

IBM System/3
Model 6 System
Programmer's Guide

First Edition (July 1971)

Requests for copies of I BM publications should be made to your I BM representa­
tive or to the I BM branch office serving your locality.

Address comments concerning the content of this publication to I BM Corporation,
Programming Publications, Department 425, Rochester, Minnesota 55901.

© Copyright International Business Machines Corporation 1971

This manual assumes that you have had little data processing training or experience.
You should, however, be familiar with the I BM System/3 Model 6 as it is presented
in the IBM System/3 Model 6 Introduction, GA21-9122.

The purpose of this manual is to instruct you in:

• Why all jobs require OCL statements.

• The function of each OCL statement.

• The general purpose of the disk utility programs.

o The major functions and options for each disk utility program.

This should provide you with the background material needed to use the IBM System/3
Model 6 Operation Control Language and Disk Utility Programs Reference Manual,
GC21-7516.

A series of review questions provided in Part V of this manual is for the OCL section
of this manual. You should use these questions to check your understanding of the
important concepts in Part 11.

Referenced Publications
The following publications are referenced in this manual:

• IBM System/3 Model 6 Operation Control Language and Disk Utility Programs
Reference Manual, GC21-7516

• IBM System/3 Model 6 Halt Procedure Guide, GC21-7541

• IBM System/3 Disk Sort Reference Manual, SC21-7522

PREFACE

ii

HOW TO USE THIS MANUAL

This manual is divided into five parts:

Part I. System Summary. This part contains a description of the basic components of the
Model 6.

Part 11. Conversational OCL. This part contains a description of OCL (operation control
language) for the Model 6 including program, compile, and file keywords, the four
OCL cycles, error messages, and compiling RPG 11 programs. Part II is divided into
12 chapters. These chapters should be read sequentially.

Part 111. Disk Utility Programs. This part contains descriptions of the disk utility programs:
Disk Initialization, Alternate Track Assignment, Alternate Track Rebuild, File and
Volume Label Display, File Delete, Disk Copy/Dump, and Library Maintenance.
Part 111 is divided into eight chapters: an introductory chapter and a chapter for each
utility program. Each utility chapter is divided into four sections: introduction,
function, options, and control statements.

· Part IV. Sample Jobs. This part provides six examples of jobs similar to what you might
run. Each sample job is divided into three parts: introduction, statements, and
explanation.

Part V. Review Questions. This part contains review questions for each chapter in Part 11
of this manual. Use it to check your understanding of the important concepts in
each chapter. Part V is divided into two sections: questions and answers.

In addition, this manual contains a glossary and an appendix. The glossary furnishes
definitions of both terms that are defined in text and those that are not. Refer to it
when you find a term you are not familiar with or to refresh yourself on the exact
meaning of a term. Appendix A. Operator's OCL Guide describes the document you
may use to relay your information concerning keyword responses to the operator. The
operator uses this document to key in your responses to the system prompts.

iii

iv

HOW TO USE TH IS MANUAL

PART I. SYSTEM SUMMARY

CHAPTER 1. BASIC COMPONENTS
IBM 5406 Processing Unit .
Operator Keyboard Console

Operator Keyboard .
System Control Panel
System Display Panel

IBM 5213 Printer
IBM 5444 Disk Storage Drive

Tracks
Disk Organization .

PART 11. CONVERSATIONAL OCL

CHAPTER 2. INTRODUCTION TO CONVERSATIONAL OCL

CHAPTER 3. END-OF-STATEMENT KEYS

CHAPTER 4. THE FOUR OCL CYCLES
The LOAD Cycle
The BUILD Cycle .
The CALL Cycle
The Interrelationship of the BUILD and CALL Cycles .

The BUILD Cycle
The CALL Cycle

The BU I LDC Cycle
The Interrelationship of the BUILD, BUI LDC, and CALL Cycles

The BUILD Cycle .
The BUI LDC Cycle .
The CALL Cycle

CHAPTER 5. BEGINNING AN OCL CYCLE

CHAPTER 6. THE PROGRAM KEYWORDS
LOAD Cycle.

LOAD NAME
UNIT After LOAD NAME .
DATE
SWITCH .

BUILD Cycle
BUILD NAME
UNIT After BUILD NAME
LOAD NAME, UNIT After LOAD NAME, DATE, and SWITCH

BUI LDC Cycle .
BUI LDC NAME.
UNIT After BUI LDC NAME
CALL NAME, UNIT After CALL NAME

CALL Cycle .
CALL NAME
UNIT After CALL NAME

Using End-of-Statement Keys with the Program Keywords

CHAPTER 7. THE COMPILE KEYWORDS

iii

3
4
5
6
7
7
8
9

10
10

11

13

15

17
17
18
18
19
20
20
20
22
24
24
24

25

27
28
28
28
28
28
29
29
29
29
29
29
29
29
30
30
30
30

31

J_
CONTENTS

v

vi

CHAPTER 8. THE FILE KEYWORDS
Responding to the File Keywords .

FILE NAME .
UNIT.
PACK.
LABEL
RECORDS and TRACKS
LOCATION
RETAIN .
DATE

Keywords for Multivolume Files
List Requirements
FILE NAME.
KEY LENGTH
HIKEY
UNIT.
PACK.
LABEL
RECORDS and TRACKS
LOCATION
RETAIN .
DATE

Using End-of-Statement Keys with the File Keywords .
Delayed Response .

CHAPTER 9. MODIFY-THE LAST KEYWORD IN EVERY OCL CYCLE
Running a Job
Canceling a Job .
Correcting and Deleting OCL Statements

Correcting an OCL Statement .
Deleting an OCL Statement

Entering LOG and FORMS Statements
Inserting Comments in a Cycle

Comment from Operator .
Comment from Programmer to Operator

Including Instructions for One of the System Programs
Several Modify Statements in One Job

CHAPTER 10. ENDING THE OCL CYCLE

CHAPTER 11. ERROR MESSAGES

CHAPTER 12. COMPILING AN RPG II PROGRAM

CHAPTER 13. OCL SUMMARY .
The LOAD Cycle
The BU I LD Cycle
The BU I LDC Cycle .
The CALL Cycle

PART Ill. DISK UTILITY PROGRAMS

CHAPTER 14. INTRODUCTION TO DISK UTILITY PROGRAMS

CHAPTER 15. DISK INITIALIZATION PROGRAM
Functions

Naming a Disk
Writing Track and Sector Addresses
Checking for Defective Tracks (Surface Analysis)
Assigning Alternate Tracks .

Options .
Type of Initialization
Number of Disks
Erasing Alternate Track Assignments .
Additional Disk Identification .
Surface Analysis Option

Control Statements .
Example .

Explanation .

35
36
36
36
36
36
37
37
37
38

38
38
38
38
38
39
39
39
39
39
39
39
40
40

43
43
43
44
44
45
45
45
46
47
48
51

55

57

59

61
61
62
63
63

65

67

69
69
69
69
69
69
70
70
71
71
71
71
71
72
73

CHAPTER 16. ALTERNATE TRACK ASSIGNMENT PROGRAM
Functions

Writing Track Addresses
Checking for Defective Tracks .
Printing Sectors Containing Incorrect Data
Assigning an Alternate Track

Options .
Type of Assignment
Number of Alternate Tracks
Surface Analysis Option

Control Statements .

CHAPTER 17. ALTERNATE TRACK REBUILD PROGRAM
Functions

Locating Incorrect Data
Replacing Incorrect Data

Options .
Number of Characters
Number of Tracks

Control Statements .

CHAPTER 18. FILE AND VOLUME LABEL DISPLAY PROGRAM
Functions

Print VTOC Information
Print Headings

Options .
Entire Contents of VTOC
File Information Only
Number of File Names

Control Statements .

CHAPTER 19. FILE DELETE PROGRAM .
Functions

VTOC File References
Erase File Information

Options .
Deleting a File
Number of Files .
Number of File Names

Control Statements .

CHAPTER 20. DISK COPY/DUMP PROGRAM
Functions

Disk or File Location ..
Using a Work Area .
Printing a Portion of a File .
Record Keys and Relative Record Numbers .

Options .
Copying and Printing
Deleting Records
Reorganizing a File

Control Statements .

CHAPTER 21. LIBRARY MAINTENANCE PROGRAM
Functions

Allocate
Copy .
Delete
Rename

Options .
Library Size
System Programs
Types of Entries.
Length of Name .
Names of Entries

Control Statements .

75
75
75
75
75
75
75
76
77
77
77

79
79
79
79
79
79
79
80

81
81
81
81
81
81
82
82
82

83
83
83
83
83
83
84
84
84

85
85
85
85
85
85
86
86
86
86
86

87
87
87
89
90
90
90
90
90
90
90
91
92

vii

viii

PART IV. SAMPLEJOBS.

CHAPTER 22. SAMPLE JOBS
Sample Job 1. Initialize Disk .

Explanation .
Sample Job 2. Compile an RPG Source Program

Explanation .
Sample Job 3. Process Customer Program "INVUPD".

Explanation .
Sample Job 4. Copy File Disk to Disk

Explanation .
Sample Job 5. Multifile Build .

Explanation .
Sample Job 6. Multifile Call

Explanatfon .

PART V. REVIEW QUESTIONS.

CHAPTER 23. REVIEW QUESTIONS
Questions
Answers .

APPENDIX A. OPERATOR'S OCL GUIDE
Filling Out the OCL Guide for LOAD Cycle.
Filling Out the OCL Guide for BUILD Cycle
Filling Out the OCL Guide for BUI LDC or CALL Cycle
Filling Out the OCL Guide for More than Two Files

APPENDIX B. GLOSSARY

INDEX

93

95
96
97
98
99

100
101
102
103
104
105
106
107

109

111
111
113

115
117
118
119
120

123

125

I
PARTI. SYSTEMSUMMARY

1

2

CHAPTER 1. BASIC COMPONENTS

The I BM System/3 Model 6 is designed to meet the requirements of business data
processing. You might use it to perform any of the following business applications:

Order writing
Billing
Accounts receivable
Accounts payable
Inventory control
Payroll
Sales analysis

The standard units of the Model 6 are the:

I BM 5406 Processing Unit with Operator Keyboard Console
I BM 5444 Disk Storage Drive
I BM 5213 Printer

Optional units of the Model 6 are the:

I BM 5496 Data Recorder
I BM 2222 Printer
I BM 2265 Display Station (Cathode Ray Tube)

3

4

IBM 5406 PROCESSING UNIT

The processing unit provides the control, arithmetic, and logical functions for the
system, as well as storage for instructions and data.

