" FIFTH GENERATION
 COMPUTER SYSTEMS 1992

 Edited by
| Instltuta for New Genaratmn

~ Computer Technolonv (ICOT] '
. fVqume s |

Ohmshaltd 1OS Press

COMPUTER SYSTEMS 1992

Edited by
Institute for New Generation
Computer Technology (ICOT)

Volume 2

Ohmsha,Ltd. IOS Press

FIFTH GENERATION COMPUTER SYSTEMS 1992

Copyright © 1992 by Institute for New Generation Computer Technology

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted, in any form or by any means, electronic, mechanical, recording or
otherwise, without the prior permission of the copyright owner.

ISBN 4-274-07724-1 (Ohmsha)
ISBN 90-5199-099-5 (IOS Press)

Library of Congress Catalog Card Number: 92-073166

Published and distributed in Japan by
Ohmsha, Ltd.
3-1 Kanda Nishiki-cho, Chiyoda-ku, Tokyo 101, Japan

Distributed in North America by
I0S Press, Inc.
Postal Drawer 10558, Burke, VA 22009-0558, U.S.A.

United Kingdom by
10S Press
73 Lime Walk, Headington, Oxford OX3 7AD, England

Europe and the rest of the world by
I0S Press
Van Diemenstraat 94, 1013 CN Amsterdam, Netherlands

Far East jointly by
Ohmsha, Ltd., I0S Press

Printed in Japan

iii

CONTENTS OF VOLUME 1
PLENARY SESSIONS

Keynote Speech

Launching the New Era
Kazuhiro Fuchi 3

General Report on ICOT Research and Development
Overview of the Ten Years of the FGCS Project

Takashi Kurozumi o i i e e e e e e e 9
Summary of Basic Research Activities of the FGCS Project

Koichi Furukawa e e e e e 20
Summary of the Parallel Inference Machine and its Basic Software

Shunichi Uchida e 33

Report on ICOT Research Results
Parallel Inference Machine PIM

Cazuo Taki o e 50
Operating System PIMOS and Kernel Language KL1
Takashi Chikayama e e e 73

Towards an Integrated Knowledge-Base Management System: Overview of R&D on
Databases and Knowledge-Bases in the FGCS Project

Kazumasa Yokota and Hideki Yasukawa 89
Constraint Logic Programming System: CAL, GDCC and Their Constraint Solvers

Akira Aiba and Ryuzo Hasegawa 113
Parallel Theorem Provers and Their Applications

Ryuzo Hasegawa and Masayuki Fujita 132
Natural Language Processing Software

Yuichi Tanaka i e 155
Experimental Parallel Inference Software

Katsumi Nitta, Kazuo Taki and Nobuyuki Ichiyoshi 166

Invited Lectures
Formalism vs. Conceptualism: Interfaces between Classical Software Development Techniques
and Knowledge Engineering

Dines BIgrner e e e 191
The Role of Logic in Computer Science and Artificial Intelligence ‘

JoALRODINSON . . . o e e e e e 199
Programs are Predicates

C.A R Hoare i e 211

Panel Discussion: A Springboard for Information Processing in the 21st Century
PANEL: A Springboard for Information Processing in the 21st Century

Robert A. Kowalski (Chairman)t 219
Finding the Best Route for Logic Programming

Hervé Gallaire e e 220
The Role of Logic Programming in the 21st Century

Ross Overbeek e 223
Object-Based Versus Logic Programming

Peter Wegner e 225

Concurrent Logic Programming as a Basis for Large-Scale Knowledge Information Processing
Koichi Furukawa o 230

v

Knowledge Information Processing in the 21st Century
Shunichi Uchida e e

ICOT SESSIONS

Parallel VLSI-CAD and KBM Systems
LSI-CAD Programs on Parallel Inference Machine
Hiroshi Date, Yukinori Matsumoto, Kouichi Kimura, Kazuo Taki, Hiroo Kato and
Masahiro Hoshi« o oo e e e
Parallel Database Management System: Kappa-P
Moto Kawamura, Hiroyuki Sato, Kazutomo Naganuma and Kazumasa Yokota
Objects, Properties, and Modules in QuzxoTe
Hideki Yasukawa, Hiroshi Tsuda and Kazumasa Yokota

Parallel Operating System, PIMOS
Resource Management Mechanism of PIMOS

Hiroshi Yashiro, Tetsuro Fujise, Takashi Chikayama, Masahiro Matsuo, Atsushi Hori

and Kumiko Wada o e
The Design of the PIMOS File System

Fumihide Itoh, Takashi Chikayama, Takeshi Mori, Masaki Sato, Tatsuo Kato and

Tadashi Sato o v i e e e
ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems

Seiichi Aikawa, Mayumi Kamiko, Hideyuki Kubo, Fumiko Matsuzawa and

Takashi Chikayama 0o it e e e e e e

Genetic Information Processing
Protein Sequence Analysis by Parallel Inference Machine

Masato Ishikawa, Masaki Hoshida, Makoto Hirosawa, Tomoyuki Toya, Kentaro Onizuka

and Katsumi Nitta 0 o e e
Folding Simulation using Temperature Parallel Simulated Annealing

Makoto Hirosawa, Richard J. Feldmann, David Rawn, Masato Ishikawa, Masaki Hoshida

and George Michaels e
Toward a Human Genome Encyclopedia

Kaoru Yoshida, Cassandra Smith, Toni Kazic, George Michaels, Ron Taylor,

David Zawada, Ray Hagstrom and Ross Overbeek
Integrated System for Protein Information Processing

Hidetoshi Tanaka e e

Constraint Logic Programming and Parallel Theorem Proving
Parallel Constraint Logic Programming Language GDCC and its Parallel Constraint Solvers
Satoshi Terasaki, David J. Hawley, Hiroyuki Sawada, Ken Satoh, Satoshi Menju,
Taro Kawagishi, Noboru Iwayama and Akira Aiba,
cu-Prolog for Constraint-Based Grammar
Hiroshi Tsuda e
Model Generation Theorem Provers on a Parallel Inference Machine
Masayuki Fujita, Ryuzo Hasegawa, Miyuki Koshimura and Hiroshi Fujita

Natural Language Processing
On a Grammar Formalism, Knowledge Bases and Tools for Natural Language Processing in
Logic Programming

Hiroshi Sano and Fumiyo Fukumoto

Argument Text Generation System (Dulcinea)

Teruo Ikeda, Akira Kotani, Kaoru Hagiwara and Yukihiro Kubo 385
Situated Inference of Temporal Information

Satoshi Tojo and Hideki Yasukawa 395
A Parallel Cooperation Model for Natural Language Processing

Shigeichiro Yamasaki, Michiko Turuta, Ikuko Nagasawa and Kenji Sugiyama 405

Parallel Inference Machine (PIM)
Architecture and Implementation of PIM/p

Kouichi Kumon, Akira Asato, Susumu Arai, Tsuyoshi Shinogi, Akira Hattori,

Hiroyoshi Hatazawa and Kiyoshi Hirano, 414
Architecture and Implementation of PIM/m

Hiroshi Nakashima, Katsuto Nakajima, Seiichi Kondo, Yasutaka Takeda, Yu Inamura,

Satoshi Onishi and Kanae Masuda 425
Parallel and Distributed Implementation of Concurrent Logic Programming Language KL1

Keiji Hirata, Reki Yamamoto, Akira Imai, Hideo Kawai, Kiyoshi Hirano,

Tsuneyoshi Takagi, Kazuo Taki, Akihiko Nakase and Kazuaki Rokusawa 436

Author Index o i

CONTENTS OF VOLUME 2

FOUNDATIONS

Reasoning about Programs
Logic Program Synthesis from First Order Logic Specifications

Tadashi Kawamura it e e e e e e e e e 463
Sound and Complete Partial Deduction with Unfolding Based on Well-Founded Measures
Bern Martens, Danny De Schreye and Maurice Bruynooghe 473

A Framework for Analyzing the Termination of Definite Logic Programs with respect to Call
Patterns

Danny De Schreye, Kristof Verschaetse and Maurice Bruynooghe 481
Automatic Verification of GHC-Programs: Termination

Lutz Plimer 489
Analogy
Analogical Generalization

Takenao Ohkawa, Toshiaki Mori, Noboru Babaguchi and Yoshikazu Tezuka 497
Logical Structure of Analogy: Preliminary Report

Jun Arima L e 505

Abduction (1)
Consistency-Based and Abductive Diagnoses as Generalised Stable Models

Chris Preist and Kave Eshghi i e 514
A Forward-Chaining Hypothetical Reasoner Based on Upside-Down Meta-Interpretation

Yoshihiko Ohta and Katsumi Inoue 522
Logic Programming, Abduction and Probability

David Poole e e 530

Abduction (2)
Abduction in Logic Programming with Equality

P. T. Cox, E. Knill and T. Pietrzykowski 539
Hypothetico-Deductive Reasoning

Chris Evans and Antonios C. Kakas 546
Acyclic Disjunctive Logic Programs with Abductive Procedures as Proof Procedure

Phan Minh Dung e e 555

Semantics of Logic Programs
Adding Closed World Assumptions to Well Founded Semantics

Luis Moniz Pereira, José J. Alferes and Joaquim N. Aparicio 562
Contributions to the Semantics of Open Logic Programs

A. Bossi, M. Gabbrielli, G. Leviand M. C. Meo 570
A Generalized Semantics for Constraint Logic Programs

Roberto Giacobazzi, Saumya K. Debray and Giorgio Levi 581
Extended Well-Founded Semantics for Paraconsistent Logic Prograins

Chiaki Sakama 592

Invited Paper
Formalizing Database Evolution in the Situation Calculus

Raymond Reiter e e e 600

viii

Machine Learning
Learning Missing Clauses by Inverse Resolution

Peter Idestam-Almquist e e 610
A Machine Discovery from Amino Acid Sequences by Decision Trees over Regular Patterns

Setsuo Arikawa, Satoru Kuhara, Satoru Miyano, Yasuhito Mukouchi, Ayumi Shinohara

and Takeshi Shinohara 618
Efficient Induction of Version Spaces through Constrained Language Shift
Claudio Carpieto v v i i e e e e e e 626

Theorem Proving _
Theorem Proving Engine and Strategy Description Language

Massimo Bruschi e 634
A New Algorithm for Subsumption Test

Byeong Man Kim, Sang Ho Lee, Seung Ryoul Maeng and Jung Wan Cho 643
On the Duality of Abduction and Model Generation

Marc Denecker and Danny De Schreye e 650

Functional Programming and Constructive Logic
Defining Concurrent Processes Constructively

Yukihide Takayama 0 e e e 658
Realizability Interpretation of Coinductive Definitions and Program Synthesis with Streams

Makoto Tatsuta e e e 666
MLOG: A Strongly Typed Confluent Functional Language with Logical Variables

Vincent Poirriez e 674
A New Perspective on Integrating Functional and Logic Languages

John Darlington, Yi-ke Guo and Helen Pull 682

Temporal Reasoning
A Mechanism for Reasoning about Time and Belief

Hideki Isozaki and Yoav Shohamt 694
Dealing with Time Granularity in the Event Calculus
Angelo Montanari, Enrico Maim, Emanuele Ciapessoni and Elena Ratto 702

ARCHITECTURES & SOFTWARE

Hardware Architecture and Evaluation
UNIRED II: The High Performance Inference Processor for the Parallel Inference Machine
PIE64
Kentaro Shimada, Hanpei Koike and Hidehiko Tanaka 715
Hardware Implementation of Dynamic Load Balancing in the Parallel Inference Machine
PIM/c

T. Nakagawa, N. Ido, T. Tarui, M. Asaie and M. Sugie 723
Evaluation of the EM-4 Highly Parallel Computer using a Game Tree Searching Problem

Yuetsu Kodama, Shuichi Sakai and Yoshinori Yamaguchi 731
OR-Parallel Speedups in a Knowledge Based System: on Muse and Aurora

Khayri A. M. Ali and Roland Karlsson i 739

Invited Paper
A Universal Parallel Computer Architecture
William J. Dally

AND-Parallelism and OR-Parallelism
An Automatic Translation Scheme from Prolog to the Andorra Kernel Language

Francisco Bueno and Manuel Hermenegildo 759
Recomputation based Implementations of And-Or Parallel Prolog

Gopal Gupta and Manuel V. Hermenegildo 770
Estimating the Inherent Parallelism in Prolog Programs

David C. Sehr and Laxmikant V. Kalé 783

Implementation Techniques
Implementing Streams on Parallel Machines with Distributed Memory
Koichi Konishi, Tsutomu Maruyama, Akihiko Konagaya, Kaoru Yoshida and

Takashi Chikayama i 791
Message-Oriented Parallel Implementation of Moded Flat GHC

Kazunori Ueda and Masao Morita i 799
Towards an Efficient Compile-Time Granularity Analysis Algorithm

X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A. V. S. Sastry and R. Sundararajan 809
Providing Iteration and Concurrency in Logic Programs through Bounded Quantifications

Jonas Barklund and Hakan Millroth 817

Extension of Logic Programming
An Implementation for a Higher Level Logic Programming Language

Anthony S. K. Cheng and Ross A. Paterson 0., 825
Implementing Prolog Extensions: a Parallel Inference Machine

Jean-Marc Alliot, Andreas Herzig and Mamede Lima-Marques 833
Parallel Constraint Solving in Andorra-I

Steve Gregory and Rong Yang 843
A Parallel Execution of Functional Logic Language with Lazy Evaluation

Jong H. Nang, D. W. Shin, S. R. Maeng and Jung W. Cho 851

Task Scheduling and Load Analysis
Self-Organizing Task Scheduling for Parallel Execution of Logic Programs

Zheng Lin 859
Asymptotic Load Balance of Distributed Hash Tables

Nobuyuki Ichiyoshi and Kouichi Kimurao v v v vt it e e e 869
Concurrency
Constructing and Collapsing a Reflective Tower in Reflective Guarded Horn Clauses

Jiro Tanaka and Fumio Matono S 877
CHARM: Concurrency and Hiding in an Abstract Rewriting Machine

Andrea Corradini, Ugo Montanari and Francesca Rossi 887
Less Abstract Semantics for Abstract Interpretation of FGHC Programs

Kenji Horiuchi e e e e 897

Databases and Distributed Systems
Parallel Optimization and Execution of Large Join Queries

Eileen Tien Lin, Edward Omiecinski and Sudhakar Yalamanchili 907
Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases
Alexandre Lefebvre e B 915

A Distributed Programming Environment based on Logic Tuple Spaces
Paolo Ciancarini and David Gelernter 926

Programming Environment
Visualizing Parallel Logic Programs with VISTA

E. Tick 934
Concurrent Constraint Programs to Parse and Animate Pictures of Concurrent Constraint
Programs

Kenneth M. Kahn e 943
Logic Programs with Inheritance

Yaron Goldberg, William Silverman and Ehud Shapiro 951
Implementing a Process Oriented Debugger with Reflection and Program Transformation

Munenori Maeda e e 961

Production Systems
A New Parallelization Method for Production Systems
E. Bahr, F. Barachini and H. Mistelberger 969
Performance Evaluation of the Multiple Root Nodé Approach to the Rete Pattern Matcher
for Production Systems
Andrew Sohn and Jean-Luc Gaudiot 977

APPLICATIONS & SOCIAL IMPACTS

Constraint Logic Programming
Output in CLP(R)

Joxan Jaffar, Michael J. Maher, Peter J. Stuckey and Roland H. C. Yap 987
Adapting CLP(R) to Floating-Point Arithmetic

J H M.Leeand M. H. van Emden it 996
Domain Independent Propagation

Thierry Le Provost and Mark Wallace S 1004
A Feature-Based Constraint System for Logic Programming with Entailment

Hassan ‘Ait-Kaci, Andreas Podelski and Gert Smolka 1012

Qualitative Reasoning
Range Determination of Design Parameters by Qualitative Reasoning and its Application to
Electronic Circuits

Masaru Ohki, Eiji Oohira, Hiroshi Shinjo and Masahiro Abe 1022
Logical Implementation of Dynamical Models
Yoshiteru Ishida« o e 1030

Knowledge Representation
The CLASSIC Knowledge Representation System or, KL-ONE: The Next Generation
Ronald J. Brachman, Alexander Borgida, Deborah L. McGuinness, Peter F. Patel-

Schneider and Lori Alperin Resnick i e 1036
Morphe: A Constraint-Based Object-Oriented Language Supporting Situated Knowledge

Shigeru Watari, Yasuaki Honda and Mario Tokoro 1044
On the Evolution of Objects in a Logic Programming Framework

F. Nihan Kesim and Marek Sergot e 1052

Panel Discussion: Future Direction of Next Generation Applications
The Panel on a Future Direction of New Generation Applications

Fumio Mizoguchi o e e e e 1061
Knowledge Representation Theory Meets Reality: Some Brief Lessons from the CLASSIC
Experience

Ronald J. Brachman e 1063

Reasoning with Constraints

Catherine Lassezot i e e e
Developments in Inductive Logic Programming

Stephen Muggleton e
Towards the General-Purpose Parallel Processing System

Kazuo Taki e

Knowledge-Based Systems
A Hybrid Reasoning System for Expla{ining Mistakes in Chinese Writing

Jacqueline Castaing oo i e e e
Automatic Generation of a Domain Specific Inference Program for Building a Knowledge
Processing System

Takayasu Kasahara, Naoyuki Yamada, Yasuhiro Kobayashi, Katsuyuki Yoshino and

Kikuo Yoshimura oo i it i i e e e e e
Knowledge-Based Functional Testing for Large Software Systems

Uwe Nonnenmann and John K. Eddy e it i
A Diagnostic and Control Expert System Based on a Plant Model

Junzo Suzuki, Chiho Konuma, Mikito Iwamasa, Naomichi Sueda, Shigeru Mochiji and

Akimoto Kamiya e

Legal Reasoning
A Semiformal Metatheory for Fragmentary and Multilayered Knowledge as an Interactive
Metalogic Program
Andreas Hamfelt and Ake Hanssono ...
HELIC-II: A Legal Reasoning System on the Parallel Inference Machine
Katsumi Nitta, Yoshihisa Ohtake, Shigeru Maeda, Masayuki Ono, Hiroshi Ohsaki and
Kiyokazu Sakane e

Natural Language Processing
Chart Parsers as Proof Procedures for Fixed-Mode Logic Programs

David A. Rosenblueth e
A Discourse Structure Analyzer for Japanese Text

K. Sumita, K. Ono, T. Chino, T. Ukita and 5. Amano
Dynamics of Symbol Systems: An Integrated Architecture of Cognition

Kéiti Hasidao e e

Knowledge Support Systems
Mental Ergonomics as Basis for New-Generation Computer Systems

M. H.van Emden e
An Integrated Knowledge Support System

B. R. Gaines, M. Linster and M. L. G. Shaw
Modeling the Generational Infrastructure of Information Technology

B.R. Gainesot e e

Parallel Applications
Co-HLEX: Co-operative Recursive LSI Layout Problem Solver on Japan’s Fifth Generation
Parallel Inference Machine

Toshinori Watanabe and Keiko Komatsu
A Cooperative Logic Design Expert System on a Multiprocessor

Yoriko Minoda, Shuho Sawada, Yuka Takizawa, Fumihiro Maruyama and

Nobuaki Kawato
A Parallel Inductive Learning Algorithm for Adaptive Diagnosis

Yoichiro Nakakuki, Yoshiyuki Koseki and Midori Tanaka

Xi

xii

Parallel Logic Simulator based on Time Warp and its Evaluation
Yukinori Matsumoto and Kazuo Taki

................................. 1198
Invited Paper
Applications of Machine Learning: Towards Knowledge Synthesis

Ivan Bratko e e 1207

Author Index

FOUNDATIONS

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

463

Logic Program Synthesis from First Order Logic
Specifications

Tadashi KAWAMURA
Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan
tkawamur@icot.or.jp

Abstract

In this paper, a logic program synthesis method from first
order logic specifications is described. The specifications
are described by Horn clauses extended by universally
quantified implicational formulae. Those formulae are
transformed into definite clause programs by meaning-
preserving unfold/fold transformation. We show some
classes of first order formulae which can be successfully
transformed into definite clauses automatically by un-
fold/fold transformation.

1 Introduction

Logic program synthesis based on unfold/fold transfor-
mation [1] is a standard method and has been investi-
gated by many researchers [2, 3, 5, 6, 11, 12, 19]. As
for the correctness of unfold/fold rules in logic program-
ming, Tamaki and Sato proposed meaning-preserving
unfold/fold rules for definite clause programs [20]. Then,
Kanamori and Horiuchi proposed unfold/fold rules for a
class of first order formulae [7]. Recently, Sato proposed
unfold/fold rules for full first order formulae [18].

In the studies of program synthesis, unfold/fold rules
are used to eliminate quantifiers by folding to obtain def-
inite clause programs from first order formulae. How-
ever, in most of those studies, unfold/fold rules were ap-
plied nondeterministically and general methods to derive
definite clauses were not known. Recently, Dayantis [3]
showed a deterministic method to derive logic programs
from a class of first order formulae. Sato and Tamaki [19]
also showed a deterministic method by incorporating the
concept of continuation.

This paper shows another characterization of classes of
first order formulae from which definite clause programs
can be derived automatically. Those formulae are de-
scribed by Horn clauses extended by universally quanti-
fied implicational formulae. As for transformation rules,
Kanamori and Horiuchi’s unfold/fold rules are adopted.
A synthesis procedure based on unfold/fold rules is given,
and with some syntactic restrictions, those formulae are
successfully transformed into equivalent definite clause
programs. This study is also an extension of those by

Pettorossi and Proietti {14, 15, 16] on logic program
transformations.

The rest of this paper is organized as follows. Section
2 describes unfold/fold rules and formalizes the synthesis
process. Section 3 describes a program synthesis proce-
dure and proves that definite clause programs can be suc-
cessfully derived from some classes of first order formulae
using this procedure. Section 4 discusses the relations to
other works and Section 5 gives a conclusion.

In the following, familiarity with the basic terminolo-
gies of logic programming is assumed[13]. As syntactical
variables, X,Y, Z,U,V are used for variables, A, B, H
for atoms and F,G for formulae, possibly with primes
and subscripts. In addition, 6 is used for a substitution,
F6 for the formula obtained from formula F' by applying
substitution 8, X for a vector of variables and Fg[G'] for

replacement of an occurrence of subformula G of formula
F with formula G'.

2 Unfold/Fold Transformation
for Logic Program Synthesis

In this section, preliminary notions of our logic program
synthesis are shown.

2.1 Preliminaries

Preliminary notions are described first.

A formula is called an implicational goal when it is of
the form Fy — F,, where F; and F;, are conjunctions of
atoms.

Definition 2.1 Definite Formula

Formula C is called a definite formula when C is of
the form

A= G AGy A NGy(n>0),

where G; is a (possibly universally quantified) conjunc-
tion of implicational goals for 1 = 1,2,...,n. A is called
the head of C, Gy AGy A ... A G, is called the body of
C and each G; is called a goal in the body of C.

464

Note that the notion of a definite formula is a restricted
form of that in [7].

A set of definite formulae is called a definite formula
program, while a set of definite clauses is called a definite
clause program. We may simply say programs instead of
definite formula (or clause) programs when it is obvious
to which we are referring.

Definition 2.2 Definition Formula

Let P be a definite formula program. A definite for-
mula D is called a definition formula for P when all the
predicates appearing in D’s body are defined by definite
clauses in P and the predicate of D’s head does not ap-
pear in P. The predicate of D’s head is called a new
predicate, while those defined by definite clauses in P
are old predicates. A set of formulae D is called a defi-
nition formula set for P when every element D of D is
a definition formula for P and the predicate of D’s head
appears only once in D.

Atoms with new predicates are called new atoms, while
those with old predicates are called old atoms.

2.2 Unfold/Fold Transformation

In this subsection, unfold/fold transformation rules are
shown following [7]. Below, we assume that the logical
constant true implicitly appears in the body of every unit
clause. Further, we assume that a goal is always deleted
from the body of a definite formula when it is the logical
constant true, and a definite formula is always deleted
when some goal in its body is the logical constant false.

Further, we introduce the reduction of implicational
goals with logical constant true and false, such as
—true = false,true A F = F, and so on. (See [7] for
details.) Let G be an implicational goal. The reduced
form of G, denoted by G |, is the normal form in the
above reduction system.

Variables not quantified in formula F' are called global
variables of F'. Atoms appearing positively (negatively)
in formula F' are called positive (negative) atoms of F.

Definition 2.3 Positive Unfolding

Let P; be a program, C be a definite formula in P;,
@ be a goal in the body of C' and A be a positive old
atom of G containing no universally quantified variable.
Then, let Go be Ga[false] | and C}, be the definite for-
mula obtained from C' by replacing G with G,. Further,
let C1,Cs,...,C be all the definite clauses in P; whose
heads are unifiable with A, say by mgu’s 6,,6,,..., 0.
Let G; be the reduced form of G after replacing A6; in
G8; with the body of C;6;, and C be the definite formula
obtained from C0; by replacing G§; in the body with G;.
(New variables introduced from C; are global variables
of G;.) Then, Piy; = (P, — {CH U {C;,C1,C,...,CrL
Cs, C1,Ch, ..., Cy are called the results of positive un-
folding C at A (or G). '

Example 2.1 Let P be a definite clause program as fol-
lows :
Cy : List([]).
Cs : list([X|L]) « list(L).
Cs: 0 < suc(Y).
Cy = suc(X) < suc(Y) — X < Y.
Cs : member(U,[U|L}).
Cs : member(U,[V|L]) « member(U,L).
Let C7 be a definition formula for P as follows :
Cr : less-than-all(X,L) «~ :
list(L) A V Y(member(Y,L) — X<Y).
Suppose that Py = P U {C7}. Then, by unfolding C; at
list(L), program P; = P U {Cs, Cs} is obtained, where
Cs : less-than-all(X,[]) — V Y(member(Y,[]) — X<Y).
Co : less-than-all(X,[Z|L]) «
list(L) A ¥V Y(member(Y,{Z|L]) — X<Y).

Before showing the negative unfolding rule, we intro-
duce the notion of terminating atoms. Intuitively, atom
A is terminating when every derivation path of A is fi-
nite. See [7] for the precise definition.

Definition 2.4 Negative Unfolding

* Let P; be a program, C be a definite formula in P;,, G
be a goal in the body of C' and A be a negative old atom
of G such that every atom obtained from A by instanti-
ating all global variables in A to ground is terminating.
Let Cy,C,,...,Cy be all the definite clauses in P; whose
heads are unifiable with A, say by mgu’s 6,,0,,..., 6k,
where §; instantiates no global variable in G. Let Gy be
Galfalse] | and G; be the reduced form of GO; after re-
placing Af; in GO; with the body of C;0;. (New variables
introduced from C; are universally quantified variables in
Gi.) Let C' be the definite formula obtained from C by
replacing G in the body of C' with Go A G1 A ... A Gy.
Then, Py = (P, — {C}) U{C'}. C’ is called the results
of negative unfolding C' at A (or G).

Example 2.2 Let P and P; be programs in Exam-
ple 2.1. By unfolding Cs at member(X,[]), P, = P U
{Cy, C1o} is obtained, where
Cio ® less-than-all(X,[]) « VY (false = X <Y) |.
that is,
Cro: less-than-all(X,[]).
Further, by unfolding Cy at member(X,[Z|L]), Ps = P U
{C10,C11} is obtained, where
Ci1 : less-than-all(X,[Z|L]) « list(L) A
Y Y(false — X<Y)| A
V Y(true — X<Z)| A
V'Y (member(Y,L) — X<Y)|.
that is,
Ch : less-than-all(X,[Z|L]) « list(L) A
X <ZAVY (member(Y,L) - X <Y).

Definition 2.5 Folding
Let P; be a definite formula program, C be a definite
formula in P; of the form A « K AL and D be a definite

formula of the form B « K’, where K,K' and L are
conjunctions of goals. Suppose that there exists a sub-
stitution & such that K'0 = K holds. Let C’ be a clause
of the form A « B, L. Then P41 = (P, —{C}HU{C'}.

Note that when applying folding, some conditions have
to be satisfied to preserve the meanings of programs. See
[7] for details.

Example 2.3 Let P and P; be programs in Exam-
ple 2.2. By folding Cy; by C7, Py = P U {Cyo,C12} is
obtained, where
Ciz : less-than-all(X,[Y|L])
X < Y A less-than-all(X,L)

2.3 Program Synthesis by Unfold /Fold
Transformation

In this subsection, our program synthesis problem is for-
malized. Firstly, several notions are defined to formalize
the program synthesis processes.

Definition 2.6 Descendant and Ancestor Formula
Let P be a definite formula program, C be a definite
formula in P and P’ be a definite formula program ob-
tained from P by successively applying positive or nega-
tive unfolding to P. A definite formula C’ in P’ is called
a descendant formula of C when
(a) C'isidentical to C, or
(b) C' is the result of positive or negative unfolding of
a descendant formula of C.
Conversely, C is called an ancestor formula of C'.

Example 2.4 In Examples 2.1 — 2.3, definite formulae
Cy,Cs,...,Cy; are descendant formulae of C-.

Definition 2.7 U-selection Rule

A rule that determines what transformation should be
applied to a definite formula program is called a selection
rule. Let P be a definite formula program and C be a
definite formula in P. A selection rule R is called a U-
selection rule for P rooted on C when R always selects
positive or negative unfolding applied to a descendant
formula of C. C is called the root formula for R (or
of the transformation.) A definite formula program ob-
tained from P by successively applying transformation
rules according to R is called a definite formula program
obtained from P via R.

Definition 2.8 Closed Program

Let P be a definite clause program, C be a definition
formula for P, D be a definition formula set for P and R
be a U-selection rule for PU{C?} rooted on C. Let P’ be
a definite formula program obtained from PU{C} via R.
P’ is said to be closed with respect to triple < P,C,D >
when every descendant formula C' of C in P’ satisfies
one of the following:

465

(a) C'is a definite clause.

(b) There exists a goal G consisting of positive atoms
only in the body of C’ such that an old atom in G is
not unifiable with the head of any definite clause in P’.

(c) By successively folding C' by clauses in {C}UD, a
definite clause can be obtained.

PU{C} is said to be closed with respect to D when there

exists a closed program with respect to < P,C,D > and

for every definition formula D in D there exists a closed
program with respect to < P,D, DU {C} >.

Example 2.5 Let P and P; be programs in Exam-
ple 2.2. Then, P; is closed w.r.t. < P,C7, 0 >. Further,
PU{Cy} is closed w.r.t. 0.

The above framework is an extension of the one shown
in [8], and also a modification of the one Pettorossi and
Proietti proposed [14, 15, 16] in their studies of program
transformation.

Now, our problem can be formalized as follows: for
given definite clause program P and definition formula
C for P, find a finite definition formula set D for P such
that P U {C} is closed with respect to D.

3 Some Classes of First Order
Formulae from Which Logic
Programs Can Be Derived

In this section, we specify some classes of first order for-
mulae from which definite clause programs can be de-
rived by unfold/fold transformation.

3.1 A Program Synthesis Procedure

In this subsection, we show a naive program synthesis
procedure. In the following, we borrow some notions
about programs in [15, 16]. We consider definite formula
(clause) programs with predicate =, which have no ex-
plicit definition in the programs. Predicate = is called
a base predicate, while other predicates are called de-
fined predicates. Atoms with base predicates are called
base atoms, while those with defined predicates are called
defined atoms. Transformation rules can be applied to
defined atoms only.

A formula containing base atoms can be reduced by
unifying arguments of =. When a universally quanti-
fied variable and a global variable are unified, the global
variable is substituted for the universal one. The above
reduction is called the reduction with respect to =. We
assume that no formulae are reduced w.r.t. = unless this
is explicitly mentioned.

Further, we assume that the following operations are
always applied implicitly to the results of positive or neg-
ative unfolding. Goals G is said to be connected when
at most one universally quantified implicational goal G’

466

appears in G and each atom in G’ has common univer-
- sally quantified variables with at least one another atom
in G'. Let C be a definite formula such that all the goals
in its body are connected. Let C’ be one of the results of
positive or negative unfolding C at some goal. By logical
deduction, definite formulae Cy,Cj,...,Ch.(m > 1) are
obtained from C’ such that all the goals in the body of
C! are connected. (Note that some goal G in the body of
C’ is of the form Fy — F, or F; V F; and no universally
quantified variables appear in both F; and F, C’' can be
split into two formulae by replacing G' in C' with —F;
(or) and Fy.)
Before showing our program synthesis procedure, a no-
tion is defined.

Definition 3.1 Sound Unfolding

Suppose that positive or negative unfolding is applied
to a definite formula at atom A. Then, the application
of unfolding is said to be sound when no two distinct
universally quantified variables in A are unified when
reducing the result of unfolding with respect to =.

Some syntactic restrictions on programs ensure the
soundness of all possible applications of unfolding. In
fact, the restriction shown in [3] ensures the soundness.
However, in the following, we assume that every applica-
tion of unfolding is sound, without giving any syntactic
restriction, for simplicity.

Now, we show our program synthesis procedure, which
is similar to partial evaluation procedures(cf.[9, 10]).
First, a procedure to synthesize new predicates is shown.

Procedure 3.1 Synthesis of New Predicates

Suppose that definite formula program P and definite
formula C in P of the form A « G1,G,,...,G, are
given. Let G} be the reduced formula obtained from G;
by removing all base atoms and by replacing all univer-
sally quantified variables appearing in every base atom
with distinct fresh global variables if global variables are
substituted for them when reducing G; w.r.t. =. Let D;
be of the form H; « G} for i = 1,2,...,n, where H; is
an atom whose predicate does not appear in P or Hj; for
¢ # j and whose arguments are all global variables of C
appearing in G. Then, Dy, D,,...,D, are returned.

Note that in Procedure 3.1, C' can be folded by
D1, D,,...,D, after reducing it w.r.t. = when C is the
result of sound unfolding, and the result of the folding is
a definite clause.

Example 3.1 Let P be a program as follows.
Cy : all-less-than(L,M) « list(L) A list(M) A
VU,V (member(U,L) A member(V,M) — U < V).
C5 : member(U,[V|X]) « U= V.
Cs : member(U,[V|X]) < member(U,X).
The definition of ‘<’ is given in Example 2.1. Suppose
that C’s body consists of only one goal. By applying

positive unfolding and negative unfolding to C succes-
sively, the following formulae are obtained. (The reduc-
tion w.r.t. = is done when no universally quantified vari-
able appears as an argument of =.)
Cy : all-less-than([},M) « list(M).
Cs : all-less-than([X|L],M) « (list(L) A list(M)) A
(List(L) A list(M) A
VU,V (U= X A member(V,M) - U < V)) A
(list(L) A List(M) A
VU,V (member(U,L)Amember(V,M) — U < V)).
Then, by Procedure 3.1, the following new predicates are
defined from Cs.
D : newl(X,L,M) « list(L) A list(M) A -
¥V V (member(V,M) — X < V).
D, : new2(L,M) « list(L) A list(M) A
VU,V (member(U,L) A member(V,M) — U < V).

Next, the whole procedure for program synthesis is
shown.

Procedure 3.2 A Program Synthesis Procedure
Suppose that definite clause program P and definition
formula C for P are given. Let D be the set {C}.

(a) I there exist no unmarked formulae in D, then re-
turn P and stop.

(b) Select an unmarked definition formula D from D.
Mark D ‘selected.” Let P’ be the set {D}.

(c) If there exist no formulae in P’ which do not satisfy
conditions (a) and (b) in Definition 2.8, then P :=
P U P and go to (a).

(d) Select a definite formula C’ from P’. Apply positive
or negative unfolding to C’. Let Ci,...,C, be the
results. Remove C’ from P’.

(e) Apply Procedure 3.1 to Cy,...,Cy. Let Dy,...,Dp
be the outputs. Add D; to D if it is not a definite clause
and there exists no formula in D which is identical to D;
except for the predicate of the head. Fold Ci,...,C,
by the formulae in D and add the results to P’.

(f) Go to (c).

Example 3.2 Consider the program in Example 3.1
again. We see that D, is identical to C' except for the
predicate of the head. C5 can be folded by D; and C
after reduction w.r.t. =. The result is as follows.

Cs : all-less-than([X|L],M) « list(L) A list(M) A

newl(X,L,M) A all-less-than(L,M).

Similar operations are applied to D, and finally, the
following clauses are obtained.

Ds : newl(X,L,[]) « list(L).

Dy : newl(X,L,[Y|M]) « X < Y A newl(X,L,M).

Note that Procedure 3.2 does not necessarily derive
a definite clause program from a definite formula pro-
gram. For example, when the following program is given
as input, Procedure 3.2 does not halt.

Cr: p(X)Y) « p(X,Z) A p(Z,Y)

Cz: h(X\Y) < VZ (p(X,Z) — p(Y,2))

3.2 Classes of First Order Formulae

In this section, we show some classes of definite formula
programs which can be transformed into equivalent def-
inite clause programs by Procedure 3.2.

Throughout this subsection, we assume that unfolding
is always applicable to every definite formula at an atom
when there exist definite clauses whose heads are unifi-
able with the atom. Note that the above assumption
does not always hold. This problem will be discussed
in 3.3.

After giving a notion, we show a theorem which is an
extension of the results shown in [15]. A simple expres-
sion is either a term or an atom.

Definition 3.2 Depth of Symbol in Simple Expression

Let X be a variable or a constant and F be a simple
expression in which X appears. The depth of X in E|
denoted by depth(X,E), is defined as follows.

(a) depth(X,X) = 1.

(b) depth(X,E) = max{depth(X,t)|X appears in t;
for = 1,...,n} + 1, if E is either f({;,...,1,) or
p(ty,...,t,), for any function symbol f or any predi-
cate symbol p.

The deepest variable or constant in E is denoted by

maxdepth(E).

Theorem 3.1 Let P be a definite clause program. Sup-

pose that for any definition formula C for P, there exists

a U-selection rule R for PU{C?} rooted on C such that R

is defined for all descendant clauses of C in which at least

one defined atom appears. Suppose also that there exist
two positive integers H and W such that every descen-
dant clause C’ of C in every program P’ obtained from

P U {C} via R satisfies the following two conditions.

(a) The depth of every term appearing in every goal in
the body of C’ is less than H.

(b) Let Gi,Gha,...,G, be connected goals in the body
of C'. Then, the number of atoms appearing in G; is
less than W, for 2 = 1,2,...,n.

Then, there exists a finite definition formula set D for P

such that P U {C} is closed with respect to D.

Proof. From hypothesis (2), only a finite number of dis-
tinct atoms (modulo renaming of variables) can appear
in the goals of all the descendant formulae of C. Then,
apply Procedure 3.2 to P and C. Note that every goal in
the body of every descendant formula of C is connected.
Then, for every goal of every descendant formula of C,
the number of atoms appearing in the goal is less than
W, from hypothesis (b). Hence, only a finite number of
distinct goals can appear in all the descendant formulae
of C. Thus, we can obtain a finite definition formula
set Dy for P such that there exists a closed program P’
w.r.t. < P,C, Dy >.

The above discussion holds for all the definition for-
mulae in Dy, since those formulae are constructed from

467

bodies of the descendant formulae of C. Evidently, only
a finite number of distinct definition formulae can be de-
fined. Thus, there exists a finite definition formula set D
for P such that P U {C} is closed w.r.t. D. o

Theorem 3.1 shows that Procedure 3.2 can derive a
definite clause program when (a) a term of infinite depth
can not appear, or (b) an infinite number of atoms can
not appear in a connected goal during a transformation
process. In the following, we show some syntactic restric-
tions on programs which satisfy the above conditions.

Proietti and Pettorossi showed some classes of definite
clause programs which satisfy the conditions in Theo-
rem 3.1 in their studies of program transformation [15].
We show that some extensions of their results are appli-
cable to our problem.

The following definitions are according to [15]. The set
of variables occurring in simple expression E is denoted

by var(E).

Definition 3.3 Linear Term Formula and Program

A simple expression or a formula is said to be linear
when no variable appears in it more than once. A definite
formula (clause) is called a linear term formula (clause)
when every atom appearing in it is linear. A definite
formula (clause) program is called a linear term program
when it consists of linear term formulae (clauses) only.

A linear term formula (clause) is called a strongly lin-
ear term formula (clause) when its body is linear. A def-
inite formula (clause) program is called a strongly linear
term program when it consists of strongly linear term
formulae (clauses) only.

Note that the following definite clause is not a linear
term clause.
member(X,[X|L]).
However, it is easy to obtain an equivalent linear term
clause as follows :
member(X,[Y|L])— X=Y.

Definition 3.4 A Relation < between Linear Simple
Expressions

Let Ey and E; be linear simple expressions. When
depth(X,E;)<depth(X,E,) holds for every variable X in
var(Ey)Nvar(Es;), we write By < F,. (Both E; < E; and
E,; < E; hold when var(E;)Nvar(Ez)= 0.)

Definition 3.5 Non-Ascending Formula and Program

Let C be a linear term formula and H be the head of
C. C is said to be non-ascending when A < H holds
for every defined atom A appearing in the body of C. A
linear term program is said to be non-ascending when it
consists of non-ascending formulae only.

A definite formula (clause) is said to be strongly non-
ascending when it is a strongly linear term formula
(clause) and non-ascending. A definite formula (clause)
program is said to be strongly non-ascending when it

468

consists of strongly non-ascending formulae (clauses)
only.

Definition 3.6 Synchronized Descent Rule
Let P be a linear term program, R be a U-selection
rule for P and C be any descendant formula of the root
formula for R. Let A4;,A,,..., A, be all the atoms ap-
pearing in the body of C. Then, R is called a synchro-
nized descent rule when
(a) R selects the application of positive or negative un-
folding to C at A; if and only if A; < A; holds for
j=1,...,n, and
(b) R is not defined for C, otherwise.

Note that synchronized descent rules are not neces-
sarily defined uniquely for given programs and definition
formulae.

The following theorem is an extension of the one shown
in [15, 16).

Lemma 3.2 Let P be a non-ascending definite clause
program, C be alinear term definition formula for P, and
R be a synchronized descent rule rooted on C. Let P’ be
a program obtained from PU{C} via R. For each defined
atom A appearing in the body of every descendant clause
of C in P’, the following holds :
maxdepth(4) <
max{maxdepth(B)| B is a defined atom in PU{C}}

Proof. By induction on the number of applications of
unfolding. O

Now we show some classes of definite formula programs
which satisfy the hypotheses of Theorem 3.1. In the fol-
lowing, for simplicity, we deal with definition formulae
with only one universally quantified implicational goal
in the body. The results are easily extended to the defi-
nite formulae witli a conjunction of universally quantified
implicational goals.

The following results are also extensions of those
shown in [15].

Theorem 3.3 Let P be a strongly non-ascending def-
inite clause program and C be a linear term definition
formula for P of the form H «— A, /\VX(A«Z — Aj), such
that the following hold.
(a) For every clause D in P of the form Hp « ByA...A
B, AB{A...AB], , where By, ..., B, are defined atoms
and By, ..., B], are base atoms, the following hold.
(a-1) Let ¢y be any argument of Hp. For every argu-
ment ¢; of B;, if {5 contains a common variable with
t;, then ¢; is a subterm of ¢p.

(a-2) For every argument ¢; of B;, if #; is a subterm
of an argument ¢y of Hp, then no other argument of
B; is a subterm of tg.

(b) There exist two arguments ¢; and s; of some A; (¢; #
8,7 = 1,2 or 3) such that the following hold.

(b-1) There exists an argument ¢; of 4; (2 # j) such
that
vars(A;)Nvars(Aj)=vars(t;)Nvars(t;), and
either t; is a subterm of t;, ¢; is 4 subterm of ¢; or
vars(t;)Nvars(t;)=0.
(b-2) There exists an argument si of Ay (k # 1,7)
such that the same relations as above hold for s; and
Sk
(b-3) A; contains no common variable with A.
Then, there exists a definition formula set D for P such
that P U {C?} is closed with respect to D.

Proof. Note that there exists an atom A in the body of C
s.t. an argument of A is a maximal term in the body of
C w.r.t. subterm ordering relation. Let C’ be any result
of unfolding C at A and G be any connected goal in the
body of C’ of the form Fy A VX (F; — Fj), where F; is a
conjunction of atoms. Then, from the hypothesis, it can
be shown that a similar property to hypothesis (b) holds
for G. Note that the number of implicational goals dose
not increase by applying positive unfolding and no global
variables are instantiated by applying negative unfolding.
Then, again there exists an atom in the body of C’ s.t.
one of its arguments is a maximal term in the body of
C’ w.r.t. subterm ordering relation. By induction on
the number of applications of unfolding, a synchronized
descent rule can be defined for every descendant formula
of C. Then, from Lemma 3.2, the depth of every term
appearing in every descendant clause of C' is bounded.
Note that the number of different subterms of a term
is bounded. Then, from the hypothesis, the number of
atoms appearing in every connected goal in the body of
every descendant formula of C' is bounded. Thus, P and
C satisfy the hypotheses of Theorem 3.1. Hence, there
exists a definition formula set D for P such that PU{C}
is closed with respect to D. O

Note that Theorem 3.3 holds for any nondeterministic
choice of synchronized descent rules in the above proof.
Note also that any program can be modified to satisfy
hypothesis (a) of Theorem 3.3 by introducing atoms with
= in the body.

Corollary 3.4 Let P be a strongly non-ascending defi-

nite clause program and P’ be a definite clause program

such that no predicate appears in both P and P’. Let

C be a linear term definition formula for P U P’ of the

form H « Ay A VX (Ay — As), where the predicates of

A; and A, are defined in P and that of Aj is defined in

P’. Suppose that the following hold.

(a) Hypothesis (a) of Theorem 3.3 holds for every clause
D in P.

(b) There exist arguments t; of A; and t; of A, such
that the following hold.

(b-1) vars(A;)Nvars(Az)=vars(t;)Nvars(ts).

(b-2) Either ¢; is a subterm of t5, t5 is a subterm of #;
or vars(t;)Nvars(ty)=9.
(c) No variable in Aj; is instantiated by applying posi-
tive or negative unfolding to C successively.
Then, there exists a definition formula set D for P U P’
such that P U P’ U {C} is closed with respect to D.

Proof. Suppose that unfolding is never applied at A;. A
synchronized descent rule can be defined by neglecting
As. Since variables in Aj are never instantiated, no other
atoms are derived from Aj. Thus, the corollary holds. O

In Corollary 3.4, no restrictions are required on the
definition of Az. This result corresponds to that in [3].
Note that any program can be modified to satisfy hy-
pothesis (c) of Corollary 3.4 by introducing atoms with
= in the body.

Example 3.3 The program and the definition formula
in Example 2.1 satisfy the hypotheses of Theorem 3.3 and
Corollary 3.4, if clause Cs is replaced with the equivalent
clause :

C% : member(U,[V|L]) « U=V.
In fact, a definite clause program can be obtained, as
shown in subsection 2.2.

Next, we show an extension of the results shown in
Theorem 3.3. Let P be a non-ascending definite clause
program and C be a definition formula for P of the form
H «— A/\‘V’X—(Fl — F3), where A is an atom, and F; and
F, are conjunctions of atoms. Let D; be the definition
clause for P of the form H; « F; for ¢« = 1,2. If D,
can be transformed into a set of definite clauses which
satisfies the hypotheses of Theorem 3.3, by replacing F;
with H;, we can show that P U {C} can be transformed
into an equivalent definite clause program.

The above problem is related to the foldability prob-
lem in [16]. The foldability problem is described infor-
mally as follows. Let P be a definite clause program and
C be a definition clause for P. Then, find program P’
obtained from P U {C} which satisfies the following : for
every descendant clause C’ of C' in P’, there exists an an-
cestor clause D of C’ such that C”’s body is an instance
of D’s.

Proietti and Pettorossi showed some classes of definite
clause programs such that the foldability problem can be
solved [16]. We show that their results are also available
to our problem.

A definite clause program P is said to be linear recur-
sive when at most one defined atom appears in the body
of each clause in P. Note that a linear recursive and
linear term program (clause) is a strongly linear term
program (clause).

Lemma 3.5 Let P be a linear recursive non-ascending
program and C be a non-ascending definition clause for
P of the form H «— Ay A Ay A By A ... A B, where A;

469

and A, are defined atoms and B;, ..., B, are base atoms.

Suppose that the following hold.

(a) For every clause D in P of the form Hp «— Ap A
Bj A ... A Bl, where Ap is the only defined atom in
the body of D, the following hold.

(a-1) Let tg be any argument of Hp. For every ar-
gument t4 of Ap, if ty contains a common variable
with t4, then t, is a subterm of tg.

(a-2) For every argument t4 of Ap, if ¢4 is a subterm
of an argument tg of Hp, then no other argument of
Ap is a subterm of tg.

(b) There exist arguments ¢; of A; and ¢ of Aj such
that the following hold.

(b-1) vars(Aj)Nvars(A;)=vars(t;)Nvars(ts).

(b-2) Either ¢; is a subterm of t3, t; is a subterm of t;
or vars(t;)Nvars(tz)=0.

Then, from P U {C}, we can obtain a linear recursive

non-ascending program which define the predicate of H

by unfold/fold transformation.

Proof. As shown in [16], we can get a solution of the
foldability problem for P and C. Then, obviously, a
linear recursive program is obtained. a

Example 3.4 Let P be a linear recursive non-
ascending program as follows.

C) : subseq([],L).

Cy : subseq([X|L],[YIM]) « X =Y A subseq(L,M).

Cs : subseq([X]|L],[Y|M]) « subseq([X|L],M).

Let C be a non-ascending definition clause for P as fol-
lows.

C: csub(X,Y,Z) «— subseq(X,Y), subseq(X,Z).
Then, PU{C?} can be transformed into a linear recursive
non-ascending program as follows.

csub([],Y,Z).

csub([A|X],[B|Y],Z) «— A = B A cs(A,X,Y.Z).

csub([A}X],[B|Y],Z) « csub([A|X],Y,Z).

cs(AX)Y,[B|Z]) — A =B A csub(X,Y,Z).
cs(A,X,Y,[BIZ]) « cs(AX,Y,Z).

Though Proietti and Pettrossi showed one more
class [16], we will not discuss this here.
Now, we get the following theorem.

Theorem 3.6 Let P be alinear recursive non-ascending
program and C be a linear term definition formula for
P of the form H « A; AVX (A, A B, — A3 A B3), such
that the following hold.
(a) Hypothesis (a) of Lemma 3.5 holds for P.
(b) Let S; be the set of all the arguments of A;, and
S; be the set of all the arguments of A; and B; for
1 = 2,3. Then, there exist two terms t; and s; in
some S; (t; # sj,7 = 1,2 or 3) such that the following
hold.
(b-1) there exists a term tj in Si (§ # k) such that
vars(S;)Nvars(S)=vars(t;)Nvars(z), and

470

- either t; is a subterm of ¢y, x is a subterm of ¢; or
vars(t;)Nvars(t;)=0.
(b-2) There exists a term s; of S; (I # j, k) such that
the same relations as above hold for s; and s;.
(b-3) S) contains no common variable with 5.
Then, there exists a definition formula set D for P such
that P U {C?} is closed with respect to D.

Proof. Obvious from Theorem 3.3 and Lemma 3.5. O

Note that it is easy to extend the result of Theorem 3.6
to allow the conjunction of an arbitrary number of atoms
to appear in the body of the definition formula. Note also
that it is possible to extend the result to allow arbitrary
definition of A3 and Bj, in a similar way to Corollary 3.4.

3.3 Further Consideration about Syn-
tactic Restrictions

As described in 3.2, the application of unfolding may
be prohibited in Kanamori and Horiuchi’s framework.
In this subsection, we discuss some methods to avoid
prohibition, though we do not necessarily give the pre-
cise syntactic restriction. (Due to space limitations, we
do not refer to the terminating property, though several
sufficient conditions are known to guarantee it.)

(1) Universally Quantified Variables Appearing
in Positive Atoms

Positive unfolding can not be applied to definite formulae
at positive atoms with universally quantified variables.
Thus, we have the following two problems.

(a) Synchronized descent rules can not be defined when
universally quantified variables are instantiated by neg-
ative unfolding.

(b) We can not unfold formulae of the form ¥X A when
A is an atom and some variables in X appear in A.
To avoid case (a), the following restriction is sufficient.
When applying negative unfolding, no universally quan-
tified variable is instantiated. Though the restriction
seems to be strong, most of significant examples of pro-
gram synthesis can be dealt with under the restriction.

Case (b) corresponds to the compilation failure in Sato
and Tamaki’s first order compiler [19]. They restricted
their language as follows. For every implicational goal
Fy — F, appearing in a formula, uvar(F;)2uvar(Fy)
holds, where uvar(#;) means the set of universally quan-
tified variables appearing in Fi.

The above condition is available for our problem. Note
that the application of positive unfolding does not af-
fect the condition. When applying negative unfolding at
atom A in universally quantified implicational goal G,
the following restrictions are also required. All the uni-
versally quantified variables appearing in A also appear
in some negative defined atom in each result of negative

unfolding G, or they are unified with terms consisting of
constants and global variables by reduction w.r.t. =.

We believe that techniques such as mode analysis are
available to guarantee that every applicable negative un-
folding satisfies the above conditions.

(2) Global Variables Appearing in Negative
Atoms

Negative unfolding should be applied without instantiat-
ing global variables. In some cases, this restriction may
be critical. However, we can deal with most of those
cases by adding positive atoms to the formula such that
the global variables can be instantiated by applying pos-
itive unfolding at those atoms. Atoms with predicates
which specify data types (cf. list) are available. For

_example, with the definitions of ‘member’ and ‘<’ in Ex-

ample 2.1, negative unfolding can not be applied to the
definite formula below.
less-than-all(X,L) «— V Y(member(Y,L) — X<Y).
However, we can apply negative unfolding to the formula
below, after positive unfolding list(L).
less-than-all(X,L) «
list(L) A V Y(member(Y,L) — X<Y).

(3) Sato’s Unfold/Fold Transformation

Recently, Sato proposed unfold/fold transformation rules
for full first order programs [18]. Their unfolding op-
eration does not require conditions like Kanamori and
Horiuchi’s. On the other hand, more complex condi-
tions are required when applying folding. Thus, when
we adopt Sato’s rules in place of Kanamori and Hori-
uchi’s, we need not consider the restrictions discussed
in (1) and (2) above, while some other difficulties are
introduced to satisfy the folding conditions.

4 Discussion

The work described here is an extension of Pettorossi and
Proietti’s work on program transformation [14, 15, 16].
They formalized the successful unfold/fold transforma-
tion in three ways, and showed that the problem of
whether a given program can be transformed successfully
or not is unsolvable. They also showed some classes of
definite clause programs which can be transformed suc-
cessfully. Our results owe much to their work, though
currently we do not know whether our problem is decid-
able.

Proietti and Pettorossi also showed that any defi-
nite clause program can be transformed successfully by
performing suitable generalization of the atoms to be
folded (15, 16]. However, the generalization technique
is not available for our problem. Folding by a definition
formula obtained by generalizing atoms with universally
quantified variables may not satisfy the conditions for

folding {7], since universally quantified variables can not
appear in the head of the formula.

Proietti and Pettorossi also showed a transformation
procedure called loop absorption [15, 16]. In this pro-
cedure, they found clause C' and its descendant clause
C' such that C"’s body is an instance of C’s (or a sub-
set of C"’s body is identical to C’s body). Then, a new
definition clause whose body is identical to that of C
is constructed. They also showed a procedure to elimi-
nate unnecessary variables [17]. We can modify our naive
procedure described in 3.1 by incorporating the loop ab-
sorption and the elimination of unnecessary variables.

- Programs obtained by the modified procedure are ex-
pected to be more efficient and have less code than those
obtained by the naive procedure.

There have been several studies on logic program syn-
thesis from universally quantified implicational formu-
lae [3, 4, 19). Our work is closely related to that of
Dayantis [3]. There, program synthesis was also consid-
ered from formulae of the form H « VX (A — B). They
showed that a class of those formulae can be transformed
into definite clauses by deductive derivation. They also
discussed the generality of the class using several exam-
ples. Their deductive method is analogous to unfold/fold
transformation and the derivation processes almost cor-
respond to those by our procedure when our procedure
does not apply positive unfolding. They also mechanized
their derivation processes. QOur notion of the sound-
ness of the application of unfolding is ensured by part of
their syntactic restrictions on the arguments of formulae,
though we have not discussed how this is ensured. How-
ever, the classes we have shown are still wider than those
they showed after we incorporate those restrictions.

Sato and Tamaki showed a deterministic algorithm to
transform logic programs with universally quantified im-
plicational formulae into definite clause programs [19].
In their method, unfold/fold transformation is applied
to universal continuation forms. Their method can be
applied to a wider class of first order formulas than ours,
while the results of the compilation are not necessarily
efficient and the code sizes of those results increase gen-
erally.

5 Conclusion

A logic program synthesis method from some classes of
first order logic specifications have been shown. The
method is based on unfold/fold transformation. Some
classes of first order formulae which can be transformed
into definite clause programs by unfold/fold transforma-
tion have been shown.

Acknowledgments

I would like to thank Tadashi Kanamori and anonymous
referees for helpful comments. I would also like to thank

471

Koichi Furukawa and Ryuzo Hasegawa for their advice,
and Kazuhiro Fuchi for giving me the opportunity to do
this research.

References

[1] Burstall, R.M. and J.Darlington, “A Transforma-
tion System for Developing Recursive Programs”,
J.ACM, Vol.24, No.1, pp.44-67, 1977.

[2] Clark, K.L. and S. Sickel, “Predicate Logic: A Cal-
culus for Deriving Programs”, Proc. of 5th Inter-
national Joint Conference on Artificial Intelligence,
pp.419-420, 1977.

[3] Dayantis, G., “Logic Program Derivation for a
Class of First Order Logic Relations”, Proc. of 10th
International Joint Conference on Artificial Intel-
ligence, pp.9-14, Italy, 1987.

[4] Fribourg, L., “Extracting Logic Programs from
Proofs that Use Extended Prolog Execution and
Induction”, Proc. of 7Tth International Conference
on Logic Programming, pp.685-699, Jerusalem,
1990.

[5] Hansson, A. and Tarnlund, S.A., “A Natural Pro-
gramming Calculus”, Proc. of 6th International

Joint Conference on Artificial Intelligence, pp.348-
355, 1979.

[6] Hogger, C.J., “Derivation of Logic Programs”,
J.ACM, Vol.28, pp.372-392, 1981.

[7} Kanamori, T. and K. Horiuchi, “Construction of
Logic Programs Based on Generalized Unfold/Fold
Rules”, Proc. of 4th International Conference
on Logic Programming, pp.744-768, Melbourne,
1987.

[8] - Kawamura, T., “Derivation of Efficient Logic Pro-
grams by Synthesizing New Predicates”, Proc.
of 1991 International Logic Programming Sympo-
sium, pp.611-625, San Diego, 1991.

9] Komorowski, J., “Partial Evaluation As A Means
for Inferencing Data Structures in An Applicative
Language : A Theory And Implementation in The
Case of Prolog”, Proc. of the ACM Symposium
on Principles of Programming Languages, pp.255—
267, 1982.

[10] Komorowski, J., “Towards a Programming
Methodology Founded on Partial Deduction”,
Proc. of the European Conference on Artificial In-
telligence, pp.404-409,1990.

472

(11]

(13]

[14]

(18]

[16]

[17]

(18]

[20]

Lau, K.K. and S. D. Prestwich, “Top-down Syn-
thesis of Recursive Logic Procedures from First-
order Logic Specifications”, Proc. of 7th Interna-
tional Conference on Logic Programming, pp.667-
684, Jerusalem, 1990.

Lau, K.K. and S. D. Prestwich, “Synthesis of a
Family of Recursive Sorting Procedures”, Proc.
of 1991 International Logic Programming Sympo-
sium, pp.641-658, San Diego, 1991.

Lloyd, J. W., “Foundations of Logic Program-
ming”, Springer-Verlag, 2nd Edition, Berlin, Hei-
delberg, New York, 1987.

Pettorossi, A. and M. Proietti, “Decidability Re-
sults and Characterization of Strategies for the
Development of Logic Programs”, Proc. of 6th

International Conference on Logic Programming,
pp-539-553, Lisboa, 1989.

Proietti, M. and A. Pettorossi, “Construction of
Efficient Logic Programs by Loop Absorption and
Generalization”, Proc. of the Second Workshop
on Meta-programming in Logic, pp.57-81, Leuven,
1990.

Proietti, M. and A. Pettorossi, “Synthesis of Eu-
reka Predicates for Developing Logic Programs”,
Proc. of 3rd European Symposium on Program-
ming, Copenhagen, LNCS 432, Springer-Verlag,
pp-307-325,1990.

Proietti, M. and A. Pettorossi, “Unfolding - Def-
inition - Folding, In This Order, For Avoiding
Unnecessary Variables In Logic Programs”, Proc.
of 3rd International Symposium on Programming
Language Implementation and Logic Program-
ming, Passau, LNCS 528, Springer- Verlag, pp.347—
358,1991.

Sato, T., “An Equivalence Preserving First Or-
der Unfold/fold Transformation System”, Alge-
braic and Logic Programming, Proceedings, LNCS
463, Springer-Verlag, pp.173-188, 1990.

Sato, T. and H. Tamaki, “First Order Compiler
: A Deterministic Logic Program Synthesis Algo-
rithm”, J.Symbolic Computation, Vol.8, pp.605-
627, 1989.

Tamaki, H. and T. Sato, “Unfold/Fold Transfor-
mation of Logic Programs”, Proc. of 2nd Inter-

national Logic Programming Conference, pp.127-
138, Uppsala, 1984.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

473

Sound and Complete Partial Deduction
with Unfolding Based on Well-Founded Measures *

Bern Martens

Danny De Schreye

Maurice Bruynooghe!

Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
e-mail: {bern,dannyd,maurice}@cs.kuleuven.ac.be

Abstract

We present a procedure for partial deduction of logic pro-
grams, based on an automatic unfolding algorithm which
guarantees the construction of sensibly and strongly ex-
panded, finite SLD-trees. We prove that the partial de-
duction procedure terminates for all definite logic pro-
grams and queries. We show that the resulting program
satisfies important soundness and completeness criteria
with respect to the original program, while retaining the
essentially desired amount of specialisation.

1 Introduction

Since its introduction in logic programming by Ko-
morowski ([Komorowski, 1981]), partial evaluation has
attracted the attention of many researchers in the field.
Some, e.g. [Venken, 1984], [Venken and Demoen, 1988],
[Sahlin, 1990], have addressed pragmatic issues re-
lated to the impurities of Prolog. Others were at-
tracted by the perspective of eliminating the over-
head associated with meta interpreters. Some ex-
amples are: [Gallagher, 1986], [Levi and Sardu, 1988],
[Safra and Shapiro, 1986], [Sterling and Beer, 1989] and
[Takeuchi and Furukawa, 1986]. Finally, a firm the-
oretical basis for the subject was described in
[Lloyd and Shepherdson, 1991).

Just as in [Bruynooghe et al., 1991a], we use the
term “partial deduction” in this paper, rather than
the more familiar “partial evaluation”. Following
[Komorowski, 1989], we do so because we want to leave
the latter term for works taking into account the non-
logical features of Prolog and the order in which answers
are produced. In the present paper, we adhere to the
viewpoint taken in [Lloyd and Shepherdson, 1991] which
states that the specialised program should have the same
answers as the original one.

*work partially supported by ESPRIT BRA COMPULOG
(project 3012)

TAll authors are supported by the Belgian National Fund for
Scientific Research. .

Indeed, the authors of [Lloyd and Shepherdson, 1991]
present important criteria which, when satisfied by the
specialised program, guarantee this to be the case. A
partial deduction procedure imposing these criteria, is
described in [Benkerimi and Lloyd, 1990]. However, ter-
mination of this procedure is not guaranteed, not even
for definite logic programs. In this paper, we propose
an alternative method which does terminate for all def-
inite logic programs. A central part of any partial
deduction procedure is an unfolding algorithm which
builds the SLD(NF)-trees used as starting point for
synthesising specialised clauses. In general, termina-
tion of this unfolding process is problematic in its own
right. In [Bruynooghe et al., 1991a], a general crite-
rion for avoiding infinite unfolding is presented. In the
present paper, we build on those results for formulat-
ing a terminating procedure for partial deduction, re-
specting the soundness and completeness conditions of

[Lloyd and Shepherdson, 1991].

The paper is organised as follows. In section 2, we
recapitulate (and adapt) some basic concepts in par-
tial deduction from {Lloyd and Shepherdson, 1991}, as
well as the criteria for soundness and completeness pre-
sented there. We sketch the partial deduction method
from [Benkerimi and Lloyd, 1990] and show an exam-
ple on which the unfolding rules mentioned there do
not terminate. In section 3, we introduce an au-
tomatic algorithm for finite unfolding, adapted from
[Bruynooghe et al., 1991a]. Next, in section 4, our par-
tial deduction procedure is presented. We give an al-
gorithm which implements it and prove its termination.
Moreover, we prove that the method satisfies the criteria
introduced in [Lloyd and Shepherdson, 1991]. We also
show that the intended specialisation is indeed obtained.
We conclude the paper in section 5 with a short dis-
cussion, including a brief comparison with the approach
of [Benkerimi and Lloyd, 1990] and some directions for
further research.

474

2 Partial Deduction

2.1 Basic concepts, soundness and

completeness

We assume familiarity with the basics of logic pro-
gramming. Definitions of the following concepts
can be found in [Lloyd and Shepherdson, 1991] . and
[Benkerimi and Lloyd, 1990]: most specificic general-
isation (msg), incomplete SLD-tree, resultant of a
derivation, partial deduction for an atom in a pro-
gram, partial deduction for a set of atoms in a pro-
gram, partial deduction of a program wrt a set of
atoms, independence of a set of atoms, A-closedness
of a set of formulas, A-coveredness of a program
and goal. In [Lloyd and Shepherdson, 1991] and
[Benkerimi and Lloyd, 1990], the definitions are given
for normal programs and using the term “partial eval-
uation”. In the present paper, we restrict ourselves
to definite programs and goals and, as mentioned
above, use the term “partial deduction”. The neces-
sary adaptations are straightforward (as exemplified in
[Bruynooghe et al., 1991a]).

We adapt the following
[Lloyd and Shepherdson, 1991].

theorem from

Theorem 2.1 Let P be a definite logic program, G a
definite goal, A a finite, independent set of atoms, and
P’ a partial deduction of P wrt A such that P'U{G} is
A-covered. Then the following hold:

e P'U{G} has an SLD-refutation with computed an-
swer 6 iff P U {G} does.

e P’U{G} has a finitely failed SLD-tree iff P U {G}

does.

In other words, under the conditions stated in this theo-
rem, computation with a partial deduction of a program
is sound and complete wrt computation with the original
program. This is clearly a very desirable characteristic
of any procedure for partial deduction. It is therefore
important to devise methods for partial deduction that
ensure the conditions of theorem 2.1 are satisfied.

In [Benkerimi and Lloyd, 1990], one such method is
presented. Basically, it proceeds as follows. For a given
goal G and program P, a partial deduction for G in P is
computed. This is repeated for any goal occurring in the
resulting clauses which is not an instance of one already
processed. Assuming the procedure terminates, one gets
in this way a set of clauses S and a set A of partially
deduced atoms such that S is A-closed. But one also
wants A to be independent. In order to achieve this, the
- procedure is modified as follows. Whenever a goal occur-
ring in S is not an instance (nor a variant) of one in A,
but has a common instance with it, the latter is removed
from A and a partial deduction is computed for their
msg (which itself is therefore added to A) and added to

S. The original partial deduction for the removed goal
is itself also removed from S. The process stops if A be-
comes independent and S A-closed. S can then be used
to synthesize a partial deduction of P wrt A which sat-
isfies the conditions of theorem 2.1 for any goal G' which
is an instance of G.

However, the tactic of taking msgs to make A inde-
pendent causes an unacceptable loss of specialisation in
the resulting partial deduction. To remedy this, the
authors of [Benkerimi and Lloyd, 1990] introduce a re-
naming transformation as a pre-processing stage be-
fore running their algorithm. It amounts to duplicat-
ing and renaming the definitions of those predicates, oc-
curring in the original goal G, which are likely to pose
specialisation problems. The details can be found in
[Benkerimi and Lloyd, 1990].

