
Chlpt.,Z

Chapter2

S/36 Memory Management
You hear conflicting stories when people discuss how the System!36 manages
memory. Some people maintain that the System!36 is a swapping machine; oth-
ers say it's a virtual machine. Many data processing managers believe System!36
memory architecture is simply a copy of the System!34 with minor changes;
likewise, many programmers believe the System!36 limits tasks to 64 K
because the System!34 has this limitation. Misconceptions arise from the lack
f complete, understandable System!36 memory management information

available to busy DP managers and programmers.
Although understanding the low-level details of S/36 memory man-

agement isn't essential, it helps you determine whether you have enough
memory and whether you are using it effectively. And as you learn more
about S/36 memory and how the system manages it, you can design S/36 pro-
grams that use memory efficiently.

Main Memory Organization
To develop a picture of S/36 memory, look at a diagram of S/36 main memo-
ry (Figure 2.1). Main memory is organized as eight-bit bytes and varies in size
from 128 K to 7,168 K, depending on the machine model. Main memory con-
sists of hundreds of integrated circuit "chips" and represents one of the most
finite resources of the S/36. Figure 2.1 shows the three areas that comprise
the contents of main memory: the fixed nucleus, the variable nucleus, and
the user area.

The fixed nucleus, which occupies the flrst 4 K of main memory, con-
tains variables and data structures needed by all components of the S/36's
operating system, the System Support Program (SSP). The S/36's dual proces-
sors - the Main Storage Processor (MSP) and the Control Storage Processor
(CSP) - also use the fixed nucleus to communicate with each other. Because
the fixed nucleus is permanently set to the same size and Content for all S/36
machines, a programmer or DP manager can do little to influence its effect on
performance. However, an assembler language programmer can use the data
stored in the fixed nucleus when writing special-purpose performance mea-
surement tools (see MMETERUtility, chapter 14.)

The variable nucleus includes the transient area, virtual page table,
,resident routines, and system queue space. The transient area is 4 K of memo-
ry set aside for the very few SSPprograms that must run in the variable nucle-
us. These programs are the task attach and detach, disk file open, diskette

20 Desktop Guide to the S/36

The SSP automatically
queues up requests

for the transient area,
but a high volume of

such requests can
slow performance

significantly by
causing many Jobs to
walt for the transient
area. You can reduce

transient area
contention by

designing your
applications to

minimize new Jobsteps
(e.g., by using external

program calis), thus
reducing the need for

task Inltlatlon/
termination and file

open/close. Avoiding
DDM situations that
result In exceptions
also helps minimize

transient area
contention (see

Chapter 3).

Figure 2.1
Main Storage Contents

Rxed nucleus (4 K)
Variable nucleus: Transient area (4 K)

Virtual Page Table (.25-8 K)
Resident routines (24-48 K)
System Queue Space (8 K + as required)

User Area: SSP programs
User programs
Task Workspaces

open, and disk data management exception routines, which run infrequently
enough so that contention for the transient area does not slow performance.
The virtual page table is used by the S/36 virtual memory (VM)mechanism
(described later) to keep the system operating even when memory is over-
committed (i.e., when more programs are running than can fit in memory at
one time). Resident routines are a few special SSPprograms (disk data man-
agement and frequently used parts of workstation data management) that, for
performance reasons, are always kept in main memory. System queue space
(SQS) is a "pool" of memory set aside for dedicated use by SSPdata structures
needed to control the system.

Technical Note

Only one system program at a time can run in the transient area. Because file open/close,
task attach/detach, and disk data management (DDM) exception handling all run in the
transient area, SSP must perform these functions serially. For example, while a task such
as II LOAD jobstep is being started, no files may be opened or closed. Similarly, when
DDM exceptions occur (e.g., update of a key) no files may be opened or closed, or tasks
initiated or terminated, until the exception is handled and the transient area becomes free.

