
'c

ICON/UXV··· 'i .. :;·;\: .. .ii ...
'f·' .;;; oJ·

. ': .:.' ~,"'.;~: ~:~.,

. .'

Programnte",:f
R efe re n ce;tY~:'

ICON
. INTERNATIONAL

764 East Timpanogos Parkway
Orem, Utah 84057
(801) 225-6888

.W

PROGRAMMER REFERENCE MANUAL

ICON/UXV
Operating
System

© Copyright 1988
Icon International, Inc.
All rights reserved worldwide.

The information contained within this manual is the property of Icon International, Inc. This
manual shall not be reproduced in whole nor in pan without prior written approval from Icon /~
International, Inc.

Icon International, Inc. reSCIVes the right to make changes, without notice, to the specifications
and materia1s contained herein, and sha11 not be responsible for any damages (including
consequential) caused by reliance on the material as presented, including, but not limited to,
typographical,· arithmetic, and listing errors.

The UNlXe Software and Text Source for this manual is under license from AT&T.
Copyright C 1984 AT&T Technologies

Order No. 172·03()·006 AO (Manual Assembly)
Order No. 171·063·007 AO (Manual Pages only)

This manual was set on an IMAGEN 81300 wer printer driven by the IROFF formatter
operating under the ICONIUXV system.

Trademarks

The ICON logo is a registered trademark and lCONIUXV is a trademark of Icon International. Inc.
UNIX is a registered trademark of AT &cT.
3B, WE, and DOCUMENTER'S WORKBENCH are trademarks of AT&T Technologies.
AUSTEC is a trademark of Austec International, Ltd. (Australia)
DEC, PDP, VAX, UNIBUS, SBI, and MASSBUS are trademarks of Digital Equipment Corp.
DIABLO and Ethernet are trademarks of Xerox Corporation.
HP is a trademark of Hewlett-Packard, Inc.
HYPERchannel is a trademark of Network Systems Corporation.
IBM is a trademark of International Business Machines Corporation.
TEKTRONIX is a registered trademark of Tektronix, Inc.
TELETYPE is a trademark of AT&T Teletype Corporation.
Versatec is a registered trademark of Versatec Corporation.

i ICON INTERNATIONAL

ICON/UXV Programmer Reference Manual

Manual Pages Part No. 171-063-007

Date Revision Description Pages Affected

Apr. 1988 AO Initial production release All

Aug. 1988 A1 Add man pages to gettydefs
section 4

ICON/UXV PROGRAMMER REFERENCE iii

iv ICON INTERNATIONAL

c

INTRODUCTION

This manual describes the programming features of the ICONjUXV ~em. It provides neither a general
overview of the ICONfUXV system nor details of the implementation of the system.

Not aU commands, features, and facilities described in this manual are available in every ICON/UXV
system. The entries not applicable for a particular hardware liM will have an appropriate caveat
stamped in. the center of the mast of an entry. Also, programs nr facilities being phased out will be
marked as "Obsolescent!» on the top of the entry. When in doubt, ccm.sult your system's administrator.

This manual is divided into four sections, some containing intel'-iiled sub-classes:

2. System Oalls.
3. Subroutines:

30. 0 and Assembler Library Routines
3S. Standard 1/0 Library Routines
3M. Mathematical Library Routines
3X. Miscellaneous Routines
3F. FORTRAN Library Routines

4. File Formats.
5. Miscellaneous Facilities.

Section 2 (S,etem Oalle) describes the entries into the ICON/OXV system kernel, including the C
language interface.

Section 3 (Subroutinee) describes the available subroutines. Their binary versions reside in various sys
tem libraries in the directories /lib and /usr/lib. See intro(3) for descriptions of these libraries and the
files in which they are stored.

Section" (File Formate) documents the structure of particular kinds of files; for example, the format of
the output of the link editor is given in a. out(4). Excluded are files used by only one command (for
example, the assembler's intermediate files). In general, the C language struct declarations correspond
ing to these formats can be found in the directories /usr /include and /usr /include/sys.

Section 0 (Mi&cellaneou& Facilitie&) contains a variety of things. Included are descriptions of character
sets, macro packages, etc.

Each section consists of a number of independent entries of a page or so each. The name of the entry
appears in the upper corners of its pages. Entries within each section are alphabetized, with the excep
tion of the introductory entry that begins each section (also section 3 is in alphabetical order by
suffixes). Some entries may describe several routines, commands, etc. In such cases, the entry appears
only once, alphabetized under its "major" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being de51:ribed. A few conventions are
used, particularly in Section 2 (S,etem Oalle):

Boldface strings are literals and are to be typed just as they appear.

[ttlUC strings usually represent substitutable argument prototypes and program names found
elsewhere in the manual (they are underlined in the typed version of the entries).

Square brackets [] around an argument prototype indicate that the argument is optional.
When an argument prototype is given as "name" or "file", it al"'ays refers to a file name.

A vertical bar: betwee.n arguments indicates a selection argument, i.e. only one of the argu
ments separated by vertical bars is to be used.

Icon International, Inc. v

Introduction

Ellipses ••• are used to show that the previous argument prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with a minus
-, plus +, or equal sign - is often taken to be some sort of flag argument, even if it appears in
a position where a file name could appear. Therefore, it is unwise to have files whose names
begin with -, +, or -.

The DESCRIPTION part disc:usses the subject at hand.

The EXAMPLE(S) part gives example(s) or usage, where appropriate.

The FU,ES part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTIOS part discusses the diagnostic indications that may be produced. Messages that
are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally, the suggested fix is also
described.

A table of contents precedes Section 2. On each indez line, the title of the entry to which that line
refers is followed by the appropriate section number in parentheses. This is important because there is
considerable duplication of names among the sections, arising principally rrom commands that exist only
to exercise a particular system call.

On most systems, all entries are available on-line via the man(l) command (see Section 1 of the
ICON/WIT Uaer Reference Manual).

vi Icon International, Inc.

(

(

TABLE OF CONTENTS

2. System Oalla

acceas(2) • determine accessibility of a file
acct(2}. • • • • • • • • • • • • enable or disable proceu accounting
alarm(2} • set a process alarm clock
brk(2} • change data segment space allocation
chdir(2} • • • • • • • • • • • • • • • • change working directory
chmod(2} • • • • • • • • • • • • • • • change mode of file
chovo'D(2} • • • • • • • • • • • • • • • change owner and group of a file
chroot(2} • • • • • • • • • • • • • • • • • change root directory
close(2) • • • • • • • • • • • close a file descriptor
creat(2} • • • • • • • create a new file or rewrite an existing one
dup(2). • duplicate an open file descriptor
execl(2}. • • • • • • • • • • • • • • • execute a file
execle(2) • • • • • • • • • • • • • • • • see execl(2)
execlp(2) • • • • see execl(2)
execv(2) • • • • • • • • • • see execl(2)
execve{2} . . • • . • . • • • . • • • . • • • • • • see execl{2}
execvp(2) • • • • • • • • • • • • • • • • • see execl(2)
exit(2) • • • • • • • • • • • • • terminate process
fcntl(2) • • • • • • • • • • • • • • • • • • file control
fork(2}. • • • • • • •
fstat(2)
getegid(2) • • • •
geteuid(2) • • • • • • • • •
getgid(2) •
getpgrp(2) • • • •
getpid(2) • • • • • •
getppid(2) • • • • • • •

• • • create a new process.
• • • • • • • • see stat(2)

• see getuid(2}
• see getuid(2)

• • see getuid(2)
• • see getpid(2)

• get process, process group, and parent process IDs
• • • • • • • • • • • • • • • • • • see getpid(2)

getuid(2) •• get real user, effective user, real group, and effective group IDs
intro(2). • • • • • • • • • • • • • • • • introduction to system calls and error numbers
ioctl(2)
kill(2)
link(2)

. . . • • . . . • . • . • • . . • • . • • . • • • • • control device
• • send. a signal to a process or a group of processes

. • • • • • • • • • • • link to a file
Iseek(2) • • • • • • • • • • • • • • • move read/write file pointer
mknod(2) •••••• • • • • • • • • make a directory, or a special or ordinary file
mount(2) • • • • • • • • • • • • • • mount a file system
msgctJ(2) • • • • • • • message control operations
msgget(2) •••••••• • • • • • • • • • • get message queue
msgop(2) • • • • • • • • • • • •• • • • • • message operations
nice(2} • • • • • • • • • • • • • • • • change priority of a process
open(2) • • • • • • • • • • • • • • • open for reading or writing
ovride(2) • • • • • • • • • • • • • • • set/clear hardware OVRIDE bit
pause(2) • • • • • • • • • • • • • • • • suspend process until signal
pipe(2) • • • • • • • • • • • • • • • • create an interprocess channel
plock(2). • • • • • • lock process, text, or data in memory
profil(2) • execution time profile
ptrace(2) • • • • • • • • • • • • process trace
read(2). • • • read from file
sbrk(2). • • see brk{2}
semctl(2) • • • • • • • semaphore control operations
semget(2) • • . • • . . . • . • • . get set of semaphores

Icon International, Inc. vii

Tabl, 0/ Co.t,.,.

semop(2) • • • • • • • • • • • • • • .' • • • • • • • • • • • • semaphore operations
setgid(2) •
setpgrp(2)
setuid(2) • • • • •
shmctl(2) •••
shmget(2) ••••••••
shmop(2)
signal(2)
stat(2) ••
stime(2}. • • • • • • • • •

. . . .

• • • • • • • • • • • see setuid(2)
• • • • • • • • set process group ID

• • • • • set user and group IDs
• • shared memory control operations

• • • • get shared memory segment
• • • • • • • • shared memory operations

• • • specify what to do upon receipt of a signal
• • • • • • • • • • • • • • • • get file status

• • • • • • • • • set time
awrite(2) • synchronous write on a file
aync(2) • • • • • • • • • • • • • • • • • • • update super-block
time(2) . . • • . • . • . • . . • • • • • set time
times(2) • • • ••••••••••• get process and child process times
ulimit(2) • • • • • • • • • • • • • • get and set user limits
umask(2). • set and get file creation mask
umount(2} •••••••• • • • • • • • • • • • • un mount a file system
uname(2). • • • • • • • •••• get name o! current UNIX system
unlink(2} •
ustat(2} •

• remove directory entry
• • • • • • • • • • get file system statistics

utime(2) • set file access and modification times
wait(2} • • • • • • • • • • • • • • • • • • • wait for child process to stop or terminate
write(2) • • • • • • • • • • • • • • • • • write on a file
_exit(2} • • • . • . • • . see exit(2)

3. Subroutines

viii

a641(3c) • • • • • • • • • convert between long integer and base-64 ASCn string
• • • • • • • • • • • • • • • • generate an lOT fault

• • • • • • • • • • • • • terminate Fortran program
• • • • • • • • • return integer absolute value

abort(3c) •
abort(Sf). • • • •
abs(Sc} • • •
abs(3r) • Fortran absolute value
acos(3r) • • • • • • • • • • Fortran arccosine intrinsic function
aeos(Sm} ..•••....•• • . . • • • • . • • • • • • • • • see sin(Sm)
aimag(3f)
aint(3f}
alog(3!)
alogl0(3r) • • • • •
.... maxO(Sf). • • • • • • • •
amaxI(S!} •••••
aminO(Sf) •••••

• • • Fortran imaginary part of complex argument
• • • • • • • Fortran integer part intrinsic function

• • • • • • • ~ • • • • • see 10g(Sf)
• • • • • • • • • • • • • • • see 10gIO(Sf)

• see max{Sf)
• • see max{3f)

• • • • • • see min(Sf)
• • • see min(Sf)

• • • • • see mod(Sf)
aminl(3f)
amod(3!)
and(Sf)
anint(Sf)

• Fortran Bitwise Boolean functions
• • • • • • • • Fortran nearest.integer functions

asetime(3c) ...•....••.•.....•..••.•••..•• see ctime(3c)
asin(Sf}. • • • • • • • • • Fortran arcsine intrinsic function
asin{3m)
assert(Sx)
atan(Sf) •
atan{Sm)
atan2{Sf)
atan2(3m) ••
atof{Sc} ••

· • • • • • . • • • • • • • see sin(3m)
• • • • • • • verify program assertion

• • Fortran arctangent intrinsic function
· . • . • • • . • • • . . . see sin(3m)

• • • Fortran arctangent intrinsic function
• • see sin(3m}

• • • • • • • • • • • • • • • • see strtod{Sc)

Icon International, Inc.

c./

(

(

atoi(3c)
atol(3c)
bsearcb(3c}

Table 0/ Content,

• • • • • • • • • see strtol(3c)
• • • • • • • • • see strtol(Sc)

btest(3f) • • • • • • • • •
• • • binary search a sorted table

• • • • see ior(Sf)
cab.(3r) • . . . • • • . . • . . • • . . • • see abs(3r)
calloc(3c)
calloc(3x) •
ccos(3f)
ceil(3m)
cexp(3C) •
cbar(3C} ••••
clearerr(3s} . . .

• • • • • • • • • • see malloc(Sc)
• • • • • • • • • • see malloc(Sx)

• • • • • • see cos(3f)
• • • • • • • • • see floor(Sm)

• • • • • • • see exp(Sf)
• • • • • • see int(Sr)

• • • • see C errore 3s)
clock(3c) • report CPU time used
clog(SC) ••••••••••••• • • • • • • • • • • • • • • • • • see 10g(Sf)
cmplx(3f) • see int(Sf)
conjg(Sf) • • • • • • • • • Fortran complex conjugate intrinsic function
cos(Sf). • • • • • • • • • • • • • • • • • • Fortran cosine intrinsic function
cos(3m) • • • . • see sin(3m)
cosh(3f) • • • • • Fortran hyperbolic cosine intrinsic function
cosh(Sm) • • • • • • see sinh(Sm)
crypt(Sc). • generate DES encryption
csin(S!)
csqrt(Sf)
ctermid(3s)
ctime(Sc) • • • • • •
curses(Sx)
cuserid(Ss)
dabs(SC) • • • • • • •
dacos(S!)
dasin(Sf)
datan(3f)
datan2(S!) • •
dble(SC)
dcmplx(3C)

• • • • • • • • • • • see sin(Sr)
• • • • • • • • • • • see sqrt(Sr)

• • • • • • • • • generate file name Cor terminal
• • • • •••• convert date and time to string
• CRT screen handling and optimization package

• • get character login name or the user
• • • • • see abs(Sr)

. '. .

• • • • • • • • • • see acos(3f)
• • see asin(Sr)

• • • • • • • see atan(3r)
• • • • • see atan2(3f)

• • see int(Sf)

dconjg(SC) • • • • • • • • • • •
• • see int(3f)
• see conjg(3r)
• • see cos(Sr) dcos(Sf) • • • • • •

deosh(Sf)
ddim(Sr}

• • • see cosh(Sf)
• • see dim(Sr)

dexp(3f) . . . • • • . • . . • . . . • . • . • . . . • • • . • • • • • • • see exp(3C)
dial(Sc}. • • • • • • • • • • • • • • • • establish an out-going terminal line connection
dim(3C) • • • • • • • • • • • • positive difference intrinsic functions
dimag(Sf) • see aimag(Sr)
dint(3r) • see aint(S!)
directory;(Sx) ••• opendir, readdir, telldir, seekdir, rewinddir, closedir directory operations
dIog(Sf) • see log(3f)
dIoglO(Sf) • see logI0(3f)
dmaxl(3r) • • • • • • • • • • • • see max(3f)
dminl(3r) • • • • • • • • • • • • • • see min(Sf)
dmod(Sf) • • • • • • • • see mod(Sf)
dnint(SC) . • • • . • • . . . • • • • . • • • • • • • • see anint(3!)

• • • • • • • • • • • double precision product intrinsic function dprod(af) ••
drand48(Sc) • • • • •
dsign(SC)

Icon International, Inc.

.'
• generate uniformly distributed pseudo-random numbers

. • • • • . . • • . . . • . see sign(3f)

ix

Table D/ CDate"u

.!

x

dsin(3f) • see sin(3C)
dsinh(3f) ••••••••••••• • • • see sinh(3C)
dsqrt{3f) • • • see sqrt(31)
dtan(Sf) • • • • • • • • • • • • • • • see tan(SC)
dtanh(3f) • • • • • • • • • • • • • • • • • • .. • • • • • .' • • • • • • • see tanh(SC)
ecvt(Sc) • • • • • • • convert floating-point number to string
edata{3c) • • • • • • • • • • • • • • • • • see end(3c)
encrypt{3c) ••••••••• • • • • • • • • • • • • • see crypt(3c)
end(3c) •••••••••••••••••••••••••• last locations in program
endgrent(3c). • • • • • • • • • • • see getgrent(Sc)
endpwent(3c) • • see getpwent(3c)
endutent(3c) •••••••• • • • • • • • • • • • • see getutent(3c)
erand48(3c) • see drand48(3c)
err(3m) • • • ••• error function and complementary error function
erfc{Sm) • • • • • • • • • see erf{Sm)
errno(3c) • • • • • • • • • • • • • • • • • • see perror(Sc)
etext(3c) • see end(3c)
exp(SC) • • • • • • • • • • • • Fortran exponential intrinsic lunction
exp(3m) exponential,logarithm, power, square root functions
fabs(3m) • • • • • • • • • • • • • • • • • see ftoor(3m)
Cclose(3s) • • • • • • • • • close or ftush a stream
rcvt(3c). • . . • • • . • • . • • . • . • • . • . • • • • • • • • • • • • lee ecvt{3c)
Idopen(3s) • • • • • • • • • • • • • • see lopen(3s)
feof(Ss) • • • • • • • see ferror(3s)
ferror(3s) • • • • • • • stream status inquiries
mush(3s) • • • • • • • • see fclose(3s)
fgetc(3s) • • • • • • • • • • • see getc(3s)
fgetgrent(3c) • • • • • see getgrent(3c)
fgetpwent(3c) • • • • • • • • see getpwent(3c)
fgets(3s) ••••••••• • • • • • • • • see gets(3s)
fileno(3s) •••• • • • • • • • • see Cerror(3s)
ftoat(3C) • see int(3f)
ftoor(3m) • floor, ceiling, remainder, absolute value lunctions
fmod(3m) • • • • • • • • • • • • • • • • see ftoor(3m)
fopen(3s)
Cprintf(3s) •
fputc(3s)
fputs(Ss) • • • • • • • • •
Cread(Ss)

• • • • • open a stream
• • • • see printC(3s)

• • • • • • • • • • see putc(3s)
• • • • • • • • see puts(3s)

rree(3c). •
• binary input/output

• • see malloc(3c)
• • • • • • ••• see malloe(3x)

• • • • • • • • • • • • • • • • see lopen(3s)
• • • • • • • manipulate parts oC floating-point numbers

• • • • • • • • • • • • • • see 5C anr(3s) • • • • • • • reposition a file pointer in a stream

free(3x)
Creopen(3s)
Crexp(Sc) •
CscanC(Ss)
Cseek(Ss)
Ctell(Ss) • • • • • • . • • . • • • • . • • • • • .• • • • • . • . • • • • see rseek(3s)
Ctok(3c) • • • • • • • • • standard interprocess communication package
Ctw(3c) • walk a file tree
Cwrite(3s) • • • • • • • • • • • • • • • • • • • see fread(3s)
gamma(Sm) • • • • • • • • • • • • log gamma lunction
gcvt(3c) • • • • • • • • • • • • • • • • • • •• •••• see ecvt(3c)
getarg(SI) •••• • • return Fortran command-line argument
getc(3s) • get character or word trom a stream

leon International, Inc.

(

(

getchar(3s)
getcwd(3c) •
getenv(3c) •
getenv(3C)
getgrent(3c) •
getgrgid(3c)
getgrnam(3c)
getlogin(3c)
getopt(3c)
getpass(3c) •
getpw(3c) •
getpwent(3c)
getpwnam(3c)
getpwuid(3c)
gets(3s) •
getutent(3c) •
getutid(3c)
getutline(3c)
getw(3s)
gmtime(3c)
gsignal(3c)
hcreate(3c)
hdestroY(3c)
hsearch(Sc) •
hypot(3m)
iabs(3r)
iand(3r)
iargc(3C)
ibclr(3!)
ibits(3C)
ibset(3C)
ichar(3C) •
idim(3C) •
idint(SC)
idnint(Sr)
ieor(3C)
ifix(Sr) ..
index(SC)
int(3C) •
intro(3)
ior(3C) •
irand(3C)
isalnum(3c) •
isalpha(3c) •
isascii(3c)
isatty(3c)
iscntrl(3c)
isdigit(3c)
isgraph(3c) •
ishCt(3C)
ishftc(3C) •
isign(3C) •
islower(3c)

Icon International, Inc.

, .

Tdle of Co"teRtll

• • see getc(3s)
• get path-name oC current working directory

• return value Cor environment name
• return Fortran environment variable

get group file entry
• see getgrent(3c)

•• see getgrent(3c)
• get login name

• get option letter from argument vector
• read a password

• get name Crom UID
• get pallSWord file entry

• • see getpwent(3c)
•• see getpwent(3c)

• get a string Crom a stream
• access utmp file entry

• see getutent(3c)
• see getutent(3c)

• see getc(3s)
• see ctime(3c)

• see uignal(3c)
.' • see hsearch(3c)

• see hsearch(3c)
• manage hash search tables
Euclidean distance runction

• see abs(3C)
• see ior(3r)

• return the number oC command line arguments
• see ior(3r)
• see ior(3C)
• see ior(3!)
• see int(3!)

• • see dime 3r)
• see int(3C)

• see anint(3C)
• see ior(3f)
• see int(3!)

• return location oC Fortran substring
• explicit Fortran type conversion

• introduction to subroutines and libraries
• bit

• random number generator
• see isalpha(3c)

• classiry characters
• see isalpha(3c)

• see ttyname(3c)
• see isaJpha(3c)
• see isalpha(3c)
• see isalpha(3c)

• see ior(3f)
• see ior(3!)

• see sign(3C)
• see isalpba(3c)

xi

Talll, 0/ Co.t,."

xii

isprint.(3c) • • • •
ispunct(3c) • •
ilspace(3c) •
iaupper(3c) • •
iaXdigit.(3c) •••••
j0(3m) •
jl(3m) ••••••••
jn(3m) •••

. • e. •

• •••••• see iaalpha(3c)
• • • • • • • see isalpha(3c)

• •••••• lee isalpha(3c)
• see isalpha(3c)

• ••••• see isalpha(3c)
• • • • • • • • Bessel Cunctions

• • • •••• see j0(3m)
• • • • • • • • • see j0(3m)

jrand48(3c) ••••••••••••••••••••••••••••• lee drand48{3c)
13tol(3c) • • • • • • • • • • • • • • • convert. between 3-byte integers and long integers
164&(3c) •••••••••••••••••••••••••••••••• lee a841(3t)
Icong48(3c) •.• tee drand48(3c)
Idacloee(3x). • tee Idcloee(3x)
Idahread(3x) ••••••••••• read the archive header of a member of an archive file
Idaopen(3x) • tee Idopen(3x)
Idclose(3x) •••••••••••••••••••••••• close a common object file
Idexp(3c). • • • • • • • • • • • • • • ~ • • • • • • • • • • • • • • lee Crexp(3c)
Idfhread(3x) • • • • • • • • • • • • • • • • read t.he file header or a common object file
Idgetname(3x) •• retrieve symbol name for common object file symbol table entry
Idlinit(3x) • see Idlread(3x)
Idlitem(3x) • lee Idlread(3x)
ldlread(3x) ••••••• manipulate line number entries of a common object file function
ldlseek(3x) •••• seek to line number entries of a section of a common object file
ldnlseek(3x). •• lee Idlseek(3x)
Idnrseek(3x) • • • • • • • • • • • • • • '.' • • • • • • • • • • see Idrseek(3x)
Idnshread(3x) • see Idshread(3x)
ldnsseek(3x) ••••••••••••••••••••••••••••• see Idsseek(3x)
Idohseek(3x) • • • • • • • • ••• seek to the optional file header or a common object file
ldopen(3x) ••••••••••••••••••• open a common object file ror reading
Idrseek(3x) • • • • • • • • • seek to relocation entries or a section of a common object file
Idshread(3x) • • • • • read an indexed named section header of a common object file
Idsseek(3x) • • • • • • • • seek to an indexed named section or a common object file
Idtbindex(3x) •• compute the index of a symbol table entry or a common object file
Idtbread(3x) • • • • • • • read an indexed symbol table entry or a common object file
Idtbseek(3x) • • • • • • • • • • •• seek to the symbol table or a common object file
len(3f) • return length of Fortran string
lfind(3c~ • see lsearch(3c)
1ge(3r) • • • • • • string comparison intrinsic runctions
19t(3r) • • • • • • • • • • • • • see 1ge(Sr)
lle(3!) • • • • • • • • • • • • • • • see Ige(3f)
Ilt(3f) • • • • • . • • • • • • . • • • • • • • . • • • • • • • • • • • see 1ge(Sf)
localtime(3c) • see ctime(3c)
lockf(3c) • record locking on files
log(3f) •• • • • • • • • • • • • • • • • • Fortran natural logarithm intrinsic function
log(3m). • • • . • • . . • • • • • . • • • . • • . . • • • • • • see exp(3m)
logl0(3f) • • • • • • • • • • • • • • • • • Fortran common logarithm intrinsic function
logl0(3m). • . . . • • • • • • • • . • • • . • He exp(3m)
logname(3x) • return login name of user
)ongjmp(3c) • see setjmp(3c)
Jrand48(3c) • see drand48(3c)
lsearch(3c) • linear search and update
lshirt(Sf) •••••••••••••••••••••••••••••••• see and(Sr)
ltoI3(3c) • see IStol(Sc)

Icon International, Inc.

(

(

mallinfo{3x) ••
malloc(3c) ••
malloc(3x) •
malJopt(3x) •
matherr(3m) •
max(3C)
maxO{Sf)
maxl(Sf)
mclock(SC)
memccpy(Sc) •
memchr{3c) •
memcmp(Sc)
memcpy(Sc)
memset(Sc)
min(Sf) •
min0(3f) •
minl(3C) •
mktemp(3c) •
mod(3f)
modC(3c) •
monitor(3c) •
mrand48(Sc) •
mvbits(3C)
nint(3f)
nlist(Sc) •
not(3f)
not(3C) •
nrand48(3c)
or(3C) •
pclose(3s)
perror(3c) •
plot(Sx)
popen(Ss)
pow(3m)
printf(3s)
putc(3s) •
putchar(3s) •
putenv(3c)
putpwent(3c)
puts(3s)
pututline(3c)
putw(3s)
qsort(3c) •
rand(3c)
rand(3C)
real(3f)
realloc(3c)
reaUoc(3x)
regcmp(3x) •
regex(3x) •
rewind(3s)
rshiCt(3C)
scanC(3s)

Icon International, Inc.

. . .

Table of Coateau

• • • • see malloc(3x)
• main memory allocator

fast main memory allocator
• see malloc(3x)

• error-handling function
• • • Fortran maximum-value functions

• see max(3C)
• see max(3f)

• • return Fortran time accounting
• memory operations

• • • • • see memccpy(3c)
• see memccpy(3c)
• see memccpy(3c)
• see memccpy(3c)

• Fortran minimum-value functions
• see min(3f)
• see min(3C)

• make a unique file name
• Fortran remaindering intrinsic functions

• see frexp(3c)
• prepare execution profile

• see drand48(3c)
• see ior(3C)

• see anint(3f)
• get entries from name list

• see and(3C)
• see ior(3f)

• see drand48(3c)
• see and(SC)

• see popen(3s)
• system error messages

• graphics interface subroutines
• initiate pipe to/from a process

• • • see exp(3m)
• • print formatted output

• • put character or word on a stream
• see putc{Ss)

• change or add value to environment
• write password file entry
• put a string on a stream

• see getutent(Sc)
• see putc(Ss)

• quicker sort
• simple random-number generator

• see irand(3C)
• see int(3C)

• see malloc(3c)
• see malloc(3x)

• compile and execute regular expression
• see regcmp(3x)

• see fseek(3s)
• see and(Sf)

• convert Cormatted input

xiii

Tdle 0/ COftteftt8

xiv

seed48(3e) ••
setbuf{Ss) • • • • •
setgrent(Se) •
setjmp(Sc) ••
setkey(Sc)
setpwent(Sc)
setutent(Se) •

.
.

• • • • • • • • • see drand48(3c)
• • • assign buffering to a stream

• see getgrent(3c)
• • • • • • non-local goto

• • • • see crypt(Sc)
• • • • • • • • • see getpwent(3c)

• • • • see getutent(3c)
setvbuf(Ss) •••••••••••••••••••••••••••••• see setbuf{3s)
agetl(3x) • see sputl(3x)
sign(Sf) • • • • • • • • • • • • • • • • • • • Fortran transfer-of-sign intrinsic function
signal(3f) • • • • •••••••••• specify Fortran action on receipt of a system signal
sin(3r). • • • • • • • • • • • • • • Fortran sine intrinsic function
sin(3m) . • • • . . • • •
sinh(Sf) • • • • • • • • • •

• • • • • • • • • trigonometric functions
• • • • Fortran hyperbolic aine intrinsic function

• • • • • • • • • • hyperbolic functions
• • • • • • • • • • • suspend execution for interval

sinh(Sm)
sleep(Sc)
sngl(3C)
sprintf(Ss)
sputl(Sx) • •

• • • • . • • . . • • • • • • • • • • • • • see int(Sr)

sqrt(Sf) • • • • • • •
sqrt(3m)
srand(3c)
srand(Sf) ••

• • • • • • • • • • see printC(Ss)
• • • • access long integer data in a machine-independent fashion.

• Fortran square root intrinsic function
• • • • see exp(3m)

• • see rand(Sc)

srand48(3c) • • • • • • • • •
• • see irand(3C)

• • • • • • • • • • see drand48(3c)
sscanC(3s)
ssignal(3c)
stdio(3s)
strcat(3c) • • • • •
strchr(3c)
strcmp(3c)
strcpy(3c) • • • • • • • • • • • •
strcspn(3c)
strlen(3c)
strncat(3c)
strncmp(3c) • • • • •
strncpy(Sc) • • • • • • • • •
strpbrk(3e)
strrchr(3c)
strspn(3c) • • •••
strtod(3c)
strtok(Sc) •
strtol(3c) •

. • • • • . . . • • • . • • • • . • • • see se anf(3s)
• • • • • • • • • • • • • • • • • software signals

• • standard buffered input/output package
• • • • • • • • • • string operations

• • see strcat(3c)
• see strcat(3c)
• see strcat(3c)

• • see strcat(3c)
• • • • • see strcat(3c)

• • see strcat(3c)
• • • • • see strcat(Sc)

• • see strcat(3c)
• see strcat(3c)

• • • • • • see strcat(3c)
• • • • • • • • • • • • • • • see strcat(Sc)
• • • • convert string to double-precision number

• • • • • • see strcat(Sc)
• • • convert string to integer

swab(3c) • • • • • • • • • • • • • • • • • • swap bytes
system(3C) • • • • • • • • • • issue a shell command from Fortran
system(Ss) • • • • • • • • • • • • issue '8 shell command
sys_errlist(3c) • • • • • • • • • • • • • • see perror(Sc)
sys-nerr(3c) • • • • • • • • • • • • • • • see perror(3c)
tan(3f). • Fortran tangent intrinsic function
tan(3m) • • • • • . • • • • • • • • • • • • • . • . . • • • • • • • • • . see sin(3m)
tanh(Sf) • • • • • • • • • Fortran hyperbolic tangent intrinsic (unction
tanh(3m). • • • • • • • • • • • • see sinh(3m)
tdelete(3c) • • • • • • • • • • • • • • • • • • see tsearch(3c)
tempnam(3s) • see tmpnam(3s)

Icon International, Inc.

/

(

(

Ta6le 0/ Content8

tfind(3c) • see tsearch(3c)
tmpfile(3s) • • • • • • • • • • • • • • • • • create a temporary file
tmpnam(3s) •• create a name ror a temporary file
toascii(3c) • • • • • • • • • • • • • • • • • • • see toupper(3c}
tolower(3c) •••• • • • • • • • • • • • • • • see toupper(3c)
toupper(3c) • translate characters
taearch(3c) ••••• manage binary search trees
ttyname(3c) • find name or a terminal
ttyslot(3c) • • • • • • • • • • ••••• find the slot in the utmp file or the current user
twalk(3c) •••••••••••••••••••••••••••••• see tsearch(3c)
tzset(3c). • • • • • • • • . • • • • • • • • • • . • • • . . . • • • • • see ctime(3c)
ungetc(3s) • • • • • • • • • •••••••••• push character back into input stream
utmpname(3c) • _ • • • • see getutent(3c)
vCprintr(3s) • • • • • • • • • .. • • • • • • • • • • • • • • • • • see vprintr(3s)
vCprintr(3x) ••• see vprintr(3x)
vprintr(3s) • • • • • • • • • • • • • • print rormatted output or a varargs argument list
vprintr(3x) • • • • • • • • • • • print rormatted output or a varargs argument list
vsprintr(3s) • see vprintf(3s)
vsprintf(3x). ••• see vprintf(3x)
xor(3f) • . • • • . . . • • . • • . . • . . . • • • • . • • • . see and(3f)
yO(3m) • • • see jO(Sm)
yl(3m) • . • • see jO(Sm)
yn(3m) . • • • . . . • . • • • • • • see jO(Sm)
zabs(Sf) • • • • • • • • • • • see abs(3f)
_tolower(Sc) • • • • • • • • • • • • • • • see toupper(Sc)
_toupper(Sc) •• • • • • see toupper(Sc)

4. File Formate

a.out(4) • • • • • •.• • • • • • • • • • • • • common assembler and link editor output
acct(4) • per-process accounting file rormat
ar(4) •••••••••••••••••••••••••• common archive file format
checklist(4) • • • • • • • • • •• • • • • • • • • • list or file systems processed by rsck
core(4} • • • • • • • • • • • • • .~. • • • • • • • • • • format of memory image file
cpio(4) • rormat of cpio archive
dire 4) • rormat or directories
dosdisks(4). • list ofMPS/DOS virtual disks
dosprinters(4} • • • • • • • • • • •• destinations for spooled output rrom SLPT printers
filehdr(4}. • file header ror common object files
rs(4} • rormat or file system volume
rspec(4) ••••••••••••••••••••••• rormat specification in text files
gettyders(4) • • • • • • • • • • • • • • • •• speed and terminal settings used by getty
gps(4) •••••••••••• ••• graphical primitive striDg, rormat of graphical files
group(4) . • . . • • .. . • . . • • • . . . • . . . • • • • • • • • • • . • group file
inittab(4) ••••••••••••••••••••••••• seript for the init process
iDode(4.).••. '. • • . • . • . rormat of an i-node
intro(4) ••••••••••••••••••••••••• introduction to file rormats
issue(4). •• issue identification file
Idrcn(4) • • • • • • • • • • ••• common object file access routines
linenum(4) ••••••••••••••••• line number entries in a common object file
mnttab(4) • mounted file system table
mttys(4) •••••••••••••••••••••• Multi-Link partition information
passwd(4) • password file
plot(.() • • • • • • • • •.• graphics interface

Icon International, Inc. Xy

.,

Te6le oJ Cordent,

profile(4) • • • •••••••••••••••• setting up an environment at login time
reloc(4} •••• •••••••••••• relocation information for a common object file "'-/
secsfile(4) • format of SCCS file
senhdr(4) • • • • • • • • • • • • • • • •••• section header for a common object file
smiledisks(4) •• ••••••••••••••••••••• list of SMD..E virtual disks
syms(4) • • •••••••••••••••••• common object file symbol table format
term(4) ••••••••••••••••••••••••• format of compiled term file.
termcap(4) • terminal capability data base
terminfo(4). • terminal capability data base
utmp(4). • • • •••••••••••••••••••• utmp and wtmp entry formats
uxrc(4) ••••••••• ••••••••••• ICONfUXB run-time configuration file
wtmp(..() • • • . • • . • see utmp(4)

6. Miscellaneous Facilities

xvi

ascii(5) ••••••••••••••••••••••••• map of ASCn character set
environ(5). • user environment
fcntl(5) •• file control options
intro(5) • introduction to miscellany
math(S) • math functions and constants
prof(S) • profile within a function
regexp(S) • • • • • • • • • • • • • • • • regular expression compile and match routines
stateS) ••• data returned by stat system call
term(S) • conventional names for terminals
types(5) • primitive syst.em data types
values(S) • machine-dependent values
varargs(S) •• handle variable argument list

leon International, Inc.

/'
(

PERMUTED INDEX

t,~

13tol, Ito13 convert between
integer and base-64 ASCn string

value
Fortran absolute value
. abs return integer

iabs, dabs, cabs, labs Fortran
fabs 800r, ceiling, remainder,

of a file
utime set file

machine-independent/ sputl, agetl
Idfcn common object file

/setutent, endutent, utmpname
access determine

acct enable or disable process
mclock return Fortran time

acct per-process
accounting
file format

functions sin, cos, tan, asin,
intrinsic function

signal signal specify Fortran
putenv change or

part of complex argument
intrinsic function

alarm set a process
sbrk change data segment space

realloc, calloc main memory
mallinfo fast main memory

naturallogarithm intrinsic/ log,
logarithm intrinsic/ log10,

Fortran/ max, maxO,
max, maxO, amaxO, maxI,

Fortran/ min, minO,
min, minO, aminO, minI,
intrinsic functions mod,

Fortran Bitwise Boolean/
Fortran nearest integer /

editor output

acos, dacos Fortran
cpio format of cpio

archive header of a member of an
ar common

archive file Idahread read the
asin, dasin Fortran

atan2, datan2 Fortran
atan, datan Fortran

Fortran imaginary part of complex
return Fortran command-line

varargs handle variable
formatted output of a varargs
formatted output of a varargs
getopt get option letter from

return the number of command line

Icon International, Inc.

3-byte integers and long integers • • • 13tol(3c)
a641, 164a convert between long • a641(Sc)
abort generate an lOT rault • • • • • • • abort(3c)
abort terminate Fortran program abort(3f)
abs return integer absolute abs(3c)
abs, iabs, dabs, cabs, labs ••••• abs(3f)
absolute value ••••••• • • • • abs(3c)
absolute value abs, ••••• • • • • abs(3f)
absolute value functions /fmod, • • • 800r(3m)
access determine accessibility •• access(2)
access and modification times •••• utime(2)
access long integer data in a •••• • sputl(3x)
accell routines Idfcn(4)
accell utmp file entry • • • • • • • getutent(3c)
accessibility of a file • • • access(2)
accounting •••• • acct(2)
accounting •••• • • • • • • mclock(3r)
accounting file format acct!4j
acct enable or disable process: acct 2
acct per-process accounting • • • • acct 4
acos, atan, atan2 trigonometric sin(3m)
acos, dacos Fortran arccosine •••• •• acos(Sf)
action on receipt of a system • • • signal(3f)
add value to environment •• putenv(3c)
aimag, dimag Fortran imaginary aimag(3f)
aint, dint Fortran integer part • • • • • • aint(Sf)
alarm set a process alarm clock • • • alarm(2)
alarm clock • • • • • • • alarm(2)
allocation brk, ••••• • brk(2)
allocator malloc, free, • • • • • • • malloc(3c)
allocator /calloc, mallopt, • malloc(Sx)
alog, dlog, clog Fortran • • • • • • • • • log(3f)
alog10, dloglO Fortran common logl0(3f)
amaxC, maxI, amaxl, dmaxl ••••• max(3f)
amaxl, dmaxl Fortran/ max(Sf)
aminO, minI, aminI, dmin1 • • • • • • •• min(Sf)
aminI, dminl Fortran/ • • • • min(3f)
amod, dmod Fortran remahidering • • mod(Sf)
and, or, xor, not, lshift, rshift • • • • • • • and(Sf)
anint, dnint, nint, idnint • • • • • • • anint(3f)
a.out common assembler and link •••• a.out(4)
ar common archive file format •• ••• ar(4)
arccosine intrinsic function • • • acos(Sf)
archive • • • • • • • • • • • • • • • cpio(4)
archive file Idahread read the • Idahread(Sx)
archive file format. • • • • • • • • • ar(4)
archive header of a member of an Idahread(Sx)
arcsine intrinsic function • • • • asin(3f)
arctangent intrinsic function • • • • • atan2(3f)
arctangent intrinsic function atan(Sf)
argument aimag, dimag • aimag(3r)
argument getarg • • • • • • • • • • getarg(Sr)
argument list • • • • • • • • • • • varargs(5)
argument list /vsprintf print •••••• vprintf(3s)
argument list /vsprintf print •••••• vprintf(3x)
argument vector • getopt(3c)
arguments iargc • • • • • • • • • • iargc(3f)

xvii

Perm.ted Iftdez

xviii

let
ascii map of

between long integer and base-64
timet ctime, localtime, gmtime,

trigonometric/ sin, cos, tan,
intrinsic function
la.out eommon

assert verify program
letbuf, letvbuf

siD, cos, tan, asiD, acos,
intrinsic function

ain, cos, tan, asin, acos, atan,
arctangent intrinsic function

double-precision number strtod,
strtol, atol,

integer strtol,
terminal capability data
terminal capability data

convert between long integer and
jO,jl,jn,yO,yl,yn

Cread, fwrite
bsearch

tfind, tdelete, twalk manage
btest, ibset, ibdr, mvbits

set/dear hardware OVRIDE
not, lshift, rshift Fortran

lshirt, rshirt Fortran Bitwise
space allocation

table
/not, ieor, ishft, ishftc, ibits,

stdio standard
setbur, setvbuf assign

swab swap
value abs, iabs, dabs,

data returned by stat system
malloc, Cree, realloc,

main/ malloc, Cree, realloc,
intro introduction to system

termcap terminal
terminfo terminal
Cunction cos, dcos,

ceiling, remainder,/ 800r,
800r, ceil, Cmod, Cabs 800r,
intrinsic Cunction exp, dexp,

allocation brk, sbrk
chmod

environment putenv
chown

nice
chroot

chdir
pipe create an interprocess

Isngl, dble, cmplx, dcmplx, ichar,
ungetc push
cuserid get

getc, getchar, Cgetc, getw get
putc, putchar, Cputc, putw put

ascii map of ASCII
iscntrl, isascii classiCy

ascii map of ASCU character •••••• ascii(5)
ASCD character let ••••• ascii(5)
ASCD string /I"a convert •• • a641{Sc)
asctime, tnet eonvert date and ctime(Sc)
asin, acos, atan, atan2 • • • • •••••• sin(Sm)
asiD, dasiD Fortran arcsine • asin(Sr)
assembler and link editor output • a.out(4)
assert verify program assertion • assert(SXj
assertion • • • • • • • • • • • • • • • • assert(Sx
assign buBering to a stream •••• setbul{Ss
atan, atan2 trigonometricl •••• sin{Sm)
atan, daun Fortran arctangent ••••• atan(aC)
atan2 trigonometric Cunctions siD(3m)
atan2, datan2 Fortran • • • • • • atan2(af)
atof convert string to •••••••••• strtod(Sc)
atoi convert string to integer •••••• strtol(Sc)
atol, atoi convert string to strtol(Sc)
baR termcap ••••• • • • • • • termcap(4)
base terminCo ••••• • •• terminCo(4)
base-64 ASCU string /l64a • a641(3c)
Bessel functions • • • • • • • • jO{Sm)
binary input/output • • • • • •• fread(3s)
binary search a sorted table • bsearch(Se)
binary search trees tsearch, •••• tseareh(Sc)
bit /ieor, ishrt, ishfte, ibits, • • • • • ior{3r)
bit ovride ••••••••• ovride(2)
Bitwise Boolean functions /xor, • • •• and(3f)
Boolean Cunctions for, xor, not, and(3f)
brk, sbrk change data segment brk(2)
bsearch binary search a sorted • bsearch(Sc)
btest, ibset, ibclr, mvbits bit • • • • • ior(SC)
buffered input/output package stdio(Ss)
buffering to a stream •• setbur(3s)
bytes ••••••••••••••••• swab(3c)
cabs, zabs Fortran absolute • • abs{3C)
call stat ••••••••• • • • stat(5)
calloc main memory allocator • • malloc(3c)
calloc, mallopt, mallinro fast malloc{3x)
calls and error numbers ••••••••• intro(2)
capability data base • • • • • • termcap(4)
capability data base • • • • • • • • • • • terminro(4)
ccos Fortran eosine intrinsic • • • • • cos{3r)
ceil, Cmod, Cabs 800r, • • • • • • • 800r(3m)
ceiling, remainder, absolute/ • 800r(3m)
cexp Fortran exponential •• • exp{SC)
change data segment space • • brk(2)
change mode oC file ••••• • chmod(2)
change or add value to • • • • • • • putenv(3c)
change owner and group oC a file chown(2)
change priority of a process • • • nice(2)
change root directory •• chroot(2)
change working directory • • • • chdir(2)
channel •••••••• pipe(2)
char explicit Fortran type/ • • • • • int(3C)
character back into input stream ungetc(3s)
character login name of the user • • • cuserid{3s)
character or word Crom a stream •• getc{3s)
character or word on a stream putc(3s)
character set • • • • • • • • • ascii(5)
characters /isprint, isgraph, ••••• isalpha(3c)

Icon International, Inc.

L.,

(

(

_tolower, toaseii translate

processed by rsck
times get process and

terminate wait wait ror

a file

isgraph, iscntrl, isaseii
inquiries rerror, reor,

alarm set a process alarm

intrinsic I log, alog, dlog,

Idclose, Idaclose
close

rclose, mush
Itelldir, seekdir, rewinddir,
idint, real, float, sngl, dble,

system issue a shell
system issue a shell

iargc return the number ol
getarg return Fortran

ar
output la.out

log10, aloglO, dloglO Fortran
Idclose,ldaclose close a
read the file header or a

number entries or a section or a
to the optional file header or a

entries or a section or a
indexed named section header or a

to an indexed named section or a
ol a symbol table entry or a

indexed symbol table entry or a
seek to the symbol table or a

line number entries in a
relocation inrormation for a

scnhdr section header ror a
routines Idrcn

ldopen,ldaopen open a
/line number entries ol a

entry Iretrieve symbol name ror
lormat syms

filehdr file header lor
rtok standard interprocess

1ge, 19t, lle, llt string
expression regcmp, regex

regexp regular expression
term format or

erf, erfc error function and
dimag Fortran imaginary part or

runction conjg, dconjg Fortran
table entry of al Idtbindex
urc ICON/UXB run-time
conjugate intrinsic function

conjg, dconjg Fortran complex
an out-going terminal line

math math runctions and
fcntl file

Icon International, Inc.

characters ltolower, _toupper, • toupper(3c)
chdir change working directory • chdir(2}
checklist list of file systems • checklist(4)
child process times • • • • • • • • times(2)
child process to stop or • • • • • • wait(2)
chmod change mode of file • • • • • chmod(2)
chewn change owner and group of •••• chown(2)
chroot change root directory •••• chroot(2)
classify characters lisprint, • • isalpha(3c)
clearerr, fileno stream status • ferror(3s)
clock • • • • • • • • • • • • alarm{2}
clock report CPU time used • clock(3c}
clog Fortran natural logarithm ••••• log{3r)
close close a file descriptor • • • • • close(2}
close a common object file • Idclose(3x)
close a file descriptor • • • • • • • • close(2}
close or flush a stream • • • • • • • • fclose(3s)
closedir directory operations • directory:(Sx)
cmplx, dcmplx, ichar, chari lifix, ••••• int(3r)
command • • • • • • • • • system(3s)
command from Fortran •••• • system(3l)
command line arguments • • • • • iargc(Sr)
command-line argument ••••••••• getarg(3r)
common archive file rormat • • • • •• ar(4)
common assembler and link editor • • ••• a.out(4)
common logarithm intrinsic/ •••• • logIO(Sf)
common object file ••••• • • • • Idclose(3x)
common object file IdChread • IdChread(3x)
common object file lseek to line • • •• Idlseek(3x)
common object file lseek • • • • Idohseek(3x)
common object file Ito relocation Idrseek(Sx)
common object file Iread an • • • • • Idshread(3x)
common object file lseek • • • Idsseek(3x)
common object file Ithe index •••••• Idtbindex(3x)
common object file tread an • Idtbread(Sx)
common object file Idtbseek • • Idtbseek(3x)
common object file linenum • • • linenum(4)
common object file reloc • • • • • reloc(4)
common object file ••••••••••• scnhdr(4)
common object file access • Idrcn(4)
common object file lor reading • • • • Idopen(3x)
common object file runction • • • • • Idlread(3x)
common object file symbol table • Idgetname(3x)
common object file symbol table • syms(4)
common object files ••••• • • • • filehdr(4)
communication package • • • • • ftok(3c)
comparison intrinsic runctions • • • • • Ige(3f)
compile and execute regular ••••• regcmp(3x)
compile and match routines •••• • regexp(5)
compiled term file. • • • • • term(4)
complementary error function • • • • • • • ert'(3m)
complex argument aimag, • aimag(3l)
complex conjugate intrinsic • • • conjg(3f)
compute the index of a symbol • Idtbindex(3x)
configuration file •••••• urc(4)
conjg, dconjg Fortran complex conjg(3f)
conjugate intrinsic lunction • • • • • • conjg(3f)
connection dial establish • • • • • dial(3c)
constants • • • • • • • • • math(5)
control • • • • • • • • • • • • • • lcntl(2)

xix

Perm.ted I.de%

ioctl
msgctl message

semctl semaphore
shmctl shared memory

fcntI file
term

char explicit Fortran type
and long integers 13tol, ltolS

baae-64 ASCD string a841, 164a
/localtime, gmtime, aeetime, taset

string ecn, fcn, gcn
seanC, rseanC, sseanr

double-precision/ strtod, ator
strtol, atol, atoi

file
intrinsic runction

trigbnometric runctions sin,
cosine intrinsic function

sinh,
cos, dcos, ccos Fortran

cosh, dcosh Fortran hyperbolic

epio rormat of
clock report

rewrite an existing one
file tmpnam, tempnam

existing one creat
rork

tmpfile
pipe

umask set and get file
optimization package curses

DES encryption
Cunction sin, dsin,

intrinsic runction sqrt, dsqrt,
terminal

asctime, tzset convert date/
uname get name of

the slot in the utmp file oC the
getcwd get path-name of

optimization package
name of the user

absolute value abs, iabs,
intrinsic function acos,

function asin,
termcap terminal capability
terminfo terminal capability

/sget! access long integer
plock lock process, text, or

stat
brk,sbrk change

types primitive system
intrinsic function atan,

intrinsic runction atan2,
/gmtime, asctime, tzset convert

/ifix, idint, real, float, mgl,
/real, float, sngl, dble, cmplx,

conjugate intrinsic/ conjg,
intrinsic runction cos,

intrinsic Cunction cosh,

control device • • • • • • • • • • ioctl(2)
control operations • • • • • • •••• msgctl(2)
control operations •••••••••••• semctl(2)
control operations ••• shmctl(2)
control options ••••• fcntl(5)
conventional names for terminals term(5)
conversion /cmplx, dcmplx, ichar, int(SC)
convert between 3-byte integers •••••• IStol(Sc)
convert between long integer and a841(Sc)
convert date and time to string • • • • ctime(Sc)
convert floating-point number to ecvt(Sc)
convert formatted input •••• • • seanC(Ss)
convert string to ••••••••• strtod(Sc}
convert string to integer •••• • • • strtol(Sc)
core format of memory image •• core{4}
cos, dcos, ccos Fortran eosine • cos(SC)
cos, tan, asin, acos, atan, atan2 • • • • sin(Sm)
cosh, dcosh Fortran hyperbolic • cosh(SC)
cosh, tanh hyperbolic functions •• sinh(Sm)
cosine intrinsic Cunction • • • • cos(SC}
cosine intrinsic function • • • • cosh(SC)
cpio format of cpio archive cpio(4)
cpio archive •••••• : : : : : cpio(4)
CPU time used •••••• • • • • clock(Sc)
creat create a new file or creat(2)
create a name for a temporary tmpnam(Ss)
create a new file or rewrite an •••• creat{2}
create a new process • • • • • • • • • fork(2)
create a temporary file • • • • • • • • •• tmpfile{3s)
create an interprocess channel pipe(2)
creation mask • • • • • • • • umask(2)
CRT screen handling and curses{Sx)
crypt,setkey,encrypt generate ••••• crypt(Sc)
csin Fortran sine intrinsic • • • • • • • • sin(Sf)
csqrt Fortran square root •• • • • • sqrt(Sf)
ctermid generate file name Cor •• ctermid(Ss)
ctime, localtime, gmtime, ••• ctime{Sc)
current UNIX system ••••• uname(2)
current user ttyslot find • • • • • ttyslot(Sc)
current working directory • • • • • • getcwd{3c)
curses CRT screen handling and •• curses{Sx)
cuserid get character login • • • cuserid(Ss)
dabs, cabs, zabs Fortran abs(SC)
dacos Fortran arccosine • • • • • • acos(SC)
dasin Fortran arcsine intrinsic •• uin(Sf)
data base •••••••••• termcap(4)
data base •••••••••• • terminCo(4)
data in a machine-independent! • • sputl(Sx)
data in memory • • • • • • • • • • plock(2)
data returned by stat system call stateS)
data segment space allocation • brk(2)
data types ••••••••••••••• types(. 5}
datan Fortran arctangent • • • • • • atan(Sr)
datan2 Fortran arctangent •••• • atan2(Sf)
date and time to string ctime(Sc)
dble, cmplx, dcmplx, ichar, charI • • int(srl
dcmplx, ichar, char explicit/ • • • • • • • int{SC
dconjg Fortran complex • • • • • • • • • conjg Sf)
dcos, ccos Fortran cosine •••• • • cos(Sf)
dcosh Fortran hyperbolic cosine • • cosh{Sf)

leon International, Inc.

(
intrinsic functions dim,

cr,ypt,setkey,encrypt generate
close close a file

dup duplicate an open file
from SLPT printers dosprinters

access
ioctl control

intrinsic function exp,
terminal line connection

dim, ddim, idim positive
difl'ereoce intrinsic functioos

complex argumeot aimag,
intrinsic fuoctioo aiot,

dir format of
chdir chaoge working

chroot chaoge root
get path-name of curreot workiog

unlink remove
telldir, seekdir, rewinddir ,/
seekdir, rewinddir, closedir

ordinary file mknod make a
acct enable or

list of MPS/DOS virtual
list of SMILE virtual

hypot Euclidean
/1cong48 generate uniformly
logarithm intrinsic/ log, alog,

intrinsic/ 10glO, aloglO,
max, maxO, amaxO, maxi, amaxl,

min, minO, aminO, mini, amini,
intrinsic functions mod, amod,

nearest integer functions anint,
virtual disks

spooled output from SLPT /
intrinsic function dprod

strtod, atof convert string to
intrinsic function

nrand48, mrand48, jrand48,f
intrinsic function sign, isign,

intrinsic function sin,
intrinsic function sinh,

root intrinsic function sqrt,
function tan,

tangent intrinsic function tanh,
descriptor

dup
floating-point number to string

end, etext,
/a.out commoo assembler and liok

efl'ective user, real group, aod
/getgid, getegid get real user,

accounting acct
crypt, setkey,

setkey, encrypt geoerate DES
locations in program

/getgrgid, getgrnam, setgrent,
/getpwuid, getpwnam, setpwent,

/getutline, pututline, setuteot,
nlist get

Icon International, Inc.

Permuted lade::

ddim, idim positive dift'erence • dim(3f)
DES encryption • • • • • • • crypt(3c)
descriptor ••••••••• • close(2)
descriptor ••••••••••••••• dup(2)
destinations for spooled output • dosprinters(4)
determine accessibility of a file •••• access(2)
device ••••••••••••••••• ioctl(2)
dexp, cexp Fort.rao exponeotial exp(3f)
dial establish an ou going •• dial(3c)
difl'erence intrinsic functions • • • • dim(3f)
dim, ddim, idim positive • dim(Sf)
dimag Fortran imaginary part. of • aimag(Sf)
dint Fort.ran integer part • • • • • • • • aint(Sr)
dir rormat of directories • dir(4)
directories • • • • • dire 4)
directory • • • • • • • • • • chdir(2)
directory • • • • • • • • • • chroot(2)
directory getcwd •••••••••••• getcwd(Sc)
directory entry ••••• • unlink(2)
directory: opeodir, readdir, • • • directory:(3x)
directory operatioos /telldir, • • • • ••• directory:(3x)
directory, or a special or ••••••••• mknod(2)
disable process accounting • acct(2)
disks dosdisks •••••••••• • dosdisks(4)
disks smiledisks •••••• • smiledisks(4)
distance runction •••••••••••• hypot(3m)
distributed pseudo-random numbers • drand48(3c)
dlog, clog Fortran natural • • • • • log(3r)
dloglO Fortran common logarithm logl0(3f)
dmaxl Fortran maximum-value/ • max(3r)
dminl Fortran minimum-value/ ••••• min(3!)
dmod Fortran remaindering •• mod(3f)
dnint, nint, idnint Fortran ••••••• anint(3!)
dosdisks list or MPS/DOS • • • • • • • • dosdisks(4)
dosprinters destinations ror • • • • • dosprinters(4)
double precision product • • • • • • • dprod(3r)
double-precision number •••• • • • strt.od(3c)
dprod double precision product ••••• dprod(3r)
drand48, erand48, Irand48, •••••••• drand48(3c)
dsign Fortran transrer-oC-sign •••••• sign(3r)
dsin, csin Fortran sine ••••• • sin(3l)
dsinh Fortran hyperbolic sine • sinh(3r)
dsqrt, csqrt Fortran square • sqrt(3r)
dtan Fortran tangent intrinsic • • • • • • tan(3r)
dtanh Fortran hyperbolic • • • • • • • • tanh(Sf)
dup duplicate an open file • • • • • • • • dup(2)
duplicate an open file descriptor • • • • • • dup(2)
ecvt, fcvt, gcvt coovert • • • • • ecvt(Sc)
edata last locations in program ••••• eod(3c)
editor output •• • • • • • • • • • ••• a.out(4)
efl'ective group IDs /real user, • • • • • • • getuid(2)
efl'ective user, real group, and/ • getuid(2)
enable or disable process • • • • • acct(2)
encrypt generate DES encryption • crypt(3c)
encryption crypt, •••••• • • • • crypt(3c)
end, etext, edata last • • • • • • • end(3c)
endgrent, fgetgrent get group/ • getgrent(3c)
endpwent, (getpwent get/ • • • • • • getpwent(3c)
endutent, utmpname access utmp/ • getutent(3c)
entries from name list ••••••• • nHst(3c)

xxi

.r

xxii

linenum line number
/ldlitem manipulate line number

/ldnlseek seek t.o line number
/ldnraeek seek t.o relocation

19etgrent get group file
1getpwent get pusword file
utmpname access utmp ale

common object &le symbol table
putpwent write pusword &le

unlink remove direct.ory
utmp, wtmp utmp and wtmp

/the index of a symbol table
Iread an indexed symbol table

environ user
putenv change or add value t.o

profile setting up an
getenv return value for

getenv return Fortran
. mrand48, jrand48./ drand48,
complementary error Cunction

complementary error I erC,
system error messages perror,

error Cunction and complementary
error Cunction erC, erCc

sys_errlist,sys-nerr system
introduction to system calls and

matherr
line connection dial

program end,
hypot

exec:lp, execvp execute a ale
execute a file execl, execv,

execl, execv, exec:le, execve,
execle, execve, exec:lp, execvp
regcmp, regex compile and

sleep suspend
monit.or prepare

profil
execvp execute a ale execl,

a &Ie exec:l, execv, execle,
eXeCV, execle, execve, execlp,

create a new ale or rewrite an
exit,

exponential intrinsic Cunction
exponential, logarithm, power ,I

Idble, cmplx, dcmplx, ichar, char
exp, dexp, cexp Fortran
exp, log, loglO, pow, sqrt

compile and execute regular
routines regexp regular

absolute I 800r, ceil, Cmod,
data in a machine-independent

Icalloc, malJopt, mallinCo
abort generate an lOT

stream

8oating-point number tol ecvt,

entries in a common object file • linenum(4)
entries oC a common object &leI Idlread(3x)
entries oC a section of a common! • Idlseek{3x)
entries of a section of a common I Idraeek(3x)
entry /setgrent, endgrent, • • • • • • getgrent(3c)
entry lsetpwent, endpwent, •• • • getpwent(3c)
entry /setutent, endutent, •••••••• getutent(Sc)
entry /retrieve symbol name for •• ldgetname(3x)
entry • • • • • • • • putpwent(3c)
entry •••••••••• • • unlink(2)
entry formats • • • • • • • • utmp(4)
entry of a common object file ••••• Idtbindex(3x)
entry of a common object file Idtbread(Sx)
environ user environment environ(S)
environment ••••••• environ(S)
environment •••••• putenv(3c)
environment at login time • • • • • pro&le(4}
environment name • • • • • • • getenv(3c)
environment variable getenv(3f)
erand48, Irand48, nrand48, • drand48(3c)
erC, erCc error Cunction and • • erC{3ml
erCc error function and erC{3m
errno, sys_errlist, SYS-Derr •••••• perror 3c)
error function erC, erCc •••• • • • erC{3m)
error function and complementary erC{3m)
error messages perror, errno, ••••••• perror(3c)
error numbers intro •••••••••• intro(2)
error-handling function •••• • • matherr(3m)
establish an out-going terminal •••••• dial(3c)
etext, edata last locations in •••• end(Sc)
Euclidean distance Cunction • • • • • • hypot(3m)
exed, execv, exede, execve,. • •••• exed(2)
exede, execve, execlp, execvp • • • • exec:l(2)
exedp, execvp execute a file • • • exec:l(2)
execute a &Ie exed, execv, ••••• execl(2)
execute regular expression •••••••• regcmp(3x)
execution for interval sleep(3c)
execution profile • • • • • • • • • • • monitor(3c)
execution time profile • • pro&I(2)
execv, execle, execve, exedp, • • • • • exec:l(2)
execve, exec:lp, execvp execute • • • • exec:l(2)
execvp execute a &le execl, • exec:l(2)
existing one creat •••• • • • • • creat(2)
_exit terminate process • • • • • • • exit(2}
exit, _exit terminate process • • • • • • • exit(2}
exp, dexp, cexp Fortran • • • • exp(Sf}
exp, log, 10glO, pow, sqrt • • • • exp(Sm)
explicit Fortran type conversion • int(SC)
exponential intrinsic Cunction • • • exp(Sf)
exponential, logarithm, power,! • • • • • • exp(Sm)
expression regcmp, regex •••• regcmp(Sx)
expression compile and match • • • • • regexp(5)
fabs 800r, ceiling, remainder, • 800r(Sm)
Cashion. !access long integer • sputl(3x)
Cast main memory allocator maUoc(3x)
Cault • • • • • • • • • • • • abort(Sc)
fdose, mush close or 8ush a fclose(3s)
Ccntl ale control •••• • • fcntl(2}
Ccntl file control options • fcntl(5)
fcvt, gcvt convert • • ecvt(3c)

Icon Int.ernational, Inc.

.,f "
I .

I,-j

(

c.·'
/

fopen, Creopen,
status inquiries ferror,
stream status inquiries

fdose,
'Word from al getc, getchar,

/getgrnam, setgrent, endgrent,
/getpwnam, setpwent, endpwent,

stream gets,
deter.mne accessibility of a

chmod change mode of
change owner and group of a

core format of memory image
execlp, execvp execute a

group group
issue issue identification

header of a member of an archive
Ida close dose a common object

file header of a common object
of a section of a common object
file header of a common object

of a section of a common object
section header of a common object
named section of a common object

table entry of a common object
table entry of a common object

symbol table of a common object
number entries in a common object

link link to a
or a special or ordinary

pa~d pa~ord
read read from

information for a common object
sccsfile format of sees

header for a common object
swrite synchronous write on a
term format of compiled term

tmpfile create a temporary
create a name for a temporary

ICONfUXB run-time configuration
write write on a
times utime set

Idfcn common object
fcntl
Ccntl

umask set and get
close closea

dup duplicate an open
endgrent, fgetgrent get group

fgetp'Went get p~ord
endutent, utmpname access utmp

putpwent write p~ord
Idaopen open a common object

acd per-process accounting
ar common archive

intro introduction to
number entries of a common object

files filehdr
file ldfhread read the

ldohseek seek to the optional
mktemp make a unique

Icon Int.ernational, Inc.

fdopen open a stream • • • • • • • fopen(3s)
feof, clearerr, fileno stream • ferror(3s)
ferror, feof, clearerr, fileno •••••• ferror(3s)
&lush c:lose or 8ush a stream •• fclose(3s)
fgetc,getw get character or • • • • getc(3s)
fgetgrent get group file entry • • • getgrent(3c)
fgetp'Went get p~ord filet • • getpwent(3c)
fgets get a string from a ••• • • gets{Ss)
tile access • • • • • • • access(2)
file ••••••••••••••• chmod(2)
file chown ••••••••••••••• chown(2)
file ••••••••••• • • • coree 4)
file lexecv, execle, exec:ve, execl(2)
file •••••••••• • group(")
file •••••••••••••••••• issue(4:)
file ldahread read the archive • • • • Idahread(3x)
file ldc:lose, • • • • • • • • • • • • • ldc:lose(3x)
file ldfhread read the • • • • • • • • Idfhread(3x)
file Iseek to line number entries •••• Idlseek(3x)
file /seek to the optional • • • Idohseek(3x)
file /seek to relocation entries • Idrseek(3x)
file tread an indexed named Idshread(3x)
file lseek to an indexed ••••••••• Idsseek(3x)
file /the index of a symbol ••••• ••• Idtbindex(3x)
file tread an indexed symbol •••• • Idtbread(3x)
file ldtbseek seek to the • • • • • • • • • Idtbseek(3x)
file linenum line • • • • • • linenum(4)
file ••••••••••• link(2)
file mknod make a directory, ••• mknod(2)
file • • • • • • • • • • • p~d(4)
file • • • • • • • • • • • • • • read(2)
file reloc relocation • reloc(4)
file • • • • • • • • • • • sc:csfile(4)
file scnhdr section •••• • sc:nhdr(4)
file •••••••• swrite(2)
file. ••••••• • •• term(4)
file ••••••• • • • tmpfile(3s)
file tmpnam, tempnam •••••• • tmpnam(3s}
file uxrc ••••• • • • • uxrc(4)
file •••••••• • • • • • write(2)
file access and modification • • • • utime(2}
file access routines • • • • • Idfcn(4)
file control •••• • • • • • • • • fcntl(2)
file control options • • • • • • • • • • • • fcntl(S)
file creation mask •••• • • • • • • umask(2)
file descriptor • • • • • • • c:lose(2)
file descriptor • • • • • • • • dup(2)
file entry /getgrnam, setgrent, • getgrent(3c)
file entry /setpweni, endpwent, •••••• getpwent(3c)
file entry /pututline, setutent, •••••• getutent(3c)
file entry • • • • • • • • • putpwent(3c)
file for reading Idopen, • • Idopen(3x)
file format • • • • • • • • • • •• acct(4)
file format ••••• ar(4)
file formats • • • • • intro(4)
file function Imanipulate line • • • • Idlread(3x)
file header for common object • • filehdr(4)
file header of a common object • • Idfhread(3x)
file header of a commOn object/ •• Idohseek(3x)
file name • • • • • • • • • • • • mktemp(3c)

XXlll

P,rmut,d [ad,z

xxiv

cteruUd lenerate
/find the alot in the utmp

creat create a new
lseek move read/write

rewind, ftell· reposition a
stat, fstat let

symbol name for common object
syms common object

mount mount a
umount unmount a

ustat get
~ttab mounted

fs format of
checklist list of

ftw walk a
object files

ferror, feof, clearerr,
file header for common object

format specification in text
string, format of graphical

lockf record locking on
ttyname, isatty

the current user ttyslot
ichar,/ int, ifix, idint, real,

ecvt, fcvt, gcvt convert
Idexp, modf manipulate parts of

ceiling, remainder, absolute/
absolute/ floor, ceil, fmod, fabs

fclose, mush close or
remainder, absolute/Boor, ceil,

stream

per-process accounting file
ar common archive file

common object file symbol table
inode
term
cpio

dir
fs

gps graphical priuUtive string,
core

sccsfile
files fspec

intro introduction to file
utmp, wtmp utmp and wtmp entry

scanf, fscanf, sseanf convert
printr, fprintf, sprintf print

/vfprintf, vsprintf print
/vfprintf, vsprintf print

issue a shell comma.nd from
abs, iabs, dabs, cabs, ,abs

system signal signal specify
function acos, dacos
function asin, duin

function atan2, datan2
function abn, datan

and, or, xor, not, lshirt, rshift
getarg return

intrinsic/ log10, aloglO, dloglO

file name for teruUnal ••••• • •• cteruUd(3s)
file of the current user • • • • • ttyslot(3c}
file or rewrite an existing one creat(2}
file pointer ••••••••• lseek(2)
file pointer in a stream fseek, • • • • • fseek(3s)
file status •••••••••• • • stat(2)
file symbol table entry /retrieve •• Idgetname(3x)
file symbol table format •••••• syms(4)
file system •••• mount(2)
file system ••••• • • • • • • umount(2)
file system statistics • • • • • • • • • ustat(2)
file ayatem table • • • • • • ~ttab(4)
file system volume • • • • • •••• fs(4)
file systems processed by fack •••• checklist(4)
file tree •••••••••••••••• ftw(Sc)
filehdr file header for common •• filehdr(4)
fileno stream status inquiries •••••• ferror(3s)
files filehdr •••••••• filehdr(4)
files fspec ••••••••••••• fspec(4)
files gps graphical priuUtive • • • • • • • gps(4)
fil es ••••••••••• loc kf(3c)
find name of a teruUnal • • • • • • • ttyname(Sc)
find the slot in the utmp file of • • ttyslot(Sc)
float, sngl, dble, cmplx, dcmplx, • • • • int(3f)
floating-point number to string • • ecvt(Sc)
floating-point numbers frexp, • frexp(3c)
floor, ceil, fmod, fabs floor, ••••• floor(3m)
floor, ceiling, remainder, ••••• floor(3m)
flush a stream • • • • • • • • • fclose(3s)
fmod, fabs floor, ceiling, • • • • • floor(Sm)
fopen, freopen, fdopen open a • • • • fopen{Ss)
fork create a new process • fork(2)
format acct •••• • acct(4)
format • • • • • • • • • • ar(4)
format syms ••••• • ••• syms(4)
format of an i-node •• inode(4)
format of compiled term file. term(4)
format of cpio archive ••• • • • • • • • cpio(4)
format of directories • • • • • dir(4)
format of file system volume • • fs(4)
format of graphical files gps(4)
format of memory image file • core(4)
format of sees file ••••••••••• sccsfile(4)
format specification in text • • •• fspec(4)
formats •••• • • • • intro(4}
formats ••••••••• • utmp(4)
forma.tted input • • • • • • • • • • acanr(Ss)
forma.tted output ••••• • printf(3s)
formatted output of a varargs/ • vprintf(Ss)
formatted output of a varargs/ vprintf(3x)
Fortran system •••••• • • • system(Sf)
Fortran absolute value • • • • • abs(Sf)
Fortran action on receipt of a • • •• signal(Sf)
Fortran arccosine intrinsic •••••••• acos(Sf}
Fortran arcsine intrinsic asin(Sf)
Fortran arctangent intrinsic • atan2(3f)
Fortran arctangent intrinsic •• atan(Sf)
Fortran Bitwise Boolean functions • • and(3f)
Fortran command-line argument • • getarg(3f}
Fortran common logarithm • • • • • • 10gIO(Sf)

Icon International, Inc.

("

(

intrinsic function conjg, dconjg
cos, dcos, ccos

getenv return
function exp, dexp, cexp

intrinsic Cunction cosh, dcosh
runction sinh, dsinh

intrinsic runction tanh, dtanh
argument aimag, dimag

function aint, dint
/maxO, amaxO, maxi, amaxl, dmaxl

/minO,aminO,minl,aminl,dminl
intrinsic/log, alog, dlog, clog

anint, dnint, nint, idnint
abort terminate

runctions mod, amod, dmod
sin, dsin, csin

Cunction aqrt, dsqrt, csqrt
len return length or

index return location of
function tan, dtan

mclock return
intrinsic/ sign, isign, dsign

dcmpbc, ichar, char explicit
formatted output printf,

word on a stream putc, putchar,
puts,

input/output
memory allocator malloc,

mallinfo fast main/ malloc,
fopen,

parts of Boating-point numbers

formatted input scanf,
list of file systems proeessed by

a file pointer in a stream
text files

stat,
in a stream fseek, rewind,

communication package

Fortran arccosine intrinsic
Fortran integer part intrinsic

dasin Fortran arcsine intrinsic
Fortran arctangent intrinsic
Fortran arctangent intrinsic
complex conjugate intrinsic

ccos Fortran cosine intrinsic
hyperbolic cosine intrinsic
precision product intrinsic

function and complementary error
Fortran exponential intrinsic

gamma log gamma
hypot Euclidean distance

entries of a common object file
common logarithm intrinsic
natural logarithm intrinsic

matherr error-handling
proC profile within a

transfer-of-sign intrinsic
csin Fortran sine intrinsic

Icon International, Inc.

Permuted [nde::

Fortran complex conjugate • • • • conjg(3f)
Fortran cosine intrinsic lunction •• cos(3r)
Fortran environment variable • getenv(3!)
Fortran exponential intrinsic ••••••• exp(3f)
Fortran hyperbolic cosine •• ••• cosh(3f)
Fortran hyperbolic sine intrinsic ••• sinh(Sf)
Fortran hyperbolic tangent •••••••• tanh(3f)
Fortran imaginary part of complex • aimag(3!)
Fortran integer part intrinsic • • • • aint(Sf)
Fortran maximum-value functions •• max(3!)
Fortran minimum-value runctions • • min(3f)
Fortran natural logarithm •••• log(3f)
Fortran nearest integer functions ••• anint(3f)
Fortran program •••••••••••• abort(3f)
Fortran remaindering intrinsic •••••• mod(Sf)
Fortran line intrinsic lunction •••••• sin(3f)
Fortran square root intrinsic ••••• sqrt(3l)
Fortran string •••• • • • • • • • len(3f)
Fortran substring •••• index(3f)
Fortran tangent intrinsic • • • • • • tan(3!)
Fortran time accounting • • mcloek(Sf)
Fortran transler-ol-sign ••••••••• sign(3l)
Fortran type conversion /cmplx, ••••• int(Sf)
lprintf, sprintf print •••••••••• printr(Ss)"
lputc, putw put character or • putc(Ss)
lputs put a string on a stream • puts(Ss)
lread, fwrite binary •••••••••• fread(Ss)
free, realloc, calloc main • • • • • malloc(Sc)
lree, realloe, calloc, mallopt, • malloe(Sx)
lreopen, ldopen open a stream • fopen(Ss)
lrexp, ldexp, modf manipulate • • • • • • lrexp(Sc)
ls lormat of file system volume • • fs(4)
fscanf, sscanf convert • • • • • seanf(Ss)
fsck checklist •••••••••• • checklist(4)
fseek, rewind, ftell reposition •••••• fseek(Ss)
lepec format specification in • • • {spec(4)
{stat get file status • • • • • • • • • stat(2)
ftell reposition a file pointer • • • • • lseek(3s)
ftok standard interprocess • ftok(Sc)
ltw walk a file tree • ltw(Sc)
lunction acos, dacos • • • • • • acos(Sf)
lunction aint, dint • • • • • • aint(Sf)
function asin, • • • • • • • • • • • asin(Sf)
function atan2, datan2 ••••• • • atan2(Sf)
runction atan, datan •••• • • • atan(3f)
runction conjg, dconjg Fortran • • • conjg(3f)
runction cos, dcos, • • • • • • • cos(3f)
runction cosh, dcosh Fortran • cosh(Sf)
lunction dprod double ••••• • • dprod(3f)
function err, edc error • • • • erf{3m)
Cunction exp, dexp, cexp •••• • exp(3f)
lunction •••••••••••• • gamma(Sm)
lunction •••••••• • • • hypot(3m)
runction /manipulate line number • • • • • Idlread(Sx)
function /dioglO Fortran • • • • • • 10g10(3f)
function /dIog, clog Fortran • • • log(3f)
Cunction ••••••••••• • • • matherr(Sm)
function ••••••••••• • prof{ 5)
lunction /isign, dsign Fortran • • • • • • sign(Sf)
lunction sin, dsin, • • • • • • • • • • • • sin(3f)

xxv

Permuted ladez

xxvi

Fortran hyperbolic sine intrinsic
Fortran square root intrinsic

dtan Fortran tangent intrinsic
hyperbolic tangent intrinsic

function erf, erfc error
rshift Fortran Bitwise Boolean
idnint Fortran nearest integer

positive dift'erence intrinsic
logarithm, power, square root

remainder, absolute value
jO, jl, jn, yO, yl, yn Bessel

lit string comparison intrinsic
dmaxl Fortran maximum-value
dminl Fortran minimum-value

Fortran remaindering intrinsic
acos, atan, atan2 trigonometric

sinh, cosh, tanh hyperbolic
math math

fread,

gamma log
number to string ecvt, Ccvt,

abort
crypt,setkey, encrypt

ctermid
/jrand48, srand48, seed48, Icong48

rand, srand random number
srand simple random-number

command-line argument
character or word Crom a stream
character or word Crom a/ getc,

working directory
getuid, geteuid, getgid,

environment variable
environment name

real user, effective/ getuid,
effective user,! getuid, geteuid,

setgrent, endgrent, rgetgrent/
endgrent, fgetgrent/ getgrent,
fgetgrentl getgrent, getgrgid,

argument vector

. process group, and/ getpid,
process, process group, and/

group, and/ getpid, getpgrp,

setpwent, endpwent, fgetpwentl
Cgetpwentl getpwent, getpwuid,
endpwent, rgetpwentl getpwent,

stream
and terminal settings used by

settings used by getty
get real user, effective user ,/

pututline, setutent, endutent,/
setutent, endutent,l getutent,
endutent,/ getutent, getutid,
a stream getc, getchar, fgetc,

date and timel ctime,localtime,
setjmp, longjmp non-local

function sinh, dsinh ••••• • sinh(3f)
function aqrt, dsqrt, caqrt •••• • sqrt(3r)
function tan, • • • • • • • • • • • • • • tan(Sf)
function tanh, dtanh Fortran. • •• tanh(3r)
function and complementary error •• ert{3m)

~''',
I '

\",-/"

functions lor, xor, not, lshiCt, • and(Sf)
functions anint, dnint, nint, • • • • amnt(Sf)
functions dim, ddim, idim • dim(Sf)
functions Isqrt exponential, • • • • exp(3m)
functions Ifabs 800r, ceiling, • 8oor(Sm)
functions • • • • • • • • • • jO(3m)
functions 1ge, 19t, lie, •••••••• lse(Sf)
functions lamaxO, maxi, amaxl, max(Sr)
functions laminO, minI, aminI, ••• min(Sf)
functions mod, amod, dmod ••• • mod(Sf)
functions sin, cos, tan, asin, •• &in(Sm)
functions • • • • • • • • • • • • • • sinh(3m)
functions and constants math(S)
fwrite binary input/output fread(3s)
gamma log gamma function •• gamma(3m)
gamma function • • • • • • • gamma(3m)
gcvt convert Boating-point ecvt(3c)
generate an lOT fault • • • • • •• abort(3c)
generate DES encryption • • • • crypt(Sc)
generate file name for terminal •• ctermid(3s)
generate uniformly distributed/ •••••• drand48(3c)
generator irand, • • • • • irand(Sr)
generator rand, • • • • • • • • • • rand(3c)
getarg return Fortran ••••• • getarg(3r)
getc, getchar, fgetc, getw get •• getc(3s)
getchar, fgetc, getw get • • • • getc(3s)
getcwd get path-name of current getcwd(3c)
getegid get real user,/ ••••••••• getuid(2)
getenv return Fortran • • getenv(3f)
getenv return value for • • • getenv(3c)
geteuid, getgid, getegid get • • • • • getuid(2}
getgid, getegid get real user, • getuid(2}
getgrent, getgrgid, getgrnam, • getgrent(Sc)
getgrgid, getgrnam, setgrent, ••••• getgrent(3c)
getgrnam, setgrent, endgrent, • • • • getgrent(3c}
getlogin get login name • • • getlogin(3c)
getopt get option let,ter rrom • getopt(3c)
getpass read a password •••••••• getpass(3c)
getpgrp, getppid get process, • getPid!2j
getpid, getpgrp, getppid get getpid 2
getppid get process, process getpid 2
getpw get name from UID • • • • • getpw(Sc)
getpwent, getpwuid, getpwnam, getpwent(3c)
getpwnam, setpwent, endpwent, getpwent(3c)
getpwuid, getpwnam, setpwent, • • • • getpwent(3c)
gets, rgets get a string from a '. gets(3s)
getty gettydefs speed • • • • • gettydefs(4)
gettyders speed and terminal •••• gettydefs(4)
getuid, geteuid, getgid, getegid • getuid(2)
getutent, getutid, getutline, • • • • getutent(3Cj
getutid, getutline, pututline, •••• getutent(Sc
getutline, pututline, 8etutent, • • getutent(3c
getw get character or word from • • • getc(3s)
gmtime, asctime, tZ8et convert ctime(3c)
goto • • • • • • • • • • • • • • setjmp(3c)

Icon International, Inc.