Processing Unit

The basic unit of storage is the byte. Each byte will store one alphabetic character,
one special character, or two numeric digits of information. Bytes may be handled
separately or grouped together to form fields.

All processing of data is carried out in the processing unit under control of the program
instructions. The processing unit controls all input/output (1/0) devices attached to
the system. The 1/0 operations performed and devices used are specified by program
instructions.

OPERATOR KEYBOARD CONSOLE

The operator keyboard console provides two-way communication between the operator
and the system. When entering data into the system and controlling the operation of
the system, the operator uses the operator keyboard, the system display panel, and
the system control panel, all located on the operator console.

Keyboard Console

5

T
Command Keys

6

Operator Keyboard

---------------i---------------- --r-
Alphameric and Special Character Keys Numeric Keys

· The operator keyboard is the device
the operator uses most often for enter­
ing information into the Model 6. The
operator can enter:

• Operation control language (OCL)
and utility control statements

• RPG II source programs

• Disk Sort specifications

• Input data to user or system pro­
grams

~ The shad~d keys
[[]illJ are function keys

The keyboard uses keys to perform
certain functions such as spacing and
backspacing. There are four groups of
keys:

Command Keys. These keys allow the
operator to control operations performed
by RPG 11 programs and the Model 6
conversational utility programs.

Function Keys. These keys allow the oper­
ator to control certain printer opera­
tions and to perform required program
functions, such as designating the end
of a keying operation or erasing fields
from storage. (The end-of-statement
keys discussed in Chapter 2. End-of­
Statement Keys in Part II of this man­
ual are an example of function keys.)

Alphameric and Special Character Keys.
These keys allow the operator to enter
alphameric data or control information
into the system.

Numeric Keys. These keys allow the operator
to enter numeric data into the system.
They are used when the data to be
keyed in is primarily numeric.

System Control Panel

The operator uses the switches on the
system control panel, along with con­
trols and indicators on the Model 6
devices, to control the operation of the
system. Examples of the switches on
the panel are:

SYSTEM START/STOP Switch. When
moved to START, this switch allows
the system to continue normal operation.
This move is made only if STOP has
been indicated. STOP causes the
system to stop after it completes the
operation currently in process.

POWER ON/OFF Switch. This switch con­
trols power to the units of the system.

System Display Panel

The indicator lights on this panel indi­
cate the status of the system. Examples
of the information contained on the
panel are:

Halt Code Display. This unit displays charac­
ters when certain program halts occur.
(The I BM System/3 Model 6 Halt Pro­
cedure Guide, GC21-7541, contains
further information on halts.) The dis­
played characters are used to identify
the halt.

Command Key Lights. When a command
key is pressed, a light on the panel turns
on. Each command key has a light to
help the operator remember which
command keys are on. This light
won't go off until after the command
key is turned off by the system.

7

8

IBM 5213 PRINTER

The 5213 printer is a serial printer which has all printer operations controlled by the
program in storage. The operator's instructions to the system are printed as he keys
them. The system's reply is also printed, providing easy reference for the operator. The
printer also provides output of the results of a program in the form of printed reports
controlled by the program instructions.

Printer

IBM 5444 DISK STORAGE DRIVE

The disk storage drive reads data that is recorded on magnetic disks.

Disk Storage Drive

The basic Model 6 installation includes one disk
drive. The drive contains two disks and an access
mechanism. One disk is fixed (F1); the other is
removable (R1). The fixed disk (F1) cannot be
physically removed. The removable disk (R 1) can
be replaced with another disk. (An optional
feature of the Model 6 includes a second I BM
5444 Disk Storage Drive.)

The information on these disks can be replaced many
many times and therefore used many more times
than if you had to have a new disk every time
you wanted to sti:>re more information.

Access
Mechanism Read/Write Heads (4)

Removable Disk

Drive

ART: 52695

9

10

Tracks

Each disk is divided into circles called
tracks. Depending upon the model of
the I BM 5444 you have, you can record
data on 200 to 400 tracks or 100 to 200
cylinders. Corresponding tracks from
each side of the same disk are called
cylinders. Each track is divided into
24 sectors. Each sector has its own
unique address and can contain 256
characters of data. Six tracks (tracks
2-7) are used as alternate tracks. Tracks
0 and 1 are used only by the system.

Disk Organization

In order for your program to process
data, you must store it somewhere on
disk. Each piece of data (date, customer
number, product number, etc.) is a
field. Fields are grouped together to
form a record. A file is a group of
related records. There are five types of
files for the Model 6:

Input Files. Input files are records that a pro­
gram uses as a source of data. The pro­
gram reads data from an input file and
processes it.

Output Files. Output files are records written,
punched, or printed by a program. The
data in these has been processed.

Update Files. Update files are disk files from
which a program reads a record, updates
fields in the record, and writes the record
back in the location from which it was
read.

Combined Files. Combined files (ledger card
files) are both input and output files.
The program processes input data in this
file and puts data that has been processed
in the same file.

Display Files. A display file allows you to
print the contents of up to two fields
used in your program on the I BM
2265 Display Station.

Libraries
Not only can you store data on disk,
but you can also store your programs
on disk where they will be available
for repeated use. The area on disk
reserved for this is called a library.
There are two libraries for your pro­
grams:

Source Library. The source library contains
procedures and source statements.

Object Library. The object library contains
object programs and routines. (When
you indicate that you will include
system programs in the object library,
the system reserves space for a
scheduler work area. The scheduler
work area is a work area for one of
the system programs, the Scheduler.)

II
PART II. CONVERSATIONAL OCL

11

12

CHAPTER 2. INTRODUCTION TO CONVERSATIONAL OCL

Before the I BM System/3 Model 6 can run a program, it must know what you want
it to do and where to find the information it will need to do the job. You supply the
what and where information in a series of OCL (operation control language) statements.
You must supply a series of OCL statements for every program you run.

Assume that you want to run an invoicing program. The program, which you have
named INVOIC, requires three files: a customer master file and an inventory master
file as input, and a tranaction file from which records of the ordered items are read.
These three files are stored on disk. So that the program can be properly executed,
you must supply the following information in a series of OCL statements:

WHAT is the name of the program?

WHAT is the date of this run? ..

WHAT files are used? ..

WHERE is the program stored?

WHERE are the files located?

.. ..

INVOIC

12-06-71

Customer master file,
inventory master file, and
transaction file .

On the removable disk on drive one (R 1).

Customer master file is on the fixed
disk on drive one (F 1) .

Inventory master file is also on the
fixed disk on drive one (F1).

Transaction file is on the removable
disk on drive one (R1).

13

14

The OCL for the Model 6 is called conversational OCL because a question and answer
procedure is used. The system prints the question called a keyword, and the operator
supplies the answer called a response. The keyword tells the operator the type of
information required by the system. For example, the keyword Fl LE NAME indicates
that the name of one file used in the program must be supplied. By printing a keyword,
the system is prompting the operator for a response.

The operator responds to each keyword that applies to the job by typing in the relevant
information. (When the system prompts Fl LE NAME, for example, the operator types
the name of one file that the job uses.) If the system prompts a keyword that doesn't
apply to the job, the operator bypasses the response.

REMEMBER ...

• You must supply information in the form of OCL statements that the system needs
to run the job.

• The IBM System/3 Model 6 uses conversational OCL which consists of keywords
and responses.

CHAPTER 3. END-OF-STATEMENT KEYS

The operator responds to a keyword by typing in a response (if the keyword applies
to the job), and by pressing an end-of-statement key. Whether or not the operator
types a response to a keyword, he must press an end-of-statement key before the
system will prompt another keyword.

There are three end-of-statement keys on the Model 6 keyboard: ENTER-, ENTER+,
and PROG START (Program Start).

Pressing the PROG START or ENTER+ key indicates the end of a response. Pressing
the ENTER- key indicates the end of a response and may cause the system to skip
several keywords. How many keywords are skipped depends on the keyword after
which the ENTER- key was pressed. The PROG START and ENTER+ keys are inter­
changeable. As a matter of convenience, the PROG START key is the one usually
specified in IBM's programming manuals for Model 6.

REMEMBER ...

• Pressing an end-of-statement key completes an OCL statement .

•
If you want to test yourself on the material presented in chapters 2 and 3, see the
self-test questions in Part V of this manual.

ENTER+ Key

15

16

CHAPTER 4. THE FOUR OCL CYCLES

The system can't run any of your programs unless each one is accompanied by a
series of OCL statements. A series of OCL statements is called an OCL cycle. There
are four OCL cycles: LOAD, BU I LD, BU I LDC, and CALL.

Of the four cycles, only the LOAD cycle is independent; that is, you can run a job by
responding just to the keywords in that cycle. The other three cycles are interrelated;
to run a job you must use two or more of them.

The OCL cycle you choose to use should be based on frequency of program use and
whether the program will be run alone or with a group of programs. The following
chart may be used as a guide in this choice:

Type of Job OCL Cycle

Jobs you run occasionally LOAD

Jobs you run frequently BUILD and CALL

Jobs you run together as a group * BUILD, BUI LDC, and CALL

* If it's a group of jobs you run frequently.

THE LOAD CYCLE

When you use a LOAD cycle, you're telling the system:

1. Here are the OCL statements for my program.

2. Go to the disk drive I specify and find the program I want to run.

3. Load the program into the processing unit.

4. Run my program.

The LOAD cycle OCL statements are not saved. If you want to run the same job a
second time, your operator must respond to all the keywords in the LOAD cycle
again. It's best to use the LOAD cycle for jobs you run infrequently because this
cycle has many keywords and takes quite a while for responses.

17

18

The following shows how you (the programmer), the operator, and the system would
interact using the LOAD cycle:

You, as the programmer, fill out an Operator's OCL Guide (see Appendix A) telling the operator
to use the LOAD cycle for the job and how to respond to each keyword in the cycle.

Operator responds to all the keywords in the LOAD cycle.

j
System loads the LOAD cycle OCL statements in the processing unit and runs the job.

I
Will you ever want to run the job again?

L__-,
YES

Save the old Operator's OCL Guide for the oJerator.

THE BUILD CYCLE

When you use a BUI LO cycle, you're telling the system:

1. Here are the LOAD cycle OCL statements for job xxxx.

2. Store the LOAD cycle statements on disk so that they can be used whenever I
want to run the program.

3. Do not run the program now.

Once the set of OCL statements is written on a disk, the set of statements is referred
to as a procedure. The process of writing the statements on the disk is referred to
as building a procedure. You use the BUI LO cycle to build a procedure.

