIB Theory of Operations.
2. Check the PLO operation and the PLO SYNCH circuit on the FIB Board.

IF AN ERROR OCCURS with the addition of Test Module 3, check all items in GROUPS 1, 2, and the following.

GROUP 3

1. Check the READ DATA CIRCUIT on the FIB. Reference the FIB Theory of Operations.
2. Check the BYTE DONE CIRCUITS on the FIB. Reference the FIB Theory of Operations.

IF AN ERROR OCCURS with the addition of Test Module 4 , check all items in GROUPS 1, 2, 3, and the following.

GROUP 4

1. Check the Direction and Step Lines on the FIB Board. Refer to the CALCOMP OEM Manual for specs.

USE OF THE FIRMWARE LISTING IS RECOMMENDED AS A GUIDE IN TROUBLESHOOTING INDIVIDUAL DISK OPERATIONS.

 Ci） $0+1$ $\rightarrow 1 \rightarrow+5$ （11）（1）

as	01	（ 7	r－1	91	$0)$
11	1.1	－ 7	（ n	－ 12	θ
4	\％	L^{-1}	\％	$E 3$	：x
＋	H	－	\square	$\xrightarrow{\square}$	－
\geq	1		（1）	O	

 E－1 －

＜irj品 OC成 \bigcirc － .3 $\rightarrow(H)$名品男
 TESE MOJUTE 1

$$
\begin{aligned}
& i n \\
& +1 \\
& 0 \\
& 101 \\
& 101 \\
& 1-1 \\
& 0 \\
& 0 \\
& 1,
\end{aligned}
$$

\because

$$
\begin{aligned}
& \because \\
& 0 \\
& \text { men }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 란 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { O4+3末6,0 } 0 \\
& \begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array} \\
& \begin{array}{l}
0 \\
0 \\
0,1 \\
0
\end{array} \\
& \text { H }
\end{aligned}
$$

TEST MODULE 2
GIIEE MRACZ
VERSION 1.213176

ORG 130DE
EQU 15玉のシ
EeU 18ECE
EDU 13EC＝
IN 3EFE

OFI 132
STA CME
SUE A
STA OMD＋1
STA OMLT
INA A
STA OMD 4 ；SEOTOR 1
CALI ISSUE
JMP BEGIN
；In DR．NO．
；OR IN URITE CND
；STOEE CML NO．
；25ñ ACC
；ZERO ETSTUS
；2EnO TEACZ

AND NOW

Once your System has passed the System Testing previously described, you may proceed in one of several ways.
*
If you wish to bring up IMSAI, CP/M, refer to the IMSAI CP/M USER MANUAL for further instructions.
*
If you wish to write your own disk access programs, refer to the Programming Guide in the System User Guide section of this manual. In writing your own disk access programs, it is adviseable to read the System Theory of Operation to gain a general understanding of the system operation.

* If you wish to understand the operation of the system, the following sections of this manual may prove helpful.
, System Theory of Operation
IFM Theory of Operation
FIB Theory of Operation
FIB Firmware Theory of Operation
Cal Comp OEM Reference Manual for the Model 140 Drive.

SYSTEM USER GUIDE

CAUTION

Take Diskettes out of the drives during system power up or down to prevent any possible changing of data.

9/9/76

USER GUIDE

USER CONTROLS

POWER SWITCH: The AC power switch is located at the rear of each FPS. Assembled Drives are shipped with this switch in the power-on position.

LOADING AND REMOVING DISKETTES: In the center of the face of each Drive is a simple, thumb operated pushbutton which is depressed to allow the springloaded front cover to open. The Flexible Disk may then be inserted or removed as appropriate. The cover may then be closed manually.

NOTE: Remove the Diskette from the drive before power is applied to or removed from the controller Boards.

LIGHT DISPLAY: The Light Display monitors the READY and SELECT Lines for each Drive in the cabinet. The states of the four signal lines TRACKOO, HEAD LD, WRITE, and WRITE ENABLED are monitored for the selected Drive.

SELECT: A SELECT line will become active when the Controller raises the select Line for the appropriate Drive. Both Select Lines will appear to be continuously active since the Controller uses these lines in a polling process to determine if a Drive has become Ready.

READY: This will become active when a diskette is loaded and the cover is closed on a selected Drive.

TRACK 00: The TRACK 00 line will become active when the Read/Write head on the selected drive is positioned over Track 00.

HEAD LOAD: The HEAD LOAD line will become active when the controller issues a request to the selected Drive to load the Read/Write head.

WRITE: The WRITE line will become active when the Controller issues a command to the selected drive to enable the Write line.

WRITE ENABLED: The WRITE ENABLED line will become active when the selected Drive acknowledges that the loaded diskette is not write protected. Circuitry in the Drive to support this feature is not standard.

SYSTEM INITIALIZATION

The following procedure should be used when powering up the System.

1. Insure that the diskettes are removed from the Drives.
2. Power up the 8080 .
3. Connect the power cord from the Drive Assembly.
4. Insert a diskette in the Drive.
5. The following events should be observed:
a. When the Drive becomes Ready, a faint, audible click should be heard as the drive is restored by the Firmware.
b. Status Lights: TRACK 00 should be active; WRITE ENABLED should be active; HEAD LOADED should be inactive; WRITE should be inactive.
c. Ready and Select: Both SELECT's should be active. The READY should be active for the drive being used.

FLOPPY DISK SYSTEM
User Guide

SYSTEM BOOTSTRAP (IFM REV 3 FIRMWARE ONLY)

A "bootstrap" is a short program which reads another program from some storage medium into system RAM and executes it. This simple, yet general procedure gives the user freedom to load in any kind of operating system s/he desires. The IMSAI Floppy Disk System bootstrap reads sector 1 of track \varnothing from drive \varnothing into system RAM at $\varnothing-7 F$ and then jumps to location \varnothing.

The following procedure should be used when bootstrapping from an IMSAI CP/M System Diskette.

1. Insure that the diskettes are removed from the drives.
2. Power up the 8080 .
3. Power up the floppy disk drive.
4. Insert a system diskette in drive \varnothing.
5. When the drive becomes READY, press RESET.
6. Set the ADDRESS switches for $\emptyset \varnothing \emptyset \emptyset$ and press EXAMINE. A "C3" should appear in the DATA lights.
7. Press RUN.

At this point, the operating system should be loaded and run.

If a hardware error occurs, the error code (see FIB Software section) will be displayed in the PROGRAMMED OUTPUT lights. The bootstrap will be retried until it is successful, or until it is stopped. If unable to bootstrap, check the points described at the end of the SYSTEM INITIALIZATION section.

If REV 3 Firmware is not available, a Bootstrap Simulator is described in the IMSAI CP/M Documentation.

PROGRAMMING GUIDE

A. Introduction

An Assembly Language Program stored in the 8080 System Memory is necessary to access the Floppy Disk. To use the IMSAI Floppy Disk System, the User must understand how to write such a program.

In order to accomplish this, the User may think of the Floppy Disk as a SINGLE OUTPUT PORT from the 8080 Microprocessor System.

The program which will access the Floppy Disk System utilizes TWO TYPES OF INSTRUCTIONS:

1. BYTE INSTRUCTIONS and
2. A COMMAND STRING INSTRUCTION.

BYTE INSTRUCTIONS are OUTPUT INSTRUCTIONS to the output port of the Floppy Disk System.

A COMMAND STRING is a series of consecutive words located in the System Memory.

The processes which need to take place within this program are described as follows.

START.....SET UP THE COMMAND STRING IN RAM FOR A PARTICULAR DISK OPERATION

ISSUE THE BYTE COMMAND (OUTPUT INSTRUCTION) TO INITIATE THE EXECUTION OF A DISK OPERATION

CHECK THE STATUS WORD IN THE COMMAND STRING FOR AN INDICATION THAT THE DISK OPERATION IS COMPLETE

END.
The sections of the USER GUIDE which follow give the detailed information necessary to WRITE THE FLOPPY DISK ACCESS PROGRAM.

FLOPPY DISK SYSTEM

B. Command Types

Control of the IMSAI Floppy Disk System from the 8080 Microcomputer System is of two types: 1) the BYTE COMMAND and
2) the COMMAND STRING.

BYTE COMMAND instructions are directly executable and are passed to the IFM board from the Main Processor via an OUTPUT instruction.

COMMAND STRING instructions are indirectly executable and are stored in variable length COMMAND STRINGS in the Main System RAM.

A COMMAND STRING instruction is executed when a BYTE COMMAND of 0 is output to the IFM board. At that time the IFM processor will get the COMMAND STRING from the Main Processor's memory via the DMA channel and execute the instruction contained therein.

FIGURE 8, Control in the IMSAI FDS
C. BYTE COMMANDS.

The Byte instruction is an eight bit word structured so that the upper four bits contain the BYTE INSTRUCTION NUMBER and the lower four bits contain either a pointer number or a drive select number, depending on the command used. (See figure 9.)

FIGURE 9, Byte Command

The Byte Instructions are Iisted below according to the Byte Instruction Number (the hex number contained in the upper four bits of the Byte Instruction).

COMMAND 0: Execute Command String from pointer. This command will take the pointer number from 0 to 15 and execute the Command String pointed to by that pointer. Note that prior to using this command the pointer address must have been initialized using Command 1.

COMMAND 1: This command will cause the floppy controller to take the next two bytes passed to it by the master microprocessor and use these as the new address for the pointer specified. Note that three bytes must be output to the IFM I/O port from the main processor to properly execute this command. (BYTE COMMAND NUMBER, IOW ORDER ADDRESS, HIGH ORDER ADDRESS)

COMMAND 2: Restore Drive causes the floppy controller to execute a restore command (position the head over track 0) on any or all drives selected.

COMMAND 3: Set Software Write Protect causes the controller to set a Write Protect on any of the drives which are selected. Note that in a power on condition, all drives come up WRITE ENABLED and therefore the WRITE PROTECT must be reset whenever power goes on.

COMMAND 4: Software WRITE ENABLE causes the microprocessor or the floppy controller to remove the WRITE PROTECT on any or all drives selected.

COMMAND 5 through COMMAND 15 perform no operation, except to reset interrupt if interrupt mode is being used. IMSAI standard RESET INTERRUPT command is command 5.

POINTERS

The pointer is a number from 0 to 15 which signifies that one of 16 addresses be used as the address of the Command String in Main Memory. Byte Commands 0 and 1 will take the lower four bits of the Byte Instruction Word as a pointer number to a Command String address. Note that Byte Command 1 is used to initialize the addresses of the pointers, while Byte Command 0 will execute the Command String pointed to by the lower four bits of the Byte command Word.

On system power-up or RESET, the sixteen pointers are initialized with the following default values (all in hexadecimal).

$\emptyset:$	$\emptyset \emptyset 8 \not \square$	4	$4 \varnothing \emptyset \varnothing$	8 :	$8 \varnothing \emptyset \emptyset$	C :	$C \not \square \emptyset \emptyset$
1:	$1 \varnothing \emptyset \emptyset$	5	$5 \not \varnothing \varnothing \varnothing$	9 :	$9 \varnothing \emptyset \emptyset$	D:	Døø¢
2 :	2øøø	6	$69 \varnothing \varnothing$	A:	$A \varnothing \varnothing \varnothing$	E:	Eøøø
3 :	$39 \varnothing \varnothing$	7	$7 \emptyset \emptyset \emptyset$	B :	$B \not \square \varnothing \varnothing$	F:	FgøD

DRIVE SELECT NUMBERS

Byte Commands 2, 3 and 4 will take the lower four bits of the Byte Instruction Word as a Drive Select number. A drive is selected (0-3) if its corresponding bit is a l. A command with no drives selected does no operation.

FIGURE 10, Drive Select Numbers
D. COMMAND STRING INSTRUCTIONS

Command String Instructions are indirectly executable and are stored in a variable length Command String in the Main System RAM.

The Command String is a series of from 4 to 9 consecutive 8 bit bytes in the main processor's memory. Its length or structure is dependant on the command used.

SYSTEM RAM

FIGURE 11, Command String Instructions

All Command Strings consist of at least four bytes of information. The definition of each 8 bit byte in the Command String is given below.

BYTE 1 - Command Byte

This byte contains a command number in the upper hexadecimal digit and the drive select number in the lower digit. The operation for each command Number is defined in the next section and a drive is selected ($0-3$) if its corresponding bit is a one (bits 0-3).

BYTE 2 - Status Byte

This byte indicates to the master microprocessor the status of the present disk operation. It must be SET EQUAL TO 0 prior to executing the single Byte Command 0. This byte is set non-zero at the completion of the Command String by the IFM processor. If bit 7 is set, it indicates that the operation was not completed successfully. Bit 0 only is set on successful completion.

BYTE 3 and 4 - Track Address

Two Bytes are allowed for the track address for future expansion. At this time, Byte 3 must be 0 , and Byte 4 contains a value from 0-76 to specify on what track the operation should be performed. Note that to maintain IBM media compatibility, it is possible to have the logical and physical track address differ. For commands to process this type of data, Bytes 3-4 contain the physical track address number.

Care must be exercised in operating with the logical and physical track address being different, and the user must be totally familiar with the format $s / h e$ is working with to perform any operation of this nature. For commands which specify no further track address, these two bytes contain both the physical and logical track address numbers.

BYTE 5 to 9

Bytes 5 to 9 of the Command String are defined according to the Command used.

FLOPPY DISK SYSTEM User Guide

COMMAND TYPES

The individual Command String commands are listed below by the command numbers - the upper four bits of the Command Byte.

COMMAND 0
The READ ALL command causes the IFM to delay the number of milliseconds contained in Byte position 5 from the physical index poles of the floppy disk and then to read 64 bytes. For each data byte, the corresponding clock byte is also read and is stored in the next sequential location in memory (i.e., stored are data from byte 1 , clock from byte 1 , data from byte 2 , clock from byte 2 , etc.). Hence, 128 bytes are transferred to the main processors memory at the data buffer location pointed to in Bytes 6 and 7. The delay in Byte 5 can be from 0 to 255 ms .

Note that the 64 bytes on the floppy disks consume' approximately 2 ms and that software recognition for repositioning of the data is required to completely reconstruct the data pattern which is on the floppy disk. This command should be used with caution, and the user should be totally familiar with format contained on the floppy disk $s /$ he is referencing before attempting to use the command. It is normally used only in cases of extreme difficulty or to decipher an unknown diskette format.

COMMAND 1

The WRITE SECTOR command causes the floppy controller to write the data from the location pointed to by Bytes 6 and 7. Byte 6 contains the least significant half of the data buffer location, and Byte 7 contains the most significant half. The data is written in the sector specified in Byte 5 (from 1 to 26).

COMMAND 2
READ SECTOR: The sector number contained in Byte 5 (from 1 to 26) is read and, upon successful completion of the read, the data is transferred to the data buffer location contained in Bytes 6 and 7. Byte 6 contains the least significant half of the data buffer location, and Byte 7 contains the the most significant half. .

The FORMAT TRACK command uses no additional bytes and causes the floppy controller to write an IBM compatible format on the selected track number. This command destroys all previous information on the track and should be used with caution to initialize new diskettes.

COMMAND 4

The VERIFY SECTOR command causes the floppy controller to read and verify the redundancy check on the selected sector. NO DATA TRANSFER to the main processor's memory is initiated. Byte 5 for this command contains the sector number from 1 to 26) which is to be verified.

COMMAND 5

The WRITE DELETED DATA SECTOR MARK command causes the floppy controller to write a deleted data mark in the Jata portion of the sector number contained in Byte 5. This command is used to indicate a defective sector, and the user should be completely familiar with the IBM format prior to initiating this command.

COMMAND 7 through 11
Commands 7 through 11 are identical with commands 1 through 5 and are used to read diskettes which have the logical and physical track address physically different. The logical track address to be used is always contained in the two bytes directly following the other command data called for in the COMMAND STRING ($0-5$). FOX example, if the basic command uses just 4 bytes, then the logical track number would be in bytes 5 and 6 . If the basic command used 7 bytes, then the logical track address number would be in bytes 8 and 9 .

The command will cause the controller to reference the physical track called out in bytes 3 and 4. But to compare the track address received off this physical track or to write the track address onto this physical track, it will use the logical track number contained in the appropriate bytes.

Note that up to 16 Command String Pointers may coexist in IFM memory at any one time. When a BYTE INSTRUCTION 0 is output to the IFM processor, the upper 4 bits of the BYTE INSTRUCTION will be the BYTE COMMAND NUMBER (in this case 0). The lower

4 bits will be the pointer number. The Command String to be taken from main memory and executed begins at the address contained in the specified pointer.
E. USE OF THE COMMAND STRING INSTRUCTIONS

Use of the Command String Instructions is detailed in the following discussion.

1. SET UP A POINTER TO A COMMAND STRING

By using Byte Command 1, the processor may set the value of a pointer. The processor will output a 1 X to the IFM board where X is a pointer number (0-15). Following this will be an output of LL and then an HH where LL is the low order 8 bits and $H H$ is the high order 8 bits of the address.

Once this is accomplished, the Command String beginning at address HHLL may be referred to by the pointer number X.
2. SET UP THE COMMAND STRING WITH ALL REQUIRED INFORMATION
a) Load the Command Number and Drive Select Number in BYTE 1.
b) Load a zero in the Status Byte (BYTE 2).
c) Load a zero in BYTE 3.
d) Load the track number in BYTE 4.
e) Load BYTES 5-9 as required by the operation being performed.
3. ISSUE A BYTE COMMAND 0 TO INITIATE THE EXECUTION OF A COMMAND STRING

The processor will output a 0 X to the IFM board where X is a pointer number causing the Command String pointed to by x to be executed.
4. WAIT FOR THE COMPLETION FO THE OPERATION

The processor must wait for the Status Word to go non-zero before proceeding with another disk operation. If an error is indicated, the processor may at this time take appropriate actions.

EXAMPLES ARE GIVEN IN THE SECTION ON SYSTEM TESTING

FLOPPY DISK SYSTEM
F. ERROR SPECIFICATION FOR THE STATUS WORD

FIGURE 12, Status Word
If an error is indicated in the status word, BITS 6,5 , and 4 are used to identify the class of error as follows:

BIT 6

Bit 6, if set to a l, indicates that an error was detected in the Command String. The individual error is specified by the least significant hexadecimal digit of the status response as follows:

IF SET TO a l, it indicates that the Status Byte was not 0 upon initiation of the operation.

IF SET TO a 2, it indicates that no drive was selected.

IF SET TO a 3 it indicates that greater than one drive was selected.

IF SET TO a 4, it indicates an illegal command number was contained in the string.

IF SET TO a 5 rit indicates that there was an illegal track address in the string.

IF SET TO a 6, it indicates that there was illegal sector address in the string.

IF SET TO a 7 , it indicates that there was an illegal data buffer location in the string.

IF SET TO a 8, it indicates that there was illegal logical track address number in the string.

BIT 5

Bit 5, if set, indicates that there was a system error which may be recoverable by the operator. The low order digit is defined as follows:

IF SET TO a l, it indicates that the selected drive was not ready for operation.

IF SET TO a 2,it indicates that the selected drive is hardware write protected, and an attempt to initiate a write operation on this drive was performed

IF SET TO a 3 it indicates that the selected drive is software write protected, and an attempt was made to initiate a write on this drive.

FLOPPY DISK SYSTEM
User Guide

BIT 4
Bit 4 , if set, indicates that there was a hardware malfunction which inhibited completion of the operation. The indicator digit is as follows:

IF SET TO a l, it indicates that the selected drive is not operable; that is the controller was unable to position over track 0 , or the drive went not ready during an operation.

IF SET TO a 2 rit indicates that a track address error has occurred when attempting to read or write data onto the drive. An attempt is made 10 times to reposition the head over this track prior to indicating the error.

IF SET TO a 3 rit indicates that a data synchronization error occurred; that is, the floppy controller was unable to find the selected sector number on the track prescribed within two revolutions.

IF SET TO a 4rit indicates that a CRC error occurred in the ID sector when attempting to locate the sector for read or write.

IF SET TO a 5,it indicates that there was a format error in the ID section when an attempt was made to locate the proper sector for a read or write.

IF SET TO a 6 rit indicates that a CRC error occurred in the data portion of the sector when the data was read. Again this error is retried 10 times prior to submitting it to the processor as an error.

IF SET TO a 7r it indicates that a deleted data address mark was encountered when attempting to read data from the prescribed sector.

G. GENERAL NOTES ON ACCESSING THE DISK

Before writing on a new diskette the Format command must be used to write an IBM compatible format on the tracks to be used.

Note that tracks are numbered from 0 to 76 while sectors are numbered from 1 to 26. Also, note that these are decimal values.

To prevent possible damage to information stored on a diskette, remove the diskette from the drive BEFORE powering down the system.

IMSAI FLOPPY DISK SYSTEM

PART 2

COMPONENTS OF THE SYSTEM
IFM
FOPM DISK SYSTEM

FUNCTIONAL DESCRIPTION

The IMSAI Interface Master Board (IFM) is a complete 8080 A based single board microcomputer configured as an intelligent interface controller. It is capable of interfacing, either directly or via minimal additional electronics, a wide variety of sophisticated peripheral equipment to an IMSAI 8080 Microcomputer System. The overhead normally associated with peripheral processing is eliminated from the system microprocessor (SMPU) since: 1. the IFM moves data between the SMPU and the peripheral via a DMA Channel; and 2. the IFM excercises routine control over the peripheral.

IFM I/O The SMPU communicates with the IFM via a bi-directional DMA Channel and an isolated output port. The electronics for both are implemented in the IFM and require no additional support circuitry. The DMA Channel normally gives the IFM access to the lower 32 K bytes of the SMPU's memory. The isolated output port is normally used for issuing single byte commands to the IFM from the SMPU. Its address is jumper selectable and can range from 0 to 255_{10}.