(/

(

rormat or graphical files
primitive striDg, rormat or

rormat or graphical files gps
plot
plot

Ireal user, elective user, real
Igetppid get process, process

group
endgrent, rgetgrent get

setpgrp set process
user, real group, and elective

setuid, setgid set user and
chown change owner and

send a signal to a process or a
signal,
varargs

curses CRT screen
ovride set/clear

hereate, hdestroy manage
search tables hsearch,

tables hsearch, hcreate,
scnhdr section

filehdr file
ldfhread read the file

Iseek to the optional file
Iread an indexed named section
file ldahread read the archive

manage hash search tables
function cosh, dcosh Fortran

sinh, cosh, tanh
function sinh, dsinh Fortran

function tanh, dtanh Fortran
function

absolute value abs,
ibits, btest, ibset, ibclr ,I ior,

command line arguments
ishftc, ibits, btest, ibset,

iand, not, ieor, ishft, ishftc,
ishrt, ishftc, ibits, btest,

lfioat, sngl, dble, cmplx, dcmplx,
file werc

setpgrp set process group
issue issue

intrinsic functions dim, ddim,
cmplx, dcmplx, ichar,1 int, ifix,

functions anint, dnint, Dint,
process group, and parent process

real group, and elective group
setgid set user and group

btest, ibset,1 ior, iand, not,
dble, cmplx, dcmplx, ichar,1 int,

core format or memory
argument aimag, dimag Fortran

Fortran substring
a commonl ldtbindex compute the

ldshread, ldnshread read an
ldsseek, ldnsseek seek to an

common objectl ldtbread read an
mttys Multi-Link partition

Icon International, Inc.

Perm"ted [nde%

gps graphical primitive string, • • • gpgp~44l
graphical files IPS graphical • • • • • • •
graphical primitive string, • • • • gps 4
graphics interface • • • • • • • plot(4)
graphics interrace subroutines • • • • • • • plot(3x)
group group file ••••• ••••••• group(4)
group, and elective group IDs • • getuid(2)
group, and parent process IDs getpid(2)
group file • • • • • • • • • • • • • • • • groupe 4)
group file entry Isetgrent, •• • • • • getgrent(3c)
group ID • • • • • • • • • • • setpgrp(2)
group IDs Ireal user, elective • • • getuid(2)
group IDs ••••••••••••••• setuid(2)
group or a file • • • • • • • • • • • • • • chown(2)
group or processes kill •••• kill(2)
pignal IOftware signals • • • • signal(3c)
handle variable argument list • • • • varargs(5)
handling and optimization package • curses(3x)
hardware OVRIDE bit • • • • • • • ovride(2)
hash search tables hseareh, • • • • haeareh(3ej
hcreate, hdestroy manage hash haearch(3c
hdestroy manage hash search hsearch(3e
header for a common object file • • •• scnhdr(4)
header for common object files •••••• filehdr(4)
header of a common object file •• •••• Idfhread(3x)
header of a common object file • • • Idohseek(3x)
header of a common object file •••• Idshread(3x)
header or a member of an archive •• Idahread(3x)
hsearch, hcreate, hdestroy • • • • • • hsearch(3c)
hyperbolic cosine intrinsic • • cosh(3f)
hyperbolic functions • • • • • • • sinh(3m)
hyperbolic sine intrinsic ••••• • • sinh(3f)
hyperbolic tangent intrinsic • • • • • tanh(3f)
hypot Euclidean distance • hypot(3m)
iabs, dabs, cabs, zabs Fortran • • • • • • abs(3f)
iand, not, ieor, ishft, ishrtc, • • • ior(3f)
iargc return the number of • • • • • iargc(3!}
ibelr, mvbits bit lieor, ishft, ••••••• ior(3f)
ibits, btest, ibset, ibclr ,I ior, • • • • ior(3f)
ibset, ibclr, mvbits bit lieor, • ior(3f)
ichar, char explicit Fortran/. • • int(3f)
ICONfUXB run-time configuration • werc(4)
ID • • • • • • • • • • • • • • • • • • • setpgrp(2)
identification file ••••••• ••••• iasue(4)
idim positive dilerence •••• • • dim(3f)
idint, real, float, sngl, dble, • • • • • int(3f)
idnint Fortran nearest integer • • • • • • anint(3f)
IDs Igetppid get process, • getpid(2)
IDs Ireal user, elective user, getuid(2)
IDs setuid, • • • • • • • • • setuid(2)
ieor, ishft, isbftc, ibits, • • • • • • • • ior(3f)
ifix, idint, real, float, sngl, • • • • int(3f)
image file • • • • • • • • • • • • • • • • coree 4)
imaginary part of complex • • aimag(3f)
index return location of • • index(3f)
index of a symbol table entry of • • Idtbindex(3x)
indexed named section header of al Idshread(3x)
indexed named section of a commonl ••• Idsseek(3x)
indexed symbol table entry of a • • • • Idtbread(3x)
information • • • • • • • • • • • • • • • mttys(4)

xxvii

Permuted ladez

x)."Viii

file reloc relocation
inittab script lor the

popen, pelose
process

mode format of an

lSCanf convert formatted
ungetc push character back into

fread, fwrite binary
stdio standard bufl'ered

clearerr, fileno stream status
sngl, dble, cmplx, dcmplx,/

atol, atoi convert string to
aba return

a641, 164a convert between long
sputl, sged access long

nint, idnint Fortran nearest
aint, dint Fortran

between 3-byte integers and long
fltolS convert between 3-byte

plot graphics
plot graphics

pipe create an
package ftok standard

sleep suspend execution for
acos, dacos Fortran arccosine

aint, dint Fortran integer part
asin, dasin Fortran arcsine
datan2 Fortran arctangent

atan, datan Fortran arctangent
Fortran complex conjugate

cos, dcos, ccos Fortran cosine
dcosh Fortran hyperbolic cosine
dprod double precision product
dexp, cexp Fortran exponential

dloglO Fortran common logarithm
clog Fortran natural logarithm

dsign Fortran transfer-of-sign
sin, dsin, csin Fortran sine

dsinh Fortran hyperbolic sine
csqrt Fortran square root

tan, dtan Fortran tangent
Fortran hyperbolic tangent

ddim, idim positive difference
Igt, lie, lit string comparison

amod, dmod Fortran remaindering
formats

miscellany
subroutines and libraries
calls and error numbers

intro
intro

libraries intro
error numbers intro

ishftc, ibits, btest, ibset,/
abort generate an

number generator
/islower, isdigit, isxdigit,

isdigit, isxdigit, isalnum,/

information for a common object •• reloc(4)
init process • • • • • • • • • • inittab(4l
initiate pipe to/from a process •••• popen(Ss
inittab script for the init inittab~4
i-node •••••••••••••• inode(4
inode format of an i-node • • • inode(4
input scam, Cscanf, • • • • • • • • • scanf(Ss)
input stream •••• ungetc(Ss)
input/output •••••••••• • • fread(Ss)
input/output package ••••• • • stdio(Ss)
inquiries ferror,leof, ••••••••••• ferror(as)
int, ifix, idint, real, float, • • • • • • int(ar)
integer strtol, • • • • • • • • • • • • strtol(Sc)
integer absolute value •••••••• abs(Sc)
integer and base-64 ASCn string ••• a641(3e)
integer data in a/ • • • • • • • • lputl(3x)
integer lunctions anint, dnint, arnnt(Sf)
integer part intrinsic function • • • • • • • aint(3f)
integers IStol, ltolS convert ••••••• 13tol(3c)
integers and long integers 13tol(3c)
interface • • • • • • • • • • • plot(4)
interface subroutines • • • • • • • • • plot(Sx)
interprocess channel • • • • • • • • pipe(2)
interprocess communication •••••••• ftok(3c)
interval •••• • • • sleep(Sc)
intrinsic function •••••••••••• acos(Sf)
intrinsic function • • • ainteSf)
intrinsic function •••• • • • • • asineSf)
intrinsic function atan2, • • • • atan2(Sf)
intrinsic function • • atan(Sf)
intrinsic (unction Idconjg •••• • • conjg(S()
intrinsic (unction • • • • • • cos(S()
intrinsic (unction cosh, • • • • • cosh(SC)
intrinsic function ••••• • dprod(Sf)
intrinsic (unction exp, • • • • • • • • • • exp(Sf)
intrinsic function laloglO, • • • loglO(Sf)
intrinsic function lalog, dlog, 10g(Sf)
intrinsic function sign, isigo, • • • • sigo(S(}
intrinsic function ••••• • • sin(Sf}
intrinsic function sinh, • • • • • • • • • • sinh(3f)
intrinsic function sqrt, dsqrt, • sqrt(Sf)
intrinsic function •••••••••••• tan(Sf)
intrinsic function tanh, dtanh • tanh(SC)
intrinsic functions dim, •••• • • • dim(3f}
intrinsic functions Ige, • • • • • • • • • • Ige(Sf)
intrinsic functions mod, • • •• mod(3f
intro introduction to file •••••• intr~4
intro introduction to ••• intr 5
intro introduction to • • • • • • • intr S
intro introduction to system • • • • • • • intro(2
introduction to file Cormats • • • • • • intto{4
introduction to miscellany •••••• intro(5
introduction to subroutines and intro(S
introduction to system calls and intro(2
ioctl control device • • • • • • • • • ioctl(2)
ior, iand, not, ieor, isMt, • • • • • ior(SC)
lOT fault ••••••• • ••••• abort(Sc}
irand, rand, srand random ••••••• irand(3f)
isalnum, isspace, ispunct,/ • • isalpha(Sc)
isalpha, isupper, islower, •••• isalpha(Sc)

Icon International, Inc.

(
/isprint, isgraph, isentrl,

ttyname,
/ispunct, ispriDt, isgraph,
isalpha, isupper, islowet',
/isspace, ispunct, isprint,

ibeet,/ ior, iand, not, ieor,
ior, iand, Dot, ieor, isbft,

transf'er .. of-sign intrinsic/ sign,
_lnum,/ isalpha, isupper,
/_lnum, ia&paee, ispunct,
/isxdigit, isalDum, isspace,
/isdigit, isxdigit, isaJnum,

system
Fort1'&n vsmn

issue
isxdigit, isalnum,/ isalpha,

/isupper, islower, isdigit,
functions

functions jO,
jO, jI,

/lrand48, nrand48, mrand48,
or a group of processes

3-byte integers and longl
integer and baa-64 ASCnl a641,

Ijrand48, srand48, seed48,
file Jdclose,

header or a member of an archivel
file for reading Ido~,

common object file
floating-point numbers frexp,

routines
or a common object file

for common object file symbol!
line number entries or! ldlread,

entries of a! ldlread, Idlinit,
manipulate line number entries!
number entries or a section or al

entries of a Bection ofl ldlseek,
entries of & section ofl Idrseek,
section header of al ldshread,

named Section of al ldsseek,
file header of a common objedl

object file for reading
relocation entries 01 a section/

indexed named section header ofl
indexedl1&IDed section of al

a symbol table entry of a common I
table -entry of a common objectl

table of a common object file
string

Jen return
getopt get option

lsearch,
comparison intrinsic functions

intrinsic functions Ige,
introduction to subroutines and

ulimit get and set user
return the number of command
est.ablish an out-going terminal

Icon International, Inc.

isascii classify ChaTacters • .. • • isalpha(Sc)
_tty find name 01 a terminall • • '" .. • • ttyname(Sc)
istntrl, isascii daMJify I '. . . isalPha(scl
isdigit,isxdigit, isamum,1 • isalpha(Sc
isgraph, iscntrl, isasciil •• '. • .. isalpha(Sc
iahft, ishftc, ibits, btest, ••••••••• ior(Sf)
iaht'tc, ibits, btest, u.et,/ • .. • • • • ior(Sr)
iaign, dsign Fortran •••••• • • sign(Sf)
islower, isdigit, _dicit, •••• • isalPha!scl
isprint, isgraph, isentrl,/.. • • isalpha Sc
ispunet, isp~, isgraphJ • • • isalpha Sc
isspace, ispUll:t1., isprint" • • • • • isalpha 3c)
issue issue iiientification file • • • • • issue(4)
issue a sheD /COmmand •••• • • system(Ss)
me a shd ,command ft:om ,. .. system(3r)
issue idelitiiBcation me •• issue{4}
isupper, i5fower, isdigit, •••• • isalpha(3c)
isxdigit, isalnum, isspace,! isalpha(3c)
jO, jI, jn, yO, yI, yn Bessel •••• • jO(Sm)
jl, jn, yO, yI, yn Bessel • jO(Sm)
jn, yO, y1, yn Bessel functions • • jO(Sm)
jrand48, srand48,seed48,JCOl\K.f8/ • • drand48(3c)
kill eend a signal fA) a ~ •••••• kill(2)
131.01, lOOlS convert betw-een • IStol(3c)
164a convert between long • • ~ • a641(3c)
lcong48 generate uniformly I . .. drand48(3c)
ldaclose close a cODlllllOn object • Idclose(3x)
ldahread rea. the a1'dhive • • • • • ••• Idahread(3x)
Idaopen open a commma object Idopen(3x)
ldclose, ldaclose ~lose a . . • • • . Idclose(3x)
Idexp, modr manipulate parts of • • ••• frexp(3c)
Idrcn common ohject file access ••••• Idrcn(4)
ldrhread read thr:file header •• • Idrhread(3x)
ldgetname retrieve symbolllame ••• Idgetname(3x)
ldlinit,ldlitem manipulate • Idlread(3x)
Idlitem manipulate line number ••••• Idlread(3x)
ldlread, Idlinit, ldlitem • • • • • • • Idlread(3x)
ldlseek, ldnlseek ~.'to line. • • • Idlseek(3x)
ldnlseek seek to tine lDDJlber • • • • Idlseek(3x)
ldnrseek seek to relocation • Idrseek(3x)
Idnshread read an iDdexed named •• Idshread(3x)
Idnsseek seek to an indexed ••• • ldaeek(3x)
ldohseek seek to the optional • Idohseek(3x)
ldopen,ldaopen open a common •• Idopen(3x)
ldrseek,ldnrseek seek to •••• • • Idrseek(3x)
ldshread,ldnshread rud an • • • • Idshread(3x)
Idsseek,ldnsseek seek to an • Idsseek(3x)
ldtbindex compute the index of •• Idtbindex(3x)
Idtbt-ead read aD indexed symbol ••••• Idtbread(3x)
Idtbseek seek to the symbol • Idtbseek(3x)
JeD return length of.FDrtr~ • • • len(Sf)
length of Fortran string • • • • len(3r)
letter from argument vector • getopt(3c)
Jfind linear search and update • lsearch(3c)
1ge, Igt, lie, lit string •••• • Ige(3!)
Igt, lle, 111. string comparison Ige(3!)
libraries intro • intro(3)
limits ••••••• • ulirnit(2)
line arguments iargc • • • • • iargc(3r)
line connection dial • • • • • • • • dial(3c)

xxix

Permuted I.des

xxx

object file linenum
/ldlinit, Idlitem manipulate

of al Idlseek,ldn1seek seek to
lsearch, lfiDd

a common object 61e

la.out common assembler and
link

Dlist get entries from name
handle variable argument

output of a vararp argument
output of a vararp argument

fsek checklist
dosdisks

smiledisks
intrinsic functions Ige,lgt,

functions Ige, Igt, De,
convert date and timel ctime,

index return
end, etext, edata last

memory plock

loeke record
natural logarithm intrinsic I

gamma
exponential, logarithm,! exp,
common logarithm intrinsic I
logarithm, power,! exp, log,

lalog10, dlog10 Fortran common
Idlog, clog Fortran natural

/log10, pow, sqrt exponential,
getlogin get

cuserid get character
logname return

setting up an environment at
user

setjmp,
jrand48,! drand48, erand48,

and update
pointer

Booleanl and, or, xor, not,
integers and long/ 13tol,

values
laccess long integer data in a

malloe, free, realloe, caDoe
calloe, mallopt, mallinfo fast
Ifree, realloc, calloe, mallopt,

main memory alloeator
mallopt, mallinfo fast main/

malloc, free, realloc, calloe,
tsearch, tfind, tdelete, twalk

hseareh, hereate, hdestroy
a/ Idlread, Idlinit, Idlitem

frexp, Idexp, modf
ascii

umask set and get 6le creation
regular expression compile and

constants
math

line number entries in a common •• linenum(4)
line number entries of a commonl •• Idlread(Sx)
line number entries of a section •• Idlseek(Sx)
linear search and update • • • • • • lsearch(3c}
linenum line number entries in • • • • linenum(4)
link link to a 61e • • • • • link(2)
link editor output • • • • • • • •. out(4)
link to a file • • • • • • • • • link(2)
list •••••••••• • . • • . • D.1ist(3c)
list vararp • • • • • • • • • vararp(5)
list IVlprintC print Cormatted '0' •• vpriDtl{3s)
list fnprintf print formatted vpriDtl{3x)
list oC file systems processed by ••• checklist(04}
list of MPSjDOS virtual disks • doedisks(4)
list or SMILE virtual disks ••• • • • emile disks{ 4}
De, Dt atring compariaon • • • Ige(Sf)
lit string compariaon intrinsic •••• Ige(Sf)
loealtime, gmtime, asctime, tzset • ctime(Sc)
location of FortraD substring index(Sf)
locations in program • • • • • • • • • • • end(Sc)
lock process, text, or data in ploek(2)
loeke record loeking on files • loekf(Sc)
locking on 61es ••••••• loekf(3e)
log, alog, dlog, clog Fortran • • • • • • • log(3f)
log gamma function •••• gamma(Sm)
log, log10, pow,.sqrt •••• exp(Sm)
log10, alogl0, dloglO Fortran • • loglO(Sf)
log10, pow, sqrt exponential, exp(3m)
logarithm intrinsic function • • • • • • • • loglO{Sf)
logarithm intrinsic function • • log(Sf)
logarithm, power, square root/ • exp(3m)
login name ••••••••••••••• getlogin(3c)
login name of the user • • • • • • • • • • cuserid(3s)
login name of user • • • • • • • • • • •• logname(3x)
login time profile ••••••••••• profile(4)
logname return login name of • logname(Sx)
longjmp non-local goto ••••••••• setjmp(3c)
Irand48, nrand48, mrando48, • • •• drando48(3c)
Isearch,lfind linear search • • lsearch(Sc)
lseek move read/write 61e • • • 1seek(2)
lshift, rshift Fortran Bitwise • • • • • and(Sf)
10013 convert between 3-byte 13tol(3c)
machine-dependent values. • • • values(S)
machine-independent Cashion. • •••••• sputl(3x)
main memory allocator • • • • • • • malloe!Se)
main memory alloeator Irealloe, malloe SXl
mallinfo Cast main memory/ • • • • • • • malloe Sx
malloe, free, realloc, calloc •••••••• maUoc(Sc
malloe, free, realloe, calloc, • malloc(3x
mallopt, mallinfo Cast mainl •••• malloe(3x
manage binary search trees • • tsearch(3c)
manage hash search tables • • • hseatch(3c)
manipUlate line number entries of •• Idlread(3x)
manipulate parts of/ • frexp(3c)
map of ABeD character set ascii(S)
mask •••••••••• • umask(2)
match routines regexp • • • • regexp(S)
math math functions and • • • math(S)
math functions and constants • • • • • • • math(S)
matherr error-handling function ••• matherr(3m)

Icon International, Inc.

(

dmaxl Fortran maximum-value/
Fortran maximum-value/ max,

maximum-value I max, maxO, amaxO,
maxi, amaxl, dmaxl Fortran

accounting
tread the archive header of a
memset memory operations

memory operations memccpy,
operations memccpy, memchr,

memccpy, memchr, memcmp,
lock process, text, or data in

lree, realloc, calloc main
mallopt, mallinfo last main

shmctl shared
core format of

memchr, memcmp, memcpy, memset
shmop shared

shmget get shared
memccpy, memchr, memcmp, memcpy,

msgctl
msgop

msgget get
sys..nerr system error

dminl Fortran minimum-value/
Fortran minimum-valuel min,

minimum-value/ min, minO, aminO,
mini, amini, dminl Fortran

intro introduction to
special or ordinary file

table
remaindering intrinsic functions

chmod change
floating-point/ frexp, ldexp,

utime set file access and
profile

mount
mnttab

lseek
dosdisks list of

/erand-48, lrand48, nrand48,
operations

information
mttys

ibits, btest, ibset, ibc1r,
return value for em·;ronment

getlogin get login
mktemp make a unique file

tmpnam, tempnam create a
ldgetname retrieve symbol

ctermid generate file
getpw get

nlist get entries from
ttyname, isatty find

uname get
cuserid get character login

logname return login

Icon International, Inc.

Permated [ndez

max, maxO, amaxO, maxi, amaxl, ••••• maX!3fl
maxO, amaxO, maxi, amaxl, dmaxl max Sf
maxi, amaxl, dmaxl Fortran max 3f
maximum-value lunctions lamaxO, • max(Sf)
mclock return Fortran time • • • • • mclock(3f)
member of an archive file ••••••••• Idahread(3x)
memccpy, memchr, memcmp, memcpy, • memCCPY!3C)
memchr, memcmp, memcpy, memset • • memccpy 3c)
memcmp, memcpy, memset memory memccpy Sc)
memcpy, memset memory / • • • • memccpy 3c)
memory plock ••••• • • plock(2)
memory allocator malloc, •••••• mallOC!SC)
memory allocator Icalloc, malloc 3x)
memory control operations • • • • shmctl2)
memory image file • • • • • • coree -4)
memory operations memccpy, • • • • memccpy(3c)
memory operations •••••••• shmop(2)
memory segment ••••• • • • • • shmget(2)
memset memory operations • memccpy(Sc)
message control operations • • • msgctl(2)
message operations ••••••••••• msgop(2)
message queue ••••••••••••• msgget(2)
messages fenno, sys-errlist, • • • • • perror(Sc)
min, minO, aminO, mini, amini, •••••• min(Sfl .
minO,aminO,minl,aminl,dminl min(3f
mini, amini, dminl Fortran • • min(Sf
minimum-value functions laminO, min(3f)
miscellany •••••••••••• • intro(5)
mknod make a directory, or a • • mknod(2)
mktemp make a unique file name •••• mktemp(Sc)
mnttab mounted file system • mnttab(4)
mod, amod, dmod Fortran •••• • mod(3f)
mode of file • • • • • • • • • • • • • chmod(2)
modr manipulate parts of • • • • • • frexp(Sc)
modification times • • • • • • • • • • utime(2)
monitor prepare execution ••••••• monitor(Sc)
mount mount a file system ••••••• mount(2)
mount a file system •••• • • • • • mount(2)
mounted file system table •• mnttab(4)
move read/write flle pointer • lseek(2)
MPS/DOS virtual disks • dosdisks(4)
mrand48, jrand48, srand48,/ • • drand48(3c)
msgctl message control •••••••• • msgctl(2)
msgget get message queue • • • • • • • • msgget(2)
msgop message operations • msgop(2)
mttys Multi-Link partition • • mttys(4)
Multi-Link partition information ••••• mttys(4)
mvbits bit lishrt, ishftc, • • • • • ior(Sf)
name getenv ••••• • • • • • getenv(Sc)
name ••••••••• • getlogin(Sc)
name •••••••• • • mktemp(Sc)
name ror a temporary file • tmpnam(Ss)
name ror common object filet • • • • • Idgetname(Sx)
name for terminal • ctermid(3s)
name rrom UID ••• • getpw(3c)
name list • • • .. • • • • • • • • nlist(3c)
name or a terminal ••••••••••• ttyname(3c)
name of current UNIX system • • uname(2)
name of the user ••••• • cuserid(3s)
name of user •••••••• • logname(3x)

xxxi

Permuted ladez

xxxii

/ldDshread read an indexed
/ldnsseek seek to an indexed

~rm conventional
log, alog, dlog, dog Fortran

dnint. nint, idnint Fortran
process

integer functions aDint, dniDt,
list

eetjmp, lonsjmp
btest, ibset, ibclr,l ior, iand,

Bitwise Boolean/ and, or, xor,
drand48,erand48,lrand48,

atring to double-precision
61e liDenum line

61el /ldlitem manipulate liDe
Idlseek, IdDlseek seek to line

irand, rand, srand random
iargc return the

ICvt convert floating-point
distributed pseudo-random

parts of floating-point
to system calls and error

Idaclose close a common
read the file header of a common
entries of a section of a common
optional file header of a common
entries of a section of a common

named section header of a common
indexed named section of a common

a symbol table entry of a common
symbol table entry of a common

to the symbol table of a common
line number entries in a common

information for a common
section header for a common

Idfcn common
ldopen, ldaopen open a common
line number entries of a common

Iretrieve symbol name for common
syms common

filehdr file header for common
writing

reading)dopen, ldaopen
fopen,freopen. fdopen

dup duplicate an
open

seekdir, rewiDddir,1 directory:
rewiDddir, closedir directory

memcmp. memcpy, memset memory
msgctl message control

msgop message
semctl semaphore control

eemop semaphore
shmctl shared memory control

shmop shared memory
strspn, strcspn, strtok string

curses CRT screen handling and
vector getopt get

objectl Idohseek seek to the
fcntl file control

named section header of a commonl •• Idshread(3x)
named section of a common objectl • Idsseek(3x)
names for ~rmina1s •••••• term(S)
natural logarithm intrinsic I log(3f)
nearest integer functions anint, • • • • anint(Sf)
nice change priority of a •••••••• nice(2)
nint, idDint Fortran nearest •• anint(3f)
nlist get entries from name ••••••• nlist(3c)
non-local goto • • • • • • • • • • • • eetjmp(3c)
not, ieor, ishft, ishftc, ibits, • ior(3r)
not, lshirt, rshift Fortran •••••• and(3f)
nrand48, mrand48, jrand48,1 .'. • drand48(3c)
number strtod, atol convert • • • • • • • atrtod(3c)
number entries in a common object •••• linenum(4)
number entries of a common object •••• Idlread{3x)
number entries of a eedion of al Idlseek(Sx)
number generator • • • • • • • • • irand(Sf)
number of command line arguments •••• iargc(Sf)
number to string ecvt, fcvt, ecvt(3c)
numbers Igenerate uniformly • • • • • • • drand48(3c)
numbers /ldexp, modf manipulate • • frexp(3c)
numbers intro introduction • • intro(2)
object file Idclose, • • • • • • Idclose(3x)
object file Idfhread •••••• • Idfhread(3x)
object file lseek to line number •••••• Idlseek(Sx)
object file lseek to the • • • Idohseek(3x)
object file lseek to relocation • • • • Idrseek(3x)
object file Iread an indexed ••••••• Idshread(3x)
object file lseek to an •••••••••• Idsseek(3x)
object file Icompute the index of ••••• Idtbindex(3x)
object file Iread aD iDdexed •• Idtbread(3x)
object file ldtbseek seek •••••• Idtbseek(3x)
object file IiDenum •••• • liDeDum(4)
object file reloc relocatioD •••• • reloc(4)
object file scnhdr •••••••• scnhdr~4)
object file access routiDes • • Idfcn(4
object file for readiDg • • • • • • Idopen 3x)
object file fUDction ImaDipulate Idlread(3x)
object file symbol table eDtry • • • • • • • Idgetname(3x)
object file symbol table format •••••• syms(4)
object files ••••••••••••••• filehdr(4)
opeD opeD for readiDg or • • • open(2)
opeD a common object file for • • Idopen(3x)
opeD a stream •••••• • • • • • fopen(3s)
open file descriptor •••• dup(2)
open for reading or writing ••• open(2)
opendir, readdir, telldir, ••• • directory:(3x)
operations Itelldir, seekdir, • directory;(3x)
operations memccpy. memchr. • ••••• memccpy(3c)
operatioDs • • • • • • • • • • • msgctl(2}
operatioDs ••••• • msgop(2)
operations • • • • • semctl(2)
operations • • • • • semop(2)
operations • shmctl(2}
operations ••••••• • • • • • • shmop(2)
operations /strrchr. strpbrk, • strcat(3c)
optimization package •••••••••• curses(3x)
option letter from argumeDt • getopt(3c)
optioDal file header of a common • Idohseek(3x)
options • • • • • • • • • • • • • fcntl(S)

Icon International, Inc.

(- /

(~-',:
/

Fortran Bitwise Boolean/ and,
make a directory, or a special or

connection dial establish an
common assembler and link editor

sprintf print formatted
/destinations Cor spooled

/vsprintC print Cormatted
/vsprintC print Cormatted

OVRIDE bit
ovride set/clear hardware

chown change
screen handling and optimization

interprocess communication
standard buffered input/output
get process, process group, and

aint, dint Fortran integer
aimag, dimag Fortran imaginary

mttys Multi-Link
Crexp, Idexp, modf manipulate

get pass read a
passwd

endpwent, fgetpwent get
putpwent write

directory getcwd get
signal

process popen,
format acct

sys..nerr system error messages
channel

popen, pclose initiate
data in memory

subroutines
lseek move read/write file

rewind, ftell reposition a file
to/from a process

functions dim, ddim, idim
logarithm,/ exp, log, 10glO,

/sqrt exponential, logarithm,
function dprod double

monitor
graphical files gps graphical

types
printC, fprintf, sprintf

vprintf, vfprintf, vsprintf
vprintf, vfprintC, vsprintf

for spooled output Crom SLPT
Cormatted output

nice change
exit, _exit terminate

Cork create a new
inittab script Cor the init
nice change priority of a

pc lose initiate pipe to/from a
acct enable or disable

alarm set a
times get

/getpgrp, getppid get process,
setpgrp set

Icon International, Inc.

Pennated 1.dez

or, xor, not, lshift, rshift •••• • • and(3f)
ordinary file mknod •••••••••• mknod(2)
out-going terminal line • • • • • • dial(3c)
output /a.out ••••• a.out(4)
output printf, Cprintf, •• • printf(3s)
output Crom SLPT printers •••••• dosprinters(4)
output oC a varargs argument list ••••• vprintf(3s)
output oC a varargs argument list vprintf(3x)
ovride set/clear hardware • • • • • ovride(2)
OVRIDE bit ••••• • • • • • • ovride(2)
owner and group of a file • • •• chown(2)
package curses CRT • • • curaes(3x)
package ftok standard. • ••••• ftok(Sc)
package st.dio •••••• • atdio(3s)
parent process IDs /getppid • • getpid(2)
part intrinsic Cunction •••• aint(Sf)
part of complex argument • • • • • • aimag(Sf)
partition information •••• • mttys(4)
parts of floating-point numbers •••••• Crexp(3c)
passwd password file •••• • passwd(4)
password • • • • • • • • • • • • • • getpass(3c)
password file •••••••• • passwd(4)
password file entry /setpwent, •••••• getpwent(3c)
password file entry ••••• putpwent(3c)
path-name of current working getcwd(3c)
pause suspend process until • • pause(2)
pclose initiate pipe to/from a •••• popen(3s)
per-process accounting file acct(4)
perror, ermo, sys_errlist, • • • • • perror(3c)
pipe create an interprocess • • • • • pipe(2)
pipe to/from a process • • • • • • •• popen(3s)
plock lock process, text, or ••••••• plock(2)
plot graphics interface • • • • • •• plot(4)
plot graphics interface ••••••••• plot(3x)
pointer • • • • • • • • • • • ~ • • • !seek(2)
pointer in a stream fseek, •••••••• Cseek(3s)
popen, pclose initiate pipe • • • • • • • • popen{3s)
positive difference intrinsic • • • • dim(SC)
pow, sqrt exponential, • • • • • exp(3m)
power, square root functions exp{3m)
precision product intrinsic •••••••• dprod(Sf}
prepare execution profile • • • monitor(3c}
primitive string, format of • • • • •• gps(4)
primitive system data types types(5)
print formatted output • • • • • printf(3s)
print Cormatted output of a/ • • • • • vprintf{Ss)
print formatted output of a/ • • • vprintf(3x)
printers /destinations • dosprinters(4)
printf, Cprintf, sprintf print •• printf{3s)
priority of a process • • nice(2)
process • • • • • exit(2}
process • • • • • • • • • • Cork(2)
process • • • • • • • • • • inittab(4)
process • nice(2)
process popen, •• popen(3s}
process accounting • • • • • • • • • acct(2)
process alarm clock ••••••••••• alarm(2)
process and child process times • • • • times(2)
process group, and parent process/ • • getpid(2)
process group ID •••••••• • • setpgrp(2)

xxxiii

Permuted 11111e%

xxxiv

process group, and parent
kill send a sipal to a

getpid, getpgrp, getppid get
plock lock

t.imes get process and child
wait wait for child

ptrace
pause suspend

checklist list of file syst.ems
signal to a process or a group of

dprod double precision

monitor prepare execution
profil execution time

environment at login time
prof

abort terminate Fortran
etext, edata last locations in

assert verify
generate uniformly distributed

stream ungetc
puts, fputs

.putc, putchar, fputc, putw
character or word on a stream
character or word on a/ putc,

environment
entry

stream
getutent, getutid, getutline,

stream putc, putchar, fputc,

msgget get message
qsort

generator irand,
random-number generator

irand, rand, srand
rand, nand simple

getpass
header of a/ ldshread, ldnshread

entry of a common/ Idtbread
read

member of an archive/ ldahread
object file ldfhread

rewinddir,/ directory: opendir,
open a common object file for

open open for
lseek move

dcmplx, ichar,/ int, ifix, idint,
/get real user, effective user,

/geteuid, getgid, getegid get
allocator malloc, free,

mallinfo fast/ malloc, free,
signal specify what to do upon

/specify Fortran action on
lockf

execute regular expression
regular expression regcmp,

process IDs Iget process, • • • • • • • • • getpid(2)
process or a group of processes •••••• kil1(2)
process, process group, and/ • • • • • getpid(2)
procees, text, or data in memory plock(2)
process times ••••••• • • • • • times(2)
process to stop or terminate •••• • wait(2)
process trace •••••••• • • • • ptrace(2}
procees until sipal ••••••••••• pause(2)
proceesed by fsek • • • • • • • checklist(4}
processes kill send a ••••• kill(2)
product intrinsic function •• dprod(3f)
prof profile within a function •••••• prof(5)
profil execution time profile • • • profil(2)
profile ••••••••••••••••• monitor(3c)
profile ••••••••• profile 2)
profile setting up an profile(4)
profile within a function •••• • • prof(5}
program ••••••• • •• abort(3f}
program end, • • • • • end(3c}
program assertion • • • • • • • • • • • • assert(3x)
pseudo-random numbers /lcong48 • • drand48(3c)
ptrace process trace ••••• • • ptrace(2)
push character back into input • ungetc 3s)
put a string on a stream ••••• • puts(3s
put character or word on a stream •• putc{3s
putc, putchar, fputc, putw put •••••• putc(3s
putchar, fputc, putw put putc(3s
putenv change or add value to • • • • • • putenv 3c)
putpwent write password file putpwent(3c)
puts, fputs put a string on a • puts(3s}
pututline, setutent, endutent,/. • •• getutent(3c)
putw put character or word on a •••• putc(Ss)
qsort quicker sort •••• qsort{3c)
queue • • • • • • • • • • • • msgget(2)
quicker sort • • • • • • • • • • • • qsort(3c)
rand, &rand random number • • • • irand(3f)
rand, nand simple •••• rand(Sc}
random number generator • • • irand(Sf)
random-number generator • • rand(Sc)
read read from file • • • • • • • read(2}
read a password • • • • • • • • • • • getpass{3c)
read an indexed named section •••••• Idshread{3x)
read an indexed symbol table • • Idtbread(3x)
read from file • • • • • • • • • • • • • • read(2)
read the archive header of a ••••••• Idahread(3x)
read the file header of a common •• Idfhread(3x)
readdir, telldir, seekdir, •••• • directory:(3x)
reading Idopen,ldaopen •• • Idopen(3x}
reading or writing • • • • • • • •• open(2)
read/write file pointer •••••• • lseek(2)
real, Boat, IDgl, dble, cmplx,. • • int(3f}
real group, and effective group/ • getuid(2)
real user, efl'ective user, real/ ••••••• getuid(2}
realloc, calloc main memory malJoc(3c)
realloe, calloe, mallopt, ••• malloe(3x)
receipt of a signal • • • • • • • • signal(2)
receipt of a system signal • • • • • • • signal(3f)
record locking on files •••• • • • loekf(3c).
regcmp, regex compile and ••••••• regcmp(3x)
regex compile and execute • • • • regcmp{3x)

leon International, Inc.

,/

1('

~j

<:

(-

compile and match routines
regex compile and execute

match routines regexp
for a common object &Ie

of al Idrseek, ldnrseek seek to
common object &Ie reloc

fmod, Cabs floor, ceiling,
mod,'amod, dmod Fortran

unlink
clock

stream Cseek, rewind, ftell
object file symbol! Idgetname

argument getarg
variable getenv

mclock
abs
len

.ubstring index
logname

arguments iargc
getenv

.tat data
pointer in a stream fseek,

/readdir, telldir, seekdir,
creat create a new file or

chroot change
logarithm, power, square

dsqrt, csqrt Fortran square
ldfcn common object file access

expression compile and match
and, or, xor, not, lshift,

werc ICON{UXB
allocation brk,

formatted input
sccsfile format of

common object file
package curses CRT

inittab
bsearch binary

lsearch, lfind linear
hcreate, hdestroy' manage hash

tdelete, twalk manage binary
object file scnhdr

fJdnshread read an indexed named
/seek to line number entries of a

lseek to relocation entries of a
lseek to an indexed named

Imrand48, jrand48, srand48,
of a common/ ldaeek, ldnueek

section of al ldlseek, ldnlseek
section or al ldrseek,ldnrseek

of a common object file Idohseek
common object file ldtbseek

lopendir, readdir, telldir,
shmget get shared memory

brk, sbrk change data
semctl
semop

semget get set of

Icon International, Inc.

regexp regular expression •• regexp(S)
regular expression regcmp, • • • • • • regcmp(3x)
regular expression compile and •••• regexp(S)
reloc relocation information • • reloc(4)
relocation entries of a section • • Idrseek(3x)
relocation information for a •• • • reloc(4)
remainder, absolute. value/ Iceil, • floor(3m)
remaindermg intrinsic functions mod(Sf)
remove directory entry • • • • • • • unlink(2)
report CPU time used •••••• • cloc k(3c)
reposition a file pointer in a fseek(Ss)
retrieve symbol name for common ••••• Idgetname(3x)
return Fortran command-line. • • • • getarg(3f)
return Fortran environment • • • • • getenv(Sr)
return Fortran time accounting •••••• mclock(3r)
return integer absolute value. • • • • abs(Sc)
return length of Fortran string len(3f)
return location of Fortran index(Sf)
return login name of user • • • • • •• logname(3x)
return the number of command line • • iargc(3f)
return value for environment name • • getenv(3c)
returned by stat system call •••• .tat(S)
rewind, ftell reposition a file. • • • • fseek(3s)
rewinddir, closedir directory I directory:(3x)

. rewrite an existing one • • • • • creat(2)
root directory • • • • • • • • • chroot(2)
root Cunctions lexponential, • exp(3m)
root intrinsic function sqrt, • • • sqrt(3f)
routines ••••••••• • • • • Idfcn(4)
routines regexp regular • • • • • regexp(S)
rshift Fortran Bitwise Boolean/ ••••• and(3f)
run-time configuration file •••• • werc(4)
sbrk change data segment space brk(2)
scanf, fscanf, sscanf convert • • • • • • • scaDf(3s)
sces file • • • • • • • • • • • • • • • • sccsfile(4)
sccsfile format of secs file •••• sccsfile(4)
scnhdr section header for a • • • • • scnhdr(4)
screen handling and optimization ••••• curses(3x)
script for the init process • • • • inittab(4)
search a sorted table ••••• • • bsearch(3c)
search and update • • • • • • • • • lsearch(3c)
search tables hsearch, •• • • • • • • • • hsearch(Sc)
search trees tsearch, tfind, ••• • • • taearch(3c)
section header for a common ••• scnhdr(4)
section header of a common objectl • • •• Idshread(3x)
section of a common object file • Idlseek(3x)
section of a common object file Idrseek(3x)
section or a common object file • Idsseek(3x)
seed48,lcong48 generatel • • • ••• drand48(3c)
seek to an indexed named section • • Idsseek(3x)
seek to line number entries of a • • • • Idlseek(3x)
seek to relocation entries of a • • • • • • • Idrseek(3x)
seek to the optional file header • Idohseek(3x)
seek to the symbol table of a • • • • • •• Idtbseek(3x)
seekdir, rewinddir, closedirl •••• directory:(3x)
segment •••••••••••••••• shmget(2)
segment space allocation • • • • • • • • • brk(2)
semaphore control operations • semctl(2)
semaphore operations • • • • • • semop(2)
semaphores • • • • • • • • • • • • • • • semget(2)

xxxv

Perm.ted 1,ulez

:xxxvi

operations

group of proeeaes kill
ascii map of ASOn character

alarm
umaak

times utime
eemget get

setpgrp
&time

setuid, setgid
ulimit get and

butrering to a stream
ovride
setuid,

getgrent, getgrgid, getgrnam,

encryption crypt,

getpwent, getpwuid, getpwnam,
login time profile

gettydets speed and terminal
group IDs

/getutid, getutline, pututline,
stream setbuf,

in a machine-independent/ sputl,
ahmctl
shmop

shmget get
system issue a
system issue a

operations
segment

transfer-of-sign intrinsic /
pause suspend process until
what to do upon receipt of a
action on receipt of a system
on receipt of a system signal

receipt of a signal
p,rocesses kill send a

ssignal, pignal software
rand, srand

atan2 trigonometric functions
intrinsic tunction

sin, dsin, csin Fortran
sinh, dsinh Fortran hyperbolic

functions
sine intrinsic function

interval
current user ttyslot find the

for spooled output trom
smiledisks list of

virtual disks
int, ifix, idint, real, 80at,

, ssignal, pignal
qsort quicker

bseareh binary search a
brk, sbrk change data segment

semctl semaphore control • • • semctl(2)
eemget get set of semaphores semget(2)
eemop semaphore operations. semop(2)
eend a signal to a process or a •••••• kill(2)
set • • . • • . • • . . • • . • ascii(5)
set a proeess alarm clock • • • • • •• alarm(2)
eet and get file creation mask • umask(2)
eet file access and modification ••• utime(2)
set of semaphores •••••• semget(2)
set proeess group ID • • • setpgrp(2)
set time •••••••••••••••• &timet 2)
set user and group IDs • • • • • setuid(2)
set user limits • • • • • • • • • • ulimit(2)
setbuf, setvbuf assign • • • • • ••• setbuf(Ss)
set/clear hardware OVRIDE bit ovride(2)
setgid set user and group IDs •••• setuid(2)
setgrent, endgrent, fgetgrent/ • • • • getgrent(Sc)
setjmp,longjmp non-Iocalgoto setjmp(Sc)
setkey, encrypt generate DES •••• crypt(Se)
setpgrp set process group ID • • • • • • • setpgrp(2)
setpwent, endpwent, fgetpwent/ • • • • • • getpwent(Sc)
setting up an environment at • • • • profile(4)
settings used by getty ••••• ••••• gettydefs(4)
setuid, setgid set user and • • • • • setuid(2)
setutent, endutent, utmpname/ getutent(Sc)
setvbuf assign.bufl'ering to a • setbur{3s)
sgetl access long integer data • sputl(Sx)
shared memory control operations •• shmctl(2)
shared memory operations ••• shmop(2)
shared memory segment •••• shmget(2)
shell command •••••••• • • system(Ss)
shell command from Fortran ••••••• system(Sf)
shmctl shared memory control • • • • • • shmctl(2)
shmget get shared memory ••••• shmget(2)
shmop shared memory operations • shmop(2)
sign, isign, dsign Fortran sign(Sf)
signal •••••••••• • • pause(2)
signal signal specify ••••• • • • signal(2)
signal signal specify Fortran •••••• signal(Sf)
signal specify Fortran action •••••• signal(Sf)
signal specify what to do upon • • • • • • signal(2)
signal to a process or a group of • • • • • • ki1l(2)
signals • • • • • • • • • • • • • ssignal(Sc)
simple random-number generator • • rand(Sc)
sin, cos, tan, asin, acos, atan, • • sin!Sm)
sin, dsin, csin Fortran sine •••• sin Sf)
sine intrinsic function •••• • • sin Sf)
sine intrinsic function • • sinh! Sf)
sinh, cosh, tanh hyperbolic •• sinh Sm)
sinh, dsinh Fortran hyperbolic • • • • sinh Sf)
sleep suspend execution for • • sleep(Sc)
slot in the utmp file of the • • • • ttyalot(Sc)
SLPT printers /destinations •• dosprinters{4}
SMILE virtual disks • • • • • • • • • smiledisks(4)
smiledisks list of SMILE • • smiledisks(4}
sogl, dble, cmpIx, dcmpIx, ichar,/ • • int(St)
software signals • • • • ssignal(Sc}
sort •••••• • qsort(Sc}
sorted table • • • • • bsearch(3c}
space allocation • • • brk(2}

leon International, Inc.

(
mknod make a directory, or a

tspec format
of a system signal signal

of a signal signal
by getty gettydefs

d06printers destinations (or
print(, fprintf,

integer data in a/
power,/ exp, log, log10, pow,
equare root intrinsic (unction

exponential, logarithm, power,
eqrt, daqrt, ceqrt Fortran

irand, rand,
generator rand,

/nrand48, mrand48, jrand48,
sean(, (sean(,

signals
package stdio

communication package (tok
system call

stat data returned by
ustat get file system

stat, (stat get file
(eo(, clearerr, fileno . stream

input/output package

wait wait (or child process to
strcpy, strnepy, strlen, strehr ,/

/strncmp, strcpy, strncpy, strlen,
strlen,strchr,/ strcat, strncat,

strcat, strncat, strcmp, strncmp,
strehr, strrehr, strpbrk, strspn,

fc1ose, fHush close or flush a
fopen, freopen, fdopen open a

reposition a file pointer in a
get character or word from a

gets, fgets get a string from a
putw put character or word on a

puts, fputs put a string on a
setvbuf assign buffering to a

push character back into input
ferror, feof, clearerr, fileno

long integer and base-64 ASCn
tzset convert date and time to

convert floating-point number to
len return length of Fortran

functions Ige, 19t, lle, llt
gps graphical primitive

gets, (gets get a
puts. (puts put a

strpbrk, strspn, strcspn, strtok
strtod, atof convert

strtol, atol, atoi convert
/stremp, strnemp, strcpy, strnepy,

strnepy. &trlen, strehr,! streat,
strehr,! streat, strneat, stremp,

/strncat, strcmp, strnemp, strcpy,
/strnepy, strlen, strchr, strrchr,
/strcpy, strnepy, strlen, strehr,

Icon International, Inc.

Perm.ted Iftdez

Ipecial or ordinary file • • • • • • • • mknod(2)
specification in text files ••••• • • fspee(4)
specify Fortran action on receipt • signal(Sf)
specify what to do upon receipt • signal(2)
speed and terminal settings used • gettydefs(4)
spooled output from SLPT printers dosprinters(4)
Iprint(print (ormatted output • • • • printC(3s)
lSputl, agetl access long •• sputl(3x)
sqrt exponential, logarithm, • • • • exp(Sm)
eqrt, daqrt, caqrt Fortran • • • • sqrt(Sf)
square root functions /aqrt •••• • exp(Sm)
equare root intrinsic function sqrt(SC)
srand random number generator ••••• irand(Sf)
srand simple random-number • rand(Sc)
srand48, seed48, Icong48/ • • • drand48(3c)
lSCan(convert formatted input seanC(Ss)
ssignal, pignal IOftware •••••••• ssignal(Se)
standard buffered input/output • stdio(Ss)
standard interprocess • • • • • • ftoklse)
stat data returned by stat • • ••• stat 5)
stat, fstat get file status • • • • • stat 2)
stat system call • • • • • • • • ••• stat(5)
statistics • • • • • • • • • • • • • • • • ustat(2)
status ••••••• • stat(2) .
status inquiries Cerror, • • • • • ferror(3s)
stdio standard buffered • stdio(3s)
stime set time • • • • • • stime(2)
stop or terminate •••• • • • wait(2}
streat, strncat, strcmp, strncmp, ••••• strcatlse!
strehr, strrchr, strpbrk, strspn,/ strcat Se
stremp, strnemp, strepy, strncpy, strcat 3e
strepy, strncpy, strlen, strehr ,/ streat(Se
strespn, strtok string/ /strlen, • • • • • • strcat(Sc)
stream • • • • • • • • • • • • • • f dose(Ss)
stream • • • • • • • • • • • • • • • (open(3s)
stream fseek, rewind, ftell • fseek(Ss)
stream /getchar, fgete, getw • • • • getc(Ss)
stream • • • • • • • • • • • • • gets{Ss)
stream pute, putehar, fputc, •••• putc(Ss)
stream • • • • • • • • puts{3s)
stream setbur, • setbuf(Ss)
stream ungetc • • • • • • ungete(Ss)
stream status inquiries • ferror(3s)
string /164a convert between • a641(3e)
string /gmtime, asctime, • • etime(3e)
string ecvt, fcvt, gevt • ecvt(Sc)
string •••••••••• • len(3f)
string comparison intrinsic • Ige(Sf)
string, format of craphical files ••• gps(4)
string from a stream • • • • • • • gets{3s)
string on a stream • • • • • • • • • puts(Ss)
string operations /strrehr, • streat(3e)
string to double-precision number • • • • • strtod(Se)
string to integer • • • • • • • • • • strtol(Se)
strlen, strchr, strrchr, &trpbrk,/ • • • strcat(sel
strncat, stremp, strnemp, strepy, ••••• streatlse
strnemp, strepy, strnepy, strlen, • • • • streat Se
strnepy, strlen, strchr, strrehr,! •••• streat 3e
strpbrk, strspn, strespn, strtok/ • • • • • • streat(3c)
stnehr, strpbrk, strspn,/ • • • • • • streat(3c)

xxxvii

Permuted IAile%

xxxviii

/strlen, strchr, strrchr, strpbrk,
double-preciJion number
/strpbrk, strspn, strcspn,

string to integer
plot grapbjcsinterface

intro introduction to
return location or Fortran

sync update
sleep

pause

swab
file

file symbol/ Idgetname retrieve
name ror common object file

object! /compute the index or a
Idtbread read an indexed
syms common object file
file ldtbseek seek to the

table rormat

swrite
error messages perror, errno,

perror, errno, sys.-errlist,
mount mount a file

umount unmount a file
uname get name or current UNIX

rrom Fortran
stat data returned by stat

intro introduction to
types primitive

errno, sys_errlist, sys..nerr
Fortran action on receipt or a

O5tat get file
mnttab mounted file

rs rormat of file
checklist list of file

bsearch binary search a sorted
mnttab mounted file system

for common object file symbol
/compute the index of a symbol

ldtbread read an indexed symbol
syms common object file symbol

ldtbseek seek to the symbol
hdestroy manage hash search

trigonometric/ sin, cos,
intrinsic function

tan, dtan Fortran
tanh, dtanh Fortran hyperbolic

sinh, cosh,
tangent intrinsic function

search trees tsearch, tfind,
directory: opendir, readdir,

temporary filetmpnam,
tmpfile create a

tempnam create a name for a
terminals

file.
term format of compiled

strspn, strcspn, strtok string/ •••• strcat(Sc)
strtod, atof convert string to •••••• strtod(Sc)
strtok string operations • • • • • • • • • strcat(Sc}
strtol, atol, atoi convert •••• • • strtol(Sc}
subroutines • • • • • • • • • • • • plot(Sx)
subroutines and libraries • intro(S}
substring index • index(Sf}
super-block • • • • • • • • • • • • • sync(2}
suspend execution ror interval aJeep(Sc)
suspend process until signal • • • • • • • • pa05e(2}
swab swap bytes • • • • • • swab(3cl
swap bytes • • • • • • • • swab(3c
swrite synchronous write on a • • • • swrite(2
symbol name for common object •• Idgetname(3x)
symbol table entry /symbol. • ••• Idgetname(3x}
symbol table entry of a common •• Idt.bindex(Sx)
symbol table entry or a common/ •• Idtbread(Sx)
symbol table rormat • • • • • • • syms(4}
symbol table of a common object ••••• Idtbseek(Sx)
syms common object file symbol ••••• syms(4)
sync update super-block ••• sync(2)
synchronous write on a file •• • ••• swrite(2)
sys.-errlist, sys..nerr system • • • • perror(3c)
sy&.-nerr system error messages ••••• perror(3c)
system • • • • • • • • • • • • • mount(2)
system • • • • • • • • • • • • • • • • • umount(2)
system • • • • • • • • • • • • • • • • • uname(2)
system issue a shell command •••• system(3s}
system issue a shell command •• system(3f)
system call • • • • • • • • • • stat(5)
system calls and error numbers intro(2)
system data types • • • • • • • • • • • • types(5)
system error messages perror, perror(3c)
system signal signal specify • • signal(3f)
system statistics • • • • • • ustat(2}
system table ••••••• • mnttab{4}
system volume ••••• • • • ••• fs(4}
systems processed by fsck ••••• checklist(4}
table • • • • • • • • • • • • • • bsearch(3c}
table • • • • • • • • • • • • • mnttab(4}
table entry /retrieve symbol name •• •• Idgetname(3x)
table entry or a common object/ ••••• Idtbindex(3x)
table entry of a common object/ ••••• Idtbread(3x)
table format ••••••• •• syms(4)
table or a common object file •• Idtbseek(3x)
tables hsearch, hcreate, • • • • • hsearch(Sc}
tan, asin, aces, atan, atan2 • • • • sin(3m)
tan, dtan Fortran tangent • tan(Sf)
tangent intrinsic function •••• tan(3f)
tangent intrinsic function • • tanh(3r}
tanh hyperbolic functions • • • sinh(Sm)
tanh, dtanh Fortran hyperbolic •• ••• tanh(Sf)
tdelete, twalk manage binary • • •• tsearch(3c}
telldir, seekdir, rewinddir,/ • • • • • • •• directory:(3x}
tempnam create a name ror a ••• tmpnam(3s}
temporary file • • • • • • • • • • • • • • tmpfile(3s)
temporary file tmpnam, •••••• tmpnam(3s}
term conventional names for • term(5)
term rormat of compiled term • • • • • • term(4)
term file. • • • • • • • • • • • • term(4)

Icon International, Inc.

(/

data base
ctermid generate Ble name for
ttyname, iaatty find name or a

termcap
terminro

dial establish an out-going
gettydefs speed and

term conventional names ror
wait for child proceu to stop or

abort
exit, _exit
data bue

rspec format specification in
plock lock proceu,

binary search trees tsearch,
get proceu and child process

set Ble acceu and modiBcation
process times

ror a temporary Ble
/tolower, _toupper, _tolower,

popen, pclose initiate pipe
toupper, tolower, _toupper,

toascii translate/ toupper,
translate/ toupper, tolower,
_tolower, toascii translate/

ptrace proceu
sign, isign, dsign Fortran
_toupper, _tolower, toucii

Ctw walk a file
twalk manage binary search

cos, tan, asin, acos, atan, atan2
manage binary search trees

terminal
utmp file of the current user
trees tsearch, tfind, tdelete,

ichar, char explicit Fortran
types primitive system data

types
flocaltime, gmtime, asctime,

getpw get name from

mask

system
input stream

seedo48, Icong48 generate
mktemp make a

uname get name of current

umount
pause suspend process
lfind linear search and

sync
signal speciry what to do

get character login name or the
logname return login name of
in the utmp file or the current

setuid, setgid set
and/ /getgid, getegid get reai

termcap terminal capability • • • • • termcap(04)
terminal ••••••••• dermid(3s)
terminal •••••••••• • • • ttyname(3c)
terminal capability data base •• termcap(04)
terminal capability data base ••••••• terminro(o4)
terminal line connection • • dial(3c)
terminal settings used by getty gettydefs(04)
terminals • • • • • • • • term(S)
terminate wait ••••••• • • • wait(2)
terminate Fortran program • abon(3f)
terminate process •••••• • • • exit(2)
terminfo terminal capability • • terminfo(4)
text &les ••••••••• • • • • • fspec(4)
text, or data in memory • • • • • •• plock(2)
tfind, tdelete, walk manage • • • • • tsearch(3c)
times times •••••••• • • • • times(2)
times utime •••••••••••••• utime(2)
times get process and child ••••••• times(2)
tmpfile create a temporary file •• tmpfile(Ss)
tmpnam, tempnam create a name •••• tmpnam(3s)
toascii translate characters ••••••• toupper(3c)
to/rrom a process •••• • • • • • • •• popen(3s)
_tolower, toascH translate/ • toupperl3c)
tolower, _toupper, _tolower, •••• toupper SC!
_toupper, _tolower, toucii •••••••• toupper 3c
toupper, tolower, _toupper, • • • • • • •• toupper(3c
trace •••••••••••••• • ptrace(2)
transfer-of-sign intrinsic/ • • • • • • • sign(Sf)
translate characters /tolower, • toupper(Sc)
tree •••••••••••• • ••• rtw(Sc)
trees tsearch, t6nd, tdelete, • • • • tsearch(3c)
trigonometric functions sin, • • • • sin(Sm)
tsearch, t6nd, tdelete, twalk ••••••• tsearch(3c)
ttyname, isatty 6nd name of a • ttyname(3c)
ttyslot find the slot in the • • • • • ttyslot(3c)
twalk manage binary search • • tsearch(3c)
type conversion Icmplx, dcmplx, ••••• int(Sr)
types ••••••••••••••••• types(S)
types primitive system data • • • • ••• types(5)
tzset convert date and time tol • • dime(3c)
tJI]) •••••••••••••••••• getpw(3c)
ulimit get and set user limits • • • ulimit(2)
umask set and get file creation ••••• umask(2)
umount unmount a file system •••••• umount(2)
uname get name of current UNIX •• uname(2)
ungetc push character back into • • • • • ungetc(Ss)
unirormly distributed/ /srando48, ••••• drando48~SC)
unique 6le name • • • • • • • • • • • mktemp Sc)
UNIX system ••••••• • • uname(2
unlink remove directory entry • unlink(2)
unmount a 6le system ••••••• umount(2)
until signal • • • • • • • • pause(2)
update lsearch, • • • • • lsearch(Sc)
update lUper-block sync(2)
upon receipt of a signal •••••• signal(2)
user cuserid •••••• • • • cuserid(3s)
user ••••••••••• • • • logname(3x)
user ttyslot find the slot • • • ttyslot(3c)
user and group IDs ••••• setuid(2)
user, effective user, real group, • getuid(2)

Icon International, Inc. xxxix

Permutd ["tlez

...

xl

environ
ulimit get and eet

groupl Iget real user, etrective
statistics

modification times
utmp, wtmp

endutent, utmpname access
ttyslot find the slot in the

formats
Ipututline, eetutent, endutent,

configuration file
abs return integer absolute

cabs, labs Fortran absolute
getenv return

ceiling, remainder, absolute
putenv change or add

values machine-dependent

argument list
print formatted output of a
print formatted output of a
return Fortran environment

varargs handle
get option letter from argument

assert
formatted output of a/ vprintf,
formatted output of al vprintf,

dosdisks list of MPS/DOS
smiledisks list of SMILE
fs format of file system

print formatted output of a/
print formatted output of a/

of a varargs/ vprintf, vfprintf,
of a varargs/ vprintf, vfprintf,

stop or terminate
terminate wait

ftw
prof profile

fgetc, getw get character or
fputc, putw put character or

chdir change
getcwd get path-name of current

swrite synchronous
write

putpwent
open open for reading or

formats utmp,
utmp, wtmp utmp and

Fortran Bitwise/ and, or,
jO, jl, jn,

jO, jl, jn, yO,
jO, jl, jn, yO, y1,

abs, iabs, dabs, cabs,

user environment ••••• environ(5)
user limits ••••••••• • • • ulimit(2)
user, real group, and etrective •••• getuid(2)
ustat get file system • • • • • • • ustat(2)
utime set file access and •• • utime(2)
utmp and wtmp entry formats • utmp(4)
utmp file entry leetutent, • • • • getutent(3c)
utmp file of the current user •• • ttyslot(3c)
utmp, wtmp utmp and wtmp entry •••• utmp(4)
utmpname access utmp file entry •••• getutent(3c)
werc IOONjUXB run-time • • • ••• werc(4)
value ••••••••••••••••• abs(3c)
value abs, iabs, dabs, • • • • • abs(3f)
value for environment name • • • getenv(3c)
value functions Ifabs 800r, 800r(3m)
value to environment ••••••• putenv(3c)
values •••••••••• • • • values(5)
values machine-dependent values •••• values(5)
varargs handle variable • • • • •• varargs(5)
varargs argument list /vsprintf vprintC(3s)
varargs argument list /vsprintf vprintf(3x)
variable getenv • • • • • • getenv(3f)
variable argument list • • varargs(5)
vector getopt ••••• getopt(3c)
verify program assertion ••• assert(3x)
vfprintf, vsprintf print • • • • • • • vprintf(3s)
vfprintC, vsprintf print • • vprintf(3x)
virtual disks • • • • dosdisks(4)
virtual disks •••••••••• • smiledisks(4)
volume • • • • • • • • • fs(4)
vprintf, vfprintf, vsprintr • • • • • vprintf(3s)
vprintf, vfprintC, vsprintC • • vprintC(3x)
vsprintf print formatted output •• ••• vprintC(3s)
vsprintr print formatted output • vprintf(3x)
wait wait for child process to •••••• wait(2j
wait for child process to stop or • • • • wait(2
walk a file tree ••••••• • • • • ftw(3c
within a function •••••••••••• prof(S)
word from a stream Igetchar, •••• getc(3s)
word on a stream putc, putchar, ••••• putc(3s}
working directory • • • • • • • • chdir(2)
working directory ••• • • getcwd(3c)
write write on a file • • • • • • • write(2)
write on a file • • • • • • • • • • • • swrite(2)
write on a file • • • • • • • • • • • write(2)
write password file entry • • • • putpwent(3c)
writing • • • • • • • • • • open(2)
wtmp utmp and wtmp entry • • • • • utmp(4)
wtmp entry formats • • • utmp(4)
xor, not, Ishift, rshift • • • • ••••••• and(Sf)
yO, yl, yn Bessel functions jO{sml
y1, yn Bessel functions •• jO{Sm
yn Bessel functions • • • • • • • jO{Sm
sabs Fortran absolute value • • • • abs(3r)

Icon International, Inc.

(

(

c

INTRO(2) SYSTEM CALLS INTRO(2)

NAME

intro - introduction to system calls and error numbers

SYNOPSIS.

#include <errno.h>

DESCRIPTION

This section describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value. This is almost always -1; the individual descriptions specify the details. An
error number is also made available in the external variable errno. Errno is not
cleared on successful calls, so it should be tested only after an error has been indi
cated.

Each system call description attempts to list all possible error numbers. The follow
ing is a complete list of the error numbers and their names as defined in
<errno.h>.
1 EPERM Not owner

Typically this error indicates an attempt to modify a file in some way forbid
den except to its owner or super-user. It is also returned for attempts by
ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but
doesn't, or when one of the directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in kill or
ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected
to catch, occurred during a system call. If execution is resumed after process
ing the signal, it will appear as if the interrupted system call returned this
error condition.

5 EIO I/O error
Some physical I/O error has occurred: This error may in some cases occur on
a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the
limits of the device. It may also occur when, for example, a tape drive is not
on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member of the
exec family.

Icon International, Inc. 1

INTRO(2) SYSTEM CALLS INTRO(2)

2

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate
permissions, does not start with a valid magic number (see o.out(4)].

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively, write)
request is made to a file which is open only Cor writing (respectively, reading).

10 ECHD..D No child processes
A wait was executed by a process that had no existing or unwaited-Cor child
processes.

11 EAGAIN No more processes
A lorl: railed because the system's process table is Cull or the user is not
allowed to create any more processes.

12 ENOMEM Not enough space
During an ezec, brk, or sbrk, a program asks Cor more space than the system
is able to supply. This is not a temporary condition; the maximum space size
is a system parameter. The error may also occur if the arrangement of text,
data, and stack segments requires too many segmentation registers, or if
there is not enough swap space during a/orl:.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection
system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument
of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required, e.g., m
mount.

16 EBUSY Device or resource busy
An attempt was made to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an active file (open
file, current directory, mounted-on file, active text segment). It will also

. occur if an attempt is made to enable accounting when it is already enabled.
The device or resource is currently unavailable.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g.,
read a write-only device.

20 ENOTDm Not a directory
A non-directory was specified where a directory is rt'quired, for example in a
path prefix or as an argument to chdir(2).

21 EISDm Is a directory
An attempt was made to write on a directory.

Icon International, Inc.

'" ...

(

(

INTRO(2) SYSTEM CALLS INTRO(2)

22 EINV AL Invalid argument
Some invalid arpment (-e.~., dismounting a nOD-mounted device; mentioning
an undefined signal in aignal, or lcill; Teading or writing a file for which lseek
has generated a nqatin pointer) was attemptt'd. The math functions
described in the (3M) entries of this manual c..a.uses the invalid argument to
be set.

23 ENFILE File table overflow
The system file table is full, and temparariJy no more Dpens can be accepted.

24 EMFll..E Too many open files
No process may have more than 20 file descriptors open at a time. When a
f'ecord lock is being created with Icntl,ther.e ..are 1.00 many files wit h record
Ioeks on them.

25 ENOTTY Not a character device
An attempt was made to ioct(2} a file that is not a specia.l character device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is currently
open for writing. Also an attempt to open for writing a pure-procedure pro
gram that is being executed.

27 EFBIG File toO large
The size of a file exceeded the maximum file size {1,082,201,088 bytes} or
ULIMIT; see ulimit(2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device. In
lenti, the setting or removing of record locks on a file cannot be accomplished
because there are no more record entries left on the system.

29 ESPIPE Illegal seek
An lseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted
read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links (lOoo) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condi
tion normally ge.nera.tes a signal; the enD!' is r~turned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of
the function.

34 ERANGE Result too large
The value of a function in the math pa-cka;ge (3M) is not representable within
machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not. exist on
the specified message queue; see msgop(2).

36 EIDRM Identifier Removed
This error is returned to processes that resume eXt'('ution due to the removal
of an identifier from the file system's nam(' space !se(' msgctl(2), semcfl(2), and

Icon International, Inc. 3

INTRO(2) SYSTEM CALLS INTRO(2)

8hmctl(2)J.
45 EDEADLK Deadlock

A deadlock situation was detected and avoided.

DEFINITIONS

4

ProceulD
Each active process in the system is uniquely identified by a positive integer called a
process ID. The range of this ID is from 1 to 30,000.

Parent Process ID
A new process is created by a currently active process; see /ork(2). The parent pro
cess ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a positive
integer called the process group ID. This ID is the process ID of the group leader. This
grouping permits the signaling of related processes; see kill(2).

Tty Group ID
Each active process can be a member of a terminal group that is identified by a posi
tive integer called the tty group ID. This grouping is used to terminate a group of
related processes upon termination of one of the processes in the group; st'e exit(2)
and signal(2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer called a real user
ID.

Each user is also a member of a group. The group is identified by a positive integer
called the real group ID.

An active process has a real user ID and real group ID that are set to the real user ID
and real group ID, respectively, of the user responsible for the creation of tht' process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID that are used to
determine file access permissions (see below). The effective user .ID and effective
group ID are equal to the process's real user ID and real group ID respectively, unless
the process or one of its ancestors evolved from a file that had the set-user-ID bit or
set-group ID bit set; see exec(2).

Super-user
A process is recognized as a super-user process and is granted special privilt'ges if its
effective user ID is O.

Icon International, Inc.

(

..

(

INTRO(2) SYSTEM CALLS INTRO(2)

Special Proceases
The processes with a process ID of 0 and a process ID of 1 are special processes and
are referred to as procO and proc1.

ProcO is the scheduler. Proc1 is the initialization process (init). Procl is the ances
tor of every other process in the system and is used to control the process structure.

File Deacriptor
A file descriptor is a small integer used to do I/O on a file. The value of a file
descriptor is from 0 to 19. A process may have no more than 20 file descriptors (0-
19) open simultaneously. A file descriptor is returned by system calls such as
open(2), or pipe(2). The file descriptor is used as an argument by calls such as
read(2), write(2), ioct~2), and close(2) .

File Name
Names consisting of 1 to 14 characters may be used to name an ordinary file, special
file, or directory.

These characters may be selected from the set of all character values excluding \0
(null) and the ASCII code for I (slash).

Note that it is generally unwise to use ., 7', [, or] as part of file names because of the
special meaning attached to these characters by the shell. See sh(I). Although per
mitted, it is advisable to avoid the use of unprintable characters in file names.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an optional slash
(f), followed by zero or more directory names separated by slashes; optionally fol
lowed by a file name.

More precisely, a path name is a null-terminated character string constructed as fol
lows:

<path-name>::=<file-name>l<path-prefix><file-name>11
<path-prefix>::=<rtprefix>l/<rtprefix>
<rtprefix>::=<dirname> II<rtprefix><dirname> I

where <file-name> is a string of 1 to 14 characters other than the ASCII slash and
null, and <dirname> is a string of 1 to .14 characters (other than the ASCII slash and
null) that names a directory.

If a path name begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Icon International! Inc. 5

INTRO(2) SYSTEM CALLS .INTRO(2)

6

Unless specifically stated otherwise, the null path name is treated as if it named a
non-existent file.

Directory

Directory entries are called links. By convention, a directory contains at least two
links, • and •• , referred to as dot and dot-dot respectively. Dot refers to the directory
itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current
working directory for the purpose of resolving path name searches. The root direc
tory of a process need not be the root directory of the root file system.

File Access Permissions

Read, write, and execute/search permissions on a file are granted to a process if one
or more of the following are true:

The effect.ive user ID of the process is super-user.

The effective user ID of the process matches the user ID of the owner of the file
and the appropriate access bit of the "owner" portion (0700) of the file mode
is set.
The effective user ID of the process does not match the user ID of the owner of
the file, and the effective group ID of the process matches the group of the file
and the appropriate access bit of the "group" portion (070) of the file mode is
set.
The effective user ID of the process does not match the user ID·of the owner of
the file, and the effective group ID of the process does not match the group ID
of the file, and the appropriate access bit of the "other" portion (07) of the
file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer created by a msgget(2)
system call. Each msqid has a message queue and a data structure associated with
it. The data structure is referred to as msqitLds and contains the following
members:

struct
ushort
ushort
ushort
ushort
time_t
time_t
time_t

ipc __ perm ms~perm;
ms~qnum;

ms~qbytes;
msgJspid;
msgJrpid;
mSgJ;time;
mSgJtime;
ms~ctimej

/* operation permission struct */
/* number of msgs on q */
/* max number of bytes on q */
/* pid of last msgsnd operation */
/* pid of last msgrcv operation */
/* last msgsnd time * /
/* last msgrcv time */
/* last change time */
/* Times measured in sees since */

Icon International, Inc.

(

(

INTRO(2) SYSTEM CALLS INTRO(2)

/* 00:00:00 GMT, Jan. 1, 1970 */

Ma&-Perm is an ipc_perm structure that specifies the message operation permission
(see below). This structure includes the following members:

ushort
ushort
ushort
ushort
ushort

cuid;
cgid;
uid;
gid;
mode;

/* creator user id */
/* creator group id */
/* user id */
/* group id */
/* r/w permission */

Ma~qDum is the number of messages currently on the queue. Ma~qbytes is the
maximum number of bytes allowed on the queue. MagJapid is the process id of the
last process that performed a msgsnd operation. Ma&-lrpid is the process id of the
last process that performed a msgrcv operation. Mag....etime is the time of the last
msgsnd operation, m.~time is the time of the last msgrcv operation, and
ms~ctime is the time of the last msgctl(2) operation that changed a member of the
above structure.

Message Operation Permissions
In the msgop(2) and msgctl(2) system call descriptions, the permission required for an
operation is given as "{tokenf', where "token" is the type of permission needed inter
preted as follows:

00400
00200
00060
00006

Read by user
Write by user
Read, Write by group
Read, Write by others

Read and Write permissions on a msqid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches ms~perm.[c]uid in the data
structure associated with msqid and the appropriate bit of the "user" portion
(0600) of ms~perm.mode is set.

The effective user ID of the process does not match m8~perm.[c]uid and the
effective group ID of the process matches ms~perm.[clgid and the appropri
ate bit of the "group" portion (060) of m.~perm.mode is set.

The effective user ID of the process does not match m8~perm.[e]uid and the
effective group ID of the process does not match m.~perm.[c]gid and the
appropriate bit of the "other" portion (06) of ms~perm.mode is set.

Otherwise, the corresponding permissions are denied.

Icon International, Inc. 7

INTRO(2) SYSTEM CALLS INTRO(2)

8

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created by a semget(2)
system call. Each semid has a set of semaphores and a data structure associat.ed
with it. Tbe data structure is referred to as 8emiLds and contains the following
members:

struct
usbort
time_t
time_t

ipc-perm sem-permi
seID-nsemsi
Bem-otimei
Bem-ctime;

/* operation permission struct 'III
I'll number of Bems in set *1
/* last operation time 'III
I'll last change time *1 .
/* Times measured in sees since 'III
/* 00:00:00 GMT, Jan. 1, 1970 'III

Sem_perm is an ipc_perm structure that specifies the semaphore operation permis
sion (see below). This structure includes the following members:

ushort
ushort
ushort
ushort
ushort

cuid;
cgid;
uidj
gidj
modej

1* creator user id 'III
I'll creator group id 'III
1* user id */
I'll group id 'III
I'll rIa permission *1

The value of 8em.-naema is equal to the number of semaphores in the set. Each
semaphore in the set is referenced by a positive integer referred to as a sem_num.
Sem.Jlum values run sequentially from 0 to the value of sem.Jlsems minus 1.
Sem_otime is the time of the last semop(2) operation, and 8eM-ctime is the time
of the last semctl(2) operation that changed a member of the above structure.

A semaphore is a data structure that contains the following members:

ushort
short
ushort
ushort

semvalj
sempid;
semncnt;
semzcntj

1* semaphore value 'III
1* pid of last operation 'III
1* # awaiting semval > cval 'III
I'll # awaiting semval = 0 *1

Semval is a non-negative integer. Sempid is equal to the process ID of the last pro
cess that performed a semaphore operation on this semaphore. Semncnt is a count
of the number of processes that are currently suspended awaiting this semaphore's
semval to become greater than its current value. Semzcnt is a count of the number
of processes that are currently suspended awaiting this semaphore's sernval to
become zero.

Semaphore Operation Permissions
In the semop(2) and semctl(2) system call descriptions, tht' pt'rmission required for an
operation is given as "{token}", where "token" is the type of permission needed intt'r
preted as follows:

Icon International, Inc.

(

C;
-'

INTRO(2)

00400
00200
00060
00006

SYSTEM CALLS

Read by user
Alter by user
Read, Alter by group
Read, Alter by others

INTRO(2)

Read and Alter permissions on a semid are granted to a process if one or more of the
following are true:

The effective user m of the process is super-user.

The effective user m of the process matches aem_perm.[e]uid in the data
structure associated with Bemid and the appropriate bit of the "user" portion
(0600) of aem-perm.mode is set.

The effective user ID of the process does not match aem_perm.[e]uid and the
effective group m of the process matches sem_perm.[e]gid and the appropri
ate bit of the "group" portion (060) of aem_perm.mode is set.

The effective user ID of the process does not match aem_perm.[e]uid and the
effective group ID of the process does not match eem_perm.[e]gid and the
appropriate bit of the "other" portion (06) of aem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer created by a
shmget(2} system call. Each shmid has a segment of memory (referred to as a shared
memory segment) and a data structure associated with it. The data structure is
referred to as shmitLds and contains the following members:

struct
int
ushort
ushort
short
time_t
time_t
time_t

ipc_perm shm_perm;
shmJlegsz;
shm_cpid;
shm.Jpid;
shmJlattch;
shm_atime;
shm_dtime;
shm_ctime;

/* operation permission struct */
/* size of segment */
/* creator pid */
/* pid of last operation */
/* number of current attaches */
/* last attach time */
/* last detach time */
/* last change time */
/* Times measured in sees since * /
/* 00:00:00 GMT, Jan.!. 1970 */

Shm_perm is an ipc_perm structure that specifies the shared memory operation
permission (see below). This structure includes the following members:

ushort
ushort
ushort
ushort
ushort

euid;
cgid;
uid;
gid;
mode;

Icon International, Inc.

/* creator user id */
/* creator group id */
/* user id */
/* group id */
/* r/w permission */

9

INTRO(2) SYSTEM CALLS INTRO(2)

Shm....egsz specifies the size of the shared memory segment. ShDL.cpid is the pro
cess id of the process that created the shared memory identifier. ShmJpid is the
process id of the last process that performed a BAmop(2) operation. Shm.Jlattch is
the number of processes that currently have this segment attached. Shm..atime is
the time of the last BAmat operation, ahD1-dtime is the time of the last Bhmdt
operation, a.nd ahDL.etime is the time of the last Bhmctl(2) operation that changed
one of the members of the above structure.

Sha.red Memory Operation Permiuiou
In the Bhmop(2) and Bhmctl(2) system call descriptions, the permission required for an
operation is given as "{token}", where "token" is the type of permission needed inter
preted as follows:

00400
00200
00060
00006

Read by user
Write by user
Read, Write by group
Read, Write by others

Read and Write permissions on a shmid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shm_perm.[e]uid in the data
structure associated with .hmid and the appropriate bit of the "user" portion
(0600) of .hm_perm.mode is set.

The effective user ID of the process does not match .hm_perm.[e]uid and the
effective group ID of the process matches ahm_perm.[e]gid and the appropri
ate bit of the "group" portion (060) of .hm_perm.mode is set.

The effective user ID of the process does not match ahm-perm.[e]uid and the
effective group ID of the process does not match ahm_perm.[e)gid and the
appropriate bit of the "other" portion (06) of shm-perm.mode is set.

Otherwise, the corresponding permissions are denied.

SEE ALSO

close(2), ioctl(2), open(2), pipe(2), read(2), write(2), intro(3).

10 Icon International, Inc.

ACCESS(2) SYSTEM CALLS ACCESS(2)

(NAME

(

access - determine accessibility of a file

SYNOPSIS

int access (path, amode)
char *path;
int amode;

DESCRIPTION

Path points to a path name naming a file. Access checks the named file for accessi
bility according to the bit pattern contained in amode, using the real user ID in place
of the effective user ID and the real group ID in place of the effective group ID. The bit
pattern contained in amode is constructed as follows:

04 read
02 write
01 execute {search}
00 check existence of file

Access to the file is denied if one or more of the following are true:
[ENOTDffi] A component of the path prefix is not a directory.
[ENOENT] Read, write, or execute (search) permission is

IENOENT]
EACCES]

!EROFS]

requested for a null path name.
The named file does not exist.
Search permission is denied on a component of the
path prefix.
\\Trite access is requested for a file on a read-only
file system.

!ETXTBSY] Write access is requested for a pure procedure

[EACCESS]

IEFAULTj

(shared text) file that is being executed.
Permission bits of the file mode do not permit
the requested access.
Path points outside the allocated address
space for the process.

The owner of a file has permission checked with respect to the "owner" read, write,
and execute mode bits Members of the file's group other than the owner ha.ve permis
sions checked with respect to the "group" mode bits, and all others have permissions
checked with respect to the "other" mode bits.

RETURN VALUE

Icon .International, Inc. 1

ACCESS (2) SYSTEM CALLS ACCESS (2)

If the requested access is permitted, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

SEE ALSO

chmod(2), stat(2).

2 Icon International, Inc.

(

(

ACCT(2) SYSTEM CALLS

NAME

acct - enable or disable process accounting

SYNOPSIS·

int aect (path)
char *path;

DESCRIPTION

ACCT(2)

Acct is used to enable or disable the system process accounting routine. If the rou
tine is enabled, an accounting record will be written on an accounting file for each
process that terminates. Termination can be caused by one of two things: an exit
call or a signal; see ezit(2) and signal(2). The effective user ID of the calling process
must be super-user to use this call.

Path points to a path name naming the accounting file. The accounting file format
is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur during the
system call. It is disabled if path is zero and no errors occur during the system call.

Acct will fail if one or more of the following are true:

IEPERMj The effective user of the calling process is not super-user.

IEBUSYj An attempt is being made to enable accounting when it is already
enabled.

IENOTDIR]

IENOE~T]

iEACCES]

{EACCES]

[EACCES]

IEISDIR]

IEROFSj

IEFAULT]

RETURN VALUE

A component of the path prefix is not a directory.

One or more components of the accounting file path name do not
exist.

A component of the path prefix denies search permission.

The file named by path is not an ordinary file.

Mode permission is denied for the named accounting file.

The named file is a directory.

The named file resides on a read-only file system.

Path points to an illegal address.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 1S

returned and errno is set to indicate the error.

Icon International, Inc. 1

ACCT(2) SYSTEM CALLS ACCT(2)

(-\
, I

~j

SEE ALSO

exit(2), signal(2}, acct(4}.

2 Icon International, Inc.

(

ALARM(2) SYSTEM CALLS

NAME

alarm - set a process alarm clock

SYNOPSIS

unsigned alarm (sec)
unsigned sec;

DESCRIPTION

ALARM(2)

Alarm instructs the alarm clock of the calling process to send the signal SIGALRM to
the calling process after the number of real time seconds specified by sec have
elapsed; see signal(2).

Alarm requests are not stacked; successive calls reset the alarm clock of the ~alling
process.

If sec is 0, any previously made alarm request is canceled.

(RETURN VALUE

Alarm returns the amount of time previously remaining in the alarm clock of the
calling process.

SEE ALSO

pause(:2), signal(2).

Icon International, Inc. 1

BRK(2) SYSTEM CALLS

NAME

brk, sbrk - change data segment space allocation

SYNOPSIS

mt brk (endds)
char *endds;

char *sbrk (mer)
mt mer;

DESCRIPTION

BRK(2)

Brk and sbrk are used to change dynamically the amount of space allocated for the
calling process's data segment; see ezec(2). The change is made by resetting the
process's break value and allocating the appropriate amount of space. The break
value is the address of the first location beyond the end of the data segment. The
amount of allocated space increases as the break value increases. The newly allo
cated space is set to zero.

Brk sets the break value to endds and changes the aHocated space accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space accordingly.
Incr can be negative, in which case the amount of allocated space is decreased.