Although the BUILD cycle is the longest of all the OCL cycles in terms of operator
time required, it doesn't run a job. Its function is to save the OCL statements for a
job by writing them on one of the disks. The advantage of the BU I LO cycle is that
once the OCL statements are stored on disk, the program can be run using them
rather than by keying all the required statements.

THE CALL CYCLE

CALL is the shortest OCL cycle, having only four keywords. When you use a
CALL cycle, you're telling the system:

1. Locate, on disk, the procedure I built for job xxxx.

2. Use it to run job xxxx.

The CALL cycle is always linked to a BUILD or a BUI LDC cycle.

THE INTERRELATIONSHIP OF THE BUILD AND CALL CYCLES

The following chart shows how you, the operator, and the system interact using
the BUILD and CALL cycles:

You, as the programmer, fill out an Operator's OCL Guide telling the operator to use the BU I LD
cycle and how to respond to each keyword in the cycle.

I
Operator responds to all the keywords in re BU I LD cycle.

System puts the procedure on one of the rsks.

When you want to run the job, you fill out an Operator's OCL Guide telling the operator to use

1he CALL cycle and how to respond to ea[.. h-k_e_y_w_o_r_d_i_n_t-he-cy_c_l_e·------------

Operator responds to all the keywords in the CALL cycle.

System: 1.
2.

j
Loads the CALL cycle OCL statements in the processing unit.
Reads the CALL cycle OCL statements to find out the name of the procedure
and the unit on which it is located.

3. Looks for the procedure, finds it, and loads it in the processing unit.

System runs the job. I) I) I) I) I
J

Will you ever want to run the job again?

~
YES

I
Save the old CALL cycle Operator's OCL Guide for the operator.

19

20

The BUILD Cycle

After the operator finishes responding to the keywords in the BUI LO cycle, the
system writes the LOAD cycle OCL statements on disk. Remember that after
the OCL statements have been written on the disk, they're referred to as a procedure.

The CALL Cycle

As the operator responds to each keyword in the CALL cycle, the system loads
the statement into the processing unit.

The system then looks for the procedure identified by the CALL statements. When
they system finds the procedure, it loads the OCL statements into the processing

, unit and, runs the job.

THE BUILDC CYCLE

When you use a BUI LDC cycle, you're telling the system:

1. I want to prepare a procedure to run a series of jobs which are always executed
one after the other with no interruption.

2. The OCL statements for each job in the group are in procedures stored on disk.

3. Here are the names and disk drive locations of the procedures for each job
in the group.

4. Build a chained procedure, establishing a sequence in which the individual
procedures are run.

A chained procedure is a list of the procedures for each job in a group, in the order
you want to run them. The list contains:

1. The name of the procedure for each job.

2. The disk drive on which the procedure is located.

The process of writing the list on a disk is referred to as building a chained procedure.
BUI LDC stands for build chained.

For example, here's the type of information you might find in a chained procedure
for a weekly inventory job which consists of three separate jobs:

procedure name (for the 1st job in the group) - xxxx

procedure location (for the 1st job in the group)- (R1, R2, F1, or F2)

procedure name (for the 2nd job in the group) - yyyy

procedure location (for the 2nd job in the group) - (R1, R2, F1, or F2)

procedure name (for the 3rd job in the group) - zzzz

procedure location (for the 3rd job in the group) - (R1, R2, F1, or F2)

When you want to run the group of jobs, you use a CALL cycle to tell the system
what chained procedure to use and where it's located.

The advantage in using a BUI LDC cycle for a group of jobs is that it allows you to
run the jobs without stopping between each one to supply OCL statements. The
disadvantage is that you must use three different cycles to set up and run one job.
First, you must use the BU I LD cycle to put the OCL statements for each job into
a procedure. You use the BU I LD cycle for each job in the group.

Next you use the BU I LDC cycle to build a chained procedure which will contain the
name of the procedure and the unit on which it is located for each job in the group.
When you want to run the group of jobs, you must use a CALL cycle to tell the
system what chained procedure to use and where it's located.

When you have a group of jobs you want to run together frequently, the BU I LDC
cycle can save you time. The amount of time spent on the BU I LD and BU I LDC
cycles is compensated for by the time saved by being able to run a series of jobs
with one CALL cycle. If you run the group of jobs only occasionally, using a series
of LOAD cycles would be simpler and faster.

21

22

THE INTERRELATIONSHIP OF THE BUILD, BUI LDC, AND CALL CYCLES

The following chart shows how you, the operator, and the system interact using the.
BU I LD, BU I LDC, and CALL cycles:

You, as the programmer, fill out an Operator's OCL Guide telling the operator
to use the BUILD cycle and how to respond to each keyword in the cycle.

I
Operator responds to all the keywords in the BUILD cycle.

I
System writes the procedure on or of the disks.

Is there another job in the group? I

l l
NO YES

J
You fill out an Operator's OCL Guide telling the operator to use the
BU I LDC cycle and how to respond to each keyword in the cycle.

I
Operator responds to all the keywords in the BU I LDC cycle.

I
System writes the chained procedure on one of the disks.

I
When you want to run the group of jobs, you fill out an Operator's OCL Guide telling the

~tor to use the CALL cycle a~i how to respond to each keyword in the cycle.

Operator responds to all the keywrds in the CALL cycle.

System loads the CALL cycle OCL statements in the processing unit.

@

The CALL cycle OCL statements tell the system you want to run a group of jobs
and the name of the BU I LDC proldure and the unit on which it is located.

System finds the chained procedure and loads it in the processing unit.

I
System gets name of the first procedure and unit on which it is located from the chained
procedure.

It finds the procedure for the job, loads it in the processing unit, and runs the job.

i
Is there another job in the group?

l l
NO YES

l
System gets name of the next procedure and the unit
on which it is located from the chained procedure.

Will you ever want to run the group of jobs again?
I

i
YES

I
Save the old CALL cycle Operator's OCL Guide for the operator.

i
~

23

24

The BUILD Cycle

After the operator finishes responding
to the keywords in the BU I LD cycle,
the system writes the OCL statements
on disk. You use one BUILD cycle for
each job in the group.

The BUI LDC Cycle

You use the BUI LDC cycle to build
a chained procedure which consists of
the name of the procedure and the unit
on which it is located for each job in
the group. Procedures are run in the
order you enter the procedure informa­
tion in the chained procedure.

REMEMBER ...

The CALL Cycle

As the operator responds to each key­
word in the CALL cycle, the system
loads the CALL cycle statement into
the processing unit. The statements
tell the system:

• You want to run a group of jobs.

• The name of BU I LDC procedure
and the disk unit on which it is
located.

The system looks for the BUI LDC
procedure, finds it, and loads it into
the processing unit. The BUI LDC
procedure tells the system the name
and disk unit of the first procedure to
be run. The system then finds that
procedure, loads it into the processing
unit, and runs the job.

When the first job is complete, the
system goes back to the chained pro­
cedure to see if there's another job in
the group. If there is, the system finds
the procedure for that job, loads it into
the processing unit, and runs the job.
This continues until every job in the
group has been run.

• There are four OCL cycles: LOAD, BUILD, BUI LDC, and CALL.

• You should choose the cycle based on frequency of program use and whether the program
will be run alone or with a group of programs .

•
If you want to test yourself on the material in this chapter, see the self-test questions
in Part V of this manual.

1.

2.

CHAPTER 5. BEGINNING AN OCL CYCLE

The first keyword in every OCL cycle is READY. When the system is ready to start
a new job, it prompts the keyword READY, and the operator responds with the name
of the OCL cycle you want to use for the job.

A function of the READY statement is to tell the system which OCL cycle you want
to use for the job:

• READY-LOAD tells the system to prompt the keywords in the LOAD cycle.

• READY-BU I LD tells the system to prompt the keywords in the BU I LD cycle.

• READY-BU I LDC tells the system to prompt the keywords in the BU I LDC cycle.

• READY-CALL tells the system to prompt the keywords in the CALL cycle.

The ,READY statement can also be used to assign either the cathode ray tube or
printer as the logging device. This is done by a response of LOG.

Here is what happens every time you start a new job.

When the system is ready to start a new
job, it prompts READY. I READY

Printer

fo~:::.:::: :~m ----------Keyboard
~-o:. = :. :. --:. :a _ry

The operator responds to the keyword
READY by typing the name of the OCL
cycle you want to use for the job.

READY - xxxxx

~;: ::--: :-:--.: ~ ~ - Operator types name of
-
0

- - - - -
0 OCL cycle on keyboard.

System prints name on
printer.--------

25

~D-------D~ a __ -r= _ _ _ o
a_t!J_ -----a ______ a

READY - xxxx

PROG START key

3. After typing in the name of the OCL
cycle you want to use for the job, the
operator presses the PROG START key.

4.

xxxxx-----+-----Next keyword in cycle

As soon as the operator presses the PROG
START key, the system prompts the next
keyword in the cycle.

~o _______ o ID o ________ a
ca_-----_-_-_:.a a

REMEMBER. ..

The READY statement tells the :;ystem:

• What OCL cycle you want to use for your job.

• You want to change the logging device.

26

CHAPTER 6. THE PROGRAM KEYWORDS

Each OCL cycle has a group of keywords referred to as the program keywords. When
the system prompts one of the program keywords, it's asking for some particular
information about the program you want to run. The operator's response to the
keyword gives the system this information.

The program keywords are UNIT, DATE, SWITCH, and the four name keywords:
LOAD NAME, BUILD NAME, BUI LDC NAME, and CALL NAME. Not every cycle
prompts each program keyword. DATE and SWITCH, for example, are prompted only
during the LOAD and BU I LO cycles. Here's how the program keywords fit into each
cycle.

LOAD cycle BUILD cycle BU I LDC cycle

READY READY READY

LOAD NAME BUILD NAME BUI LDC NAME

UNIT UNIT UNIT

DATE LOAD NAME CALL NAME

SWITCH UNIT UNIT

FILE NAME DATE MODIFY

UNIT SWITCH

PACK FILE NAME

LABEL UNIT

RECORDS PACK

TRACKS LABEL

LOCATION RECORDS

RETAIN TRACKS

DATE LOCATION

MODIFY RETAIN

DATE

MODIFY

CALL cycle

READY

CALL NAME

UNIT

MODIFY

27

28

LOAD CYCLE

LOAD NAME

When the system prompts LOAD
NAME, it's asking for the name
of the program you want to load
into the processing unit.