DMA PRIORITY When used with other DMA devices, e.g. multiple IFM Boards, the DMA priority is resolved using a daisy chain scheme.

IMPLEMENTATION The IFM is implemented using an 8080A microprocessor, its support chips, 2 K bytes of EPROM, 512 bytes of RAM, and the additional electronics required to interface to the SMPU busses. The IFM is powered by the IMSAI 8080 System and consumes one slot in the IMSAI 8080 backplane. External interface connections to peripherals or other interface boards are made via a 50 pin edge connector at the top of the Board.

The operation of the IFM Board is easily understood if it is broken down into its major functional blocks. The IFM consists of:
I. CPU Circuits,
2. On-Board Address Decoding,
3. Memory Circuits,
4. I/O Circuits,
5. DMA Circuits, and
6. DMA Priority Circuits.

CPU: The CPU employed by the IFM consists of an 8080A microprocessor, an 8224 System Clock, and an 8228 System Controller. This circuitry is described in detail in the Intel 8080 Microcomputer System User's Manual.

IFM ON-BOARD ADDRESS DECODING: IFM Address Lines MA10- MAl5 are decoded by the 8205, located in position $A 5$, to originate signals /El through /E8.

The 8205 is eńabled when MA15, MA14, and MA13 are present on the IFM Address Bus in a low state. At this point, MA10 - MAl2 are decoded to select one of the eight outputs /E1 - /E8, which are active low. Note that /INTA going low will disable the 8205.

The outputs /E1 - /E8 are used for gating and selecting- on-board functions as listed in Table 1. They may also be used for external device and peripheral control functions, as /E4 - /E8 are available at the connector J 2 .

MEMORY: The IFM employs 2 K Bytes of Eraseable Programmable Read Only Memory (EPROM) and 512 Bytes of Random Access Read Write Memory (RAM). The EPROM consists of two 8708 chips and the RAM consists of four 8111 chips.

On-board RAM is selected when the /E3 output of the 8205 (A5) goes low. This will occur when the address 08XX - 09XX appears on the IFM Address Bus.

The IFM RAM is organized as two blocks of 256×8 bit words. Each block of 256 is composed of two 4 bit half blocks since the organization of the 8111 is 256x4.

A RAM chip is selected when its inputs /CEl and /CE2 are both low. Since the input of /CE2 is /E3 and the input to /CE1 is driven from MA8, an address of $08 x x$ will select chips B9 and Bl2, while an address of $09 x x$ will select chips Blo and Bll.

Selection of an 8 bit word within a block of 256 is achieved through the use of MAO - MA7. Output Disable and R / W inputs to the RAM chips are driven by /MEMR and /MEMW respectively.

The IFM PROM consists of two 8708 chips, organized as 1Kx8. PROM 0000, location Al0, is enabled. when /El goes active low. This will occur when an address in the range of $0000-03 F F$ appears on the IFM Address Bus. Similarly, PROM 0400, location All, is enabled when /E2 goes active low. This will occur when an address in the range of $0400-07 \mathrm{FF}$ appears on the IFM Address Bus. Selection of a word within each 1 K block of PROM is achieved through the use of MAO - MA9.

All of the IFM's memory (both EPROM and RAM) has less than 500 nanosecond access time so no WAIT states are used for memory references.

MAO-MA15 ADDRESS	SIGNAL	FUNCTION
$0000-03 F F$	$/ E 1$	Enable PROM 0
$0400-07 \mathrm{FF}$	$/ E 2$	Enable PROM I
$0800-09 \mathrm{FF}$	/E3	Enable RAM
$0 \mathrm{C} 00-0 \mathrm{FFF}$	/E4	not assigned
$1000-13 \mathrm{FF}$	/E5	not assigned
1400	/E6	Command Data Port
1800	/E7	Command Status Port
$1 C 00-1 \mathrm{FFF}$	/E8	not assigned

INPUT/OUTPUT: All I/O on the IFM Board is implemented using the Memory Mapped I / O technique. The I/O facilities consist of a single byte command port from the SMPU and any control ports implemented in the peripheral or external interface circuitry (e.g. FIB or LIB boards). The DMA channel can be viewed as 32 K I/O ports but because of the extensive circuitry involved, it will be considered separately.

As viewed from the SMPU, the single byte command port is an isolated output port. When the SMPU outputs to this port, the address is decoded by the 7485 Comparators (C4 and C5) causing PADR to go high. This is gated with PWR and SOUT by a 74LSll AND gate (B3), whose output CIN is high if and only if the SMPU is outputting to this port. CIN is connected to the STB input of the 8212 8-bit Latch (C8) and causes the data on the SMPU Data Bus to be loaded into the latch. This, in turn, sets the 8212 Internal Service Request Flip/Flop, causing/IORQ to go low and a Hold Request to be initiated. (Hold Request and DMA logic is discussed below).

As viewed from the IFM CPU, the single byte command port consists of a Memory Mapped Status Input Port and a Memory Mapped Data Input Port. The Status Port address is fixed at 1800 H . When 1800 H is decoded by the 8205 (A5), it causes /E7 to go low. This in turn, places IORQ on bit 0 of the Data Bus. (The remaining 7 bits of the status port are not used and their states are undefined.) IORQ being high indicates that a byte has been loaded into the 8212 (C8).

The Memory Mapped Data Input Port address is fixed at 1400 H . When 1400 H is decoded by the 8205 (A5), it causes the signal/E6 to go low. This enables the Tri-State outputs of the 8212 , allowing the $C P U$ to read the contents. /E6 also resets the 8212 Service Request Flip/Flop, causing /IORQ to go high and the associated Hold Request is removed.

Control I/O ports may be implemented in the peripheral equiptment or external interface circuitry. This is possible since all of the IFM!s busses are available at the $J 2$ connector.

DIRECT MEMORY ACCESS: As viewed from the IFM CPU, the DMA Channel can be considered to be 32 K Memory Mapped I/O Ports. Alternately, it can be considered as a virtual extension of the IFM memory. A read or write in the upper 32 K bytes of the IFM address space causes a DMA read or write in the lower 32 K bytes of the SMPU address space. This can be changed to the upper 32 K bytes of the SMPU address space under IFM program control, if the requisite latch. is implemented on an additional board (e.g. LIB or FIB).

A DMA transaction is initiated when MAl5 is high and either /MEMR or /MEMW is low. The IFM CPU is put into a Wait State, (RDYIN pulled low), and a Hold Request is initiated, (A2-11 goes high).

If /IORQ and /PRIIN are high, the CLR input to the shift register at A3 goes high. At this point, the 74195 shift register, A3, is in the LOAD mode. If /PHOLD is not currently being pulled low by another DMA device, the output Q_{a} of A3 is latched high on the trailing edge of the SMPU $\varnothing 2$ clock, (Sø2). The output Q_{a} of A 3 drives /PHOLD active low.

The SMPU acknowledges its entry into the HOLD State by driving PHLDA high. This, in turn, latches the Q_{b} output of A3 high. The SMPU Drivers are disabled at this time and the IFM drives the SMPU Address, Control, and Status Busses. Note: When a byte is output to the single byte command port, a sequence of actions occurs similar to that which put the SMPU into a Hold.

Since the Q_{b} output of $A 3$ is high, the signal, DMA, (A2-6) goes high, placing the 74195, A3, into the SHIFT Mode. The 8216 Bi-Directional Bus Drivers, (C6 and C9), are also enabled at this time, with the direction of the data transfer determined by /MEMR.

On the next trailing edge of $\mathrm{S} \varnothing 2$, the Q_{C} output of A3 goes high, driving PWAIT high. /PWR is also driven low at this time if a write operation is to be executed.

One $s \not 02$ period later, the Q_{d} output of A3 goes high. At this time PRDY is gated to drive RDYIN. Thus the IFM CPU resumes operation when PRDY is high. The DMA transaction terminates when both /MEMR and /MEMW are high.

If, at the end of the DMA transaction, /IORQ is high, the CLR input to A3 goes low and control of the Busses is returned. to the SMPU. /PHOLD goes high. The SMPU ceases Holding and resumes normal operation until the next DMA operation.

If, at the end of a DMA transaction, /IORQ is low, a single byte command is pending and the CLR input to A3 remains high. Since the DMA REQ, A2-11, is now low, DMA, A2-6, goes low and the 74195 shift register, A3, returns to the LOAD Mode. The first two bits of A3 remain high, but the second two bits go low. The SMPU continues to Hold. The 74195 remains in this state until/IORQ goes high or another DMA transaction is initiated. Thus, the SMPU is held after outputting a byte to the IFM until the IFM CPU reads the byte. The IFM is able to continue DMA operation during this time and will DMA slightly faster since it no longer is delayed by waiting for PHLDA.

DMA PRIORITY: Conflicts for DMA access by multiple DMA channels is resolved using a daisy chain scheme. The /PRIOUT output of a DMA Controller is connected to the/PRIIN input of the controller with the next lowest priority. The /PRIIN input of the highest priority controller is left open and is pulled up by an on-board 1 K resistor.

A controller pulls its /PRIOUT low if its /PRIIN input is low or if that controller is executing a DMA transaction. /PRIIN low indicates that a higher priority controller is executing a DMA transfer. Any pending DMA request must be delayed until /PRIIN returns high and /PHOLD is high.

If /PRIIN and/PHOLD are high, the IFM may initiate a DMA transaction by pulling /PHOLD low synchronized to the trailing edge of the SMPU $\varnothing 2$ clock. Simultaneously, /PRIOUT is pulled low. If /PRIIN remains high until the next trailing edge of $S \varnothing 2$, no higher priority DMA device requires service, and the DMA transaction may continue. However, if /PRIIN is pulled low, a higher priority channel requires service and the transaction must be aborted. DMA priority applies only to DMA transactions initiated on the same trailing edge of S $\varnothing 2$. All other DMA transactions are serviced on a first-come first-served basis. Once a DMA transaction is in progress, higher priority controllers must not initiate a DMA transaction or system malfunction will occur.

BOARD: IFM Rev. 6

ITEM	IMSAI PART \#	QUANTITY	DESCRIPTION/IDENTIFYING MARKS
Solder	15-0000001	10'	
Heat Sink	16-0100004	1	Thermalloy/6072-B
Screw	20-3202001	1	6-32 $\times^{\frac{1}{3}}{ }^{\text {n }}$ Phillips Pan Head Machine
Screw	20-3302001	2	6-32x5/16" Phillips Pan Head Machine
Lockwasher	21-3350001	3	\#6 Internal Star
Nut	21-3120001	3	6-32 Hex
Socket	23-0800001	1	I6-Pin Solder Tail
Header	23-0400001	1	16-Pin IC Header
Socket	23-0800002	2	24-Pin Soldex Tail
Socket	23-0800003	1	28-Pin Solder Tail
Socket	23-0800004	1	40-Pin Solder Tail
Socket Pin	23-0900007	2	Cambion \#450-370401-04 (or -03 or -06)
Inductor **	29-0400001	1	IUH/WEE 1.0
Resistor	30-3470362	1	470 Ohm, ${ }^{\frac{1}{4}}$ Watt/yellow, violet, brown
Resistor	30-4100362	6	IK Ohm, is Watt/brown, black, red
Resistor	30-4220362	8	2. 2 K Ohm , $\frac{1}{4}$ Watt/red, red, red
Resistor	30-4470362	1	4.7K Ohm, $\frac{1}{4}$ Watt/yellow, violet, red
Capacitor	32-0239010	1	39pF Disk Ceramic
Capacitor	32-0256010	1	56pF Disk Ceramic
			1uF Disk Ceramic
Capacitor	32-2010010	17	.1uF Disk Ceramic
Capacitor	32-2233070	6	33uF, 25V Tantalum
8197	36-0089701	4	Hex Tri-State Buffer/N8T978
74LS00	36-0740002	1	Quad 2-Input NAND (Low Power Schottky)/ SN74LSOON

ITEM	IMSAI PART \#	QUANTITY	DESCRIPTION/IDENTIFYING MARKS
74LSO2	36-0740202	1	Quad 2-Input AND (LPS)/SN74LSO2N
74LS04	36-0740402	2	Hex Inverter (LPS)/SN74LSO4N
74LS08	36-0740802	1	Quad 2-Input AND (LPS)/SN74LSO8N
741511	36-0741101	1	Triple 3 Input AND (LPS)/SN74LSIIN
7416	36-0741601	2	Hex Inverter Driver, Open Collector/9N16/ 7416
74LS32	36-0743202	1	Quad 2-Input OR (LPS)/SN74LS32N
7485	36-0748501	2	4 Bit Magnitude Comparator/SN7485N
7805	36-0780501	1	Regulator/7805CU
7812	36-0781201	1	Regulator/FUA7812UC
7905	36-0790501	1	Regulator/MC7905CP
8080A	36-0808001	1	Microprocessor/C8080A
8111	36-0811101.	4	256x4 Static MOS RAM/P811l (or P2111)
8205	36-0820501	1	High Speed Binary Decoder /P8205
8212	36-0821201	1	8 Bit Input/Output Port/P8212
8216	36-0821601	2	4 Bit Bi-Directional Bus Driver/P8216
8224	36-0822401	1	Clock Generator and Driver/PB8224D
8228	36-0822801	1	System Controller and Bus Driver/D8228
74LS 195	36-7419502	1	4 Bit Parallel In/Out Shift Register (LPS)/ DM74195N
Cable	91-0400007	1	Cable F Assembly
PC Board	92-0000021	1	IFM Rev. 6
FIF PROMS	88-0000006	1	$\begin{aligned} & \text { Includes: } 18708 \text { Programmed FIF } 0000 \text { Rev. } 3 \\ & 18708 \text { Programmed FIF } 0400 \text { Rev. } 3\end{aligned}$
Crystal	35-5000003	1	18.00 MHz Crystal
Cable	91-0400003	1	Cable A Assembly

IFM Rev. 6
() 1. Unpack your board and check all parts against the parts list enclosed in the package.
() 2. If gold contacts on the edge connectors appear to be tarnished, use a pencil eraser to remove any oxidation. NOTE: Do not use Scotchbright or any other abrasive material as it may remove the gold plating.

IC INSTALLATION

NOTE: All Pin l's point toward the upper left hand edge of the board. Pads for Pin l's are square.
() 3. Insert and solder the one 8224 at location Al as shown on the Assembly Diagram.
() 4. Insert and solder the one 74 IS08 at location A2 as shown on the Assembly Diagram.
() 5. Insert and solder the one 75LSl95 at location A3 as shown on the Assembly Diagram.
() 6. Insert and solder the one 74LS32 at location A4 as shown on the Assembly Diagram.
() 7.* Insert and solder the one 8205 at location A5 as shown on the Assembly Diagram.
() 8. Insert and solder the four 8T97's at locations A6, B5, B6 and Cll as shown on the Assembly Diagram.
() 9. Insert and solder the one 74ISO2 at location Bl as shown on the Assembly Diagram.
() 10. Insert and solder the one 74LS00 at location B2 as shown on the Assembly Diagram.
() 11. Insert and solder the one 74LSIl at location B3 as shown on the Assembly Diagram.
() 12. Insert and solder the two 74LS04's at locations B4 and C12 as shown on the Assembly Diagram.
() 13. Insert and solder the four 8111's (or 2111's) at locations B9 through B12 as shown on the Assembly Diagram.
() 14. Insert and solder the two 7485's at locations C4 and C5 as shown on the Assembly Diagram.
() 15. Insert and solder the two 7416's at locations C6 and C7 as shown on the Assembly Diagram.
() 16. Insert and solder the 8212 at location C8 as shown on the Assembly Diagram.
() 17. Insert and solder the two 8216's at locations C9 and C10 as shown on the Assembly Diagram.
() 18. Insert and solder the one 40 pin socket at location A7 as shown on the Assembly Diagram.
() 19. Insert and solder the one 28 pin socket at location A9 as shown on the Assembly Diagram.
() 20. Insert and solder the two 24 pin sockets at locations AlO and All as shown on the Assembly Diagram.
() 21. Insert and solder the one 16 pin socket at location C3 as shown on the Assembly Diagram.

RESISTOR INSTALLATION

() 22. Insert and solder the one 470 Ohm, $\frac{1}{4}$ Watt resistor (yellow, violet, brown) at location Rl as shown on the Assembly Diagram.
() 23. Insert and solder the six 1 K Ohm, $\frac{3}{4}$ Watt resistors (brown, black, red) at locations R2 and R4 through R8 as shown on the Assembly Diagram.
() 24. Insert and solder the one $4.7 \mathrm{~K} \mathrm{Ohm}, \frac{1}{4}$ Watt resistor (yellow, violet, red) at location R3 as shown on the Assembly Diagram.
() 25. Insert and solder the eight $2.2 \mathrm{~K} \mathrm{Ohm}, \frac{1}{4}$ Watt resistors (red, red, red) at locations R9 through Rl6 as shown on the Assembly Diagram.

DISCRETE COMPONENT INSTALLATION
() 26. Insert and solder the seventeen .luF disk ceramic capacitors at locations Cl through Cll, Cl4 through C18 and C25 as shown on the Assembly Diagram.
() 27. Insert and solder the one 39 pF disk ceramic capacitor at location Cl2 as shown on the Assembly Diagram.
() 28. Insert and solder the one 56 pF disk ceramic capacitor at location Cl3 as shown on the Assembly Diagram.
() 29. Insert and solder the six $33 u F$ tantalum capacitors at locations C19 through C24 as shown on the Assembly Diagram. NOTE: Observe polarity (+ to +) as indicated on the board.
() 30. Insert and solder the one l.OuH inductor coil at location Il as shown on the Assembly Diagram.
() 31. At this time insert and solder the crystal (Yl). Use the two pads next to the legend Cl2. Make sure that the leads are long enough to allow the crystal to lay on its side flat against the board. Place a piece of electrical tape over the single pad which is completely under the crystal, then use a cut resistor lead soldered to the two pads at the edges of the crystal to hold the crystal down against the board. Refer to the photo.

REGULATOR AND HEAT SINK INSTALLATION

() 32. Bend the leads of the 7805,7812 and 7905 regulators at 90 degree angles approximately $\frac{1 / 4}{4}$ from the bottom edge of the regulator to facilitate insertion. The bends should be away from the side bearing the regulator number.
() 33. Insert the 7812 regulator at the top of the heat sink. Atモach securely with a 6-32×5/16" machine screw from the component side and a \#6 lockwasher and nut on the solder side. Ensure that the heat sink is positioned with its sides parallel to the sides of the board to prevent shorting to adjacent traces. Solder the regulator leads.
() 34. Insert the 7805 regulator at the bottom of the heat sink. Attach securely with a 6-32×5/16" machine screw from the component side and a \#6 lockwasher and nut on the solder side. Ensure that the heat sink is positioned with its sides parallel to the sides of the board to prevent shorting to adjacent traces. Solder the regulator leads.
() 35. Insert a 6-32x $\frac{1}{4}$ " screw through the 7905 regulator and mount the combination at the indicated location with a \#6 lockwasher and nut. No heat sink is needed for this regulator. Solder the leads.

IFM Rev. 6
Assembly Instructions
() 36. Mount the two . 040 pin sockets for $P I$ and PO as shown in the photo. Use cut resistor leads formed in a "U" and pulled down through the pair of holes to sit snugly on the sockets in order to hold them in place for soldering. Take care not to let the solder flow into the opening of the pin sockets.
() 37. Insert the 8080A microprocessor into the 40 pin socket at location A7. Ensure that Pin 1 is oriented properly.
() 38. Insert the 8228 IC into the 28 pin socket at location A9 as shown on the Assembly Diagram.
() 39. Insert the EPROM(s) into the 24 pin socket(s) at location(s) Al0 (0000) and/or All (0400).
() 40. Insert the 16 pin header into the socket at location C3. See the User Guide for address selection information.

USER GUIDE

The IMSAI Interface Master Board (IFM) is a complete 8080A based microcomputer, configured as an intelligent interface controller. It is used in a number of IMSAI peripheral products, such as the IMSAI Floppy Disk System and the IMSAI Line Printer. The design of the IFM makes it adaptable to a wide variety of interface applications. Depending on the particular interface requirements, additional interface electronics may, or may not, be required.

PORT ADDRESSING

The address of the Command Output Port must be selected by jumpers (or a DIP.switch) in position C3. Socket pins 1 through 8 correspond to Address Bits A0 through A7 respectively. Pins 916 provide for ground connections.

The address is selected as follows. For each Address bit which is to be a "0", the pin corresponding to that Address bit must be jumpered to ground. If a "1" is desired in any bit position, the corresponding jumper position is left open.

For example, to select address FD Hex, pin 2 is connected to ground pin 15. Pins 1, 3, 4, 5, 6, 7 and 8 are left open. To select address F6 Hex, pins 1 and 4 are connected to ground pins 16 and 13. Pins 2, 3, 5, 6, 7 and 8 are left open. FD is the IMSAI standard port address for floppy disks, and F6 is used for the Line Printer. Figure 1 depicts these connections.

DMA PRIORITY

When multiple DMA channels are used in an IMSAI 8080 System, they are usually serviced on a first-come, first-served basis. When coincident DMA requests occur, priority is resolved using a daisy chain technique. To implement this, the Priority Output, (PO), of one IFM Board is connected to the Priority Input, (PI), of the IFM

Figure 1

JUMPERS SHOWN SET FOR FD
 (IMSAI STANDARD ADDRESS FOR FLOPPY DISK)

JUMPERS SHOWN SET FOR F6
(IMSAI STAIIDARD ADDRESS FOR LINE PRINTER)

Board with the next lower priority. When using multiple IFM controllers, care must be taken when putting the SMPU into a Hold State for the duration of a block transfer of data, as all other controllers, regardless of priority, will be locked out for the duration of the transfer. Figure 2 depicts the DMA Priority connections for a Floppy Disk controller and a Line Printer controller.