The name "variablenucleus" implies the nature of this region: it varies
in size with the amount of work performed by the system. The first thre com-
ponents of the variable nucleus don't actually change iz whit th rna hin

Ch pt r2 SI3 M moryM n

is running; the amount of memory they occupy depends on the hardware and
software configuration at IPL. Only the last area, system queue' space (SQS),
ebbs and flows with the varying system load. Because the first three compo-
nents are "out of your hands," nothing more need be said about their function.
On the other hand, your program design and scheduling do affect SQS, so a
detailed knowledge of the SQS helps you make decisions that improve overall
system performance. Later, we'll look at characteristics of SQS that are impor-
tant from a performance standpoint.

The last, and usually largest, area of main memory is the user area.
User programs, most SSP programs, me buffers, screen formats, and other
objects reside here. One truism applied to computers in general, and the user
area in particular, is: "You can't have too much main memory."

Effective memory management rests on your understanding of a few
fundamental concepts: real memory, translated memory, and virtual memory.
To grasp these ideas, let's look at main memory from a different angle.

Memory Concepts
Figure 2.2 depicts the main memory address space for the S/36. Memory
addressing is the practice of assigning to each location of computer memory a
unique address, and using that address when referring to the contents of that
location. The S/36 follows the popular convention of dividing memory into
eight-bit bytes, each with a unique numeric address starting with zero. The
number of bytes that byte-addressable memory may contain depends on the

Performance Tip

Adding additional
memory often drasti-
cally reduces Interac-
tive response times,
making It the easiest
and cheapest way to
boost performance,
especially given the
availability of Inex-
pensive used memory
(see Chapter 5).

Figure 2.2
System/36 Real Storage Organization

Decimal
Address

o
32,768
65,536
99,304

Each page contains 2 K

1,\
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ...

.r >:.r>:.r>:.r>:V~ V~ V~ V.~
8,257,536
8,290,304
8,323,072
8,355,840

10111

reserved for translated address

Hex
Address
000000
008000
010000
018000

7EOooO
7E8000
7FOOOO
7F8000

22 Desktop Guide to the 8/36

Performance Tip

The 5360 Model D Is
generally regarded as

hilvlng a 7 MB niemory
limit. However, the real
address space of the
Model D supports an

8th MB. See Chapter 5
for InfolTllliltlon about
lidding an 8th MB of

memory to your
5360 Model D.

size of the largest allowable address. On the S/36, a memory address is three
bytes long, or 24 bits. The first bit of every address is set aside for a special
purpose, leaving 23 bits to contain the address. The largest number that can
be represented by 23 binary bits is 8,388,607, so the S/36 can theoretically
have 8,388,608 bytes in its memory (remember, the first address is 0, not 1).
These locations, or bytes, of memory, each with its unique address, make up
real memory - all the memory that physically exists. The range of addresses,
from 0 through 8,388,607, is the real address space: the entire set of unique
memory locations available to the machine. The term real memory is used to
differentiate between memory that is available on the hardware and memory
that programs and programmers are led to believe is available (more on this
type of memory later in the discussion of virtual memory).

Fragmentation
When you try to apply the real memory viewpoint in a multitasking system,
problems arise, the worst of which is fragmentation. Figure 2.3 shows how
this problem develops.

In Figure 2.3a, a hypothetical computer with 128K of memory is run-
ning four programs that consume a total of 124K. Afterprograms Band D fin-
ish running, they release their memory, leaving two 24 K "holes" in the 128 K
address space (Figure 2.3b). Later, the computer tries to run program E, which
requires 32 K of memory (Figure 2.3c). Although a total of 48 K is available,
the program is unable to run because available memory is split into two 24 K
pieces. Program E must wait for either program A or C to end before it can
obtain enough unbroken, or contiguous, memory. Because the usable address
space is fragmented, program execution is delayed and perfectly good memo-
ry is wasted. Memory fragmentation worsens quickly in a busy computer sys-
tem, causing system performance to drop off dramatically.