UNIT After LOAD NAME

When the system prompts UN IT after
LOAD NAME, it's asking for the unit
on which this program is located.
There are four possible responses to
UNIT:

• R 1 - The removable disk on the
first disk drive.

• R2 - The removable disk on the
second disk drive.

• F1 - The fixed disk on the
first.disk drive.

• F2 - The fixed disk on the second
disk drive.

DATE

When the system prompts DATE, it's
asking what date you want to use for
your job. Your response determines
what date goes on the printed output
for the job. This date is also used as
the file date for any files created by
running this job.

If you want to use the system date for
your job, the operator should respond
to DATE by pressing the PROG
ST ART key. (The system date is
always established at IPL time.)

If you don't want to use the system
date, the operator should respond
to DATE by typing in a new date be­
fore pressing the PROG START key.
This new date changes the system date
for the one job only. When your job
is finished, the system date will auto­
matically revert to its IPL setting.

SWITCH

When the system prompts SWITCH,
it's asking whether you want to change
the setting of the eight external indi­
cators. (Only RPG 11 programs use
external indicators.)

If you don't want to change the setting,
or if the program you want to run
doesn't use external indicators, the
operator should respond to SWITCH
by simply pressing the PROG START
key.

If you do want to change the setting
of the external indicators, the operator
should respond by typing in a new
setting before pressing the PROG
START key. (The IBM System/3 Model
6 Operation Control Language and
Disk Utility Programs Reference Manual,
GC21-7516 gives more detailed infor­
mation about responding to the pro­
gram keywords.}

BUILD CYCLE

BUILD NAME

When the system prompts BU I LD
NAME, it's asking what you want
to name the procedure you're building.

UNIT After BUILD NAME

When the sytem prompts UNIT after
BU I LD NAME, it's asking for the unit
on which you want to put the procedure.

See LOAD Cycle in this chapter for
the possible responses to UNIT.

LOAD NAME, UNIT After LOAD
NAME, DATE, and SWITCH

See LOAD Cycle in this chapter.

Note: Delayed responses are valid for the
BUILD cycle program keywords:
UNIT after LOAD NAME, DATE,
and SWITCH. A delayed response
causes the system to reprompt the
keyword during the CALL cycle and
forces the operator to respond.

BUI LDC CYCLE

BUILDC NAME

When the system prompts BU I LDC
NAME, it's asking what you want to
name the chained procedure you're
building.

UNIT After BUILDC NAME

When the system prompts UN IT after
BUI LDC NAME, it's asking for the
unit on which you want to put the
chained procedure. See LOAD Cycle
in this chapter for the possible responses
to UNIT.

CALL NAME, UNIT After CALL NAME

See CALL Cycle in this chapter.

29

30

CALL CYCLE USING END-OF-STATEMENT KEYS
WITH THE PROGRAM KEYWORDS

The ENTER- key may be used after
LOAD NAME and UNIT in both the
LOAD and BU I LD cycles and after
CALL NAME and UNIT in the

CALL NAME

When the system prompts CALL NAME,
it's asking for the name of the procedure
you want to use to run your job.

UNIT After CALL NAME

BUI LDC cycle. ENTER- is used after
LOAD NAME and UNIT in the LOAD
cycle to prompt MODI FY. It is used
if you don't want to use any files for

When the system prompts UNIT after
CALL NAME, it's asking for the unit
on which the procedure (or chained
procedure) you want to use to run
your job is located. See LOAD Cycle
in this chapter for the possible
responses to UNIT.

REMEMBER ...

a program. ENTER- is used after
LOAD NAME and UNIT in the
BUILD cycle to prompt the compile
keywords. In the BUI LDC cycle it
is used after CALL NAME and UNIT
when all the procedure names have
been entered to prompt MODIFY.
After the rest of the program keywords
PROG START is the only valid
response.

•Each OCL cycle has a group of program keywords specifying particular information about
the program you want to run.

•The following chart lists the program keywords and what each is asking for:

•

Program Keyword Asks

LOAD NAME Name of the program you want to load into processing unit.

BUILD NAME What you want to name the procedure you're building.

BUI LDC NAME What you want to name the chained procedure you're building.

CALL NAME Nsme of the procedure (or chained procedure) you want to use
to run your job.

UNIT Disk drive (R1, R2, F1, or F2) on which the program (or procedure)
prompted by the preceding keyword is located.

DATE Date you want to use for your job.

SWITCH Whether you want to change the setting of the external indicators.

If you want to test yourself on the material presented in chapters 5 and 6, see the
self-test questions in Part V of this manual.

CHAPTER 7. THE COMPILE KEYWORDS

Compiling an RPG I I source program is much like any other job you run on the
Model 6. There is one difference: to compile one of your RPG 11 source programs,
the system must know which program you want to compile, on which disk drive
it is located, and where you want to put the object program after compilation. Since
this information is not supplied by your responses to the regularly prompted keywords,
the system gets the information by prompting the three compile keywords: COMPILE
OBJECT, SOURCE, and UNIT.

Your responses to the compile keywords give the system the information it needs to
compile your RPG II source program:

Compile Keyword

COMPILE OBJECT

SOURCE

UNIT

Asks

Where you want the system to write the object program after
it has been compiled

Name of the RPG 11 source program you want to compile

Disk drive on which the RPG 11 source program you want to
compile is located

You can use either a LOAD or CALL cycle to compile an RPG 11 program. Using the
CALL cycle is faster and easier because much of the information the system needs
is already on the disk. (This is the only time you can use a CALL cycle to run a job
without first having to use a BUILD cycle to put a procedure on a disk. This is
because a procedure to run the RPG 11 Compiler program is on the system disk when
you receive your Model 6.)

31

32

Compile
Keywords

If you use the CALL cycle to compile your RPG 11 source program by running the
IBM-supplied procedure named RPG, the system will pause while printing the
procedure to prompt the three compile keywords:

Keyword Response Comments

READY CALL

CALL NAME RPG Name of the IBM-supplied procedure to run the
RPG II Compiler

UNIT xx Disk drive (R1, R2, F1, or F2) on which the procedure
is stored

System prints out first part of procedure

COMPILE OBJECT xx Disk drive (R1, R2, F1, or F2) on which you want the
system to write the object program after compilation

SOURCE yyyyy Name of the RPG 11 program you want to compile

UNIT xx Disk drive (R1, R2, F1, or F2) on whic!l the RPG II
source program is stored

System prints out remainder of procedure

MODIFY RUN

If you use the LOAD cycle, your response to LOAD NAME tells the system:

• I want to compile an RPG 11 program.

• Interrupt the normal LOAD cycle to prompt the three compile keywords.

Compile
Keywords

Keyword

READY

LOAD NAME

UNIT

COMPILE OBJECT

SOURCE

UNIT

Response

LOAD

$RPG

xx

xx

yyyyy

xx

Comments

This response tells the system you want to run the
RPG II Compiler

Disk drive (R1, R2, F1, or F2) on which the RPG II
Compiler is located

Disk drive (R1, R2, F1, or F2) on which you want the
system to write the object program after compilation

Name of the RPG 11 program you want to compile

Disk drive (R1, R2, F1, or F2) on which the RPG II
source program is stored

The system resumes the normal prompt-response sequence for the rest of the LOAD cycle.

(See the I BM System/3 Model 6 Operation Control Language and Disk Utility
Programs Reference Manual, GC21-7516 for more detailed information on compiling
RPG 11 programs.)

If you use the BU I LD cycle, you can respond to the compile keywords with a
delayed response. A delayed response causes the system to reprompt the keyword
during the CALL cycle and forces the operator to respond.

REMEMBER... I
• If you're writing your programs in the RPG 11 programming language, you'll use

the RPG 11 Compiler to translate your programs into machine language.

• To compile an RPG 11 program, the system prompts the three compile keywords:
COMPILE OBJECT, SOURCE, and UNIT.

• You can use either a LOAD or CALL cycle to run the RPG 11 Compiler.

33

34

CHAPTER 8. THE FILE KEYWORDS

To get information about the files that are going to be used in a job, Model 6 prompts
a series of keywords called the file keywords. When the system prompts a file keyword,
it's asking for some specific information about one of the files used in your job.

The file keywords are always prompted Here's how the file keywords fit into the two cycles:

in the sequence shown and are only
prompted during LOAD and BUI LO cycles.

FILE NAME

UNIT

PACK

LABEL

RECORDS

TRACKS

LOCATION

RETAIN

DATE

LOAD cycle

READY

LOAD NAME

UNIT

DATE

SWITCH

FILE NAME

UNIT

PACK

LABEL

RECORDS

TRACKS

LOCATION

RETAIN

DATE

MODIFY

BUILD cycle

READY

BUILD NAME

UNIT

LOAD NAME

UNIT

DATE

SWITCH

FILE NAME

UNIT

PACK

LABEL

RECORDS

TRACKS

LOCATION

RETAIN

DATE

MODIFY

35

36

For every file a job uses, the operator must respond to the series of file keywords. If
a job uses several files, the operator must respond to several series of file keywords.
The first time the system prompts the file keywords, the operator responds with
information about one file. The second time the system prompts the file keywords,
the operator responds with information about a second file. The system continues to
prompt the series of file keywords until the operator has described all the files the job
uses.

RESPONDING TO THE FILE KEYWORDS

When the system prompts a file keyword, it's asking for specific information about
one of the files used in your job. For every file a job uses, you must provide a response
for the first three file keywords: FILE NAME, UNIT, and PACK.

FILE NAME

Fl LE NAME asks for the name of one
file that the job uses. For a file used
in an RPG 11 customer program, the
response to Fl LE NAME is the name
in columns 7-14 of the RPG II File
Description Specifications Sheet.
Also, a predefined file name is used for
certain Model 6 programs. (The IBM
System/3 Model 6 Operation Control
Language and Disk Utility Programs
Reference Manual, GC2'1-7516 lists
these programs.)

UNIT

UNIT asks for the disk drive (R1, R2,
F1, or F2) containing the file.

PACK

PACK asks for the name of the disk
containing the file. The name of the
disk is the name assigned by the user
to the pack when the pack was
initialized.

LABEL

LABEL asks for the name by which
the file can be identified when it is
stored on disk. You respond to this
prompt as follows:

1.

2.

If the identifying name and the
previous response to FILE
NAME are the same, no response
is required. The operator presses
PROG START. Th~ system will
assume that the two entries should
be the same.

If the disk file identifying name
and the previous response to
Fl LE NAME aren't the same,
the operator types the identify­
ing name and then presses
PROG START.