EXTERNAL INTERFACE CONNECTIONS

All External Interface Connections are made via the 50 pin edge connector, J 2 , at the top of the IFM Board. Refer to Table 2 for a list of signals available and the corresponding pin assignments.

FIGURE 2. DMA Priority Set For: 1.Floppy Disk 2.Line Printer

IFM REV. 6
J2 Signal Definitions

J2 SIGNAL DEFINITIONS

PIN	SIGNAL	NAME	PIN	SIGNAL NAME
1	RESET		2	/E7
3	/RESET		4	/E6
5	$T \varnothing_{2}$		6	/E5
7	RDYIN		8	/E4
9	MA10		10	/E8
11	MA11		12	MA14
13	MA13		14	MA12
15	MA15		16	MA9
17	MA8		18	INTE
19	WAIT		20	SYNC
21	MEMRW		22	INT
23	NC		24	HOLD
25	-5V		26	/INTA
27	DMA15		28	/MEMR
29	NC		30	/MEMRW
31	DISBUS		32	PADDR
33	DBO		34.	MA7
35	DB1		36	MA6
37	DB2		38	MA5
39	DB3		40	MA4
41	DB4		42	MA3
43	DB5		44	MA2
45	DB6		46	MA1
47	DB7		48	MA0
49	+5V		50	+5V

TABLE 2. J2 SIGNAL DEFINITIONS

PROGRAMMING

The Control Program (Firmware) for the IFM Processor normally resides in the PROMs or ROMs at the Board locations AlO and All. Only the programming considerations peculiar to the IFM will be covered in this document. Programming of 8080 based systems is covered in detail in the Intel 8080 Microcomputer Systems User's Manual.

IFM I/O The IFM communicates with the SMPU via a DMA Channel and a Single Byte Command Command Port. As viewed from the IFM's CPU, all IFM Input/Output is Memory Mapped. (Table 3). Input and output instructions DB Hex and D3 Hex must not be used in the IFM's Firmware, or System malfunction will result.

COMMAND PORT As viewed from the SMPU, the Command Port is an isolated output port whose address can be selected on the IFM Board. The address may range from 0 to 255 Decimal. When the SMPU outputs a byte to the command Port, the IFM places the SMPU into a Hold State until it is ready to accept another command byte. This simplifies SMPU software requirementes, as no additional data transfer synchronization (e.g. status bit) is required. A sequence of commands may be programmed as an inline string of output instructions.

As viewed from the IFM CPU, the single byte command port consists of a memory mapped status input port (address 1800H), and a memory mapped data input port (address 1400H). When a byte has been output by the SMPU, bit 0 of the status input port goes high and remains high until the command byte is input by the IFM. Bits 1 through 7 of the status port are not used and their states are indeterminate.

DMA CHANNEL The DMA Channel normally accesses the lower 32 K bytes of the SMPU's memory by a virtual extension of the upper 32 K bytes of the IFM's memory. For example, an IFM memory write operation to IFM address 8100H will result in a DMA write operation into the SMPU memory address 0100 H . An IFM memory read operation from IFM address 92 FFH will result in a DMA read operation from the SMPU memory address 12 FFH .

The SMPU address is always the same as the IFM address, except for address bit 15. Bit 15 is normally forced to zero during the virtual memory extension as described. However, a peripheral board (such as the FIB or LIB) can force bit 15 to a one for a virtual extension of IFM memory space to the upper 32 K bytes of SMPU memory space.

EXTENDING THE HOLD STATE The DMA Channel is normally used for the high speed transfer of data between the SMPU and the IFM using the cycle stealing technique. The SMPU is placed in a Hold State only long enough to transfer one byte of data. Between transfers the SMPU functions normally and can continue executing its own programming.

A certain amount of overhead time is involved in getting the SMPU into and out of the HOLD. State. If desired, this overhead can be reduced while transferring long strings of data by placing the SMPU into a Hold State for the duration of the transfer. This is implemented by outputting a dummy command to the IFM after the DMA evolution has has begun. After the evolution, the dummy command is read by the IFM and the SMPU is released from holding. If the next desired command is known, it may be used in place of a dummy command. Note that once a command is output to the IFM command port, the SMPU remains in a Hold State until the IFM Processor reads the contents of the command port (1400H).

Since the DMA Channel is a virtual extension of the IFM's memory, it is possible for the IFM to execute program code stored in the SMPU's memory. Due to the overhead time involved, program execution will be slower. This technique can be used for firmware development, system troubleshooting, and special function routines which are not on the IFM PROMS.

TABLE 3. IFM MEMORY MAP

FLOPPY DISK SYSTEM

CONTROLLER
FIB

FLOPPY INTERFACE BOARD Functional Description

FUNCTIONAL DESCRIPTION

The Floppy Interface Board (FIB) is used in conjunction with an IFM board to form a complete floppy controller. The Floppy Interface Board references the Mother Board Connector only to connect to an interrupt line and derive its voltage and ground from the proper pins.

Every effort has been made to keep the design simple and straight forward to maximize the reliability and ease of maintenance. MSI and LSI were used where appropriate and discrete components are held to a minimum for greater circuit reliability and ease of assembly.

The interface board works on a memory mapped basis and an 8205 three to eight line decoder is used to generate the proper command signals for the interface logic. All connections to the data bus are driven with tri-state drivers and all signals to the disk drives are driven with open collector drivers capable of sinking $40 \mathrm{milli}-$ amps. All lines from the disk drives are terminated with a resistor divider which is designed to match the impedance of the cable so there is no ringing effect on the signals. Two hex latches (74174's) are used to control the status information for the disk drive. These latches are loaded on output commands from the IFM board. There are also 244 -pin, 8 bit shift registers used to accumulate the serial clock and data bits from the disk drives and to transmit them in a parallel mode to the microprocessor; or to receive a parallel load from the microprocessor and to transmit them serially to the disk. The write clock for the disk is derived by dividing down the 2 megahertz, phase 2 signal which comes from the MPU-A board using a 74LSI93 counting chip. Finally, the determination of when a byte has been assembled is done by using a 74 LS 193 counting chip to count the 8 bits.

Unregulated plus 8 volts and ground must be supplied to the bus. On board regulation is used to arrive at the power supply levels needed to run the chips. Integrated Circuit power regulators with overload protection are used. The board is supplied with ample bypass filtering using both disk ceramic and tantalum capacitors.

FLOPPY INTERFACE BOARD Functional Description

The board connector which plugs into the Mother Board is a 100 pin edge connector on a .125 inch centers, 50 pins on each side. There is also a 50 pin edge connector on the right top of the board which is used to interconnect with the IFM board via a cable. This connector is on $0.10^{\prime \prime}$ centers. There is also a 26 pin edge connector on the same centers which is used to connect the Floppy Interface Board with the floppy disk drive in a daisy chain manner. The cable used is a terminated ribbon cable with a ground on pin 1 . Overall board dimensions are $5^{\prime \prime} \times 10^{\prime \prime}$ using two sided glass reinforced epoxy laminated with plated feed through holes to eliminate the need for any circuit jumpers. The contact fingers are gold plated over nickle for reliable contact and long life. All other circuitry is tin-lead plated for better appearance and more reliable solder connections.

Power On reset is used on this board to clear the disk control registers whenever the power comes up to the floppy controller. This will inhibit any inadvertent damage or writing on diskettes during a power up sequence, (i.e., when the floppy controller has not had power to it but the disk drives have has power applied to them). The power on sequence is performed in the IFM board whenever a reset has occurred.

FIGURE 1
INTERNĀ工 ADDRESS DECODING

AIl major functions on the FIB board are controlled from the IFM processor via a memory-mapped I/O technique. Address decoding is achieved through the use of the 8205 in position C9:

The 8205 is enabled when MA15 is low and MAl4 is high. It may be disabled when. INTA goes low.

Once C9 is enabled, MA0 - MA2 are decoded to produce a one of eight select function. The function of each select line is given below.

> MAO - MA15 = 4000: SYNCH ON READ DATA

This command is used to tell the floppy interface to go into a synchronization mode. The interface will then issue a HOLD command to the microprocessor until it has shifted a clock pattern into the shift register which has bit 5 missing. Note that the input data to the shift register is complemented, so this actually looks like bit 5 of the 74198 is a one.

When this bit becomes a 1 , it says that the clock byte is missing a bit in this position. All missing clock patterns of significance in the 3740 have this bit as the first missing clock bit. Once this bit is detected, the microprocessor is allowed to read first the data and then the clock shift registers.

The firmware then compares them in order to determine whether or not this is the proper address and address and clock byte.

The read for this must be done with a 2 byte memory reference instruction to ensure the rapid timing between reading of the data byte and the clock byte (LHLD). This will result in the clock byte being read 2.5 microseconds after the data byte.

Since in a double density disk drive this would be longer than the next bit time, the clock register is inhibited from shifting during the time that we are waiting to read this clock byte. This is accomplished by pulling the mode control to 0 on the 74198.

MAO - MA15 = 4001: SYNCH READ CLOCK
This is the Synch Read Clock Command. This command, as mentioned above, should be generated by referencing a Sync Read Data address (4000) with a two byte instruction (LHLD). When this command is operational, it gates the clock shift register onto the data bus through the $8 T 98$ tri-state drivers. Note that inverting drivers are used because the clock and data registers both shift in the complement of the data.

MAO - MA15 = 4002: READ DATA REGISTER
MAO - MA15 = 4003: READ CLOCK REGISTER
These two commands operate in the same mode as the 4000 and 4001 commands with the following exception. When an input from the data register is to be accomplished, then the microprocessor must be held in a WAIT state until 8 bits have been assembled so that there is a complete byte.

This differs from the SYNCH READ CLOCK and SYNCH READ DATA commands where we are waiting to synch on a clock pattern. Once we have received the 8 bit byte, the data from the shift register is gated onto the data bus using the inverting tri-state drivers, and the microprocessor is taken out of the HOLD state.

Note that the single reference to the read data register will cause the data register to be transmitted. Only the read data operation may be used when attempting to read data from a floppy disk which has a bit time faster than 2.5 microseconds since, otherwise, the clock register will become out of synch.

MAO - MAl5 $=$ 4004: READ STATUS
This command causes the contents of the disk drive status to be gated into the microprocessor. The sector input pulse is input to the microprocessor even though it is not used elsewhere in the design. It could be used at some later time to initiate a firmware system which works with a hard sectored disk as opposed to the IBM electronically sectored disk.

MAO - MA15 = 4005: LOAD CONTROL 1
This command causes the content of the data bus to be transferred to the lower half of the floppy disk control register. The. gating of these signals can then be controlled by the microprocessor to select a disk drive, to load the head on that drive, and to indicate to that drive when it is above track 43.

MAO - MA15 = 4006: LOAD CONTROL 2
This command causes the contents of the data bus to be transferred to the upper half of the control register. It is used to initiate or generate seeks on the disk drive, to put the drive in the WRITE ENABLED mode, and to synch the PLO on the drive.

The command also sets a flip-flop which forces clock bits of all ones and data bits of all zeros to be written for one byte. This feature is used to initialize the WRITE logic when the WRITE ENABLE is first turned on. After this time, the controlling of logic is by the load data register command. The command is also used to clear the index pulse holding flip-flop whenever it is issued with DB07 a one.

The top two bits of this register are used to enhance the communication between the IFM and MPU memory. The firmware gets the value for this bit from the memory locations (bit 15) called out by the command strings and then forces bit 15 to be a one for internal operations so the DMA will function properly.

The second bit is used as an interrupt request bit and can be jumpered to any of the eight lines used as interrupt request inputs for the FIB. This bit is set whenever a command string execution has been completed (i.e., when the status byte value is modified from zero). It is cleared whenever a command is accepted from the MPU. Note that any command not defined is treated as a NOOP command and may be used to clear this bit.

MAO - MA15 = 4007: LOAD DATA REGISTER
Load Data Register commands will transfer the contents of the data bus to the parallel shift register. The clock register is also loaded on this command with a value of FF, EF, D 6 or C 7 for memory address bits 3 and 4 equal to $00,01,10$ or 11 respectively.

CONTROL OF IFM READY IINE

FIGURE 2
CONTROL OF IFM READY LINE

If a SYNCH READ DATA COMMAND (4000) is issued to the FIB board, the output of the AND gate at B2 - 6 will go high. This high level signal is inverted at A4 - 13, lowering the IFM READY line.

The IFM processor remains in a WAIT state until CLK SYNC appears high at C2 - 13. CLK SYNC goes high when a missing clock pulse is detected in bit position 5 of the clock shift register. This causes the output of the AND gate. B2 - 6 to fall and the READY line to rise.

If either a READ DATA REF (4002) or LD DATA REG (4007) command is issued to the FIB board, the output of the OR gate at A3 - 11 will go high. This gets inverted at A4 - 13, and the IFM READY line is lowered.

The IFM processor will remain in the WAIT state until the BYTE DONE signal appears high at C7-3. The BYTE DONE signal becomes active when an 8 bit byte has been assembled in the shift registers (for a read) or 8 bits have output (written) to the disk.

The appearance of an active BYTE DONE signal causes the output of the OR gate A3 - 11 to fall. After inversion at A4 - 13, the READY line is raised, allowing the IFM processor to enter the RUN state.

THE 74198

$C L K$	
INA	$Q A$
INB	$Q B$
$I N C$	$Q C$
$I N D$	$Q D$
$I N E$	$Q E$
$I N F$	$Q F$
$I N G$	$Q G$
$I N H$	$O H$
SRSI SO	SI

SO	SI	FUNCTION
1	1	PARALLEL LOAD OUTPUTS = PARALLEL INPUTS ON RISING EDGE OF CLOCK
1	0	SHIFT RIGHT ON RISING EDGE OF CLOCK $-Q_{n+1}=Q_{n} / Q_{A}=$ SRSI
0	0	OATA IS STABLE ATOUTPUTS OA $-O H$

FIGURE 3
THE 74198

The 74198 is a serial/parallel load shift register. This chip is used to assemble and transmit both the data and clock pulses used by the floppy disk. The functions used are shown in figure. 3.

CLOCK SHIFT REGISTER

FIGURE 4

The 74198 in position $B 8$ is used to output and input clock signals to or from the floppy disk.

READING THE CLOCK

A SYNC RD CLD (4001) command or a RD CLK (4003) command will output the 8 parallel bits of the 74198 at B8 onto the IFM Data Bus by driving the output of the AND gate at C8 - 6 low to enable the inverting drivers at B7 and B9.

NOTE: 8T98 inverting drivers are used since clock and data is input from the disk in inverted form.

Use of the SYNC RD CLK (4001) and RD CLK (4003) command assumes that an 8 bit word has been shifted into the clock shift register. These commands should only be used following a SYNC RD DATA command (4000) or RD DATA command (4002). To insure the proper timing of the read, only the LHLD instruction should be used to access the clock shift register.

SERIAL LOADING

The READ CLOCK line from the disk provides the serial input to the 74198 shift register. Clock data is input at the SRSI input to the 74198 and is shifted right on the positive edge of the shift clock.

WRITING CLOCKS

The shift register at B8 is also used in writing missing clock patterns to the disk. If a write to 4001, 4009, 4011 or 4019 occurs, one of four missing clock patterns is parallel loaded into the shift register.

A write to any one of these four addresses causes the So input of B8 to go high. When LOAD ENABLE goes high, the Sl input to B 8 also goes high, and the shift register is loaded from the parallel inputs. MA3 and MA4 are used in writing missing clock pulses in positions D3, D4 and D5.

Once the parallel clock data is loaded, it is written to the disk. The serial output appears at the output Q_{h} of $B 8$ and shifts right on the rising edge of the Shift Clock.

PARALLEL LOADING
If the WRITE ENABLE is set, the LD ENABLE signal will gate parallel data from the IFM Data Bus into the data shift register at A8.

Once the parallel data is loaded, it is written to the disk on the rising edge of the Shift Clock. Serial data output appears at Q_{h} of A8.

SERIAL LOADING
When the input $S I$ equals 0 , serial data from the floppy disk is input to the shift register in inverted form at the SRSI input of A8 on the rising edge of the Shift clock.

READING THE SHIFT REGISTER
If a SYNC RD DATA or READ DATA REG appears, the tri-state drivers at A7 and A9 are enabled. This allows the IFM processor to read the parallel outputs of the data shift register.

SYNCHRONIZATION

FIGURE 6
SYNCHRONIZATION

WRITE SYNCHRONIZATION

The ID DATA REG signal is used to load the data shift registers on a WRITE operation. The trailing edge of the LD DATA REG signal is used to fire the one-shot (B3) to clear the 4 bit counter (C4).

Count pulses are provided by the shift clock concurrent with clock and data pulses to/from the disk. At a count of seven, the LOAD ENABLE signal appears at the output of the AND gate C3 - 6 . If the WRITE ENABLE is set, the Sl Mode Control signal goes high to allow parallel loading of the data and clock shift registers at B8 and A8 once the BYTE DONE signal appears.

At the count of 8 , the Qd output is used to generate the BYTE DONE signal indicating that an 8 bit byte has been output from the clock and data shift registers to the floppy disk.

READ SYNCHRONIZATION

When the SYNCH RD DATA line goes low, the counter at C4 is held clear. Once the IFM processor recognizes the missing clock pattern, SYNCH RD DATA will go high to enable the counter to start the count. Data is synchronized at this time.

The $\overline{R D}$ DATA REG line goes low, the IFM processor waits for the BYTE DONE before reading the 8 bits of data from the shift registers. Once RD DATA REG goes high, the one-shot at B3 is fired to clear the counter C4, and the count repeats itself for the next 8 bits read from the disk.

CLOCK W CLOCK/ DATA W CLOCK GENERATION

Both Write clocks are generated using the 4 bit counter at C5 to divide down the $\varnothing 2$ clock. These two clocks are on opposite 2 microsecond clock intervals, and both clocks have a pulse width equal to the IFM $\varnothing 2$ clock pulse width (275ns).

If the WRITE ENABLE is not set, both clocks are disabled since the LD input to the counter goes to zero and all outputs $Q_{a}-Q_{d}$ go low.

FLOPPY DISK SYSTEM Controller -- FIB Theory of Operation

FIGURE 7
CLOCK W CLOCK/ DATA W CLOCK GENERATION

SHIFT CLOCK

FIGURE 8
SHIFT CLOCK

IMS ASSOCIATES INC.
ASSEMBLY DIAGRAM

ITEM
741500

74LSO2

74LSO4
74LS11

74LS08

7416
$74 L S 32$

74IS54

74LS74

74123

74174
74193

74198
8205
8798
Capacitor
Capacitor
Capacitor

IMSAI
PART \#
36-0740002

36-0740202

36-0740402

36-0741101

36-0740802

36-0741601

36-0743202

36-0745401

36-0747402

36-7412301

36-7417401
36-7419301

36-7419801

36-0820501
36-0089801
32-2010010
32-0256010
32-0247010
QUANT
1
1
2

1

DESCRIPTION/IDENTIFYING MARKS

Quad 2 Input NAND (Low Power Schottky)/ SN74LSOON

Quad 2 Input NOR (Low Power Schottky)/ SN74LSO2N

Hex Inverter (Low Power Schottky)/SN74LSO4N
Triple 3 Input AND (Low Power Schottky)/ SN74LSIIn

Quad 2 Input AND (Low Power Schottky)/ SN74LS08N

Hex Inverter Driver Open Collector/SN7416N
Quad 2 Input OR (Low Power Schottky)/ SN74LS32N

2-2-2-2 Input AND-OR Invert (Low Power Schottky)/SN74SL54N

Dual D Flip Flop Preset and Clear (Low Power Schottky)/SN74LS74N

Dual Monostable Multivibrator, Retriggerable with Clear/SN74123N

Hex D-Type Flip Flop with Clear/SN74174N
Synchronous Up/Down 4-Bit Binary Counter/ SN74193N

8-Bit Shift Register/SN74198N
High Speed Binary Decoder/8205
Hex Tri-State Buffer
. Iuf Disk Ceramic Capacitor
56pf Disk Ceramic Capacitor
47pf Disk Ceramic Capacitor

FIB REVISION 3 BLUE WIRE CHANGES

INVERTS INTERRUPT SIGNAL

- Cut trace to Interrupt jumper pads (from A5 pin 10).
- Connect A5-10 side of cut to C2 pin 1.
- Connect C2-2 to Interrupt jumper pads.

ASSEMBLY INSTRUCTIONS

1) Unpack your board and check all parts against the parts lists enclosed in the package.
2) If gold contacts on the edge connector appear to be tarnished, use pencil eraser to remove any oxidation. NOTE: Do not use Scotchbright or any abrasive material as it may remove the gold plating.

COMPONENT INSTALLATION

3) Insert and solder each of the ten $330 \mathrm{ohm} \frac{1}{4}$ watt resistors (orange/orange/brown) R1, R3, R5, R7, R9, R12, R14, R16, R18 and R20 as shown on the Assembly Diagram.
4) Insert and solder each of the ten $220 \mathrm{ohm} \frac{1}{4}$ watt resistors (red/red/brown) R2,R4, R6,R8, R10,R13, R15, R17, R19 and R21 as shown on the Assembly Diagram.
5) Insert and solder each of the two 20 K ohm $\frac{1}{4}$ watt resistors (red/black/orange) R11 and R22 as shown on the Assembly Diagram.
6) Insert and solder each of the two 1 K ohm $\frac{1}{4}$ watt resistors (brown/black/red) R23 and R25 as shown on the Assembly Diagram.