Solving Fragmentation
One solution to fragmentation is allowing programs to run in noncontiguous
blocks of memory. The S/36 accomplishes this using addresses that do not
directly correspond to real memory addresses but must be translated by spe-
cial hardware into real addresses, hence the term translated addressing. Trans-
lated addresses appear to the executing program to represent contiguous
memory locations.

Here's how address translation works. The S/36 groups bytes of real
memory into 2 K units called pages (as you saw in Figure 2.2), each with a
unique number from 0 to 4095. Figure 2.4 shows the program PROG A bro-
ken up into pages. Note that in main memory PROGA is not just fragmented
- it logical page ar out of order. The fourth logical page of PROGAphysi-
ally api 'ars bef rc lh . first I gi al pag . 13 for uch a fragrn nt I PI' gram

Figure 2.3
How Memory Fragmentation Occurs

32K

Program B ---i~
1------;

24K

48K

20K

a

Main Storage

b

Chlp"r 2 SI3 M mory M

c

Figure 2.4
How the System/36 Solves Fragmentation

Address
Translation

Prog A Register Array

••••• 0 0009Page 0
Page 1
Page 2

Page 3
Page 4

Page 5

30~

31~

2

3

4
L..--- 5

6

7

8

9

10

11
12

13

Page
Frame # Main Storage

o 2K
Prog A page 4 2K

2K
2K

ProgA page 5 2K

Prog A page 3 2K
2K

Prog A page 2 2K

Prog A page 1 2K

Prog A page 0 2K

2K
2K

2K

2K

~

can tun, a mechanism must rearrange the physical pages into their-correct
logical order.

The S/36 contains a special array of hardware registers, called address
translation registers (ATRs).While a program is executing, each ATR contains
the number of a real memory page occupied by the program. The program
"sees" these pages as contiguous because the program only uses translated
addresses to refer to the pages. Every time the program references a memory
location, address translation hardware uses the array of ATRs to generate the
correct real memory address for that location. A dose look at the translation
process reveals some important details about S/36 memory management.

Figure 2.5 shows what happens during real address generation. The
translated address is three bytes long, but only the last two bytes contain
address information. The first byte is always set to "10000000," where the
high-order "1" identifies this address to the MSP hardware as one requiring
translation, The seven bits following the "I" are ignored in a translated
address. The sixteen remaining address bits provide an address space of
65,536 bytes, or 64 K. (This limit of using only two bytes for address informa-
tion is the origin of the infamous 64 K region-size limitation.)

Because the last eleven bits of the translated address always fall with-
in the boundaries of one logical page (the largest number represented by
11 bits is 2,047), these eleven bits are copied directly into the corresponding
eleven bits of the generated real address.

The first five bits of the sixteen-bit translated address represent the
number of the ATR containing the real memory page frame address. In the
example, these bits contain "00101," or five, causing ATR #5 to be selected.
Each ATR is sixteen bits long, but only twelve of those bits are used, Those
twelve bits are copied to bits 1 through 12 of the generated real address. Bit 0
. of the generated real address is forced to a value of zero, which as previously
mentioned, designates a real address. This "generated" real address is the actu-
allocation of the data in real memory.

The S/36 performs the address translation process automatically for
every machine instruction. When a machine instruction references several
translated addresses, each address is individually translated as it is needed. For
example, if the instruction resides in translated memory (as is usually the
case), the instruction address is translated just before the instruction is fetched.
If the instruction then references operands in translated memory, each
operand address is translated individually before. the operand is used by the
instruction. Because the translation is carried out in hardware, the process
does not add significant time to program execution:

The S/36 address translation mechanism riot only solves the memory
fragmentation problem, it also lets program pages reside in memory in any
order. In fact, th syst m can ven change the page order in mern ry, pr vld d

24 Desktop Guide to the SI36

Figure 2.5
Example of Generating a Real Address

From a Translated Address

Generated real address

Translated address

always zero.
They are unused.

o •••••••
1 •••••••
2 •••••••
3 •••••••4 •••••••5 •••••••
6 •••••••............