RECORDS and TRACKS

RECORDS and TRACKS are the two
space keywords. When you're writing
a file on disk for the first time, you
must supply a response for one of the
space keywords. (Writing a file on
disk for the first time is often referred
to as creating a file.) When the
system prompts these keywords, it's
asking how much space the file you're
creating will take up on disk. If you're
creating a file and you don't supply
a response for either of the space
keywords, the system won't be able
to write your file on a disk because
it doesn't know how much space is
required.

RECORDS asks how many records are
in the file you're describing. TRACKS
asks how many disk tracks it takes
to contain the records in the file. If
you don't want to calculate how many
tracks the records in your file will
take up, respond to RECORDS; the
system will do the records-to-tracks
conversion for you. If you want to do
the conversion yourself, rules for
converting records-to-tracks for
different types of files are given in

the I BM System/3 Model 6 Operation
Control Language and Disk Utility
Programs Reference Manual, GC21-

7516. After you've calculated the
conversion, you can respond to
TRACKS.

Note: You should allow room for future
expansion of the file in your response
if the file will be added to later.

LOCATION

LOCATION asks for a track number
where you'd like your file to start.
You supply a response to LOCATION
only if you want to have complete
control over the arrangement of the
files on the disk. If you don't respond
to LOCATION, the system will deter­
mine where the file is to be stored
based on available disk space.

RETAIN

RETAIN asks for the file's designation:
P, T, S, or A.

• P designates a permanent file. A
permanent file is one which is ex­
pected to be maintained permanently
on disk.

• T designates a temporary file. A
temporary file is one which has
short term usefulness and may be
overwritten when this usefulness
has ended.

• S designates a scratch file. A scratch
file is intended for use only by the
current program and may be over­
written by the next program. S
is also used to change the designa­
tion of a temporary file so that
its space will be available to sub­
sequent programs.

• A designates an activated file (a file
whose designation is being changed
from S to T).

You must supply a response to
RETAIN at certain times:

• At file creation time, if you want
the file to be designated P or S.

• During a program run, if you
want to change a file's designation.

If you don't respond to RETAIN dur­
ing a file creation run, the file will have
a T designation.

37

38

DATE

DATE asks for the date when an
input or update file was created. This
date is stored with the identification
information for the file on disk, and
is the same as the system date that
was in effect when the file was
created. The only time you must
supply a response to DATE is when
you're running a job which might
have as input one of two or more
files stored on the same disk pack
whose identifying names (LABEL)
are the same. In this case, the only
way the system can determine which
file to use is by verification of the
file creation date. If no date is speci­
fied and two or more files exist with
the same file name, the file with the
latest date will be chosen. (The IBM
System/3 Model 6 Operation Control
Language and Disk Utility Programs
Reference Manual, GC21-7516 discus­
ses the file keywords in detail.)

KEYWORDS FOR MUL Tl­
VOLUME FILES

If you have a file that can't be
contained on one disk, you may
continue it on one or more subsequent
disks. This type of file is called a
multivolume file. There are certain
additional considerations in respond­
ing to a file keyword for multivolume
files. (See the IBM System/3 Model
6 Operation Control Language and
Disk Utility Programs Reference
Manual, GC21-7516 for additional
information on multivolume files.)

List Requirements

Some of the FI LE statement para­
meters require lists when used for
multivolume files. A list consists
of a single quote, responses to the
parameter separated by commas,
and another single quote:

UNIT 'R1,R2'

The PACK parameter always requires
a list while UNIT may require a list.
LOCATION, TRACKS, HIKEY, and
RECORDS require a list if they are
stated.

FILE NAME

See FILE NAME in this chapter for
single volume files.

KEY LENGTH

If the operator presses the ENTER­
key after responding with a file
name to FILE NAME, an indexed
multivolume file has been indicated.
ENTER- prompts the file keyword
KEY LENGTH, which asks for the
length of the key field. If you respond
to KEY LENGTH, another keyword
(HIKEY) for indexed files is prompted.
If you press PROG START after KEY
LENGTH, H IKEY is bypassed.

HIKEY

HIKEY asks for the highest key field
for a volume. You must respond to the
HIKEY parameter for each volume,
and that response (which specifies
length) must equal the response to
KEY LENGTH. The keyword applies
to indexed multivolume files only.

UNIT

UN IT asks for the disk drives (R 1, R2,
F1, or F2) which contain the file.
For indexed or consecutive multi­
volume files, an entry can correspond
to more than one disk name in the
PACK statement. Assume the follow­
ing responses are made to the UNIT
and PACK keywords:

UNIT 'R1,R2'

PACK '1,2,3,4'

Processing of disks 1 and 3 will be on
R1 and processing of disks 2 and 4 will
be on R2. However, for direct files
there must be a one-to-one correspon­
dence between UNIT and PACK.

PACK

PACK asks for the names of the disks
that contain the file. The disk names
are the names you assigned to the
pack. The number of PACK responses
must correspond to the number of
HI KEY responses (if used).

LABEL

See LABEL in this chapter for single
volume files.

RECORDS and TRACKS

You must supply a response to one
of these keywords. When prompted,
RECORDS asks for the number ~f
records in the file. TRACKS asks
for the number of disk tracks it
takes to contain the records in the
file. The order of numbers in the
response must correspond to the
order of the names in the PACK
parameter.

LOCATION

LOCATION asks for the number of
the tracks where the file is to begin
for each file on the disk. The order
of the numbers must correspond to
the order of the names in the PACK
parameter. If you omit this keyword,
the system will allocate space on each
disk.

RETAIN

See RETAIN in this chapter for
single volume files.

DATE

See DATE in this chapter for single
volume files.

39

40

USING END-OF-STATEMENT KEYS WITH THE FILE KEYWORDS

Following your response to the first two file keywords (FILE NAME and UNIT), the
only valid end-of-statement key for single volume files is PROG START. An ENTER­
response to Fl LE NAME prompts KEY LENGTH for indexed multivolume files. As
a response to the rest of the file keywords, you can use either the PROG START or
ENTER- key, depending on what you want the system to do. Pressing the PROG
START key after your typed response tells the system to prompt the next keyword.
Pressing the ENTER- key after your typed response tells the system to skip the rest
of the file keywords and prompt Fl LE NAME again. If the operator doesn't type in a
response but merely presses the P ROG ST ART key after FI LE NAME, the system will
skip all the file keywords and prompt MODI FY. This indicates that all files have been
described and you are ready to run the job (see Chapter 8 for a discussion of MODI FY).

DELAYED RESPONSE

Responding to a keyword with a question mark is referred to as a delayed response.

Delayed responses are only valid for the BU I LD cycle, but can be used for all the file
keywords in that cycle. Two things happen when a delayed response is given:

• The system reprompts the keyword during the CALL cycle.

• The operator is forced to respond to the keyword when it is reprompted. (The
CALL cycle won't continue until the operator uses a valid response.)

REMEMBER. ..

• Your responses to the file keywords give the system information about the
files you're using in your job.

• In a job situation you (the programmer), the operator, and the system interact in
the following manner:

System prorpts FILE NAME

~ Does this job use a file? ----No

,s ~
~ Operator responds to FILE NAME, UNIT, and PACK

c
Does the jor require more information abor the file?

Yes No

l
Operator responds to keyword

j
System prompts next

keyword I

j
Operator presses the ENTER- key

I
System bypasses rest of file®
keywords , B

Is this the rt file keyword (DATE)?!

Yes No-[9

®--1 ~ System prorpts FILE NAME

• Does this jr use another file?

No

~ ~esses the PROG START key

I
~ ~~;;::~:~~=~:~e;est of the file keywords and prompts MODI FY (the last

41

• Some keywords always require a response,
some require a response only when a
certain type is being used, and some do not
require a response.

* 11>
E

• The possible responses to keywords for single
and multivolume files are as follows:

Response*

:J

* 0 Single Multivolume
11> >
Ci ~

File Keyword c :;
en ~

:::::.

FILE NAME ['.}{} :::::;:::;::
i:::::::::

KEY LENGTH * * U}\
HIKEY ** ii::

UNIT u:::n::r: <::::
::::::::::;:;:::;::t

PACK ()))
:;:;:;:;

LABEL

RECORDS*** x
TRACKS***

:::::: ::::
:::: :::::: ::::

LOCATION

RETAIN

DATE

* Shaded blocks indicate which responses are required.

** Not required unless indexed multivolume.

*** You must respond to only one of these when you're
creating a file.

File Keyword

FILE NAME

KEY LENGTH **

HIKEY **

UNIT

PACK

LABEL

RECORDS

TRACKS

LOCATION

RETAIN

DATE

l­
a:
<(
t­
en
(!)
0
a:
c..
~
Q) a:

l­
a:

• <(
~ I­
C en
g_ C)

l{l 0 ... a:
Ill c..
Q) ~
0. Q)
> ...
I- 0.

~· I
g a:
o.w
~~
Ill w
Q) Ill g: l{l
I- c.

l­
a:
<(
t­
en
C)
0
a:
c..
Ill
Ill

e
0...

l­
a:·

~~
c en
g_ C)
l{l 0 ... a:
Ill c..
Q) Ill
0. Ill >e
I- 0.

* Shaded blocks indicate which responses can be made
to a file keyword.

** Indexed multivolume .

• If you want to test yourself on the material presented in chapters 7 and 8, see the
self-test questions in Part V of this manual.

42

~I g a:
o.w
~~
Ill w
Q) ~
0. Q) > ...
I- 0.

. .

CHAPTER 9. MODIFY-THE LAST KEYWORD IN EVERY OCL CYCLE

Not only is MODIFY the last keyword in every OCL cycle - it is also the most versatile.
With a MODI FY statement you can:

• Run a job.

• Cancel a job.

• Correct one or more OCL statements in a cycle.

• Delete one or more OCL statements in a cycle ..

• Enter LOG and FORMS statements to a cycle.

• Insert comments in a cycle.

• Include instructions for one of the system programs in a cycle.

RUNNING A JOB

When the operator is sure the OCL cycle is complete and correct, he should type
RUN in response to the keyword MODIFY.

CANCELING A JOB

· To cancel a job after MODI FY, the operator types CANCEL and presses the space bar
and the PROG START key. This tells the system to cancel the job and start prompting
keywords for the next job. (The operator can respond with/* at any time to get an
immediate end of job, instead of waiting for MODI FY.)

MODIFY

CANCEL

READY

Tells system to cancel job.

System starts prompting keywords
for the next job.

43

READY

READY

CORRECTING AND DELETING OCL STATEMENTS

Not every statement in every cycle may be corrected or deleted. To show which
statements may be corrected or deleted, the system outlines them with a border of
asterisks.