2.2 Unfolding

One question is left more or less unanswered until now:
How to obtain the (incomplete) SLD-trees used as a basis
for producing partial deductions? In other words, which
computation rule should be used for building these trees
(including the question of deciding when to stop the un-
folding) ? [Benkerimi and Lloyd, 1990] mentions 4 cri-
teria and proposes the following one as the best : The
computation rule R, selects the leftmost atom which is
not a variant of an atom already selected on the branch
down to the current goal. However, this rule fails to
guarantee the production of finite SLD-trees in all cases.
We present a counter-example. It is the well-known “re-
verse” program with accurnulating parameter.

Example 2.2

source program:
reverse([},L,L).
reverse([X|Xs|,Ys,Zs) « reverse(Xs,[X|Ys],Zs).

query:
«—reverse([1,2|Xs],[],Zs).

The reader can verify that R, generates an infinite SLD-
tree.

Some authors have therefore combined R, or other
computation rules with a depth bound:
(a.0.) [Levi and Sardu, 1988}, [Sterling and Beer, 1986],
[Takeuchi and Furukawa, 1986]. This does of course

. guarantee finiteness, but it seems a rather ad-hoc so-

lution which does not reflect any properties of the
given unfolding problem. ~ We therefore proposed
an alternative solution in [Bruynooghe et al., 1991a].
(An extended version of this paper can be found in
[Bruynooghe et al., 1991b].)

3 An Algorithm for Finite Un-
folding

In [Bruynooghe et al., 1991a], a general criterion for
avoiding infinite unfolding during partial deduction and
a terminating unfolding algorithm based on it, are pre-
sented. In this section, we introduce a fully auto-
matic version of that algorithm, tuned towards unfold-
ing object-level definite logic programs. A slightly more
sophisticated approach may be desirable when dealing
with meta interpreters. We will not address that point
in the present paper and concentrate on object-level pro-
grams. Although a slightly more accurate presentation of
the algorithm itself is given, most of what follows now is
adapted from [Bruynooghe et al., 1991a]. The interested
reader is referred to that paper for a full (and more gen-
eral) account with all the technical details on the well-
founded measures underlying our approach. Here, we
only introduce what is necessary for a good understand-
ing of algorithm 3.6.

For technical reasons, we will assume a numbering on
the nodes of an SLD-tree (e.g. left-to-right, top-down
and breadth-first). We will use the following notation
for nodes in an SLD-tree: (G,1) where G is a goal of the
tree having ¢ as its associated number. (The notations
“(G@,1)” and “GQ” will be used interchangeably, as the
context requires.)

We first define a weight-function on terms. It counts
the number of functors in its argument.

Definition 3.1 Let Term denote the set of terms in the
first order language used to define the theory P. We
defire |.| : Term — IN as follows:

ft=f(t,..-ytn)yn >0

then |t| =1 4+ [t1] 4+ - - + |ta]

else |tj=0

It is then possible to introduce weight-functions on
atoms.

Definition 3.2 Let p be a predicate of arity n and S=
{e1,...,am} 1 < ar < n,1 <k <m, aset of argument
positions for p. We define |.|,,5 : {A|4 is an atom with
predicate symbol p} — IN as follows:

Ip(th [BK 7tﬂ)lp.s = Itdl‘ +oe Itﬂm‘

The next two definitions introduce useful relations on
literals and goals in an SLD-tree.

Definition 3.3 Let (G,7) = ((«41,...,4),...,4n),1)
be a node in an SLD-tree 7, let R(G) = A; be the
call selected by the computation rule R, let H «
B,,...,By be a clause whose head unifies with A;
and let § = mgu(A4;, H) be the most general uni-
fier. Then (G,i) has a son (G',k) in 7, (G',k) =
(((——Al, ey A]‘_l, B1, ceey Bm, A_H.], ey An)G, k) We
say that B16,..., B0 in G' are direct descendents of A;
in G and that A; in G is a direct ancestor of B,6, ..., B,,0

475

in G'.

The binary relations descendent and ancestor, defined on
atoms in goals, are the transitive closures of the direct de-
scendent and direct ancestor relations respectively. For
A an atom in G and B an atom in G’, A is an ancestor
of B is denoted as A >,, B (“pr” stands for proof tree).

Notice that we also speak about one goal G’ being an an-
cestor (or descendent) of another goal G. This terminol-
ogy refers to the obvious relationships between goals in
an SLD-tree and should not be confused with the proof-
tree based relationships between literals, introduced in
the previous definition. The following definition does
introduce a relationship between goals, based on defini-
tion 3.3.

Definition 3.4 Let G and G' denote two different nodes
in an SLD-tree 7. Let R be the computation rule used
in 7. Then G' covers G iff

1. R(G') and R(G) are atoms with the same predicate
2. R(G") >, R(G)

Notice that G' covers G implies that G’ is an ancestor of
G.

We need one more piece of terminology.

Definition 3.5 Let G and G’ denote two different nodes
in an SLD-tree 7. We call G’ the youngest covering an-
cestor of G iff

1. G’ covers G

2. For any other node G” such that G” covers G, we
have that G" covers

We are now finally able to formulate the following al-
gorithm:

Algorithm 3.6

Input
a definite program P
a definite goal —A

Output

a finite SLD-tree 7 for P U {«A}
Initialisation

7:={(<A41)}

Pr:=¢

Terminated ;=

Failed:= 0

For each recursive predicate p/n in P and

for the derivation D in 7:
Spo:={1,...,n}

‘While there exists a derivation D in 7 such that
D ¢ Terminated do

Let (G, 1) name the leaf of D

476

Select the leftmost atom p(t1,...,t,) in G
satisfying the following condition:
If p is recursive and there is
a youngest covering ancestor (G, j) of (G,t) in D
then |R(G')|p,s, pmew > [P(t1,- - - ,tn)|p,s, prew Where

Sp'Dnew = p,D \ Sp,DfemO’Ue and

Sp,DTEmallE —

{ar € Spp | 'p(th-'wtn)'p,{ak} > IR(G,)|Py(ﬂk}}
If such an atom p(¢y,...,t,) can be found
then

R(G) :=p(t1,...,tn)
Let Derive(G,) name the set of all derivation steps
that can be performed
If Derive(G,i) =0
then
Add D to Terminated and Failed
else
Let Descend(R(G),4) name the set of
all pairs ((R(G),1),(B9,7)), where
-— B is an atom in the body of a clause
applied in an element of Derive(G,1)
— 6 is the corresponding m.g.u.
— 7 is the number of the corresponding
descendent of (G, 1)
Expand D in 7 with the elements of Derive(G,1)
Add the elements of Descend(R(G),t) to Pr
For every newly created extension D' of D and
for every recursive predicate ¢ in P:
if ¢ = p and (G, 1) has a covering ancestor in D
then Sy pr:= Sqp™"
else Sgpr := Sgp
else
Add D to Terminated

Endwhile
We have the following theorem.

Theorem 3.7 Algorithm 3.6 terminates. If a definite
program P and a definite goal <A are given as inputs,

its output 7 is a finite (possibly incomplete) SLD-tree for
PuU{—A}

Proof The theorem is an immediate consequence of
proposition 3.1 in [Bruynooghe et al., 1991a]. O

Example 3.8 The SLD-tree generated by algorithm 3.6
for the program and the query from example 2.2, are
depicted in figure 1. (“reverse” has been abbreviated to
((rev)l X

4 Combining These Techniques

4.1 Introduction

In the previous section, we introduced an algorithm for
the automatic construction of (incomplete) finite SLD-
trees. In this section, we present sound and complete

«— rev([1,21Xs),[],Zs)

- rev([21Xs],[1],Zs)

- rev(Xs,[2,1],Zs)

Zs=[2,1]
XS:[]

Xs=[X'"IXs']

0O - rev(Xs',[X’,2,1],Zs)

Figure 1: The SLD-tree for example 3.8.

partial deduction methods, based on it. Moreover, these
methods are guaranteed to terminate. The following ex-
ample shows that this latter property is not obvious, even
when termination of the basic unfolding procedure is en-
sured. We use the basic partial deduction algorithm from
[Benkerimi and Lloyd, 1990], together with our unfold-
ing algorithm.

Example 4.1 For the reverse program with accumulat-
ing parameter (see example 2.2 for the program and the
starting query), an infinite number of (finite) SLD-trees
is produced (see figure 2). This behaviour is caused by
the constant generation of “fresh” body-literals which,
because of the growing accumulating parameter, are not
an instance of any atom that was obtained before.

In [Benkerimi and Lloyd, 1989], it is remarked that a so-
lution to this kind of problems can be truncating atoms
put into A at some fixed depth bound. However, this
again seems to have an ad-hoc flavour to it, and we there-
fore devised an alternative method, described in the next
section.

4.2 An algorithm for partial deduction

We first introduce some useful definitions and prove a
lemma.

Definition 4.2 Let P be a definite program and p a
predicate symbol of the language underlying P. Then a
pp'-renaming of P is any program obtained in the fol-
lowing way:

o Take P together with a fresh—duplicate—copy of
the clauses defining p.

¢ Replace p in the heads of these new clauses by some
new (predicate) symbol p’ (of the same arity as p).

o Replace p by p’ in any number of goals in the bodies
of (old and new) clauses.

«— rev([1,21Xs],[1,Zs)

«— rev([2iXs],[11,Zs)

-— rev(Xs,[2,1),Zs)

Zs=[2,1] Xe=[X"Xs']
Xs=[]
O - rev(Xs',[X',2,11,Zs)

- rev(Xs',[X’,2,1],Zs)

Zs=[X",2,1] Xs'=[X"1Xs"]
Xs'=[]
(] -— rev(Xs",[X".X",2,1],Zs)

- rev(Xs",[X" X",2,11,Zs)

Figure 2: An infinite number of (finite) SLD-trees.

Lemma 4.3 Let P be a definite program and P, a pp'-
renaming of P. Let G be a definite goal in the language
underlying P. Then the following hold:

e P, U{G} has an SLD-refutation with computed an-
swer § iff P U{G} does.

e P, U {G} has a finitely failed SLD-tree iff P U {G}

does.

Proof There is an obvious equivalence between SLD-
derivations and -trees for P and P,. 0

Definition 4.4 Let P be a definite program and p a
predicate symbol of the language underlying P. Then
the complete pp'-renaming of P is the pp’-renaming of P
where p has been replaced by p’ in all goals in the bodies
of clauses.

Our method for partial deduction can then be formu-
lated as the following algorithm.

477

Algorithm 4.5

Input
a definite program P
a definite goal « A =«p(t1,...,tn)
in the language underlying P
a predicate symbol p', of the same arity as p,
not in the language underlying P

Output
a set of atoms A
a partial deduction P, of P,
the complete pp’-renaming of P, wrt A

Initialisation
P, := the complete pp’-renaming of P
A := {A} and label A unmarked

While there is an unmarked atom B in A do
Apply algorithm 3.6 with P, and < B as inputs
Let 75 name the resulting SLD-tree
Form P, g, a partial deduction for B in P, from 7p
Label B marked
Let Ap name the set of body literals in P, p
For each predicate q appearing in an atom in Apg
Let msg, name an msg of all atoms having ¢
as predicate symbol in A and Ap
If there is an atom in A having q as predicate
symbol and it is less general than msg,
then remove this atom from A
-If now there is no atom in A having q as
predicate symbol
then add msg, to A and label it unmarked
Endfor
Endwhile
Finally, construct the partial deduction P’ of P, wrt A:
Replace the definitions of the partially deduced
predicates by the union of the partial deductions P, g
for the elements B of A.

We illustrate the algorithm on our running example.
Example 4.6

complete renaming of the reverse program:
reverse({],L,L).
reverse([X|Xs],Ys,Zs) « reverse'(Xs,[X|Ys],Zs).
reverse'({],L,L).
reverse'([X|Xs),Ys,Zs) « reverse'(Xs,[X|Ys],Zs).

partial deduction for «reverse({1,2|Xs],(],Zs):
reverse([1,2],{],12,1}).
reverse([1,2,X|Xs),[],Zs) « reverse'(Xs,[X,2,1],Zs).

partial deduction for «reverse/(Xs,[X,2,1],Zs):
reverse'([],[X,2,1],[X,2,1]).
reverse'([X'|Xs],[X,2,1],Zs) «
reverse'(Xs,[X',X,2,1],Zs).

msg of reverse’(Xs,[X,2,1],Zs) and
reverse'(Xs,[X',X,2,1],Zs): reverse'(Xs,[X,Y,Z|Ys|,Zs)

478

partial deduction for «reverse/(Xs,[X,Y,Z|Ys],Zs):
reverse'([],1X,Y,Z|Ys],[X,Y,Z|Ys]).
reverse'([X'|Xs],[X,Y,Z|Ys|,Zs) «—
reverse’(Xs,[X',X,Y,Z|Ys],Zs).

resulting set A:
{reverse([1,2|Xs],[],Zs),reverse’(Xs,[X,Y,Z{Ys],Zs)}

resulting partial deduction:
reverse([1,2],[],[2,1]).
reverse([1,2,X|Xs],[),Zs) « reverse'(Xs,[X,2,1],Zs).
reverse'([],[X,Y,Z[Ys],[X,Y,Z|Ys]).
reverse'(|X/|Xs],[X,Y,Z|Ys],Zs)
reverse'(Xs,[X',X,Y,Z|Ys),Zs).

We can prove the following interesting properties of
algorithm 4.5.

Theorem 4.7 Algorithm 4.5 terminates.

Proof Due to space restrictions, we refer to
[Martens and De Schreye, 1992]. 0

Theorem 4.8 Let P be a definite program, A =
p(t1,...,t,) be an atom and p' be a predicate symbol
used as inputs to algorithm 4.5. Let A be the (finite) set
of atoms and P,’ be the program output by algorithm 4.5.
Then the following hold:

¢ A is independent.

e For any goal G =«A4,,..., A, consisting of atoms
that are instances of atoms in A, B’ U {G} is A-
covered.

Proof

o We first prove that A is independent.
From the way A is constructed in the For-loop, it
is obvious that A cannot contain two atoms with
the same predicate symbol. Independence of A is
an immediate consequence of this.

e To prove the second part of the theorem, let P,* be

the subprogram of P, consisting of the definitions
of the predicates in P’ upon which @ depends. We
show that P.* U {G} is A-closed.
Let A be an atom in A. Then the For-loop in algo-
rithm 4.5 ensures there is in A a generalisation of
any body literal in the computed partial deduction
for A in P,'. The A-closedness of P.* U {G} now
follows from the following two facts:

1. P/is a partial deduction of a program (P,) wrt
A.

2. All atoms in G are instances of atoms in A.

(]

Corollary 4.9 Let P be a definite program, 4 =
p(t1,...,ts) be an atom and p’ be a predicate symbol
used as inputs to algorithm 4.5. Let A be the set of
atoms and B’ be the program output by algorithm 4.5.
Let G =«A,,...,A,, be a goal in the language under-
lying P, consisting of atoms that are instances of atoms
in A. Then the following hold:

o P.'U{G} has an SLD-refutation with computed an-
swer 6 iff P U {G} does.

e P’ U{G} has a finitely failed SLD-tree iff P U {G}
does.

Proof The corollary is an immediate consequence of
lemma 4.3 and theorems 2.1 and 4.8. O

Proposition 4.10 Let P be a definite program and A
be an atom used as inputs to algorithm 4.5. Let A be
the set of atoms output by algorithm 4.5. Then A € A.

Proof A is putinto A in the initialisation phase. From
definition 4.4, it follows that no clause in P, contains a
condition literal with the same predicate symbol as A.
Therefore, A will never be removed from A. O

This proposition ensures us that algorithm 4.5 does
not suffer from the kind of specialisation loss mentioned
in section 2.1: The definition of the predicate which ap-
pears in the query <A, used as starting input for the
partial deduction, will indeed be replaced by a partial
deduction for A in P in the program output by the al-
gorithm.

Finally, we have:

Corollary 4.11 Let P be a definite program, A =
p(t1,...,t,) be an atom and p’ be a predicate symbol
used as inputs to algorithm 4.5. Let P,’ be the program
output by algorithm 4.5. Then the following hold for any
instance A’ of A:

o P'U{«~A'} has an SLD-refutation with computed
answer § iff PU{—A'} does.

o P/ U {~A'} has a finitely failed SLD-tree iff P U
{~A'} does.

Proof The corollary immediately follows from corol-
lary 4.9 and proposition 4.10.]

Theorem 4.7 and corollary 4.11 are the most impor-
tant results of this paper. In words, their contents can
be stated as follows. Given a program and a goal, algo-
rithm 4.5 produces a program which provides the same
answers as the original program to the given query and
any instances of it. Moreover, computing this (hopefully
more efficient) program terminates in all cases.

5 Discussion and Conclusion

In [Lloyd and Shepherdson, 1991], important criteria en-
suring soundness and completeness of partial deduc-
tion are introduced. In the present paper, we started
from a recently proposed strategy for finite unfolding
([Bruynooghe et al., 1991a]) and developed a procedure
for partial deduction of definite logic programs. We
proved this procedure produces programs satisfying the
mentioned criteria and, in an important sense, showing
the desired specialisation. Moreover, the algorithm ter-
minates on all definite programs and goals.

The unfolding method as it is presented in section 3
was proposed in [Bruynooghe et al., 1991a], but appears
here for the first time in this detailed and automati-
sable form, specialised for object level programs. It
tries to maximise unfolding while retaining termination.
We know, however, of two classes of programs where
the first goal is not achieved. First, meta programs
require a somewhat more refined control of unfolding.
This issue is addressed in [Bruynooghe et al., 1991a].
We refer the interested reader to that paper (or to
[Bruynooghe et al., 1991b]) for further comments on this
topic. Second, (datalog) programs where the information
contained in constants appearing in the program text
plays an important role, are not treated in a satisfactory
way. Further research is necessary to improve the unfold-
ing in this case. (A combination of our rule with the R,
computation rule seems promising.) As far as the used
unfolding strategy does maximise unfolding, however, it
probably diminishes or eliminates the need for dynamic
renaming as proposed in [Benkerimi and Hill, 1989].

We now compare briefly algorithm 4.5 with the par-
tial deduction procedure with static renaming presented
in {Benkerimi and Lloyd, 1990]. First, we showed above
that our procedure terminates for all definite programs
and queries while the latter does not. The culprit
of this difference in behaviour is (apart from the un-
folding strategy used) the way in which msg’s are
taken. We do this predicatewise, while the authors of
[Benkerimi and Lloyd, 1990] only take an msg when this
is necessary to keep A independent. This may keep more
specialisation (though only for predicates different from
the one in the starting goal), but causes non-termination
whenever an infinite, independent set A is generated (as
illustrated in example 4.1). Observe, moreover, that we
have kept a clear separation between the issues of control
of unfolding and of ensuring soundness and complete-
ness. The use of algorithm 3.6 — or further refinements
(see above) — guarantees that all sensible unfolding —
and therefore specialisation — is obtained. The way in
which algorithm 4.5, in addition, ensures soundness and
completeness, takes care that none of the obtained spe-
cialisation is undone. Therefore, it does not seem worth-
while to consider more than one msg per predicate. Note
that one can even consider restricting the partial deduc-

479

tion to the predicate in the starting query and simply
retaining the original clauses for all other predicates in
the result program. This can perhaps be formalised as a
partial deduction where only a 1-step trivial unfolding is
performed for these predicates.

-Next, the method in [Benkerimi and Lloyd, 1990] is
formulated in a somewhat more general framework than
the one presented here. A reformulation of the latter
incorporating the concept of L-selectability and allow-
ing more than one literal in the starting query seems
straightforward. However, a generalisation to normal
programs and queries and SLDNF-resolution while re-
taining the termination property, is not immediate. In
e.g. [Benkerimi and Lloyd, 1990], it is proposed that
during unfolding, negated calls can be executed when
ground and remain in the resultant when non-ground.
This of course jeopardises termination, since termina-
tion of “ordinary” ground logic program execution is not
guaranteed in general. One solution is restricting at-
tention to specific subclasses of programs (e.g. acyclic
or acceptable programs, see [Aptand Bezem, 1990],
[Apt and Pedreschi, 1990]). Another might be to use an
adapted version of our unfolding criterion in the evalu-
ation of the ground negative call, and to keep the lat-
ter one in the resultant whenever the SLD(NF)-tree pro-
duced is not a complete one. Yet a third way might be
offered by the use of more powerful techniques related to
constructive negation (see [Chan and Wallace, 1989)).

Finally, [Gallagher and Bruynooghe, 1990] presents
another approach to partial deduction focusing both on
soundness and completeness and on control of unfolding.
The main difference is the control of unfolding by a con-
dition based on maximal deterministic paths, where our
approach is based on maximal data consumption, moni-
tored through well-founded measures.

References

[Apt and Bezem, 1990] K. R. Apt and M. Bezem.
Acyclic programs. In D. HA D. Warren and
P. Szeredi, editors, Proceedings ICLP’90, pages 617-
633, Jerusalem, June 1990. The MIT Press. Revised
version in New Generation Computing, (3 & 4):335-
364.

[Apt and Pedreschi, 1990] K. R. Apt and D. Pedreschi.
Studies in pure prolog: Termination. In J. W.
Lloyd, editor, Proceedings of the Esprit Symposium on
Computational Logic, pages 150-176. Springer-Verlag,
November 1990.

[Benkerimi and Hill, 1989] K. Benkerimi and P. M. Hill.
Supporting transformations for the partial evalua-
tion of logic programs. Technical report, Department

of Computer Science, University of Bristol, Great-
Britain, 1989.

480

[Benkerimi and Lloyd, 1989] K. Benkerimi and J. W.
Lloyd. A procedure for the partial evaluation of logic
programs. Technical Report TR-89-04, Department
of Computer Science, University of Bristol, Great-
Britain, May 1989.

[Benkerimi and Lloyd, 1990] K. Benkerimi and J. W.
Lloyd. A partial evaluation procedure for logic pro-
grams. In S. Debray and M. Hermenegildo, edi-
tors, Proceedings NACLP’90, pages 343-358. The MIT
Press, October 1990.

[Bruynooghe et al., 1991a] M. Bruynooghe, D. De Schr-
eye, and B. Martens. A general criterion for avoid-
ing infinite unfolding during partial deduction of logic
programs. In V. Saraswat and K. Ueda, editors, Pro-
ceedings ILPS’91, pages 117-131, October 1991.

[Bruynooghe et al., 1991b] M. Bruynooghe, D. De Schr-
eye, and B. Martens. A general criterion for avoiding
infinite unfolding during partial deduction. Technical
Report CW-126, Departement Computerwetenschap-
pen, K.U.Leuven, Belgium, March 1991.

[Chan and Wallace, 1989] D. Chan and M. Wallace. A
treatment of negation during partial evaluation. In
H. D. Abramson and M. H. Rogers, editors, Proceed-
ings Meta’88, pages 299-318. MIT Press, 1989.

[Gallagher and Bruynooghe, 1990
J. Gallagher and M. Bruynooghe. The derivation of
an algorithm for program specialisation. In D. H. D.
Warren and P. Szeredi, editors, Proceedings ICLP’90,
pages 732-746, Jerusalem, June 1990. Revised version
in New Generation Computing, 9(3 & 4):305-334.

{Gallagher, 1986] J. Gallagher. Transforming logic pro-
grams by specialising interpreters. In Proceedings
ECAI’86, pages 109-122, 1986.

[Komorowski, 1981] H. J. Komorowski. A specification
of an abstract Prolog machine and its application to
partial evaluation. Technical Report LSST69, Linkop-
ing University, 1981.

[Komorowski, 1989] H. J. Komorowski. Synthesis of pro-
grams in the framework of partial deduction. Technical
Report Ser.A, No.81, Departments of Computer Sci-
ence and Mathematics, Abo Akademi, Finland, 1989.

[Levi and Sardu, 1988] G. Levi and G. Sardu. Partial
evaluation of metaprograms in a multiple worlds logic
language. New Generation Computing, 6(2 & 3), 1988.

[Lloyd and Shepherdson, 1991] J. W. Lloyd and J. C.
Shepherdson. Partial evaluation in logic programming.
Journal of Logic Programming, 11(3 & 4):217-242,
1991.

[Martens and De Schreye, 1992] B. Martens and D. De
Schreye. Sound and complete partial deduction with
unfolding based on well-founded measures. Technical
Report CW-137, Departement Computerwetenschap-
pen, K.U.Leuven, Belgium, January 1992.

[Safra and Shapiro, 1986] S. Safra and E. Shapiro. Meta
interpreters for real. In Information Processing 86,
pages 271-278, 1986.

[Sahlin, 1990} D. Sahlin. The Mixtus approach to
automatic partial evaluation of full Prolog. In
S. Debray and M. Hermenegildo, editors, Proceedings
NACLP’90, pages 377-398, 1990.

[Sterling and Beer, 1986] L. Sterling and R. D. Beer. In-
cremental flavor-mixing of meta-interpreters for expert
system construction. In Proceedings ILPS’86, pages
20-27. IEEE Comp. Society Press, 1986.

[Sterling and Beer, 1989] L. Sterling and R. D. Beer.
Metainterpreters for expert system construction.
Journal of Logic Programming, pages 163-178, 1989.

[Takeuchi and Furukawa, 1986] A. Takeuchi and K. Fu-
rukawa. Partial evaluation of Prolog programs and its
application to metaprogramming. In H.-J. Kugler, ed-
itor, Information Processing 86, pages 415-420, 1986.

[Venken and Demoen, 1988] R. Venken and B. Demoen.
A partial evaluation system for Prolog : Some prac-

tical considerations. New Generation Computing, 6(2
& 3):279-290, 1988.

[Venken, 1984] R. Venken. A Prolog meta interpreter
for partial evaluation and its application to source to
source transformation and query optimization. In Pro-
ceedings ECAI’84, pages 91-100. North-Holland, 1984.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by 1COT. © ICOT, 1992

481

A Framework for Analysing the Termination of Definite Logic
Programs with respect to Call Patterns

Danny De Schreye*

Kristof Verschaetse!

Maurice Bruynooghe®

Department of Computer Science, K.U.Leuven,
Celestijnenlaan 200A, B-3001 Heverlee, Belgium.
e-mail: {dannyd,kristof,maurice}@cs.kuleuven.ac.be

Abstract

We extend the notions ’recurrency’ and ’acceptability’
of a logic program, which were respectively defined in
the work of M. Bezem and the work of K. R. Apt and
D. Pedreschi, and which were shown to be equivalent
to respectively termination under an arbitrary computa-
tion rule and termination under the Prolog computation
rule. We show that these equivalences still hold for the
extended definitions. The main idea is that instead of
measuring ground instances of atoms, all possible calls
are measured (which are not necessarily ground). By
doing so, a more practical technique is obtained, in the
sense that "more natural” measures can be used, which
can easily be found automatically.

1 Introduction

In the last few years, a strong research effort in the field
of logic programuning has addressed the issue of termina-
tion. From the more theoretical point of view, the results
obtained by Vasak and Potter [1986], Baudinet [1988],
Bezem [1989], Cavedon [1989], Apt and Pedreschi [1990)],
and Bossi et al. [1991] have provided several frameworks
and basic techniques to formulate and solve questions
regarding the termination of logic programs in semanti-
cally clear and general terms. Other researchers, such
as Ullman and Van Gelder [1988], Plimer [1990}, Wang
and Shyamasundar [1990], Verschaetse and De Schreye
[1991], and Sohn and Van Gelder [1991] have provided
practical and automatable techniques for proving the ter-
mination of logic programs with respect to certain classes
of queries at compile time.

In this paper, we propose an extension of the theo-
retical frameworks for the characterisation of terminat-
ing programs and queries proposed in [Bezem 1989] and
[Apt and Pedreschi 1990]. The framework does not only
provide slightly more general results, but also increases
the practicality of the techniques in view of automation.

*Supported by the National Fund for Scientific Research.
tSupported by ESPRIT BRA COMPULOG project nr. 3012,

Let us recall some definitions from [Bezem 1989] in
order to explain our motivation and the intuition behind
our approach.

Definition 1.1 (see [Bezem 1989]; Definition 2.1) A level
mapping for a definite logic program P is a mapping
{}:Bp — INV.

Definition 1.2 (see [Bezem 1989]; Definition 2.2) A
definite logic programn P is recurrent if there exists a
level mapping |.|, such that for each ground instance
A—By,...,B, of a clause in P, |A| > |B,|, for each
t=1,...,n.

Definition 1.3 (see [Bezem 1989]; Definition 2.7) A defi-
nite logic program P is terminating if all SLD-derivations
for (P, «G), where G is a ground goal, are finite.

One of the basic results of [Bezem 1989] is that a pro-
gram is recurrent if and only if it is terminating. Al-
though this result is very interesting from a theoretical
perspective, it is not a very practical one in terms of au-
tomated detection of terminating programs and queries.
The problem comes from the fact that the definition of
recurrency requires that the level mapping ”compares”
the head of each ground instance of a clause with ev-
ery corresponding atom in the body and imposes a de-
crease. Intuitively, what would be preferable is to obtain
a well-founding based on a measure function (or level
mapping), which only decreases on each recursive call to
a same predicate. This corresponds better to our intu-
ition, since nontermination (for pure logic programs) can
only be caused by infinite recursion.

As we stated above, the problem is not merely related
to our intuition on the cause of nontermination, but more
importantly to the practicality of level mappings. Con-
sider the following example.

Example 1.4

p({))-
p([H|T])

q([])-
o([HIT]) — oT).

— q([H|T)),p(T).

482

It is not possible to take as level mapping a function
that maps ground instances p(z) and ¢(z) to the same
level, namely list-length(z) if is a ground list, and 0
otherwise. Instead, the definition of recurrency obliges
us to take a level mapping that has a "unnatural” offset
(1 in this case).

|p(2)]
la(=)|

In a naive attempt to improve on the results of
[Bezem 1989], one could try to start from an adapted
definition for a recurrent program, in which the relation
|A| > | B;] would only be required if A and B; are atoms
with the same predicate symbol. However, the equiv-
alence with termination would iminediately be lost —
even for programs having only direct recursion — as the
following example shows.

list-length(z) + 1
list-length(z).

I

Example 1.5

append([}, Z, L).
append([H|S], T, [H|U]) « append(S,T,U).

p([H|T]) « append(X,Y,Z),p(T).

An "extended” notion of recurrency, where the level
mapping only relates the measure of ground instances of
the recursive calls, would hold with respect to the level
mapping:

lp(2)]
|append(z, ¥,)|

Il

list-length(x)
list-length(z).

On the other hand, the program is clearly not terminat-
ing — if it would be terminating, then we would have
shown that append/3 terminates for a call with all three
arguments free.

The heart of the problem is that in the definition of
recurrency, the level mapping is used for two quite dis-
tinct purposes at the same time. First, the level mapping
does ensure that on each derivation step, the measure of
arecursive descending call is smaller than the measure of
the ancestor call (or at least: for each ground instance of
such a derivation step). Second, since we are only given
that the top level goal is ground (or, in a more general
version of the theorem, bounded) — but we have no in-
formation on the instantiation of any of the descending
calls — the level mapping is also used to ensure that we
have some upper limit on the measures for the calls of
the (independent) recursive subcomputation evoked by
the original call. In the current definition, this is done
by imposing that the level also decreases between a call
and its descendants that are not related through recur-
sion.

The way in which we address the problem here, differs
from the approach in [Bezem 1989] in three ways:

1. We first compute all atoms that can occur as calls
during any SLD-derivation for the top-level goal(s)
under consideration.

2. We use an extended notion of level mapping, defined
on all such atoms — not only the ground ones.

3. We have an adapted definition of recurrency, with
as its most important features:

(a) the condition |4] > |B;| is not imposed on
ground instances of a clause, but instead, on
each instance obtained after unification with a
(possible) call,

(b) the decrease |4| > |B;| is only imposed if A
and B; are calls to the same predicate symbol.
(This is for direct recursion — in the context of
‘indirect recursion, the condition is more com-
plex).

One of the side effects of taking this approach is
that there is no more necessity to start the analysis
for one ground or bounded goal. The technique works
equally well when we start from any general set of
atoms. The additional advantage that we gain here is
that in practice, we are usually interested in the ter-
mination properties of a program with respect to some
call pattern. Such call patterns can always be speci-
fied in terms of abstract properties of the arguments in
the goals through mode information, type information
or combined (rigid or integrated) mode and type infor-
mation (see [Janssens and Bruynooghe 1990]). Any such
call pattern corresponds to a set of atoms in the con-
crete domain, and can therefore be analysed with our
approach.

The paper is organised as follows. In the next sec-
tion we extend the equivalence theorem of [Bezem 1989]
in the way described above. In section 3 we take
a completely similar approach to extend results of
[Apt and Pedreschi 1990] on left termination. In sec-
tion 4, we illustrate the improved practicality of
the new framework. We also indicate how some
simple extensions are likely to provide full theoreti-
cal support for the automated technique proposed in
[Verschaetse and De Schreye 1991].

All proofs have been omitted from the paper. They
can be found in [De Schreye and Verschaetse 1992].

2 Recurrency with respect to a
set of atoms

We first introduce some conventions and recall some
basic terminology. Throughout the paper, P will de-
note a definite logic program. The extended Her-
brand Universe, U5, and the extended Herbrand Base,
BE, associated to a program P, were introduced in

[Falaschi et al. 1989]. They are defined as follows. Let
Termp and Atomp denote the sets of respectively all
terms and all atoms that can be constructed from the
alphabet underlying to P. The variant relation, de-
noted =, defines an equivalence. UZ and BE are re-
spectively the quotient sets T'ermp/ ~ and Atomp/ =.
For any term ¢ (or atom A), we denote its class in UF
(BE) as T (A). There is a natural partial order on UZ
(and BE), defined as: § < { if there exist represen-
tants s' of § and t' of ¥ in Termp and a substitution
6, such that s' = t'6. Throughout the paper, S will de-
note a subset of BE. We define its closure under < as:
Sc={Ae€BE|3BesS:A< B}

Definition 2.1 P is terminating with respect to S if for
any representant A' of any element A of S, every SLD-
tree for (P, —A4') is finite.

Denoting the classical notion of a Herbrand Base (of
ground atoms) over P as Bp, then with the terminology
of [Bezem 1989] we have:

Lemma 2.2 P is terminating if and only if it is termi-
nating with respect to Bp.

Lemma 2.3 If all SLD-derivations for (P, —A) are finite,
and @ is any substitution, then all SLD-derivations for
(P, —Af) are finite.

From lemma 2.3 it follows that in order to verify def-
inition 2.1 for a set S C BE, it suffices to verify the
finiteness of the SLD-trees for (P, —A) for only one rep-
resentant of each element in A. It also follows that P is
terminating with respect to a set S C BE if and only if it
is terminating with respect to S¢. In fact, given that P
terminates with respect to S, it will in general be termi-
nating with respect to a larger set of atoms than those in
S¢. It is clear that if all SLD-trees for (P, — A) are finite,
and if H«B,,..., B, is a clause in P, such that A and
H unify, then all SLD-trees for (P, —B;6),i =1,...,n,
where § = mgu(A, H), are finite. We can characterise
the complete set of terminating atoms associated to a
given set S as follows.

Definition 2.4 For any T C BE, define 7, '(T) =
{B# € BE | A'is a representant of A € T, H
«— By,...,B, is a clause in P, 8 = mgu(4', H) and
1<i<n}.

Denote Hs = {T € 287 | S C T}. Hs is a complete
lattice with bottom element S°.

Definition 2.5 Rs: Hs — Hs: Rs(T) = TU T H(T)".
Lemma 2.6 R is continuous.

As a result, the least fix-point for Rs is Rsfw.

483

Lemma 2.7 P is terminating with respect to S if and
only if P is terminating with respect to Rslw.

As a rtesult of our construction (in fact: as the very
purpose of it), RsTw contains every call in every SLD-
tree for any atomic goal of S. Formally:

Proposition 2.8 Let call(P, S) denote the set of all
atoms B, such that B is the subgoal selected by the
computation rule in some goal of some SLD-tree for a

pair (P, —A), with A the representant of an element of
S. Then, call(P, S) C Rslw.

We now introduce a variant of the definition of a level
mapping, where the mapping is defined on equivalence
classes of calls.

Definition 2.9 (level mapping)

A level mapping with respect to a set S C BE is a function
|| : Rstw — IN. A level mapping |.| is called rigid
if for all A € Rslw and for any substitution 4, |4]| =
| 48], i.e. the level of an atom remains invariant under
substitution.

With slight abuse of notation, we will often write |A|,
where A is a representant of 4 € BE. The associated
notion of recurrency with respect to S will not be de-
fined on ground instances of clauses, but instead on all
instances (H < By, ..., B,)0 of clauses H—B, ..., B, of
P, such that § = mgu(A, H), where A is a representant
of an element of Rglw. The definition in [Bezem 1989]
does not explicitly impose a decrease of the level map-
ping at each inference step. The level mapping’s values
should only decrease for ground instances of clauses. By
considering more general instances of clauses (as above),
we can explicitly impose a decrease of the level mapping’s
value during (recursive) inference steps. As a result, the
adapted level mapping no longer needs to perform dif-
ferent functionalities at once, and we can concentrate on
the real structure of the recursion.

Now, concerning this recursive structure, there are a
number of different possibilities for a new definition of
recurrency, depending on how we aim to deal with indi-
rect recursion. In order not to confuse all issues involved,
we first provide a definition for programs P, relying only
on direct recursion.

Definition 2.10 A (directly recursive) program P is re-
current with respect to S, if there exists a level mapping
|| with respect to S, such that:

o for any A' representant of A € RsTw,

¢ for any clause H«—B,,...,B, in P, such that
mgu(A', H) = 6 exists,

e for any atom B;,1 <1 < n, with the same predicate
symbol as H: |A'| > | B;6].

484

What is expressed in this definition is that for any two
recursively descending calls with a same predicate sym-
bol in any SLD-tree for (representants of) atoms in S,
the level mapping’s value should decrease. This condi-
tion has the advantage of being perfectly natural and
therefore, of being easy to verify in an automated way.
The only possible problem in view of automation is that
it requires the computation of RsTw. But, this problem
is precisely the type of problem that can easily be solved
(or approximated) through abstract interpretation (see
section 4).

In the presence of indirect recursion, we need a more
complex definition, that deals with the problem that a re-
cursive call with a same predicate symbol as an ancestor
call may only appear after a finite number of inference
steps (instead of in the body of the particular instance
of the applied clause). This can be done in several ways.
We first provide a definition related to the concept of a
resultant of a finite (incomplete) derivation. Based on
this definition, we prove the equivalence with termina-
tion. After that, we provide a more practical condition,
of which definition 2.10 is an obvious instance for the
case of direct recursion.

First, we need some additional terminology.

Definition 2.11 Let 4 be an atom and (G = «A4),
Gy Gay..oyy Gyy (n > 0), a finite, incomplete SLD-
derivation for (P,«A). Let 6,...,6, be the cor-
responding sequence of substitutions, and let 6 =
0102---0,, and G, = «By,...,B,,. With the ter-
minclogy of [Lloyd and Shepherdson 1991] we say that
A@—B,..., B,, is the resultant of the derivation.

Definition 2.12 A resultant A#«B,,...,B,, of a
derivation (Gy = «A4),Gy,...,Gy, is a recursive resul-
tant for A if there exists ¢ (1 < 7 < m), such that B, has
the same predicate symbol as A4.

Definition 2.13 (recurrency wrt a set of atoms)
A program P is recurrent with respect to S, if there exists
a level mapping, |.|, with respect to .S, such that:

o for any A’ representant of A € Rslw,
e for any recursive resultant 4'6—B;,..., B,,, for A',

o for any atom B;, 1 < 1 < m, with the same predicate
symbol as A": |4'| > |B,].

Proposition 2.14 If P is recurrent with respect to 5,
then P terminates with respect to .S.

Just as in the framework of Bezem, the converse state-
ment holds as well.

Theorem 2.15

P is recurrent with respect to S if and only if it is ter-
minating with respect to S.

One of the nice consequences of this result is that we
can now relate the concept of a recurrent program in the
sense of [Bezem 1989] to recurrency with respect to a set
of (ground) atoms.

Corollary 2.16 P is recurrent if and only if it is recur-
rent with respect to Bp.

It may seem surprising to the reader that two appar-
ently very different notions such as recurrency and recur-
rency with respect to Bp coincide. It is our experience
from our work in termination of unfolding in the context
of partial deduction ([Bruynooghe et al. 1991]) that this
is not unusual. The reason is that conditions occurring
in these contexts require the "ezistence” of some well-
founded measure. The specific properties of such mea-
sures can take totally different form without loosing the
termination property. The only real difference lies in the
practicality.

We conclude the section by introducing a condition
that implies definition 2.13. This condition has the ad-
vantage over definition 2.13 that it does not rely on the
verification of some property for each of a potentially
infinite number of recursive resultants. Instead it only
requires such a verification for a finite number of clauses,
which can be characterised through the minimal, cyclic
collections of P.

Definition 2.17 (minimal cyclic collection)
A minimal cyclic collection of P is a finite sequence of
clauses of P:

1 1 1
A1 — Blv"'$A2v"'}Bn|

Am — By .. . ALy, BY
such that:

o for each pair (¢ # j), the heads of the clauses, 4;
and A4;, are atoms with distinct predicate symbols,

e A, and A! have the same predicate symbols (1 < ¢ <
m),

o Al ., has the same predicate symbol as 4;.

Only a finite number of minimal cyclic collections exists.
They can easily be characterised and computed from the
predicate dependency graph for P.

Proposition 2.18

Let S C BE and || a rigid level mapping with respect to
S, such that for any minimal cyclic collection of P (after
standardizing apart),

1 i 1
Al — .Bl,...,x‘lo‘,,..',.B"l

m 1 m
Am — BP . AL L.,..., BT

and for any A4;,..., A, € Rstw, with AY, ..., A" as
their respective representants, and 6; = mgu(A4;, A),
(1 < i < m), the following condition holds:

|46 = [43]

|A0m-1] > |AL

4
[T} > AL 11 Om]-
Then, P is recurrent with respect to S.

The conditions in proposition 2.18 seem rather unnat-
ural at first sight and need some clarification. First, ob-
serve that in the case of direct recursion — except for the
rigidity of the level mapping — the conditions coincide
with those of definition 2.10.

For the case of indirect recursion, the conditions that
one would intuitively expect, are that for each minimal
cyclic collection

1 1 1
Ay — BY...,A,... B

1
Am «— BP... A.,..., BT

and each A representant of A; € Rslw, such that § =
mgu(Af, 4;) and 6; = mgu(A}, 4;), 1 < i < m, exist and
are consistent, we have

|AY] > 1AL, 1166, -6,

The problem is that such a condition is not correct. Con-
sider the clauses:

pla,[1X]) < p(b,X). (1)

(b, X) — q(a,[-|X]). (cl2)

q(b, X) — p(a,[|X]). (cI3)

g(a, X)) « (6, X). (cl4)
There are 4 associated minimal collections: (cll),
(c12,c13), (cl3,cl2) and (cl4). Consider for instance
the derivation «—p(a,[.,-]), «p(b,[]), —gla]--])

—q(b,[.]), —p(a [,])-

The problem is caused by resultants associated to
derivations that start with a clause from one minimal
cyclic collection — say (cl2) in the collection (cl2,cl3) —
then shift to applying another collection, (cl4), and only
after this resume the first collection and apply clause
(c13). The head of the third clause, ¢(b, X), does not
unify with g(a,[-|X']), and therefore, the condition on
the cycle (cl2,cl3) can not be applied.

So, we have to impose the condition in proposition
2.18. It states that, even if the next call in the traversal
of a minimal collection (4!') is not really related — as
an instance — to a call we obtained earlier (A4}6;_,), but
if — through the intermediate computation in another
minimal collection — the level between these two has
decreased anyway, then the final conclusion between the
original call to the collection and the indirectly depend-
ing one must still hold. We will not discuss the condition
any further here, but we will return to its practicality in
section 4.

485

3 Acceptability with respect to
a set of atoms

All definitions and propositions from the previous sec-
tion can be specialised for the Prolog computation rule.
Following [Apt and Pedreschi 1990}, we call an SLD-
derivation that uses Prolog’s left-to-right computation
rule, an LD-derivation.

Definition 3.1 (left termination wrt S) Let S be
a subset of BE. A program P is left-terminating with
respect to S if for any representant A of any element of
S, every LD-derivation is finite.

Recall definitions 2.4 and 2.5. The motivation behind
these definitions was finding an overestimation of all calls
that are possible in any SLD-derivation using an arbi-
trary computation rule. The fact that no fixed compu-
tation rule is used, forces us to take the closure under all
possible instantiations in definition 2.5, and hence RsTw
contains in general a lot more calls than can really occur
when a particular computation rule is chosen,

In this section, we focus our analysis on computations
that use Prolog’s left-to-right computation rule. There-
fore, adapted definitions of the ’Tp"l and Rs functions are
needed.

Definition 3.2 For any T C BE, define: PpYT) =
{Bfo,---0;,_; € BE | A' is a representant of AeT,
H « B,,...,B,is aclause in P, § = mgu(4', H), 1 <
1< n, doy,...,0i-1, such that Vj=1,...,i—1: 0;is an
answer for (P, —B;foy---0;_1)}.

The answer substitutions o; are computed using LD-
resolution. Let H4" denote {T € 287 | § C T}.

Definition 3.3 Ry : HY" — HY™ : RE(T) = T U
PrUT)

In a completely analogous way as in the previous sec-
tion, we find that RY" is continuous. Hence, the least fix
point RS Tw contains all atoms that can possibly occur
as a call when P is executed under the Prolog computa-
tion rule, and when a representant of an element from S
is used as query.

Level mappings are now defined on R5 ™. Recursive re-
sultants are constructed using the left-to-right computa-
tion rule. This allows us to consider only recursive resul-
tants of the form p(s,, ..., s,)—p(t1,...,tn), B2,..., Bm.
The analogue of recurrency with respect to a set S of
atoms, is acceptability with respect to S.

Definition 3.4 (acceptability wrt a set of atoms)
A program P is acceptable with respect fo S,
if there exists a level mapping |.| with respect
to S, such that for any p(s;,...,s,.), represen-
tant of an element in R5"{w, and for any recur-
sive resultant p(sy,...,s$,)0—p(t1,...,t.), B2,..., B
Ip(s1y- ooy a)l > |p(tiy i t)l.

486

Theorem 3.5
P is acceptable with respect to S if and only if it is left-
terminating with respect to S.

As in section 2, we provide a more practical, sufficient
condition. The result is completely analogous to propo-
sition 2.18.

Proposition 3.6

Let S C BE and || a level mapping with respect to S,
such that for any minimal cyclic collection of P (after
standardizing apart),

1 1 ! 1
A, « BL,...,B. A,..., B,

m m ! m
An & BP..., Bl AL, BT

and for any A;,...,4, € Ry"fw, with AY,..., A"
as their respective representants, and with 0, =
mgu(4;, A7) (1 < j < m) and o}, is a computed an-
swer substitution for (P, —Bi6;0% .- oi_) (1 < k < i;),
the following condition holds:

|436101 -0, | > |43

| A 10T ool > 4L

Em—1
|AY] > AL, 10moT - <ol s

Then, P is acceptable with respect to S.

4 Practicality and automation

A fully automated technique needs to address the follow-
ing issues:

e safe approximations of Rsfw and R%"Tw must be
computed,

e precise and natural level mappings are needed, and

o the conditions in propositions 2.18 and 3.6 must be
automatically verifiable.

For left termination, there is one extra issue:

e some properties of the answer substitutions for the
atoms in R% " Tw are needed; in particular, after ap-
plication of a computed answer substitution we want
an estimation of the relationship between the sizes
of the arguments of the atoms in R Tw.

Concerning the first issue, observe that in practice, the
sets of atoms S in the framework are likely to be specified
in terms of call patterns over some abstract domain. The
framework contains no implicit restriction on the kind of
abstractions that are used for this purpose. They could
be either expressing mode or type information, or even
combined mode and type information — as in the rigid

or integrated types of [Janssens and Bruynooghe 1990].
Abstract interpretation can be applied to automati-
cally infer a safe approximation of Rslw or RY7 1w (see
[Janssens and Bruynooghe 1990]).

Automated techniques for proving termination use
various types of norms. A normis amapping||.||: U§ —
IN. Several examples of norms can be found in the lit-
erature. When dealing with lists, it is often appropriate
to use list-length, which gives the depth of the rightmost
branch in the tree representation of the term. A more
general norm is term-size, which counts the number of
function symbols in a term. Another frequently used
norm is term-depth, which gives the maximum depth of
(the tree representation of) a term.

However, we restrict ourselves to semi-linear norms,
which were defined in {Bossi et al. 1991].

Definition 4.1 (semi-linear norm)
A norm ||.]] is semi-linear if it satisfies the folowing con-
ditions:

o ||[V]] = 0if V is a variable, and

o [[£(try- .o ta)ll = et |4+ - -+t || wherec € IV,
1< <<ty <nandec,ig,...,in, depend only

on f/n.

Examples of semi-linear norms are [ist-length and
term-size. '

As was pointed out in [Bossi et al. 1991}, proving ter-
mination is significantly facilitated if the norm of a term
remains invariant under substitution. Such terms are
called rigid.

Definition 4.2 (rigid term; see [Bossi et al. 1991])
Let ||.]| be a (semi-linear) norm. A term ¢ is rigid with
respect to ||.|| if for any substitution o, ||to|| = ||t]].

Rigidity is a generalisation of groundness; by using this
concept it is possible to avoid restricting the definition of
a norm to ground terms only, a restriction that is often
found in the literature.

Given a semi-linear norm and a set of atoms 5, a very

natural level mapping with respect to S can be associated
to them.

Definition 4.3 (natural level mapping)

Given is a semi-linear norm ||.|| and a set of atoms §.
|, the natural level mapping induced by S, is defined
as follows: Vp(iy,...,t,) € Rslw:

‘p(tly"':tn)}mﬂ ZieI”ti”: HI# 0

= 0 otherwise,
with I = {¢] Vp(u;, S Up) € Rglw ¢ v is rigid}.

Let us illustrate the practicality of such mappings —
and of the framework itself — with some examples.

Example 4.4

Reconsider example 1.4 from the introduction. Assume
that S = {p(z) | z is a nil-terminated list}. Let .||, be
the list-length norm. The argument positions of all atoms
in Rslw are rigid under this norm. So, |p(z)|,,, = ||z||,
and {g(z)|,.., = ||z|l;- The program is directly recursive,
so that it suffices to verify the conditions of definition
2.10.

For the clause p([H|T])—q([H|T]),p(T) and for each
call p(z) € Rslw, with 8§ = mgu(z,[H|T]), we have
|P(2)| e > 12(T)0|, .- By the same argument, the con-
dition on the clause ¢([H|T])«—¢(T) holds as well. Thus,
the program is recurrent with respect to S under the
natural, list-length level mapping with respect to S.

As a second example, we take a program with indirect
recursion. It defines some form of well-formed expres-
sions built from integers and the function symbols +/2,
*/2 and —/1.

Example 4.5

e(X+Y) f(X),e(Y). (cl1)
e(X) f(X). (c12)
)
)

T

f(X*Y) « g(X),f(Y). (cl8
f(X) — g(X). (cl4

9(=(X)) — e(X). (cl5)
g(X) — integer(X). (cl6)

The obvious choice for a level mapping for this program is
term-size. However, the program is not recurrent in the
sense of [Bezem 1989] with respect to this norm. Since it
is clearly terminating, a level mapping exists. The most
natural mapping (in the sense of [Bezem 1989]) we were
able to come up with is:

le(z)] = 3 x term-size(z) + 2
| F(=)] 3 x term-size(z) + 1
lg(z)] 3 x term-size(z).

In the context of our framework, consider the set S =
{e(z) | = is ground}. Through abstract interpretation,
we can find that RsTw C Bp.

Let ||.||, be the term-size norm. Again, the argument
positions of all atoms in Rslw are rigid (even ground) un-
der this norm. Thus, |e(z)|,,, = |||, |f(2)]... = |zl
and {g(z)l,,,, = |||l,- The program contains essentially’
6 minimal, cyclic collections: (cl1), (c13), (cl1, I3, cl5),
(cl1, cl4, cl5), (cl2, cl3, c15), (<12, cl4, cI5).

Let us consider, as an example, the third collection:

(X +Y) « f(X)eY)
J(X'+Y") = g(X"), f(Y').
9(=(X") « e(X").

'Since collections are sequences of clauses, cyclic permutations
should be considered as well.

o

487

Assume that e(z), f(y) and g(z) are any atoms with
ground terms z, y and z, and that:

6; = mgu(e(z),e(X + 1))

82 = mgu(f(y), F(X' *Y"))
03 = mgu(g(z), 9(—(X"))).

Also assume’ that |f(X)8;| > [f(y)| and |g(X')8;] >
lg(z)|. We then have le(z)| > |f(X)6:] = [f(y)| >
90| > lg(2) > [e(X")6sl, so that [e(2)] >

|e(X")6;], and the conditions of proposition 2.18 (for the
third cycle) are fulfilled. All other cycles can be verified
in a similar way. The conclusion is that the program is
recurrent with respect to S and the very natural term-
size level mapping.

In the context of left termination, definition 4.3 can be
adapted to produce equally natural level mappings with
respect to a set S. Obviously, RsTw should be replaced
by Ry "fw. In the context of left termination there is
an extra issue, namely, (an approximation of) the set of
possible answer substitutions for an atom is needed. The
next example illustrates how this is handled.

Example 4.6

(), 1))-
p(HIT),[GIS]) — d(G,[H|T),U),p(U,S).

d(H,[H|T), T).
d(G, [H|T),[H|U]) «— &G, T,U).

Assume that S = {p(z,y) | = is a nil-terminated list and
y is free}. Notice that Rslw contains the set {p(z,y) | z
and y are free variables}. We are not able to define a level
mapping on Rsfw that can be used to prove recurrency
with respect to S. This is not surprising, since P is not
terminating with respect to S. '

However, program P is left terminating with respect
to S. We prove this by showing that P is accept-
able with respect to S. The set Ry Tw is the union
of {p(z,y) | = is a nil-terminated list and y is free}
and {d(z,y,z) | = and z are free variables and y is a
nil-terminated list}. This can be found by using ab-
stract interpretation. Since there is only direct recur-
sion in program P, it suffices to show that: (1) for
any p(z,y) € RS 1w, |p(z,y)] > |p(U, $)00|, where
6 = mgu(p(z,y), p((H|T],[G|S])) and o is a computed
answer substitution for (P, — d(G,[H|T],U)8), and (2)
for any d(z,9,2) € R 1w, |d(=z,y,2)| > |d(G, T, V)4,
where § = mgu(d(z,y, z),d(G,[H|T], [H|U])).

Now, in practice, the statement "o is a computed an-
swer substitution for (P, — d(G,[H|T),U)8)" can be
replaced by ”||[H|T]6o||, = ||Ufc]|, + 17. This latter
statement is a so-called linear size relation, which ex-
presses a relation between the norms of the arguments
of the atoms in the success set of the program. Alterna-
tively, it can also be interpreted as a (non-Herbrand)

488

model of the program. For more details we refer to
[Verschaetse and De Schreye 1992}, where we describe
an automated technique for deriving linear size relations.

By taking this information into account, and by taking
Ip(z,y)| = |||, for any p(z,y) € R%" Tw — notice that =
is rigid with respect to [|.|}; — we find: [p(z,y)] = [|z||, =
HITIll, = [[[#]|T)6ell, = |Uboll, +1 > [|Ua]], =
[p(U, S)fa|.

The second inequality, |d(z,y,z)| > |d(G,T,U)8], is
more easy to prove. This time, the list-length of the
second argument can be taken as level mapping. Since
both inequalities hold, we can conclude that the program
is acceptable with respect to the set of atoms that is
considered.

Automatic verification of the conditions for recurrency
and acceptability is handled by reformulating them into
a problem of checking the solvability of a linear system of
inequalities. This part of the work is described in more
detail in [De Schreye and Verschaetse 1992].

References

[Apt and Pedreschi 1990] K. R. Apt and D. Pedreschi.
Studies in pure Prolog: termination. In Proceedings
Esprit symposium on computational logic, pages 150-
176, Brussels, November 1990.

[Baudinet 1988] M. Baudinet. Proving termination
properties of Prolog programs: a semantic approach.
In Proceedings of the 3rd IEEE symposium on logic
in computer science, pages 336-347, Edinburgh, July
1988. Revised version to appear in Journal of Logic
Programming.

[Bezem 1989] M. Bezem. Characterizing termination of
logic programs with level mappings. In Proceedings
NACLP’89, pages 69-80, 1989.

[Bossi et al. 1991] A. Bossi, N. Cocco, and M. Fabris.
Norms on terms and their use in proving universal
termination of a logic program. Technical Report
4/29, CNR, Department of Mathematics, University
of Padova, March 1991.

[Bruynooghe et al. 1991] M. Bruynooghe, D. De Schr-
eye, and B. Martens. A general criterion for avoiding
infinite unfolding during partial deduction of logic pro-
grams. In Proceedings ILPS’91, pages 117-131, San
Diego, October 1991. MIT Press.

[Cavedon 1989] L. Cavedon. Continuity, consistency,
and completeness properties for logic programs. In
Proceedings ICLP’89, pages 571-584, June 1989.

[De Schreye and Verschaetse 1992] D. De Schreye and
K. Verschaetse. Termination analysis of definite logic

programs with respect to call patterns. Techni-
cal Report CW 138, Department Computer Science,
K.U.Leuven, January 1992.

[Falaschi et al. 1989] M. Falaschi, G. Levi, M. Martelli,
and C. Palamidessi. Declarative modeling of the oper-
ational behaviour of logic languages. Theoretical Com-
puter Science, 69(3):289-318, 1989.

[Janssens and Bruynooghe 1990]
G. Janssens and M. Bruynooghe. Deriving descrip-
tions of possible values of program variables by means
of abstract interpretation. Technical Report CW 107,
Department of Computer Science, K.U.Leuven, March
1990. To appear in Journal of Logic Programming, in
print.

[Lloyd and Shepherdson 1991} J. W. Lloyd and J. C.
Shepherdson. Partial evaluation in logic programming.
Journal of Logic Programming, 11(3 & 4):217-242, Oc-
tober/November 1991,

[Plimer 1990] L. Plimer. Termination proofs for logic
programs. Lecture Notes in Artificial Intelligence 446.
Springer-Verlag, 1990.

[Sohn and Van Gelder 1991] K. Sohn and A. Van
Gelder. Termination detection in logic programs us-
ing argument sizes. In Proceedings 10th symposium on
principles of database systems, pages 216-226. Acm
Press, May 1991.

[Ullman and Van Gelder 1988] J. D. Ullman and A. Van
Gelder. Efficient tests for top-down termination of
logical rules. Journal ACM, 35(2):345-373, April 1988,

[Vasak and Potter 1986] T. Vasak and J. Potter. Char-
acterisation of terminating logic programs. In Pro-
ceedings 1986 symposium on logic programming, pages
140-147, Salt Lake City, 1986.

[Verschaetse and De Schreye 1991] K. Verschaetse and
D. De Schreye. Deriving termination proofs for logic
programs, using abstract procedures. In Proceedings
ICLP’91, pages 301-315, Paris, June 1991. MIT Press.

[Verschaetse and De Schreye 1992] K. Verschaetse and
D. De Schreye. Automatic derivation of linear size re-
lations. Technical Report CW 139, Department Com-
puter Science, K.U.Leuven, January 1992.

[Wang and Shyamasundar 1990] B. Wang and R. K.
Shyamasundar. Towards a characterization of ter-
mination of logic programs. In Proceedings of inter-
national workshop PLILP’90, Lecture Notes in Com-
puter Science 456, pages 204-221, Linkdping, August
1990. Springer-Verlag.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by JICOT. © ICOT, 1992

489

Automatic Verification of GHC-Programs:

Termination

Lutz Pliimer
Rheinische Friedrich-Wilhelms-Universitit Bonn, Institut fiir Informatik III
D-5300 Bonn 1, Romerstr. 164
lutz@uran.informatik.uni-bonn.de

Abstract

We present an efficient technique for the automatic genera-
tion of termination proofs for concurrent logic programs,
taking Guarded Horn Clauses (GHC) as an example. In con-
trast to Prolog's strict left to right order of evaluation, termi-
nation proofs for concurrent languages are complicated by a
more sophisticated mechanism of subgoal selection. We in-
troduce the notion of directed GHC programs and show that
for this class of programs goal reductions can be simulated
by Prolog-like derivations. We give a sufficient criterion for
directedness. Static program analysis techniques developed
for Prolog can thus be applied, albeit with some important
modifications.

1. Introduction

With regard to termination it is useful to distinguish between
two types of software systems or programs: transformational
and reactive [HAPS8S5]. A transformational system receives
an input at the beginning of its operation and yields an output
at the end. If the problem at hand is decidable, termination of
the process is surely a desirable property. Reactive systems,
on the other hand, are designed to maintain some interaction
with their environment. Some of them, for instance op-
erating systems and database management systems, ideally
never terminate and do not yield a final result at all. Based on
the process interpretation of Horn clause logic, concurrent
logic programming systems have been designed for many
different applications including reactive systems and trans-
formational parallel systems. While for some of them termi-
nation is not a desirable property, for others it is. In this pa-
per we discuss how automatic termination proofs for concur-
rent logic programs can be achieved automatically.

Automatic proof techniques for pure Prolog programs
have been described in several papers including [ULG88]
and [PLU90a). Prolog is characterized by a fixed
computation rule which always selects the leftmost atom.
Deterministic subgoal selection and strict left to right order of
evaluation cannot be assumed for the concurrent languages.

Static program analysis techniques, which are well estab-
lished for sequential Prolog, such as abstract interpretation,

inductive assertions and termination proof techniques, sub-
stantially depend on the strict left to right order of evaluation
in most cases and thus cannot easily be applied to concurrent
languages. Concurrent languages delay subgoals which are
not sufficiently instantiated. Goals which loop forever when
evaluated by a Prolog interpreter may deadlock in the context
of a concurrent language. These phenomena may suggest
that termination proofs for concurrent logic programs require
a different approach. This paper, however, shows that
techniques which have been established for pure Prolog are
still useful in the context of concurrency.

Our starting point is the question under which conditions
reductions of a concurrent logic program can be simulated by
Prolog-like derivations. We take Guarded Horn Clauses
(GHC, see [UEDS86]) as an example, but our results can
casily be extended to other concurrent logic programming
languages such as PARLOG, (Flat) Concurrent Prolog or
FCP(:). Our basic assumptions are the restriction of unifica-
tion to input matching, nondeterministic subgoal selection
and resuming of subgoals which are not sufficiently instan-
tiated. Since we consider all possible derivations, the commit
operator does not need special attention.

In general simulation is not possible: if there is a GHC-
derivation of g' from g, g' cannot necessarily be derived
with Prolog's computation rule.

One could now try to augment simulation by program
transformation. Let, for instance, P' be derived from P by
including all clause body permutations. Although P' may be
exponentially larger than P, there are still derivations which
are not captured.

Example 1.1:

Program: p ¢ q,f. ¢ ¢« S,L
s. v.

Goal: «p

r < u,v.

This goal can be reduced to < t,u by nondeterministic
subgoal selection, but not by a Prolog like computation,
even after adding the following clauses:

pergq qéets. revu

The reason is that in order to derive < t,u, the subderiva-
tions of «— q and < r have to be interleaved.

490

The question arises whether there is an interesting sub-
class for which appropriate simulations can be defined. Such
a class of programs will be discussed in Section 3. The main
idea is to assume that if a subgoal p may produce some
output on which evaluation of another subgoal q depends,
then p is smaller w.r.t. some partial ordering. Whether a
program maintains such a property, which we will call di-
rectedness, is undecidable. We will then introduce the
stronger notion of well-formedness which can be checked
syntactically. Well-formedness is related to directionality,
which is discussed in [GRE87]. Well-formedness is suffi-
cient but not necessary for directedness, and it will turn out
that quite a lot of nontrivial programs (including for instance
systolic programs as discussed in [SHA87a] and most of the
examples given in [TIC91]) fall into this category. In Section
5 we will demonstrate how termination proof techniques
which have been established for pure Prolog can be
generalized such that they apply to well-formed GHC
programs.

The rest of this paper is organized as follows. Section 2
provides basic notions. Section 3 introduces the notion of di-
rected programs and shows that this property is undecidable.
It provides the notion of well-formedness and shows that it
is sufficient for directedness. Section 4 discusses oriented
and data driven computation and shows that after some sim-
ple program transformation derivations with directed GHC-
programs can be simulated by Prolog-like derivations.
Using the notion of S-models introduced in [FLP89], Sec-
tions 5 and 6 show how termination proofs can be achieved
automatically.

2. Basic Notions

We use standard notation and terminology of Lloyd [L1087]
or Apt [APT90]. Following [APP90] we will say LD-reso-
lution (LD-derivation, LD-refutation LD-tree) for SLD-reso-
lution (SLD-derivation, SLD-refutation SLD-tree) with the
leftmost selection rule characteristic for Prolog.

Next we define GHC programs following [UED87] and
[UEDS8].

A GHC program is a set of guarded Homn clauses of the
following form:

H « Gy,...,Gny | By,...,Bj.

where H, Gy,...,Gn and By,...,B, are atomic formulas. H
is called a clause head, the G;'s are called guard goals and
the B;'s are called body goals. The part of a clause before T
is called a guard, and the part after I' is called a body. One
predicate, namely '=', is predefined by the language. It uni-
fies two terms.

Declaratively, the commitment operator ‘' denotes con-
junction, and the above guarded Hom clause is read as "H is

(m>0,n>0)

implied by Gy,...,Gn and By,...,B,". The operational se-

mantics of GHC is given by parallel input resolution re-

stricted by the following two rules:

Rule of Suspension:

+ Unification invoked directly or indirectly in the guard of a
clause C called by a goal G (i.e. unification of G with the
head of C and any unification invoked by solving the
guard goals of C) cannot instantiate the goal G.

+ Unification invoked directly or indirectly in the body of a
clause C called by a goal G cannot instantiate the guard of
C or G until C is selected for commitment.

Rule of Commitment:

+ When some clause C called by a goal G succeeds in
solving (see below) its guard, the clause C tries to be se-
lected for subsequent execution (i.e., proof) of G. To be
selected, C must first confirm that no other clauses in the
program have been selected for G. If confirmed, C is se-
lected indivisibly, and the execution of G is said to be
committed to the clause C.

An important consequence is that any unification intended
to export bindings to the calling goal must be specified in the
clause body and use the predefined predicate '='.

The operational semantics of GHC is a sound - albeit not
complete - proof procedure for Hom clause programs: if
<« B succeeds with answer substitution 0, then V(B8) is a
logical consequence of the program.

Subsequently, we may find it convenient to denote a goal
g by the pair <G;0>, i.e. g=G0. A single derivation step
reducing the i-th atom of G using clause C and applying mgu
0" is denoted by <G;0> — j;c <G';00'>. Subscripts may
be omitted.

3. Directed Programs

An annotation dp for an n-ary predicate symbol p is a func-
tion from {1,...,n} to {+,-} where '+' stands for input and
"' for output. We will write p(+,+,-) in order to state that
the first two arguments of p are input and the last is output.

A goal atom A generates (consumes) a variable v if v oc-
curs at an output (input) position of A. A is generator for B,
if some variable v occurs at an output position of A and at an
input position of B; in this case, B is consumer of A.

Let { denote a tuple of terms. A derivation <p(f);e> —*
<G;0> respects the input annotation of p if v = v for every
variable v occurring at an input position of p(f).

A goal is directed if there is a linear ordering among its
atoms such that if A; is generator for A; then A; precedes A;
in that ordering. A program is directed, if all its derivations
respect directedness, i.e., all goals derived from a directed
goal are directed. Note that directedness of a goal is a static

property which can be checked syntactically. Directedness of
a program, however, is a dynamic property.

Theorem 3.1: It is undecidable, whether a program is di-
rected.

Proof: Let t,,(X) be a directed GHC simulation of a Turing
machine M for a language L which binds X to halt if and
only if M applied to the empty tape halts. Such a simulation
is for instance described in [PLU90b]. Next consider the
following procedures py, and q:

PMEY) ¢ ty(A), QA X.Y).

q(halt,X,X).
and the (directed) goal

« 1(X,Y), s(Y,2), py(X,2).
The following annotations are given:
tm(-) a(+-). py(-an). T(+,5). s(+,0).