Selected ATR

Bit 0 is always a
"1" for translated
addresses.

the Am array for the moved pages is updated to reflect their new location. The
useful ability to change page order without affecting the programs involved
makes possible the next feature of S/36 memory management: virtual memory.

Virtual Memory
The fact that two levels of storage - primary and secondary - exist in most
computer systems points up an ongoing compromise in computer technology.
High-speed primary storage (such as the S/36's solid-state main memory) is
too expensive and volatile for permanent data retention, so permanent infor-
mation is stored on less expensive, but slower, secondary storage (usually
disk). Primary storage.contains only the data and programs the computer cur-
rently needs. However, the computer often works on several programs simul-
taneously - perhaps more than can fit in main memory at one time. When
the number of currently executing programs exceeds the capacity of main
memory, main memory is overcommitted. One way to handle overcommit-
ment is to hide the true size of main memory from programs, letting them
believe that there is much more memory than actually exists. The memory that
programs use during execution - but that may not actually be available on

26 Desktop Guide to the 8/36

the system - is called virtual memory (VM). The range of "Imaginary"
addresses is the virtual address space.

There are two popular ways to implement VM: segmented paging and
demand paging. Figure 2.6 compares some features of segmented paging used
by the S/36 with demand paging used by the S/38 and the AS/400. As you can
see from the chart, neither technique is new. Both techniques originated in the
early sixties and both share three important characteristics: memory organiza-
tion, backup storage method, and address translation method. Both techniques
also make tradeoffs involving expense, performance, and efficiency.

Page-in, Page-out Mechanisms
With demand paging, programs can reference any location in the virtual
address space directly, although only some of the pages of the virtual address
space actually reside in real memory at anyone time. When a program tries to
reference a location in a page not currently resident in real memory, special
hardware detects the condition and generates a page fault interrupt. The page
fault interrupt invokes a special operating system routine or hardware device
to locate the requested page on secondary storage and read it into real memo-
ry, a process called paging in.

As part of the page-in process, the page fault handler updates a table
used to generate real addresses during program execution - a process similar
to S/36 address translation. To make room for the page to be read in, the page
fault handler also may need to select a less important page in real memory
and write it to secondary storage, a process called paging out. Usually, the
paged-out page is chosen using an algorithm that finds the least-recently-used
page in real memory.

The term demand paging comes from the fact that paging is driven
by program references, or demands, to virtual memory. If a program never
asks to "see" any location on a particular page, the page is never brought into
real memory.

Segmented paging does not allow programs direct addressability to all
locations in the virtual address space. Instead, programs have access only to a
segment of virtual memory - 64 K in the case of the S/36. Instead of waiting
for a program to reference a location in a nonresident page, the operating sys-
tem keeps a list of pages currently being used by each executing program.
When control switches from one program to another, the operating system com-
pares the list of pages the next program requires with a list of pages currently in
real memory (the virtual page table). If any pages are missing, the operating sys-
tem retrieves them from secondary storage. If there are no free pages in real
memory, the operating system writes some least-recently-used pages to sec-
ondary memory to free up enough pages for the next program to run.

The primary advantage of segmented paging - in xp nslv > impJ -

Chlpt r 2

Segmented paging (5/36) Demand paging (5/38 and AS/400)

First Implemented Burroughs 85000, 1961 Atlas, 1962

Memory organization Fixed-length pages (2,Q48 bytes on the Rxed-Iength pages (512 bytes on the
S/36) S/38; 4096 bytes on the ASl400)

Backing store Secondary disk storage Secondary disk storage

Address translation Dynamically with dedicated hardware. Dynamically with dedicated hardware.