Brk and sbrk will fail without making any change in the allocated space if one or
more of the following are true:

Such a change would result in more space being allocated than is allowed by
a system-imposed maximum (see ulimit(2)). [ENOMEM]

Such a change would result in the break value being greater than or equa I to
the start address of any attached shared memory segment (see shmop(2)).

RETURN VALUE

Upon successful completion, brk returns a value of 0 and sbrk returns the old break
value. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

exec(2), shmop(2), ulimit(2).

Icon International, Inc. 1

/'
(

\,,~

(

(

CHDIR(2) SYSTEM CALLS CHDIR(2)

NAME

chdir - change working directory

SYNOPSIS

int chdir (path)
char *path;

DESCRIPTION

Path points to the path name of a directory. Chdir causes the named directory to
, become the current working directory, the starting point for path searches for path

names not beginning with /.

Chdir will fail and the current working directory will be unchanged if one or more of
the following are true:

IENOTDIR] A component of the path name is not a directory.

IENOENT]

!EACCES]

IEFAULT]

RETURN VALUE

The named directory does not exist.

Search permission is denied for any component of the path name.

Path points outside the allocated address space of the process.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 IS

ret.urned and ermo is set to indicate the error.

SEE ALSO

chroot(2}.

Icon International, Inc. 1

.<

CHMOD(2)

NAME

chmod - change mode of file

SYNOPSIS

int chmod (path, mode)
char *pathi
int mode;

DESCRIPTION

SYSTEM CALLS CHMOD(2)

Path points to a path name naming a file. Chmod sets the access permission portion
of the named file's mode according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000
02000
01000
00400
00200
00100
00070
00007

Set user ID on execution.
Set group ID on execution.
Save text image after execution.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute (search) by group.
Read, write, execute (search) by others.

The effective user ID of t.he process must match the owner of the file or be super-user
to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000 (save text
image on execution) is cleared.

If the effective user ID of the process is not super-user and the effective group ID of
the process does not match the group ID of the file, mode bit 02000 (set group ID on
execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000 prevents the system
from abandoning the swap-space image of the program-text. portion of the file when
its last user terminates. Thus, when the next user of the file executes it, the text
need not be read from the file system but can simply be swapped in, saving time.

Chmod will fail and the file mode will be unchanged if one or more of the following
are true: .

IENOTDlR]

IENOENT]

A component of the path prefix is not a directory.

The named file does not exist.

Icon International, Inc. 1

(

c

CHMOD(2)

IEACCESj

IEPERMj

jEROFS]

\EFAULTj

RETURN VALUE

SYSTEM CALLS CHMOD(2)

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the
effective user ID is not super-user.

The named file resides on a read-only file system.

Path points outside the allocated address space of the process.

Upon successful completion, a value of 0 is returned. Ot.herwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO

chown(2), mknod(2).

2 Icon International, Inc.

CHOWN(2) SYSTEM CALLS CHOWN(2)

NAME

chown - change owner and group of a file

SYNOPSIS

int chown (path, owner, group)
char .path;
int owner, group;

DESCRIPTION

Path points to a path name naming a file. The owner ID and group ID of the named
file are set to the numeric values contained in owner and group respectively.

Only processes with effective user ID equal to the file owner or super-user may change
the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set-group-ID
bits of the file mode, 04000 and 02000 respectively, will be cleared.

Chown will fail and the owner and group of the named file will remain unchanged if
one or more of the following are true:

IENOTDIR] A component of the path prefix is not a directory.

IENOENTj The named file does not exist.

IEACCESj Search permission is denied on a component of the path prefix.

IEPERMj The effective user ID does not match the owner of the file and the
effective user ID is not super-user.

IEROFSl The named file resides on a read-only file system.

IEFAULTl Path points outside the allocated address space of the process.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 IS

returned and errno is set to indicate the error.

SEE ALSO

chmod(2).
chown(l) in the ICON/UXV User Reference Manual.

Icon International, Inc. 1

'--"'\
~c_j

CHROOT(2) SYSTEM CALLS CHROOT(2)

(NAME

(

chroot - change root directory

SYNOPSIS

int chroot (path)
char *path;

DESCRIPTION

Path points to a path name naming a directory. Chroot causes the named directory
to become the root directory, the starting point for path searches for path names
beginning with l The user's working directory is unaffected by the chroot system
call.

The effective user ID of the process must be super-user to change the root directory.

The •• entry in the root directory is interpreted to mean the root directory itself.
Thus, •. cannot be used to access files outside the subtree rooted at the root direc
tory.

Chroot will fail and the root directory will remain unchanged if one or more of the
foHowing are true:

IENOTDIRj Any component of the path name is not a directory.

IENOENTj The named directory does not exist.

IEPERM:j The effective user ID is not super-user.

IEFAULTj Path points outside the aJlocated address space of the process.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO

chdir(2).

Icon International, Inc. 1

CLOSE(2)

NAME

close - close a file descriptor

SYNOPSIS

int close (tildes)
int tildes;

DESCRIPTION

SYSTEM CALLS CLOSE(2)

Fildes is a file descriptor obtained from a creat, open, dup, lentl, or pipe system call.
Close closes the file descriptor indicated by fildes. All outstanding record locks
o"med by the process (on the file indicated by fildes) are removed.

[EBADFJ Close will fail if fildes is not a valid open file descriptor.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 IS

returned and errno is set to indicate the error.

SEE ALSO

creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2).

\

Icon International, Inc. 1

(

C

CREAT(2) SYSTEM CALLS CREAT(2)

NAME

creat - create a new file or rewrite an existing one

SYNOPSIS

int creat (path, mode)
char .path;
int mode;

r DESCRIPTION

Creat creates a new ordinary file or prepares to rewrite an existing file named by the
path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode a.nd owner are unchanged.
Otherwise, the file's owner ID is set to the effective user ID, of the process the group
ID of the process is set to the effective group ID, of the process and the low-order 12
bits of the file mode are set to the value of mode modified as follows:

All bits set in the process's file mode creation mask are cleared. See
tlmask(2).

The "save text image after execution bit" of the mode is cleared. See
chmod(2).

Upon successful completion, the file descriptor is returnE'd arid the file is open for
writing, even if the mode does not permit writing. The file pointer is set to the
beginning of the file. The file descriptor is set to remain open across exec system
calls. See fcntl(2). No process may have more than 20 files open simultaneously. A
new file may be created with a mode that forbids writing.

Creat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENTj

[EACCESj

[ENOENT]

[EACCES]

IEROFS]

IETXTBS)1

[E.-\CCES]

[EISDIR]

[EMFILE]

[EFAULT]

A component of the path prefix does not exist.

Search permission is denied on a component of the path prefix.

The path name is null.

The file does not exist and the directory in which the file is to be
created does not permit writing.

The named file resides or would reside on a read-only file system.

The file is a pure procedure (shared text) file that is being executed.

The file exists and write permission is denied.

The named file is an existing directory.

Twenty (20) file descriptors are currently open.

Path points outside the allocated address space of the procE'Ss.

Icon International; Inc. 1

. ,

CREAT(2) SYSTEM CALLS CREAT(2)

(ENFILEJ The system file table is full.

RETURN VALUE

Upon successful completion, a Don-negative integer, namely the file descriptor, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

chmod(2), c}ose(2), dup(2), rcntl(2), lseek(2), open(2), read(2), umask(2), write(2) .

2 Icon J nternationaL J 11e.

(

c

DUP(2) SYSTEM CALLS

NAME

dup - duplicate an open file descriptor

SYNOPSIS'

int dup (BIdes)
int BIdes;

DESCRIPTION

DUP(2)

Fildes is a file descriptor obtained from a creat, open, dup, Icntl, or pipe system call.
Dup returns a new file descriptor having the following in common with the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across ezec system calls. See Icntl(2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

IEMFILEJ Twenty (20) file descriptors are currently open.

RETURN VALUE

Upon succesSful completion a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2).

Icon International, Inc. 1

EXEC(2) SYSTEM CALLS

NAME

execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS

int execl (path, argO, argl, ___ , argn, 0)
char *path, *argO, *argl, ___ , *argn;

int execv (path, argyl
char *path, .argv[];

int execle (path, argO, argl, ••• , argn, O,envp)
char *path, .argO, .argl, .•. , *argn, *envp[];

int execve (path, argv, envp)
char *path, .argv[], .envp[];

int execlp (file, argO, argl, •.. , argn, 0)
char *file, *argO, *argl, .•. , .argn;

int execvp (file, argy)
char *file, *argy[];

DESCRIPTION

EXEC(2)

Exec in all its forms transforms the calling process into a new process. The new pro
cess is constructed from an ordinary, executable file called the new process file. This
file consists of a header (see a.out(4)), a text segml'nt, and a data segment. The data
segmen~ contains an initialized portion and an uninitializl'd portion (bss). There can
be no return from a successful exec because the calling process is overlaid by the new
process.

When a C program is executed, it is called as follows:

main (argc, argy, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the
arguments themselves. As indicated, argc is conventionally at least one and the first
member of the array points to a string containing the name of thl' file.

Icon International, Inc. 1

(

(

EXEC(2) SYSTEM CALLS EXEC (2)

2

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained by a
search of the directories passed as the environment line "PATH =" (see environ(5)}.
The environment is supplied by the shell (see 8h(I)).

ArgO, arg1, ... , argn are pointers to null-terminated character strings. These strings
constitute the argument list available to the new process. By convention, at least
argO must be present and point to a string that is the same as path (or its last com
ponent).

Argv is an array of character pointers to nuH-terminated strings. These strings con
stitute the argument list available to the new process. By convention, argv must
have at least one member, and it must point to a string that is the same as path (or
its last component). Argv is terminated by a null pointer.

Em'p is an array of character pointers to nuB-terminated strings. These strings con
stitute the environment for the new process. Envp is terminated by a null pointer.
For execl and execv, the C run-time start-off routine places a pointer to the environ
ment of the calling process in the global cell:

extern char **environ;
and it is used to pass the environment of the calling process to the new process.

File descriptors open in the calling process remain open in the new process, except
for those whose close-on-exec flag is set; see fcntl(2). For those file descriptors that
remain open, the file pointer is unchanged.

Signals set to terminate the calling process will be set to terminate the new process.
Signals set to be ignored by the calling process will be set to be ignored by the new
process. Signals set to be caught by the calling process will be set to terminate new
process; see 8ignal(2). .

If the set-user-ID mode bit of the new process file is set (see chmod(2», exec .sets the
effective user 10 of the new process to the owner ID of the new process file. Similarly,
if the set-group-ID mode bit of the new process file is set, the effective group 10 of the
new process is set to the group ID of the new process file. The real user ID and real
group 10 of the new process remain the same as those of the calling process.

The shared memory segments attached to the calling process will not be attached to
the new process (see shmop(2».

Profiling is disabled for the new process; see profil(2).

The new process also inherits the following attributes from the calling process:

nice value (see nice(2)

Icon International, Inc.

EXEC(2) SYST.EM CALLS

process ID

parent process 1D

process group ID

semadj values (8e~ .eemop(2»

tty group ID (see =t(2) and Bignal(2»

trace flag (see ptrace(2) request 0)

time left until an a.bmn d:>ck..tgn1L1 {seeolann(2»

current working directory

root directory

file mode creation mask (see umuk(2»

file size limit (see ulimit(2»

utime, stime, cutime, and utime (see timeB(.'2»

EXEC(2)

Exec will fail and return to the calling process if one OT more of the following are
true:

IENOENTj

IENOTDlRj

IEACCES]

IEACCESj

[EACCES]

!ENOEXEC]

IETXTBSy]

IENOMEMj

IE2BIGj

IEFAULTJ

IEFAULTJ

One or more components of the new process path name of the file
do not exist.

A component of the new process .path 01 the file prefix is not a
directory.

Search pennission is denied for 1L directory listed in the new process
file's path prefix.

The new process .file is not an ordinary file.

The new process file mode denies en cut ion permission.

The exec is not a.n ezecJp or ezervp, and the new process file has the
appropriate access permission but an invalid magic number in its
header.

The new]lTocess file is a pure procedure (shared text) file that is
currently open for writing by some process. .

The new process requires more memory than is allowed by the
system-imposed· maximum MAXMEM.

The number of bytes in the new process's argument list is greater
than the system-imposed limit of 5120 bytes.

The new process file is not as Jong as indicated by the size values in
its header.

Path, argv~or mvp point to an illegal address.

Icon International, Inc. 3

. ,

(

C~i

EXEC(2) SYSTEM CALLS EXEC(2)

RETURN VALUE

If ezec returns to the calling process an error has occurred; the return value will be
-1 and errno will be set to indicate the error.

SEE ALSO

4

alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), times(2), uliinit(2),
umask(2), a.out(4), environ(5).
sh(l) in the IOON/UX U8er Reference Manual .

Icon International, Inc.

EXIT(2) SYSTEM CALLS EXIT (2)

exit, _exit - terminate process

SYNOPSIS

void exit (status)
int status;
void -.exit (status)
int status;

¥ DESCRIPTION

Exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is notified of
the calling process's termination and the low order eight bits (i.e., bits 03i7)
of status are made available to it; see wait(2).

If the parent process of the calling process is not executing a wait, the calling
process is transformed into a zombie process. A zombie process is a process
that only occupies a slot in the process table. It has no ot.her space a,lloca ted
either in user or kernel space. The process table slot that it occupies is par
tially overlaid with time accounting information (see <sys/proc.h» to be
used by times.

The parent process ID of all of the calling process's existing child processes
and zombie processes is set to 1. This means the initialization process [see
intro(2)] inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm..nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value [see
semop(2)] , that semadj value is added to the semval of the specified sema
phore.

If the process has a process, text, or data lock, an unlock is performed (see
plock(2)).

An accounting record is written on the accounting file if the system's
accounting routine is enabled; see acct(2).

If the process ID, tty group ID, and process group ID of the calling process are
equal, the SIGHUP signal is sent to each process that has a process group ID
equal to that of the calling process.

The C function exit may cause cleanup actions before the process exits. The func
tion _exit circumvents all cleanup.

Icon International, Inc. 1

,/

EXIT(2) SYSTEM CALLS EXIT(2)

(
SEE ALSO

acct(2), intro(2), plock(2), semop(2), signal(2), wait(2) ..

WARNING'

See WA.RNING in signa/(2).

(

2 Icon International. Inc.

FCNTL(2) SYSTEM CALLS FCNTL(2)

NAME

fcntl - filE' control

SYNOPSIS

#include <f'cntl.h>

lnt f'cntl (fUdes, cmd, arg)
int fUdes, cmd, arg;

DESCRIPTION

Fcntl provides for control over open files. Fildes is an open file descriptor obtained
from a creat, open, dup, JenU, or pipe system call.

The commands available are:

FJ)UPFD

F_GETFD

F..sETFD

F_GETFL

F..sETFL

F_GETLK

F..sETLK

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or equal to
a~.· ~

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descriptors share
one file pointer).

Same access mode (read, write, or read/write).

Same file status flags (i.e., both file descriptors share the same file
status flags).

The close-on-exec flag associated with the new file descriptor is set to
remain open across exee(2) system calls.

Get the close-on-exec flag associated with the file descriptor fildes. If
the low-order bit is 0 the file will remain open across exec, otherwise
the file will be closed upon execution of exec.

Set the close-on-exec flag associated with fildes to the low-order bit of
arg (0 or 1 as above).

Get file status flags.

Set file status flags to argo Only certain flags can be set; see Jcntl(5).

Get the first lock which blocks the lock description given by the vari
able of type struct flock pointed to by argo The information retrieved
overwrites the information passed to Jentl in the flock structure. If no
lock is found that would prevent this lock from being created, then
the structure is passed back unchanged except. for the lock type which
will be set to F _UNLCK.

Set or clear a file segment lock according to the variable of type strucf
flock pointed to by arg lsee Jent~5)1. The cmd F..sETLK is used to
establish read (F.JU)LCK) and write (F_\\'RLCK) locks, as well as

Icon International, Inc. 1

(

FCNTL(2) SYSTEM CALLS FCNTL(2)

2

F..sETLKW

remove either type of lock (F _UNLCK). If a read or write lock cannot
be set, fentl will return immediately with an error value of -l.

This emd is the same as F..sETLK except that if a rt'ad or write lock is
blocked by other locks, the process will sleep until the segment is free
to be locked.

A read lock prevents any process from write locking the protected area. More than
one read lock may exist for a given segment of a file at a given time. The file
descriptor on which a read lock is being placed must have been opened with read
access.

A write lock prevents any process from read locking or write locking the protected
area. Only one write lock may exist for a given segment of a file at a given time.
The file descriptor on which a write lock is being placed must have been opened with
write access.

The structure flock describes the type (Ltype), starting offset (Lwhence). relative
offset (Lstart). size (Lien), and process id (l..pitl) of the segmt'nt of the file ·to be
affected. The process id field is only used with the F_GETLK emd to return the value
for a block in lock. Locks may start and extend beyond the current end of a file, but
may not be negative relative to the beginning of the file. A lock may be set to
always extend to the end of file by setting Lien to zero (0). If such a lock also has
Letart set to zero (0), the whole file will be locked. Changing or unlocking a st'gment
from the middle of a larger locked segment leaves two smaller segments for either
end. Locking a segment that is already locked by the calling process causes the old
lock type to be removed and the new lock type to take affect. All locks associa.ted
with a file for a given process are removed when a file descriptor for that file is
closed by that process or the process holding that file descriptor terminates. Locks
are not inherited by a child process in a fork(2) system call.

Fcntl will fail if one or more of the following are true:

[EBADF]

[EMFll.E]

[EINFll.E]

IEIr-.-V ALI

/EACCESSj

[EMFlLEI

IENOSPC]

Fildes is not a valid open file descriptor.

Cmd is FJ)UPFD and 20 file descriptors are currently open.

Cmd is FJ)UPFD and arg is negative or greater than 20.

Cmd is F_GETLK, F..sETLK, or SETLKW and arg or the data it points
to is not valid.

Cmd is F..sETLK the type of lock (Ltype) is a read (F...RDLCK) or
write (F_WRLCK) lock and the segment of a file to be locked is
already write locked by another process or the type is a write lock
and the segment of a file to be locked is already read or write
locked by another process.
Cmd is F..sETLK or F..sETLKW, the type of lock is a read or write
lock and there are no more file locking ht'aders available (too ma.ny
files have segments locked).

Cmd is F..sETLK or F..sETLKW, the type of lock is a read or write
lock and there are no more file locking ht'aders available (too many

. files have segments locked) or there are no more record locks

Icon International, Inc.

FCNTL(2) SYSTEM CALLS FCNTL(2)

available (too many file segments locked).

[EDEADLK) Cmd is F ...sETLK, when the lock is blocked by some lock from
another process and sleeping (waiting) for that lock to become free,
this causes a deadlock situation.

RETURN VALUE

Upon successful completion, the value returned depends on cmd as follows:

F...DUPFD
F_GETFD
F...sETFD
F_GETFL
F..8ETFL
F_GETLK
F..8ETLK
F..8ETLKW

A new file descriptor.
Value of flag (only the low-order bit is defined).
Value other than -1.
Value of file flags.
Value other than -l.
Value other that -1.
Value other than -l.
Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

close(2), exec(2), open(2), fcntl(5).

Icon International, Inc. 3

(

FORK(2) SYSTEM CALLS FORK(2)

NAME

fork - create a new process

SYNOPSIS

int fork 0

DESCRIPTION

Fork causes creation of a new process. The nt'w process (child process) is an exact
copy of the calling process (parent process). This means the child process inherits
the following attributes from the parent process:

environment

close-on-exec 8ag (see exec(2)}

signal handling settings (Le., SIGJ>FL. SIGJNG, function address)

set-user-ID mode bit

set-group-ID mode bit

profiling on/off status

nice value (see nice(2))

all attached shared memory segments (see shmop(2)}

process group ID

tty group ID (see exit(2) and signal(2»

trace 8ag (see ptrace(2) request O}

time left until an alarm clock signal (see alarm(2»

current working directory

root directory

tile mode creation mask (see um4sk(2»

tile size limit (see ulimit(2»

Icon International, Inc. 1

. t

FORK(2) SYSTEM CALLS . FORK(2)

2

The child process dift'ers from the parent process in the following ways:
The child process has a unique process ID.

The child process has a dift'erent parent process ID (i.e., the process ID of the
parent process).

The child process has its own copy of the parent's file descriptors. Each of
the child's file descriptors shares a common file pointer with the correspond
ing file descriptor of the parent.

All semadj values are cleared (see semop(2)).
Process locks, text locks and data locks are not inherited by the child (see
plock(2)).
The child process's utime, stime, cutime, and cstime are set to O. The time
left until an alarm clock signal is reset to O .

Fork will fail and no child process will be created if one or more of the following are
true:

[EAGAlN]

[EAGAL1\J]

The system-imposed limit on the total number of processes under
execution would be exceeded.

The system-imposed limit on the total number of processes under
execution by a single user would be exceeded.

Icon International, Inc.

(

(

FORK(2) SYSTEM CALLS FORK(2)

RETURN VALUE

Upon successful completion, fork returns a value of 0 to the child process and returns
the process ID of the child process to the parent process. Otherwise, a value of -1 is
returned to the parent process, no child process is created, and errno is set to indi
cate t·he error.

SEE ALSO

exec(2), nice(2}, plock(2), ptrace(2), semop(2), shmop(2), signal(2), times(2), ulimit(2),
umask(2), wait(2).

Icon International, Inc. 3

GETPID(2) SYSTEM CALLS GETPID(2)

NAME

getpid, getpgrp, getppid - get process, process group, a.nd parent process IDs

SYNOPSIS

int getpid ()

int getpgrp 0

int getppid ()

DESCRIPTION

Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

SEE ALSO

exe('{2), fork(2), intro(2), setpgrp(2), signal(2).

Icon International, Inc. 1

(

(

GETUID(2) SYSTEM CALLS GETUID(2)

NAME

getuid, geteuid, getgid, getegid - get real user, effective user, real group, and
effective group IDs

SYNOPSIS

unsigned short getuid ()

unsigned short geteuid ()

unsigned short getgid ()

unsigned short getegid ()

DESCRIPTION

Getuid ret urns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

SEE ALSO

in tro(2), setuid{2}.

Icon Interna:tional, Inc. 1

IOCTL(2)

NAME

ioctl - control device

SYNOPSIS

ioetl(Sldes,request,arg)
int SIdes, request;

DESCRIPTION

SYSTEM CALLS IOCTL(2)

Ioctl performs a variety of functions on character special files (devices). The write
ups of various devices in Section 7 of the ICON/UXV Administrator Reference Manual
discuss how ioctl applies to them.

Ioctl will fail if one or more of the following are true:

[EBADFJ Fildes is not a valid open file descriptor.

[ENOTTYJ Fildes is not associated with a cha.ra.cter special device.

[EINV • .<\.L] Request or arg is not valid. See Section 7 of the ICON/U>..'V
Administrator Reference Manual.

[EINTR] A signa.l was caught during the ioctl system call.

RETURN VALUE

If an error ha.s occurred, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO

termio(7) in the ICON/UX Administrator Reference Manual.

Icon InternationaJ, Inc. 1

(

..

f

KILL(2) SYSTEM CALLS KILL(2)

NAME

kill - send a signal to a process or a group of processes

SYNOPSIS

int kill (pid, aig)
int pid, aig;

DESCRIPTION

Kill sends a signal to a process or a group of processes. The process or group of
processes to which the signal is to be sent is specified by pjd. The signal that is to be
sent is specified by 8ig and is either one from the list given in 8ignal(2), or O. If sig is
o (the null signal), error checking is performed but no signal is actually sent. This
can be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or effective
user ID of the receiving process, unless the effective user ID of the sending process is
super-user.

The processes with a process ID of 0 and a process ID of 1 are special processes (see
intro(2)) and will be. referred to below as procO and proc1, respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is equal to
pid. Pid may equal 1.

If pid is 0, 8ig will be sent to all processes excluding procO and proc1 whose process
group ID is equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig will be sent to
all processes excluding procO and procl whose real user ID is equal to the effective
user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, 8ig will be sent to all
processes excluding procO and proc1.

If pid is negative but not -1, 8ig will be sent to all processes whose process group ID
is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the following are true:

IEINVAL] Sig is not a valid signal number.

[EIl'\VAL] Sig is SIGKn..L and pid is 1 (proc1).

[ESRCH] No process can be found corresponding to that specified by pid.

Icon International, Inc. 1

KILL (2) SYSTEM CALLS KILL(2)

IEPERM] The user JD of the sending process is not super-user, and its real or
eft'ective user JD does not match the real or effective user ID of the
receiving process.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO

getpid(2), setpgrp(2), signa.I(2).
kill(l) in the ICON/UX User Reference Manual.

2 .Jcon International, Inc.

(

c

LIl\TJ((2) SYSTEM CALLS LINK (2)

NAME

link - link to a file

SYNOPSIS"

int link (pathl, path2)
char *pathl, *path2;

DESCRIPTION

Path1 points to a path name naming an existing file. Pathf points to a path name
naming the new directory entry to be created. Link crf'ates a new link (directory
entry) for the existing file.

Link will fail and no link will be created if one or more of the following are true:

IENOTDIRj A component of either path prefix is not a directory.

IENOENTj A component of either path prefix does not exist.

IEACCESj A component of either path prefix denies sf'arch permission.

IENOENT] The file named by path1 does not exist.

IEE.XlSTj The link named by pathe exists.

IEPERM] The file named by path1 is a directory and the effective user ID is
not super-user.

1E."XDEVj The link named by pathf and the file named by path1 are on
different logical de,·ices (file systems).

/ENOENTj

IEACCESj

[EROFS]

/EFAULT]

[EMLINKj

RETURN VALUE

Pathf points to a null path name.

The requested link requires writing in a directory with a mode that
denies write permission.

The requested link requires writing in a directory on a read-only file
system.

Path points outside the allocated address space of the process.

The maximum number of links to a file would be exceeded.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 IS

returned and errno is set to indicate the error.

SEE ALSO

unlink(2).

Icon International, Inc. 1

LSEEK(2) SYSTEM CALLS

NAME

lseek - move read/write file pointer

SYNOPSIS

long meek (BIdes, oti'set, whence)
int BIdes;
long oti'set;
int whence;

DESCRIPTION

LSEEK(2)

Fildes is a file descriptor returned from a ereat, open, dup, or lentl system call.
Lseek sets the file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location, as measured in bytes from
the beginning .of the file, is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of the fol
lowing are true:

[EBADF] Fildes is not an open file descriptor.

[ESPIPE] Fildes is associated with a pipe or fifo.

[EINVAL and SIGSYS signal]
Whence is not 0, 1, or 2.

IEINV AL] The resulting file pointer would be negati"e.

Some devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

RETURN VALUE

Upon successful completion, a non-negative integer indicating the file pointer value is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

creat(2), dup(2), fcntl(2), open(2).

Icon International, Inc. 1

/

;(-,
I "-j

MKNOD(2) SYSTEM CALLS

NAME

mknod - make a directory, or a special or ordinary file

SYNOPSIS

int mknod (path, mode, dey)
char *path;
int mode, dey;

DESCRIPTION

MKNOD(2)

Mknod creates a new file named by the path name pointed to by path. The mode of
the new file is initialized from mode. Where the value of mode is interpreted as fol
lows:

0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 00000oo ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
OOOOi77 access permissions; constructed from the following

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the process. The group ID of
the file is set to the effective group ID of the process.

Values of mode other than those above are undefined and should not be used. The
low-order 9 bits of mode are modified by the process's file mode creation mask: all
bits set in the process's file mode creation mask are cleared. See umask(2). If mode
indicates a block or character special file, dev is a configuration-dependent
specification of a character or block I/O device. If mode does not indicate a block
special or character special device, dev is ignored.

Mknod may be invoked only by the super-user for file types other than FIFO specia1.

Mknod will fail and the new file will not be created if one or more of the following'
are true:

/EPERM] . The effective user ID of the process is not super-user.

Icon International, Inc. 1

MKNOD(2) SYSTEM CALLS MKNOD(2)

(ENOTDm]

(ENOENT)

(EROFS)

(EEXlST]

(EFAULT]

A component of the path prefix is not a. directory.

A component of the path prefix does not exist.

The directory in which the file is to be crea.ted is located on a. read
only file system.

The named file exists.

Path points outside the a.lIocated a.ddress spa.ce of the process.

·RETURN VALUE

Upon successful completion a. va.lue of 0 is returned. Otherwise, a. va.lue of -1 is
returned a.nd errno is set to indica.te the error.

SEE ALSO

chmod(2), exec(2), umask(2}, fS(4}.
mkdir(l} in the ICON/UX User Reference Manual.

2 Icon International, Inc.

/

(

(

c

MOUNT(2) SYSTEM CALLS

NAME

mount - mount a file system

SYNOPSIS

iDt mount (spec, dir, rwflag)
char *spec, *dirj
iDt rwflagj

.DESCRIPTION

MOUNT(2)

A10unt requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. Spec and dir are
pointers to path names.

Upon successful completion, references to the file dir will refer to the root directory
on the mounted file system.

The low-order bit of rwftag is used to control write permission on the mounted file
system; if 1, writing is forbidden, otherwise writing is permitted according to indivi
dual file accessibility.

Afount may be invoked only by the super-user.

A10unt will fail if one or more of the following are true:

[EPERM] The effective user ID is not super-user.

[ENOENTj Any of the named files does not exist.

A component of a path prefix is not a directory.

Spec is not a block special device.

The device associated with spec does not exist.

Dir is not a directory.

[EN 0 TDIRj

[ENOTBLKj

IENXIOj

IENOTDIRj

/EFAULTj Spec or dir points outside the allocated a.ddress space of the pro
cess.

[EBUSY]

[EBUSY]

[EBUSY)

RETURN VALUE

Dir is currently mounted on, is someone's current working directory,
or is otherwise busy. .

The device associated with spec is currently mounted.

There are no more mount table entries.

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 IS

returned and ermo is set to indicate the error.

Icon International, Inc. 1

MOUNT(2) SYSTEM CALLS MOUNT(2)

SEE ALSO

umount(2) .

. 0

2 Icon International, Inc.

(

(

C'
~ "

MSGCTL(2) SYSTEM CALLS MSGCTL(2)

NAME

msgctl - message control operations

SYNOPSIS'

#include <"ys/typea.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, but)
int msqid, cmd;
struct msqid_ds *buf;

DESCRIPTION

Msgcti provides a variety of message control operations as specified by cmd. The fo)
lowing cmds are available:

IPC~TAT Place the current value of each member of the data structure aSS<?
cia ted with msqid into the structure pointed to by buf. The con
tents of this structure are defined in intro(2). {READ}

IPC~ET

IPC-RMID

Set the value of the following members of the data structure associ
ated with msqid to the corresponding value found in the structure
poin ted to by buf:

ms~perm.uid
ms~perm.gid
ms~perm.mode 1* only low 9 bits */
ms~qbytes

This cmd can only be executed by a process that has an effective
user ID equal to either that of super user or to the value of
ms&-perm.uid in the data structure associated with msqid. Only
super user can raise the va.lue of ms&-qbytea.

Remove the messa.ge queue' identifier specified by msqid from the
system and destroy the message queue and data structure associ
ated with it. This cmd can only be executed by a process that has
an effective user ID equal to either that of super user or to the value
of ms&-perm.uid in the data structure associated with msqid.

Msgetl will fail if one or more of the following are true:

[EII\TVAL] Msqid is not a valid message queue identifier.

[EII\TVAL] Cmd is not a valid command.

[EACCES] Cmd is equal to IPC~TAT and {READ} operation permission is

Icon International, Inc. 1

MSGCTL(2)

/EPERMJ

(EPERM]

(EFAULT]

RETURN VALUE

SYSTEM CALLS MSGCTL(2)

denied to the calling process (see intro(2».

Cmd is equal to O:»C..JtMID or IPC..8ET. The effective user ID of the
calling process is not· equal to that of super user and it is not equal
to the value of mag..perm.uid in the data structure associated
with msqid.

Cmd is equal to O:»C..sET, an attempt is being made to increase to
the value of ma&-qbytea, and the effective user ID of the calling
process is not equal to that of super user.

Buf points to an illepl..a.ddress.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO

intro(2), msgget(2), msgop(2).

2 Icon International, Inc.

/
\")

(

(

MSGGET(2)

NAME

msgget - get message queue

SYNOPSIS

#include <sys/typea.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int magget (key, msgflg)
key_t key;
int msgflg;

DESCRWTION

SYSTEM CALLS

Msgget returns the message queue identifier associated with key.

MSGGET(2)

A message queue identifier and associated message queue and data structure (see
intro(2)) are created for key if one of the following are true:

10 Key is equal to IPC..PRIVATE_

Key does not already have a message queue identifier associated with it, and
(msgflg 8; IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message queue identifier
is init.ialized as follows:

Mss-perm.cuid, mss-perm.uid, mss-perm.cgid, and mss-perm.gid are
set equal to the effective user ID an-d effective group ID, respectively, of t.he
calling process.

The low-order 9 bits of mss-perm.mode are set equal to the low-order 9
bits of msgftg.

Mss-qnum, msg.jspid, msgJrpid, mSgJtime, and mSl-l'time are set
equal to O.

Mss-ctime is set equal to the current time.

MsS-qbytea is set equal to the system limit.

Msgget will fail if one or more of the following are true:

IEACCES] A message queue identifier exists for key, but operation permission
(see intro(2)) as specified by the low-order 9 bits of msgftg would not
be granted.

[ENOENT]

[E~OSPC]

A message queue identifier does not exist for key and (msgflg &
IPC_CREAT) is "false".

-A message queue identifier is to be created but the system-imposed
limit on the maximum number of allowed message queue identifiers

Icon International, Inc. 1

MSGGET(2) SYSTEM CALLS MSGGET(2)

[EEXIST]
system wide would be l!xceeded.

A message queue identifier exists for ftr but ((msgftg & IPC_CREAT)
It. (msgftg &lPQ EXOJ.)) is "truett•

RETURN VALUE

Upon successrul completion, a non-negative integer, namely a message queue
identifier, is returned. Otherwise, a value or -1 is returned and errno is SE't to indi
cate the error.

SEE ALSO

intro(2), msgctl(2), msgop(2).

2 Icon International, Inc.

I

"-

(/

(

C:

MSGOP(2)

NAME

msgop - message operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

SYSTEM CALLS

int msgsnd (msqid, msgp, mspl, msgflg)
int msqid;
struet msgbu! *msgp;
int msgsl, msgHg;

int msgrev (msqid, msgp, magal, msgtyp, magftg)
int msqid;
atruct msgbuf *magp;
int msgsl;
long msgtyp;
int msgftg;

DESCRIPTION

MSGOP(2)

Msgsnd is used to send a message to the queue associated with the message queue
identifier specified by msqid. {WRITE} Msgp points to a structure containing the mes
sage. This struct.ure is composed of the following members:

long
char

mtype;
mtext[];

/* message type */
/* message text */

Mtype is a positive integer that can be used by the receiving process for message
selection (see msgrcv below). Mtnt is any text of length msgsz bytes. Msgsz can
range from 0 to a system-imposed maximum.

Msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to ms&-qbytes (see
intro(2)).

The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:
If (msgftg & IPC~OWAJT) is "true", the messagt' will not be sent and the
calling process will return immediately.

If (msgftg & IPC~OWAJT) is "false", the calling process will suspend

Icon International, Inc. 1

MSGOP(2) SYSTEM CALLS MSGOP(2)

execution until one of the following occurs:

The condition responsible for the suspension no longer exists, in
which ease the message is sent.

M8qid is removed from the system (see m8gctl(2)). When this occurs,
errno is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this
case the message is not sent and the calling process resumes execu
tion in ~he manner prescribed in signal(2».

Msgsnd will fail and no message will be sent if one or more of t~e following are true:
[EINVAL] M8qid is not a valid message queue id~ntifier.
[EACCES] Operation permission is denied to the calling process (see intro(2)).

[EINVAL] Mtllpe is less than 1.

[EAGAlN]

[EINVAL]

[EFAULT]

The message cannot be sent for one of the reasons cited above and
(msgftg & IPC.-NOWAlT) is "true".
Msgsz is less than zero or greater than the system-imposed limit.

Msgp points to an illegal address.
/

Upon successful completion, the following actions are taken with respect to the data \, >

2

structure associated with msqid (see intro (2)).

MSI-qnum is incremented by 1.

MsgJspid is set equal to the process ID of the calling process.
MsgJtime is set equal to the current time.

Alsgrcv reads a message from the queue associated with the message queue identifier
specified by msqid and places it in the structure pointed to by msgp. {READ} This
structure is composed of the following members:

long
char

mtype;
mtextD;

/* message type * /
/* message text */

Mtllpe is the received message's type as specified by the sending process. Mtext is the
text of the message. Msgsz specifies the size in bytes of mtext. The received message
is truncated to msgsz bytes if it is larger than msgsz and (msgftg & MSG.-NOERROR)
is "true". The truncated part of the message is lost and no indication of the trunca
tion is given to the calling process.

AlsgtllP specifies the type of message requested as follows:
If msgtllp is equal to 0, the first message on the queue is received.

If msgtllP is greater than 0, the first message of type msgfllP is received.

If msgtllp is less than 0, the first message of the low~st type that is less than

Icon International, Inc.

(

(

(:0:

MSGOP(2) SYSTEM CALLS MSGOP(2)

or equal to the absolute value of msgtllP is received.

Msgftg specifies the action to be taken if a message of the desired type is not on the
queue. These are as follows: .

. If (msgftg &, lPC..NOWAIT) is "true", the calling process will return immedi
ately with a. return value of -1 and errno set to ENOMSG.

If (msgftg &, lPC..NOWAIT) is "false", the calling process will suspend execu
tion until one of the following occurs:

A message of the desired type is placed on the queue.

Msqid is removed from the system. When this occurs, errno is set
equal to ElDRM, and a value of -1 is returned.
The calling process receives a signal that is to be caught. In this
case a message is not received and the calling process resumes execu
tion in the manner prescribed in signal(2)).

Msgrcv will fail and no message will be received if one or more of the following are
true:

[EI!\'VAL]

[EACCES]

IEI!\'VAL]

Msqid is not a valid message queue identifier.
Operation permission is denied to the calling process.

Msgsz is less than O.

\E2BIG] Mtext is greater than msgsz and (msgftg &, MSG..NOERROR) is
"false".

IENOMSG] The queue does not contain a message of the desired type and
(msgtllP &, IPC..NOWAIT) is "true".

IEFAULT] Msgp points to an illegal address.

Upon succe~ful completion, the following actions are taken with respect to the data
structure associat.ed with msqid (see intro (2)).

Msl-qnum is decremented by 1.

MsgJrpid is set equal to the process ID of the calling process.

Ms&-rtime is set equal to the current time.

RETURN VALUES

If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is returned to
the calling process and errno is set to EINTR. If they return due to removal of msqid
from the system, a value of -1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:

Msgsnd returns a value of O.

Msgrcv returns a value equal to the number of bytes actually placed into

Icon International, Inc. 3

MSGOP(2) SYSTEM CALLS MSGOP(2)

mtezt.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE .ALSO

intro(2), msgctl(2), msgget(2), signal(2).

4 Icon International, Inc.

(

(

c

NICE(2) SYSTEM CALLS NICE(2)

NAME

nice - change priority of a process

SYNOPSIS

iDt nice (iDer)
mt mer;

DESCRIPTION

Nice adds the value of incr to the nice value of the calling process. A process's nt"ce
value is a positive number for which a more positive value results in lower CPU prior
ity.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the sys
tem. Requests for values above or below these limits result in the nice value being
set to the corresponding limit.

IEPERMj

RETURN VALUE

Nice will fail and not change the nice value if "ncr is negative or
greater than 40 and the effective user ID of the calling process is not
super-user.

Upon successful completion, nice returns the new nice value minus 20. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO

exec(2}.
nice(l) in the ICON/UX User Reference Manual.

Icon International, Inc. 1

OPEN(2) SYSTEM CALLS

NAME

open - open for reading or writing

SYNOPSIS

#include <rcntl.h>
int open (path, oflaC ! , mode])
char *path;
iDt ofla&, mode;

DESCRIPTION

.
OPEN(2)

Path points to a path name naming a file. Open opens a file descriptor for the
named file and sets the file status flags according to the value of oftag. Oftag values
are constructed by or-ing flags from the following list (only one of the first three flags
below may be used):

OJU)ONL Y Open for reading only.

O_WRONLY Open for writing only.

OJU)WR Open for reading and writing.

O-NDELAY This flag may affect subsequent reads and writes. See read(2) and
write(2).

When opening a FIFO with O..RDONLY or O_WRONLY set:

If O-.NDELAY is set:

An open for reading-only will return without delay. An open for
writing-only will return an error if no process currently has the
file open for reading.

If O-.NDELAY is clear:

An open for reading-only will block until a process opens the file
for writing. An open for writing-only will block until a process
opens the file for reading.

When opening a file associated with a communication line:

If O,..NDELAY is set:

The open will return without waiting for carrier.

If O-.NDELAY is clear:

The open will block until carrier is present.

Icon International, Inc. 1

(~

(

c

OPEN(2) SYSTEM CALLS OPEN(2)

2

O-APPEND If set, the fie pointer will be set to the end of the file prior to each
write.

O_CREAT If the file exists, this hi .has no efFect. Otherwise, the owner ID of the
file is set to the effective user ID of the process, the group ID of the file is
set to the eJi'ective group JD of the process, &l1d the low-order 12 bits of
the fie lDIIKIe are .set to the val~ of mode modified as follows (see
creat(2)):

All bits set in If.he file DDde creatium mask of the process are
cleareall. See um_(.2).

Thi! Il<Isaflmt .. image after exeCD'.tian bit" of the mode is
cleared. See chmod(2}).

O_TRUNC If the file exists, its length is \tnlncated w (j!) and the mode and owner
are unchanged.

O..EXCL H O-E)CCL and O..:.CREAT~ set, open will failiif the file exists.

The file pointer used to mark tM. .eurrent position withm the file is set to the begin
ning of the file.

The new file dilSCriptor is set to remain open across exec system calls. See fcntl(2).

The named file is opened unless Oll!! liln' lUlore of the folliIDwingare true:

[ENOTDIRj A component of t'be path 'Felix is not 'a directory.

[ENOENTj O_CREAT is not set and the named file _5 not exist.

[EACCESj

[EACCESj

IEISDIRj

[EROFSJ

[EMFlLEJ

IENXlOj

\ETXTBSY]

\EFAULTj

[EEXISTJ

(ENXIOj

[EINTRJ

[ENFILE]

A component of the path prefix I.CIlenies search permission.

Oftag permission is bied for the named !file.

The named fHe is a directory and .ofla,g.is aTite or read/write.

The named file resides on a read-onlyfiJe system and oflag is writ.e
or read/write.

Twenty (20) file descriptors aretmrrent%· .open.

The named file is a ..mmracter special or ihlock special file, and t.he
ckvice associated with t.his special file does'1lot exist.

The file is a pure procedure (shared text.) file that is being executed
and o./lag is write or read/write.

Path points outside the. allocated .address"Space of the process.

O_CREAT and O..EXCL are set, and the named file exists.

O..NnELAY is set, the named file is a. FIFO, O_WRONLY is set, and no
process has the file open for reading.

A signal was caught during the open systlfrm call.

The system file table is full.

Icon International, Inc.

OPEN(2) SYSTEM CALLS . OPEN(2)

RETURN VALUE

Upon successful completion, the file descriptor is returned. Otherwise, a value of -1
is returned and ermo is set to indicate the error.

SEE ALSO

chmod(2), close(2), creat(2), dup(2), fcntl(2), lseek(2), read(2), umask(2), write(2).

Icon International, Inc. 3

OVRIDE(2) SYSTEM CALLS OVRIDE(2)

(NAME

(

ovride - set/clear hardware OVRIDE bit

SYNOPSIS

ovride(flag)
int flag;

DESCRIPTION

The OVRIDE signal on the CPU3 board allows user processes to access address
ranges outside of normal user space (OxO - Ox40000(00) without getting a bus error.
The ovrideO system call allows a user process to request OVRIDE privilege. The
result is to allow a user mode process to access any memory or I/O device that is
available in supervisor mode. This capability is potentially very dangerous if given a
hostile or ill-behaved process. The caller of ovrideO must therefore have super-user
priviledges. Other bus errors, such as those for page faults or write violations, are
not affected by OVRIDE. The OVRIDE bit is turned on when flag is non-zero, other
wise it is turned off.

RETURN VALUE

Zero is returned if the operation was successful; -1 is returned if an error occurs,
with a more specific error code being placed in the global variable errno.

ERRORS

Ovride will fail if:

[EPERM] The effective user ID is not the super-user.

Icon International, Inc. 1

PAUSE(2) SYSTEM CALLS PAUSE (2)

NAME

pause - suspend process until signal

SYNOPSIS

pause 0

DESCRIPTION

Pause suspends the calling process until it receives a signal. The signal must be one
that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the signal
catching function (see signal(2)), the calling process resumes execution from the point
of suspension; with a return value of -1 from pause and errno set to EINTR.

SEE ALSO

alarm(2), kill(2), signal(2), wait(2).

Icon International, Inc. 1

PIPE(2) SYSTEM CALLS PIPE(2)

("" NAME

(\

pipe - create an interprocess channel

SYNOPSIS

int pipe (fildes)
int fildes[2J;

DESCRIPTION

Pipe creates an I/O mechanism called a pipe and returns two file descriptors,
fildes[O] and fildes[I]. Fildes[O] is opened for reading and fildes[l] is opened for writ
ing.

Up to 5120 bytes of data are buffered by the pipe before the writing process is
blocked. A read only file descriptor fildes[O] accesses the data written to fildes[l] on
a first-in-first-out (FIFO) basis.

[EMFILE]

[ENFILE]

RETURN VALUE

Pipe will fail if 19 or more file descriptors are currently open.

The system file table is full.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 IS

returned and errno is set to indicate the error.

SEE ALSO

read(2), write(2).
sh{l) in the ICON/UX User Reference Manual.

Icon International, Inc. 1

PLOCK(2) SYSTEM CALLS PLOCK(2)

NAME

plock - lock process, text, or data in memory

SYNOPSIS

#inelude <sys/lock.h>

int plock (op)
int Opj

DESCRIPTION

Plock allows the calling process to lock its text segment (text lock), its data segment
(data lock), or both its text and data segments (process lock) into memory. Locked
segments are immune to all routine swapping. Plock also allows these segments to
be unlocked. The effective user ID of the calling process must be super-user to use
this call. Op specifies the following:

PROCLOCK - lock text and data segments into memory (process lock)

TXTLOCK - lock text segment into memory (text lock)

DATLOCK - lock data segment into memory (data lock)

UNLOCK- remove locks

Plock will fail and not perform the requested operation if one or more of the follow
ing are true:

[EPERM]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

RETURN VALUE

The effective user ID of the calling process is not super-user.

Op is equal to PRO CLOCK and a process lock, a text lock, or a data
lock already exists on the calling process.

Op is equal to TXTLOCK and a text lock, or a process lock already
exists on the calling process.

Op is equal to DATLOCK and a data lock, or a process lock already
exists on the calling process.

Op is equal to UNLOCK and no type of lock exists on the calling
process.

Upon successful completion, a value of 0 is returned to the calling process. Other
wise, a value of -1 is returned and errno is set to indicate the error.

Icon International, Inc. 1

,/

PLOCK(2) SYSTEM CALLS PLOCK(2)

SEE ALSO

exec(2), exit(2), fork(2).

2 Icon International, Inc.

PROFIL(2) SYSTEM CALLS

NAME

profil· - execution time profile

SYNOPSIS

void profil (buff, bufsiz, offset, scale)
char *buff;
int bursiz, offset, scale;

DESCRIPTION

PROFIL(2)

Buff points to an area of core whose length (in bytes) is given by bufsiz. After this
call, the user's program counter (pc) is examined each clock tick (60th second); offset
is subtracted from it, and the result multiplied by scale. If the resulting number
corresponds to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the
left: 0177777 (octal) gives a 1-1 mapping of pc's to words in buff; 077777 (octal) maps
each pair of instruction words together. 02(octal) maps all instructions onto the
beginning of buff (producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving
a bufsiz of O. Profiling is turned off when an exec is executed, but remains on in child
and parent both after a fork. Profiling will be turned off if an update in buff would
cause a memory fault.

RETURN VALUE

Not defined.

SEE ALSO

monitor(3C).
prof(l) in the lCON/UX User Reference Manual.

Icon International, Inc. 1

PTRACE(2) SYSTEM CALLS PTRACE(2)

(" NAME

(

('

ptrace - process trace

SYNOPSIS

#include <signal.h>

ptrace(request, pid, addr, data)
int request, pid, *addr, data;

DESCRIPTION

Ptrace provides a means by which a parent process may control the execution of a
child process, and examine and change its core image. Its primary use is for the
implementation of breakpoint debugging. There are four arguments whose interpre
tation depends on a request argument. Generally, pid is the process 10 of the traced
process, which must be a child (no more distant descendant) of the tracing process.
A process being traced behaves normally until it encounters some signal whether
internally generated like "illegal instruction" or externally generated like "inter
rupt". See sigvec(2) for the list. Then the traced process enters a stopped state and
its parent is notified via wait(2}. When the child is in the stopped state, its core
image can be examined and modified using ptrace. If desired, another ptrace request
can then cause the child either to terminate or to continue, possibly ignoring the sig
nal.

The value of the request argument determines the precise action of the call:

o This request is the only one used by the child process; it declares that the pro
cess is to be traced by its parent. All the other arguments are ignored. Pecu
liar results will ensue if the parent does not expect to trace the child.

1,2 The word in the child process's address space at addr is returned. If I and D
space are separated (e.g. historically on a pdp-ll), request 1 indicates I space, 2
D space. Addr must be even. The child must be stopped. The input data is
ignored.

3 The word of the system's per-process data area corresponding to addr is
returned. Addr must be even and less than 512. This space contains the regis
ters and other information about the process; its layout corresponds to the user
structure in the system.

4,5 The given data is written at the word in the process's address space correspond
ing to addr, which must be even. No useful value is returned. If I and D space
are separated, request 4 indicates I space, 5 D space. Attempts to write in pure
procedure fail if another process is executing the same file.

6 The process's system data is written, as it is read with request 3. Only a few
locations can be written in this way: the general registers, the floating point
status and registers, and certain bits of the processor status word.

7 The data argument is taken as a signal number and the child's execution contin
ues at location addr as if it had incurred that signal. Normally the signal

Icon International, Inc. 1

PTRACE(2) SYSTEM CALLS PTRACE(2)

(-~

number will be either 0 to indicate that the signal that caused the stop should ~/
be ignored, or that value fetched out of the process's image indicating which sig-
nal caused the stop. If addr is (int *)1 then execution continues from where it
stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however, as soon as possible after execution
of at least one instruction, execution stops again. The signal number from the
stop is SIGTRAP. (On ICON systems the trace-bit is set and just one instruc
tion is executed.) This is part of the mechanism for implementing breakpoints.

AB indicated, these calls (except for request 0) can be used only when the subject
process has stopped. The wait call is used to determine when a process stops; in such
a case the "termination" status returned by wait has the value 0177 to indicate stop
page rather than genuine termination.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities
on subsequent execve(2) calls. If a traced process calls execve, it will stop before exe
cuting the first instruction of the new image showing signal SIGTRAP.

On an ICON system, "word" also means a 32-bit integer, but the "even" restriction
does not apply.

RETURN VALUE

A 0 value is returned if the call succeeds. If the call fails then a -1 is returned and
the global variable errno is set to indicate the error.

ERRORS

[EIl\vrAL]
!EINVAL]
[EINVAL]
[EFAULT]

[EPERM1

The request code is invalid.

The specified process does not exist.

The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

SEE ALSO

BUGS

2

wait(2), sigvec(2), adb(l)

Ptrace is unique and arcane; it should be replaced with a special file which can be
opened and read and written. The control functions could then be implemented with
io.ctl(2) calls on this file. This would be simpler to understand and have much higher

Icon International, Inc.

f·

PTRACE(2) SYSTEM CALLS PTRACE(2)

performance.

The request 0 call should be able to specify signals which are to be treated normally
and not cause a stop. In this way, for example, programs with simulated floating
point (which use "illegal instruction" signals at a very high rate) could be efficiently
debugged.

The error indication, -1, is a legitimate function value; errno, see intro(2), can be
used to disambiguate.

It should be possible to stop a process on occurrence of a system call; in this way a
completely controlled environment could be provided.

Icon International, Inc. 3

READ (2) SYSTEM CALLS READ (2)

NAME

read - read from file

SYNOPSIS

int read (fildes, bur, nbyte)
int fildes;
char .bur;
unsigned nbyte;

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dup, Icntl, or pipe system call.

Read attempts to read nbyte bytes from the file associated with fildes into the buffer
poin ted to by buf.

On devices capable of seeking, the read starts at a position in the file given by the
file pointer associated with fildes. Upon return from read, the file pointer is incre
mented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The
value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read and
placed in the buffer; this number may be less than nbyte if the file is associated with
a communication line (see ioctl(2) and termio(7)), or if the number of bytes left in t.he
file is less than nbyte bytes. A value of 0 is returned when an end-of-file has been
reached.

\\Then attempting to read from an empty pipe (or FIFO):

If O...NDELAY is set, the read will return a O.

If O...NDELAY is clear, the read will block until data is written to the file or
the file is no longer open for writing.

When attempting to read a file associated with a tty tha t has no data currently
available:

If O...NDELAY is set, the read will return a O.

If O...NDELAY is clear, the read will block until data becomes available.

Read will fail if one or more of the following are true:

[EBADFJ

IEFAULTJ

Fildes is not a valid file descriptor open for reading.

Bul points outside the allocated address space.

Icon International, Inc. 1

(

f

c

READ(2) SYSTEM CALLS READ (2)

[EINTRJ A signal was caught during the read system call.

RETURN VALUE

Upon successful completion a non-negative integer is returned indicating the number
of bytes actually read. Otherwise, a -1 is returned and errno is set to indicate the
error.

SEE ALSO

creat(2), dup(2), fcntl(2), ioctl(2), open(2), pipe(2).
termio(7) in the IOONjUXV Administrator Reference Manual

2 Icon International, Inc.

SEMCTL(2) SYSTEM CALLS SEMCTL(2)

NAME

semctl - semaphore control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

int val;
struct semid_ds *buf;
ushort *array;

} arg;

DESCRIPTION

Semctl provides a variety of semaphore control operations as specified by cmd.

The following cmds are executed with respect to the semaphore specified by semid
and semnum:

GETVAL

SETVAL

GETPID

GETNCNT

GETZCNT

Return the value of semval (see intro(2». {READ}

Set the value of semval to arg.val. {ALTER} When this cmd is
successfully executed, the semadj value corresponding to the
specified semaphore in all processes is cleared.

Return the value of sempid. {READ}

Return the value of semncnt. {READ}

Return the value of semzcnt. {READ}

The following cmds return and set, respectively, every semval in the set of sema
phores.

GETALL

SETALL

Icon International, Inc.

Place semvals into array pointed to by arg.array. {READ}

Set semvals according to the array pointed to by arg.array.
{ALTER} When this cmd is successfully executed the semadj
values corresponding to each specified semaphore in all
processes are cleared.

1

SEMCTL(2) SYSTEM CALLS SEMCTL(2)

The following cmds are also available:

IP C..,S TAT

IPC..,SET

IPC-RMID

Place the current value of each member of the data structure
associated with semid into the structure pointed to by arg.buf.
The contents of this structure are defined in intro(2). {READ}

Set the value of the following members of the data structure
a.ssociated with 8emid to the corresponding value found in the
structure pointed to by arg.buf:

Bem_perm.uid
BeDLPerm.gid
Bem_perm.mode /* only low 9 bitB */

This cmd can only be executed by a process that has an
effective user ID equal to either that of super-user or to the
value of Bem_perm.uid in the data structure associated with
semid.

Remove the semaphore identifier specified by semid from the
system a.nd destroy the set of semaphores and data structure
associated with it. This cmd can only be executed by a pro
cess that has an effective user ID equal to either that of super
user or to the value of Bem_perm.uid in the data structure
associated with semid.

Bernet! will fail if one or more of the following are true:

[EINVAL]

[EINVAL]

[EI1\1"\T AL]

[EACCES]

[ERANGE]

[EPERM]

[EFAULT]

Bemid is not a valid semaphore identifier.

Semnum is less than zero or greater than sem-nsems.

Cmd is not a valid command.

Operation permission is denied to the calling process (see
intro(2)).
Cmd isSETVAL or SETALL and the value to which semval is
to be set is greater than the system imposed maximum.

Cmd is equal to IPC-RMID or IPC..,SET and the effective user
ID of the calling process is not equal to that of super-user
and it is not equal to the value of Bem_perm.uid in the
data structure associated with semid.

Arg.bufpoints to an illegal address.

RETURN VALUE

2

Upon successful completion, the value returned depends on rmd as follows:

GETVAL
GETPID

The value of semval.
The value of sempid.

Icon International, Inc.

SEMCTL(2)

GETNONT
GETZONT
All others

SYSTEM CALLS

The value of semncnt.
The value of semzcnt.
A value of o.

SEMCTL(2)

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

intro(2}, semget(2}, semop(2).

Icon International, Inc. 3

,
\", -r-

(

(

SEMGET(2) SYSTEM CALLS SEMGET(2)

NAME

semget - get set of semaphores

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION

Semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems sema
phores {see intro{2}} are created for key if one of the following are true:

Key is equal to IPCYRIVATE.

Key does not already have a semaphore identifier associated with it, a.nd
(semftg & lPC_CREAT) is "true".

Upon creation, the data structure associated with the new semaphore identifier is
initialized as follows:

Sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and sem_perm.gid are
set equal to the effective user ID and effective group ID, respectively, of the
calling process.

The low-order 9 bits of sem_perm.mode are set equal to the low-order 9
bits of semftg.

SemJlsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_dime is set equal to the current time.

Semget will fail if one or more of the following are true:

[EINVALj

[EACCESj

[EINVAL]

[ENOENTj

Nsems is either less than or equal to zero or greater than the
system-imposed limit.

A semaphore identifier exists for key, but operation permission (see
intro(2)} as specified by the low-order 9 bits of semftg would not be
granted.

A semaphore identifier exists for key, but the number of semaphores
in the set associated with it is less than nsems and nsems is not
equal to zero.

A semaphore identifier does not exist for key and (semftg &

Icon International, Inc. 1

SEMGET(2}

[ENOSPC]

[ENOSPC]

[EEXlST]

RETURN VALUE

SYSTEM CALLS SEMGET(2)

IPC_CREAT} is "false".

A semaphore identifier is to be created but the system-imposed limit
on the maximum number of allowed semaphore identifiers syst.em
wide would be exceeded.

A semaphore identifier is to be created but the system-imposed limit
on the maximum number of allowed semaphores system wide would
be exceeded. .

A semaphore identifier exists for key but { (semflg & IPC_CREAT)
and (semflg & IPC..EXCL)) is "true".

Upon successful completion, a non-negative integer, namely a semaphore identifier, is
returned. Otherwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO

intro(2), semctl(2), semop(2).

2 Icon International, Inc.

SEMOP(2) SYSTEM CALLS SEMOP(2)

(' NAME

(

semop - semaphore operations

SYNOPSIS

#include <sys/types.b>
#include <sys/ipc.b>
#include <sys/sem.b>

int semop (semid, sops, DSOpS)
int semid;
struct sembuf **soPSj
int DSOpS;

DESCRIPTION

Semop is used to automatically perform an array of semaphore operations on the set
of semaphores associated with the semaphore identifier specified by semid. Sops is a
pointer to the array of semaphore-operation structures. Nsops is the number of such
structures in the array. The contents of each structure includes the following
members:

short
short
short

semJlum;
sem_op;
sem.Jlg;

/* semaphore number */
/* semaphore operation */
/* operation flags */

Each semaphore operation specified by sem_op is performed on the corresponding
semaphore specified by semid and sem_num.

Sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following will occur: {ALTER}

If semval (see intro(2)) is greater than or equal to the absolute value
of sem_op, the absolute value of sem_op is subtracted from semval.
Also, if (sem-flg & SEM-UNDO) is "true", the absolute value of
sef1LOp is added to the calling process's semadj value (see exit(2)) for
the specified semaphore.

If semval is less than the absolute value of sem_op and (sem...jlg &
IPC-NOWAlT) is "true", semop will return immediately.

If semval is less than the absolute value of sem_op and (sem-flg &
IPC-NOWAlT) is "false", semop will increment the semncnt associ
ated with the specified semaphore and suspend execution of the cal
ling process until one of the following conditions occur.

Icon International, Inc. 1

SEMOP(2) SYSTEM CALLS SEMOP(2)

2

Semval becomes greater than or equal to the absolute value of
8em..op. When this occurs, the value of semncnt associated with
the specified semaphore is decremented, the absolute value of
8em..op is subtracted from semval and, if (8em-flg & SE~UNDO)
is "true", the absolute value of 8em..op is added to the calling
process's semadj value for the specified semaphore.

The semid for which the calling process is awaiting action is
removed from the system (see 8emctl(2)}. When this occurs, errno
is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. When
this occurs, the value of semncnt associated with the specified
semaphore is decremented, and the calling process resumes execu
tion in the manner prescribed in 8ignal(2).

If 8em..op is a positive integer, the value of 8em..op is added to semval and,
if (sem..ftg & SE~UNDO) is "true", the value of sem_op is subtracted from
the calling process's semadj value for the specified semaphore. {ALTER}

If sem_op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem-flg & IPC..NOW AIT) is
"true", semop will return immediately.

If semval is not equal to zero and (sem-flg & IPC..NOW AIT) is
"false", semop will increment the semzcnt associated with the
specified semaphore and suspend execution of the calling process
until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt associ
ated with the specified semaphore is decremented.

The semid for which the calling process is awaiting action is
removed from the system. When this occurs, errno is set equal to
EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. 'When
this occurs, the value of semzcnt associated with the specified
semaphore is decremented, and the calling process resumes execu
tion in the manner prescribed in signal(2).

Semop will fail if one or more of the following are true for any of the semaphore
operations specified by sops:

[EINVALJ Semid is not a valid semaphore identifier.

Icon International, Inc.

('

(

(":
"'

SEMOP(2)

[EFBIG]

[E2BIG]

[EACCES]

[EAGAIN]

[ENOSPC]

[EINVALJ

[ERANGE]

[ERANGE]

[EFAULT]

SYSTEM CALLS SEMOP(2)

Se11Lnum is less than zero or greater than or equal to the number
of semaphores in the set associated with semid.

Nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process (see intro(2)).

The operation would result in suspension of the calling process but
(sem-ftg & IPC-NOWAlT) is "true".

The limit on the number of individual processes requt>sting an
SEM-UNDO would be exceeded.

The number of individual semaphores for which the calling process
requests a SEM-UNDO would exceed the limit.

An operation would cause a semval to overflow the system-imposed
limit.

An operation would cause a semadj value to overflow the system
imposed limit.

Sops poin ts to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified in the
array pointed to by sops is set equal to the process ID of the calling process.

RETURN VALUE

If semop returns due to the receipt of a signal, a value of -1 is returned to the cal
ling process and ermo is set to EINTR. If it returns due to the removal of a semid
from the system, a value of -1 is returned and ermo is set to EIDRM.

Upon successful completion, the value of semval at the time of the call for the last
operation in the array pointed to by sops is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

SEE ALSO

exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

Icon International, Inc. 3

SETPGRP(2) SYSTEM CALLS SETPGRP(2)

NAME

setpgrp - set process group ID

SYNOPSIS

int setpgrp ()

DESCRIPTION

Setpgrp sets the process group ID of the calling process to the process ID of the calling
process and returns the new process group ID.

RETURN VALUE

Setpgrp returns the value of the new process group ID.

SEE ALSO

exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2).

Icon International, Inc. 1

---------- --------- -- ._-_._. --------------------

SETUID(2) SYSTEM CALLS

NAME

setuid, setgid - set user and group IDs

SYNOPSIS

int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION

SETUID(2)

Setuid (setgid) is used to set the real user (group) ID and effective user (group) ID of
the calling process.

If the effective user ID of the calling process is super-user, the real user (group) ID and
effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but its real user
(group) ID is equal to uid (gid), the effective user (group) ID is set to uid (gid).

If the effective user ID of the calling process is not super-user, but the saved set-user
(group) 10 from exec(2) is equal to uid (gicl), the effective user (group) ID is set to uid
(gid).

Setuid (setgid) will fail if the real user (group) ID of the calling process is not equal to
uid (gid) and its effective user ID is not super-user. [EPERMj

The uid is out of range. [EINVALj

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

SEE ALSO

getuid(2), intro(2).

Icon International, Inc. 1

SHMCTL(2) SYSTEM CALLS SHMCTL(2)

NAME

shmctl - shared memory control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, but)
int shmid, cmd;
struct shmid_ds *buf;

DESCRIPTION

Shmctl provides a variety of shared memory control operations as specified by cmd.
The following cmds are available:

IPC~TAT Place the current value of each member of the data structure
associated with shmid into the structure pointed to by buf. The
contents of this structure are defined in [EINVAL] intro{2}.
{READ}

IPC~ET Set the value of the following members of the data structure
associated with shmid to the corresponding value found in the
structure pointed to by bu1:

shm_perm.uid
shm_perm.gid
shm_perm.mode /* only low 9 bits */

This cmd can only be executed by a process that has an effective
user ID equal to either that of super-user or to the value of
shm_perm.uid in the data structure associated with shmid.

IPC..RMlD Remove the shared memory identifier specified by shmid from
the system and destroy the shared memory segment and data
structure associated with it. This cmd can only be executed by
a process that has an effective user ID equal to either that of
super-user or to the value of shM-perm.uid in the data struc
ture associated with shmid.

SHM..LOCK Lock the shared memory segment specified by shmid in memory.
This cmd can only be executed by a process that has an effective
usr ID equal to super-user.

SlIM-UNLOCK

Icon International, Inc.

Unlock the shared memory segment specified by shmid. This
cmd can only be executed by a process that has an effective usr
ID equal to super-user.

1

(

SHMCTL(2) SYSTEM CALLS SHMCTL(2)

Shmctl will fail if one or more of the following are true:

Shmid is not a valid shared memory identifier. [EINVAL]

Omd is not a valid command. [EINVAL]

Omd is equal to IPC..BTAT and {READ} operation permission is denied
to the calling process (see intro{2)]. [EACCES]

Omd is equal to IPCJtMII) or IPC..BET and the effective user ID of the
calling process is not equal to that of super-user and it is not equal to
the value of shm-perm.uid in the data structure associated with
shmid. [EPERMJ

Omd is equal to SHMJ.OCK or SInLUNLOCK and the effective user ID
of the calling process is not equal to that of super-user. [EPERMJ

Omd is equal to SInLUNLOCK and the shared-memory segment
specified by shmid is not locked in memory. [EINVALJ Bu/points to an
illegal address. [EFAULT]

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 IS

returned and errno is set to indicate the error.

SEE ALSO

shmget(2), shmop(2).

2 Icon International, Inc.

SHMGET(2) SYSTEM CALLS SHMGET(2)

NAME

shmget - get shared memory sqmeJlt

SYNOPSIS

#include <sys/types.J1>
#include <Sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmBg)
key_t key;
int size, shmflg;

DESCRIPTION

Shmget returns the shared memory identifier associated with key.

A shared memory identifieT and associated data structure and shared memory seg
ment of size size bytes (~ intTo(2)) are created for key if one of the following are
true:

Key is equal to IPC..PRIVATE.

Key does not already have a shared memory identifier associated with it, and
(shmflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared memory identifier
is initialized as follows:

ShID-perm.cuid, .hm..:perm.uid, shm_perm.cgid, and shm_perm.gid
are set equal to the eifective user ID and effective group ID, respectively, of the
calling process.

The low-order 9 bits of shJlLPeTlD.mode are set. equal to the low-order 9
bits of shmflg. ShDl..Jleg8z is set equal to the value of size.

ShmJpid, shmJ1attch, !lhm...atime, and shm_dtime are set equal to O.

Shm_ctime is set equal to the current time.

Shmget will fail if one or more of the following are true:

IEINVALJ Size is less than the system-imposed minimum or greater than the
system-imposed maximum.

IEACCESj A shared memory identifier exists for key but operation permission
(see intro(2)) as specified by the low-order 9 bits of shmflg would not
be granted.

[EINVALJ A shared memory identifier exists for key but the size of the seg
ment associated with it is less than size and size is not equal to
zero.

Icon International, Inc. 1

(

SHMGET(2) SYSTEM CALLS SHMGET(2)

[ENOENTj

[ENOSPCj

[ENOMEMj

(EEXISTj

A shared memory identifier does not exist for key and (shmflg &
IPC_CREAT) is "false".

A shared memory identifier is to be created but the system-imposed
limit on the maximum number of allowed shared memory identifiers
system wide would be exceeded.

A shared memory identifier and associated shared memory segment
are to be created but the amount of available physical memory is
not sufficient to fill the request.

A shared memory identifier exists for key but ((shmflg &
IPC_CREAT) and (shmftg & IPC,JXCL)) is "true".

RETURN VALUE

Upon successful completion, a non-negative integer, namely a shared memory
identifier is returned. Otherwise, a value of -1 is returned and errna is set to indi
cate the error.

SEE ALSO

intro(2), shmctl(2), shmop(2).

2 Icon International, Inc.

SHMOP(2) SYSTEM CALLS

NAME

shmop - shared memory operations

SYNOPSIS

#include <sys/typea.h>
#include <sys /ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr
int shmflg;

int shmdt (shmaddr)
char *shmaddr

DESCRIPTION

SHMOP(2)

Shmat attaches the shared memory segment associated with the shared memory
identifier specified by shmid to the data segment of the calling process. The segment
is attached at the address specified by one of the following criteria:

If shmaddr is equal to zero, the segment is attached at the first available
address as selected by the system.

If shmaddr is not equal to zero and (shmflg & SHM...RND) is "true", the seg
ment is attached at the address given by {shmaddr - (shmaddr modulus
SHMLBA)).

If shmaddr is not equal to zero and (shmflg & SHM...RND) is "false", the seg
ment is attached at the address given by shmaddr.

The segment is attached for reading if (shmflg & SHM...RDONL Y) is "true" {READ},
otherwise it is attached for reading and writing {READfWRITE}.

Shmat will fail and not attach the shared memory segment if one or more of the fol
lowing are true:

!EINVALJ

!EACCESJ

!ENOMEMJ

!EINVALJ

[EINVALJ

!EMFILEJ

Shmid is not a valid shared memory identifier.

Opera.tion permission is denied to the ca1ling process (see intro(2)).

The available data space is not large enough to accommodate the
shared memory segment.

Shmaddr is not equal to zero, and the value of {shmaddr - (shmaddr
modulus SHMLBA)) is a.n illegal address.

Shmaddr is not equal to zero, (shmflg & SHM...RND) is "false", a.nd
the value of shmaddr is an illegal address.

The number of shared memory segments atta.ched to t.he calling

Icon International, Inc. 1

SHMOP(2)

[EINVAL]

[EINVAL]

(

2

SYSTEM CALLS SHMOP(2)

process would exceed the system-imposed limit.

Shmdt detaches from the calling process's data segment the shared
memory segment located at the address specified by shmaddr.

Shmdt will fail and not detach the shared memory segment if
shmaddr is not the data segment start address of a shared memory
segment.

Icon International, Inc.

SHMOP(2) SYSTEM CALLS SHMOP(2)

RETURN VALUES

Upon successful completion, the return value is as follows:

Shmat returns the data segment start address of the attached shared memory
segment.

Shmdt returns a value of O.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

exec(2), exit(2), fork(2), intro(2}, shmctl(2), shmget(2).

Icon International, Inc. 3

SIGNAL(2) SYSTEM CALLS SIGNAL (2)

NAME

signal - specify what to do upon receipt of a signal

SYNOPSIS

#include <signal.h>

int (*signal (sig, func»O
int sig;
void (*func)();

DESCRIPTION

Signal allows the calling process to choose one of three ways in which it is possible to
handle the receipt of a specific signal. Sig specifies the signal and June specifies the
choice.

Sig can be assigned anyone of the following except SIGKILL:

SIGHUP 01
SIGINT 02
SIGQUIT 03*
SIGILL 04*
SIGTRAP 05*
SIGIOT 06*
SIGEMT 07*
SIGFPE 08*
SIGKILL 09
SIGBUS 10*
SIGSEGV Ih
SIGSYS 12*
SIGPIPE 13
SIGALRM 14
SIGTERM 15
SIGUSRI 16
SIGUSR2 17
SIGCLD 18

SIGPWR 19

hangup
interrupt
quit
illegal instruction (not reset when caught)
trace trap (not reset when caught)
lOT instruction
EMT instruction
floating point exception
kill (cannot be caught or ignored)
bus error
segmentation violation
bad argument to system call
write on a pipe with no ont' to read it
alarm clock
software termination signal
user-defined signal 1
user-defined signal 2
death of a child
(see WARNING below)
power fail
(see WARNING below)

See below for the significance of the asterisk (*) in the above list.

Fune is assigned one of three values: SIG.J>FL, SIGJGN, or a Junction address.
The actions prescribed by these values are as follows:

Icon International, Inc. 1

SIGNAL (2) SYSTEM CALLS SIGNAL (2)

2

SIG-DFL - terminate process upon receipt of a signal

Upon receipt of the signal 8ig, the receiving process is to be terminated
with all of the consequences outlined in e:rit(2). In addition a "core
image" will be made in the current working directory of the receiving
process if 8ig is one for which an asterisk appears in the above list and
the following conditions are met:

The effective user ID and the real user ID of the receiving process
are equal.

An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the following
properties:

SIGJGN - ignore signal

a mode of 0666 modified by the file creation mask (see
umask(2»

a file owner ID that is the same as the effective user ID
of the receiving process.

a file group ID that is the same as the effective group ID
of the receiving process

The signal 8ig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

Junction addres8 - catch signal

Upon receipt of the signal sig, the receiving process is to execute the signal
catching function pointed to by June. The signal number 8ig will be passed
as the only argument to the signal-catching function. Additional arguments
are passed to the signal-catching function for hardware-generated signals.
Before entering the signal-catching function, the value of June for the
caught signal will be set to SIG-DFL unless the signal is SIGlLL, SIG TRAP , or
SIGPWR.

Upon return from the signal-catching function, the receiving process will
resume execution at the point it was interrupted.

Icon International, Inc.

(

C\
.. /

SIGNAL (2) SYSTEM CALLS SIGNAL (2)

When a signal that is to be caught occurs during a read, a write, an open,
or an ioctl system call on a slow device (like a terminal; but not a file), dur
ing a pause system call, or during a wait system call that does not return
immediately due to the existence of a previously stopped or zombie process,
the signal catching function will be executed and then the interrupted sys
tem call may return a -1 to the calling process with errno set to EINTR.

Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKn.L signal.

Signal will fail if sig is an illegal signal number, including SIGKILL. [EINVAL]

RETURN VALUE

Upon successful completion, signal returns the previous value of fune for the specified
signal sig. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO

kill(2), pause(2), ptrace(2), wait(2), setjmp(3C).
kill(l) in the ICONjUX User Reference Manual.

WARNING

Two other signals that behave differently than the signals described above exist In

this release of the system; they are:

SIGCLD
SIGPWR

18 death of a child (reset when caught)
19 power fail (not reset when caught)

There is no guarantee that, in future releases of the UNIX system, these signals will
continue to behave as described below; they are included only for compatibility with
other versions of the UNIX system. Their use in new programs is strongly
discouraged.

For these signals, fune is assigned one of three values: SIG-DFL, SIGJGN, or a
function address. The actions prescribed by these values of are as follows:

Icon International, Inc. 3

SIGNAL(2) SYSTEM CALLS SIGNAL (2)

4

SIG.J)FL - ignore signal

The signal is to be ignored.

SIGJGN - ignore signal

The signal is to be ignored. Also, if 8ig is SIGCLD, the calling process's
child processes will not create zombie processes when they terminate; see
exit(2).

Junction address - catch signal

If the signal is SIGPWR, the action to be taken is the same as that
described above for June equal to Junction address. The same is true if
the signal is SIGCLD except, that while the process is executing t.he
signal-catching function, any received SIGCLD signals will be queued and
the signal-catching function will be continually reentered until the queue
is empty.

The SIGCLD affects two other system calls (wait(2), and exit(2)) in the following
ways:

wait If the June value of SIGCLD is set to SIGJGN and a wait is executed, t.he
wait will block until all of the calling process's child processes terminate;
it will then return a value of -1 with errno set t.o ECHILD.

exit If in the exiting process's parent process the June value of SIGCLD is set
to SIGJGN, the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the
parent of the proceeding processes. A process that may be piped into in this
manner (and thus become the parent of other processes) should take care not to
set SIGCLD to be caught.

Icon International, Inc.

STAT(2)

(. NAME

stat, fstat - get file status

SYNOPSIS

#include <sye Itypes.h>
#include <sys/stat.h>

int stat (path, but)
char *path;
struct stat *buf;

int fstat (fildes, bur)
int fildes;
struct stat *bur;

DESCRIPTION

SYSTEM CALLS STAT(2)

Path points to a path name naming a file. Read, write, or 6ecute permission of the
named file is not required, but all directories listed in the path name leading to the
file must be searchable. Stat obtains information about the named file.

Similarly, fstat obtains information about an open file known by the file descriptor
fildes, obtained from a successful open, creat, dup, Jentl, or pipe system call.

Buf is a pointer to a stat structure into which information is placed concerning the
file.

The contents of the structure pointed to by buf include the following members:

ushort
ino_t
dev_t

short
ushort
ushort
ofLt
time_t
time_t
time_t

st~ode;
st.....ino;
sLdev;

stJdev;

sLnlink;
sLuid;
sLgid;
st...size;
sLatime;
sLmtime;
sLctime;

Icon International, Inc.

1* File mode; see mknod(2) */
/* Inode number */
1* ID of device containing */
/* a directory entry for this file */
/* ID of device */
1* This entry is defined only for */
1* character special or block special files */
/* Number of links */
/* User ID of the file's owner */
/* Group ID of the file's group */
/* File size in bytes */
/* Time of last access * /
/* Time of last data modificat.ion */
/* Time of last file status change */
/* Times measured in seconds since */
1* 00:00:00 GMT, Jan. 1, 1970 */

1

STAT(2) SYSTEM CALLS STAT(2)

stJ.time Time when file data was last accessed. Changed by the following system
calls: creat(2), mknod(2), pipe(2), utime(2), and read(2).

st.Jlltime Time when data was last modified. Changed by the following system
calls: creat(2), mknod(2), pipe(2), utime(2), and tDr.te(2).

st_ctime Time when file status was last changed. Changed by the following system
calls: chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), unlin~~(2),
utime(2), and tDrite(2). .

Stat will fail if one or more of the following are true:

IENOTDIR] A component of the path prefix is not a directory.

IENOENT]

[EACCES]

[EFAULT]

The named file does not exist.

Search permission is denied for a component of the path prefix.

BuJ or path points to an invalid address.

Fstat will fail if one or more of the following are true:

IEBADF] Fildes is not a valid open file descriptor.

[EFAULT] BuJ points to an invalid address.

RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO

2

chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2), unlink(2),
utime(2), write(2).

Icon International, Inc,

r~·
i
"'---_/

(

(

STIME(2)

NAME

stime - set time

SYNOPSIS

int stime (tp)
long *tp;

DESCRIPTION

SYSTEM CALLS STIME(2)

Stime sets the system's idea of the time and date. Tp points to the value of time as
measured in seconds from 00:00:00 GMT January 1, 1970.

[EPERM]

RETURN VALUE

Stime will fail if the effective user ID of the calling process is not
super-user.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 IS

returned and errno is set to indicate the error.

SEE ALSO

time(2).

Icon International, Inc. 1

SWRITE(2) SYSTEM CALLS SWRITE(2)

NAME

swrite - synchronous write on a file

SYNOPSIS

int swrite (fildes, bur, nbyte)
int fildes;
char *bur;
unsigned nbyte;

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dup, or Icntl system call.

Swrite attempts to write nbyte bytes from the buffer point.ed to by bul to the file
associated with the fildes.

The Swrite command blocks until the buffer has actually been written to the device.
On files which are not associated with block devices, swrite behaves exactly the same
as write(2).

Swrite will fail if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signal]

[EFBIG]

[EFAULT]

IEINTR]

An attempt is made to write to a pipe that is not open for reading
by any process.

An attempt was made to write a file that exceeds the process's file
size limit or the maximum file size. See ulimit(2).

Bul points outside the process's allocated address space.

A signal was caught during the swrite system call.

If a swrite requests that more bytes be written than there is room for (e.g., the
ulimit (see ulimit(2)) or the physical end of a medium), only as many bytes as there
is room for will be written. For example, suppose there is space for 20 bytes more in
a file before reaching a limit. A write of 512 bytes will return 20. The next write of
a non-zero number of bytes will give a failure return (except as noted below).

RETURN VALUE

Upon successful completion the number of bytes actually written is returned. Other
wise, -1 is returned and errno is set to indicate the error.

Icon International, Inc. 1

/

SWRITE(2) SYSTEM CALLS SWRITE(2)

(. SEE ALSO

write (2), creat(2), dup(2), lseek(2), open(2), pipe(2), ulimit(2).

(

2 Icon International, Inc.

SYNC(2) SYSTEM CALLS SYNC(2)

NAME

sync - update super-block

SYNOPSIS

void sync ()

DESCRJPTION

Sync causes all information in memory that should be on disk to be written out.
This includes modified super blocks, modified i-nodes, and delayed block I/O.

It should be used by programs which examine a file system, for example fsck, df, etc.
It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon return from sync.

Icon International, Inc. 1

TIME(2) SYSTEM CALLS TIME(2)

(NAME

(

time - get time

SYNOPSIS

long time «long *) 0)

long time (tloc)
long *tloc;

,DESCRIPTION

T£me returns the value of time in seconds since 00:00:00 GMT, January 1, 1970.