If M halts on the empty tape, ty(A) will bind A to ‘halt',
pmX.Y) will identify X and Y and thus the given goal can
be reduced to the undirected goal « r(X,Y), s(Y,X).
Decidability of program directedness would thus imply solv-
ability of the halting problem: contradiction. m

Next we introduce the notion of well-formedness of a
program w.r.t. a given annotation and show that this prop-
erty is sufficient for directedness.

A goal is well-formed if it is directed, generators precede
consumers in its textual ordering, and its output is unre-
stricted. Output of a goal is unrestricted if all its output ar-
guments are distinct variables which do not occur (i) at an
output position of another goal atom and (ii) at an input po-
sition of the same atom.

A program P is well-formed if the following conditions
are satisfied by each clause H - Gy,...,Gp | By,...,.Byin P:
* ¢ By,...,B; is well-formed
« the input variables of H do not occur at output positions

of body atoms.

The predicate '=' has the annotation - = -'. It is conve-
nient to have two related primitives: '==' (test) and '<'
(matching) which have the same declarative reading as '='
but different annotations, namely '+ == +'and - & +",

Note that the goal < r(X,Y),s(Y,Z), py(X,Z) is not
well-formed because its output is restricted: Z has two output
occurrences.

The next example is taken from [UED86]:

Example 1: Generating primes

primes(Max,Ps). « truel
gen(2,Max,Ns),sift(Ns,Ps).
gen(N,Max,Ns) « N<MaxINlN + 1,

gen(NI,Max,Nsl), Ns «[N/Nsl].

gen(N,Max,Ns) « N> MaxINs<[].

491

sift(P/Xs],.Zs) « filter(P,Xs,Ys),sift(Ys,Zsl),
Zs < [P|Zs].
sift(/].Zs) « Ise<[].

filter(P,[X/Xs],YS) « X mod P == 0 | filter(P Xs,Ys).

filter(P,[X/Xs5],Ys) « X mod P #0 filter(P,Xs,Ys1),
Ys < [X/Ysl1].

« Yse[].

sift(+,-). filter(+,+,-).

filter(P,[],YS)
primes(+,-). gen(+,+,-).

The call primes(Max,Ps) returns through Ps a stream of
primes up to Max. The stream of primes is generated from a
stream of integers by filtering out the multiples of primes.
For each prime P, a filter goal filter(P,Xs,Ys) is generated
which filters out the multiples of P from the stream Xs,
yielding Ys.

In this example all input terms are italic and all output
terms are bold. It can easily be seen that this program is
well-formed.

Another example for a well-formed program is quicksort.
The call gsort([HIL],S) retumns through S an ordered version
of the list [HIL]. To sort [HIL] L is split into two lists L., and
L, which are itself sorted by recursive calls to gsort.
Example 2: Quicksort
q: gsort(/J,L)

q2: gsort([H/L],S)

« L&]].

<« split(L,H,A,B),
gsort(A,A,), gsort(B,By),
append(A,,/H/B,;].S).

sy: split({],X,Ly, L) « Ly (], Ly]

s, split(/X/Xs],Y L', L) « X <Y1
split(Xs,Y,L,L,),

L,'= [X/L,].

syt split(/X/Xs],Y) L,L,") < X > Y | split(Xs,Y,Ly,L,),
L,' & [X/L,].

ay; append(//,L;,L,) «Ly=L,

ay. append(/H/L;],.Ly)L3) < append(L;,L;L3"),
Ly &< [H/L,].

split(+,+,-,-). gsort(+,-). append(+,+,-).

Theorem 3.2: Let P be a well-formed program, g a well-
formed goal and g -* g' a GHC-derivation. Then g' is
well-formed.

Proof: See [PLU92].
Well-formed programs respect input annotations:

Theorem 3.3: Let <p(f),e> —* <G';6> be a derivation and v
an input variable of p(f). Then ve = v.

Proof: Goal variables can only be bound by transitions ap-
plying '=' or ‘<", since in the other cases matching substi-
tutions are applied. Since both arguments of '=' are output,
and '<' also binds only output variables, input variables
cannot be bound. W

492

4. Oriented and Data Driven Computations

Our next aim is to show that derivations of directed pro-
grams can be simulated by derivations which are similar to
LD-derivations. In this context we find it convenient to use
the notational framework of SLD-resolution and to regard
GHC-derivations as a special case.

We say that an SLD-derivation is data driven, if for each
resolution step with selected atom A, applied clause C and
mgu 0 either C is the unit clause (X = X ¢ true.) or Cis
B < By,...,B, and A = B6. Data driven derivations are the
same as GHC derivations of programs with empty guards.
The assumption that guards are empty is without loss of
generality in this context.

Next we consider oriented computation rules. Oriented
computation rules are similar to LD-resolution in the sense
that goal reduction strictly proceeds from left to right. They
are more general since the selected atom is not necessarily
the leftmost one. However, if the selected atom is not
leftmost, its left neighbors will not be selected in any future
derivation step.

More formally, we define: A computation rule R is
oriented, if every derivation <Gp;e>— ..<G;;0;>— ... via
R satisfies the following property: If in G; an atom Ay is
selected, and A;(j < k), is an atom on the left of Ay, no
further instantiated version of Aj will be selected in any
future derivation step.

Our next aim is to show that, for directed programs, any
data driven derivation can be simulated by an equivalent data
driven derivation which is oriented. To prove the following
theorem, we need a slightly generalized version of the
switching lemma given in [LLO87]. Here g —j;c;6 g de-
notes a single derivation step where the i-th atom of g is re-
solved with clause C using mgu 6.

Lemma 4.1: Let gy, be derived from gi via

8k —i;Cicx1:0k+1 8k+1 j;Cis 20442 Bk+2 - Then there is a
derivation gk —j;Cy, 2041’ Zk+1" —;Cpy 130k42’ Bk+2' Such
that gy42' is a variant of gx2 and Cy41¢, Ck42' are variants
of Ck4+2 and Ciy1.

Proof: [LLO87] The difference between this and Lloyds
version is that the latter refers to SLD-refutations, while ours
refers to (possibly partial) derivations. His proof, however,
also applies to our version. W

Theorem 4.2: Let P be a directed program and <Gg;e> a
directed goal. Let D = <Gg;e>->...<Gy;8,> be a data driven
derivation using the clause sequence Cj,...,Cx. Then there is
another data driven derivation D': <Go;e>—...<Gy';0, ">
using a clause sequence G;,',...,.Cy' , where <ij,....,i,;>is a
permutation of <1,...,k>, each C;' is a variant of C; and
G0, ' is a variant of G0y, and D' is oriented.

Proof: Let g be the first goal in D where orientation is vio-
lated, i.e. there is the following situation:
8i: <B|,...,R,...,R', ;9i>

R' is selected in g; and R is selected in g Now we
switch subgoal selection in 8j-1 and 8 and get a new
derivation D*. In D* we look again for the first goal
violating the orientation. After a finite number of iterations,
we arrive at a derivation D' which is oriented. It remains to
be shown that D* (and thus D') is still data driven,

Note that up to g; | both derivations are identical. Above,
the switching lemma implies that, from gj,1 on, the goals of
D' are variants of those of D.

Now let Q be the selected goal of G;.;. Since orientation
is violated for the first time in Gj, Q is to the right of R. (If
i=j-1then Q =R’, and otherwise j-1 would have the first
violation of orientation.) Since gj.; = <Gj.1;0j.1> is directed,
Q0j.1 is not a generator of Rej_1 and thus Rj.1 and R; are
variants. Let H be the head of the clause applied to resolve R
in <Gj;0;>. Since D is data driven, Rej_l = Ho for some o,
and so RO; = Ho' for some ¢'. Thus D' is data driven. m

Corollary 4.3: Let P be a directed program and g a di-
rected goal. Then g has an infinite data driven derivation if
and only if it has an infinite data driven derivation which is
oriented.

According to Corollary 4.3, in our context it is sufficient
to consider data driven derivations which are oriented. Such
derivations are still not always LD-derivations since the se-
lected atom is not necessarily leftmost. If it is not, however,
its left neighbors will never be reactivated in future deriva-
tion steps; thus w.r.t. termination they can simply be
ignored. The same effect can be achieved by a simple
program transformation proposed in [FAL88]:

Prg(P) = {p(-)-() < | p is an n-ary predicate appearing
in the body or the head of some clause of P
and X is an n-tuple of distinct variables)

Partg(P) = P U Prg(P)

Simulation Lemma 4.4: Let D=G, —...Gi.; » G; be
an oriented SLD-derivation of G and P where

Gi.1 =« By,...,Bj....By and

Gi =¢ (BB 1.Ci" Bjypse-.Bn)O.

Ci* is the body of the Cj applied to resolve Bj. Then there is
an LD-derivation

D’ =Gy ...=...Gk.1'>Gy' with Partg(P), where
Gk-1' =« Bj....Byand ,

Gy =& (Ci+,Bj+1...,Bn)9i .

Proof: Whenever an atdm B is selected in D which is not
the leftmost one, first the atoms to the left of B are resolved

away in D' with clauses in Prg(P), and then D' resolves B in
the same way as D.m

An immediate implication is the following:
Theorem 4.5: If g has a non-terminating data driven ori-

ented derivation with P, then it has a nonterminating LD-
derivation with Partg(P).

The converse, however, is not true. Consider, for
instance, the quicksort example from above, extended by the
following clauses

qo: gsort(_,).
So: split(_,_,_,_).
ay append(,_,).

While the LD-tree for « gsort({2,1],X) is finite in the
context of the standard definition of gsort, it is no longer true
for the extended program. Consider the following infinite
LD-derivation:

« gsort([2,1],X)
byqa: < split({11,2,A,B), gsort(A,Ay),
gsort(B,B1), append(A1,[HIB{1,5).
by so: « gsort(A,A¢),
gsort(B,B1), append(A,[HIB{],S).

by q2: « split(_,_,_,), ...
byso: « gsort(_,),...

This derivation, however, is not data driven: resolving
gsort(A,A,) in the third goal with q; yields an mgu which is
not a matching substitution.

For data driven LD-derivations we get a stronger result:

Theorem 4.6: There is a nonterminating data driven ori-
ented derivation for g with P if and only if there is a non-
terminating data driven LD-derivation for g with Partg(P).

Proof: The only-if part is implied by the simulation lemma.
For the if-part, consider a nonterminating, data driven LD-
derivation D. By removing all applications of clauses in
Prg(P), one gets another derivation D'. D' is a nonterminat-
ing data driven oriented derivation. W

Restriction to LD-derivations which are data-driven
enlarges the class of goal/program pairs which do not loop
forever. In the general case, termination of quicksort
requires that the first argument is a list. Termination of
append requires that the first or the third argument is a list.
Restriction to data-driven LD-derivation implies that no
queries of quicksort or append (and many other procedures
which have finite LD-derivations only for certain modes)
loop forever. However, goals like « append(X,Y,Z) or «
quicksort(A,B) deadlock immediately.

5. Termination Proofs

In this section, we will give a sufficient.condition for termi-
nating data driven LD-derivations. We will concentrate on
programs without mutual recursion. In [PLU90b] we have

493

demonstrated how mutual recursion can be transformed into
direct recursion. We need some further notions.

For a set T of terms, a norm is a mapping i...l: T — N.
The mapping ll...|l: A — N is an input norm on (annotated)
atoms, if for all B = p(ty,....ta), I Bll= Y., 1t;], where I
is a subset of the input arguments of B.

Let P be a well-formed program without mutual recur-
sion. P is safe, if there is an input norm on atoms such that
for all clauses ¢ = By < Bjy,...,Bj,...,B, the following
holds: If B; is a recursive literal (Bg and B; have the same
predicate symbol), G a substitution the domain of which is a
subset of the input variables of B, and 6 is a computed
answer for < (By,...,Bj.1)0, then 1IBoo6ll > IIB;o6ll.

We can now state the following theorem:

Theorem 5.1: If P is a safe program and G = « A is well-
formed, then all data driven LD-derivations for G are finite.

PROOF: By contradiction. Assume that there is an infinite
data driven LD-derivation D. Then there is an infinite subse-
quence D' of D containing all elements of D starting with the
same predicate symbol p. Let dj and dj+1 be two consecutive
elements of D' and

dl = « p(tly---’tl’)t
di+1 = & p(l'l"--:lll')’ e
and ci =

P(S1,-..,81) « B1,....Bk,P(S'1,..-58),e0e
be the clause applied to resolve the first literal of dj, 6; the
corresponding mgu. Then there is a computed answer
substitution 6' for « (Bj,...,Bx)0; such that p(t'y,....t') =
p(s'1,...,8'1)0i0".

Since D is data driven, 6; is a matching substitution, i.e.
p(t,....t) = plt1,....t)0;. Since P is well-formed, Theorem
3.3 further implies p(ts,...,t) = p(t1,....t;)0;0'. We also
have p(ty,...,t;)0;0' = p(s1,...,$)0;0'". .

Since P is a safe program
lp(sy,...,8)0;0'll > lip(s'y,...,s')0;0'll and thus
lip(ty,...,tr)0i08' > lip(t'y,....t')6;0'll. Since the range of
Il...Il is a well-founded set, D' cannot be infinite.
Contradiction. m

The next question is how termination proofs for data
driven LD-derivations can be automated. In [PLU90b] and
[PLU91], a technique for automatic termination proofs for
Prolog programs is described. It uses an approximation of
the program’s semantics to reason about its operational
behavior. The key concept are predicate inequalities which
relate the argument sizes of the atoms in the minimal
Herbrand model of the program. Now in any program
Partg(P) for every predicate symbol p occurring in P there is
a unit clause p(X). Thus the minimal Herbrand model Mp of
P equals the Herbrand base By, of P, a semantics which is

494

not helpful. To overcome this difficulty, we will consider S-
models which have been proposed in [FLP89] in order to
model the operational behaviour of logic programs more
closely. The S-model of a logic program P can be character-
ized as the least fixpoint of an operator Tg which is defined
as follows: '

Ts() = {B| 3 Bg « By,...,.Bx in P,3 B{',...,.B' € I,
3 & = mgu((By,...,Bx),(B1',....Bk")),
and B = Bgd}).
We need some notions defined in [BCF90] and [PLU91].

Let A be a mapping from a set of function symbols F to N
which is not zero everywhere. A norm | ... | for T is said to
be semi-linear if it can be defined by the following scheme:
lel = 0 if tis a variable
bl = AW + It ift=£(, ... t),
where I < {1,...,n} and I depends on f.
A subterm t; is called selected ifi € I,

Aterm tiszigid wr.t.anorm | ... lif It = | t6 for all
substitutions 0. Let t[v(i)<—s] denote the term derived from t
by replacing the i-th occurrence of v by s. An occurrence 70
of a variable v in a term t is relevant w.r.t. | ... | if
| 1[v(i)e~s] I # It | for some s. Variable occurrences which
are not relevant are called irrelevant. A variable is relevant if
it has a relevant occurrence. Rvars(t) denotes the multiset of
relevant variable occurrences in the term t.

Proposition 5.2: Let t be a term, t0 be a rigid term and V
be the multiset of relevant variable occurrences in t. Then for
a semi-linear norm |...| we have It01 = I + 3.\, V6L
Corollary 5.3: 1t0 | > [tl.

Proof: [PLU91]

For an n-ary predicate p in a program P, a linear predicate
inequality LIp has the form T pi+ ¢ 2 Xje pj» Where I
and J are disjoint sets of arguments of p, and c, the offset of
LI, is either a natural number or o or a special symbol like
v. I and J are called input resp. output positions of p (w.r.t.
LIp).

Let Mg be the S-model of P. Ll is called valid (for a
linear norm L..l) if p(ty,...,ts) € Mg implies 3; Il + ¢ 2
Yjes Il

Let A = p(ty,...,ty). With the notations from above we
further define:

- FALL) = Siell- Tjesl+c.
+ Vi(ALL) = Unrvars(t)

* Vouw(ALlp) = Urvars(t)

* Fin(ALLp) = Zierltl

* Fou(ALlp) = Xiejll

F(A,LL) is called the offset of A w.r.t. LI,

Theorem 5.4: Let Y1 pi+ ¢ 2 Xjey Pjbe a valid linear
predicate inequality, G = < p(ty,....tn)0 a well-formed goal,
V and W the multisets of relevant input resp. output variable
occurrences of p(ty,....tn) and 0 a computed answer for G.
Then the following holds:

) Yieltiodl+c 2 3. ool
i) dvev! voO I +F(p(t1,....tn),LIp =

ZWEW lwool.

Proof: According to [FLP89], p(ty,...,t,)00 is an instance
of an atom p(sy,...,Sp) in the S-model Mg of P. Since the
output of G is unrestricted, tjo0 = s; for all je J. Proposition
5.2 implies It;c61 2 It;| for all i€ I. Thus
Ziel“icelzziel I'si | and Zjel |tj0'91= Zje] ! §j !
which proves the first part of the theorem. The second part is
implied by Prop. 5.2. m

Theorem 5.4 gives a valid inequality relating variables oc-
curring in a single literal goal. Next we give an algorithm for
the derivation of a valid inequality relating variables in a
compound goal.

Algorithm 5.5 goal_inequality(G,LI,UW,A,b)

Input: A well-formed goal G = « Bjy,...,Bp, aset LI
with one inequality for each predicate in G, and
two multisets U and W of variable occurrences.
Output: A boolean variable b which will be true if a valid
inequality relating U and W could be derived, and
an integer A which is the offset of that inequality.
begin
M=W;A=0;V:=U;
Fori:=nto1do:
If M N Voui(B;,LIp) # @ then
M = (M\ Vou(Bj,LIp)) L (Vin(Bi,LIp) \ V);
V= V\'Vin(B;,LIp);
A := A + F(B;,LIp). fi
If M = @ then b:= true else b:= false fi
end.

Next we show that the algorithm is correct:
Theorem 5.6: Assume that the inequalities in LI are valid
and b is true, ¢ is an arbitrary substitution such that Go is

well-formed and 0 is a computed answer substitution for
GO.Then Y, _, vo0l+A > Y, o Iwo6l holds.
Proof: See [PLU92].
Algorithm 5.5 takes time O(m) where m is the length of G.
[PLU90b] gives an algorithm for the automatic derivation
of inequalities for compound goals based on and/or-dataflow
graphs which has exponential runtime in the worst case.
Algorithm 5.5 makes substantial use of the fact that G is
well-formed: each variable has at most one generator; which
makes the derivation of inequalities deterministic.

6. Derivation of inequalities for S-models

In Aection 5 it has been assumed that linear inequalities are
given for the predicates of a program P. We now show how
these inequalities can be derived automatically. We assume
that P is well-formed and free of mutual recursion. Let p<g q
if p # q and p occurs in one of the clauses defining q.
Absence of mutual recursion in P implies that <5 defines a
partial order which can be embedded into a linear order.
Thus there is an enumeration {p;.,...,py} of the predicates of
p such that p; < pj implies i < j. We will process the predi-
cates of P in that order, thus in analyzing p we can assume
that for all predicates on which the definition of p depends
valid inequalities have already been derived. Note that a
trivial inequality with offset o always holds.

Let in(A) and out(A) denote the sets of input resp. output
variables of an atom or a set of atoms according to the anno-
tation of the given programs.

Algorithm 6.1: predicate_inequalities(P,LI):
Input: A well-formed program P defining py,...,pn
Output: A set LI of valid inequalities for the predicates of P.

begin
LI:=0
For i:= 1 ton do:
begin
Let cy,....cm be the clauses defining p;.
Let M, N be the input resp. output arguments of p;.
L= oMl +72 Y
b; := true.
For j:= 1tom do:
begin
Let c;be Bg « By,...,Bxk.
goal_inequality((« B1,...,By),
LIu(li},Vin(Bo),Vout(Bo), Ai,by)
c:= Aj + Fou(Bo,li) - Fin(Bo.li).
®;=b;
If c contains 'o' then @; := ®; A false
™ elseif c is an integer then ®; :=®; A (Y 2¢)
(**) elseif c=y+dA d<0then ®; ;= d; A true
elseif ¢ =7+ d A d>0 then ®; := ®; A false
(***) elseif c=k*y+na k>1,
then @; := ®; A (Y < n/(1-k).
end
If @; is satisfiable then let §; be the smallest value for
¥ which satisfies @;
else let §; be 'oo'.
Replace vy in 1i by §;.
LI:=LIu (1}
end
end

Theorem 6.2: The inequalities derived by the algorithm
are valid.

Proof: By induction on the number of predicates n in P.
The case n = 0 is immediate. For the inductive case, assume
that the derived inequalities for the predicates py,...,pn-1 are

ve NIp\,l.

495

valid. Let Iy be the minimal S-model of P restricted to the
predicates py,...,Pn-1. In the context of the program which
consists of the definition of p, only, let T = Ip and TT" =

T,(T™?). Its limes equals the minimal S-model of P

restricted to the predicates py,...,pn. Now we have to show
that the inequality li derived for p,, is valid w.r.t. T; . The

- proof is now by induction on m. The case m = 0 is implied

by the induction assumption on n. Assume that the theorem
holds for n - 1. We have to show that the inequality for p,
holds for the elements of T;. Now lett B € Ty and
By < Bj,...,Bx be the clause applied to derive B. We have
B = B9, where 0 is a computed answer substitution for
< Bj,...,Bk, which is a well-formed goal. Let V = in(By)
and W = out(B). Let LI be the set of inequalities derived by
Algorithm 6.1, and A be the result of calling
goal_inequality((« By,...,By),LLV,W, A, b;). Theorem 5.6
and the induction assumption imply

@B DpevVOI+AZ Y L iwel
Since B = B, we have Fip(B,li) = Fip(Bo li) + Y, Iv6l
and Fu(B,li) = Fou(BoJli) + 3, . /WOl Let o be the
offset of li. We have to show

P Fin(BJi) + 0. 2 Fy(B,li).
If b; is false or A is oo, we are done since in that case ot is o.
Three more cases remain. (*) and (**) immediately imply

(311 o2 A +Fg(Bgli) - Fip(By,li).
(**¥) implies o < n/(1-k) and thus o 2 n + k*o for some n -
such that n + k*a = A + F;1(Bg,li) - Fj(By,li). Again
(3+4) follows. (1) and (311) together now imply (11). =

Note that Algorithm 6.1 again has run-time complexity
O(n), where n is the length of the given program P.

Algorithm 6.1 is not yet able to derive pj 2 p; for a unit
clause like p(X,Y) with mode(p(+,-)). This inequality, how-
ever, holds since in a well-formed goal the output argument
of p will always be unbound. To overcome this difficulty,
we assume that before calling predicate_inequalities(P,LI), P
will be transformed to P' in the following way:

Define freevars(Bg « Bi,...,.By) =
(out(Bo) \ out(Bj,...,Bp)) L in(By,...,Bp) \ in(Bg)).

Now for the clause ¢ = Bg « Bj,...,B, in P let freevars(c)
= {Y1,...,Ym}. Replace ¢ by Bg < q(Y1,...,Ym),B1,...,.Bn
where a new predicate q is defined by the unit clause)
q(X1,...,Xm) with mode(q(+,...,+)). Note that, after that
transformation, P' is well-formed if P is well-formed, and if
an inequality is valid for P’ it is valid for P as well. In the
example mentioned above, input for Algorithm 6.1 will be
the program P = {q(X). , p(X,Y) < q(Y)} and the output
will be {0 2 q1, p1 2 p2). i

Another improvement can be made by considering subsets of
the input arguments in order to achieve stronger inequalities.
This, however, makes the algorithm less efficient.

496

7. Example

We finally discuss how, with the techniques given so far, it
can be shown that the GHC program for quicksort specified
in Section 3 terminates for arbitrary goals.

Corollary 4.3 and Theorem 4.5 imply that is suffices to
consider data-driven LD-derivations of the extended program
for gsort including the clauses s, ag and qo. According to
Theorem 5.1 we only have to show that the three predicates
of the program are safe. This is easy to show for split and
append. In fact these procedures are structural recursive. It
is more difficult to prove of gsort because in q; both
recursive calls contain the local variables A and B. For this
reason we need a linear predicate inequality for split which
has the form split; + 7y 2 split3 + splity. After the
transforamtion mentioned at the end of the last paragraph sp
will have the following form:
so- split(L,L,,Lq.Ly) « q(L3, Ly

Now sg and s; give Y= 0 (case * in Algorithm 6.1), while s
and s3 give 'true’ (case **). Thus we get split; + 0 2 split3 +
split4. In order to prove safety of gsort, we only have to
consider qz. Using this inequality Algorithm 5.5
immediately shows ligsort({HIL],S)6Il > ligsort(A,A1)0ll and
llgsort([HIL],S)8! > ligsort(B,B1)0Il for all answer
substitutions 0 for split(H,L,A,B). Thus gsort is safe.

Acknowledgment

Part of this work was performed while I was visiting CWI.
K. R. Apt stimulated my interest in concurrent logic pro-
gramming.

References

[APP90] Apt, K. R, Pedreschi, D., Studies in pure
Prolog: Termination, Technical Report CS-
R9048, Centre for Mathematics and

Computer Science, Amsterdam, 1990.

[APTI0] Apt, K. R., Introduction to logic
programming, in Leeuwen (ed.), The
Handbook of Theoretical Computer Science,

North Holland 1990.

[BCF90] Bossi, A., Cocco, N., Fabris, M., Proving
Termination of Logic Programs by Exploiting
Term Properties, Technical Report Dip. di
Matematica Pura e Applicata, Universita di

Padova, 1990.

Falaschi, M., Levi, G., Finite failures and
partial computations in concurrent logic

[FALSS]

[FLP89]

[GRES7]

[HAPS85]

(LLO87]

[PLU90a]

[PLU90b]

[PLU91]

[PLU92]

[SHAS87]

{SHA87a]

[TIC91]

[UEDSS]

[UEDS6]

[ULG88]

languages, Proc. of the Int. Conf. of Fifth
Gen. Comp. Systems, ICOT 1988.

Falaschi, M., Levi, G., Palamidessi, C.,
Martelli, M., Declarative Modeling of the
Operational Behavior of Logic Languages,
Theoretical Computer Science 69, 1989.

Gregory, S., Parallel Logic Programming in
PARLOG, Addison Wesley, 1987.

Harel, D., Pnueli, A., On the development of
reactive systems, in Apt, K. R. (ed.) Logics
and Models of Concurrent Systems, Springer
198s.

Lloyd, J., Foundations of Logic
Programming, Springer Verlag, Berlin,
second edition, 1987.

Pliimer, L., Termination proofs for logic
programs based on predicate inequalities, in
Warren, D.H.D., Szeredi, P. (eds.),
Proceedings of the Seventh International
Conference on Logic Programming, MIT
Press 1990.

Pliimer, L., Termination Proofs for Logic
Programs, Springer Lecture Notes in
Artificial Intelligence 446, Berlin 1990.

Pliimer, L., Termination proofs for Prolog
programs operating on nonground terms,
1991 International Logic Programming
Symposium, San Diego, California, 1991.

Pltimer, L., Automatic Verification of GHC-
Programs: Termination, Technical Report,
Universitit Bonn, 1992.

Shapiro, E., Concurrent Prolog, Collected
Papers, MIT Press 1987.

Shapiro, E., Systolic Programming: A
paradigm of parallel processing, in [SHA87].

Tick, E., Parallel Logic Programming, MIT
Press 1991.

Ueda, K., Guarded Horn Clauses: A Parallel
Logic Programming Language with the
Concept of a Guard, in Nivat, M., Fuchi, K.
(eds.), Programming of Future Generation
Computers, North-Holland 1988.

Ueda, K., Guarded Horn Clauses, in
[SHAS87].

Ullman, J. D., van Gelder, A., Efficient
Tests for Top-Down Termination of Loglcal
Rules, Journal of the ACM 35, 2, 1988.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

497

Analogical Generalization

Takenao OHKAWA' Toshiaki MORI!

Noboru BABAGUCHTI*

Yoshikazu TEZUKA?

t Education Center for Information Processing, Osaka University
tDept. of Communication Eng., Faculty of Eng., Osaka University
2-1, Yamadaoka, Suita, Osaka, 565 Japan

e-mail: ohkawa@oucomb.oucom.osaka-u.ac.jp

Abstract

Approaches to learning by examples have focused on gener-
ating general knowledge from a lot of examples. In this paper
we describe a new learning method, called analogical gener-
alization, which is capable of generating a new rule which
specifies a given target concept from a single example and
existing rules. Firstly we formulate analogical generalization
based on the similarity between a given example and existing
rules from the logical viewpoint. Secondly, we give a new pro-
cedure of inductive learning with analogical generalization,
called ANGEL. The procedure consists of the following five
steps: (1) extending a given example, (2) extracting atoms
from the example and selecting a base rule out of the set of
existing rules, (3) generalizing the extracted atoms by means
of the selected rule as a guide. (4) replacing predicates, and
(5) generating a rule. Through the experiment for the system
for parsing English sentences, we have clarified that ANGEL
is useful for acquiring rules on knowledge based systems.

1 Introduction

Machine learning has a great contribution to improving per-
formance through automated knowledge acquisition and re-
finement, and so far, various types of machine learning
paradigms have been considered. In particular, learning from
examples, which can form general knowledge from specific
cases given as input examples, has been well studied and a
lot of concerned methods have been proposed{Mitchell 1977,
Dietterich and Michalski 1983, Ohkawa et al. 1991].

Generally, in learning from examples, we have to give a
lot of examples to the learner. Why are so many examples
required? We thiuk the reason for this is that the bias for
restricting the generalization is relatively weak, because it is
independent of the domain. Hov;ever, when a human being
acquires new knowledge, he would not always require a lot of
examples. As the case may be, he can learn from one exam-
ple. We think this is because he decides a strong bias for the
generalization according to the domain, and generalizes the
examples based on the bias. That is, in order to generalize a
few examples appropriately, a strong bias which depends en
the domain is indispensable.

It is necessary to consider how the strong bias should
be provided. Let us recall the behavior of a human being
again. When acquiring new knowledge, he often utilizes sim-
ilar knowledge which is already known. In other words, the

existence of similar knowledge may help for him to associate
new knowledge. This process is called analogy. Analogy is
considered promising to realize learning from a few examples.
Since analogy will be regarded as one of the most effective
way for restriction on generalization, modeling its process
will make it possible to provide a domain dependent bias.

In this paper, we propose a new learning method, called
ANGEL (ANalogical GEneraLization), which is capable of
generating a new rule from a single example. In ANGEL,
both the rules and the examples are represented as logical for-
mulas. We introduce the notion of analogy[Winston 1980],
namely, the similarity between the example and the exist-
ing rules as the bias for the generalization[Mori et al. 1991].
The similarity is determined by comparing the atoms of both
the example and the existing rules. Based on the similarity,
firstly, ANGEL extracts atoms from the example and selects
a rule out of the existing rules; next, it generates a new rule
by generalizing the extracted atoms by means of the selected
rule as a guide.

The next section describes the definition of analogical gen-
eralization. In this section we consider analogical generaliza-
tion from the logical viewpeint. Section 3 gives the procedure
of ANGEL which is a method for learning based on analogi-
cal generalization. In this section, we also give consideration
to the experimental result of learning by ANGEL. Finally in
section 4, we clarify the originality of ANGEL through its
comparison to other related works.

2 Analogical generalization

To represent knowledge, we use the form which conforms
to first order predicate logic. Two kinds of forms, called a
fact and a rule, are provided. A fact is represented as an
atom, while a rule is represented as a Horn clause, which is
expressed in the form of

Oél-—ﬂl,...,ﬁn,

where «,f1,...,0, are atoms. Letting » be a rule o «
Bi, ..., Pn, we denote the consequence of rule 7, namely o, by
cons(r), and denote the premise of rule 7, namely 31,...,0Gn,
by prem(r).

The underlying notion of analogical generalization is that
a new rule is generated by generalizing an input example,
which consists of facts, based on the similarity between the
example and the existing rules. Before formulating analogical
generalization, we define the similarity between two atoms,

498

and next formalize the similarity between two finite sets of
atoms.

2.1 Similarity between two atoms

First, we define some basic notations. A substitution is a
finite set of the pair v/t, where v is a variable, ¢ is a term,
and the variables are distinct. Let § = {v1/t1,...,vn/ta}
be a substitution and e be an expression, which is either a
literal or a conjunction or disjunction of literals. Then ef is
the expression obtained from e by replacing each occurrence
of the variable v; in e by the term ¢;. If S is a finite set
of expressions and @ is a substitution, S0 denotes the set
{ed| e e S}.

Let 0 be a substitution and S be a finite set of atoms. If 56
is a singleton, S is unifiable by 6 and we write unifiable(S).

Now, we give the following two functions, and define the
similarity between atoms by means of these functions. Let
R be a set of existing rules, and o and o be atoms.

Definition 1 (R-deducible set)
®(R,a) def {8 RU{a} |- 8,8 is an atom}.
Definition 2 (R-similar set)
{818 ca(R,a), % € ¥(RQ),
unifiable({8,4'})}.

V(R,a,d')

R-deducible set means all of newly obtained information
when a certain fact has been known. Thus the intuitive
meaning of R-similar set is newly obtained information in
common when each of two distinct facts has been known.
Therefore we can say that R-similar set represents the rele-
vance between two facts under the background knowledge.

Definition 3 (Similarity between atoms) Let o, o
and ay be atoms. If the following relation holds, a is more
similar to a3 than a; with respect to R.

Y(R,a,01) C U(R,a,a2)

And if the following holds, the similarity between o and
a1 is equal to the similarity between o and az with
respect to R.

‘Il(R9 «, al) = \I,(R1 a7a2)

Since R-similar set reflects the relevance between two given
facts, the similarity between a certain fact and two distinct
facts can be evaluated in terms of the subsumption relation
between R-similar sets reasonably .

For example, let R; be a set of rules shown as follows.

R; = {parent(z,y) < father(z,y),
parent(z,y) « mother(z,y),
family(z,y) « parent(z,y),
family(z,y) « brother(z,y),
hates(z,y) « kills(z,y),
hates(z,y) « hurts(z,y),
hates(z,y) «— strikes(z,y)}

Let wus consider the similarity of father(z,y) to
mother(Jim,Betty) and brother(Tom, Joe). For each atom,
the following R-deducible sets are derived as

®(Ry, father(z,y)) = {father(a:,y),parent(.;:,y),family(m,)}
&(R;,mother(Jim, Betty))
= {mother({Jim, Betty), parent(Jim, Betty),
family(Jim,Betty)}
®(Ry,brother(Tom, Joe))
= {brother(Tom, Joe), fanily(Tom, Joe)}.

R-similar sets of father(z,y) for mother(Jim,Betty) and
brother(Tom, Joe) are as follows.

U(Ry, father(r,y),mother(Jim,Betty))

= {parent(z, y), fanily(z,y)}
¥(Ry,father(z,y),brother(Ton, Joe)) = {family(z,y)}

Accordingly father(x,y) is more similar to
mother(Jim,Betty) than brother(Tom, Joe) with respect to
R;. This result matches our intuition very well.

2.2 Similarity between two finite sets of atoms

The similarity between two finite sets of atoms is determined
by the similarity between elements of each set. In this case,
we also have to consider the matching between atoms in each
set. We begin with the definition of correspondence between
two sets of atoms.

Definition 4 (Correspondence) Let A and B be finite
sets of atoms. Correspondence ¢ of A to B is defined as
follows, :

1. ¢ is a relation on 4 and B.

2. There is a substitution 8 and for all (a,B) € ¢8,

arity(a) = arity(B),
arg(a,n) = arg(B,n) (n=1,2,...),

where arity(a) indicates the number of arguments of
and arg(a,n) indicates the value of n-th argument of a.

3. For all a € A, there is an atom B such that (a,) € ¢.
And for all B € B, there is an atom a such that (a,3) €

®.

For example, let A; and B; be sets of atoms shown as
follows.

Ay = {father(z,y),kills(y,z)}
B; = {mother(Jim,Betty), hurts(Betty, Jim)}

In this case, two correspondences ¢i,¢p2 of A; to B; are
obtained.

o1 = {(father(z,y),mother(Jim, Betty)),
(kills(y, z),hurts(Betty, Jim))}

@2 = {(father(z,y),hurts(Betty, Jim)),
(kills(y, z),mother(Jim, Betty))}

Definition 5 (Precedence of correspondence)
Let A and B be sets of atoms, ¢; and @3 be two distinct
correspondences of A to B. Then

o For all @ in A, a is similar to By such that (o, 1) € @1
than By such that (a, B2) € @2, or the similarity between
o and By is equel to the similarity between o and B2 with
respect to R, and

o There ezists o in A, which is similar to $1 such that
(at, B1) € @1 than B2 such that (o, B2) € @2, with respect
to R,

if and only if we say that correspondence ¢; precedes
@9 with respect to R. For a correspondence ¢ of A to
B, if there is no correspondence that precedes ¢, we call ¢ a
maximally preceding correspondence of A to B with
respect to R.

Maximally preceding correspondence represents the
matching between the most similar atoms in two sets of
atoms with binding variables consistently.

In the above example, ¢; precedes another corre-
spondence, namely, ¢, with respect to R;, because
father(z,y) is more similar to mother(Jim,Betty) than
hurts(Betty,Jim) and likewise kills(y,z) is more similar
to hurts(Betty,Jim) than mother(Jim,Betty). Therefore
1 is a maximally preceding correspondence of A; to By with
respect to Rj.

Definition 6 (Similarity between sets of atoms))
Let A, A', B and C be sets of atoms, ¢p be a mazimally
preceding correspondence of A to B with respect to R and
¢ be a mazimally preceding correspondence of A’ to C with
respect to R. Then

e Forallain ANA', o is similar to Bp such that (a,3B) €
@B than Bc such that (a,fBc) € @c, or the similarity
between « and Bp is equal to the similarity between a
and B¢ with respect to R, and

o There exists a in AN A', which is similar to Bg such
that (o, BB) € @B than B¢ such that (o, Bc) € pc, with
respect to R,

if and only if we say that the similarity between A and B
is stronger than the similarity between A' and C with
respect to R, denoted by

R
[A:B]~[4':C).
Now, we assume C is the following set of atoms.

C} = {brother(Tom, Joe), strikes(Joe ,Mark)}

A maximally preceding correspondence of A; to C; with
respect to R; is shown as

{(fathexr(z,y), brother(Tom, Joe)),
(kil1s(y, z), strikes(Joe,Mark))},

and therefore,

[A]_ : B'_[] ;l [A1 : Cl]

499

2.3 Formulation of analogical generalization

In this section, we proceed to formulate analogical general-
ization. First we give a logical consideration on analogical
generalization under five conditions to generate a rule, dis-
cussing these conditions briefly.

Let 7 be a non-ground atom which represents a target
concept, and E be an example, that is, a set of ground atoms
which is relevant to the target concept. In this case a non-
ground atom is an atom containing variables and a ground
atom is an atom containing no variable. We assume that
E contains 7/, called target instance, such that unifiable({r,
7'}). Let E' be a set given by removing target instance 7/
from E, and E” be a set of ground atoms deduced by RUE.
Analogical generalization is formulated as follows.

Definition 7 (Analogical generalization) Given
R,E,7, and +f
RUE' 7, (1)

then generating a rule v such that

RUE' U{r} 7, (2)
RUE'"U{r} is consistent, and (3)
r satisfies the following five conditions, (4)

is celled analogical generalization.

e Selection condition
There is a substitution § such that

()9 C B,

cons(r)8 = ',
where TI(r) denotes a set of all atoms that constitute ».

e Similarity condition
There 1s a rule (€ R), provided that

1. There is a correspondence of IL(r") to II(r)6, which
contains (cons(r'), ') 1.

2. For an arbitrary set of atoms A(C E"), the follow-
ing relation does not hold.

(I(r') : A] & [T(") : T1(r)8).

3. For an arbitrary rule v (€ R) and an arbitrary set
of atoms A(C E"), the following relation does not
hold.

[4: T & me)e : 1.

o Significance condition
For a rule v which satisfies similarity condition 2, letting
¢ be a correspondence of I1(»') to II(r)0,

U ¥®&pm 0.
(ex,B)eep

16 indicates the same substitution in selection condition.
2We call r' a base rule.

500

o Generality condition
For a base rule 1/, letting p be a correspondence of I1(r')
to I1(r),

Y(0,) € ¢, arg(a,n) = arg(8,n) (n=1,2,...).

o Applicability condition
For a base rule v', let 1 be a correspondence of II(+')
to I(r)8. Let w2 be a correspondence of I(r') to
A(C E") which contains 1/, provided that po contains
(cons(r'),7"). For all « € W(r'), if RU {a} ¥ B2 or
{a} & B2 such that (,f2) € w2, RU{B1} ¥/ B2 or
B1 = Bo such that (o, 1) € ¢1 has to holds.

Since there are, in general, many rules satisfying the equa-
tion (2) and (3), we have introduced the five conditions as
constraints for the rule r.

Selection condition means that the rule » is generated mak-
ing use of predicates which are used for representing given
examples and existing rules.

Similarity condition is a condition for the purpose of gen-
erating a rule which is similar to an existing rule. A base
rule, which is the most similar rule to a given example in ex-
isting rules, is selected appropriately due to this condition.
Moreover, it guarantees that, with respect to the similarity,
relevant atoms are extracted from the example for the se-
lected base rule. That is, this condition is regarded as a bias
depending on the domain specific knowledge.

Similarity condition is a condition for checking the valid-
ity of a base rule based on a relative comparison of the sim-
ilarities between a base rule and an example, while signifi-
cance condition investigates absolutely the relevance between
a base rule and an example by means of R-similar set. Rules
not satisfying significance condition should be regarded as
absurd rules.

Generality condition removes constants which occur in an
example from the generated rule. It aims at the versatility
of the generated rule.

If an atom « forms a rule r and RU {a} is able to deduce
another atom ', a rule formed by an atom o instead of «
also satisfies the equation (2) and (3). In this case, the latter
rule is more applicable than the former. Applicability condi-
tion guarantees the most applicable rule can be adopted.

3 ANGEL

3.1 Procedure

This section presents ANGEL in detail. If the set of exist-
ing rules R, an example F and target concept 7 are given,
ANGEL generate a new rule by means of analogical general-
ization. We show the overview of ANGEL in Figure 1.

If R consists of recursive rules, R-deducible set will be infi-
nite. Then, we assume R has no recursive rule for computing
the similarity between atoms practically.

The procedure of ANGEL consists of five steps: (1) ex-
tending an example, (2) extracting atoms from the example
and selecting a base rule out of the set of existing rules, (3)
generalizing the extracted atoms, (4) replacing predicates,

ritepy,..B,

generalization ——eijmm—— 1 : 0 Bl’,..., Bn’

selectﬂ

bias

| E:cxample) R: existing
rules

T : target
concept

Figure 1: Overview of ANGEL

and (5) generating a rule. We show briefly each step as be-
low.

STEP1 Extending an example
Generate a set of ground atoms which are deduced by
RUF and denote it by E. If an atom a(€ E) can be
deduced by RU {¢'} (o' # a, ' € E), remove the atom
o from E.

STEP2 Extracting atoms and selecting a base rule
For each rule r' € R, make correspondences of I1(r') to A
which is an arbitrary subset of £. At this time, cons(r’)
will certainly correspond to the target instance. If a set
A’(# A) such that,

R
[(r') : 4] > [1(+') : 4],
A'CE
does not exist, regard the correspondence of II(r') to
A as a candidate of useful correspondence; otherwise

abandon the set A. Note that once abandoned sets for
a certain rule are never adopted for other rules.

For all candidates of useful correspondences, evaluate
the similarities between subsets of an example and rules.
And if a correspondence of A’ to II(r”) such that,

(A TI(")] = [A < T()],
A CE,
" eR

does not exist, adopt the correspondence of 4 to I(r')
as a useful correspondence.

STEP3 Generalizing atoms

Generalization is performed by turning constants to
variables. As a result of STEP2, there is at least one
useful correspondence ¢ of II('), in which r’ is selected
out of R, to A, which is a subset of E. Now, turn con-
stants in atoms in the set A to variables which occur at
the same position of II(r') according to the correspon-
dence ¢.

STEP4 Replacing predicates

For each pair of atom (a, 8) in ¢ which is a useful cor-
respondence of II(r') to A, if ®(R,3) contains an atom
which consists of the same predicates as «, replace the
predicate of 8 with the predicate of a. Otherwise, let S
be a set of atoms in ®(R, 3) provided that none of whose
predicates occurs in (R, a). Replace the predicate of
B with the predicate of y(€ S) such that

Yy €S, ®(R,)2 ®(R,).

STEPS5 Generating a rule
Finally, generate a new rule r in which cons(r) consists
of the atom which is generalization of the target instance
and prem(r) consists of the atoms which are generaliza-
tions of the atoms in the set A except the target instance.

3.2 Examples and discussions

In this section, we present the two examples of learning by
ANGEL. And we clarify the effectiveness of ANGEL by con-
sidering the experimental results.

First, we show a simple example in order to follow the
behavior of ANGEL. A set Ry which consists of seven existing
rules defines relations of family. E; is an example for the
target concept “grandmother(s,t)”.

R, = { grandfather(z,z) «— parent(z,y),father(y,z), ---(rl)
uncle(z, z) « parent(z,y), brother(y, z), < (r2)
cousin(z,y)

«— parent(z,v), parent(y, w), brother(v, w), (r3
parent(z,y) « mother(z,y), (r4
parent(z,y) «— father(z,y), G
family(z,y) « parent(x,y), (r6
family(z,y) « brother(z,y)} (r7

E, = {grandmother(Peter, Mary),
mother(Paul, Mary),
father(Peter, Paul),
mother(Peter, Lucy),
likes(Paul,Mary),
engineer(Peter),
student(Paul)}

If F is given, ANGEL starts to extend the example. In
this case, since no atom has been deduced, the extension of
FE is Fy itself.

In STEP2, candidates of useful subsets of F; are found for
the rule 71 as follows.

{grandmother(Peter, Mary),
father(Peter, Paul),

mother(Paul,Mary)} oo (s1)
{grandmother(Peter, Mary),

father(Peter,Paul),

likes(Paul, Mary)} - (s2)

In these sets, since the relation

[[(r1) : s1) & [I(r1) : 52

holds, the set s2 is abandoned. As a result, only sl are
adopted as the useful set of atoms. Likewise, sl is adopted

501

for the rule r2. And no set of atoms is adopted for other
rules 3 ~ r7.

Next, the similarity between II(r1) and II(r2) is evaluated.
As a result, the rule r1 is adopted as a useful rule, because
the relation

[s1:T(r1)] 5 [s1: TI(r2)]

holds.

In STEP3, the generalization will be accomplished. Now,
there have been the following correspondences of II(r1) to
sl.

{(grandfather(z, z), grandmother(Peter, Mary)),
(parent(z,y),father(Peter,Paul)),
(father(y, z), nother(Paul, Mary))}

Therefore, the set of generalized atoms are obtained as fol-
lows.

{grandmother(z, z),father(z,y),mother(y, z)} ---(sl’)

Next, in STEP4, predicates in s1’ are replaced with
more applicable one. In this case, predicate father in
s1' is replaced with predicate parent, because predicate
parent occurs in ®(Rp,father(z,y)). While predicate
mother in sl’ is not replaced, because predicate father
never occurs in ®(Ry,mother(y,z)) and atom mother(y, z)
is the only one atom in ®(Ry,mother(y, z)) except atoms in
®(Rg,father(y,z)). As a result of the replacement of pred-
icates, a set of atoms are modified as

{grandmother(z, z), parent(z,y),mother(y, z)}. ---(s1")

In STEPS, finally, according to the above set s1”, the fol-
lowing new rule is generated and added to Rs.

grandmother(z, z) « parent(z,y),mother(y,z) ---(r8)

The rule 78 satisfies the requirement for analogical gener-
alization given at Definition 7, and it is just appropriate rule
about the target concept. In this case, good learning has
been performed, because the rule which is closely similar to
the rule for target concept is in the existing knowledge bhase.

In rule based systems, generally, the lack of rules causes ei-
ther interruptions or mistakes on inference. ANGEL is useful
for such a situation, because it is possible to continue infer-
ence by generating new rules from given examples.

Next we show an example of acquiring rules for the system
for parsing simple English sentences. The target system is
capable of parsing English sentences by means of syntactic
rules shown as Figure2. In this system a sentence is treated
as a list. For example the sentence “The sun rises in the
east” is represented as the list,

[the, sun,rises, in, the, east]
And

noun _phrase([the,sun,rises,in,the,east],
[rises,in,the,east])

indicates that [the, sun] is noun phrase. The system exam-
ines whether or not a given sentence is grammatically valid
by a backward chaining inference by means of the syntax
rules.

502

sentence(s,e) «— noun phrase(s,v;), verb_phrase(vi,e).
sentence(s,e) < noun_phrase(s,v;), verb_phrase(vy,v2),
prepositional phrase(v,,e).

sentence(s,e) — present_progressive(s,e).

sentence(s,e) — present_passive_voice(s,e).

sentence(s,e) «— present_perfect(s,e).

noun_phrase(s,e) « determiner(s,v;), noun(vy, e).

noun_phrase(s,e) — noun(s,e).

prepositional_phrase(s,e) « preposition(s,v),

noun_phrase(v;,).

verb_phrase(s,e) « verb(s,e).

verb_phrase(s,e) « verb(s,v;),noun _phrase(v;,e).

present_progressive(s,e) « noun_phrase(s,v1),
present_BE(vq, v2), present_participle(vs,e)

present_progressive(s,e) « noun phrase(s,v;),
present_BE(vy, vz), present_participle(vz, v3),
noun phrase(vs,e)

verb(s,e) < BE(s, e).

verb(s,e) «— main_verb(s,e).

verb(s,e) «— present_verb(s,e).

verb(s,e) — past_verb(s,e).

BE(s, €) « present_BE(s,e).

BE(s,e) « past_BE(s, e).

main_verb(s,e) « present_main_verb(s,e).

main_verb(s,e) «— past_main_verb(s,e).

present_verb(s,e) « present _BE(s, e).

past_verb(s,e) «— past_BE(s,e).

present_verb(s,e) «— present_main_verb(s,e).

past_verb(s,e) «— past_main_verb(s,e).

auxiliary_verb(s,e) «— present_auxiliary verb(s,e).

auxiliary.verb(s,e) « past_auxiliary verb(s,e).

participle(s,e) — present_participle(s,e).

participle(s,e) — past.participle(s,e).

determiner(s,e) — THE(s,e).

noun(s, e) « SUN(s, e).

noun(s,e) « EAST(s,e).

noun(s,e) — DOOR(s,e).

noun(s,e) « HER(s,e).

noun(s,e) « HE(s, €).

noun(s,e) — I(s,e).

noun(s,e) — HOMEWORK(s, €).

present_main_verb(s,e) «— HAVE(s, e).

present_main_verb(s,e) «— RISES(s,e).

present_auxiliary verb(s,e) « HAVE(s, €).

present BE(s,e) « IS(s,e).

past_participle(s,e) < CLOSED(s,e).

past_participle(s,e) «- RESPECTED(s, e).

past_participle(s,e) « FINISHED(s,e).

preposition(s,e) — IN(s,e).

preposition(s,e) « BY(s,e).

Figure 2: A part of rules in existing knowledge base

As Figure2 indicates, initially, the rule to define syntax
about the present passive voice is insufficient. Then we have
tried to generate a lacking rule by ANGEL.

For the target concept “present_passive_voice(s,e)”, we
have given the following example E3 to ANGEL.

E; = { present_passive_voice([the,door,is,closed], [1),
THE([the,door,is,closed], [door,is,closed]),
DOOR([door,is,closed], [is,closed]),
IS([is,closed], [closed]),

CLOSED([closed], [1)}

Firstly, the given example E3 has been extended to the
following set E5.

Ez = { present_passive_voice([the,door,is,closed], []),
THE([the,door,is,closed], [door,is,closed]),
DOOR([door,is,closed], [is,closed]),
IS([is,closed], [closed]),

CLOSED([closed], [1),
noun_phrase([the,door,is,closed], [is,closed]),
sentence([the,door,is,closed], [closed])}

Then, the useful correspondence has been found as follows
by using a rule for “present_progressive” as a base rule.

{(present_progressive(s,e),
present_passive_voice([the,door,is,closed],[1)),
(noun_phrase(s, v1),
noun phrase([the,door,is,closed], [is,closed])),
(present_BE(v1,v2), IS([is,closed], [closedl)),
(present_participle(vs,e),CLOSED([closed], [1))}

As a result, we have confirmed that ANGEL generates the
following one rule successfully.

present_passive_voice(s,e) «— noun_phrase(s,v),
present_BE(vy,v2),
past_participle(vz,e) ---(r9)

The generated new rule 79 is added to the knowledge base.
Again we have given an example sentence “A mouse is

caught by a cat.” for the same target concept.

In this case, two distinct rules 710 and r11 are generated
by using the identical base rule in the existing knowledge
base.

present_passive_voice(s,e) — noun_phrase(s,vy),
' present _BE(vq,v,),
past_participle(vs,vs),
prepositional_phrase(v;,e)

-+ (r10)
present_passive_voice(s,e) «— sentence(s,v;),
participle(vy,vs),
preposition(vs,vs),
noun_phrase(v;, €)
.o (r11)

Like the above, ANGEL sometimes generates several rules
for one example. It is now important to examine whether
each of the generated rules is appropriate. For instance, The
rule r10 is a suitable rule, whereas the rule r11 is obviously
strange. The reason for this is none of the rules in the existing
knowledge base are really similar to the given example. Since
atom noun_phrase(vs, e) in selected base rule

present_progressive(s, e) «— noun_phrase(s,v;),
present_BE(vy,v2),
present_participle(vs,vs),
noun_phrase(vs, e)

corresponds to atom prepositional phrase(vs,e) in the
rule r10 and atom noun_phrase(vs,e) in the rule r1l
(namely, the given example is regarded as the sentence con-
sisting of some phrases and noun_phrase), the similarity be-
tween the base rule and the rule 711 are stronger than the
one between the base rule and the rule 710 in respect of these
atoms.

Next, we have supplied a sentence “He was killed by them.
? to attempt to generate a rule for another target concept
past_passive_voice(s,e). ANGEL could generate a new
rule 712 by employing a rule 710 generated just now.

past_passive_voice(s,e) «— noun phrase(s,v;),
past _BE(vq,72),
past_participle(vsz,vs),
prepositional phrase(vs,e)
S (r12)

In this case, since an appropriate base rule, which does
not exist initially, has occurred in knowledge base, a good
rule is generated accurately by selecting it. ANGEL is capa-
ble of growing knowledge base gradually by employing rules
generated by ANGEL itself as base rules.

Let us discuss the computational complexity of ANGEL.
In order to evaluate the similarity between atoms, ANGEL
has to compute deductive closures of each of the atoms. And
the similarities between atoms in arbitrary correspondences
have been estimated to find the most suitable pair of the
atoms in the given example and the base rule. Therefore,
procedure of ANGEL may be expensive as a whole, although
hypothesis space to be considered is small. In fact, as a
result of implementing ANGEL on Sun SPARC Station2 with
SICStus Prolog, it took a few minutes to generate a English
syntax rule.

The approach evaluating similarities between atoms based
on their deductive closures is theoretically interesting, but it
may not be practical. For the purpose of practical learning,
some restrictions on either forms of the background knowl-
edge or the hypothesis language are required like Muggleton’s
GOLEM[Muggleton 1990]. We think we will have to improve
the practicability of ANGEL in the near future.

4 Related works

In this section, we characterize ANGEL from a viewpoint of
general machine learning framework.

ANGEL belongs to the category of learning from exam-
ples, in the sense that it generates new rules by generalizing
given examples. In inductive fearning methods, generally,
pre-defined generalization rules are used for generalizing ex-
amples. ANGEL also uses three kinds of generalization rules
corresponding to dropping condition rule, turning constants
to variables rule and constructive generalization rule based
on logical implications [Michalski 1983}, all of them are con-
sidered as the primary generalization rules in learcing from
examples. However, ANGEL differs from the ordinary in-
ductive learning methods in using the existing rules as the
bias. That is, ordinary inductive learning uses no existing
rules, even if so, it uses them for the constructive induction.
Oun the other hand, ANGEL employs the similarity between

503

the existing rules and the given example in order to drop
conditions, so it can reduce the hypothesis space extremely.

ANGEL is related to inductive logic programming (ILP),
because it generates rules represented as Horn clauses by
induction. ILP is also capable of learning new rules with
reference to existing rules. Both Muggleton and Bun-
tine’s CIGOL[Muggleton and Buntine 1988] and Wirth'’s
LFP2[Wirth 1989], which are typical examples of ILP sys-
tem, use operators based on inverting resolution to aug-
ment incomplete clausal theories. The difference between
these systems and ANGEL is the way of employing existing
background knowledge. That is, in both of their systems,
background knowledge is not employed as biases at all. In
fact, rules can be acquired under no background knowledge.
Therefore the interaction between user and system is in-
evitable in their systems to derive reasonable rules. Whereas,
ANGEL employs background knowledge as a bias. A given
example is generalized through mapping a structure of a rule
in existing knowledge base. It provides a strong restriction
for induction and serves to generate a few useful new rules.

ANGEL evaluates a similarity between existing rule and a
given example to learn a new rule. Therefore it can also be
regarded as a kind of method for learning by analogy. Davies
and Russell [1987] have defined, in their paper, reasoning by
analogy as the process of inferring that a property @ holds of
a particular situation T (called the target) from the fact that
T shares a property P with another situation S (called the
source) that has property Q. In analogy, it is very important
to match between the target and the source. Similarly, in
ANGEL, the matching between existing rules and a given
example, which is called correspondence in this paper, must
be found successfully. Now we compare ANGEL with several
methods with respect to the way of matching.

Haraguchi and Arikawa [1986] have formalized the reason-
ing by analogy on a deduction system. In their method,
the domain for reasoning is represented by a set of definite
clauses, and the similarity between objects is defined as the
identity of predicates. Therefore the matching is performed
by pairing the atoms which are described with the same pred-
icate. On the other hand, ANGEL finds a correspondence
between atoms based on their similarities, that is, it will not
require identity of predicates. And it enables ANGEL to
generate completely novel rules.

Recently, Arima [1991] has analyzed analogy from the
point of logical relevance. His formulation is based on the
idea as follows.

1. The property to be projected from the source to the
target must be justified.

2. The similarities, which means the properties shared by
both the source and the target, should be formed by the
minimun justifications.

Unlike ANGEL, the shared properties must be represented
by the same predicates both with the source and with the
target.

Gentner [1983] has also developed a method, called Struc-
ture Mapping, for the matching between the target and the
source. In her method, first an atom is matched with an-
other atom, when both of them are described with the same

504

predicates, and next, the object in each atom is matched.
And the process of the matching is repeated based on newly
matched objects. ANGEL is similar to Structure Mapping,
because the matching between atoms is achieved based on
the matched objects. However, there are the following two
differences between them.

1. Although Structure Mapping requires the identity to
several kinds of predicates (e.g. greater, cause, etc.)
in order to match between atoms, ANGEL will not re-
quire the identity of predicates at all.

2. In Structure Mapping, the similarity between descrip-
tions is defined by the identification of predicates and
the number of matched descriptions. On the other hand,
in ANGEL, it is defined as the subsumption between
deductive closures of atoms based on the logical consid-
eration.

ANGEL is also related to both the explanation-based
learning (EBL)[Mitchell et al. 1986] and Russell’s single-
instance generalization (SIG)[Russell 1987], because all of
them are capable of learning from one example and back-
ground knowledge. However, EBL has to need completeness
for background knowledge, so rules produced by EBL are lim-
ited to ones which are deducible from background knowledge.
In this sense, EBL cannot generate really new rules. SIG re-
quires weak background knowledge, called determinations,
in stead of complete one. That is, it can learn rules under
comparatively insufficient background knowledge in contrast
to EBL. Properly new rules cannot, however, be generated,
because it does not deal with non-deductive reasoning.

5 Conclusion

This paper has described an approach to learning from an
example by analogical generalization.
The notable features of ANGEL are shown as follows.

1. ANGEL is able to generate a new rule from a given single
example by analogical generalization.

2. A similarity between an existing rule and an example
can be evaluated a similarity between atoms forming
each of them.

3. A similarity between atoms is defined based on the sub-
sumption relation between deductive closures of atoms,
and it enables to compute similarities formally.

Through the experiment for the domain of parsing English
sentences, we have confirmed that ANGEL is useful for ac-
quiring knowledge on knowledge based systems.

In this paper, from the inductive learning point of view,
we have highlighted the methoed to generate a new rule from
a given example. The definition of similarity introduced here
is not specific for inductive learning. We plan to apply this
idea to other various reasoning paradigms (e.g. ordinary ana-
logical reasoning, deductive reasoning and so on) to improve
performance and applicability of them.

This work was supported partly by the Grant-in-Aid for
scientific research from the Ministry of Education.

References

[Mitchell 1977] T. M. Mitchell: “Version spaces: a candidate elim-
ination approach to rule learning”, Proc. of 5th IJCAI, pp.305—
310 (1977). ’

[Winston 1980] P. H. Winston: “Learning and reasoning by anal-
ogy”, Comm. of ACM, Vol.23, No.12, pp.689-703 (1980).

[Dietterich and Michalski 1983] T. G. Dietterich and R. S. Michal-
ski: “A comparative review of selected methods for learning
from examples”, Machine learning, R. S. Michalski, J. G. Car-
bonell and T. M. Mitchell (Eds.), Morgan Kaufmann, pp.41-81
(1983).

[Michalski 1983] R. S. Michalski: “A theory and methodology of-
inductive learning”, Machine learning, R. S. Michalski, J. G.
Carbonell and T. M. Mitchell (Eds.), Morgan Kaufmann, pp.83—
134 (1983).

[Gentner 1983] D. Gentner: “Structure-mapping: A theoretical
framework for analogy”, Cognitive science, Vol. 7, pp.155-170
(1983).

[Haraguchi and Arikawa 1986] M. Haraguchi and S. Arikawa: “A
formulation of analogical reasoning and its realization”, Journal
of JSAL Vol. 1, No. 1, pp.132-139 (1986) (in Japanese).

[Mitchell et al. 1986] T. M. Mitchell, R. M. Keller and S. T.
Kedar-Cabelli: “Explanation-based generalization: A unifying
view”, Machine Learning, Vol.1 No.1, pp.47-80 (1986).

[Davies and Russell 1987] T. R. Davies and S. J. Russell: “A
logical approach to reasoning by analogy”, Proc. 10th IJCAI,
pp.264-270 (1987).

[Russell 1987] S. J. Russell: “Analogy and single-instance gener-
alization”, Proc. 4th Int’l Machine Learning Workshop, pp.390-
397 (1987). :

[Muggleton and Buntine 1988] S. Muggleton and W. Buntine:
“Machine invention of first-order predicates by inverting resolu-
tion”, Proc. of 4th Int’l Machine Learning Workshop, pp.390-
397 (1988).

[Wirth 1989] R. Wirth: “Completing logic programs by inverse
resolution”, Proc. of 4th European Working Session on Learn-
ing, pp.239-250 (1989).

[Muggleton 1990] S. Muggleton and C. Feng: “Efficient induction
of logic programs”, Proc. of 1st Int’l Workshop on Algorithmic
Learning Theory, pp.368-381 (1990).

[Arima 1991] J. Arima: “A logical analysis of relevancy in analogy
”, Proc. of 5th Annual Conf. of JSAI, pp.235-238 (1991) (in
Japanese).

[Mori et al. 1991] T. Mori, T. Ohkawa, N. Babaguchi and Y.
Tezuka: “Learning based on similarity between rules and exam-
ples”, IPS Japan research report on artificial intelligence, 74-6,
pp.49-57 (1991) (in Japanese).

[Ohkawa et al. 1991] T. Ohkawa, T. Mori, N. Babaguchi and Y.
Tezuka: “Class directed generalization”, Proc. of 3rd SCAI,
pp.266-276 (1991).

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

505

Logical Structure of Analogy

PRELIMINARY REPORT

Jun ARIMA

Institute for New Generation Computer Technology
21F, Mita Kokusai Bldg.. 4-28. Mita 1-chome. Minato-ku, Tokyo 108, Japan
arima@icot.or.jp

Abstract: This paper treats a general type of analog-
ical reasoning which is described as follows: when two
objects, B (thebase) and T (the target), share a prop-
erty S (the similarity), it is conjectured that T satisfies
another property P (the projected property) which B sat-
isfies as well.

Through a formal analysis of this type of analogy, a
logical relation is explored which is necessarily satisfied
by the tuple, T, B, S, P, under an axiom, A. Unlike pre-
vious studies on analogy, this work does not give any
particular assumption a priori to the tuple.

By the analysis, it is shown to be reasonable that ana-
logical reasoning is possible only if a certain form of rule,
called the analogy prime rule, is a deductive theorem of
a given theory, and that, from the rule. together with
two particular conjectures, an analogical conclusion is
derived. Also, a candidate is shown for a non-deductive
inference system which can yield both conjectures.

1 Introduction

When we explain a process of reasoning by analogy, we
may say, “An object T is similar to another object B
in that T shares a property S with B and B satis-
fies another property P. Therefore, T also satisfies P”.
We may express this more formally using the following
schema.

S(B) A P(B)
S(T)
P(T)

Here, T will be called the target, B the base, S the sim-
ilarity between T and B, and P the projected property.

‘The above description of the process of analogy is,
however, insufficient. Researchers studying analogy have
come to recognize the necessity of revealing some implicit
condition which influences the process but does not ap-
pear in the above schema. The importance of this has
already been discussed enough in [3]. The implicit con-
dition to be satisfied by appropriate analogical factors,

T. B, S. and P. can, formally, be characterized only by
a given theory (axiom), written as A. The objective of
this paper is to explore the particular relation of analogy
which T, B, S, P and A necessarily satisfy.

In the study of analogy, the following have been central
problems:

1) what object should be selected as a base w.r.t a tar-
get,

2) which property is significant in analogy among prop-
erties shared by two objects, and

3) what property is to be projected w.r.t. a certain sim-
ilarity.

Many significant works have been vigorously conducted
on these problems, though they were only partially suc-
cessful in answering these questions. that is, by giving in-
tuitive and strong assumptions a priori. In many works.
a base case was assumed to be given w.r.t. a target case
[4. 11, 10]. In almost all works, the important similar-
ity (or similarity measure) was defined a priori indepen-
dently of what property was projected {20, 6, 10, 7. 5].
In logical works [8, 5], especially in [3], nice logical rela-
tions among the analogical factors could be seen. though
they, like others, were given without sufficient examina-
tions which would show why and how their relations were
necessary.

Unlike previous studies on analogy, this work does not
give any particular assumption a priori to the analogical
factors. Clarifying the relation between the factors, T,
B, 5, P and A, will be enough to answer the above
three problems once and for all. The relation shown by
this paper is a general solution for them and might show
how useful a formal treatment is in analyzing analogical
behavior.

First, through a logical analysis of analogy, it is shown
to be reasonable that, when an analogical inference is
done under a theory A, a particular form of rule must
be a logical conclusion (a theorem) of A and that ana-
logical inference is accomplished by two particular types
of (generally non-deductive) conjectures. Then, a non-
deductive inference is proposed, which is shown to be an

506

adequate candidate to yield the conclusions of both these
conjectures.

2 A Logical Analysis

2.1 Preparations

In this paper, we use standard formal logic and notations,
while defining the following. An n-ary predicate U is
generally expressed by Az, where z is a tuple of n object
variables, @ is a formula in which no object variables
except variables in z occur free. If ¢ is a tuple of n terms,
U(t) stands for the result of replacing each occurrence of
(elements of) = in Q with (each corresponding element
of) t simultaneously. For any formulas A and F., when
A& F and i/ F (that is, F is not valid), we say F is a
genuine theorem of A and express it simply as 4 |—-F.

We will use a closed formula of first order logic A for a
theory, (generally n) terms T for a target and (generally
n) terms B for a base. A property is expressed by a pred-
icate, for instance, a similarity and a projected property
are expressed by predicates, S and P respectively.

2.2 Approach To A Seed of Analogy

We can understand analogical reasoning as follows:

(1) Example-based Information:
“An object, 2’ (corresponding to a base). satisfies
both properties S and P (3z'.(S(z') A P(2'))).”