Page-In mechanism Operating system knows program Hardware detects program request for
requirements and brings in required nonexistent page and generates a "page
pages before giving program control. faulf' to bring page in before task

resumes execution.

Page-out mechanism Pages for the lowest priority tasks are The least-recently-used page is written
written out until enough pages are avail- out and used to satisfy the page fault
able for the program waiting for storage. request.

Real memory usage All pages for which a program has Only pages actually referenced by a pro-
addressability must be in real storage gram need be kept in real storage.
before the program can run, regardless Unused pages eventually are moved to
whether the program actually needs data secondary storage, freeing real storage
in those pages now. for other programs.

Implementation Mostly software. Address translation is Mostly hardware. Page faults and content
assisted by special hardware. management have special hardware

assistance. Address translation is per-
formed entirely in hardware.

Best features Simplicity; lack of specialized hardware Hardware implementation improves both
makes implementation less expensive; time and space efficiency; because only
performance does not depend upon pro- referenced pages are resident, memory
gram behavior. utilization is good.

Worst features Lack of hardware assistance means Hardware implementation is expensive;
greater execution overhead; large pro- certain kinds of program behavior can
grams tend to squander memory because cause repeated paging, known as
unneeded pages are kept resident. 'thrashing," which degrades performance.

Figure 2.6
Segmented and Demand Paging Comparison

mentation - comes from the fact that less complex address translation hard-
ware is required. On the S/36, the address translation mechanism already is in
place, making it easy to move pages in and out of real memory and rearrange
them when necessary.

However, the inexpensive implementation exacts a price in perfor-
mance. {til the pages used by a program must be brought in before the pro-
gram can resume execution, so some pages probably are not needed, and are
wasted. Also, the special hardware used by demand paging to detect missing

28 Desktop Guide to the S/36

pages usually is much faster than the software-implemented virtual page table
the S/36 uses for segmented paging.

On the S/36, this performance loss is mitigated to some extent,
because the CSPcan perform VMmanagement chores while the MSPis work-
ing on user programs. But segmented paging also imposes a restriction on
programmers: programs cannot exceed the size of one segment. On the S/36,
the hardware-limited, 64 K segment size is uncomfortably small. Some systems
other than the S/36 use a segmented paging approach that allows a program
to use more than one segment, thus alleviating the S/36 restriction.

VMdoes, however, achieve its purpose. It theoretically can manage a
virtual address space of 128 MB - 16 times larger than the maximum real
address space of 8 MB.And it can manage this large virtual space efficiently.
Many S/36 installations use external program calls to activate all of their fre-
quently run programs for each user at the beginning of the day - hundreds
of Simultaneously active program segments amounting to 20 MB or more of
VM. Because paging is much faster than reinitiating programs and reopening
files, this technique eliminates redundant program initiation, reduces file open
and close overhead, and improves response time dramatically.

Peculiarities of 5/36 VM
The S/36 VMmechanism has a few unusual, and potentially confusing, twists.
One common misconception is that the 64 K segment-size limitation, which
also limits program size, limits task size. A task can contain one or more pro-
grams, each of which can be up to 64 K and must be executed individually,
Because the number of programs that can be contained in a task on the S/36
is unlimited, the size of a task is also unlimited (up to the size of virtual
address space).

The S/36 contains a built-in external program call mechanism that lets
one program invoke another separately compiled program, and then regain
control when the called program returns. In addition, any number of called
programs contained within a task may be Simultaneously active. Active pro-
grams retain their internal state (values of variables and open files) from invo-
cation to invocation.

Another oddity of the S/36 virtual implementation is the concept of
works paces, virtual segments that contain data instead of program code.
Workspaces hold data buffers, screen formats, and various system-related
table and work areas, helping you get around the limitations of 64 K per pro-
ram. An xample of a workspace familiar to RPGprogrammers is the diskfile
uorespa e, which is created automatically when the 64 K segment for an RPG
pre gram ha no room for disk file physical I/O buffers.