If tioe (taken as an integer) is non-zero, the return value is also stored in the location
to which tloe points.

[EFAULT] Time will fail if tloe points to an illegal address.

RETURN VALUE

Upon successful completion, time returns the value of time. Otherwise, a value of -1
is returned and errno is set to indicate the error.

SEE ALSO

stime(2).

Icon International, Inc. 1

TIMES (2) SYSTEM CALLS TIMES (2)

NAME

times - get process and child process times

SYNOPSIS

#include <sys/types.h>
#include <sys/times.h>

long times (buffer)
struct tms *buffer;

DESCRIPTION

Times fills the structure pointed to by buffer with time-accounting information. The
following are the contents of this structure:

struct tms {

};

time_t tms_utime;
time_t tms-.:stime;
time_t tms_cutime;
time_t tms_cstime;

This information comes from the calling process and each of its terminated child
processes for which it has executed a wait. All times are in 60ths of a second on DEC
processors, l00ths of a second on AT&T processors.

Tms_utime is the CPU time used while executing instructions in the user space of the
calling process.

Tms_stime is the CPU time used by the system on behalf of the calling process.

Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child processes.

Tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes.

[EFAULTJ Times will fail if buffer points to an illegal address.

RETURN VALUE

Upon successful completion, times returns the elapsed real time, in 60ths (l00ths) of
a second, since an arbitrary point in the past (e.g., system start-up time). This point
does not change from one invocation of times to another. If times fails, a -1 is
returned and ermo is set to indicate the error.

Icon International, Inc. 1

TIMES(2) SYSTEM CALLS TIMES (2)

(SEE ALSO

exec(2), fork(2), time(2), wa.it(2).

...

(

2 Icon International, Inc.

ULIMIT(2} SYSTEM CALLS

NAME

ulimit - get a.nd set user limits

SYNOPSIS

long ulimit (cmd, newlimit)
int cmd;
long new limit;

DESCRIPTION

ULIMIT(2)

This function provides for control over process limits. The cmd values available are:

1 Get the file size limit of the process. The limit is in units of 512-byte blocks
and is inherited by child processes. Files of any size can be read.

2 Set the file size limit of the process to the value of newlimit. Any process may
decrease this limit, but only a process with an effective user ID of super-user
may increase the limit. Ulimit will fail and the limit will be unchanged if a
process with an effective user ID other than super-user attempts to increase its
file size limit. IEPERM]

3 Get the maximum possible break value. See brk(2).

RETURN VALUE

Upon successful completion, a non-negative value is returned. Otherwise, a value of
-1 is returned and errna is set to indicate the error.

SEE ALSO

brk(2), write(2).

Icon International, Inc. 1

/

;('~'\

~j

UMASK(2) SYSTEM CALLS UMASK(2)

(. NAME

(

umask - set and get file creation mask

SYNOPSIS

int umask (cmask)
int cmaskj

DESCRIPTION

Umask sets the process's file mode creation mask to cmask and returns the previous
value of the mask. Only the low-order 9 bits of cmask and the file mode creation
mask are used.

RETURN VALUE

The previous value of the file mode creation mask is returned.

SEE ALSO

chmod(2), creat(2), mknod(2), open(2).
mkdir(l), sh(l) in the ICON/UX User Reference Manual.

Icon International, Inc. 1

UMOUNT(2) SYSTEM CALLS

NAME

umount - unmount a file system

SYNOPSIS

int umount (8pec)
char *8pec;

DESCRIPTION

UMOUNT(2)

Umount requests that a previously mounted file system contained on the block spe
cial device identified by spec be unmounted. Spec is a pointer to a path name.
Mter unmounting the file system, the directory upon which the file system was
mounted reverts to its ordinary interpretation.

Umount may be invoked only by the super-user.

Umount will fail if one or more of the following are true:

[EPERM] The process's effective user ID is not super-user.

[ENXIO] Spec does not exist.

[ENOTBLK]

[EINVAL]

[EBUSYj

[EFAULT]

RETURN VALUE

Spec is not a block special device.

Spec is not mounted.

A file on spec is busy.

Spec points to an illegal address.

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 IS

returned and errno is set to indicate the error.

SEE ALSO

mount{2}.

Icon International, Inc. 1

(

(

UNAME(2) SYSTEM CALLS

NAME

uname - get name of current UNIX system

SYNOPSIS

#include <sys/utsname.h>

int uname (name)
struct utsname *name;

, DESCRIPTION

UNAME(2)

Uname stores information identifying the current UNIX system lD the structure
pointed to by name.

Uname uses the structure defined in <sys/utsname.h> whose members are:

char
char
char
char
char

sysname[9];
nodename[9];
release [9];
version [9];
machinel9];

Uname returns a null-terminated character string naming the current UNIX system in
the character array sysname. Similarly, nodename contains the name that the sys
tem is known by on a communications network. Release and version further identify
the operating system. Machine contains a standard name that identifies the
hardware that the UNIX system is running on.

[EFAULTJ Uname will fail if name points to an invalid address.

RETURN VALUE

Upon successful completion, a non-negative value IS returned. Otherwise, -1 IS

returned and errno is set to indicate the error.

SEE ALSO

uname{l) in the ICON/UX User Reference Manual.

Icon International, Inc. 1

UNLINK(2) SYSTEM CALLS UNLINK(2)

NAME

unlink - remove directory entry

SYNOPSIS

int unlink (path)
char *path;

DESCRIPTION

Unlink removes the directory entry named by the path name pointed to be path.

The named file is unlinked unless one or more of the following are true:

[ENOTDIRj A component of the path prefix is not a directory.

[ENOENTj

[EACCES]

[EACCES]

[EPERM]

[EBUSY]

[ETXTBSY]

[EROFSj

[EFAULT]

The named file does not exist.

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to be
removed.

The named file is a directory and the efi'e('tive u~er ID of the process
is not super-user.

The entry to be unlinked is the mount point for a mounted file sys
tem.

The entry to be unlinked is the last link to a pure procedure (shared
text) file that is being executed.

The directory entry to be unlinked is part of a read-only file system.

Path points outside the process's allocated address space.

When all links to a file have been removed and no process has the file open, the
space occupied by the file is freed and the file ceases to exist. If one or more
processes have the file open when the last link is removed, the removal is postponed
until all references to the file have been closed.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 15

returned and errno is set to indicate the error.

SEE ALSO

close(2), link{2}, open(2}.
rm(l} in the JOON/UX User Reference Manual.

Icon International, Inc. 1

USTAT(2) SYSTEM CALLS USTAT(2)

(NAME

(

ustat - get file system statistics

SYNOPSIS

#include <sys/types.h>
#include <ustat.h>

int ustat (dev, bur)
int dey;
struct ustat *bur;

DESCRIPTION

Ustat returns information about a mounted file system. Dev is a device number idt'n
tifying a device containing a mounted file system. Bul is a pointer to a usfat struc
ture that includes to following elements:

daddr_t Ltfree;
ino_t Ltinode;
char fJname[6J;
char fJpack[6];

1* Total free blocks */
/* Number of free inodes */
/* Filsys name */
/* Filsys pack name */

Ustat will fail if one or more of the following are true:

[EI~"VAL] Dev is not the device number of a device containing a mounted file
system.

[EFAULT] Bul points outside the process's allocated address space.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 IS

returned and errno is set to indicate the error.

SEE ALSO

stat(2), fS(4}.

Icon International, Inc. 1

UTIME(2) SYSTEM CALLS UTIME(2)

NAME

utime - set file access 3lld modiliClLtion times

SYNOPSIS

#include <ays /types.h>
int utime (path, times)
char *path;
struct utimbuf *timea;

DESCRIPTION

Path points to a path name naming a file. Utime sets the access and modification
times of the named file.

If times is NULL, the access and modification times of the file are set to the current
time. A process must be the owner of the file or have write permission to use utime
in this manner.

If times is not NULL, times is inteTpreted as a pointer to a utimbuf structure and the
access and modification times are set to the values contained in the design at ed
structure. Only the owner of the file or the super-user may use ufime this way.

The times in the following structure are measured in seconds since 00:00:00 mIT,
Jan. 1, 19iO.

struct utimbuf {

};

time_t actime; /* access time * /
time_t modtime; /* modification time */

Utime will fail if one or more of the following are true:

[ENOENT] The named file does not exist.

[ENOTDlR]

[EACCES]

[EPERM]

[EACCES]

[EROFS]

[EFAULT]

[EFAULT]

A component of the path prefix is not a directory.

Search permission is denied by a component of the path prefix.

The eff-ective UseT ID is not super-user and not the owner of the file
and times is not NULL.

The effective user ID is not super-user and not the owner of the file
and times is NULL and write access is denied.

The file system containing the file is mounted read-only.

Times is not NULL and points outside the process's allocat.ed
address space.

Path points outside the process's allocated address space.

Icon International, Inc. 1

(

c

UTIME(2) SYSTEM CALLS UTIME(2)

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 IS

returned and errno is set to indicate the error.

SEE ALSO

stat(2).

2 Icon International, Inc.

WAIT(2) SYSTEM CALLS WAIT(2)

NAME

wait - wait for child process to stop or terIDinate

SYNOPSIS

int wait (statJoc)
int *statJoc;

int wait «int *)0)

DESCRIPTION

Wait suspends the calling process until until one of the immediate children ter
minates or until a child that is being traced stops, because it has hit a break point.
The wait system call will return prematurely if a signal is received and if a child pro
cess stopped or terminated prior to the call on wait, return is immediate.

If staLloc (taken as an integer) is non-zero, 16 bits of information called status are
stored in the low order 16 bits of the location pointed to by staLloc. Status can be
used to differentiate between stopped and terminated child processes and if the child
process terminated, status identifies the cause of termination and passes useful infor
mation to the parent. This is accomplished in the following manner:

If the child process stopped, the high order 8 bits of status will contain the
number of the signal that caused the process to stop and the low order 8 bits
will be set equal to 0177.

If the child process terminated due to an exit call, the low order 8 bits of
status will be zero and the high order 8 bits will contain the low order 8 bits
of the argument that the child process passed to exit; see exit(2).

If the child process terminated due to a signal, the high order 8 bits of status
will be zero and the low order 8 bits will contain the number of the signal
that caused the termination. In addition, if the low order seventh bit (i.e., bit
2(0) is set, a "core image" will have been produced; see signal(2).

If a parent process terminates without waiting for its chi1d processes to terminate,
the parent process ID of each child process is set to 1. This means the initialization
process inherits the child processes; see intro(2).

Wait will fail and return immediately if one or more of the following are true:

IECHILDJ The calling process has no existing unwaited-for child processes.
[EFAULTJ SlaLloc points to an illegal address.

RETURN VALUE

If wait returns due to the receipt of a signal, a value of -1 is returned to the calling (-".
\. .J

Icon International, Inc. 1

(

(

c

WAIT(2) SYSTEM CALLS WAIT(2)

process and errno is set to EINTR. If wait returns due to a stopped or terminated
child process, the process ID of the child is returned to the calling process. Other
wise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

exec(2}, exit(2}, fork(2), intro(2), pause(2), ptrace(2), signal(2).

WARNING

See WARNING in signal(2).

2 Icon International, Inc.

WRITE (2) SYSTEM CALLS WRITE(2)

NAME

write - write on a file

SYNOPSIS

int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dtlp, fcntl, or pipe system call.

Write attempts to write nbyte bytes from the buffer pointed to by btlf to the file
associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds from the position
in the file indicated by the file pointer. Upon return from write, the file pointer is
incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the current
position. The value of a file pointer associated with such a device is undefined.

If the O...APPEND flag of the file status Bags is set, the file pointer will be set to the
end of the file prior to each write.

Write will fail and the file pointer will remain unchanged if one or more of the fol
lowing are true:

[EBADF] Fildes is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signa.l]

[EFBIGJ

[EFAULT]

[EINTR]

An attempt is made to write to a pipe that is not open for reading
by any process.

An attempt was made to write a file tha t exceeds the process's file
size limit or the maximum file size. See tlHmit(2).

Btl! points outside the process's allocated address space.

A signal was caught during the write system call.

If a write requests that more bytes be written than there is room for (e.g., the tllimit
(see tllimit(2)) or the physical end of a medium), only as many bytes as there is room
for will be written. For example, suppose there is space for 20 bytes more in a file
before reaching a limit. A write of 512 bytes will return 20. The next write of a
non-zero number of bytes will give a failure return (except as noted below).

Icon International, Inc. 1

WRITE(2) SYSTEM CALLS WRITE (2)

If the file being written is a pipe (or FIFO) and the OJIDELAY flag of the file flag word
is set, then write to a full pipe (or FIFO) will return a count of o. Otherwise
(OJIDELAY clear), writes to a full pipe (or FIFO) will block until space becomes avail
able.

RETURN VALUE

Upon successful completion the number of bytes actually written is returned. Other
wise, -1 is returned and errno is set to indicate the error.

SEE ALSO

creat(2), dup(2), Iseek(2), open(2), pipe(2), ulimit(2).

2 Icon International, Inc.

(

(

c!

INTRO(3) SUBROUTINES INTRO(3)

NAME

intro - introduction to subroutines and libraries

SYNOPSIS

:f/:include <stdio.h>

#include <math.h>

DESCRIPTION

This section describes functions found in various libraries, other than those functions
that directly invoke ICONfUXV system primitives, which are described in Section 2 of
this volume. Certain major collections are identified by a letter after the section
number:

(30)

(3S)

(3M)

(3X)

(3F)

These functions, together with those of Section 2 and those marked (3S), con
stitute the Standard 0 Library libc, which is automatically loaded by the C
compiler, cC(l). The link editor Id(l) searches this library under the -Ie
option. Declarations for some of these functions may be obtained from
:f/:include files indicated on the appropriate pages.
These functions constitute the "standard I/O package" [see stdio(3S)]. These
functions are in the library libc, already mentioned. Declarations for these
functions may be obtained from the #include file <stdio.h>.
These functions constitute the Math Library, libm. They are automatically
accessed by the F77 compiler to implement the intrinsic math functions
described in section 3F. They are not automatically loaded by the C com
piler, cc(l); however, the link editor searches this library under the -1m
option. Declarations for these functions may be obtained from the #include
file <math.h>. Several generally useful mathematical constants are also
defined there [see math(5)].
Various specialized libraries. The files in which these libraries are found are
given on the appropriate pages.
These functions constitute the F77 intrinsic functions library, libF77, which
includes the standard FORTRAN intrinsic functions as a subset. These func
tions are automatically available to the FORTRAN programmer and require no
special invocation of the compiler.

DEFINITIONS

A character is any bit pattern able to fit into a byte on the machine. The null
character is a character with value 0, represented in the C language as '\0'. A char
acter array is a sequence of characters. A null-terminated character array is a
sequence of characters, the last of which is the null character. A string is a designa
tion for a null-terminated character array. The null string is a character array con
taining only the null character. A NULL pointer is the value that is .obtained by
casting 0 into a pointer. The C language guarantees that this value will not match

Icon International, Inc. 1

INTRO(3) SUBROUTINES INTRO(3)

r-'\
that of any legitimate pointer, so many functions that return pointers return it to ~~

FILES

indicate an error. NULL is defined as 0 in <stdio.h>; the user can include an
appropriate definition if not using <stdio.h>.

Many groups of FORTRAN intrinsic functions have generic function names that do not
require explicit or implicit type declaration. The type of the function will be deter
mined by the type of its argument(s). For example, the generic function max will
return an integer value if given integer arguments (maxO), a real value if given real
arguments (amaxl), or a double-precision value if given double-precision arguments
(dmaxl).

/lib/libc.a
/lib/libm.a
/usr /lib/libF77.a

SEE ALSO

intro(2), stdio(3S), math(5).
ar(l), cc(l), 177(1), Id(l), lint(l), nm(l) in the IOON/UXV User Reference Manual.

DIAGNOSTICS

Functioris in the C and Math Libraries (3C and 3M) may return the conventional
values 0 or :l::HUGE (the largest-magnitude single-precision floating-point numbers;
HUGE is defined in the <math.h> header file) when th~ function is undefined for the
given arguments or when the value is not representable. In these cases, the external
variable errno [see intro(2)] is set to the value EDOM or ERANGE. As many of the FOR
TRAN intrinsic functions use the routines found in the Math Library, the same con
ventions apply.

WARNING

2

Many of the functions in the libraries call and/or refer to ot her functions and exter
nal variables described in this section and in section 2 (System Calls). If a program
inadvertantly defines a function or external variable with the same name, the
presumed library version of the function or external variable may not be loaded.
The lint(l) program checker reports name conflicts of this kind as "multiple declara
tions" of the names in question. Definitions for sections 2, 3C, and 3S are checked
automatically. Other definitions can be included by using the -1 option (for example,
-1m includes definitions for the Math Library, section 3M). Use of lint is highly
recommended.

Icon International, Inc.

(

(

A64L (30) COMP ATmn..ITY ROUTINES A64L(30)

NAME

a64I, 164a - convert between long integer and base-64 AScn string

SYNOPSIS

long a641 (8)
char *8;

char *164a (I)
long I;

, DESCRIPTION

BUGS

These functions are used to maintain numbers stored in base-64 ASCII characters.
This is a notation by which long integers can be represented by up to six characters;
each character represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are. for 0, / for 1, 0 through 9 for 2-11,
A through Z for 12-37, and a through z for 38-63.

A641 takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six char
acters, a641 will use the first six.

L64a takes a long argument and returns a pointer to the corresponding base-64
representation. If the argument is 0, 164a returns a pointer to a null string.

The value returned by 164a is a pointer into a static buffer, the contents of which are
overwritten by each call.

Icon International, Inc. 1

ABORT(3C) COMPATmn..ITY ROUTINES ABORT(3C)

NAME

abort - generate an lOT fault

SYNOPSIS

int abort ()

DESCRIPTION

Abort first closes all open files if possible, then causes an lOT signal to be sent to the
process. This usually results in termination with a core dump.

It is possible for abort to return control if SIGIOT is caught or ignored, in which case
the value returned is that of the kill(2) system call.

SEE ALSO

exit(2), kill(2), signal(2).
adb(l), sdb(l) in the [CON/UXV User Reference Manual.

DIAGNOSTICS

If SIGIOT is neither caught nor ignored, and the current directory is writable, a core
dump is produced and the message "abort - core dumped" is written by the shell.

Icon International, Inc. 1

---- ------~-.---

(~,
\,-j

/'

C; \. . .

ABS(3C) COMP ATmn..ITY ROUTINES

(NAME

abs - return integer absolute value

SYNOPSIS

int aba (i)
int ij

DESCRIPTION

Abs returns the absolute value of its integer operand.

BUGS

ABS(3C)

In two's-complement representation, the absolute value of the negative integer with
largest magnitude is undefined. Some implementations trap this error, but others
simply ignore it.

SEE ALSO

floor(31f).

Icon International, Inc. 1

BSEARCH (3C) COMPATmn..ITY ROUTINES BSEARCH (3C)

NAME

bsearch - binary search a sorted ta.ble

SYNOPSIS

#include <aearch.h>

char *bsearch «char *) key, (char *) base, nel, sizeof (*key), compar)
unsigned nel;
int (*compar)();

DESCRIPTION

Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It
returns a pointer into a table indicating where a datum may be found. The table
must be previously sorted in increasing order according to a provided comparison
function. Key points to a datum instance to be sought in the table. Base points to
the element at the base of the table. Nel is the number of elements in the ta hIe.
Compar is the name of the comparison function, which is called with two arguments
that point to the elements being compared. The function must return an integer less
than, equal to, or greater than zero as accordinly the first argument is to be con
sidered less than, equa.l to, or greater than the second.

EXAMPLE

The example below searches a table containing pointers to nodes consisting of a
string and its length. The table is ordered alphabetically on the string in the node
pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and
prints out the string and its length, or prints an error message.

#include <stdio.h>
#include <search.h>

#define TABSIZE

struct node {
char *string;
int length;

1000

/* these are stored in the table */

};
struct node table [TABSIZE]; /* table to be searched */

{

Icon International, Inc. 1

("\
i

"-./

/
I

(

(

c

BSEAROH (3C) COMPATmn.ITY ROUTINES BSEARCH (30)

}
/*

*/
int

struct node *node_ptr, node;
int node_compare(); /* routine to compare 2 nodes */
char stl'...space[20]; /* space to read string into */

node.string = str-BPace;
while (scanf("o/os", Jlode.string) != EOF) {

}

node_ptr = (struct node *)bsearch«char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr != NULL) {
(void)printf("string = %205, length = %d\n",

node_ptr->string, node_ptr->length);
} else {

}
(void)printf("not found: %s\n", node.string);

This routine compares two nodes based on an
alphabetical ordering of the string field.

node_compare(nodel, node2)
struct node *nodel, -node2;
{

}
return strcmp(nodd->string, node2->string);

NOTES

The pointers to the key and the element at the base of the table should be of
type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared. .
Although declared as type pointer-to-character, the value returned should be
cast into type pointer-to-element.

SEE ALSO

hsearch(30), Isearch(3C), qsort(3C), tsearch(3C).

DIAGNOSTICS

A NULL pointer is retUTned if the key cannot be found in the table.

2 Icon International, Inc.

CLOCK(3C) COMP ATmn..ITY ROUTINES CLOCK(3C)

NAME

clock - report CPU time used

SYNOPSIS

long clock ()

DESCRIPTION

Clock returns the amount of CPU time (in microseconds) used since the first call to
clock. The time reported is the sum of the user and system times of the calling pro
cess and its terminated child processes for which it has executed 1l·ait(2) or
system(3S).

The resolution of the clock is 20 milliseconds on ICON products, 10 milliseconds on
AT &T Technologies 3B computer processors, 16.667 milliseconds on Digita.l Equip
ment Corporation processors.

SEE ALSO

BUGS

times(2), wait(2), system(3S).

The value returned by clock is defined in microseconds for compatibility with sys
tems that have CPU clocks with much higher resolution. Because of this, the va lue
returned will wrap around after accumulating only 2147 seconds of CPU time (about
36 minutes).

Icon International, Inc. 1

/

CON\T(3C) COMP ATmn..ITY ROUTINES CONV(3C)

(NAME

(

toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS

#include <etype.h>

int toupper (e)
int e;

int tolower (e)
int e;

int _toupper (e)
int e;

int _tolower (e)
int e;

int toucii (e)
int c;

DESCRIPTION

Toupper and tolower have as domain the range of getc(3S): the integers from -1
through 255. If the argument of toupper represents a lower-case letter, the result is
the corresponding upper-case letter. If the argument of t%wer represents an upper
case letter, the result is the corresponding lower-case letter. All other arguments in
the domain are returned unchanged.

The macros _toupper and _tolower, are macros that accomplish the same thing as
toupper and tolower but have restricted domains and are faster. _toupper requires a
lower-case letter as its argument; its result is the corresponding upper-case letter.
The macro _t%wer requires an upper-case letter as its argument; its result is the
corresponding lower-case letter. Arguments outside the domain cause undefined
results.

Toascii yields its argument with all bits turned off that are not part of a standard
ASCII character; it is intended for compatibility with other systems.

SEE ALSO

ctype(3C), getc(3S).

Icon International, Inc. 1

END(3C) COMP ATIB~ITY ROUTINES

NAME

end, etext, edata - last locations in program

SYNOPSIS

extern end;
extern etext;
extern edata;

DES CRlP TION

END(3C)

These names refer neither to routines nor to locations with interesting contents. The
address of etext is the first address above the program text, edata above the initial
ized data region, and end above the uninitialized data region.

When execution begins, the program break (the first location beyond the data) coin
cides with end, but the program break may be reset by the routines of brk(2),
malloc(3C), standard input/output (stdio(3S)), the profile (-p) option of cC(l), and so
on. Thus, the current value of the program break should be determined by sbrk(O)
(see brk(2)).

SEE ALSO

brk(2), malloc(3C), stdio(3S).
cc(l) in the IGON/UXV User Reference ~Man1.lal.

Icon International, Inc. 1

CRYPT (3C) COMPATIBILITY ROUTINES CRYPT(3C)

(NAME

(""
,.,)

crypt, setkey, encrypt - generate DES encryption

SYNOPSIS

char *crypt (key, salt)
char *key, *salt;

void setkey (key)
char *key;

void encrypt (block, edflag)
char *block;
int edflag;

DESCRIPTION

Crypt is the password encryption function. It is based on the NBS Data Encryption
Standard (DES), with variations intended (among other things) to frustrate use of
hardware implementations of the DES for key search.

Key is a user's typed password. Salt is a two-character string chosen from the set
fa-zA-Z0-9./]; this string is used to perturb the DES algorithm in one of 4096
different ways, after which the password is used as the key to encrypt repeatedly a
constant string. The returned value points to the encrypted password. The first two
characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the actual DES
algorithm. The argument of setkey is a character array of length 64 containing only
the characters with numerical value 0 and 1. If this string is divided into groups of
8, the low-order bit in each group is ignored; this gives a 56-bit key which is set into
the machine. This is the key that will be used with the above mentioned algorithm
to encrypt or decrypt the string block with the function encrypt.

The argument to the encrypt entry is a character array of length 64 containing only
the characters with numerical value 0 and 1. The argument array is modified in
place to a similar array representing the bits of the argument after having been sub
jected to the DES algorithm using the key set by setkey. If edflag is zero, the argu
ment is encrypted; if non-zero, it is decrypted.

SEE ALSO

getpass(3C), passwd(4).
login(l), passwd(l) in the ICON/w..'V User Reference Manual.

Icon International, Inc. 1

CRYPT(3C) COMPATIBILITY ROUTINES CRYPT(3C)

BUGS

The return value points to static data that are overwritten by each call.

2 Icon International, Inc.

CTIME(3C) COMP ATffiILITY ROUTINES CTTh1E(3C)

(. NAME

ctime, localtime, gmtime, asctime, tzset - convert date and time to string

SYNOPSIS

#include <time.h>

char *ctime (clock)
long *clock;

struct tm *localtime (clock)
long *clock;

struct tm *gmtime (clock)
long *clock;

char *asctime (tm)
struct tm *tm;

extern long timezone;

extern int daylight;

extern char *tzname[2];

void tzset ()

DESCRIPTION

Ctime converts a long integer, pointed to by clock, representing the time in seconds
since 00:00:00 GMT, January 1, 1970, and returns a pointer to a 26-character string
in the following form. All the fields have constant width.

Sun Sep 1601:03:52 1973\n\0

Localtime and gmtime return pointers to "tm" structures, described below. Local
time corrects for the time zone and possible Daylight Savings Time; gmtime converts
directly to Greenwich Mean Time (GMT), which is the time the UNIX system uses.

Asctime converts a "tm" structure to a 26-character string, as shown in the aboye
example, and returns a pointer to the string.

Icon International, Inc. 1

CTIME(3C) COMP ATmILITY ROUTINES CTIME(3C)

Declarations of all the functions and externals, and the "tm" structure, are in the
<time.h> header file. The structure declaration is:

struct tm {

};

int tIIU5ec;
int tm...min;
int tm..hour;
int tm..mday;
int tm..mon;
int tIILYear;
int tID-wday;
int tm-yday;
int tmjsdst;

/* seconds (0 - 59) */
/* minutes (0 - 59) */
/* hours (0 - 23) */
/* day of month (l- 31) */

/* month of year (O - 11) */
/* year - 1900 */
/* day of week (Sunday == 0) */
/* day of year (O - 365) */

Tm_isdst is non-zero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference, in seconds, between
GMT and local standard time (in EST, timezone is 5*60*60); the external variable
daylight is non-zero if and only if the standard U.S.A. Daylight Savings Time conver
sion should be applied. The program knows about the peculiarities of this conversion
in 1974 and 1975; if necessary, a table for these years can be extended.

If an environment variable named TZ is present, asctime uses the contents of the
variable to override the default time zone. The value of TZ must be a three-letter
time zone name, followed by a number repre~enting the difference between local time
and Greenwich Mean Time in hours, followed by an optional three-letter name for a
daylight time zone. For example, the setting for New Jersey would be EST5EDT.
The effects of setting TZ are thus to change the values of the external varia bles
timezone and daylight; in addition, the time zone names contained in the external
variable

char *tzname[2] == { "EST", "EDT" };

are set from the environment variable TZ. The function tzset sets these external
variables from TZ; tzset is called by asctime and may also be called explicitly by the
user.

Note that in most installations, TZ is set by default when the user logs on, to a value
in the local/etc/profile file (see profile(4».

SEE ALSO

time(2), getenv(3C), profile(4), environ(5).

2 Icon International, Inc.

/ '

CTIME(3C) COMP ATffiILITY ROUTINES CTIME(3C)

(BUGS

The return values point to static data whose content is overwritten by each call.

C'
. ~

Icon International, Inc. 3

CTYPE(3C) COMPATffiILITY ROUTINES CTYPE(3C)

NAME

isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph,
iscntrl, isascii - classify characters

SYNOPSIS

#include <ctype.h>

int isalpha (c)
int C;

DESCRIPTION

These macros classify character-coded integer values by table lookup. Each is a
predicate returning nonzero for true, zero for false. Isascii is defined on all integer
values; the rest are defined only where isascii is true and on the single non-ASCn
value EOF (-1 - see stdio(3S)).

isalpha

,supper

islower

isdigit

isxdigit

isalnum

,sspace

ispunct

isprint

isgraph

iscntrl

• sascll

DIAGNOSTICS

c is a letter.

c is an upper-case letter.

c is a lower-case letter.

c is a digit [0-9].

c is a hexadecimal digit [0-9], [A-F] or [a-fl.

c is an alphanumeric (letter or digit).

c is a space, tab, carriage return, new-line, vertical tab, or form
feed.

c is a punctuation character (neither cont.rol nor alphanumeric).

c is a printing charact.er, code 040 (space) through 0176 (tilde).

c is a printing character, like isprint except false for space.

c is a delete character (0177) or an ordinary control character (less
than 040).

c is an ASon character, code less than 0200 .

If the argument to any of these macros is not In the domain of the function, the
result is undefined.

Icon International, Inc. 1

CTYPE(3C) COMPATIBILITY ROUTINES CTYPE(3C)

(SEE ALSO

stdio(3S), ascii(5).

(

2 Icon International, Inc.

DIAL (3C) COMP ATmILITY ROUTINES

NAME

dial - establish an out-going terminal.llite connection

SYNOPSIS

#include <dial.h>

int dial (call)
CALL call;

void undial (fd)
int fd;

DESCRIPTION

DIAL (3C)

Dial returns a file-descriptor for a terminal line open for read/write. The argument
to dial is a CALL structure (defined in the <dial.h> header file). When finished with
the terminal line, the calling program must invoke undial to release the semaphore
that has been set during the allocation of the terminal device.

The definition of CALL in the <dial.h> header file is:

typedef struct {
struct termio *attr;
int baud;
int speed;
char *line;
char *telno;
int modem;
char *device;

int
} CALL;

devJen;

/* pointer to termio attribute struct */
/* transmission data rate */
/* 212A modem: low=300, high=1200 */
/* device name for out-going line */
/* pointer to tel-no digits string */
/* specify modem control for direct lines */
/*wm hald the name of the device used
to make a eonnection * /
/* The length of the device used to make connection */

The CALL element speed is intended Dnly for use with an outgoing dialed call, in
which case its value should be either 300 or 1200 to identify the 113A modem, or the
high- or low-speed setting on the 212A modem. Note that the 1l3A modE'm or the
low-speed setting of the 212A modem will transmit at. any rate between 0 and 300
bits per second. However, the high-speed setting of the 212A modem transmits and
receivers at 1200 bits per secound only. The CALL element baud is for the desired
transmission baud rate. For example, one might set baud to 110 and speed to 300
(or 12(0). However, if speed set to 1200 baud must be set t.o high (1200). If the
desired terminal line is a direct line, a string pointer to its dE'vice-name should be
placed in the line element in the CALL structure. Legal values for such terminal
device names are kept in the L-devices file. In this casE', t.he value of the baud ele-
ment need not be specified as it will be determinE'd from thE' L-devices file. The telno /-,
element is for a pointer to a character string representing the telephone number to ~_.j

Icon International, Inc. 1

(

DIAL(3C) COMPATIBILITY ROUTINES DIAL (3C)

FIT..ES

be dialed. Such numbers may consist only of symbols described on the acu(7). The
termination symbol will be supplied by the dial function, and should not be included
in the telno string passed to dial in the CALL structure. The CALL element modem
is used to specify modem control for direct lines. This element should be non-zero if
modem control is required. The CALL element attr is a pointer to a termio struc
ture, as defined in the termio.h header file. A NULL value for this pointer element
may be passed to the dial function, but if such a structure is included, the elements
specified in it will be set for the outgoing terminal line before the connection is esta
blished. This is often important for certain attributes such as parity and baud-rate.

The CALL element device is used to hold the device name (cuI..) that establishes the
connection.

The CALL element dev_len is the length of the device name that is copied into the
array device.

lusr /lib/uucp/L-devices
lusr /spool/u ucp /LCK .. tty- device

SEE ALSO

uucp(lC} in the ICON/UXV User Reference Manual.
alarm(2}, read(2}, write(2).
acu(7), termio(7) in the UNIX System Administrator Reference Manual.

DIAGNOSTICS

2

On failure, a negative value indicating the reason for the failure will be returned.
Mnemonics for these negative indices as listed here are defined in the <dial.h>
header file.

INTRPT -1
DJIUNG -2
NO..ANS -3
lLL...BD -4
A..PROB -5
L.J>ROB -6
NOJ..dv -7
DV~T..A -8
DV~TJ(-9
NO...BD..A -10
NO...BDJ(-11

1* interrupt occurred *1
1* dialer hung (no return from write) *1
1* no answer within 10 seconds */
1* illegal baud-rate */
1* acu problem (openO failure) */
1* line problem (openO failure) */
1* can't open LDEVS file */
1* requested device not available */
1* requested device not known *1
1* no device available at requested baud *1
/* no device known at requested baud *1

Icon International, Inc.

DIAL (3C) ,COMP ATmn.,ITY ROUTINES DIAL(3C)

WARNINGS

BUGS

Including the <dial.h> header file automatically includes the <-termio.h> header
file.

The above routine uses <stdio.h>, which causes it to increase the size of programs,
not otherwise using standard I/O, more than might be expected.

An alarm(2) system call for 3600 seconds is made (and caught) within the dial
module for the purpose of "touching" the LOK .. file and constitutes the device alloca
tion semaphore for the terminal device. Otherwise, uucp(lC) may simply delete the

. LOK .. entry on its gO-minute clean-up rounds. The alarm may go off while the user
program is in a read(2) or write(2) system call, causing an apparent error return. If
the user program expects to be around for an hour or more, error returns from reads
should be checked for (errno-EINTR), and the read possibly reissued.

Icon International, Inc. 3

;f~\

\"".~/'

DRAND48 (3C) COI\1PATffiILITY ROUTINES DRAND48 (3C)

(- NAME

drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48, Icong48 -
generate uniformly distributed pseudo-random numbers

SYNOPSIS

double drand48 ()

double erand48 (x8ubi)
unsigned short x8ubi[3];

long lrand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v[3];

void Icong48 (param)
unsigned short param [7];

DESCRIPTION

This family of functions generates pseudo-random numbers using the well-known
linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision 8oating-point
values uniformly distributed over the interval [0.0, 1.0).

Functions Irand48 and nrand48 return non-negative long integers uniformly distri
buted over the interval 10, 231).

Functions mrand48 and jrand48 return signed long integers uniformly distribut.ed
over the interval 1-231, 231).

Icon International, Inc. 1

DRAND48 (3C) COMPATIBILITY ROUTINES DRA.ND48 (3C)

2

Functions srand./8, seetL/8 and Icong./8 are initialization entry points, one of which
should be invoked before either drand./8, Irand./8 or mrand.{8 is called. (Although it
is not recommended practice, constant default initializer values will be supplied
automatically if drand.{8, lrand-l8 or mrand-l8 is called without a prior call to an ini
tialization entry point.) Functions erand-l8, nrand-l8 and jrand.{8 do not require an
initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, Xi', according
to the linear congruential formula

X.+I = (aX. + c)mod III ,,~o.

The parameter m =2f8; hence 48-bit integer arithmetic is performed. Unless lcong.{8
has been invoked, the multiplier value II and the addend value c are given by

II = 5DEECE66D 18 = 273673163155 8

C = B 18 = 13 8 ,

The value returned by any of the functions drand-l8, erand.{8, lrand48, nrand.{8,
mrand./8 or jrand.{8 is computed by first generating the next 48-bit X; in the
sequence. Then the appropriate number of bits, according to the type of data item
to be returned, are copied from the high-order (leftmost) bits of Xi and transformed
into the returned value.

The functions drand./8, lrand.{8 and mrand./8 store the last 48-bit Xi generated in an
internal buffer; that is why they must be initialized prior to being invokt'd. The
functions erand.{8, nrand.{8 and jrand.{8 require the calling program to provide
storage for the successive Xi values in the array specified as an argument when the
functions are invoked. That is why these routines do not have to be initialized; the
calling program merely has to place the desired initial value of Xi into the array and
pass it as an argument. By using different arguments, functions erand./8, nrand.{8
and jrand-l8 allow separate modules of a large program to generate several indepen
dent streams of pseudo-random numbers, i.e., the sequence of numbers in each
stream will not depend upon how many times the routines have been called to gen
erate numbers for the other streams.

The initializer function srand-l8 sets the high-order 32 bits of Xi to the 32 bits con
tained in its argument. The low-order 16 bits of x,. are set to the arbitra.ry value
330E18•

The initializer function seed-l8 sets the value of Xi to the 48-bit value specified in the
argument array. In addition, the previous value of X; is copied into a 48-bit internal
buffer, used only by seed-l8, and a pointer to this buffer is the value returned by
seed./8. This returned pointer, which can just be ignored if not needed, is useful if a
program is to be restarted from a given point at some future time - use the pointer
to get at and store the last Xi value, and then use this value to reinitialize via
seed.{8 when the program is restarted.

Icon International, Inc.

c'

DRAND48 (3C) COMP ATffiILITY ROUTINES DRAND48 (3C)

The initialization function lcong48 allows the user to specify the initial Xi' the multi
plier value 4, and the addend value c. Argument array elements param/o-e] specify
x., param/9-5] specify the multiplier 4, and param/6] specifies the 16-bit addend c.
After lcong48 has been called, a subsequent call to either srand48 or seed48 will
restore the "standard" multiplier and addend values, 4 and c, specified on the previ
ous page.

NOTES

The versions of these routines for the VAX-ll and PDP-ll are coded in assembly
language for maximum speed. It requires approximately 80 Ilsec on a VAX-ll/780
and 130 p.sec on a PDP-ll/70 to generate one pseudo-random number. On other
computers, the routines are coded in portable C. The source code for the portable
version can even be used on computers which do not have floating-point arithmetic.
In such a situation, functions drand48 and erand48 do not exist; instead, they are
replaced by the two new functions below.

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubi[3], m;

Functions irand48 and krand48 return non-negative long integers uniformly distri
buted over the interval [0, m-l].

SEE ALSO

rand(3C).

Icon International, Inc. 3

ECVT(3C) COMPATmILITY ROUTINES ECVT(3C)

NAME

ecvt, fcvt, gcvt - convert floa.ting-point number to string

SYNOPSIS

char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *8ign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *8ign;

cha.r *gcvt (value, ndigit, but)
double value;
int ndigitj
char *buf;

DESCRIPTION

Ect't converts value to a null-terminated string of ndigit digits and returns a pointer
thereto. The high-order digit is non-zero, unless the value is zero. The low-order
digit. is rounded. The position of the decimal point relative to the beginning of the
string is stored indirectly through decpt (negative means to the left of the returned
digits). The decimal point is not included in the returned string. If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero.

Fevt is identical to ecvt, except that the correct digit has been rounded for printf
"%f" (FORTRA.."'l F-format) output of the number of digits specified by ndigit.

Gcvt converts the value to a null-terminated string in the array pointed to by buf
and returns buf. It attempts to produce ndigit significant. digits in FORTRAN F
format if possible, otherwise E-format, ready for printing. A minus sign, if there is
one, or a decimal point will be included as part of the returned string. Trailing zeros
are suppressed.

SEE ALSO

BUGS

printf(3S).

The values returned by eevt and fevt point to a single static data array whose con
tent is overwritten by each call.

Icon International, Inc. 1

END(3C) COMP ATffiILITY ROUTINES El\1)(3C)

(NAME

(

(~

end, etext, edata - last locations in program

SYNOPSIS

extern end;
extern etext;
extern edata;

DESCRIPTION

These names refer neither to routines nor to locations with interesting contents. The
address of etext is the first address above the program text, edata above the initial
ized data region, and end above the uninitialized data region.

When execution begins, the program break (the first location beyond the data) coin
cides with end, but the program break may be reset by the routines of brk(2),
malloe(3C), standard input/output (stdio(3S)), the profile (-p) option of ee(I), and so
on. Thus, the current value of the program break should be determined by sbrk(O)
(see brk(2)).

SEE ALSO

brk(2), malloc(3C), stdio(3S).
cc(I) in the IOONjUXV User Reference Manual.

Icon International, Inc. 1

FREXP(3C) COMPATIBILITY ROUTINES

NAME

frexp, Jdexp, modf - manipulate parts of floating-point numbers

SYNOPSIS

double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION

FREXP(3C)

Every non-zero number can be written uniquely as z * 2'\ where the "mantissa"
(fraction) z is in the range 0.5 < Izl < 1.0, and the "exponent" n is an integer.
Frezp returns the mantissa of a double value, and stores the exponent indirectly in
the location pointed to by eptr. If value is zero, both results returned by Jrezp are
zero.

Ldexp returns the quantity value * Zezp.

ModJ returns the signed fractional part of value and stores the integral part
indirectly in the location pointed to by iptr.

DIAGNOSTICS

If ldezp would cause overflow, ::t:HUGE is returned (according to the sign of value),
and errno is set to ERANGE.
If ldezp would cause underflow, zero is returned and errno is set to ERANGE.

Icon International, Inc. 1

--------~~--~~-~~--

FTW(3C) COMPATffiILITY ROUTINES FTW(3C)

(NAME

(

c

ftw - walk a file tree

SYNOPSIS

#include <ftw.h>

int ftw (path, fn, depth)
char *path;
int (*fn) ();
int depth;

DESCRIPTION

Ftw recursively descends the directory hierarchy rooted in path. For each object in
the hierarchy, ftw calls fn, passing it a pointer to a null-terminated character string
containing the name of the object, a pointer to a stat structure (see stat(2» contain
ing information about the object, and an integer. Possible values of the integer,
defined in the <ftw.h> header file, are FTWJ' for a file, FTWJ) for a directory,
FTWJ)!\'R, for a directory that cannot be read, and FTW~S for an object for which
stat could not successfully be executed. If the integer is FTWJ)NR, descendant.s of
that directory will not be processed. If the integer is FTW~S, the stat structure
will contain garbage. An example of an object that would cause FTW~S to be
passed to fn would be a file in a directory with read but without execute (search)
permission.

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a
nonzero value, or some error is detected within flw (such as an I/O error). If the
tree is exhausted, ftw returns zero. If fn returns a nonzero value, ftw stops its tree
traversal and returns whatever value was returned by fn. If ftw detects an error, it
returns -1, and sets the error type in errno.

Ftw uses one file descriptor for each level in the tree. The depth argument limits the
number of file descriptors so used. If depth is zero or negative, the effect is the same
as if it were 1. Depth must not be greater than the number of file descriptors
currently available for use. Ftw will run more quickly if depth is at least as large as
the number of levels in the tree.

SEE ALSO

stat(2), malloc(3C).

Icon International, Inc. 1

FTW(3C) COMPATmILITY ROUTINES FTW(3C)

BUGS

2

Because ftw is recursive, it is possible for it to terminate with a memory fault when
applied to very deep file structures.
It could be made to run faster and use less storage on deep structures at the cost of
considerable complexity.
Ftw uses malloc(3C) to allocate dynamic storage during its operation. If ftw is forci
bly terminated, such as by longjmp being executed by fn or an interrupt routine, ftw
will not have a chance to free that storage, so it will remain permanently allocated.
A safe way to handle interrupts is to store the (act that an interrupt has occurred,
and arrange to have fn return a nonzero value at its next invocation.

Icon International, Inc.

;f~~'\

~j!

GETCWD(3C) COMPATmILITY ROUTINES GETCWD(3C)

(NAME

(

getcwd - get path-name of current working directory

SYNOPSIS

char *getcwd (bur, size)
char *bur;
int size;

DESCRIPTION

Getcwd returns a pointer to the current directory path-name. The value of stze
must be at least two greater than the length of the path-name to be returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space using malloc(3C). In
this case, the pointer returned by getcwd may be used as the argument in a subse
quent call to free.

The function is implemented by using popen(3S) to pipe the output of the pwd(l)
command into the specified string space.

EXAMPLE

SEE ALSO

char *cwd, *getcwdO;

if «cwd = getcwd«char *)NULL, 64)) = NULL) {

perror("pwd ");
exit(l);

}
printf("%s\n", cwd);

malloc(3C), popen(3S).
pwd(l) in the ICON/UXV User Reference Manual.

DIAGNOSTICS

Returns NULL with errno set if size is not large enough, or if an error ocurrs in a

Icon International, Inc. 1

GETCWD(3C) COMPATffiILITY ROUTINES GETC\\TI (3C)

lower-level function.

2 Icon International, Inc.

GETENV(3C) COMPATIBILITY ROUTINES

(NAME

getenv - return value for environment name

SYNOPSIS

char *getenv {name)
char *name;

DESCRIPTION

GETENV(3C)

Getenv searches the environment list (see environ(5)) for a string of the form
name=value, and returns a pointer to the value in the current environment if such a
string is present, otherwise a NULL pointer.

SEE ALSO

exec(2), putenv(3C), environ(5).

Icon International, Inc. 1

GETGRENT (3C) COMPATmn..ITY ROUTINES GETGRENT (3C)

NAME

getgrent, getgrgid, getgrnam, setgrent, eRdgrent, fgetgrent - get group file entry

SYNOPSIS

#include <grp.h>

struct group .getgrent ()

struct group .getgrgid (gid)
int gid;

struct group .getgrnam (name)
char *namej

void setgrent ()

void endgrent ()

struct group *fgetgrent (f)
Fll..E *f;

DESCRIPTION

Getgrent, getgrgid and getgrnam each return pointers to an object with the following
structure containing the broken-out fields of a line in the /etc/group file. Each line
contains a "group" structure, defined in the <grp.h> header file.

struct group {
char
char
int
char

};

*gr.Jlame;
*gr_passwd;
gr-,id;
**grJDem;

/* the name of the group */
/* the encrypted group password */
/* the numerical group ID */
/* vector of pointers to member names */

Getgrent when first called returns a pointer to the first group structure in the file;
thereafter, it returns a pointer to the next group structure in t.he file; so, successive
calls may be used to search the entire file. Getgrgid searches from the beginning of
the file until a numerical group id matching gid is found and returns a pointer to the
particular structure in which it was found. Getgrnam searches from the beginning of
the file until a group name matching name is found and returns a pointer to t.he par
ticular structure in which it was found. If an end-of-file or an error is encountered
on reading, these functions return a NULL pointer.

Icon International, Inc. 1

(

c

GETGRENT (3C) COMP ATmILITY ROUTINES GETGRENT (3C)

FR.ES

A call to 8etgrent has the effect of rewinding the group file to allow repeated
searches. Endgrent may be called to close the group file when processing is complete.

Fgetgrent returns a pointer to the next group structure in the stream I, which
matches the format of /etc/group.

/etc/group

SEE ALSO

getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS

A NULL pointer is returned on EOF or error.

WARNING

BUGS

2

The above routines use <stdio.h>, which causes them to increase the sizE.' of pro
grams, not otherwise using standard I/O, more than might be expected.

All information is contained in a static area, so it must be copied if it is to be saved.

Icon International, Inc.

GETLOGIN (3C) COMPATffiILITY ROUTINES GETLOGIN (3C)

NAME

getlogin - get login name

SYNOPSIS

char *getlogin ();

DESCRIPTION

Getlogin returns a pointer to the login name as found in /etc/utmp. It may be
used in conjunction with getpwnam to locate the correct password file entry when the
same user ID is shared by several login names.

FILES

If getlogin is called within a process that is Dot attached to a terminal, it returns a
NULL pointer. The correct procedure for determining the login name is to call
cuserid, or to call getlogin and if it fails to call gefpwuid.

/etc/utmp

SEE ALSO

cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS

Returns the NULL pointer if name is not found.

BUGS

The return values point to static data whose content is overwritten by each call.

Icon International, Inc. 1

(

(

GETOPT(3C) COMP ATmn..ITY ROUTINES

NAME

getopt - get option letter from argument vector

SYNOPSIS

int getopt (argc, argv, optstring)
int argc;
char **argv, *opstring;

extern char *optarg;
extern int optind, opterr;

DESCRIPTION

GETOPT(3C)

Getopt returns the next option letter in argv that matches a lett.er in optstring. Opt
string is a string of recognized option letters; if a letter is followed by a colon, the
option is expected to have an argument that mayor may not be separated from it
by white space. Optarg is set to point to the start of the option argument on return
from getopt.

Getopt places in optind the argv index of the next argument to be processed.
Because optind is external, it is normally initialized to zero automatically before the
first call to getopt.

W'hen all options have been processed (i.e., up to the first non-option argument),
getopt returns EOF. The special option -- may be used to delimit the end of the
options; EOF will be returned, and - will be skipped.

DIAGNOSTICS

Getopt prints an error message on stderr and returns a question mark (r) when it
encounters an option letter not included in optstring. This error message may be dis
abled by setting opterr to a non-zero value.

EXAMPLE

The following code fragment shows how one might. process the arguments for a com
mand that can take the mutually exclusive options a and h, and the options rand 0,

both of which require arguments:

main (argc, argv)
int argc;
char **argv;
{

Icon International, Inc. 1

GETOPT(3C)

}

SEE ALSO

COMP ATffilLITY ROUTINES

int c;
extern char *optarg;
extern int optind; . .
while «c == getopt(argc, argv, "abf:o:"» 1== EOF)

switch (c) {
case 'a':

if (bflg)
errftg++;

else
aflg++;

break;
ease 'h':

case 'f':

if (aft g)
errftg++;

else
bproc();

break;

HUe == optarg;
break;

case '0':
ofile == optarg;
break;

case '?':
errftg++;

}
if (errflg) {

fprintf(stderr, "usage: ") . .. ;

}
exit (2);

for (; optind < argc; optind++) {
if (access(argv[optind], 4)) {

GETOPT(3C)

getopt(l) in the ICON/UXV User Reference Manual.

2 Icon International, Inc.

(

GETP ASS (3C) CO:MPATffiILITY ROUTINES GETP ASS (3C)

NAME

getpass - read a password

SYNOPSIS

char *getp&ss (prompt)
char *prompt;

DESCRIPTION

Fn..ES

Getpass reads up to a newline or EOF from the file /dev /tty, after prompting on
the standard error output with the null-terminated string prompt and disabling echo
ing. A pointer is returned to a null-terminated string or at most 8 characters. If
/dev /tty cannot be opened, a NULL pointer is returned. An interrupt will ter
minate input and send an interrupt signal to the calling program before returning.

/dev/tty

SEE ALSO

crypt(3C).

WARNING

BUGS

The above routine uses <stdio.h>, which causes it to increase the size of programs
not otherwise using standard I/O, more than might be expected.

The return value points to static data whose content is oVE'rwritten by each call.

Icon International, Inc. 1

GETPW(3C) COMP ATmn..ITY ROUTINES

NAME

getpw - get name from UID

SYNOPSIS

int getpw (uid, but)
int uid;
char *buf;

DESCRIPTION

GETPW(3C)

Getpw searches the password file for a user id number that equals uid, copies the line
of the password file in which uid was found into the array pointed to by bu/, and
returns O. Getpw returns non·zero if uid cannot be found.

This routine is included only for compatibility with prior systems and should not be
used; see getpwent(3C) for routines to use instead.

Fll..ES

/etc/passwd

SEE ALSO

getpwent(3C), passwd(4).

DIAGNOSTICS

Getpw returns non-zero on error.

WARNING

The above routine uses <8tdio.h>, which causes it to increase, more than might be
expected, the size of programs not otherwise using standard I/O.

Icon International, Inc. 1

----~ ---------- -----------

c

GETPWENT (3C) COMP ATffiILITY ROUTINES GETPWENT (3C)

NAME

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get password file
entry

SYNOPSIS

#include <pwd.h>

struct pa.sswd *getpwent ()

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

void setpwent ()

void endpwent ()

struct passwd *fgetpwent (f)
FILE *f;

DESCRIPTION

Getpwent, getpwuid and getpwnam each returns a pointer to an object with the fol
lowing structure containing the broken-out fields of a line in the /etc/passwd file.
Each line in the file contains a "passwd" structure, declared in the <pwd.h> hea.der
file:

struct passwd {

};

char *pWJlame;
char *pw_passwd;
int pw_uid;
int pw..gid;
char *pw..age;
char *pw_comment;
char *pw..gecos;
char *pw_dir;
char *pw...:;hell;

This structure is declared in <pwd.h> so it is not necessary to redeclare it.

Icon International, Inc. 1

GETPWENT (3C) COMP ATmn.ITY ROUTINES GETPWENT (3C)

Fll..ES

The pw_comment field is unused; the others have meanings described in pa88wd(4).

Getpwent when first called returns a pointer to the first passwd structure in the file;
thereafter, it returns a pointer to the next passwd structure in the file; so successive
calls can be used to search the entire file. Getpwuid searches from the beginning of
the file until a numerical user id matching uid is found and returns a pointer to the
particular structure in which it was found. Getpwnam searches from the beginning
of the file until a login name matching name is found, and returns a pointer to the
particular structure in which it was found. If an end-of-file or an error is encoun
tered on reading, these functions return a NULL pointer.

A call to 8etpwent has the effect of rewinding the password file to allow repea ted
searches. Endpwent may be called to close the password file when processing is com
plete.

Fgetpwent returns a pointer to the next passwd structure in the stream I, which
matches the format of /etc/p&88wd.

/etc/passwd

SEE ALSO

getlogin(3C), getgrent(3C), passwd(4).

DIAGNOSTICS

A NULL pointer is returned on EOF or error.

WARNING

BUGS

2

The above routines use <stdio.h>, which causes them to increase the size of pro
grams, not otherwise using standard I/O, more than might be expected.

All information is contained in a static area, so it must be copied if it is to be saved.

Icon International, Inc.

\ ./

(, ""',
, -/

- -~.'-

GETUT(3C) COMPATIBll..ITY ROUTINES GETUT(3C)

(NAME

(

o

getutent, getutid, getutline, pututline, setutent, endutent, utmpname - access utmp
file entry

SYNOPSIS

#include <utmp.h>

Btruct utmp *getutent ()

Btruct utmp *getutid (id)
Btruct utmp *id;

struct utmp *getutline (line)
struct utmp *line;

void pututline (utmp)
struct utmp *utmp;

void setutent ()

void endutent ()

void utmpname (file)
char *file;

DESCRIPTION

Getutent, getutid and getutline each return a pointer to a structure of the following
type: .

struct utmp {
char
char
char
short
short
struct

};

short
short

} uLexit;

Icon International, Inc.

uLuser[8J;
utJd[41;
utJine 12J;
ut_pid;
ut_type;
exit....status {

e_termination;
e_exit;

uLtime;

/* User login name */
/* /etc/inittab id (usually line #) */
/* device name (console, lnxx) */
/* process id */
/* type of entry */

/* Process termination status */
/* Process exit status */
/* The exit status of a process
* marked as DEADJ>ROCESS. * /
/* time entry was made */

1

GETUT(3C) COMPATmaITY ROUTINES GETUT(3C)

FILES

Getutent reads in the next entry from a utmp-like file. If the file is not already open,
it opens it. If it reaches the end of the file, it fails.

Getutid searches forward from the current point in the utmp file until it finds an
entry with a uLtype matching id->uLtype if the type specified is RUNJ..YL,
BOOT_TIME, OLD_TIME or NEW_TIME. If the type specified in id is INIT...PROCESS,
LOGIN...PROCESS, USER.,.PROCESS or DEAD...PROCESS, then getutid will return a pointer
to the first entry whose type is one of these four and whose uLid field matches
id->uCid. If the end of file is reached without a match, it fails.

Getutline searches forward from the current point in thE' ufmp file until it finds an
entry of the type LOGIN...PROCESS or USER...PROCESS which also has a ut_Iine string
matching the line->uUine string. If the end of file is reached without a match, it
fails.

Pututiine writes out the supplied utmp structure into the utmp file. It uses getutid to
search forward for the proper place if it finds that it is not already at the proper
place. It is expected that normally the user of pututline will have searched for the
proper entry using one of the getut routines. If so, pututline will not search. If putut
line does not find a matching slot for the new entry, it will add a new entry to the
end of the file.

Setutent resets the input stream to the beginning of the file. This should be done
before each search for a new entry if it is desired that the entire file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined, from
/etc/utmp to any other file. It is most often expected that this other file will be
/etc/wtmp. If the file does not exist, this will not be apparent until the first
attempt to reference the file is made. Utmpname does not open the file. It just
closes the old file if it is currently open and saves the new file name.

/etc/utmp
/etc/wtmp

SEE ALSO

ttyslot(3C), utmp(4).

DIAGNOSTICS

A NULL pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write. (~;

"'-._-j

2 Icon International, Inc.

(

GETUT(3C) COMP ATmILITY ROUTINES GETUT(3C)

COMMENTS

The most current entry is saved in a static structure. Multiple accesses require that
it be copied before further accesses are made. Each call to either getutid or getutline
sees the routine examine the static structure before performing more I/O. If the con
tents of the static structure match what it is searching for, it looks no further. For
this reason to use getutline to search for multiple occurrences, it would be necessary
to zero out the static after each success, or getutline would just return the same
pointer over and over again. There is one exception to the rule about removing the
structure before further reads are done. The implicit read done by pututline (if it
finds that it is not already at the correct place in the file) will not hurt the contents
of the static structure returned by the getutent, getutid or getutline routines, if the
user has just modified those contents and passed the pointer back to pututline.

These routines use buffered standard I/O for input, but pututiine uses an unbuffered
non-standard write to avoid race conditions between processes trying to modify the
utmp and wtmp files.

Icon International, Inc. 3

HSEARCH (3C) COMP ATmILITY ROUTINES

NAME

hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS

#include <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

HSEARCH (3C)

Hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D. It
returns a pointer into a hash table indicating the location at which an entry can be
found. Item is a structure of type ENTRY (defined in the <search.h> header file)
containing two pointers: item.key points to the comparison key, and item. data points
to any other data to be associated with that key. (Pointers to types other than
character should be cast to pointer-to-character.) Action is a member of an
enumeration type ACTION indicating the disposition of the entry if it cannot be found
in the table. ENTER indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be made. Unsuccessful reso
lution is indicated by the return of a NULL pointer. Hcreate allocates sufficient space
for the table, a.nd must be called before hsearch is used. Nel is an estimate of the
maximum number of entries that the table will contain. This number may be
adjusted upward by the algorithm in order to obtain certain mathematically favor
able circumstances. Hdestroy destroys the search table, and may be followed by
another call to hcreate.

NOTES

Hsearch uses open addressing with a multiplicative hash function. However, its
source code has many other options available which the user may select by compiling
the hsearch source with the following symbols defined to the preprocessor:

DIY Use the remainder modulo table size as the hash function instead
of the multiplicative algorithm.

useR

Icon International, Inc.

Use a User Supplied Comparison Routine for ascertaining table
membership. The routine should be named hcompar and should
behave in a mannner similar to strcmp (see string(3C)).

1

\, 7"

(

(

HSEAROH (3C) COMPATIBILITY ROUTINES HSEARCH (30)

CHAINED
Use a linked list to resolve collisions. If this option is selected, the
following other options become available.

START

SORTUP

Place new entries at the beginning of the linked list
(default is at the end).

Keep the linked list sorted by key in ascending
order.

SORTDOWN
Keep the linked list sorted by key lD descending
order.

Additionally, there are preprocessor flags for obtaining debugging printout (-DDE
BUG) and for including a test driver in the calling routine (-DDRIVER). The
source code should be consulted for further details.

EXAMPLE

2

The following example will read in strings followed by two numbers and store them
in a hash table, discarding duplicates. It will then read in strings and find the
matching entry in the hash table and print it out.

#include <stdio.h>
#include <search.h>

struct info { /* this is the info stored in the table */
int age, room;!* other than the key. */

5000 /* # of elements in search table */

maine)
{

/* space to store strings */
char string-.,space[NmLEMPL*20];
/* space to store employee info */
struct info info.....space[NUM....EMPL];
/* next avail space in string-.,space */
char *str_ptr = string-.,space;
/* next avail space in info.....space */
struct info *info_ptr = info.....space;
ENTRY item, *found-item, *hsearch();
/* name to look for in table */
char name_toJind[30];
int i = 0;

/* create table */
(void) hcreate(NmLEMPL);
while (scanf("%s%d%d", str_ptr, &info_ptr->age,

&info_ptr->room) != EOF && i++ < NUM..EMPL) {

Icon International. TIlC.

HSEARCH (3C) COMPATIBILITY ROUTINES HSEARCH (3C)

}

SEE ALSO

}

/* put info in structure, and structure in item */
item.key == str_ptrj
item.data == (char *)info-ptr;
str-ptr +== strlen(str-ptr) + Ij
info-ptr++;
/* put item into table */
(void) hsearch(item, ENTER);

/* access table */
item.key == name_to-.lindj
while (scanf("%s", item.key) != EOF) {

if {(founUtem - hsearch(item, FIND» !- NULL) {
/* if item is in the table */

}

(void)printf("found %s, age == %d, room == %d\n",
found-item ->key,
«struct info *)found-item->data)->age,
«struct info *)found-item->data)->room);

} else {
(void)printf("no such employee %s\n",

}
name_to-.lind)

bsearch(3C), Isearch(3C), malloc(3C), malloc(3X), string(3C), tsearch(3C).

DIAGNOSTICS

Hsearch returns a NULL pointer if either the action is FIND and the item could
not be found or the action is ENTER and the table is full. Hcreate returns
zero if it cannot allocate sufficient space for the table.

WARNING

Hsearch and hcreate use malloc(3C) to allocate space.

BUGS

Only one hash search table may be active at any given time.

Icon International, Inc. 3

L3TOL(3C) COMPATmILITY ROUTINES L3TOL(3C)

(NAME

13tol, Itol3 - convert between 3-byte integers and long integers

SYNOPSIS

void 13tol (lp, cp, n)
long *lp;
char *cp;
int n;

void Itol3 (cp, Ip, n)
char *cp;
long *lp;
int D;

DESCRIPTION

LStol converts a list of n three-byte integers packed into a character string pointed
to by cp into a list of long integers pointed to by lp.

Ltol8 performs the reverse conversion from long integers (lp) to three-byte integers
(cp).

These functions are useful for file-system maintenance where the block numbers are
three bytes long.

SEE ALSO

fs(4).

BUGS

Because of possible differences in byte ordering, the numerical values of the long
integers are machine-dependent.

Icon International, Inc. 1

LOCKF(3C) COMP ATffiILITY ROUTINES LOCKF(3C)

NAME

locH - record locking on files

SYNOPSIS

:#= include <unistd.h>

lockf (:BIdes, function, size) long size; int :BIdes, function;

DESCRIPTION

The lockf call will allow sections of a file to be locked (advisory write locks). (Man
datory or enforcement mode record locks are not. currently available.) Locking calls
from other processes which attempt to lock the locked file sect.ion will either return
an error value or be put to sleep until the resource becomes unlocked. All the locks
fora process are removed when the process terminates. [See fcnt(2) for more infor
mation about record locking.]

Fildes is an open file descriptor. The file descriptor must have O_WRONLY or OJWWR
permission in order to establish a lock with this function call.

Function is a control value which specifies the action to be taken. The permissible
values for function are defined in <unistd.h> as follows:

#define
#define
#define
#define

F_ULOCK 0
F.J..OCK 1
F_TLOCK 2
F_TEST 3

/* Unlock a previously locked section */
/* Lock a section for exclusive use */
/* Test and lock a section for exclusive use */
/* Test section for other processes locks */

All other values of function are reserved for future extensions and will result in an
error return if not implemented.

F _TEST is used to detect if a lock by another process is present on the specified sec
tion. FJ..OCK and F_TLOCK both lock a section of a file if the section is available.
F _UNLOCK removes locks from a section of the file.

Size is the number of contiguous bytes to be locked or unlocked. The resource to be
locked starts at the current offset in the file and extends forward for a positive size
and backward for a negative size. If size is zero, the section from the current offset
through the largest file offset is locked (i.e., from the current offset through the
present or any future end-of-file). An area need not be allocated to the file in order
to be locked, as such locks may exist past the end-of-file.

The sections locked with FJ..OCK or F_TLOCK may, in whole or in part, contain or be
contained by a previously locked section for the same process. When this occurs, or

Icon International, Inc. 1

\

'-

(

LOCKF(3C) COMP ATmILITY ROUTINES LOCKF(3C)

if adjacent sections occur, the sections are combined into a single section. If the
request requires that a new element be added to the table of active locks and this
table is already full, an error is returned, and the new section is not locked.

F J..OCK and F _TLOCK requests differ only by the action taken if the resource is not
available. F..LOCK will cause the calling process to sleep until the resource is avail
able. F_TLOCK will cause the function to return a -1 and set errno to [EACCESS]
error if the section is already locked by another process.

F_ULOCK requests may, in whole or in part, release one or more locked sections con
trolled by the process. When sections are not fully releast'd, the remaining sections
are still locked by the process. Releasing the center section of a locked section
requires an additional element in the table of active locks. If this table is full, an
IEDEADLKJ error is returned and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is put to
sleep by accessing another process's locked resource. Thus calls to lock or fcntl scan
for a deadlock prior to sleeping on a locked resourct'. An error return is made if
sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The alarm{2} command may
be used to provide a timeout facility in applications which require this facility.

ERRORS

The lockf utility will fail if one or more of the following are true:

IEBADF]
Fildes is not a valid open descriptor.

[EACCESS]
Cmd is F _TLOCK or F _TEST and the section is already locked by another pro
cess.

IEDEADLK]
Cmd is F..LOCK or F_TLOCK and a deadlock would occur. Also the cmd is
either of the above or F _ULOCK and the number of entries in the lock table
would exceed the number allocated on the system.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 IS

returned and errno is set to indicate the error.

CAVEATS

2

Unexpected results may occur in processes that do buffering in the user address
space. The process may later read/write data which is/was locked. The standard

Icon International, Inc.

LOCKF(3C) COMP ATmILITY ROUTIl\TES LOCKF(3C)

I/O package is the most common source of unexpected buffering.

SEE ALSO

close(2), creat(2), fcntl(2), intro(2), open(2), read(2), write(2).

,
\..-, -/

Icon International, Inc. 3

{
<~

LSEARCH (3C) COMP ATmILITY ROUTINES LSEARCH (3C)

NAME

lsearch, Hind - linear search and update

SYNOPSIS

#include <stdio.h>
#include <search.h>

char *laearch «char *)key, (char *)base, nelp, sizeor(*key), compar)
unsigned *nelp;
int (*compar)();

char *lfind «char *)key, (char *)base, nelp, sizeof(*key), compar)
unsigned *nelp;
int (*compar)();

DESCRIPTION

Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It
returns a pointer into a table indicating where a datum may be found. If the datum
does not occur, it is added at the end of the table. Key points to the datum to be
sought in the table. Base points to the first element in the table. Nelp points to
an integer containing the current number of elements in the table. The integer is
incremented if the datum is added to the table. Compar is the name of the com
parison function which the user must supply (strcmp, for example). It is called with
two arguments that point to the elements being compared. The function must
return zero if the elements are equal and non-zero otherwise.

Lfil1d is the same as Isearch except that if the datum is not found, it is not added to
the table. Instead, a NULL pointer is returned.

NOTES

The pointers to the key and the element at the base of the table should be of type
pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be cast
into type pointer-to-element.

EXAMPLE

This fragment will read in < TABSIZE strings of length < ELSIZE and store them in
a table, eliminating duplicates.

Icon International, Inc. 1

LSEARCH (3C) COMP ATffiILITY ROUTINES LSEARCH (3C)

#include <stdio.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

char line [ELSIZEj, tab [TABSIZE][ELSIZEj, *lsearch();
unsigned nel := 0;
int strcmp{);

while (Cgets{line, ELSIZE, stdin) !:= NULL &&
nel < TABSIZE)

(void) lsearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

SEE ALSO

bsearch{3C), hsearch(3C), tsearch(3C).

DIAGNOSTICS

BUGS

2

If the searched Cor datum is Cound, both lsearch and lfind return a pointer to
it. Otherwise, lfind returns NULL and lsearch returns a pointer to t.he newly
added element.

Undefined results can occur iC there IS not enough room lD the table to add a
new item.

Icon International, Inc.

(

MALLOC(3C) COMPATffiILITY ROUTINES

NAME

malloc, free, realloe, calloe - main memory allocator

SYNOPSIS

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION

MALLOC(3C)

A/alloe and free provide a simple general-purpose memory allocation package. Ma/
loe returns a pointer to a block of at least size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated by maUoe; after
free is performed this space is made available for further allocation, but its contents
are left undisturbed.

Undefined results will occur if the space assigned by maUoe is overrun or if some ran
dom number is handed to free.

Alalloe allocates the first big enough contiguous reach of free space found in a circu
lar search from the last block allocated or freed, coalescing adjacent free blocks as it
searches. It calls sbrk (see brk(2)) to get more memory from the system when there
is no suitable space already free.

Realloe changes the size of the block pointed to by ptr to size bytes and returns a
pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If no free block of size bytes is available in t.he
storage arena, then realloe will ask malloe to enlarge the arena by size bytes and
will then move the data to the new space.

Realloe also works if ptr points to a block freed since the last call of mal/or, real/oc,
or ealloe; thus sequences of free, malloe and realloe can exploit t.he search st.rategy of
malloe to do storage compaction.

Icon International, Inc. 1

MALLOC(3C) COMPATmn..ITY ROUTINES MALLOC(3C)

Calloc allocates space for an array of nelem elements of size elsize. The space is ini
tialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after p0s

sible pointer coercion) for storage of any type of object.

SEE ALSO

brk(2}, malloc(3X).

DIAGNOSTICS

Malloc, realloc and calloc return a NULL pointer if there is no available memory or if
the arena has been detectably corrupted by storing outside the bounds of a block.
When this happens the block pointed to by ptr may be destroyed.

NOTE

2

Search time increases when many objects have been allocated; that is, if a program
allocates but never frees, then each successive allocation takes longer. For an alter
nate, more flexible implementation, see malloc(3X).

Icon International, Inc.

MEMORY(3C) COMPATIBILITY ROUTINES MEMORY(3C)

NAME

memccpy, memchr, memcmp, memcpy, memset - memory operations

SYNOPSIS

#include <memory.h>

char *memccpy (el, 82, c, n)
char *81, *82;
int c, n;

char *memchr (8, c, n)
char *8;
int c, n;

int memcmp (st, 82, n)
char *81, *82;
int n;

char *memcpy (el, 82, n)
char *81, *82;
int n;

char *memset (s, c, n)
char *8;
int c, n;

DESCRIPTION

These functions operate as efficiently as possible on memory areas (arrays of cha.ra.c
ters bounded by a count, not terminated by a null character). They do not check for
the overflow of any receiving memory area.

Alemccpy copies characters from memory area 82 into sl, stopping after the first
occurrence of character c has been copied, or after n characters have been copied,
whichever comes first. It returns a pointer to the charact.er after the copy of c In

el, or a NULL pointer if c was not found in the first n characters of 82.

Memchr returns a pointer to the first occurrence of character c in the first n charac
ters of memory area 8, or a NULL pointer if c does not occur.

Memcmp compares its arguments, looking at the first n characters only, and returns
an integer less than, equal to, or greater than 0, according as sl is lexicogrA phically

Icon International, Inc. 1

MEMORY(3C) COMP ATIDILITY ROUTINES MEMORY(3C)

less than, equal to, or greater than a2.

MemcPlI copies D characters from memory area a2 to al. It returns al.

Memset sets the first D characters in memory area a to the value of character c. It
returns a.

NOTE

BUGS

2

For user convenience, all these functions are declared in the optional <memorll.h>
header file.

Memcmp uses native character comparison, which is signed on PDP-Us and VAX-Us,
unsigned on other machines. Thus the sign of the value returned when one of the
characters has its high-order bit set is implementation-dependent.

Character movement is performed differently in different implementations. Thus
overlapping moves may yield surprises.

Icon International, Tnc.

MI{TEMP (3C) COMP ATffiILITY ROUTINES

NAME

mktemp - make a unique file name

SYNOPSIS

char *mktemp (template)
char *template;

DESCRIPTION

MKTEMP(3C)

Mktemp replaces the contents of the string pointed to by template by a unique file
name, and returns the address of template. The string in template should look like a
file name with six trailing Xs; mktemp will replace the Xs with a letter and the
current process ID. The letter will be chosen so that the resulting name does not
duplicate an existing file.

SEE ALSO

getpid(2), tmpfile(3S), tmpnam(3S).

BUGS

It is possible to run out of letters.

Icon International, Inc. 1

MONITOR(3C) COMP ATmn.ITY ROUTU\"ES

NAME

monitor - prepare execution profile

SYNOPSIS

#include <mon.h>

void monitor (lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpe)();
WORD *buffer;
int bufsize, nfune;

DESCRIPTION

MONITOR (3C)

An executable program created by cc -p automatically includes calls for monitor
with default parameters; monitor needn't be called explicitly except to gain fine con
trol over profiling.

Monitor is an interface to profil('l). Lowpe and highpc are the addresses of two func
tions; buffer is the address of a (user supplied) array of bufsize WORDs (defined in t.he
<mon.h> header file). Monitor arranges to record a histogram of periodically sam
pled values of the program counter, and of counts of calls of certain functions, in the
buffer. The lowest address sampled is that of lowpe and the highest is just below
highpc. Lowpc may not equal ° for this use of monitor. At most nfunc call counts
can be kept; only calls of functions compiled with the profiling option -p of ee(I) are
recorded. (Except on the PDP.ll, the C Library and Mat.h Library supplied when ec
-p is used also have call counts recorded.)

For the results to be significant, especially where there are small, heavily used rou
tines, it is suggested that the buffer be no more than a few times smaller than the
range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monitor «int (*)())2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results on the file mon.out, use

monitor «int (*)())O, 0, 0, 0, 0);

Icon International, Inc. 1

(

MONITOR(3C) COMPATIBILITY ROUTINES

FILES

ProJ(l) can then be used to examine the results.

mon.out
/lib /libp /libc.a
/lib/libp/libm.a

SEE ALSO

profil(2), end(3C).
cc(l), prof(l) in the ICON/UXV User Reference Manual.

2

MONITOR(3C)

Icon International, Inc.

NLIST(3C) CO~ATmILITY ROUTINES

NAME

nlist - get entries from name list

SYNOPSIS

#include <nliat.h>

int nliat (file-name, nI)
char *flIe-namej
.truct nliat *nI;

DESCRIPTION

NLIST(3C)

Nlist examines the name list in the executable file whose name is pointed to by file
name, and selectively extracts a list of values and puts them in the array of nlist
structures pointed to by nl. The name list nl consists of an array of structures con
taining names of variables, types and values. The list is terminated with a null
name; that is, a null string is in the name position of the structure. Each variable
name is looked up in the name list of the file. If the name is found, the type and
value of the name are inserted in the next two fields. The type field will be set to 0
unless the file was compiled with the -g option. If the name is not found, both
entries are set to O. See a. out(4} for a discussion of the symbol table structure.

This function is useful for examining the system name hst kept in the file /unix. In
this way programs can obtain system addresses that are up to date.

NOTES

The <nlist.h> header file is automatically included by <a.out.h> for compatability.
However, if the only information needed from <a.out.h> is for use of "Iist, then
including <a.out.h> is discouraged. If <a.ouf.h> is included, the line "#Undef
nJlame" may need to follow it.

SEE ALSO

a.out(4}.

DIAGNOSTICS

All value entries are set to 0 if the file cannot be read or if it does not contain a
valid name list.

Icon International, Inc. 1

NLIST(3C) COMPATIBILITY ROUTINES NLIST(3C)

Mist returns -1 upon error; otherwise it returns O.

2 Icon International, Inc.

PERROR(3C) COMP ATffiILITY ROUTINES

NAME

perror, errno, sys_errlist, sysJerr - system error messages

SYNOPSIS

void perror (s)
char *s;

extern int errno;

extern char *sys_err list [];

extern int .Y.Jerr;

DESCRIPTION

PERROR(3C)

Perror produces a message on the standard error output, describing the last error
encountered during a call to a system or library function. The argument string s is
printed first, then a colon and a blank, then the message and a new-line. To be of
most use, the argument string should include the name of the program that incurred
the error. The error number is taken from the external variable errno, which is set
when errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the array of message strings sys_errlist
is provided; errno can be used as an index in this table to get the message string
without the new-line. Sys_nerr is the largest message number provided for in the
table; it should be checked because new error codes may be added to the system
before they are added to the table.

SEE ALSO

intro{2}.

Icon International, Inc. 1

PUTENV(3C) COMPATIBILITY ROUTINES

NAME

putenv - change or add value to environment

SYNOPSIS

int. putenv (8tring)
char *8tring;

DESCRIPTION

PUTENV(3C)

String points to a string of the form Hname=value." Putenv makes the value of the
environment variable name equal to value by altering an existing variable or creat
ing a new one. In either case, the string pointed to by string becomes part of the
environment, so altering the string will change the environment. The space used by
string is no longer used once a new string-defining name is passed to putenv.

DIAGNOSTICS

Putenv returns non-zero if it was unable to obtain enough space via malloc for an
expanded environment, otherwise zero.

SEE ALSO

exec(2), getenv(3C), malloc(3C), environ(5).

WARNINGS

Putenv manipulates the environment pointed to by environ, and can be used in con
junction with getenv. However, envp (the third argument to main) is not changed.
This routine uses malloc(3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order.
A potential error is to call putenv with an automatic variable as the argument, then
exit the calling function while string is still part of the environment.

Icon International, Inc. 1

PUTPWENT (3C) COMPATIBILITY ROUTINES

NAME

putpwent - write password file entry

SYNOPSIS

#include <pwd.h>

int putpwent (p, t)
struct passwd *p;
Fll.E .(;

DESCRIPTION

PUTPWENT (3C)

Putpwent is the inverse of getpwent(3C). Given a pointer to a passwd structure
created by getpwent (or getpwuid or getpwnam), putpwent writes a line on the stream
I, which matches the format of /ete/passwd.

DIAGNOSTICS

Putpwent returns non-zero if an error was detected during its operation, otherwise
zero.

SEE ALSO

getpwent(3C).

WARNING

The above routine uses <stdio.h>, which causes it to increase the size of programs,
not otherwise using standard I/O, more than might be expected.

Icon International, Inc. 1

(

QSORT(3C) COMPATIBILITY ROUTINES

NAME

qsort - quicker sort

SYNOPSIS

void q80rt «char *) base, nel, sizeof (*base), compar)
unsigned nel;
int (*compar)();

DESCRJPTION

QSORT(3C)

Qsort is an implementation of the quicker-sort algorithm. It sorts a table of data in
place.

Base points to the element at the base of the table. Nel is the number of elemt>nts
in the table. Compar is the name of the comparison function, which is called with
two arguments that point to the elements being compared. As the function must
return an integer less than, equal to, or greater than zero, so must the first argu
ment to be considered be less than, equal to, or greater than the second.

,
l NOTES

The pointer to the base of the table should be of type pointer-to-element, and cast to
type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.
The order in the output of two items which compare as equal is unpredictable.

SEE ALSO

bsearch(3C), Isearch(3C), string(3C).
sort(l) in the ICON/UXV User Reference Manual.

Icon International, Inc. 1

RAND (3C) COMPATIBILITY ROUTINES

NAME

rand, srand - simple random-number generator

SYNOPSIS

int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION

RAND (3C)

Rand uses a multiplicative congruential random-number generator wit& period 232

that returns successive pseudo-random numbers in the range from 0 to 21 -1.

Srand can be called at any time to reset the random-number generator to a random
starting point. The generator is initially seeded with a value of 1.

NOTE

The spectral properties of rand leave a great deal to be desired. Drand48{3C) pro
vides a much better, t.hough more elaborate, random-number generator.

SEE ALSO

drand4S(3C).

Icon International, Inc. 1

(

(

SETJMP(3C) COMPATIBILITY ROUTINES

NAME

setjmp, longjmp - non-local goto

SYNOPSIS

#include <aetjmp.h>

int 8etjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

DESCRIPTION

SETJMP(3C)

These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

Setjmp saves its stack environment in env (whose type, jmp_buJ, is defined In the
<setjmp.h> header file) for later use by longjmp. It returns the value O.

Longjmp restores the environment saved by the last call of setjmp with the
corresponding envargument. After longjmp is completed, program execution contin
ues as if the corresponding call of setjmp (which must not itself have returned in the
interim) had just returned the value val. Longjmp cannot cause setjmp to ret.urn t.he
value O. If longjmp is invoked with a second argument of 0, setjmp will return 1. All
accessible data had values as of the time longjmp was called.

SEE ALSO

signal(2).

'VARNING

If longjmp is called even though env was never primed by a call to setjmp, or when
the last such call was in a function which has since returned, absolute chaos is
guaranteed.