(2) Similarity-based Information: “Another object,
z (corresponding to a target), satisfies a shared
property S with @' (S(z)).”

(3) Analogical Conclusion: “The object x would sat-
isfy the other property P (P{z)).”

Then,
“Analogical reasoning is to reason (3) from A
together with (1)+(2).” (A)

Let this understanding be our starting point of analy-
sis. ,

As analogy is not, generally, deductive, this starting
point may, unfortunately, be expressed only as follows.
In the notation of proof theory,

A, 32’ (S5(z’) A P(a")),S(z) i P(z). (1)

As analogy, however, infers P(z) from the premises, it
implies that some knowledge is assumed in the premise
part of (1). Let the assumed knowledge be F(z), provid-
ing that it depends on the z in general. That is,

A, 3z’ (S(2') A P(2)),8(x), F(z) + P(z). (2)

Thus, the essential information newly obtained by anal-
ogy is F(z) in the above rather than the explicit pro-
jected property P . Making J(z) stand for the con-
junction of the example-based information and F(x). the
above meta-sentence is transformed equivalently to

Ak Ve.(J(z) A S(2) D P(e)), (3)

because A is closed. This implies that a rule must be
a theorem of A and that the rule concludes any object
which satisfies J(z) to satisfy P when it satisfies S. Once
J is satisfied, (by reason of (S(z) D P(z)),) the analog-
ical conclusion (“an object satisfies P”) can be deduced
from the similarity-based information (“the object sat-
isfies §). For this reason, this rule will be called the
analogy prime rule (it will be specified in more detail
later), J will be called the analogy justification.

Moreover, it is improbable that the analogy prime rule
is a valid formula, because, if so, any pair of predicates’
can be an analogical pair of a similarity and a projected
property independently of A. Thus, the analogical prime
rule must be a genuine theorem of A,

A =Va2.(J(z) A S(z) D P(z)). (4)

Consequently, an object T which satisfies S is concluded
to satisfy P from an analogy prime rule by analogical
reasoning that assumes that T satisfies the analogy jus-
tification (J(T')). That is, our starting point (A) can be
specified from two aspects.

“An analogical conclusion can be obtained from

‘an analogy prime rule together with example-

based information and similarity-based informa-
tion.” (B)

“A non-deductive jump by analogy, if it occurs,
is to assume that the analogy justification of the
prime rule is satisfied.” (C)

In the following part of this paper, the analogy jus-
tification and non-deductivity will be further explored.

Before beginning an abstract discussion, it may be use- ™~

ful to see concrete examples of analogical reasoning. The
next section introduces “target” examples of analogical
reasoning to be clarified here.

2.3 Examples

Examplel: Determination Rule[3]. “Bob’s car
(CBob) and Sue’s car (Csye) share the property of being
1982 Mustangs (Mustang). We infer that Bob’s car is
worth about $3500 just because Sue’s car is worth about
$3500. (We could not, however, infer that Bob’s car is
painted red just because Sue’s car is painted red.)”
Example-based Information:

Model(Csye, Mustang) A Value(Cgsye,$3500), (5)

Similarity-based Information:

Model(CBoy, Mustang), (6)

Example2: Brutus and Tacitus [1]. “ Brutus feels
pain when he is cut or burnt. Also, Tacitus feels pain
when he is cut. Therefore, if Tacitus is burnt. he will
feel pain.”

Example-based Information:

(Suffer(Brutus,Cut) O FeelPain(Brutus)) (7)
A(Suf fer(Brutus, Burn) O Feel Pain(Brutus)) (8)

Similarity-based Information:

Suf fer(Tacitus,Cut) D FeelPain(Tacitus) (9)

Example3: Negligent Student!. “ When I discov-
ered that one of the newcomers (Studentr) to our lab-
oratory was a member of an orchestra club (Orch), re-
membering that another student (Studentp) was a mem-
ber of the same club and he was often negligent of study
(Study), I guessed that the newcomer would be negligent
of study, too.”

Example-based Information:

Member_of(Studentp,Orch)
ANegligent_of(Studentg, Study) (10)

Similarity-based Information:
Member_of(Studentr,Orch) (11)

2.4 Logical Analysis: a rule as a seed
of analogy

In treating analogy in a formal system, as the informa-
tion of a base object being S and P is projected into
a target object, it is desirable to treat such properties
as objects so that we can avoid the use of second or-
der language. As an example, the fact that Bob’s car is
a Mustang is represented by “Model(Cp.p, Mustang)”
rather than simply as “Mustang(Cgy)”. In the remain-
ing part, we rewrite S(z) to X(z, S) and P(z) to II(z, P).
¥ will be called a similar attribute, Il will be a projected
attribute, S as an object will be a similar attribute value,
and P as an object will be a projected attribute value.
Then, (4) is rewritten

A Vz,s,p.(J(z,3,p) AX(z,8) D II(z, p)), (12)

considering the most general case that the analogy jus-
tification J depends on all of these factors.

Again, when 3-tuple < object: X, similar attribute
value: S, projected attribute value: P > satisfies the
analogy justification J, object X is conjectured to sat-
isfy the projected property Az.Il(z, P) (analogical con-
clusion) just because X has the similarity Az.X(z,S).

!The author thanks Satoshi Sato (Hokuriku Univ.) for showing
this challenging example.

507

That is, J(x,s,p) can be considered a condition. where
x could be concluded to be p from z being s by analogical
reasoning.

Now, recalling that an analogical conclusion is ob-
tained from the analogy prime rule with example-based
information and similarity-based information, consider
what information can be added by the information in
relation to the analogy prime rule.

1) Example-based Information: This shows that
there exists an object as a base which satisfies a
similarity and a projected property (Jz’.(X(2’..S) A
[I(z', P))). It seems to be adequate that the base,
B. satisfying Y(z’,5) can also be derived to sat-
isfy II(2', P) from the prime rule. because B can be
considered a target which has similarity S. That is,
3-tuple < B, S, P > satisfies the analogy justifica-
tion. Comnsequently, from arbitrariness in selection
of an object as a base in this information, what is
obtained from this information is 3z’. J(z', S, P).

2) Similarity-based Information: This shows that
an object as a target, T, satisfies the same prop-
erty S in the above. Just by this fact, an analogical
conclusion is obtained, by assuming that the object
satisfies J by some conjecture. That is, there ex-
ists some attribute value p’ and 3-tuple < 7', S,p' >
satisfies J (3p'. J(T,5,p')).

3) Analogical Conclusion: With the above two
pieces of information, an analogical conclusion. “T'
satisfies II(x,P)”, is obtained from the analogy
prime rule. Therefore, such 3-tuple < T.5,P >
satisfies J (J(T,S,P)).

In the above discussion, T, S, and P are arbitrary.
Therefore, the following relation about the analogy jus-
tification turns out to be true:

S Va,s,p.(32’ J(2", s.p) A TP T (2, 5,D)
D J(z,s,p)). (13)

(13) is able to represent it equivalently as follows:

J(%S,P) = att(s’p)/\']obj(zws)v (14)

where both J,; and J,; are predicates, that is, each of
them has no free variables other than its arguments.

The point shown by this result is that any analogy
justification can be represented by a conjunction in which
variable x and variable p occur separately in different
conjuncts.

By (12) and (14), the analogical prime rule can be
defined as follows.

Definition 1 Analogy Prime Rule
A rule is called an analogy prime rule w.r.t.
< X(z, s);Il(z,p) >, if it has the following form:

508

YV, s, p(Jare(s.p) A Jopj (2. 8) A X(z,s) D Il(z.p)), (15)

where Joy, Jopj. © and I are predicates. (That is, each of
Jart(5,0), Jopj(2.5), B(x,s) and (. p) ts a formula in
which no variablé other than its arguments occurs free.)
m]

In (15), Juu(s.p) will be called the attribute justifica-
tion and Jo;(z,s) will be called the object justification.

Also, by the above discussion, the following two con-
jectures can be considered as causes which make analogy
non-deductive.

¢ Example-based Conjecture (EC): An object
shows a existing concrete combination of a similar-
ity and a projected property. This specializes the
prime rule and allows it to be applicable to a simi-
lar object. Assuming some generally non-deductive
inference system under A, “hA” (we will propose
such a system later),
J2.(Z(2,) A 1L(z, P)) pA Jare(S.P). (16)
¢ Similarity-based Conjecture (SC): Just be-
cause an object satisfies S, application of the spe-
cialized prime rule to the object is allowed.

(2, 8) A (2, §). (17)

In case that the attribution justification (J,u(s,p))
is a valid formula, example-based information becomes
unnecessary in yielding analogical conclusion. Thus, it
could, in general, be essential in analogical reasoning to
guess J,;(s,p) which is not a valid formula. The ob-
ject justification (Jop;(x,) is, still, important in another
sense, because it can be considered to express a really sig-
nificant similarity. It is not an unusual case when a really
significant similarity is not observable. Consider a case
of Example 2. Having a nervous system will be a suffi-
cient condition for an object to feel pain. thus, whether
an object has a nervous system is a significant factor in
making a conjecture on feeling pain. In this case, how-
ever, we could, without dissection, not obtain a direct
evidence which shows that Tacitus and Btutus have ner-
vous systems, while we obtain only a circumstantial evi-
dence that the both feel pain when they are cut. Thus,
the similarity-based conjecture is to guess such a really
significant but implicit similarity, the object justification
(Jopj{z.s)), from an observed similarity X(x.s).

To summarize, a logicai analysis of analogy could draw
conclusions as follows.

Analogical reasoning is possible only if a certain ana-
logical prime rule 1s a genuine theorem of a given theory

and the process of analogical reasoning can be divided
into the following 3 steps: 1) the attribute justification
part of the rule is satisfied by EC from example-based in-
formation. 2) the object justification part of the rule is
satisfied by SC' from similarity-based information, and,
3) from similarity-based information and the analogy
prime rule specialized by the two preceding steps, an
analogical conclusion is obtained by deduction.

A question remains unclear, that is, what inference
is EC and what SC? Though we cannot identify the
mechanism underlying each of the conjectures, we can
propose a (generally) non-deductive inference system as
their candidates. The next section shows this.

3 Non-deductive Inference for’
Analogy

This section explores a type of generally non-deductive
inference by which a conjecture G is obtained from a
given theory A with additional information K.

Generally speaking, what properties should be satis-
fied by a. generally, non-deductive inference? It might
be desirable that a non-deductive inference satisfies at
least the following conditions. First, it should subsume
deduction, that is, any deductive theorem is one of its
theorems, because any deductive conclusion would be
desirable. Secondly, any conclusion obtained by it must
be able to be used deductively, that is, from such a con-
clusion, it should be possible to yield more conclusions
using, at least, deduction. And, thirdly, any conclusion
obtained must be consistent with given information. We
define a class of inference systems which satisfy the above
three conditions.

Definition 2 An inference system under a theory A
(written) is deductively ezpansible if the following
conditions are satisfied. For any set of sentences A and
K and any sentences G and H,

i) Subsuming deduction:

if AKFG then KpRAG.

i) Deductive usefulness:
if Kp*G and AK,G+H. then Kp*H.
iii) Consistency:
if K G and AUK is consistent, then
AU K U{G} is consistent.

The following inference system is an example of a de-
ductively expansible system.

Definition 3 G is a conjecture from A based on K by
(atomic) circumstantial reasoning (written K 2 G) 2.

iof
i)y AKFG, or
i) AEFFG

if there exists a minimal set of atomic formulas® E
st. AEF K, and AUE is consistent if
AUK is consistent®.

Proposition 1
If K*G and K,G 2 H, then K * H.

Corollary 1 If K A G, then K A G.

Corollary 1 shows that circumstantial reasoning is de-
ductively expansible, and proposition 1 (together with
the corollary) shows that inference done by multiple ap-
plications of circumstantial reasoning is also deductively
expansible.

Circumstantial reasoning (K p2 G) implies a very
general and useful inference class in that so many types
of inference used in Al can be considered as circumstan-
tial reasoning. Deduction and abduction, for example,
are obviously circurnstantial reasoning. Moreover, if we
loosen the condition “atomic formulas” to “clauses”, in-
ductive learning from examples is the case where A is
empty in general, K is “examples” and G is inductive
kriowledge obtained by “learning”® ©

Now, we assume that both EC and SC are circumstan-
tial reasoning, but based on different information. Then,
we can see analogical reasoning in more detail.

Let an analogy prime rule w.r.t. < X(z,s):d(z,p) >
be a theorem of A. Then, when example-based informa-
tion, (B, S) A II(B, P), is introduced, by circumstan-
tial reasoning from the prime rule, some justifications are
satisfied, that is,

Y(B,8) AL(B, P) b2 Jou(S, P) A Jop;(B.S). (18)

which concludes a specialized prime rule,

2Circumstantial reasoning is essentially equivalent to “abduc-
tion” + deduction [13, 15]. However, “abduction” has many defi-
nitions and various usages in different contexts, so we like to intro-
duce a new term for the type of inference in Definition 3 to avoid
confusion.

3 Atoms, that is, formulas which contain only one predicate
symbol.

4If there exists such a minimal set of atomic formulas E, the
case i) involves the case i) apparently. Thus, the case i) can often
be neglected in a usual application, for instance, if K is a universal
formula which has the form Vz.F(z), where F' is quantifier-free.
Note that a clause is universal.

5In this case, G = E in Definition 3, which implies that G is a
minimal set to explain “example” K. Indeed, such minimality is
very common in this field. .

5Such a unified aspect of various reasoning in Al was pointed
out by Koich Furukawa (ICOT) in a private discussion and a sim-
ilar and more intuitive view can be seen in [5].

509

Vo (Jopj(2,) A T2, §) D (e, P)). (19)

Even if similarity-based information ¥(7,S) is intro-
duced. to obtain analogical conclusion II(T, P) by cir-
cumstantial reasoning, some information apart from the
prime rule turns out to be needed in .A. And, both EC
and SC' are generally needed to accomplish analogical
reasoning. which implies that multiple application of cir-
cumstantial reasoning is necessary. Even in such a case.
circumstantial reasoning remains worthwhile (Proposi-
tion 1).

4 Classification of Analogy and
Examples

Each EC and SC has two cases: a deductive one and
a non-deductive one. According to this measure, ana-
logical inference can be divided into 4 types. A typical
example is shown in each class and explored.

4.1 deductive EC + deductive SC

Typical reasoning of this type was proposed by T.Davies
and S.Russell [3]. They insisted that, to justify an ana-
logical conclusion and to use information of the base case.
a type of rule, called a determination rule, should be a
theorem of a given theory. The rule can be written as
follows:

Vs.p.(32'.(Z(a’,s) ATI('. p))
D Ve.(X(z,s) D I(z.p))) (20)

Example 1 (continued). In this example, the follow-
ing determination rule is assumed to hold under A.

Vs,p.(3z'.(Model(z',s) A Value(a',p))
D Ve.(Model(z.s) D Value(z.p))) (21)

This rule is an analogy prime rule. because

Jj(z.8) = T(x.3) = Model(z.s),
Jun(s.p) = (2. Model(z,s) A Value(x. p)),
I(z,p) = Value(z, p).

Moreover.

EC: Model(Csy., Mustang) A Value(Cs,e, $3500)

F Jau(Mustang, $3500), (22)

SC:
Model{Coy, Mustang) & Jopj(Cgos. Mustang). (23)

This illustrates that reasoning based on determination
rules belongs to the “deductive EC' + deductive SC™ type
and that it can also be done by circumstantial reasoning.

510

4.2 deductive EC 4 non-deductive

SC

This type of analogical reasoning was explored by the au-
thor [1]. It was concluded that, once we assumed the fol-
lowing two premises for analogical reasoning, it seemed
to be an inevitable conclusion that analogical reasoning
which infers P(T) from S(T'), S(B), and P(B) satisfies
the illustrative criterion. And if an inference system sat-
isfies the criterion, the system is called an illustrative
analogy.

Premise 1: “Analogy is done by projecting properties
(satisfied by a base) from the base onto a target.”

Premise 2: “The target is not a special object.”

Premise 2 is also assumed in this paper, it is translated
into an arbitrary selection of a target object. Premise
1 was translated as follows: J(B), (where J is the jus-
tification in (4) and B stands for a base object) must
be a theorem of A, because it is essential in analogical
reasoning to project J(B) onto a target object T. That
is, the non-deductive part in this reasoning is just SC
which conjectures the property of the target object, and
EC must be deductive.

Example 2 (continued). By illustrative analogy, a
target is conjectured to satisfy properties used in an
explanation of why a base satisfies a similarity. In
this example, to explain the phenomena of the base
case,“Brutus feels pain when he is cut or burnt”, the
following sentences must be in A.

Vz,i.(Nervous_Sys(z) A Destructive(t) A Suf fer(z,?)
D FeelPain(z)), (24)
ANervous_Sys(Brutus) (25)
ADestructive(Cut) A Destructive(Burn) (26)

From (24), the following follows:
Vz,s,p.(Nervous_Sys(z)
ADestructive(s) A Destructive(p)
A(Suffer(z,s) D FeelPain(z))
D (Suffer{z,p) D FeelPain(z))), (27)

which is an analogy prime rule, that is,

Jovj(x,8) = Nervous_Sys(z), :
Jaut(8, p) = Destructive(s) A Destructive(p).
E(z,s) = Suffer(z,s) D FeelPain(z),
Il(z,p) = Suf fer(x,p) D FeelPain(z).

Jar(Cut, Burn) (“Both cut and burn are destruc-
tive”) is a deductive theorem of A and a non-deductive
conjecture, Jop;(Tacitus, Cut) (“Tacitus has a ner-
vous system”), is obtained by circumstantial reasoning
from (24) based on the similarity-based information,
Suf fer(Tacitus, Cut) D Feel Pain(Tacitus).

4.3 non-deductive EC +4 deductive
SC

As far as the author knows, this type of analogy has never
been discussed. Example 3 seems to show this type of
analogy.

Example 3 (continued). First, let us consider what
we know from example-based information in this case.
From the fact that a student (Studentp) was a mem-
ber of the same club (Orch) and often neglected study
(Study), we could find that “the orchestra club keeps
its members very busy (BusyClub(Orch))” and that
“activities of the club are obstructive to one’s study
(Obstructive_to(Orch, Study))”. This implies that we
knew some causal rule like “If it is a busy club and its
activities are obstructive to something, then any member
of the club neglects the thing.”

Va,s,p.(BusyClub(s) A Obstructive_to(p,s)
AMember_of(z,s)
D Negligent_of(z,p)) (28)

Using this rule, we found the above information.

Thus. the above rule is assumed to be a theorem of
A. BusyClub(Orch) and Obstructive_to(Orch, Study)
are non-deductive conjectures and it can be obtained by
circumstantial reasoning based on the above rule which
is just an analogy prime rule, as follows:

Joi(z,s) = X(z,s) = Member_of(z,s),
Jute(s,p) = BusyClub(s) A Obstructive_to(p, s),
II(x,p) = Negligent_of(z,p).

4.4 non-deductive EC + non-

deductive SC

As an example of this type, we can take Example 2 again.
We might know neither “Brutus has a nervous system”
nor “Both cut and burn are destructive”, which corre-
sponds to the case that {25) and (26) are not in A (nor
any deductive theorem of A) in the previous Example 2.
However. by circumstantial reasoning from (24) based on
example-based information (“Brutus feels pain when he
is cut or burnt”), “Both cut and burn are destructive”
(and “Brutus has a nervous system”) can be obtained,
and based on similarity-based information (“Tacitus feels -
pain when he is cut”), “Tacitus has a nervous system”, a
really significant but implicit similarity, is obtained sim-
ilarly to the previous example. Consequently, the ana-
logical conclusion (“Tacitus would feel pain when he is
burnt”) is derived from (27) (or (24)) together with the
above conjectures.

5 Conclusion and Remarks

e Through a logical analysis of analogy. it is shown
to be reasonable that analogical reasoning is pos-
sible only if a certain analogy prime rule is a de-
ductive theorem of a given theory. From the rule,
together with an ezample-based conjecture and a
similarity-based conjecture, the analogical conclusion
is derived. A candidate is shown for a non-deductive
inference system which adequately yields both con-
jectures.

Results shown here are general and do not depend
on particular pragmatic languages like the purpose
predicate {10] nor on some numeric similarity mea-
sure [20]. These results can be applied to any normal
deductive data bases (DDB) which consist of logical
sentences.

Application of this analogical reasoning to DDB
may be one of the most fruitful. It is. generally
speaking, very difficult to build a DDB which in-
volves perfect knowledge about an item. Analogi-
cal reasoning will increase the chance of answering
queries adequately, even when its deductive opera-
tion fails to answer. In a DDB, it is very common
to see inheritance rules and transitivity(-like) rules,
which have the form of the analogy prime rule, for
instance,

Gran_pa(x,y) : —Parent(x,z),Parent(z,y). (29)

This is an analogy prime rule w.r.t. <
Parent(z,y); Gran_pa(x,y) > (z is a variable for the
similar attribute value and x is a variable for the
projected attribute value). Assume that a query
“?-Gran_pa(x, Tom)” is given to a database 4 which
involves the above rule and the following facts:

Parent(Sue, Tom). (30)
Gran_pa(John, Bob). (31)
Parent(Sue,Bob). (32)

The database cannot answer the query deductively,
because it does not know who is a parent of Sue.
If the database uses the proposed type of analogi-
cal] reasoning, it is able to guess Gran_pa(John, Tom)
from Bob’s case just because Tom is similar to Bob in
that their parents is the same.

Interestingly, a method which discovers an analogy
prime rule from knowledge data-base CYC is ex-
plored independently([17]. Such methods make ana-
logical reasoning more common in DDB.

By the side effect of this analysis, it becomes
possible to compare analogy with other reason-
ing formally which have been studied vigorously

511

in the area of artificial intelligence. Analogi-
cal reasoning differs from other reasoning, ab-
ductive and deductive, in that analogical reason-
ing actually uses example-based information (the
base information). Consider the difference from.
this time. abduction in the above database case.
Even if the database uses (ordinal) abductive rea-
soning in the query, it cannot specify an ade-
quate grandparent of Tom. the possible answer
will be x s.t. Gran_pa(x,Tom), Parent(x,Sue),
(Jz.)(Parent(x,z), Parent(z, Tom)), or Sue assum-
ing Parent(Sue, Sue), etc [2, 14, 18, 9]. The reason
for this failure is that abduction tries to explain only
the target case.

Moreover. comparing with enumerative induction
and case-based reasoning (CBR) in which the use
of examples are essential similarly to analogical rea-
soning, analogical reasoning has a salient feature in
more strongly depending on a background knowl-
edge (a given theory). Analogy can be seen as a
single instance generalization as Davies and Russell

~ pointed out [3]. Take an example, Example 3. From

the analogy prime rule (28) and example-based in-
formation of an base case (Studentg), some non-
deductive inference (ex. circumstantial reasoning)
yields a more specified analogy prime rule,

VYa.(Member_of(z,Orch)
D Negligentof(z, Study)). (33)

which is a generalization of the example-based in-
formation,

Member_of(Studentp,Orch)
ANegligent_of{Studentp, Study). (34)

We should note that, in the process of this single
instance generalization, an analogy prime rule in a
background knowledge is used as an intermediary,
and it might be considered the reason why analogy
seems more plausible than a simple single instance
generalization such that it yields (33) just from (34).

In the research of formal inductive inference [16, 12],
a back ground knowledge does not play such an im-
portant role. So, plenty of examples are needed un-
til a plausible conclusion is obtained. Concerning
CBR [19], though it uses base cases like analogi-
cal reasoning and, in order to retrieve their base
cases, it uses an indexr which corresponds to the
similarity S, the index is assumed to be given in
spite of using background knowledge. Intuitively
speaking, these methods will be very useful when
a background knowledge is rather poor or difficult
to formulate, and when the background knowledge
is extremely strong or able to be formulated per-
fectly. deduction will be most useful. on the other

512

hand, the proposed type of analogy will be useful
when rather strong and difficult to formulate.

An implementation system for this type of analogy
has been developed. Given a theory A, a target
T and a projected attribute II(z,p) (from a query,
“?- I(T,p)”), this system finds a base B, a simi-
larity ¥(z,S) and a projected property Il(z, P) (ie.
“II(T', P)” is the answer of the query) by the process
with backtracking, according to the following steps:

1) Find a separate rule SepR s.i. AF SepR,
where SepR = Il{x,p) 1= Guu(s,p), Gauj(a,s).

2) Take a similar attribute L(z, s)
st B(z,8) 2 Gopi(z, 8).

3) Obtain the similar attribute value S
by the side effect of a proof At 3s.3(T,s).

4) Retrieve a base B and obtain the projected
attribute value P
by the side effect of a proof
At 3z, p.(E(z, 5) AN1(z, p)).

Here, a separate rule (w.r.t. II(z,p)) is a Horn clause
in which the head is II(z, p), and any variable of =
and any variable of p does not appear in the same
conjunct in the body. This system guesses success-
fully for the examples shown here, though each of
them is translated into a set of Horn clauses.

Significant restrictions are needed on the time com-
plexity of this process. Details of this system will
be reported elsewhere.

Acknowledgment

I especially wish to thank Satoshi Sato for his frank
comments and challenging problems. I am also grateful
to Koichi Furukawa, Hideyuki Nakashima, Natsuki Oka,
and five anonymous referees for their constructive com-
ments, Makoto Haraguchi and members of ANR-WG,
which was supported by ICOT, for discussions on this
topic, Katsumi Inoue and Hitoshi Matsubara for discus-
sions on abduction and CBR respectively, and Kazuhiro
Fuchi for giving me the opportunity to do this work.

References

(1]

2]

Arima, J.: A logical analysis of relevance in anal-
ogy, in Proc. of Workshop on Algorithmic Learning
Theory (ALT’91), (1991). :

Cox P.T. and Pietrzykowski T.: Causes for events:
their computation and applications, in: Proc. of
Eighth International Conference on Automated De-
duction, Lecture Notes in Computer Science 230
(Springer-Verlag, Berlin, 1986) pp. 608-621.

[3]

(5]

[7]

(8]

[9]

[10]

[11]

[12]

13]

[14]

(15]

Davies, T. and Russell, S.J.: A logical approach
to reasoning by analogy, in IJCAI-87, pp.264-270
(1987).

Evans, T,G.: A program for the solution of a class
of geometric analogy intelligence test questions, in:
M.Minsky (Ed.), Semantic Information Processing
(MIT Press, Cambridge, MA, 1968).

Falkenhainer, B.: A unified approach to explanation
and theory formation, in: J.Shrager & P.Langley
(Ed.). Computational Models of Scientific Discovery
and Theory Formation, (Morgan Kaufmann, San
Mareo, CA, 1990).

Gentner, D.: Structure-mapping: Theoretical
Framework for Analogy, in: Cognitive Science,
Vol.7. No.2, pp.155-170 (1983).

Greiner, R.: Learning by understanding analogy,
Artificial Intelligence, Vol. 35, pp.81-125 (1988).

Haraguchi, M. and Arikawa, S: Reasoning by Anal-
ogy as a Partial Identity between Models, in Proc. of
Analogical and Inductive Inference (ALL’86), Lec-
ture Notes in Computer Science 265, (Springer-
Verlag, Berlin, 1987) pp 61-87.

Inoue. K.: Linear Resolution for Consequence-
Finding, in Artificial Intelligence (To appear).

Kedar-Cabelli, S.: Purpose-directed analogy, in the
7th Annual Conference of the Cognitive Science So-
ciety, Hillsdale, NJ: Lawrence Erlbaum Associates,
pp.150-159 (1985).

Kling, R.E.: A paradigm for reasoning by analogy,
Artificial Intelligence 2 (1971).

Muggleton, S. and Buntine, W.: Machine Invention
of First-Order Predicates by Inverting Resolution,
In: Proc. of 5th International Conference on Ma-
chine Learning, pp 339-352 (1988).

Peirce C.S.: FElements of Logic, in: C. Hartshorne
and P. Weiss (eds.), Collected Papers of Charles
Sanders Peirce, Volume 2 (Harvard University
Press, Cambridge, MA, 1932).

Poole D., Goebel R. and Aleliunas R.: Theorist:
a logical reasoning system for defaults and diag-
nosis, in: N. Cercone and G. McCalla (eds.), The
Knowledge Frontier: Essays in the Representation
of Knowledge (Springer-Verlag, New York, 1987)
331-352.

Pople, H.E.Jr.. On the mechanization of abduc-
tive logic, in: Proceedings IJCAI-73, Stanford, CA
(1973) 147-152.

[16] Shapiro, E.Y..

—

Inductive Inference of Theories
From Facts, TR 192, Yale Univ. Computer Science
Dept. (1981).

Shen ,W.:Discovering Regularities from Knowledge
Bases, Proc. of Knowledge Discovery in Databases

Workshop 1991, pp 95-107.

Stickel M.E.: Rationale and methods for abduc-
tive reasoning in natural-language interpretation,
in: R. Studer (ed.), Natural Language and Logic,
Proceedings of the International Scientific Sympo-
stum, Hamburg, Germany, Lecture Notes in Artifi-
cial Intelligence 489 (Springer-Verlag, Berlin, 1990)
233-252.

Schank, R.C.: Dynamic Memory: A Theory of Re-
minding and Learning in Computers and People
{Cambridge University Press, London. 1982).

Winston, P.H.: Learning Principles from Precedents
and exercises, Artificial Intelligence, Vol. 19, No. 3
(1982).

513

Appendix

Proposition 1.
If K AG and K.G 2 H, then K A H.

- Proof of Proposition 1.

For any formula G, if K 4 G and K.G h2 H. we
write K 2 H.

i) Subsuming deduction:
if AKFH them KpAH.
(proof)
K " K. (from subsuming deduction of “j*”)
AKFH = Kp2H. (from Definition 3 i))
Therefore, K |~;2 H.

ii) Deductive usefulness:
if K AH and AK.HF L. then
(proof)
ARKHFL & AFKAHDL
For any formula G s.t. & ~* G and K.G 2 H.

KA L

case-i) AKN.GFH (from K.G 2 H)
From the premises. A K. GF L.
Therefore. K.G 2 L. (from Definition 3 1))

case-ii) otherwise. for some minimal set of atomic
formulas E s.t. 4. EF KNG,
AEFKAH. (from K.G 2 H)

Therefore. A,EF L.
Thus. K.G RAL

Thus K.G p2 L.

iii) Consistency:
if K %t H and AUK is consistent, then
AUK U{H} is consistent.
(proof)
AU K is consistent.
= AURKU{G} is consistent. (from A 4 ()
= AUE is consistent. (from K.G 2 H)
= AUKU{H}. (because A.LEF K AH)

Corollary 1.
If K AG. then K G

Proof of Corollary 1.
K A K (from subsuming deduction)
If K b* K and K.K 2 G, then K 4 G, (from
Proposition 1) -
Therefore.,
If K 26, then K A G.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 514

CONSISTENCY-BASED AND ABDUCTIVE DIAGNOSES AS GENERALISED
STABLE MODELS

Chris Preist, Kave Eshghi
Hewlett Packard Laboratories, Filton Road,

Bristol, BS12 6QZ, Great Britain

cwp@hplb.hpl.hp.com
keChplb.hpl.hp.com

Abstract

If realistic systems are to be successfully modelled and
diagnosed using model-based techniques, a more
expressive language than classical logic is required. In
this paper, we present a definition of diagnosis which
allows the use of a nonmonotonic construct, negation as
failure, in the modelling language. This definition is
based on the generalised stable model semantics of
abduction.

Furthermore, we argue that, if negation as failure is per-
mitted in the modelling language, the distinction
between abductive and consistency-based diagnosis is
no longer clear. Our definition allows both forms of
diagnosis to be expressed in a single framework. It also
allows a single inference procedure to perform abduc-
tive or consistency-based diagnoses, as appropriate.

1 Introduction

Many different definitions of diagnosis have been used
in an attempt to formalise and automate the diagnosis
process. In the so-called ‘logical’ approach, two frame-
works, namely the consistency-based [Reiter 1987] and
abductive [Cox and Pietrzykowski 1986], have attracted
a lot of attention. Typically, the modelling language
used in these frameworks is first order logic (or some
subset of it). In this paper we present a unified frame-
work for diagnosis which brings together these two
styles of diagnosis, as well as providing a non-monot-
onic modelling language.

We were primarily motivated by the need to incorporate
negation as failure, the non-monotonic construct in
logic programming, into the modelling language. We
first show the need for this construct through some
examples, and then argue that the incorporation of
negation as failure in the modelling language necessi-
tates the inclusion of both consistency-based and
abductive diagnosis within the same framework. We
then present our unified framework, which allows nega-
tion as failure in the modelling language and naturally
incorporates both abductive and consistency-based
diagnosis. We then show that in the special cases, our

approach reduces to pure consistency and pure abduc-
tive diagnosis, i.e. it is a generalisation of both styles.

Our work is similar in spirit to the work of Console and
Torasso, [1990],[1991], but goes beyond it in many
ways. We will compare our approach to that of Console
and Torasso in a later section. Our proposed framework
is based on the Generalised Stable Model semantics
[Kakas and Mancarella 1990a] of generalised logic pro-
grams with abduction, strengthening the link between
logic programming and diagnosis first explored in [Esh-
ghi 1990].

2 Consistency-based and abductive
approaches to diagnosis

In both consistency-based and abductive approaches, a
set of axioms SD (called the system description) models
the system under investigation, and a set of abnormality
assumptions Ab={ab,,ab,,...ab,} represents the possible
underlying causes of failure. A set of statements, Obs,
represents observations of the behaviour of the system
which are to be explained.

In the consistency-based approach, a diagnosis is a set
of abnormality assumptions, A, such that

) SDUOBSuUA U{ —aby| abke Ab-A} is consistent.

The consistency-based approach focuses primarily on a
model of the system’s correct behaviour. When the
abnormality assumptions relate to the failure of the
components of the system, it attempts to find a set of
normality and abnormality assumptions which can be
assigned to the system’s components to give a theory
consistent with the observations.

In the abductive approach, a diagnosis is a set of abnor-
mality assumptions, A, such that
(2) Sbua | 0BS

SDuUA is consistent.

The abductive approach primarily models the behaviour
of a failing system, by using fault models in the system
description, SD. The diagnosis process consists of look-

515

13}

: 5 Figure 1: A pre-charged line

ing for a set of abnormality assumptions which, when
adopted, will logically predict the observed faulty
behaviour given the system description and the context
of the observation.

In both approaches, a diagnosis A is defined to be mini-
mal if there is no other diagnosis, A’, which is a proper
subset of A.

3 The Diagnosis Problem

The system description used in model-based diagnosis
takes one of two forms. It is either a causal model, or a
model consisting of the system’s structure and the be-
haviour of individual components. In general, work on
abductive diagnosis has focused on the former, while
work on consistency-based diagnosis has focused on the
latter.

For the purposes of this paper, we adopt a specification
of a diagnosis problem based on those used in [deKleer
and Williams 1987] and [Reiter 1987], which uses a
component-based approach. However, the results hold
equally for a causal model-based approach, and for this
reason, we adopt slightly more general language in the
definition.

Definition:
A diagnosis problem consists of a triple, <SD, OBS, C>
where;

(i) The system description, SD, specifies the behaviour
of the system.

(ii) The observation set, OBS, specifies a set of observa-
tions of the system as unit clauses.

(iii) C consists of constants,‘ci, which represent causal
clusters within the system.

Causal clusters are groups of causes of abnormal system
behaviour which it makes sense to consider together.
Each cause, n, within the cluster, c;, is modelled in SD
with two clauses;

effects_of cause_n «abl(c, n).

ab(c;) «ab(c;, n).

Furthermore, if so desired, we can define emergent prop-
erties of the system which occur when none of the causes

in cluster ¢; are present, the ‘good behaviour model’ of
this cluster;

good_behaviour_model «not ab(c;).

In the component-based approach, c; represents a com-
ponent, and each cause in cluster ¢; represents a possible
fault model of the component. Note that the effects of a
cause need not be defined deterministically. For exam-
ple, the ‘arbitrary behaviour’ mode of a component, pro-
posed in [deKleer and Williams 1989], is consistent with
any behaviour of the component, but predicts nothing.

The logical language adopted to represent SD can vary
with the definition of diagnosis adopted. In this paper,
we focus on two possible languages; classical logic, as
adopted by Reiter [1987], and horn clauses with nega-
tion as failure, as used in the logic programming com-
munity.

4 The need for negation as failure in the
system description

The desire to integrate consistency-based and abductive
diagnosis was motivated primarily by the need to in-
clude negation as failure in our models. The following
two examples illustrate this need:

RAM modelling

In order to model the behaviour of a random access
memory cell, we needed an axiom that says: the content
of a cell at time T is X if X was written to this cell at time
T', and no other write operation has been performed be-
tween T and T". The most straightforward way of writing
this is as the clause

contents(Cell, X, T) « written(Cell, X, T"),
T'<T,
not over-written(Cell, T, T).

over-written(Cell, T',T) « written(Cell, X, T"),
T'<T"<T.

This is an instance of the ‘frame-problem’ being solved
through negation-as-failure, as explored in [Shanahan
1989]. If we don’t use negation as failure, or some other
non-monotonic device, we need to have axioms which
allow us to derive —over-written(Cell, T",T) for all cells and
all time instants, which is very inefficient both in terms
of speed of inference and storage required.

516

Pre-Charged Lines

A common technique used in the computer industry to
implement data buses is the pre-charged line. Devices
communicate with one another using transmitters and
receivers, all connected to a common line whose value
floats to 1 when no transmitter is transmitting. (There are
n lines for an n-bit wide data bus. Here we concentrate
on one line).

Physically, a value of 1 corresponds to high voltage, and
a value of 0 to low voltage. In order to give the line its
pre-charged value, it is connected to the positive power
line by means of a pull-up resistor. Figure 1 gives a sche-
matic of a typical pre-charged line.

To transmit a 0, a transmitter on a line pulls the line to
low. Since lines are pre-charged, transmitting a 1 does
not involve any action by the transmitter. (Obviously,
there is a bus protocol to determine which transmitter, if
any, is transmitting at any given time. Here we ignore
protocol issues.)

The behaviour of pre-charged lines is best modelled by
a default reasoning mechanism. The default value of a
line is assumed to be 1 unless it can be proved to be 0.
Using negation-as-failure, we could represent this as:

received_value(Line,0) « driven_value(Line,0).
received_value(Line,1) « not driven_value(Line,0).
driven_value(Line,0) <« connected(Line,output(X)),
trasmits(X,0).
The alternative, avoiding the use of negation-as-failure,
would be to have an axiom such as:

—driven_value(Line,0) «
vX(connected(output(X),Line)— —transmits(X,0)).
However, in order to prove VX{connected(output(X),-
Line)— —transmits(X,0)), we would need closure axioms
exhaustively enumerating all the transmitters on the
line, which would be both cumbersome to write and
inefficient to reason.with.

Full details of this modelling problem are given in [Esh-
ghi and Preist 1992].

5 Negation As Failure blurs the distinction
between abductive and consistency-based
diagnosis

Conceptually, the processes behind abductive and con-
sistency-based diagnoses are quite different. In consist-
ency-based diagnosis, one removes normality
assumptions until the theory regains consistency. In
abductive diagnosis, one adds abnormality assumptions
until the specified bad observations are provable in the
theory.

However, by moving to a nonmonotonic theory, we can
use the same process to perform both styles of diagnosis.
‘We use negation as failure to represent the good behav-
iour of a cluster as its default behaviour;

behaviour « not ab(c)

In a situation where the system is malfunctioning, and in
the standard consistency-based approach we would de-
rive an inconsistency by adding normality assumptions,
we would get an inconsistency without adding any as-
sumptions. This is because the negation as failure results
in clusters defaulting to their *good’ behaviour model.
Furthermore, the theory can be restored to consistency
by adding abnormality assumptions, as in abduction,
rather than by removing normality assumption as in the
standard consistency-based approach.

It is exactly because of this effect that an abductive
framework can be used to represent both consistency-
based and abductive diagnoses. A similar approach to
representing a component’s good behaviour as its de-
fault behaviour was introduced in the context of the
Nonmonotonic ATMS, in [Dressler 1990].

If we are to use negation as failure in the system descrip-
tion, as we argued we need to do in many instances, it is
necessary to integrate abductive and consistency-based
approaches. This is because, in a logic with negation as
failure, consistency-based and abductive diagnoses are
the dual of each other. By passing through a negation,
you pass from a consistency-based problem to an abduc-
tive problem, or vice-versa. To see this, let us consider
some simple examples;

a) Consistency-Based diagnosis
SD: obs « notg

g « ab(c)
OBS: —obs

In a consistency-based diagnosis, we attempt to restore
consistency by making assumptions so as to ‘not-prove’
a certain proposition which contradicts with the integ-
rity constraints. In the case of the above example, we
wish to not-prove obs. However, to do this, we must
prove the negated goal, g. Hence we want an abductive
diagnosis of the observation, g.

b) Abductive diagnosis
SD: obs «notg

g « ab(c)
OBS: obs

In an abductive diagnosis, we wish to make assump-
tions so as to prove a certain proposition which is
required to be true by the integrity constraints. In the
above example, we wish to prove obs. However, to do
this, we must fail to prove the negated goal, g. Hence,
we want a consistency-based diagnosis for the observa-
tion —g.

Thus a diagnostic problem of one sort may have a diag-
nostic problem of the other sort embedded in it. So,
when the modelling language includes negation as fail-
ure, abductive and consistency-based diagnosis cannot

be considered in isolation from each other. It is this that
led us to formulate this integration.

6 The Generalised Stable Model Semantics
for Abduction

Various semantics have been proposed for abduction,
both formally and informally. Originally, an abductive
explanation for an observation was informally defined
as a set of assumables which, when added to a theory, al-
lowed proof of the observation. This was then formal-
ised to give a metalevel definition of abduction in [Esh-
ghi and Kowalski 1989].

Console et al. [1990] have used the completion seman-
tics to give a semantics to abduction in hom clause the-
ories. Recently, they have extended it to cover hierarchi-
cal logic programs [Console et al. 1991].

The semantics of abduction which we have chosen to
use, however, is that provided by Kakas and Mancarella
[1990a]. By extending the stable model semantics of
logic programs [Gelfond and Lifschitz 1988}, they give
a semantics for abduction which holds for arbitrary gen-
eral logic programs with integrity constraints.

Here, we briefly recall their definitions;

Definition 1
An abductive framework is a triple <P A,IC> where

1) P is a set of clauses of the form H « Ly,..,Lx kO
where H is an atom and L; is a literal.

2) Ais a set of predicate symbols, the abducible predi-
cates. The abducibles, Ab, are then all ground atoms with
predicate symbols in A.

3) IC, the integrity constraints, is a set of closed formu-
lae.

Hence an abductive framework extends a logic program
to include integrity constraints and abducibles. The se-
mantics of this framework is based on the stable model
semantics for logic programs;

Definition 2

Let P be a logic program, and M a set of atoms from the
Herbrand base. Define Py to be the set of ground horn
clauses formed by taking grdund(P), in clausal form, and
deleting;

(i) each clause that has a negative literal - in its body,
and1 eM.

(ii) all negative literals —l in the body of clauses, where
le M.
M is a stable model for P if M is the minimal model of
PM-
This definition is extended to give a semantics to abduc-
tive frameworks.

517

Definition 3

Let <P,A,IC> be an abductive framework, and A c atom-
s(A) be a set of abducibles. Then the set M(a) of ground
atoms is a generalised stable model (GSM) for <P ,A,IC>
iff it is a stable model for the logic program PuA, it is a
model for the integrity constraints IC, and A=ANM(a).

The above definition is an extension of that in [Kakas
and Mancarella 1990a] to allow abducibles to appear in
the head of a clause. As a result of this, the set of abduc-
ibles chosen as generators can be smaller than A, the set
of abducibles true in the generalised stable model.

A unit clause, q, representing an observation, has an ab-
ductive explanation with hypothesis set A if there exists
a generalised stable model, M(A), in which q is true.

Equivalently, we can say that q has an abductive expla-
nation, A, within the abductive framework <P,A,IC> if the
abductive framework <P,A,IC+g> has a generalised sta-
ble model M(A). Having q in the integrity constraints im-
poses the condition that q must be true in the generalised
stable model, and hence must follow from the logic pro-
gram together with the set of abducibles chosen.

7 Generalised Stable Models and Diagnosis

The generalised stable model semantics for abduction
can be applied to diagnosis by mapping a diagnosis
problem, <SD, OBS, C>, with multiple observations, onto
an abductive framework as follows;

» Represent the system description, SD, as a logic
program with integrity constraints, <P,IC>. The
integrity constraints will usually contain sen-
tences stating that observation points cannot
take multiple values at a given time.

» Let the abducibles represent the causes within
the clusters, {ab(ci.n)l cieC}, hence A =

{ab(X,N)}.

Intuitively, given an observation set OBS, represented
by a set of unit clauses, we have a choice of how to use
it. We either wish to predict it, giving an abductive diag-
nosis, or make assumptions to restore the theory to con-
sistency, giving a consistency-based diagnosis. By
adding OBS to the integrity constraints, only models in
which the observations are true, and hence explained by
the system description together with selected abduci-
bles, are legal generalised stable models. Hence we get
an abductive diagnosis. If, instead, we add OBS to the
logic program representing the system description, then
a set of assumptions can only be made if they are con-
sistent with the observations; i.e. the observations, sys-
tem description and assumptions cannot derive
anything which violates the integrity constraints. This
will give us consistency-based diagnoses. Furthermore,

518

we can partition OBS into two sets, and predict some
observations, OBSp, while maintaining consistency with
others, OBS,.. We do this by placing OBS,, in the integ-
rity constraints, and OBS; in the logic program.

This allows us to give a definition of unified diagnosis
as follows;

Definition 4

Let <SD,0BS,,0BS,,C> be a diagnosis problem, where;

SD is a logic program with integrity constraints, <P,IC>.

0BS, is the set of observations to be predicted by diag-
noses.

OBS, is the set of observations which diagnoses need to
be consistent with.

C is the set of causal clusters in the system.
Then;

A is a GSM-diagnosis of <SD,0BS;,0BS,,C> iff there is
a generalised stable model, M(A), of the abductive
framework <PUOBS,,A,ICUOBS,,>.

where A = {ab(C,N)} represents the set of possible root
causes of misbehaviour in SD.

To demonstrate this, we consider a simple example
from the medical domain, that of pericardial tampon-
ade. The heart consists of two parts, the myocardium is
the muscle which beats, while the pericardium is the
protective sac which surrounds this muscle. If this sac is
pierced, instantaneous pain occurs, which can subside
fairly quickly. However, blood slowly flows into the
pericardium over a period of time, increasing the pres-
sure on the myocardium. Later, the myocardium will
become so compressed that blood does not flow round
the arteries, even though the myocardium itself is func-
tioning perfectly.

The model of this phenomenon is given below. For sim-
plicity, we treat time discretely, in units of hours.

pulse_ok(T) « normal_cardiac_contraction(T),

not heart_compressed(T).
no_pulse(T) « heart_compressed(T).
heart_compressed(T) « ab(pericardium,pierced(T")),

T <T-10.

normal_cardiac_contraction(T) «

not ab{myocardium,failure(T’)),

T'<T.
bad_ecg(T) < ab(myocardium, failure(T)).
We give the pericardium the possible failure cause
‘pierced’ at a given time, while the myocardium simply
suffers a ‘failure’ of some sort. The latter is consistent
with any behaviour of the myocardium, but only pre-

dicts a bad ecg trace.

The above clauses form the logic program part of SD.In
addition, we need the integrity constraints, IC. These
simply state which observations conflict with each
other;

—(pulse_ok(T) & no_pulse(T)).
—(ecg_bad(T) & ecg_good(T)).

Assume we have the observation, no_pulse(12). Let us
consider the generalised stable models of <P,A,IC>.

If we place the observation in the logic program as a
unit clause, any set of abducibles can be assumed as
long as they do not violate the integrity constraints - i.e.
they must not generate a stable model in which pul-
se_ok(12) is true. If we assume nothing, the resulting
stable model contains pulse_ok(12) as true, resulting in a
conflict. There are two possible (minimal) ways to
restore consistency. We can assume ab(myocardium,fail-
ure(1 0))1, and cease to contain normal_cardiac_contrac-
tion(12) in the stable model. Alternatively, we assume
ab(pericardium,pierced(Z))1, which predicts heart com-
pression at time 12. The resulting stable model will
therefore not contain pulse_ok(12), and so be a legiti-
mate generalised stable model of <Pu{no_pul-
se(12)},A,IC>.

If, instead, we place the observation in the integrity
constraints, IC, we are restricted to stable models which
contain no_pulse(12). In this case, only by assuming
ab(pericardium,pierced(2)) do we generate a stable model
which contains no_pulse(12). As this also satisfies IC, it
is a legitimate GSM for <P,A,ICu{no_pulse(12)})>.

Hence, by making a choice of where to place the obser-
vation, we can generate either consistency-based or
abductive diagnoses. Furthermore, if we have a second
observation, ecg_good(12), we can choose to treatitina
different way from the first. Let OBS, = {no_pulse(12)}
and OBS, = {ecg_good(12)}. In this case, the only (mini-
mal) GSM of <PUOBS,,A,ICUOBS> is that generated
by ab(pericardium, pierced(2)). However, if we swap
OBS;, and OBS, the only (minimal) GSM is that gener-
ated by ab(myocardium, failure(10)).

Note how the model uses negation-as-failure to handle
the frame problem. If we used classical negation
instead, it would be necessary to have extra clauses to
predict not_heart_compressed at all relevant times,
resulting in a larger, less understandable, and less effi-
cient model.

8 Abductive and consistency-baséd
diagnosis as special cases

If we restrict our attention to the traditional definitions
of diagnosis, we can show that our definition is equiva-
lent to these under certain conditions.

1 Or, of course, at any other appropriate time instant.

8.1 Abductive Diagnoses as Generalised
Stable Models

If all the observations are to be predicted in the abduc-
tive sense, and the system description contains only
horn clauses, our definition of diagnosis reduces to the
standard definition of abduction given in section 1. This
is achieved as follows:

Given an abductive diagnosis problem <SD,0BS,,C>,
where SD is a horn-clause theory, divide the system
description into a set of definite clauses, P, and a set of
denials, D. Let A be the set of abducibles.

It is easy to show that abductive diagnoses of SD
according to formula (2) correspond to generalised sta-
ble models of the framework <P,A,ICUOBS,>.

8.2 Consistency-Based Diagnoses as
Generalised Stable Models

For a certain class of theories, namely almost-horn the-
ories, we show that our definition of diagnosis is equiv-
alent to the traditional definition of consistency-based
diagnosis given in [Reiter 1987]. An almost-horn theory
is a theory in which negation is used only to represent
the negation of certain predicates. In the context of our
theorem, these correspond to the abnormality assump-
tions.

Definition 5

A clause is said to be almost-Horn with respect to A, if ,
when in disjunctive normal form, it contains at most
one positive literal with a predicate symbol not in A.

Theorem

Let <SD, OBS,,C> be a consistency-based diagnosis
problem, with SD a theory which is almost-horn with
respect to A={ab}.

Then define the logic program with integrity con-
straints, SD’=<P,IC>, as follows;

Let a; € atoms(A), and p, g; ¢ atoms(A).

1. For every clause of the form

Pé —a1,-@z..8,3k41:-8m:A1,92,+Gn in SD, there is a
program clause

pe- not ay,not aj...not ax,ak, 1,--,8m,41,dz,--.qn in P.

2. For every clause of the fdrm
a4Vay...VaRV—8p, V. V—8y—q1 v—aav..v—(, in SD there is
an identical clause in IC.
Then;
D is a consistency-based diagnosis of <SD, OBS;,C>
according to formula (1)

< D is a GSM-diagnosis of <SD’, @, OBS,,C>

The proof of this theorem is available in an extended
version of this paper, available from the authors.

This theorem shows that, if negation is used only to rep-

519

resent the normality assumptions in the system, —ab,
then the nonmonotonic definition of diagnosis given by
us is equivalent to the monotonic definition given in
[Reiter 1987]. However, if negation is used elsewhere
in the theory, the two definitions diverge. The classical
consistency-based definition requires explicit represen-
tation of all negative information. The GSM-diagnosis,
however, will make the closed-world assumption, and
assume information is false unless it can be proved oth-
erwise.

9 Comparison with Console & Torasso [2]

Console & Torasso have defined a framework for a gen-
eral abduction problem. This framework allows a spec-
trum of diagnosis styles to be represented within it,
including the pure consistency-based and abductive
styles described above.

They divide the observations into two sets. One set,
OBS,, is to be explained by the assumptions, while the
other set, OBS., must be consistent with the assump-
tions. They then define two sets;

¥* = OBS,.
¥~ = {—f(x) | f(y)e OBS, xy}

A diagnosis is then a set of abducibles which, when
added to the theory, allows prediction of all observa-
tions in ¥*, and is consistent with the negative literals in
¥

Our definition is more powerful in several ways.

« TItextends the definition of Console and Toras-
so from horn-clause theories to general logic
programs with integrity constraints. This gives
a sophisticated and expressive language for
modelling, which includes negation as failure.

o The inclusion of the consistency-based obser-
vations in the object level, rather than their ne-
gations in the integrity constraints, means that
these can be used easily during inference. This
can reduce the time to find a conflict, by using
‘backwards simulation’ of components. In
some cases, such as the example documented in
[van Soest et al. 1990] , certain diagnoses can-
not be found without access to the observations
in this way.

+ Within this framework, it is possible to define
minimal diagnoses model-theoretically. We
will expand on this in section 10.

Placing the consistency-based observations at the object
level potentially gives us more efficient inference.
However, to do this in the context of joint diagnoses can
lead to problems.

It may be possible to conclude that an abductive obser-

520

* vation is true, based on the adding of a consistency-

based observation to the theory alone;
SD: obs1 — obs2
OBS,: obs2
OBS,: obs1

By adding obs1 to the system description, we can con-
clude that obs2 is true. Whether this is legitimate
depends on how we interpret the consistency-based
observations. If we consider them true, but not neces-
sarily explainable, then this is legitimate. This is the
case in Reiter’s formalisation of diagnosis, and also in
the case of the setting factors of Reggia et al. [1983].
However, if we consider them not necessarily true,
merely not false, then this is unacceptable. In such cir-
cumstances, it is necessary to restrict the model so that
consistency-based observations do not appear in the
body of clauses, or use the approach proposed by Con-
sole and Torasso.

10 Minimality

We now focus attention on component-based diagnosis,
and consider the problem of minimal diagnoses. We
wish to restrict our attention to those diagnoses which
contain a minimal number of failing components.

To do this, we introduce minimal generalised stable
models;

Definition:

A general stable model, M(a), for an abductive frame-
work,<P,A,IC>, is minimal if there is no other GSM,
M(A’), such that A’c A.

Hence, a minimal general stable model contains a mini-
mal set of assumptions which allow the consequences of
the logic program P to satisfy the integrity constraints,
IC. Note that, because abductive frameworks are non-
monotonic, this does not imply that any superset of A, @,
will have a GSM, M(®).

If, in our diagnosis framework, we have a 1-1 corre-
spondence between a hypothesised failed component
and an abducible being assumed in the abductive frame-
work, then minimal general stable models will corre-
spond to minimal diagnoses. To do this, we must impose
two restrictions on the relationship between the frame-
works;

(i) There must be no abducible representing the correct
behaviour of a component. This must instead be a de-
fault behaviour which is used in the absence of abduci-
bles referring to the faulty behaviour of a component.

(i1) It must be illegal to make more than one assumption
about a component’s behaviour at a time.

Note that the second condition does not force fault
modes to be mutually exclusive in real-life, merely that

they must be mutually exclusive logically. This can eas-
ily be achieved by adding an integrity constraint forbid-
ding a component to have two modes;

false « ab(c;,my;), ab(c;,m;p), mjj=my,.

The framework provided by Console and Torasso satis-
fies the second of these conditions, but not the first. Be-
cause they work in a monotonic framework, it is not pos-
sible to represent the correct behaviour of a component
as the default behaviour; instead, it must be explicitly as-
sumed that a component behaves correctly.

As aresult of this, they must specify a semantic minimi-
sation criterion; a diagnosis is minimal if it contains a
minimal set of abducibles corresponding to faulty be-
haviour. We, however, can specify a model theoretic cri-
terion;

A diagnosis, A, is minimal if its corresponding GSM,
M(4), is a minimal GSM.

11 Calculating Diagnoses

By providing a uniform model-theoretic framework for
consistency-based, abductive and joint diagnoses, we
have also provided a method for a uniform implementa-
tion. We simply need an algorithm for generating the
minimal generalised stable models of an abductive
framework, and we can use this for performing a variety
of diagnosis tasks. ’

Much work has been carried out on the generation of
stable models, and several efficient algorithms exist.
However, as general stable models are a newer innova-
tion, these results have yet to be fully exploited and
extended to the GSM case. Currently, the state of the art
in GSM generation is provided by Satoh and Iwayama
[1991]. This work, however, has the drawback that it
does not produce minimal GSMs.

Traditionally, in the abductive community, top-down
algorithms have been used which tend to generate mini-
mal solutions, as they avoid making irrelevant assump-
tions. (e.g. [Cox and Pietrzykowski 1986] [Kakas and
Mancarella 1990b]) However, non-minimal abductive
diagnoses are still acceptable in the model-theoretic
semantics, and can be generated by the algorithms.
Similarly, in the diagnosis community, generation of
minimal diagnoses has tended to be a consequence of
the algorithm selected (e.g. the ATMS in [deKleer and
Williams 1987]) rather than a model-theoretic restric-
tion.

However, Eshghi [1990] proposes an alternative
approach. He generates a theory in which minimal diag-
noses correspond exactly to the stable models of the
theory. This means that non-minimal diagnoses are
excluded by the semantics, rather than the algorithm.
By extending these results beyond the almost-horn case,
we are able to transform an abductive framework into a

logic program. The stable models of this logic program
correspond exactly to the minimal generalised stable
models of the abductive framework. This means that
minimality is brought into the theory as a necessary
property of each solution, rather than being a selection
criterion between solutions. This work is currently in
progress.

As a result of this, a wider variety of literature can be
used to select appropriate and efficient algorithms,

rather than being restricted to algorithms which have
been developed specifically for the task of diagnosis.

12 Conclusions

By moving to a nonmonotonic logical framework, it is
possible to bring abductive and consistency-based diag-
nosis together, and use the same inference method to
perform both. We have done this by using generalised
stable models to provide the semantics, which provides
us with a rich and expressive modelling language. It
also gives a link between diagnosis and logic program-
ming, allowing application of theoretical and practical
logic programming results to the domain of diagnosis.

Acnowledgements

Thanks to Bruno Bertolino and Enrico Coiera for their
assistance.

References

[Console et al. 1990] L.Console, D. Theseider Dupre &
P.Torasso. A Completion Semantics for Object-level
Abduction. Proc. AAAI Symposium in Automated
Abduction, 1990.

[Console et al. 1991] L.Console, D. Theseider Dupre &
P.Torasso. On the relationship between abduction
and deduction. Journal of Logic and Computation,
2(5), Sept. 1991.

[Console and Torasso 1990] L.Console & P.Torasso.
Integrating Models of the Correct Behaviour into
Abductive Diagnosis. Proceedings of the 9th
European Conference on Artificial Intelligence,
1990.

[Console and Torasso 1991] L.Console & P.Torasso. A
Spectrum of Logical Definitions of Model-Based
Diagnosis. University of Torino Technical Report,
1991.

[Cox and Pietrzykowski 1986] P.T. Cox & T.
Pietrzykowski. Causes for Events: their
Computation and Application. Proc. 8th conference
on Computer Aided Design and Engineering, 1986.

[Davis 1984] R. Davis. Diagnostic Reasoning based on
Structure and Behaviour. Artificial Intelligence
24:347-410, 1984.

[deKleer et al.1990] J. deKleer, A. Mackworth & R
Reiter. Characterizing Diagnoses. Proceedings of
the Eighth National US Conference on Artificial
Intelligence, Boston 1990.

[deKleer and Williams 1987] J. deKleer & B. Williams.
Diagnosing Multiple Faults. Artificial Intelligence
32:97-130, 1987.

[deKleer and Williams 1989] J. deKleer & B. Williams.
Diagnosis with Behavioural Modes. Proceedings of
the Eleventh International Joint Conference on
Artificial Intelligence, Detroit 1989.

[Dressler 1990] O.Dressler. Computing Diagnoses as
Coherent Assumption Sets. Proceedings of the First
International Workshop on Principles of Diagnosis,
Menlo Park 1990

[Eshghi 1990] K. Eshghi. Diagnoses as Stable Models.
Proceedings of the First International Workshop on
Principles of Diagnosis, Menlo Park 1990

[Eshghi and Kowalski 1989] K. Eshghi & R. Kowalski.
Abduction compared with Negation as Failure.
Proceedings of the 6th Int. Conf. on Logic
Programming, Lisbon 1989, pp234-254.

[Eshghi and Preist 1992] K. Eshghi and C. Preist. The
Cachebus Experiment: Model Based Diagnosis
applied to a Real Problem in Industrial Applications
of Knowledge-Based Diagnosis, ed Guida and
Stefanini, Elsevier 1992.

[Gelfond and Lifshitz 1988] M. Gelfond & V. Lifshitz.
The Stable Model Semantics for Logic
Programming. Proceedings of the Fifth International
Conference on Logic Programming, 1988.

[Kakas and Mancarella 1990a] A. Kakas & P.
Mancerella. Generalised Stable Models: A
Semantics for Abduction. Proceedings of the 9th
European Conference on Artificial Intelligence,
1990.

[Kakas and Mancarella 1990b] A. Kakas & P.
Mancarella. On the relation between Truth
Maintenance and Abduction. Proceedings of
PRICALI, 1990.

[Reiter 1987] R. Reiter. A theory of diagnosis from firsi
principles, Artificial Intelligence Journal 32, 1987

[Reggia er al. 1983] J.A. Reggia, D.S. Nau & P.Y.
Wang. Diagnostic Expert Systems based on a Sei
Covering Model. Int. J. of Man-Machine Studies 19,
p437-460. (1983)

[Satoh and Iwayama 1991] K. Satoh & N. Iwayama.
Computing Abduction by using the TMS.
Proceedings of the Eighth International Conference
on Logic Programming, 1991.

[Shanahan 1989] M. Shanahan. Prediction is Deduction
but Explanation is Abduction. Proceedings of the
Eleventh International Joint Conference on
Artificial Intelligence, Detroit 1989.

[vanSoest et al. 1990] D.C. van Soest, R.R. Bakker, F.
van Raalte & N.J.1. Mars. Improving effectiveness of
model-based diagnosis, Proc. 10th international
workshop on expert systems and their applications,
Avignon 1990.

521

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

522

A Forward-Chaining Hypothetical Reasoner Based on
Upside-Down Meta-Interpretation

Yoshihiko Ohta

Katsumi Inoue

Institute for New Generation Computer Technology
Mita Kokusai Bldg. 21F, 1-4-28 Mita, Minato-ku, Tokyo 108, Japan
{ohta, inouel}@icot.or.jp

Abstract

A forward-chaining hypothetical reasoner with the
assumption-based truth maintenance system (ATMS)
has some advantages such as avoiding repeated proofs.
However, it may prove subgoals unrelated to proofs of
the given goal. To simulate top-down reasoning on
bottom-up reasoners, we can apply the upside-down
meta-interpretation method to hypothetical reasoning.
Unfortunately, when programs include negative clauses,
it does not achieve speedups because checking the consis-
tency of solutions by negative clauses should be globally
evaluated. This paper describes a new transformation
algorithm of programs for efficient forward-chaining hy-
pothetical reasoning. In the transformation algorithm,
logical dependencies between a goal and negative clauses
are analyzed to find irrelevant negative clauses, so that
the forward-chaining hypothetical reasoners based on the
upside-down meta-interpretation can restrict consistency
checking of negative clauses to those relevant clauses.
The transformed program has been evaluated with a
logic circuit design problem.

1 Introduction

Hypothetical reasoning [Inoue 88) is a technique for prov-
ing the given goal from axioms together with a set of hy-
potheses that do not contradict with the axioms. Hypo-
thetical reasoning is related to abductive reasoning and
default reasoning,.

A forward-chaining hypothetical reasoner can be con-
structed by simply combining a bottom-up reasoner
with the assumption-based truth maintenance system
(ATMS) [de Kleer 86-1] (for example [Flann et al. 87,
Junker 88]). We have implemented a forward-chaining
hypothetical reasoner [Ohta and Inoue 90], called APRI-
COT/0, which consists of the RETE-based inference
engine {Forgy 82] and the ATMS. With this architec-
ture, we can reduce the total cost of the label compu-
tations of the ATMS by giving intermediate justifica-
tions to the ATMS at two-input nodes in the RETE-
like networks. On the other hand, hypothetical rea-

soning based on top-down reasoning has been proposed
in [Poole et al. 87, Poole 91]. Compared with top-down
(backward-chaining) hypothetical reasoning, bottom-up
(forward-chaining) hypothetical reasoning has the ad-
vantage of avoiding duplicate proofs of repeated subgoals
and duplicate proofs among different contexts. Bottom-
up reasoning, however, has the disadvantage of proving
unnecessary subgoals that are unrelated to the proofs of
the goal.

To avoid the disadvantage of bottom-up reasoning,
Magic Set method [Bancilhon et al. 86] and Alexander
method [Rohmer et al. 86] have been proposed for de-
ductive database systems. Recently, it is shown that
Magic Set and Alexander methods are interpreted as
specializations of the upside-down meta-interpretation
[Bry 90]. The upside-down meta-interpretation has been
extended to abduction and deduction with non-Horn
clauses in [Stickel 91]. His abduction, however, does not
require the consistency of solutions.

Since the consistency requirement is crucial for some
applications, we would like to make programs include
negative clauses for our hypothetical reasoning. When
programs include negative clauses, however, the upside-
down meta-interpretation method does not achieve
speedups because checking the consistency of solutions
by .negative clauses should be globally evaluated.

We present a new transformation algorithm of pro-
grams for efficient forward-chaining hypothetical reason-
ing based on the upside-down meta-interpretation. In
the transformation algorithm, logical dependencies be-
tween a goal and negative clauses are analyzed to find
irrelevant negative clauses, so that the forward-chaining
hypothetical reasoners based on the upside-down meta-
interpretation can restrict consistency checking of nega-
tive clauses to those relevant clauses. The transformed
program has been evaluated with a logic circuit design
problem.

In Section 2, our hypothetical reasoning is defined with
the default proofs [Reiter 80]. In Section 3, the outline
of the ATMS is sketched. Section 4 shows the basic algo-
rithm for hypothetical reasoning based on the bottom-up

reasoner MGTP [Fujita and Hasegawa 91] together with

the ATMS. Section 5 presents two transformation algo-
rithms based on the upside-down meta-interpretation.
One is a simple transformation algorithm, the other is
the transformation algorithm with the abstracted depen-
dency analysis. We have implemented the hypothetical
reasoner and these program transformation systems, and
Section 6 shows the result of an experiment for the evalu-
ation of the transformed programs. In Section 7, related
works are considered.

2 Problem Definition

In this section, we define our hypothetical reasoning
based on a subset of normal default theories [Reiter 80].
A normal default theory (D, W) and a goal G are given
as follows:

o W: a set of Horn clauses.

A Horn clause is represented in an implicational
form,

ag A ANa, —f (1)

or
arA---ANay, — L. (2)

Here, a; (1 < i < n;jn > 0) and B are atomic
formulas, and L designates falsity. Function sym-
bols. are restricted to 0-ary function symbols. All
variables in a clause are assumed to be universally
quantified in front of the clause. Each Horn clause
has to be range-restricted, that is, all variables in
the consequent 3 have to appear in the antecedent
a1 A+ Aan. A Horn clause of the form (2) is called
a negative clause.

o D: a set of normal defaults.

A normal default is an inference rule,

a:b

; ®

where «, called the prerequisite of the normal de-
fault, is restricted to a conjunction a; A -+ A o, of
atomic formulas and 8, called its consequent, is re-
stricted to an atomic formula. Function symbols are
restricted to 0-ary function symbols. All variables in
the consequent S have to appear in the prerequisite
a. A normal default with free variables is identified
with the set of its ground instances. The normal
default can be read as “ if « and it is consistent to
assume f3, then infer §”.