IC INSTALLATION
NOTE: All pin l's point towards the lower right hand corner of the board.
7) Insert and solder one 74 LS 74 at location A1.
8) Insert and solder one 74LS54 at location A2.
9) Insert and solder one 74LS32 at location A3.
10) Insert and solder each of the five 8 T 98 ICs at locations A4, A7, A9, B7. and B9.
11) Insert and solder each of the two 74174 ICs at locations A5 and A6.
12) Inṣert and solder each of the two 74198 ICs (24 pin ICs. NOTE: If purchasing sockets separately, insert and solder sockets first.) at locations A8 and B8.
13) Insert and solder the one 74LS00 IC at location BL.
14) Insert and solder each of the three 74LSO8. ICs at locations B2, B4 and C8.
15) Insert and solder the one 74123 IC at location $B 3$.
16) Insert and solder each of the two 7416 ICs at locations B5 and 86 .
17) Insert and solder each of the two 74 LSO 4 ICs at locations C2 and C6.
18) Insert and solder the one T4LSII IC at location C3.
19) Insert and solder each of the two 74193 ICs at locations C4 and c5.
20) Insert and solder one 74LS02 IC at location C7.
21). Insert and solder the one 8205 IC at location 69.

DISCRETE COMPONENT INSTALEATION
22) Insert and solder the seventeen . 01 uF capacitors (c5-c21) as shown on the Asserbly Diagran.
23) Insert and solder the two 33 uF tantalum capacitors (C3 and C4) as shown on the Assembly Diagram.
24) Insert and solder the one 47 pF capacitor (C1) as shown on the Assembiy Diagram.
25) Insert and solder the one 56pF capacitor (C22) as shown on the Assembly Diagram.

REGULATOR AND EEAT SINK INSTALLATION
26) Bend the leads of the 7805 regulator at 90° angles approximately $\frac{1}{4}$ " from the bottom edge of the regulator to facilitate insertion.
27) Insert the \#6 screw through the 7805 regulator and heat sink on the component side of the board and attach with the washer and nut on the solder side of the board. NOTE: Be sure to hold the neat sink in proper vertical position while tightening the screw in order to prevent shorting to adjacent traces. Finally, solder the 7805 regulator to the board as shown on the Assembly Diagram.

FLOPPY DISK SYSTEM
CONTROLLER
FIB
FIRMWARE

Copyright 1976 IMSAI Manufacturing Corporation 14860 Wicks Boulevard San Leandro, California 94577

The controller for the Floppy System is designed to make the operation as easy as possible for the end user. All power on initialization sequences and error recovery procedures are contained within the firmware in the floppy disk controller. Hence, if a hardware error is indicated by the floppy disk controller, it is an unrecoverable error and the user need..not have error recovery procedures in his/her software. Similarly, the floppy controller is designed to monitor drives going NOT READY and becoming READY again, and to insure that proper head position is performed on these drives.

The communication between the master MPU and the IFM uses an output instruction (to a port address which has been selected on the floppy disk controller board) for passing single byte commands to the controller. The floppy disk controller has a DMA access to the master microprocessor's memory for retrieving string commands and transferring data and status back to the MPU. The two types of commands, (i.e., the single byte command, and the data string comand) are described in more detail below.

The FIF board has provisions for using interrupts to assist the MPU program in determining when a command has been completed. The interrupt request line can be attached to any of the eight request lines for the PIB via a wired jumper. An interrupt request is generated whenever the processing of a command string is complete (i.e., the status byte is set non-zero). It is cleared whenever a command is accepted from the MPU via the output instruction. It should be noted that undefined commands are treated as NOT's and can be used to clear the interrupt request.

The master microprocessor is put into a wait state whenever it does an output instruction to the port of the floppy disk controller. It is held in this state until the floppy disk controller has taken the command from the master microprocessor and started processing it. The completion of an operation for single byte commands is signified by the IFM's ability to accept another command. The completion of a command string obtained from the MPU's memory is signified by the passing of a proper status word to the master microprocessor. Note that these comand strings must always be in RAM memory since part of the command string is a location for the IFM to transmit back the status of the last operation.

FIF/IFM Firmware Description
This description will be divided into three separate sections. The first section will describe the major storage areas and the use of each area during the routine. The second section will give an individual description of frequently called subroutines. The third section will consist of a straight-line description of the code in the order that it is normally executed.

Part I Description of the Major Storage Areas
This description will consist of given the label used for the storage area in the program and then describing the use of this storage area.

PBAS
32 bytes in length and is used to contain the pointers to the address in main memory for retrieving command strings. These pointers are originally set to dummy values contained within the firmware and can be modified by the main program as described in the Users Guide.

PTRK
1 byte. Contains the physical track number that we are presently working on.

LTRK
1 byte. Contains the logical track number we are presently working on. Note that for normal operation the logical track number and physical track number will coincide. However, for strict IBM compatibility in the media readable format the logical track and physical track may differ if there are defective tracks on the đisk.

SECT
1 byte. This byte contains the present sector we are working on, and has a value from 1 to 26 . During the Read All routine it is used to contain the delay time before we start reading.

BUFA
2 bytes. This is the address pointer to the location in main memory where the data to be written on the floppy is contained or where the data read from the floppy is to be stored.

I byte. This byte in the four MSBs contains the function we are presently executing. This function is a number in the range is from 0 to 5. The fact that the logical track differs from the physical track has been removed prior to storing the general function in this byte.

INTF
I byte. This is the interupt flag and controls whether the interupt routine returns a fatal error signifies that a drive is not ready. In all cases, except when we are testing for drive ready, the interupt flag has a value of 0 and this indicates that the drive was ready and has become not ready during an operation. This is a fatal error. In this case no retries are attempted.

RTRC
1 byte. This is the retry counter and is used for counting the number of attempts to do an operation when an error occurs. Ten attempts to retry an operation are made prior to telling the main program that an error has occurred.

STPT
2 bytes. This holds the address in main memory of the status byte. This byte is the second byte in all command strings.

HDFL
This byte contains the head flag to indicate to the fimmare whether or not the head on the selected disk drive is lowered. If it contains a value of 0 the head is raised. If it contains a value of 1 the head has been lowered. During the time after an operation has been completed and prior to lifting of the head a value of 2 is put in this location and then after one revolution the head is raised.

DRVO
1 byte. This byte contains the present location of the head for drive 0. The most significant bit is the software write protect flag for this drive. If it is a 1 , the drive is protected. A value is 7 FH for the track location indicates that the drive should be restored over track 0 prior to any operation being performed.

This value is put into this location upon power up to indicate that all drives should be restored. It is also inserted whenever a drive is detected to be off line and should be restored over track 0 for alignment when it comes on line. It is also set when a track address error has occurred and we must restore to track 0 to attempt to relocate the desired track.

DRVI 1 byte. Refer to DRVO
DRV2 1 byte. Refer to DRVO.
DRV3 1 byte. Refer to DRVO.
TDRV
1 byte. This byte contains, in the four least significant bits, a select bit for the drive we are about to operate on. It is loaded by the drive address routine, $D R A D$ and is references in the drive ready routine, DRDY when we are going to see if a selected drive is ready. The least significant bit corresponds to selecting drive 0 while bit 3 corresponds to selecting drive 3 and so forth.

SDRV
1 byte. This byte contains in the 4 least significant bits the select bit for the present drive.

DATB
133 bytes. This area is the data buffer location for the operating program. Note that the label is at the bottom of the stack so that data is pushed into this using the PUSH instruction during operation and popped off it during a write operation.

INTE
1 byte. This byte contains the present status of the interupt bit. STAK

26 bytes. This is the stack area used for the program execution.

Description of the Frequently Called Subroutines
The format for this section is to give the four-letter name for the subroutine followed by a description of the operations performed within the subroutine.

DRAD
This is the drive address select routine. It operates by looking at the four least significant bits of the B register to determine what drive, if any, is selected. For the drive that is selected it sets that bit in TDRV and puts the address of DRVO through DRV3. whichever is appropriate, in register pair H. Note that the routine can be called repetitively to perform operations on different artres. the corresponding bit in the B register. Upon entry, if no drive is selected it returns with the 0 flag (Z) set. If any drive is selected it returns with $Z=0$.

DRDY
This is the drive ready test routine. It tests the drive whose address is contained in register pair H to see if it is ready. Upon entry, it compares the value of TDRV and SDRV to see if the same drive is being reselected. If the same drive is being selected and the head on that drive is already lowered it does not reselect the head since this would be a duplicate operation. If either it is a different drive or the head has already been raised, the selected drive bit is set in control register 1 . The interupts are then enabled follow by a SUB A register instruction. If, on the following instruction the A register has a value of 1 this indicates that the selected drive was not ready and the restore flag is set in its status location. The routine exits with the $z=0$ if the selected drive is not ready.

If the selected drive is ready, the routine checks to see if the restore flag for this drive is set. If it is, it checks to see if this drive is over track 0. If the drive is over track 0 it executes a step out to insure that the drive goes off track 0 and then steps back in to realign the track 0 position.- If the drive is already off track 0 it attempts to move the head out until a track 0 indication occurs. If this indication does not occur within a maximum of 77 steps the drive is determined to be inoperable and a failure exit is taken. If the drive does go back over track 0 then the track address set to 0 and a successful exit is used.

LDHD

The load head routine is called when the formatter is going to perform the final step to reach the desired track. This routine loads the head and sets the greater than 43 bit if it is required.

CRCC Routine

This routine will compute the cyclic redundancy check bytes for data stored in a buffer location pointed to by register pair D, and for the number of bytes contained in register C. A complete description of the operation of this routine can be found in other INTEL publications.

HDRC
This routine computes the CRC for a address sector in the disk if calls the CRC routine with each byte as it would appear in the header sector and returns with the value of the CRC for this header in register pair H .

FLOPPY INTERFACE BOARD FIRMWARE Theory of Operation

SYNC

This is the major routine used to find the desired sector on a track. Upon entry it calls HDRC to compute the expected CRC for this track. It then sets up in the registers the values of the track, sector, clock and address mark patterns so it can compare all of these within the time limit for each byte.

After the initial set up, the PLO is sunk and the routine goes into a wait pattern waiting for a clock byte which has bit 5 missing. Once this byte has been found the clock pattern and data pattern are read into register pair H. The clock pattern is compared first to see if it is appropriate. If it is not, the routine recycles and tries sinking the PLO again to obtain a new clock pattern. Each time the routine attempts to resink it checks to see if an index pulse has occurred. If two successive index pulses occur, it determines that it cannot sink properly on this track and indicates an error.

If the clock byte is correct, it does an increment on the data byte. (Note that the data byte should initially have a value of FE Hex and therefore 2 increments will cause it to be 0.) Next, it reads and compares the track address byte. If it is not equal a branch is made to determine whether or not the data byte was correct. If the data byte was not correct then it was a false sink and we attempt to resink. If the data byte was correct, then the track address we read was incorrect and we have a track address error which will cause us to restore the drive and reattempt the operation.

If the track address compares another increment is done on the data byte. This should set the 0 flag if the data byte was correct. Following this, the next byte is read from the disk. This byte should contain 0. After this is read the jump on whether or not the data byte of the ID mark was correct is performed. If it is correct, the CRC value is popped after the stack and the sector number is read and compared from the disc.

If it compares correctly, the second zero byte is read and ORed with the first 0 byte to ensure that they are both zero.

Then the first CRC byte is read and compared, and finally, the second CRC byte is read and compared. If both of these bytes compare, 10 more bytes are read to locate the head one byte from where the write enable should be turned on, or 2 bytes prior to where the PLO should be resunk for reading the data section of this sector. Following the reading of these 10 bytes the routine is exited.

RTRY
This routine is used to increment the retry counter. If 10 attempts have already been made to perform this operation, then an error is
taken. If not, the routine exits to its calling location where another attempt is made to perform the operation.

Straight Line Description of the Program

Prior to starting the main description, the interrupt processing routine will be described. The interrupt instruction used in the FIF is a RST 7 which causes an interrupt to location 38 H . The interrupt routine looks at the intertupt flag. If it is 0 , a selected drive has become not ready, and a fatal error is determined. No retries are are attempted because the drive or controller is obviously malfunctioning. A return is made to the main program through the error exit.

If the interrupt flag is a 1 , it indicates that we are testing to see if the selected drive is ready, and the value of 1 is returned in register A to signify to the drive ready test routine that the selected drive is not ready.

On system power-up or RESET, the program sets the stack pointer and checks to see if drive \emptyset is ready. If it is ready, the program executes the bootstrap sequence as follows:

1. A JMP \varnothing instruction is DMA'd into system memory locations $\varnothing, 1$ and 2 , so that the front panel operations RESET, EXAMINE \varnothing, and RUN cause the system processor to enter on infinite wait loop.
2. A small program to read sector 1 of track \varnothing from drive \varnothing is DMA'd into system memory starting at location $8 \varnothing$.
3. The low byte of the address in the JMP instruction is changed to cause the system processor to jump into the bootstrap code above location $8 \emptyset$.

If the drive is not ready, or when the bootstrap sequence is complete, the default pointers are set up. Once this is done, the software protect flag is turned on for all drives. No operation need be performed on the individual drives since this will be done by the scan loop while waiting for commands from the main processor. The scan loop actually has 2 separate sections. The first section is used when the head is down on a selected drive. This inhibits selecting of other drives since the head would be raised. We stay in this loop until two revolutions have occurred or another command request is received from the main processor. If two index pulses have occurred, the head on the selected drive is raised and the flags are set appropriately.

If the head was not down, we go into the section of the scan loop where we look at each drive. If a drive has become ready and a restore flag is set on it, then the restore is done on that drive. If a drive is ready and has been ready, no action is performed. If a drive becomes not ready, the restore flag is set on it. These operations are performed by calling the DRAD and DRDY subroutines. In either of these loops a check is made to see if the main program is requesting an action. If it is, a jump is immediately taken to location ACTN where the type of action requested is determined. An action code or 0 calls for a command string to be read from main memory and processed. This operation will be described in the next section.

An action code of 1 is the setting of a new address in main memory for a pointer. The address of the pointer is formed in subroutine PADO and then RBYT called to read the next two bytes from main processor and to store them into the proper pointer location.

An action code of 2 calls for a restore to be executed on all drives whose bit is set in the four least significant bits. Note that the subroutine DRAD is used to set the addresses for each of the bits and determine when all drives have been processed. For each selected drive, the flag is set in its respective status byte. The restore actually will be done in the scan loop at a later time.

An action code of 3 calls for the software write protected to be set in for each drive whose bit is set in the four least significant bits. Again, the same routine DRAD is used to cycle through the four least significant bits.

An action code of 5 calls for the software write protect bit to be cleared for each drive which is selected in the four least significant bits. If the action code is greater than 5 , it is considered to be a NOP and the routine returns to the scan loop.

For an action code of 0 , the address of the string in main memory is determined. Then the string is analyzed and as a function of the operation code the parameters are checked to ensure they have the proper value. This is done in a straight line fashion and the routine ends up at ACTS with all of the parameters except for the separate logical track if it is a special IBM function. At this time, if it is a special IBM function, the logical track number is read and stored in LTRK after being parameter checked.

The drive is then checked to ensure that it is ready. If the drive is ready, and the write protect status is ok, the
drive is then positioned. Prior to positioning the drive, the retry counter and interrupt flags are set to 0 since any interrupt from now on will be a fatal error on the part of the drive. The difference between present track and the desired track is computed. If it is 0 , we go out to test if the head is loaded. If the head is already loaded, then we may continue without any time delay. If the head has not been loaded, we then come back to the section of the routine where the track step delay is performed. Just prior to the last step for the correct track, the head is loaded. The 16 millisecond delay is used.

If this operation requires steps in or out, register E is set with the direction bit and the head is revised.

The program then issues a track to track step each 6 milliseconds until there is 1 track to go. At this time, the load head routine is called and after the 6 millisecond step delay, we go through a 10 millisecond head settling delay. At the completion of the drive positioning, we are now ready to accomplish whatever operation was called for in the action code. This occurs at ACTB where the function in four MSBS of FUNC is interpieted and we jump to the proper routine. The separate routines for processing will be described in each of the following paragraphs.

The read all routine, RALI, starts by setting for 64 bytes to be read. Note that the clock and data values are saved for each byte and this is 128 bytes to be transferred. After the set up, the routine waits until a index pulse has occurred and then delays for the proper number of milliseconds (0 to 255). After the delay, the PLO is sunk and the routine reads the clock and data pattern from 64 successive bytes storing them in the data buffer area DATB. Then the data buffer area is moved to the proper location in main memory and the stack pointer is reset to it's proper value. The routine then goes to the scan loop to wait for another operation.

WRIT

The write routine is used to write a sector of data onto the disk. The 128 bytes are first retrieved from the main memory. After this, the CRC is computed. Note that 129 bytes are used to compute the CRC since the value of the data in the Data Address Mark is used as the first byte for the CRC computation. This is stored in memory so it is readily available using pop instructions during the execution of the actual write on the disk. The sector location routine SYNC is then called to get in the proper position on the disk for writing the data in this sector.

SYNC exits after reading 10 trailing 0 bytes following the address header. The setup is then done for the write routine and the write enable is turned on at approximately the end of the llth byte. At this time, the data loop starts by writing 6 bytes of zeros followed by the Data Address Mark, 128 bytes of data, the two CRC bytes and 1 trailing 0 byte. At this time, a successful write has been completed and the write enable is cleared. A normal return is taken.

WDSC

The next routine WDSC writes the Deleted Data Address Mark on an individual sector. It again starts by calling SYNC to find the proper sector on this track. Once SYNC exits, the set up is done in the registers to perform the write. A delay is executed prior to setting the write enable. This ensures that the llth byte after the header will pass prior to the write enable being set. Once write enable is set, 6 bytes of zeros are written followed by the Deleted Data Address Mark and a trailing zero byte. At the completion of this byte, the write enable is cleared and a successful return is taken.

Read Routine
This routine is used both for the check read function and the read function. The difference being that after the data is read and the CRC is checked, for a Check Read the data is not moved back to the main memory.

The routine starts by calling the SYNC to position to the proper sector. After returning from SYNC, the parameters for checking the data address mark are put into the registers. A delay is then executed to ensure that the head has passed the area where the write current is turned on during a write operation before syncing the PLO. Then the PLO is sunk and the read routine goes into the wait mode waiting for the next byte with a missing clock pulse to occur. When this byte is received, both the clock and data from the byte are read into register pair H. First the clock byte is compared to ensure that it has the proper value (Hex C7). If this value is proper, the data byte is compared. If the data byte does not compare with the value for a normal sector (FEH), a branch is made to check to see if this is a Deleted Data sector (FBH). If a Deleted Data Address Mark has been found, there is a Deleted data read error and no retries are attempted, and an error exit is immediately taken. If it is neither a Data nor a Deleted Data Address Mark, it is an error and a retry is attempted.

After the data address mark has been successfully read, the routine reads 130 bytes. The first 128 of these are data and the last two are the CRC bytes. The interrupt is disabled after he CRC bytes. The CRC is then checked, a byte at a time. Note that the data pattern from the Data Address Mark is the first byte processed by the CRC routine. The 130 bytes are then processed and the result should be a 0 CRC value, if a proper read has been performed. If not, the CRC error is set and a retry attempt is made. If all the data is correct, the value in FUNC is checked to see if it is a check read or a read. If the function is a read, a jump is made to return the data to the main memory. If it is a check read, a normal return is made.

FRMT

This is the format routine which writes all the gaps and index marks on a track for later use by the read and write routines. Due to the time constraints during writing, the set up must be made for all variable parameters prior to initiating the formatting of a track. Hence, upon entry the format routine calculates the CRC value for each header for each sector to be written. This is done using the routine $H D R C$ and the resulting values are stored in the data buffer area. Note that the CRC value for the data sectors is identical for all 26 sectors since they all have the same address mark, followed by 128 bytes of 0 . Hence, this CRC is used as constant. Once the header CRC's have been computed, the routine does the set up for starting a write. Then it waits for the index mark at which time it is to start writing.

At this time, it sets the write enable and writes the last 46 bytes of GAP IV. Note that whenever a gap is written in this routine, the counter is always set to value one less than the size of the gap and then the final byte is written. The reason for this is to permit the maximum set up time for writing the next byte which is always a special clock pattern byte.

A sector consists of first writing GAP I which is 32 bytes in length. Note that in this case the counter is set to 30 since a single trailing 0 byte is written after the CRC value at the end of each sector. In the case of the first GAP I (prior to sector 1), the gap is only 31 bytes in length.

After writing GAP I, the Index Address Mark is written followed by the track number, a zero byte, the sector (contained in register B throughout the routine), another

FLOPPY INTERFACE BOARD FIRMWARE
Theory of Operation
zero byte, followed by the 2 CRC bytes (which have previously been stored in a data area). This is followed by GAP II which is 17 bytes in length. Hence, the counter is set to a value of 16 . The end of GAP II is followed by the Data Address Mark and 128 bytes of zeros (the data field). The two CRC bytes, which are common for all data sectors, are then written followed by a trailing zero byte.

The sector number is checked to see if the format for 26 sectors has been written If not, a return is made to write the next sector. If the 26 sectors have been written, then the first section of GAP IV is written. This consists fo writing 0^{\prime} 's until the index pulse occurs. At this time the write enable is cleared and a successful return to the main routine is taken.