Icon International, Inc. 1

SLEEP (3C) COMP ATmILITY ROUTINES

NAME

sleep - suspend execution for interval

SYNOPSIS

unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION

SLEEP (3C)

The current process is suspended from execution for the number of seconds specified
by the argument. The actual suspension time may be less than that requested for
two reasons: (1) Because scheduled wakeups occur at fixed I-second intervals, (on the
second, according to an internal clock) and (2) because any caught signal will ter
minate the sleep following execution of that signal's catching routine. Also, the
suspension time may be longer than requested by an arbitrary amount due to the
scheduling of other activity in the system. The value returned by sleep will be the
"unslept" amount (the requested time minus the time actually slept) in case the
caller had an alarm set to go off earlier than the end of the requested sleep time, or
premature arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or some
other signal) occurs. The previous state of the alarm signal is saved and restored. ".
The calling program may have set up an alarm signal before calling sleep. If the
sleep time exceeds the time till such alarm signal, the process sleeps only until the
alarm signal would have occurred. The caller's alarm catch routine is execut.ed just
before the sleep routine returns. But if the sleep time is less than the time till such
alarm, the prior alarm time is reset to go off at the same time it would have without
the intervening sleep.

SEE ALSO

alarm(2), pause(2), signal(2).

Icon International, Inc. 1

SSIGNAL (3C) COMP ATmn.ITY ROUTINES

NAME

ssignal, gsignal - software signals

SYNOPSIS

#include <Bignal.h>

int (*aaignal (Big, action»()
int aig, (*action)();

int gaignal (aig)
int aig;

DESCRIPTION

SSIGNAL (3C)

Ssignai and gsignai implement a software facility similar to signal(2). This facility is
used by the Standard C Library to enable users to indicate the disposition of error
conditions, and is also made available to users for their own purposes.

Software signals made available to users are associated with integers in the inclusive
range 1 through 15. A call to ssignal associates a procedure, action, with t.he
software signal sig; the software signal, sig, is raised by a call to gsignal. Raising a
software signal causes the action established for that signal to be taken.

The first argument to ssignal is a number identifying the type of signal for which an
action is to be established. The second argument defines the action; it is either the
name of a (user-defined) action function or one of the manifest constants SIGJ>FL
(default) or SIGJGN (ignore). Ssignal returns the action previously established for
that signal type; if no action has been established or the signal number is illegal,
ssignal returns SIGJ>FL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for s;g, then that action is reset to
SIGJ)FL and the action function is entered with argument sig. Gsignal returns
the value returned to it by the action function.

If the action for sig is SIGJGN, gsignai returns the value 1 and takes no other
action.

If the action for sig is SIGJ>FL, gsignal returns the value 0 and takes no other
action.

Icon International, Inc. 1

SSIGNAL (3C) COMP ATmILITY ROUTINES SSIGNAL (3C)

If 8ig has an illegal value or no action was ever specified for 8ig, gsignal returns
the value 0 and takes no other action.

SEE ALSO

signal(2}.

NOTES

2

There are some additional signals with numbers outside the range 1 through 15
which are used by the Standard C Library to indicate error conditions. Thus, some
signal numbers outside the range 1 through 15 are legal, although their use may
interfere with the operation of the Standard C Library.

Iron International, Inc.

(

STDIPC(3C) COMP ATffiILITY ROUTINES

NAME

ftok - standard interprocess communication package

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>

key _t ftok(path, id)
char *path;
char id;

DESCRIPTION

STDIPC(3C)

All interprocess communication facilities require the user to supply a key to be used
by the msgget(2), semget(2), and shmget(2) system calls to obtain interprocess com
munication identifiers. One suggested method for forming a key is to use the ftok
subroutine described below. Another way to compose keys is to include the project
ID in the most significant byte and to use the remaining portion as a sequence
number. There are many other ways to form keys, but it is necessary for each sys
tem to define standards for forming them. If some standard is not adhered to, it will
be possible for unrelated processes to unintentionally interfere with each other's
operation. Therefore, it is strongly suggested that the most significant byte of a key
in some sense refer to a project so that keys do not conflict across a given system.

Ftok returns a key based on path and id that is usable in subsequent msgget, semget,
and shmget system calls. Path must be the path name of an existing file that is
accessible to the process. /d is a character which uniquely identifies a project. Note
that ftok will return the same key for linked files when called with the same id and
that it will return different keys when called with the same file name but different
ids.

SEE ALSO

intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS

Ftok returns (key_t) -1 if path does not exist or if it is not accessible to the process.

WARNING

If the file whose path is passed to ftok is removed when keys still refer to the file,
future calls to ftok with the same path and id will return an error. If the same file is

Icon International, Inc. 1

STDIPC(3C) COMP ATIDILITY ROUTINES STDIPC(3C)

2

recreated, then jtok is likely to return a different key than it did the original time it
was called.

Icon International, Inc.

./'

\

STRING (3C) COMPATIBILITY ROUTINES STRING(3C)

C NAME

strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen. strehr, strrchr, strpbrk,
strspn, strcspn, strtok - string operations

SYNOPSIS

#inelude <8tring.h>

char *8trcat (al, 82)
char *81, *82;

char *strncat (al, 82, n)
char *sl, *s2;
int n;

int 8trcmp (al, 82)
char *81, *s2;

int 8trncmp (al, 82, n)
char *81, *82;
int n;

char *8trcpy (81, 82)
char *al, *a2;

char *atrncpy (81, 82, n)
char *81, *a2;
int n;

int atrlen (8)
cha.r *8;

char *8trchr (s, c)
char *8;
int c;

char *strrchr (s, c)
char *8;
int c;

char *strpbrk (al, 82)
char *al, *a2;

int atrapn (ai, 82)
cha.r *81, *a2;

Icon International, Inc. 1

STRING (3C) COMPATIBILITY ROUTINES STRING(3C)

int strcspn (sl, s2)
char *sl, *s2;

char *strtok (Bl, s2)
char *s1, *s2;

DESCRIPTION

2

The arguments Bl, s2 and s point to strings (arrays of characters terminated by a
null character). The functions streat, strneat, streplI, and sirneplI all alter Bl. These
functions do not check for overflow of the array pointed to by Bl.

Strcat appends a copy of string s2 to the end of string Bl. Strneat appends at most
n characters. Each returns a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer less than, equal to, or greater
than 0, according as Bl is lexicographically less than, equal to, or greater than 82.
Strncmp makes the same comparison but looks at at most n characters.

Icon International, Inc.

STRING (3C) COMP ATmILITY ROUTINES STRING (3C)

StrcPll copies string .2 to al, stopping after the null character has been copied.
StrncPlI copies exactly D characters, truncating .2 or adding null characters to 81 if
necessary. The result will not be null-terminated if the length of s2 is D or more.
Each function returns .1.

Strlen returns the number of cwacters in s, not including the terminating null char
acter.

Strchr (8trrchr) returns a pointeT to the first (last) occurrence of character e in
string ., or a NULL pointer if e does not occur in the string. The null character ter
minating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string sl of any character from
string s2, or a NULL pointer if no character from s2 exists in Bl.

Strspn (strcspn) returns the length of the initial segment of string s1 which consists
entirely of characters from (not from) string 82.

Strtok considers the string sl to consist of a sequence of zero or more text tokens
separated by spans of one or more characters from the separator string s2. The first
call (with pointer sl specified) returns a pointer to the first character of the first
token, and will have written a null character into sl immediately following the
returned token. The function keeps track of its position in the string between
separate calls, so that subsequent calls (which must be made with the first argument
a N1JLL pointer) will work through the string sl immediately following that token.
In this way subsequent calls will work through the string sl until no tokens remain.
The separator string s2 may be different from call to call. When no token remains
in sl, a fI.'lJLL pointer is returned.

NOTE

BUGS

For user convenience, all these functions are declared In the optional <slring.h>
header file.

Strcmp and 8trncmp use native character comparison, which is signed on PDP-Us and
VAX-Us, unsigned on other machines. Thus the sign of the value returned when one
of the characters has its high-order bit set is implementation-dependent.

Cha,racter movement is performed differently in different implementations. Thus
overlapping moves may yield surprises.

Icon International, Inc. 3

.,

STRTOD(3C) COMP ATffilLITY ROUTINES

NAME

strtod, atof - convert string to double-precision number

SYNOPSIS

double strtod (str, ptr)
char *str, **ptr;

double atot (str)
char *str;

DESCRIPTION

STRTOD(3C)

Strtod returns as a double-precision floating-point number the value represented by
the character string pointed to by str. The string is scanned up to the first unrecog
nized character.

Strtod recognizes an optional string of "white-space" characters (as defined by
isspace in ctype(3C», then an optional sign, then a string of digits optionally con
taining a decimal point, then an optional e or E followed by an optional sign or
space, followed by an integer. .

If the value of ptr is not (char **):NULL, a pointer to the character terminating the
scan is returned in the location pointed to by pir. If no number can be formed, *ptr
is set to str, and zero is returned.

Alo/(str) is equivalent to strtad(str, (char **)NULL).

SEE ALSO

ctype(3C), scanf(3S), strtol{3C).

DIAGNOSTICS

If the correct value would cause overflow, ::t:HllGE is ret.urned (a,ccording to the sign
of the value), and errna is set to ERANGE.
If the correct value would cause underflow, zero is returned and errna is set to
ERANGE.

Icon International, Inc. 1

STRTOL(3C) COMPATffiILITY ROUTINES STRTOL(3C)

(NAME

(.. _.
!

strtol, atol, atoi - convert string to integer

SYNOPSIS

long strtol (str, ptr, base)
char *str, **ptr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

DESCRIPTION

Strlol returns as a long integer the value represented by the character string pointed
to by str. The string is scanned up to the first character inconsistent with the base.
Leading "white-space" characters (as defined by isspace in ctype(3C)) are ignored.

If the value of ptr is not (char **)NULL, a pointer to the character terminating the
scan is returned in the location pointed to by ptr. If no integer can be formed, that
location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for conversion.
After an optional leading sign, leading zeros are ignored, and "Ox" or "OX" is ignored
if base is 16.

If base is zero, the string itself determines the base thusly: After an optional leading
sign a. leading zero indicates octal conversion, and a leading "Ox" or "OX" hexade
cimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an
explicit cast.

Atolfstr) is equivalent to strtol(str, (char **)NULL, 10).

Atoifstr) is equivalent to (int) strto/(str, (char **)NULL, 10)'

SEE ALSO

ctype(3C), scanf{3S), strtod{3C).

Icon International, Inc. 1

STRTOL(3C) COMPATm~ITY ROUTINES STRTOL(3C)

BUGS
""',.- /!

Overflow conditions are ignored.

2 Icon International. Inc.

SWAB(3C) COMP ATmILITY ROUTINES

(NAME

swab - swap bytes

SYNOPSIS

void swab (from, to, nbytes)
char *'rom, *tOj
int nbyte&j

DESCRIPTION

SWAB(3C)

Swab copies nbytes bytes pointed to by from to the array pointed to by to, exchang
ing adjacent even and odd bytes. It is useful for carrying binary data between PDP-
118 and other machines. Nbytes should be even and non-negative. If nbytes is odd
and positive swab uses nbytes-l instead. If nbytes is negative, swab does nothing.

Icon International, Inc. 1

TSEARCH (3C) COMP ATffiILITY ROUTINES

NAME

tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS

#include <search.h>

char *tBearch «char *) key, (char **) rootp, com par)
int (*compar)();

char *tfind «char *) key, (char **) rootp, compar)
int (*compar)();

char *tdelete «char *) key, (char **) rootp, compar)
int (*compar)();

void twalk «char *) root, action)
void (*action)();

DESCRIPTION

TSEARCH (3C)

Tsearch, tfind, idelete, and twalk are routines for manipulating binary search tre£"s.
They are generalized from Knuth (6.2.2) Algorithms T and D. All comparisons are
done with a user-supplied routine. This routine is called with two arguments, the
pointers to the elements being compared. It returns an integer less than, equal to, or
greater than 0, according to whether the first argument is to be considered less than,
equal to or greater than the second argument. The comparison function need not
compare every byte, so arbitrary data may be contained in the elements in addition
to the values being compared.

Tsearch is used to build and access the tree. Key is a pointer to a datum to be
accessed or stored. If there is a datum in the tree equal to *key (the value pointed
to by key), a pointer to this found datum is returned. Otherwise, *key is inserted,
and a pointer to it returned. Only pointers are copied, so the calling routine must
store the data. Rootp points to a variable that points to the root of the tree. A
NULL value for the variable pointed to by rootp denotes an empty tree; in this case,
the variable will be set to point to the datum which will be at the root of the new
tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it if
found. However, if it is not found, tfind will return a NULL pointer. The arguments
for tfind are the same as for tsearch.

Icon International, Inc. 1

TSEARCH (3C) COMP ATIDILITY ROUTINES TSEARCH (3C)

2

Tdelete deletes a node from a binary search tree. The arguments are the same as
for tsearch. The variable pointed to by rootp will be changed if the deleted node
was the root of the tree. Tde/ete returns a pointer to the parent of the deleted node,
or a NULL pointer if the node is not found. .

Twalk traverses a binary search tree. Root is the root of the tree to be traversed.
(Any node in a tree may be used as the root for a walk below that node.) Action is
the name of a routine to be invoked at each node. This routine is, in turn, called
with three arguments. The first argument is the address of the node being visited.
The second argument is a value from an enumeration data type tllpedef enum {
preorder, postorder, endorder, leaf} VISIT; (defined in the <search.h> header file),
depending on whether this is the first, second or third time that the node has been
visited (during a depth-first, left-to-right traversal of the tree), or whether the node
is a leaf. The third argument is the level of the node in the tree, with the root being
level zero.

The pointers to the key and the root of the tree should be of type pointer-to-elernent,
and cast to type pointer-to-character. Similarly, although declared as type pointer
to-character, the value returned should be cast into type pointer-to-element.

Icon International, Inc.

TSEARCH (3C) COMPATIBILITY ROUTINES TSEARCH (3C)

EXAMPLE

The following code reads in strings and stores structures containing a pointer to each
string and a count of its length. It then walks the tree, printing out the stored
strings and their lengths in alphabetical order.

#include <Search.h>
#include <Stdio.h>

struct node { /* pointers to these are stort'd 10 the tree */
char *string;
int length;

}j
char string..space[I0000];
struct node nodes[500];
struct node *root = NULL;

/* space to store strings */
/* nodes to store */

/* this points to the root */

main()
{

*/
int

char *strptr = string..space;
struct node *nodeptr = nodes;
void printJlode(), twalk();
int i = 0, node_compare();

while (gets(strptr) != NULL && i++ < 5(0) {
/* set node */

}

nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
/* put node into the tree */
(void) tsearch((char *)nodeptr, &root,

node_compare);
/* adjust pointers, so we don't overwrite tree */
strptr += nodeptr->length + 1;
nodeptr++;

twalk{root, printJlode);

This routine compares two nodes, based on an
alphabetical ordering of the string field.

node_compare(nodel, node2)
struct node *node1, *node2;
{

}
/*

return strcmp(nodel->string, node2->string}; .

This routine prints out a node, the first time
twalk encounters it.

Icon International, Inc. 3

,/

(

TSEARCH (3C) COMPATIBILITY ROUTINES TSEARCH (3C)

void
print..node(node, order, level)
struct node **node;
VISIT order;
int level;
{

}

jJ' (order == preorder II order == Iea.f) {
(void)printf{"'string = %208, length = %d\n",

}
(*node)->string, (*node)->length);

SEE ALSO

bsearch(3C). hsearch(3C), lsearch(3C).

DIAGNOSTICS

A l\"ULL pointer is returned by tsearch if there is not imough space available to
create a new node.
A NULL pointer is returned by tsearch, tfind and ide/ete if rootp is NULL on
entry.
If the datum is found, both tsearch and tfind return a pointer to it. If not,
tfind returns NULL, and tsearch returns a pointer to the inserted item.

WARNINGS

BUGS

4

The root argument to twalk is one level of indirection less than the rootp
arguments to tsearch and tdelete.
There are two nomenclatures used to refer to the order in which tree nodes are
visited. Tsearch uses preorder, postorder and endorder to respectively refer to
visting a node before any of its children, after its left child and before its right,
and after both its children. The alternate nomenclature uses preorder, inorder
and postorder to refer to the same visits, which could result in some confusion
over the meaning of postorder.

If the calling function alters the pointer to the root, rf"sults are unpredictable.

Icon International, Inc.

TTYNAME CaC) COMPATmn...ITY ROUTINES TTYNAME (aC)

NAME

ttyname, isatty - find name of a terminal

SYNOPSIS

cha.r *ttyname (Bides)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION

Ttyname returns a pointer to a string containing the null-terminated path name of
the terminal device associated with file descriptor fildes.

[satty returns 1 if fildes is associated with a terminal device, 0 otherwise.

FILES

/dev /*

DIAGNOSTICS

BUGS

Tfyname returns a NULL pointer if fildes does not describe a terminal device in direc
tory /dev.

The return value points to static data whose content is oyerwritten by each call.

Icon International, Inc. 1

TTYSLOT (3C) COMP ATmILITY ROUTINES TTYSLOT (3C)

ttyslot - find the slot in the utmp file of the current user

SYNOPSIS

int ttyslot ()

DESCRIPTION

Ttyslot returns the index of the current user's entry in the /etc/utmp file. This is
accomplished by actually scanning the file /etc/inittab for the name of the terminal
associated with the standard input, the standard output, or the error output (0, 1 or

FILES

2).

/etc/inittab
/etc/utmp

t SEE ALSO

getut(3C), ttyname(3C).

DIAGNOSTICS

A value of 0 is returned if an error was encountered while searching for the terminal
name or if none of the above file descriptors is associated with a terminal device.

Icon International, Inc. 1

(

ABORT(3F) FORTRAN LffiRARY ROUTINES ABORT(3F)

NAME

abort - terminate Fortran program

SYNOPSIS

call abort ()

DESCRIPTION

Abort terminates the program which calls it, closing all open files truncatpd to the
current position of the file pointer. The abort usually results in a core dump.

DIAGNOSTICS

When invoked, abort prints "Fortran abort routine called" on the standard error
output. The message "abort - core dumped" is sent to the terminal.

SEE ALSO

abort(3C).

Icon International t Inc. 1

ABS(3F) FORTRAN LmRARY ROUTINES

NAME

abs, iabs, dabs, cabs, zabs - Fortran absolute value

SYNOPSIS

mteger i1, i2
real rl, r2
double precision dpl, dp2
complex exl, cx2
double complex cixl, cix2
r2 = abs(rl}
i2 = iabs(il}
i2 = abs(il}
dp2 = dabs(dpl}
dp2 = abs(dpl}
ex2 = eabs(exl)
ex2 = abs(cxl}
dx2 = zabs(dxl)
dx2 = abs(dxl}

DESCRIPTION

ABS (3F)

Abs is the family of absolute value functions. labs returns the integer absolute value
of its integer argument. Dabs returns the double-precision absolute value of its
double-precision argument. Cabs returns the complex absolute value of its complex
argument. Zabs returns the double-complex absolute value of its double-complex
argument. The generic form abs returns the type of its argument.

SEE ALSO

floor{3M).

Icon International, Inc. 1

/

t(

ACOS(3F) FORTRAN LffiRARY ROUTINES

NAME

acos, dacos - Fortran arccosine intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
r2 = aC08(rl)
dp2 = dac08(dpl)
dp2 = aC08(dpl)

DESCRIPTION

ACOS(3F)

AC08 returns the real arccosine of its real argument. Daco8 returns the dou ble
precision arccosine of its double-precision argument. The generic form aC08 may be
used with impunity as its argument will determine the type of the returned value.

SEE ALSO

trig(3M).

Icon International, Inc. 1

AIMAG(3F) . FORTRAN LffiRARY ROUTINES

NAME

aimag, dimag - Fortran imaginary part of complex argument

SYNOPSIS

real r
eomplex exr
double preeision dp
double eomplex exd
r = aimag(exr)
dp == dimag(exd)

DESCRIPTION

AIMAG(3F)

Aimag returns the imaginary part of its single-precision complex argument. Dimag
returns the double-precision imaginary part of its double-complex argument.

Icon International, Inc. 1

/r~ """,

/

AINT(3F) FORTRAN LmRARY ROUTINES

NAME

aint, dint - Fortran integer part intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
r2 = aint(rl)
dp2 = dint(dpl)
dp2 = aint(dpl)

DESCRIPTION

AINT(3F)

Aint returns the truncated value of its real argument in a real. Dint ret.urns the
truncated value of its double-precision argument as a double-precision value. Aint
may be used as a generic function name, returning either a real or double-precision
value depending on the type of its argument.

Icon International, Inc. 1

ASIN(3F) FORTRAN LffiRARY ROUTINES

NAME

asin, dasin - Fortran arcsine intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
r2 = asin(rl)
dp2 = dasin(dpl)
dp2 = asin(dpl)

DESCRIPTION

ASIN(3F)

Asin returns the real arcsine of its real argument. Dasin returns the double
precision arcsine of its double-precision argument. The generic form asin may be
used with impunity as it derives its type from that of its argument.

SEE ALSO

trig(3M).

Icon International, Inc. 1

ATAN(3F) FORTRAN LffiRARY ROUTINES

NAME

atan, datan - Fortran arctangent intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
r2 = atan(rl)
dp2 = datan(dpl)
dp2 = atan(dpl)

DESCRIPTION

ATAN(3F)

Atan returns the real arctangent of its real argument. Datan returns the double
precision arctangent of its double-precision argument. The generic form atan may be
used with a double-precision argument returning a double-precision value.

SEE ALSO

trig(3M).

Icon International, Inc. 1

I

ATAN2(3F) FORTRAN LmRARY ROUTINES

NAME

atan2, datan2 - Fortran arctangent intrinsic function

SYNOPSIS

real rl, r2, r3
double precision dpl, dp2, dp3
r3 = atan2(rl, r2)
dp3 = datan2(dpl, dp2)
dp3 = atan2(dpl, dp2)

DESCRIPTION

AT~1\T2(3F)

Atan£ returns the arctangent of argl/arg£ as a real value. Datan£ returns the
double-precision arctangent of its double-precision arguments. The generic form
atan£ may be used with impunity with double-precision arguments.

SEE ALSO

trig(3M).

Icon International, Inc. 1

, /

;"'"
I

'''--,)

(

('\

BOOL(3F) FORTRAN LmRARY ROUTINES BOOL(3F)

NAME

and, or, xor, not, lshift, rshift - Fortran Bitwise Boolean functions

SYNOPSIS

integer i, j, k
real a, b, c

k = and(i, j)
c = orCa, b)
j = xor(i, a)
j = not(i)
k = lshift(i, j)
k = rshift(i, j)

DESCRIPTION

The generic intrinsic Boolean functions and, or and xor return the value of the
binary operations on their arguments. Not is a unary operator returning the one's
complement of its argument. Lshift and rshift return the value of the first argument
shifted left or right, respectively, the number of times specified by the second
(integer) argument. The Boolean functions are generic; that is, they are defined for
all data types as arguments and return values. Where required, the compiler will
generate appropriate type conversions.

NOTE

BUGS

Although defined for all data types, use of Boolean functions on any but integer data
is bizarre and will probably result in unexpected consequences.

The implementation of the shift functions may cause large shift values to deliver
weird results.

SEE ALSO

mil(3F).

Icon International, Inc. 1

CONJG(3F) FORTRAN LmRARY ROUTINES

NAME

conjg, dconjg - Fortran complex conjugate intrinsic function

SYNOPSIS

complex exl, cx2
double complex dxl, dx2
ex2 == eonjg(exl)
dx2 == deonjg(dxl)

DESCRIPTION

CONJG(3F)

Conjg returns the complex conjugate of its complex argument. Dconjg returns the
double-complex conjugate of its double-complex argument.

Icon International, Inc. 1

(

cos (3F) FORTRAN LmRARY ROUTINES

NAME

cos, dcos, ccos - Fortran cosine intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
complex cxl, cx2
r2 = cos(rl)
dp2 = dcos(dpl)
dp2 = cos(dpl)
cx2 = eeos(exl)
cx2 = cos(cxl)

DESCRIPTION

COS (3F)

Cos returns the real cosine of its real argument. Dcos returns the double-precision
cosine of its double-precision argument. Ccos returns the ('omplex cosine of its ('om

. plex argument. The generic form cos may be used with impunity as its returned
type is determined by that of its argument.

SEE ALSO

trig(3M).

Icon International, Inc. 1

COSH(3F) FORTRAN LffiRARY ROUTINES

NAME

cosh, dcosh - Fortra;nByperholic cosine intrinsic function

SYNOPSIS

real rl, r2
dou ble precision dpl, dp2
r2 = cosh(rl)
dp2 = dcosh(dpl)
dp2 = cosh(dpl)

DESCRIPTION

COSH(3F)

Gosh returns the real hyperbolic cosine of its real argument. Dcosh returns the
double-precision hyperbolic eosine of its double-precision argument. The generic
form cosh may be used to return the hyperbolic cosine in the type of its argument.

SEE ALSO

sinh(3M).

Icon International, Inc. 1

(

('

DIM(3F) FORTRAN LffiRARY ROUTINES

NAME

dim, ddim, idim - positive difference intrinsic functions

SYNOPSIS

integer ai, a2, a3
a3 = idim(al, a2)

real ai, a2, a3
a3 = dim(al, a2)

double precision ai, a2, a3
. a3 = ddim(al, a2)

DESCRIPTION

These functions return:
al-a2 if al > a2
o if al <= a2

Icon International, Inc.

DIM(3F)

1

DPROD(3F) FORTRAN LmRARY ROUTINES DPROD(3F)

NAME

dprod - double precision product intrinsic function

SYNOPSIS

real ai, a2

double precision a3

a3 = dprod(al, a2)

DESCRIPTION

Dprod returns the double precision product of its real arguments.

Icon International, Inc. 1

EXP(3F) FORTRAN LmRARY ROUTINES

f NAME

exp, dexp, cexp - Fortran exponential intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
complex exl, ex2
r2 = exp(rl)
dp2 ~ dexp(dpl)
dp2 = exp(dpl)
cx2 = eexp(exl)
ex2 = exp(cxl)

DESCRIPTION

EXP(3F)

Exp returns the real exponential function e% of its real argument. Dexp returns the
double-precision exponential function of its double-precision argument. Cexp returns
the complex exponential function of its complex argument. The generic function exp
becomes a call to dexp or cexp as required, depending on the type of its argument.

t SEE ALSO

exp(3M).

Icon International, Inc. 1

FTYPE(3F) FORTRAN LIDRARY ROUTINES FTYPE(3F)

NAME

int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx, ichaT, char - explicit Fortran
type conversion

SYNOPSIS

integer i, j
real r, s
double precision dp, dq
complex cx
double complex dcx
character*l ch
i = inter)
i = int(dp)
i = int(cx)
i = int(dcx)
i = ifix(r)
i = idint(dp)
r = real(i)
r = real(dp)
r = real(cx)
r = real(dcx)
r = float(i)
r = sngl(dp)
dp = dble(i)
dp = dble(r)
dp = dble(cx)
dp = dble(dcx)
cx = cmplx(i)
cx = cmplx(i, j)
ex = emplx(r)
ex= cmplx(r, s)
ex = cmplx(dp)
ex = cmplx(dp, dq)
cx = cmplx{dex)
dcx = dcmplx{i)
dcx = dcmplx{i, j)
dex = dcmplx(r)
dcx = dcmplx(r, s)
dcx = dcmplx(dp)
dcx = demplx(dp, dq)
dex = demplx(cx)
i = ichar{ eh)
eh = ehar(i)

DESCRIPTION

These functions perform conversion from one data type to another. The function int
converts to integer form its real, double precision, rompiex, or double complex

Icon International, Inc. 1

FTYPE(3F) FORTRAN LmRARY ROUTINES FTYPE(3F)

2

argument. If the argument is real or double precision, int returns the integer whose
magnitude is the largest integer that does not exceed the magnitude of the argument
and whose sign is the same as the sign of the argument (i.e. truncation). For complex
types, the above rule is applied to the real part. ifix and idint convert only real
and double precision arguments respectively. The function real converts to real form
an integer, double precision, complex, or double complex argument. If the argument is
double precision or double complex, as much precision is kept as is possible. If the
argument is one of the complex types, the real part is returned. The functions float
and Bngl convert only integer and double precision arguments respectively. The
function dble converts any integer, real, complex, or double complex argument to
double precision form. If the argument is of a complex type, the real part is
returned. The function cmpJx converts its integer, real, double precision, or double
complex argument(s) to complex form. The function dcmplx converts to double com
plex form its integer, real, double precision, or complex argument(s}. Either one or
two arguments may be supplied to cmplx and dcmplx • If there is only one argu
ment, it is taken as the real part of the complex type and an imaginary part of zero
is supplied. If two arguments are supplied, the first is taken as the real part and the
second as the imaginary part. The function ichar converts from a character to an
integer depending on the character's position in the collating sequence. The function
char returns the character in the ith position in the processor collating sequence
where i is the supplied argument. For a processor capable of representing n charac
ters,

ichar(char(i)) = i for 0 < i < n, and

char(ichar(ch)) = ch for any representable character ch.

Icon International, Inc.

GETARG(3F) FORTRAN LffiRARY ROUTINES

NAME

getarg - return Fortran command-line argument

SYNOPSIS

eharaeter*N e
integer i
eall getarg(i, e)

DESCRIPTION

GET.ARG (3F)

Getarg returns the i-th command-line argument of the current process. Thus, if a
program were invoked via foo argl arg2 arg3 getarg(e, c) would return the
string "arg2" in the character variable c.

SEE ALSO

getopt(3C).

Icon International, Inc. 1

(

GETENV{3F) FORTRAN LmRARY ROUTINES GETENV{3F)

NAME

getenv - return Fortran environment variable

SYNOPSIS

character*N c call getenv('"VARlABLE.-NAME", c)

DESCRIPTION

Getenv returns the character-string value of the environment variable represented
by its first argument into the character variable of its second argument. If no such
environment variable exists, all blanks will be returned.

SEE ALSO

getenv(3C), environ(5).

Icon International, Inc. 1

IARGC(3F) . FORTRAN LmRARY ROUTINES IARGC(3F)

NAME

iargc - return the number of command line arguments

SYNOPSIS

integer i

i = iargc()

DESCRIPTION

The iargc function returns the number of command line arguments passed to the
program. Thus, if a program were invoked via

foo argl arg2 arg3

iargc(} would return 3.

SEE ALSO

getarg(3F).

Icon International, Inc. 1

«

INDEX(3F) FORTRAN LffiRARY ROUTINES

NAME

index - return location of Fortran substring

SYNOPSIS

character*NI chi
character*N2 ch2
integer i
i = index(chl, ch2)

DESCRIPTION

INDEX(3F)

Index returns the location of substring ch2 in string chl. The value returned is the
position at which substring ch2 starts, or 0 if it is not present in string chl. If N2 is
greater than NI, a zero is returned.

Icon International, Inc. 1

LEN(3F) FORTRAN LIBRARY ROUTINES

NAME

len - return length of Fortran string

SYNOPSIS

character.N ch
integer i
i = len(ch)

DESCRIPTION

Len returns the length of string ch.

Icon International, Inc.

LEN(3F)

1

LOG(3F) FORTRAN LIBRARY ROUTINES

f NAME

log, alog, dlog, clog - Fortran natural logarithm intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
complex exl, ex2
r2 = alog(rl)
r2 = log(rl)
dp2 = dlog(dpl)
dp2 = log(dpl)
cx2 = clog(exl)
cx2 = log(cxl)

DESCRIPTION

LOG(3F)

Alog returns the real natural logarithm of its real argument. Dlog returns the
double-precision natural logarithm of its double-precision argument. Clog returns
the complex logarithm of its complex argument. The generic function log becomes a
call to a/og, d/og, or clog depending on the type of its argument.

SEE ALSO

exp(3M).

Icon International, Inc. 1

LOGIO(3F) FORTRAN LffiRARY ROUTINES

NAME

loglO, aloglO, dloglO - Fortran common logarithm intrinsic function

SYNOPSIS

real 1'1, 1'2
double precision dpl, dp2
1'2 = alogl0(1'1)
1'2 = 10110(1'1)
dp2 == dlogl0(dpl)
dp2 == logI0(dpl)

DESCRIPTION

LOGIO(3F)

Alogl0 returns the real common logarithm of its real argument. Dlogl0 returns the
double-precision common logarithm of its double-precision argument. The generic
function log10 becomes a call to alogl0 or dlogl0 depending on the type of its argu
ment.

SEE ALSO

exp(3M).

Icon International, Inc. 1

MAX(3F) FORTRAN LffiRARY ROUTINES . MAX(3F)

(NAME

max, maxO, amaxO, maxI, amaxl, dmaxl - Fortran maximum-va.lue functions

SYNOPSIS

integer i, j, k, I
real a, b, c, d
double precision dpl, dp2, dp3
I = max(i, j, k)
c = max(a, b)
dp = max(a, b, c)
k = maxO(i, j)
a = amaxO(i, j, k)
i = maxl(a, b)
d = amaxl(a, b, c)
dp3 = dmaxl(dpl, dp2)

DESCRIPTION

The maximum-value functions return the largest of their arguments (of which there
may be any number). Max is the geneTic form which can be used for all data types
and takes its return type from that of its arguments (which must all be of t.he same
type). MaxO returns the integer form of the maximum value of its integer argu
ments; amaxO, the real form of its integer arguments; maxl, the integer form of its
real arguments; amaxl, the real form of its real arguments; and dmaxl, the double
precision form of its double-precision arguments.

SEE ALSO

min(3F).

Icon International, Inc. 1

MCLOCK(3F) FORTRAN LffiRARY ROUTINES MCLOCK(3F)

NAME

mclock - return Fortran time accounting

SYNOPSIS

integer i i = mclock()

DESCRIPTION

Mclock returns time accounting information about the current process and its child
processes. The value returned is the sum of the current process's user time and the
user and system times of all child processes.

SEE ALSO

times(2), clock{3C}, system{3F}.

Icon International, Inc. 1

MIL(3F) FORTRAN LffiRARY ROUTINES MIL(3F)

(NAME

ior, iand, not, ieor, ishft, ishftc, ibits, btest, ibset, ibclr, mvbits - bit field manipula
tion intrinsie functions and subroutines from the Fortran Milit.ary Standard (:M1L
STD-1753).

SYNOPSIS

integer i, k, 1, m, n, len
logical b

i = ior(m, n)
i = iand(m, n)
i = not(m)
i = ieor(m, n)
i = ishrt(m, k)
i = ishrtc(m, k, len)
i = ibits(m, k, len)
b = btest(n, k)
i = ibset(n, k)
i = ibclr(n, k)
call mvbits(m, k, len, n, I)

f DESCRIPTION

ior, iand, not, leor - return the same results as and, or, not, xor as defined 10

boo(3F).

ish/I, ish/te - m specifies the integer to be shifted. k specifies the shift count. k > 0
indicates a left shift. k = 0 indicates no shift. k < 0 indicates a right shift. In
ish/t, zeros are shifted in. In ish/te, the rightmost len bits are shifted circularly k
bits. If k is greater than the machine word-size, ish/te will not shift.

Bit fields are numbered from right to left and the rightmost bit position is zero. The
length of the len field must be greater than zero.

ibits - extract a subfield of len bits from m starting with bit position k and extend
ing left for len bits. The result field is right justified and the remaining bit.s are set
to zero.

btest - The kth bit of argument n is tested. The value of the function is .TRUE. if
the bit is 1 and .F ALSE. if the bit is O.

ibset - the result is the value of n with the kth bit set to 1.

ibclr - the result is the value of n with the kth bit set to O.

Icon International, Inc. 1

MIL (3F) FORTRAN LmRARY ROUTINES MIL(3F)

fflvbits - len bits are moved beginning at position k of argument m to position 1 of
argument n.

SEE ALSO

bool{3f).

2 Icon International, Inc.

(

(

MIN(3F) FORTRAN LffiRARY ROUTINES MIN(3F)

NAME

min, minO, aminO, minI, aminI, dmini - Fortran minimum-value functions

SYNOPSIS

integer i, j, k, I
real a, b, c, d
double precision dpl, dp2, dp3
I = min(i, j, k)
c = min(a, b)
dp = min(a, b, c)
k = minO(i, j)
a = aminO(i, j, k)
i = minl(a, b)
d = aminl(a, b, c)
dp3 = dminl(dpl, dp2)

DESCRIPTION

The minimum-value functions return the mInImum of their arguments (of which
there may be any number). Min is the generic form which can be used for all data
types and takes its return type from that of its arguments (which must all be of the
same type). MinO returns the integer form of the minimum value of its integE'r argu
ments; aminO, the real form of its integer arguments; minl, the integer form of its
real arguments; aminl, the real form of its real arguments; and dminl, the double
precision form of its double-precision arguments.

SEE ALSO

max(3F).

Icon International, Inc. 1

MOD(3F) FORTRAN LmRARY ROUTINES

NAME

mod, amod, dmod - Fortra.n remaindering intrinsic functions

SYNOPSIS

integer i, j, k
real rl, r2, r3
double precision dpl, dp2, dp3
k = mod(i,j)
r3 = amod(rl, r2)
r3 = mod(rl, r2)
dp3 = dmod(dpl, dp2)
dp3 = mod(dpl, dp2)

DESCRIPTION

MOD(3F)

Mod returns the integer remaind~r of its first argument divided by its second argu
ment. Amod and dmod return, respectively, the real and double-precision whole
number remainder of the integer division of their two arguments. The generic ver
sion mod will return the data type of its arguments.

Icon International, Inc. 1

RAND(3F) FORTRAN LIBRARY ROUTINES RAND(3F)

(NAME

(

irand, rand, srand - random number generator

SYNOPSIS

integer iseed, i, irand
double precision x, rand

call srand(iseed) i = irand() x = rand()

DESCRIPTION

Irand generates successive pseudo-random integers in the range from 0 to 2**15-1.
Rand generates pseudo-random numbers distributed in [0, 1.0]. Srand uses its integer
argument to re-initialize the seed for successive invocations of irand and rand.

SEE ALSO

rand(3C).

Icon International, Inc. 1

.,

ROUND(3F) FORTRAN LffiRARY ROUTINES

NAME

anint, dnint, nint, idnint - Fortran nearest integer functions

SYNOPSIS

integer i
real rl, r2
double precision dpl, dp2
r2 = anint(rl}
i = nint(rl}
dp2 = anint(dpl}
dp2 = dnint(dpl}
i = nint(dpl}
i = idnint(dpl}

DESCRIPTION

ROUND (3F)

Anint returns the nearest whole real number to its real argument (i.e., int(a-+O.5) if a
> 0, int(a-O.5) otherwise). Dnint does the same for its double-precision argument.
Nint returns the nearest integer to its real argument. Idnint is the double-precision
version. Anint is the generic form of «flint and dnint , performing the same opera
tion and returning the data type of its argument. Nint is also the generic form of
idnint.

Icon International, Inc. 1

SIGN(3F) FORTRAN LffiRARY ROUTINES SIGN(3F)

C- NAME

(

sign, isign, dsign - Fortran transfer-of-sign intrinsic function

SYNOPSIS

integer i, j, k
real rl, r2, r3
double precision dpl, dp2, dp3
k = isign(i, j)
k = aign(i, j)
r3 = sign(rl, r2)
dp3 = dsign(dpl, dp2)
dp3 = sign(dpl, dp2)

DESCRIPTION

[sign returns the magnitude of its first argument with the sign of its second argu
ment. Sign and dsign are its real and double-precision counterparts, respectively.
The generic version is sign and will devolve to the appropriate type depending on its
arguments.

Icon International, Inc. 1

SIGNAL (3F) FORTRAN LffiRARY ROUTINES

NAME

signal - specify Fortran action on receipt of a system signal

SYNOPSIS

integer i, inttc
external intfc
call signal(i, intfc)

DESCRIPTION

SIGNAL(3F)

The argument i specifies the signal to be caught. Signal allows a process to specify a
function to be invoked upon receipt of a specific signal. The first argument specifies
which fault or exception. The second argument specifies the function to be invoke-d.
NOTE: The interrupt processing function, intfc, does not take an argument.

SEE ALSO

kill(2), signal(2).

Icon International, Inc. 1

SIN (3F) FORTRAN LmRARY ROUTINES

NAME

sin, dsin, csin - Fortran sine intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
complex exl, cx2
r2 = sin(rl}
dp2 = dsin(dpl)
dp2 = sin(dpl)
cx2 = csin(cxl)
cx2 = sin(cxl)

DESCRIPTION

SIN(3F)

Sin returns the real sine of its real argument. Ds;n returns the double-precision sine
of its double-precision argument. Csin returns the complex sine of its complex argu
ment. The generic sin function becomes dsin or csin as required by argument type.

SEE ALSO

trig(3M}.

Icon International, Inc. 1

SINH(3F) FORTRAN LffiRARY ROUTINES

NAME

sinh, dsinh - Fortran hyperbolic sine intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
r2 = emh(rl)
dp2 = dsmh(dpl)
dp2 = emh(dpl)

DESCRIPTION

SINH(3F)

Sinh returns the real hyperbolic sine of its real argumE'nt. Dsinh returns the double
precision hyperbolic sine of its double-precision argument. The generic form s;'l.h
may be used to return a double-precision value when given a double-precision argu
ment.

SEE ALSO

sinh(3M).

Icon International, Inc. 1

SQRT(3F) FORTRAN LmRARY ROUTINES

NAME

sqrt, dsqrt, csqrt - Fortran square root intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
complex cxl, cx2
r2 = aqrt(rl)
dp2 = dsqrt(dpl)
dp2 = aqn(dpl)
cx2 = csqrt(exl)
ex2 = sqrt(exl)

DESCRIPTION

SQRT(3F)

Sqrt returns the real square root of its real argument. Dsqrt returns tht' double
precision square root of its double-precision argument. Csqrt returns the complex
square root of its complex argument. Sqrt, the generic form, will become dsqrt or
csqrt as required by its argument type.

it SEE ALSO

exp(3~J).

(~,

Icon International, Inc. 1

STRCMP(3F) FORTRAN LmRARY ROUTINES

NAME

1ge, Igt, lie, llt - string comparison intrinsic functions

SYNOPSIS

character*N ai, a2
logical I

1= 1ge(al, a2)
I = 19t(al, a2)
1 = lle(al, a2)
I = llt(al, a2)

DESCRIPTION

STRCMP(3F)

These functions return . TRUE. if the inequality holds and .FALSE. otherwise.

Icon International, Inc. 1

/

SYSTEM(3F) FORTRAN LffiRARY ROUTINES SYSTEM(3F)

(NAME

system - issue a shell command from Fortran

SYNOPSIS

character*N c call system (c)

DESCRIPTION

System ca.uses its character a.rgument to be given to sh{l) as input, as if the string
had been typed at a terminal. The current process waits until the shell has com
pleted.

SEE ALSO

exec(2), system(3S).
shell in the ICON/w..'V User Reference Manual.

I

Icon International, Inc. 1

TANH(3F) FORTRAN LmRARY ROUTINES

NAME

tanh, dtanh - Fortran hyperbolic tangent intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
r2 == tanh{rl)
dp2 == dtanh{dpl)
dp2 == tanh{dpl}

DESCRIPTION

TANH(3F)

Tanh returns the real hyperbolic tangent of its real argument. Dtanh returns the
double-precision hyperbolic tangent of its double-precision argument. The generic
form tanh may be used to return a double-precision value given a double-precision
argument.

SEE ALSO

sinh(3M).

Icon International, Inc. 1

TAN(3F) FORTRAN LmRARY ROUTINES

(NAME

tan, dtan - Fortran tangent intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
r2 = tan(rl)
dp2 = dtan(dpl)
dp2 = tan(dpl)

DESCRIPTION

TAN(3F)

Tan returns the real tangent of its real argument. Dtan returns t.he double-precision
tangent of its double-precision argument. The generic tan function becomes dtan as
required with a double-precision argument.

SEE ALSO

trig(3M) ..

Icon International, Inc. 1

,(

BESSEL (3M) MATHEMATICAL FUNCTIONS

NAME

jO, jl, jn, yO, yl, yn - Bessel functions

SYNOPSIS

#include <math.h>

double jO (x)
double Xi

double jl (x)
double Xi

double jn (n, x)
int ni
double Xi

double yO (x)
double Xi

double yl (x)
double Xi

double yn (n, x)
int n;
double x;

DESCRIPTION

BESSEL (3M)

JO and j1 return Bessel functions of x of the first kind of orders 0 and 1 respectively.
In returns the Bessel function of x of the first kind of order n.

YO and y1 return Bessel functions of x of the second kind of orders 0 and 1 respec
tively. Yn returns the Bessel function of x of the second kind of order n. The value
of x must be positive.

DIAGNOSTICS

Non-positive arguments cause yO, y1 and yn to return the value -HUGE and to set
errno to EDOM. In addition, a message indicating DOMAIN error is printed on the
standard error output.

Arguments too large in magnitude cause jO, j1, yO and y1 to return zero and to set
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the

Icon International, Inc. 1

BESSEL (3M) MATHEMATICAL FUNCTIONS BESSEL (3M)

standard error output.

These error-handling procedures may be changed with the function matherr{3M}.

SEE ALSO

matherr(3M).

2 Icon International, Inc.

ERF(3M) MATHEMATICAL FUNCTIONS

(NAME

ed, erfc - error function and complementary error function

SYNOPSIS

:JIinclude <math.h>

double erf (x)
double Xi

double erfc (x)
double x;

DESCRIPTION

•
Erl returns the error function of %, defined as ~ J e-tidt.

v"'o

ERF(3M)

ErIc, which returns 1.0 - erl(%) , is provided because of the extreme loss of relative
accuracy if erl(%} is called for large % and the result subtracted from 1.0 (e.g., for % =
5, 12 places are lost).

SEE ALSO

exp(311).

Icon International, Inc. 1

EXP(3M) MATHEMATICAL FUNCTIONS EXP(3M)

NAME

exp, log, 10glO, pow, sqrt - exponential, logarithm, power, square root functions

SYNOPSIS

#include <math.h>

double exp (x)
double Xi

double log (x)
double Xi

double loglO (x)
double Xi

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION

Exp returns eZ •

Log returns the natural logarithm of x. The value of x must be positive.

Logl0 returns the logarithm base ten of x. The value of x must be positive.

Pow returns :r!'. If x is zero, y must be positive. If x is negative, y must be an
integer.

Sqrt returns the non-negative square root of x. The value of x may not be negative.

DIAGNOSTICS

Exp returns HUGE when the correct value would overflow, or 0 when the correct
value would underflow, and sets errno to ERANGE.

Log and log10 return -HUGE and set errno to EDOM when :r is non-positive. A mes
sage indicating DOMAIN error (or SING error when x is 0) is print.ed on thE' standard
error output.

Icon International, Inc. 1

(

EXP(3M) MATHEMATICAL FUNCTIONS EXP(3M)

Pow returns 0 and sets errno to EDOM when x is 0 and 11 is non-positive, or when :r is
negative and 11 is not an integer. In these cases a message indicating DOMAIN error
is printed on the standard error output. When the correct value for pow would
overflow or underflow, pow returns :t:HUGE or 0 respectively, and sets errno to
ERANGE.

8qrt returns 0 and sets errno to EDOM when :t is negative. A message indica.ting
DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function matherr{3M).

SEE ALSO

hypot(3M), matherr{3M), sinh{3M).

2 Icon International, Inc.

FLOOR(3M) MATHEMATICAL FUNCTIONS FLOOR(3M)

NAME

floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS

#include <math.h>

double floor (x)
double Xi

double ceil (x)
double x;

double tmod (x, y)
double x, y;

double tabs (x)
double x;

DESCRIPTION

Floor returns the largest integer (as a double-precision number) not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns the floating-point remainder of the division of x by y: zero if y is zero
or if x/y would overflow; otherwise the number! with the same sign as x, such that x
= iy + !for some integer i, and If: < :yl.

Fabs returns the absolute value of x, I x I.

SEE ALSO

abs(3C).

Icon International, Inc. 1

(

GAMMA(3M) :MATHE:MATICAL FUNCTIONS

NAME

gamma - log gamma function

SYNOPSIS

#include <math.h>

dou ble gamma (x)
double Xi

extern int signgam;

DESCRIPTION

CXl

GAMMA(3M)

Gamma returns In(: r(:r):), where r(:r) is defined as J e-t tS-1dt. The sign of r(:r) is
o

returned in the external integer signgam. The argument :r may not be a non-positive
integer.

The following C program fragment might be used to calculate r:

if ((y = gamma(x)) > LNJv1AXDOUBLE)
error()i

y = sign gam * exp(Y)i

where LN...MAXDOUBLE is the least value that causes exp(3M) to return a range error,
and is defined in the <values.h> header file.

Dl-\.GNOSTICS

For non-negative integer arguments HUGE is returned, and errno is set to EDOM. A
message indicating SING error is printed on the standard error output.

If the correct value would overflow, gamma returns HUGE and sets errno to
ERANGE.

These error-handling procedures may be changed with the function matherr(3M).

Icon International, Inc. 1

GAMMA(3M) MATHEMATICAL FUNCTIONS GAMMA(3M}

SEE ALSO

exp(3M), matherr(3M), values(5).

/

2 Icon International, Inc.

HYPOT(3M) MATHEMATICAL FUNCTIONS

(NAME

hypot - Euclidean distance function

SYNOPSIS

#include <math.h>

double hypot (x, y)
double x, Yj

DESCRIPTION

Hypot returns

sqrt(x * x +y * y},

taking precautions against unwarranted overflows.

r(DIAGNOSTICS

HYPOT(3M)

\Vhen the correct value would overflow, hypot returns HUGE and sets errno to
ERANGE.

These error-handling procedures may be changed with the function matherr(3M}.

SEE ALSO

matherr(3M}.

Icon International, Inc. 1

MATHERR (3M) MATHEMATICAL FUNCTIONS

NAME

matherr - error-handling function

SYNOPSIS

://=include <math.h>

int matherr (x)
struct exception *x;

DESCRIPTION

MA THERR (3M)

Matherr is invoked by functions in the Math Library when errors are detected. Users
may define their own procedures for handling errors, by including a function named
matherr in their programs. Matherr must be of the form described above. When an
error occurs, a pointer to the exception structure x will be passed to the user
supplied matherr function. This structure, which is defined in the <math.h> header
file, is as follows:

struct exception {
int type;
char *name;
double argI, arg2, retval;

};

The element type is an integer describing the type of error that has occurred, from
the following list of constants (defined in the header file):

DOMAIN
SING
OVERFLOW
UNDERFLOW
TLOSS
PLOSS

argument domain error
argument singularity
overflow range error
underflow range error
total loss of significance
partial loss of significance

The element name points to a string containing the name of the function that
incurred the error. The variables argl and argf are the arguments with which the
function was invoked. Retval is set to the default value that will be returned by the
function unless the user's matherr sets it to a different value.

If the user's matherr function returns non-zero, no error message will be print.ed, and
ermo will not be set.

Icon International, Inc. 1

/

'"

(".
\

"'-.... /

(

(

MATHERR (3M) MATHEMATICAL FUNCTIONS MATHERR (3M)

If matherr is not supplied by the user, the default error-handling procedures,
described with the math functions involved, will be invoked upon error. These pro
cedures are also summarized in the table below. In every case, ermo is set to EDOM
or ERANGE and the program continues.

EXAMPLE

2

#include <math.h>

int
matherr(x)
register struct exception *Xj

{

}

switch (x->type) {
case DOMAIN:

/* change sqrt to return sqrt(-arg1), not 0 */
if (!strcmp(x->name, "sqrt")) {

}

x->retval = sqrt(-x->arg1);
return (0); /* print message and set errno */

case SING:
/* all other domain or sing errors, print message and abort */
fprintf(stderr, "domain error in %s\n", x->name);
abort();

case PLOSS:

}

/* print detailed error message */
fprintf(stderr, "loss of significance in %s(%g) = %g\n",

x->name, x->arg1, x->retval);
return (1); /* take no other action */

return (0); /* all other errors, execute default procedure */

Icon International, Inc.

MATHERR(3M) MATHEMATICAL FUNCTIONS MA THERR (3lvf)

DEFAULT ERROR HANDLING PRuUl!iul.J.I'tES
TUDes of Errors

tvne DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS

ermo mOM mOM ERANGE ERANGE ERANGE ERANGE

BESSEL: - - - - MO •
ivO vI vn (arll. < 0) M -H - - - - -
EXP: - - H 0 - -
LOG. LOGIO:

Jal'L~ 0) M.-H - - - - -
(an: - 0) - M -H - - - -

Ipow: - - :t:H 0 - -
inel[.. non-int MO - - - - -

0 .. non-'POS

S1:LRT: MO - - - - -
GAMMA: - MH H - - -
HYPOT: - - H - - -
SINH: - - ::I:H - - -
COSH: - - H - - -
SIN COS TAN:- - - - MO •
ASIN ACOS ATAN2: M 0 - - - - -

ABBREVlA TIONS
* .AI; much as possible of the value is returned.

M Message is printed (EDOM error).
H HUGE is returned.

-H -HUGE is returned.
::I:H HUGE or -HUGE js returned.
o 0 is returned.

Icon International, Inc. 3

SINH (3M) MATHEMATICAL FUNCTIONS

(NAME

sinh, cosh, tanh - hyperbolic functions

SYNOPSIS

#include <math.h>

double sinh (x)
double X;

double cosh (x)
double X;

double tanh (x)
double X;

DESCRIPTION

SINH (3M)

Sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine and tangent of
their argument.

DIAGNOSTICS

Sinh and cosh return HUGE (and sinh may return -HUGE for negative x) when the
correct value would overflow and set errno to ERANGE.

These error-handling procedures may be changed with the function matherr{3M).

SEE ALSO

matherr{3M).

Icon International, Inc. 1

TRIG (3M) MATHEMATICAL FUNCTIONS

NAME

sin. cos, tan. asin, acos. atan, atan2 - trigonometric functions

SYNOPSIS

:f/:include <math.h>

double .in (x)
double Xj

double cos (x)
double Xj

double tan (x)
double Xj

double asin (x)
double Xj

double acos (x)
double Xj

double atan (x)
double x;

double atan2 (y, x)
double y, X;

DESCRIPTION

TRIG (3M)

Sin, cos and tan return respectively the sine, cosine and tangent of their argument,
x, measured in radians.

Asin returns the arcsine of x, in the range -7r/2 to 7r/2.

Acos returns the arccosine of x, in the range 0 to 7r.

Alan returns the arctangent of x, in the range -7r/2 to 7r/2.

Atane returns the arctangent of y/x, in the range -7r to 7r, using the signs of bot.h
arguments to determine the quadrant of the return value.

Icon International, Inc. 1

/-",

TRIG (3M) MATHEMATICAL FUNCTIONS TRIG (3M)

c. . DIAGNOSTICS

(-/

Sin, C08, and tan lose accuracy when their argument is far from zero. For arguments
sufficiently large, these functions return zero when there would otherwise be a com
plete loss of significance. In this case a message indicating TLOSS error is printed on
the standard error output. For less extreme arguments causing partial loss of
significance, a PLOSS error is generated but no message is printed. In both cases,
errno is set to ERANGE.

If the magnitude of the argument of asin or aCOB is greater than one, or if both argu
ments of atone are zero, zero is returned and errno is set to EDOM. In addition, a
message indicating DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with t.ht' function matherr(3M).

SEE ALSO

matherr{3M).

2 Icon International, Inc.

CTERMID (3S) STANDARD I/O LffiRARY CTERMID (3S)

C NAME

ctermid - generate file name for terminal

SYNOPSIS

#include <stdio.h>
char *ctermid (s)
char *8;

DESCRIPTION

Ctermid generates the path name of the controlling terminal for the current process,
and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, the contents of
which are overwritten at the next call to ctermid, and the address of which is
returned. Otherwise, s is assumed to point to a character array of at least
L_ctermid elements; the path name is placed in this array and the value of s is
returned. The constant L ctermid is defined in the <stdio.h> header file.

't NOTES

(

The difference between ctermid and ttyname(3C) is that ttyname must be handed a
file descriptor and returns the actual name of the terminal associated with that file
descriptor, while ctermid returns a string (/dev /tty) that will refer to the terminal
if used as a file name. Thus ttyname is useful only if the process already has at least
one file open to a terminal.

SEE ALSO

ttyname(3C).

Icon International, Inc. 1

CUSERID (3S) STANDARD I/O LffiRARY

NAME

cuserid - get character login name of the user

SYNOPSIS

#include <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION

CUSERID (3S)

Ouserid generates a character-string representation of the login name that the
owner of the current process is logged in under. If s is a NULL pointer, this represen
tation is generated in an internal static area, the address of which is returned. Oth
erwise, s is assumed to point to an array of at least L_cuserid characters; the
representation is left in this array. The constant L_cuserid is defined in the
<stdio.h> header file.

DIAGNOSTICS

If the login name cannot be found, cuserid returns a NULL pointer; if s is not a NULL
pointer, a null character (\0) will be placed at s/O}.

SEE ALSO

getlogin(3C), getpwent(3C).

Icon International, Inc. 1

, /

FCLOSE(3S) STANDARD I/O LIBRARY

(-- NAME

fclose, fftush - close or flush a stream

SYNOPSIS

#include <stdio.h>

int fclose (stream)
FILE *stream;

int mush (stream)
FILE *streamj

DESCRIPTION

FCLOSE(3S)

Fclose causes any buffered data for the named stream to be written out, and the
stream to be closed.

Fclose is performed automatically for all open files upon calling exit{2).

Fflush causes any buffered data for the named stream to be written to that file. The
stream remains open.

DIAGNOSTICS

These functions return 0 for success, and EOF if any error (such as trying to write to
a file that has not been opened for writing) was detected.

SEE ALSO

close(2), exit(2), fopen(3S), setbuf(3S).

Icon International, Inc. 1

FERROR(3S) STANDARD I/O LffiRARY

NAME

ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS

=//=include <stdio.h>

int rerror (stream)
FILE *stream;

int reor (stream)
Fn.E *stream;

void clearerr (stream)
Fn.E *8tream;

int fileno (stream)
Fn.E *stream;

DESCRIPTION

FERROR(3S)

Ferror returns non-zero when an I/O error has previously occurred reading from or
writing to the named stream, otherwise zero.

Feo! returns non-zero when EOF has previously been detected reading the named
input stream, otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named stream.

Fileno returns the integer file descriptor associated with the named stream; see
open(2).

NOTE

All these functions are implemented as macros; they cannot be declared or rede
elared.

SEE ALSO

open(2), fopen(3S).

Icon International, Inc. 1

(

FOPEN(3S) STANDARD I/O LffiRARY FOPEN(3S)

NAME

Copen, Creopen, Cdopen - open a stream

SYNOPSIS

#include <stdio.h>

Fll.E *topen (file-name, type)
char *file-name, *type;

Fll.E *treopen (file-name, type, stream)
char *file-name, *type;
Fll.E *stream;

Fll.E *fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION

Fopen opens the file named by file-name and associates a stream with it. Fopen
returns a pointer to the FILE structure associated with the stream.

File-name points to a character string that contains the name of the file to be
opened.

Type is a character string having one of the following values:

" " r

"w"

"a"

"r+"

"w+"

"a+"

open for reading

truncate or create for writing

append; open for writing at end of file, or create for writing

open for update (reading and writing)

truncate or create for update

append; open or create for update at end-or-file

Freopen substitutes the named file in place of the open stream. The original stream
is closed, regardless of whether the open ultimately succeeds. Freopen returns a
pointer to the FILE structure associated with stream.

Freopen is typically used to attach the preopened streams associated wit.h stdin,
stdout and stderr to other files.

Icon International, Inc. 1

FOPEN(3S} STANDARD I/O LIBRARY FOPEN(3S)

Fdopen associates a streo.m with a file descriptor. File descriptors are obtained from
open, dup, creo.t, or pipe(2), which open files but do not return pointers to a FILE
structure 8treo.m. Streams are necessary input for many of the Section 3S library
routines. The type of 8treo.m must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the result
ing 8treo.m. However, output may not be directly followed by input without an inter
vening !8eek or rewind, and input may not be directly followed by output without an
intervening !8eek, rewind, or an input operation which encounters end-of-file.

When a file is opened for append (i.e., when type is "a" or "a+"), it is impossible to
overwrite information already in the file. Fseek may be used to reposition the file
pointer to any position in the file, but when output is written to the file, the current
file pointer is disregarded. All output is written at the end of the file and causes the
file pointer to be repositioned at the end of the output. If two separate processes
open the same file for append, each process may write freely to the file without fear
of destroying output being written by the other. The output from the two processes
will be intermixed in the file in the order in which it is written.

SEE ALSO

creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S).

DIAGNOSTICS

Fopen and !reopen return a NULL pointer on failure.

2 Icon International, Inc.

FREAD (3S) STANDARD I/O LffiRARY

(. NAME

fread, fwrite - binary input/output

SYNOPSIS

#include <stdio.h>

int fread (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *streamj

int fwrite (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

DESCRIPTION

FREAD (3S)

Fread copies, into an array pointed to by ptr, nitems items of data from the named
input stream, where an item of data is a sequence of bytes (not necessarily ter
minated by a null byte) of length size. Fread stops appending bytes if an end-of-file
or error condition is encountered while reading stream, or if nitems items have been
read. Fread leaves the file pointer in stream, if defined, pointing to the byte follow
ing the last byte read if there is one. Fread does not change the contents of stream.

Fwrite appends at most nitems items of data from the array pointed to by ptr to the
named output stream. Fwrite stops appending when it has appended nitems items of
data or if an error condition is encountered on stream. Fwrite does not change the
contents of the array pointed to by ptr.

The argument size is typically sizeo/(*ptr) where the pseudo-function sizeo/ specifies
the length of an item pointed to by ptr. If ptr points to a data type other than char
it should be cast into a pointer to char.

SEE ALSO

read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S), puts(3S),
scanf(3S).

DIAGNOSTICS

Fread and /write return the number of items read or written. If size or nitems is
non-positive, no characters are read or written and 0 is ret.urned by both /read and
/write.

Icon International, Inc. 1

FREAD(3S) STANDARD I/O LIBRARY FREAD(3S)

BUGS

2

On the PDP-Il, the number of bytes transferred is the product of size and nitems,
modulo 65536.

Icon International, Inc.

(£-,
(
'",,--/

FSEEK(3S) STANDARD I/O LffiRARY FSEEK(3S)

(NAME

(

fseek, rewind, ftell - reposition a iiIe pointer in a stream

SYNOPSIS

#include <stdio.h>

int 'seek (stream, offset, ptrname)
Fll.E .stream;
long offset;
int ptrname;

void rewind (stream)
Fll.E .stream;

long rtell (stream)
Fll.E .stream;

DESCRIPTION

Fseek sets the position of the next input or output operation on the stream. The
new position is at the signed distance offset bytes from the beginning, from the
current position, or from the end of the file, according as pi'rname has the value 0, 1,
or 2.

Rewind(stream) IS equivalent to Jseek(stream, OL, 0), except that no value IS

returned.

Fseek and rewind undo any effects of ungetc(3S).

After Jseek or rewind, the next operation on a file opened for update may be either
input or output.

Ftell returns the offset of the current byte relative to the beginning of the file associ
ated with the named stream.

SEE ALSO

lseek(2), fopen(3S), popen(3S), ungetc(3S).

DIAGNOSTICS

Fseek returns non-zero for improper seeks, otherwise zero. An improper seek can be,

Icon International, Inc. 1

FSEEK(3S) STANDARD I/O LmRARY FSEEK(3S)

for example, an fleet done on a file that has not been opened via fopenj in particu
lar, fleek may not be used on a terminal, or on a file opened via popen(3S).

WARNING

2

Although on the ICON/UXV system an offset returned by ftell is measured in bytes,
and it is permissible to seek to positions relative to that offset, portability to non
UNIX systems requires that an offset be used by fleet directly. Arithmetic may not
meaningfully be performed on such an offset, which is not necessarily measured in
bytes.

Icon International, Inc.

GETC(3S) STANDARD I/O LIBRARY GETC(3S)

(' NAME

(

getc, getchar, fgetc, getw - get character or word from a st.ream

SYNOPSIS

#include <stdio.h>

int getc (stream)
FILE •• tl'e&ID;

int getchar 0

int rgetc (stream)
FILE .stream;

int getw (stream)
FILE *Stream;

DESCRIPTION

Gete returns the next character (i.e., byte) from the named input stream, as an
integer. It also moves the file pointer, if defined, ahead one character in stream.
Getchar is defined as getc{stdin}. Getc and getchar are macros.

Fgetc behaves like gete, but is a function rather than a macro. Fgetc runs more
slowly than gete, but it takes less space per invocation and its name can be passed
as an argument to a function.

Getw returns the next word (i.e., integer) from the named input stream. Getw incre
ments the associated file pointer, if defined, to point to the next word. The size of a
word is the size of an integer and varies from machine to machine. Getw assumes no
special alignment in the file.

SEE ALSO

fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S).

DIAGNOSTICS

These functions return the constant EOF at end-of-file or upon an error. Because
EOF is a valid integer, ferror(3S) should be used to detect getw errors.

Icon International, Inc. 1

GETC(3S) STANDARD I/O LffiRARY GETC(3S)

WARNING

BUGS

2

If the integer value returned by getc, getchar, or fgetc is stored into a character vari
able and then compared against the integer constant EOF, the comparison may
never succeed, because sign-extension of a character on widening to integer is
machine-dependent.

Because it is implemented as a macro, getc treats incorrectly a stream argument
with side effects. In particular, getc(*f++) does not work sensibly. Fgetc should be
used instead.
Because of possible differences in word length and byte ordering, files written using
putw are machine-dependent, and may not be read using getw on a different proces
sor.

Icon International, Inc.

'-._./

/ " . ,

(

(

GETS(3S) STANDARD I/O LffiRARY

NAME

gets, fgets - get a string from a stream

SYNOPSIS

#include <stdio.h>

char .gets (s)
char *s;

char .(gets (s, n, stream)
char .8;
int n;
FILE *stream;

DESCRIPTION

GETS(3S)

Gets reads characters from the standard input stream, stdin, into the array pointed
to by s, until a new-line character is read or an end-of-file condition is encountered.
The new-line character is discarded and the string is terminated with a null charac
ter.

Fgels reads characters from the stream into the array pointed to by s, until n-l
characters are read, or a new-line character is read and transferred to s, or an end
of-file condition is encountered. The string is then terminated with a null character.

SEE ALSO

ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS

If end-of-file is encountered and no characters have been read, no characters are
transferred to s and a NULL pointer is returned. If a read error occurs, such as try
ing to use these functions on a file that has not been opened for reading, a NULL
pointer is returned. Otherwise 8 is returned.

Icon International, Inc. 1

POPEN(3S) STANDARD I/O LIBRARY

NAME

popen, pclose - initiate pipe to/from a process

SYNOPSIS

#include <stdio.h>

FILE *popen (command, type)
char *command, *type;

int pclose (stream)
FILE *stream;

DESCRIPTION

POPEN(3S)

The arguments to popen are pointers to null-tt"fminated strings containing, respec
tively, a shell command line and an I/O mode, either r for reading or w for writing.
Popen creates a pipe between the calling program and the command to be executed.
The value returned is a stream pointer such that one can write to the standard
input of the command, if the I/O mode is w, by writing to the file stream; and one
can read from the standard output of the command, if the I/O mode is r, by reading
from the file stream.

A stream opened by popen should be closed by pclose, which waits for the associated
process to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter and
a type w as an output filter.

SEE ALSO

pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS

Popen returns a NULL pointer if files or processes cannot be created, or if the shell
cannot be accessed.

Pclose returns -1 if stream is not associated with a "popened" command.

Icon International, Inc. 1

/

(

(

POPEN(3S) STANDARD I/O LffiRARY POPEN(3S)

BUGS

2

If the original and "popened" processes concurrently read or write a common ijle,
neither should use buffered I/O, because the buffering gets all mixed up. Problems
with an output filter may be forestalled by careful buffer flushing, e.g. with fflush; see
Jclo8e(3S).

Icon International, In('.

..
PRINTF(3S) STANDARD I/O LffiRARY

NAME

printf, fprintf, sprintf - print formatted output

SYNOPSIS

#include <.tdio.h>

int printf (format [, arg] ...)
char *formatj

int fprint! (stream, format I , arg) ...)
FILE *streamj
char *formatj

int sprintf (s, format I , arg 1 .,.)
char *8, format;

DESCRIPTION

PRINTF(3S)

Printf places output on the standard output stream stdout. Fprintf places output on
the named output stream. Sprintf places "output," followed by the null character
(\0), in consecutive bytes starting at *s; it is the user's responsibility to ensure that
enough storage is available. Each function returns the number of charact.ers
transmitted (not including the \0 in the case of sprint!), or a negative value if an
output error was encountered.

Each of these functions converts, formats, and prints its args under control of the
format. The format is a character string that contains two types of objects: plain
characters, which are simply copied to the output stream, and conversion
specifi<;ations, each of which results in fetching of zero or more args. The results are
undefined if there are insufficient args for the format. If the format is exhausted
while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the
following appear in sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the con
verted value has fewer characters than the field width, it will be padded on
the left (or right, if the left-adjustment flag '-', described below, has been
given) to the field width. If the field width for an s conversion is preceded by
a 0, the string is right adjusted with zero-padding on the left.

A precision that gives the minimum number of digits to appear for the d, 0,

u, x, or X conversions, the number of digits to appear after the decimal point

Icon International, Inc. 1

(

(

(~/

PRINTF(3S) STANDARD I/O LIBRARY PRINTF(3S)

2

for the e and r conversions, the maximum number of significant digits for the
g conversion, or the maximum number of characters to be printed from a
string in • conversion. The precision takes the form of a period (.) followed
by a decimal digit string; a null digit string is treated as zero.

An optional 1 (ell) specifying that a following d, 0, U, x, or X conversion char
acter applies to a long integer argo A 1 before any other conversion character
is ignored.

A character that indicates the type of conversion to be applied.

A field width or preClSlon may be indicated by an asterisk (*) instead of a digit
string. In this case, an integer arg supplies the field width or precision. The arg
that is actually converted is not fetched until the conversion letter is seen, so the
args specifying field width or precision must appear before the arg (if any) to be con
verted.

The flag characters and their meanings are:

+
blank

#=

The result of the conversion will be left-justified within the field.
The result of a signed conversion will always begin with a sign (+ or -).
If the first character of a signed conversion is not a sign, a bla,nk will be
prefixed to the result. This implies that if the blank and + flags both
appear, the blank flag will be ignored.
This flag specifies that the value is to be converted to an "alternate
form." For c, d, 8, and U conversions, the flag has no effect. For 0

conversion, it increases the precision to force the first digit of the result
to be a zero. For x or X conversion, a non-zero result will have Ox or
OX prefixed to it. For e, E, f, g, and G conversions, the result will
always contain a decimal point, even if no digits follow the point (nor
mally, a decimal point appears in the result of these conversions only if a
digit follows it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal, unsigned octal, decimal,
or hexadecimal notation (x and X), respectively; the letters abcdef are
used for x conversion and the letters ABCDEF for X conversion. The pre
cision specifies the minimum number of digit.s to appear; if the value
being converted can be represented in fewer digits, it will be expanded
with leading zeroes. (For compatibilit.y with older versions, padding with
leading zeroes may alternatively be specified by prepending a zero to the
field width. This does not imply an octal value for the field width.) The
default precision is 1. The result of conv(>rting a zero value with a preci
sion of zero is a null string.

f The float or double arg is converted to decimal notation in the style
"[-Jddd.ddd," where the number of digits after the decimal point is equal
to the precision specification. If the precision is missing, six digits are
output; if the precision is explicitly 0, no decimal point appears.

Icon International, Inc.

PRINTF(3S)

e,E

g,G

C

8

%

STANDARD I/O LIBRARY PRINTF(3S)

The float or double arg is converted in the style "[-Jd.ddde±dd," where
there is one digit before the decimal point and the number of digits after
it is equal to the precision; when the precision is missing, six digits are
produced; if the precision is zero, no decimal point appears. The E for
mat code will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits.
The float or double arg is ptinted in style lor e (or in style E in the case
of a G format code), with the precision specifying the number of
significant digits. The style used depends on the value converted: style e
will be used only if the exponent resulting from the conversion is less than
-4 or greater than the precision. Trailing zeroes are removed from the
result; a decimal point appears only if it is followed by a digit.
The character arg is printed.
The arg is taken to be a string (character pointer) and characters from
the string are printed until a null character (\0) is encountered or the
number of characters indicated by the precision specification is reached.
If the precision is missing, it is taken to be infinite, so all characters up to
the first null character are printed. A NULL value for arg will yield
undefined results.
Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. Characters generated by print! and !print! are printed
as if putc(3S) had been called.

EXAMPLES

To print a date and time in the form "Sunday, July 3, 10:02," where weekday and
month are pointers to null-terminated strings:

printf{"%s, %s %d, %d:%.2d", weekday, month, day, hour, min);

To print 1\" to 5 decimal places:

printf("pi = %.5f", 4 * atan(l.O));

SEE ALSO

ecvt(3C), putc(3S), scanf(3S), stdio(3S).

Icon International, Inc. 3

PUTC(3S) STANDARD I/O LIBRARY

(NAME

putc, putchar, fputc, putw - put character or word on a st.ream

SYNOPSIS

#include <stdio.h>

int putc (c, stream)
int c;
FILE .Btream.;

int putchar (c)
int c;

int fputc (c, stream)
int c;
FILE *Stream;

int putw (w, stream)
int w;
FILE *Stream;

DESCRIPTION

PUTC(3S)

Pute writes the character c onto the output stream (at the position where the file
pointer, if defined, is pointing). Putchar(e) is defined as putc(c, stdout). Putc and
putchar are macros.

Fputc behaves like pute, but is a function rather than a marro. Fputc runs more
slowly than pute, but it takes less space per invocation and its name can be passed
as an argument to a function.

Putw writes the word (i.e. integer) w to the output stream (at the position at which
the file pointer, if defined, is pointing). The size of a word is the size of an integer
and varies from machine to machine. Putw neither assumes nor causes sperial align
ment in the file.

Output streams, with the exception of the standard error stream stderr, are by
default buffered if the output refers to a file and line-buffered if the output. refers to
a terminal. The standard error output stream stderr is by default unbuffered, but
use of Jreopen (see Jopen(3S}) will cause it to become buffered or line-buffered. When
an output stream is unbuffered, information is queued for writ.ing on the destinat.ion
file or terminal as soon as written; when it is buffered, ma.ny characters are saved up
and written as a block. When it is line-buffered, earh line of output is queued for
writing on the destination terminal as soon as the line is completed (that is. as soon
as a new-line character is written or terminal input is requested). SetbuJ(3S) or

Icon International, Inc. 1

PUTC(3S) STANDARD I/O LmRARY PUTC(3S)

SetbuJ(3S) may be used to change the stream's buffering strategy.

SEE ALSO

fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S), setbuf(3S).

DIAGNOSTICS

BUGS

2

On success, these functions each return the value they have written. On failure,
they return the constant EOF. This will occur if the file stream is not open for writ
ing or if the output file cannot be grown. Because EOF is a valid integer, ferror(3S)
should be used to detect putw errors.

Because it is implemented as a macro, putc treats incorrectly a stream argument
with side effects. In particular, pute(e, *f++); doesn't work sensibly. Fputc should
be used instead.
Because of possible differences in word length and byte ordering, files written using
putw are machine-dependent, and may not be read using getw on a different proces
sor.

Iron International, Inr.

r- .\
(~/I

(

c

PUTS(3S) STANDARD I/O LffiRARY

NAME

puts, fputs - put a string on a stream

SYNOPSIS

#include <8tdio.h>

int puts (s)
char *8;

int (puts (s, stream)
char *s;
Fll..E *stream;

DESCRIPTION

PUTS(3S)

Puts writes the null-terminated string pointed to by s, followed by a new-line char
acter, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named output stream.

Neither function writes the terminating null character.

DIAGNOSTICS

Both routines return EOF on error. This will happen if the routines try to write on a
file that has not been opened for writing.

SEE ALSO

ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S).

NOTES

Puts appends a new-line character while Jputs does not.

Icon International, Inc. 1

SCANF(3S) STANDARD I/O LmRARY

NAME

scanf, fscanf, sscanf - convert formatted input

SYNOPSIS

#include <stdio.h>

int scanf (format I , pointer J ...)
char dormat;

int fscanf (stream, format I, pointer 1 ...)
FD..E *streamj
char *tormatj

int sscant (s, format I , pointer J ...)
char *s, *formatj

DESCRIPTION

SCANF(3S)

Scanf reads from the standard input stream stdin. Fscanf reads from the named
input stream. Sscanf reads from the character string s. Each function reads charac
ters, interprets them according to a format, and stores the results in its argumt"nts.
Each expects, as arguments, a control string format described below, and a set of
pointer arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct
interpretation of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which, except in
two cases described below, cause input to be read up to the next non-white-space
character.

2. An ordinary character (not %), which must match the next character of the
input stream.

3. Conversion specifications, consisting of the charactt"r %, an optional assignment
suppressing character *, an optional numerical maximum fit"ld width, an optional
I (ell) or h indicating the size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of tht" next input field; the result. is
placed in the variable pointed to by the corresponding argument, unless assignment
suppression was indicated by *. The suppression of assignmt"nt provides a way of
describing an input field which is to be skipped. An input field is defined as a string
of non-space characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted. For all descript.ors t"xcept, "I" and "c", white
space leading an input field is ignored.

Icon International, Inc. 1

(

(

SCA..W(3S) STANDARD I/O LIBRARY SCANF(3S)

2

The conversion code indicates the interpretation of the input. field; the corresponding
pointer argument must usually be of a restricted type. For a suppressed field, no
pointer argument is given. The following conversion codes are legal:

% a single % is expected in the input at this point; no assignment is done.
d a decimal integer is expected; the corresponding argument should be an

integer pointer.
u an unsigned decimal integer is expected; the corresponding argument should

be an unsigned integer pointer.
o an octal integer is expected; the corresponding argument should be an integer

pointer.
x a hexadecimal integer is expected; the corresponding argument should be an

integer pointer.
e,f,g a floating point number is expected; the next field is converted accordingly

and stored through the corresponding argument, which should be a pointer to
a float. The input format for floating point numbers is an optionally signed
string of digits, possibly containing a decimal point, followed by an optional
exponent field consisting of an E or an e, followed by an optional +, -, or
space, followed by an integer.

8 a character string is expected; the corresponding argument should be a char
acter pointer pointing to an array of characters large enough to accept the
string and a terminating \0, which will be added automatically. The input
field is terminated by a white-space character.

c a character is expected; the corresponding argument should be a character
pointer. The normal skip over white space is suppressed in this case; to read
the next non-space character, use %18. If a field width is given, the
corresponding argument should refer to a characteT array; the indicated
number of characters is read.
indicates string data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters, which we will
call the scanset, and a right bracket; the input field is the maximal sequence
of input characters consisting entirely of characters in the scanset. The
circumflex (...), when it appears as the first character in the scanset, serves as
a complement operator and redefines the scanset as the set of all charact.ers
not contained in the remainder of the scanset string. There are some conven
tions used in the construction of the scanset. A range of characters may be
represented by the construct first-last, thus [01234.56;89] may be expressed
(0-9]. Using this convention, first must be lexically less than or equa.l to last,
or else the dash will stand for itself. The dash will also stand for itself when
ever it is the first or the last character in the scanset. To include the right
square bracket as an element of the scanset, it must appear as the first char
acter (possibly preceded by a circumflex) of the scanset, and in this case it
will not be syntactically interpreted as the closing bracket. The correspond
ing argument must point to a character array large enough to hold the data
field and the terminating \0, which will be added aut.omatically. At least one
character must match for this conversion to be considered successful.

The conversion characters d, u, 0, and x may be preceded by 1 or h to indicate that
a pointer to long or to short rather than to int is in the argument list. Similarly,
the conversion characters e, " and g may be preceded by 1 t.o indicate that. a pointer
to double rather than to float is in the argument list. The I or h modifier is
ignored for other conversion characters.

Icon International, Inc.

SCANF(3S) STANDARD I/O LIBRARY SCANF(3S)

('"
Scan! conversion terminates at EOF, at the end of the control string, or when an ',,-.,/
input character conflicts with the control string. In thl' latter case, the offending
cha.racter is left unread in the input stream.

Scan! returns the number of successfully matched and assigned input items; this
number can be zero in the event of an early con8ict bet.ween an input character and
the control string. If the input ends before the first con8ict or conversion, EOF is
returned.

Icon International, Inc. 3

(

(

SCMif' (3S) STANDARD I/O LffiRARY SCANF(3S)

EXAMPLES

The call:

int i, nj float Xj char name [50Jj
n = scanf("%d%fo/os", &i, &x, name)j

with the input line:

25 54.32E-l thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will
contain thompson \0. Or:

int i; float x; char name[50/;
(void) scanf("%2d%f%*d % 0-9]", &i, &x, name};

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The
next call to getchar (see getc(3S)) will return &.

SEE ALSO

getc(3S), printf(3S}, strtod(3C), strtol(3C).

NOTE

Trailing white space (including anew-line) is left unread unless matched in the con
trol string.

DIAGNOSTICS

4

These functions return EOF on end of input and a short count for missing or illegal
data items.

Icon International, Inc.

SCANF(3S) STANDARD I/O LIBRARY SCANF(3S)

BUGS

The success of literal matches and suppressed assignments is not. directly determin
able.