¢ goal G: a conjunction of atomic formulas.

All variables in G are assumed to be existentially
quantified.

523

Let A be the set of all ground instances of the normal
defaults of D. A default proof [Reiter 80] of G with re-
spect to (D, W) is a sequence Ag,---, A of subsets of
A if and only if

1. WU CONSEQUENTS(Ao) F G,
2.for 1 <1<k,
WUCONSEQUENTS (A;) +
PREREQUISITES(A;-1),
3. A =0,
4. WUUL,CONSEQUENTS(A;) is consistent,

where

PREREQUISITES(Ai-1) = \ a
for (a: B/B) € A;_; and

CONSEQUENTS(A;) = {B | (e : 8/8) € Ai}.

A ground instance G of the goal G is an answer to G
from (D, W) if

k
W U |J CONSEQUENTS(A;) k= G,

=0

where the sequence Ag,:--,A; is a default proof of
G with respect to (D,W). If GO is an answer to
G from (D,W), 6 is an answer substitution for G
from (D,W). A support for an answer GO from
(D,W) is UL, CONSEQUENTS(A;), where the se-
quence Ag,- -, Ay is a default proof of G# with respect
to (D,W). For an answer G from (D,W), the mini-
mal supports for GO from (D, W), written as MS(G9),
is the set of minimal elements in all supports for G from
(D,W). The solution to G from (D, W) is the set of all
pairs (G0, MS(G8)), where Gf is an answer to G from
(D,W) and MS(GH) is the minimal supports for G.
The task of our hypothetical reasoning is defined to find
the solution to a given goal from a given normal default
theory.

3 ATMS

The ATMS [de Kleer 86-1] is used as one component of
our hypothetical reasoner. The following is the outline

of the ATMS.

In the ATMS, a ground atomic formula is called a da-
tum. For some datum N, I'y designates an assumption.
The ATMS treats both L and I'y as special data. The
ATMS represents each datum as an ATMS node:

(datum, label, justi fications).

Justifications correspond to ground Horn clauses and are
incrementally input to the ATMS. Each justification is
denoted by:

Ny,---,N, = N,

524

where N; and N are data. Each datum N; is called an
antecedent, and the datum N is called a consequent. In
the slot justifications, the ATMS records the set of an-
tecedents of justifications whose consequents correspond
to the datum.

Let H be a current set of assumptions. An assumption
set £ C H is called an environment. When we denote
an environment by a set of assumptions, each assumption
Iy is written as N by omitting the letter I'. Let J be a
current set of justifications. An environment F is called
nogood if JUE derives 1.. The label of the datum N is the
set of environments {Ey,---,F;, -+, En} that satisfies
the following four properties [de Kleer 86-1]:

1. N holds in each E; (soundness),

2. every environment in which NV holds is a superset of
some E; (completeness),

3. each E; is not nogood (consistency),
4. no E; is a subset of any other (minimality).

If the label of a datum is not empty, the datum is be-
lieved; otherwise it is not believed. A basic algorithm
to compute labels [de Kleer 86-1] is as follows. When
a justification is incrementally input to the ATMS, the
ATMS updates the labels relevant to the justification in
the following procedure.

Step 1: Let L be the current label of the consequent
N of the justification and L; be the current label
of the i-th antecedent N; of the justification. Set
L'=L U {z|z=UL, Ei where E; € L;}.

Step 2: Let L” be the set obtained by removing no-
goods and subsumed environments from L'. Set the
new label of N to L”.

Step 3: Finish this updating if L is equal to the new
label.

Step 4: If NV is 1, then remove all new nogoods from
labels of all data other than L.

Step 5: Update labels of the consequents of the
recorded justifications which contain N as their an-
tecedents.

4 Hypothetical Reasoner with
ATMS and MGTP

The MGTP [Fujita and Hasegawa 91] is a model gener-
ation theorem prover for checking the unsatisfiability of
a first-order theory P. Each clause in P is denoted by:

al/\"'/\an'_’ﬂlv"'vﬂnn

where o;(1 <7< n;n>0)and ;(1 <j<m;m >0)
are atomic formulas and all variables in B, V --- V 8,
have to appear in a; A --+ A a. Each clause in P is

" translated into a KL1 [Ueda and Chikayama 90] clause.

Then, model candidates are generated from the set of
KL1 clauses. The MGTP works as a bottom-up reasoner
on the distributed-memory multiprocessor called Multi-
PSIL

As shown in Figure 1, we can construct a hypotheti-
cal reasoner by combining the MGTP with the ATMS.
The normal default theory (D, W) is translated into a
program P,

P={o;A---Aa, — assume(f) |
(caA---ANa,:B/BYeD}IUW,

where assume is a metapredicate not appearing any-
where in D and W.

Justifications

Beliefs

Inference Engine

MGTP

| ATMS

Figure 1: Forward-Chaining Hypothetical Rea-
soner with ATMS and MGTP

procedure R(G,P):
begin
By :=10;
Jo={(=h)|(-BeP}
U{(Ts=B) | (— assume(f)) € P };
s:=0;
while J, # 0 do
begin
s:=s+1;
B, := UpdateLabels(Js..;, ATMS);
Js := GenerateJusti fications(B,, P, B,_;)
end;
Solution := {;
for each 8 such that GO € B, do
begin
Lgy := GetLabel(G8, ATM S);
Solution := Solution U {{(G6, Lgs)}
end;
return Solution
end.

Figure 2: Reasoning Algorithm with ATMS and

MGTP

The reasoning procedure R(G, P) for the MGTP with
the ATMS is shown in Figure 2. The reasoning proce-

dure consists of the part for UpdateLabels — Generate-
Justifications cycles and the part for constructing the
solution. The UpdateLabels — GenerateJustifications cy-
cles are repeated while J, is not empty. The ATMS
updates the labels related to a justification set J,_;
given by the MGTP. The ATMS returns the set B,
of all the data whose labels are not empty after the
ATMS has updated labels with J,_;. The procedure
UpdateLabels(J;—1, ATMS) returns a believed data set
B,. The MGTP generates each set J, of justifications
by matching elements of B, with the antecedent of ev-
ery clause related to new believed data. The procedure
GenerateJusti fications(Bs, P, B,_1) returns a new jus-
tification set J,. If any element in (B;\ Bs-1) can match
an element of the antecedent of any (a; A+ Aa, — X)
in P and there exists a ground substitution o for all o;
such that ;0 € B,, then J; is as follows.

o (0, -, ,0,Tg, = Po) € J, if X = assume(f).
o (o, - ,an0 = Po)e J,if X = 4.
o (oo, oo = 1) e Jif X = L.

The procedure GetLabel(G8, ATMS) returns the label
of GO and is used in constructing the solution. Note
that the label of GO corresponds to the minimal sup-
ports for G8. The hypothetical reasoner with the ATMS
and the MGTP can avoid duplicate proofs among differ-
ent contexts and repeated proofs of subgoals. However,
there may be a lot of unnecessary proofs unrelated to the
proofs of the goal.

5 Upside-Down
Meta-Interpretation

5.1 Simple Transformation Algorithm

Bottom-up reasoning has the disadvantage of proving
unnecessarily subgoals that are not related to proofs of
the given goal. We introduce a simple transformation
of a program P on the basis of the upside-down meta-
interpretation for speedups of bottom-up reasoning by
incorporating goal information. A bottom-up reasoner
interprets a Horn clause

ar A ANa, = 8

in such a way that the fact Bo is derived if facts
o40,- - ,a,0 are present for some substitution o. On
the other hand, a top-down reasoner interprets it in such
a way that goals ay0,---,a,0 are derived if a goal fo
is present, and fact fo is derived if both a goal B¢ and
facts ono, -+, a,0 are present. We transform the Horn
clause

oq/\-n/\d,.—»ﬁ

525

into
goal(B) — goal(e;)
for every o; (1 <¢<n)and

goal(B)ANar A--- Aoy, — B,

then a bottom-up reasoner can simulate top-down rea-
soning. Here, goal is a metapredicate symbol which does
not appear in the original program P. After some facts
related to the proofs of the goal have derived with the
upside-down meta-interpretation, those facts may derive
contradiction with bottom-up interpretation of the orig-
inal program. Thus, we transform each negative clause

ag N Nay, = L

into
ar A Aa, = L
and
— goal(ay)

for every o; (1 <4 < n). This means that every subgoal
related to negative clauses is evaluated.

Note that (goal(B) — goal(e;)) or (— goal(e;)) may
not be satisfy the range-restricted condition. We have
some techniques which make every clause in transformed
programs range-restricted. Here, we take a very simple
technique in which only the predicate symbols are used
as the arguments of the metapredicate goal. When + is
an atomic formula, we denote by 7 the predicate symbol
of 7. The algorithm T'1 as shown in Figure 3 transforms
an original program P into the program P in which the
top-down information is incorporated. The solution to
G from T1{(G, P) is always the same as the solution to G
from P because all subgoals related to negative clauses
as well as the given goal are evaluated and every label of
goal(B) for any atomic formula g is {0}.

For example, consider a program,

P,={ - penguin(a),
penguin(X) — bird(X),
bird(X) — assume(fly(X)),
fly(X) Anotfly(X) — L,
penguin(X) — notfly(X) }.

By the simple transformation algorithm, we get

{ goal(penguin) — penguin(a),

goal(bird) A penguin(X) — bird(X),
goal(bird) — goal(penguin),
goal(fly) A bird(X) — assume(fly(X)),
goal(fly) — goal(bird),
Fly(X) Anotfly(X) — L,
— goal(fly),
— goal(not fly),
goal(not fly) A penguin(X) — not fly(X),
goal(not fly) — goal(penguin) }

U{ — goal(fly) }.

526

Next, consider the goal bird(X). Then, the transformed
program T'1(bird, P;) is the program

T1(bird, Py) = {---} U { — goal(bird) },

where only the last element (— goal(fly)) of T1(fly, P,)
is replaced with (— goal(bird)). Even if the goal
is bird(X), both goal(fly) and goal(notfly) are eval-
uated because {---} includes (— goal(fly)) and (—
goal(notfly)) for the negative clause. Then, the compu-
tational cost of R(bird(X),T1(bird, P;)) is nearly equal
to the cost of R(fly(X),T1(fly, P)).

procedure T1(G,P):
begin
P =0
for each (s A--Aa,— X)€P do
begin
if X =1 then
begin
P:=PU{oy A Aay,— L};
for j:=1 until n do
P = P U {- goal(a;)}
end
else if X = assume(B) then
begin
P:=PU{goal(B)Aas A--- Ay — assume(f)};
for j:=1 until n do
P := P U {goal(B) — goal(a;)}
end
else if X = f then
begin
P:=PuU{goal(B) Aoy A+ Aoy — B
for j:=1 until n do
P:=Pu {goal(B) — goal(a;)}
end
end;
P = PU{- godl(G)};
return P
end.

Figure 3: Simple Transformation Algorithm T1

5.2 Transformation Algorithm with
‘Abstracted Dependency Analysis

In this subsection, we describe a static method to find
irrelevant negative clauses to evaluation of the goal. If
we can find such irrelevant negative clauses, for every
antecedent «; of each irrelevant clause, we do not need to
add (- goal(;)) into the transformed program. We try
to find them by analyzing logical dependencies between

the goal and each negative clause at the abstracted level.
We do not care about any argument in the abstracted
dependency analysis.

When 7 is an atomic formula, we denote by the propo-
sition ¥ the predicate symbol of 7. For each negative
clause C, the proposition false(C) is used as the iden-
tifier of C. For every (o — assume()), B is called an
assumable-predicate symbol. For any environment E, its
abstracted environment (denoted by E) is { T3 | I's € E}.
The abstracted justifications with respect to P is defined
as:

jE {(&1,761“1-‘5#5)[
(1 A+ Ao, — assume(f)) € P}
U {(al""a&n:ﬂ)I(al/\"'/\an_)l@)ep}
@) {(&1a"'75‘n = false(C)) |

C=(aA---ANeyy = 1), C€P}.

Let A be the set of propositions appearing in J. Note
that A consists of all predicate symbols in P and all
false(C) for C € P. For each proposition N in A, we
compute a set of abstracted environments on which N
depends. Now, we show an algorithm to compute the
set of abstracted environments. This algorithm is ob-
tained by modifying the label-updating algorithm shown
in Section 3. The modified points are as follows.
1. Replace Step 2 with

Step 2': Set the new label of N to L.
2. Remove Step 4.
Every proposition in A is labeled with the set of ab-
stracted environments obtained by applying the modi-
fied algorithm to the abstracted justifications J. This
label is called the abstracted label of the proposition.
The system to compute the set of abstracted environ-
ments for each proposition is called an abstracted depen-
dency analyzer. The reasons why we have to modify the
label-updating algorithm are as follows. Firstly, in the
abstracted justifications, every L is replaced with the
proposition false(C) for the negative clause C, so that
each abstracted label is always consistent. Thus, we do
not need Step 4. Secondly, each abstracted label may
not be minimal because we replace Step 2 with Step 2'.
Suppose that every abstracted label is minimal. Then,
the theorem we present below may not hold. For exam-
ple, let

Fe= { —pa), —p(), —q(b), ¢X)—HX),
p(X) — assume(r(X)),
p(X) — assume(s(X)),
r(a) > g, r(X)As(X) >y,
r(XYAs(X)AHX) — L }.

Consider the problem defined with the goal ¢ and P..
The abstracted label of g is {{r}, {r, s}} . The abstracted
label of the negative clause is {{r,s}}. The abstracted
environment {r, s} cannot be omitted for g although the
set of minimal elements in the abstracted label of g is

{{r}}.

procedure T2(G,P):
begin
P .=y
J = 0;
k:=0;
for each (e A---Aa, = X)€P do
begin
if X =1 then
begin
k:=k+1
P::]A)U{al/\ou/\an—)J_};
Ji=Ju{(ay, ,a, = false(k))};
end
else if X = assume(f) then
begin
P =Py
{goal(B) Aay A -+ A a, — assume(B)};
J=Ju {(@1,”',&,,1,1-‘5 = B)}a
for j:=1 until n do
P = P U {goal(B) — goal(d;)}

end
else if X =g then

begin
P:=PU{goal(B) Aoy A Ay — B}
Ji=Ju{(a, e =P}
for j:=1 until » do

P := P U {goal(B) — goal(&;)}
end
end;

UpdateAbstracted Labels(J, ADA);
Lg := GetAbstractedLabel(G, ADA);
for i:=1 until ¥ do
begin
L; := GetAbstracted Label(false(3), ADA);
for each Eg € Lg do
for each E; € L; do
if E,; g EG then
for (&1,++-,&, = false(i)) € J do
for j:=1 until n do
P = PU{> goal(a;)}
end;
P:= PU{- goal(G)};
return P
end.

Figure 4: Transformation Algorithm 72 with Ab-
stracted Dependency Analysis

527

Theorem: Let P be a normal default theory and G
a goal, J the abstracted justifications with respect to
P, L(G) the abstracted label of G , L(false(C)) the
abstracted label of false(C) where C' € P. If no element
in L(false(C)) is a subset of any element in L(G&), then
the solution to G from P is equivalent to the solution to
G from P\ {C}.

Sketch of the proof: Let C be (¢ — 1) and P
be P\ {C}. Assume that 6,, is any answer substitution
for G from P’ and o} is any answer substitution for a
from P’. Let M S(aoy) be the minimal supports for aoy
from P’ and M S(G9,,) be the minimal supports for GO,
from P’. Suppose that no element in L(false(C)) is a
subset of any element in L(G). From the supposition and
similarity between ATMS labels and abstracted labels,
no element in MS(aoy) is a subset of any element in
MS(GH,,). Therefore, the solution to G from P'U {C}
is the same as the solution to G from P’]

On the basis of the theorem, we can omit consis-
tency checking for a negative clause C if the condition
of the theorem is satisfied. The transformation algo-
rithm T2(G, P) with the abstracted dependency analysis

. is shown in Figure 4 for the program P and the goal G.

In Figure 4, Update AbstractedLabels(J, AD A) denotes
the procedure which computes abstracted labels from ab-
stracted justifications J with the abstracted dependency
analyzer ADA, and GetAbstractedLabel(G,ADA) de-
notes the procedure which returns the abstracted label of
G from the abstracted dependency analyzer ADA. The
procedure transforms an original program into the pro-
gram in which the top-down information is incorporated
and consistency checking is restricted to those negative
clauses relevant to the given goal.

Consider the same example P;, shown in the previ-
ous subsection, in case that the goal is bird(X). The
abstracted justifications Jj is

{ (= penguin), (penguin = bird), (bird, T 1, = fly),
(fly,notfly = false(l)), (penguin = notfly) }.
As the result of the abstracted dependency analysis,
the abstracted label of false(1) is {{fly}} and the ab-
stracted label of bird is {0}. Then, no element in the
abstracted label of false(1) is a subset of any element in
the abstracted label of bird, so that we do not need to
evaluate this negative clause. As a consequence, we have
the transformed program:

T(bird, By)=
{ goal(penguin) — penguin(a),
goal(bird) A penguin(X) — bird(X),
goal(bird) — goal(penguin),
goal(fly) A bird(X) — assume(fly(X)),
goal(fly) — goal(bird),
fly(X) Anotfly(X) — L,
goal(not fly) A penguin(X) — notfly(X),
goal(notfly) — goal(penguin) }
U { - goal(bird) }.

528

Since the transformed program does not include (—
goal(fly)) and (— goal(notfly)), the reasoner can omit
solving both the goal fly(X) and the goal not fly(X).

6 Evaluation with Logic Design
Problem

We have taken up the design of logic circuits to calcu-
late the greatest common divisor (GCD) of two integers
expressed in 8 bits by using the Euclidean algorithm.
The solutions are circuits calculating GCD and satisfying
given constraints on area and time [Maruyama et al. 88].
The program P; contains several kinds of knowledge:
datapath design, component design, technology map-
ping, CMOS standard cells and constraints on area and
time [Ohta and Inoue 90}. The design problem of calcu-
lators for GCD includes design of components such as
subtracters and adders.

Table 1 shows the expermental result, on a Pseudo-
Multi-PSI system, for the evaluation of the transformed
programs. The run time of a program P for a goal G
is denoted by Tr(e,p). The predicate symbol G of each
goal G is adder (design of adders), subtracter (design of
subtracters) or ¢cGCD (design of calculators for GCD).
The run time Tr(g,p,) of each goal G is equal to the others
on the original program P;.

Table 1: Run Time of Program

Goal G| Trg,py) [8] | Tr.p) [8] | Tr(e,P,) [5]

adder 10.7 17.5 0.4
subtracter 10.7 17.3 0.6

cGCD 10.7 17.3 16.8

Let P; be the simple transformed program of P;. The
experiment on the simple transformation time shows that
it takes 6.35 [s] for making P from P;. However, the run
time Tr(g,p,) for each goal G is nearly equal to the oth-
ers because constraints on area and time of the GCD
calculators are represented by negative clauses. Even if
we want to design adders or subtracters, the hypotheti-
cal reasoner cannot avoid designing GCD calculators for
consistency checking. v

Let P, be the transformed program with the ab-
stracted dependency analysis. The experiment on the
transformation time with the abstracted dependency
analysis shows that it takes 6.63 [s] for making P, from
P;. The transformation time with the abstracted de-
pendency analysis is a little bit longer (0.28 [s]) than
the simple transformation time. When G is adder or
-subtracter, the run time T p,) is much shorter than
the run time for the design of GCD calculators. This is
because the program can avoid consistency checks for
negative clauses representing constraints on area and

time of the GCD calculators when the design of adders
or the design of subtracters is given as a goal. The re-
sult show that each total of the transformation time with
abstracted dependency analysis and the run time of the
transformed program is shorter than the run time of the
original program when the problem does not need the
whole of the program.

7 Related Work

The algorithm for first-order Horn-clause abduction with
the ATMS is presented in [Ng and Mooney 91]. The sys-
tem is basically a consumer architecture [de Kleer 86-3]
introducing backward-chaining consumers. The algo-
rithm avoids both redundant proofs by introducing the
goal-directed backward-chaining consumers and dupli-
cate proofs among different contexts by using the ATMS.
Their problem definition is the same as [Stickel 90],
whose inputs are a goal and a set of Horn clauses without
negative clauses. When there are negative clauses in the
program, they briefly suggest that forward-chaining con-
sumer can be used for each negative clause to check the
consistency. On the other hand, since we only simulate
backward-chaining by the forward-chaining reasoner, we
do not require both types of chaining rules. Moreover,
we see that when the program includes negative clauses,
it is sometimes difficult to represent the clauses as a set
of consumers. For example, suppose that the axioms are

{a—e, b—od,cAd—og,c—e,d— f,eNf— 1}

and the goal is g. Assume that the set of consumers is

{(C = a)a (d = b)a (g <¢ d)a
(ec), (f&d), (e,f = L)}

where < means a backward-chaining consumer and
=> means a forward-chaining consumer. Then, we
get the solution {(g,{{g},{a,b},{a,d},{c,8},{c,d}})}.
However, the correct solution is {(g,{{g}})} because
{a,b},{a,d},{c, b} and {c,d} are nogood. To guaran-
tee the consistency when the program includes negative
clauses, for every Horn clause, we have to add the corre-
sponding forward-chaining consumer. Such added con-
sumers would cause the same problem as the program
that appeared in using the simple transformation algo-
rithm.

In [Stickel 91}, deduction and abduction with the
upside-down meta-interpretation are proposed. This ab-
duction does not require the consistency of solutions.
Furthermore, rules may do duplicate firing in different
contexts since it does not use the ATMS. This often
causes a problem when it is applied to practical programs
where heavy procedures are attached to rules.

Another difference between the frameworks of
[Ng and Mooney 91, Stickel 91] and ours is that their

frameworks treat only hypotheses in the form of nor-
mal defaults without prerequisites, whereas we allow for
normal defaults with prerequisites.

8 Conclusion

We have presented a new transformation algorithm of
programs for efficient forward-chaining hypothetical rea-
soning based on the upside-down meta-interpretation. In
the transformation algorithm, logical dependencies be-
tween a goal and negative clauses are analyzed at ab-
stracted level to find irrelevant negative clauses, so that
consistency checking of negative clauses can be restricted
to those relevant clauses. It has been evaluated with a
logic circuit design problem on a Pseudo-Multi-PSI sys-
tem.

We can also apply this abstracted dependency anal-
ysis to transformed programs based on Magic Set and
Alexander methods. Our dependency analysis with only
predicate symbols may be extended to an analysis with
predicate symbols and their some arguments.

Acknowledgments

Thanks are due to Mr. Makoto Nakashima of JIPDEC
for implementing the ATMS and combining it with the
MGTP. We are grateful to Prof. Mitsuru Ishizuka of the
University of Tokyo for the helpful discussion. We would
also like to thank Dr. Ryuzo Hasegawa and Mr. Miyuki
Koshimura for providing us the MGTP, and Dr. Koichi
Furukawa for his advise. Finally, we would like to ex-
press our appreciation to Dr. Kazuhiro Fuchi, Director
of ICOT Research Center, who provided us with the op-
portunity to conduct this research.

References

[Bancilhon et al. 86] F. Bancithon, D. Maier, Y. Sagiv
and J.D. Ullman, Magic Sets and Other Strange
Ways to Implement Logic Programs, Proc. of ACM
PODS, pp.1-15 (1986).

[Bry 90] F. Bry, Query evaluation in recursive databases:
bottom-up and top-down reconciled, Data &
Knowledge Engineering, 5, pp.289-312 (1990).

[de Kleer 86-1] J. de Kleer, An Assumption-based TMS,
Artificial Intelligence, 28, pp.127-162 (1986).

[de Kleer 86-2] J. de Kleer, Extending the ATMS, Arti-
fictal Intelligence, 28, pp.163-196 (1986).

[de Kleer 86-3] J. de Kleer, Problem Solving with
the ATMS, Artificial Intelligence, 28, pp.197-224
(1986)

[Flann et al. 87) N.S. Flann, T.G. Dietterich and
D.R. Corpron, Forward Chaining Logic Program-

529

ming with the ATMS, Proc. of AAAI-87, pp.24-29
(1987).

[Forgy 82] C.L. Forgy, Rete: A Fast Algorithm for the
Many Pattern/Many Object Pattern Match Prob-
lem, Artificial Intelligence, 19, pp.17-37 (1982).

[Fujita and Hasegawa 91] H. Fujita and R. Hasegawa,
A Model Generation Theorem Prover in KL1 Us-
ing a Ramified-Stack Algorithm, Proc. of ICLP 91,
pp.494-500 (1991).

[Inoue 88] K. Inoue, Problem Solving with Hypothetical
Reasoning, Proc. of FGCS ’88, pp.1275-1281 (1988).

[Junker 88] U. Junker, Reasoning in Multiple Contexts,
GMD Working Paper No.334 (1988).

[Maruyama et al. 88] F. Maruyama, T. Kakuda, Y. Ma-
sunaga, Y. Minoda, S. Sawada and N. Kawato, co-
LODEX: A Cooperative Expert System for Logic
Design, Proc. of FGCS ’88, pp.1299-1306 (1988).

[Ng and Mooney 91] H.T. Ng and R.J. Mooney, An Ef-
ficient First-Order Abduction System Based on the
ATMS, Technical Report AI 91-151, The University
of Texas at Austin, AT Lab. (1991).

[Ohta and Inoue 90] Y. Ohta and K. Inoue, A Forward-
Chaining Multiple-Context Reasoner and Its Appli-
cation to Logic Design, Proc. of IEEE TAI, pp.386-
392 (1990).

[Poole et al. 87] D. Poole, R. Goebel and R. Aleliunas,
Theorist: A logical Reasoning System for Defaults
and Diagnosis, N. Cercone and G. McCalla (Eds.),
The Knowledge Frontier: Essays in the Represen-
tation of Knowledge, Springer-Verlag, pp.331-352
(1987).

[Poole 91] D. Poole, Compiling a Default Reasoning Sys-
tem into Prolog, New Generation Computing, 9,
pp-3-38 (1991).

[Reiter 80] R. Reiter, A Logic for Default Reasoning, Ar-
tificial Intelligence, 13, pp.81-132 (1980).

[Rohmer et al. 86] J. Rohmer, R. Lescoeur and
J.M. Kerisit, The Alexander Method — A Tech-
nique for The Processing of Recursive Axioms in
Deductive Databases, New Generation Computing,
4, pp-273-285 (1986).

[Stickel 90] M.E. Stickel, Rationale and Methods for Ab-
ductive Reasoning in Natural-Language Interpreta-
tion, Lecture Nodes in Artificial Intelligence, 459,
Springer-Verlag, pp.233-252 (1990).

[Stickel 91}

M.E. Stickel, Upside-Down Meta-Interpretation of
the Model Elimination Theorem-Prover Procedure
for Deduction and Abduction, ICOT Technical Re-
port TR-664, ICOT (1991).

[Ueda and Chikayama 90] K. Ueda and T. Chikayama,
Design of the Kernel Language for the Parallel In-

ference Machine, The Computer Journal, 33, 6, pp.
494-500 (1990).

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © 1COT, 1992 ‘

530

Logic Programming, Abduction and Probability

David Poole
Department of Computer Science,
University of British Columbia,
Vancouver, B.C., Canada V6T 172
poole@cs.ubc.ca
telephone: (604) 822 6254
fax: (604) 822 5485

Abstract

Probabilistic Ilorn abduction is a simple frame-
work to combine probabilistic and logical rea-
soning into a coherent practical framework.
The numbers can be consistently interpreted
probabilistically, and all of the rules can be in-
terpreted logically. The relationship between
probabilistic Horn abduction and logic pro-
gramming is at two levels. At the first level
probabilistic Horn abduction is an extension of
pure Prolog, that is useful for diagnosis and
other evidential reasoning tasks. At another
level, current logic programming implementa-
tion techniques can be used to efficiently imple-
ment probabilistic Horn abduction. This forms
the basis of an “anytime” algorithm for esti-
mating arbitrary conditional probabilities. The
focus of this paper is on the implementation.

1 Introduction

Probabilistic Horn Abduction [Poole, 1991c; Poole,
1991b; Poole, 1992a] is a framework for logic-based ab-

duction that incorporates probabilities with assump- -

tions. It is being used as a framework for diagnosis
[Poole, 1991¢] that incorporates both pure Prolog and
Bayesian Networks [Pearl, 1988] as special cases [Poole,
1991b). This paper is about the relationship of proba-
bilistic Horn abduction to logic pregramming. This sim-
ple extension to logic programming provides a wealth of
new applications in diagnosis, recognition and evidential
reasoning [Poole, 199255.

This paper also presents a logic-programming solution
to the problem in abduction of searching for the “best”
diagnoses first. The main features of the approach are:

e We are using Horn clause abduction. The proce-
dures are simple, both conceptually and computa-
tionally (for a certain class of problems). - We de-
velop a simple extension of SLD resolution to im-
plement our framework.

e The search algorithms form “anytime” algorithms
that can give an estimate of the conditional proba-
bility at any time. We do not generate the unlikely
cxplanations unless we need to. We have a bound on

the probability mass of the remaining explanations
which allows us to know the error in our estimates.

e A theory of “partial explanations” is developed.
These are partial proofs that can be stored in a pri-
ority queue until they need to bF further expanded.
We show how this is implemented in a Prolog inter-
preter in Appendix A.

2 Probabilistic Horn abduction

The formulation of abduction used is a simplified form
of Theorist [Poole et al., 1987; Poole, 1988] with prob-
abilities associated with the hypotheses. It is simpli-
fied in being restricted to definite clauses with simple
forms of integrity constraints (similar to that in [Goebel
et al., 1986]). This can also be seen as a generalisa-
tion of an ATMS [Reiter and de Kleer, 1987] to be non-
propositional.

The language is that of pure Prolog (i.e., definite
clauses) with special disjoint declarations that specify a
set of disjoint hypotheses with associated probabilities.
There are some restrictions on the forms of the rules and
the probabilistic dependence allowed. The language pre-
sented here is that of [Poole, 1992a] rather than that of
[Poole, 1991c; Poole, 1991b].

The main design considerations were to make a lan-
guage the simplest extension to pure Prolog that also
included probabilities (not just numbers associated with
rules, but numbers that follow the laws of probability,
and so can be consistently interpreted as probabilities
[Poole, 1992a]). We are also assuming very strong in-
dependence assumptions; this is not intended to be a
temporary restriction on the language that we want to
eventually remove, but as a feature. We can repre-
sent any probabilistic information using only indepen-
dent hypotheses [Poole, 1992a]; if there is any depen-
dence amongst hypothéses, we invent a new hypothesis
to explain that dependency.

2.1 The language

Our language uses the Prolog conventions, and has the
same definitions of variables, terms and atomic symbols.

Definition 2.1 A definite clause is of the form: a.
or a «— ay A---Aa,. where a and each a; are atomic
symbols.

Definition 2.2 A disjoint declaration is of the form

hn : pal).

where the h; are atoms, and the p; are real numbers
0 < p; < 1 such that p; + .-+ p, = 1. Any variable
appearing in one h; must appear in all of the h; (i.e., the
h; share the same variables). The h; will be referred to
as hypotheses.

Definition 2.3 A probabilistic Horn abduction
theory (which will be referred to as a “theory”) is a col-
lection of definite clauses and disjoint declarations such
that if a ground atom h is an instance of a hypothesis
in one disjoint declaration, then it is not an instance of
another hypothesis in any of the disjoint declarations.

disjoint([hy : p1,- -,

Given theory T', we define

Fp the facts, is the set of definite clauses in T together
with the clauses of the form

false «— h; A h;

where h; and h; both appear in the same disjoint
declaration in T, and ¢ # j. Let Fi be the set of
ground instances of elements of Fir.

Hr to be the set of hypotheses, the set of h; such that
h; appears in a disjoint declaration in T. Let Hf
be the set of ground instances of elements of Hyp.

Pr is a function Hf +— [0,1]. Pr(h}) = p; where h} is a
ground instance of hypothesis h;, and h; : p; isin a
disjoint declaration in 7'

Where T is understood from context, we omit the sub-
script.

Definition 2.4 [Poole et al,, 1987; Poole, 1987] If g is
a closed formula, an explanation of g from (F, H) is a
set D of elements of H’ such that

e FUD =g and
e FFUD I} false.

The first condition says that D is a sufficient cause for
g, and the second says that D is possible.

Definition 2.5 A minimal explanation of g is an ex-
planation of g such that no strict subset is an explanation
of g.

2.2 Assumptions about the rule base

Probabilistic Horn abduction also contains some as-
sumptions about the rule base. It can be argued that
these assumptions are natural, and do not really restrict
what can be represented [Poole, 1992a). Here we list
these assumptions, and use them in order to show how
the algorithms work.

The first assumption we make is about the relatlonslup
between hypotheses and rules:

Assumption 2.6 There are no rules with head unifying
with a member of H.

Instead of having a rule implying a hypothesis, we
invent a new atom, make the hypothesis imply this atom,
and all of the rules imply this atom, and use this atom
instead of the hypothesis.

531

Assumption 2.7 (acyclicity) If F’ is the set of ground
instances of elements of F', then it is possible to assign
a natural number to every ground atom such that for
every rule in F' the atoms in the body of the rule are
strictly less than the atom in the head.

This assumption is discussed in [Apt and Bezem,
1990).

Assumption 2.8 The rules in F’ for a ground non-
assumable atom are covering.

That is, if the rules for a in F’ are

a«—Bl
a*——BQ

a «— B,
if a is true, one of the B; is true. Thus Clark’s completion

[Clark, 1978] is valid for every non-assumable. Often we
get around this assumption by adding a rule

a — some_other_reason_for_a

and making “some_other_reason_for_a” a hypothesis

[Poole, 1992a).

Lemma 2.9 [Console et al., 1991; Poole, 1988] Under
assumptions 2.6, 2.7 and 2.8, if ezpl(g,T) is the set of
minimal explanations of ¢ from theory T

g = \/ €

ei€expl(g,T)

Assumption 2.10 The bodies of the rules in F/ for an
atom are mutually exclusive.

Given the above rules for a, this means that
B; A Bj = false

is true in the domain under consideration for each i # j.
We can make this true by adding extra conditions to the
rules to make sure they are disjoint.

Lemma 2.11 Under assumptlions 2.6 and 2.10, mini-
mal ezplanations of atoms or conjunctions of atoms are
mulually inconsistent.

See [Poole, 1992a) for more justification of these as-
sumptions.

2.3 Probabilities

Associated with each possible hypothesis is a prior prob-
ability. We use this prior probability to compute arbi-
trary probabilities. -

The following is a corollary of lemmata 2.9 and 2.11

Lemma 2.12 Under assumptions 2.6, 2.7, 2.8, 2.10
and 2.13, if expl(g,T) is the set of minimal cxplana-
tions of conjunction of atoms g from probabilistic Horn
abduction theory T':

P \/ €5

ei€expl(y,T)

E P(e,’)

ei€expl(y,T)

P(g)

532

Thus to compute the prior probability of any ¢ we sum
the probabilities of the explanations of g.

To compute arbitrary conditional probabilities, we use
the definition of conditional probability:

P(a A B)
P(B)

Thus to find arbitrary conditional probabilities
P(«|B), we find P(8), which is the sum of the explana-
tions of 8, and P{aAB) which can be found by explaining
« from the explanations of 8. Thus arbitrary conditional
probabilities can be computed from summing the prior
probabilities of explanations.

It remains only to compute the prior probability of
an explanation D of g. We assume that logical depen-
dencies impose the only statistical dependencies on the
hypotheses. In particular we assume:

P(alB) =

Assumption 2.13 Ground instances of hypotheses

that are not inconsistent (with F) are probabilistically’

independent. That is, different disjoint declarations de-
fine independent hypotheses.

The hypotheses in a minimal explanation are always
logically independent. The language has been carefully
set up so that the logic does not force any dependencies
amongst the hypotheses. If we could prove that some
hypotheses implied other hypotheses or their negations,
the hypotheses could not be independent. The language
is deliberately designed to be too weak to be able to state
such logical dependencies between hypotheses.

Under assumption 2.13, if {hy,---,h,} are part of a
minimal explanation, then

P(hiA---Ahy) = f[P(h.»)
1=1

To compute the prior of the minimal explanation we mul-
tiply the priors of the hypotheses. The posterior proba-
bility of the explanation is proportional to this.

The following is a corollary of lemmata 2.9 and 2.11

Lemma 2.14 Under assumptions 2.6, 2.7, 2.8, 2.10
and 2.13, if expl(g,T) is the set of all minimal ezpla-
nations of g from theory T':

P(g) = P \/ e

e;€expl(g,T)

> P)

ei€expl(y,T)

I

2.4 An example

In this section we show an example that we use later in
the paper. It is intended to be as simple as possible to
show how the algorithm works.

Suppose we have the rules and hypotheses:

rule((a :- b, h)).
rule((a :- q,e)).
rule((q :— h)).

rule((q :- b,e)).
rule((h :- b, £)).

rule((h :- c, e)).

rule((h :- g, b)).
disjoint([b:0.3,¢:0.71).
disjoint([e:0.6,f:0.3,g:0.1]).

There are four minimal explanations of a, namely
{c,e}, {b,e}, {f,8} and {g,b}.

The priors of the explanations are as follows:
P(cAe)=0.7x0.6=0.42.

Similarly P(bAe) = 0.18, P(fAb) = 0.09 and P(gAb) =
0.03. Thus

P(a) = 0.42+ 0.18+ 0.09 + 0.03 = 0.72

There are two explanations of e A a, namely {c, e} and
{b,e}. Thus P(e A a) = 0.60. Thus the conditional
probability of e given a is P(ela) = 0.6/0.72 = 0.833.

What is important about this example is that all of
the probabilistic calculations reduce to finding the prob-
abilities of explanations.

2.5 Tasks
The following tasks are what we expect to implement:

1. Generate the explanations of some goal (conjunction
of atoms), in order.

2. Determine the prior probability of some goal. This
is implemented by enumerating the explanations of
the goal.

3. Determine the posterior probabilities of the expla-
nations of a goal (i.e., the probabilities of the expla-
nations given the goal).

4. Determine the conditional probability of one for-
mula given another. That is, determining P(«|3)
for any « and 8.

All of these will be implemented by enumerating the
explanations of a goal, and estimating the probability
mass in the explanations that have not been enumer-
ated. It is this problem that we consider for the next few
sections, and then return to the problem of the tasks we
want to compute.

3 A top-down proof procedure

In this section we show how to carry out a best-first
search of the explanations. In order to do this we build
a notion of a partial proof that we can add to a priority
queue, and restart when necessary.

3.1 SLD-BF resolution

In this section we outline an implementation based on
logic programming technology and a.branch and bound
search.

The implementation keeps a priority queue of sets
of hypotheses that could be extended into explanations
(“partial explanations”). At any time the set of all the
explanations is the set of already generated explanations,
plus those explanations that can be generated from the
partial explanations in the priority queue.

Q= {{s o, %
=1}
repeat
choose and remove best (g — C, D) from Q;
if C = true
then if good(D) then II := I U {D} endif
else Let C =aA R
for each rule(h « B) where mgu(a,h) =6
Q:=QuU{{(g— BAR,D)0};
if e € H and good({a} U D)
then Q@ := QU {{g — R, {a}U D)}
endif
endif
until Q@ = {}

where good(D) = (Vd1,d2 € D An € NG 3¢ (di,ds2) = n¢)

A(Bm€ll,3¢ D C 7¢)

Figure 1: SLD-BF Resolution to find explanations of ¢
in order.

Definition 3.1 a partial explanation is a structure

where g is an atom (or conjunction of atoms), C is a
conjunction of atoms and D is a set of hypotheses.

Figure 1 gives an algorithm for finding explanations of
¢ in order of probability (most likely first). At each step
we choose an element

(9 < C,D)

of the priority queue @) with maximum prior probability
of D.

We have an explanation when C is the empty conjunc-
tion (represented here as true). In this case D is added
to the set II of already generated explanations.

Otherwise, suppose C is conjunction a A R.

There are two operations that can be carried out. The
first is a form of SLD resolution {Lloyd, 1987], where for
each rule

he—biA---Ab,

in F, such that h and @ have most general unifier ¢, we
generate the partial explanation

(g—byA---AbyAR,D)O

and add it to the priority queue.
The second operation is used when a € H. In this
case we produce the partial explanation

(9 = R,{a}u D)

and add it to Q. We only do this if {a} U D is consistent,
and is not subsumed by another explanation of ¢. Here
we assume the set NG of pairs of hypotheses that ap-
pear in the same disjoint declaration (corresponding to
nogoods in an ATMS [Reiter and de Kleer, 1987]). Un-
like in an ATMS this set can be built at compile time
from the disjoint declarations.

This procedure will find the explanations in order of
likelihood. Its correctness is based on the meaning of a
partial explanation

533

Definition 3.2 A partial ezplanation (g — C,D) ts
valid with respect to (F, H) if

FEDAC=g

Lemma 3.3 Every partial explanation in the queue Q
is valid with respect to (F, H).

Proof: This is proven by induction on the
number of times through the loop.
It is trivially true initially as ¢ = ¢ for any q.

There are two cases where elements are added
to Q. In the first case (the “rule” case) we know

FEDARAa=g
by the inductive assumption, and so
FE(DARAa= g)f
We also know
FE(B=h)
As af = h, by a simple resolution step we have

Fl=(DARAB = g)b.

The other case is when @ € H. By the induction
step

FEDA(@AR) =g

and so
FE(DANa)AR=g

If D only contains elements of H and a is an el-
ement of H then {a}UD only contains elements
of H. O

It is now trivial to show the following:

Corollary 3.4 Every element of Il in figure 1 is an ex-
planation of q.

Although the correctness of the algorithm does not
depend on which element of the queue we choose at any
time, the efficiency does. We choose the best partial ex-
planation based on the following ordering of partial ex-
planations. Partial explanation (g3 «— Cy, D;) is better
than (gg — C2,D2) if P(Dl) > P(Dz) It is simple to
show that “better than” is a partial ordering. When we
choose a “best” partial explanation we choose a minimal
element of the partial ordering; where there are a number
of minimal partial explanations, we can choose any one.
When we follow this definition of “best”, we enumerate
the minimal explanalions of ¢ in order of probability.

3.2 Owur example

In this section we show how the simple example in Sec-
tion 2.4 is handled by the best-first proof process.

The following is the sequence of values of) each time
through the loop (where there are a number of mini-
mal explanations, we choose the element that was added

534

b/\e/\e,{}) (a— h,{b})}

},(a«—c/\e/\e,{}),
(a—gAbAe, 1), (a—bAene,{}),(a—h ()}
{la=cnene{}),(a—gnbre}),
(a—=brene{}),(a—fAe{b}),(a—h{b})}
{la—gAbdbAe{}),(a—bAene {}),{a —ene{c}),
(a—fne{b}),(a—h{b})}
{{a—=bAeAe {}),{a—eAce, {c}),(aé—f/\e {}h,

{a — h,{b}),)(a4—b/\c,{g}

))i {a—fAe b)),
(@ —h,{b}),
{{a —e,{e,ch),

{
a—fAe{b}),
(a — N, {b}),{a —bAe, {g})
{(a —true, {e,c}), (@ — e Ae, b)), (@ — f Ae, {B)),
(a h,{b}),{a —bAe {g})}

Thus the first, and most likely explanation is {e, c}.

{{a —eAe, {b}),{a « fAe{b}),(a—h,{b}),
(a—bAe{g

3
(o —fAe{b}),(a—h{b}),(a—e{eb}),

{(a'=bAe {gh)}
{(a<—h,{b}),(a(—e,{e,b}),(a(—-b/\e,{g}),
(a""e’{fabn}
{{a=bAf{b}),(a—cAe{b}),(a—gAbd{b}),
(@ —c,{e,b)), (@ —bAe, {g}}, (a e {£,b})]
{{a = £,{8}),(d = cAe, (b)), (@ = g A b, {b}),
(a«-—e,{e,b}) a—bAe, {g}) (a e, {f,b})}
{{a —cAe, {b}), (af—g/\b {b}),(a«—e,{e,b Y,

(a = bne,{g}), (@ — true, {£,0}), (a = e, {£,0})}

Here the algorithm effectively prunes the top partial
explanation as (¢, b) forms a nogood.

{{a =gAb,{b}),{a e, {e,b}),(a—bAe,{g}},
(a —true, {f,b}),{a e, {f,0})}

{(ae—e,{e,b}),(a(—b/\e,{g}),<a<—true,{f,b}),
(@ —e,{f,0}),{a —b,{g,b})}}

2

{{a —true, {e,8]), (a — b Ac, {g}), (a = true, {,8}),

(@ — e, {f,0}),{a — b {g,b})}

We have now found the second most likely explana-
tion, namely {e, b}.

fla b Ae {g)),(a —true, 1, 8), (a — e, (7,5},
(a—1b,{g,0})}

{(a — true, {f’ b})) (a —e,{f, b})) (a —e, {9, b})’
(a«b{g,0})}

We have thus found the third explanation {f,b}.

{<a A e,{f,b}),(a ‘—e,{g,b}),(a —b, {g,b})}
{(a —e,{g,b}),{a ~b,{g,0})}

{{a = b,{g,5})}

{{a —true,{g,b})}

The fourth explanation is {g,b}. There are no more
partial explanations and the process stops.

4 Discussion

4.1 Probabilities in the queue

We would like to give an estimate for P(g) after having
generated only a few of the most likely explanations of g,
and get some estimate of our error. This problem reduces
to estimating the probability of partial explanations in
the queue.

If (g — C, D) is in the priority queue, then it can pos-
sibly be used to generate explanations Dy, - -+, D,. Each
D; will be of the form DU D}. We can place a bound on
the probability mass of all of the D;, by

P(DyV---V Dy) P(DA(DLV

= VD))
< P(D)

Given this upper bound, we can determine an upper
bound for P(g), where {e1,--+,e,} is the set of all min-
imal explanations of g:

P(g) = P(exVeaV---Ven)
P(e1) + P(e2) + - -+ P(en)

(> P(ei)) + (> P(ej)\
e; found e; to be generated)

We can easily compute the first of these sums, and can
put upper and lower bounds on the second. This means
that we can put a bound on the range of probabilities of
a goal based on finding just some of the explanations of
the goal. Suppose we have goal g, and we have generated
explanations II. Let

Pn=) P(D)

Dell

i

Py = P(D)
D:{g—C,D)eQ

where @ is the priority queue.
We then have

Pn < P(g9) < Pn+ Pq

As the computation progresses, the probability mass
in the queue Pg approaches zero! and we get a better
refinement on the value of P(g). This thus forms the
basis of an “anytime” algorithm for Bayesian networks.

4.2 Conditional Probabilities

We can also use the above procedure to compute condi-
tional probabilities. Suppose we are trying to compute
the conditional probability P(«|B). This can be com-
puted from the definition:

P(a]g) = 2&AB)

P(B)

We compute the conditional probabilities by enumer-
ating the minimal explanations of A and . Note that
the minimal explanations of o A § are explanations (not

!Note that the estimate given above does not always de-
crease. It is possible that the error estimate increases. [Poole,
1992b] considers cases where convergence can be guaranteed.

necessarily minimal) of 3. We can compute the explana-
tions of @ A B, by trying to explain o from the explana-
tions of 3. The above procedure can be easily adapted
for this task, by making the task to explain 8 A «, and
making sure we prove 3 before we prove a, so that we
can collect the explanations of 3 as a we generate them.
Let PP be the sum of the probabilities of the explana-
tions of @ enumerated, and let P**? be the sum of the
explanations of a A 8 generated.

Thus given our estimates of P(a A #) and P(8) we
have 5 np

P« PN 4 Py

The lower bound is the case where all of the partial de-
scriptions in the queue go towards worlds implying g,
but none of these also lead to a. The upper bound is the
case where all of the elements of the queue go towards
implying o, from the explanations already generated for

4.3 Consistency and subsumption checking

One problem that needs to be considered is the prob-
lem of what happens when there are free variables in
the hypotheses generated. When we generate the hy-
potheses, there may be some instances of the hypotheses
that are inconsistent, and some that are consistent. We
know that every instance is inconsistent if the subgoal is
subsumed by a nogood. This can be determined by sub-
stituting constants for the variables in the the subgoal,
and finding if a subset unifies with a nogood.

We cannot prune hypotheses because an instance is in-
consistent. However, when computation progresses, we
may substitute a value for a variable that makes the par-
tial explanation inconsistent. This problem is similar to
the problem of delaying negation-as-failure derivations
[Naish, 1986], and of delaying consistency checking in
Theorist [Poole, 1991a]. We would like to notice such
inconsistencies as soon as possible. In the algorithm of
Figure 1 we check for inconsistency each time a par-
tial explanation is taken off the queue. There are cases
where we do not have to check this explicitly, for exam-
ple when we have done a resolution step that did not
assign a variable. There is a trade-off between checking
consistency and allowing some inconsistent hypotheses
on the queue?. This trade-off is beyond the scope of this
paper.

Note that the assumptions used in building the system
imply that there can be no free variables in any explana-
tion of a ground goal (otherwise we have infinitely many
disjoint explanations with bounded probability). Thus
delaying subgoals eventually grounds all variables.

4.4 TIterative deepening

In many search techniques we often get much better
space complexity and asymptotically the same time com-
plexity by using an iterative deepening version of a
search procedure [Korf, 1985]. An iterative deepening
version of the best-first search procedure is exactly the

2We have to check the consistency at some time. This
could be as late as just before the explanation is added to II.

535

same as the iterative deepening version of A* with the
heuristic function of zero [Korf, 1985]. The algorithm of
procedure 1 is given at a level of abstraction which docs
not preclude iterative deepening.

For our experimental implementations, we have used
an interesting variant of iterative deepening. Our queue
is only a “virtual queue” and we only physically store
partial explanations with probability greater than some
threshold. We remember the mass of the whole queue,
including the values we have chosen not to store. When
the queue is empty, we decrease the threshold. We can
estimate the threshold that we need for some given accu-
racy. This speeds up the computation and requires less
space.

4.5 Recomputing subgoals

One of the problems with the above procedure is that
it recomputes explanations for the same subgoal. If s is
queried as a subgoal many times then we keep finding
the same explanations for s. This has more to do with
the notion of SLD resolution used than with the use of
branch and bound search.)

We are currently experimenting with a top-down pro-
cedure where we remember computation that we have
computed, forming “lemmata”. This is similar to the use
of memo functions [Sterling and Shapiro, 1886} or Earley
deduction [Pereira and Shieber, 1987] in logic program-
ming, but we have to be very careful with the interac-
tion between making lemmata and the branch and bound
search, particularly as there may be multiple answers to
any query, and just because we ask a query does not
mecan we want to solve it (we may only want to bound
the probability of the answer).

4.6 Bounding the priority queue

Another problem with the above procedure that is not
solved by lemmatisation is that the bound on the prior-
ity queue can become quite large (i.e., greater than one).
Some bottom-up procedures [Poole, 1992b], can have an
accurate estimate of the probability mass of the queue
(i.e., an accurate bound on how much probability mass
could be on the queue based on the information at hand).
See [Poole, 1992b] for a description of a bottom-up pro-
cedure that can be compared to the top-down procedure
in this paper. In [Poole, 1992b] an average case analysis
is given on the bottom-up procedure; while this is not
an accurate estimate for the top-down procedure, the
case where the bottom-up procedure is efficient [Poole,
1992b] is the same case where the top-down procedure
works well; that is where there are normality conditions
that dominate the probability of each hypothesis (i.e.,
where all of the probabilities are near one or near zero).

5 Comparison with other systems

There are many other proposals for logic-based abduc-
tion schemes (e.g., [Pople, 1973; Cox and Pietrzykowski,
1987; Goebel et al., 1986; Poole, 1987]). These, however,
consider that we either find an arbitrary explanation or
find all explanations. In practice there are prohibitively
many of these. It is also not clear what to do with all
of the explanations; there are too many to give to a

536

user, and the costs of determining which of the expla-
nations is the “real” explanation (by doing tests [Sattar
and Goebel, 1991]) is usually not outweighed by the ad-
vantages of finding the real explanation. This is why
it is important to take into account probabilities. We
then have a principled reason for ignoring many expla-
nations. Probabilities are also the right tool to use when
we really are unsure as to whether something is true or
not. For evidential reasoning tasks (e.g., diagnosis and
recognition) it is not up to us to decide whether some
hypothesis is true or not; all we have is probabilities
and evidence to work out what is most likely true. Simi-
lar considerations motivated the addition of probabilities
to co]nsistency—based diagnosis {de Kleer and Williams,
1989].

Perhaps the closest work to that presented here is that
of Stickel [Stickel, 1988]. His is an iterative deepening
search for the lowest cost explanation. He does not con-
sider probabilities.

6 Using existing logic programming
technology

In this section we show how the branch and bound search
can be compiled into Prolog. The basic idea is that when
we are choosing a partial explanation to explore, we can
choose any of those with maximum probability. If we
choose the last one when there is more than one, we
carry out a depth-first search much like normal Prolog,
except when making assumptions. We only add to the
priority queue when making assumptions, and let Prolog
do the searching when we are not.

6.1 Remaining subgoals

Consider what subgoals remain to be solved when we are
trying to solve a goal. Consider the clause:

he—byANba A+ Abp.

Suppose R is the conjunction of subgoals that remain
to be solved after & in the proof. If we are using the
leftmost reduction of subgoals, then the conjunction of
subgoals remaining to be solved after subgoal b; is

bigt A---Abn AR

The total information of the proof is contained in the
partial explanation at the point we are in the proof, i.e.,
in the remaining subgoals, current hypotheses and the
associated answer. The idea we exploit is to make this
set of subgoals explicit by adding an extra argument to
each atomic symbol that contains all of the remaining
subgoals.

6.2 Saving partial proofs

There is enough information within each subgoal to
prove the top level goal it was created to solve. When we
have a hypothesis that needs to be assumed, the remain-
ing subgoals and the current hypotheses form a partial
explanation which we save on the queue. We then fail
the current subgoal and look for another solution. If
there are no solutions found (i.e., the top level computa-
tion fails), we can choose a saved subgoal (according to
the order given in section 3.1), and continue the search.

Suppose in our proof we select a possible hypothesis
h of cost P({h}) with U being the conjunction of goals
remaining to be solved, and T the set of currently as-
sumed hypotheses with cost P(T). We only want to
consider this as a possible contender for the best solu-
tion if P({h} UT) is the minimal cost of all proofs being
considered. The minimal cost proofs will be other proofs
of cost P(T"). These can be found by failing the current
subgoal. Before we do this we need to add U, with hy-
potheses {h} UT to the priority queue. When the proof
fails we know there is no proof with the current set of
hypotheses; we remove the partial proof with minimal
cost from the priority queue, and continue this proof.

We do a branch and bound search over the partial
explanations, but when the priorities are equal, we use
Prolog’s search to prefer the last added. The overhead on
the resolution steps is low; we only have to do a couple
more simple unifications (a free variable with a term).
The main overhead occurs when we reach a hypothesis.
Here we store the hypotheses and remaining goals on
a priority queue and continue or search by failing the
current goal. This is quick (if we implement the priority
queue efficiently); the overhead needed to find all proofs
is minimal.

Appendix A gives code necessary to run the search
procedure.

7 Conclusion

This paper has considered a logic programming approach
that uses a mix between depth-first and branch-and-
bound search strategies for abduction where we want
to consider probabilities, and only want to generate the
most likely explanations. The underlying language is

. a superset of pure Prolog (without negation-as-failure),

and the overhead of executing pure Prolog programs is
small.

A Prolog interpreter

This appendix gives a brief overview of a mecta-
interpreter. Hopefully it is enough to be able to build
a system. Our implementation contains more bells and
whistles, but the core of it is here.

A.1 Prove

prove(G, To, T1, Co, C1,U)

means that G can be proven with current assumptions
To, resulting in assumptions T3, where C; is the proba-
bility of T3, and U 1is the set of remaining subgoals.

The first rule defining prove is a special purpose rule
for the case where we have found an explanation; this
reports on the answer found.

prove(ans(4),T,T,C,C,_) := !,
ans(A,T,C).

The remaining rules are the real definition, that follow

a normal pattern of Prolog meta-interpreters [Sterling
and Shapiro, 1986).

prove(true,T,T,C,C,_) :~ }.
prove((A,B),T0,T2,C0,C2,U) - |,

prove(4,T0,T1,C0,C1,(B,U)),
prove(B,T1,T2,C1,C2,U).
prove(H,T,T,C,C,) :-
hypothesis(H,PH),
membexr (H,T),!.
prove(H,T, [H|T],C,C1,U) :-
hypothesis(H,PH),
\+ ((member(H1,T), makeground((H,H1)),
nogood (H,H1))),
C1 is C*PH,
add_to_PQ(process([HIT],C1,U)),
fail.
prove(G,T0,T1,C0,C1,U) :-
rul(G,B),
prove(B,T0,T1,C0,C1,U).

A.2 Rule and disjoint declarations

We specify the rules of our theory using the declaration
rule(R) where R is the form of a Prolog rule. This asserts
the rule produced.

rule((H :- B)) := 1!,
assert(rul(H,B)).
rule(H) :-

assert(rul(H,true)).

The disjoint declaration forms nogoods and declares
probabilities of hypotheses.

:- op(50O, xfx, :).

disjoint([]).

disjoint ([H:P|R]) :-
assert(hypothesis(H,P)),
make_disjoint(H,R),
disjoint(R).

make_disjoint(_,[1).

make_disjoint(H,[H2 : _
assert(nogood(H,H2)),
assert(nogood(H2,H)),
make_disjoint(H,R).

| R1) :-

A.3 Explaining

To find an explanation for a subgoal G we execute
explain(G). This creates a list of solved explanations
and the probability mass found (in “done”), and creates
an empty priority queue.

explain(G) :-—

assert(done([],0)),

initQ,

ex((G,ans(6)),[1,1),!.

ez(G, D, C) tries to prove G with assumptions D such

that probability of D is C. If G’ cannot be proven, a par-
tial proof is taken from the priority queue and restarted.
This means that ez(G, D, C) succeeds if there is some
proof that succeeds.

ex(G,D,C) :-
prove(G,D,_,C,_,true).
ex(_:—:—) Hhe
remove_from_PQ(process(D,C,U)),!,
ex(U,D,C).

537

We can report the explanations found, the estimates
of the prior probability of the hypothesis, etc, by defin-
ing ans(G, D, C), which means that we have found an
explanation D of G with probability C.

ans(G,[1,_) :-
writeln([G,’ is a theorem.’]),!.
ans(G,D,C) :-
allgood(D),
gmass(QM),
retract(done(Done,DC)),
DC1 is DC+C,
assert(done([expl(G,D,C)|Donel ,DC1)),
TC is DC1 + QM,
writeln([’Probability of °’,G,
) = [’,DCi,’,’,TC,’] 1),
Pri is C / TC,
Pr2 is C / DCi,
writeln([’Explanation: ’,D]),
writeln([’Prior = 7,Cl),
writeln([’Posterior = [’,Pr1,’,’,Pr2,%]’]).
more is a way to ask for more answers. It will take
the top priority partial proof and continue with it.

more :- ex(fail,_,_).

A.4 Auxiliary relations used

The following relations were also used. They can be
divided into those for managing the priority queue, and
those for managing the nogoods.

We assume that there is a global priority queue into
which one can put formulae with an associated cost and
from which one can extract the least cost formulae. We
assume that the priority queue persists over failure of
subgoals. It can thus be implemented by asserting into
a Prolog database, but cannot be implemented by carry-
ing it around as an extra argument in a meta-interpreter
[Sterling and Shapiro, 1986], for example. We would like
both insertion and removal from the priority queue to be
carried out in logn time where n is the number of ele-
ments of the priority queue. Thus we cannot implement
it by having the queue asserted into a Prolog database
if the asserting and retracting takes time proportional
to the size of the objects asserted or retracted (which it
seems to in the implementations we have experimented
with).

Four operations are defined:

init@
initialises the queue to be the empty queue, with zero
queue mass.

add_to_PQ(process(D,C,U))

adds assumption set D, with probability C' and remain-
ing subgoals U to the priority queue. Adds C to the
queue mass.

remove_from_PQ(process(D,C,U))

if the priority queue is not empty, extracts the ele-
ment with highest probability (highest value of C) from
the priority queue and reduces the queue mass by C.
remove_from_PQ fails if the priority queue is empty.

gmass(M)

538

returns the sum of the probabilities of elements of the
queue.
We assume the relation for handling nogoods:

allgood(L)

fails if L has a subset that has been declared nogood.

Acknowledgements

Thanks to Andrew Csinger, Keiji Kanazawa and Michael
Horsch for valuable comments on this paper. This
rescarch was supported under NSERC grant OG-
P0O044121, and under Project B5 of the Institute for
Robotics and Intelligent Systems.

References

[Apt and Bezem, 1990] K. R. Apt and M. Bezem.
Acyclic programs (extended abstract). In Logic Pro-
gramming: Proceedings of the Seventh International
Conference, pages 617-633. MIT Press, 1990.

[Clark, 1978] K. L. Clark. Negation as failure. In H. Gal-
laire and J. Minker, editors, Logic and Databases,
pages 293-322. Plenum Press, New York, 1978.

[Console et al., 1991] L. Console, D. Theseider Dupre,
and P. Torasso. On the relationship between abduc-
tion and deduction. Journal of Logic and Computa-
tion, 1991.

[Cox and Pietrzykowski, 1987] P. T. Cox
and T. Pietrzykowski. General diagnosis by abduc-
tive inference. Technical Report CS8701, Computer
Science, Technical University of Nove Scotia, Halifax,
April 1987.

[de Kleer and Williams, 1989] J. de Kleer and B. C.
Williams. Diagnosis with behavioral modes. In Proc.
11th International Joint Conf. on Artificial Intelli-
gence, pages 1324-1330, Detroit, August 1989.

[Goebel et al., 1986] R. Goebel, K. Furukawa, and
D. Poole. Using definite clauses and integrity con-
straints as the basis for a theory formation approach
to diagnostic reasoning. In E. Shapiro, editor, Proc.
Third International Conference on Logic Program-

ming, pages 211-222, London, July 1986.

[Korf, 1985] K. E. Korf. Depth-first iterative deepening:
an optimal admissable tree search. Artificial Intelli-
gence, 27(1):97-109, September 1985.

[Lloyd, 1987] J. W. Lloyd. Foundations of Logic Pro-
gramming. Symbolic Computation Series. Springer-
Verlag, Berlin, second edition, 1987.

[Naish, 1986] L. Naish. Negation and Conirol in Pro-

log. Lecture Notes in Computer Science 238. Springer

Verlag, 1986.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, San Mateo, CA, 1988.

[Pereira and Shieber, 1987] F. C. N. Pereira and S. M.
Shieber. Prolog and Natural-Language Analysis. Cen-
ter for the Study of Language and Information, 1987.

[Poole et al., 1987] D. Poole, R. Goebel, and R. Aleliu-
nas. Theorist: A logical reasoning system for defaults
and diagnosis. In N. Cercone and G. McCalla, editors,
The Knowledge Frontier: Essays in the Representa-
tion of Knowledge, pages 331-352. Springer-Verlag,
New York, NY, 1987.

[Poole, 1987] D. Poole. A logical framework for default
reasoning. Artificial Intelligence, 36(1):27-47, 1987.

[Poole, 1988] D. Poole. Representing knowledge for
logic-based diagnosis. In International Conference
on Fifth Generation Compuling Systems, pages 1282—
1290, Tokyo, Japan, November 1988.

[Poole, 1991a} D. Poole. Compiling a default reasoning
system into Prolog. New Generation Computing Jour-

nal, 9(1):3-38, 1991.

[Poole, 1991b] D. Poole. Representing Bayesian net-
works within probabilistic Horn abduction. In Proc.
Seventh Conf. on Uncertainty in Artificial Intelli-
gence, pages 271-278, Los Angeles, July 1991.

[Poole, 1991c] D. Poole. Representing diagnostic knowl-
edge for probabilistic Horn abduction. In Proc. 12(h
International Joint Conf. on Artificial Intelligence,
pages 1129-1135, Sydney, August 1991.

[Poole, 1992a] D. Poole. Probabilistic Horn abduction
and Bayesian networks. Technical Report 92-2, De-
partment of Computer Science, University of British
Columbia, January 1992.

[Poole, 1992b] D. Poole. Search for computing posterior
probabilities in Bayesian networks. Proc. Eighth Conf.
on Uncertainty in Artificial Intelligence, submitted,
Stanford, California, July 1992.

[Pople, 1973] H. E. Pople, Jr. On the mechanization
of abductive logic. In Proc. 3rd International Joint
Conf. on Artificial Intelligence, pages 147-152, Stan-
ford, August 1973.

[Reiter and de Kleer, 1987] R. Reiter and J. de Kleer.
Foundations of assumption-based truth maintenance
systems: preliminary report. In Proc. 6th National
Conference on Artificial Intelligence, pages 183-188,
Seattle, July 1987.

[Sattar and Goebel, 1991] A. Sattar and R. Goebel. Us-
ing crucial literals to select better theories. Computa-
tional Intelligence, 7(1):11-22, February 1991.

[Sterling and Shapiro, 1986} L. Sterling and E. Shapiro.
The Art of Prolog. MIT Press, Cambridge, MA, 1986.

[Stickel, 1988] M. E. Stickel. A prolog-like inference sys-
tem for computing minimum-cost abductive expla-
nations in natural language interpretations. Techni-
cal Note 451, SRI International, Menlo Park, CA,
September 1988.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

539

Abduction in Logic Programming with Equality

P.T. Cox, E. Knill, T. Pietrzykowski

Technical University of Nova Scotia, School of Computer Science
P.O. Box 1000, Halifax, Nova Scotia
Canada B3J 2X4

Abstract

Equality can be added to logic programming by using
surface deduction. Surface deduction yields interpreta-
tions of unification failures in terms of residual hypothe-
ses needed for unification to succeed. It can therefore
be used for abductive reasoning with equality. In sur-
face deduction the input clauses are first transformed to
a flat form (involving no nested terms) and symmetrized
(if necessary). They are then manipulated by binary
resolution, a restricted version of factoring and compres-
sion. The theoretical properties of surface deduction,
including refutation completeness and weak deductive
completeness properties (relative to equality), are estab-
lished in [Cox et al. 1991]. In this paper we show that
these properties imply that an enhancement of surface
deduction will yield all parsimonious hypotheses when
used as an abductive inference engine. The character-
ization of equational implication for goal clauses given
in [Cox et al. 1991] is shown to yield a uniquely defined
equationally equivalent residuum for every goal clause.
The residuum naturally represents the corresponding ab-
ductive hypothesis. An example illustrating the use of
surface deduction in abductive reasoning is presented.

1 Introduction

In abductive reasoning, the task is to explain a
given observation by introducing appropriate hypotheses
([Cox and Pietrzykowski 1987], [Goebel 1990]). Most.
presentations of abduction do not include reasoning with
equality, nor do they allow the introduction of equal-
ity assumptions to explain an observation. A notable
exception is E. Charniak’s work on motivation analy-
sis [Charniak 1988]. Charniak allows the introduction of
certain restricted equality assumptions to determine mo-
tivations for observed actions. He shows that the intro-
duction of such equality assumptions is required to suc-
cessfully abduce motivations. In this paper we consider
the problem of abductive reasoning with Horn clauses in
the presence of equality. We show that surface deduc-
tion has the necessary properties for use in an abductive

inference system provided that the input theory contains
the function substitutivity axioms.

In the presence of equality, an abduction problem
consists of a theory 7 and a formula O (the observation).
An explanation of (O, T) is a formula E consistent with
T such that E together with 7 equationally implies O.
We will assume that O and F are existentially quantified
conjunctions of facts and that 7 is a Horn clause theory.

One way to obtain an explanation E, given an obser-
vation O and a theory 7, is to deduce —=F from 7 and
=0. Since explanations with less irrelevant information
are preferred (the parsimony principle), it is sufficient to
deduce a clause —~E’ such that —E’ implies —=F. Intu-
itively, E’ is at least as good an explanation as E (see
Section 4). It follows that a deduction system adequate
for abductive reasoning should satisfy a weak deductive
completeness: If the theory 7 implies a non-tautological
clause = F, then we must be able to deduce a clause ~F’
from 7 such that —FE’ implies =E. In the absence of
equality, SLD-resolution (see [Lloyd 1984]) satisfies this
condition.