0038			ORG	38 H	
0038	3A2708	INTR:	LDA	INTF	
0038	87		ORA	A	
003 C	CO		RNZ		
0030	0E91		MVI	C, 91 H	
003 F	C38302		UMP	AERX	
		; SYST	4 BOOT	CODE	
0042	21	SYSCM:	DB	21 H	;READ SECTOR COMMAND
0043	00	STATS:	$D B$	OOH	; STATUS BYTE
0044	00		DB	OOH	;HI BYTE OF TRACK \#
0045	00		DB	0 OH	; LO BYTE OF TRACK \#
0046	01		DB.	01H	;SECTOR \#
0047	0000		DW	0000 H	; ADDRESS OF BUFFER
0049	97	START:	SUB	A	;MAKE ZERO
004 A	328100		STA	SYSTA	;RESET STATUS BYTE
004 D	D3FD		OUT	OFDH	;EXECUTE POINTER ZERO
004 F	3A8100	STAR 0:	LDA	SYSTA	;GET STATUS BYTE
0052	B 7		ORA	A	; IS IT 0?
0053	CA8D00		$J Z$	SYSTO	; LOOP AS LONG AS IT IS
0056	FEO1		$C P I$	1	; STATUS OKAY?
0058	CA0000		JZ	0	; JUMP INTO BOOTSTRAP IF SO
0058	2 F		CMA		;PUT ERROR CODE IN LIGHTS.
005 C	D3FF	-	OUT	OFFH	
005E	C38700	-	JMP	SYSTR	; TRY TO BOOT AGAIN
$001 F$	$=$;	EQU	S-SYSCM	
0081	$=$	SYSTA	EQU	STATS-S	SCM +80 O
0087	$=$	SYSTR	EQU	START-SY	SCM +80 H
008 D	$=$	SYSTO	EQU	STARO-S	$5 \mathrm{CM}+80 \mathrm{H}$
		; DEFA	T POIN	NTERS	
0061	8000	; $E F P$:	DW	00080 H	
0063	0010		DW	01000 H	
0065	0020		DW	02000 H	
0067	0030		DW	03000 H	
0069	0040		DW	04000 H	
006B	0050		DW	05000 H	
0060	0060		DW	06000 H	
006 F	0070		DW	07000 H	
0071	0080		DW	08000 H	
0073	0090		DW	09000 H	
0075	OOAO		DW	OAOOOH	
0077	OOBO		DW	08000 H	
0079	$00 C 0$		DW	0 COOOH	
0078	0000		DW	ODOOOH	
0070	OOEO		DW	OEOOOH	
007 F	OOFO		DW	OFOOOH	
		$; \text { SCAN }$	LOOP HEA	EADER	
0081	210008	SCLPH:	LXI	H, PBAS	; SET DEFAULT POINTERS...
0084	116100		LXI	D, DEFP	
0087	OE20		MV I	C, 32	
0089	CD9103		CALL	DMOV	

0104 CA4 201
0107 C6FO
0109 CA4701
010 C C 3 A200
010 F CD2801
0112 CD1C01
011523
0116 CD1C01
0119 C3A200
011 C 3A0018
$011 F 1 F$
0120 D21C01
01233 A0014
012677
0127 C 9
0128210008
012B 78
012C E60F
012 E 07
012 F 4 F
01300600
013209
$0133 \mathrm{C9}$
0134 OE7F
0136 CDEDO2
0139 CAA 200
$013 C 7 E$
0130 E1
013 E 77
013 F C33601
0142 OE80
0144 C33601
0147 CDBDO2
014 A CAA 200
014 D 7 E
$014 E$ E67F
015077
0151 C34701
0154 CD2801
01574ε
015823
015966
015A 69
015B 23
015C 222908
015 F 28
0160 CD9A03
0163 OEC1
016546
016623
0167 3E00
016986
016A C28302
016 D 23
016 E 86
016 F C27F02
017223
0173 EB

	JZ	ACT4	; SOFTWARE WRITE PROTECT
	ADI	OFOH	
	$J Z$	ACT5	; SOFTWARE WRITE ENABLE
	JMP	SCLP	;NOP FUNCTION
ACT2:	CALL	PADO	; POINTER ADDRESS
	CALL	RBYT	; LSB OF POINTER ADDRESS
	INX	H	
	CALL	RBYT	;MSB
	JMP	SCLP	
RBYT:	LDA	1800 H	; WAIT
	RAR		
	UNC	RBYT	
	LDA	1400 H	; DATA
	MOV	M, A.	; SAVE
	RET		
PADD:	LXI	H, PBAS	;BASE ADDRESS
	MOV	A, B	
	AN I	OFH	
	RLC		
	MOV	C, A	
	MVI	B, 0	
	DAD	B	-
	RET		
ACT3:	MVI	C, 7FH	; RESTORE FLAG
	CALL	DRAD	;GET DRIVE ADORESS
	JZ	SCLP	
	MOV	A, M	
	ORA	C	;SET NEW STATUS
	MOV	M, A	
	JMP	$A C T 3+2$;PROTECT INDICATOR
ACT4:	MVI	C, 80 H	
	JMP	AC T3+2	;PROTECT INDICATOR
ACT5:	CALL	DRAD	
	JZ	SCLP	
	MOV	A, M	
	AN I	7FH	; CLEAR INDICATOR
	MOV	M, A	
	JMP	ACT5	
ACT1:	CALL	PADD	
	MOV	C, M	; CONVERT TO TRUE ADDRESS
	INX	H	
	MOV	H, M	
	MOV	L, C	;SECOND EYTE ;SAVE STATUS BYTE ADDRESS...
	INX	H	
	SHLD	STPT	
	DCX	H	
	CALL	FADD	; take care of msb
	MVI	C, OC1H	; SET FOR COMMAND STRING ERROR
	MOV	B, M	; COMMAND
	INX	H	
	MVI	A, 0	
	ADD	M	
	JNZ	AERX	; STATUS byte NOT ZERO ;TRACK MSB MUST be ZERO
	INX	H	
	ADD	M	
	JNZ	AERX-4	
	INX	H	
	XCHG		

;RESTORE FLAG
;GET DRIVE ADDRESS
;SET NEW STATUS

```
;PROTECT INDICATOR
```

; CLEAR INDICATOR
; CONVERT TO TRUE ADDRESS
;SECOND EYTE
;SAVE STATUS BYTE ADDRESS...
; TAKE CARE OF MSB
; SET FOR COMMAND STRING ERROR ; COMMAND

```
;STATUS bYTE NOT ZERO
;TRACK MSB MUST BE ZERO
```

0174 CDBDO2
0177 CA8202
17 A CDBDO2
17D C28102
0180 1A
018113
0182 FE4D
0184 D27F02
0187322008
018A 322108
018D 78
018 E E6FO
0190 CAAOO2
0193 FEA1
0195 D28002
0198 FE60
019A DAA201
019 C CAAO
019 F CA8002
01 A 2322508
01 A5 FE30
0 LA7 CACAOI
$01 A A 1 A$
$01 A B 13$
$01 A C$ B7
$01 A D$ CA7E0 2
01 E 0 FE 1 B
1B2 D27E02
1 185 322208
0188 3A2508
$018 B$ FE21
$01 B D$ D2CA01
$01 C 0$ 1A
$01 C 1322308$
$01 C 413$
01 C 5 1A
010613
$01 C 7322408$
01CA 78
01 CB FEGF
$01 C D$ DADF01
0100 1A
$01 D 1$ B7
01 D C27C02
010513
0106 1A
0107 FE40
0109 D27C02
$010 C 322108$
$01 D F$ OEA1
01E1 CDE302
01E4 C28302
$01 E 778$
1E8 E610
iea Caf901
OLED 3A0440
$01 F 0$ IF
O1FI D28202

CALL DRAD
JZ AERX-1 ;NO DRIVE SELECTED
CALL DRAD
JNZ AERX-2 ;MORE THAN ONE
LDAX D
INX D
CPI 77
JNC AERX-4
STA PTRK ;SAVE
STA LTRK
MOV A,B
ANI $O F O H$
JZ RDAL
CPI 0A1H
JNC AERX-3 ; ILLEGAL TOO LARGE
CPI 60H
JC $\quad \$+8$
ADI OAOH
JZ AERX-3
STA FUNC ;SAVE COMMAND
CPI 30 H
JZ ACT6
LDAX D
INX D
ORA A
JZ AERX-5
CPI 27
UNC AERX-5
STA SECT
LDA FUNC
CPI 21 H
JNC ACT6
ACT7:
LDAX
STA buFA
INX D
LDAX D
INX D
STA BUFA+1
ACT6: MOV A,B
CPI 6 FH
JC ACTQ
LDAX D
ORA A
JNZ AERX-7
INX D
LDAX D
CPI 77
JNC AERX-7
STA LTRK ; SAVE IT
ACTQ: MVI C, OAIH ;SET DRIVE TEST ERROR
CALL DRDY ;SEE IF DRIVE READY
JNZ AERX
MOV A,B
ANI 10 H
JZ ACT8

LDA 4004 H ;YES, CHECK HARDWARE PROTECT
;ALL PROCESSED, SEE IF IbM SPECIAL ; YES, GET LOGICAL TRACK
; OKAY, SEE IF WRITE

01F4 7E
$01 F 517$
$01 F 6$ DA8102
$01 F 997$
01FA 322808
OLFD 322708
$02007 E$
0201 E67F
020357
$02047 E$
0205 E680
020777
0208 3A2008
020 B 86
020 C 77
02003 A2008
021092
0211 1E00
021357
0214 CAAB02
0217 F22302
021 A 1E08
021 C 97
021 D 92
$021 E 57$
021F 3 A3108
0222320540
022500
022600
022715
0228 CC6A03
022 B 7 B
022 C 320640
022 F C604
0231320640
0234 E508
0236 C600
0238320640
0238 FB
023 C CD8303
023 F CD8303
0242 CD8303
024515
0246 F22802
02491605
024 BCO CO303
024 E 15
024 F C24B02

0252 F 3
02533 A 2508
$0256216 A 02$
0259 OF
025 A OF
0258 OF

MOV A,M
JC AERX-2
ACT8: SUB A
STA RTRC
STA INTF
ACTD: MOV A,M
ANI 7 FH
MOV D,A
MOV A,M
ANI 80H
MOV M, A
LDA PTRK
ADD M
MOV M,A
LDA PTRK
SUB D
MVI E, 0 ;SET FOR STEP IN
MOV D,A
JZ TSTH
JP ACT9-4
MVI E, 8
SUB A
SUB D
MOV D,A
LDA SDRV ;RAISE HEAD...
STA $\quad 4005 \mathrm{H}$
NOP ;DELAY...
NOP
ACT9:
DCR D
CZ LDHD
MOV A,E
STA 4006 H
ADI 4
STA 4006 H
ANI 8
ADI 0
STA 4006 H
$A C T P$
EI
CALL TMLD
CALL TMLD
CALL TMLD
DCR D
UP ACT9+1
MVI D, 5
CALL TMLD
DCR D
JNZ \$-4
; HEAD IS NOW LOADED, WEIRE ON RIGHT TRACK ; AND WE'RE READY TO TAKE ACTION
; RECALL THAT POINTER TO STATUS LOCATION IS SAVED
; IN STPT, FUNCTION IS IN 4 MSB OF FUNC
ACTB: DI ;DISABLE INTERRUPT UNTIL REQUIRED
LDA FUNC
LXI H, JMPT ;BASE OF TABLE
RRC
RRC
RRC
;TEST SOFTWARE PROTECT
;YES
;SET PROCESSING FLAGS
; CLEAR RETRY COUNTER
;SET INTERRUPT FLAG
;NOW POSITION DRIVE
;GET PRESENT TRACK ; SAVE STATUS OF PROTECT
;SEEK NEW TRACK
;GET DIFFERENCE ; SET FOR STEP IN
; ALREADY ON TRACK
; STEP OUT
; TEST FOR TIME TO LOAD HEAD
; LOAD STEP REGISTER
;NOW SET STEP BIT
; CLEAR STEP BIT
; INTERRUPT IF DRIVE GOES NOT READY
;WAIT 6 MILLISECONDS
; SEE IF MORE REQUIRED
;WAIT 10 MILLISECONDS FOR HEAD

02 C 7	C2DB02
02 CA	3E02
02 CC	23
02 CD	A 0
02 CE	C2DB02
02 Dl	3 E 04
0203	23
0204	A 0
0205	C20802
02 D 8	3 E08
02 DA	23
0208	323008
02 DE	2 F
02 DF	A 0
02 E 0	47
02 El	3 C
02 E 2	C 9

02 E 3 3EO1
$02 E 5322708$
02 E 8 3A3008
02EB 57
02 EC 3A3108
02 EF 92
02 FO C2FA02
02 F 3 3A2B08
02 F 6 B7
02F7C20403
02 FA 97
02FB 322 B08
$02 F E 3 A 3008$
0301320540
0304 FB
030597
0306 F3
0307 B7
0308 C 24003
030 BA 3008
030 E 323108
0311 7E
0312 E67F
0314 FETF
0316 C23E03
0319 3A0440
031 C E604
$031 E$ C44B03
0321 3A0440
0324 E604
0326 CO
0327 164D
0329 CD4F03
032 C 3 A 0440
032 F E604
0331 C23A03
033415
$0335 \subset 22903$
033814

JNZ DRAI
MVI A,2 ;1?
INX H
ANA B
JNZ DRA1
MVI A,4 ;2?
INX H
ANA B
JNZ DRAI
MVI A, 8 ;MUST BE 3
INX H
DRAI: STA TDRV ;SAVE SELECT BIT
CMA ;CLEAR THIS BIT
ANA B
MOV B,A
INR A
RET
; test drive ready. return non-zero flag if not ready.
; IF READY, PERFORM RESTORE IF FLAG SET (DRIVE TRACK = 7F).
DRDY: MVI A,1 ;SEE IF SELECTED
STA INTF ;DRIVE IS READY
LDA TDRV ;SELECT DRIVE AND
MOV D,A ;SEE IF SAME AS LAST
LDA SDRV
SUB D
UNZ DRD6
LDA HDFL ; SAME SEE IF HEAD DOWN
ORA A
JNZ DRD5
ORD6: SUB A
STA HDFL
LDA TDRV
STA 4005 H
DRD5: EI
SUB A
A ; IF DRIVE NOT READY, INTERRUPT ; OCCURS AND RETURNS A 1 IN A
ORA A
UNZ DRDI
LDA TDRV ; OKAY, SAVE DRIVE 8 IT
STA SDRV
MOV A,M
ANI 7 FH
CPI 7FH
JNZ DRD2
LDA 4004 H
ANI 4
CNZ STIN
LDA 4004 H
ANI 4
RNZ ;RETURN DRIVE NO GOOD
MVI D,77
DRD3: CALL STOU
; SET COUNT
; STEP OUT
LDA 4004 H
ANI 4
JNZ DRD4
DCR D
JNZ DRD3
INR D ;SET NON-ZERO FLAG
; THERE?
;NO, MAX TRIES?

0307	0E40	RALL:	MVI	C, 64	; BYTE COUNTER
0309	3E80		MVI	A, 80 H	; INHIBIT INDEX INTERRUPT
(${ }^{\text {a }}$ DB	320640		STA	4006 H	
Y)	318708		LXI	SP, DATB +1	;5ET DATA AREA
03 E 1	FB		EI		
03 E 2	3 A0440	RALI:	LDA	4004 H	; WAIT FOR INDEX
03 E 5	E602		AN I	2	
03 E 7	CAE203		JZ	RAL1	
03 EA	3A2208		LDA	SECT	
0 3ED	FE00		CPI	0	
03 EF	cafa0 3		UZ	RAL2	
03 F 2	57		MOV	D, A	
03 F 3	CD8A03		CALL	MLDL	
$03 F 6$	15		DCR	D	
03 F 7	C2F303		JNZ	\$-4	
03 FA	3E01	RAL2:	MVI	A, 1	;SYNC PLO
03 FC	320640		STA	4006 H	
03 FF	97		SUB	A	
0400	C600		ADI	0	;DELAY 12 MICROSECONDS
0402	C600		AD I	0	
0404	320640		STA	4006 H	
0407	2A0240	RAL4:	LHLD	4002 H	;GET 64 BYTES WORTH
040A	E 5		PUSH	H	
040 B	OD		DCR	C	
040 C	C20704		JNZ	RAL4	
040 F	2A2308	RAL7:	LHLD	BUFA	;MOVE TO MAIN MEMORY
0412	CD9A03		CALL	FADD	
(${ }^{4}+15$	118608		LXI	D, DATB	
(3) 18	OE80		MVI	C, 128	
041 A	1A	RAL5:	LDAX	D	
041 B	1 B		DCX	D	
041 C	77		MOV	M, A	
0410	23		INX	H	
041 E	OD		DCR	C	
041 F	C21A04		JNZ	RAL5	
0422	2A2908	RAL6:	LHLD	STPT	;SUCCESSFUL RETURN
0425	CD9A03		CALL	FADD	
0428	F3		DI		
0429	34		INR	M	
042A	3E10		MVI	A, 10 H	; SET INTERRUPT FLAG
042C	320640		STA	4006 H	
042 F	322608		STA	INTE	;and save the set value
0432	310009		LXI	SP, STAK	;RESET STACK POINTER
0435	C3A200		JMP	SCLP	;WAIT FOR MORE
		; ROUTINE TO		SYNC ON STA	RT OF SECTOR
		; EXITS	AFTER	TEN BYTES	OF ZEROES FOLLOWING HEADER
0438	CD4E05	SYNC:	CALL	HDRC	; COMPUTE CRC FOR HEADER
0438	E 5		PUSH	H	; SAVE FOR LATER
043 C	97	SYN2:	SUB	A	; CLEAR Index counter
0430	322608		STA	INTE	
0440	110240		LXI	D, 4002 H	;REGISTER ADDRESS
0443	3A2108		LDA	LTRK	;SET FOR FAST CHECKING
0446	4F		MOV	C, A	
P 447	3A2208		LDA	SECT	
1-44A	47		MOV	B, A	
0448	$31 F C 08$		LXI	SP, STAK-4	; WHERE CRC IS STORED
044 E	3A0440		LDA	4004 H	; TEST FOR INDEX
0451	E602		AN I	2	

0453 CA6F04
0456 3E80
0458320640
045 B 3A2608
045 E 3 C
045 F 322608
0462 FEOS
0464 C26F04
0467 OE93
0469 CDE 205
046 C C33C04
$046 \mathrm{~F} 3 E 01$
0471320640
047497
0475 E3
0475 E3
0477 C600
0479320640
047 C FB
0470 3EC7
047 F 2 A 0040
0482 BC
0483 C24004
0486 2C
0487 1A
048891
0489 C2B404
048 C 2C
0480 EB
048 E 4 E
048F C24004
0492 D1
0493 7E
049490
0495 C24004
049879
049986
049A OE95
049 C C26904
049 F 7 E
04 A 092
04 Al C2A604
04 A 47 B
04 A 596
$04 A 6$ OE94
04 A 8 C26904
04 AB 7 E
$04 A C$ 0E09
04AE 7E
04AF OD
$04 B 0$ C2AE04
0483 C 9
0484 2C
$0485 \quad C 24004$
0488 F3
0489 3A3108
$04 B C 47$
04BD 310009
;WAIT FOR CHARACTER
LHLD 4000H
CMP H
JNZ SYN2+4
INR L
LDAX D
SUB
JNZ SYNS
INR L
XCHG
MOV C,M ;GET ZERO BYTE
UNZ SYN2+4 ;JMP IF DATA BYTE NOT CORRECT
POP D
MOV A,M
SUB B
UNZ SYN2+4
MOV A,C
ORA M
MVI C,95H
JNZ SYN4
MOV A,M
SUB D
JNZ \$+5
MOV A,E
SUB M
MVI C,94H
UNZ SYN4 ;JUMP ON ERROR
MOV A,M ;OKAY, WAIT TEN BYTES
MVI C,9
MOV A,M
DCR C
JNZ \$-2
SYN3: }\begin{array}{lll}{\mathrm{ INR L}}\&{L}
{}\&{JNZ}\&{\mathrm{ SYN2+4}}
SYN3: }\begin{array}{lll}{\mathrm{ INR L}}
{}\&{\mathrm{ JNZ SYN2+4}}
DI
LDA SDRV
MOV B,A
LXI SP,STAK ;CORRECT SP
;RETURN OKAY
;SEE IF DATA BYTE CORRECT
;YES, THERE IS TRACK ADORESS ERROR
;SET DRIVE FOR RESTORE
;LAST ZERO EYTE
; JUMP ON FORMAT ERROR
;CHECK CRC BYTE 2
;CLOCK PATTERN CHECK
;DATA SHOULD BE FC
;GET TRACK
;NOT SAME - WRONG TRACK?
;COMPLETE DATA BYTE CHECK
;GET CRC BYTES
;GET SECTOR
;CORRECT?

```
```

```
;CLEAR IT
```

```
;CLEAR IT
;YES, SEE IF SECOND
;YES, SEE IF SECOND
;SECOND SET ERROR
;SECOND SET ERROR
;SECOND SET ERROR
;SECOND SET ERROR
;RETURN SAYS TRY AGAIN
;RETURN SAYS TRY AGAIN
;SYNC PLO
```

;SYNC PLO

```

MVI A, 80 H
STA 4006 H
LDA INTE
INR A
STA INTE
CPI 3
JNZ SYN1
\(\begin{array}{ll}\text { MVI C,93H } & \text {;SECOND SET ERROR } \\ \text { CALL RTRY } & \text {;SEE IF RETRY COUNT EXPIRED }\end{array}\)
JMP SYN2
MVI A, 1
STA 4006 H
SUB A
XTHL
XTHL
ADI 0
STA 4006 H
EI
MVI A,0C7H
; WAIT FOR CHARACTER
LHLD 4000 H
CMP H
JNZ SYN2+4
INR L
LDAX D
\(\begin{array}{ll}\text { UNZ } \\ \text { INR } & \text { SY }\end{array}\)
XCHG
\(\begin{array}{ll}\text { MOV } & \text { C,M M } \\ \text { JNZ } & \text { SYN } 2+4\end{array}\)
POP D
\(\begin{array}{ll}A, M & \text { GET SECTOR } \\ B & \text { CORRECT? }\end{array}\)
; CORRECT?
```