Icon International, Inc. 5

SETBUF(3S) STANDARD I/O LIBRARY SETBUF(3S)

(. NAME

(

setbuf, setvbuf - assign buffering to a stream

SYNOPSIS

#include <stdio.h>

void setbuf (stream, bur)
Fn.E *stream;
char *buf;

int setvbuf (stream, buf, type, size)
Fn.E *stream;
char *buf;
int type, size;

DESCRIPTION

Setbuf may be used after a stream has been opened but before it is read or written.
It causes the array pointed to by buf to be used instead of an automatically allo
cated buffer. If buf is the NULL pointer input/output will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells how big an array is
needed:

char buf[BUFSIZj;

Setvbuf may be used after a stream has been opened but before it is read or written.
Type determines how stream will be buffered. Legal values for type (defined in
stdio.h) are:

JOFBF

JOLBF

JOl\'BF

SEE ALSO

causes input/output to be fully buffered.

causes output to be line buffered; the buffer will be flushed when a new
line is written, the buffer is full, or input is requested.

causes input/output to be completely unbuffered. If buf is not the NULL
pointer, the array it points to will be used for buffering, inst.ead of an
automatically allocated buffer. Size specifies the size of the buffer to be
used. The constant BUFSIZ in <stdio.h> is suggested as a good buffer
size. If input/output is unbuffered, bufand size are ignored. By default,
output to a terminal is line buffered and all other input/output is fully
buffered.

fopen(3S), getc(3S), malloc(3C), putc(3S), stdio{3S).

Icon International, Inc. 1

SETBUF(3S) STANDARD I/O LIBRARY SETBUF(3S)

DIAGNOSTICS

If an illegal value for type or size.is provided, setvbuf returns a non-zero value. Oth
erwise, the value returned will be zero.

NOTE

2

A common source of error is allocating buffer space as an "automatic" variable in a
code block, and then failing to close the stream in the same block.

Icon International, Inc.

(

(

STDIO(3S) STANDARD I/O LIBRARY STDIO(3S)

NAME

stdio - standard buffered input/output package

SYNOPSIS

#include <stdio.h>

Fn..E *stdin, *8tdout, *stderr;

DESCRIPTION

The functions described in the entries of sub-class 3S of this manual constitute an
efficient, user-level 1/0 buffering scheme. The in-line marros getc(3S) and putc(3S)
handle characters quickly. The macros getchar and putchar, a.nd the higher-level
routines /getc, /gets, /print/, /putc, /puts, fread, /scan/, /write, gets, getw, printJ, puts,
putw, and scan! all use or act as if they use getc and putc; they can be freely inter
mixed.

A file with associated buffering is called a stream and is declared to be a pointer to a
defined type Fn..E. Fopen(3S) creates certain descriptive data for a stream and
returns a pointer to designate the stream in all further transactions. Normally,
there are three open streams with constant pointers declared in the <stdio.h>
header file and associated with the standard open files:

stdin
stdout
stderr

standard input file
standard output file
standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (-1) is returned upon end-of-file or error by most integer
functions that deal with streams (see the individual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers used by the particular
implementation.

Any program that uses this package must include the header file of pertinent macro
definitions, as follows:

#include <stdio.h>

Icon International, Inc. 1

STDIO(3S) STANDARD I/o LffiRARY STDIO(3S)

("
The functions and constants mentioned in the entries of sub-class 3S of this manua] \.''-~/
are declared in that header file and need no further declaration. The constants and
the following "functions" are implemented as macros (redeclaration of these names is
perilous): gete, getehar, pute, putehar, lerror, leol, clearerr, and file no .

SEE ALSO

open(2), close(2), lseek(2), pipe(2), read(2), write(2), ctermid(3S), cuserid(3S),
fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S),
printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S), system(3S), tmpfile(3S),
tmpnam(3S), ungetc(3S).

DIAGNOSTICS

2

Invalid stream pointers will usually cause grave disorder, possibly including program
termination. Individual function descriptions describe the possible error conditions.

Icon International, Inc.

SYSTEM(3S) STANDARD I/O LIBRARY SYSTEM(3S)

(NAME

(

(~

system - issue a shell command

SYNOPSIS

#include <stdio.h>

int system (string)
char *string;

DES.CRIPTION

System causes the string to be given to sh(l) as input, as if the string had bt'en typed
as a command at a terminal. The current process waits until the shell has com
pleted, then returns the exit status of the shell.

/bin/sh

SEE ALSO

exec(2).
sh(l} in the IOON/UXV User Reference Manual.

DIAGNOSTICS

System forks to create a child process that in turn exec's /bin/sh in order to exe
cute string. If the fork or exec fails, system returns a negative value and sets errno.

Icon International, Inc. 1

TMPFILE (3S) STANDARD I/O LffiRARY TMPFILE (3S)

NAME

tmpfile - create a temporary file

SYNOPSIS

#include <stdio.h>

FR.E *tmpfile ()

DESCRIPTION

Tmpfile creates a. temporary file using a name generated by tmpnam(3S), and returns
a corresponding FILE pointer. If the file cannot be opened, an error message is
printed using perror(3C), and a NULL pointer is ret.urned. The file will automatically
be deleted when the process using it terminates. The file is opened for update
("w+").

SEE ALSO

creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C), tmpnam(3S).

Icon International, Inc. 1

(--,

~-j

TMPNAM(3S) STANDARD I/O LffiRARY TMPNAM(3S)

(NAME

(

tmpnam, tempnam - create a name for a temporary file

SYNOPSIS

#include <.tdio.h>

char *tmpnam (8)
char *8;

char *tempnam (dir, pIx)
char *dir, *plx;

DESCRIPTION

These functions generate file names that can safely be used for a temporary file.

Tmpnam always generates a file name using the path-prefix defined as P _tmpdir in
the <stdio.h> header file. If s is NULL, tmpnam leaves its result in an internal static
area and returns a pointer to that area. The next call to tmpnam will destroy the
contents of the area. If s is not NULL, it is assumed to be the address of an array of
at least L_tmpnam bytes, where L_tmpnam is a constant defined in <stdio.h>;
tmpnam places its result in that array and returns s. Tempnam allows the user to
control the choice of a directory. The argument dir points to the name of the direc
tory in which the file is to be created. If dir is NULL or points to a string which is
not a name for an appropriate directory, the path-prefix defined as P _tmpdir in the
<stdio.h> header file is used. If that directory is not accessible, /tmp will be used
as a last resort. This entire sequence can be up-staged by providing an environment
variable TMPDffi in the user's environment, whose value is the name of t.he desired
temporary-file directory. Many applications prefer their temporary files to have cer
tain favorite initial letter sequences in their names. Use the pJx argument for t.his.
This argument may be NULL or point to a string of up to five characters to be used
as the first few characters of the temporary-file name. Tempnam uses malloc{3C) to
get space for the constructed file name, and returns a pointer to this area. Thus,
any pointer value returned from tempnam may serve as an argument to free (see
malloc(3C». If tempnam cannot return the expected result for any reason, i.e.
malloc(3C) failed, or none of the above mentioned attempts to find an appropriate
directory was successful, a NULL pointer will be returned.

NOTES

These functions generate a different file name each time they are called. Files
created using these functions and either Jopen{3S) or creat(2) are temporary only in
the sense that they reside in a directory intended for temporary use, and their names
are unique. It is the user's responsibility to use unlink{2} to remove the file when its

Icon International, Inc. 1

TMPNAM(3S) STANDARD I/O LIBRARY TMPNAM(3S)

use is ended.

SEE ALSO

BUGS

2

creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S).

If called more than 17,576 times in a single process, these functions will start recy
cling previously used names.
Between the time a file name is created and the file is opened, it is possible for some
other process to create a file with the same name. This can never happen if that
other process is using these functions or mktemp, and the file names are chosen so as
to render duplication by other means unlikely.

Icon International, Inc.

("

UNGETC(3S) STANDARD I/O LffiRARY

NAME

ungetc - push character back into input stream

SYNOPSIS

#include <stdio.h>

int ungetc (c, stream)
int c;
FILE *stream;

DESCRIPTION

UNGETC(3S)

Ungetc inserts the character c into the buffer associated with an input stream. That
character, c, will be returned by the next getc(9S) call on that stream. Ungetc
returns c, and leaves the file stream unchanged.

One character of push back is guaranteed, provided something has already been read
from the stream and the stream is actually buffered. In the case that stream is
stdin, one character may be pushed back onto the buffer wit.hout a previous read
statement.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

Fseek(3S) erases all memory of inserted characters.

SEE ALSO

fseek(3S), getc(3S), set buf(3S).

DIAGNOSTICS

Ungetc returns EOF if it cannot insert the character.

Icon International, Inc. 1

VPRINTF (3S) STANDARD I/O LmRARY VPRINTF (3S)

NAME

vprintC, vCprintC, vsprintC - print Cormatted output of a varargs argument list

SYNOPSIS

#include <stdio.h>
#include <varargs.h>

int vprintt' (format, ap)
char *t'ormat;
va.Jiat ap;

int vfprintf (stream, format, ap)
FILE *stream;
char *format;
vaJist ap;

int vsprintt' (s, format, ap)
char *s, *t'ormat;
vaJist ap;

DESCRIPTION

vprintj, v/print/, and vsprint/ are the same as printj, /pri71t/, and sprintj respectively,
except that instead of being called with a variable number of arguments, they are
called with an argument list as defined by varargs(5).

E:xAl\1PLE

The following demonstrates how v/print/ could be used to write an error routine.

#include <stdio.h>
#include <varargs.h>

/*
* error should be called like

* error(function.J}ame, format, argl, arg2 ...);
*/

/*VARARGSO*/
void
error(va_alist)
/* Note that the function.J}ame and format arguments cannot be
* separately declared because of the definition of varargs.
*/

Icon International, Inc. 1

'" ... /

(

VPRINTF (3S) STANDARD I/O LmRARY VPRINTF (3S)

}

SEE ALSO

vaJist argsi
char *fmti

va...start(args)i
/* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char *));
fmt = va-&rg(args, char *)i
/* print out remainder of message */
(void)vfprintf(fmt, args);
va_end(args)i
(void)abort();

vprintf(3X), varargs(5).

2 Icon International, Inc.

(

ASSERT (3X) MISCELLANEOUS FUNCTIONS

NAME

assert - verify program assertion

SYNOPSIS

#include <usert.h>

assert (expression)
int expression;

DESCRIPTION

ASSERT (3X)

This macro is useful for putting diagnostics into programs. When it is executed, if
expression is false (zero), assert prints

"Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts. In the error message, xyz is the name of
the source file and nnn the source line number of the assert stat.ement.

Compiling with the preprocessor option -DNDEBUG (see cpp(l)), or with the prepro
cessor control statement "#define NDEBUG" ahead of the "#include <assert.h>"
statement, will stop assertions from being compiled into the program.

SEE ALSO

abort{3C).
cpp(l) in the ICON/UXV User Reference Manual.

Icon International, Inc. 1

CURSES (3X) MISCELLANEOUS FUNCTIONS CURSES (3X)

NAME

curses - CRT screen handling and optimization package

SYNOPSIS

#include <eurses.h>
~e [flags] files -leurseB [libraries]

DESCRIPTION

These routines give the user a method of updating screens with reasonable optimiza
tion. In order to initialize the routines, the routine initscr() must be ca.Iled before
any of the other routines that deal with windows and screens are used. The routine
endwin{) should be called before exiting. To get character-at-a-time input without
echoing, (most interactive, screen oriented-programs want this) after calling initscr()
you should call Itnonl{); cbreak(); noecho();"

The full curses interface permits manipulation of data structures called windows
which can be thought of as two dimensional arrays of cbaracters representing all or
part of a CRT screen. A default window called stdscr is supplied, and others can be
created with newwin. Windows are referred to by variables declared "WINDOW *", '\
the type WINDOW is defined in curses.h to be a C structure. These data structures,_ jl
are manipulated with functions described below, among which the most basic are
move, and addch. (More general versions of these functions are includE'd with
names beginning with 'w', allowing you to specify a window. The routines not bE'gin-
ning with 'w' affect stdscr.) Then refresh() is called, telling the routines to make
the users CRT screen look like stdscr.

Mini-Curses is a subset of curses which does not allow manipulation of more than
one window. To invoke this subset, use -DMINlCURSES as au option. This levE'1 is
smaller. and faster than full curses.

If the environment variable TERMINFO is defined, any progra.m using curses will
check for a local terminal definition before checking in the standard place. For
example, if the standard place is /usr/lib/terminro, and TERM is set to "vt100",
then normally the compiled file is found in /usr /lib/terrninro/v /vt100. (The "v"
is copied from the first letter of "vt100" to avoid creation of huge directories.) How
ever, if TERMINFO is set to /t1ft/mark/myterms, curses will first. check
/opusr /mark/myterms/v /vt100, and if that fails, will then check
/usr /lib/terminro/v /vt100. This is useful for developing experimental definitions
or when write permission in /usr /lib/terminro is not available.

SEE ALSO

terminfo(4).

Icon International, Inc. 1

CURSES (3X) MISCELLANEOUS FUNCTIONS CURSES (3X)

(FUNCTIONS

(

2

Routines listed here may be called when using the full curses. Those marked with an
asterisk may be called when using Mini-Curses.

addch(ch)*

addstr(str)*
attro8(attrs)*
attron(attrs)*
attrset(attrs)*
baudrate()*
beep()*
box(win, vert, hor)

clear()
clearok(win, bf)
clrtobot()
clrtoeol()
cbreak()*
delay_output(ms)*
delch()
deleteln()
delwin(win)
doupdate()
echo()*
endwin()*
erase()
erasechar()
fixterm()
flash()
flushinp()*
getch()*
getstr(str)
gettmode()
getyx(win, y, x)
hasjc()
hasjl()
idlok(win, bf)*
inch()
initscr()*
insch(c)
insertln()
intrflush(win, bf)
keypad(win, bf)
killchar()
leaveok(win, flag)

longname()
meta(win, flag)*

add a character to ,td,er (like putchar)
(wraps to next line at end of line)
calls addch with each character in ,tr
turn off attributes named
turn on attributes named
set current attributes to attr,
current terminal speed
sound beep on terminal
draw a box around edges of win
vert and hor are chars to use for vert. and
hor. edges of box
clear ,td,er
clear screen before next redraw of win
clear to bottom of ,td,er
clear to end of line on ,td,er
set cbreak mode
insert ms millisecond pause in output
delete a character
delete a line
delete win
update screen from all wnooutrefresh
set echo mode
end window modes
erase ,td,er
return user's erase character
restore tty to "in curses" state
flash screen or beep
throwaway any typeahead
get a char from tty
get a string through ,td,er
establish current tty modes
get (y, x) co-ordinates
true if terminal can do insert character
true if terminal can do insert line
use terminal's insert/delete line if bf != 0
get char at current (y, x) co-ordinates
initialize screens
insert a char
insert a line
interrupts flush output if bf is TRUE
enable keypad input
return current user's kill character
OK to leave cursor anywhere after refresh if
flag!=O for win, otherwise cursor must be left
at current position.
return verbose name of terminal
allow meta characters on input if flag != 0

Icon International, Inc.

CURSES (3X) MISCELLANEOUS FUNCTIONS CURSES (3X)

move(y, x). moft to (y, 'X) on .td,er
mvaddch(y, x, ch) move(y,x) then.addch(ch)
mvaddstr(y, x, str) similar ...
mvcur(oldrow, oldcol, 'IlewrGW, newcol)1ow level cursor motion
mvdelch(y, x) likedelch, hutmowe(y, x) first
mvgetch(y, x) etc.
mvgetstr(y, x)
mvinch(y, x)
mvinsch(y, x, c)
mvprintw(y, x, Cmt, args)
mvscanw(y, x, Cmt, args)
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x)
mvwin(win, by, bx)
mvwinch(win, y, x)
mvwinseh(win, y, X, c)
mvwprintw(win, y, x, Cmt, ugs)
mvwscanw(win, y, x, fmt, args)
newpad(nlines, ncols) create a Dew pad with given dimensions
newterm(type, Cd) set up new terminal of given type to output on fd
newwin(lines, cols, begin..y, begin..x) create a new window
nl(). set newline mapping
nocbreak()* unset cbreak mode
nodelay(win, bf) enable nodelay input mode through getch
noecho()* unset echo mode
nonl(}* unset newline mapping
noraw()* unset raw mode
overlay(winl, win2) overlay winl on win2
overwrite(winl, win2} overwrite winl on top of win2
pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol}

like prefTesh but with no output until doupdate called
prefresh(pad, pminrow, pmincoI, sminrow, smincol, smaxrow, smaxcol)

~fresh from pad starting with given upper left corner of pad
with output to given portion of screen .

printw(Cmt, arg1, arg2, ...)printC on .tdeer
raw(}. set raw mode
refresh()* make current screen look like .td.er
resetterm()* set tty modes to "out of curses" state
resetty(). reset tty 1Iags to stored value
saveterm()* save CU1Tent modes as "in curses" state
savetty(). store current tty flags
scanw(Cmt, arg1, arg2, ••.)scaDf throoP .ther
scroll(win) scroll win one line
scrollok(win, flag} allow terminal to scroll if flag !- 0
set_term(new) now talk to terminal new
setscrreg(t, b) set user scrolling region to lines t through b
setterm(type} establish terminal with given type
setupterm(term, filenum, errret)
standend()* clear standout mode attribute
standout(}* set standout mode attribute

Icon International, Inc. 3

(

(

CURSES (3X) :MISCELLANEOUS FUNCTIONS CURSES (3X)·

subwin(win, lines, cols, begin..y, begiD.-'C) create a subwindow
touchwin(win) "change" all oC win
traceoff() turn oft' debugging trace output
traceon() turn on debugging trace output
typeahead(Cd) use file descriptor Cd to check typeahead
unctrl(ch). printable version oC cia
waddch(win, ch) add char to win
waddstr(win, str) add string to win
wattroff(win, attrs) turn oft' attr, in win
wattron(win, attrs) turn on attr, in win
wattrset(win, attrs) set attrs in win to attr,
wclear(win) clear win
wclrtobot{win) clear to bottom oC win
wclrtoeol(win) clear to end oC line on win
wdelch(win, c) delete char Crom win
wdeleteln(win) delete line from win
werase(win) erase win
wgetch(win) get a char through win
wgetstr(win, str) get a string through win
winch(win) get char at current (y, x) in win
winsch(win, c) insert char into win
winsertln(win) insert line into win
wmove(win, y, x) set current (y, x) co-ordinates on win
wnoutrefresh(win) refresh but no screen output
wprintw(win, Cmt, argI, arg2, ...) printf on win
wrefresh(win) make screen look like win
wscanw(win, fmt, argI, arg2, ...) scanf through win
wsetscrreg(win, t, b) set scrolling region of win
wstandend(win) clear standout attribute in win
wstandout(win) set standout attribute in win

TERMINFO LEVEL ROUTINES

4

These routines should be called by programs wishing to deal directly with t.he ter
minfo database. Due to the low level of this interface, it is discouraged. Initially,
setupterm should be called. This will define the set of terminal dependent variables
defined in terminfo(4). The include files <curses.h> and <t.erm.h> should be
included to get the definitions Cor these strings, numbers, and flags. Parmeterized
strings should be passed through tparm to instantiate them. All terminCo strings
(including the output of tparm) should be printed with tputs or putp . Before exiting,
resetterm should be called to restore the tty modes. (Programs desiring shell escapes
or suspending with control Z can call resetterm beCore t.he shell is called and fixterm
after returning from the shell.)
fixterm() restore tty modes Cor terminfo use

(called by setupterm)
resetterm() reset tty modes to state before program entry
setupterm(term, fd, rc) read in database. Terminal type is the

character string term, all output is to ICON,I1.lA"V
System file
descriptor fd. A status value is returned in the
integer pointed to by rc: I is normal. The simplest

Icon International, Inc.

CURSES (3X) :MISCELLANEOUS FUNCTIONS CURSES (3X)

call would be .et.pterm(O, 1, 0) which uses all the defaults.
tparm(str, pi, p2, ... , p9)instantiate string str with parms p ..
tputs(str, affcnt, putc) apply padding info to string dr. 1

putp(str)
vidputs(attrs, putc)

vidattr(attrs)

.1fent is the number of lines affected, or 1 if
not applicable. Ptde is a putchar-like function
to which the characters are passed, one at a time.
handy function that calls tputs(str, 1, putchar).
output the string to put terminal in video attribute
mode 4ttr., which is any combination of the attributes
listed below. Chars are passed to putchar-like function pute.
Like vidputs but outputs through putchar

TERM CAP COMPATmn.ITYROUTINES

These routines were included as a conversion aid for programs that use termcap.
Their parameters are the same as for term cap. They are emulated using the ter
min/o database. They may go away at a later date.
tgetent(bp, name) look up termcap entry for name
tgetflag(id) get boolean entry for id
tgetnum(id) get numeric entry for id
tgetstr(id, area) get string entry for id
tgoto(cap, col, row) apply parms to given cap
tputs(cap, affcnt, fn) apply padding to cap calling fn as putchar

ATTRmUTES

The following video attributes can be passed to the functions attron,aitroif,attrset.
A-STANDOUT Terminal's best highlighting mode
A..UNDERLINE Underlining
A..REVERSE Reverse video
.LBLINK Blinking
AJ)IM Half bright
.LBOLD Extra bright or bold
.LBLANK Blanking (invisible)
AYROTECT Protected
A...AL TCHARSET Alternate character set

FUNCTION KEYS

The following function keys might be returned by getch if keypad has been enabled.
Note that not all of these are currently supported, due to lack of definitions in ter
min/o or the terminal not transmitting a unique code when the key is pressed.
Name V4lue Key name
KEY..BREAK 0401 break key (unreliable)
KEY.J)OWN 0402 The four arrow keys '"
KEY_UP 0403
KEY..LEFT 0404
KEY -RIGHT 0405

Icon International, Inc. 5

,-r~ "
f' \
i

\.,--~-/

(

(

(~

CURSES (3X) MISCELLANEOUS FUNCTIONS CURSES (3X)

KEYJlOME
KEY...BACKSPACE
KEYJ'O
KEYJ'(n)
KEY.J)L
KEYJL
KEY.J)C
KEYJC
KEY...EIC
KEY_CLEAR
KEY...EOS
KEY...EOL
KEY~F
KEY~R
KEY~AGE
KEYJ>PAGE
KEY~TAB
KEY_CTAB
KEY_CATAB
KEY...ENTER
KEY~RESET
KEY.JmSET
KEYJ>RL~T
KEYJ..L

0406 Home key (upward+leCt arrow)
0407 backspace (unreliable)
0410 Function keys. Space Cor 64 is reserved.
(KEYJ'O+(n))Formula Cor Cn.
0510 Delete line
0511 Insert line
0512 Delete character
0513 Insert char or enter insert mode
0514 Exit insert char mode
0515 Clear screen
0516 Clear to end oC screen
0517 Clear to end oC line
0520 Scroll 1 line Corward
0521 Scroll 1 line backwards (reverse)
0522 Next page
0523 Previous page
0524 Set tab
0525 Clear tab
0526 Clear all tabs
0527 Enter or send (unreliable)
0530 soCt (partial) reset (unreliable)
0531 reset or hard reset (unreliable)
0532 print or copy
0533 home down or bottom (lower left) .

WARNING

6

The plotting library plot(3X) and the curses library curses(3X) both use the names
erase() and move(). The curses versions are macros. If you need both libraries, put
the plot(3X) code in a different source file than the curses(3X) code, and/or #undef
move() and erase() in the plot(3X) code.

Icon International, Inc.

DffiECTORY (3X) MISCELLANEOUS FUNCTIONS DmECTORY (3X)

NAME

directory: opendir, readdir, telldir, seekdir, rewinddir, closedir - directory operations

SYNOPSIS

#include <aya/typea.h>
#include <dirent.h>

Dm *opendir(filename)
char *filename;

struct dirent *readdir (dirp)
Dm *dirp;

long telldir (dirp)
Dm *dirp;

void seekdir (dirp, loc)
Dm *dirp;
long lOCi

void rewinddir (dirp)
Dm *dirpi

void closedir (dirp)
Dm *dirpi

DESCRIPTION

Opendir opens the directory named by filename and associates a directory stream
with it. Opendir returns a pointer to be used to identify the directory stream in sub
sequent operations. The pointer NULL is returned if filename cannot be accessed, or
is not a directory, or if it cannot malloc(3X) enough memory to hold a DIR structure
or a buffer for the directory entries.

Readdir returns a pointer to the next directory entry. No inactive entries are
returned. It returns NULL upon reaching the end of the directory or upon detecting
an invalid location in the directory.

Telldir returns the current location associated with the named directory stream.

Seekdir sets the position of the next readdir operation on t.he directory stream. The
new position reverts to the one associated with t.he directory stream when the telldir'/""
operation from which IDe was obtained was performed. Values returned by telldir,,--/

Icon International, Inc. 1

(

(

DIRECTORY (ax) MISCELLANEOUS FUNCTIONS DIRECTORY (ax)

are good only if the directory has not changed due to compa.ction or expansion.

Rewinddir resets the position of the named directory stream to the beginning of the
directory.

Closedir closes the named directory stream and frees the DIR structure.

The following errors ca.n occur as a result of these opeTations.

opendir:
IENOTDIR)
IEACCES)
IEMFlLE)

readdir:
[ENOENT]

IEBADF]

A component of filename is not a directory.
A component of filename denies search permission.
Filename points outside the allocated address space.

The current file pointer for the directory is not located at a valid
entry.
The file descriptor determined by the DIR stTeam is no longer valid.
This results if the DIR stream has been closed.

telldir, seekdir, and closedir:
IEBADF] The file descriptor determined by the DIR stream is no longt'r valid.

This results if the DIR stream has been closed.

EXAMPLE

2

Sample code which searches a directory for entry name:

dirp = op.ndir(..... ';

whll. ((dp = r •• ddir! dirp II != NULL'

if (.trc.p(dp->d-" •••• n ••• , == 8 , i

clo •• dld dlrp 11

r.turn FOUND,

clo •• dir (dirp ';

r.turn NDT-FOUND;

Icon International, Inc.

DmECTORY(3X) MISCELLANEOUS FUNCTIONS DmECTORY (3X)

WARNINGS

Rewinddir is implementd as a macro, so its function address cannot be taken.

/

()

Icon International, Inc. 3

LDAHREAD (3X) :MISCELLANEOUS FUNCTIONS LDAHREAD (3X)

(NAME

ldahread - read the archive hea~r of a member of an archive file

SYNOPSIS

#include <stdio.h>
#include <ar .h>
#include <fUehdr .h>
#include <ldfcn.h>

int ldahread (Idptr, arhead)
LDFn.E *Idptr;
ARCHDR *arhead;

DESCRIPTION

If TYPE(ldptr) is the archive file magic number, ldahread reads the archive header of
the common object file currently associated with ldptr into the area of memory
beginning at arhead.

Ldahread returns SUCCESS or FA1LURE. Ldahread will fail if TYPE(ldptr) does
not represent an archive file, or if it cannot read the archive header.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

Idclose(3X), Idopen(3:A1, ldfcn(4), ar(4).

Icon International, Inc. 1

------------------~~

LDCLOSE (3X) :MISCELLANEOUS FUNCTIONS

NAME

ldclose, ldaclose - close a common object file

SYNOPSIS

:fI:include <stdio.h>
:f/:include <filehdr .h>
:fI:include <ldfcn.h>

int Idclose (Idptr)
LDFILE *ldptrj

int Idaclose (ldptr)
LDFILE *ldptrj

DESCRIPTION

LDCLOSE (3X)

Ldopen(3X) and ldclose are designed to provide uniform access to both simple object
files and object files that are members of archive files. Thus an archive of common
object files can be processed as if it were a series of simple common object files.

If TYPE(ldptr) does not represent an archive file, ldclose will close the file and free
the memory allocated to the LDFILE structure associated with ldptr. If
TYPE(ldptr) is the magic number of an archive file, and if there are any more files in
the archive, ldclose will reinitialize OFFSET(ldptr) to the file address of the next
archive member and return FAILURE. The LDFn.E structure is prepared for a sub
sequent ldopen(3X). In all other cases, ldclose returns SUCCESS.

Ldaclose closes the file and frees the memory allocated to the LDFILE structure
associated with ldptr regardless of the value of TYPE {ldptr}. Ldaclose always
returns SUCCESS. The function is often used in conjunction with ldaopen.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

fclose(3S), Idopen(3X), Idfcn(4).

Icon International, Inc. 1

LDFHREAD (aX) MISCELLANEOUS FUNCTIONS LDFHREAD (ax)

(NAME

(

ldfhread - read the file header of a common object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int Idfhread (ldptr, filehead)
LDFn.E *ldptr;
FILHDR *filehead;

DESCRIPTION

Ldfhread reads the file header of the common object file currently associa ted with
ldptr into the area of memory beginning at filehead.

Ldfhread returns SUCCESS or FAILURE. Ldfhread will fail if it cannot read the file
header.

In most cases the use of ldfhread can be avoided by using the macro HEADER(ldptr)
defined in Idfcn.h (see ldfcn (4)). The information in any field, fieldname, of the file
header may be accessed using HEADER(ldptr }.fieldname.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

Idclose(3X), Idopen(3X}, Idfcn(4}.

Icon International, Inc. 1

LDGETNAME (aX) MISCELLANEOUS FUNCTIONS LDGETNAME (ax)

NAME

ldgetname - retrieve symbol name for common object file symbol table entry

SYNOPSIS

#include <stdio.h>
#include <filehdr .h>
#include <Syma.h>
#include <ldfcn.h>

char *ldgetname (ldptr, symbol)
LDFILE *ldptr;
SYMENT *symbol;

DESCRIPTION

Ldgetname returns a pointer to the name associated with symbol as a string. The
string is contained in a static buffer local to Idgetname that is overwritten by each
call to ldgetname, and therefore must be copied by the caller if the nam€' is to be
saved.

As of UNIX System V Release 2.0, the common object file format has been extended
to handle arbitrary length symbol names with the addition of a "string table".
Ldgetname will return the symbol name associated with a symbol table entry for
either a pre- UNIX System V Release 2.0 object file or a UNIX System V Release 2.0
object file. Thus, ldgetname can be used to retrieve names from object files without
any backward compatibility problems. Ldgetname will return NULL (defined in
stdio.h) for an object file if the name cannot be retrieved. This situation can occur:

if the "string table" cannot be found,

.if not enough memory can be allocated for the string table,

if the string table appears not to be a string table (for example, if an auxili
ary entry is handed to Idgetname that looks like a reference to a name in a
non-existent string table), or

if the name's offset into the string table is past the end of the string table.

Typically, ldgetname will be called immediately after a successful call to ldtbread to
retrieve the name associated with' the symbol table entry filled by ldtbread.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

Idclose(3X), Idopen(3X), Idtbread(3X), Idtbseek(3X), Idfcn(4).

Icon International, Inc. 1

: '

\'-._/-/

(

(

(~

LDLREAD (3X) :MISCELLANEOUS FUNCTIONS LDLREAD (3X)

NAME

ldlread, ldlinit, ldlitem - manipulate line number entries of a common object file
function

SYNOPSIS

#include <stdio.h>
#include <:6.lehdr.h>
#include <linenum.h>
#include <ldfcn.h>

int Idlread(ldptr, fcnindx, linenum, linent)
LDFILE *ldptr;
long fcnindx;
unsigned short linenum;
LINENO linent;

int ldlinit(ldptr, fcnindx)
LDFILE *ldptr;
long fcnindx;

int ldlitem(ldptr, linenum, linent)
LDFILE *ldptr;
unsigned short linenum;
LINENO linent;

DESCRIPTION

Ldlread searches the line number entries of the common object file currently associ
ated with Idptr. Ldlread begins its search with the line number entry for the begin
ning of & function and confines its search to the line numbers associated with a single
function. The function is identified by fcnindx, the index of its entry in the object
file symbol table. Ldlread reads the entry with the smallest line number equal to or
greater than linenum into linent.

Ldlinit and Idlitem together perform exactly the same function as ldlread. After an
initial call to Idlread or Idlinit, Idlitem may be used to retrieve a series of line number
entries associated with a single function. Ldlinit simply locates the line number
entries for the function identified by fcnindx. Ldlitem finds and reads the entry with
the smallest line number equal to or greater than linenum into linent.

Ldlread, Idlinit, and Idlitem each return either SUCCESS or FAILURE. Ldlread will
fail if there are no line number entries in the object file, if fcnindx does not index a
function entry in the symbol table, or if it finds no line number equal to or greater
than linenum. Ldlinit will fail if there are no line number ent.ries in the object file or
if fcnindx does not index a function entry in the symbol table. Ldlitem will fail if it

Icon International, Inc. 1

LDLREAD (ax) MISCELLANEOUS FUNCTIONS LDLREAD (3X)

finds no line number equal to or greater than linenum.

The programs must be loaded with the object file access routine library libld.a.

SEE ALSO

Idclose(3X), Idopen(3X), Idtbindex(3X), ldfcn(4).

2 Icon International, Inc.

('

(

LDLSEEK(3X) MISCELLANEOUS FUNCTIONS LDLSEEK (3X)

NAME

Idlseek, ldnlseek - seek to line number entries of a section of a common object file

SYNOPSIS

#include <stdio.h>
#include <fUehdr .h>
#include <ldrcn.h>

int ldlseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int ldnlseek (ldptr, sectname)
LDFILE *Idptrj
char *sectname;

DESCRll'TION

Ldlseek seeks to the line number entries of the section specified by 8ectindx of the
common object file currently associated with ldptr.

Ldnl8eek seeks to the line number entries of the section specified by sectname.

Ldlseek and ldnl8eek return SUCCESS or FAILURE. Ldlseek will fail if 8ectindx is
greater than the number of sections in the object file; ldnl8eek will fail if there is no
section name corresponding with *sectname. Either function will fail if the specified
section has no line number entries or if it cannot seek to the specified line number
entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library UbId.a.

SEE ALSO

Idclose(3X), Idopen(3X), Idshread(3X), Idfcn(4).

Icon International, Inc. 1

F

LDOHSEEK (aX) MISCELLANEOUS FUNCTIONS LDOHSEEK (ax)

NAME

ldohseek - seek to the option1Ll iile heaMr of a common object file·

SYNOPSIS

#include <atdio.h>
#include <filehdr .h>
#include <ldfcD.h>

int ldohaeek (ldptr)
LDFn.E .ldptr;

DESCRIPTION

Ldohseek seeks to the optional file "header of the common object file currently associ
ated with /dptr.

Ldohseek returns SUCCESS or FAILURE. Ldohseek will fail if the object file has no
optional header or if it cannot seek to the optional header.

The program must be loaded with the object file access routine libTary libId.a.

SEE ALSO

Idclose(3X), Idopen(3X), Idfhread(3X), Idfcn(4).

Icon International, Inc. 1

- j

(

(

LDOPEN(3X) MISCELLANEOUS FUNCTIONS

NAME

ldopen, ldaopen - open a common object file for reading

SYNOPSIS

#include <stdio.h>
#include <filehdr .h>
#include <ldrcn.h>

LDFn.E *ldopen (filename, Idptr)
char *filename;
LDFn.E *ldptr;

LDFILE *ldaopen (filename, oldptr)
char *filenamej
LDFn.E *oldptr;

DESCRIPTION

LDOPEN(3X)

Ldopen and ldclose(3X) are designed to provide uniform access t6 both simple object
files and object files that are members of archive files. Thus an archive of ('ommon
object files can be processed as if it were a series of simple common object files.

If /dptr has the value NULL, then ldopen will open filename and allocate and initial
ize the LDFn.E structure, and return a pointer to the structure to the calling pro
gram.

If ldptr is valid and if TYPE{ldptr) is the archive magic number, /dopen will reinitial
ize the LDFn.E structure for the next archive member of filename.

Ldopen and ldclose(3X) are designed to work in concert. Ldclose will return
FAILURE only when TYPE(ldptr) is the archive magic number and there is another
file in the archive to be processed. Only then should ldopen be called with the
current value of /dptr. In all other cases, in particular whenever a new filename is
opened, Idopen should be called with a NULL ldptr argument.

The following is a prototype for the use of ldopen and /dclose(3X).

/* for each filename to be processed */

ldptr = ~lJLL;
do
{

Icon International t Inc. 1

LDOPEN(3X) MISCELLANEOUS FUNCTIONS LDOPEN(3X)

if ((Idptr = ldopen(filename, ldptr» != NULL)
{

/* check magic number */

}
/* process the file */

} while (ldclose(ldptr) == FAD..URE);

If the value of oldptr is not NULL, ldaopen will open filename anew and allocate and
initialize a new LDFn.E structure, copying the TYPE, OFFSET, and HEADER
fields from oldptr. Ldaopen returns a pointer to the new LDFn.E structure. This
new pointer is independent of the old pointer, oldptr. The two pointers may be used
concurrently to read separate parts of the object file. For example, one pointer may
be used to step sequentially through the relocation information, while the other is
used to read indexed symbol table entries.

Both ldopen and ldaopen open filename for reading. Both functions return NULL if
filename cannot be opened, or if memory for the LDFn.E structure cannot be allo
cated. A successful open does not insure that the given file is a common object file
or an archived object file.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

fopen(3S), Idclose(3X), ldfcn(4).

2 Icon International, Inc.

/

I'" -,\
I

.~/

LDRSEEK(3X) MISCELLANEOUS FUNCTIONS LDRSEEK (3X)

(NAME

(... ..

ldrseek, ldnrseek - seek to relocation entries of a section of a common object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <ldten.h>

int ldrseek (ldptr, seetindx)
LDFn.E *ldptr;
unsigned short seetindx;

int Idnrseek (ldptr, seetname)
LDFn.E *Idptr;
ehar *sectname;

DESCRIPTION

Ldrseek seeks to the relocation entries of the section specified by sectindx of the com
mon object file currently associated with Idptr.

Ldnrseek seeks to the relocation entries of the section specified by sectname.

Ldrseek and Idnrseek return SUCCESS or FAILURE. Ldrseek will fail if sectindx is
greater than the number of sections in the object file; ldnrseek will fail if there is no
section name corresponding with sectname. Either function will fail if the specified
section has no relocation entries or if it cannot seek to the specified relocation
entries.

Note tha.t the first section has an index of one.

The program must be loaded with the object file access routine library libId.a.

SEE ALSO

Idclose{3X), Idopen{3X), Idshread{3X), Idfcn(4).

Icon International, Inc. 1

LDSHREAD (ax) MISCELLANEOUS FUNCTIONS LDSHREAD (ax)

NAME

ldshread, ldnshread - read an indexed/named section header of a common object file

SYNOPSIS

#include <Stdio.h>
#include <filehdr .h>
#include <scnhdr .h>
#include <ldren.h>

int ldshread (ldptr, sectindx, seethead)
LDFILE *ldptr;
unsigned short aeetindx;
SCNHDR *seethead;

int Idnshread (ldptr, sectname, aecthead)
LDFILE *ldptr;
char *aectname;
SCNHDR *secthead;

DESCRIPTION

Ldshread reads the section header specified by sectinth of the common object file
currently associated with Idptr into the area of memory beginning at secthead.

Ldnshread reads the section header specified by sectname into the area of memory
beginning at secthead.

Ldshread and Idnshread return SUCCESS or FAILURE. Ldshread will fail if sectindx
is greater than the number of sections in the object file; ldnshread will fail if there is
no section name corresponding with sectname. Either function will fail if it· cannot
read the specified section header.

Note that the first section header has an index of one.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

Idclose(3X), Idopen(3X), Idfcn(4}.

Icon International, Inc. 1

>t" '" I .

\.
"-

LDSSEEK (ax) MISCELLANEOUS FUNCTIONS LDSSEEK (ax)

(NAME

(

ldsseek, ldnsseek - seek to an indexed/named section of a common object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int Idsseek (ldptr, sectindx)
LDFn.E *ldptr;
unsigned short sectindx;

int Idnsseek (Idptr, sectname)
LDFn.E *ldptr;
cha.r *sectna.me;

DESCRIPTION

Ldsseek seeks to the section specified by sectindx of the common object file currently
associated with Idptr.

Ldnsseek seeks to the section specified by sectname.

Ldsseek and Idnsseek return SUCCESS or FAILURE. Ldsseek will fail if sectind:r is
greater than the number of sections in the object file; ldnsseek will fail if there is no
section name corresponding with sectname. Either function will fail if there is no
section data for the specified section or if it cannot seek to the specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library libId.a.

SEE ALSO

Idclose(3X), Idopen(3X), Idshread(3X), Idfcn{4}.

Icon International, Inc. 1

LDTBINDEX (ax) MISCELLANEOUS FUNCTIONS LDTBINDEX(ax)

NAME

ldtbindex - compute the index of a symbol table entry of a common object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

long ldtbindex (Idptr)
LDFILE *ldptr;

DESCRIPTION

Ldtbindex returns the (long) index of the symbol table entry at the current position
of the common object file associated with Idptr.

The index returned by Idtbindex may be used in subsequent calls to ldtbread(3X).
However, since ldtbindex returns the index of the symbol table entry that begins at
the current position of the object file, if ldtbindex is called immediately aft.er a par
ticular symbol table entry has been read, it will return the index of the next. entry.

Ldtbindex will fail if there are no symbols in the object file, or if the object file is not
positioned at the beginning of a symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library llbld.a.

SEE ALSO

Idclose(3X), Idopen(3X), Idtbread(3X), Idtbseek(3X), Idfcn(4).

Icon International, Inc. 1

..._- ,/

/.0\
\)
~~/

LDTBREAD (3X) MISCELLANEOUS FUNCTIONS LDTBREAD (3X)

NAME

ldtbread - read an indexed symbol table entry of a common object file

SYNOPSIS

#include <stdio.h>
#include <filehdr .h>
#include <syms.h>
#include <ldfcn.h>

int ldtbread (ldptr, Bymindex, symbol)
LDFn.E *ldptr;
long symindex;
SYMENT *symbol;

DESCRIPTION

Ldtbread reads the symbol table entry specified by symindex of the common object
file currently associated with ldptr into the area of memory beginning at symbol.

Ldtbread returns SUCCESS or F An.,URE. Ldtbread will fail if symindex is greater
than the number of symbols in the object file, or if it cannot read the specified sym
bol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

Idclose(3X), Idopen(3X}, Idtbseek(3X}, Idgetname(3X}, Idfcn{4}.

Icon International, Inc. 1

LDTBSEEK (3X) MISCELLANEOUS FUNCTIONS LDTBSEEK (3X)

NAME

ldtbseek - seek to the s,mhoJ "table of 3. eomDlODoojectfile

SYNOPSIS

#include <atdio.h>
#include <filehdr .h>
#include <ldfcn.h>

int ldtbseek (ldptr)
LDFn.E *ldptrj

DESCRIPTION

Ldtbseek seeks to the symbol table of the object file currently associated with Idptr.

Ldtbseek returns SUCCESS or FAILURE. Ldtbseek will fail if the symbol table has
been stripped from the object file, or if it cannot seek to the symbol table.

The program must be loaded with the object file access Toutine library libld.a.

SEE ALSO

Idclose(3X), Idopen(3X), lDtbread(3X), Idfcn(4).

Icon International, Inc. 1

(

LOGNAME (ax) MISCELLANEOUS FUNCTIONS LOGNAME (3X)

NAME

logname - return login name of user

SYNOPSIS

char *logname()

DESCRIPTION

Lognome returns a pointer to the null-terminated login name; it extracts the SLOG
NAME variable from the user's environment.

This routine is kept in /lib/libPW.a.

Fn..ES

Jete Jprofile

(SEE ALSO

BUGS

profile(4), environ(5).
env(l), login(l) in the IOON/UXV User Reference Manual.

The return values point to static data whose content is overwritten by each call.
This method of determining a login name is subject to forgery.

Icon International, Inc. 1

MALLOC (3X) :MISCELLANEOUS FUNCTIONS MALLOC(3X)

NAME

malloc, free, realloc, calloc, mallopt, ma.llinfo - fast ma.in memory allocator

SYNOPSIS

#include <malloc.h>
char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mal1info mallinfo (max)
int max;

DESCRIPTION

MaUoc and free provide a simple general-purpose memory allocation package, which
runs considerably faster than the malloc(3C) package. It is found in the library
"malloc", and is loaded if the option "-lmalloc" is used with cc(l) or ld(l).

Alalloc returns a pointer to a block of at least size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated by malloc; after
free is performed this space is made available for further allocation, and its contents
have been destroyed (but see mallopt below for a way to change this behavior).

Undefined results will occur if the space assigned by malloe is overrun or if some ran
dom number is handed to free.

Realloc changes the size of the block pointed to by ptr to size bytes and returns a
pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes.

Icon International, Inc. 1

./

(

MALLOC(3X) MISCELLANEOUS FUNCTIONS MALLOC(3X)

2

Calloc allocates space for an array of nelem elements of size elsize. The space is ini
tialized to zeros.

Mal/opt provides for control over the allocation algorithm. The available values for
cmd are:

MJJXF AST Set max/ast to value. The algorithm allocates all blocks below the size
of max/ast in large groups and then doles them out very quickly. The
default va.lue for max/ast is O.

M..NLBLKS Set numlblks to value. The above mentioned "large groups" each con
tain numlblks blocks. Numlblks must be greater than O. The default
va.lue for numlblks is 100.

M-GRAIN Set grain to value. The sizes of all blocks smaller than max/ast are con
sidered to be rounded up to the nearest multiple of grain. Grain must
be greater than O. The default value of grain is the smallest number of
bytes which will allow alignment of any data type. Value will be
rounded up to a multiple of the default when grain is set.

MJ<EEP Preserve data in a freed block until the next mailoe, real/oe, or eal/oe.
This option is provided only for compatibility with the old version of
maUoe and is not recommended.

These values are defined in the <malIoe.h> header file.

Mallopt may be called repeatedly, but may not be called after the first small block is
allocated.

Mallin/o provides instrumentation describing space usage. It returns the structure:

struct mallinfo {
int arena;
int ordblks;
int smblks;
int hblkhd;
int hblks;

}

int usmblks;
int fsmblks;
int uordblks;
int fordblks;
int keepcost;

/* total space in arena */
/* number of ordinary blocks */
/* number of small blocks */
/* space in holding block headers */
/* number of holding blocks */
/* space in small blocks in use */
/* space in free small blocks */
/* space in ordinary blocks in use */
/* space in free ordinary blocks * /
/* space penalty if keep option */
/* is used */

This structure is defined in the <malloe.h> header file.

Each of the allocation routines returns a pointer to space suitably aligned (after pos
sible pointer coercion) for storage of any type of object.

Icon International, Inc.

MALLOC(3X) MISCELLANEOUS FUNCTIONS MALLOC(3X)

SEE ALSO

brk(2), malloc(3C).

DIAGNOSTICS

Malloc, realloc and calloc return a NULL pointer if there is not enough available
memory. When realloc returns NULL, the block pointed to by ptr is left intact. If
mallopt is called after any allocation or if cmd or value are invalid, non-zero is
returned. Otherwise, it returns zero.

WARNINGS

This package usually uses more data space than malloc(3C).
The code size is also bigger than malloc(3C).
Note that unlikemalloc(3C).this package does not preserve the contents of a block
when it is freed, unless the M.J<EEP option of mallopt is used.
Undocumented features of malloc(3C) have not been duplicated.

Icon International, Inc. 3

PLOT(3X) MISCELLANEOUS FUNCTIONS

(NAME

plot - graphics interface subroutines

SYNOPSIS

openplO

erase ()

label (8)
char *8;

line (xl, yl, x2, y2)
int xl, yl, x2, y2;

circle (x, y, r)
int x, y, r;

arc (x, y, xO, yO, xl, yl)
int x, y, xO, yO, xl, yl;

move (x, y)
int x, y;

cont (x, y)
int x, Yj

point (x, y)
int x, y;

linemod (8)
char *s;

space (xO, yO, xl, yl)
int xO, yO, xl, yl;

closepl ()

DESCRIPTION

PLOT(3X)

These subroutines generate graphic output in a relatively device-independent
manner. Space must be used before any of these functions to declare the amount of
space necessary. See plot(4}. Openp/ must be used before any of the others to open
the device for writing. Closepi flushes the output.

Icon International, Inc. 1

PLOT(3X) MISCELLANEOUS FUNCTIONS PLOT(3X)

FILES

Circle draws a circle of radius r with center at the point (x, g).

Arc draws an arc of a circle with center at the point (x, g) between the points (xO,
gO) and (xl, gl).

String arguments to label and linemod are terminated by nulls and do not contain
new-lines.

See plot(4) for a description of the effect of the remaining functions.

The library files listed below provide several ftavors of these routines.

/usr /lib/libplot.a
/usr /lib/lib300.a
/usr /lib/lib300s.a
/usr /lib/lib450.a
/usr /lib/lib4014.a

produces output for tplot(IG) filters
for DASI 300

for DASI 300s
for DASI 450

for TEKTRONIX 4014

WARNINGS

In order to compile a program containing these functions in file. c it is necessary to
use "cc file.c -lplot".

In order to execute it, it is necessary to use "a.out I tplot".

The above routines use <stdio.h>, which causes them to increase the size of pro
grams, not otherwise using standard I/O, more than might be expected.

SEE ALSO

plot{4}.
graph(IG), stat{IG), tplot(IG) in the ICON/UJ..'V User Reference Manual.

2 Icon International, Inc.

;1-",

~-j

. (

('

REGCMP(3X) :MISCELLANEOUS FUNCTIONS REGCMP(3X)

NAME

regcmp, regex. - compile and execute regular expression

SYNOPSIS

char *regemp (string! [, string2, •••], (char *)0)
char *stringl, *string2, ••• ;

char *regex (re, subject[, retO, •••])
char *re, *subject, *retO, ••• ;

extern ehar *--locl;

DESCRIPTION

Regcmp compiles a regular expression and returns a pointe-r to the compiled form.
Malloc(3C) is used to create space for the vector. It is the user's responsibility to
free unneeded space so allocated. A NULL return from regcmp indicates an incorrect
argument. Regcmp(I) has been written to generally preclude the need for this rou
tine at execution time .

Regex executes a compiled pattern against the subject string. Additional arguments
are passed to receive values back. Regex returns NULL on failure or a pointer to the
next unmatched character on success. A global character pointer _10c1 points to
where the match began. Regcmp and regex were mostly borrowed from t.he editor,
ed(I); however, the syntax and semantics have been changed slightly. The following
are the valid symbols and their associated meanings.

[] *."
$

These symbols retain their current meaning.

Matches the end of the string; \n matches a new-line.

Within brackets the minus means through. For example, [a-z] is
equivalent to [abed .•• xyz]. The - can appear as itself only if used as t.he
first or last character. For example, the character class expression []-]
matches the characters] and -.

+ A regular expression followed by + means one or more times. For example,
[0-9]+ is equivalent to [0-9][0-9]*.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times the preceding
regular expression is to be applied. The value m is the minimum number
and u is a number, less than 256, which is the maximum. If only m is
present (e.g., {m}), it indicates the exact number of times the regular
expression is to be applied. The value {m,} is analogous to {m,infinity}.
The plus (+) and star (*) operations are equivalent to {I,} and {O,} respec
tively.

(••.)$n The value of the enclosed regular expression is t,o be returned. The value
will be stored in the {n+l}th argument. following t.he subject argument. At

Icon International, Inc. 1

REGCMP(3X) MISCELLANEOUS FUNCTIONS REGGMP (3X)

most ten enclosed regular expressions are allowed. Regex makes its assign
ments unconditionally.

(•••) Parentheses are used for grouping. An operator, e.g., *, +, {}, ca·n work on
a single character or a regular expression enclosed in parentheses. For
example, (a*(cb+)*)$O.

By necessity, all the above defined symbols are special. They must, therefore, be
escaped to be used as themselves.

EXAMPLES

2

Example 1:

char *cursor, *newcursor, *ptrj

newcursor == regex«ptr == regcmp("A\n", 0)), cursor);
free{ptr)j

This example will match a leading new-line in the subject string pointed at by cur
sor.

Example 2:

char retO[9]j
char *newcursor, *namej

name == regcmp("{[A-Za-z][A-za-zO-9_]{0,7})$O", O)j
newcursor == regex(name, "123Testing321 ", retO);

This example will match through the string "Testing3" and will return the address
of the character after the last matched character (cursor+ll). The string "Test-
ing3" will be copied to the character array retO. .

Example 3:

#include "file.i"
char *string, *newcursor;

newcursor == regex(name, string);

This example applies a precompiled regular expressIon in file.i (see regcmp(l»
against string.

This routine is kept in /lib/libPW.a.

Icon International, Inc.

/

REGCMP(3X) MISCELLANEOUS FUNCTIONS REGCMP(3X)

(SEE ALSO

BUGS

malloc(3C).
ed(l), regcmp(l) in the IOON/UXV User Reference Manual.

The user program may run out of memory if regcmp is called iteratively without
freeing the vectors no longer required. The following user-supplied replacement for
malloc(3C) reuses the same vector saving time and space:

/* user's program */

char *
malloc(n)
unsigned n;
{

static char rebuf[512j;

}
return (n <= sizeof rebuf) ? rebuf : NULL;

Icon International, Inc. 3

SPUTL(3X) MISCELLANEOUS FUNCTIONS SPUTL(3X)

NAME

sputl, sgetl - access long integer data in a machine-indepenant fashion.

SYNOPSIS

void sputl (value, buffer)
long value;
char *bufl'er;

long sgetl (buffer)
char *buffer;

DESCRIPTION

Sputl takes the four bytes of the long integer value and plaCi$ tbt'm in memory start
ing at the address pointed to by buffer. The ordering of the bytes is the same across
all machines.

Sgetl retrieves the four bytes in memory starting at the address pointed to by buffer
and returns the long integer value in the byte ordering of the host machine.

The combination of sputl and sget/ provides a machine-independent way of storing
long numeric data in a file in binary form without conversion to characters.

A program which uses these functions must be loaded with the object-file access rou
tine library libId.a.

Icon International, Inc. 1

VPRINTF (ax) MISCELLANEOUS FUNCTIONS VPRINTF (ax)

(NAME

(

('

vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list

SYNOPSIS

#include <.tdio.h>
#include <varargs.h>

int vprintr (format, ap)
char *format;
vaJist apj

int vfprintf (stream, format, ap)
FILE *streamj
char *formatj
vaJist apj

int vsprintf (s, format, ap)
char *s, .formatj
va_list ap;

DESCRIPTION

vprintJ, vJprintJ, and v$printJ are the same as printJ, JprintJ, and sprintJ respectively,
except that instead of being called with a variable number of arguments, they are
called with an argument list as defined by varargs(5).

EXAMPLE

The following demonstrates how vJprintJ could be used to write an error routine.

#include <Stdio.h>
#include < varargs.h>

/*
* error should be called like

* error(functionJ}ame, format, argl, arg2 ...);
*/

/*V ARARGSO*/
void
error(va_alist)
/* Note that the functionJ}ame and format arguments cannot be
* separately declared because of the definition of varargs.
*/

Icon International, Inc. 1

VPRINTF (3X) MISCELLANEOUS FUNCTIONS VPRINTF (3X)

}

SEE ALSO

vaJist args;
char *fmti

va....JStart(args);
/* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ", va-8.rg(args, char *»;
fmt == v a-8.rg{args , char *)i
/* print out remainder of message */
(void)vfprintf(fmt, args);
va_end(args);
(void)abort();

printf(3S), varargs(5).

2 Icon International, Inc.

(

(

C•
/

INTRO(4) FILE FORMATS INTRO(4)

NAME

intro - introduction to file formats

DESCRIPTION

This section outlines the formats of various files. The C etruct declarations for the
file formats are given where applicable. Usually, these structures can be found in the
directories /uer /include or /uer /include/eye.

References of the type name(lM) refer to entries found in Section 1 of the [OON/UXV
Administrator Reference Manual.

Icon International, Inc. 1

A.OUT(4) FILE FORMATS A.OUT(4)

NAME

a.out - common assembler and link editor output

DESCRIPTION

The file name a.out is the output file from the assembler 08(1) and the link editor
Id(I). Both programs will make a.out executable if thert' were no errors in assem
bling or linking and no unresolved external references.

A common object file consists of a file header, a UNIX system header, a table of sec
tion headers, relocation information, (optional) line numbers, a symbol table, and a
string table. The order is given below.

File header.
UNIX system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table .

. The last three parts of an object file (line numbers, symbol table, and string table)
may be missing if the program was linked with the -e option of Id(l) or if they were
removed by strip(I). Also note that the relocation information will be absent if there
were no unresolved external references after linking. The string table exists only if
the symbol table contains symbols with names longer than eight characters.

The sizes of each section (contained in the header, discussed below) are in bytes and
are even.

\Vhen an a.out file is loaded into memory for execution, thret' logical segments are
set up: the text segment, the data segment (initia.lized data followed by uninitialized,
the latter actually being initialized to all O's), and a stack. On ICON computers the
text segment starts at location 0 in the core image. Tht' a.out file produced by /d(l)
by default has a number called the magic number 0410 in the first field of the UNIX

Icon International, Inc. 1

(-

A.OUT(4) FILE FORMATS A.OUT(4)

2

system header. The headers (file header, UNIX system header, and section headers)
are loaded at the beginning of the text segment and the text immediately follows the
headers in the user address spaee. The first text address will equal the size of the
headers, and will vary depeJlding upon the number of section headers in the a.out
file.

In an a.out file with three sections (.text, .data, and .bss), the first text address is at
O. The text segment is not writa.ble by the program; if other processes are executing
the same a.out file, the processes will share a single text segment.

The data segment starts at the next page boundary past the last text address.

The stack begins at the high end of memory (Ox40000000) and grows toward lower
addresses. The stack is automatically extended as required. The data segment is
extended only as requested by the brk(2) system call.

The value of a word in the text or data portions that is not a reference to an
undefined external symbol is exactly the value that will appear in memory when the
file is executed. If a word in the text involves a reference to an undefined external
symbol, the storage class of the symbol-table entry for that word will be marked as
an "external symbol", and the section number will be set to O. When the file is pro
cessed by the link editor and the external symbol becomes defined, the value of the
symbol will be added to the word in the file.

File Header
The format of the filehdr header is

struct filehdr
{

};

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

UNIX System Header

Lmagic;
Ll1scns;
Ltimd.a.t;
f...symptr;
Lnsyms;
Lopthdr;
Ulags;

/* magic number */
/* number of sections */
/* time and date stamp */
/* file ptr to symtab */
/* # symtab entries */
/* sizeof(opt hdr) */
/* flags */

The format of the UNIX system header is

typedef struct aouthdr
{

short magic;
short ystamp;
long tsize;

/* magic number */
/* version stamp */
/* text size in bytes, padded * /

ICOll International, Inc.

A.OUT(4) Fll..E FORMATS A.OUT(4)

long
long
long
long
long

} AOUTHDR;

Section Header

dsize;
bsize;
entry;
text...startj
data...startj

/* initialized data (.data) */
/* uninitialized data (.bss) */
/* entry point */
/* base of text used for this file */
/* base of data used for this file */

The forma.t of the section hea.der is

struct scnhdr
{

}j

Relocation

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s..name!SYMNMLEN];/* section name */
s_paddrj /* physical address * /
s_vaddrj /* virtual address */
s...sizej /* section size */
s...scnptr; /* file ptr to raw data */
s.-relptrj /* file ptr to relocation */
sJnnoptrj /* file ptr to line numbers */
s..nrelocj /* # reloc entries */
s..nlnnoj /* # line number entries */
sJlags; /* flags */

Object files have one relocation entry for each relocatable reference in the text or
data. If relocation information is present, it will be in the following format:

struct reloc
{

}j

long
long
short

r_vaddrj /* (virtual) address of reference */
r...:symndx; /* index into symbol table */
r_type; /* relocation type */

The start of the relocation information is 8_relptr from the section header. If there
is no relocation information, 8_reJptr is o.

Symbol Table
The format of each symbol in the symbol table is

Icon International, Inc. 3

-/

(

(

A.OUT(4) FILE FORMATS A.OUT(4)

4

#define SYMNMLEN 8
#define FILNMLEN 14
#define SYMESZ 18 /* the size of a SYMENT */

struct syment
{

};

union
{

char
struct
{

long
long

} JlJl;
char

} Jl;
unsigned long
short
unsigned short
char
char

#define ILllame
#define n..zeroes
#define n_offset
#define nJlptr

/* get a symbol name */

JlJlame[SYMNMLEN]; /* name of symbol */

Jl..zeroeSj
Jl_offset;

/* === OL if in string table */
/* location in st.ring ta.ble * /

JlJlptr[2]; / allows overlaying */

n_value;
n...scnum;
n_type;
n...sclass;
nJlumaux;

/* value of symbol */
/* section number */
/* type and derived type */
/* storage class */
/* number of aux entries */

Jl.JlJlame
Jl.JlJl.Jl..zeroes
Jl.JlJl.Jl_offset
Jl.JlJlptr!l]

Some symbols require more information than a single entry; they are followed by
auxiliary entries that are the same size as a symbol entry. The format follows.

union auxent {
struct {

long x_tagndx;
union {

struct {

Icon International, Inc.

A.OUT(4) Fll..E FORMATS

unsigned short xJnno;
unsigned short JU;ize;

} xJnsz;
long xJsize;

} x..misc;
union {

struct {
long xJnnoptr;
long x-endndx;

} xJcn;
struct {

unsigned short x-dimen[DIMNUM];
} XJry;

} xJcnary;
unsigned short x...tvndx;

} JU;ym;

struct {
char xJname[Fll..NMLEN];

} xJile;

struct {
long JU;cnlenj
unsigned short XJlreloc;
unsigned short XJllinno;

} JU;cn;

struct {
long

} x tv· - ,

unsigned short
unsigned short

x...tvfill;
x_tvlen;
x...tvran[2];

A.OUT(4)

Indexes of symbol table entries begin at zero. The start of the symbol table is
f_symptr (from the file header) bytes from the beginning of the file. If the symbol
table is stripped, f_symptr is o. The string table (if one exists) begins at f_symptr +
(J_nsyms * SYMESZ) bytes from the beginning of the file.

SEE ALSO

brk(2), filehdr(4), Idfcn(4), linenum(4), reloc(4}, scnhdr(4), syms(4).
as(l), cC(l), ld(l) in the IOON/UXV User Reference Manual.
Common Object File Format in the IOON/UXV User Guide ..

Icon International, Inc. 5

(

(

ACCT(4) FILE FORMATS ACCT(4)

NAME

acct - per-process accounting file format

SYNOPSIS

#include <sys/acct.h>

DESCRIPTION

Files produced as a result of calling acct(2) have records in the form defined by
<sys/acct.h>, whose contents are:

typedef ushort comp_t; /* "floating point" */
/* l3-bit fraction, 3-bit exponent */

struct acct
{

char acJlag;
char ac....stat;
ushort ac_uid;
ushort ac...gidj
dev_t ac_ttyj
time_t ac_btime;
comp_t ac_utimej
comp_t ac....stimej
comp_t ac_etimej
comp_t aC-ffiemj
comp_t acjoj
comp_t aCJWj
char ac_comm[8];

};

extern struct acct
extern struct inode

#define AFORK 01
#define ASU 02
#define ACCTF 0300

/* Accounting flag */
/* Exit status */

/* Beginning time */
/* acctng user time in clock ticks */
/* acctng system time in clock ticks */
/* acctng elapsed time in clock ticks */
/* memory usage in clicks */
/* chars trnsfrd by read/write */
/* number of block reads/writes */
/* command name */

acctbufj
acctpj / inode of accounting file */

/* has executed fork, but no exec */
/* used super-user privileges */
/* record type: 00 = acct */

In ac-flag, the AFORK Bag is turned on by each fork(2) and turned off by an exec(2).
The ac_comm field is inherited from the parent process and is reset by any exec.
Each time the system charges the process with a clock tick, it also adds to ac_mem
the current process size, computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_mem/ (ac_stime+ac_utime) can be viewed as an approximation to
the mean process size, as modified by text-sharing.

Icon International, Inc. 1

ACCT(4} FILE FORMATS ACCT(4)

--",

The structure tacet.h, which resides with the source files of the accounting com- ',,--"j

mands, represents the total accounting format used by the various accounting com-
mands:

1* * total accounting (for acct period), also for day
*1

struct tacct {
uid_t
char
float
float
float
float
long

};

unsigned short
unsigned short
unsigned short

ta_uid; 1* userid *1
ta...name[8]; 1* login name *1
ta_cpu[2]; 1* cum. cpu time, p/np (mins) *1
tajcore[2j; 1* cum kcore-minut.es, p/np *1
ta_con[2]i 1* cum. connect time, p/np, mins *1
ta_du; 1* cum. disk usage *1
ta_pc; 1* count of processes */
ta...sc; 1* count of login sessions *1
ta_dci /* count of disk samples */
taJee; /* fee for special services */

SEE ALSO

BUGS

2

acct.(2), exec(2), fork(2).
acct(1M) in the ICON/UXV Administrator Reference Manual.
acctcom(l) in the ICON/UXV USER Reference Manual.

The ac_mem value for a short-lived command gives little information about the
actual size of the command, because ac_mem may be incremented while a different.
command (e.g., the shell) is being executed by the process.

Icon International, Inc.

- /

(

(

AR(4) FILE FORMATS AR(4)

NAME

ar - common archive file format

DESCRIPTION

The archive command ar(l) is used to combine several files into one. Archives are
used mainly as libraries to be searched by the link editor /d(l).

Each archive begins with the archive magic string.

#define ARMAG "!<arch>\n"
#define SARMAG 8

/* magic string */
/* length of magic string */

Each archive which contains common object files (see a.out(4)) includes an archive
symbol table. This symbol table is used by the link editor Id(l) to determine which
archive members must be loaded during the link edit process. The archive symbol
table (if it exists) is always the first file in the archive (but is never listed) and is
automatically created and/or updated by ar.

Following the archive magic string are the archive file members. Each file member is
preceded by a file member header which is of the following format:

#define ARFMAG '" \n"

struct arJtdr
{

};

char
char
char
char
char
char
char

ar.Jlame[16];
ar_d~tej12];
ar_Uld[6 ;
ar-sid[6 ;
ar-mode[8];
ar...size[lO];
arJmag[2];

/* header trailer string */

/* file member header */

/* 'I' terminated file member name */
/* file member date */
/* file member user identification */
/* file member group identification */
/* file member mode (octal) */
/* file member size */
/* header trailer string */

All information in the file member headers is in printable ASCII. The numeric infor
mation contained in the headers is stored as decimal numbers (except for ar_mode
which is in octal). Thus, if the archive contains printable files, the archiye itself is
printable.

The ar_name field is blank-padded and slash (/) terminated. The ar_date field is the
modification date of the file at the time of its insertion int.o the archive. Common
format archives can be moved from system to system as long as the portable archive
command ar(l) is used. Conversion tools such as arcv{l) and convert{l) exist to aid
in the transportation of non-common format archives t.o this format.

Icon International, Inc. 1

AR(4) FILE FORMATS AR(4)

/~~

Each archive file member begins on an even byte boundary; a newline is inserted lj
between files if necessary. Nevertheless the size given reflects the actual size of the
file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive has a zero length name
(i.e., ar-llame[O] -= '/,). The contents of this file are as follows:

• The number of symbols. Length: 4 bytes.

• The array of offsets into the archive file. Length: 4 bytes * "the number of
symbols".

• The name string table. Length: or_size - (4 bytes * ("the number of sym
bols" + 1».

The number of symbols and the array of offsets are managed with sgetl and sputl.
The string table contains exactly as many null terminated strings as there are ele
ments in the offsets array. Each offset from the array is associated with the
corresponding name from the string table (in order). The names in the string table
are all the defined global symbols found in the common object files in the archive.
Each offset is the location of the archive header for the associated symbol.

SEE ALSO \

.. ~ /
sputl(3X}, a.out(4}.
ar(I), arcv(I), convert(l), Id(I), strip(l) in the ICON/w..'V User Reference Manual.

CAVEATS

2

The common archive structure is not compatible between the PDP-ll and the IBM-370,
due to the different file formats. See arcv(l) and convert(l) to convert between
machines.

Strip(l) will remove all archive symbol entries from the header. The archive symbol
entries must be restored via the ts option of the ar(l) command before the archive
can be used with the link editor Id(l).

Icon International, Inc.

(

(

CHECKLIST (4) F~EFORMATS CHECKLIST (4)

NAME

checklist - list of file systems processed by fsck

DESCRIPTION

Checklist resides in directory /etc and contains a list of, at most, 15 special file
names. Each special file name is contained on a separate line and corresponds to a
file system. Each file system will then be automatically processed by the fsck(IM)
command.

SEE ALSO

fsck(IM) in the IOON/UXV Administrator Reference Manual.

Icon International, Inc. 1

CORE(4) FILE FORMATS

NAME

core - format of memory image file

SYNOPSIS

#include <machine/param.h>
#include <..ys/user.h>
#include <sys/proc.h>

DESCRIPTION

CORE(4)

The ICON/UXV System writes out a memory image of a terminated process when
any of various errors occur. See signal(2) for the list of reasons; the most common
are memory violations, illegal instructions, bus errors, and user-generated quit sig
nals. The memory image is called 'core' and is written in the process's working
directory (provided it can be; normal access controls apply).

The maximum size of a core file is limited by ulimit(2). Files which would be larger
than the limit are not created.

The core file consists of the u. area, whose size (in bytes) is defined by the UBYTES
manifest in the <machine/param.h> file. The u. area starts with a user st.ructure
as given in <sys/user.h>. The remainder of the core file consists of the supervisor
stack area, whose size is given (in bytes) by the SUPERSTACKSIZE manifest in the
<machine/param.h> file, the proc structure, whose size is given (in bytes) by the
PROCSIZE manifest in the <machine/param.h> file, the data pages and then the
stack pa.ges of the process image. The amount of data space image in the core file is
given (in bytes) by the variables p_segmap!DATA_SEGj.segsize +
p_segmap!BSS~EGj.segsize in the proc area. If the program that produced the core
was an OMAGIC program, the data size will include the text size,
p_segmap/TEXT~EGj.segsizeJ also from the proc area (this segment will precede the
data se·gments). The amount of stack image in the core file is given (in bytes) by the
variable p_segmap!STACK-SEGj.segsize in the proc area.

In general the debugger sdb(l) is sufficient to deal with core images.

SEE ALSO

sdb(l), signal(2), ulimit(2)

Icon International, Inc. 1

./.".

CPIO (4) Fll.E FORMATS CPIO(4)

NAME

cpio - format of cpio archive

DESCRIPTION

The header structure, when the -c option of cpio(l) is not used, is:

struct {

} Hdr;

short uagic,
h_dev;

ushort h.Jno,
hJIlode,
h_uid,
h-Sid;

short h..nlink,
hJdev,
hJIltime[2],
h..namesize,
h.Jilesize [2];

char h..name[h..namesize rounded to word];

~rhen the -c option is used, the header information is described by:

sscanf(Chdr, "%60%60%60%60%60%60%60%60%1110%60%1110%s",

&Hdr.hJIlagic, &Hdr.h_dev, &Hdr.h.Jno, &Hdr.hJIlode,
&Hdr.h_uid, &Hdr.h-f;id, &Hdr.h..nlink, &Hdr.hJdev,
&Longtime, &Hdr.h..namesize,&Longfile,Hdr.h..name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h..jilesize, respec
tively. The contents of each file are recorded in an element of the array of varying
length structures, archive, together with other items describing the file. Every
instance of ILmagic contains the constant 070707 (octal). The items ILdev through
h_mtime have meanings explained in stat(2). The length of the null-terminated path
name h_name, including the null byte, is given by h_namesize.

The last record of the archive always contains the name TR.All..ER!!!. Special files,
directories, and the trailer are recorded with h..jilesize equal to zero.

SEE ALSO

stat(2).
cpio(I), find(l) in the ICON/UXV User Reference Manual.

Icon International, Inc. 1

Dffi(4)

NAME

dir - format of directories

SYNOPSIS

#include <sys/typea.h>
#include <sys/dir.h>

DESCRIPTION

FILE FORMATS Dffi(4)

A directory behaves exactly like an ordinary file, save that no user may write into a
directory. The fact that a file is a directory is indicated by a bit in the flag word of
its i-node entry; see 18(4). The structure of a directory entry as given in the include
file is:

/*
* A directory consists of some number of blocks of DIRBLKSIZ
* bytes, where DIRBLKSIZ is chosen such that it can be transferred
* to disk in a single atomic operation (e.g. 512 bytes on most machines).

* * Each DIRBLKSIZ byte block contains some number of directory entry
* structures, which are of variable length. Each direct.ory ent.ry has
* a struct direct at the front of it, containing its inode number,
* the length of the entry, and the length of the name contained in
* the entry. These are followed by the name padded to a 4 byte boundary
* with null bytes. All names are guaranteed null terminated.
* The maximum length of a name in a directory is MAXNAMLEN.

* * The macro DIRSIZ(dp) gives the amount of space required to represent
* a directory entry. Free space in a directory is represented by
* entries which have dp->dJeclen > DIRSIZ(dp). All DIRBLKSIZ bytes
* in a directory block are claimed by the directory entries. This
* usually results in the last entry in a directory having a large
* dp->d...reclen. When entries are deleted from a directory, the
* space is returned to the previous entry in the same directory
* block by increasing its dp->dJeclen. If the first entry of
* a directory block is free, then its dp->d-ino is set to O.
* Entries other than the first in a directory do not normally have
* dp->d-ino set to O.
*/

#ifdef KERNEL
#define DIRBLKSIZ DEV.-aSIZE
#else
#define DIRBLKSIZ 512
#endif

#define MA..XNAMLEN 255

/*

Icon International, Inc. 1

(

Dm(4) FILE FORMATS Dm(4)

* The DIRSIZ macro gives the minimum record
* length which will hold the directory entry.
* This requires the amount of space in struct
* direct without the d...name field, plus enough
* space for the name with a terminating null
* byte (d~>d.Jlamlen+l), rounded up to a 4
* byte boundary.
*/

#Under DIRSIZ
#define DIRSIZ(dp) \

«sizeof (struct direct) - (MAXNAMLEN+I» +
«(dp)->d...namlen+l + 3) &,- 3)}

struct direct {
uJong «Lino;
short dJeclen;
short d...namlen;
cha.r dJla.me[MA.XNAMLEN + I];
/* typically shorter */

};

struct _dirdesc {
int ddJd;

};

long
long
char

ddJoc;
dd~ize;
dd_buf[DIRBLKSIZ];

By convention, the first two entries in each directory are for '.' and ' .. '. The first is
an entry for the directory itself. The second is for the parent directory. The mean
ing of ' .. ' is modified for the root directory of the master file system (" /"), where ' .. '
has the same meaning as '.'.

The library calls opendir, readdir, telldir, seekdir, rewinddir and closedir are provided
to manipulate directory entries.

SEE ALSO

fs(4), directory(3x)

2 Icon International, Inc.

DOSDISKS (4) . FIT..E FORMATS DOSDISKS (4)

NAME

dosdisks -list of MPS/DOS virtual disks

DESCRIPTION

FIT..ES

The file leteldosdiska contains a list of the pathnames for all files to be used as
vdisks for MPS/DOS. The files are created by dosdisk(8) and each new file path
name is appended to I etel dosdiska by dosdisk. The vdisks are accessed in the order in
which they appear in leteldosdisks; the order the filenames appear may be changed
to cause the vdisksto have different MPS/DOS assignments. To delete a vdisk,
remove the MPSjUX file, then edit leteldosdisks and remove the line specifying the
deleted vdisk. The space for the deleted vdisk will be be reclaimed when MPS/UX is
rebooted. Removing a cd' partition vdisk is somewhat more involved; contact Icon
for further assistance.

The first disk to appear should always be boot able , or MPS/DOS will be unable to
initialize. See "Technical Note on Dosc and Proc/286 Support" for full details of
vdisk support.

letc /dosprinters

See Also

dosdisk(lM), Technical Note on Dose, SMILE Users Manual

Icon International, Inc. 1

DOSPRINTERS (4) FIT..E FORMA.TS DOSPRINTERS (4)

(NAME

(

dosprinters - destinations for spooled output from SLPT printers

DESCRIPTION

FILES

The file /etc/dosprinters is read by the dosprint program and specifies 'destination
and options for the SLPT printers used under MPS/DOS. It contains zero or more
lines in the following format:

n pr [opt]

where "n" is the SLPT printer number (0-7), "pr" is the printer name /pr(l) is to use
for printing, and "[opt]" is an optional string which is passed to lpr which can be
used to set various modes. For example,

1 lp
3 lp-p
7 laser3

specifies that the output from SLPTI should be spooled to "lp" (this is actually the
default); the output from SLPT3 is spooled to "lp" with the -p flag (which causes /pr
to pass the file through the "pr" filter); and the output from SLPT7 is spooled to a
printer known as "laser3". Notice that it is not necessary to specify an entry for all
8 printers; all SLPT devices default to "lp" with no options.

/etc/dosprinters

See Also

lp(l), Technical Note on Dose

Icon International, Inc. 1

DSTRULES (4)· FILE FOID.1A TS DSTRULES (4)

NAME

dstrules - Daylight savings time and time zone name rule file.

DESCRIPTION

BUGS

The dstrule8 file contains a set of rules for daylight savings time, and time zone
names. This allows for modification of daylight savings time rules or time zone
names without recompilation. Upon its initial invocation in any process, the
ctime(9) library routine reads the dstrules configuration file for a set of rules. If none
are found, it uses a default table of rules which are current as of April 1, 1987.

Comments begin with a "#" and are ended with the end of the line. Fields must be
separated by tabs.

Each rule begins with %R and must be ended with a lambda which is an impossible
date in the future, for example 9999. In a rule, offset is the number of hours time is
to be shifted during daylight savings time. Hemisphere is one of N or S denoting the
northern or southern hemispheres, respectively. The parameter lIeareffective is the
year that begins the period during which daylight savings time is in effect between
startdall and enddall. Let us consider the following example of a rule definition:

%R 1 N
1970 119 303
1974 5 333
1975 58 303
1976 119 303
1987 96 303
9999 0 0

In the example shown above, from 1790 to 1973 daylight savings time begins on the
Sunday. closest to the 119TH day and ends on the Sunday closes to the 303RD day.
During 1974, daylight savings time begins on or about the 5TH day and ends on or
about the 333RD day, and so forth.

The time zone name definition section begins with %Z. If you use %Z more than
once in your dstrules file, the table may not be parsed correct.ly, and the default
tables compiled into timezone{9} will be used. In a time zone name, minuteswest is
the number of minutes west of GMT for that zone. Sfandardname is the name for
the zone when no daylight savings time is in effect, and dstname is the name for the
zone when daylight savings time is in effect. The entry "*" for a zone name is inter
preted as a null string. If you use a null string for dstname when daylight savings
time is in effect, timezone{9} may become confused, and create its own string.

Icon International, Inc. 1

~ ,7

(

(

('

DSTRULES (4) FILE FORMATS DSTRULES (4)

Fll..ES

The daylight savings time rules for parts of Europe are not confirmed.

Daylight savings time must begin on a Sunday.

It is not possible to give more than one timezone name to a particular offset from
GMT without the rule file parser becoming extreemly confused.

/etc /dstrules

SEE ALSO

ctime(3), date{l)

2 Icon International, Inc.

FILEHDR(4) FILE FORMATS FILEHDR(4)

NAME

filehdr - file header for common object files

SYNOPSIS

#include <filebdr.b>

DESCRIPTION

Every common object file begins with a 20-byte header. The following C struct
declaration is used:

struct filehdr
{

} ;

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

Lmagic;
Lnscns;
Ltimdat;
f...symptr;
Lnsyms;
Lopthdr;
fJlags;

/* magic number */
/* number of sections *1
/* time & date stamp *1
1* file ptr to symtab */
1* # symtab entries *1
1* sizeof(opt hdr) *1
1* flags *1

F_sympfr is the byte offset into the file at which the symbol table can be found. Its
value can be used as the offset in fseek(3S) to position an 1/0 stream to the symbol
table. The UNIX system optional header is 28 bytes. The valid magic numbers are
given below:

#define MC68MAGIC 0521 1* 2k page version *1

The value in f_timdat is obtained from the time(2) system call. Flag bits currently
defined are:

#define F ..RELFLG 00001
#define F...EXEC 00002
#define F J.NNO 00004
#define F.LSYMS 00010
#define F...MINMAL 00020
#define F_UPDATE 00040
#define F...sWABD 00100
#define LA.R16WR 00200
#define F -AR32WR 00400
#define F -AR32W 01000
#define F...PATCH 02000

Icon International, Inc.

/* relocation entries stripped *1
/* file is executable *1
1* line numbers stripped *1
/* local symbols stripped */
/* minimal object file */
/* update file, ogen produced */
/* file is "pre-swabbed" *1
1* 16 bit DEC host */
1* 32 bit DEC host *1
1* non-DEC host *1
1* "patch" list in opt hdr *1

1

FILEHDR(4) FILE FORMATS Fll..EHDR(4)

(
SEE ALSO

time(2), fseek(3S), a.out(4).

(

('.

2 Icon International, Inc.

FS(4) FlLEFORMATS FS(4)

NAME

fs - format of file system vollllM

SYNOPSIS

#include <sys/types.h>
#include <Sys/fs.h>
#include <sys/inode.h>

DESCRIPTION

Every file system storage volume (disk, nine-track tape, for instance) has a common
format for certain vital information. Every such volume is divided into a certain
number of blocks. The block size is a parameter of the file system. Sectors 0 to 15
on a file system are used to contain primary and secondary bootstrapping programs.