Wh -n a pr gram n ds t access data in a workspace, it all on the
op<'I,lIlnR 'y,I('1ll mall f:1 ·lIlly, whi h glv s th program addrcssal llity t th

w(r pa by giving up om addressability to the program's virtual segment.
Mapping, however, takes time and may result in paging activity, so the
I) rased flexibility gained using workspaces is purchased with reduced per-
I' rmance.

A third unusual S/36 VM artifact is encountered only by installations
that use a large amount of VM.On the S/36 the secondary storage used for
I aging is called the Task Work Area (lWA). The TWAis contained in a spe-
.lalsystem file called #SYSTASKthat must reside on drive AI.

Initially, the maximum size for #SYSTASKis 6553 blocks (16 MB).
This maximum is only about twice the maximum real memory size of 8 MB-
not a very efficient overcommitment ratio. When the TWAis full, the SSPauto-
maticallyextends the TWAby 400 blocks. When the TWAfills again, SSPdou-
bles the extension to 800 blocks. Each time the TWA fills up, the size of the
xtension is doubled, allowing the TWAto grow to a very large size.

Unfortunately, each TWA extension requires contiguous space on
drive AI. Drive Al is also the default drive the system uses when allocating
new files and work areas, which results in disk space fragmentation that may
prevent the TWAfrom extending. Thus, the difficultyof obtaining disk space
for paging can result in a much lower virtual address space limit than the
128 MB architectural maximum, unless the user takes steps to force TWA
xpansion before the Al disk space becomes fragmented.

System Queue Space
Now that you understand real, translated, and virtual memory, you can appre-
ciate the effort undertaken by the S/36 to administer memory usage efficiently.
Although address translation and segmented paging improve memory use by
effectively reusing a limited resource, not everything in real memory can be
moved about with abandon. Only objects in the user area accommodate this
manipulation. A certain amount of real memory - the fixed and variable
nuclei - must remain resident and can be accessed only through real
addressing.

All of the fixed nucleus and most of the variable nucleus is static
(unmoving) - beyond your control. As mentioned earlier, programming tech-
niques directly affect only one part of the variable nucleus: system queue
space. Knowing how your application design decisions impact SQSuse helps
you make educated compromises between performance and Simplicity.

SQSis an expandable "pool" of memory used by the SSPand the CSP
to hold dynamically allocated data structures, called control blocks, critical to
the operation of the system. Once a control block is created in SQS, it remains
resident in real memory at the same location until explicitly destroyed.
Because each control block must occupy contiguous memory locations, SQS
can become fragmented.

Performance Tip

One way to reduce TWA
expansion problems Is
to "pre-allocate" the
TWA by activating all
your programs in
advance - usually
Immediately after IPL
(see Chapter 7).

~ .+--;._ .
Control blocks range in size from 16 bytes to 2,048 bytes, in 16-byte'

increments. They can be categorized by their life spans: short, medium, and
long. A short-lived control block's life span is only a few milliseconds. The SSP
creates short-lived control blocks for the duration of certain brief chores (e.g.,
a disk file operation) and destroys them when the chore is complete. Medium-
lived control blocks last a relatively long time - for the duration of a job, for
instance. Long-lived control blocks (usually created when the system is start-
ed) are the very few that become permanent until the next IPL.

The system keeps a modest reserve of SQS available (about 2000 to
4000 bytes) to satisfymost control block creation requests quickly. When this
reserve is consumed, the system takes a 2 K page away from the user area
and adds it to SQS.(Because a control block cannot be larger than 2 K bytes,
the newly acquired page can be obtained from anywhere in real mernory.)
The system 'continues to take 2 K pages from the user area as needed. When
more than about 4000 bytes accumulates in the SQSreserve area (due to con-
trol blocks being freed), the system returns a 2 K page to the user area. Thus,
the logical "boundary" between SQSand the user area fluctuates constantly to
meet the needs of the system.