The problem of introducing equality to Horn clause
logic has been well-studied, see [Hélldobler 1989] for an
excellent overview. The simplest approach to this prob-
lem involves adding the equality axioms (which are Horn
clauses) to the set of input clauses. However, unre-
stricted use of these axioms results in inefficiency. Fur-
thermore, this approach does not yield any insights into
the degree to which the equality axioms are needed.
Paramodulation and other term rewriting systems do
not explicitly introduce new equality assumptions into
derivations and therefore do not satisfy the weak deduc-
tive completeness condition. Other approaches, such as
the ones in [van Emden and Lloyd 1984] and extended
in [Hoddinott and Elcock 1986] using the homogeneous
form of clauses, require restricting the form of the input
theory. Here, we use the results of [Cox et al. 1991] to
show that if equality is introduced to Horn clause logic
via surface deduction with the function substitutivity ax-
ioms, then all preferred explanations for an abduction
problem can be obtained. The need for axioms of equal-
ity other than function substitutivity is thus eliminated.

540

In surface deduction, a set of input clauses is first
transformed to a flat form and symmetrized. The deduc-
tion then proceeds using linear input resolution for Horn
clauses (see {Lloyd 1984]) together with a limited use of
factoring and a new rule called compression. The addi-
tional deduction rules are equivalent to those restricted
uses of the reflexivity axiom (z = 2 =) which preserve
flatness. They are required only at the end of a deduc-
tion.

A clause is flat if it has no nested functional expres-
sions, and every variable which appears immediately to
the right of an equality symbol (=) appears only in such
positions. A stronger version of flatness requires that in
addition the clause is separated. This means that every
variable appears at most once in any given literal and has
only one occurrence inside a functional or relational ex-
pression. Symmetrization affects only those clauses with
equalities in their heads (see Section 3).

The idea of using flattening to add equality to the-
orem proving is due to [Brand 1975] and is applied
to logic programming in [Cox and Pietrzykowski 1986]
where surface deduction is defined. IFlattening is
closely related to narrowing. In narrowing the pro-
cess of flattening is implicit in the deduction rules.
The relationship between the two methods is exam-
ined in [Bosco et al. 1988]. Separation of terms is im-
plicit in the transformations to the homogeneous forms
of [Hoddinott and Elcock 1986]. The symmetrization
method used here is similar to the one introduced in
[Chan 1986] and does not increase the number of clauses
in the theory.

In [Cox et al. 1991] it is shown that surface deduction
satisfies a weak deductive completeness provided that the
input clauses are first transformed to separated form. As
an application of this result, equational implication for
goal clauses is found to have a simple syntactic charac-
terization analogous to subsumption.

Once an explanation E is obtained by surface deduc-
tion, in what form should E be presented? For example
if =F (the actual clause deduced) is given by

-r=a,y=by=c,

then -y = b,y = c is equationally equivalent to = F.
Therefore the atom z = a is irrelevant and should be
removed. In Section 4 it is shown that the character-
ization of equational implication for goal clauses given
in [Cox et al. 1991] implies that for every goal clause C
there is a uniquely defined equational residuum RES(C)
which cannot be further reduced without weakening
the corresponding explanation. The notion of equa-
tional residuum is related to that of prime implicates
used in switching theory [Kohavi 1978], truth mainte-
nance systems [Reiter and de Kleer 1987] and diagnoses
[de Kleer et al. 1988]. RES(C) is an equational prime
implicate of a flattening of C.

In Section 2 the terminology is established; in Sec-
tion 3 surface deduction is defined and the completeness
results needed for abductive reasoning are given. In Sec-
tion 4 the formalism of abductive reasoning with surface
deduction is discussed; and finally in Section 5 an exam-
ple is presented of an abductive problem solved by using
surface deduction.

2 Preliminaries

Familiarity with logic programming is assumed (see
e.g. [Lloyd 1984]). As in [Holldobler 1990], let = denote
the equality predicate symbol. The usual equality sym-
bol = is used exclusively for syntactic equality. If L is
an atom and C = {M,,...,M,} is a set of atoms, then
L - C denotes the Horn clause LV -M; V...~ M,. In
this expression, L is the head and C is the body of the
clause. A clause of the form - C is a goal clause. The
atoms of C are the subgoals of - C. A clause of the form
L is a fact. If Cy,...,C, are sets of atoms and C is
the union of the C;, then L:-C,,...,C, means L:-C.
When possible, set notation is omitted for one-element
sets.

If OP is an operation which maps clauses to clauses
and A is a set of clauses, then OP(A) = {OP(C)|C €
A}. Let o be a substitution. If z;0 =t; fori =1,...,n
and zo = z for all other variables, then o is denoted by
{z; — t,...2, — t,}. A substitution o is variable-pure
iff 2o is a variable for every variable z.

The expression ‘most general unifier’ is abbreviated
by ‘mgu’. An equality is an atom of the form s = ¢. Let
£ be the set of equality axioms other than z = z:-. If
A and B are sets of clauses, then A satisfies (or implies)
B iff every model of A is a model of B. A equationally
satisfies (or implies) B iff AUE U {z = z -} satisfies B.
A and B are (equationally) equivalent iff each (equation-
ally) satisfies the other. A is equationally inconsistent iff
A equationally implies the empty clause.

3 Surface Deduction

In surface deduction, a refutation of a set of input clauses
proceeds by first transforming the input clauses to a flat
form and then refuting the result using resolution, fac-
toring and compression. The transformation subsumes
the equality axioms other than reflexivity. The rules of
factoring and compression subsume reflexivity.

Definition. Let C be a clause and ¢ a term. An occur-
rence of ¢ on the left-hand side (right-hand side) of an
equality t = s (s = t) in C is a root (surface) occurrence
of t in C. Every other occurrence of ¢ is an internal oc-
currence of . The term t is a root term of C iff it has
a root occurrence in C. Surface and internal terms are
defined analogously.

Definition. A clause C is flat iff

(i) every atom of C is of the form P(z,...
z = f(zy,...,z,) or z =y, and

1Z0),

(i) no surface variable of C is a root or internal
variable of C.

Definition. Let C be a Horn clause. An elementary
flattening of C is obtained by either

(i) replacing some of the non-surface occurrences
of a non-variable term ¢t by a new variable y and
adding the equality y = ¢ to the body,

or

(ii) replacing some of the surface occurrences of a
root or internal variable z of C by a new variable
y and adding the equality z = y to the body.
An elementary flattening of the set of clauses A is ob-
tained by replacing a clause in A by an elementary {lat-
tening of that clause.

Modifying a clause C by successive elementary flat-
tenings eventually results in a flat clause (a flattening of
C) which cannot be flattened any further (Theorem 2
of [Cox and Pietrzykowski 1986]).

Definition. Let C be a clause. Then FLAT(C) denotes
a (arbitrary but fixed) flattening of C.

For any set of clauses A, FLAT(A) is equationally
equivalent to A. In [Cox et al. 1991] it is shown that for
refutation completeness the transformation FLAT sub-
sumes the substitutivity axioms but not transitivity and
symmetry.

In order to subsume transitivity and symmetry, we
need another transformation.

Definition. Let C be a clause with an equality in its
head. Then C is symmetric iff C is of the form

r=urr=v,s=v,y=uy=t,M

for some terms s and t and set of atoms M, where z, ¥,
u and v do not occur in M, s or t. The set of clauses A
is symmetrized iff every clause C of A with an equality
in its head is symmetric.

Definition. Let C be a Horn clause. If C does not
have an equality in its head or if C is symmetric, then the
symmetrization SYM(C) of C'is C. If C is not symmetric
and of the form s = ¢ :- M, then SYM(C) is given by

T=u-z=v,s=0,y=uy=tM.

Note that if A is a set of Horn clauses, then SYM(A)
is equationally equivalent to A, and if A is flat, then
SYM(A) is flat. In [Cox et al. 1991] it is shown that

541

the transformation SYM subsumes transitivity and sym-
metry. In order to subsume substitutivity, transitivity
and symmetry, the transformations SYM and FLAT are
composed.

Flattening and symmetrization followed by SLD-
resolution using resolution with z = z - as an additional
deduction rule is refutation complete for logic program-
ming with equality. However, weak deductive complete-
ness 1s not satisfied [Cox et al. 1991]. In order to obtain
weak deductive completeness an additional transforma-
tion is required.

Definition. A positive (negative) root occurrence of
the term ¢ in the clause C is a root occurrence in the

head (body) of C.

Definition.
able z iff

The flat clause C is separated in the vari-

(1) every literal of C' has at most one occurrence of
-T,
(i1) C has at most one internal occurrence of z, and

(111) if z has an internal occurrence in C, then z has
a negative root occurrence in C.

The clause C is separated iff C is separated in all its
variables.

If Ais a set of separated flat Horn clauses, then
SYM(A) is separated. Separated clauses can be obtained
from a given flat clause by using the transformation SEP:

Definition. Let C be a flat clause and z a variable.
The clause SEP(C) is the separated flat clause obtained
by applying the following transformation to C: For every
variable « such that C is not separated in z, replace each
internal occurrence of z by a new variable z; and add
the equalities ¢ = y,z; = y,z, = y,... to the body of C
(where y is a new surface variable).

The rules of factoring and compression used in surface
deduction are:

(1) Root factoring. The clause C” is a root factor of C
iff C' is obtained by factoring two equalities of C
with the same root variable.

(11) Surface factoring. The clause C” is a surface factor
of C' iff C’ is obtained by factoring two equalities
of C with the same surface term.

(i) Root compression. The clause C’ is a root compres-
sion of C' iff C" is obtained by removing an equality
z = t from the body of C, where z has only one
occurrence in C.

(iv) Surface compression. The clause C' is a surface
compression of C ifl C' is obtained by removing an
equality z = y from the body of C, where y has
only one occurrence in C.

542

A compression is a root or surface compression. A com-
pression of a clause C is a clause C" obtained from C by
a sequence of applications of compression rules.

The soundness of root and surface factoring and
compression (in the presence of equality) is shown
in [Cox and Pietrzykowski 1986]. Observe that binary
resolution, surface and root factoring and compres-
sion preserve flatness. The relationship between fac-
toring, compression and resolution with the reflexiv-
ity axiom is determined by the following result (proved
implicitly in [Cox and Pietrzykowski 1986] and explic-
itly in [Cox et al. 1991]; see also [Hoddinott and Elcock
1986]):

Theorem 3.1 Let ~C be a flat goal clause. If =C'
is a flat goal clause obtained from =C by a sequence
of binary resolutions with x = x ~, then ~C’ can be
obtained from =~ C by a sequence of root and surface
factorings and compressions.

Definition. Let A be a set of flat Horn clauses. The
flat goal clause C is S-deducible from A iff C can be
obtained from 4 by a sequence of binary resolutions,
surface and root factorings and compressions. Note that
we can assume that the deduction is linear. A is S-
refutable iff the empty clause is S-deducible from A.

To state the weak deductive completeness result for
flat, separated and symmetrized clauses, we need the
transformation defined next.

Definition. Let - C be a flat goal clause. Then :-C
is reduced iff :~C has no surface variables and no two
equalities of :- C have the same right-hand sides. A flat
reduced clause REDU(:- C) is obtained from :-C by
factoring equalities with identical right-hand sides un-
til all right-hand sides are distinct, and by removing
all remaining equalities with surface variables by surface
compression. Note that for every flat goal clause :-C),
REDU(:- C) is equationally equivalent to = C.

Theorem 3.2 [Cox et al. 1991] Let ~C be a goal
clause and A a set of Horn clauses which includes
the function substitutivity azioms. Then A equa-
tionally implies ~C if there is a flat goal clause
= C" such that for some variable-pure substitution o,
~(C"¢ C REDU(FLAT(~C)) and =C' is S-deducible
from SYM(SEP(FLAT(A))).

As an application of this result, the following theorem
is proved in [Cox et al. 1991]:

Theorem 3.3 Let -~ A and - B be goal clauses. Then
- A equationally implies = B iff there is a variable-pure
substitution o such that a compression of FLAT(=~ A)o
is included in REDU(FLAT(- B)).

Definition. Let :-C be a goal clause. An equa-
tional residuum of :=C is a minimal subclause of
REDU(FLAT(:- C)) which is equationally equivalent to
=C.

Every equational residuum of :-C is equationally
equivalent to - C. The fact that every subclause of a
reduced clause is reduced implies that if :- C” is an equa-
tional residuum of :- C, then :- C’is reduced. The next
theorem shows that the equational residuum is unique.

Theorem 3.4 [Cox et al. 1991] Let =~ A’ and =~ B’ be
equational residua of the goal clauses = A and - B re-
spectively. Then = A is equationally equivalent to - B
if = A’ is a variant of - B'.

4 Abduction using Surface De-
duction

An ezistential conjunction of facts is a conjunction of
facts with all its free variables quantified existentially.
The abduction problem for Horn clause logic with equal-
ity can be stated as follows:

Abduction Problem: An abduction problem is a pair
(A, O), where A is a theory of Horn clauses and O (the
observation) is an existential conjunction of facts. An
explanation of the abduction problem (A4,0) is an ex-
istential conjunction of facts F consistent with 4 such
that F and A equationally imply O.

Let =0 and —F denote the disjunctions of the nega-
tions of the constituent facts of O and F respectively.
Since E and A equationally imply O iff =O and A equa-
tionally imply —F, a solution to an abduction problem
can be obtained by deducing a clause C from A and -0,
and negating C' to obtain F.

In general, it is desirable for an explanation E of
an abductive problem (A4, O) to have certain additional
properties (see [Cox and Pietrzykowski 1987]). For ex-
ample, an explanation E should not contain any facts
not required to yield the observation from A (the par-
simony principle). Thus if £ and E’ are explanations
of (A, 0) and E equationally implies F’, E’ is preferred
over E. (Here ‘preferred’ is to be understood as ‘at least
as good as’.)

For abduction, a desirable property of a deduction
system is that for every explanation E of an abductive
problem (A, O), one can obtain an explanation preferred
over E. The weak completeness result of Theorem 3.2
implies that surface deduction with separated clauses
and the function substitutivity axioms has this property.

Theorem 4.1 Let (A,0) be an abductive problem,
where A contains the function substitutivity az-
ioms. Then for every ezplanation E of (A,0),
there is an explanation E' preferred over E such

that —~E' is S-deducible from SYM(SEP(FLAT(A))) U
{SEP(FLAT(-0))}.

Proof. This follows by Theorem 3.2 and the fact that
=0 is a goal clause, so that it does not need to be sym-
metrized. n

Fortunately, it appears that the function substitutiv-
ity axioms are rarely needed in abductive problems when
using surface deduction with separated clauses.

Flattenings of a clause can be viewed as alternate
representations of the clause’s term structure and are
therefore essentially equivalent. Without loss of general-
ity we restrict our attention to explanations E such that
—FE is flat (flat explanations).

If E and E’ are explanations of (A, O) such that F
equationally implies E’ but is not equationally equiva-
lent to E’, then FE’ is strictly preferred over E. Given
an explanation E of (A, O) there are many equationally
equivalent existential conjunctions of facts, all of which
are also explanations of (A4,0). The preference criteria
introduced so far do not distinguish among equationally
equivalent explanations. Using the intuition that a “sim-
pler” explanation should be preferred, we give a stronger
definition of preference:

Definition. Let E and E’ be flat explanations. Then
E’ is strictly preferred over F iff either E equationally
implies £’ but is not equivalent to E’, or I is equation-
ally equivalent to E’ and E’ has fewer atoms.

Given these preference criteria, we have the following
theorem which determines the most preferred flat expla-
nation among equationally equivalent ones:

Theorem 4.2 For any explanation E, if E' is the nega-
tion of the equational residuum of —E, then L' is the
unique most preferred flat ezplanation among flat expla-
nations equationally equivalent to E.

Proof. Let - A be a flat clause equationally equiva-
lent to =E. If = A is not reduced, then REDU(:- A)
has fewer atoms than - A and the corresponding expla-
nation is therefore strictly preferred. Assume that - A
is reduced. If the equational residuum of - A is not
given by - A, then the equational residuum of :- A has
fewer atoms than :- A, so that the corresponding expla-
nation is strictly preferred. The result now follows by the
uniqueness theorem for equational residua, Theorem 3.4.

]

5 An Application

Examples from the domain of story comprehension and
motivation analysis which demonstrate the need for the

543

inclusion of equality in abductive reasoning are given
in [Charniak 1988]. Here we give an example from a
different domain.

Consider the following (imaginary, but realistic) sit-
uation. A researcher X experimentally determines the
value of a quantity associated with a physical object (e.g.
the mass of an isotope of an element) and sends us the
result. We have independently obtained a value for the
same quantity (by theory and/or experiment) and our
value differs from X’s value. We believe our value to
be correct and we would like to explain the discrepancy.
We do not know the exact means by which X’s value
was obtained, but we know what kinds of experimental
apparatus X might have used. One kind of apparatus
(type A) is notorious for a hard-to-control drift in the
settings which results in a systematic bias in the read-
ings. Thus we can explain the discrepancy between our
and X’s values by hypothesizing that X used apparatus
of type A with a systematic bias equal to the difference
between the two values.

The situation is formalized as follows: Let T'A(z)
mean that z is an apparatus of type A. Let Vit(y) be the
true value of quantity y, Vm(z,y) the value of quantity
y measured in experiment z, A(u) the apparatus used in
experiment u and B(z) the systematic bias of apparatus
2. The quantity measured by X is ¢, and the experi-
ment performed by X is given the name e. With these
definitions, our knowledge 7 consists of the clauses

T1: Vi(g) =0:-

T2: Vm(zy,z,) =
TA(A(zy))

T3: z; =042 -

Vi(zs) + B(A(z1) =

where knowledge about other types of apparatus and the-
orems about real numbers other than T3 have been omit-
ted. The observation O is given by

O: Vm(e,q) = 2 :-

The first task is to obtain a flattening of 7 and the
negation of the observation:
fT1: T, =0 -2, = Vi(z,y),z, = q.
fT2: Tty = x5 + 26~ TA(z3), 2¢ = B(zs), 24 =
Vm(zy,z,), x5 = Vi(zy), 25 = A(zy).
fT3: Ty =xy+ @ -z, =0.

fO: =z =2, 1 = Vm(z,,23), 2, =€, 23 = q.

The clauses fT1 and fO are separated. Separated
clauses for fT2 and fT3 are given by

sfT2: x4 = @5 + 2g - TA(23), 26 = B(z7), 23 = 4,
T = 24, T4 = Vm(zy, zy), o5 = Vi(zy,), 7, =
Tg, T1g = Tg, T3 = A(2yy), Ty = 219, Tyy = Typ.

sfT3: oy =2y + 23~ 23 =24, T; = T4, T, = 0.

544

All clauses of 7 have equalities in their heads and
need to be symmetrized. The fully transformed set of
clauses is given by

T1" Ty =Ty Tz =Ty, Ty = T, Tg = Ty, Tg = 0,
z = Vi(zg), 7, = ¢.

T2 Tyg = Tyy Ty = Tys, Ty = Tisy T = Tias
x5 = Ty + z6, TA(23), 26 = B(z7), 23 = 23,
Ty = x5, T4 = Vm(zy,2,), 25 = VE(2y0), 23 =
Tg, Tyo = Ty, Tz = A1), 1 = Typ, 11 F Ty

’e _ — _ —_ —= -
T3" Ty = Tg = Ts = T7, Ty = Ty, Tg = Tg, Tg =
Ty + T3, Ty = Ty, T; =Ty, Ty = 0.

o =2y =2, 3 = Vm(ag,23), 2y = ¢, 73 = ¢

The negation of the desired explanation can now be
deduced from O’. In the deduction below, the literals
involved in each step are underlined. As is usually the
case, the function substitutivity axioms are not needed.

o =z =2, 2y = Vm(zy,23), 2, =
€, T3 =q.

res. with T2 =Xy = Byg, T7 = Ty, Tyg = 2,
Ty = xz 4+ w, TA(zg), 79 =
B(21), 26 = Ty, Ty = @,
z7 = Vm(zy,a5), 25 = Vi(zy,),
Ty = Ty, Tyz = Tyy Tg =
Alzr), 24 = 215 Ty = 2ys,

zy = Vm(zy,23), 23 =€, 23 = q.

surf. fact. fol- = zy9 =2, 2y = 25 + x4, T A(zg),

lowed by root =zy = B(zyg), 26 = 211, Tio = 11,

fact. and compr. zg = Vi(z,3), ¥3 = @9, T3 = Tqp
zg = A(z14), T2 = 245, Ty = T35,
Ty =€, T3 =q.

res. with T1/ = Zig =2, Tyg = Ty + 9, T A(zg),
zg = B(zy), 26 = 11, T10 = Ty1,
Tg = Tyq, Tog = Tog, Tps = Vi(213),
Tos = 0, Ty = Vi(zy), T =,
Ty = Typ, Tyz = Ty, T = Aly),
Ty = Ty Tpq = Tys, Ty = €, Ty = (.

surf. fact. and
compr.

= Tyg =2, Tyg = Tg + Ty, TA(zg),
zg = B(2y0), Te = Tq1, Tyo = 43,
Ty = Taqy Tog = Taq, Tao = 0, Tyg =
Vi(zs), 6 = Alzw), 2, = 25,
Ty = Tys5, Ty =€, T3 = ¢

res. with T3’ =Xy =2, Tyg = Ty, Toy =
T3y, Tzp = Tg + Tg, Tag = Tog + Ta7,
Tyr = Togy Tos = Tag, Tee =0,
TA(zg), g = B(x10), 26 = 241,

Ti1s Ty = Taq, Ty = Tpq,
Ty = 0, 290 = Vi(z3), 76 = Alzqy),
Ty = Ty5y T1q = T15, Ty = €, T3 = ¢.

Tio =

root fact., surf.
fact. and compr.

Ti9 =2, Ty9 =Tz, a5 = T,
Ty = Tog, Tos = Tag, TA(T6), To =
B(z10), Z6 = 11, T19 = T11, 23 = 0,
zg = Vi(xs), xg = A(214), T2 =
T1g Trq = Tqs, Tp = €, T3 = ¢.

root fact., surf.
fact., and compr.

=z = 2, TA(zg), 29 = B(zyo),
Tg = Ty, Tip = Typ, T3 =0, Tz =

Vi(zs), 26 = A(T14), T2 = 15,
T14 = T15y T3 = €, T3 = (.

res. with T1/ = a9 = 2, TA(xg), 29 = B(zy),
Te = Ty Ti0 = T11, Zg = Tony

Tyg =gy, Top =0, 757 = Vi(2zy),
T1s = ¢, g = Vi(zs), 6 = A(z14),
Ty = T15y L14 = L1555 L2 = €, T3 = (.

surf. fact., root = zg = 2, TA(zg), zg = B(zyg),
Tg = Ty, Ty = Ty1, Te = AT14),s

T = Ty, T14 = T15) L2 = €, T3 = (.

= zg = A(zy), T, = e, TA(zs),
zo = B(xg), 29 = 2.

fact. and compr.

reduction to the
min. residuum

The last clause is the negation of the desired expla-
nation. Note how two resolutions with T1/ were used to
simulate symmetry.

6 Conclusion

From a theoretical perspective, surface deduction is very
appealing in its simplicity. We have seen how (at least
in theory) surface deduction can be applied in situations
such as abductive reasoning where deduction rather than
refutation is the primary goal.

If the equality theory of interest contains function
substitutivity, a problem with using surface deduction
for abduction is that in general the function substitutiv-
ity axioms are still required. Current research indicates
that to a large extent, the function substitutivity axioms
can be ignored in abductive problems when using surface
deduction with symmetrized, separated and flat clauses.
We do not know any practical example where this is not
the case.

From a practical point of view, one of the frequently
recognized problems with flattening the clauses of the
input theory is that one loses most of the advantages of
unification, particularly if the input theory contains few
equalities. One can regain some of these advantages in
practice by interpreting the set of equalities in the body
of a clause as a directed graph or hypergraph (with arcs
from the root variables to the surface terms) which de-
fines the set of possible definitions of the main terms
and variables of the clause. Such a directed graph gen-
eralizes the usual tree representation of terms. Unifi-
cation and more generally term rewriting can then be
replaced by (hyper)graph rewriting rules. To implement

this idea, the deduction procedures must be substantially
enhanced. The types of graph rewriting rules and graph
representations needed require further research.

The preference criteria for explanations given in Sec-
tion 4 are very weak. However, we believe that no matter
what preference criteria are used, RES(C) is at least as
good an explanation as C. One of the most important
problems in abductive reasoning is to determine stronger
preference criteria to avoid combinatorial explosion.
These issues are discussed in [Poole and Provan 1990].

Many of the results used in this paper can be general-
ized to arbitrary clauses so that the restriction of abduc-
tive reasoning to Horn clause theories can be removed.
These generalizations will be the topic of a forthcoming
paper.

References

[Baxter 1976] L. D. Baxter. The Complezity of Unifica-
tion. Ph.D. Thesis, University of Waterloo, 1976.

[Bosco et al. 1988] P. G. Bosco, L. Giovannetti, and
C. Moiso. Narrowing vs. SLD-Resolution. Theoretical
Computer Science Vol. 59 (1988), pp. 3-23.

[Brand 1975] D. Brand. Proving Theorems with the
Modification Method. SIAM J. Comput. Vol. 4 (1975),
pp. 412-430.

[Chan 1986] K. H. Chan. Lquivalent Logic Programs
and Symmetric Homogeneous Forms of Logic Pro-
grams with Equality. Technical Report 86, Dept. of
Computer Science, Univ. of Western Ontario, London,
Ont., Canada, 1986.

[Charniak 1988] E. Charniak. Motivation Analysis, Ab-
ductive Unification, and Nonmonotonic Equality. Ar-
tificial Intelligence Vol. 34 (1988), pp. 275-295.

[Colmerauer et al. 1982] A. Colmerauer et al. Prolog II:
Reference Manual and Theoretical Model. Groupe
d’Intelligence Artificielle, Faculte des Sciences de Lu-
miny, Marseilles, 1982.

[Cox and Pietrzykowski 1985] P. T. Cox and T. Pietrzy-
kowski. Surface Deduction: a Uniform Mechanism for
Logic Programming. In Proc. Symp. On Logic Pro-
gramming, IEEE Press, Washington, 1985. pp. 220~
227.

[Cox and Pietrzykowski 1986] P. T. Cox and T. Pietrzy-
kowski. Incorporating Equality into Logic Program-
ming via Surface Deduction. Ann. Pure Appl. Logic,
Vol. 31 (1986), pp. 177-189.

[Cox and Pietrzykowski 1987] P. T. Cox and T. Pietrzy-
kowski. General Diagnosis by Abductive Inference. In
Proceedings of the Symposium on Logic Programming,
IEEE Press, Washington, 1987. pp. 183-189.

545

[Cox et al. 1991] P.T. Cox, E. Knill, and T. Pietrzykow-
ski. Equality and Abductive Residua for Horn Clauses.
Technical Report TR-8-1991, School of Computer Sci-
ence, Technical University of Nova Scotia, Halifax, NS,
Canada, 1991.

[van Emden and Lloyd 1984] M.H. van Emden and
J.W. Lloyd. A Logical Reconstruction of Prolog II.
In Proc. 2nd Intl. Conf. on Logic Prog. Uppsala, 1984.
pp- 35-40.

[Goebel 1990] R. Goebel. A Quick Review of Hypothet-
ical Reasoning Based on Abduction. In AAAT Spring
Symposium on Automated Abduction, Stanford Uni-
versity, 1990. pp. 145-149.

[Hoddinott and Elcock 1986] P. Hoddinott and E.W.
Elcock. PROLOG: Subsumption of Equality Axioms
by the Homogeneous Form. In Proceedings of the Sym-
posium on Logic Programming, 1986. pp. 115-126.

[Holldobler 1989] S. Hélldobler. Foundations of Equa-
tional Logic Programming. Lecture Notes in Computer
Science 353, Springer Verlag, Berlin, 1989.

[Holldobler 1990] S. Halldobler. Conditional Equational
Theories and Complete Sets of Transformations. The-
oretical Computer Science, Vol. 75 (1990), pp. 85-110.

[de Kleer et al. 1988] J. de Kleer, A. K. Mackworth, and
R. Reiter. Characterizing Diagnoses. In Proceedings
Eighth National Conference on Artificial Intelligence,
1990. pp. 324-330.

[Kohavi 1978] Z. Kohavi. Switching and Finite Au-
tomata Theory. McGraw-Hill, 1978.

[Lloyd 1984] J. W. Lloyd. Foundations of Logic Pro-
gramming. Springer Verlag, Berlin, 1984.

[Paterson and Wegman 1978] M. S. Paterson and M. N.
Wegman. Linear Unification. J. Comput. Syst. Sci.
Vol. 16 (1978), pp. 158-167.

[Poole 1988] D. Poole. A Logical Framework for De-
fault Reasoning. Artificial Intelligence Vol. 36 (1988),
pp. 27-47.

[Poole and Provan 1990] D. Poole and G. M. Provan.
What is an Optimal Diagnosis? In Conference on Un-
certainty in Al, Boston, 1990.

[Reiter and de Kleer 1987} R. Reiter and J. de Kleer.
Foundations of Assumption-Based Truth Maintenance
Systems: Preliminary Report. In Proceedings of the
National Conference on Artificial Intelligence, 1987.
pp. 183-188.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,

edited by ICOT. © ICOT, 1992 546

Hypothetico-deductive Reasoning

Chris Evans” and Antonios C. Kakast

'Department of Mathematical Studies, Goldsmiths’ College, University of London
New Cross, London SE14 6NW, UK. EMAIL: c.evans@gold.lon.ac.uk.

TDepartment of Computer Science, University of Cyprus, 75 Kallipoleos Street,
Nicosia, Cyprus. EMAIL: kakas@cyearn.eam
(Part of the research for this paper was completed while both authors were at Imperial College, London SW7 2BZ)

Abstract

This paper presents a form of reasoning called
“hypothetico-deduction”, that can be used to address
the problem of multiple explanations which arises in
the application of abduction to knowledge assimilation
and diagnosis.

In a framework of hypothetico-deductive reasoning
the knowledge is split into the theory T and observable
relations S which may be tested through experiments.
The basic idea behind the reasoning process is to
formulate and decide between alternative hypotheses.
This is performed through an interaction between the
theory and the actual observations. The technique
allows this interaction to be user mediated, permitting
the acquisition of further information through
experimental tests. Abductive explanations which have
all their empirical consequences observed are said to be
“fully corroborated”.

We set up the basic theoretical framework for
hypothetico-deductive reasoning and develop a
corresponding proof procedure. We demonstrate how
hypothetico-deductive reasoning deals with one of the
main characteristics of common-sense reasoning,
namely incomplete information, through the use of
partial corroboration. We study the extension of basic
hypothetico-deductive reasoning applied to theories
that incorporate default reasoning as captured by
negation-as failure (NAF) in Logic Programming. This
is applied to the domain of Temporal Reasoning, where
NAF is used to formulate default persistence. We show
how it can be used successfully to tackle typical
problems in this domain.

1 Motivation

Abduction is commonly adopted as an approach to
diagnostic reasoning [Reggia & Nau, 1984], [Poole,
1988]. However, there are frequently many possible
abductive explanations for a given observation. This is
the problem of "multiple explanations”. In order to
choose between these explanations it becomes
necessary to collect more information. Consider the
Crime Detection example formalized below (Theory
T1).

Suppose we arrive at the scene of the crime and the
first observation we make is that someone is dead. We
seek an explanation for this on the basis of the theory
T1 above. Suppose we accept that there are only three
possible causes of death: being strangled, being
stabbed, or drinking arsenic (these are technically
known as the abducibles). Simple abduction starting
from the observation "dead" yields precisely these three
possible explanations. In order to choose between these

multiple explanations, we need to collect more
information. For example, if we examined the corpse
and discovered that there were marks on the neck, we

Theory T1
strangled = dead
blood_loss = dcad stabbed — blood_loss
poisoned — dead

strangled = neck_marks

drunk_arsenic —> poisoned
drunk_arsenic — blue_tongue

might take this as evidence for the first explanation
over the others. Moreover, we know that drinking
arsenic also has the consequence of leaving the victim
with a blue tongue, so we might like to look for that.

One approach to deciding between multiple
explanations is through the performance of crucial
experiments ([Sattar & Goebel, 1989]): pairs of
explanations are examined for contradictory
consequences, and an experiment is performed which
refutes one of them whilst simultaneously
corroborating the other. With n competing
explanations we must thus perform at most (n-1)
crucial experiments .

The crucial experiment approach is, however, unable
to choose between explanations when they fail to have
contradictory consequences or when they have
contradictory consequences that are not empirically
determinable (e.g. Tychonic and Copernican world
systems). In our example, for instance, the explanations
"strangled" and "stabbed" are not incompatible. It is
possible that the victim was both strangled and stabbed.
As result, there can be no crucial experiment that will
decide between the two. However, further evidence
might lead us to accept one explanation, whilst
tentatively rejecting the other. For example, knowledge
that the person exhibits marks on the neck supports the
"strangled" hypothesis. In fact we have all the
theoretically necessary observations to conclude that
the victim was strangled. On the other hand, the
"stabbed" hypothesis implies "blood_loss", which if not
observed might lead us to favour the "strangled"
explanation. Note that later evidence of blood loss
would lead us to return to the "stabbed” hypothesis (in
addition to "strangled"). From our viewpoint, crucial
experiments are the special case of general
hypothetico-deductive reasoning when an hypothesis is
refuted whilst simultaneously corroborating a second.

The process of hypothetico-deductive reasoning
allows the formation and testing of hypotheses within
an interactive framework which is applicable to a wide

class of applications and is implementable using
existing technology for resolution.

The technique of hypothetico-deductive reasoning
has its origin in the Philosophy of Science. It was
primarily proposed by opponents of Scientific
Induction. Its notable contributors were Karl Popper
([Popper, 1959],[Popper, 1965]), and Carl Hempel
[Hempel, 1965]. In its original context, hypothetico-
deduction is a method of creating scientific theories by
making an hypothesis from which results already
obtained could have been deduced and which entails
new predictions that can be corroborated or refuted. It
is based on the idea that hypotheses cannot be derived
from observation, but once formulated can be tested
against observation.

The hypothetico-deductive mechanism we formulate,
resembles this method in having the two components of
hypothesis formation and corroboration. It differs from
the accepted usage of the term in philosophy of science
by the status of the hypothesis formation component.

In the philosophy of the process of hypothesis
formation is equivalent to theory formation: a creative
process in which a complete theory is constructed to
account for the known observations. By contrast, the
method we describe here starts with a fixed generalized
theory which is assumed to be complete and correct.
The task is to construct some hypotheses which when
added to the theory have the known observations as
logical consequences. The process is more akin to that
used by an engineer when they apply classical
mechanics to a particular situation: they don’t seek a
new physical theory, but rather a set of hypotheses
which would explain what they have observed. Since,
for us, hypothesis formation can be mechanized, we do
not have to tackle the traditional issues of the
philosophy of science concerning the basis of theory
formation. We thus avoid (like Poole before us [Poole,
1988, p.28]) one of the most difficult problems of
science.

This paper is organized as follows. We first describe
the reasoning process and present the logical structure
of the reasoning mechanism, indicating how it relates to
classical deduction and model theory. Abductive and
corroborative derivation procedures for implementing
the reasoning process are then defined through
resolution. We indicate how this reasoning technique
relates to current work on abduction and diagnostic
reasoning, and suggest some possible extensions. We
illustrate the features and applicability of this reasoning
method with several examples. We then describe the
extension of hypothetico-deduction to apply to theories
which include some form of default reasoning, using
negation-as-failure as an example. We consider a
typical application of defaults in causal reasoning,
namely default persistence, and provide several further
examples which illustrate this extension.

2 Hypothetico-deductive Framework

Suppose we have a fixed logical theory T about the
world. For example, it might be a medical model of the
anatomy, or a representation of the connections in an
electrical network, or a model of the flow of urban
traffic in Madrid. Let us divide the relations in the
theory into two categories: empirical and theoretical.
How we make this distinction will depend on how we
interpret these relations in the domain for the theory.
An empirical relation is one which can be (or has been)
observed. For example, the blood pressure of a patient,
the status of a circuit-breaker (open or closed), or the
number of cars passing some point. By contrast, a

theoretical relation is in principle not observable.
Examples of theoretical relations might be infection
with an influenza virus, the occurrence of a short-circuit
from the viewpoint of a control centre, or the density of
traffic at some point.

Suppose we want an explanation for G on the basis
of the theory. By this, what we mean is “what relations
(we will call them hypotheses) might be true in order to
have given rise to G?7”. The answer to this question
could involve either theoretical or empirical relations.
In order to be confident that an explanation is the
correct explanation it is useful to test it. Explanations in
terms of empirical relations are directly testable. In the
simplest case we just consider the other observations we
have already made; in more complicated cases, we may
need to “go and look”™ or even perform an
“experiment”. Explanations in terms of theoretical
relations must be tested indirectly, by deducing their
empirical consequences, and testing these.

Unfortunately, not all hypotheses that might give rise
to the observation G serve as explanations, regardless as
to whether they pass any tests. Some are too trivial such
as taking G as an explanation for itself. Others we rule
out as unsuitably shallow. For example, suppose we
sought an explanation for the observation “Jo laughed
at the joke”; one possible hypothesis is because “the
joke was funny”. However, what we really wanted was a
deeper explanation: Why was the joke funny? We
therefore designate certain types of hypotheses as
explanatory (or, more strictly, “abducible”).

The problem of explanation, as far as we are
concerned in this paper, is the problem of constructing
abducible hypotheses which when we add them to T
will have G as a logical consequence. Furthermore,
explanations must pass (direct or indirect) tests.

The process of constructing hypotheses which have
G as a deductive consequence is an example of
hypothesis formation. It is this stage that corresponds
to the “hypothetico-” component of hypothetico-
deductive reasoning. The process of testing an
explanation is an example of corroboration. It is this
stage that corresponds to the ‘“‘deductive” component
of hypothetico-deductive reasoning. This is because we
use deduction to determine the empirical consequences
of a given explanation. The process of hypothetico-
deductive reasoning can now be formulated as the
construction of an explanation for an observation
through interleaving hypothesis formation and
corroboration.

3 The Hypothetico-deductive
Mechanism

Let us consider the mechanism for hypothetico-
deductive reasoning in more detail. To simplify matters
we shall require that our theory is composed of rules
and no facts. In logical terms, an hypothesis (and thus
an explanation) will be a set of ground atomic well-
formed formulae.

Suppose we have a (usually causal) theory T, an
observation set O, a set of abducible atomic formulae A,
and a particular observation G from O which we wish to
explain. Let O” = O-G. In addition we define a set S, the
observables, containing all the formulae that can occur
in O.

There are three components to the reasoning
process: hypothesis formation, hypothesis
corroboration, and explanation corroboration. In
outline, we carry out hypothesis formation on G, and
for each component formula in the resultant
hypothesis. We repeat this process until all that remains

547

548

is a set of abducible relations constituting the
explanation. We also carry out hypothesis
corroboration at each formation point. Finally we
reason forwards from the explanation to perform
explanation corroboration.

Hypothesis Formation

From any ground atomic formula F we form an
hypothesis for that formula, This is done by
determining which rules in T might allow F as a
conclusion, and forming an hypothesis from the
antecedents of each such rule (after carrying out the
relevant substitutions dictated by F). Each hypothesis is
thus sufficient to allow the conclusion of F.

Hypothesis Corroboration

An hypothesis for an observation may contain
instances of observables defined by S. For each such
component we check to see whether it is an observation
recorded in O°. If it is a member of O’ then it is
corroborated and we can retain it. However, where any
component is not corroborated in this fashion, we reject
the entire hypothesis.

Explanation Corroboration

An hypothesis H which is composed entirely of
instances of abducible predicates defined by A is an
explanatory hypothesis. To corroborate H, we use T to
reason forwards from H as an assumption. Each logical
consequence of H which is also an instance of an
observable is checked against O” for corroboration
(similar to “hypothesis corroboration”). If it does not
occur in O” then the original hypothesis H is rejected. If
all observable consequences are corroborated, then the
explanation H is said to be corroborated.

In general, rules may have more than one literal in
their antecedent. We must also check the satisfaction of
the other literals in a given rule by reasoning backwards
until we reach either one of the observations in O” or
one of the other explanatory hypotheses. If neither of
these two situations arise, the rule is discarded from the
forward reasoning process.

We make a distinction between corroboration failure,
where an hypothesis or prediction does not occur in the
observation set O°, and refutation, where the negation
of an hypothesis or prediction occurs in O°. Normally
the form of O and T means that refutation is impossible
(see the next section for details of this form). Later we
suggest an extension which allows the possibility of
refutation in addition to corroboration failure. In cases
where it is natural to apply the closed world assumption
to O, these two situations will coincide.

4 The Logical Structure of
Hypothetico-deductive Reasoning

Suppose we have a theory T composed of definite
Horn clauses and an observation set of ground atomic
well-formed formulae O. Let the set of ground atomic
formulae which can occur in O be S, the observables.
Similarly, let us define a set of distinguished ground
atomic formulae A, the abducibles, in terms of which
all explanations must be constructed. An explanation
will be a member of the set A. We will assume that the
theory T alone does not entail any empirical
observation without some other empirical input i.e.
there does not exist any formula ¢ such that ¢ € S and

Tk ¢. Consider also a ground atomic formula G (a
member of S) for which we seek an explanation.

Given the 4-tuple <T,0,A,S>, a corroborated
explanation A for G, is a set of ground atomic well-
formed formulae, which fulfils all of the following
criteria:

(1) Each formula in A must be a member of A,

2y TUAE G

3) fTUAF [T andIlg S,then [Tc O
An explanation set A which satisfies (1) and (2) but not
(3) is said to be uncorroborated.

This formulation is easily generalized to explanation
for multiple observations by simply replacing G with a
conjunction of ground atomic formulae.

We note that since at this stage we have taken our
theories to be Horn, a simple extension to hypothetico-
deductive reasoning allows us to distinguish between
explanation refutation when a prediction is inconsistent
with observation, and merely the failure of
corroboration where a prediction is consistent with
known observations but not present in them. Such an
extension would allow a hypothetico-deductive system
to deal with circumstances where our observations
cannot ever be complete (where we know our fault-
detection system is itself fallible, for instance). We
could then discard only those explanations that are
refuted, and order the remaining ones according to
their degree of corroboration (corresponding to
Popper’s notion of versimilitude, [Popper, 1965]). A
later section discusses the extension of hypothetico-
deductive reasoning to theories which include negation-
as-failure.

This extended version of hypothetico-deductive
reasoning is non-monotonic because later information
might serve to refute a partially corroborated
explanation, To return to our first example for instance,
the observation that the victim does not have a blue
tongue would lead us to reject the hypothesis that they
had drunk arsenic (even if previously this hypothesis
had some observational consequences which had been
observed).

5 Hypothetico-deductive Proof
Procedure ‘

A resolution proof procedure which implements
hypothetico-deductive reasoning is formally presented
below. Basically we define two types of derivation:
abductive derivation and corroboration derivation
which are then interleaved to define the proof
procedure. Abductive derivation corresponds to the
processes of hypothesis formation and corroboration,
deriving hypotheses for goals. Corroboration derivation
corresponds to the process of explanation
corroboration, deriving predictions from goals. There
are two different ways to interleave the abductive and
deductive components of the reasoning mechanism.
One approach is to derive all the abducible literals in
the hypothesis for an observation, before any of them
are corroborated. The second approach attempts
corroboration as soon as an abducible literal is derived,
postponing consideration of other (non-abducible)
literals in the hypothesis. Here we present a proof
procedure based on the second approach.

Definition (safe selection rule)

A safe-selection rule R is a (partial) function which,
given a goal < Lj, ..., Lx k=1 returns an atom Lj,
i=1,...,k such that

either i)
or ii)

L; is not abducible;
L; is ground.

Definition (Hypothetico-deductive proof procedure)
An abductive derivation from (G] Ay) to (Gp Ap)
via a safe selection rule R is a sequence
(G1 A1), (G242), ..., (Gn Ap)
such that for each i>1 Gj has the form « Lj,...,Lk,
R(Gj)=L; and (Gij+]1 Aj+1) is obtained according to one
of the foflowmg rules:

Al) If LJ is neither an abducible nor an observable,
then Gj41=C and Aj4+1=A4j where C is the resolvent
of some clause in T with Gj on the selected literal
L

A2) If L; is observable, then Gl+1—C and A1+1 Al
where C is the resolvent of C": « L1’,. L] -
w1Lh some clause in T on LJ where ¢ Ly ,....Lj-
1,Lj+1...Lk is the resolvent of Gj with some
clause (ground assertion) LJ in O on the selected
literat L;;

A3) If Lj is abducible and Lje Ay,
Gi+1= <LL....Lj-1,Lj+1,....Lk and Ajy1=45

A4) If Lj is abducible and Lj# A and there exists a
corroboration derivation from ({Lj} AjU{L;}) to
({} A) then Gij41= ¢«Li,....Lj-1, Lj+1,...,Lk and
Ajy1 =A%

then

Step Al) is an SLD-resolution step with the rules of
T. In step A2) under the assumption that observables
and abducibles are disjoint we need to reason backward
from the true observables in the goal to find
explanations for them since the definition of an
explanation requires that it logically implies G in the
theory T alone without the set of observations O. Step
A3) handles the case where an abductive hypotheses is
required more than once. In step A4) a new abductive
hypotheses is required which is added to the current set
of hypotheses provided it is corroborated.

A corroboration derivation from (F| Aj) to (Fp Ap) is
a sequence

(F1 A1), (F2 A2) ... (Fy Ap) to (Fn Ap)
such that for each i>1 Fj has the form {H«Lj,...,.Lx} v

F;" and (Fj+1 Aj+1) is obtained according to one of the
following rules:

Cl) If H is not observable then Fj+)1 =C" U F’
where C” is the set of all resolvents of clauses
in T with HLq,...,Lx on the atom H and
A 1=4i;

If H is a ground observable, He O and
Li,...,Lkis not empty then Fj41 =C" U Fy’
where C” is «Lj,...,.Lkx and Aj+1=A;; If HeO
then Fj+1 = Fi” and Ajp1=4A;.

If H is a non ground observable, O¥ 3xH and
L1,...,Lkxis not empty then Fj;1 =C U Fy’
where C”is «Lj,...,Lkx and Aj;+1=4;;

If H is a non ground observable and L is any
non observable selected literal from L1,...,Lg
then Fi+1 = C” U F;” where C” is the set of all
resolvents of clauses in T U A; with
HeL1p,...,Lx on the selected literal L;j and
Aj+1=A;; If L;j is observable the resolutions
are done only thh clauses in O.

If H is empty, L; is any selected literal and L
is not observable then Fj+1 = C* U F;” where

C2)

C3)

C4)

Cs)

C’ is the set of all resolvents of clauses in T U
Aj with «Ly,...,.Lgx on the literal Lj and

Oe C’, and Aj+1=Aj; If Lj is observable the
resolutions are done only with clauses in O.

In step Cl) we ‘“reason forward” from the
conclusion H trying to generate a ground observable at
the head. Once this happens if this observable is not
“true” steps C2), C3) give the denial of the conditions
that imply this observable. Step C4) reasons backward
from the conditions either failing or trying to
instantiate further the observable head. Step CS5)
reasons backward from the denials of steps C2), C3)
until every possible such backward reasoning branch
fails. Note that in the backward reasoning steps
observables are resolved from the observations O and
not the theory. More importantly notice that we do not
reason forward from an observable that is true.

Note that we have included the set of hypotheses Aj
in the definition of the corroboration derivation
although this does not get affected by this part of the
procedure. The reason for this is that more efficient
extensions of the procedure can be defined by adding
extra abducible information in the A; during the
corroboration phase e.g.the required absence of sonie
abducible A can be recorded by the addition of a new

abducible A*.

Theorem
Let <T,0,A,S> be a Hypothetico-Deductive framework
and G a ground atomic formula. If (<G {}) has an

adbuctive derivation to ([J, A) then the set A is a
corroborated explanation for G.

Proof (Sketch)

The soundness of the abductive derivations follows
directly from the soundness of SLD resolution for
definite Horn theories as every abductive derivation
step of this procedure can be mapped into an SLD
resolution step. To show that the explanation A is
corroborated let Ae S be any ground atomic logical
consequence of T U A . Since T U A is a definite Horn
theory A must belong to its minimal model which can
be constructed in terms of the immediate consequence
operator T [van Emden & Kowalski, 1976] . Hence

there exists a finite integer n such that A € TT y A Tn
(D) and A does not follow from T alone by our
assumption on the form of the theory T . The result
then follows by induction on the length of the
corroboration derivation.

6 Application of Hypothetico-
deductive Reasoning

In this section we will illustrate hypothetico-
deductive reasoning with some examples. Before this it
is worth pointing out that existing abductive diagnosis
techniques (e.g. [Poole et al., 1987], [Davis, 1984],
[Cox & Pietrzkowski, 1987], [Genesereth, 1984],
[Reggia et al., 1983], [Sattar & Goebel, 1989]) can be
accommodated within the HD framework. For example
in the diagnosis of faults in electrical circuits
hypothetico-deductive reasoning exhibits similar
behaviour to [Genesereth, 1984], [Sattar & Goebel,
1989].

Problems and domains which are ideally suited to the
application of hypothetico-deductive reasoning exhibit
two characteristics. Firstly, they have a large number of

549

550

possible explanations in comparison to the number of
empirical consequences of each of those explanations.
Secondly, they have a minimal amount of observational
data pertaining to a given explanation so that
corroboration failure is maximized.

To illustrate the manner in which general
hypothetico-deductive reasoning deals with differing
but compatible explanations, let us consider the
example of abdominal pain first presented by [Pople,
1985] and axiomatized in [Sattar & Goebel, 1990]. The
axioms are reproduced below. To allow the possibility
of several diseases occurring simultaneously, the three
expressions which capture the fact that the symptoms
(nausea, irritation_in_bowel, and heartburn) are
incompatible, have been omitted.

Theory T2
abdominal_pain_symp(X) —> has_abdominal_pain

problem_is(indigestion) => abdominal_pain_symp(nausca)

problem_is(dysentry) —>
abdominal_pain_symp(irritation_in_bowel)

problem_is(acidity) = abdominal_pain_symp(heartburn)

Now consider the following observations:

Observations O
has_abdominal_pain
abdominal _pain_symp(nausea)

Abducibles, A =
problem_is(dysentry),
problem_is(acidity)}

Observables, S =

{has_abdominal_pain,

abdominal_pain_symp(nausea),
abdominal_pain_symp(irritation_in_bowel),
abdominal_pain_symp(heartburn)}

There are three possible potential explanations for the
observation “has_abdominal_pain”. Since they are not
mutually incompatible (it is possible to have all three
diseases, for example), there is no crucial literal which
can help us distinguish between the three explanations.
There is thus no “best” explanation from this point of
View.,

From the point of view of hypothetico-deductive
reasoning however, one of the explanations stands apart
from the others. On the basis of all the currently
available evidence “problem_is(indigestion)” is
completely corroborated. The two remaining
explanations remain possible but uncorroborated; that
is to say there is no supplementary evidence in support
of them. Experiments might be performed (testing for
“abdominal_pain_symp(irritation_in_bowel)”, and
“abdominal_pain_symp(heartburn)”) which could
corroborate one or both of the others, which would lead
us to extend our explanation. Since physical
incompatibilities are rare in common-sense reasoning,
hypothetico-deductive reasoning has an advantage in
being able to offer a (revisable) “best” explanation
based on the currently available evidence, in spite of the
absence of possible crucial experiments. It is important
to appreciate that it is usually impractical to simply
construct the hypotheses by performing abduction on
all the observations in O, since in general there may be
an extremely large number of them. Moreover, only a
few may be relevant to the particular observation for
which we seek an explanation.

{problem_is(indigestion),

It might be thought that the checking of all the
observational consequences of some explanation might
be equally impractical: there might be an infinite
number of them as well. However, it must be borne in
mind that we are only considering the representation of
common-sense; we would normally ensure that there
are only a small number of observable consequences in
which we would be interested. We would define our set
of observables, S, accordingly. So, for instance, in the
fermentation example below we represent certain
critical times (often referred to as "landmarks") at which
we might perform observations. Similarly, in the
“stolen car” example which we present later, we restrict
observables to events that occurred at some specific
point in time.

One application area in which incomplete
information is intrinsic, is that of temporal reasoning.
Reasoning about time is constrained by the fact that
factual information is only available concerning the
past and the present. By its very nature we must
perform temporal diagnosis with no knowledge about
the future states of the systems we are trying to model.

As an example of temporal diagnosis which
illustrates this characteristic, consider an industrial
process involving the fermentation of wine. Suppose we
are faced with the task of diagnosing whether the
fermentation process has proceeded normally, or that
the extremely rare conditions have occurred under
which we will produce a vintage wine. To do this we
must carry out a test at some time after the wine-
making process has begun, such as measuring its pH, its
relative density, or its alcohol content. Suppose further
that we need to decide on this diagnosis before a certain
time, e.g. the bottling-time tomorrow. Let us refer to
some property of the mixture which would be observed
for vintage wine by the symbol p1, and that for
ordinary wine as p2. These two properties might be
entirely compatible: it is perfectly possible for ordinary
wine to be produced under conditions which exhibit

" pl(as well as p2), but in such a case it is not the fact that

the mixture is ordinary wine that causes pl to be
observed. Now suppose we observe pl before the
bottling time, and suppose there are no further
observational consequences for the ‘“‘vintage wine”
hypothesis that are observable before tomorrow. Then
the *“vintage wine” hypothesis is completely
corroborated within the defined time-scale. On the
other hand, the “ordinary wine” hypothesis remains at
best only partially corroborated. Hypothetico-deductive
reasoning would then prefer the “vintage wine”
hypothesis over the “ordinary wine” one. The
temporal dimension illustrates the ability of
hypothetico-deductive reasoning to form diagnoses on
the basis of incomplete information. Notice that an
extension of the time scale would revise the status of the
observable relations and perhaps the ‘“‘vintage wine”
hypothesis would become only partially corroborated.
The application of hypothetico-deductive reasoning to
the temporal domain will be discussed in more detail in
the next section as an important special case of the
integration of hypothetico-deductive reasoning and
default reasoning.

7 Hypothetico-deduction with Default
Theories

As we discussed above, the aim of hypothetico-
deductive reasoning has been to provide a framework
in which we can tackle one of the main characteristics
of common sense reasoning, namely incomplete
information. More specifically it addresses the fact that

we are often forced to form hypotheses and
explanations on the basis of limited information.
Another important form of reasoning that deals with
the problem of incomplete (or limited) information is
default reasoning (see e.g. [Reiter, 1980]). We can then
enhance the capability of each framework separately to
deal with this problem of missing information by
integrating them together into a common framework.

So far we have only considered the application of
hypothetico-deduction to classical theories. In this
section we study its application to default theories
incorporating negation-as-failure (NAF) from Logic
Programming. We will then apply this adaptation of
hypothetico-deduction to temporal reasoning problems
formulated within the event calculus where NAF is used
to represent default persistence in time ([Kowalski &
Sergot, 1987], [Evans, 1989]).

The approach we adopt is to consider only classical
theories to which non-monotonic reasoning
mechanisms such as default and hypothetico-deductive
reasoning are applied (in contrast to non-monotonic
logics). The motivation as before, is to separate
representation (classical logic) from reasoning (non-
monotonic). Recent formalizations of the semantics of
negation-as-failure [Eshghi & Kowalski, 1989], [Kakas
& Mancarella, 1990], [Dung, 1991], [Kakas &
Mancarella, 1991] have adopted a similar point of view.
This approach means that hypothetico-deductive
reasoning can be applied to default theories of any
system which separates these two components, €.g.
circumscription [McCarthy, 1980].

Following this work, we associate to any general
logic program, P, (Horn clauses extended with
negation-as-failure) a classical theory , P’, as follows.
Each negative condition, not p, where not denotes the
negation-as-failure operator, is regarded as a single new
positive atom. This can be made explicit by replacing
each such negative literal, not p, by a syntactic variant,
say p*, to give the Horn theory P". The model-theoretic
extension of the new symbol is intended to be the
complement of the old one, so that we can omit the not.
To take a more meaningful example we might replace
“not alive” with “dead”. These new symbols *
or “dead” are then defined to be abducible predicates.
The above authors show that with this view it is possible
to understand (and generalize) the stable model
semantics [Gelfond & Lifschitz, 1989] for NAF in logic
programming. (Note that this is also the approach taken
more generally in {Poole, 1988] for understanding
default reasoning through abduction by naming the
defaults and considering these as assumptions.)

We can then apply an adapted formulation of
hypothetico-deductive reasoning to these classical Horn
theories P’ corresponding to general logic programs P.
As above we have a 4-tuple <P*,0,A,S> where the set, A,
of abducibles has been extended with new abducibles
e.g. “p*”, “dead”, which name the different NAF
default assumptions.

Hence given a 4-tuple <P*,0,A,S>, a corroborated
explanation A for an observation G, is a set of ground
atomic well-formed formulae, which fulfils all of the
following criteria:

(1) Each formula in A is a member of A.
Let A = Ap v Ay where Ap denotes the subset of
abducibles corresponding to NAF.

QP UAE G
B)IfPPUAE IT andITc S, then [Tc O

p*"

(4) There exists a stable model! M of P U Ag U O
such that the negations corresponding to Ap hold
in M (i.e. are contained in the complement of M).

This is a direct extension of the previous definition
of hypothetico-deductive reasoning. The extra
condition (4) captures the default reasoning present in
the theory P (or P). This is clearly separated in this
condition although it does play an important role in the
generation of explanations by rejecting explanations
that do not satisfy it. This has the effect of adding extra
abducibles in the A to make it acceptable. For example
in the theory,

*
*

TTT
.00

G
P
q
although {p*} is an explanation for G, this is not
accepted until the abducible “a” is added to it which
ensures that this default assumption {p*} is valid. In
addition condition (4) also ensures that any default
assumption (abducible) in A is compatible with the
observations O. Note that we could have chosen to put
together conditions (2) and (4) as “G is true in a stable
model of Pu Ay” for generating the explanations A,
and use condition (4) solely for the purpose of
ensuring that Ap are compatible with the observations
0]

Although at first sight it might seem appropriate to
allow default reasoning during the corroboration of an
explanation this is not the case as indicated by
condition (3). The reason for this is clear: if we allow it
then the corroboration process will not be for the
explanation A alone, but for A plus any additional
default assumptions made in arriving at the observable
test. In other words, we would not want to reject an
explanation A by failure to corroborate an observation
that is a not a consequence of A alone but of A with
some additional default assumptions.

Let us now indicate how the proof procedure for
hypothetico-deductive reasoning, defined earlier, needs
to be extended to deal with this more general
formulation where our theories are general logic
programs. The first thing to notice is that, as indicated
by condition (3), the corroboration phase of the
procedure remains unchanged apart from the fact that
it will also be applied whenever a NAF hypothesis,
“p*” (or “not p”), is added to the explanation.
Similarly, the adbuctive derivation phase remains as
before with the set of abducibles- enlarged to include
the NAF default assumptions.

The main extension of the procedure arises from the
need to implement the new condition (4). This can be
done by adopting the abductive proof procedure
developed in [Eshghi & Kowalski, 1989], [Kakas &
Mancarella, 1990b], [Kakas & Mancarella, 1990c] for
NAF which is an extension of SLDNF. A new type of
derivation, called consistency derivation, is introduced
interleaved with the abductive phase of the procedure
whenever a NAF hypothesis, “p*” (or “not p”), is
required in the explanation. Its purpose is to ensure that
“p*” (or “not p”) is a valid NAF assumption by
checking that p does not succeed. This involves
reasoning backwards from p in all possible ways and
showing that each such branch ends in failure.

During this consistency check for some NAF
hypothesis, “p*” (or “not p”), it is possible for new

1 More generally, we can use recent extensions of stable
models e.g. preferred extensions or stable theories as defined in
[Dune. 19911 and [Kakas & Mancarella. 19911 respectivelv.

551

552

abductive phases to be generated whenever the failure
of some consistency branch reduces to showing that
some other NAF default assumption e.g. “q*" (or

“not q”) does not hold in the theory P* U A. To ensure

this the procedure starts a new abductive phase to show
that q holds where it is possible that new hypotheses
may be added in the explanation if this is needed to
prove q. Then with this enlarged explanation “q*” (or
“not q”) is not a valid (default) NAF assumption (as q
holds) and so the original consistency branch can not
succeed. In the example above the abducible “a” in
the explanation {p*, a} for G is generated during the
consistency check of p* (or not p) as described here.
More details about this extension of the proof
procedure can be found in the references above.

8 Application of HD Reasoning to
Temporal Reasoning

As an example of the application of the above
extended hypothetico-deductive mechanism, let us
consider temporal reasoning with the Event Calculus
[Kowalski & Sergot, 1987] where NAF is used to
express default persistence in time.

The Event Calculus represents properties which hold
over intervals of time. They are initiated and terminated
by events which happen at particular instances of time.
NAF is used to conclude that a property is not
“clipped” or “broken” over an interval of time,
achieving default persistence. Variants of the two main
axioms, which define when a property “holds” and
when a property is “broken”, are given below.

holds-at(p,t2) €-happens-at(e,tl) A
initiates(e,p) A

tI<t2 A
not broken-during(p,<tl1,t2>)

broken-during(p,<tl,t2>) < happens-at(e,t) A
terminates(e,p) A

tl<ta
t<t2

The first axiom states that some property p holds at
any time after an initiating event, provided it is not
(known to be) broken at some time during the
intervening time-interval. NAF ensures that we draw the
conclusion that it isn’t broken if we have no evidence
for it: default persistence. The second axiom states that
a property is broken during an interval if a terminating
event happens at some time within that interval.

Before we can apply HD reasoning to these axioms
we must carry out the transformation to eliminate the
NAF. A possible renaming of “not broken-during” is
“persists”:

holds-at(p,t2) €= happens-at(e,t1)a

initiates(e,p)A

tl <t2 A
persists(p,<tl1,t2>).

Before we present a detailed example of the
application of HD, let us briefly consider how the use
of a temporal default theory such as the Event Calculus
does not modify the process of corroboration (we use
the classical version of the theory), although it does
modify the process of explanation construction.

Consider an example in which the walls of a house
are painted white. Using the Event Calculus, if we
wished to explain why the walls were white, we would
hypothesize an event of painting them white. In order
to corroborate this hypothesis we would look for
empirical consequences. One possibility might be that
the paint brush has white paint on it. However this
prediction involves assuming that the state of “brush-
has-white-paint” persisted since the walls were painted;
the corroboration is based upon a further
(uncorroborated!) hypothesis. Moreover, consider the
consequences of observing that the paint brush has red
paint on it. Does this refute the explanation that the
walls are white because they were painted white?
Obviously not. Under the extended HD scheme we limit
default reasoning to be a part of the hypothesis
formation component. Corroboration is straightforward
classical deduction. This is one of the reasons for
having to transform the Event Calculus axioms to
eliminate the NAF.

Let us consider a more detailed application of
hypothetico-deductive reasoning to a problem
formalized in the Event Calculus. We shall take Kautz's
“stolen car” problem [Kautz, 1986]. The task is to
explain why a car parked in the morning is missing
when we look for it in the afternoon. In particular, to
explain when the car was stolen. Kautz’s original
motivation was to demonstrate that temporal reasoning
which performed chronological minimization (e.g.
Shoham’s Non-monotonic Logic [Shoham, 1988])
would predict that the car was stolen the instant before
it was found to be missing; which was unsatisfactory.
From our point of view, the stolen car problem is more
correctly viewed as an explanation problem in which
there are several possible competing explanations,
corresponding to the different times that the car might
have been stolen.

In the formalism of the Event Calculus we would
describe the problem as follows. We know that the car
was parked at some particular time, say time “1”; and
we know that it was missing at, say, time “4”. We also
know that stealing initiates the property “missing” and
terminates “parked”:

initiates(e,missing) « type(e,steal)

terminates(e,parked) « type(e,steal)

Our explanatory task is thus to explain the observation
“holds-at(missing,4)”. We will take the predicates
“happens-at”, “type” and (since it is a default
relation) “persists” to be abducible. Furthermore, let
us restrict the abducible “happens-at” events to those
which happen between time “1” and “4”. Our
observables will be instances of the relation “holds-at”
which occur at time “4”. Using hypothesis formation
applied to the rule defining ‘“holds-at” we might
hypothesize:

{happens-at(e,2), type(e,steal), persists(missing,<2,4>)}

This states that some stealing event happened at time
“2”. Notice that we have to include the persistence
assumption: if some other event had terminated this
“missing” state (such as the returning of the car!), then
this particular stealing event would not be the right
explanation.

Using a discrete representation of time, there is
another explanation corresponding to a stealing event
at time “3”. Pure abduction is unable to distinguish
between these two explanations.

There are two further characteristics of HD to
demonstrate. Firstly, note that we have to check the
consistency of the default “persists” hypothesis
(according to the 4th corroboration requirement). We
do this by checking that ‘“~broken-
during(missing,<2,4>)” holds in the stable model when
we include all our observations; computationally
speaking, we must check that “broken-
during(missing,<2,4>)" finitely fails.

The second characteristic is corroboration to choose
between the two competing explanations. In order to
describe this aspect, we must elaborate our example
somewhat. Suppose that we had a car alarm fitted and it
is not possible to steal the car without setting off the
alarm. The hypothesis that the car was stolen at time
“2” would lead us to predict “happens-at(alarm,2)”
whereas the alternative would predict “happens-
at(alarm,3)”. We must extend our definition of
observables to include ‘“happens-at(alarm, 2)” and
“happens-at(alarm, 3)”, corresponding, say, to
checking with someone near at what time they heard a
car alarm start going off. The process of corroboration
against observations concerning the alarm events
proceeds as in the unextended version of HD
reasoning.

Thus the addition of the appropriate observations for
the “stolen car” situation allows us to form two
explanations, one of which we might reject as
uncorroborated and the other of which might be
completely corroborated.

The “bloodless” Yale Shooting problem
([Morgenstern & Stein, 1988]) - the explanatory
counterpart to the original Yale Shooting prediction
problem ([Hanks & McDermott, 1987]) - is of a similar
form. In this scenario, a gun is loaded, a period of
waiting ensues, and someone is shot with the gun. They
are found to be unharmed. The task is to explain how
this could be so. Pure abduction produces a number of
explanations in terms of unloading events that must
have occurred during the period of waiting: one
explanation for each different possible time of the
event. Hypothetico-deduction allows the possibility of
selecting one of the events as preferable on the grounds
that it has empirical consequences which were observed.

9 Related and Further Work

Several authors have developed deductive techniques
for the generation of hypotheses. In [Cox &
Pietrzykowski, 1987] hypotheses are constructed from
the terminal nodes of linear resolution proofs.
Similarly, [Finger & Genesereth, 1985] perform
“deductive synthesis” to provide “solutions to design
problems” by “finding a residue for a given design
goal”; and [Poole et al., 1987] use linear resolution for
hypothesis generation implemented in the program
THEORIST.

In [Eshghi & Kowalski, 1989], [Kakas & Mancarella,
1990] Horn clause logic programming is extended to
include abduction with integrity constraints. The
approach taken here, differs by the absence of integrity
constraints although the process of checking abductive
hypotheses by regarding them as updates, and
reasoning forwards to integrity constraints, parallels the
process of explanation corroboration we describe.
There are two important differences between the
application (rather than the technique) of explanation
corroboration, and the integrity checking process.
Firstly, we reason forwards to observables rather than
integrity constraints; and secondly, the set of
observables can be “dynamic”. That is, we may have

not made all the relevant observations: it may be
necessary to perform an experiment to determine the
outcome of corroboration (e.g. through “Query-the-
user” [Sergot, 1983] in the case of an expert system).
This approach of interactive acquisition of extra
information to help decide between different
explanations has been studied in [Kunifuji et al, 1986]
in the context of Knowledge Assimilation. However, in
some domains of application it may be appropriate to
use integrity constraints first for reducing the number
of possible explanations before beginning the
corroboration of explanations. The mechanisms
developed in these papers are directly applicable to the
incorporation of integrity checking in the hypothetico-
deductive proof procedure defined above.