;YES

```
;YES
;CRC BYTE I
;CRC BYTE I
;CHECK IT
```

;CHECK IT

```

04 C0 CDBD02
04 C 3 3E80 24C5 A6
4C6 C67F
04 C 877
04 C9 OE92
04 CB CDE 205
04 CE CDE302
\(04 D 1\) CAOOO2
0404 OE91
0406 C38302
0409 2A2308
040 C CD9A03
04DF 113208
\(04 E 2\) D 5
\(04 E 3\) EB
\(04 E 436 F B\)
04 E6 23
\(04 E 7\) OE80
\(04 E 9\) CD9103
\(04 E C\) D 1
OUED OE8 81
04 EF CDA703
\(04 F 2\) 7C
\(04 F 312\)
\(04 F 413\)
\(04 F 570\)
4F6 12
4F7 13
\(04 F 897\)
04 F9 12
04FA CD3804
04FD 210740
0500014205
0503313308
050601
0507 3E02
0509320640
050C 97
050005
050E 77
050 F C 20005
0512 3EFB
\(0514321 F 40\)
0517 C31C05
051A 72
051 BD
051 C 0 D
051073
\(051 E\) C21A05
052173
052297
8523320640
526 C32204
0529 CD3804
052 C 210740

CALL DRAD
MVI A, 80H
ANA M
ADI 7 FH
MOV M, A
MVI \(C, 92 \mathrm{H}\);SEE IF RETRY DONE
CALL RTRY
CALL DRDY ;OKAY, POSITION DRIVE AGAIN
\(J Z\) ACTD ;OVER O THEN GO AGAIN
MVI \(C, 91 H\);DRIVE INOPERABLE
JMP AERX
; ROUTINE TO WRITE A DATA BLOCK
WRIT: LHLD BUFA ;FIRST GET DATA
CALL FADO
LXI D, DATB-132
PUSH D
XCHG
MVI M, OFBH ;DATA HEADER FOR CRC
\(\begin{array}{ll}\text { INX } & H \\ \text { MVI } & C, 128\end{array}\)
CALL DMOV
POP D ;GET DATA ADDRESS AGAIN
MVI C, 129
CALL CRCC
MOV A,H ; SAVE IT
STAX D
INX D
MOV A,L
STAX D
INX D
SUB A ;TRAILING ZERO
STAX D
CALL SYNC ;FIND PROPER SECTOR
LXI H, 4007 H ; SET WRITE ADDRESS
LXI B,542H ;SET COUNTERS
LXI SP,DATB-131
POP D ;GET FIRST DATA BYTES
MVI A, 2 ; SET WRITE ENABLE
STA 4006 H
SUB A ;WRITE ZERO EYTES
DCR B
MOV M, A
JNZ \(\$-2\)
MVI A, OFBH ;WRITE DATA INDEX MARK
STA 401 FH
JMP \(\$+5\);START DATA LOOP
WRT2:
MOV \(M, D\)
POP D ;GET NEXT TWO BYTES OF DATA
DCR C ;SEE IF DONE
MOV M,E ;WRITE DATA BYTE
JNZ WRT2
MOV M, E WAIT FOR ZERO BYTE
SUB A ;CLEAR WRITE ENABLE
STA 4006 H
JMP RAL6 ;SUCCESSFUL RETURN
; ROUTINE TO WRITE DELETED DATA ADORESS MARK
WDSC: CALL SYNC ;FIND SECTOR
LXI H,4007H ;DATA WRITE REGISTER
\begin{tabular}{|c|c|c|c|c|c|}
\hline 052 F & 010105 & & LXI & B,501H & ; SET COUNTERS \\
\hline 0532 & 3 C & & INR & A & ; Equalize time WIth Write \\
\hline 0533 & 3 C & & INR & A & \\
\hline 0534 & 3 C & & INR & A & \\
\hline 0535 & 3 C & & INR & A & \\
\hline 0536 & 3E02 & & MVI & A, 2 & ;SET WRITE ENABLE \\
\hline 0538 & 320640 & & STA & 4006 H & \\
\hline 053 B & 97 & & SUB & A & \\
\hline 053 C & 05 & & DCR & B & ;WRITE ZERO BYTES \\
\hline 0530 & 77 & & MOV & M, A & \\
\hline 0535 & C23C05 & & JNZ & \$-2 & \\
\hline 0541 & 3EF8 & & MVI & A, OF 8 H & ; WRite deleted data header \\
\hline 0543 & \(321 F 40\) & & STA & 401 FH & \\
\hline 0546 & 97 & & SUB & A & ; TRAILING HEADER \\
\hline 0547 & 77 & & MOV & M, A & \\
\hline 0548 & 320640 & & STA & 4006 H & ; CLEAR WRITE ENABLE \\
\hline 0548 & C32204 & & JMP & RAL6 & ; SUCCESSFUL RETURN \\
\hline 054 E & 21FFFF & HDRC: & LXI & H, OfFFFH & ; COMPUTE HEADER CRC \\
\hline 0551 & 3EFE & & MVI & A, OFEH & ;ADDRESS INDEX MARK \\
\hline 0553 & CDB403 & & CALL & CRCI & \\
\hline 0556 & 3A2108 & & LDA & LTRK & ; TRACK ADDRESS \\
\hline 0559 & CDB403 & & CALL & CRC1 & \\
\hline 055 C & 97 & & SUB & A & ;ZERO BYTE \\
\hline 0550 & CDB403 & & CALL & CRCI & \\
\hline 0560 & 3A2208 & & LDA & SECT & ;SECTOR NUMBER \\
\hline 0563 & CDB403 & & CALL & CRC1 & \\
\hline 0566 & 97 & & SUB & A & ; ZERO BYTE \\
\hline 0567 & CDB403 & & CALL & CRC1 & ; It is all computed in h, L NOW \\
\hline 056A & C. 9 & & RET & & \\
\hline & & ;ROUT & TO & READ A SEC & OR OF DATA \\
\hline 0568 & CD3804 & READ: & CALL & SYNC & ;FIND SECTOR \\
\hline 056 E & 110240 & & LXI & D, 4002 H & ; DATA READ ADDRESS \\
\hline 0571 & 014106 & & LXI & B, 641 H & ; SET COUNTERS \\
\hline 0574 & 318708 & & LXI & \(S P, D A T B+1\) & ; SET DATA BUFFER READ POINTER \\
\hline 0577 & 05 & & DCR & B & ; DELAY PAST HEAD TURN ON AREA \\
\hline 0578 & C27705 & & UNZ & \$-1 & \\
\hline 0578 & 3 E 01 & & MVI & A, 1 & ; SYNC PLO \\
\hline 0570 & 320640 & & STA & 4006 H & \\
\hline 0580 & 97 & & SUB & A & \\
\hline 0581 & E3 & & XTHL & & \\
\hline 0582 & E3 & & XTHL & & \\
\hline 0583 & E3 & & XTHL & & \\
\hline 0584 & E3 & & XTHL & & \\
\hline 0585 & 320640 & & STA & 4006 H & \\
\hline 0588 & 3EC7 & & MVI & A, 0 C 7 H & ; SET UP FOR TESTING DATA \\
\hline 058 A & 06FB & & MVI & B, OFBH & ;ADDRESS MARK \\
\hline 058 C & 2 AO 040 & & LHLD & 4000 H & ;READ IT FROM DISK \\
\hline 058 F & 94 & & SUB & H & ;CHECK CLOCK PATTERN \\
\hline 0590 & C20905 & & UNZ & RED1 & \\
\hline 0593 & EB & & XCHG & & \\
\hline 0594 & 56 & & MOV & D, M & ; GET FIRST DATA BYTE \\
\hline 0595 & 78 & & MOV & A, E & ; TEST DATA FROM INDEX MARK \\
\hline 0596 & 90 & & SUB & B & \\
\hline 0597 & C2CF05 & & JNZ & RED4 & ; JMP TO SEE IF DELETED DATA \\
\hline 059 A & 5 E & RED 2 : & MOV & E, M & ; ALL OKAY, GET ANOTHER DATA BYTE \\
\hline 059 B & D 5 & & PUSH & D & ;STORE TWO OF THEM \\
\hline 059 C & 00 & & DCR & C & \\
\hline 0590 & 56 & & MOV & D, M & ; GET NEXT BYTE \\
\hline
\end{tabular}



0676 C 27006 067971 67 C C37006 67097
\(067 E 320640\) 0681 C32204
0684

JNZ FRM3
MOV M, C
JMP FRM4 SUB A STA 4006 H
JMP RAL6
END

\title{
FLOPPY DISK SYSTEM
}

FLOPPY POWER SUPPLY

FPS-U, Revision 3 Functional Description

FUNCTIONAL DESCRIPTION

The Universal Floppy Fower Supply, (FFS-U), is designed to support the CalComp Model \(140(60 \mathrm{HZ})\) or \(140 \mathrm{~B}(50 \mathrm{HZ})\) Floppy Disk Drives. It provides for all power and signal connections to the Drive and allows up to four (Floppy Drive and FPS-U) modules to be used in a Daisy Chain configuration. The FPS-U Assembly supports up to seven input voltages as listed in Table 1.

POWER SUPPLIES: The Power Supply section provides independent, fully regulated +5 and +24 volts at the current levels required to support the Model \(140 / 140 B\) Drive. AC Supply Lines are fused and the DC Regulators provide ample protection for the Drive circuits.

Power ON/OFF switching is User selectable to operate in the switched or unswitched mode, allowing multiple drives to be switched on or off from a single source.

SIGNAL BUSSING: The signal bussing arrangement provides for up to four Drives and one PLO to be used in a Daisy Chained configuration. Provision is made for all required Bus Termination resistors. Cabling is done with the Scotchflex Flat Cable and Connector System; and the FPS-U is easily removed from the Drive for servicing with no unsoldering of connections.

FPS-U, Revision 3
Functional Description
DRIVE NUMBER SELECTION:
User options allow Jumper selection of the Daisy Chain Drive Number to be used with a particular FPS-U.

PACKAGING: The FPS-U Chassis is designed to mount directly to the rear of the Model 140/140B Drive, with no additional modifications. The dimensions of the FPS-U allow multiple FPS-U-Drive Modules to be stacked, either vertically or horizontally, with no interference problems. A cooling duct and chassis cutouts allow for unrestricted air flow and cooling of the drive and FPS-U.

FPS-U, Revision 3
Functional Description

TABLE 1

IMSAI
FPS-U MODEL
FPS-U 100/60
FPS-U 208/60
FPS-U 230/60
FPS-U 100/50
FPS-U 208/50
FPS-U 220/50
FPS-U 240/50

INPUT
VOLTAGE AC FREQ. CALCOMP DRIVE MODEL \#

100 VAC
60 Hz 140-005

208 VAC
60 Hz
140-006
230 VAC
60 Hz
140-002
100 VAC
50 Hz
140B-004
208 VAC
50 Hz
140B-005
220 VAC
50 Hz
140B-005
240 VAC
50 Hz

NOTE: Differences between models at FPS-U are in the wiring of the transformer (see the Assembly Instructions).

NOTE: All AC input voltages are \(\pm 10 \% ; 50\) and 60 Hz are \(\pm .5 \%\) tolerance.

The FPS-U consists of two functionally distinct sections: 1) Power Supply Circuits; and 2) Signal Bus.

POWER SUPPLY: The Power Supply section consists of two independent, regulated +5 VDC and +24 VDC supplies.

The diode bridge composed of CR1-CR4, driven by the secondary of Transformer \(T 2\), provides an unregulated 12 volts DC. Capacitor \(C 2\) acts to filter the raw 12VDC output; and Q1 and A3 are used in a Current Sharing configuration to provide a regulated +5 VDC at 1.0 Amps.

Similarly, the diode bridge composed of CR5-CA8, driven by the secondary of Transformer T1, provides an unregulated 28 VDC. Capacitor \(C 1\) acts to filter the raw 28 VDC output; and \(Q 2\) and \(A 2\) are used in a Current Sharing configuration to provide the regulated +24 VDC at 1.5 Amps.

SIGNAL BUS: The 26 pin bus connectors (J2 and J3), are connected in parallel to support a Daisy Chain of up to four Drives. A single 40 pin Flat Cable connects the bus signals, from J2 and J3, to the Floppy Disk Drive.

Jumper Areas A and B allow the READY and SELECT lines from a Drive to be jumpered to one of four pairs of READY and SELECT lines on the 26 pin signal bus.

NOTE: The READY and. SELECT lines are the only signal lines which are unique to any one Drive. Therefore the configuration of Jumper Areas \(A\) and \(B\) determines the number of the Drive in the Daisy Chain.

TERMINATION RESISTORS: All signal lines on the 26 pin bus are terminated to establish the correct quiescent voltage levels and to minimize noise. Each FPS-U contains selected termination resistors according to its position in the Daisy Chain (TABLE 2- ASSEMBLY INSTRUCTIONS).

PLO SIGNALS: J4 of the FPS-U used with Drive 0 will connect to the 26 -pin signal bus. Note that only one PLO Board is needed for up to four Drives. For all Drives except Drive 0, a Jumper must be installed at FPS-U board location J6. This allows the PLO /READ CLOCK line to be correctly placed on the \(26-\) pin signal bus.

\section*{n)}

\(\square\)

FPS U REV. 3
FIGURE 2
Chassis and Circuit Board
Assembly - Side View


FPSU REV. 3
FIGURE 3
Chassis and Circuit Board Assembly
Overall View


FPS-U REV. 3
FIGURE 4
Circuit Board - Termination Resistor and Diode Mounting





BOARD: FLOPPY POWER SUPPLY
\begin{tabular}{|c|c|c|c|}
\hline & IMSAI & & \\
\hline ITEM & PART \# & QUANTITY & DESCRIPTION/IDENTIFYING MARKS \\
\hline Solder & 15-0000001 & \(10^{\prime}\) & \\
\hline Heat Sink & 16-0100007 & 2 & Wakefield Heat Sink/690-220-B \\
\hline Screw & 20-3203001 & 4 & \#6x'근 Self-Tapping Sheet Metal \\
\hline Screw & 20-3406001 & 4 & 6-32×3/8" Phillips Flat Head Machine \\
\hline Screw & 20-3402001 & 4 & 6-32 \(\times 3 / 8^{\prime \prime}\) Phillips Pan Head Machine \\
\hline Screw & 20-3701003 & 2 & 6-32 3 /4" Round Head Machine, Nylon \\
\hline Screw & 20-4402001 & 2 & 8-32×3/8" Phillips Pan Head Machine \\
\hline Screw & 20-5201001 & 4 & 10-32 \(\times^{\frac{1}{4}}\) " Binding Head Machine \\
\hline Nut & 21-3120001 & 8 & 6-32 Hex Nut \\
\hline Washer & 21-3310001 & 4 & \#6 Flat Washer \\
\hline Lockwasher & 21-3350001 & 10 & \#6 Internal Star Lockwasher \\
\hline Washer & 21-3390001 & 1 & \#6 1/16x3/8" Flat, Fiber Washer \\
\hline Lockwasher & 21-4350001 & 2 & \#8 Internal Star Lockwasher \\
\hline Lockwasher & 21-5350001 & 4 & \#10 Internal Star Lockwasher \\
\hline Header & 23-0400012 & 2 & 26 Pin Header, SF 3429-1002 \\
\hline Wire & 22-1018001 & 30" & 18 GA., Stranded Wire, Orange \\
\hline Wire & 22-1018002 & 24" & 18 GA., Stranded Wire, Yellow \\
\hline Header & 23-0400019 & 1 & Header, AMP 87233-7 or AP Products 929648-01-8 \\
\hline Insulator & 28-0100001 & 2 & Insulator, Thermalloy 56-77-2AP \\
\hline Transformer & 29-0400002 & 1 & Tranex 4-3914-1 \\
\hline Transformer & 29-0400003 & 1 & Tranex 4-3915-1 \\
\hline Resistor & 30-2047664 & 4 & . 47 Ohm, 2 Watt/Yellow, violet, silver \\
\hline
\end{tabular}

FPS-U, Rev. 3
Parts List