Of the three classes of control blocks, only one is of concern to you.
Short-lived control blocks have minimal impact on system performance, and
long-lived control blocks are beyond your control. Only medium-lived control
blocks have a controllable impact on system performance; most medium-lived
control blocks are a direct result of the kinds of programs you design. The
table in Figure 2.7 summarizes the space requirements for the most common
control blocks and the program activities that create them.

The table also will help you determine the amount of SQS a given
program or device needs to run. Computing the SQS requirements for an
entire job mix lets you estimate the total amount of real memory that will be
dedicated to SQS, and therefore will be unavailable in the user area. For
example, an interactive job with ten indexed files, a printed report, and five
subprograms requires 9,088 bytes of SQS:

• 192bytes for the workstation session control block
• 256 bytes for the job control block
• 96 bytes for the task control block
.320 bytes for the active programs (64 bytes each)
• 96 bytes for one level of subprogram invocation
• 64 bytes for a disk file workspace
• 688 bytes for the opened print file
.1,600 bytes for disk filevroc entries (160 bytes each)
.1,680 bytes for other file-related control block (file specification II k, file
buffer block, disk buffer block, allocation queue elern nt, 1'\')1' I [ueu

30 Desktop Guide to the S/36

Chlpt r 2 SI3 Memory M n menl 31

'.R ,

Figure 2.7
System Queue Space Requirements for Common Control Blocks

"
Total 505

SSP entity Control Block Bytes Used

Each local workstation session Terminal Unit Block (192 bytes) 192

Each printer Printer Unit Block (96 bytes) 96

Each remote device RWS Device Unit Block (80 bytes) 80

Each job Job Control Block (256 bytes) 256

Each task Task Block (96 bytes) 96

Each active program or subprogram Program Block (64 bytes) 64

Each invoked program or subprogram Request Block (64-2048 bytes) 96 (avg)

Each workspace Storage Block (64 bytes) 64

Each user of an opened file File Specification Block (64 bytes)
File Buffer Block (24 bytes) 104
Disk Buffer Block (16 bytes)

Additional overhead for first user Format-1, or VTOC entry (160 bytes) 160
to open a file or use a library

Additional overhead for each user Allocation Queue Element (32 bytes) 48
of a shared file Record Queue Block (16 bytes)

Additional overhead for each user Index Control Block (16 bytes) 16
of an indexed file

Each storage indexed file storage index Depends on the size of a storage index varies(the storage for a file is shared by all users of the file)

Each opened print file being spooled Printer Specification Block (64 bytes)
Spool File Descriptor (112 bytes) 688 (avg)
Spool intercept buffer (256·2048 bytes)

Each active spool writer Writer Descriptor Block (48 bytes)
Task Block (96 bytes) 1168 (avg)
Spool print buffer (256-2048 bytes)

block, and index control block) , and
• 4,096 bytes for storage indexes (estimated)

If you plan to run the program from nine workstations simultaneous-
ly, the additional eight workstations require 3,392 bytes of SQS each (the
vroc control blocks and storage indexes are counted only for the first user),
zesultlng in a grand total of 36,224 bytes of SQS. Remember that SQS use
reduces the amount of memory available in the user area for virtual use, there-
by increasing the "swap rate" (level of paging activity), and possibly degrading

32 Desktop Guide to the S/36

system performance. If you run these programs on a 512 K system, you might
find installing another 256 K memory board a cost-effective way of maintain-
ing acceptable response time.

Considering all aspects of S/36 memory management, you can see why
misconceptions abound. But the S/36 loses its mystique once you master the
secrets of its memory. You can use this knowledge to help plan future expan-
sion of your S/36 and to evaluate its place in the midrange system market. Care-
ful evaluation of memory requirements lets you predict the effect of additional
memory more accurately. And, of course, the better you understand your S/36,
the better you can take advantage of its features to improve performance.