The actual file system begins at sector 16 with the super block. The layout of the
super block as defined by the include file <sys//s.h> is:

#define FS.-MAGIC 0x011954
struct fs {

struct fs *fsJink; /* linked list of file systems */
struct fs *fs.J'link; /* used for incore super blocks */
daddr_t fS..J\blkno; /* addr of super-block in filesys */
daddr_t fs_cblkno; /*oft'5et of cyl-block in filesys */
daddr_t fs.-iblkno; /* offset of inode-blocks in filesys */
daddr_t fs_dblkno; /* offset of first data after cg */
long fs_cgoffset; /* cylinder group offset in cylinder */
long Cs_cgmask; /* used to calr mod fS-Dtrak */
time_t Cs_time; /* last time written */
long fS..J\ize; /* number of blocks in fs */
long fs_dsize; /* number of data blocks in fs */
long fS.Jlcg; /* number of cylinder groups * /
long fs_bsize; /* size of basic blocks in fs */
long fsJsize; /* size of frag blocks in fs */
long fsJrag; /* number of frags in a block in Is * /

/* these are configuration parameters */
long fs-minfree; /*minimum percentage of free blocks */
long fS.J'otdelay; /* num of ms for optimal next block */
long fs.J'ps; /* disk revolutions per second */

/* these fields can be computed from the others * /
long fLbmask; /* "blkoff" calc of blk offsets */
long fsJmask; /* "fragoff" calc of frag offsets */
long Cs_bshift; /* "lblkno" calc of logical blkno */
long fsJshift; /* "numfrags" calc number of frags */

/* these are configuration parameters */
long fs-maxcontig; /* max number of contiguous blks */
long fs-maxbpg; /* max number of blks pE'r cyl group */

Icon International, Inc. 1

rf"
'~C~/

FS(4)

2

Fll..E FORMATS

/* these fields can be computed from the others */
long fsJragshift; /* block to frag shift */
long fsJsbtodb; /* fsbtodb and dbtofsb shift constant */
long fs..sbsize; /* actual size of super block */
long fs_csmask; /* csum block offset */
long fs_csshift; /* csum block number */
long fS-Dindir; /* value of NINDIR */
long fsjnopb; /* value of INOPB */
long fS-Dspf; /* value of NSPF */
long fs..sparecon[6]; /* reserved for future constants */

/* sizes determined by number of cylinder groups and their sizes */
daddr_t flLcsaddr; /* blk addr of cyl grp summary area */
long fs_cssize; /* size of cyl grp summary area */
long fs_cgsize; /* cylinder group size */

/* these fields should be derived from the hardware * /
long fS-Dtrak; /* tracks per cylinder */
long fS-Dsect; /* sectors per track */
long fs..spc; /* sectors per cylinder */

/* this comes from the disk driver partitioning */
long fSJlcyl; /* cylinders in file system */

/* these fields can be computed from the others */
long fs_cpg; /* cylinders per group */
long fsjpg; /* inodes per group */
long fsJpg; /* blocks per group * fsJrag */

/* this data must be re-computed after crashes */
struct csum fs_cstotal;/* cylinder summary information */

/* these fields are cleared at mount time */
char fsJmod; /* super block modified flag */
char fs_clean; /* file system is clean flag */
char fSJonly; /* mounted read-only flag */
char fsJlags; /* currently unused flag */
char fsJsmnt; /* name mounted on */

[MAXMNTLEN]
/* these fields retain the current block allocation info */

long fs_cgrotor; /* last cg searched * /
struct csum *fs_csp; /* list of fs_cs info buffers */

long
short

[MAXCSBUFS]
fs_cpc; /* cyl per cycle in postb} */
fs_postbl; /* head of blocks for each rotation */
[MAXCPG][NRPOS]

long fs-magic; /* magic number */
u_char fSJotbl[I]; /* Jist of blocks for each rotation */

~~ actually longer */

FS(4)

Each disk drive contains some number of file systems. A file system consists of a
number of cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, which in turn describes the cylinder
groups. The super-block is critical data and is replicat.ed in each cylinder group to

Icon International, Inc.

FS(4) FILE FORMATS FS(4)

(---\

protect against ca.tastrophic loss. This is done a.t file system crea.tion time and the"'-j'
critical super~block data does not change, so the copies need not be referenced
further unless disaster strikes.

Addresses stored in inodes are capable of addressing fra.gments of 'blocks'. File sy~
tem blocks of a.t most size MAXBSIZE ca.n be optiona.lly broken into 2, 4, or 8 pieces,
ea.ch of which is a.ddressa.ble; these pieces ma.y be DEV -BSIZE, or some multiple of a
DEV..BSIZE unit.

Large files consist of exclusively large data. blocks. To avoid undue wasted disk
space, the last data block of a. small file is a.llocated a.s only as ma.ny fragments of a
large block as are necessary. The file system format retains only a single pointer to
such a fragment, which is a piece of a single large block tha.t has been divided. The
size of such a. fragment is determinable from information in the inode, using the
"blksize(fs, ip, Ibn)" macro.

The file system records space availability at the fragment level; to determine block
availability, aligned fragments are examined.

The root inode is the root of the file system. Inode 0 can't be used for normal pur
poses and historically bad blocks were linked to inode 1, thus the root inode is 2
(inode 1 is no longer used for this purpose, however numerous dump tapes make this
assumption, so we are stuck with it). The lost+/ound directory is given the next
available inode when it is initially created by mk/s.

/s_min/ree gives the minimum acceptable percentage of file system blocks which may
be free. If the freelist drops below this level only the super~user may continue to allo
cate blocks. This may be set to 0 if no reserve of free blocks is deemed necessary,
however severe performance degradations will be observed if the file system is run at
greater than 90% full; thus the default value of /s_minfree is lO%.

Empirically the best trade~off between block fragmentation and overall disk utiliza
tion at.a loading of 90% comes with a fragmentation of 4, thus the default fragment
size is a fourth of the block size.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks
at different rotational positions, so that sequential blocks can be laid out with
minimum rotational latency. NRPOS is the number of rotational positions which
are distinguished. With NRPOS 8 the resolution of the summary information is 2ms
for a typical 3600 rpm drive.

/s_rotdelay gives the minimum number of milliseconds to initiate another disk
transfer on the same cylinder. It is used in determining the rotationally optimal
layout for disk blocks within a file; the default value for /s_rotdelay is 2ms.

Each file system has a statically allocated number of inodes. An inode is allocated
for each NBPI bytes of disk space. The inode allocation strategy is extremely con-

- ,/

servative. /- "

Icon International, Inc. 3

(...

(

(~

FS(4) FILE FORMATS FS(4)

MAXIPG bounds the number of inodes per cylinder group, and is needed only to keep
the structure simpler by having the only a single variable size element (the free bit
map).

N.B.: MAXIPG must be a multiple of INOPB(fs).

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is pos
sible to create files of size 2 A 32 with only two levels of indirection. MINBSIZE must
be big enough to hold a cylinder group block, thus changes to (struct cg) must keep
its size within MINBSIZE. MAXCPG is limited only to dimension an array in (struct
cg); it can be made larger as long as that structure's size remains within the bounds
dictated by MINBSIZE. Note that super blocks are never more t.han size SBSIZE.

The path name on which the file system is mounted is maintained in Js../smnt.
MAXMNTLEN defines the amount of space allocated in the super block for this
name. The limit on the amount of summary information per file system is defined by
:MAXCSBUFS. It is currently parameterized for a maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first
cylinder group's data blocks. These blocks are read in from Js_csaddr (size Js_cssize)
in addition to the super block.

N.B.: sizeof (struct csum) must be a power of two in order for the "fs_cs" macro to
work.

Super block Jor a file system: :MAXBPC bounds the size of the rotational layout
tables and is limited by the fact that the super block is of size SBSIZE. The size of
these tables is inversely proportional to the block size of the file system. The size of
the tables is increased when sector sizes are not powers of two, as this increases the
number of cylinders included before the rotational pattern repeats (Js_cpc). The
size of the rotational layout tables is derived from the number of bytes remaining in
(struct fs).

MA...XBPG bounds the number of blocks of data per cylinder group, and is limited by
the fact that cylinder groups are at most one block. The size of the free block table
is derived from the size of blocks and the number of remaining bytes in the cylinder
group structure (struct cg).

Inode: The inode is the focus of all file activity in the ICON/UX file system. There
is a unique inode allocated for each active file, each current directory, each
mounted-on file, text file, and the root. An inode is 'named' by its device/i-number
pair. For further information, see the include file <sys/inode.h>.

SEE ALSO

inode(4).

4 Icon International, Inc.

FSPEC(4) Fll.E FORMATS FSPEC(4)

NAME

fspec - format specification in text files

DESCRIPTION

It is sometimes convenient to maintain text files on the ICON/UXV system with non
standard tabs, (i.e., tabs which are not set at every eighth column). Such files must
generally be converted to a standard format, frequently by replacing all tabs with
the appropriate number of spaces, before they can be processed by ICON/UXV sys
tem commands. A format specification occurring in the first line of a text file
specifies how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and
surrounded by the brackets <: and :>. Each parameter consists of a keyletter, pos
sibly followed immediately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of tabs
must be one of the following:

1. a list of column numbers separated by commas, indicating tabs set
at the specified columns;

2. a - followed immediately by an integer n, indicating tabs at inter
vals of n columns;

3. a - followed by the name of a "canned" tab specification.

Standard tabs are specified by t-8, or equivalently, tl,9,17,25,etc.
The canned tabs which are recognized are defined by the tabs{l) com
mand.

BSlze The B parameter specifies a maximum line size. The value of size must
be an integer. Size checking is performed after tabs have been
expanded, but before the margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended to each
line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that. the line
containing the format specification is to be deleted from the converted
file.

e The e parameter takes no value. Its presence indicates that t.he current
format is to prevail only until another format specification is encoun
tered in the file.

Icon International, Inc. 1

(

FSPEC(4) FIT..E FORMATS FSPEC(4)

Default values, which are assumed for parameters not supplied, are t-8 and mO. If
the 8 parameter is not specified, no size checking is performed. If the first line of a
file does not contain a format specification, the above defaults are assumed for the
entire file. The following is an example of a line containing a format specification:

• <:t5,IO,15 s72:> *

If a format specification can be disguised as a comment, it is not necessary to code
the d parameter.

Several ICON/UXV system commands correctly interpret the format specification for a
file. Among them is gath (see 8end(IC)) which may be used to convert files to a stan
dard format acceptable to other ICONjUXV system commands.

SEE ALSO

edell, newform(l), send(IC), tabs(l) in the ICON/UXV U8er Reference Manual.

2 Icon International, Inc.

GETTYDEFS (4) FILE FORMATS GETTYDEFS (4)

NAME

gettydefs - speed and terminal settings used by getty

DESCRIPTION

The /etc/gettydefs file contains information used by getty(lM} to set up the speed
and terminal settings for a line. It supplies information on what the login prompt
should look like. It also supplies the speed to try next if the user indicates the
current speed is not correct by typing a <break> character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can contain quoted charac
ters of the form \h, \n, \e, etc., as well as \nnn, where nnn is the octal value of the
desired character. The various fields are:

label

initial-flags

This is the string against which getty tries to match its second argu
ment. It is often the speed, such as 1200, at which the terminal is
supposed to run, but it. need not be (see below).

These flags are the initial ioctl(2) settings to which the terminal is to
be set if a terminal type is not specified to getty. The flags that getty
understands are the same as the ones listed in
/usr/include/sys/termio.h (see termio(7)). Normally only the
speed flag is required in the initial-flags. Getty automatically sets the
terminal to raw input. mode and takes care of most of the other flags.
The initial-flag set.tings remain in effect until getty executes login(l).

final-flags These flags take the same values as the initial-flags and are set just
prior to getty executes login. The speed flag is again required. The
composite flag SANE takes care of most of the other flags that need
to be set so that the processor and terminal are communicating in a
rational fashion. The other two commonly specified final-flags are
TAB3, so that tabs are sent to the terminal as spaces, and HUPCL, so
that the line is hung up on the final close.

login-prompt This entire field is printed as the login~prompt. Unlike the above
fields where white space is ignored (a space, tab or new-line), they are
included in the login-prompt field. This field may include a %h to
insert the host name into the login prompt, a %t to insert the tty
device name into the login prompt, a %n to insert a newline, or a
%% to insert the percent character into the login prompt.

next-label If this entry does not specify the desired speed, indicated by the user
typing a <break> character, then getty will search for the entry with
next-label as its label field and set up the terminal for those settings.
Usually, a series of speeds are linked together in this fashion, into a
closed set; For instance, 2400 linked to 1200, which in turn is linked
to 300, which finally is linked to 2400.

Icon International, Inc. 1

(

GETTYDEFS (4) FILE FORMATS GETTYDEFS (4)

FILES

If getty is called without a second argument, then the first entry of /ete/gettydefs
is used, thus making the first entry of /ete/gettydefs the default entry. It is also
used if getty can not find the specified label. If /ete/gettydefs itself is missing, there
is one entry built into the command which will bring up a terminal at 300 baud.

It is strongly recommended that after making or modifying /ete/gettydefs, it be
run through getty with the check option to be sure there are no errors.

/etc/gettydefs

SEE ALSO

2

ioctl(2).
getty(lM), termio(7) in the ICON/ UXV Administrator Reference Manual.
login(l) in the ICON/UXV User Reference Manual.

Icon International, Inc.

GPS(4) FILE FORMATS GPS(4)

NAME

gps - graphical primitive string, format of graphical files

DESCRlPTION

GPS is a format used to store graphical data. Several routines have been developed
to edit and display GPS files on various devices. Also, higher level graphics programs
such as plot (in stat(lG» and vtoc (in toc(lG» produce GPS format output files.

A GPS is composed of five types of graphical data or primitives.

GPS PRIMITIVES

lines The lines primitive has a variable number of points from which zero or
more connected line segments are produced. The first point given pro
duces a move to that location. (A move is a relocation of the graphic cur
sor without drawing.) Successive points produce line segments from the
previous point. Parameters are available to set color, weight, and style
(see below).

arc The arc primitive has a variable number of points to which a curve is fit.
The first point produces a move to that point. If only two points are
included, a line connecting the points will result; if three points a circular
arc through the points is drawn; and if more than three, lines connect the
points. (In the future, a spline will be fit to the points if they number
greater than three.) Parameters are available to set color, weight, and
style.

text The text primitive draws characters. It requires a single point which
locates the center of the first character to be drawn. Parameters are
color, font, textsize, and textangle.

hardware
The hardware primitive draws hardware characters or gives control com
mands to a hardware device. A single point locates the beginning loca
tion of the hardware string.

comment A comment is an integer string that is included in a GPS file but causes
nothing to be displayed. All GPS files begin with a comment of zero
length.

GPS PARAMETERS

color

weight

style

Color is an integer value set for arc, lines, and text primitives.

Weight is an integer value set for arc and lines primitives to indicate line
thickness. The value 0 is narrow weight, 1 is bold, and 2 is medium
weight.

Style is an integer value set for lines and arc primitives to give one of the
five different line styles that can be drawn on TEKTRONIX 4010 series
storage tubes. They are:

o solid

Icon International, Inc. 1

GPS(4) Fll..E FORMATS GPS(4)

1 dotted
2 dot dashed
3 dashed
" long dashed

font An integer value set for text primitives to designate the text font to be
used in drawing a character string. (Currently font is expressed as a
four-bit weight value followed by a four-bit style value.)

text.ize Textsize is an integer value used in text primitives to express the size of
the characters to be drawn. Textsize represents the height of characters
in absolute universe-units and is stored at one-fifth this value in the size
orientation (so) word (see below).

textangle Textangle is a signed integer value used in text primitives to express rota
tion of the character string around the beginning point. Textangle is
expressed in degrees from the positive x-axis and can be a positive or
negative value. It is stored in the size-orient.ation (so) word as a value
256/360 of it's absolute value.

ORGANIZATION
GPS primitives are organized internally as follows:

lines
arc
text
hardware
comment

cw points sw
cw points sw
cw point sw so [string 1
cw point \string 1
cw [string

cw Cw is the control word and begins all primitives. It consists of four bits
that contain a primitive-type code and twelve bits that contain the
word-count for that primitive.

point(s) Point(s) is one or more pairs of integer coordinates. Text and hardware
primitives only require a single point. Point(s) are values within a Carte
sian plane or universe having 64K (-32K to +32K) points on each axis.

sw Sw is the style-word and is used in lines, arc, and text primitives. For all
three, eight bits contain color information. In arc and lines eight bits are
divided as four bits weight and four bits style. In the text primitive eight
bits of sw contain the font.

so So is the size-orientation word used in text primitives. Eight bits contain
text size and eight bits contain text rotation.

string String is a null-terminated character string. If the string does not end on
a word boundary, an additional null is added to the GPS file to insure
word-boundary alignment.

SEE ALSO

graphics(lG), stat(lG), toc(lG) in the ICON/w..'y Administrator Reference Manual.

2 Icon International, Inc.

GROUP (4) Fll..E FORMATS GROUP(4)

NAME

group - group file

DESCRIPTION

FILES

Group contains Cor each group the Collowing inCormation:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group is separated
from the next by a new-line. If the password field is null, no password is demanded.

This file resides in directory fetc. Because of the encrypted passwords, it can and
does have general read permission and can be used, for example, to map numerical
group ID's to names.

fete/group

SEE ALSO

crypt(3C), passwd(4).
newgrp(l), passwd(l) in the ICON/UXV User Reference Manual.

Icon International, Inc. 1

(

(

INITTAB(4) FILE FORMATS INITTAB(4)

NAME

inittab - script for the init process

DESCRIPTION

The inittab file supplies the script to init's role as a general process dispatcher. The
process that constitutes the majority of init's process dispatching activities is the
line process Jete/getty that initiates individual terminal lines. Other processes typ
ically dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position dependent and have the fol
lowing format:

id:rstate:action:process

Each entry is delimited by a newline, however, a backslash (') preceding a newline
indicates a continuation of the entry. Up to 512 characters per entry are permitted.
Comments may be inserted in the process field using the sh(1) convention for com
ments. Comments for lines that spawn gettys are displayed by the who(1) command.
It is expected that they will contain some information about the line such as the
location. There are no limits (other than maximum entry size) imposed on the
number of entries within the inittab file. The entry fields are:

id This is one or two characters used to uniquely identify an entry.

rstate This defines the run-level in which this entry is to be processed. Run-levels
effectively correspond to a configuration of processes in the system. That
is, each process spawned by init is assigned a run-level or run-levels in which
it is allowed to exist. The run-levels are represented by a number ranging
from 0 through 6. As an example, if the system is in run-levell, only t.hose
entries having a 1 in the rstate field will be processed. When init is
requested to change run-levels, all processes which do not have an entry in
the rstate field for the target run-level will be sent the warning signal
(SIGTERM) and allowed a2()..second grace period before being forcibly t.er
minated by a kill signal (SIGKILL). The rstale field can define multiple
run-levels for a process by selecting more than one run-level in any combi
nation from 0-6. If no run-level is specified, then the process is assumed to
be valid at all run-levels 0-6. There are three other values, a, band c,
which can appear in the rstate field, even though they are not true run
levels. Entries which have these characters in the rstate field are processed
only when the telinit (see init(1M» process requests them to be run (regard
less of the current run-level of the system). They differ from run-levels in
that init can never enter run-level a, b or c. Also, a request for the execu
tion of any of these processes does not change the current run-Iet'el. Furth
ermore, a process started by an a, b or c command is not killed when init
changes levels. They are only killed if their line in /etc/inittab is marked
off in the action field, their line is deleted entirely from /etc/inittab, or
init goes into the SINGLE USER state.

Icon International, Inc. 1

INITTAB(4) Fll.E FORMATS INITTAB(4)

2

action Key words in this field tell init how to treat the process specified in the pro
cess field. The actions recognized by init are as follows:

respawn

wait

once

boot

If the process does not exist then start the process, do not
wait for its termination (continue scanning the inittab file),
and when it dies restart the process. If the process currently
exists then do nothing and continue scanning the ihiUab file.

Upon ini"s entering the run-level that matches the entry's
r8tate, start the process and wait for its termination. All
subsequent reads of the inittab file while init is in the same
run-level will cause init to ignore this entry.

Upon init's entering a run-level that matches the entry's
rstate, start the process, do not wait for its termination.
When it dies, do not restart the process. If upon entering a
new run-level, where the process is still running from a previ
ous run-level change, the program will not be restarted.

The entry is to be processed only at init's boot-time read of
the inittab file. Init is to start the process, not wait for its ter
mination; and when it dies, not restart the process. In order
for this instruction to be meaningful, the rstate should be the
default or it must match init's run-level at boot time. This
action is useful for an initialization function following a
hardware reboot of the system.

bootwait The entry is to be processed only at init's boot-time read of, /
the inittab file. Init is to start the process, wait for its termi-
nation and, when it dies, not restart the process.

powerfail Execute the process associated with this entry only when init
receives a power fail signal (SIGPWR see signal(2)).

powerwait Execute the process associated with this entry only when init
receives a power fail signal (SIGPWR) and wait until it ter
minates before continuing any processing of inittab.

off If the process associated with this entry is currently running,
send the warning signal (SIGTERM) and wait 20 seconds
before forcibly terminating the process via the kill signal
(SIGKn..L). If the process is nonexistent, ignore the entry.

ondemand This instruction is really a synonym for the respawn action.
It is functionally identical to respawn but is given a different
keyword in order to divorce its associat.ion with run-levels.
This is used only with the a, b or e values described in the
rstate field.

initdefault An entry with this action is only scanned when init initially
invoked. Init uses this entry, if it exists, to determine which
run-level to enter initially. It does this by taking the highest
run-level specified in the rstate field and using that as its ini
tial state. If the rstate field is empt.y, t.his is interpreted as
0123456 and so init will enter run-level 6. Also, the initde-
fault entry cannot specify that init start in the SINGLE USER rr-'
state. Additionally, if init does not find an initdefault ent.ry "-j
in /etc/inittab, then it will request an initial run-level from

Icon International, Inc.

(

INITTAB(4) FILE FORMATS INITTAB(4)

FILES

sysinit

the user at reboot time.

Entries of this type are executed before init tries to access t.he
console. It is expected that this entry will be only used to ini
tialize devices on which init might try to ask the run-level
question. These entries are executed and waited for before
continuing.

process This is a sh command to be executed. The entire process field is prefixed
with exec and passed to a forked sh as sh --c 'exec command'. For this
reason, any legal sh syntax can appear in the process field. Comments can
be inserted with the; #comment syntax.

/etc/inittab

SEE ALSO

exec(2), open(2), signal(2).
getty(lM), init(lM) in the IOON/UXV Administrator Reference Manual.
sh(l), who(l) in the IOON/UA'V User Reference Manual.

Icon International, Inc. 3

INODE(4)

. NAME

inode - format of an i-node

SYNOPSIS

#include <sys/types.h>
#include <sys/inode.h>

DESCRIPTION

Fll.E FORMATS INODE(4)

An i-node for a plain file or directory in a file system has the following structure
defined by <sys/inode.h>.

/* Common inode structure for disk and memory inodes. */

#define
#define

struct
{

u...short
short
uid_t
gid_t
quad
time_t
long
time_t
long
time_t
long
union {

}dLudb;
daddr_t
long
long
uJong

};

NDADDR12
NIADDR 3

icommon

ic..mode;
iCJllink;
ic_uid;
ic...gid;
ic....size;
ic_atimej
ic..atsparej
ic..mtime;
ic..mtspare;
ic_ctimej
ic_ctspare;

daddr_t
short

icjb[NIADDR]j
ic.JIags;
ic_blocks;
icJoadmap[5];

/* direct addresses in inode */
/* indirect addresses in inode * /

/* 0: mode and type of file */
/* 2: number of links to file */
/* 4: owner's user id */
/* 6: owner's group id */
/* 8: number of bytes in file */
/* 16: time last accessed */

/* 24: time last modified */

/* 32: last time inode changed */

LaINDADDR]j
UINSADDR];

/* 88: indirect blocks */
/* 100: status, currently unused */
/* 104: blocks actually held */
/* 108: past loading history */

/* Inode structure as it appears on a disk block. */

struct dinode {
union {

struct

Icon International, Inc.

icommon dUcom;

1

(-

INODE(4)

} dLun;
};

char

FILE FORMATS

duize[128];

For the meaning of the defined type time_t see tllpes(5).

FIT..ES

/usr /include/sys/inode.h

SEE ALSO

stat(2), fs(4), types(5).

2

INODE(4)

Icon International, Inc.

ISSUE (4) FILE FORMATS ISSUE (4)

NAME

issue - issue identification file

DESCRIPTION

The file /etc/issue contains the issue or project identification to be printed as a
login prompt. This is an ASeD file which is read by program getty and then written
to any terminal spawned or respawned from the lines file.

Fn.ES

. /etc/issue

SEE ALSO

login(l) in the ICON/UXV User Reference Manual.

Icon International, Inc. 1

c

LDFCN(4) FILE FORMATS

NAME

Idfcn - common object file access routines

SYNOPSIS

#include <stdio.h>
#include <ftlehdr .h>
#include <Idfcn.h>

DESCRIPTION

LDFCN(4)

The common object file access routines are a collection of functions for reading an
object file that is in common object file form. Although the calling program must
know the detailed structure of the parts of the object file that it processes, the rou
tines effectively insulate the calling program from knowledge of the overall structure
of the object file.

The interface between the calling program and the object file access routines is
based on the defined type LDFILE, defined as struet Idfile, declared in the header
file Idfen.h. The primary purpose of this structure is to provide uniform access to
both simple object files and to object files that are members of an archive file.

The function Idopen(3X) allocates and initializes the LDFILE structure and returns a
pointer to the structure to the calling program. The fields of the LDFILE structure
may be accessed individually through macros defined in Idfen.h and contain the fol
lowing information:

LDFILE *ldptr;

TYPE(ldptr) The file magic number used to distinguish between archive members
and simple object files.

IOPTR(ldptr)

OFFSET(ldptr)

HEADER(ldptr)

The file pointer returned by Jopen and used by the standard
input/output functions.

The file address of the beginning of the object file; the offset is non
zero if the object file is a member of an archive file.

The file header structure of the object file.

The object file access functions themselves may be divided into four categories:

(1) functions that open or close an object file

Idopen(3X) and Idopen(3X)

open a common object file

Icon International, Inc. 1

LDFCN(4)

2

Fll..EFORMATS LDFCN(4)

ldclose(3X) and ldcIDBe(3X)

dose a. cmnmon obJeet file

(2) functions thatTe3.d h~ader or symbol table information

ldahreurl(3X)

read the arehmheader of a member of an archive file

ld/hread(3X)

read the file header of a common object file

Idshruul(3X) and Idsfrread(3X)

l'e.ad a section headu of a common object file

Idtbread(3X)

read a symbol table entry of a common object file

Idgetname(3X)

retrieve a symbol name from a symbol table entry or from the
string table

(3) functions that position an object file at (seek to) the start of the section,
relocation, or line number information for a particular section.

Idohseek(3X)

seek to the optional file header of a {'ommon object file

Idsseek(3X} ..anrlJdssed(3X)

seek to a section of a common object file

Idrseek(ax) and Idrseek(3X)

seek to the relocation information for a section of a common
object file

Idlseek(3X) and Idlseek(3X)

~/

seek to the line number information for a section of a common .{~,
object file ~,j

Icon International, Inc.

(

(

LDFCN(4) FILE FORMATS LDFCN(4)

ldtbseek(3X)

seek to the symbol table of a common Dbject file

(4) the function ldtbindez(3X) which returns the index of a particular common
object file symbol table entry.

These functions are described in detail on their respective manual pages.

All the functions except Idopen(3X), Idgetname(3X), Idopen(3X), and ldtbindez(3X)
return either SUCCESS or FAILURE, both const.ants defined in Idfen.h.
Ldopen(3X) and Idopen(3X) both return pointers to an LDFILE structure.

Additional access to an object file is provided through a set of macros defined in
Idfen.h. These macros parallel the standard input/output file reading and manipu
lating functions, translating a reference of the LDFILE structuTe into a reference to
its file descriptor field.

The following macros are provided:

GETC(ldptr)
FGETC(ldptr)
GETW(ldptr)
UNGETC(c, Jdptr)
FGETS(s, n, ldptr)
FREAD«char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)
REWIND(ldptr)
FEOF{ldptr)
FERROR(ld ptr)
FILENO(ldptr)
SETBUF(ldptr, buf)
STROFFSET(ldptr)

The STROFFSET macro calculates the address of the string table in a UNIX system
release 5.0 object file. See the manual entries for the corresponding standard
input/output library functions for details on the use of the rest of the macros.

The program must be loaded with the object file access routine library libId.a.

WARNING

The macro FSEEK defined in the header file Idfen.h translates into a call to the

Icon International, Inc. 3

LDFCN(4) FILE FORMATS LDFCN(4)

standard input/output (unction /8eek(3S). FSEEK should not be used to seek (rom
the end o(an archive file since the end o(an archive file may not be the same as the
end or one or its object file members!

SEE ALSO

4

rseek(3S), Idahread(3X), Idclose(3X), Idgetname(3X), Idthread(3X), Idlread(3X),
Idlseek(3X), Idohseek(3X), Idopen(3X), Idrseek(3X), Idlseek(3X), Idshread(3X),
Idtbindex(3X), Idtbread(3X), Idtbseek(3X), intro(5).

Icon International, Inc.

LlNENUM(4) FILE FORMATS LlNEl\TUM: (4)

(NAME

f

(...

linenum -line number entries in a common object file

SYNOPSIS

#include <linenum.h>

DESCRIPTION

Compilers based on pee generate an entry in the object file for each C source line on
which a breakpoint is possible (when invoked with the -g option; see ee(l)). Users
can then reference line numbers when using the appropriate software test system
(see sdb(l)). The structure of these line number entries appears below.

struct lineno
{

union
{

long uymndx;
long Lpaddr;

} Laddr;
unsigned short Un no ;

};

Numbering starts with one for each function. The initial line number entry for a
function has Llnno equal to zero, and the symbol table index of the function's entry
is in Lsymndx. Otherwise, Llnno is non-zero, and Lpaddr is the physical address of
the code for the referenced line. Thus the overall structure is the following:

Laddr Llnno

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

Icon International, Inc. 1

LlNENUM(4)

SEE ALSO

a.out(4).

FILE FORMATS

cc(I), seib(l) in the IOON/UXV U8er Reference Manual.

2

LlNENUM(4)

Icon International, Inc.

;f--,

\''-.)

:(

MNTTAB(4) Fll..E FORMATS MNTTAB(4)

NAME

mnttab - mounted file system table

SYNOPSIS

:fI:i.nclude <mnttab.h>

DESCRIPTION

Mnttab resides in directory /etc and contains a table of devices, mounted by the
mount(lM} command, in the following structure as defined by <mnttab.h>:

struct mnttab {
char
char
short
time_t

};

mLdev[32];
mtJlsys!32];
mLroJ}g;
mLtime;

Each entry is 70 bytes in length; the first 32 bytes are the null-padded name of the
place where the special file is mounted; the next 32 bytes represent the null-padded
root name of the mounted special file; the remaining 6 bytes contain the mounted
special file's read/write permissions and the date on which it was mounted.

The maximum number of entries in mnUab is based on the system parameter
NMOUNT located in /un /src/uts/cf/conf.c, which defines the number of allowable
mounted special files.

SEE ALSO

mount(lM), setmnt(lM) in the IOON/UXV Administrator Reference Manual.

Icon International, Inc. 1

MTTYS(4) FILE FORMATS MTTYS(4)

NAME

mttys - Multi-Link partition information

DES CRlP TION

The file /etc/mttya is read by the doacprogram a.ndspecifi~s the maximum number
of Multi-Link partitions that can be active. ThereiscuTrently only one line in the
file, which contains the decimal number of partitions. Currently the number may
range from 1 to 8.

FILES

/ete/mttys

SEE ALSO

dose(!}

Icon International, Inc. 1

<-

PASSWD(4) FILE FORMATS

NAME

passwd - password file

DESCRIPTION

Pf!.88wd contains for each user the following information:

login name
encrypted password
numerical user ID
numerical group ID
GCOS job number, box number, optional GCOS user ID
initial working directory
program to use as shell

PASSWD(4)

This is an ASCII file. Each field within each user's entry is separated from the next
by a colon. The Geos field is used only when communicating with that system, and
in other installations can contain any desired information. Each user is separated
from the next by a new-line. If the password field is null, no password is demanded;
if the shell field is null, the shell itself is used.

This file resides in directory letc. Because of the en{'rypted passwords, it can and
does have general read permission and can be used, for example, to map numerical
user IDs to names.

The encrypted password consists of 13 characters chosen from a 64-character alpha
bet (., I, 0-9, A-Z, a-z), except when the password is null, in which case the
encrypted password is also null. Password aging is effected for a particular user if his
encrypted password in the password file is followed by a comma and a non-null
string of characters from the above alphabet. (Such a string must be introduced in
the first instance by the super-user.)

The first character of the age, M say, denotes the maximum number of weeks for
which a password is valid. A user who attempts to login after his password has
expired will be forced to supply a new one. The next character, m say, denotes the
minimum period in weeks which must expire before the password may be {'hanged.
The remaining characters define the week (counted from the beginning of 1970) when
the password was last changed. (A null string is equivalent to zero.) M and m have
numerical values in the range 0-63 that correspond to the 64-character alphabet
shown above (i.e., 1=1 week; z = 63 weeks). If m = A! = 0 (derived from t.he string
• or ••) the user will be forced to change his password the next time he logs in (and
the "age" will disappear from his entry in the password file). If m > M (signified,
e.g., by the string ./) only the super-user will be able to change the password.

Icon International, Inc. 1

PASSWD(4) FaEFORMATS PASS\VD(4)

Fn..ES

/etc/passwd

SEE ALSO

a641(3C), crypt(3C), getpwent(3C), group(4).
login(l), passwd(l) in the ICON/UXV User Reference Manual.

/

2 Icon International, Inc.

(

(

PLOT(4) FIT..E FORMATS PLOT(4)

NAME

plot - graphics interface

DESCRIPTION

Files of this format are produced by routines described in plot(3X) and are inter
preted for various devices by commands described in tplot(IG). A graphics file is a
stream of plotting instructions. Each instruction consists of an AScn letter usually
followed by bytes of binary information. The instructions are executed in order. A
point is designated by four bytes representing the x and y values; each value is a
signed integer. The last designated point in an 1, m, D, or p instruction becomes the
"current point" for the next instruction.

Each of the following descriptions begins with the name of the corresponding routine
in plot(3X).

m move: The next four bytes give a new current point.

D cont: Draw a line from the current point to the point given by the next four
bytes. See tplot{IG).

p point: Plot the point given by the next four bytes.

1 line: Draw a line from the point given by the next four bytes to the point given
by the following four bytes.

t label: Place the following ASCII string so that its first character falls on the
current point. The string is terminated by a new-line.

e erase: Start another frame of output.

f linemod: Take the following string, up to a new-line, as the style for drawing
further lines. The styles are "dotted", "solid", "longdashed", "shortdashed", and
"dotdashed". Effective only for the -T4014 and -Tver options of tplot{IG)
(TEKTRONIX 4014 terminal and Versatec plotter).

8 space: The next four bytes give the lower left corner of the plotting area; the fol
lowing four give the upper right corner. The plot will be magnified or reduced to
fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below for
devices supported by the filters of tplot{IG). The upper limit is just outside the plot
ting area. In every case the plotting area is taken to be square; points outside may
be displayable on devices whose face is not square.

DASI300
DASI300s
DASI450
TEKTRONIX 4014
Versatec plotter

Icon International, Inc.

space(O, 0, 4096, 4096);
space(O, 0, 4096, 4096);
space{O, 0, 4096, 4096);
space(O, 0, 3120, 3120);
space(O, 0, 2048, 2048);

1

PLOT (4) FIT..E FORMATS PLOT (4)

SEE ALSO

plot(3X), gps(4), term(5).
graph(lG), tplot(lG) in the IOON/UXV User Reference Manual.

WARNING

2

The plotting libra.ry plot(3X) a.nd the curses libra.ry cUrBes(3X) both use the na.mes
era.seO a.nd moveO. The curses versions are macros. If you need both libra.ries, put
the plot(3X) code in a. different source file than the curses(3X) code, and/or #Undef
moveO and eraseD in the plot(3X) code. #! /bin/csh forea.ch i (*04) tbl $i I eqn I iroff
-manvca.t ca.t a..outA a.cctA a.r A checklist A coreA cpioA dir A > tmpfile tbl tmpfile I
eqn I iroff -manvcat cat dosdisksA dosprintersA dstrulesA filehdrA fsA fspecA >
tmpfile tbl tmpfile I eqn I iroff -manvcat eat gettydefsA gpsA groupA inittabA
inodeA introA issueA IdfcnA > tmpfile tbl tmpfile I eqn I iroff -manvcat cat line
numA mnttabA mttysA passwdA plotA printall profile A > tmpfile tbl tmpfile I eqn I
iroff -manvcat cat relocA sccsfileA scnhdrA smiledisksA symsA termA termcapA ter
minfoA utmpA uxrcA > tmpfile tbl tmpfile I eqn I iroff -manvcat end

Icon International, Inc.

,
./

(

(

(~

PROFILE(4) FILE FORMATS PROFILE(4)

NAME

profile - setting up an environment at login time

DESCRIPTION

Fn..ES

If your login directory contains a file named .profile, that file will be executed (via
exec .profile) before your session begins; .profiles are handy for setting exported
environment variables and terminal modes. If the file /etc/profile exists, it will be
executed for every user before the .profile. The following example is typical (except
for the comments):

=I/: Make some environment variables global
export MAIL PATH TERM
=I/: Set file creation mask
umask 22
=I/: Tell me when new mail comes in
MAIL = /usr /mail/myname
=I/: Add my /bin directory to the shell seaTch sequence
PATH=SPATH:SHOME/bin
=I/: Set terminal type

h "t . I \" ee 0 ermma: c
read TERM
case STERM in

300)

esac

300s)
450)
hp)
7451735)
43)
40141tek)
*)

SHOME/.profile
/ete/profile

stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty crO nlO tabs; tabs;;
stty erl nll -tabs; TERM=745;;
stty erl nl0 -tabs;;
stty crO nlO -tabs fn; TERM=4014; echo "\33;";;
echo "STERM unknown";;

SEE ALSO

environ(5), term(5).
emo(l), login(l), mail(l), sh(l), stty(l), sU(l) in the ICON/U>..,l User Reference Manual.

Icon International, Inc. 1

RELOC(4) FILE FORMATS RELOC(4)

NAME

reloc - relocation information for a common object file

SYNOPSIS

#include <reloc.h>

DESCRIPTION

Object files have one relocation entry for each relocatable reference in the text or
data. If relocation information is present, it will be in the following format.

struct reloc
{

long
long
short

r_vaddr ; 1* (virtual) address of reference *1
r..symndx i 1* index into symbol table *1

} ;
r_type ; 1* relocation type *1

1* * All generics
* reloc. already performed to symbol in the same section
*1

#define R-ABS 0

1* * 3B computer generic
* 24-bit direct reference
* 24-bit "relative" reference
* 16-bit optimized "indirect" TV reference
* 24-bit "indirect" TV reference
* 32-bit "indirect" TV reference

*1
#define R..Dffi24 04
#define R...REL24 05
#define ILOPT16 014
#define RJND24 015
#define RJND32 016

1* * DEC Processors VAX 11/780 and VAX 11/750

*
*1

#define R-RELBYTE
#define R-REL WORD
#define R..RELLONG
#define R..PCRBYTE

Icon International, Inc.

017
020
021
022

1

.... /

(

(

(~

RELOC(4) FILE FORMATS RELOC(4)

2

#define ILPCRWORD
#define ILPCRLONG

023
024

As the link editor reads each input section and performs relocation, the r£'location
entries are read. They direct how references found within the input section are
treated.

R-ABS

RJ>ffi24

~EL24

RJND24

RJND32

The reference is absolute, and no relocation is n£'cessary. The entry
will be ignored.

A direct, 24-bit reference to a symbol's virtual address.

A "PC-relative", 24-bit reference to a symbol's virtual address. Rela
tive references occur in instructions such as jumps and calls. The
actual address used is obtained by adding a constant to the value of
the program counter at the time the instruction is executed.

An optimized, indirect, 16-bit reference through a transfer vector. The
instruction contains the offset into the transfer vector table to the
transfer vector where the actual address of the referenced word is
stored.

An indirect, 24-bit reference through a transfer vector. The instruction
contains the virtual address of the transfer vect.or, where the actual
address of the referenced word is stored.

An indirect, 32-bit reference through a transfer vector. The instruction
contains the virtual address of the transfer vector, where the actual
address of the referenced word is stored.

R-RELBYTE A direct 8-bit reference to a symbol's virtual address.

R~ELWORD
A direct 16-bit reference to a symboi's virtual address.

R~ELLONG A direct 32-bit reference to a symbol's virtual address.

R.PCRBYTE A "PC-relative", 8-bit reference to a symbol's virtual address.

R..PCRWORD
A "PC-relative", 16-bit reference to a symbol's virtual address.

R..PCRLONG
A "PC-relative", 32-bit reference to a symbol's virtual address.

On the VAX. processors relocation of a symbol index of -1 indicat.es that the relat.ive
difference between the current segment's start. addr£'ss and the program's load
address is added to the relocatable address.

Other relocation types will be defined as they ar£' need£'d.

Relocation entries are generated automatically by th£' ass£'mbl£'r and automatically
utilized by the link editor. A link editor option £'xists for r£'moving the relocat ion
entries from an object file.

Icon International, Inc.

RELOC(4) Fll..E FORMATS RELOC(4)

SEE ALSO

a.out(4), syms(4).
Id(l), strip(l) in the ICON/UXV U8er Reference Manual.

,"'~
(

\""_J

Icon International, Inc. 3

SCCSFILE (4) FILE FORMATS SCCSFILE (4)

(NAME

(

(-

sccsfile - format of SCCS file

DESCRIPTION

An file is an ASCD file. It consists of six logical parts: the rbecksum, the delta table
(contains information about each delta), user names (contains login names and/or
numerical group IDs of users who may add deltas), flags (contains definitions of inter
nal keywords), comments (contains arbitrary dt'scriptive information about the file),
and the body (contains the actual text lines intermixed with control lines).

Throughout an file there are lines which begin with the Ascn SOH (start of head
ing) character (octal (01). This character is hereafter referred to as the control char
acter and will be represented graphically as @. Any line described below which is
not depicted as beginning with the control character is prevented from beginning
with the control character.

Entries of the form

represent a five-digit string (a number between 00000 and 99999).

Each logical part of an file is described in detail below.

Checksum
The checksum is the first line of an file. The form of the line is:

@h

The value of the checksum is the sum of all characters, except those of the
first line. The @h provides a magic number of (oct.al) 064001.

Delta table
The delta table consists of a variable number of entrj~ of the form:

@s II
@d <type> <sees m> yr/mo/da hr:mi:se <pgmr>
@. •••
@X •••
@g •..
@In < number>

.
@lc <comments> •••

.
@Ie

The first line (@Is) contains the number of lines inserted/deleted/unchanged,
respectively. The second line (@lei) contains the type of the delta (currently,

Icon International, Inc. 1

SCCSFn..E (4) Fn..E FOID.1ATS SCCSFILE (4)

2

normal: D, and removed: R), the ID of the delta, the date and time of crea
tion of the delta, the login name corresponding to t.he real user ID at the time
the delta was created, and the serial numbers of the delta and its predeces
sor, respectively.

The @I, @X, and @g lines contain the serial numbers of deltas included,
excluded, and ignored, respectively. These lines are optional.

The @In lines (optional) each contain one number associated with the delta;
the @c lines contain comments associated with the delta.

The @Ie line ends the delta table entry.

User names
The list of login names and/or numerical group IDs of users who may add del
tas to the file, separated by new-lines. The lines containing these login names
and/or numerical group IDs are surrounded by the bracketing lines @u and
@U. An empty list allows anyone to make a delta. Any line starting with a
! prohibits the succeeding group or user from making deltas.

Flags -----
Keywords used internally (see admin(l) for more information on their use).
Each flag line takes the form:

@r <flag> <optional text>

The following flags are defined:
@r t <type of program>
@r v <program name>
@r i <keyword string>
@rb
@rm
@rf
@rc
@rd
@rn
@rj
@rl
@tq
@tz

<module name>
<floor>
<ceiling>
<default-sid>

<lock-releases>
<user defined>
<reserved for use in interfaces>

The t flag defines the replacement for the %Y% identification keyword. The
v flag controls prompting for numbers in addition to comments; if the
optional text is present it defines an number validity checking program. The
i flag controls the warning/error aspect of the "No id keywords" message.
'When the i flag is not present, this message is only a warning; when the i flag
is present, this message will cause a "fatal" error (the file will not be gotten,
or the delta will not be made). When the b flag is present the -b keyletter
may be used on the get command to cause a branch in the delta tree. The m
flag defines the first choice for the replacement text of the %M%
identification keyword. The r flag defines the "floor" release; the release
below which no deltas may be added. The c flag defines t.he "ceiling" release;
the release above which no deltas may be added. The d flag defines the
default to be used when none is specified on a get command. The n flag

Icon International, Inc.

(

SCCSFll..E (4) Fll..E FORMATS SCCSFll..E (4)

causes delta to insert a "null" delta (a delta that applies no changes) in those
releases that are skipped when a delta is made in a new release (e.g., when
delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped). The absence
of the D flag causes skipped releases to be completely empty. The j flag
causes get to allow concurrent edits of the same base . The 1 flag defines a
list of releases that are locked against editing (get(l) with the -e key letter).
The q flag defines the replacement for the %Q% identification keyword. The
z flag is used in certain specialized interface programs.

Comments
Arbitrary text is surrounded by the bracketing lines @Jt and @I'. The com
ments section typically will contain a description of t.he file's purpose.

Body-----
The body consists of text lines and control lines. Text lines do not begin with
the control character, control lines do. There are three kinds of control lines:
insert, -delete, and end, represented by:

@I
@D
@E

respectively. The digit string is the serial number corresponding to the delta
for the control line.

(. SEE ALSO

(

admin(l), delta(l), get(l), prs(l) in the ICON/UXV User Reference Manual.
Source Code Control System User Guide in the ICON/UXV User Guide.

Icon International, Inc. 3

SCNHDR(4) Fll..E FORMATS SCNHDR(4)

NAME

scnhdr - section header for a common object file

SYNOPSIS

#include <scnhdr.h>

DESCRIPTION

Every common object file has a table of section headers to specify the layout of the
data within the file. Each section within an object file has its own header. The C
structure appears below.

st ruct scnhdr
{

} j

char
long
long
long
long
long
long
unsigned short
unsigned short
long

sJlame[SYMl\TMLEN]; /* section name */
s_paddr; /* physical address */
s_vaddr; /* virtual address */
S..,8IZe; /* section size */
s..,8cnptr; /* file ptr to raw data */
sJelptr; /* file ptr to relocation */
s-Innoptr; /* file ptr to line numbers */
s.Jlreloc; /* # reloc entries */
sJllnno; /* # line number entries */
sJlags; /* flags */

File pointers are byte offsets into the file; they can be used as the offset in a call to
fseek(3S). If a section is initialized, the file contains the actual bytes. An uninitial
ized section is somewhat different. It has a size, symbols defined in it, and symbols
that refer to it. But it can have no relocation entries, line numbers, or data. Conse
quently, an uninitialized section has no raw data in the object file, and the values for
s_scnptr, s_relptr, 8_1nnoptr, 8_nreloc, and 8_nlnno are zero.

SEE ALSO

fseek(3S), a.out(4).
ld(l) in the IOON/UXV User Reference Manual.

Icon International, Inc. 1

-----~ ----- --

(

c

SMILEDISKS (4) Fll..E FORMATS SMILEDISKS (4)

NAME

smiledisks - list of SMILE virtual disks

DESCRIPTION

The file /etc/smiledisks contains a list of the pathnames for all files to be used as
vdisks for computers connected to SMILE. The files are created by smiledisk(8) and
each new vdisk pathname is appended to / etc/ smiledisks by smiledisk. Each vdisk is
specified by a line in / etc/ smiledisks. There are three fields. The first field is the
label that is used to refer to the specified vdisk in the local configuration file. The
second field is the pathname for the vdisk. The third field is the description. To
delete a vdisk, remove the ICON/UX file, then edit /etc/smiledisks and remove the
line specifying the deleted vdisk. Removing a 'd' partition vdisk is somewhat more
involved; contact Icon for further assistance.

The local configuration files contain the mapping for vdisks for the computer
attached to each port on the SMILE host board. The number at the end of the
filename refers to the port that is being configured. The local configuration file for
port 0 would be / etc / smile disks_00. Each disk is identified by a line in the local
configuration file. The line contains the label assigned in / etc/ smiledisks and then
the read/write status. The read/write status is defined by RW for read/write and
RO for read only. The vdisks are accessed in the order in which they appear in the
configuration file. Only one computer can have a vdisk open read/write at a time.
The request for read/write will be rejected if the vdisk is alrea.dy rea.d/write for
someone else.

EXAMPLE

Fll..ES

/ etc/ smile disks contains the following information and the "disk labeled c is to be
opened read/write on port 2.

c:/usr /smiledisk:this is the comment for label c
d:/usr /SMILEb:this is the comment for label d
cat:/usr /testdisk:this is description

/etc/smiledisks_Oe would then contain the following.

c:rw

fete /smileprin ters

Icon International, Inc. 1

SMILEDISKS (4) FILE FORMATS

SEE ALSO

smiledisk(8), Technical Note on SMILE

2

SMILEDISKS (4)

Icon International, Inc.

.r'
~ ..

(

(

SYMS(4) FILE FORMATS S1'MS(4)

NAME

8yms - common object file symbol table format

SYNOPSIS

#include <syms.h>

DESCRIPTION

Common object files contain information to support symbolic software testing (see
sdb(l)). Line number entries, linenum(4), and extensive symbolic information permit
testing at the C source level. Every object file's symbol table is organized as shown
below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of the struct.ure
hold the name (null padded), its value, and other information. The C structure is
given below.

#define SYMNMLEN 8
#define FILNMLEN 14
struct syment
{

/* all ways to get symbol name */ union
{

_n-Dame[SYMl\TMLEN]; /* symbol name */ char
struct

Icon International, Inc. 1

SYMS(4) Fll..E FORMATS SYM:S(4)

2

};

{
long
long

} ..n..n;
char

} Jl;
long
short
unsigned short
char
char

#define n..llame
#define nJeroes
#define n_offset
#define n..llptr

JlJeroes;
-D-offset;

/* = OL when in string table */
/* location of name in table */

JlJlptr[2j; / allows overlaying */

D-value;
n..$cnum;
D-typej
nJClass;
n..numaux;

..Il . ..Il..llame

/* value of symbol */
/* section number */
/* type and derived type */
/* storage class */
/* number of aux entries */

Jl . ..Il..ll . ..IlJeroes
..Il . ..Il..ll . ..Il_offset
..n . ..n..nptr[l]

Meaningful values and explanations for them are given in both syms.h and Common
Object File Format. Anyone who needs to interpret the entries should seek more
information in these sources. Some symbols require more information than a single
entry; they are followed by auxiliary entries that are the same size as a symbol
entry. The format follows.

union auxent
{

struct
{

long
union

x-tagndx;

Icon International, Inc.

(

SYMS(4)

};

{

FILE FORMATS

struct
{

unsigned short xjnno;
unsigned short XJize;

} xjnsz;
long xJsize;

} XJIlisc;
union
{

struct
{

}
struct
{

long
long
xJcn;

xjnnoptr;
x_endndx;

unsigned short x_dimen[DTh1NUM];
} x-ary;

} xJcnary;
unsigned short x-tvndx;

} x-sym;
struct
{

}
struct
{

char xJname[Fn..NMLEN];
xJile;

long x-scnlen;
unsigned short x-Breloc;
unsigned short x-Blinno;

} x-scn;

struct
{

}

long
unsigned short
unsigned short
x-tv;

x_t v fill;
x_tvlen;
x-tvran[2];

Indexes of symbol table entries begin at zero.

SEE ALSO

a.out(4),linenum{4).
sdb(l) in the ICONjUxY User Reference Manual.

Icon International, Inc.

8)'}.18 (4)

3

SYMS(4} FILE FORMATS SYMS(4)

CAVEATS

4

On machines in which longs are equivalent to ints (3820 computer, VAX), they are
converted to ints in the compiler to minimize the complexity of the compiler code
generator. Thus the information about which symbols are declared as longs and
which, as ints, does not show up in the symbol table.

Icon International, Inc.

(

TERM (4) FILE FORMATS TERM(4)

NAME

term - format of compiled term file.

SYNOPSIS

term

DESCRIPTION

Compiled terminfo descriptions are placed under the directory /usr /lib/terminro.
In order to avoid a linear search of a huge ICON/llA'V system directory, a two-level
scheme is used: /usr /lib/terminCo/c/name where name is the name of the termi
nal, and c is the first character of name. Thus, arf4 can be found in the file
/usr/lib/terminro/a/act4. Synonyms for the same t.erminal are implemented by
multiple links to the same compiled file.

The format has been chosen so that it will be the same on all hardware. An 8 or
more bit byte is assumed, but no assumptions about byte ordering or sign extension
are made.

The compiled file is created with the compile program, and read by the routine
setupterm. Both of these pieces of software are part of curses(3X). The file is
divided into six parts: the header, terminal names, boolean flags, numbers, strings,
and string table.

The header section begins the file. This section contains six short integers in the for
mat described below. These integers are (1) the magic number (octal 0432); (2) the
size, in bytes, of the names section; (3) the number of bytes in the boolean section;
(4) the number of short integers in the numbers section; (5) the number of offsets
(short integers) in the strings section; (6) the size, in bytes, of the string table.

Short integers are stored in two S-bit bytes. The first byte contains the least
significant 8 bits of the value, and the second byte contains the most significant 8
bits. (Thus, the value represented is 256*second+first.) The value -1 is represented
by 0377, 0377, other negative value are illegal. The -1 generally means that a capa
bility is missing from this terminal. Note that this format corresponds to the
hardware of the VAX and PDP-H. Machines where this does not correspond to the
hardware read the integers as two bytes and compute the result.

The terminal names section comes next. It contains t.he first line of the terminfo
description, listing the various names for the terminal, separated by the 'I' character.
The section is terminated with an ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as the flag is
present or absent. The capabilities are in the same order as the file <t.erm.h>.

Icon International, Inc. 1

TERM (4) FILE FORMATS TERM(4)

2

Between the boolean section and the number section, a null byte will be inserted, if
necessary, to ensure that the number section begins on an even byte. All short
integers are aligned on a short word boundary.

The numbers section is similar to the flags section. Each capability tahos up two
bytes, and is stored as a short integer. If the value represented is -1, the capability
is taken to be missing.

The strings section is also similar. Each capability is st.ored as a short int.eger, in
the format above. A value of -1 means the capability is missing. Othe-rwise, the
value is taken as an offset from the beginning of the string table. Special characters
in AX or \c notation are stored in their interpreted form. not the printing repre-sen
tation. Padding information $<nn> and paramete-r information %x are stored
intact in uninterpreted form.

The final section is the string table. It contains all the values of string capabilit.ies
referenced in the string section. Each string is null terminated.

Note that it is possible for setupterm to expect a different set of capabilities than are
actually present in the file. Either the database may have been updated since setup
term has been recompiled (resulting in extra unrecognized entries in the file) or the
program may have been recompiled more recently than the database was updated
(resulting in missing entries). The routine setupterm must be prepared for both pos
sibilities - this is why the numbers and sizes are included. Also, new capabilities
must always be added at the end of the lists of boolean, number, and string capabili
ties.

As an example, an octal dump of the description for the Microterm ACT 4 IS

included:

microtermlact4lmicroterm act iv,
cr=AM, cudl=A J, ind=A J, bel=AG, am, cubl=AH,
ed=A _ el='" A, clear="'L, cup=AT%pl %c%p2%c,
cols#80, lines#24, cufl=AX, cuul=AZ, home="'j,

000 032 001 \0025 \0 \b \0 212 \0 .. \0 m i c r
020 0 t e r m I act 4 I m i c r 0