[Sattar & Goebel, 1989]) describes how the
THEORIST system can be extended through the notion
of performing crucial experiments [Popper, 1965]
using ‘“crucial literals” (from [Seki & Takeuchi,
1985]) to decide between competing explanatory
hypotheses. As we have mentioned above, this can be
understood as special case of explanation corroboration
used to decide between multiple incompatible
explanations. The relative cost of carrying out the
experimental tests for corroborating an explanation
over the significance of this particular explanation is
another feature that needs to be taken into account
when further developing the hypothetico-deductive
mechanism. For example, in circuit diagnosis [Davis,
1984] the failures are layered into categories according
to their likelihood. De Kleer and Williams in [de Kleer
& Williams, 1987] use probability and information
theory to propose the next "best" test for localizing the
fault in the framework of model based diagnosis. These
techniques can be used to make our corroboration
more efficient.

Conclusions

We have developed a versatile reasoning mechanism
and proof procedure, based on the notion of
corroboration, that is applicable to a variety of
problems and logic-based systems in artificial
intelligence. It combines the explanatory capability of
hypothesis formation with the benefits of corroboration
through deduction for control and testing.
Hypothetico-deductive reasoning tackles the problem
of undesired multiple explanations for an observation.
It extends the isolated application of deductive and
abductive reasoning. We have shown how the basic idea
behind the reasoning process is to formulate and decide
between alternative hypotheses. This is performed
through an interaction between the theory and the
actual observations. A suitable proof procedure for the
implementation of hypothetico-deduction was
presented. We have suggested that this form of
reasoning might benefit for the use of a “query-the-
user” facility. We have demonstrated how hypothetico-
deductive reasoning deals with one of the main
characteristics of common-sense reasoning, namely
incomplete information, through the use of partial
corroboration. Finally we have shown how the
semantics of hypothetico-deduction can be extended to
deal with default theories, in particular temporal
theories such as the Event Calculus which include
default persistence through the use of negation-as-
failure. We have demonstrated how this extension can
be applied to deal with Kautz’s “stolen car” problem,
and the “bloodless” counterpart to the Yale Shooting
Problem.

553

554

Acknowledgements

We wish to thank R.A. Kowalski for useful
discussions on the subject. Thank you, also, to Kate
Moorcock for her common-sense examples. This work
has been partially carried out under a long term project
at Imperial College sponsored by FUJITSU and
partially under Esprit project 2409, (EQUATOR). The
EQUATOR partners are Ferranti Computer Systems Ltd.
(UK), ERIA (Spain), Imperial College (UK), LABEN
(Italy), SYSECA (France), CENA (France), CISE (ltaly),
PTT (Switzerland), SWIFT (Belgium), UCL (UK),
ERITEL (Spain) and EPFL (Switzerland).

References

[Cox & Pietrzykowski, 1986] Cox, P. and
Pietrzykowski, T. *“Causes for Events: Their
Computation and Applications”; Proc. CADE-86,
J.Siekmann (ed.), Springer-Verlag, Lecture Notes in
Computer Science, 1986, pp.608-621.

[Cox & Pietrzykowski, 1987] Cox, P. and
Pietrzykowski, T. “General Diagnosis by Abductive
Inference”; Technical Report, CS8701, School of
C.S., University of Nova Scotia, 1987

[Davis, 1984] Davis, R. “Diagnostic Reasoning Based
on Structure and Behaviour”; Al vol. 24, pp. 347-
410, 1984.

[Dung, 1991] Dung P. M., Negation as Hypothesis; An
Abductive Foundation for Logic Programming, in
Proc. 8th ICLP, Paris, 1991.

[van Emden & Kowalski, 1976] van Emden M.H. and
Kowalski R.A., The Semantics of Predicate Logic as a
Programming Language, Journal of ACM 23, a
(1976), pp. 733-742.

[Eshghi & Kowalski, 1989] Eshghi, K. and Kowalski,
R. “Abduction Compared with Negation by Failure”;
Proc. 6th ICLP, 1989.

[Finger & Genesereth, 1985] Finger, J. and Genesereth,
M. “RESIDUE: A Deductive Approach to design
synthesis”; Technical Report no. STAN-CS-85-1035,
Dept. of Computer Science, Stanford University,
1985. .

[Gelfond & Lifschitz, 1988] Gelfond, M., and Lifschitz,
V. The Stable Model Semantics for Logic
Programming; Proceedings of the Logic
Programming Conference, Seattle, 1988.

[Genesereth, 1984] Genesereth, M. “The Use of Design
Descriptions in Automated Diagnosis™; Al vol. 24,
pp. 411-436, 1984,

[Hanks & McDermott, 1987] Hanks, S. and
McDermott, D., Nonmonotonic Logic and Temporal
Projection, in Artificial Intelligence, vol. 33, pp.379-
412, 1987.

[Hempel, 1965] Hempel, C. “Aspects of Scientific
Explanation and Other Essays in the Philosophy of
Science”; The Free Press, New York, 1965.

[Kakas & Mancarella, 1990} Kakas, A.C. and
Mancarella, P. “Generalized Stable Models: a
Semantics for Abduction” In Proc. ECAI-90, 1990.

[Kakas & Mancarella, 1990b] Kakas, A.C. and
Mancarella, P. “Database Updates through
Abduction” in Proc.16th International Conference
on Very Large Data Bases, VLDB '90 , Brisbane,
1990.

[Kakas & Mancarella, 1990c] Kakas, A.C. and
Mancarella, P. “On the relation of Abduction and
Truth Maintenance” in Proc. of the 1st Pacific Rim
International Conference on Al, PRICAI-90,
Nagoya, Japan 1990.

[Kakas & Mancarella, 1991] Kakas, A.C. and
Mancarella, P. “Stable Theories for Logic
Programs”, to appear in Proc. of ISLP-91, San Diego,
1991,

[Kautz, 1986} Kautz, H., “The Logic of Persistence” in
Proc. AAAI-86, pp. 401, 1986.

[Kowalski & Sergot, 1986] Kowalski, R.A. and Sergot,
M., A Logic-Based Calculus of Events, New
Generation Computing, vol 4, pp. 267, 1986.

[Kunifuji et al, 1986] Kunifuji, S., Tsurumaki, K. and
Furukawa, K., “Considerations os a Hypothesis-based
Reasoning System” Journal of Japanese Society for
Artificial Intelligence vol. 1 no. 2, pp.228-237, 1986.

[de Kleer & Williams, 1987] de Kleer, J. and Williams,
B.C. "Diagnosing Multiple Faults"; Artificial
Intelligence vol 32, pp. 97-130, 1987.

[McCarthy, 1980} McCarthy, J., Circumscription: A
Form of Non-monotonic Reasoning; in Artificial
Intelligence, vol. 13, pp.27-39, 1980.

[Morgenstern & Stein, 1988] Morgenstern, L. and
Stein, L., “Why Things Go Wrong: A Formal Theory
of Causal Reasoning”; Proc. AAAI '88, p.S18ff.

[Poole, 1988] Poole, D. “Representing Knowledge for
Logic-Based Diagnosis” In Proc.of the FGCS,
pp.1282-1290, 1988.

[Poole et al., 1987] Poole, D., Goebel, R., and Aleliunas,
R. “Theorist: A Logical Reasoning System for
Defaults and Diagnosis”; in The Knowledge Frontier:
Essays in the Representation of Knowledge, by
N.Cercone and G.McCalla (ed.s), Springer-Verlag,
New York, 1987, pp.331-352.

[Pople, 1985] Pople, H. “Coming to Grips with the
Multiple Diagnosis Problem"; inThe Logic of
Discovery and Diagnosis in Medicine, Schaffner, K.
(ed.), University of California Press, 1985.

[Popper, 1959} Popper, K. “The Logic of Scientific
Discovery”; Basic Books, New York, 1959.

[Popper, 1965] Popper, K. “Conjectures and
Refutations: The Growth of Scientific
Knowledge”;Harper Torch,New York, 1965.

[Reggia at al., 1983] Reggia, J., Nau, D., and Wang, P.
"Diagnostic Expert System Based on a Set Covering
Model"; Int. J. Man-machine Studies, vol. 19, pp.437-
460, 1983.

[Reggia & Nau, 1984] Reggia, J.A. and Nau, D.S. " An
Abductive Non-Monotonic Logic"; in Workshop on
Non-Monotonic Reasoning, New Paltz, N.Y., 1984,

{Reiter, 1980] Reiter, R., “A Logic for Default
Reasoning” Artificial Intelligence vol. 13, pp. 81-
132, 1980.

[Sattar & Goebel, 1989] Sattar, A. and Goebel, R.
“Using Crucial Literals to Select Better Theories”;
Technical Report, Dept. of CS, University of Alberta,
Canada, June 1989.

[Seki & Takeuchi, 198S] Seki, H. and Takeuchi, A.
“An Algorithm for Finding a Query which
Discriminates Competing Hypotheses”; Technical
Report TR-143, Institute for New Generation
Computer Technology, Tokyo, Japan, October 1985.

[Sergot, 1983] Sergot, M. “A Query-the-user Facility
for Logic Programming”; Integrated Interactive
Computer Systems, by P.Degano and E.Sandewell
(ed.s), North Holland Press, pp.27-41.

[Shoham, 1988] Shoham, Y., “Reasoning About
Change: Time and Causation from the Standpoint of
Artificial Intelligence”; MIT Press, 1988.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by 1COT. © ICOT, 1992

555

ACYCLIC DISJUNCTIVE LOGIC PROGRAMS WITH

ABDUCTIVE PROCEDURE AS PROOF PROCEDURE

Phan Minh Dung

Division of Computer Science
Asian Institute of Technology
GPO Box 2754, Bangkok 10501, Thailand.
E-mail: dung@ait.th

Abstract

We introduce and study a natural subclass of the locally
stratified disjunctive logic programs, the class of acyclic
disjunctive logic programs which extends the class of
acyclic normal logic programs in [AB].

We show that each acyclic disjunctive program P can be
transformed into an equivalent normal program N(P) where
the equivalence between P and N(P) means that each
perfect model of P is a stable model of N(P) and vice
versa.

We show that the Eshghi and Kowalski’s abductive
procedure [EK,Dun] is sound with respect to the stable
semantics of N(P). Thus this procedure can be used as a
proof procedure for acyclic disjunctive programs.

We give sufficient conditions for the completeness and
termination of the abductive procedure.

1. Introduction
Let us consider the following example

Example P: pvq
The semantics of P is defined by its two minimal models

{p}.{q}.

Let us translate P into N(P): p<-19q

q<qp

N(P) has two stable models {p},{q). So P and N(P) are
equivalent wrt stable semantics.

/"
What can we gain from such translation ??

The gain is indeed significant. While no proof procedure
for general disjunctive programs wrt stable semantics has
been given so far in the literature, the Eshghi-Kowalski’s
abductive procedure given in [EK] and studied extensively
in [Dun], is such a one for normal logic programs. Hence

for those disjunctive programs which can be transformed
into an equivalent normal programs, the Eshghi-Kowalski’s
abductive procedure can be used as a proof procedure for
stable semantics.

Acyclic disjunctive programs constitute such a class of
programs. Intuitively, an acyclic disjunctive program is a
program whose atom dependency graph contains no loop.
The class of acyclic disjunctive programs is a natural
extension of the class of acyclic normal logic programs in
[AB]. Similarly to [AB], we will show that several ways to
define the semantics of logic programs, e.g. the predicate
completion, perfect model semantics, stable model
semantics etc., coincide in the case of acyclic disjunctive
programs. The most striking characterization of acyclic
disjunctive programs is that each program in this class can
be transformed into an equivalent normal logic programs
which themself exhibit a remarkable termination behavior
as their atom dependency graph does not contain any
positive loop. This result suggests immediately that the
abductive procedure can be used as a proof procedure for
acyclic disjunctive programs.

The paper is organized as follows: In the next paragraph,
we define the acyclic disjunctive programs. Then in section
3, we show that each acyclic disjunctive program P can be
transformed into an equivalent normal program N(P). In
section 4, we show the soundness of the abductive
procedure with respect to the stable semantics of N(P). In
section 5, we give sufficient condition for the completeness
of the abductive procedure.

2. Preliminary

A literal is either an atom or the negation of an atom. A
disjunctive clause is a clause of the form A, v..v A, <-
L,,....L, where O<n, 0<m and A;’s are atoms and L;’s are
literals. If n=1, then a disjunctive clause is called a normal
clause. The head and body of a clause C are denoted by
head(C) and body(C) respectively. Further, pos(C) denotes
the set of atoms occurring positively in the body of C
while neg(C) denotes the set of atoms under negation in the
body of C. A disjunctive program is a finite set of
disjunctive clauses. Similarly, a normal program is a finite

556

set of normal clauses. The Herbrand base of a program P
is denoted by HB,. As usual, a Herbrand interpretation is
considered as a subset of HB,. The set of all ground
instances of clauses of a disjunctive program P is denoted
by Gp. If L is a literal then 4 L denotes the complementary
of L. If S is a set of literals, then.S={ LILe S }.

A disjunctive program P is locally stratified [Prl] if it is
possible to decompose the Herbrand base of P into disjoint
sets, called strata Hy,H,,....H,,....,H,,... where a@ < 7 and 1
is a countable ordinal so that for each ground clause in G,

Cl V.V Ck <- Al""’An’—l Bl"‘w'l Bm

(i) all C, belong to the same stratum, say H..
(ii) all A;belongto U{ H;1j<r}
(iii) all B; belong to U{ H; I j <t}

The intended semantics of a locally stratified disjunctive
program is captured by its perfect models [Prl,Pr2]. A
more general approach to semantics of logic programs is
the stable model semantics [GL] which coincides with the
perfect model semantics in the class of locally stratified
programs [GL]. Since the definition of stable model
semantics is simpler than that of perfect model semantics,
we choose to work with the former in this paper.

Let M be a Herbrand interpretation of P. The Gelfond-
Lifschitz transformation of P wrt M is the program
GL(PM) = { head(C) <- pos(C) | C € G, and neg(C) n M
= ¢ }. M is a stable model of P iff M is a minimal model
of GL(P,M) [Pr2,GL].

We introduce now the acyclic disjunctive programs.

Definition

A disjunctive program P is acyclic if it is possible to
decompose the Herbrand base of P into disjoint sets, called
strata Hy,H;.,...,H;,.. where i is a natural number so that for
each ground clause in G,

C,v.vC < A, A7 By By
(i) all C, belong to the same stratum, say H..

(ii) all A; and B; belong to U{ H; | j<r }
"

Since acyclic programs are locally stratified, their intended
semantics is the perfect model semantics.

3. Transforming Acyclic Disjunctive Programs into
Normal Programs

Let us introduce some new notations. Let D be a
disjunction of atoms. D is canonical if the atoms in D are
pairwise different. For each disjunction D, the canonical

form of D, denoted by can(D), is a disjunction containing
only distinct atoms in D and is equivalent to D. A
disjunction D’ is a factor of D with most general unifier
(mgu) O if D’ is can(D) and O is the identity substitution
or there are two or more unifiable atoms in D with mgu ©
and D’ is can(D®). For example, the disjunction p(x,a) v
p(b,y) has two factors: one is the disjunction itself and the
other is p(b,a) with the mgu {b/x,a/y}.

The normal form of P, written N(P), is constructed as
follows:

Let C:A;/v.VvA,<-L,..,L, Define
NC)={A<-A/,., A/ L®,.LO/

Av A'v.y A is a factor of Ay.v A,
with mgu ©}

N(P)=U{N(IC)/Ce P}
Example P: p(x,a) v p(b,y) <-

N(P): px.a) < - pb.y)
p(b.y) <- 1 p(x,a)
p(b,a) <-

I

It has been showed [DK] that each minimal Herbrand
model of a positive disjunctive programs is a model of the
Clark’s completion of N(P). In this chapter, we are
interested in the more general -question about the
relationship between the stable models of P and N(P).

The following theorem shows the equivalence between P
and N(P) for acyclic disjunctive programs.

Theorem 1 Let P be an acyclic disjunctive
program P, and M be a Herbrand
interpretation of P. Then M is a
stable model of P iff M is a stable

model of N(P).

Proof "=>" Let Q = GL(G,,M). Since M is a stable model
of P, M is a minimal model of Q. Since M is a minimal
model of Q, for each A € M, there is a clause A v A, v..
v A, <- Body in Q such that for each i: A; € M and Body
is true in M. Hence, for each A € M, there is a clause A
<- Body’ in Gy, such that Body’ is true in M. Thus, there
exists a clause C’ in GL(Gyg),M) such that head(C’)=A and
body(C’) is true in M. Since P is acyclic, GL(Gygp),M) is
acyclic, too. It follows, that M is the least Herbrand model
of GL(Gyp,M). So M is a stable model of N(P).

"<=" Let M be a stable model of N(P). Since GL(Gye,M)
= GL(N(GL(Gp,M)),M), M is also a stable model of
N(GL(Gp,M)). Thus M is a minimal model of GL(G,,M).
Hence M is a stable model of P.

I

Corollary Let P be an acyclic disjunctive
program, N(P) be its normal form.
Then a Herbrand interpretation M is
a perfect model of P iff M is a
stable model of N(P).

/"

The following example shows that in general, the above
theorem does not hold.

Example Let P: a<-b
b<-a
avb

NP): a<-b

b<-a
a<‘-|b
b<--‘a

It is clear that P is not acyclic. It is easy to see that N(P)
has no stable model while the unique minimal model of P
is {a,b}.

/

Since each locally stratified disjunctivc program posseses
at least one perfect model [Pr1,Pr2], it is obvious that there
exists at least one stable model for N(P). So
Corollary If P is acyclic, then N(P) posseses at
least one stable model.

I

The following theorems give important characterizations of
the normal form of a acyclic disjunctive program.

Theorem 2 Let P be an acyclic disjunctive
program. Then each stable model of
N(P) is a Herbrand model of
comp(N(P) and vice versa where
comp(N(P)) denotes the Clark’s
predicate completion [Cla,Llo] of
N(P).

Vi

The three-valued semantics and the
two-valued semantics of comp(N(P))
are equivalent in the sense that each
three-valued model of comp(N(P))
can be extended into an two-valued
one.

Theorem 3

i

Let L be a ground literal. We say that L holds with respect

to the stable semantics of P, written P |, L, if L is true in
each stable model of P. We say P U {L} is stable-
consistent if there exists one stable model of P in which L
is true.

557

Summary

Let P be an acyclic disjunctive program, and L be a ground
literal.

1) P kL iff N®) k L.
2) P U {L} is stable-consistent iff
N(P) U {L} is stable-consistent iff

comp(N(P)) U {L} is consistent.
/

The question of basic interest to us now is:

(*) "Given an acyclic disjunctive program P and a
ground literal L, is P U {L} stable-consistent ?"

Eshghi and Kowalski have developed an abductive
procedure [EK,Dun] which takes as input a query G and a
normal program P, and delivers as output a set of ground
negative literals H such that P U H U {G} is stable-
consistent. From the above obtained results, it is clear that
this abductive procedure can be used as a proof procedure
for the question (*).

4. The Eshghi and Kowalski’s Abductive Procedure

Before presenting the formal definition of the abductive
procedure, let us explain the algorithm informally by an
example.

Example P: P<A4q
q<-qp

We want to check whether p belongs to some stable model
of P, i.e. whether P U {p} is stable-consistent. It is clear
that the SLDNF-resolution will not terminate for this goal

due to the existence of a negative loop. To avoid getting
trapped in this loop, the abductive procedure uses a loop
check by "storing" all "encountered" negative literals in a
set H. If a selected subgoal belongs to H, then the
respected goal is simplified by deleting the selected subgoal
from it.

558

P
|
<191
' <;q and + q is "stored" in H = {7 q}.
|
)
| <P
I |
} <-p
| | O
i
! I <l‘ 14
| .
| ! ! since 4 q € HJ
| ! ,
i
! ! (1
‘ fail

1
/

Let us recall now the formal definition of the abductive
procedure from [EK,Dun].

Let P be a normal logic program.

A derivation from (G,,H,) to (G,,H,) (wrt P) is a sequence

(G1 yHl)s(GZvH2)a' . 3(Gn9Hn)

such that, for each i, 1<i<n, G; has the form <—1,1’ where
(without loss of generality) 1 is selected, and I’ is a
(possibly empty) collection of atoms, H; is a set of negative
literals, and

abl) If 1 is positive
then G;,;=C and H,, =H;

where C is the resolvent of some clause in
P with the clause G, on the selected literal 1.

ab2) If 1 is negative and1e H;

then G, =<-I" and H, =H,

ab3) If 1is negative (1 = k) and 1 & H, and there

is a consistency derivation from ({<—k},H;U
{1}) to (6.H’)
then G,,;=<-1" and H, =H

An abductive refutation is an abductive derivation to a
pair ([1,H).

A consistency derivation from (F,H,) to (F,H,) (wrt P)
is a sequence

(FI’H[)9 (F29H2)9° .oy (Fn,Hn)

such that, for each i, O<i<n, F, has the form {<—L1’} UF;’,
where (without loss of generality) the clause <—1,1’ has
been selected (to continue the search), 1 is selected, and

col) If 1 is positive

then F,=C'UF’ and H,=H,

wﬁcre C’ is the set of all resolvents of
clauses in P with the selected clause on the
selected literal, and [] &€ C’.

co2) If 1 is negative, 1 € H; and I’ is not empty

then F,={<T}UF’ and H,=H

col) If 1 is negative (1 = k), 1 ¢ H;

then if there is an abductive derivation from

(<—%k.H) to ((L.H')

then F,, =F’ and H,,=H’
else if 1’ is not empty
then F,= (<1} U F’
and H,,,=H,

A consistency derivation of the goal ({G},4) is a
sequentialization of the search tree of G. This
sequentialization is necessary because of the need to
accumulate the hypotheses found during this process.

We say that the abductive procedure is sound with respect
to the stable semantics if whenever there exists a refutation
from (<—A,$) to ({1,H) for A € HB then there exists a
stable model M such that Ae Mand HNM = ¢.

We say that the abductive procedure is complete with
respect to the stable semantics if for each ground literal L,
if P U {L} is stable-consistent then there exists a refutation
for the goal (<-L,9).

Note that in general, the abductive procedure is not sound
with respect to the stable semantics, but it is sound with
respect to the preferential semantics which is a
generalization of stable semantics [Dun]. But since these
two semantics coincide for programs N(P) where P is a
acyclic disjunctive programs, the soundness with respect to
the stable semantics follows directly from the soundness
with respect to the preferential semantics.

Theorem 4 (Soundness of the Abductive Procedute)

Let P be an acyclic disjunctive program and (<-
A,0),...((1,H) be a refutation with respect to the program
N(P). Then there exists a stable model M of P such that A
e MandHN M= 6.

Proof (Sketch) Let Hy,..H,... be the strata of P. Let P,
consist of those clauses A, v ..v A, <- Bd in G; such that
all A, belong to H,. By induction, we can prove that for
each i, the stable semantics and preferential semantics
[Dun] of P; coincide. It follows then that the stable and
preferential semantics of P coincide. The theorem follows
immediately from the fact that the abductive procedure is
sound wrt preferential semantics [Dun).

/
Using Abductive Procedure For Skeptical Reasoning

The question of this chapter is:

"Given a logic program P and a ground literal L,
does L. hold with respect to the stable semantics of
P

The following lemma shows that if the abductive procedure
is complete, then it can be used to as a proof procedure for
skeptical reasoning.

Lemma Let L be a ground literal and assume that
the abductive procedure is sound and
complete with respect to the stable

semantics.

If there exists no refutation for (<- L,p) then
PEL.

If the abductive procedure terminates for ground
goals, then it is decidable whether an arbitrary
ground literal L holds with respect to the stable

semantics.
/i
Example p<a
pP<-b
a<-] b
b < 7a

Since the abductive procedure is complete for this program,
the above lemma can be used to check whether p holds wrt
stable semantics.

559

<-1p
| | {<p} H={p}
|
| {<-a, <-b}
I
{<-4b, <-b}
[<-b
l |
]| T
| | {|<-a} H={qpa}
| | L)
| | | | <-b
I
P | o
|
|
| ll | | [
L
i |{<b}
|
I <5 a)
I |
| fail
fail

As there is no refutation for (<- q p,0), P , p.
/

The applicability of the abductive procedure as a proof
procedure for skeptical reasoning is based on its
completeness. In the following paragraph, sufficient
conditions for the completeness of abductive procedure are
given.

5. Completeness and Termination of the Abductive
Procedure

A normal program is said to be positive acyclic, written p:
acyclic, if there is a level mapping |.| assigning each atom
A € HB; a natural number |Al such that for each clause C
in Gy, for each atom A occurring in the head of C and each
atom B occurring positively in the body of C, |Al > IBI.

It is not difficult to see that if P is an acyclic disjunctive
program then N(P) is always p-acyclic. Note that positive
acyclicity is different to local stratifiability, i.e. there exists
programs which are p-acyclic and not locally stratified and
vice versa.

The atom dependency graph of P is a graph with ground
atoms as its nodes such that there exists a positive (resp.

560

negative) edge from A to B if A occurs in the head, and B
occurs positively (resp. negatively) in the body of some
clause C in G;.

An infinite path (A,,..,A,,..) of pairwise different atoms in
the atom dependency graph of P is said to be a negative
infinite loop if the path contains infinitely many negative
edges. P is said to be free of infinite negative loop,
written INL-free, if there exists no negative infinite loop
in the atom dependency graph of P.

A program P is allowed [Llo] if each clause in P satisfies
the condition that each variable appearring in the clause
appears also in a positive subgoal in the clause body.

Theorem 5 (Completeness of the Abductive Procedure)

Let P be an ailowed, p-acyclic, and NIL-free normal
program, and L be an arbitrary ground literal. Then the
abductive procedure will terminate for the goal (<-L,¢),
and if P U {L} is stable-consistent then there exists a
refutation from (<-L,9) to ([],H).

/i

Let us specify now the class of disjunctive programs such
that their normal form N(P) are INL-free. Two disjunctions
of atoms A, v.v A, and B, v...v B, are said to be related
if they have some atom in common. A sequence of
disjunctions D,,...,D,,,... is said to be a related sequence if
D,D,, are related for each i. A related sequence of
disjunctions D;,...,.D,,.. is said to be prime if for each i,
there exists a common atom A, in D, and D,,, such that the
sequence Ay,..,A,.. contains no atom twice. A disjunctive
program is said to be free of prime related sequence
(abbreviated as PRS-free) if no prime related consequence
can be built from the instances of the heads of the program
clauses of P.

Corollary If P is an allowed, acyclic, PRS-free
disjunctive program then the abductive
procedure, applied to N(P), is sound and
complete wrt perfect model semantic of P.

I

Acknowledgements

First of all, T wish to express my sincere thanks to Robert
Kowalski for his generous support as well as for the many
spiritful and insightful discussions. The long discussions
with Paolo Mancarella, and Tony Kakas on how to find an
extension of the abductive procedure which is complete
with respect to the preferential semantics, are very helpful.
So a lot of thanks to them.

References
[ABW] Apt K., Blair H., Walker A.
*Toward a Theory of Declarative Knowledge’
In Foundations of Deductive Databases & Logic
Programming, J. Minker (ed.) 1988
Apt K., Bezem M.
’Acyclic Programs’,
In Proceedings of the ICLP-90, Israel, MIT Press
[Bez] Bezem M.
’Characterizing Termination of logic programs with
level mappings’,
In Proceedings of the NACLP-89, USA, MIT Press
[Cav] Cavedon L.
’Continuity, consistency and
properties of logic programs’,
In ICLP 1987, Lisbon, MIT Press
Clark,K.L.
’Negation as Failure’,
in Logic and Database, Gallaire H., Minker J. (eds),
Plenum, New York,1978
[Dun] Dung P.M.
’Negations as hypotheses: an abductive foundation
for logic programming’
In Proceedings of Eighth ICLP, 1991, Paris, MIT
Press
Dung P.M,, Kanchanasut K.,
’On the generalized predicate completion of non-
Horn programs’,
In Proc. of NACLP-89, USA, MIT Press
Eshghi K., Kowalski R.A.
’Abduction Compared with Negation by Failure’
In Proc. of 6th ICLP, 1989
Gelfond M. Lifschitz V.
’The stable model semantics for logic programs’

In Proc. of the 5th Int Conf/Sym on Logic
Programming, MIT Press, 1988

[HP] Henshen L., Park H.
’Compiling GCWA in
databases’,
In Foundation in Deductive Databases and Logic
Programming, J. Minker (ed.)

[Kow] Kowalski R.A.

’Logic for problem solving’

Elsvier North Holland, New York, 1979 \

Lloyd J.W.

*Foundations of Logic Programming’,

second edition, Springer Verlag, 1987

[Lob] Lobo J.
’Semantics for normal disjunctive logic programs’
PhD thesis, 1991

[SL] Smith B.T., Loveland D.
’A simple near Horn prolog interpreter’
Proc. of the fifth joint conference on logic
programming, 1988, USA

[AB]

completeness

[Cla]

[DK]

[EK]

[GL]

indefinite deductive

[Llo]

[MR]

[Prl]

[Pr2]

[RT]

[SS]

Minker J., Rajasekar A.

’A fixpoint semantics for disjunctive logic
programming’,

In Journal of Logic programming, to appear
Przymusinski T.C. ,

’On the Declarative Semantics of Deductive
Databases and Logic Programs’,

In Foundations of Deductive Databases & Logic
Programming, J. Minker (ed.) 1988

Przymusinski T.C.

’Extended stable semantics for normal and
disjunctive programs’,

In Proc. of seventh ICLP, Israel, 1990

Ross K.A., Topor R.W.

’Inferring negative atoms from dsijunctive
databases’

Journal of Automated reasoning, Dec. 1988
Sakama C., Seki H.

"Possibel model semantics for disjunctive databases’
Preliminary report, ICOT

561

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

562

- Adding Closed World Assumptions to Well Founded Semantics

Luis Moniz Pereira

José J. Alferes

Joaquim N. Aparicio
AT Centre, Uninova and DCS, U. Nova de Lisboa
2825 Monte da Caparica, Portugal
{lmp, jja,jna}@fct.unl.pt

Abstract

Given a program P we specify an enlargement of
its Well Founded Model which gives meaning to
the adding of Closed World Assumptions. We do
so by proposing the desirable principles of a Closed
World Assumption (CWA), and proceed to for-
mally define and apply them to Well Founded Se-
mantics (WFS), in order to obtain a WFS added
with CWA, the O-semantics. After an introduc-
tion and motivating examples, there follow the
presentation of the concepts required to formalize
the model structure, the properties it enjoys, and
the criteria and procedures which allow the pre-
cise characterization of the preferred unique maxi-
mal model that gives the intended meaning to the
O-Semantics of a program, the O-Model. Some
properties are also exhibited that permit a more
expedite obtention of the models. Several detailed
examples are introduced throughout to illustrate
the concepts and their application. Comparison is
made with other work, and in the conclusions the
novelty of the approach is brought out.

1 Introduction and Motiva-
tion

Well Founded Semantics [Van Gelder et al., 1980)
has been proposed as a suitable semantics for gen-
eral logic programs. Its Extended Stable Mod-
els (XSM) [Przymusinska and Przymusinski, 1990,
Przymusinski, 1990] version has been explored as
a framework for formalizing a variety of forms of
non-monotonic reasoning [Pereira et al., 1991d,
Pereira et al., 1991e] and generalized to deal with
contradiction removal and counterfactuals [Pereira
et al., 1991a, Pereira et al., 1991b, Pereira et al.,
1991c]. The increasing réle of logic programming

extensions as an encompassing framework for these
and other AI topics is expounded at length in
[Kakas and Mancarella, 1991b], where they argue,
and we concur, that WFS is by design overly care-
ful in deciding about the falsity of some atoms,
leaving them undefined, and that a suitable form
of CWA can be used to safely and undisputably
assume false some of the atoms absent from the
well founded model of a program. Consider the
program P, adapted from [Kakas and Mancarella,
1991a]: {a «~a; c «—~a}, where WFM(P) = {}.
We argue that the intended meaning of the pro-
gram may be {~c}, since ~a may not be true in
any model of P, by the first rule, and so, the sec-
ond rule cannot contradict the assigned meaning.
Another way to understand this is that one may
safely assume ~c using a form of CWA on ¢, since
~a may not be consistently assumed.

However, when relying on the absence of present
evidence about some atom A, we do not always
want to assume that ~ A holds, since there may
exist consistent assumptions allowing to conclude
A. Roughly, we want to define the notion of con-
cluding for the truth of a negative literal ~A just
in case there is no hard nor hypothetical evidence
to the contrary, i.e. no consistent set of negative
assumptions such that ~A is untenable.

Consider P = {a «—~b; b —~a; c — a}. If we
interpret the meaning of this program as its WFM
(which is empty), and as we do not have a, a naive
CWA could be tempted to derive ~c based on the
assumption ~a. There is however an alternative
negative assumption ~b, that if made, defeats the
assumption ~a, i.e. the assumption ~a may not
be sustained since it can be defeated by the as-
sumption ~b. We will define later more precisely
the notions of sustainability and tenability.

Both programs above have empty well founded

models. We argue that WFS is too careful, and
something more can safely be added to the mean-
ing of program, thus reducing the undefinedness of
the program, if we are willing to adopt a suitable
form of CWA.

We argue that a set CW A(P) of negative lit-
erals (assumptions) added to a program model
MOD(P) by CWA must obey the four principles:

1. MOD(P) U CWA(P) [L for any
~L € CW A(P). This says that the program
model added with the set of assumptionsiden-
tified by the CWA rule must be consistent.

2. There is no other set of assumptions A
such that MOD(P)U A | L for some
~L € CWA(P). Le. CWA(P) is sustain-
able.

3. CWA(P) must be maximal.
4. CWA(P) must be unique.

The paper is organized as follows: in the next
section we present some basic definitions. In sec-
tion 3 we introduce some new definitions, captur-
ing the concepts behind the semantics, accompa-
nied by examples illustrating them. Models are
defined and organized into a lattice, and the class
of sustainable A-Models is identified. In section 5
we define the O-Semantics of a program P based on
the class of maximal sustainable tenable A-Models.
A unique modelis singled out as the O-Model of P.
Afterwards we present some properties of the class
of A-Models. Finally, we relate to other semantics
and present conclusions.

2 Language

Here we give basic definitions and establish nota-
tion ([Monteiro, 1991]). A program is a set of rules
of the form: H « By,...,Bn,~Cy,...,~Cp (n 2
0,m > 0) or equivalently H «— {Bi,...,B,}U
~{C1,...,Cn}, where ~{A4,4,...,A,} is a short-
hand for {~A;,...,~A,}, and ~C is short for
~{C1,...,Cn}; H,, B; and C; are atoms.

The Herbrand Base B(P) of a program P is de-
fined as usual as the set of all ground atoms. An
interpretation I of P is denoted by TU ~F, where
T and F are disjoint subsets of B(P). Atoms in T
are said to be true in I, atoms in F' false in I, and
atoms in B(P) — (T'U F) undefined in I.

563

In an interpretation TU ~ F a conjunction of
literals {By,...,Bn}U ~{Cy,...,Cn} is true iff
{Bi1,...,Bn} C T and {C,...,Cm} C F, is false
iff {B1,...,Bo}NF#0or{Cy,....,Cn}NF #0,

and is undefined iff it is neither true nor false.

3 Adding Negative Assump-
tions to a Program

Here we show how to consistently add negative
assumptions to a program P. Informally, it is con-
sistent to add a negative assumption to P if the
assumption atom is not among the consequences
P after adding the assumption. We also define
when a set of negative assumptions is defeated by
another, and show how the models of a program,
for different sets of negative assumptions added to
it, are organized into a lattice.

We begin by defining what it means to add as-
sumptions to a program. This is achieved by sub-
stituting true for the assumptions, and false for
their atoms, in the body of all rules.

Definition 3.1 (P+A) The program P + A ob-
tained by adding to a program P a set of negative
assumptions A C~B(P) is the result of:

e Deleting all rules H « {Bi,...,B,}U ~C
from P, such that some B; € A

¢ Deleting from the remaining rules all ~L € A

Definition 3.2 (Assumption Model) An As-
sumption Model of a program P, or A-Model for
short, is a pair (A; M) where A C~ B(P) and
M =WFM(P + A).

Among these models we define the partial order
<a in the following way: (A;; M) <, (Ag; M) iff
A; C A,. On the basis of set union and set inter-
section among the sets A of negative assumptions,
the set of all A-Models becomes organized as a
complete lattice.

Having defined assumption models we next con-
sider their consistency. According to the CWA
principles above, an assumption ~ A cannot be
added to a program P if by doing so A is itself
a consequence of P, or some other assumption is
contradicted.

Definition 3.3 (Consistent A-Model) An A-
Model (A; M) is consistent iff AU M is an inter-

pretation, i.e. there exists no assumption ~L € A
such that L € M.

564

Example 1 Let P = {¢ «~ b b «—~ a;
a —~a}, whose WFM is empty. The A-Model
({~a};{a,b,~c}) is inconsistent since by adding
the assumption ~a then a € WFM(P + {~a}).
The same happens with all A-Models containing
the assumption ~a. The A-Model ({~b, ~c}; {c})
is also inconsistent. Thus the only consistent A-

Models are ({}; {}), ({~b}; {c}) and ({~c};{}). O

Lemma 3.1 If an A-Model AM 1s inconsistent
then any AM' such that AM <, AM' is incon-
sistent.

Proof:[sketch] We prove that for all ~a’ € B(P),
if (AAZWFM(P + A)) is inconsistent then
(AU{~a',WFM(P + A U {~d'})) is also in-
consistent. By definition of consistent A-Model:
I~beA|lbe WFM(P+ A), so it suffices to
guarantee that : b ¢ WFM(P + AU {~d'}) —
o e WFM(P+ AU {~a'}).

Consider b ¢ WFM(P + A U {~a'}). Since
P+ AU {~a'} only differs from P + A in rules
with @’ or ~a’, and since b is true in P+ A, it can
be shown a’ is also true in P+ A. As the truth
of an atom in the WFM of any program may not
rely neither on the truth of itself nor of its com-
plementary, and because the addition of ~a' to
P + A only changes rules with ~a’ or ¢/, the truth
value of @’ in P+ AU {~a’} remains the same, i.e.
o e WFM(P+ AU {~d'}). ¢

According to the CWA principles above, an as-
sumption ~A cannot be sustained if there is some
set of consistent assumptions that concludes A.
We’ve already expressed the notion of consistency
being used. To capture the notion of sustainability
we now formally define how an A-Model can de-
feat another, and define sustainable A-Models as
the nondefeated consistent ones.

Definition 3.4 (Defeating)
A consistent A-Model (A; M) is defeated by a con-
sistent (A'; M) iff 3 ~a € Ala € M'.

Definition 3.5 (Sustainable A-Models)

An A-Model (A; M) is sustainable iff it is consis-
tent and not defeated by any consistent A-Model.
FEquivalently (~S; M) is sustainable iff:

sn Uconsistent (Ais M) M; = {}

Example 2 The only sustainable models in ex-
ample 1 are ({};{}) and ({~b};{c}). Note that
the consistent A-Model ({~c};{}) is defeated by

({~b}; {c}), i.e. the assumption ~c is unsustain-
able since there is a set of consistent assumptions
(namely {~b}) that leads to the conclusion ¢. O

The assumptions part of maximal sustainable A-
Models of a program P are maximal sets of consis-
tent Closed World Assumptions that can be safely
added to the consequences of P without risking
contradiction by other assumptions.

Lemma 3.2 If an A-Model AM is defeated by an-
other A-Model D, then all A-Models AM’ such
that AM <, AM' are defeated by D.

Proof: Similar to the proof of lemma 3.1 above. ¢

Lemma 3.3 The A-Model ({}; WFM(P)) is al-
ways sustainable.

Proof: By definition of sustainable. ¢

Theorem 3.4 The set of all sustainable A-Models
is nonempty. On the basis of set union and set in-
tersection among its A sets, the A-Models ordered
by <q form a lower sems lattice.

Proof: Follows directly from the above lemmas. ¢

A program may have several maximal sustain-
able A-Models.

Example 3 Let

P = {c —~c,~b; b — a; a «—~a}. Its sustainable
A-Models are ({}{}), ({~0}; {}) and ({~c; {})
The last two are maximal sustainable A-Models.
We cannot add both ~b and ~c to the program to
obtain a sustainable A-Model since ({~b, ~c}; {c})
is inconsistent. O

4 The O-semantics

This section is concerned with the problem of sin-
gling out, among all sustainable A-Models of a pro-
gram P, one that uniquely determines the mean-
ing of P when the CWA is enforced. This is ac-
complished by means of a selection criterium that
takes a lower semilattice of sustainable A-Models
and obtains a subsemilattice of it, by deleting A-
Models that in a well defined sense are less prefer-
able, i.e. the untenable ones.

Sustainability of a consistent set of negative as-
sumptions insists that there be no other consistent

set that defeats it (i.e. thereis no hypothetical evi-
dence whose consequences contradict the sustained
assumptions). Tenability requires that a maximal
sustainable set of assumptions be not contradicted
by the consequences of adding to it another com-
peting (nondefeating and nondefeated) maximal
sustainable set.

The selection process is repeated and ends
up with a complete lattice of sustainable A-
Models, which defines for every program P its O-
Semantics. The meaning of P is then specified
by the greatest A-Model of the semantics, its O-
Model.

To illustrate the problem of preference among
maximal A-Models we give an example.

Example 4

Let P = {c «~c,~b; b « a; a «—~a}, whose sus-
tainable A-Models are ({};{}), {({~b};{}), and
({~c},{}). Because we wish to maximize the
number of negative assumptions we consider the
maximal A-Models, which in this case are the
last two. The join of these maximal A-Models,
({~b,~c};{c}), is per force inconsistent, in this
case wrt ¢. This means that when assuming ~c¢
there is an additional set of assumptions entail-
ing ¢, making this A-Model untenable. But the
same does not apply to ~b. Thus the preferred A-
Model is ({~b},{}), and the A-Model ({~c};{})
is said untenable. The rationale for the preference
is grounded on the fact that the inconsistency of
the join arises wrt ¢ but not wrt b. O

Definition 4.1 (Candidate Structure)

A Candidate Structure CS of a program P is any
subsemilattice of the lower semi lattice of all sus-
tainable A-Models of P.

Definition 4.2 (Untenable A-Models)

Let {(A1; My),...,(An; My)} be the set of all maz-
imal A-Models in Candidate Structure CS. Let
J = (Ay;M;) be the join of all such A-Models, in
the complete lattice of all A-Models . An A-Model
(Ai; M;) is untenable wrt C'S iff it is mazimal in
CS and there exists ~a € A; such that a € Mj.

Proposition 4.1 There exists no untenable A-
Model wrt a Candidate Structure with a single
mazimal element.

Proof: Since the join coincides with the unique
maximal A-Model, which is sustainable by defini-
tion of CS, then it cannot be untenable. ¢

565

The Candidate Structure left after removing all
untenable A-Models of a CS, may itself have sev-
eral maximal elements, some of which might not
be maximal A-Models in the initial CS. If the re-
moval of untenable A-Models is performed repeat-
edly on the retained Candidate Structure, a single
maximal element is eventually obtained, albeit the
bottom element of all the CSs.

Definition 4.3 (Retained CS) The Re-
tained Candidate Structure R(C'S) of a Candidate
Structure CS 1s:

e CS if it has a single mazimal A-Model, i.e.
CS is a complete lattice.

o Otherwise, let Unt be the set of all untenable
A-Models wrt CS. Then R(CS) = R(CS —
Unt).

Definition 4.4 (The O-Semantics)
The O-Semantics of a program P is defined by the
Retained Candidate Structure of the semilatiice of
all sustainable A-Models of P.

Let (A; M) be its mazimal element. The in-
tended meaning of P is AU M, the O-Model of
P.

Theorem 4.1 (Existence of O-Semantics)
The Retained Candidate Structure of the semilat-
tice of all sustainable A-Models i3 nonempty.

Proof:[sketch] It suffices to guarantee that at each
iteration with more than one maximal A-Model at
least one is untenable. This is done by contradic-
tion: suppose no maximal A-Model is untenable.
Then their join would be the single maximal sus-
tainable one, and so could not be untenable, in the
previous and final iteration; accordingly the sup-
posed models cannot be maximal.

When there is a single maximal A-Model then
the structure is a complete lattice, since at
each iteration only maximal A-Models were re-
moved. This lattice is nonempty since its bot-
tom ({}; WFM(P)) is always sustainable and can
never be untenable. ¢

5 Examples

In this section we display some examples and their
O-Semantics. Remark that indeed the O-Models
obtained express the safe CWAs compatible with
the WFMs (which are all {}).

566

Example 5
Let P = {a «~a; b — ajc —~c,~b; d — c} The
semilattice of all sustainable A-Models CS is:

The join of its maximal A-
Models is ({~b,~c,~d};{c,~d}). Consequently,
the maximal A-Model on the right is untenable
since it contains ~c¢ in the assumptions, and c is
a consequence of the join. So R(CS) = R(CS’)
where CS’ is:

({Nb, Nd}’ {}
[~ {D) ([~} (D) (({~eh{~d})
[—
(VX))

The join of all maximal elements in C'S’ is the same
as before and the only untenable A-Model is again
the maximal one having ~ ¢ in its assumptions.

Thus R(CS) = R(CS") where CS” is:
({~b, ~d}, {}
1) ([{~dh D)

So the O-Model is {~b,~d}. Note that if P is
divided into P; = {c —~c,~b; d « ¢} and P, =
{a —~a; b « a}, the O-models of P, and P; both
agree on the only common literal ~b. So ~b rightly
belongs to the O-models of P. O

Example 6 Let P = {¢ —~p; p « a; a —~b;
b —~c; ¢ «—~a}. Its only consistent A-Models
are ({1 {}), ({~p)i{g}) and ({~q};{}). As this
last one is defeated by the second, the only sus-
tainable ones are the first two. Since only one is
maximal, these two A-Models determine the O-
Semantics, and the meaning of P is {~p,g¢}, its
O-Model. Note that if the three last rules, form-
ing an “undefined loop”, are replaced by another
"undefined loop” a «~a, the O-model is the same.
This is as it should, since the first two rules con-
clude nothing about a. O

Example 7 Let P = {p « a,b; a —~b; b —~a}.
The A-Models with ~b in their assumptions de-
feat A-Models with ~a in their assumptions and

vice-versa. Thus the O-Semantics is determined

by ({};{}) and ({~p}; {}), and the meaning of P
is {~p}, its O-Model. O

Example 8 Let P = {c «—~c,~b; b —~c,~b;
b — a; a —~a}. Its sustainable A-Models are
(01 {1)s ({~b}; {}) and ({~c}; {}). The join of the
maximal ones is ({~b, ~c}; {b, c}), and so both are
untenable. Thus the Retained Candidate Struc-
ture has the single element ({};{}) and the mean-
ingof Pis{} 0

6 Properties of Sustainable
A-Models

This section explores properties of sustainable
A-Models that provide a better understanding
of them, and also give hints for their construc-
tion without having to previously calculate all A-
Models.

We begin with properties that show how our
models can be viewed as an extension to Well
Founded Semantics (WFS). As mentioned in
[Kakas and Mancarella, 1991a), negation in WFS
is based on the notion of support, i.e. a literal ~L
only belongs to an Extended Stable Model (XSM)
if all the rules for L (if any) have false bodies in
the XSM. In contradistinction, we are interested
in negations as consistent hypotheses that cannot
be defeated. To that end we weaken the necessary
(but not sufficient) conditions for a negative lit-
eral to belong to a model as explained below. We
still want to keep the necessary and sufficient con-
ditions of support for positive literals. More pre-
cisely, knowing that XSMs must obey, among oth-
ers, the following conditions cf. [Monteiro, 1991]:

o If there exists a rule p «— B in the program
such that B is true in model M then p is also-
true in M (sufficiency of support for positive
literals).

o If an atom p € M then there exists a rule
p < B in the program such that B is true in
M (necessity of support for positive literals).

o If all rule bodies for p are false in M then
~p € M (sufficiency of support for negative
literals).

o If ~p € M then all rules for p have false bodies
in M (necessity of support for negative liter-
als).

Our consistent A-models, when understood as
the union of their pair of elements, assumptions
A and WFM(P + A), need not obey the fourth
condition. Foregoing it condones making negative
assumptions. In our models an atom might be false
even if it has a rule whose body is undefined. Thus,
only false atoms with an undefined rule body are
candidates for having their negation added to the

WFM(P).

Proposition 6.1 Let (A; M) be any consistent A-
Model of a program P. The interpretation AU M
‘obeys the first three conditions above.

Proof: Here we prove the satisfaction of the first
condition. The remaining proofs are along the
same lines.

If 3p « by,...,bp,~ c1,...,~cm € P |
{b1y--+sbny~c1,...y~cm} C AUM then bje M
(1<i<n)and~c; € Mor~c; € A(1<j<m).
Let p « by,...,bn,~ciy...y~ce(l 2 1,k < m) be
the rule obtained from an existing one by removing
all ~c; € A, which is, by definition, a rule of P+ A.
Thus there exists a rule p « B in P+ A such that
B C WFM(P+A) = M. Given that the WFM of
any program must obey the first condition above,
p€E WFM(P+ A). &

Next we state properties useful for more directly
finding the sustainable A-Models.

Proposition 6.2 There ezists no consistent A-
Model (A;M) of P with ~a € A such that
a€ WFM(P).

Proof: Let (A; M) be an A-Model such that
~a € A and a € WFM(P). It is known that the
truth of any ¢ € WFM(P) cannot be sup-
ported neither on itself nor on ~a. If A = {~a}
then, ‘after adding {~a} to the program, the
rules supporting the truth of a¢ remain un-
changed, i.e. a € WFM(P + {~a}), and thus
({~a}; WFM(P + {~a}))*is inconsistent. It fol-
lows, from lemma 3.1, that all A-Models (A4; M)
such that {~a} C A are inconsistent. ¢

Hence, A-Models not obeying the above restric-
tion are not worth considering as sustainable.

Proposition 6.3

If a negative literal ~L € WFM(P) then there is
no consistent A-Model (A;M) of P such that
Le M.

567

Proof:[sketch] We prove that if L € M for a given
A-Model (A; M) of P then (A; M) is inconsistent.
If L € M there must exist a rule L — B,~C in P
such that BU ~C C M U A and BU ~C is false in
WFM(P), i.e. there must exist L — B,~C in P
with at least one body literal true in M U A and
false in WFM(P). If that literal is an element of
~C, by proposition 6.2, (A; M) is inconsistent (its
corresponding atom is true in WF M (P) and false
in M U A). If it is an element of B this theorem
applies recursively, ending up in a rule with empty
body, an atom with no rules or a loop without an
interposing ~I. By definition of WFM(P+ A) the
truth value of literals in these conditions can never
be changed. ¢

Theorem 6.1 If ~L € WFM(P) then ~L € M
in every consistent A-Model (A; M) of P.

Proof: Given proposition 6.3, it suffices to prove
that L is not undefined in any consistent A-Model
of P. The proof is along the lines of that of the
proposition above. {

Consequently, all supported negative literals in
the WFM(P), which includes those without rules
for their atom, belong to every sustainable A-
Model.

Lemma 6.2 Let WFM(P) = TU ~F. For any
subset S of ~F, WFM(P)= WFM(P +S).

Proof: This lemma is easily shown using the def-
inition of P + A and the properties of the WFM.
¢

Theorem 6.3 Let WFM(P) = TU ~ F and
(A;WFM(P + A)) be a consistent A-Model, and
let A = AN ~ F. Then WFM(P + A) =
WFM(P+(A-A')).

Proof: Let P' = P+ (A — A’), and WFM(P) =
TU ~F. By theorem 6.1 ~F C WFM(P'). So,
by lemma 6.2, WFM(P') = WFM(P'+ ~F) =
WFM([P+(A—(AN ~F))]+ ~F). By definition of
P+Ait follows that (P+A;)+ Az = P4+(A1UA,).
Thus WFM(P’) is:

WFM(P+ [(A- (AN ~F)U ~F))
= WFM(P+ A)

568

This theorem shows that sets of assumptions
_including negative literals of WFM(P) are not
worth considering since there exist smaller sets
having exactly the same consequences AU M and,
by proposition 6.3 the larger sets are not defeatable
by reason of negative literals from the WFM(P).

Another important hint for calculating the sus-
tainable A-Models is given by lemma 3.1. Accord-
ing to it one should start by calculating A-Models
with smaller assumption sets, so that when an in-
consistent A-Model is found, by the lemma, sets
of assumptions containing it are unworth consid-
ering.

Example 9

Let P = {p «~a,~b; a « c,d; c —~c; d}. The
least A-Model is ({};{d,~b}) where {d,~b} =
WFM(P). Thus sets of assumptions contain-
ing ~ d or ~ b are not worth considering.
Take now, for example, the consistent A-Model
({~a};{d,~b,p}), which we retain. Consider
({~c};{c,a,~p}); as this A-Model is inconsistent
we do not retain it nor consider any other A-
Models with assumption sets containing ~c. Now
we are left with just two more A-Models worth
considering: ({~p}; {d,~b}) which is defeated
by ({~a};{d,~b,p}); and ({~p,~a};{d,~b,p})
which is inconsistent. Thus the only two sustain-
able A-Models are ({};{d, ~b})
and ({~a};{d,~b,p}). In this case, the latter is
the single maximal sustainable A-Model, and thus
uniquely determines the intended meaning of P to
be AUM = {~a,d,~b,p}. O

7 Relation to other work

Consider the following program ([Van Gelder et

al., 1980]):
P = {p~g~r~s qe—r1,~p;

T = Py~ 8 =Py ~vg, ~T)

In [Przymusinska and Przymusinski, 1990] they
argue that the intended semantics of this program
should be the interpretation {s, ~p, ~q,~r} due to
the mutual circularity of p,q,r. This model is pre-
cisely the meaning assigned to the program by the
O-Semantics, its O-Model. Note that WFS iden-
tifies the (3-valued) empty model as the meaning
of the program. This is also the model provided
by stable model semantics [Gelfond and Lifschitz,
1988]. The weakly perfect model semantics for this

program is undefined as noticed in [Przymusinska
and Przymusinski, 1990].

The EWFS [Baral et al., 1990] is also an exten-
sion to the WFM based on the notion of GCWA
[Minker, 1987]. Roughly EWFS moves closer than
the WFM (in the sense of being less undefined)
to being the intersection of all minimal Herbrand
models of P [Dix, 1991}:

EWFM(P) =45
WFM(P)+ (T(WFM(P)), F(WFM(P)))

where: T(I) =gy True(I — MIN — MOD(P)),
F(I) =4ey False(I — MIN — MOD(P)) and
I-MIN-MOD(P) is the collection of all minimal
models consistent with the three valued interpre-
tation I.

For the program P = {a «—~a} we have:

WFM(P) = {},
MIN-MOD(P) = {a} and EWFM(P) = {a}

Note this view identifies the intended meaning
of rule @ «~ a as the equivalent logic formula
a «— -a, ie. a. The O-Model of P is empty.

The difference between the O-Semantics and
EWFS may be noticed in the intended meaning
of the two rule program: {a —~b; b «—~a}, which
is behind the motivation of the extension EFWS of
WFM based on GCWA. EWFS wants to identify
a V b as the meaning of this program, which also
justifies the identification of a «~a with the fact
a. The O-Model is empty.

A similar approach based on the notion of stable
negative hypotheses (built upon the notion of con-
sistency) is introduced in [Kakas and Mancarella,
1991b], identifying a stable theory associated with
a program P as a ”skeptical” semantics for P, that
always contains the well founded model.

One example showing that
their approach is still conservative is:
{p —~q; ¢ —~r; r —~p; s — p}. Stable theories
identifies the empty set as the meaning of the pro-
gram; however its O-Model is {~s}, since it is con-
sistent, maximal, sustainable and tenable. Kakas
(personnal communication) now also obtains this
model, as a result of the investigation mentioned in
the conclusions of [Kakas and Mancarella, 1991b).

8 Conclusions

We identify the meaning of a program P as a suit-
able partial closure of the well founded model of

the program in the sense that it contains the well
founded model (and thus always exists). The ex-
tension we propose reduces undefinedness (which
some authors argue is a desirable property) in the
intended meaning of a program P, by an ade-
quate form of CWA based on notions of consis-
tency, sustainability and tenability with regard to
alternative negative assumptions. Sustainability
of a consistent set of negative assumptions insists
that there be no other consistent set that defeats it
(i.e. there is no hypothetical evidence whose con-
sequences contradict the sustained assumptions).
Tenability requires that a maximal sustainable set
of assumptions be not contradicted by the conse-
quences of adding to it another competing (nonde-
feating and nondefeated) maximal sustainable set.

Acknowledgements

We thank ESPRIT BRA COMPULOG (no. 3012),
Instituto Nacional de Investigagdo Cientifica, Junta
Nacional de Investigacdo Cientifica e Tecnolégica and
Gabinete de Filosofia do Conhecimento for their sup-
port. We are indebted to Anthony Kakas and Paolo
Mancarella for their previous incursions and intuitions
into a similar problem in the setting of their Stable
Theories. Luis Monteiro is thanked for helpful discus-
sions.

References

[Baral et al., 1990] C. Baral, J. Lobo, and J. Minker.
Generalized well-founded semantics. In M. Stickel,
editor, CAD’90. Springer-Verlag, 1990.

[Dix, 1991] J. Dix. Classifying semantics of logic pro-
grams. In A. Nerode, W. Marek, and V. S. Subrah-
manian, editors, Logic Programming and NonMono-
tonic Reasoning’91. MIT Press, 1991.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lif-
schitz. The stable model semantics for logic pro-
gramming. In R. A. Kowalski and K. A. Bowen,
editors, 5th International Conference on Logic Pro-
grammaing, pages 1070-1080. MIT Press, 1988.

[Kakas and Mancarella, 1991a}] A. C. Kakas and
P. Mancarella. Negation as stable hypothesis. In
A. Nerode, W. Marek, and V. S. Subrahmanian, ed-
itors, Logic Programming and NonMonotonic Rea-
soning’91. MIT Press, 1991.

[Kakas and Mancarella, 1991b] A. C. Kakas and
P. Mancarella. Stable theories for logic programs.
.In Ueda and Saraswat, editors, International Logic
Programming Symposium’91. MIT Press, 1991.

569

[Minker, 1987] J. Minker. On indefinite databases and
the closed world assumption. Readings in Nonmono-
tonic Reasoning. Morgan Kaufmann, 1987.

[Monteiro, 1991] L. Monteiro. Notes on the semantics
of logic programs. Technical report, DI/UNL, 1991.

[Pereira et al., 1991a] L. M. Pereira, J. J. Alferes, and
J. N. Aparicio. Contradiction Removal within Well
Founded Semantics. In A. Nerode, W. Marek, and
V. S. Subrahmanian, editors, Logic Programming
and NonMonotonic Reasoning’91. MIT Press, 1991.

[Pereira et al., 1991b] L. M. Pereira, J. J. Alferes, and
J. N. Aparicio. The extended stable models of con-
tradiction removal semantics. In P. Barahona, L. M.
Pereira, and A. Porto, editors, 5th Portuguese AI
Conference’91. Springer-Verlag, 1991.

[Pereira et al., 1991c] L. M. Pereira, J. N. Aparicio,
and J. J. Alferes. Counterfactual reasoning based
on revising assumptions. In Ueda and Saraswat,
editors, International Logic Programming Sympo-
stum’91. MIT Press, 1991.

[Pereira et al., 1991d] L. M. Pereira, J. N. Aparicio,
and J. J. Alferes. Hypothetical reasoning with well
founded semantics. In B. Mayoh, editor, Scandina-
vian Conference on AI’91. I0S Press, 1991.

[Pereira et al., 1991e] L. M. Pereira, J. N. Aparicio,
and J. J. Alferes. Nonmonotonic reasoning with well
founded semantics. In International Conference on
Logic Programming’91. MIT Press, 1991.

[Przymusinska and Przymusinski, 1990)
H. Przymusinska and T. Przymusinski. Semantic
Issues in Deductive Databases and Logic Programs.
Formal Techniques in Artificial Intelligence. North
Holland, 1990.

[Przymusinski, 1990] T. Przymusinski. Extended sta-
ble semantics for normal and disjunctive programs.
In International Conference on Logic Program-
mang’90, pages 459—-477. MIT Press, 1990.

[Van Gelder et al., 1980] A. Van Gelder, K. A. Ross,
and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of ACM, pages 81—
132, 1980.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,

edited by ICOT. © ICOT, 1992 570

Contributions to the Semantics of Open Logic Programs

A. Bossi!, M. Gabbrielli?, G. Levi? and M.C. Meo?

1) Dipartimento di Matematica Pura ed Applicata
Universita di Padova
Via Belzoni 7, I-35131 Padova, [taly
mat010@QIPDUNIVX.UNIPD.IT

Abstract

The paper considers open logic programs originally
introduced in [Bossi and Menegus 1991] as a tool
to build an OR-compositional semantics of logic
programs. We extend the original semantic defi-
nitions in the framework of the general approach
to the semantics of logic programs described in
[Gabbrielli and Levi 1991b]. We first define an OR-
compositional operational semantics Og(P) mod-
eling computed answer substitutions. We con-
sider next the semantic domain of Q-interpretations,
which are sets of clauses with a suitable equiva-
lence relation. The fixpoint semantics Fq(P) given
in [Bossi and Menegus 1991] is proved equivalertt to
the operational semantics, by using an intermedi-
ate unfolding semantics. From the model-theoretic
viewpoint, an (-interpretation is mapped onto a set
of Herbrand interpretation, thus leading to a defi-
nition of Q-model based on the classical notion of
truth. We show that under a suitable partial order,
the glb of a set of 2-models of a program P is an
2-model of P. Moreover, the glb of all the 2-models
of P is equal to the usual Herbrand model of P while
Fa(P) is a (non-minimal) Q-model.

1 Introduction

An Q-open program [Bossi and Menegus 1991] Pis a
prograin in which the predicate symbols belonging to
the set) are considered partially defined in P. P can
be composed with other programs which may further
specify the predicates in . Such a composition is
denoted by Ug. Formally, if Pred(P) N Pred(Q) C
Q then PUg @ = P U Q, otherwise P Ug @ is
not defined (Pred(P) denotes the predicate sym-
bols in P). A typical partially defined program is a
program where the intensional definitions are com-

2) Dipartimento di Informatica
Universita di Pisa
Corso Italia 40, 56125 Pisa

{gabbri,levi,meo}@dipisa.di.unipi.it

pletely known while extensional definitions are only
partially known and can be further specified.

Example 1.1 Let us consider the following program

Q1 ={ anc(X,Y): —parent(X,Y).
anc(X,Z): —parent(X,Y), anc(Y, Z).
parent(isaac, jacob).
parent(jacob, benjamin). }

New extensional information defining new parent tu-
ples can be added to Q1 as follows

Q2 = { parent(anna, elizabeth).
parent(elizabeth, john). }

The semantics of open programs must be -
compositional w.r.t. program union, i.e. the seman-
tics of P;Ug P; must be derivable from the semantics
of Py and P,. If Q contains all the predicates in P,
Q-compositionality is the same as compositionality.

The least Herbrand model semantics, as origi-
nally proposed [van Emden and Kowalski 1976] and
the computed answer substitution semantics in
[Falaschi et al. 1988,Falaschi et al. 1989a], are not
compositional w.r.t. program union. For example,
in example 1.1, the atom anc(anna, elizabeth) which
belongs to the least Herbrand model semantics of
Q1 U @, cannot be obtained from the least Herbrand
model semantics of @; and @; (see also example 2.1).

In this paper we will introduce a semantics for
Q-open programs following the general approach
in [Gabbrielli and Levi 1991b] which leads to se-
mantics definitions which characterize the program
operational behavior. This approach leads to
the introduction of extended interpretations (-
interpretations) which are more expressive than Her-
brand interpretations. The improved expressive
power is obtained by accommodating more syntac-
tic objects in 7-interpretations, which are (possibly

infinite) programs. The semantics in terms of =-
interpretations can be computed both operationally
and as the least fixpoint of suitable continuous im-
mediate consequence operators on m-interpretations.
It can also be characterized from the model-theoretic
viewpoint, by defining a set of extended models (7-
models) which encompass standard Herbrand mod-
els. In the specific case of Q-open programs, ex-
tended interpretations are called 2-interpretations
and are sets of conditional atoms (i.e. clauses such
that all the atoms in the body are open). Each
Q-interpretation represents a set of Herbrand inter-
pretations that could be obtained by composing the
open program with a definition for the open predi-
cates. Q-interpretations of open programs are intro-
duced to obtain a unique representative model, com-
putable as the least fixpoint of a suitable continuous
operator, in cases where no such a representative ex-
ists in the set of Herbrand models.

The main contribution of this paper is the defi-
nition of an OR-compositional (i.e. compositional
w.r.t. program union) semantics of logic programs
in the style of [Falaschi et al. 1988, Falaschi et al.
1989b]. Other approachs to OR-compositionality
can be found in [Lassez and Maher 1984, Mancar-
ella and Pedreschi 1988, Gaifman and Shapiro 1989a,
Gaifman and Shapiro 1989b]. An OR-compositional
semantics corresponds to an important program
equivalence notion, according to which two programs
P, and P, are equivalent iff for any program @ a
generic goal G computes the same answers in P, UQ
and P, U Q. An OR-compositional semantics has
also some interesting applications. Namely it can be
used

o to model logic languages provided with a
module-like structure,

e to model incomplete knowledge bases, where
new chunks of knowledge can incrementally be
assimilated,

¢ for program transformation
(the transformed programs must have the same
OR-compositional semantics of the original pro-
gram),

o for semantics-based “modular” program analy-
sis.

The paper is organized as follows. Subsection 1.1
contains notation and useful definitions on the se-
mantics of logic programs. In section 2 we define
an operational semantics Oq(P) modeling computed
answer substitutions which is OR-compositional.
Section 3 introduces a suitable semantic domain for

571

the Oq(P) semantics and defines Q-interpretations
which are sets of clauses modulo a suitable equiv-
alence relation. In section 4 the fizpoint semantics
Fa(P), is proved equivalent to the operational se-
mantics by using an intermediate unfolding seman-
tics. Section 5 is concerned with model theory. From
the model-theoretic viewpoint, an Q-interpretation
is mapped onto a set of Herbrand interpretations,
thus leading to a definition of 2-model based on the
classical notion of truth. We show that under a suit-
able partial order, the glb of a set of -models of a
program P is an §2-model of P. Moreover, the glb of
all the Q-models of P is equal to the usual Herbrand
model of P. Moreover, Fq(P) is a (non-minimal) Q-
model, equivalent to the model-theoretic semantics
defined in [Bossi and Menegus 1991] in terms of Sq-
models. A comparison between {2-models and the
Sq-models is made in section 6. Section 7 is devoted
to some conclusive remarks. All the proofs of the re-
sults given here can be found in [Bossi et al. 1991].

1.1 Preliminaries

The reader is assumed to be familiar with the ter-
minology of and the basic results in the seman-
tics of logic programs [Lloyd 1987,Apt 1988]. Let
the signature S consist of a set F' of function sym-
bols, a finite set P of predicate symbols, a denu-
merable set V' of variable symbols. All the defini-
tions in the following will assume a given signature
S. Let T be the set of terms built on F and V.
Variable-free terms are called ground. A substitu-
tion is a mapping ¥ : V — T such that the set
D) = {X | HX) # X} (domain of ¥J) is finite.
If W C V, we denote by 9}y the restriction of 9 to
the variables in W, ie. dw(Y) =Y for Y ¢ W.
€ denotes the empty substitution. The composition
Jo of the substitutions 9 and ¢ is defined as the
functional composition. A renaming is a substitu-
tion p for which there exists the inverse p~! such
that pp~! = p~'p = ¢. The pre-ordering < (more
general than) on substitutions is such that ¥ < ¢ iff
there exists ¢ such that 99’ = . The result of the
application of the substitution 9 to a term ¢ is an in-
stance of t denoted by t9. We define t <t (¢ is more
general than t') iff there exists 9 such that 9 =¢. A
substitution 9 is grounding for t if tJ is ground. The
relation < is a preorder. ~ denotes the associated
equivalence relation (variance). A substitutiond isa
unifier of terms t and ¢’ if t¥ = t'9. The most general
unifier of t; and ¢, is denoted by mgu(ty, ;). All the
above definitions can be extended to other syntactic
expressions in the obvious way. An atom is an object
of the form p(t,...,t,) where p€ P, ty,...,t, € T.