-LOAD

001
002
003

STATEMENT
STATEMENT
STATEMENT .

These statements may be
corrected or deleted.

MODIFY

After the system prompts MODI FY, the operator can correct or delete any of the
statements within the border of asterisks. He does this by typing the statement
number of the statement he wants to correct. The statement number is the 3-digit
number to the left of each statement inside the border of asterisks.

-LOAD

010
011
020
030
040

LOAD NAME
UNIT

DATE (12/02/71)
SWITCH (11111111)
FILE NAME

-PAYROL
-Rl

*************************~*********

MODIFY

011 (PROG START)

" Tells the system
the operator is
going to work
with statement 011.

44

-R2

" Tells the system
to replace Rl with
R2 in statement 011.

·Correcting an OCL Statement
When the operator sees a mistake in
one of the statements within the
asterisk border, he can use a MODIFY
statement to correct it. He waits
until the system prompts MODIFY,
types the 3-digit number of the
incorrect statement, then presses
the PROG START key. Pressing the
PROG START key moves the printer
to the response column where the
operator can type the response he
wants.

READY -LOAD

Deleting an OCL Statement *********************************
To delete a statement within the
asterisk border, the operator responds
to MODI FY by typing the statement
number of the statement he wants
deleted. He then types a comma
and presses the PROG START key.
A comma immediately following

010
011
020
030
040

LOAD NAME
UNIT

DATE (12/02/71)
SWITCH (11111111)
FILE NAME

-PAYROL
-Rl
-01/10/72

the statement number tells the *********************************
system to remove that statement from
the OCL cycle.

ENTERING LOG AND FORMS STATEMENTS

MODIFY

020, (PROG START)

" Tells the system to
delete statement 020.

In every OCL statement we've talked about the system prompts with a keyword, and
the operator types a response. There are two statements for which the operator types
both the keyword and the response: the LOG and FORMS statements.

The LOG statement tells the system where to print OCL statements and error
messages for a job: on the 13-inch printer, the primary tractor of the 22-inch printer,
or the cathode ray tube. The FORMS statement tells the system how many lines to
print on each page. (The FORMS statement doesn't apply to the cathode ray tube.)

The LOG and FORMS keywords are never prompted. The only way you can get the
FORMS statement into an OCL cycle is to enter it after the system prompts MODI FY.
LOG is a valid response to MODI FY or READY (see Chapter 4. Beginning an OCL
Cycle). The I BM System/3 Model 6 Operation Control Language and Disk Utility
Programs Reference Manual, GC21-7516 discusses the LOG and FORMS statements
in detail. ·

INSERTING COMMENTS IN A CYCLE

Sometimes it is necessary to include statements in the OCL cycle which aren't
instructions to the system. You may want to remind the operator to put a special
kind of paper in the printer before running a job, or the operator may want to indicate
the reason why he changed one of the statements in the cycle.

You and the operator use comment statements for this communication. Comment
statements always stand out in an OCL cycle because they start with an asterisk (*).

The asterisk in front of the statement tells the system, "This is not an instruction for
you." The system then ignores these statements when the job is run even though
they are part of the OCL statements for the job.

45

46

READY

To <!nter a comment statement, the operator responds to the keyword MODI FY by
typing an *followed by the comment.

Note: The operator doesn't have to wait for the system to prompt MODI FY before he
enters a comment statement. Comment statements can be entered anywhere in the
OCL cycle. The IBM System/3 Model 6 Operation Control Language and Disk
Utility Programs Reference Manual, GC21-7516, contains complete instructions
for entering comment statements earlier in the cycle.

Comment from Operator

The operator might enter a comment to explain to you why he modified one of your
statements.

-LOAD

010
011
020
030
040
041
042
050

LOAD NAME
UNIT

DATE (12/06/71)
SWITCH(OlOlllll)
FILE NAME

UNIT
PACK

FILE NAME

-PAYROL
-Fl

-EMPMAS
-R2
-VOL06

MODIFY

041 -Rl

* R2 DOWN 12/6. VOL06 MOVED TO Rl~Comment statement from
operator explaining why
statement 041 was changed~

Comment from Programmer to Operator

READY - CALL

000 CALL NAME - MPAY

001 UNIT - Fl

010 LOAD NAME - PAYROL

011 UNIT - Rl

020 DATE (12/06/71)

030 SWITCH (01011111)

040 FILE NAME - EMPMAS

041 UNIT - F2

042 PACK - VOL06

050 FILE NAME

MODIFY

* PUT CHRISTMAS PAPER ON PRINTER It??::==·=·=·····,_ Corrunent statement. from
you to operator with
special job instructions.
This statement was in­
serted into the procedure
at BUILD time.

You should use a comment when special instructions must be given to the operator.
These special instructions would be entered during the BUI LO cycle so that when
the operator runs the job, using the CALL cycle the instructions appear in the OCL
listing, reminding the operator of the special requirements for the job.

47

48

INCLUDING INSTRUCTIONS FOR ONE OF THE SYSTEM PROGRAMS

Most OCL cycles contain only OCL statements. The BUI LO cycle, however, can
also contain instructions for some of the system programs.

The Model 6 system programs available from IBM which can use instructions
included during a BU I LO cycle are the Disk Utility programs and the Disk Sort
program.

When you have two programs you always run together, and one requires program
control statements, you can save both system and operator time by including the
instructions for the system program in the OCL cycle for that program. Information
on writing the program instructions.for the system programs is given in the referenced
manuals.

System Program Manuals

Disk Utility programs Part 111 of this manual

IBM System/3 Model 6 Operation Control Language and Disk
Utility Programs Reference Manual, GC21-7516

Disk Sort program IBM System/3 Disk Sort Reference Manual, SC21-7522

To include instructions for a system program in a BUI LO cycle, the operator responds
to the keyword MODl~Y by typing INCLUDE. The MODIFY-INCLUDE statement
tells the system the operator is entering instructions for a system program. All that's
left for the operator to do is type in the instructions.

READY - BUILD

t
BUILD Cycle OCL Statements

l

MODIFY

INCLUDE

ENTER INCLUDED STATEMENTS Including system instructions
in a BUILD cycle.

System instruction

System instruction

System instruction

etc.

Putting instructions for one of the system programs in a BUI LO cycle is referred to as
including system instructions in a procedure. The system instructions are then refer­
red to as the included statements.

49

READY

The keyword MODIFY is prompted twice during a BUILD cycle that includes system
program instructions. The first MODI FY applies to the OCL statements; the second
applies to the included statements (the system program instructions).

- BUILD

000 BUILD NAME - INITRI

001 UNIT - Fl

*************~****************

OCL Statem.:ll..for LOAD Cycle

MODIFY

INCLUDE

ENTER UTILITY CONTROL STATEMENTS

• System Instructions

RUN •

MODIFY

50

When you use the CALL cycle to run the two programs, the system prompts
MODI FY twice. The first MODI FY applies to the OCL statements in the procedure;
the second applies to the included statements.

SEVERAL MODIFY STATEMENTS IN ONE JOB

You may want to use several MODI FY statements in one job. Supµose, for example,
that the operator completes the OCL statements for a BU I LD cycle, checks the
printed OCL statements against your OCL instructions, and finds that:

1. Three of the statements have mistakes.

2. One statement must be deleted entirely.

3. There are a set of instructions for the Disk Sort program that you want him to
include in the procedure.

This is how the operator might handle the MODI FY part of the cycle:

MODIFY

010

030

041

060,

INCLUDE

- PAYROL ~Correction. The previous statement
was 010 BUILD NAME - PAYROX.

- 01101100 ~Correction. The previous statement
was 030 SWITCH - 01100100.

- Rl ~Correction. The previous statement
was 041 UNIT - R2.

~Deletion. The statement doesn't
belong in this job.

ENTER INCLUDED ST~TS

Instructions for Disk Sort Program

• ******************************

Included statements.

MODIFY - RUN ~This statement tells the system two
things:
1. The included statements are

complete and correct. .
2. Now put the procedure on the

disk so it's there when I want
to use it.

51

52

REMEMBER. ..

• In a job situation using the MODIFY statement, you (the programmer), the
operator, and the system interact in the following manner:

System prompts MODIFY

Do you war to correct a statement? J
No Yes

1 Operator types number
of statement you want
to correct

I
Operator types corrected
statement--------

Do you war to delete a statement? I
No Yes

t
Operator types number of
statement you want to delete

l
Operator types comma --~

Do you war to insert comments? J
No Y~

l
Operator types asterisk and
comment --------

A

•

DTwant to include instructions for one of the system programs?

! 1
No Yes

1
Is this a BUILD cycle?

t i
No Yes

J
You can only
include in-
structions for
a system pro­
gram during
a BUILD

.,._ _________ cycle

l
Operator types INCLUDE

i
Operator types
instructions

t
System prompts MODI FY

~
Do you want to correct
or delete any of the

instrlctions? l
.,._ _________________ No Yes

i
Operator makes

~-------------------- necessary ce;rrec­
tions and dele­
tions

Do you want to run the job?

I !
No Yes

i
Operator types RUN

You want to cancel job

l
Operator types CANCEL

If you want to test yourself on the material presented in this chapter, see the self­
test questions in Part V of this manual.

53

54

CHAPTER 10. ENDING THE OCL CYCLE

When the operator is sure the OCL cycle is complete and correct, he types RUN in
response to the keyword MODI FY. The MODI FY-RUN statement tells the system
to run the job.

As soon as the operator types RUN and presses the PROG START key, the system
starts running the job. Running the job, however, means something different for
each OCL cycle.

In an LOAD cycle, the MODI FY-RUN statement tells the system to run the program
you specified in the LOAD NAME statement.

In a BUI LO cycle, the MODI FY-RUN statement tells the system:

1. Write all the OCL statements in the cycle on the disk specified in the UNIT
statement.

2. Get the procedure name from the BU I LO NAME statement.

Remember that once the OCL statements for a job are written on a disk, the entire
set of statements is referred to as a procedure.

In a BUI LDC cycle, the MODIFY-RUN statement tells the system:

1. Write the name of the procedure and the unit on which it is located for every
job in the group on the disk specified in the UNIT statement.

2. Get the chained procedure name from the BUI LDC NAME statement.

Remember that once the name of the procedure and unit on which that
procedure is located for each job in the group are written on the disk they
are referred to as a chained procedure because the system uses this infor­
mation to chain (connect) the OCL statements for all the jobs in this group.