```

FPS-U, Rev. 3
Parts List

```

ITEM
Duct

Chassis

IMSAI
PART \# QUANTITY DESCRIPTION/IDENTIFYING MARKS
93-3020020 1 Die-Cut Paper Duct Assembly
93-4020009 1 Sheet Metal Chassis, FPS Rev. F

GENERAL: The Component side of the Printed Circuit Board may be identified by the presence of the white silkscreen and the words, "FPS-U REV 3.2", in the upper right hand corner. All component locations referenced in the Assembly Instructions are given with respect to the Component Side of the Board.
() 0 .

Unpack and check all parts against the Parts List enclosed with the package.

RESISTOR INSTALLATION
() 1.

Insert and solder the four 0.47 Ohm 2 W Resistors, (yellow, violet, silver, gold) , at locations R2, R36, R37, and R39 as shown on the Assembly Diagram.
() 2.

Insert and solder the two 47 Ohm \(1 / 4\) Watt Resistors; (yellow, violet, black, gold), at locations R3, and \(F 38\) as shown on the Assembly Diagram.
() 3 .

Insert and solder the one 2.2 K Ohm Resistor,(red,red, red,gold), at location R1 as shown on the Assembly Diagram.

Insert and solder the remaining Resistors according to TABLE 2 and the Assembly Diagram.

TABLE 2 specifies which resistors are to be installed for a particular Drive Number. The column labelled, DRIVE 0, refers to the FPS-U of the first drive in a multiple drive system.

The column labelled, MIDDLE DRIVE, applies to the FPS-U of the second drive in a 3-drive system and the FPS-U of the second and third drives in a 4-drive system.

The column labelled, LAST DRIVE, applies to the FPS-U of the last drive in the Daisy Chain of a multiple drive system.

The column labelled, SINGLE DRIVE SYSTEM, applies to the FPS-U used in a one-drive system. Note that a SINGLE DRIVE system is a special case since it is both Drive 0 and the Last Drive. Therefore, the resistors indicated in TABLE 2, under the heading SINGLE DRIVE SYSTEM, include all Drive 0 and Last Drive resistors.

To simplify the installation of the Resistors shown in TABLE 2 , the circuit board has been marked with identification guide lines. These lines are located above the resistor array on the left side of the board.

The Top identification line marked, "L", locates the resistor pairs for the LAST DRIVE. The following line marked, "M", locates the resistor pairs for the MIDDLE DRIVE(S). The next line marked, "O", locates the resistors for Drive 0 . The bottom line marked, "P", locates the \(120 / 220\) OHM pairs where applicable (TABLE \(2)\).

Figures 1 through 4 may be used as examples of correct component placement for each of the four types of drive configurations. Note that R34 and R35 are located to the right of connector J 2 at the bottom of the board.

IC AND DIODE INSTALLATION
() 5 .

Insert and solder one 74LSO4 at location A1 as shown on the Assembly Diagram. Insure that pin 1 is oriented towards the upper left as indicated on the board silkscreen.
( ) 6.
Insert and solder two MR501 diodes at lo-cations D1 and D2 as shown on the Assembly Diagram. Insure that' the diode band is oriented to match the marking on the board. To bend the leads of the diode, grip the lead to be bent next to the diode body with a pair of needlenose pliers and bend the free end into position. This will reduce the possibility of breaking the wirebond in the diode.


\section*{TABLE 2}

LOCATION RESISTOR VALUE

R29
R19
R17
R15
R13
R5
R7
R9
P. 8

R18
R16
R14
RI2
R4
R6
R8
R33
R31
R27
R25

R21
\(2200 \mathrm{~nm}, \frac{1}{4}\) Watt (red, red, brown)


\[
\mathrm{X} \quad \mathrm{X}
\]
\[
\mathrm{X} \quad \mathrm{x}
\]
\[
\mathrm{x} \quad \mathrm{x}
\]
\[
x \quad x
\]
\[
x \quad x \quad x \quad x
\]
\[
\mathrm{X} \quad \mathrm{X}
\]
\[
x \quad x
\]
\[
\mathrm{X} \quad \mathrm{X}
\]
\[
\mathrm{X} \quad \mathrm{x}
\]
\[
x \quad x \quad x \quad x
\]
\[
\mathrm{x} \quad \mathrm{x}
\]
\[
x \quad x \quad x
\]
\[
\mathrm{x} \quad \mathrm{x}
\]
\[
x \quad x
\]
\[
x \quad x
\]
\[
\mathrm{x} \quad \mathrm{x}
\]
\[
x \quad X
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline LOCATION & RESISTOR V & VALUE &  &  &  &  \\
\hline R11 & 680 Ohm, 交 & Watt(blue, grey, brown) & X & X & X & X \\
\hline R35 & " & " " & X & & & X \\
\hline R32 & 470 Ohm, \(\frac{1}{4}\) & Watt(Yellow, violet, brown) & X & & X & X \\
\hline R30 & " & "
n & X & & & X \\
\hline R26 & " & " & & & X & X \\
\hline R24 & " & " & & & X & X \\
\hline R22 & " & " & & & X & X \\
\hline R20 & " & " & & & X & X \\
\hline R10 & n & " & X & X & X & X \\
\hline R34 & " & " & X & & & X \\
\hline Jumper J6 & (Jumper J7 & 7 is not used) & & X & X & \\
\hline
\end{tabular}





FPS-U, Revision 3 Assembly Instructions
( ) 7.
Insert and solder eight MR501 Diodes in positions CR1 through CR8 as shown on the Assembly Diagram. Form the Diode leads as shown in STEP 6, remembering to hold the lead to be bent next to the Diode body with a pair of needlenose pliers.

With the leads bent exactly as shown in STEP 6, mount each diode so that the body of the diode is over the appropriate top row mounting hole with the band on top. The remaining lead should be inserted into the appropriate lower row mounting hole.

CAPACITOR INSTALLATION
( ) 8.
Insert and solder two 2.2 uF, 50 V , Tantalum capacitors in locations C3 and C4 as, shown on the Assembly Diagram. Insure that the terminal marked, "+", is oriented to match the board marking, "+".
( ) 9.
Insert and solder four 0.1 uF disk ceramic capacitors in locations C5, C6, C7, and C9 as shown on the Assembly Diagram.
( ) 10 .
Insert and solder one 0.02 uF, 500Volt, disk ceramic capacitor in position C8 as shown on the Assembly Diagram.

Locate and cut pin 26 on each of the two 26 pin connectors. To locate pin 26 , hold the connector with the molded part number (NO.3429) on top and the CABLE CONNECTOR pins facing towards you. Pin 26 is now the last pin in the lower left hand corner. Note that pin. ONE is marked with a molded triangle on the top right side of the connector. Once pin 26 has been located, cut it off flush with the connector body.

NOTE: The CABLE CONNECTOR pins are those which are recessed in the connector body, as opposed to the EOARD SOLDER pins which are not recessed. The cut must be made to CABLE CONNECTOR pin 26.
( ) 12 .
Insert and solder the two 26 pin connectors at J2 and J3 as shown on the Assembly Diagram. Insure that CABLE CONNECTOR pins face OUTWARD from the edge of the board.
( ) 13 .
Insert the 8 pin Right Angle Connector at location J4 as shown on the Assembly Diagram. The connector should be mounted on the SOLDER SIDE of the board with the long pins extending towards the upper edge of the board.

Before soldering, reference the board photos to insure that the connector is correctly oriented. Verify that the connector is inserted into the bottom row of mounting pads. When you are certain of correct placement, solder the connector in place.

FPS-U, Revision 3
Assembly Instructions
NOTE: The board Photos incorrectly show J4 as a 7 pin connector. Also, the additional mounting pads to the side of J4 are not drilled on current boards.
( ) 14 .
Insert the 40 pin header that terminates one end of CABLE P into location J1 as shown on the Assembly Diagram. Orient the header on the COMPONENT SIDE of the board so that the cable extends off of the bottom of the board. Reference the board photos to verify the orientation. When you are certain that the placement is correct, solder the header into place.

FUSE INSTALLATION
( ) 15 .
Insert and solder two fuse clips in location \(F 1\) as shown on the Assembly Diagram. This may be done by snapping the clips onto the ends of the fuse and holding this assembly in place while soldering from the back of the board. For 200 volt range operation, solder two additional fuse clips in the location labelled Fuse 2.

JUMPER INSTALLATION
( ) 16. For 100 Volt Range Operation: Using a component lead or a short length of wire, insert and solder a jumper between the two pads in location \(F 2\) as shown on the Assembly Diagram. Reference the board photos for verification.
( ) 17 .
Using a component lead or a short length of wire, insert and solder a jumper between the two pads immediately below the board markings, "AUX SW", as shown on the Assembly Diagram. Reference the board photos for verification.
( ) 18 .
If this FPS-U is to be used as the Second Drive in a cabinet, (ie. as Drive 1 or Drive 3), insert and solder a jumper between the two right-most pads in the board location marked, "SW".

NOTE: The board photos only show an FPS-U set up as the First Drive in a cabinet and thus do not indicate this jumper.

If this FPS-U is to be used as the First or Only Drive in a cabinet, first identify the half of CABLE \(A B\) which terminates in a Female Molex Connector. Insert the two wires of this cable into the board location, "SW", using the two right-most pads. Verify that the wires are inserted from the component side of the board, and solder into place.

NOTE: The board photos show a switch mounted directly to the FPS-U board and do not reflect the proper use of CABLE AB.

POWER CABLE INSTALLATION
( ) 19.
Insert CABLE \(V\) into the board at location J5 as shown on the Assembly Diagram. Pass the three wires of CABLE \(V\) through the cutout in location \(J 5\) from the component side of the board. Orient the connector so that the pointed end is toward the top end of the board and push down on the connector until the mounting
ears lock into place.
( ) 20.
Insert the three wires of connector J5 from the BACK of the board into the appropriate locations as follows:
Insert and solder the BLACK WIRE to the pad directly above the board location marked "AC INPUT". This pad is the left-most terminal marked "P1".
Insert and solder the WHITE WIRE to the pad directly below the board location marked "AC INPUT". This pad is the left-most terminal marked "N":

Insert and solder the GREEN WIRE to the left-most pad, directly below the board location marked, "AC GND".
( ) 21 .
Install one CABLE \(X\) by inserting the three CAELE \(X\) wires from the COMPONENT SIDE of the board into the appropriate locations as follows:
Insert and solder the BLACK WIRE into the pad directly above the board markings, "AC CONT".
Insert and solder the WHITE WIRE to the pad directly below the board markings "AC CONT". This pad is the right-most terminal marked "N".

Insert and solder the GREEN WIRE to the remaining pad directly below the board marking "AC GND".
NOTE: The board photos do not show this Cable X.
( ) 22 .
Install the remaining CABLE \(X\) by inserting the three CABLE X wires from the COMPONENT SIDE of the board into the board location marked, "DRIVE OUTPUT", as follows:

Insert and solder the BLACK WIRE to the pad marked "P1" (top) in the board location marked "DRIVE OUTPUT".

Insert and solder the WHITE WIRE to the pad marked "N" (middle) in the board location marked "DRIVE OUTPUT".

Insert and solder the GREEN WIRE to the pad marked "AC GND" (bottom) in the board location marked "DRIVE OUTPUT".

REGULATOR AND HEAT SINK INSTALLATION
( ) 23.
Bend the leads of the two MJE 2955K Pass Transistors at 90 degree angles from the mounting plane of the device. The bends should be made down, away from the side bearing the Device Number and should allow the device to be aligned so that the mounting hole and the leads line up with the corresponding hole and pads at board locations Q2 and Q1. When the bends have been made, set the two devices aside.

NOTE: One way to accomplish this is to place the lettered side of the device FACE DOWN against the board at location Q1 or Q2. Align the device so that the mounting hole is centered and the three device leads cross directly over the lead solder pads. While holding the body of the device firmly in place, carefully bend each lead at a 90 degree angle, up away from the board with a pair of needlenose pliers. Each bend must be made so that the axis of a bent lead coincides with the axis drawn through the appropriate board mounting pad.

Bend the leads of one 7805 and one 7824 regulator at 90 degree angles from the mounting plane of the device. The bends

FPS-U, Revision 3 Assembly Instructions
the Device Number and should allow the device to be aligned so that the mounting hole and the leads line up with the corresponding hole and pads at board locations A2 (for the 7824) and A3 (for the 7805). When the bends have been made, set the two devices aside.

NOTE: This may be accomplished by following the procedure outlined in the NOTE of step 23 , using locations A2 (7824) and A3 (7805) for alignment.
( ) 25 .
Place and align one heat sink at the location surrounding Q2 as shown on the Assembly Diagram. Then place one pregreased insulating washer on the heat sink at location Q2. Align this washer so that it extends from the mounting hole on the board towards the triangle cutout in the heat.sink where \(Q 2\) will mount.
( ) 26 .
Insert one MJE 2955K at location Q2 as shown on the Assembly Diagram. Insert one NYION SCREW from the top of the board, through the mounting holes, and fasten from the bottom of the board with one lockwasher and one nut.

Verify that none of the leads of the device touch the heat sink. If alignment is correct, solder the leads of the device in place.
NOTE: The part number for Q2 (MJE 2955K) is incorrectly shown in the board photograph.
( ) 27.
Insert one 7824 at location \(A 2\) as shown on the Assembly Diagram. Then insert one 6-32 x 3/8" pan head screw through the mounting hole from the top of the board. Place one FIBRE WASHER on the shaft of the screw from the back of the board and fasten in place with one \#6 lockwasher and one nut. Verify that none of the leads of the device touch the heatsink. If alignment is correct, solder the leads of the device in place.
( ) 28 .
Place and align one heat sink at the location surrounding Q1 as shown on the Assembly Diagram . Then place one pregreased insulating washer on the heat sink at location Q1. Align this washer so that it extends from the mounting hole on the board towards the triangle cutout in the heat sink where Q1 will mount.

Insert one MJE 2955K at location Q1 as shown on the Assembly Diagram. Insert one NYLON SCREW from the top of the - board through the mounting holes, and fasten from the bottom of the board with one lockwasher and one nut. Verify that none of the leads of the device touch the heat sink. If alignment is correct, solder the leads of the device in place.

NOTE: The part number for Q1 (MJE 2955K) is incorrectly shown in the board photos.
) 30 .
Insert one 7805 at location A3 as shown on the Assembly Diagram. Then insert one 6-32 x 3/8 " pan head screw through the mounting hole from the top of the board. Fasten in place with one \#6
lockwasher and one nut. Verify that none of the leads of the device touch the heat sink. If alignment is correct, solder the leads of the device in place.

FILTER CAPACITOR INSTALLATION
( ) 31 .
Mount one 4100 uF , 50 volt, electrolytic filter capacitor at location C1 as shown on the Assembly Diagram. MAKE CERTAIN that the "+" terminal of the capacitor aligns with the "+" marking on the board. When the orientation is correct, fasten the capacitor in place with the two terminal screws and lockwashers.
( ) 32 .
Mount one 5600 uF, 25 volt, electrolytic filter capacitor at location C2 as shown on the Assembly Diagram. MAKE CERTAIN that the "+" terminal of the capacitor aligns with the "+" marking on the board. When the orientation is correct, fasten the capacitor in place with the two terminal screws and lockwashers.

TRANSFORMER INSTALLATION
( ) 33.
Cut the primary leads numbered 1 through 5 from the 12.6 VAC transformer to a length of 3 3/4"; and strip 1/4" of insulation from the end of each lead.

NOTE: If the primary leads of the 12.6 VAC transformer are not labelled, they may be identified as followș: Leads 1 through 5 are located in the upper row with lead 1 on the far left; leads 6 through 10 are located in the lower row with lead 6 on the far left.

Cut the primary leads numbered 6 through 10 from the 12．6．VAC transformer to a length of \(43 / 4 " ;\) and strip 1／4＂of insulation from the end of each lead．

NOTE：When making the transformer connections，use the photographs，wiring charts and Table 3 as references．

Make the following 10 connections by crimping the appropriate wires in place． Do not solder at this time． a）

Connect lead 非1 from the 12.6 VAC transformer to terminal 非 1 on the 28 VAC transformer．
b）
Connect Lead \(⿰ ⿰ 三 丨 ⿰ 丨 三 一\) 2 from the 12.6 VAC transformer to terminal 非2 on the 28 VAC transformer．
c）
Connect lead 非3 from the 12.6 VAC transformer to terminal \(⿰ ⿰ 三 丨 ⿰ 丨 三 一\) 3 on the 28 VAC transformer．
d）
Connect lead 非 4 from the 12.6 VAC transformer to terminal \(⿰ ⿰ 三 丨 ⿰ 丨 三 一 4\) on the 28 VAC transformer．
e）
Connect lead 非5 from the 12.6 VAC transformer to terminal \(⿰ ⿰ 三 丨 ⿰ 丨 三 一\) 5 on the 28 VAC transformer．
f）
Connect leads 6 through 10 in the same manner（ie，lead \＃6 to terminal 非；lead 非 7 to terminal \＃7；etc．）．
（） 36 ．
Connect either one or two \(2^{\prime \prime}\) lengths of 18 gauge wire（orange）between the appropriate primary terminals of the 28 VAC transformer．This is indicated in Table 3 under the column labelled＂Strip These Lugs＂and is also．shown in the wiring charts．

\section*{TABLE 3 \\ INPUT AC CONNECTIONS FOR THE 28 VAC TRANSFORMER}



FRONT VIEW
FPS-U 230/60
FPS-U 220/50


FRONT VIEW
FPS-U 240/50

WIRING CHART: \(220-253\) VAC; \(50 / 60 \mathrm{HZ}\) IN See User Guide for more information. Use \(21 / 2 A\) fuse.


FRONT VIEW
FPS-U 100/60
FPS-U 100/50


FRONT VIEW
FPS-U 208/60
FPS-U 208/50

WIRING CHART: 103 - 207. VAC; \(50 / 60 \mathrm{HZ}\) IN See User Guide for more information.


FPSU REV. 3 100 VOLT RANGE OPERATION

WIRING CONNECTIONS


FPS-U REV. 3
200 VOLT RANGE OPERATION WIRING CONNECTIONS

Orient the FPS－U chassis on its end so that the large rectangular opening is at the bottom with the interior area facing toward you．Mount one T117－12．6 transformer（the smaller of the two ）on the lower right side of the large rectangular opening as shown in the FPS－U photographs．Insert the 非6 flathead counter sunk screws through the transformer mounting holes from the outside of the chassis and fasten each screw in place with a flat washer， lockwasher and nut．
（） 38
Mount one T117－28 transformer on the bottom end of the chassis；skewed in front of the large rectangular opening as shown in the FPS－U photographs．Insert two＇⿰⿰三丨⿰丨三一 6 flathead counter sunk screws through the transformer mounting holes from the outside of the chassis．Fasten each screw in place with a flat washer， lockwasher and nut．

Cut two 7＂lengths of 18 gauge stranded wire（orange）and strip 1／4＂of insulation from each end．
（ ） 40 ．
Take one \(7^{\prime \prime}\) length of 18 gauge wire and connect one end to the＂COM＂pad（top）in the left－most board location labelled ＂XFR PRI＂．Solder this connection in place．Crimp the remaining end of this wire to the appropriate primary terminal fo the 28 VAC transformer．This will be terminal 1 for operation in the 100 volt range；or terminal 6 for operation in the 200 volt range（Table 3 ）．
（ ） 41 ．
Take the remaining \(7^{\prime \prime}\) length of 18 gauge wire and connect one end to the bottom
pad in the left-most board location labelled "XFR PRI". Solder this connection in place. Crimp the remaining end of this wire to the appropriate primary terminal of the 28 VAC transformer. This will be terminal 3, 4, or 5 , as indicated in Table 3 . Under the column "Input Wires Connect to These Lugs". NOTE: The two AC input wires should be twisted together to avoid line noise problems.
( ) 42
Crimp one end of a \(7^{\prime \prime}\) length of 18 gauge wire (yellow) to primary terminal \#4 of the 28 VAC transformer. Connect the other end of this wire to the left-most pad in the board area labelled "Fan". Solder this connection in place.
) 43.
Connect and solder one end of a \(3^{\prime \prime}\) length of 18 gauge wire (yellow) wire to the right-most pad in the board area labelled "fan". Connect and solder the remaining end of this wire to the "COM" pad (top) in the right-most board location labelled "XFR PRI".
( ) 44.
Solder all primary terminal connections (terminal 1 through 10) on the 28 VAC transformer.
( ) 45 .
Connect the two secondary wires from the 12.6. VAC transformer to the two pads labelled " \(12.6 \mathrm{VAC"}\). These are located below diodes CR1 and CR3. Do not worry about polarity.
() 46 .

Connect the two secondary wires from the 28 VAC transformer to the two pads labelled "28 VAC". These are located below diodes CR5 and CR7. Do not worry
```