572

. clauses. A goal is a formula Ly, ...

A clause is a formula of the form H : —L4,..., L,
with n > 0, where H (the head) and L,,..., L, (the
body) are atoms. “: =" and “.” denote logic implica-
tion and conjunction respectively, and all variables
are universally quantified. If the body is empty the
clause is a unit clause. A program is a finite set of
, L., where each
L; is an atom. By Var(FE) and Pred(E) we denote
respectively the sets of variables and predicates oc-
curring in the expression E. A Herbrand interpre-
tation I for a program P is a set of ground atoms.
The intersection M(P) of all the Herbrand models
of a programn P is a model (least Herbrand model).
M(P) is also the least fixpoint of a continuous trans-
formation Tp (immediate consequences operator) on
the complete lattice of Herbrand interpretations. If
Gisagoal, G '\ﬁap By, ..., B, denotes an SLD deriva-
tion with fair selection rule of By,..., B, in the pro-
gram P where 9 is the composition of the mgu’s used
in the derivation. G e—8—+p O denotes the refutation
of G in the program P with computed answer substi-
tution 9. A computed answer substitution is always
restricted to the variables occurring in G. The nota-
tions #, X will be used to denote tuples of terms and
variables respectively, while B denotes a (possibly
empty) conjunction of atoms.

2 Computed answer substitu-
tion semantics for (2-open
programs

The operational semantics is usually given by means
of a set of inference rules which specify how deriva-
tions are made. From a purely logical point of
view the operational semantics is simply defined in
terms of successful derivations.
programming language viewpoint, the operational
semantics must be concerned with additional infor-
mation, namely observable properties. A given pro-
gram in fact may have different semantics depend-
ing on which of its properties can be observed. For

However, from a

instance in pure logic programs one can observe suc-
cesses, finite failure, computed answer substitutions,
partial computed answer substitutions or any com-
bination of them. A given choice of the observ-
able induces an equivalence on programs, namely
two programs are equivalent iff they are observation-
ally indistinguishable. When the semantics correctly
captures the observable, two programs are equiva-
lent if they have the same semantics. When also
compositionality is taken into account, for a given
observable property we can obtain different seman-

tics (and equivalence relations) depending on which
kind of program composition we consider. Indeed,
the semantics of logic programs is usually concerned
with AND-composition (of atoms in a goal or in a
clause body). Consider for example logic programs
with computed answer substitutions as observable
[Falaschi et al. 1989a].
can be defined as

O(P) = {p(X)8 |X are distinct var, p(X) —p O}
where the denotation of a program is a set of non-
ground atoms, which can be viewed as a possibly infi-
nite program [Falaschi et al. 1989a]. Since we have
syntactic objects in the semantic domain, we need

The operational semantics

an equivalence relation in order to abstract from
irrelevant syntactic differences. If the equivalence
is accurate enough the semantics is fully abstract.
According to [Gabbrielli and Levi 1991b], Herbrand
interpretations are generalized by w-interpretations
which are possibly infinite sets of (equivalence classes
The operational semantics of a pro-
gram P is then a m-interpretation I, which has
the following property.
ally equivalent with respect to any goal G. This
is the property which allows to state that the se-
mantics does indeed capture the observable behavior
[Falaschi et al. 1989a]. The following example shows
that when considering OR-composition (i.e. union of
sets of clauses), non-ground atoms (or unit clauses)
are not sufficient any longer to define a compositional

of) clauses.

P and I are observation-

semantics.

Example 2.1 Let us consider the following pro-

grams
Pr={ ¢X):—p(X). P={ pb). }
r(X): —s(X).
s(b).
pla). }

According to the previous definition of O(P),
O(P1) = {p(a), ¢(a),r(b),s(b)} and O(P,) = {p(b)}.
Since O(P, U Py) = {p(a), p(b), a(a), a(8), 7(b), s(8)},
the semantics of the union of the two programs can-
not be obtained from the semantics of the programs.

In order for a semantics to be compositional, it
must contain information in the form of a mapping
from sets of atoms to sets of atoms. This is indeed
the case of the semantics based on the closure op-
erator [Lassez and Maher 1984] and on the Tr op-
erator [Mancarella and Pedreschi 1988]. If we want
a semantics expressed by the program syntax, OR-
compositionality can only be obtained by choosing
as semantic domain a set of (equivalence classes of)
clauses. In example 2.1, for instance, the semantics
of P, should contain also the clause ¢(X) : —p(X).

Let us formally give the definition of the program
composition we consider.

Definition 2.2 Let P be a program and §) be a set of
predicate symbols. P is open w.r.t. Q (or Q-open) if
the information on the predicates in Q 1s considered
to be partial. Moreover if P,Q are Q-open programs
and (Pred(Q) N Pred(P)) C Q then P Uq Q s the
Q-open program PUQ. If (Pred(Q)NPred(P)) € Q
then P Uq @ 1s not defined.

Note that when considering an Q-open program
P and an Q-open program @), the composition of
P and @ is defined only if (Pred(Q) N Pred(P)) C
(2N Q). Moreover, the composition of P and @ is
a P-open program, where ¥ = QU .

The definition of any predicate symbol p € € in
an -open program P can always be extended or
refined. For instance in example 1.1 program)y is
open w.r.t. the predicate parent and this predicate
is refined in program ;.
concerned with a predicate symbol of an Q-open pro-
gram P can be either complete (when it takes place
completely in the program P) or partial (when it ter-
minates in P with an atom p(f) such that p € Q and
p(f) does not unify with the head of any clause in
P). A partial deduction can be completed by the
addition of new clauses. Thus we have an hypothetic

Therefore, a deduction

deduction, conditional on the extension of predicate
p.

Let us consider again the program P; of exam-
ple 2.1 and assume Q = {p}. Then, the goal r(X)
produces a complete deduction only, computing the
answer substitution {X/b}. The goal ¢(X) produces
a complete deduction, computing the answer sub-
stitution {X/a} and an hypothetical deduction re-
turning any answer that could be computed by a
definition of p external to P;. The goal ¢(b) instead
has one hypothetical deduction only, conditional on
the provability (outside Py) of p(b). We want to ex-
press this hypothetical reasoning, i.e. that ¢(b) is
refutable if p(b) is refutable. Hence we will consider
the following. operational semantics (rvecall that by
B we denote By,...,B, with n > 0).

Definition 2.3 Let Q be a set of predicate symbols.
We define
Id(Q) = {p(X): —p(X) | pe QX are
distinct variables }
Definition 2.4 (Q-compositional computed answer

substitutions semantics) Let P be a program and let
P*=PUIdQ). Then we define Oq(P) =

{A: =By | p(X)~5p B Spe By
X distinct variables,
A =p(X)y, {Pred(B,)} CQ}

573

The set of clauses Id(§) in the previous defini-
tion is used to delay the evaluation of open atoms.
This is a trick which allows to obtain by using
a fixed fair selection rule R, all the derivations
p(Xy, ., Xn) «zﬁp B,,....B, which use any selec-
tion rule R, for Pred(B,,...,B,) € Q. Note that
the first step of the derivation uses a clause in P (in-
stead than in P*) because we want Oq(P) to contain
a clause p(X) : —p(X) if and only if p(X) ~5p p(X).

Example 2.5 Let Py, P, be the Q-open programs of
ezample 2.1 where Q = {p}.

Then Oq(P;) = {p(b)} and

Oa(Py) = {a(X) : —p(X), pla), gla). r(B), s(B)}.
Ogq contains enough information to compute the se-
mantics of compositions. Indeed O(P, U P) C
Oq(PLUPR;) and Og(PLUP;) = Og(Oa(P1)UO(P,))
(see theorem 2.9).

"Example 2.6 Let Q = {q.7} and let Q1. Qy be the

following programs
Q= {p(X,Y") s —r(X), q(}").
r(a).

Then Oa(Q2) = {r(b)}, Oa(@Q)=

{p(X,Y) : —r(X),¢(Y), p(a,Y): —¢(Y'). r(a)} and
Oa(Q1 U Q2) = Oa(0a(Q1)U Oa(Q2)) =

(X, Y) s =r(X),q(Y), pla.Y): —q(}),

p(b,Y): —q(Y), r(a),r(b)} (see theorem 2.9).

——

Note that Oq(P) is essentially the result of the
partial evaluation [Lloyd and Shepherdson 1987] of
P, where derivations terminate at open predicates.
This operational semantics fully characterizes hypo-
thetic deductions, conditional on the extension of the
predicates in Q. Indeed the semantics of a program
P can be viewed as a possibly infinite set of clauses
and the partial computed answer substitutions can
be obtained by executing the goal in the “program”.
The equivalence (Zq) on programs induced by the
computed answer substitution observable when con-
sidering also programs union, can be formally de-
fined as follows.

Definition 2.7 Let P, P, be $-open programs.
Then Py =q P, if for every goal G and for ev-
ery program @ s.t. PiUq Q, 1 = 1,2, is defined,
G ’i)P,uQQ 0 G »ipzunQ O where p 1s a renam-
ing.

Oq allows to characterize a notion of answer sub-
stitution which enhances the usual one, since also
(unresolved) atoms, with predicate symbols in Q, are
considered. Therefore it is able to model computed
answer substitutions in an OR compositional way.
The following results show that Oq(P) is composi-
tional w.r.t. Ug and therefore it correctly captures

574

the computed answer substitution observable notion
when considering also programs union.

Theorem 2.8 Let P be an §2-open program.

Theorem 2.9 Let Py, P; be Q-open programs and
let P, Ugng be defined.
Then Oq(Oa(P1) Ug Oa(P2)) = Oq(Py Ug Py).

Corollary 2.10 Let P;, P, be Q-open programs.
If OQ(Pl) = OQ(PQ) then P1 EQ Pg.

3 Semantic domain for Q2-open
programs

In this section we formally define the semantic do-
main which characterizes the above introduced op-
erational semantics Oq. Since Qg contains clauses
(whose body predicates are all in 2), we have
to accommodate clauses in the interpretations we
use. Therefore we will define the notion of Q-
interpretation which extends the usual notion of in-
terpretation since an Q-interpretation contains con-
ditional atoms. As usual, in the following, §2 is a set
of predicates.

Definition 3.1 (Conditional atoms)
An Q-conditional atom is a clause

A:-B,,...,B, such that Pred(B,,....B,) C Q.

In order to abstract from the purely syntactical
details, we use the following equivalence =~ on con-
ditional atoms.

Definition 3.2 Let ¢; = A; : —B;,...,B,, ¢ =
Ag : =Ds,...,D,, be clavses. Then c¢; < ¢ iff 39
such that 3{i1,..., 1.} C {1,...,m} such that A9
= Ay, ip # ik for b # k, and (By9,...,B,0) =
(Diyy ..., Di,). Moreover we define c1 = 3 iff 1 < ¢
and ¢c3 < ¢1.

Note that in the previous definition bodies of
clauses are considered as multisets (considering sets
would give the standard definition of subsumption).
Equivalent clauses have the same body (considered
as a multiset) up to renaming. Considering sets in-
stead of multisets (subsumption equivalence) is not
correct when considering computed answer substitu-
tions. The following is a simple counterexample.

Example 3.3 Let

o = p(X,Y) i —q(X,¥),q(X,Y)

and c; = p(X,Y) : —¢(X,Y). Let P, = {c1} and
Py = {c3} be Q-open programs where & = {¢}. Obuvi-
ously, considering bodies of clauses as sets. ¢y = o€

where € 1s the empty renaming. However, Py #q
P, since by considering @ = {q¢(X,b),q¢(a,Y)},
(X, Y) Spoo O where 9 = {X/a,Y/b}, while the
goal p(X,Y) in the program P> U Q can compute ei-
ther {X/a} or {Y/b} only.

Definition 3.4 The Q-conditional base, Cq, 18 the
quotient set of all the Q-conditional atoms w.r.t. =.

In the following we will denote the equivalence
class of a conditional atom ¢ by ¢ itself, since all
the definitions which use conditional atoms are not
dependent on the element chosen to represent an
equivalence class. Moreover, any subset of Cq will
be considered implicitly as an Q-open program. Be-
fore giving the formal definition of 2-interpretation,
we need the notion of u-closed subset of Cq.

Definition 3.5 A subset I of Cq is u-closed iff
VH : —By,...,B, € I and VB : —A,,..., A, €1
such that 39 = mgu(B;,B), for 1 <i<n,

(H . —Bl,.‘.,B,‘_l,Ah...,Am,BH.l,...,Bn)'ﬁ (S I.
Moreover if I C Cq, we denote by T its w-closure
defined as the least (w.r.t. C) I' C Cq u-closed such
that I C I'.

Proposition 4.5 will show that the previous notion of
u-closure is well defined. A u-closed interpretation [
is an interpretation which, if viewed as a program,
is closed under unfolding of procedure calls. Inter-
pretations need to be u-closed for the validity of the
model theory developed in section 5. Therefore, in
order to define -interpretations we will consider u-
closed sets of conditional atoms only. Let us now
give the formal definition of {2-interpretation.

Definition 3.6 An Q-interpretation I is any sub-
set of Cq which is u-closed. The set of all the Q-
interpretations s denoted by .

Lemma 3.7 (3,C) s a complete lattice where the
minimal element 1s O and glb(X) = {U,ex @ for any
XCS.

In the following the operational semantics Oq will
be formally considered as an -interpretation.

4 Fixpoint semantics

In this section we define a fixpoint semantics Fo(P)
which in the next subsection is proved to be equiva-
lent to the previously defined operational semantics
Oq(P). This can be achieved by defining an imme-
diate consequence operator T§ on the lattice (3, C)
of Q-interpretations. Fqo(P) is the least fixpoint of
8.

The immediate consequences operator T§ is
strongly related to the derivation rule used for §2-
open programs and hence to the unfolding rule.
Therefore T models the observable properties in an
OR compositional way, and may be useful for mod-
ular (i.e. OR compositional) bottom-up program
analysis.

Definition 4.1 Let P be an Q-open program. Then
T3(I) = TY(I) where TH(I) is the operator defined
in [Bossi and Menegus 1991] as follows.
ra(l) =
{(A: =Ly,.... L. eCy|
EIA: —Bl,...,Bn € P,
IB:—LicTUIR), i=1,...,n, m; >0
s.t. 9 =mgu((B,...,Bn),(B1,....B\))}

Proposition 4.2 TS is continuous in the complete
lattice (&, C).

The notion of ordinal powers for T§# is defined as
usual, namely T8 10 = @, TS Tn+1 = T2(T2 Tn)
and T8 Tw = Upso (T# Tn). Since TF is contin-
uous on (J, C), well known results of lattice theory
allow to prove proposition 4.3 and hence to define
the fixpoint semantics as follows.

Proposition 4.3 T Tw is the least fizpoint of TS
in the complete lattice (3, C).

Definition 4.4 Let P be an Q-open program.
The fizpoint semantics Fo(P) of P s defined as
Fa(P) =T Tw.

Remark

The original definition of T'%(I) does not require Q-
interpretations to be u-closed subsets of Cq. If we
consider an §2-interpretation as any subset of Cq and
the 'Y operator, even if the intermediate results
T$ 1 n are different, the following proposition 4.5
and theorem 4.6 show that the least fixpoint I'$ T w
is a u-closed set and it is equal to Fq(P) (I'% is con-
tinuous on (p(Cq), €)). Therefore, when considering
the fixpoint semantics we can use the I'} operator.
Moreover, proposition 4.5 ensures us that the previ-
ous notion of u-closure is well defined.

Proposition 4.5 Let I C Cq and let T9(I) be de-
fined as in definition 4.7. Then the following hold
1. Iis u-closed iff I = T'H(I),
2. for any program P, T$ T w is u-closed,
8. I' =T¢ 1 w is the least (w.r.t. set inclusion)
subset of Cq such that it is u-closed and I C I'.

Theorem 4.6 Let P an Q-ope'ri program. TH Tw =
Fa(P).

575

4.1 Unfolding semantics and equiva-
lence results

To clarify the relations between the operational and
the fixpoint semantics, before proving their equiva-
lence, we introduce the intermediate notion of un-
folding semantics Ug(P) [Levi 1988, Levi and Man-
carella 1988]. Uq(P) is obtained as the limit of the
unfolding process. Since the unfolding semantics can
be expressed top-down in terms of the I'} opera-
tor, the unfolding semantics can be proved equal to
the standard bottom-up fixpoint semantics. On the
other hand, since Un(P) and Oq(P) are based on
the same inference rule (applied in parallel and in
sequence respectively) Ug(P) and Og(P) can easily
be proven equivalent.

Definition 4.7 Let P and Q be Q-open programs.
Then the unfolding of P w.r.t. @ is defined as
unfp(Q)= |
{(A:=Ly,...,L,)9 |
- 3A:-B,,...,B, € P,
3B/ :—L, e IUIN), i=1,...
s.t. ¥ =mgu((By,...,B,),(By,..

s T2y mtzo

)

Note that the only difference between un f2(Q) and
T'%(Q) is that the second restricts to clauses in Cq
the set resulting from the definition. Therefore if I is
an Q-interpretation (i.e. I C Cq), TR(I) = unfE(I)
holds. In general, ['4(I) = wo(unf2(I)) where ta(P)
extracts from a program P an -interpretation.

Definition 4.8 Let P be an -open program. Then
we define

to(P)={c€eP|cela}.

Definition 4.9 Let P be an Q-open program and let
tq(P) be as defined in definition 4.8. Then we define
the collection of programs

P() = P
P, =unfp_,(P)

The unfolding semantics Ug(P) of the program P is
defined as

Ua(PY= | walP).
i=1,2,...
The following theorem states the equality of the un-
folding and the operational semantics.

Theorem 4.10 Let P be an Q-open program. Then
Oa(P) = Ug(P).

~ Note that IS tTn+tl= unfg;‘(@), where P} =
P and P}, = unfg(P!). Therefore we have the
following theorem.

576

Theorem 4.11 Let P be a program. Then Fal
Ua(P).

Corollary 4.12 Let P be
Fa(P) = Oq(P).

P) =

Then

a program.

5 Model Theory

As we have shown, the operational and fixpoint se-
mantics of a program P define an Q-interpretation
Ip, which can be viewed as a syntactic notation for
a set of Herbrand interpretations denoted by H(Ip).
Namely, H(Ip) represents the set of the least Her-
brand models of all programs which can be obtained
by closing the program Ip with a suitable set of
ground atoms defining the open predicates. Qur aim
is finding a notion of Q-model such that Oq(P) (and
Fa(P)) are Q-models and every Herbrand model is
an -model. This can be obtained as follows.

Definition 5.1 Let J be an Q-interpretation. Then

we define '

Atomq(J) = {p(f) | p € Q and p(t) is a ground
instance of an atom in J}.

Example 5.2 Let Q = {p, ¢} and

J =A{p(a): —q(b)}. Then Atomq(J) = {p(a),q(b)}.

Definition 5.3 Let I be an Q-interpretation for an
Q-open program. Then we define

HI) = {M(ITUJ)|JC Atomq(I)}
where M(K') denotes the least Herbrand model of IK.

Example 5.4 Let I = {p(a) : —q(b)} be an Q-

interpretation. Then
1) for @ ={q}
Atoma(I) = {¢(b)} end
HI) = {0. {p(a), ¢(B)}}.

2) for Q= {p,q}
Atomqo(I) = {p(a),¢(b)} and
H(I) = {0, {p(a)}, {p(a), ¢(b)}}.

Definition 5.5 Let P be an Q-open program and.

I be an Q-interpretation. I is an 2-model of P iff
vV J € H(I), Jis a Herbrand model of P.

Obviously, in general given a Herbrand model M
of a program P, M U N is not anymore a model of
P for an arbitrary set of ground atoms N. Since
we want a notion of 2-model which encompasses the
standard notion of Herbrand model, the “closure” of
the interpretation I can be performed by adding only
ground atoms which unify with atoms already in I.
The following example 5.6 shows that if such a con-
dition is not satisfied, a standard Herbrand model
would not any more be an -model.

Example 5.6 Let us consider the Q-open program
P = {p(a) : —q(a)} where Q@ = {q}. Then § is
a (the least) Herbrand model of P. If, by violating
the J C Atomq(I) condition, {¢(a)} € H(D), since
{g(a)} is not a Herbrand model of P, § would not be
an Q-model of P.

Example 5.7 Let us consider the program Py where
Q = {p} of the ezample 2.1. Then

On(Ry) = 14(X) : —p(X), pla), a(a), (B), s(5)}
s an Q-model of Py since

H(Oa(P1)) = {H1,H,, Hs,...}

where, denoting by [p(X)] the set of ground instances
of p(Xo), ‘

Hy = {p(a), q(a),r(b),s(b)}

H; = {p(a), p(b), ¢(a), ¢(b), (), s(b)}

H, = {r(8),s(5)} U [p(X)] U [g()]}
and Hy,H,,...,H, are Herbrand models of P;.

The following proposition states the mentioned prop-
erties of 2-models.

Proposition 5.8 Let P = {c,..
open program. Then

.y¢n} be an Q-

1. every Herbrand model of P is an §2-model of P,
2. Oq(P) is an Q-model of P.

A relevant property of standard Herbrand mod-
els states that the intersection of a set of models of
a program P is always a model of P. This allows
to define the model-theoretic semantics of P as the
least Herbrand model obtained by intersecting all
the Herbrand models of P. The following example
shows that this important property does not hold
any more when considering {2-models with set theo-
retic operations.

Example 5.9 Let Q = {q} and P be the following
Q-open program P = {p(5) : —q(b), p(X), g(@)}.
Then Oq(P) = {p(b) : —4(b), p(2), ¢(a)} and
M(P) = {q(a)} U {p(f) | t is a ground term }.

By proposition 5.8 Oq(P) and M(P) are Q-models
of P. However Oq(P)N M(P) = {g(a)} is not an
Q-model of P.

The Q-model intersection property does not hold
because set theoretic operations do not adequately
model the operations on conditional atoms. Namely,
the information of an {-interpretation I; may be
contained in I, without I; being a subset of I,. In
order to define the model-theoretic semantics for Q-
open programs as a unique (least) Q-model, we then
need a partial order T on Q-interpretations which

allows to restore the model intersection property. C
should model the meaning of Q-interpretations, in
such a way that ($,C) is a complete lattice and the
greatest lower bound of a set of -models is an -
model. As we will show in the following, this can
be obtained by considering T as given in definition
5.10. According to the above mentioned property,
there exists a least 2-model. It is worth noting that
such a least Q2-model is the standard least Herbrand
model (proposition 5.21). Moreover note that, the
most expressive -model Oq(P) is a non-minimal Q-
model. The following definitions extend those given
in [Falaschi et al. 1989b] for the non compositional
semantics of positive logic programs.

Definition 5.10 Let [}, I, be Q-interpretations.
We define
o) <L iff Ver € Iy 3y € I such that ¢y < ¢y.

[]]1 E 12 Zﬁ (I] S]2) and (IZ S Il
5L Ch)

implies

Proposition 5.11 The relation < is a preorder and
the relation T is an ordering.

Note that if Iy C I, then I} C I, since I} C [
implies I; < I;. The following definitions and propo-
sitions will be used to define the model-theoretic se-
mantics.

Definition 5.12 Let I be an Q-interpretation. We
define Min'(I) = {ce I |V'€l. /S c= =c}
and Min(I) = Min’ in'(I).

Example 5.13 We show Min and Min’ for the fol-
lowing Q-interpretations I and J. Let

I'= A{p(x), q(b), pla), pla): —q(b) }
J={ qlx): —p(z).r(a
q(b) —p(b)
t=p(a)
1‘(6) }
Then
Muwn/(I) = Min(I) = {p(z), ¢(D)}.

Mun'(J) = {r(b), ¢(z):
Min(J) = J.

—pla),r(x). q(b): —p(a‘)},"

Definition 5.14
Let A be a set of Q-intérpretations.
the following notations.

o VA=Uienl
o Min(A) = Min(7A)

o UA = A where A =
Min(A)C I})

We wntroduce

Min(A) U wv{I € A

577

It is worth noting that VI Min(I) C I (recall that
I is u-closed) and Min{A) = Min(JA).

Proposition 5.15

For any set A of Q-interpretations there ezim the
least upper bound of A | lub(A). end lub(A) = JA
holds.

Proposition 5.16 The set of all the Q-interpreta-
tions with the ordering T 1s a complete lattice. Cq
18 the top element and O is the bottom element.

The model-theoretic construction is possible only
if 2-interpretations can be viewed as representations
of Herbrand interpretations. Notice that every Her-
brand interpretation is an Q-interpretation. The fol-
lowing proposition generalizes the standard intersec-
tion property of Herbrand models to the case of Q-
models.

Proposition 5.17 Let M be a non-empty set of §2-
models of an Q-open program P. Then ¢glb(M) is an
Q-model of P.

Corollary 5.18 The set of all the Q-models of a
program P with the ordering T s a complete lattice.

We are now in the position to formally define the
model-theoretic semantics.

Definition 5.19 Let P be a program. Its model-
theoretic semantics 1s the greatest lower bound of the
set of its models, 1.e.,

Ma(P) =glb({I €3 \ I is a Q-model of P}).

Proposition 5.21 shows that the above defined
model-theoretic semantics is the standard least Her-
brand model. This fact justifies our choice of the

ordering relation.

Proposition 5.20 For any Q-model I there exists
a standard Herbrand model I' such that I' T I.

Proposition 5.21 The least standard Herbrand

model is the least Q-model.

6 Sop-models

We will now consider the relation between Q-
models (definition 5.5) and the Sp-models defined
in [Bossi and Menegus 1991] on the same set of in-
terpretations. Both the 2-models and the Sg-models
are intended to capture specific operational proper-
ties, from a model-theoretic point of view. However,
Sq-models are based on an ad hoc notion of truth
(Sq-truth) and the least Sg-model is exactly Fo(P).

578

Conversely, 2-models are based on the usual notion
of truth in a Herbrand interpretation through the
function H.- Moreover the least £2-model is the usual
least Herbrand model, while Fq(P) is a non-minimal
Q-model.

Definition 6.1 [Bossi and Menegus 1991]
(Sa-Truth) Let Q be a set of predicate symbols and I
be an Q-interpretation. Then

(a) An atom A is Q-true in I iff Acl

(b) A definite clause A:-By,. .., By1s Q-true in I iff
VBi,...,B] such that
B,:-L,,...,B.:~L, €IUIdQ)
if 39 = mgy((B, ..., Bn), (By,...,By))
then (A:—Ly,...,L,)9 €L

Sq-models are defined in the obvious way.

Proposition 6.2 Every Sq-model is an Q-model
(according to definition 5.5).

Proposition 6.3 [Bossi and Menegus 1991] If A s
a non-empty set of Sq-models of an Q-open program
P, then Narea M s an Sq-model of P.

The previous proposition allows to define the model
theoretic semantics Mg, (P) for a program P in
terms of the Sq-models as follows.

Definition 6.4 [Bossi and Menegus 1991] Let P be
an Q-open program and let S be the set of all the
Sa-models of P. Then Ms,(P) = Naes M.

Corollary 6.5 Let A be o non-empty set of Sq-
models of an Q-open program P. Then Masep M s
an Q-model of P.

By definition and by proposition 6.3, Ms,(P) is
the least Sg-model in the lattice (3. C) (recall that &
is the set of all the Q-interpretations). The following
proposition shows that Mg, (P) is also the least So-
model in the lattice (S, C).

Proposition 6.6 Let P be « program and let S be
the set of all the Sq-models of P. Then Mg (P) =
glb(S) (according to T ordering).

The following theorem shows the equivalence
of the fixpoint semantics (definition 4.4) and the
model-theoretic semantics My, (P).

Theorem 6.7 [Bosst and Menegus 1991] Let P be
an Q-open program. Then Fo(P) = Mg, (P).

Corollary 6.8 Let P be an Q-open program. Then
Fao(P) 1s an Q-model of P.

It is worth noting that, since Oq(P)= Fq(P)
= Mg, (P), theorem 2.9 shows that the model-
theoretic semantics Mg, (P) is compositional w.r.t.
Q-union of programs when considering computed an-
swer substitutions as observables. This result was
already proved in [Bossi and Menegus 1991] for the
M, (P) model. Finally note that, as shown by the
following example, T§ is not monotonic (and there-
fore it is not continuous) on the complete lattice
(3,E). However, proposition 6.10 ensures us that
Fa(P) is still the least fixpoint of T¢ on ($,).

Example 6.9 Consider the program

P={r(t) p(e): —qlx)}.

Let @ =0, I = {¢(a), a(a)} and L = {r(b),¢()}.
Then I, T I, while T$(I)={p(z),p(a),r(d)} Z
T8(L)={p(x),r(D)}.

Proposition 6.10 T2 Tw is the least fizpoint of TS
on the complete lattice (¥, C).

7 Related work and conclu-
sions

The result of our semantic construction has sev-
eral similarities with the proof-theoretic semantics
defined in [Gaifman and Shapiro 1989a, Gaifman
and Shapiro 1989D].
closer to the usual characterization of the seman-
tics of logic programs. Namely we define a top-
down operational and bottom-up fixpoint semantics,
and, last but not least a model-theoretic seman-

Our construction however is

tics which allows us to obtain a declarative char-
acterization of syntactically defined models. The
semantics in {Gaifman and Shapiro 1989a] does not
characterize computed answer substitutions, while
the denotation defined by the fully abstract seman-
tics in [Gaifman and Shapiro 1989h] is not a set of
clauses (i.e. a program). The framework of [Gaifman
and Shapiro 1989a, Gaifman and Shapiro 1989b]
can be useful for defining a program equivalence no-
tion, even if our more declarative (model-theoretic)
characterization is even more adequate. Moreover,
the presence of an operational or a fixpoint seman-
tics makes our construction useful as a formal ba-
sis for program analysis. Another related paper is
[Brogi et al. 1991}, where Q-open logic programs are
called open theories.
with a model-theoretic semantics which is based on
ideas very similar to those underlying our definition
5.3. [Brogi et al. 1991] however does not consider
semantic definitions in the style of our Oq(P) which
gives a unique denotation to any open program.

Open theories are provided

Let us finally remark some interesting properties
of the Q-model Oq(P).

e By means of a syntactic device, we obtain a
unique representation for a possibly infinite set
of Herbrand models when a unique representa-
tive Herbrand model does not exist. A simi-

lar device was used in [Dung and Kanchana-

sut 1989, Kanchanasut and Stuckey 1990, Gab-
brielli et al. 1991] to characterize logic programs

with negation.

e Operators, such as Ug are quite easy and natu-
ral to define on Oq(P).

e Oq(P) can be used for modular program analy-
sis [Giacobazzi and Levi 1991] and for studying
new equivalences of logic programs, based on
computed answer substitutions. which are not
considered in [Maher 1988].

o It is strongly related to abduction [Eshghi and
Kowalski 1989]. If Q is the set of abducible pred-
icates, the abductive consequences of any goal
G can be found by executing G in Og{ P).

e The delayed evaluation of open predicates which
is typical of Oq(P) can easily be generalized to
other logic languages, to achieve compositional-
ity w.r.t the union of programs. In particular
this matches quite naturally the semantics of
CLP and concurrent constraint programs given
in [Gabbrielli and Levi 1990, Gabbrielli and Levi
1991a).

References

[Apt 1988] K. R. Apt. Introduction to Logic Pro-
gramming. In J. van Leeuwen. editor., Haend-
book of Theoretical Computer Science, volume
B: Formal Models and Semantics. Elsevier, Am-
sterdam and The MIT Press, Cambridge. 1990.

[Bossi et al. 1991] A. Bossi, M. Gabbuielli, G. Levi,
and M. C. Meo. Contributions to the Semantics
of Open Logic Programs. Technical Report TR
17/91, Dipartimento di Informatica. Universita

di Pisa, 1991.

[Bossi and Menegus 1991] A. Bossi and M. Mene-
gus. Una Semantica Composizionale per Pro-
grammi Logici Aperti. In P. Asirelli, editor.
Proc. Sizth Italian Conference on Logic Pro-
gramming, pages 95-109. 1991.

E. Lamma, and

[Brogi et al. 1991] A. Brogi,
P. Mello. Open Logic Theories. In P. Krueger

579

L.-H. Eriksson and P. Shroeder-Heister, editors,
Proc. of the Second Workshop on Eztensions to
Logic Programming, Lecture Notes in Artificial
Intelligence. Springer-Verlag, Berlin, 1991.

[Dung and Kanchanasut 1989] Phan Minh Dung
and K. Kanchanasut. A Fixpoint Approach to
Declarative Semantics of Logic Programs. In
E. Lusk and R. Overbeck, editors, Proc. North
American Conf. on Logic Programming’89,
pages 604-625. The MIT Press, Cambridge,

Mass., 1989.

[Eshghi and Kowalski 1989] . Eshghi and R. A.
Kowalski. Abduction compared with Negation
by Failure. In G. Levi and M. Martelli, edi-
tors, Proc. Sizth Int’l Conf. on Logic Program-
ming, pages 234-254. The MIT Press, Cam-
bridge. Mass.. 1989.

[Falaschi et al. 1988] M. Falaschi. G. Levi,
M. Martelli, and C. Palamidessi. A new Declar-
ative Semantics for Logic Languages. In R. A.
Kowalski and K. A. Bowen, editors, Proc. Fifth
Int’l Conf. on Logic Programmaing, pages 993-
1005. The MIT Press, Cambridge, Mass., 1988.

[Falaschi et al. 1989a] M. Falaschi, G. Levi,
M. Martelli, and C. Palamidessi. Declara-
tive Modeling of the Operational Behavior of
Logic Languages. Theoretical Computer Sci-
ence, 69(3):289-318, 1989.

[Falaschi et al. 1989b] M. Falaschi, G. Levi,
M. Martelli, and C. Palamidessi. A Model-
Theoretic Reconstruction of the Operational Se-
mantics of Logic Programs. Technical Report
TR 32/89, Dipartimento di Informatica, Uni-
versita di Pisa, 1989. To appear in Information
and Computation.

[Gabbrielli and Levi 1990] M. Gabbrielli and

G. Levi. Unfolding and Fixpoint Semantics of
Concurrent Constraint Programs. In H. Kirch-
ner and W. Wechler, editors, Proc. Second Int’l
Conf. on Algebraic and Logic Programmang, vol-
ume 463 of Lecture Notes in Computer Science,
pages 204-216. Springer-Verlag. Berlin, 1990.
Extended version to appear in Theoretical Com-
puter Science.

[Gabbrielli and Levi 1991a] M. Gabbrielli and
G. Levi. Modeling Answer Constraints in Con-
straint Logic Programs. In K. Furukawa, editor,
Proc. Eighth Int’l Conf. on Logic Programming,
pages 238- 252, The MIT Press. Cambridge,
Mass., 1991.

[Gabbrielli and Levi 1991b] M. Gabbrielli and

G. Levi. On the Semantics of Logic Pro-
grams.- In J. Leach Albert, B. Monien,
and M. Rodriguez-Artalejo, editors, Automata,
Languages and Programmang, 18th Interna-
tional Colloquium, volume 510 of Lecture Notes
in Computer Science, pages 1-19. Springer-
Verlag, Berlin, 1991.

[Gabbrielli et al. 1991] M. Gabbrielli, G. Levi, and
D. Turi. A Two Steps Semantics for Logic Pro-
grams with Negation. Technical report, Di-
partimento di Informatica, Universita di Pisa,
1991.

[Gaifman and Shapiro 1989a] H. Gaifman and
E. Shapiro. Fully abstract compositional se-
mantics for logic programs. In Proc. Swsteenth
Annual ACM Symp. on Principles of Program-
ming Languages, pages 134--142. ACN. 1989.

[Gaifman and Shapiro 1989b] H. Gaifman and
E. Shapiro. Proof theory and semantics of logic
programs. In Proc. Fourth IEEE Symp. on
Logic In Computer Science, pages 50-62. IEEE
Computer Society Press, 1989.

[Giacobazzi and Levi 1991] R. Giacobazzi and
G. Levi. Compositional Abstract Interpretation
of Constraint Logic Programs. Technical re-
port, Dipartimento di Informatica. Universita

di Pisa. 1991.

[Kanchanasut and Stuckey 1990] K. KNanchanasut
and P. Stuckey.
Normal Logic Programs. In H. Kirchner and
W. Wechler, editors, Proc. Second Int’l Conf. on
Algebraic and Logic Programming. vohune 463

Eliminating Negation from

of Lecture Notes in Computer Science. pages
217-231. Springer-Verlag. Berlin. 1990.

[Lassez and Maher 1984] J.-L. Lassez and M. J. Ma-
her. Closures and Fairness in the Semantics of
Programming Logic. Theoretical Computer Sci-
ence. 29:167-184, 1984.

[Levi 1988] G. Levi. Models. Unfolding Rules and
Fixpoint Semantics. In R. A. Kowalski and
K. A. Bowen, editors. Proc. Fifth Intl Conf.
on Logic Programmanyg, pages 1649-1665. The
MIT Press. Cambridge, Mass.. 1988.

[Levi and Mancarella 1988] G. Levi and P. Mancar-
ella. The Unfolding Semantics of Logic Pro-
Technical Report TR-13/88. Diparti-

mento di Informatica. Universita di Pisa. 1988.

grams.

[Lloyd 1987] J. W. Lloyd. Foundations of Logic
Programming. = Springer-Verlag, Berlin, 1987.
Second edition.

[Lloyd and Shepherdson 1987] J. W.” Lloyd and

J. C. Shepherdson. Partial Evaluation in Logic
Technical Report CS-87-09,
Computer Science Department, University of
Bristol, 1987. Revised version 1989, to appear
in Journal of Logic Programmaing.

Programming.

[Maher 1988] M. J. Maher. Equivalences of Logic
In J. Minker, editor, Foundations
of Deductive Databases and Logic Programming,
pages 627-658. Morgan Kaufmann, Los Altos,
Ca., 1988.

Programs.

[Mancarella and Pedreschi 1988] P. Mancarella and
D. Pedreschi. An Algebra of Logic Programs.
In R. A. Kowalski and IX. A. Bowen, editors,
Proc. Fifth Int'l Conf. on Logic Programming,
pages 1006-1023. The MIT Press. Cambridge,
Mass., 1988.

[van Emden and Kowalski 1976] M. H. van Emden
and R. A. Kowalski. The semantics of predicate
logic as a programming language. Journal of

the ACM, 23(4):733-742, 1976.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 581

A Generalized Semantics for Constraint Logic Programs *

Roberto Giacobazzi!, Saumya K. Debray?, Giorgio Levil

1) Dipartimento di Informatica
Universita di Pisa
Corso Italia 40, 56125 Pisa
{giaco,levi}@di.unipi.it

Abstract

We present a simple and powerful generalized alge-
braic semantics for constraint logic programs that is
parameterized with respect to the underlying con-
straint system. “Generalized semantics” abstract
away from standard semantics objects, by focus-
ing on the general properties of any (possibly non-
standard) semantics definition. In constraint logic
programming, this corresponds to a suitable defi-
nition of the constraint system supporting the se-
mantics definition.
troduced to formalize the constraint system notion,

An algebraic structure is in-

thus making applicable classical mathematical re-
sults and both a top-down and bottom-up seman-
tics are considered. Non-standard semantics for CLP
can then be formally specified by means of the same
techniques used to define standard semantics. Differ-
ent non-standard semantics for constraint logic lan-
guages can be specified in this framework: e.g. ab-
stract interpretation, machine level traces and any
computation based on an instance of the constraint
system.

1 Introduction

Constraint logic programming (CLP) is a generaliza-
tion of the pure logic programming paradigm, hav-
ing similar model-theoretic, fixpoint and operational
semantics [Jaffar and Lassez 87]. Since the basic op-
erational step in prograimn execution is a test for solv-
ability of constraints in a given algebraic structure,
CLP has in addition an algebraic semantics. CLP
is then a general paradigm which may be instan-
tiated on various semantic domains, thus achieving

*The work of R. Giacobazzi and G. Levi was supported by
“Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo”
of C.N.R. under grant n. 9100880.PF69 and by the Esprit Basic
Research Action 3012 - Compulog. The work of S. Debray was
supported in part by the National Science Foundation under

grant number CCR-8901283.

2) Department of Computer Science
The University of Arizona
Tucson, AZ 85721

debray@cs.arizona.edu

a good expressive power. One relevant feature is
the distinction between testing for solvability and
computing a solution of a given constraint formula.
In the logic programming case, this corresponds to
the unification process, which tests for solvability by
computing a solution (a set of equations in solved
form or most general unifier). In CLP, the com-
putation of a solution of a constraint is left to a
constraint solver, which does not affect the seman-
tic definition of the language. This allows different
computational domains, e.g. real arithmetic, to be
considered without requiring complicated encodings
of data objects as first order terms. Since the fun-
damental linguistic aspects of CLP can be separated
from the details specific to particular constraint sys-
tems, it seems natural to parameterize the seman-
tics of CLP languages with respect to the underly-
ing constraint system [Saraswat et al. 91]. We re-
fer to such a semantics as generalized semantics. It
turns out that generalized semantics provide a pow-
erful tool for dealing with a variety of applications
relating to the semantics of CLP programs. For ex-
ample, by considering a domain of “abstract con-
straints” instead of the “concrete constraints” that
are actually manipulated during program execution,
we obtain for free a formal treatment of abstract in-
terpretation of CLP programs: this provides a foun-
dation for dataflow analysis and program manipula-
tion of CLP programs. In this paper we address the
problem of defining a generalized semantics for con-
straint logic programs. This can also be the base to
specify non-standard semantics for other logic-based
languages (e.g. in {Barbuti et el. 92] Prolog control
features are expressed in terms of a constraint logic
language). The algebraic approach we take to con-
straint interpretation makes it easy to identify a suit-
able set of operators, which can be instantiated in
different ways to obtain the definition of different

582

non-standard semantics. An interesting aspect of
such a development is that non-standard interpre-
tations such as abstract interpretations can be de-
veloped entirely within an algebraic framework: for
example, the notion of “abstraction” can be char-
acterized simply via additional axioms that specify
which terms are to be considered “equal” under the
abstract interpretation, and relationships between
different abstract interpretations can be character-
ized in terms of homomorphisms between the corre-
sponding algebras.

In this paper, two kinds of generalized seman-
tics top-down and bottom-up, are considered. Since
computations are always performed in the algebra
of constraints, the two approaches represent just
two ways to perform possibly non-standard compu-
tations. The reader is assumed to be acquainted
with the basic notions of lattice theory and sorted
algebras. Full proofs, not included due to space lim-
itations, are present in the full version of this paper.

2 Constraint Algebras

As defined in [Jaffar and Lassez 87], the semantics
of constraints is given in terms of an algebraic struc-
ture which interprets constraint formulas, while the
semantics of a constraint logic program is given in
terms of the well known fixpoint, model-theoretic
and operational characterizations. In this section we
introduce an incremental algebraic specification for
constraint systems.

2.1 Term Systems

In the following we introduce the notion of term sys-
tem as an algebra of terms provided with a binary op-
erator which realizes substitutions [Cirulis 88]. We
are interested in term systems where every term de-
pends only on a finite number of variables'. They
represent the first basic definition in the semantics
construction.

Definition 2.1 A term system 7 is an algebraic
structure (7, S, V) where we refer to the elements
of T as T-terms (terms in short); V is a countable
set of T-variables (variables, for short) in T; Sy is a
countable set of binary operations on 7, indexed by
V'; and the following conditions hold, for all z,y € V
and t,t,t" € T: :

Ti. sp(t,z) =t, (identity)
Ty s:(t,y) =y, ifz #vy, (annihilation)
T3, sz(t,8,(y,t")) = sz(y, ') if x #y, (renaming)

1A more general definition that considers sets of arbitrary
cardinalities is given in [Cirulis 88]: for our purposes, it suffices
to consider denumerable sets.

Ty so(t,s,(t",8)) = s(s(¢,t"),2) if 2 # y and ~
yindt (independent composition)

where a T-term t is independent on the 7 -variable
z, denoted as “z ind t,” if s;(t',t) = t for every
t' € T. We say that a variable v occurs in a term t
if =(z indt). 1

Intuitively, s;(t,t') denotes the operation “sub-
stitute ¢t for every occurrence of the variable z
in #.” For notational convenience, we denote
sz(t,t') as [t/;)t. This notation can be extended
to substitutions on multiple variables, by writing
Say (tl, sa—‘z(t% Tt Sy (tk’ t) o)) as [tl/-’vl s tk/rk] t.

Example 2.1 Let © be a denumerable collection of
function symbols. We denote by 7(3,V) the set
of possibly non-ground terms defined on ¥. The
standard term system Tz vy = (7(Z,V),Sub,V) is a
term system provided that substitutions in Sub per-
form idempotent substitutions. In this case v ind ¢
iff the variable v does not occur in ¢. u]

Let II be a finite collection of predicate symbols.
A (7 ,II)-atom has the form p(t, ...,t,) where p € II
and t; € 7, Vi = 1,...,n. We denote by W;\W,; the
set W; where the elements in W, have been removed.
The powerset of a set S is denoted by 2%, and any tu-
ple of syntactic objects (terms, atoms, etc.) o1, ...,0,
is denoted by (o1, ...,0,).

2.2 An Algebraic Framework

We give now a formal algebraic specification for the
language of constraints on a given term system.

Definition 2.2 A Closed Semiring [Aho ‘et al. 74]
is an algebraic structure (C,®,®,1,0), such that:
(1) (C,®,0) is a (join-)idempotent and commutative
monoid; (2) (C,®,1) is a (meet-)monoid; (3) 0 is an
annihilator for ®; (4) if ay,...,an,.. is a countable
sequence of elementsinC, a; D a: D ... Da, B .. exists
and is unique; (5) associativity, commutativity and
idempotence of @ apply to infinite as well as finite
joins; and (6) ® distributes over finite and counably
infinite joins. &

Example 2.2 [[Aho et al. 74]]

Let Ap = (R*,+,min,0,+00) where R* is the
set of non-negative reals including +oo, and Ay =
(2*,-,U,{€},0) where T* is the family of sets of
finite-length strings of symbols from the finite alpha-
bet ¥ (including the empty string €) and - denotes
concatenation. Both Ay and Ay are closed semir-
ings. Notice that in Ay - is not commutative. O

Any semantics definition supports the notion of
observable behaviour for a given program. Modelling
answer constraints in constraint logic programming
corresponds to consider answer constraints as the
observable property for any CLP program. Thus,
the notion of solution for a given answer constraint
has to be restricted (projected) to the variables of
the corresponding query (output variables). Closed
semirings are too weak to capture the notion of vari-
able projection. We handle this notion by means
of a family of “hiding” operators on the underly-
ing algebra, as in [Saraswat et al. 91]. Cylindric al-
gebras [Henkin et al. 85] provide a suitable frame-
work to enhance our algebraic structures. A cylin-
dric algebra is formed by enhancing a Boolean alge-
bra by means of a family of unary operations called
cylindrifications. The intuition here is that given
a constraint ¢, the cylindrification operation 3g(c)
yields the constraint obtained by “projecting out”
information about the variables in S from c. They
are necessary here because when we solve a goal in
a constraint logic program, we are interested only
in constraints on the variables that appear in that
goal: thus, any additional constraints that may have
been imposed on other variables during the course
of the computations should be projected away in the
representation of the final answer constraint. This
is accomplished using cylindrification. Technically,
cylindric algebras allow us to make projections on
finite sets of variables. However, since our semantic
formulation is in terms of infinite unfolding, as dis-
cussed later in the paper, it may also be necessary
to allow projections on infinite sets. The machinery
of cylindric algebras is not quite adequate for this,
but the problem can be handled using polyadic alge-
bras {Henkin et al. 85], which allow possibly count-
ably many cylindrifications.

Diagonal elements [Henkin et al. 85] are con-
sidered as a way to provide parameter passing
[Saraswat et al. 91]. In conmstraint logic program-
ming the equality symbol “="
constraint system to provide term unification. How-
ever, cylindric algebras were introduced to provide
an algebraic formalization~of first-order-logic, actu-
ally oriented to first-order-languages without opera-

is assumed in any

tion symbols; thus ignoring all terms but variables.
This framework is not adequate to provide an alge-
braic semantic framework for constraint logic pro-
grams. We extend diagonal elements to deal with
generic terms, following the approach in [Cirulis 88].
Diagonal elements represent equations on a given
term system 7. This approach results in introduc-
ing “term-unification” (i.e. equations on terms) as
distinguished elements in the algebra.

583

Definition 2.3 A cylindric closed semiring is an
algebraic structure (C,®,®,1,0,3a,dsy)acviver
where C is a set called the universe of semiring, V
is a countable set of variables, 7 is a term system,;
0,1,d,;y are distinct elements of C, for each t,t' € T;
{3a}acv are unary operations on C; ®, & are binary
operations on C; such that the following postulates
are satisfied for any ¢,/ € C; A, ¥ C V and t,t' € 7:

S1. the structure (C,®,®,1,0) is a closed semiring,
C,. 3A0=0,

Co. ¢c® dac =3Tac,

Cs. Ia(e®Iacd) =Ipc® nd,

Cs. dadye = Javwe,

Cs. Ja distributes over finite and countably infinite
joins,

Dl. dt,g =].,
D,. diy = 323(die @ doyr) where z ind t,1,

Ds. d, e = Foy(dey @ dey), where z # 2 and
zindt, zind t'.

Notice that Axiom D3 relates the notion of substi-
tution in the term system 7 with diagonal elements
of C (which intuitively correspond to the notion of
equality constraints) in the expected way.

The notions of “independence” and “occurrence”
of variables extends in the obvious way from terms
in 7 to constraints in C. Let {z1,...,z,} CV, in the
following we will denote 3yur(c)/{cy,...on}C» 1-€. hiding
from all the variables in ¢ except {z1,...,z,}, as
3(€)iey,..on}- We also denote as d(t1y4~-ytn),(t;y»4-,i;1) the
element d) ¢ @ ... @ dy, i, Where ty,..., 85,11, ..., 1, €
7. Any closed semiring can be extended to a cylin-
dric closed semiring by letting d;» = 1 for each
t,t' € T and Jac = ¢ for each ¢ € C and A C p.
Following [Henkin et al. 85] we refer to them as dis-
crete cylindric closed semirings.

In the general theory of cylindric algebras, the
commutative and transitive properties of diagonal el-
ements (i.e. dyy = dyy and (dyy @dy) Bdy e = dyyn)
are derived by the axioms. Because of the weakness
of cylindric closed semirings, these properties are not
derivable from the axioms. However they are not re-
quired in proving the semantic results given below.
They can be added to provide the theory of equality.

Given a closed semiring, we can induce a partial
ordering relation Cg on C, such that ¢; Cg ¢ iff

584

c1®cy = ¢ As a consequence, (C,Cg) is a complete
lattice.

2.3 Constraint Systems

In this section we formalize the notion of constraint
system, based on the above algebraic framework.

Definition 2.4 A constraint interpretation struc-
ture is any cylindric closed semiring. Given a con-
straint interpretation structure 4 with universe C,
an A-constraint (constraint for short) is any element
inC. 1

Idempotence, associativity and commutativity are
the least set of properties [Barbuti et al. 91,Debray
and Ramakrishnan 91] which allow & to model the
set union operation. @ corresponds to the constraint
conjunction and plays the important role of collect-
ing the information during the computation. Dis-
tributivity allows to represent constraints as possi-
bly infinite joins of finite meets (also called simple
constraints). Closure on (possibly infinite) count-
able elements in C allows to denote infinite joins of
constraints.

Example 2.3 Let us assume that IT = II¢ UIlp and
e N1Ip = 0. We refer to Az) as the free alge-
bra of formulas in the sorted vocabulary (5, X,Il¢):
where S (sort) is a set of symbols, 3 a specified set of
operations with a corresponding signature on S and
Il a set of predicate symbols with a signature on S;
enhanced with the disjunction symbol V, the con-
junction symbol A, the existential quantifier 3, the
identity symbol =, the truth and falsehood symbols
T and F and closed under countably infinite disjunc-
tions of formulas in Az n.). Equations and possibly
existentially quantified (7(z v), Ic)-atoms are called
atomic constraints.

Let us consider the solution compact many sorted
algebraic structure R(gp,) [Jaffar and Lassez 87],
defined over the many sorted alphabet (S,%,Il¢),
consisting of: a collection DR of non-empty sets
denoted {DR,};, where s € S; an assignment of
a function DR, X ... x DR,, — DR, to each n-
ary function symbol f € I, where (s1,...,3,,3) 1s
the signature of f; an assignment of a function
DR;, X ... x DR;, — {true, false} to each n-ary
predicate symbol p € IIg, where (s1,...,8,) is the
signature of p.

Let us consider a constraint ¢ in Ay R
¢, iff there exists a mapping 9 (the solution of the
constraint) from each distinct free variable ¢ in ¢ into
DR, (free variables in a constraint ¢ are denoted
FV{c)) where s is the sort associated with z, and ¢?

is R-equivalent to T (R k= ¢d).

Let. ¢ =_é/I cg.and Co :'2/1 ¢! denote possibly
€y wel2
infinite disjunctions of conjunctions of atomic con-
straints ¢} and ¢!, where ¢ ranges over I; and I, be-
ing sets of possibly infinite indexes. The equivalence
relation R on Az, is defined as follows

amrciff U {J|[REI}=U {J|R I}
i€h i€l

~r is a congruence relation on the one sorted alge-
bra (A(E,Hc)a ANV, T F 3x,t = t,)XQV;t,t'GT(g,v)- The
standard constraint interpretation structure is then
given by the quotient algebra, denoted as A, =
(A(z,nc), ANV, TR, 3x,t = t/)XQV;t,t’ET(E,v)/zR' It is
trivially a meet-idempotent and commutative cylin-
dric closed semiring. o

Example 2.4 [CLP('H)] Let us consider the follow-
ing signature associated with the usual Herbrand
universe definition, ¥ = {a,b,..., f,g,...}. Atomic
constraints are one sorted equations on the term
system Z(zv). The corresponding Herbrand in-
terpretation structure Ay, is the quotient algebra
(C’H, AV,TF 3y, t = t,)XQV;i,t’E’IE):,V)/zEQ , modulo
g, where Cy = { t=t|tt € Lzyv } and ~gg
is the equivalence relation induced by the algebraic
structure interpreting diagonal elements as unifica-
tion [Jaffar and Lassez 87]. It is straightforward to
prove that this corresponds to the pure logic pro-
gramming case. m]

To relate constraint interpretation structures, we
follow the approach to “static semantics correctness”
in [Barbuti and Martelli 83].
standard semantics specifications can be handled in
an algebraic way through the notion of morphism.
However, the algebraic notion of morphism can be
made less restrictive by assuming that the carriers of

Correctness of non-

the involved algebras be partially ordered sets. We
introduce a weaker notion of morphism, capturing
the approximation possibly induced by abstract in-

" terpretations or any approximate semantics defined

in the framework.

Definition 2.5 Let Ay and By be (many sorted)
algebraic structures over the sorted alphabet (.S, X).
Let us assume that for each s € S, (DB;,=pg,) is a
partially ordered set. A weak morphism o : A — B
is a family of functions o, DA, — DB, for
s € S, such that: o,(f4) 2pB. fB, for each con-
stant symbol f :— sin ¥ and o,(fa(a1, ..., a)) ZpB,
fBlos(a1), ..., 05,(an)), for each operation symbol
f 818, = sin 3. 1

Definition 2.6 Let A be a constraint interpretation
structure. A comstraint interpretation morphism is
a weak morphism ¢ from (Aiz .y, A, V, T, F,3x,t =
tl)XQV;t.t’Gﬁg,v) in A 1

Example 2.5 The standard constraint interpreta-
tion morphism €4 is a morphism which associates
with any formula in A(gn.), the corresponding
equivalence class modulo ~x. a

In general, a constraint system is an interpretation
(in a closed semiring) for constraint formulas.

Definition 2.7 A constraint system is a pair I' =
(A,e) where A is a constraint interpretation struc-
ture and ¢ is a corresponding constraint interpreta-
tion morphism. 1

Similar algebraic structures for the definition
of constraint systems have been introduced in
[Saraswat et al. 91] to specify the semantics of the
more complex class of concurrent constraint lan-
guages characterized by the ask/tell paradigm.

Constraint systems are specified as systems of
partiel information in the style of Scott’s informa-
tion systems [Scott 82], (simple constraint systems),
which are tuples (C, A,), where C is an non-empty
set of “primitive” constraints and +C 2° x C is an
entailment relation such that Yu,v € 2°: (1) u F A,
(2) u F X whenever X € v and (3) if v F Y for all
Y € u and u + X, then v X. The relation I can
be extended on 2¢ x 2€ as follows: Yu,v € 26, u b v
iff u b X for every X € v.

Composition of constraints is defined in terms of
set-union, which is a well known commutative and
idempotent operator. Hiding and parameter passing
are handled by cylindrification (only finite-variable
cylindrifications are allowed) and diagonal elements.
The difference is then in the underlying algebraic
structure: while information systems provide an el-
egant framework to develop the (standard) seman-
tics for concurrent constraint languages, we are in-
terested in more appropriate algebraic structures to
generalize standard semantics results on CLP. In our
case, the constraint system is parametric with re-
spect to a given term system. This introduces a more
structured approach (two steps) to non-standard
constraint system definition (e.g. abstract interpre-
tation). As for the basic algebraic structure, the
choice of closed semirings results more natural in
the context of the present paper. We are interested
in possibly non-commutative/idempotent composi-
tions (meets) of constraints (see Ay in Example 2.2).
Moreover (see Prop in Section 4.1 below) standard

585

logical and arithmetic operators (e.g. V, A, T and F')
can be specified more naturally as an instance of a
closed semiring instead of as an instance of an infor-
mation system. Nevertheless, it is easy to associate
an information system with any ®-commutative and
idempotent closed semiring. Let (C,®,®,1,0) be
a ®-commutative and idempotent closed semiring.
The corresponding information system (C,A,F) is
defined as follows A = 0 and Yu,v € 2¢: u F v iff
v g u.

The key difference is in the semantics definition.
In [Saraswat et al. 91] the semantics of constraint
languages is specified as closures on the constraint
system, thus amalgamating the semantics construc-
tion and data-objects. We follow the standard ap-
proach (see section below) in generalizing the stan-
dard operational and fixpoint semantics character-
izations, already known in logic programming. A
more structured approach to the generalization pro-
cess can be obtained by separating the domain of
constraints with the various techniques to construct
models (e.g. fixpoints of continuous transforma-
tions) for constraint logic programs. The indepen-
dence of the semantics constructions from the un-
derying constraint systems focuses the generalization
process on the constraint system definition, thus sim-
plifying the specification of non-standard semantics.

Generalized constraint logic programs are defined
in the usual way. Let A be a constraint interpreta-
tion structure on the term system 7. An A-clause
is a formula of the form H :— ¢0OB4y,...,B, with
n > 0 where H (the head) and B, ..., B, (the body)
are (T,IIp)-atoms, c is an A-constraint and :—
and “” denote logic implication and conjunction
respectively. An A-goal is a formula c¢0By,..., B,
where c¢ is constraint and each B; is (7,IIp)-atom.
A (generalized) constraint logic program, also called
A-program is a finite set of A-clauses.

3 Generalized Semantics

The mechanism introduced in [Falaschi et al. 89] to
model computed answer substitutions is general-
ized in CLP, by allowing constrained atoms into
the base of interpretations [Gabbrielli and Levi 91].
Each constrained atom p(Z) :— ¢, in fact, repre-
sents the set of instances p(Z)d, where ¥ is a solution
of the constraint c.

Definition 3.1 Let A be an interpretation struc-
ture. A constrained atom has the form p(z) :— ¢
where ¢ is an A-constraint, p(£) is a (7,IIp)-atom

and FV(c)=1%. 1

Definition 3.2 Let A be an interpretation struc-
ture and § be the corresponding set of constrained

586

atoms. We define a partial order < on < such that
p(Z1) :— ¢1 2 p(&2) :— co iff there exists &' such
that 3{51}(d51’51 K C]) E@ [T |

The equivalence relation induced by the partial or-
der < is denoted by ~. The A-base of interpretations
B,is §/~.

Definition 3.3 = C 2% is the collection of sets
of constrained atoms I such that I € Z iff
IW) = OWI = I, where | is defined as:
p(f]‘) — ¢ € Lu I2,
My, L. p(i‘) - Zj Ej ¢; = afj(di-,z‘;:’ ® Cj)
. and 7 ind ¢;
1

An A-interpretation is any element of Z. ¥ is
strongly related to @. As usual we define I} Cy [, iff
L W1, = I, such that (E,Cy) is a complete lattice.

Each interpretation always consists of a finite set

of constrained atoms, containing at most one con-
strained atom for each program predicate symbol:
p(Z) :— Xjewc; € I, where for each j € W, ¢; rep-

resents the set of admissible (i.e. computable in the

program) solutions for the predicate symbol p, on
the variables Z. As a consequence infinite joins of
constraints are allowed in constrained atoms. This
is well defined by the closure of C. In the following
we will often omit 4 in specifying programs, goals,
etc.

3.1 Operational Semantics

Let ' = (A,e) be a constraint system and P be
an A-program. Define ~pC A-Goals x A-Goals
(an A-derivation step) to be the smallest relation
such that G4 “sp G4 iff GA = coOpy(1), .., Pa(En);
there exist n (renamed apart) versions of clauses in
P: pi(a":i) 1= ¢0Gi, i=1.n;GA =R ®...Q®
€,0Gh, ..., Gy, where for each i = 1.1, & = d, ;, ®c;.

An A-derivation from an A-goal G4 is a finite
or infinite sequence of (different) A-goals such that
every A-goal is obtained from the previous one by
means of a single A-derivation step. A successful
derivation is a finite sequence whose last element
has an empty body. The operational semantics is
then defined in terms of the successful computations
specified by the transitive closure of the transition
relation on A-goals:

O'(P)={p@) i~ 3 3c)s

Goal dependent semantics is defined in terms of a
function G that yields the computed answer con-
straint for any 4-goal, such that

10p(z) ~p cO }.

G(G*) = H()var(a4) iff GA~p O .

Theorem 3.1 Let G* = coOpi(f1),...,pa(E,) be a
goal. G(GA) = c iff there ezist pi(%;) :— ¢ €
OV (P), fori=1,...,n and c = Ico ® Ao i, Q¢ ®
dfn,t'y. ® Cﬂ)uar(GA)'

3.2 Fixpoint Semantics

In this section we define a fixpoint semantics which is
proved to be equivalent to the operational semantics.

Definition 3.4 Let P be an A—program, the map-

pingT# : = — I, is defined as follows T#(I) = 4
Cep

TZ(I) whereif C: p(t) :— cOpi(f1), ..., pa(t,) then

foreachi=1...n:

pi(f,‘) c—c; e]
Té“([) =4 p(Z): —3(é)z| ¢t =ds 1, @ ci

E=d;i®c®c.. ®..c,

Z ind ¢, c},..., J
1

T# is a continuous function on the complete lat-
tice (2, Ew). Let Ifp(f) denote the least fixpoint of
a function f and FT(P) = ifp(T#) = T T w. The
following result states the equivalence between the
operational and the fixpoint semantics, for any con-
straint system I'.

Theorem 3.2 Let P be a program and T' a con-
straint system. Then FT(P) = OT(P).

4 Abstract Interpretation of CLP

The definition of an abstract constraint system is
performed in two steps: term abstraction and con-
straint abstraction. In the first step new syntac-
tic objects are introduced to represent sets of con-
crete terms. In the second one, constraints on the
abstracted term system are abstracted. Since the
complete lattice of interpretations is induced by the
closed semiring structure, any abstract interpreta-
tion will correspond to a suitable definition of a con-
straint system associated with a particular applica-
tion.

Definition 4.1 Given a constraint system I' =
(A,€), a constraint system IV = (A',¢’'), is correct
with respect to I' iff there exists a weak algebraic
morphism a, (a. : A — A’) which is a monotonic
mapping of (C,Cg) into (C',Cg). 1

Notice that, since a, is moriotonic, it behaves as an
algebraic morphism with respect to the @ operator.
Termination has been guaranteed by requiring that
all chains be finite.

Definition 4.2 A constraint interpretation struc-
ture A is Noetherian iff (C,Cg) does not contain any
infinite chain. A constraint system (A4,) is Noethe-
rian iff A is Noetherian. 1§

Given a Noetherian constraint system T, it is easy
to prove that (£, Cy) is Noetherian. An abstract con-
straint system is a Noetherian constraint system I'
which is correct with respect to the standard one I'y;.
It is straightforward to show that in any abstract
constraint system (A &), e! = a. 0 g, Moreover,
by weakness and monotonicity, the composition of
two monotonic weak morphisms is still a monotonic
weak morphism. Let I be a correct abstract con-
straint system. The mapping « : = — Z! such that
o(I) = {p(:c) T ac(c)T p(z) :—= cel } is con-
tinuous. Abstract interpretations for constraint logic
programs correspond to the definition of an abstract
constraint system together with a program evalu-
ation strategy. The first defines what an abstract
computation is, while the second one deals with a
specific evaluation strategy to collect abstract in-
formation. Top-down abstract interpretations corre-
spond to the abstraction of the operational seman-
tics. Bottom-up evaluations instead allow to com-
pute a finite abstract approximation of the fixpoint
semantics associated with a given constraint logic
program. Goal-independence is an attractive feature
of bottom-up evaluations. Global program analysis,
especially useful in type inference, can then be spec-
ified as a bottom-up evaluation in a suitable con-
straint system.

Proposition 4.1 Given « progv"dm P and an ab-
stract constraint system IV = (A4 &Y), there ewists
a finite positive k such that FU'(P) = T;;‘" Tk.

The correctness of the analysis is reduced to the
correctness of the constraint system.

Theorem 4.2 Let P and T be a program and
an abstract constraint system respectively. Then

a(OF(P)) CY O (P) and o(FT(P)) CY FT'(P).

Example 4.1 The closed semiring Asg developed in
Example 2.2 can be used to define a simple com-
plexity analysis tool for constraint logic programs
on reals, CLP(R) [Jaffar and Lassez 87]. Let |.|, :
7(%,V) — N be a mapping associating a “weight”
with any term, where A is the set of natural num-
bers. Let us consider a morphism & such that for
each constraint ¢ : t; < ¢y, €(¢) = [t1], + |t2]r.

587

The interpretation structure (N, +, min, 0, +00),
where cylindrifications are defined as in the dis-
crete case and diagonal elements are natural num-
bers dy, 1, = |tilr + |t2|r, is trivially Noetherian. A
lower-bound complexity analysis can be performed
returning a lower bound estimation of the costs in
arithmetic computations, as in the following exam-
ple for a simple integration routine:

int(4,B,z) :— 0< B— A<g,
z=(B—-A)* f(A+(B— A)/2)0 E(e).
int(A,B,z) :— B—A>¢,
M=A+(B—A)/2, T =21x1+ T,
O int(A, M, z1),int(M, B, z), E(e).
E(z) :— z =1/n0ON(n).
N(n') :— n’ =n+ 10N(n).
N(n') :—= n' =10,

Let, for instance, cy, c. and ¢y be the costs of
addition, multiplication/division and f respectively.
Variables and constants have a zero cost. Thus, de-
noting I'; such constraint system:

int(A,B,z) :— 4cy + 3es + ¢y,
E(n') :— ¢y
N@n) :— 0

Frr(P) =
m]

A space of approximate constraints can be spec-
ified by defining an auto-weak morphism p which
is an upper closure operator (i.e. an idempotent,
monotonic and extensive operator) on (C,Eg). As
shown in [Cousot and Cousot 79] the approximation
process essentially consists in partitioning the space
of constraints so that no distinction is made between
equivalent constraints, all approximated by a repre-
sentant of their equivalence class. The equivalence
relation is induced by an upper closure operator p:
¢1 =, ¢ iff p(e1) = p(ez). In [Cousot and Cousot 79)
different equivalent methods for specifying abstract
domains (i.e. upper closure operators) are presented.
However, there are standard techniques in algebraic
specifications that allow the definition of abstract
constraint systems. For example, cylindrifications
can be interpreted as abstractions on the algebra of
constraints.

Proposition 4.3 Let A C V; Ja 1s an auto-weak
morphism and upper closure operator on (C,Cg).

Existential quantification is then a way to def