In a CALL cycle, the MODIFY-RUN statement tells the system:

1. Run the job specified in the CALL NAME statement.

2. The job is located on the disk drive specified in the UN IT statement.

55

READY

CALL NAME

UNIT

- CALL

The CALL cycle will ~ave two MODIFY-RUN statements when the procedure you're
calling contains included statements in addition to its OCL statements. For example,
if you've built a procedure to sort your updated payroll master file and have included
instructions for the Disk Sort program, your CALL cycle might look like this:

- Name of procedure

- What disk procedure is on

(System prints out the OCL statements in the procedure.)

\i~~it~K;;;;;;;:;:;;;~;:~~;~:;;~~:\t---~ ~~;~~e ~~ s ~~~ ~~~r~~~ •· s ta temen ts are

INCLUDED STATEMENTS

(System prints out your instructions for the Disk Sort program.)
'~~ ~ ~~ ;~ :;:_~::::.:.:.:::(;g:~:=.=~=~·{::.~:~.=:1;::;~:: ::.:_::::.: J Ji.:::~·;~~{~=.:·~:\
:=.:::~ODIFY - RUN :::f::---... Tells system the included statements
.. _. .. :_.:~·::.:-:~·:::::·:~~~::~:~:::.=.=.~.:.~~~~.:.:.~:~~·;{i~:.~.::::::::::::~:::::;;~~:~{:'::·.: are complete and correct •

56

REMEMBER ...

• The MODI FY-RUN statement tells the system to run the job.

• The definition of running the job is different for each OCL cycle.

• The CALL cycle has two MODI FY-RUN statements when instructions for a
system program have been included in the procedure you're calling.

CHAPTER 11. ERROR MESSAGES

After the operator presses one of the end-of-statement keys, the system checks the
statement for errors. If the system finds an error, it prints an error message. The error
message tells you what's wrong with the statement.

When there is a mistake in an OCL statement, the system prints an error message
directly below the statement.

READY - LOAD

LOAD NAME - MYPROG

UNIT - Gl~Error (The only valid responses are Fl, F2, Rl, or R2.)

Error Message

Some of the messages are more complicated. To explain the more complicated messages
and to give you and the operator suggestions for correcting OCL errors, the IBM
System/3 Model 6 Operation Control Language and Disk Utility Programs Reference
Manual, GC21-7516, lists all the OCL error messages, explains them, and suggests
possible solutions.

After the system prints an error message, it either reprompts the keyword or, if the
error is a very serious one, cancels the job. If the job is canceled, the message
explains why. For example, one of the messages is: MESSAGE #39 - ERRORS IN
PROCEDURE - JOB CANCELED.

Following a job canceled message, the system prompts READY, and the operator can
either try to run the job again or start a new job.

If the system prompts a keyword the second time, and the operator again makes
an invalid response, the system prompts the keyword a third time. The system will
continue to reprompt the keyword until the operator makes a valid response.

READY

BUILD NAME

UNIT

MESSAGE #03

UNIT

MESSAGE #03

- BUILD

- MSALES

-~tiffi:~-------Invalid Response

- INVALID UNIT SPECIFIED

A;[.iti~·~--------Invalid Response

- INVALID UNIT SPECIFIED

57

• 58

REMEMBER ...

• The system checks each QC L statement for errors.

• If a statement contains an error, the system prints an error message directly below
the statement specifying what is wrong with the statement.

• After the system prints an error message, it either reprompts the keyword or cancels
the job .

If you want to test yourself on the matnrial presented in chapters 10 and 11, see the
self-test questions in Part V of this man Jal.

CHAPTER 12. COMPILING AN RPG II PROGRAM

You can use your own procedure or an I BM-supplied compile procedure to compile
your RPG 11 source program (See Chapter 6. The Compile Keywords for a discussion
of the compile keywords and OCL cycles used to compile your RPG 11 program.)
There are two I BM-supplied compile procedures for compiling an RPG 11 program:
RPG and RPGB.

For example, say you wish to compile a source program PAYROL (a payroll update)
located on R2. When you use the I BM-supplied procedure RPGB to compile your
RPG 11 program, the information needed to compile your program, except for the
response to compile keywords SOURCE and UNIT, has previously been keyed in. The
responses to these keywords are supplied by the operator each time the procedure is
run. The OCL sequence would look like the following:

::Y cm :: ;il;'/~~ii~:~::1:~·;:·:{~(:::1
' * * * * * * * * * * * * * * * * * * * -~:::~::!{:/~~~i··~ ... i~f{t"i:0=~:: * *

LOAD NAME $RPG

111 UNIT R2

120 COMPILE OBJECT

121 SOURCE

122 UNIT

130 FILE NAME

131 UNIT Rl

)32 PACK 111111

)33 TRACKS 20

)40 FILE NAME $SOURCE

)41 UNIT Rl

)42 PACK 111111

) 43 TRACKS 20

~***************************************

OCL Statements.

Shaded areas
are operator
responses. The
PROG START
(P /S) key is
pressed after
each response.

59

60

. The CALL cycle is being used in this example to call the I BM-supplied compile
procedure RPGB. Statements 010-043 are the procedure used to compile your RPG 11
program. LOAD NAME - $RPG tells the system you want to use the RPG 11 Compiler.
You must respond to only SOURCE and UNIT for the compile keywords. The object
program is to be placed on R1. The program to be compiled, PAYROL, is located
on R2. The files required by the compiler ($WORK, $SOURCE) are defined for you.
All other responses are included in the procedure. You may modify the procedure in
the manner specified in Chapter 9. MODIFY.

If you had used the I BM-supplied procedure RPG, the compile keywordswouldn't
have been in the procedure. The object program would automatically be placed
on the same unit as the compiler. The source statements would come from the system
input device. (Th_ is procedure is normally used only when an I BM 5496 Data Recorder
is attached to the Model 6 as the system input device.)

CHAPTER13. OCLSUMMARY

READY
THE LOAD CYCLE

LOAD NAME

UNIT

QUESTION: Did operator respond ENTER- to LOAD NAME or UNIT?

l l
No Yes~~~~~~--

!
QUESTION: Was the response to LOAD NAME the name of the compiler?

l i
Yes No

COMPILE OBJECT

SOURCE

UNIT

DATE

SWITCH

FILE NAME

QUESTION: Does operator type in a file name?

l I
No Yes

UNIT

PACK

LABEL

RECORDS

TRACKS

LOCATION

RETAIN

DATE

MODIFY 61

THE BUILD CYCLE READY

BUILD NAME

UNIT

LOAD NAME

UNIT

QUESTION: Was response to LOAD NAME or UNIT ENTER-?

l l
Yes No

COMPILE OBJECT

SOURCE

UNIT

DATE

SWITCH

FILE NAME

QUESTION: Does operator type in a file name?

i l
No Yes

UNIT

PACK

LABEL

RECORDS

TRACKS

LOCATION

RETAIN

DATE

MODIFY

62

THE BUI LDC CYCLE

READY

BUI LDC NAME

UNIT

CALL NAME

UNIT

QUESTION:

Was ENTER- used after

CALL NAME or UNIT?

l l
Yes No---------

!
MODIFY I

THE CALL CYCLE

READY

CALL NAME

UNIT

MODIFY

63

64

I
PART Ill. DISK UTILITY PROGRAMS

66

66

CHAPTER 14. INTRODUCTION TO DISK UTILITY PROGRAMS

Every method of data processing requires a certain amount of maintenance work
to keep it in good running order. For example, you must make back-up copies of
important files, and remove out-of-date files. The Disk Utility programs are a collection
of maintenance programs to serve your data-processing system. The Disk Utility
programs are:

Disk Initialization
Alternate Track Assignment
Alternate Track Rebuild
File and Volume Label Display
File Delete
Disk/Copy Dump
Library Maintenance

You might use one of the preceding utility programs to:

• Prepare disks for use.

• Replace defective tracks.

• Replace incorrect data on a track.

• Print VTOC (volume table of contents) information.

• Delete files from a disk.

• Copy or print files.

• Maintain system libraries.

fi1

68

CHAPTER 15. DISK INITIALIZATION PROGRAM

Disks that are being used for the first time must be prepared for use. This process is
called initialization. You can also use a disk that has been used before by reinitializing
that disk (any data on the disk is destroyed). You use the Disk Initialization program
to perform initialization.

FUNCTIONS

Initializing a disk involves:

• Naming the disk.

• Writing track and sector addresses
on the disk.

• Checking for defective tracks.

• Assigning alternate tracks to any
defective tracks.

Naming A Disk

You must name every disk you intend
to use. The operator uses this name
to ensure that the correct disks are
being used for a job. He supplies the
disk name in either OCL statements
or program control statements. The
system checks this name against the
name stored as identification on the
disk pack. If the names don't match,
a halt occurs'and a message is printed
to the operator. The operator may
then change disks. All this must happen
before a Model 6 program can use a
disk.

Writing Track and Sector Addresses

A disk contains 200 or 400 tracks,
each of which is divided into 24
sectors. An area at the beginning of
every track and sector is set aside for
an address. These addresses are
necessary for locating data.

Track and sector addresses are not
written on disks when the disks are
manufactured. You must do this
before you use the disks. The Disk
Initialization program does it for
you.

Checking for Defective Tracks
(Surface Analysis)

The Disk Initialization program
checks the condition of tracks. It
does this by writing data on the
tracks, then reading and checking
the data to ensure it was recorded
properly. If the check shows that
the data is incorrect, the track on
which the data was written is con­
sidered defective. This process is called
surface analysis.

Assigning Alternate Tracks

If a defective track is found during
surface analysis, an alternate track
is assigned to it. The sole purpose
of the alternate track is to act as
a substitute for the defective track.
Model 6 programs attempting to use
the defective track will automatically
use the alternate instead.

Every disk has six alternate tracks.
Therefore, a maximum of six defective
tracks may be assigned alternates on
a disk~ If there are more, the disk is
considered unusable.

69

70

OPTIONS

The Disk Initialization program allows
you the 'toll owing options:

• You may choose one of three types
of initialization: primary, secondary,
or clear.

• You may initialize up to three disks
during the same program run.

• During primary initialization, you
may decide whether to erase alter­
nate track assignments already on
the disk or leave them assigned.

• You may use up to ten characters,
in addition to the disk name, to
further identify a disk.

• You may specify the number of
times you want the program to do
surface analysis.

You specify the options you want in
control statements (see Control State­
ments in this chapter).

Type of Initialization

The program offers three types of
initialization: primary, secondary,
and clear. The type you choose
determines the portion of the disk
that will be initialized. The portions
of a disk that can be initialized depend
on the data-storage capacity of your
disk drive.