040 t e r mac t i v \0 \0001 \0 \0
060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
~~~p~mm~~mmmmmmmm 
120377377377377 \0 \0002 \0377377377377004 \0006 \0 
140 \b \0377377 377 377 \n \0026 \0030 \0377 377 032 \0 
160 377 377 377 377 034 \0 377 377 036 \0 377 377 377 377 377 377 
~mmmmmmmmmmmmmmmm 

• 
~mmmm ~mmmmmmmmmm 

540377 377 377 377 377 377 007 \0 \r \0 \f \0036 \0037 \0 
560 024 % P 1 % c % p 2 % c \0 \n \003.5 \0 
600 \b \0 ~ \0032 \0 \n \0 

Icon International, Inc. 

./ 



( 

TERM(4) FILE FORMATS TERM(4) 

Some limitations: total compiled entries cannot exceed 4096 bytes. The name field 
cannot exceed 128 bytes. 

Fn..ES 

/usr/lib/terminfo/*/*compiled terminal capability data base 

SEE ALSO 

curses(3X), terminfo(4). 

Icon International, Inc. 3 



TERMCAP(4) Fll..E FORMATS TERMCAP(4) 

NAME 

termcap - terminal capability data base 

SYNOPSIS 

/etc/termcap 

DES CRlP TION 

Termcap is a data base describing terminals, used, e.g., by vi(l) and curse8(3X). 
Terminals are described in termcap by giving a set of capabilities which they have, 
and by describing how operations are performed. Padding requirements and initiali
zation sequences are included in termcap. 

Entries in termcap consist of a number of ":' separated fields. The first entry for each 
terminal gives the names which are known for the terminal, separated by'!, charac
ters. The first name is always 2 characters long and is used by older version 6 sys
tems which store the terminal type in a 16 bit word in a systemwide data base. The 
second name given is the most common abbreviation for the terminal, and the last 
name given should be a long name fully identifying the terminal. The second name 
should contain no blanks; the last name may well cont.ain blanks for readability. 

CAPABILITIES 

(P) indicates padding may be specified 
(P*) indicates that padding may be based on no. lines affected 

Name Type Pad! Description 
ae str (P) End alternate character set 
al str (P*) Add new blank line 
am bool Terminal has automatic margins 
as str (P) Start alternate character set 
bc str Backspace if not AH 
bs bool Terminal can backspace wit.h AH 
bt str (P) Back tab 
bw bool Backspace wraps from column 0 to 

last column 
CC str Command character in prototype if 

terminal settable 
cd str (P*) Clear to end of display 
ce str (P) Clear to end of line 
ch str (P) Like cm but horizontal motion only, 

line stays same 
cl str (P*) Clear screen 
cm str (P) Cursor motion 
co num Number of columns in a line 
er str (P*) Carriage return, (default AM) 

Icon International, Inc. 1 

/' 

,,- . 
I' 

~" 



TERMCAP(4) FILE FORMATS TERMCAP(4) 

(- cs str ~P) Change scrolling region (vt100), like em 
cv str P) Like ch but vertical only. 
da bool Display may be retained above 
dB num Number of millisec of bs delay needed 
db bool Display may be retained below 
dC num Number of millisec of cr delay needed 
dc str (P*) Delete character 
dF num Number of millisec of ft' delay needed 
dl str (P*) Delete line 
dm str Delete mode (enter) 
dN num Number of millisec of nl delay needed 
do str Down one line 
dT num Number of millisec of tab delay needed 
ed str End delete mode 
ei str End insert mode; give ":ei=:" if ie 
eo str Can erase overstrikes with a blank 
ft' str (P*) Hardcopy terminal page eject (default 

AL) 
hc bool Hardcopy terminal 
hd str Half-line down (forward 1/2 linefeed) 
ho str Home cursor (if no em) 
hu str Half-line up (reverse 1/2 linefeed) 
hz str Hazeltine; can't print ~'s 
Ie str (P) Insert character 
if str Name of file containing is 

It im bool Insert mode (enter); give ":im=:" if 
ie 

in bool Insert mode distinguishes nulls on 
display 

ip str (P*) Insert pad after character inserted 
IS str Terminal initialization string 
kO-k9 str Sent by "other" function keys 0-9 
kb str Sent by backspace key 
kd str Sent by terminal down arrow key 
ke str Out of "keypad transmit" mode 
kh str Sent by home key 
kl str Sent by terminal left arrow key 
kn num Number of "other" keys 
ko str Termcap entries for other non-function keys 
kr str Sent by terminal right arrow key 
ks str Put terminal in "keypad transmit" mode 
ku str Sent by terminal up arrow key 
10-19 str Labels on "other" function keys 
Ii num Number of lines on screen or page 
II str Last line, first column (if no em) 
rna str Arrow key map, used by vi version 2 

only 
ml bool Safe to move while in insert mode 
ml str Memory lock on above cursor. 
ms bool Safe to move while in standout and 

underline mode 

(-~/ mu str Memory unlock (turn oft' memory lock). 
nc bool No correctly working carriage return 

2 Icon International, Inc. 



TERMCAP(4) FILE FORMATS TERMCAP(4) 

(DM2500,H2000) 
nd str Non-destructive space (cursor right) 
nl str (P*) Newline character (default \n) 
ns bool Terminal is a CRT but doesn't scrolL 
os bool Terminal overstrikes 
pc str Pad character (rather than .null) 
pt bool Has hardware tabs (may need to beset 

with is) 
se str End stand out mode 
sf str (P) Scroll forwards 
sg num Number of blank chars left by so or st' 
so str Begin stand out mode 
sr str (P) Scroll reverse (backwards) 
ta str (P) Tab (other than "lor with padding) 
tc str Entry of similar terminal - must be last 
te str String to end programs that use em 
ti str String to begin programs that use em 
uc str Underscore one char and move past it 
ue str End underscore mode 
ug num Number of blank chars left by us or ue 
ul bool Terminal underlines even though it 

doesn't overstrike 
up str Upline (cursor up) 
us str Start underscore mode 
vb str Visible bell (may not move cursor) 
ve str Sequence to end open/visual mode 
vs str Sequence to start open/visual mode 
xb bool Beehive (fl=escape, f2==ctrl C) 
xn bool A newline is ignored after a wrap 

(Concept) 
xr bool Return acts like ee \r \n 

(Delta Data) 
xs bool Standout not erased by writing over 

it (HP 264?) 
xt bool Tabs are destructive,magic -socnar 

(Teleray 1061) 

A Sample Entry 

The following entry, which describes the Coneept....,IOO, is among the more complex 
entries in the termcap file as of this writing. (This part.icular concept entry is out
dated, and is used as an example only.) 

cl IClOOlconceptlOO:is==\EU\Ef\E7\E5\E8\EI\ENH\EK\E\200\Eo&\200:\ 
:al==3*\EAR:am:bs:cd=16*\EAC:ce=l6\EAS:cl 2*AL:cm=\Ea%+ %+ :co#80:\ 
:dc=16\EA A:dl==3*\EAB:ei=\E\200:eo:im=\EAP:in:ip=16*:li#24:mi:nd=\E=:\ 
:se-\Ed\Ee:so \ED\EE:ta=8\t:ul:up=\E;:vb \Ek\EK:xn: 

Entries may continue onto multiple lines by giving a \ as the last character of a line, 
and that empty fields may be included for readability (here between the last field on 
a line and the first field on the next). Capabilities in termcap are of three types: 

Icon International, Inc. 3 

_/ 

j-" 
( 

\"L, /' 



( 

TERMCAP(4) FILE FORMATS TERM CAP (4) 

4 

Boolean capabilities which indicate that the terminal has some particular feature, 
numeric capabilities giving the size of the terminal or the size of particular dela.ys, 
and string capabilities, which give a sequence which can be used to perform particu
lar terminal operations. 

Types of Capabilities 

All capabilities have two letter codes. For instance, the fact that the Concept has 
"automatic margins" (i.e. an automatic return and linefeed when the end of a line is 
reached) is indicated by the capability am. Hence the description of the Concept 
includes am. Numeric capabilities are followed by the eharaet.er '#' and t.hen the 
value. Thus eo which indicates the number of eolumns the terminal has gives t.he 
value '80' for the Concept. 

Finally, string valued capabilities, such as ee (clear to end of line sequence) are given 
by the two character code, an 1=', and then a string ending at the next following I:'. 
A delay in milliseconds may appear after the 1=' in such a capability, and padding 
characters are supplied by the editor after the remainder of the string is sent. to pro
vide this delay. The delay can be either a integer, e.g. 120', or an integer followed by 
an 1*', i.e. '3*'. A '*' indicates that the padding required is proportional to the 
number of lines affected by the operation, and the amount given is the per-affected
unit padding required. When a '*' is specified, it is sometimes useful to give a delay 
of the form '3.5' specify a delay per unit to tenths of milliseconds. 

A number of escape sequences are proyided in the string valued capabilities for easy 
encoding of characters there. A \E maps to an ESCAPE character, "x maps t,o a 
control-x for any appropriate x, and the sequences \n \r \t \b V give a newline, 
return, tab, backspace and formfeed. Finally, charact,ers may be given as three 
octal digits after a \, and the characters .. and \ may be given as \ .. and \ \. If it is 
necessary to place a : in a capability it must be escaped in octal as \072. If it is 
necessary to place a null character in a string capability it must be encoded as \200. 
The routines which deal with termcap use C strings, and strip the high bits of the 
output very late so that a \200 comes out as a \000 would. 

Preparing Descriptions 

We now outline how to prepare descriptions of terminals. The most effective way to 
prepare a terminal description is by imitating the description of a similar terminal in 
termcap and to build up a description gradually, using partial descriptions with ex to 
check that they are correct. Be aware that a very unusual terminal may expose 
deficiencies in the ability of the termcap file to describe it. or bugs in ex. To easily 
test a new terminal description you can set the environment variable TERMCAP to 
a path name of a file containing the description you are working on and the editor 
will look there rather than in /etc/termcap. TER}.ICAP can also be set to the 
termcap entry itself to avoid reading the file when starting up the editor. (This only 
works on version 7 systems.) 

Basic capabilities 

Icon International, Inc. 



TERMCAP(4) FaEFORMATS TERMCAP(4) 

The number of columns on each line for the terminal is given by the eo numeric 
capability. If the terminal is a CRT, then the number of lines on the screen is given 
by the Ii capability. If the terminal wraps around to the beginning of the next line 
when it reaches the right margin, then it should have the am capability. If the ter
minal can clear its screen, then this is given by the cl string capability. If the termi
nal can backspace, then it should have the bl capability, unless a backspace is 
accomplished by a character other than AH (ugh) in which case you should give this 
character as the be string capability. If it overstrikes (rather than clearing a posi
tion when a character is struck over) then it should have the 08 capability. 

A very important point here is that the local cursor motions encoded in termcap are 
undefined at the left and top edges of a CRT terminal. The edit.or will never attempt 
to backspace around the left edge, nor will it attempt to go up locally oft' the top. 
The editor assumes that feeding off the bottom of the screen will cause the screen to 
scroll up, and the am capability tells whether the cursor st.icks at the right edge of 
the screen. If the terminal has switch selectable automatic margins, the termcap file 
usually assumes that this is on, i.e. am. 

These capabilities suffice to describe hardcopy and "glass-tty" terminals. Thus the 
model 33 teletype is described as 

t31331 tty33:co#72:os 

while the Lear Siegler ADM-3 is described as 

clladm3131lsi adm3:a,m:bs:cl=~Z:li#24:co#80 

Cursor addressing 

Cursor addressing in the terminal is described by a em string capability, with 
printJ(3S) like escapes %x in it. These substitute to encodings of the current line or 
column position, while other characters are passed through unchanged. If the em 
string is thought of as being a function, then its argument.s are the line and then the 
column to which motion is desired, and the % encodings have t.he following mean
ings: 

%d as in print/, 0 origin 
%2 like %2d 
%3 like %3d 
%. like %c 
%+x adds x to value, then %. 
%>xy if value> x adds y, no output. 
%r reverses order of line and column, 

%i 
%% 
%n 

no output 
increments line/column (for 1 origin) 
gives a single % 
exclusive or row and column with 0140 
(DM2500) 

%B BCD (16*(x/lO)) + (x%lO), no output. 

Icon International, Inc. 5 

(".--" 

\.,-/, 



c: 

TERMCAP(4) FILE FORMATS TERMCAP(4) 

6 

%0 Reverse coding (x-2*(x%16)), no output. 
(Delta Data). 

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent 
\E&aI2c03Y padded for 6 milliseconds. Note that. the order of the rows and 
columns is inverted here, and that the row and column are printed as two digits. 
Thus its em capability is "cm==6\E&%r%2c%2Y". The Microt.erm ACT-IV needs the 
current row and column sent preceded by a AT, with the row and column simply 
encoded in binary, "cm="T%.%.". Terminals which use "%." need to be able to 
backspace the cursor (be or be), and to move the cursor up one line on the screen 
(up introduced below). This is necessary because it is not always safe to t.ransmit 
\t, \n AD and \r, as the system may change or discard them. 

A final example is the LSI ADM-3a, which uses row and column offset by a blank char
acter, thus "cm \E %+ %+ ". 

Cursor motions 

If the terminal can move the cursor one position to the right, leaving the character 
at the current position unchanged, then this sequence should be given as nd (non
destructive space). If it can move the cursor up a line on the screen in the same 
column, this should be given as up. If the terminal has no cursor addressing capabil
ity, but can home the cursor (to very upper left corner of screen) then this can be 
given as hOi similarly a fast way of getting to the Jower Jeft hand corner can be 
given as 11; this may involve going up with up from the home position, but the editor 
will never do this itself (unless 11 does) because it makes no assumption about the 
effect of moving up from the home position. 

Area clears 

If the terminal can clear from the current position to the end of the line, leaving the 
cursor where it is, this should be given as ceo If the terminal can clear from the 
current position to the end of the display, then this should be given as cd. The edi
tor only uses cd from the first column of a line. 

Insert/delete line 

If the terminal can open a new blank line before the line where the cursor is, this 
should be given as a1; this is done only from the first position of a line. The cursor 
must then appear on the newly blank line. If the terminal can delete the line which 
the cursor is on, then this should be given as dl; this is done only from the first posi
tion on the line to be deleted. If the terminal can scroll the screen backwards, then 
this can be given as sb, but just al suffices. If the terminal can retain display 
memory above then the da capability should be given; if display memory can be 
retained below then db should be given. These let the editor understand that delet
ing a line on the screen may bring non-blank lines up from below or that scrolling 
back with sb may bring down non-blank lines. 

Icon InternationaL Inc. 



TERMCAP(4) FILE FORMI\. TS TERMCAP(4) 

Insert /delete eharacter 

There are two basic kinds of intelligent terminals with respect to insert/delete char
acter which can be described using termcap. The most common insert/delete charac
ter operations affect only the characters on the current line and shift characters off 
the end of the line rigidly. Other terminals, such as the Concept 100 and the Perkin 
Elmer Owl, make a distinction between typed and untyped blanks on the screen, 
shifting upon an insert or delete only to an untyped blank on the screen which is 
either eliminated, or expanded to two untyped blanks. You can find out which kind 
of terminal you have by clearing the screen and then typing text separated by cursor 
motions. Type "abc def" using local cursor motions (not spaces) between the 
"abc" and the "def". Then position the cursor before the "abc" and put the termi
nal in insert mode. If typing characters causes the rest of the line to shift rigidly 
and characters to faU off the end, then your terminal does not distinguish between 
blanks and untyped positions. If the "abc" shifts over to the "def" which then move 
together around the end of the current line and onto the nE'xt as you insert, you haye 
the second type of terminal, and should give the capability in, which stands for 
"insert null". If your terminal does something different and unusual then you may 
have to modify the editor to get it to use the insert mode your terminal defines. We 
have seen no terminals which have an insert mode not not falling into one of these 
two classes. 

The editor can handle both terminals which have an insert mode, and terminals 
which send a simple sequence to open a blank position on the current line. Give as 
im the sequence to get into insert mode, or give it an empty value if your terminal 
uses a sequence to insert a blank position. Give as ei the sequence to IE'ave insert' /' 
mode (give this, with an empty value also if you gave im so). Now give as ie any 
sequence needed to be sent just before sending the character to be inserted. Most 
terminals with a true insert mode will not give ie, terminals which send a sequence 
to open a screen position should give it here. (Insert mode is preferable to the 
sequence to open a position on the screen if your terminal has both.) If post insert 
padding is needed, give this as a number of milliseconds in ip (a string option). Any 
other sequence which may need to be sent after an insert of a single character may 
also be given in ip. 

It is occasionally necessary to move around while in insert mode to delete characters 
on the same line (e.g. if there is a tab after the insertion position). If your terminal 
allows motion while in insert mode you can give the capability mi to speed up insert
ing in this case. Omitting mi will affect only speed. Some terminals (notably 
Datamedia's) must not have mi because of the way their insert mode works. 

Finally, you can specify delete mode by giving dm and ed to enter and exit delete 
mode, and dc to delete a single character while in delE't.e mode. 

Highlighting, underlining, and visible bells 

If your terminal has sequences to enter and exit standout mode these can bE' given as 
so and se respectively. If there are several flavors of standout. mode (such as inverse f" 
video, blinking, or underlining - half bright is not. usually an acct"ptable "standout" \.~. __ ., 

Icon International, Inc. 7 



( 

TERM CAP (4) FILE FORMATS TERM CAP (4) 

8 

mode unless the terminal is in inverse video mode constantly) the preferred mode is 
inverse video by itself. If the code to change into or out of standout mode leaves one 
or even two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then 
ug should be given to tell how many spaces are left. 

Codes to begin underlining and end underlining can be given as U8 and ue respec
tively. If the terminal has a code to underline the current character and move the 
cursor one space to the right, such as the Microterm Mime, this can be given as uc. 
(If the underline code does not move the cursor to the right, give the code followed 
by a nondestructive space.) 

Many terminals, such as the HP 2621, automatically leave standout mode when they 
move to a new line or the cursor is addressed. Programs using standout mode should 
exit standout mode before moving the cursor or sending a newline. 

If the terminal has a way of flashing the screen to indicate an error quietly (a bell 
replacement) then this can be given as vb; it must not move the cursor. If the ter
minal should be placed in a different mode during open and visual modes of ex, this 
can be given as vs and ve, sent at the start and end of these modes respectively. 
These can be used to change, e.g., from a underline to a block cursor and back. 

If the terminal needs to be in a special .mode when running a program that addresses 
the cursor, the codes to enter and exit this mode can be given as ti and teo This 
arises, for example, from terminals like the Concept with more than one page of 
memory. If the terminal has only memory relative cursor addressing and not screen 
relative cursor addressing, a one screen-sized window must be fixed into the terminal 
for cursor addressing to work properly. 

If your terminal correctly generates underlined characters (with no special codes 
needed) even though it does not overstrike, then you should give the capability u1. If 
overstrikes are erasable with a blank, then this should be indicated by giving eo. 

Keypad 

If the terminal has a keypad that transmits codes when the keys are pressed, this 
information can be given. Note that it is not possible to handle terminals where the 
keypad only works in local (this applies, for example, to t.he unshifted HP 2621 keys). 
If the keypad can be set to transmit or not transmit, give t~se codes as ks and ke. 
Otherwise the keypad is assumed to always transmit. The codes sent by the left 
arrow, right arrow, up arrow, down auow, and home keys can be given as kl, kr, 
ku, kd, and kh respectively. If there are function keys such as CO, fl, ... , f9, the 
codes they send can be given a.s kO, kl, ••• , k9. If these keys have labels other than 
the default CO through f9, the labels can be given as 10, 11, ••• , 19. If there are other 
keys that transmit the same code as the terminal expects for the corresponding 
function, such as clear screen, the termcap 2 letter codes can be given in the ko 
capability, for example, ":ko=cl,ll,sf,sb:", which says that the terminal has clear, 
home down, scroll down, and scroll up keys that transmit the same thing as the cl, Il, 
sf, and sb entries. 

Icon International, Inc. 



TERMCAP(4) FILE FORMATS TERMCAP(4) 

The ma entry is also used to indicate arrow keys on terminals which have single 
character arrow keys. It is obsolete but still in use in version 2 of vi, which must be 
run on some minicomputers due to memory limitations. This field is redundant with 
kI, kr, ku, kd, and kh. It consists of groups of two characters. In each group, ihe 
first character is what an arrow key sends, the second character is the corresponding 
vi command. These commands are h for kI, j for kd, k for ku, 1 for kr, and H for 
kh. For example, the mime would be :ma-A K,rZk A X1: indicating arrow keys left 
("H), down ("K), up rZ), and right eX). (There is no home key on the mime.) 

Miscellaneous 

If the terminal requires other than a null (zero) character as a pad, then this can be 
given as pc. 

If tabs on the terminal require padding, or if the terminal uses a character other 
than AI to tab, then this can be given as tao 

Hazeltine terminals, which don't allow ,~, characters to be printed should indicate 
hz. Datamedia terminals, which echo carriage-return linefeed for carriage return 
and then ignore a following linefeed should indicate nco Early Concept terminals, 
which ignore a linefeed immediately after an am wrap, should indicate xn. If an 
erase-eol is required to get rid of standout (instead of merely writing on top of it), xs 
should be given. Teleray terminals, where tabs turn all characters moved over to 
blanks, should indicate xt. Other specific terminal problems may be corrt'cted by 
adding more capabilities of the form xx. 

Other capabilities include is, an initialization string for the terminal, and if, the 
name of a file containing long initialization strings. These strings are expected to 
properly clear and then set the tabs on the terminal, if the terminal has set table 
tabs. If both are given, is will be printed before if. This is useful where if is 
/usr/lib/tabset/std but is clears the tabs first. 

Similar Terminals 

If there are two very similar termina.ls, one can be defined as being just likt' the 
other with certain exceptions. The string capability tc can be given with the name 
of the similar terminal. This capability must be last and t.he combined length of the 
two entries must not exceed 1024. Since termlib routines st'arch t.he entry from left to 
right, and since the tc capability is replaced by the corresponding entry, the capabil
ities given at the left override the ones in the similar terminal. A capability can be 
canceled with xx@ where xx is the capability. For example, the entry 

hn 12621nl:ks@ke@tc-2621: 

defines a 2621nl that does not have the ks or ke capabilities, and hence does not 
turn on the function key labels when in visual mode. This is useful for different 
modes for a terminal, or for different user preferences. 

Icon International, Inc. 9 



( 

( "" 

j 

TERMCAP(4) FILE FORMATS TERMCAP(4) 

Fn.ES 

/etc/termcap file containing terminal descriptions 

SEE ALSO 

eX(l), curses(3X), vi(l), more(l) 

AUTHOR 

BUGS 

10 

William Joy 
Mark Horton added underlining and keypad support 

Ex allows only 256 characters for string capabilities, and the routines in curses(3X) 
do not check for overflow of this buffer. The total length of a single entry (excluding 
only escaped newlines) may not exceed 1024. 

The rna, VB, and ve entries are specific to the vi program. 

Not all programs support all entries. There are entries that are not supported by 
any program. 

Icon International, Inc. 



TERMINFO ( 4 ) FILE FORMATS TERMINFO ( 4 ) 

NAME 

term info - terminal capability data base 

SYNOPSIS 

lusr Ilib/terminfo/*l* 

DESCRIPTION 

Termin/o is a data base describing terminals, used, e.g." by vi{l) and curses(3X). 
Terminals are described in termin/o by giving a set of capabilities which they have, 
and by describing how operations are performed. Padding requirements and initiali
zation sequences are included in termin/o. 

Entries in termin/o consist of a number of ',' separated fields. 'Vhite space after each 
I,' is ignored. The first entry for each terminal gives the names which are known for 
the terminal, separated by 'I' characters. The first name given is the most common 
abbreviation for the terminal, the last name given should be a long name fully iden
tifying the terminal, and all others are understood as synonyms for the terminal 
name. All names but the last should be in lower case and contain no blanks; the last 
name may well contain upper case and blanks for readability. 

Terminal names (except for the last, verbose entry) should be chosen using the fol
lowing conventions. The particular piece of hardware making up the terminal should 
have a root name chosen, thus "hp2621". This name should not contain hyphens, 
except that synonyms may be chosen that do not conflict with other names. Modes 
that the hardware can be in, or user preferences, should be indicated by appending a 
hyphen and an indicator of the mode. Thus, a vt100 in 132 column mode would be 
vt100-w. The following suffixes should be used where possible: 

Suffix Meaning Example 
-w Wide mode (more than 80 columns) vt100-w 
-am With auto. margins (usually defau1t.) vt100-am 
-nam 'Without automatic margins vt100-nam 
-n Number of lines on the screen aaa-60 
-oa No arrow keys (leave them in local) clOO-na 
-np Number of pages of memory cl00-4p 
-rv Reverse video clOO-rv 

CAP ABn..ITIES 

The variable is the name by which the programmer (at the terminfo level) accesses 
the capability. The capname is the short name used in t.he text of the database, and 
is used by a person updating the database. The i.code is the two letter internal code 
used in the compiled database, and always corresponds to the old termcap capabil-
ity name. Capability names have no hard lengt.h limit., but an informal limit of 5 rf -', 
characters has been adopted to keep them short and to allow the tabs in the source ~j 
file caps to line up nicely. Whenever possible, names are C'hosE'n t.o be thE' samE' as 

Icon International, Inc. 1 



TERMINFO ( 4) FaEFORMATS TERMINFO ( 4 ) 

( or similar to the ANSI X3.64-1979 standard. Semantics are also intended to match 
those of the specification. 

(P) indicates that padding may be specified 

(G) indicates that the string is passed through tparm withparms as given (#a). 

(*) indicates that padding may be based on the number of lines affected 

(#.) • indicates the ath parameter. 

Variable Cap- I. Description 
Boolean. name Code 

autoJefLmargin, bw bw cubl wraps from column 0 to last column 
auto..righLmargin, am am Terminal has automatic margins 
beehive...gliteh, xsb xb Beehive (ft==escape, f2==etrl C) 
eeoUtandout...gliteh, xhp xs Standout not erased by overwriting (hp) 
eat..newline...glitch, xenl xn newline ignored after 80 cols (Concept) 
erase_overstrike, eo eo Can erase overstrikes with a blank 
generic_type, gn gn Generic line t,ype (e.g." dialup, switch). 
har~eopy, hc hc Hardcopy terminal 
has..metaJcey, km km Has a meta key (shift, sets parity bit) 
hasJtatusJine, hs hs Has extra "status line" 
insert..null...glitch, in In Insert mode distinguishes nulls 
memory_above, da da Display may be retained above the screen 
memory_below, db db Display may be retained below the screen 
move-insert..mode, mir mi Safe to move while in insert mode 

( 
moveJtandout..mode, msgr ms Safe to move in standout modes 
over...strike, os os Terminal overstrikes 
statusJine_esc_ok, eslok es Escape can be used on the status line 
teleray...glitch, xt xt Tabs ruin, magic so char (Teleray 1061) 
tilde...glitch, hz hz Hazeltine; can not print - 's 
transparenLunderline, ul ul underline character overstrikes 
XOD-Xoff, xon xo Terminal uses xon/xoff handshaking 

Numbers: 
eolumns, cols co Number of columns in a line 
iniLtabs, it it Tabs initially every # spaces 
lines, lines li Number of lines on screen or page 
lines_oLmemory, 1m 1m Lines of memory if > lines. 0 means varies 
magic_cookie...glitch, xmc sg Number of blank chars left by smso or rmso 
paddinS-,baud..rate, pb pb Lowest baud where cr Inl padding is needed 
virtuaLterminal, vt vt Virt.ual terminal number (UNIX system) 
widtbJtatusJine, wsl ws No. columns in status line 

Strings: 
back-tab, cbt bt Back tab (P) 
bell, bel bl Audible signal (bell) (P) 
carriage..return, cr cr Carriage return (p*) 
changeJCrolI..region, csr es change to lines #1 through #2 (vt100) (PG) 
clear JlLtabs, tbe et Clear all tab st,ops (P) 
c1earJereen, clear cl Clear screen and home cursor (P*) 
elr_eol, el ce Clear t,o end of line (P) 

(/ 
elr_eos, ed cd Clear to end of display (p*) 
coluIDD-address, hpa ch Set cursor column (PG) 

2 Icon International, Inc. 

- .~~ .. _. - -- _.- - . 
". -" ~ .. -.,-~-~~. 



TERMINFO ( 4 ) FILE FORM\TS TERMIl'\TFO ( 4 ) 

./ 

( 

~ :/ 
commancLcharacter, cmdch CC Term. set table cmd char in prototype 
cursorJddress, cup cm Screen reI. cursor motion row #1 col #2 (PG) 
cursor_down, cudl do Down one line 
cursor -home, home ho Home cursor (if no cup) 
cursorJnvisible, civis vi Make cursor invisible 
cursorJeft, cubl Ie Move cursor left one space 
cursor-mem-.address, mrcup OM Memory relative cursor addressing 
cursor..normal, cnorm ve Make cursor appear normal (undo vs/vi) 
cursot...right, cufl nd Non-destructive space (cursor right) 
cursor_toJl, 11 11 Last line, first column (if no cup) 
cursor_up, cuul up Upline (cursor up) 
cursor_visible, cvvis vs Make cursor very visible 
delete_character, dchl dc Delete character (P*) 
deleteJine, dll dl Delete line (P*) 
dis--statusJine, dsl ds Disable status line 
dowualfJine, hd hd Half-line down (forward 1/2 linefeed) 
enterJlt_charseLmode, smacs as Start alternat.e charact.er set (P) 
enter_blink-mode, blink mb Turn on blinking 
enter_bolc:Lmode, bold md Turn on bold (extra bright) mode 
enter_ca-IDode, smcup ti String to begin programs that use cup 
enter _delete-IDode, smdc dm Delete mode (enter) 
enter _diID-rnode, dim mh Turn on half-bright mode 
enter Jnsert-IDode, smir im Insert mode (enter); 
enter _protectedJDode, prot mp Turn on protected mode 
enter...reverse-IDode, rev mr Turn on reverse video mode 
enter --secure-IDode, invis mk Turn on blank mode (chars invisible) 
enter --standouLmode, smso so Begin stand out mode 
enter_underline_mode, smul us Start underscore mode 
erase_chars ech ec Erase #1 characters (PG) 
exi tJlt_charsetJDode, rmacs ae End alternate character set (P) 
exitJttribute-IDode, sgrO me Turn off all attributes 
exit_ca-mode, rmcup te String to end programs that use cup 
exit_delete-mode, rmdc ed End delete mode 
exitJnsert-mode, rmir ei End insert mode 
exit--standouLmode, rmso se End stand out mode 
exit_underline-mode, rmul ue End underscore mode 
fiashJcreen, flash vb Visible bell (may not. move cursor) 
formJeed, ff ff Hardcopy terminal page eject (P.) 
from--statusJine, fsl fs Ret,urn from status line 
init_Istring, isl i1 Terminal init.ialization string 
iniL2string, is2 . ., 

I. Terminal initialization string 
init_3string, is3 i3 Terminal initialization string 
init.J)le, if if Name of file containing is 
insert_c haracter, ichl ic Insert character (P) 
insertJine, ill 801 Add new blank line (P*) 
insert_padding, ip ip Insert pad aft,er character inserted (P*) 
key_backspace, kbs kb Sent by backspace key 
key_catab, ktbc ka Sent by clear-all-tabs key 
key_clear, kclr kC Sent. by clear screen or erase key 
key_ctab, kctab kt Sent by clear-t.ab key 
key_dc, kdchl kD Sent by delete charact.er key rr--'" 
key_dl, kdll kL Sent. by delet.e line key I 

"--key_down, kcudl kd Sent by terminal down arrow key 

Icon International, Inc. 3 



TERMINFO ( 4 ) FILE FORMATS TERMINFO( 4) 

( 
key_eic, krmir kM Sent by rmir or smir in insert mode 
key_eol, kel leE Sent by clear-to-end-of-line key 
keY_e06, ked kS Sent by clear-to-end-of-screen key 
keyJO, kfO kO Sent by funct.ion key CO 
keyJl, kCl kl Sent by function key fl 
keyJI0, kClO ka Sent by function key flO 
keyJ2, kf2 k2 Sent by function key f2 
keyJ3, kf3 k3 Sent by function key f3 
keyJ4, kC4 k4 Sent by Cunction key f4 
keyJ5, kf5 k5 Sent by function key f5 
keyJ6, kf6 k6 Sent by function key f'6 
keyJ7, kf7 k7 Sent by Cunct.ion key f7 
key-fS, krs kS Sent by function key fS 
keyJ9, kf9 kg Sent. by funct.ion key f9 
key--home, khome kh Sent by home key 
keyjc, kichl kI Sent by ins char/enter ins mode key 
keyjl, kill kA Sent by insert line 
keyJeft, kcubl kl Sent by terminal left arrow key 
keyJl, kll kH Sent by home-down key 
keYJlpage, knp kN Sent by next,-page key 
key_ppage, kpp kP Sent by previous-page key 
keYJight, kcufl kr Sent by terminal right arrow key 
key-sf, kind kF Sent by scroll-forward/down key 
key-sr, kri kR Sent by scroll-backward/up key 

,t key-stab, khts kT Sent by set-tab key 
key_up, kcuul ku Sent by terminal up arrow key 
keypadJocal, rmkx ke Out. of "keypad transmit" mode 
keypad-xmit, smkx ks Put terminal in "keypad transmit" mode 
labJO, If 0 10 Labels on function key fO if not CO 
labJl, Ifl 11 Labels on function key Cl if not fl 
labJ10, lClO la Labels on function key flO if not flO 
labJ2, If2 12 Labels on function key f2 if not f2 
labJ3, lC3 13 Labels on function key f3 if not f3 
labJ4, lC4 14 Labels on function key f4 if not f4 
labJ5, If 5 15 Labels on function key fS if not f5 
labJ6, IfB 16 Labels on function key f6 if not f'6 
labJ7, 1f7 17 Labels on funct.ion key f7 if not f7 
lab-fS, Irs 18 Labels on funct.ion key rs if not f8 
labJ9, Ir9 19 Labels on function key f9 if not f9 
meta_on, smm mm Turn on "met,a mode" (Sth bit) 
meta_off, rmm mo Turn off "met.a mode" 
newline, nel nw Newline (behaves like cr followed by If) 
pa<Lchar, pad pc Pad charact.er (rather than null) 
parlILdch, dch DC Delete #1 chars (pG.) . 
parlILdeleteJine, dl DL Delete #1 lines (PG.) 
parlILdowILcursor, cud DO Move cursor down # 1 lines (PG.) 
parm-ich, ich IC Insert #1 blank chars (PG.) 
parIILindex, indn SF Scroll forward #1 lines (PG) 
parIILinsertJine, il AL Add #1 new blank lines (PG.) 
parmJeft_cursor, cub LE Move cursor left. #1 spaces (PG) 

C parIIlJighLcursor, cuf RI Move cursor right #1 spaces (PG.) 
parIIlJindex, rin SR Scroll backward #1 lines (PG) 
parlILup_cursor, cuu UP Move cursor up #1 lines (PG.) 

4 Icon International, Inc. 



TER1vIINFO ( 4 ) Fll..E FORMATS TERMINFO ( 4 ) 

pkey..key, prkey pk Prog funet key #1 to type string #2 
pkeyJoeal, ploc pI Prog funct key #1 to execute string #2 
pkey..xmit, pfx px Prog funct key #1 to xmit string #2 
print..JIcreen, mcO ps Print content.s of the screen 
prtr_oft', mc4 pf Turn oft' the printer 
prtr_on, mc5 po Turn on the printer 
repeat_char, rep rp Repeat char #1 #2 times. (PQ.) 
resetJstring, rsl rl Reset terminal completely to sane modes. 
reset..2string, rs2 r2 Reset terminal completely to sane modes. 
reset_Sstring, rs3 r3 Reset terminal completely to sane modes. 
resetJile, rf rf Name of file containing reset string 
restore_cursor, rc rc Restore cursor to position of last sc 
row -&ddress, vpa cv Vertical position absolute (set row) (PG) 
save_cursor, sc sc Save cursor posit.ion (P) 
scrolUorward, ind sf Scroll text. up (P) 
scrolLreverse, ri sr Scroll text down (P) 
set-&ttributes, sgr sa Define the video attributes (PG9) 
seLtab, hts st Set a tab in all rows, current column 
seLwindow, wind wi Current window is lines #1-#2 cols #3-#4 
tab, ht ta Tab to next 8 space hardware tab stop 
to..JIta tusJine, tsl ts Go to status line, column #1 
underline_char, uc uc Underscore one char and move past it 
up..halUine, hu hu Half-line up (reverse 1/2 linefeed) 
iniLprog, iprog iP Path name of program for init 
key-&l, ka1 KI Upper left of keypad 
keYJ3, ka3 K3 Upper right of keypad 
key_b2, kb2 r" '-- Center of keypad 
key_el, kc1 K4 Lower left of keypad 
key_c3, kc3 K5 Lower right of keypad 
prtr.Jlon, mc5p pO Turn on the printer for #1 bytes 

A Sample Entry 

The following entry, which describes the Concept-lOO, is among the more complex 
entries in the terminfo file as of this writing. 

conceptlOOlclOOl conceptlcl04lcl()()'4plconcept 100, 
am, bel_AG, blank-\EH, blink-\EC, clear_AL$<2*>, cnorm-\Ew, 
cols#80, cr_AMS<9>, cubl_AH, cudl_ A J, cufl-\E-, 
cup-\Ea%pl%' '%+%c%p2%' '%+%c, 
cuul-\E;, cvvis-\EW, db, dchl-\E'A$<16*>, dim-\EE, dll-\E'B$<3*>, 
ed-\EA CS<16*>, el-\E'US<16>, eo, ftash-\Ek$<20>\EK, ht-\t$<8>, 
iIl~\E'RS<3*>, in, ind_A J, jnd_A J$<9>, ip-$<16*>, 
is2-\EU\Ef\E7\E5\E8\EI\ENH\EK\E\200\Eo&\200\Eo\47\E, 
kbs_Ah, kcubl-\E>, kcudl-\E<, kcufl-\E-. kcuul-\E;, 
kfl-\E5, kf2-\E6, kf3-\E7, khome-\E?, 
lines*24, mir,' pb#9600, prot-\EI, rep-\Er%pl%c%p2%' '%+%c$<.2*>. 
rev-\ED, rmcup-\Ev S<6>\Ep\r\n, rmir-\E\200. rmkx-\Ex. 
rmso-\Ed\Ee, rmul-\Eg, rmul-\Eg, sgrO-\EN\200, 
smcup-\EU\Ev 8p\Ep\r, smir-\E'P, smkx-\EX, smso-\EE\ED. 
smul-\EG, tabs, ul, vt#8, xenl, 

Icon International, Inc. 5 

" 

\ 



( 

TERMINFO ( 4 ) FILE FORMATS TERMINFO ( 4 ) 

6 

Entries may continue onto multiple lines by placing white space at the beginning of 
each line except the first. Comments may be included on lines beginning with "#". 
Capabilities in terminJo are of three types: Boolean capabilities which indicate that 
the terminal has some particular feature, numeric capabilities giving the size of the 
terminal or the size of particular delays, and string capabilities, which give a 
sequence which can be used to perform particular terminal operations. 

Types of Capabilities 

All capabilities have names. For instance, the fact that the Concept has automatic 
margins (i.e., an automatic return and linefeed when the end of a line is reached) is 
indicated by the capability am. Hence the description of the Concept includes am. 
Numeric capabilities are followed by the character '#' and then the value. Thus 
eols, which indicates the number of columns the terminal has, gives the value '80' for 
the Concept. 

Finally, string valued capabilities, such as el (clear to end of line sequence) are given 
by the twc>character code, an '=', and then a string ending at the next following','. 
A delay in milliseconds may appear anywhere in such a capability, enclosed in $< .. > 
brackets, as in el=\EK$<3>, and padding characters are supplied by tputs to prc> 
vide this delay. The delay can be either a number, e.g., '20', or a number followed 
by an '*', i.e., '3*'. A '*' indicates that the padding required is proportional to the 
number of lines affected by the operation, and the amount given is the per-affected
unit padding required. (In the case of insert character, the factor is still the number 
of lines affected. This is always one unless the terminal has xenl and the software 
uses it.) When a '*' is specified, it is sometimes uSt'ful to give a delay of the form 
'3.5' to specify a delay per unit to tenths of milliseconds. (Only one decimal place is 
allowed.) 

A number of escape sequences are provided in the string valued capabilities for easy 
encoding of characters there. Both \E and \e map to an ESCAPE character, AX 

maps to a control-x for any appropriate x, and the sequences \n \1 \r \t \b \f \8 
give a newline, linefeed, return, tab, backspace, formfeed, and space. Other escapes 
include \ ~ for ~, \ \ for \, \, for comma, \: for :, and \0 for null. (\0 will produce 
\200, which does not terminate a string but behaves as a null character on most. t.er
minals.) Finally, characters may be given as three octal digits aft.er a \. 

Sometimes individual capabilities must be commented out. To do this, put a period 
before the capability name. For example, see tht' second ind in the exam pit' above. 

Preparing Descriptions 

We now outline how to prepare descriptions of terminals. The most effective way to 
prepare a terminal description is by imitating the description of a similar terminal in 
terminJo and to build up a description gradually, using part.ial descriptions with t,i to 
check that they are correct. Be aware that a very unusual t.erminal may expose 
deficiencies in the ability of the terminJo file t.o describe it or bugs in vi. To easily 
test a new terminal description you can set the environment. variable TERMINFO t.o 
a pathname of a direct.ory containing the compiled description you are working on 
and programs will look there rather than in /flsr/lib/termillJo. To get tht' padding 

Icon International, Inc. 



TERMINFO ( 4 ) FTI..E FORMATS TERMINFO ( 4 ) 

for insert line right (if the terminal manufacturer did not document it) a severe test 
is to edit /etc/passwd at 9600 baud, delete 16 or so lines from the middle of the 
screen, then hit the 'u' key several times quickly. If the terminal messes up, more 
padding is usually needed. A similar test can be used for insert character. 

Basic Capabilities 

The number of columns on each line for the terminal is given by the cols numeric 
capability. If the terminal is a CRT, then the number of lines on the screen is given 
by the lines capability. If the terminal wraps around to the beginning of the next 
line when it reaches the right margin, then it should have the am capability. If the 
terminal can clear its screen, leaving the cursor in the home position, then this is 
given by the clear string capability. If the terminal overstrikes (rather than clear
ing a position when a character is struck over) then it should have the 08 capability. 
If the terminal is a printing terminal, with no soft copy unit, give it both hc and os. 
(os applies to storage scope terminals, such as TEKTRONIX 4010 series, as well as 
hard copy and APL terminals.) If there is a code to move the cursor to the left edge 
of the current row, give this as cr. (Normally this will be carriage return, control 
M.) If there is a code to produce an audible signal (bell, beep, etc) give this as bel. 

If there is a code to move the cursor one position to the left (such as backspace) that 
capability should be given as cubl. Similarly, codes to move to the right, up, and 
down should be given as curt, cuul, and cudl. These local cursor motions should 
not alter the text they pass over, for example, you would not normally use 'cufl= ' 
because the space would erase the character moved over. 

A very important point here is that the local cursor motions encoded in terminfo are 
undefined at the left and top edges of a CRT terminal. Programs should never 
attempt to backspace around the left edge, unless bw is given, and never attempt to 
go up locally off the top. In order to scroll text up, a program will go to the bottom 
left corner of the screen and send the ind (index) string. 

To scroll text down, a program goes to the top left corner of the screen and sends 
_ the ri (reverse index) string. The strings ind and ri are undefined when not on their 

respective corners of the screen. 

Parameterized versions of the scrolling sequences are indn and rin which have the 
same semantics as ind and ri except that they take one parameter, and scroll that 
many lines. They are also undefined except at the appropriate edge of the screen. 

The am capability tells whether the cursor sticks at. the right. edge of the screen 
when text is output, but this does not necessarily apply to a cufl from the last 
column. The only local motion which is defined from the left edge is if bw is given, 
then a cub! from the left edge will move to the right edge of the previous row. If 
bw is not given, the effect is undefined. This is useful for drawing a box around the 
edge of the screen, for example. If the terminal has switch selectable automatic 
margins, the terminfo file usually assumes that t.his is on; i.e., am. If the terminal 
has a command which moves to the first column of the next line, t.hat command can 
be given as nel (newline). It does not matter if the command clears the remainder of 
the current line, so if the terminal has no cr and If it may still be possible to craft a 

Icon International, Inc. 7 

\. 



( 

( "/ 

. ~/ 

TERMINFO ( 4 ) FILE FORMATS TERMINFO ( 4 ) 

8 

working nel out of one or both of them. 

These capabilities suffice to describe hardcopy and "glass-tty" terminals. Thus the 
model 33 teletype is described as 

331 tty33 I tty I model 33 teletype, 
bel-"G, cols#72, cr-"M, cudl-" J, he, ind-· J, os, 

while the Lear Siegler ADM-3 is described as 

adm31311si adm3, 
am, bel-"G, clear-"Z, cols#SO, cr-"M, cubl="H, cudl=" J, 
ind-" J, line5#24, 

Pa.ra.meterized Strings 

Cursor addressing and other strings requmng parameters in the terminal are 
described by a parameterized string capability, with prin/J(3S) like escapes %x in it. 
For example, to address the cursor, the cup capability is given, using two parame
ters: the row and column to address to. (Rows and columns are numbered from zero 
and refer to the physical screen visible to the user, not to any unseen memory.) If 
the terminal has memory relative cursor addressing, that can be indicated by 
mrcup. 

The parameter mechanism uses a stack and special % codes to manipulate it. Typi
cally a sequence will push one of the parameters onto the stack and then print it in 
some format. Often more complex operations are necessary. 

The % encodings have the following meanings: 

%% 
%d 
%2d 
%3d 
o/o02d 
%03d 
%c 
%5 

%p[1-9] 
%P[a-z] 
%g[a-z] 
%'c' 
%{nn} 

outputs '%' 
print popO as in printf 
print popO like %2d 
print popO like %3d 

as in printf 
print popO gives %c 
print popO gives %s 

push ith parm 
set variable [a-z] to popO 
get variable [a-z] and push it 
char constant c 
integer constant nn 

%+ %-%* %/%m 
arithmetic (%m is mod): push(popO op pop()) 

%& %1 %" bit operations: push(popO op pop()) 
%- %> %< logical operations: push(popO op pop()) 

Icon International, Inc. 



TERMINFO ( 4 ) FILE FOID.1.A. TS TERMIl\"FO ( 4 ) 

unary operations pusb(op pop(» 
add 1 to first two parms (Cor ANSI terminals) 

%1 expr %t thenpart %e elsepart %; 
iC-then-else, %e elsepart is optional. 
else-if's are possible ala Algol 68: 
%1 c1 %t bj ~ c2 %t b2 %e.c3 %t b3 %e c4 %t b4 %e %; 
ci are condItions, bi are bodies. 

Binary operations are in postfix form with the operands in the usual order. That is, 
to get x-5 one would use "%gx%{S}%-". 

Consider the Hewlett-Packard 264S, which, to get to row 3 and column 12, needs to 
be sent \E&a12c03Y padded for 6 milliseconds. Note tha.t the order of the rows and 
columns is inverted here, and that the row and column are printed as two digit.s. 
Thus its cup capability is "cup==6\E&%p2%2dc%pl%2dY". 

The Microterm ACT-IV needs the current row and column sent preceded by a AT, 
with the row and column simply encoded in binary, "cup=AT%pl%c%p2%c". Ter
minals which use "%c" need to be able to backspace the cursor (eubl), and to move 
the cursor up one line on the screen (cuul). This is necessary because it is not 
always safe to transmit \n AD and \r, as the system may change or discard them. 
(The library routines dealing with terminfo set tty modes so that tabs are never 
expanded, so \t is safe to send. This turns out to be essential for the Ann Arbor 
4080.) 

A final example is the LSI ADM-3a, which uses row and column offset by a blank 
character, thus "cup \E %pl%' '%+%c%p2%' '%+%c". After sending '\E=', this 
pushes the first parameter, pushes the ASCII value for a space (32), adds them (push
ing the sum on the stack in place of the two previous values) and outputs that value 
as a character. Then the same is done for the second parameter. More complex 
arithmetic is possible using the stack. 

If the terminal has row or column absolute cursor addressing, these can be given as 
single parameter capabilities hpa (horizontal posit.ion absolut.e) and vpa (vertical 
position absolute). Sometimes these are shorter than the more general two parame
ter sequence (as with the hp2645) and can be used in preft'rence to cup. If there are 
parameterized local motions (e.g., move n spaces t.o tht' right) t.hese can be given as 
cud, cub, cur, and cuu with a single parameter indica ting how many spaces to 
move. These are primarily useful if the terminal does not have cup, such as the 
TEKTRONIX 4025. 

Cursor Motions 

If the terminal has a fast way to horne the cursor (to very upper left corner of 
screen) then this can be given as home; similarly a fast way of getting to the lower 
left-hand corner can be given as 11; this may involve going up with cuu! from the 
horne position, but a program should never do this itself (unless 11 does) because it 
can make no assumption about the effect of moving up from the horne position. 

Icon International, Inc. 9 

(, ~-" 
-. ./ 



(' 

C.' 

TERMINFO ( 4 ) Fll..E FORMATS TERMI~"FO ( 4 ) 

10 

Note that the home position is the same as addressing to (0,0): to the top left corner 
of the screen, not of memory. (Thus, the \EH sequence on Hewlett-Packard termi
nals cannot be used for home.) 

Area Clears 

If the terminal can clear from the current position to the end of the line, 'leaving the 
cursor where it is, this should be given as el. If the terminal can clear from the 
current position to the end of the display, then this should be given as ed. Ed is 
only defined from the first column of a line. (Thus, it can be simulated by a request 
to delete a large number of lines, if a true ed is not available.) 

Insert I delete line 

If the terminal can open a new blank line before the line where the cursor is, this 
should be given as ill; this is done only from the first position of a line. The cursor 
must then appear on the newly blank line. If the terminal can delete the line which 
the cursor is on, then this should be given as dll; this is done only from the first 
position on the line to be deleted. Versions of ill and dll which take a single 
parameter and insert or delete that many lines can be given as nand dl. If the ter
minal has a settable scrolling region (like the vt100) the command to set this can be 
described with the csr capability, which takes two parameters: the top and bottom 
lines of the scrolling region. The cursor position is, alas, undefined after using this 
command. It is possible to get the effect of insert or delete line using this command 
- the 8C and rc (save and restore cursor) commands are also useful. Inserting lines 
at the top or bottom of the screen can also be done using ri or ind on many termi
nals without a true insert/delete line, and is often faster even on terminals with 
those features. 

If the terminal has the ability to define a window as part of memory, which all com
mands affect, it should be given as the parameterized string wind. The four param
eters are the starting and ending lines in memory and the starting and ending 
columns in memory, in that order. 

If the terminal can retain display memory above, then the da capability should be 
given; if display memory can be retained below, then db should be given. These indi
cate that deleting a line or scrolling may bring non-blank lines up from below or that 
scrolling back with ri may bring down non-blank lines. 

InsertfDelete Character 

There are two basic kinds of intelligent terminals with respect to insert/delete char
acter which can be described using terminfo. The most common insert/delete 
character operations affect only the characters on the current line and shift charac
ters off the end of the line rigidly. Other terminals, such as the Concept 100 and the 
Perkin Elmer Owl, make a distinction between typed and untyped blanks on the 
screen, shifting upon an insert or delete only to an untyped blank on the screen 
which is either eliminated, or expanded to two untyped blanks. You can determine 
the kind of terminal you have by clearing the screen and then typing text separated 

Icon International, Inc. 



TERMINFO ( 4 ) FaEFORMATS TERMII\iTO ( 4 ) 

10 

Note that the home position is the same as addressing to (0,0): to the top left corner 
of the screen, not of memory. (Thus, the \EH sequence on Hewlett-Packard termi
nals cannot be used for home.) 

Area Clears 

If the terminal can clear from the current position to the end of the line, leaving the 
cursor where it is, this should be given as el. If the terminal can clear from the 
current position to the end of the display, then this should be given as ed. Ed is 
only defined from the first column of a line. (Thus, it can be simulated by a request 
to delete a large number of lines, if a true ed is not available.) 

Insert I delete line 

If the terminal can open a new blank line before the line where the cursor is, t.his 
should be given as ill; this is done only from the first. posit.ion of a line. The cursor 
must then appear on the newly blank line. If the terminal can delete the line which 
the cursor is on, then this should be given as dl1; this is done only from the first 
position on the line to be deleted. Versions of ill and dll which take a single 
parameter and insert or delete that many lines can be given as il and dl. If the ter
minal has a settable scrolling region (like the vt100) the command to set this can be 
described with the csr capability, which takes two parameters: the top and bottom 
lines of the scrolling region. The cursor position is, alas, undefined after using this 
command. It is possible to get the effect of insert or delete line using this command 
- the BC and rc (save and restore cursor) commands are also useful. Inserting lines 
at the top or bottom of the screen can also be done using ri or ind on many termi
nals without a true insert/delete line, and is often faster even on terminals with 
those features. 

If the terminal has the ability to define a window as part of memory, which all com
mands affect, it should be given as the parameterized string wind. The four param
eters are the starting and ending lines in memory and the starting and ending 
columns in memory, in that order. 

If the terminal can retain display memory above, then the da capability should be 
given; if display memory can be retained below, then db should be given. These indi
cate that deleting a line or scrolling may bring non-bla.nk lines up from below or that 
scrolling back with ri may bring down non-blank lines. 

Insert /Delete Character 

There are two basic kinds of intelligent terminals wit.h respect to insert/delete char
acter which can be described using terminfo. The most common insert/delE'te 
character operations affect only the characters on thE' currE'nt line and shift charac
ters off the end of the line rigidly. Other terminals, such as the Concept 100 and the 
Perkin Elmer Owl, make a distinction between typed and unt.yped blanks on the 
screen, shifting upon an insert or delete only to an unt.yped blank on the screen 
which is either eliminated, or expanded to two untypE'd blanks. You can determine 
the kind of terminal you have by clearing the screen and then typing text separated 

Icon International, Inc. 

tf" 
( ,,-



( 

TEIDvfiNFO ( 4 ) FILE FORMATS TERMINFO ( 4 ) 

by cursor motions. Type "abc def" using local cursor motions (not spaces) 
between the "abc" and the "def". Then position the cursor before the "abc" and put 
the terminal in insert mode. If typing characters causes the rest of the line to shift 
rigidly and characters to fall off' the end, then your terminal does not distinguish 
between blanks and untyped positions. If the "abc" shifts over to the "def" which 
then move together around the end of the current line and onto the next as you 
insert, you have the second type of terminal, and should give the capability in, which 
stands for "insert null". While these are two logically separate attributes (one line 
vs. multiline insert mode, and special treatment of untyped spaces) we have seen no 
terminals whose insert mode cannot be described with the single attribute. 

Terminfo can describe both terminals which have an insert mode, and terminals 
which send a simple sequence to open a blank position on the ('urrent line. Give as 
smir the sequence to get into insert mode. Give as rmir the sequence to leave 
insert mode. Now give as iehl any sequence needed to be sent just before sending 
the character to be inserted. Most terminals with a true insert mode will not give 
iehl; terminals which send a sequence to open a s('reen position should give it here. 
(If your terminal has both, insert mode is usually preferable to iehl. Do not give 
both unless the terminal actually requires both to be used in combination.) If post 
insert padding is needed, give this as a number of milliseconds in ip (a string option). 
Any other sequence which may need to be sent after an insert of a single character 
may also be given in ip. If your terminal needs both to be placed into an 'insert 
mode' and a special code to precede each inserted character, then both smir /rmir 
and iehl can be given, and both will be used. The ieh capability, with one parame
ter, n, will repeat the effects of iehl n times. 

It is occasionally necessary to move around while in insert mode to delete characters 
on the same line (e.g., if there is a tab after the insertion position). If your terminal 
allows motion while in insert mode you can give the capability mir to speed up 
inserting in this case. Omitting mir will affect only speed. Some terminals (notably 
Datamedia's) must not have mir because of the way their insert mode works. 

Finally, you can specify dehl to delete a single character, deh with one parameter, 
n, to delete n characters, and delete mode by giving smde and rmde to enter and 
exit delete mode (any mode the terminal needs to be placed in for dehl to work). 

A command to erase n characters (equivalent to outputting n blanks without moving 
the cursor) can be given as eeh with one parameter. 

Highlighting, Underlining, and Visible Bells 

If your terminal has one or more kinds of display attributes, these can be 
represented in a number of different ways. You should choose one display form as 
standout mode, representing a good, high contrast, easy-on-the-eyes, format for 
highlighting error messages and other attention getters. (If you have a choice, 
reverse video plus half-bright is good, or reverse video alone.) The sequences to enter 
and exit standout mode are given as smso and rmso, respect.ively. If the code to 
change into or out of standout mode leaves one or even t.wo blank spaces on t.he 
screen, as the TVI 912 and Teleray 1061 do, then xme should be given to tell how 
many spaces are left. 

Icon International, Inc. 11 



TERMINFO ( 4 ) FILE FORMATS TERMINFO ( 4 ) 

12 

(~ " 

Codes to begin underlining and end underlining can be given as amul and rmul 0' 
respectively. If the terminal has a code to underline the current character and move 
the cursor one space to the right, such as the Microterm Mime, this can be given as 
uc. 

Other capabilities to enter various highlighting modes include blink (blinking) bold 
(bold or extra bright) dim (dim or half-bright) invis (blanking or invisible text) prot 
(protected) rev (reverse video) agrO (turn off all attribute modes) amaca (enter 
alternate character set mode) and rmaca (exit alternate character set mode). Turn
ing on any of these modes singly mayor may not turn off other modes. 

If there is a sequence to set arbitrary combinations of modes, this should be given as 
agr (set attributes), taking 9 parameters. Each parameter is either 0 or 1, as the 
corresponding attribute is on or off. The 9 parameters are, in order: standout, 
underline, reverse, blink, dim, bold, blank, protect, alternate character set. Not all 
modes need be supported by agr, only those for which corresponding separate attri
bute commands exist. 

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" when they 
receive mode-setting sequences, which affect the display algorithm rather than hav
ing extra bits for each character. Some terminals, such as the Hewlett-Packard 
2621, automatically leave standout mode when they move to a new line or the cursor 
is addressed. Programs using standout mode should exit standout mode before mov
ing the cursor or sending a newline, unless the msgr capability, asserting that it is 
safe to move in standout mode, is present. 

If the terminal has a way of flashing the screen to indicate an error quietly (a bell 
replacement) then this can be given as flash; it. must not move the cursor. 

If the cursor needs to be made more visible than normal when it is not on the bot
tom line (to make, for example, a non-blinking underline into an easier to find block 
or blinking underline) give this sequence as cvvis. If there is a way to make the cur
sor completely invisible, give that as civis. The capability cnorm should be given 
which undoes the effects of both of these modes. 

If the terminal needs to be in a special mode when running a program that uses 
these capabilities, the codes to enter and exit this mode can be given as smcup and 
rmcup. This arises, for example, from terminals like the Concept with more than 
one page of memory. If the terminal has only memory relative cursor addressing and 
not screen relative cursor addressing, a one screen-sized window must be fixed into 
the terminal for cursor addressing to work properly. This is also used for the TEK
TRONIX 4025, where am cup sets the command character to be the one used by ter
minfo. 

If your terminal correctly generates underlined characters (with no special codes 
needed) even though it does not overstrike, then you should give the capability ul. If 
overstrikes are erasable with a blank, then this should be indicated by giving eo. 

Icon International, Inc. 



( 

( 

TERMINFO ( 4 ) FILE FORMATS TERMINFO ( 4 ) 

Keypad 

If the terminal has a keypad that transmits codes when the keys are pressed, this 
information can be given. Note that it is not possible to handle terminals where the 
keypad only works in local (this applies, for example, to the unshifted Hewlett
Packard 2621 keys). If the keypad can be set to transmit or not transmit, give these 
codes as 8mb and rmkx. Otherwise the keypad is assumed to always transmit. 
The codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys 
can be given as kcubl, kcufl, kcuul, kcudl, and kbome respectively. If there 
are function keys such as ro, fl, ... , flO, the codes they send can be given as kID, kfl, 
••• , kflO. If these keys have labels other than the default. fO through flO, the labels 
can be given as 110, lfl, ••• , lflO. The codes transmitted by certain other special 
keys can be given: kll (home down), kbs (backspace), ktbe (clear all tabs), kctab 
(clear the tab stop in this column), kclr (clear screen or erase key), kdebl (delete 
character), kdll (delete line), krmir (exit insert mode), kel (clear to end of line), 
ked (clear to end of screen), kiehl (insert character or enter insert mode), kill 
(insert line), knp (next page), kpp (previous page), kind (scroll forward/down), kri 
(scroll backward/up), khts (set a tab stop in this column). In addition, if the 
keypad has a 3 by 3 array of keys including the four arrow keys, the other five keys 
can be given as kal, ka3, kb2, kel, and kc3. These keys are useful when the 
effects of a 3 by 3 directional pad are needed. 

Tabs and Initialization 

If the terminal has hardware tabs, the command to advance to the next tab stop 
can be given as ht (usually control I). A "back tab" command which moves leftward 
to the next tab stop can be given as ebt. By convention, if the teletype modes indi
cate that tabs are being expanded by the computer rather than being sent to the 
terminal, programs should not use ht or cbt even if they are present, since the user 
may not have the tab stops properly set. If the terminal has hardware tabs which 
are initially set every n spaces when the terminal is powered up, the numeric param
eter it is given, showing the number of spaces the tabs are set to. This is normally 
used by the tset command to determine whether to set the mode for hardware tab 
expansion, and whether to set the tab stops. If the terminal has tab stops that can 
be saved in nonvolatile memory, the terminfo description can assume that they are 
properly set. 

Other capabilities include isl, is2, and is3, initializat.ion strings for the terminal, 
iprog, the path name of a program to be run to initialize the terminal, and if, the 
name of a file containing long initialization strings. These strings are expected to set 
the terminal into modes consistent with the rest of the terminfo description. They 
are normally sent to the terminal, by the tset program, each time the user logs in. 
They will be printed in the following order: isl; is2; set.ting tabs using tbe and hts; 
if; running the program iprog; and finally is3. Most init.ializat.ion is done with is2. 
Special terminal modes can be set up without duplicating strings by putting the 
common sequences in is2 and special cases in isl and is3. A pair of sequences that. 
does a harder reset from a totally unknown state can be analogously given as rsl, 
rs2, rf, and rs3, analogous to is2 and if. These strings are output by the reset pro
gram, which is used when the terminal gets int.o a wedged state. Commands are 
normally placed in rs2 and rf only if they produce annoying eff(>cts on the screen and 
are not necessary when logging in. For example, the command to set the vt100 into 

Icon International, Inc. 13 



TERMlNFO ( 4 ) FILE FORMATS TERMINFO ( 4 ) 

14 

8O-column mode would normally be part of is2, but it causes an annoying glitch of 
the screen and is not normally needed since the terminal is usually already in 80 
column mode. 

If there are commands to set and clear tab stops, they can be given as tbe (clear all 
tab stops) and hts (set a tab stop in the current column of every row). If a more 
complex sequence is needed to set the tabs than can be described by this, the 
sequence can be placed in is2 or if. 

Delays 

Certain capabilities control padding in the teletype driver. These are primarily 
needed by hard copy terminals, and are used by the tset program to set teletype 
modes appropriately. Delays embedded in the capabilities cr, ind, cubl, if, and tab 
will cause the appropriate delay bits to be set in the teletype driver. If ph (padding 
baud rate) is given, these values can be ignored at baud rates below the value of ph. 

Miscellaneous 

If the terminal requires other than a null (zero) character as a pad, then this can be 
given as pad. Only the first character of the pad string is used. 

If the terminal has an extra "status line" that is not normally used by software, this 
fact can be indicated. If the status line is viewed as an extra line below the bott.om 
line, into which one can cursor address normally (such as the Heathkit hI9's 25th 
line, or the 24th line of a vt100 which is set to a 23-line scrolling region), the capabil
ity hs should be given. Special strings to go to the beginning of the status line and 
to return from the status line can be given as tsl and fsi. (fsi must leave the cursor 
position in the same place it was before tsl. If necessary, the se and rc strings can 
be included in tsl and fsl to get this effect.) The parameter tsl takes one parameter, 
which is the column number of the status line the cursor is to be moved to. If escape 
sequences and other special commands, such as tab, work while in the status line, the 
flag eslok can be given. A string which turns off the status line (or otherwise erases 
its contents) should be given as dsl. If t.he terminal has commands to save and 
restore the position of the cursor, give them as se and re. The status line is nor
mally assumed to be the same width as the rest of the screen, e.g., coIs. If the 
status line is a different width (possibly because the t.erminal does not allow an 
entire line to be loaded) the width, in columns, can be indicat.ed with the numeric 
parameter wsi. 

If the terminal can move up or down half a line, this can be indicated with hu (half
line up) and hd (half-line down). This is primarily useful for superscript.s and sub
scripts on hardcopy terminals. If a hardcopy terminal can eject to the next page 
(form feed), give this as ft' (usually control L). 

If there is a command to repeat a given character a given number of times (to save 
time transmitting a large number of identical characters) t.his can be indicated with 
the parameterized string rep. The first paramet.er is t.he charact.er to be repeat,ed 
and the second is the number of times to repeat it. Thus, tparm(repeat_char, 'x', 10) '" " 

Icon International, Inc. 



( 

TERMINFO ( 4 ) FILE FORMATS TERMINFO ( 4 ) 

is the same as 'xxxxxxxxxx'. 

If the terminal has a settable command character, such as the TEKTRONIX 4025, 
this can be indicated with emdeh. A prototype command character is chosen which 
is used in all capabilities. This character is given in the emdeh capability to iden
tify it. The following convention is supported on some UNIX systems: The environ
ment is to be searched for a CC variable, and if found, all occurrences of the proto
type character are replaced with the character in the environment variable. 

Terminal descriptions that do not represent a specific kind of known terminal, such 
as switch, dialup, patch, and network, should include the gn (generic) capability so 
that programs can complain that they do not know how to talk to the terminal. 
(This capability does not apply to virtual terminal descriptions for which the escape 
sequences are known.) 

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding infor
mation should still be included so that routines can make better decisions about 
costs, but actual pad characters will not be transmitted. 

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any 
character transmitted, this fact can be indicated with km. Otherwise, software will 
assume that the 8th bit is parity and it will usually be cleared. If strings exist to 
turn this "meta mode" on and off, they can be given as amm and .rmm. 

If the terminal has more lines of memory than will fit on the screen at once, the 
number of lines of memory can be indicated with 1m. A value of lm#O indicat.es 
that the number of lines is not fixed, but that there is still more memory than fits on 
the screen. 

If the terminal is one of those supported by the UNIX system virt.ual terminal proto
col, the terminal number can be given as vt. 

Media copy strings which control an auxiliary printer connected to the terminal can 
be given as meO: print the contents of the screen, me4: turn off the printer, and 
meS: turn on the printer. When the printer is on, an t.ext sent to the terminal will 
be sent to the printer. It is undefined whether the text is also displayed on the ter
minal screen when the printer is on. A variation mc5p t.akes one parameter, and 
leaves the printer on for as many characters as the value of the paramet.er, then 
turns the printer off. The parameter should not exceed 255. An text, including mc4, 
is transparently passed to the printer while an mc5p is in effect.. 

Strings to program function keys can be given as pfkey, pfioe, a.nd pfx. Each of 
these strings takes two parameters: the function key number to program (from 0 to 
10) and the string to program it with. Function key numbers out of this range may 
program undefined keys in a terminal dependent. manner. The difference between the 
capabilities is that pfkey causes pressing the given key to be the same as the user 
typing the given string; pftoc causes the string to be executed by the terminal in 
local; and pfx causes the string to be transmitted to the computer. 

Icon International, Inc. IS 



TERMINFO ( 4 ) FILE FORMATS TERMINFO ( 4 ) 

Glitches and Braindamage 

Hazeltine terminals, which do not allow ,-, characters to be displayed should indi
cate hz. 

Terminals which ignore a linefeed immediately after an am wrap, such as the Con
cept and vt100, should indicate xenl. 

If el is required to get rid of standout (instead of merely writing normal text on top 
of it), xhp should be given. 

Teleray terminals, where tabs turn all characters moved over to blanks, should indi
cate xt (destructive tabs). This glitch is also taken to mean that it is not possible to 
position the cursor on top of a "magic cookie", that to erase standout mode it is 
instead necessary to use delete and insert line. 

Th~ Beehive Super bee, which is unable to correctly transmit the escape or control C 
characters, has xsb, indicating that the fl key is used for escape and f2 for control 
C. (Only certain Superbees have this problem, depending on the ROM.) 

Other specific terminal problems may be corrected by adding more capabilities of 
the form xx. 

Similar Terminals 

If there are two very similar terminals, one can be defined as being just like the 
other with certain exceptions. The string capability use can be given with the name 
of the similar terminal. The capabilities given before use override those in the ter
minal type invoked by use. A capability can be cancelled by placing xx@ to the left 
of the capability definition, where xx is the capability. For example, the entry 

2621-nl, smkx@, rmkx@, use 2621, 

defines a 2621-nl that does not have the smkx or rmkx capabilit.ies, and hence does 
not turn on the function key labels when in visual mode. This is useful for different 
modes for a terminal, or for different user preferences. 

FILES 

lusr llib/terminfo/? /* files containing terminal descriptions 

SEE ALSO 

curses(3X), printf(3S), term(5). 
tic{IM) in the ICON/my Administrator Reference Manual. 

16 Icon International, Inc. 

(-
"-./ 



( 

UTMP( 4) FILE FORMATS UTMP(4) 

NAME 

utmp, wtmp - utmp and wtmp entry formats 

SYNOPSIS 

#include <sys/types.h> 
#include <utmp.h> 

DESCRIPTION 

These files, which hold user and accounting information for such commands as 
who{l), write{l), and login(l), have the following structure as defined by <utmp.h>: 

#define 
#define 
#define 

UTMP J'ILE "/etc/utmp" 
WTMP J'll.E "/etc/wtmp" 
utJ).ame ut_user 

struct utmp { 
char 
char 
char 
short 
short 
struct 

}; 

short 
short 

} ut_exit; 

ut_user[8]; 
utjd[4}; 
utJine[12]; 
uLpid; 
uLtype; 
exiLstatus { 

e_termination; 
e_exit; 

uLtime; 

/* Definitions for uLtype */ 
#define EMPTY 0 
#define RUNJ. VL 1 
#define BOOT_TIME 2 
#define OLD_TIME 3 
#define NEW_TIME 4 

Icon International, Inc. 

/* User login name */ 
/* /etc/inittab id (usually line #) */ 
/* device name (console, lnxx) */ 
/* process id */ 
/* type of entry */ 

/* Process termination status */ 
/* Process exit status * / 
/* The exit status of a process 
* marked as DEADYROCESS. */ 
/* time entry was made */ 

1 



UT:MP( 4) FILE FORM\TS UTMP(4) 

FILES 

#define INlT..PROCESS 
#define LOGIN..PROCESS 
#define USER..PROCESS 
#define DEAD..PROCESS 
#define ACCOUNTING 
#define UTMAXTYPE 

5 
6 
7 
8 
9 
ACCOUNTING 

/* Process spawned by "init" */ 
/* A "getty" process waiting for login */ 
/* A user process */ 

/* Largest legal value of uLtype */ 

/* Special strings or formats used in the "utJine" field when */ 
/* accounting for something other than a process */ 
/* No string for the utJine field can be more than 11 chars + */ 
/* a NULL in length */ 
#define RUl\"L VL..MSG "run-level %c" 
#define BOOTJdSG "system boot" 
#define OTIME..MSG "old time" 
#define NTIME..MSG "new time" 

/usr /include/utmp.h 
/etc/utmp 
/etc/wtmp 

SEE ALSO 

getut(3C). 
login{l), who(l), write{l) in the ICON/UXV User Reference Manual. 

2 Icon International, Inc. 

/I" " 
I 
~ ./ 



UXRC(4) FILE FORMATS UXRC(4) 

(.. NAME 

uxrc - ICON/UXB run-time configuration file 

SYNOPSIS 

/etc/uxrc 

DESCRIPTION 

Uxrc is used to set configuration variables in the operating system kernel. When a 
reboot is in progress, / etc/ uxrc is read to optionally set the value of certain kernel 
variables. 

The general form of a line in uxrc is: 

variable-name hexadecimal-value 

where variable-name is one of the variables defined below, and he:radecimal-value is a 
hexadecimal representation of the value to be assigned to that variable. Currently, 
there are eight variables defined that may be set in uxrc. They are: 

motJDode 
pCPJIlodex 
znetJDl_pcpO 
dcs.T_config 
dcs:ry_cctype 
dcsxYJDodem 
dcsxy..handsha.ke 
a.utoboot 

Main CPU board serial port control. 
PCP board x serial port control. 
Z-NET control for PCP board 0 ports. 
DCS adapter x cluster config. 
DCS adapter x cluster y config. 
DCS adapter x cluster y config. 
DCS adapter x cluster y config. 
Auto-boot on panic flag. 

Other variables will be made available in uxrc as the need arises. 

MOT...MODE 

Hardware handshake and modem control behavior for t.he Main CPU serial commun
ication ports may be modified by changing the motJIlode variable. The lower 4 
bits enable hardware RTS/CTS handshaking and the upper 4 bits enable modem 
control. 

Control: 

Bit: 
Port: 

Hardware Handshaking (bits 0-3) 
Modem Control (bits 4-7) 

7 6 543 2 1 0 
03 02 01 00 03 02 01 00 

Icon International, Inc. 1 



UXRC(4) Fn.E FORMATS UXRC(4) 

For example, to enable RTS/CTS handshaking on Port 01 and modem control on 
Port 02 the following line should be added to /etc/u%rc. 

mot..JDode 42 

PCP-MODE% 

Hardware handshake and modem control behavior for PCP16 serial communicat.ion 
ports may be modified by changing the pcp...:mode% variables, where % is the PCP 
board number. The lower 16 bits enable hardware RTS/CTS handshaking and the 
upper 16 bits enable modem control. 

Control: Modem Control 
Bit: 31 30 29 28 27 26 25 2-1 
Port: Of Oe Od Oc Ob Oa 09 08 

Control: Modem Control 
Bit: 23 22 21 20 19 18 17 16 
Port: 07 06 05 04 03 02 01 00 

Control: Hardware Handshaking 
Bit: 15 14 13 12 11 10 9 8 
Port: Of Oe Od Oc Ob Oa 09 08 

Control: Hardware Handshaking 
Bit: 7 6 5 4 3 2 1 0 
Port: 07 06 05 04 03 02 01 00 

For example, to enable RTS/CTS handshaking on Port 09 and modem {'ontrol on 
Port Oe on PCPO, the following line should be added to /etc/u%rc. 

pCPJllodeO 40000200 

ZNE T-Ml..P CPO 

2 

Currently, the only ports which may be configured as Z-NET ports are the serial 
ports on PCPO. Z-NET ports must be configured in pairs for the operating system to 
handle the ports correctly. The ports are groups in pairs as follows: (00, 01), (02, 03), 
(04, 05), ... (Oe, Of). 

If one or more ports on PCPO are configured as Z-NET ports, the remaining ports 
will not work reliably at high data-input rates. 

Icon International, Inc. 

(\ 
~/!I 

/' 

" , 

", ./ 



(' 

( 

UXRC( 4) Fll...E FORMATS UXRC( 4) 

Pairs of ports are configured to run Z-NET by setting the appropriate bits in the 
Inet..ml_pcpO variable in uzrc. When the appropriat.e bit. is on, then the port is 
configured as a Z-NET port. 

Control: Z-NET Select 
Bit: 15 14 13 12 11 10 9 8 
Port: Of Oe Od Oc Ob Oa 09 08 

Control: Z-NET Select 
Bit: 7 6 5 4 3 2 1 0 
Port; 07 06 05 04 03 02 01 00 

For example, to configure ports aO, al, a4, a5, ae, and af as Z-NET ports, add t.he 
following line to the uzrc file: 

znet..ml_pcpO c033 

Once a port is configured as a Z-NET port, the baud rate is set to 38.4kbaud and 
any baud rate settings in the /etc/ttys file for that port are ignored. Make sure that 
port is configured as a login port in the /etc/ttys file, and that the associated entry 
in /etc/ttytype shows the correct terminal type (which will vary depending upon the 
terminal emulation program being used on the PC attached to the port). 

By default, the Distributed Communications Subsystem (DCS) driver allows the con
nection of any combination of DCS8, DCS9 and DCSI6 cluster controllers with a 
maximum of 64 total ports. There are 128 minor devices addressable in all; the dev
ices that a.re a.ctive depends on the configuration. 

The uzrc variable dcsz_config specifies the basic default configuration for a DCS 
host adapter, where z is the DCS host adapter number. If this variable is set to 0, 
or is not present in uzrc, DCS will allow any combination of DOS8, DCS9, and 
DOS16 cluster controllers, at all cluster addresses from 1 to f. 

If the variable is set to I, only DOSS and DOS9 clusters may be used, with cluster 
addresses 1 through 8 reserved for DCSS clusters, and 8 through f reserved for DCS9 
clusters. This mode of configuration is intended t.o support olderDCS cluster con
troller firmware. 

The uzrc variable dcszy_cctype allows you to override the default configuration on 
a cluster-by-cluster basis, in either setting of the dcsoT_config ,·ariable. Again, x is 
the DOS host adapter number, and y is the cluster cont.roller address. Using this 

Icon International, Inc. 3 



UXRC( 4) FILE FORMATS UXRC( 4) 

variable is necessa.ry only with older cluster controllers. To configure a cluster con
troller as a DeSS, use the value 8; use the value 9 for a OOS9, and the value 16 for a 
DCSI6. 

DCSzy-MODEM 

Modem control behavior for serial ports on DCS adapter z cluster controller y, may 
be modified by changing the dC8zy..,modem variables. When t.he appropriate bit is 
set, modem control is enabled; when the bit is clear, it is disabled. 

For each port on which modem support in enabled, a second minor device for the 
port becomes usable. For a discussion of the additional features and advantages of 
the additional device entry, see dCS(4). 

Control: Modem Control 
Bit: 15 14 13 12 11 10 9 8 
Port: Of Oe Od Oc Ob 080 09 08 

Control: Modem Control 
Bit: 7 6 5 4 3 2 1 0 
Port: 07 06. 05 04 03 02 01 00 

DCSzy..HANDSHAKE 

Hardware handshaking behavior for serial ports on DCS adapter z cluster controller 
y may be modified by changing the dcsxy..handshake variables. When the 
appropriate bit is set, RTS/CTS handshaking is enabled; when the bit is clear, it is 
disabled. 

Control: Hardware Handshaking 
Bit: 15 14 13 12 11 10 9 8 
Port: Of Oe Od Oc Ob 080 09 08 

Control: Hardware Handshaking 
Bit: 7 6 5 4 3 2 1 0 
Port: 07 06 05 04 03 02 01 00 

AUTOBOOT 

4 

To force the machine to reboot automatically on a panic, autoboot must. be set. 
When the system reboots, the panic message is scrolled off of the system console ter
minal display screen and is therefore lost, as the operating syst.em cannot save the 
panic message. To enable this feature, the following line should be added to 
/etc/uzrc. (~~, 

Icon International, Inc. 



( 

UXRC( 4) FILE FORMATS UXRC(4) 

BUGS 

autoboot 1 

For ports on a PCP, both RTS/CTS handshaking and modem control may not be 
enabled at the same time on the same port. 

SEE ALSO 

tty(7), dcs(7), terminro(7) 

See the IOON/UXV Administrator Reference Manual. for a description of how to 
make cables for use with RTS/CTS hardware handshaking and modem control. 

Icon International, Inc. 5 



INTRO(5) MISCELLANEOUS INTRO(5 ) 

NAME 

intro - introduction to miscellany 

DESCRIPTION 

This section describes miscellaneous facilities such as ma<:'ro packages, character set 
tables, etc. 

Icon International, Inc. 1 



ASCll(5) MISCELLANEOUS ASCII ( 5) 

f NAME 

ascii - map of ASCII character set 

SYNOPSIS 

eat /usr /pub/ascii 

DESCRIPTION 

Ascii is a map of the ASCII character set, glvmg bot.h octal and hexadecimal 
equivalents of each character, to be printed as needed. It contains: 

:000 nul :001 soh :002 stx 003 etx:004 eot : 005 enq 006 aek 
:010 bs :011 ht :012 nl 013 vt :014 np :015 cr 016 so 
:020 die 1021 del :022 de2 023 de3 : 024 de4 : 025 nak 026 syn 
:030 ean 031 em :032 sub 033 esc: 034 fs '035 gs 036 rs 
:040 sp 041 ! :042 " 043 # 1044 $ 045 % 046 & 
'050 ( 051 ) 1052 * 053 + '054 055 - 056 • 
060 0 061 1 '062 2 063 3 064 4 065 5 066 6 
070 8 071 9 072 073 ; 074 < 075 == 076 > 
100 @ 101 A 102 B 103 C 104 D 105 E 106 F 

( 110H ,111 I 112 J. 113K 114L 1115 M 116N 
120 P 121 Q 122 R 123 S 124 T 1125 U 126 V 
130 X 131 Y 132 Z ,133 [ 134 \ 1135 l 136 • 
140 141 a ,142 b P43 c 144 d P45 e 146 f 
150 h 151 : 152 : 153 k 154 I : 155 m 156 n 
160 p 161 q P62 r p63 s 164 t : 165 u 166 v 
170 x 171 y :172 z :173 { P74 :175 } 1176 -

00 nul 01 soh 02 stx : 03 etx I 04 eot 05 enq 06 ack 
08 bs 09 ht Oa nl , Ob vt I Oe np Od cr Oe so , 
10 die 11 del 12 de2 I 13 de3 14 de4 15 nak 16 syn 
18 can 19 em la sub: Ib esc lc fs Id gs Ie rs 
20 sp 21 ! 22 " , 

23 # 24 $ 25 % 26 & , 
28 ( 29 ) 2a * I 2b + 2e 2d - 2e . I 

30 0 31 1 32 2 33 3 34 4 35 5 36 6 
38 8 39 9 3a 3b ; 3e < 3d == 3e > 
40@ 41 A 42 B 43 C 44 D 45 E 46 F 
48 H 49 I 4a J 4b K 4e L 4d 1\1 4e N 
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 
58 X 59 Y 5a Z 5b [ 5e \ 5d l 5e . 
60 61 a 62 b 63 c 64 d 65 e 66 f 
68 h 69 6a j 6b k 6e I 6d m 6e n 
70 p 71 q 72 r 73 s 74 t 75 u 76 v 
78 x 79 y 7a z 7b { 7e 7d } 7e -

C: 
Icon International, Inc. 1 



ASCll(5) MISCELLANEOUS ASCII ( 5) 

FlLES 

/usr/pub/ascii 

2 Icon International, Inc. 



ENVIRON(5) :MISCELLANEOUS ENVIRON(5) 

( NAME 

environ - user environment 

DESCRIPTION 

An array of strings called the "envi;onment" is made available by exec(2) when a 
process begins. By convention, these strings have the form "name==value". The fol
lowing names are used by various commands: 

PATH The sequence of directory prefixes that sh(l), time(l), nice(l), nohup(l), etc., 
apply in searching for a file known by an incomplete path name. The prefixes 
are separated by colons (:). Login( 1) sets P ATH==:/bin:/usr Ibin. 

HOME Name of the user's login directory, set by login(l) from the password file 
passwd(4). 

TERM The kind of terminal for which output is to be prepared. This information is 
used by commands, such as mm{l} or tplot{lG), which may exploit special 
capabilities of that terminal. 

TZ Time zone information. The format is xxxnzzz where xxx is standard local 
time zon£' abbreviation, n is the difference in hours from GMT, and zzz is the 
abbreviation for the daylight-saving local time zone, if any; for example, 
EST5EDT. 

Further names may be placed in the environment by the export command and 
"name-value" arguments in sh{l), or by exec(2). It is unwise to conflict with certain 
shell variables that are frequently exported by .profile files: MAIL, PSI, PS2, IFS. 

SEE ALSO 

exec(2). 
em'(l), login(l), sh(l), mm(l), nice{l), nohup(l), time(l), tplot(lG) in the ICON/WrV 
User Reference /Vfanual. 

Icon International, Inc. 1 



FCNTL(5) MISCELLANEOUS FCNTL(5) 

NAME 

fentl - file control options 

SYNOPSIS 

#include <fcntl.h> 

DES CRJP TION 

The /cntl(2) function provides for control over open files. The include file describes 
requests and arguments to /cntl and open(2). 

/- Fl~g values accessible to open(2) a.nd renU(2) -/ 
/- (The first. three can only be set by open) -/ 
*deflne O.JU)ONL Y 0 
*deflne O_WRONLY 1 
*deflne O.JU)WR 2 
*define O..NJ)ELA Y 04 /_ Non-blocking I/O _/ 
*defiDe O..APPEND 010 /_ append (writes guaranteed at the end) -/ 

/- Flag values accessible only to open(2) -/ 
*dellne O_CREAT 00400 /_ open wi~h file crea~e (Ules ~hird open &rc) -/ 

*dellne O_TRUNC 01000 /* open with truncation -/ 
*dellne O..E}{CL 02000 /* exclusive open _/ 

/* renU(!!} requests _/ 
*dellne FJ)UPFD 0 /_ Duplic~t.e III des */ 
*dellne F_GETFD 1 /* Get fildes lIags */ 
*dellne F-SETFD 2 /* Set flldes lI~g5-/ 
*define F_GETFL 3 /* Get IIle lIags */ 
*defiDe F-SETFL 4 /- Set file lI~gs */ 
*deftne F_GETLK 0 /_ Get blocking file locks _/ 
*define F-SETLK 6 /_ Set or cle~r IIle locks and r~il on busy */ 
*deftne F-SETLKW 7 I_Set or clear file locks ~nd .w~it on busy */ 

/* file segment locking control structure */ 
struct flock 

short Ltype; 
short Lwlience; 
long l..$tart; 
long Uen; 
int Lpid; 

1.* if 0 then until EOF */ 
'/* returned with F _GETLK */ 

/* file segment lockin,.g types */ 
~efine F ..RDLCK 01 !.* Read lock */ 

efine F_WRLCK 02 Z* Write lock */ 
efine F_UNLCK 03 '/* Remove locks */ 

SEE ALSO 

fcntl(2), open(2). 

Icon International, Inc. 1 

! 
r 
\ 
"--



( 

( 

l\.1ATH (5) MISCELLANEOUS MATH (5 ) 

NAME 

math - math functions and constants 

SYNOPSIS 

#include <math.h> 

DESCRIPTION 

FILES 

This file contains declarations of all the functions in the Math Library (described in 
Section 3M), as well as various functions in the C Library (Section 3C) that return 
floating-point values. It defines the structure and constants used by the matherr(3M) 
error-handling mechanisms, including the following constant used as an error-return 
value: 
HUGE 

M....E 
MJ.OG2E 

MJ.OGIOE 

MJ.N2 . 

MJ..NIO 

MYI 

M..SQRT2 

M..SQRTL2 

/usr /include/math.h 

The maximum value of a single-precision floating-point 
number. The following mathematical constants are defined 
for user convenience: 
The base of natural logarithms (e). 
The base-2 logarithm of e. 
The base-l0 logarithm of e. 
The natural logarithm of 2. 
The natural logarithm of 10. 
1r, the ratio of the circumference of a circle to its diameter. 
(There are also several fractions of 1r, its reciprocal, and its 
square root.) 
The positive square root of 2. 
The positive square root of 1/2. For the definitions of various 
machine-dependen t "constants," see the description of the 
<values.h> header file. 

SEE ALSO 

intro(3), matherr(3M), values(5). 

Icon International, Inc. 1 



PROF (5 ) MISCELLAl\TEOUS 

NAME 

prof - profile within a function 

SYNOPSIS 

#define MARK 
#inelude <prof.h> 

void MARK (name) 

DESCRIPTION 

PROF (5 ) 

MARK will introduce a mark called name that will be treated the same as a function 
entry point. Execution of the mark will add to a counter for that mark, and 
program-counter time spent will be accounted to the immt'diately preceding mark or 
to the function if there are no preceding marks within tht' active function. 

Name may be any combination of up to six letters, numbt'rs or underscores. Each 
name in a single compilation must be unique, but may be the same as any ordinary 
program symbol. 

For marks to be effective, the symbol MARK must be dt'fined before the header file 
<prof.h> is included. This may be defined by a preprocessor directive as in the 
synopsis, or by a command line argument, i.e: 

cc -p -DMARK foo.c 

If MARK is not defined, the MARK(name) statements may be left in the source files 
containing them and will be ignored. 

EXAMPLE 

In this example, marks can be used to determine how much time is spent in each 
loop. Unless this example is compiled with MARK defined on the command line, the 
marks are ignored. 

#include <prof.h> 

foo{ ) 
{ 

int i, j; 

MARK{loopl ); 
for (i == 0; 1 < 2000; i++) { 

} 
MARK(loop2); 
for (j == 0; J < 2000; j++) { 

Icon International, Inc. 1 



PROF(5) MISCELLANEOUS PROF(5 ) 

( 
} 

} 

SEE ALSO 

profil(2), monitor(3C). 
prof(l) in the ICON/UXV User Reference Manual. 

2 Icon International, Inc. 



REGEXP(5) MISCELLANEOUS REGEXP(5) 

NAME 

regexp - regular expression compile and match routines 

SYNOPSIS 

eline INIT <declarations> 
eline GETC() <getc code> 
eline PEEKC() <peekc code> 
eline UNGETC(c:) <ungetc code> 
eline RETURN(pointer) <return code> 
efine ERROR(val) <error code> 

_ #include <regexp.h> 

char *compile (instring, expbuf, endbuf, eof) 
char *instring, *expbuf, *endbuf; 
int eof; 

int step (string, expbuf) 
char *strlng, *expbuf; 

extern char *10e1, *loc2, *loes; 

extern int eiref, sed, nbra; 

DESCRIPTION 

This page describes general-purpose regular expression matching routines in the 
form of ed(l), defined in IusI' /ine1ude/regexp.h. Programs such as ed(l), 
sed(l), grep(l), bs(l), expr(l), etc., which perform regular expression matching use 
this source file. In this way, only this file need be changed to maintain regular 
expression compatibility. 

The interrace to this file is unpleasantly complex. Programs that include this 
file must have the following five ma,cros declared before the 
"#include <regexp.h>" statement. These macros are used by the compile rou
tine. 
GETC() 

PEEKC() 

UNGETC(c) 

RETURN(pointer) 

Icon International, Inc. 

Return the value of the next character in the regular 
expression pattern. Successive calls to GETC() should 
return successive characters of the regular expression. 
Return the next character in the regular expression. Suc
cessive calls to PEEKC() should return the same character 
(which should also be the next character returned by 
GETC(». 
Cause the argument c to be returned by the next call to 
GETCO (and PEEKCO). No more that. one character of 
push back is ever needed and this character is guaranteed 
to be the last character read by GETC(). The value of 
the macro UNGETC(c) is always ignored. 
This macro is used on normal exit, of the compile routine. 
The value of the argument pointer is a pointer to the 

1 



( 

( 

REGEXP(5) MISCELLANEOUS REGEXP(5) 

2 

ERROR( val) 

ERROR 
11 
16 
25 
36 
41 
42 
43 
44 
45 
46 
49 
50 

character after the last charactt'r of the compiled regular 
expression. This is useful to programs which have memory 
allocation to manage. 
This is the abnormal return from t.he compile routine. 
The argument val is an error number (see table below for 
meanings). This call should never return. 

MEANING 
Range endpoint too large. 
Bad number. 
"\digit" out of range. 
Illegal or missing delimiter. 
No remembered search string. 
\( \) imbalance. 
Too many \(. 
More than 2 numbers given in \{ \}. 
1 expected after \. 
tirst number exceeds second in \{ \}. 
r ] imbalance. 
kegular expression overflow. 

The syntax of the compile routine is as follows: 

compile(instring, expbuf, endbuf, eof) 

The first parameter instring is never used explicitly by t.he compile routine but 
is useful for programs that pass down different pointers to input characters. It 
is sometimes used in the INIT declaration (see below). Programs which call func
tions to input characters or have characters in an extt'rnal array can pass down 
a value of «char *) 0) for this parameter. 

The next parameter erpbuJ is a character pointer. It points to the place where 
the compiled regular expression will be placed. 

The parameter endbuJ is one more than the highest address where tht' compilt'd 
regular expression may be placed. If the compiled expression cannot fit in 
(endhuJ-ezphuf) bytes, a call to ERROR(50) is made. 

The parameter eoJ is the character which marks the end of the regular expres
sion. For example, in edell, this character is usually a /. 

Each program that includes this file must have a #define st.atement for INiT. 
This definition will be placed right after the declaration for the function compile 
and the opening curly brace ({J. It is used for dependent dt'clarations and ini
tializations. Most often it is used to set a register variablt' to point the begin
ning of the regular expression so that this register variable can be used in the 
declarations for GETC( l' PEEKC() and UNGETC(). Otherwise it can be used to 
declare external variab es that might be used by GETC(), PEEKC() and UNGETC(). 
See the example below of the declarations takt'n from grep(l). 

Tht're are other functions in this file which perform actual regular expression 
matching, one of which is the function step. The call to step is as follows: 

Icon International, Inc. 



REGEXP(5) MISCELLANEOUS REGEXP(5) 

step(string, expbuf) 

The first parameter to 8tep is a pointer to a string of characters to be checked 
for a match. This string should be null terminated. 

The second parameter ezpbu/ is the compiled regular expression .which was 
obtained by a call of the function compile. 

The function 8tep returns non·zero if the given string matches the regular 
expression, and zero if the expressions do not match. If there is a match, two 
external character pointers are set as a side effect to the call to 8tep. The 
variable set in 8tep is locl. This is a pointer to the first character that 
matched the regular expression. The variable loce, which is set by the function 
advance, points to the character after the last character that. matches the regu
lar expression. Thus if the regular expression matches the entire line, loc1 will 
point to the first character of 8tring and loe2 will point to t.he null at the end 
of 8tring. 

Step uses the external variable circ/ which is set by compile if the regular 
expression begins with ". If this is set then step will try to match the regular 
expression to the beginning of the string only. If more than one regular expres
sion is to be compiled before the first is executed the value of eirc/ should be 
saved for each compiled expression and circ/ should be set to that saved value 
before each call to step. 

The function advance is called from step with the same arguments as step. The 
purpose of step is to step through the string argument and call adt'anre until 
advance returns non·zero indicating a match or until the end of string is 
reached. If one wants to constrain string to the beginning of the line in all 
cases, step need not be called; simply call advance. 

'When advance encounters a • or \{ \} sequence in the regular expression, it 
will advance its pointer to the string to be matched as far as possible and will 
recursively call itself trying to match the rest of the string to the rest of the 
regular expression. As long as there is no match, advance will back up along 
the string until it finds a match or reaches the point in the string that initially 
matched the • or \{ \}. It is sometimes desirable to stop this backing up 
before the initial point in the string is reached. If the external character 
pointer locs is equal to the point in the string at sometime during the backing 
up process, advance will break out of the loop that backs up and will return 
zero. This is used by ed(l) and sed(l) for substitut.ions done globally (not just 
the first occurrence, but the whole line) so, for example, expressions like 
s/Y.IIg do not loop forever. 

The additional external variables sed and nbra are used for special purposes. 

EXAMPLES 

The following IS an example of how the regular expressIon macros and calls look 
from grep(l): 

#define !NIT 
#define GETC() 

Icon International, Inc. 

register char *sp = jnstring; 
(*sp++) 

3 

,/ 

( 
'",-



(-

C: 

REGEXP(5) MISCELLANEOUS REGEXP(5) 

F~ES 

#define PEEKC() 
#define UNGETC~C) 
#define RETURN c) 
#define ERROR( c 

#include <regexp.h> 

(*sp) 
(~p) 
return' 
regerr() 

(void) compile(*argv, expbuf, &expbuf!ESIZE], '\0'); 

if (step(linebuf, expbuf» 
succeed(); 

/usr /include /regexp.h 

SEE ALSO 

bs(l), edell, expr(l), grep(l), sed(l) in the ICON/U:XV User Reference Manual. 

BUGS 

The handling of eiref is kludgy. 
The actual code is probably easier to understand than this manual page. 

4 Icon International. Inc. 



STAT(5) MISCELLANEOUS 

NAME 

stat - data returned by stat system call 

SYNOPSIS 

#include <sysltypes.h> 
#include <Syslstat.h> 

DESCRIPTION 

STAT (5 ) 

The system calls stat and Istat return data whose structure is defined by this 
include file. The encoding of the field sLmode is defined in this file also. 

FILES 

/* * Structure of the result of stat 
*/ 

struct 
{ 

}; 

stat 

dev_t 
ino_t 
ushort 
short 
ushort 
ushort 
dev_t 
ofLt 
time_t 
time_t 
time_t 

st_dev; 
stJDO; 
sLmode; 
sLnJink; 
st_uid; 
st~id; 
stJdev; 
st....size; 
st_atime; 
st..mtime; 
st_ctime; 

#define S.JFMT 0170000 1* type of file */ 
#define S.JFDIR 0040000 /* directory */ 
#define S.JFCHR 0020000 /* character special */ 
#define S.JFBLK 0060000 /* block special */ 
#define S.JFREG 0100000 /* regular */ 
#define S.JFIFO 0010000 /* fifo */ 
#define SJSUID 04000 /* set user id on execution */ 
#define SJSGID 02000 /* set group id on execution */ 
#define SJSVTX 01000 /* save swapped text even after use */ 
#define SJREAD 00400 !* read permission, owner */ 
#define SJWRITE 00200 /* write permission, owner */ 
#define SJEXEC 00100 /* execute/search permission, owner */ 

lusr linclude/sys/types.h 
/usr/include/sys/stat.h 

Icon International, Inc. 1 

~-
I 
~. 



STAT(5) MISCELLANEOUS STAT(5) 

( 
SEE ALSO 

stat(2), types(5). 

( 

C; 
. / 

2 Icon International, Inc. 



TERM(5) MISCELLANEOUS TERM(5) 

NAME 

term - conventional names for terminals 

DESCRIPTION 

These names are used by certain commands (e.g., tab8(I), man(l) and are main
tained as part of the shell environment (see sh(I), projiJe(4), and environ(5» in 
the variable 'TERM: 

1520 
1620 
1620-12 
2621 
2631 
2631-c 
2631-e 
2640 
2645 
300 
300-12 
300s 
382 
300s-12 
3045 
33 
37 
40-2 
40--4 
4540 
3:270 
4000a 
4014 
43 
450 
450-12 
735 
745 
dumb 

sync 

hp 
lp 
tnl200 
tn300 

Data.media 1520 
DIABLO 1620 and others using the HyType II printer 
same, in 12-pitch mode 
Hewlett-Packa.rd 2621 series 
Hewlett-Packard 2631 line printer 
Hewlett-Packard 2631 line printer - compressE'd mode 
Hewlett-Packard 2631 line printer - expanded mode 
Hewlett-Packard 2640 series 
Hewlett-Packard 264n series (other than the 2640 series) 
DASI/DTC/GSI 300 and others using the HyType J printer 
same, in 12-pitch mode 
DASI/DTC/GSI 300s 
DTC 382 
same, in 12-pitch mode 
Datamedia 3045 
TELETYPE~ Model 33 KSR 
TELETYPE Model 37 KSR 
TELETYPE Model 40/2 
TELETYPE Model 40/4 
TELETYPE Model 4540 
WM Model 3270 
Trendata 4000a 
TEKTRONIX 4014 
TELETYPE Model 43 KSR 
DASI 450 (same as Diablo 1620) 
same, in 12-pitch mode 
Texas Instruments TI735 and TI725 
Texas Instruments TI745 
generic name for terminals that lack reversE' 
line-feed and other special escape sequences 
generic name for synchronous TELETYPE 
4540-compatible terminals 
Hewlett-Packard (same as 2645) 
generic name for a line printer 
User Electric TermiNet 1200 
User Electric TermiNet 300 

Up to 8 characters, chosen from [-a-zO-9j, make up a basic terminal name. 
Terminal sub-models and operational modes are distinguished by suffixes begin
ning with a -. Names should generally be based on original vendors, rather 
than local distributors. A terminal acquired from one vendor should not have 
more than one distinct basic name. 

Commands whose behavior depends on the type of terminal should accept argu- (" 
ments of the form -Tterm where term is one of the names given above; if no ' 
such a.rgument is present, such commands should obtain the t.erminal type from ~ 

Icon International, Inc. 1 



c: 

TERM(5) MISCELLANEOUS TERM(5) 

the environment variable 'TERM, which,. in turn, should contain term. 

SEE ALSO 

BUGS 

2 

profile( 4), environ(5). 
man(l), mm(1), nrofl(l), tplot(IG), sh(l), sttY(l), tabs(l) in the ICON/UXV User 
Reference Manual. 

This is a small candle trying to illumiAat~.a Jug~, dark problem. Programs 
that ought to adhere to this nomenclature do so iJOmewll1tt fitfully. 

Icon International. Inc. 



TYPES (5 ) MISCELLANEOUS TYPES ( 5) 

NAME 

types - primitive system data types 

SYNOPSIS 

#include <sys/types.h> 

DESCRIPTION 

The dat~ types defined in the include file are used in ICON/UXV system code; 
some data of these types are accessible to user code: 

typedeC struct { int r!l]; } * 
typedeC long daddr_t; 

physadr; 

typedeC char * caddr_t; 
typedef unsigned int uint; 
typedef unsigned short ushort; 
typedef ushort ino_t; 
typedeC short cnLt; 
typedef long time_t; 
typedef int labeLt[IO]; 
typedef short dev_t; 
typedef long ofLt; 
typedef long paddr_t; 
typedef long key_t; 

The form daddr_t is used for disk addresses except. in an i-node on disk, see 
/8(4). Times are encoded in seconds since 00:00:00 GMT, January 1, 1970. The 
major and minor parts of a device code specify kind and unit number of a dev
ice and are installation-dependent. Offsets are measured in bytes from the 
beginning of a file. The LabeLt variables are used to save the processor state 
while another process is running. 

SEE ALSO 

fs(4). 

Icon International, Inc. 1 



VALUES (5) MISCELLANEOUS VALUES (5) 

( NAME 

( 

c 

values - machine-dependent values 

SYNOPSIS 

#include <values.h> 

DESCRIPTION 

This file contains a set of manifest constants, conditionally defined for pa.rticular 

~rocessor architectures. The model assumed for integers is binary representation 
one's or two's complement), where the sign is represented by the value of the 
igh-order bit. 

BITS( type) The number of bits in a specified type (e.g., int). 
HIBITS The value of a short integer with only the high-order bit 

set (in most implementations, Ox8(00). 
HIBITL The value of a long integer with only the high-order bit 

set (in most implementations, Ox80000000). 
HIBITI The value of a regular integer with only the high-order bit 

set (usually the same as HmITS or HmITL). 
MA..XSHORT The maximum value of a signed short integer (in most 

implementations, Ox7FFF == 32767). 
MA.."\LONG The maximum value of a signed long integer (in most 

implementations, Ox7FFFFFFF == 2147483647). 
MAXI NT The maximum value of a signed regular integer (usually 

the same as MA .. XSHORT or MAXLONG). 

MAXFLOAT, LN....MAXFLOAT The maximum value of a single-precision 
Boating-point number, and its natural logarithm. 

MA.."illOUBLE, LN...MAXDOUBLE The maximum value of a double-precision 
Boating-point number, and its natural logarithm. 

MI.l\"YLOAT, LNJJINFLOAT The minimum positive value of a single-precision 
floating-point number, and its natural logarithm. 

. Mll\"J)OUBLE, LN...MINDOUBLE The mInimum positive value of a double
precision Boating-point. number, and its natural 

FSIGNlF 

DSIGNlF 

FILES 

/usr /include /values.h 

Icon International, Inc. 

logarithm. 
The number of significant bits in the mantissa of a single
precision Boating-point number. 
The number of significant bits in t.he mantissa of a 
double-precision Boating-point number. 

1 



VALUES (5 ) MISCELLANEOUS VALUES (5) 

SEE ALSO 

intro(3), matb(5). 

/ '\ 

2 leon International, Inc. 



VARARGS(5) MISCELLANEOUS VARARGS(5) 

( NAME 

( 

varargs - handle variable argument list 

SYNOPSIS 

#include <varargs.h> va-.aliSt va_del void vaJtart(pvar) 
vaJist pvar; type va-.arg(pvar, type) 
vaJist pvar; void va_end(pvar) 
vaJiat pvar; 

DESCRIPTION 

This set of macros allows portable procedures that. accept variable argument 
lists to be written. Routines that have variable argument lists (such as 
printJ(3S» but do not use varargs are inherently non portable , as different 
machines use different argument-passing conventions. 

va-.alist is used as the parameter list in a Cunction header. 

va_del is a declaration Cor va_alist. No semicolon should Collow va_del. 

vaJist is a type defined for the variable used to traverse the list. 

vaJtart is called to initialize pvar to the beginning of the list. 

va_arg will return the next argument in the list pointed to by pvar. Type is 
the type the argument is expected to be. Different types can be mixed, but it 
is up to the routine to know what type of argument is expected, as it cannot 
be determined at runtime. 

va_end is used to clean up. 

:Multiple traversals, each bracketed by va_start ... vll.-end, are possible. 

EXAMPLE 

This example is a possible implementation of execl(2). 
#include <vara,rgs.h> 
#define M~GS 100 

/* execl is called by 
execl(file, argl, arg2, ... , {char *)O}; 

*/ 
exeel( vaJlist) 
va_del 
{ 

va~ist ap; 
char *file; 
char *args[MAXARGSjj 
int argno = OJ 

Icon International, Inc. 1 



o. 

VARARGS(5) MISCELLANEOUS VARARGS(5) 

va....start( ap); 
file - vaJrg(ap, char *); 
while «args[argno++) - va_arg(ap, char *)) != (char *)0) 

va_end( ap); 
return execv(file, args); 

} 

SEE ALSO 

BUGS 

2 

exec(2), printf(3S). 

It is up to the calling routine to specify how many arguments there are, since 
it is not always possible to determine this from the stack frame. For example, 
execl is passed a zero pointer to signal the end of the list. Print! can tell how 
many arguments are there by the format. 
It is non-porta.ble to specify a. second argument of char, short, or float to 
va_arg, since arguments seen by the called function are not char, short, or float. 
C converts char and short arguments to int and converts float arguments to 
double before passing them to a function. 

~ 
" 

f. 
~ 

• , 
i . 
I 
j 
i 

t 
~ 

1 

Icon International. Inc. 

y 



COMMENTS 

( ICON/UXV PROGRAMMER REFERENCE MANUAL P /N 172-036-006 

1. 

Your comments and suggestions are appreciated and will help us to provide you wit,h the 
very best in system and application documentation. Send your comments to the address at 
the bottom of this page. Users who respond will be entitled to free updates of this manual 
for one year. 

How would you rate this manual for COMPLETENESS? (Please Circle) 
Excellent 

5 ------------ 4 ------------ 3 ------------ 2 ------------ 1 ------------ 0 
Poor 

2. Is there any information that you feel should be included or removed? 

3. How would you rate this manual for ACCURACY? (Please Circle) 
Excellent 

5 ------------ 4 ------------ 3 ------------ 2 ------------ 1 ------------ 0 
Poor 

4. Indicate the page number and nature of any error(s) found in this manual. 

5. How would you rate this manual for USABILITY? (Please Circle) 
Excellent 

5 ------------ 4 ------------ 3 ------------ 2 ------------ 1 ------------ 0 
Poor 

6. Describe any format or packaging problems you have experienced with this manual and/or 
binder. 

7. Do you have any general comments or suggestions regarding this publication or future 
publications? 

Your Name __________________________________________________________ __ 

Company ______________________________________________ __ 

Address ____________________ Phone (_), ____ _ 

City & State Zip Code ------
Job Function ____________________________________ _ 

Type of Equipment Installed: __________________________ _ 

ICON INTERNATIONAL, INC A MEMBER OF THE SANYO GROUP 774 South 400 East Orem, UT 84058 







· I?r.jnte~ ip. the U.S.A" 

~,. GQl?~1ig~t.1~~a; 
(coni Im~ma.:tjQA~!~ Inc," 

All rights, ~~§~r¥.~;WQ,i~~iqe.:, / 