about polarity.

```

MOUNTING THE FPS-U CHASSIS AND AIR DUCT
( ) 47.
Fold the cardboard duct as shown in FIGURE 1 (in the Floppy Disk Cabinet secLion).
( ) 48 .
Insert the duct into the FPS -U Chassis from the rear, bending as necessary to get it into place as shown in FIGURE 3 (in the Floppy Disk Cabinet section).
( ) 49
Mount the FPS -U chassis to the rear of the Floppy Disk Drive with two 6-32 screws and two 8-32 screws. Tear off the two side tabs of the duct which extend beyond the sides of the FPS \(-U\) and Drive.

JUMPER SELECTION
() 50 .

Determine the Drive Number to be assigned to this Floppy Disk Drive (0 to 3).

NOTE: The selected Drive Number must be compatible with the type of Drive which was chosen in STEP 4 to insure that the proper termination resistors are present.
) 51.
Locate the two Jumper Areas labelled "A" and "B" directly above connector J2. These areas may be identified as follows: Each jumper area consists of a line of 4 pads labelled \(0-3\), and a single pad centered directly above this row labelled "A" or "B".
( ) 52 .
Connect a short jumper between the pad labelled "A" and the pad labelled with the selected drive number (0 to 3). Verify that the jumpr does not short to any adjacent traces or pads.
( ) 53.
In the second Jumper Area, connect a short jumper between the pad labelled "E" and the pad labelled with the selected drive number (0 to 3). Verify that the jumper does not short to any adjacent traces or pads.
() 54.

If the \(\operatorname{FPS}-\mathrm{U}\) is to be used with Drive 0 , leave Jumpers J6 and J7'OPEN.

If the FPS-U is to be used with a drive other than Drive 0 , connect a wire between the jumper pads at location J6, as shown on the Assembly Diagram. Leave J7. OPEN.

FINAL ASSEMBLY
( ) 55 .
Plug the Molex Connector of the CABLE \(X\) which is connected to the Board Location marked "DRIVE OUTPUT", to the Molex receptacle on the rear of the Floppy Disk Drive through the opening provided. This opening is located on the FPS-U Chassis between the two filter capacitor mounting braces.
( ) 56.
Plug the 40 pin connector of CABLE P (J1) into the 40 pin receptacle on the rear of the Floppy Disk Drive.
( ) 57.
Fasten the FPS-U PC board to the FPS-U chassis using the four 非 6 x 1/4" self-tapping sorews.
() 58 .

Assembly of the Universal Floppy Power Supply is now complete.


AC INPUT POWER: \(\quad A C\) input power to the board is made through the connector located at J5. If the FPS-U is used with the First or only drive in a cabinet, the \(A C\) source for \(J 5\) will be the \(A C\) linecord. If the FPS-U is used with the second drive in a cabinet, the AC source for \(J 5\) will be the CABLE \(X\) coming from the first drive's FPS-U at the board location "AC CONT".

POWER SWITCH: The FPS-U may be used in a switched or unswitched mode. If the FPS-U is used with the first or only floppy driye in a cabinet, one haif of CABLE \(A B\) will connect to the right-most pads in the board area marked "SW". The other half of CABLE \(A B\) will connect to a switch on the rear of the floppy cabinet, providing ON/OFF switching for the \(A C\) power.

If the FPS-U is used as the second drive in a cabinet, a jumper is connected between the rightmost pads in the board area marked "SW", and ON/OFF switching is accomplished from the Power Switch connected to the first drive.

FUSE: For use at 100 VAC , a 2.5 Amp fuse (3AG) is inserted in the fuse holder on the hot side of the AC line. For use at 200 VAC , a 1.5 Amp fuse is used at locations F1 and F2.

SELECTION OF DRIVE NUMBER: Selection of the floppy disk drive number is accomplished through the use of the two jumper areas labelled "A" and "B". The first jumper is connected between Terminal "A" and the appropriate pad in the row below which is marked with the selected drive number. The second jumper is connected between Terminal "B" and the appropriate pad in the row
below which is marked with the selected drive number.

NOTE: The selected drive number also determines which termination resistors are to be installed on the FPS-U Board.

TERMINATION RESISTORS: The correct termination resistors for a particular FPS-U are specified in the resistor selection TABLE 2 (Assembly Instructions).

The column labelled DRIVE 0 , specifies the termination resistors used with the first drive in a multiple drive system. The column labelled MIDDLE DRIVE, specifies the termination resistors used with Drive 2 in a three drive system, or Drives 2 and 3 in a four drive system. The column labelled LAST DRIVE, specifies the termination resistors used with the Last Drive in the daisy chain of a multiple drive system. The column labelled SINGLE DRIVE SYSTEM, specifies the termination resistors used in a system composed of only 1 drive. It is a special case since a single drive is both the first and last drive in the system.

PLO BUS SIGNALS: A single PLO Board will support up to 4 drives in the daisy chain. J4 of the FPSUU used with Drive 0 will connect the PLO signals with the \(26-\mathrm{pin}\) signal bus. In addition, Jumper J6 must be jumpered across on the FPS-U of ALL DRIVES EXCEPT DRIVE \(0 . J 7\) is ALWAYS left OPEN.

FLOPPY DRIVE CABLE CONNECTIONS: The FPS-U provides for two cable connections to the Floppy Disk Drive. CAELE P at location J1, is a 40-pin DC signal cable to the Drive. It mates with the 40-pin connector located at the rear of the floppy disk drive; and connects the 26 -pin signal bus to the floppy drive.

CABLE X from the FPS-U location "DRIVE OUTPUT", is a 3-pin Molex connector which supplies the +24 VDC to the Drive. It mates with the 3-pin Molex connector at the rear of the floppy disk drive.

EXTERNAL CABLE CONNECTIONS: External cable connections to the floppy power supply provide for 1) the daisy chain in a multiple drive system; and 2) the data link from the computer.

The cable connected to J2, of the FPS-U used with Drive 0, terminates at the Floppy Light Board, and a 25-pin EIA D Type connector. This connector will always mate with the cable coming from the computer.

The remaining connections serve to establish the daisy chain for the remaining drives in a multiple drive system. J3 of Drive 0 FPS-U will connect to J2 of Drive 1 FPS-U. J2 of Drive 1 FPS-U will connect to J2 of Drive 2 FPS-U. J3 of Drive 2 FPS-U will connect to J2 of Drive 3 FPS-U.

When making these connections, insure that all pin 1's are matched on the connectors and cables. DO NOT FORCE the connectors into place, as they are polarized to fit correctly only in their proper mounting position.

2/1/77 Peu


WIRE CONNECTION FRONT VIEW

\begin{tabular}{|c|c|c|c|}
\hline LIT & DEBORTPTION & DATE & APPROVED \\
\hline 0 & ORIGINAL & \(9 / 76\) & PRU \\
\hline
\end{tabular}


03-09-1118


MOLEX MALE PIN MOLEX CONNECTOR


CONNECTOR DETAIL
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{tolerances unless OTHERWISE SPECIFIED fractions dec angles \(\pm \quad \pm \quad \pm\)}} & \multicolumn{5}{|c|}{(c) 1977 IMSAI MFG. CORP. SAN LEANDRO, CA. ALL RIGHTS RESERVED WORLDWIDE MADEINUSA} \\
\hline & & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{FLOPPY DISK SYSTEM
CABLE V
ASSEMBLY}} \\
\hline APPROVALS & DATE & & & & & \\
\hline \({ }^{\text {drawn }}\) PRU & 9/22/76 & & & & & \\
\hline \[
\begin{aligned}
& \text { CHECKED } \\
& \sum, \ell_{\text {anich }} l l \\
& \hline
\end{aligned}
\] & \(1 / 2 / 77\) & SCALE & - & SIZE & \multicolumn{2}{|l|}{drawing NO .} \\
\hline & & \multicolumn{4}{|r|}{DO NOT SCALE DRAWING} & SHEET \\
\hline
\end{tabular}


 1976 14C MSEDO 1NC

BACK SIDE (CIRCUIT SIDE)


ASSEMBLY DIAGRAM
FLB REV. 0 3/76


TOP VIEW

ASSEMBLY'DIAGRAM
FLB REV. 0 3/76
© 1976
IMSAI MFG. CORP.
SAN LEANDRO, CA.

DRIVE UNIT NUMBER
HMPER SELECT

\(\begin{array}{ll}\text { A1 } & \\ \text { A2 } & 7450 \\ C 1 & \\ C 2 & .1 \mathrm{mF} \\ \mathrm{J1} & 26 \mathrm{Pin} \\ & \text { Conng } \\ & \\ 0 S & \\ \text { OR } & \\ 1 R & \\ \text { OS } & \\ 1 S & \\ W & \\ \text { WE } & \\ \text { TO } & \\ H L & 8 \mathrm{LEq}\end{array}\)


SOLDER PAD


BOARD: FLB
\begin{tabular}{|c|c|c|c|}
\hline ITEM & \begin{tabular}{l}
IMSAI \\
PART \#
\end{tabular} & QUANTITY & DESCRIPTION/IDENTIFYING MARKS \\
\hline Solder & 15-0000001 & \(5{ }^{1}\) & \\
\hline Connector & 23-0400012 & 1 & 26 Pin Connector, SF 3429-1002 \\
\hline Capacitor & 32-2010010 & 2 & . IuF Disk Ceramic Capacitor \\
\hline LED & 35-3000001 & 8 & Red LED \\
\hline 74S04 & 36-0740403 & 2 & Hex Inverter \\
\hline Cable & 91-0400019 & 1 & Cable Q Assembly \\
\hline PC Board & 92-0000008 & 1 & FLB \\
\hline
\end{tabular}

FLB
Assembly Instructions

\section*{ASSEMBLY INSTRUCTIONS}

Following the Assembly Diagram in this section, mount the components on the board being careful not to form any solder bridges. The LED's should be mounted one at a time and pushed completely up against the board. The flat on each LED must be positioned toward the bottom of the board (away from the edge with the notch on it). Some of the LED leads cut off after soldering can be used to make the jumpers for the jumper select sockets. After making two bends in these leads so that they resemble a staple, insert them in the proper locations according to the diagrams in the User Guide and solder them in place, clipping any excess on the back of the board.

The connector can then be inserted into the hole pattern from the component side of the board and held firmly against the board while two diagonally opposite pins are soldered on the reverse side. Then, solder the rest of the pins. NOTE: the rest of the components are mounted on the reverse side of the board (the reverse side of the board is the side with no labelling except pin numbers on the connector).

Mount the two 74S04's in the two 14 -pin IC patterns taking care that pin 1 is toward the end of the pattern with the diamond pointed pad (pin 1 toward the top of the board with the notch). Solder these in place taking care not to form any solder bridges where traces run between pins. Soldering these pins is done from the component side of the board.

Mount the two. .luF capacitors in the holes provided next to the 74S04's bending them over so that they lay flat against the board. Take care that any insulation extending down the length of the lead is cracked off so that when the lead enters the hole it is bare. Also, take care that the . IuF capacitor near the left end of the board is mounted close enough to the holes that the capacitor body does not interfere with the \(\frac{1}{4}\) " spacer on the mounting screw. The two capacitors should be soldered in place and the leads clipped off.

Cut the stranded wire into one 12 inch and one 6 inch length and strip each end about \(3 / 16^{\prime \prime}\). Connect the 6" length to the female connector pin and the 12 " to the male connector pin. If the proper crimping tool is not available, the crimping tabs can be folded over with a pair of pliers, first one and then the other over the top of the first and the wire soldered. The two pins should

FLB
Assembly Instructions
then be inserted into the plastic bodies pushing them in from the rear until they click into place. Put the male pin in the body piece with the larger diameter section near the front. Put the female pin in the plastic body piece which is a small diameter for the full length. The front of this piece is the end with the two small tabs which lock it into the mating body piece.

The pin should be inserted from the other end from these tabs. Take the free end of the 12 " wire and insert and solder it in the hole marked +5 on the upper right-hand corner of the FLB. Take the other end of the 6" piece and solder it into the pad on the +5 volt line on the back of the FPS. This soldering pad is located between the two heat sink areas, adjacent to R39 (.47 Ohm), and is connected to the +5 volt regulator terminal. This wire should be inserted from the component side of the FPS and soldered from the rear side so that the wire does not have to go around the edge of the FPS on its way to the FLB board.

The board is now ready to mount, with the acrylic front panel, to the metal mounting bracket (piece D). Take the negative front panel mask and using either scissors or a sharp knife and a straight edge, trim the negative mask to the inside of the clear cut-lines. Do the same with the printed white back-up sheet. On the back-up sheet also cut out the three black areas to enable the indicator lights to be seen. The three black areas are already printed slightly oversize of the windows in the negative mask so that you should cut right on the edge of the black rather than somewhere outside of it. If the holes are cut too wide, you may extend into the area of the legends.

Should all or part of any of the letters be dark after assembly, check to make sure that the letters have the white back-up fully behind them.

When the masks are cut out, you are ready to assemble the plastic panel. Take care to keep all the pieces extremely clean during these steps so that the finished panel will not have specks of dust trapped between. Should some dust get on any of the pieces, it may be wiped off with a very slightly damp lintless rag. If the rag is dampened with alcohol, it will help remove any finger prints as well.

FLB
Assembly Instructions

Examine the clear and red plastic pieces (wrapped in protective paper) to determine which are the right and left ends and top and bottom. Note that the spacing between the center and right screw is less than the space between the center and left screw. Also note that the spacing between the screws and the bottom is less than between the screws and the top.

Remove the protective paper from the clear piece and lay it front down on the table. Carefully lay the negative mask and white back-up sheet on the plastic. Next, remove the protective paper from the red piece and place it over the others. Lift the assembly and push the three black button head screws through the three holes and set the entire unit face down. Slide the three 7/16" plastic spacers on the three black screws then place the FLB on the two right hand screws with the indicators facing the panel: Place the \(1 / 16^{\prime \prime}\) washer on the left hand screw and slide the three \(\frac{1}{4}\) " spacers, one each, onto the screws and rotate the whole assembly backwards so that the panel is upright and neither the screws nor spacers can drop off.

Screw the assembly onto the metal mounting rail (piece D) first starting all three screws and tightening. The front panel assembly is now ready for mounting in the cabinet.

\section*{JuMper select fls}

JUMPERS FOR DRIVES 0 and 1


JUMPERS FOR DRIVES 2 and 3


\section*{FLB}

User Guide

\section*{USER GUIDE}

Follow the example shown to jumper the jumper select socket so that the READY and SELECT lines will respond to the proper drives. Note that if frequent changes are expected, the jumper socket is arranged such that a dip switch may be installed to make frequent changes more convenient. The only further consideration in using this board is to plug in the +5 volt power and signal cable and mount above the drives in the cabinet.

FLOPPY DISK SYSTEM
FLOPPY DISK CABINET

\author{
Floppy Cabinet Functional Description
}


The Floppy Disk Cabinet houses up to two CalComp Model. 140 Floppy Disk Drives. It is designed to use the IMSAI FLE Light Display Board, and the IMSAI FPS Power Supply Assemblies.

The cabinet is available with a Table Top Cover or with Rack Mount Hardware.

DIMENSIONS: . The outside dimensions of the Table Top Model are \(7^{\prime \prime} \times 17^{\prime \prime}\) wide \(x 0^{\prime \prime}\) deep. The Drive Door handles extend \(0.95^{\prime \prime}\) beyond the front plane of the cabinet.

The Rack Mount Version provides for standard ear mounting in a 19" rack. It uses an 8 3/4 " panel space.

APFEARANCE: Both the Table Top and Rack Mount Versions of the Floppy Cabinet are designed to match the respective versions of the IMSAI 8080 cabinets.

POWER AND COOLING: An AC power switch is
provided to serve as the power on/off switch for
up to two drives.

Cooling is accomplished through the use of an inboard fan and cooling vents in the chassis. The cooling system is designed to support the positive pressurization system used in the Model 140 Drive.

EXTERNAL CONNECTIONS: The back panel has provision for mounting two 25 pin \(D\) Type connectors to accomodate a four drive daisy chain system.



IMSAI FLOPPY DISK SYSTEM (without Blue Cover)
\begin{tabular}{|c|c|c|c|}
\hline ITEM & \begin{tabular}{l}
IMSAI \\
PART \#
\end{tabular} & OUANTIT & \\
\hline Screw & 20-3702001 & 4 & 6-32×3/4" Phillips Pan Head Machine \\
\hline Screw & 20-3302001 & 20 & 6-32x5/16" Phillips Pan Head Machine \\
\hline Screw & 20-4506001 & 8 & 8-32x3/8" Phillips Flat Head 100\% Machine \\
\hline Screw & 20-3406001 & 8 & 6-32x3/8' Phillips Flat Head 100\% Machine \\
\hline Nut & 21-3120001 & 4 & 6-32 Hex Nut \\
\hline Lockwasher & 21-3350001 & 4 & \#6 Internal Star Lockwasher \\
\hline Connector & 23-1700003 & 1 & Molex Receptacle, 03-09-1031 \\
\hline Bushing & 24-0600001 & 1 & Strain Relief Bushing \\
\hline Hole Plug & 24-0700001 & 1 & \(\frac{1}{2 \prime \prime}\), Smith 3092 Nylon or 653 Metal \\
\hline Feet & 28-0400001 & 6 & Rubber Feet \\
\hline Foam Tape & 28-0600001 & \(2^{\prime \prime}\) & Foam Tape, \(\frac{1}{2}\) " \(x \frac{1}{4} "\) Thick, Adhesive-Backed, 2 sides \\
\hline Foam Tape & 28-0600002 & 17" & Foam Tape, 5/8"x5/8", Black Closed-cell Neoprene Sponge, 100\% F, Boyd Industrial Rubber Co. SC-41 \\
\hline Fan & 34-0100001 & 1 & \\
\hline Fan Guard & 34-0200001 & 1 & \\
\hline Cable & 91-0400024 & 1 & Cable AB Assembly \\
\hline Cable & 91-0400025 & 1 & Cable AC Assembly \\
\hline Cable & 91-0400026 & 1 & Cable AD Assembly \\
\hline & 93-4020001 & 2 & Floppy Disk System Side Plates, Rev. B \\
\hline & 93-4020002 & 1 & Floppy Disk System Base Stiffener, Rev. B \\
\hline & 93-4020003 & 1 & Floppy Disk System Center Brace \\
\hline & 93-4020004 & 1 & Floppy Disk System Front Brace \\
\hline
\end{tabular}

ITEM
IMSAI
PART \#
QUANTITY DESCRIPTION/IDENTIFYING MARKS
\begin{tabular}{lll} 
93-4020005 & 1 & \begin{tabular}{l} 
Floppy Disk System Painted Front \\
Rail, Rev. B
\end{tabular} \\
\(93-4020006\) & 1 & Floppy Disk System Back Panel, Rev. B \\
\(93-4020007\) & 1 & Floppy Disk System Base Plate, Rev. B
\end{tabular}
() 0 .

Unpack and check all parts against the parts list enclosed with the package.

BACK PANEL ASSEMBLY
() 1.

Insert one end of the \(A C\) Power Cord (CABLE AC) through the \(1 / 2^{\prime \prime}\) hole in the upper left corner of the back panel (viewed from the rear). Verify that the end of CABLE AC with the three Molex pins is on the inside. Pull approximately 6" of cable through the hole and secure in place with one grommet.
() 2.

Assemble the 3 pin Molex socket on the end of CABLE AC as follows. Insert the BLACK wire into the top (pointed end) of the connector body from the rear of the connector. Push until the pin snaps into place.

Insert the GREEN WIRE into the center position of the connector body from the rear of the connector. Push until the pin snaps into place.

Insert the WHITE WIRE into the bottom （square edge）of the connector body from the rear of the connector．Push until the pin snaps into place．
（） 3.
Insert the Power Switch into the 1／4＂ hole in the back panel and fasten with the hardware provided．Note that the Power Switch is connected to CABLE AB and terminates in a Male 2－pin Molex connector．
（ ）4．
Mount the fan on the inside of the back panel and the fan guard on the outside of the back panel using four 非 6 screws， nuts and lockwashers．Verify that the fan is installed with the arrow（Air Flow）pointing OUT of the cabinet and that the fan power connections are toward the right as you face the rear of the back panel．

CHASSIS ASSEMBLY
（） 5 ．
Mount the bottom cross brace to the base plate using six \(⿰ ⿰ 三 丨 ⿰ 丨 三 一\) 6－32 screws．
（） 6 ．
Mount the two side pieces to the baseplate using four 非－32 screws． Orient the side pieces so that their outside faces align with the outside edges of the base plate．

Attach the six rubber feet to the bottom of the base plate．Peel off the protective backing and position the feet equidistant along the right and left edges of the base plate bottom approximately \(1^{\prime \prime}\) from the edge．
（ ） 8.
Draw a line across the width of the base plate，approximately \(1 / 8^{\prime \prime}\) behind the line which intersects the rear edges of the two side pieces．
） 9.
If two drives are to be installed in this cabinet，mount the adhesive backed foam strip along the width of the base plate， directly behind the line drawn in step 8 ．

If one drive is to be installed in this cabinet，cut the adhesive backed foam strip to half the width of the base plate．Mount this strip along the right half of the base plate，directly behind the line drawn in STEP 8.
（） 10 ．
Place one drive into the right side of the cabinet and fasten it to the right side piece with four \(⿰ ⿰ 三 丨 ⿰ 丨 三 一\)－ 32 flat head screws．

If a second drive is to be used，mount it，as above，on the left side of the cabinet，and fasten it to the left side piece with four \(⿰ ⿰ 三 丨 ⿰ 丨 三 一\)－ 32 flat head screws．

If only one drive is to be installed， mount the grey filler panel in the space normally occupied by the face of the second drive．Fasten it to the first drive and to the left side piece with four 非8－32 flathead screws．

Then mount the rear filler piece in the space normally occupied by the rear of the second drive．Attach it to the base plate with one \(⿰ ⿰ 三 丨 ⿰ 丨 三 一\)－ 32 pan head screw． Fasten it to the first drive with one \＃8－32 flathead screw，and to the left side piece with one 非6－32 phillips head flathead screw（TOP）and one 非8－32 flathead screw（BOTTOM）．
（ ） 12 ．
Place the center upper cross piece between the two center tabs of the side pieces，with the flat side facing the front of the cabinet．Insert a foam pad between the cross piece and the center of each floppy drive，and fasten the cross piece to the side pieces with four \＃6－32 flathead screws．Use enough foam so that a reasonable amount of downward pressure is required to mount the cross piece．

Mount the grey filler rail beneath the front of the floppy drives．Fasten it to the front of the base plate with four \＃6－32 pan head screws．

Place the front cross piece and FLB Assembly between the two front tabs of the side piece．Fasten in place with four 非6－32 flat head screws．
( ) 15 .
Mount the two card guides at the right rear of the cabinet. Fasten each card guide with two \#4 screws, positioning the lockwashers between the baseplate and the bottom of the card guide. Verify that the slots in the card guides face each other.
( ) 16 .
Modify the PLO Board as follows: Snap off the two white nylon posts at the TOP of the card (opposite the connectori,end of the card).

Using a nibbling tool, cut away the two bottom corners of the card adjacent to the first and last connector contacts. Cut 1/4" up from the bottom edge, parallel to the connector contacts and cut 3/32" in from the side edge of the board. You will be left with a rectangular cutout on the right and left bottom corners with dimensions 1/4" deep x 3/32" wide.


Identify the two CABLE \(E\) 's in a Dual Drive Kit or the one CABLE E in a Single Drive Kit. CABLE E may be identified by the 25 pin \(D\) Type connector on one end, and 26 pin connector in the middle and on the opposite.end of the cable.

NOTE: In a Dual Drive Kit, one CABLE E is longer than the other.
( ) 18 .
Mount the 25 pin D. Type Connector of CABLE E, (the long CABLE E for a Dual Drive Kit), in the leftmost connector opening in the back panel (viewed from the rear). Verify that the cable extends down towards the bottom of the back panel and fasten with the cable hardware provided.

If this is a Dual Drive Kit, mount the second CABLE E in the remaining connector opening on the right hand side of the back panel (viewed from the rear). Verify that the cable extends down towards the bottom of the back panel and fastens with the cable hardware provided.
( ) 19.
Position the backpanel next to the rear of the cabinet in its proper mounting position. Connect the CABLE E on the left (viewed from the rear) to the Drive on the left and to the FLB as follows.

From the \(D\) Type connector make a 180 degree fold just before the middle 26 pin connector. Attach this connector to J2. (LEFT) of the FPS. Attach the remaining end connector to the FLB board by bringing the cable up over the top surfaces of the Drive.

For a Dual Drive Kit, attach the remaining CABLE \(E\) between the two drives as follows. From the D Type connector make a 180 degree fold just before the middle 26 pin connector. Attach this connector to J3 (RIGHT) on the FPS of the second drive. Bring the cable out towards the rear and make a 90 degree fold to the left. At the point where the cable passes in front of J3 (RIGHT) on the FPS of the first drive make a 90 degree fold towards the rear of the cabinet. Then make a 180 degree fold so that the cable now extends towards J3 on the FPS of the first drive. Make another 180 degree fold just before the last 26 pin connector and insert it into J3 on the FPS of the first drive.
( ) 20 .
Plug the AC power connector (CABLE AC) into the \(A C\) input connector (CABLE \(V\) at J5) on the FPS of the first drive.

If this is a Dual Drive Kit, plug the CABLE \(X\) from the \(F P S\) of the first drive (coming from the board location AC CONT) into the \(A C\) input connector (CABLE \(V\) at J5) on the FPS of the second drive.

Connect CABLE AB from the power switch to the CABLE AE from the FPS of the first drive.
( ) 22.
Connect one end of CAELE AD to the fan power terminals and connect the other end to the remaining CABLE \(X\) on the FPS (from area \(A C\) CONT). This will be on the FPS of the second drive in a Dual Drive Kit.
( ) 23.
Connect one end of CABLE AA to the 8 pin connector at J4 on the FPS of the first drive. Note that the empty position in the 8 . pin connector of cable AA is pin 8 and should go to the pin of J4 farthest from the center of the card. Connect the remaining end to the PLO card, with the lettered side of the connector on the component side of the PLO Board.
( ) 24.
Position the back panel and fasten into place with four \#6-32 screws.

TABLE TOP COVER INSTALLATION
( ) 25 .
After testing, position the Tabletop cover and fasten into place with six \#6-32 screws. Assembly is now complete.
( ) 26.
After testing, position the two side rails so that the front panel will line up with the front surface of the side pieces. Fasten each rail to the chassis with three 非6-32 screws.
( ) 27 .
Mount the unit in the rack using standard flat head screws on the front ears. It is desireable to secure the rear of the side rails to a point in the back of the rack.
( ) 28.
Install the grey bezel and fasten it to the rack using four screws. Assembly is now complete.



FEMALE PINS MOLEX 02-09-1118 TYP. FOR 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{tolerances unless OTHERWISE SPECIFIED fractions dec angles \(\pm \quad \pm \quad \pm\)}} & \multicolumn{5}{|c|}{IMSAI MFG. CORP. SAN LEANDRO, CA.} \\
\hline & & & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{FLOPPY DISK SYSTEM CABLE AC}} \\
\hline & APPROVALS & DATE & & & & & \\
\hline & \({ }^{\text {DRAWN }}\) PRU & 2/1/77 & \multicolumn{2}{|l|}{} & \multicolumn{2}{|r|}{ASSEMBLY} & 91-0400025 \\
\hline & \[
\begin{aligned}
& \text { CHECKED } \\
& \text { O. Cunerl }
\end{aligned}
\] & \(2 / 2 / 77\) & SCALE & & SIZE & \multicolumn{2}{|l|}{DRAWING NO.} \\
\hline & & & \multicolumn{4}{|r|}{DO NOT SCALE DRAWING} & SHEET \\
\hline
\end{tabular}
(B) BISHIOP GRAPHICS, INC.
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{c|}{ REVISIONS } \\
\hline DESCRIPTION & DATE & APPROVED \\
\hline 0 & ORIGINAL & \(2 / 1 / 77\) & PRU \\
\hline
\end{tabular}






INSERTA
FOLDING THE INTER-DRIVE SIGNAL CABLE



(7)




\section*{APPENDIX A}

\section*{CALCOMP}

140 FLOPPY DISK DRIVE
OEM REFERENCE MANUAL

\section*{1975 EDITION}

The following 50 pages is reproduced with the kind permission of California Computer Products, Inc., Anaheim, California.```