Disk drives of differing storage
capacities are available for your
system. All drives use the same type
of disks. The only difference is the
number of tracks the drives can use.
The larger the drive capacity, the more
tracks the drive can use.

If you increase the capacity of your
disk drives, more tracks on your disks
become available for use. These
additional tracks must be initialized
before1 being used. The three types
of\initialization allow you the follow­
ing options according to type.

··)t

• Primary or' clear-initializing all
tracks corresponding to the new
capacity, including any that were
previously initialized.

• Secondary-initializing only the
additional tracks made available
by the increased capacity.

Primary Initialization
In primary initialization, all disk tracks
corresponding to the specified drive
capacity are initialized. Tracks pre­
viously initialized are reinitialized.
Any data on the tracks is destroyed.

Primary initialization is required for
new disks. You may also use it for
disks that have been initialized before,
provided they contain no libraries,
temporary data files, or permanent
data files. You must delete libraries
using the allocate function of the
Library Maintenance program and
delete permanent and temporary data
files using the File Delete program.

Secondary Initialization
Secondary initialization is used only
for disks that were initialized on disk
drives of lesser capacity then the ones

· you are now using. It's normally
used for disks containing information
in the previously initialized area, such
as libraries, temporary files, and
permanent files that you want to keep.

In secondary initialization, only the
additional tracks made available by the
increased capacity are initialized. The
remainder of the disk isn't disturbed.

Clear Initialization
Clear initialization is used only on
disks which can't be used because they
have invalid pack labels or some other
unrecoverable disk error. All tracks
corresponding to the drive capacity
are initialized, and previously initialized
tracks are reinitialized. All libraries,
temporary data files, and permanent
data files are destroyed. Therefore,
you should avoid using this type of
initialization.

Number of Disks

The Disk Initialization program can
initialize a maximum of three disks
during one program run. The type of
initialization you specify for a program
run applies to all disks being initialized
during that run. The disks, however,
must be mounted at the same time.
You can't, for example, initialize more
than one removable disk on a given
drive during the same program run.

Erasing Alternate Track Assignments

You can use primary or clear initial­
ization to reinitialize disks that have
been used. However, alternate track
assignments could exist on such disks.
The Disk Initialization program, there­
fore, gives you the option of:

• Erasing existing alternate track
assignments and checking the
condition of al I tracks.

• Leaving existing alternate track
assignments and checking only
those tracks to which alternates
are not assigned.

The option you choose applies to all
disks being initialized during the
program run.

Additional Disk Identification

When you name a disk during pri­
mary or clear initialization, you can
use up to ten characters, in addition
to the disk name, to further identify
the disk. The additional identification
is strictly for your use. It is not used
by the checking programs to ensure
that the right disks are being used.

If you use the File and Volume Label
Display program to print VTOC
(volume table of contents) information
from a disk, the additional identifica­
tion is printed with the disk name.

Surface Analysis Option

You can tell the Disk Initialization
program to perform surface analysis
from 1 to 255 times before judging
whether or not tracks are defective.
A track must successfully complete
every check before being judged usable.
If incorrect data is detected during
surface analysis, the track on which
the data was written is judged defective
and an alternate is assigned to it.

The number of times you specify
surface analysis to be performed
applies to all disks being initialized
during the program run. The time
required for initialization is increased
if you request surface analysis to be
performed more than once.

CONTROL STATEMENTS

You must supply the following control
statements to specify the program
options you want:

1. VIN statement-indicates the
type of initialization, the number
of disks being initialized, the num-
ber of times you want surface
analysis performed, and whether
or not you want previous alter~
nate track assignments erased.
One UIN statement is required
per program run.

2. VOL statement-indicates the
name you assign to the disk, plus
any additional identification you
want to give the disk. The VOL
statement applies to primary and
clear initialization only. One is
required for every disk you
initialize.

3. END statement-indicates the
end of control statements.

71

EXAMPLE

As an example, suppose you wanted
to reinitialize two disks because you no
longer needed the information stored
on them. The following example shows
how you would use the Disk I nitializa­
tion program to do this.

READY

: ~: LOAD :: Jjf ~"":~;,:"~;11I
0 2 0 DATE (XX/XX/XX) ···:.:_:·:::~::::::::.:::·::::::··

030 SWITCH (00000000)-

040 FILE NAME

MODIFY

~. :::w::: :::u::::h no responses
ll@i are shown are the ones bypassed.
!i!i!i!i!i!!i!!f If you press ENTER- after
!if!tif responding to UNIT, the DATE,
!!!!!!!!!!if SWITCH, and FILE NAME keywords
l!f{ are not prompted. (Ci re led
W areas are operator responses.) ,

;\)tig~:ttf j
·····=·=·ENTER '//' CONTROL STATEMENT fb> Message printed by Disk

~~~~~~~~~!~!~~i:::~:e:~o~~=~ed 
==~·=·={~;~::::::::::::·:::.::::?5.;_:-:·::~:·:·:::-:.::::[.::::~::·m~~~~::·f~·=·~::::·::~:;;~:;~:::·:·::.-·:=::·:·:·::.:·:'.:·::::;:::::::::·~·:.:.::.::::·::·:::.:.{=..::·~·;·;:~·:~~~~~:: by opera tor. 

ENTER '//'· CONTROL STATEMENT 

~~~f/f;:~gi;~~~·~~i~=f ~-~~:rg;=i=g~:~?jXr;{;tit 
·=·=·-~;-::· .. !~::t1::;~~/i£f.=:;::::.~::·:x-.:::.~.=~==~-~~·;::·:r:·:·:~:·:;~...-=~·=·=~~:.:=:-.·:::-:~::::=~-~·::::~::-.:.:=: .. ~y=·=:::-·

72

Sequence repeats until
operator enters // END.

Explanation

The first group of statements (READY,
010-040, MODIFY, RUN) are the
statements necessary to load the Disk
Initialization program ($1 NIT). After
the RUN response to the MODI FY
keyword, the program prints a message
requesting utility control\statements.
At this point in the example, you must
specify the options you need to reinitial­
ize two disks.

To reinitialize a disk, you must specify
TYPE-PRIMARY and the disk unit.
In this case, the disks you want to
reinitialize are located on F2 and R2.
For each disk specified in the UN IT
parameter of the UIN statement, you
must supply a VOL statement (if
type is primary) and assign pack

names to the disks. In this case, the
pack names are I NVOIC and 3333. You
may also further identify a disk by
assigning an ID (you assigned I D-013077
to disk INVOIC).

When you reinitialize the disks speci­
fied in this example, you are treating
them as if they are new disks by
specifying ERASE-YES. Therefore,
you are allowed to erase all existing
alternate track assignments and to
check the condition of all tracks.

A// END statement will terminate
prompting of the program request for
control statements. The Disk Initial­
ization program will then execute the
job indicated by your control state­
ments.

73

74

CHAPTER 16. ALTERNATE TRACK ASSIGNMENT PROGRAM

Sometimes a disk track causes a reading or writing error during a job and an alternate
track must be assigned to replace the defective track. The process of assigning an
alternate track is performed by the Alternate Track Assignment program.

FUNCTIONS

The process of assigning an alternate
track consists of:

• Writing track addresses on disk.

• Checking for defective tracks.

• Printing all track sectors that con­
tain incorrect data.

• Assigning an alternate track.

Writing Track Addresses

Any time a track causes reading or
writing errors during a job, the system
stops the program currently in opera­
tion and writes the track address in a
special area on the disk. All disks con­
tain such an area. The program can
then locate a track by using the addres­
ses stored in this area. As long as there
are alternate tracks available for use,
assignment can be done for all the
tracks identified in this area.

Checking For Defective Tracks

The Alternate Track Assignment pro­
gram uses a procedure called surface
analysis to test the condition of tracks.
It transfers test data from the suspected
track to an alternate track and reads
and checks the data to ensure that it
was recorded properly. If the suspected
track is defective, this is the alternate
track that is assigned.

Printing Sectors Containing
Incorrect Data

The alternate track assigned if a track
is defective may contain incorrect
data from the defective track. When
the Alternate Track Assignment pro­
gram is reading data from the defective
track, it prints all track sectors that may
contain data causing reading errors.
To correct the errors on an alternate
track, use the Alternate Track Rebuild
program.

Assigning An Alternate Track

An alternate track is assigned if a track
is defective. The alternate track is then
automatically used any time the program
attempts to use the defective track.

OPTIONS
The Alternate Track Assignment pro­
gram gives you the following options:

• You may choose one of three types
of assignment-conditional, uncon­
ditional, or cancel prior.

• You may use up to six alternate
tracks on every disk.

• You may specify the number of times
you want the program to do surface
analysis.

You specify the options you want in
control statements (see Control State­
ments in this chapter).

75

76

Type of Assignment

The program offers three types of
assignment: conditional, unconditional,
and cancel prior. The three types of

assignment allow you the following
options according to type.

• Conditional-testing the condition
of a track and assigning an alternate
if it is defective.

• Unconditional-assuming a track is
defective and assigning an alternate.

• Cancel prior-canceling an alternate
track assignment.

Conditional Assignment
Conditional assignment is the normal
use of the Alternate Track Assignment
program. When conditional assignment
is specified, a track is tested for errors
(surface analysis). If the track is
defective an alternate is assigned. Prior
to surface analysis, the program trans­
fers the data from the suspected track
to the alternate track that is used if the
suspected track is found defective.

Unconditional Assignment
Unconditional assignment is used when
the program has attempted to use
conditional assignment, but the suspected
track was not found to be defective
even though it had caused occasional
reading or writing errors. For this
reason you should assign an alternate
track using unconditional assignment.
Alternate tracks are assigned without
first testing the condition of the tracks
suspected of being defective. (A con­
ditional assignment is forced after an
unconditional request to check any
other tracks that previously caused
errors.)

Cancel Prior Assignment
Cancel prior assignment is used to
free an alternate track for use with
another track if there are no other
alternates available. Canceling an
assignment involves transferring the
data from an alternate track back to the
track to which the alternate was
assigned. Prior to transferring the
data back to the original track, the
Alternate Track Assignment program
tests the condition of the original' track.
If the track is found defective, the pro­
gram stops and one of three options
is taken:

• You leave the assignment as it is
but continue checking other assign­
ments (if there are any), or the pro­
gram ends.

• You cancel the assignment regard­
less of the condition of the original
track.

• You test the track again.

You must run the File and Volume
Label Display program to determine
to what tracks alternates are assigned.

Number of Alternate Tracks

There are six tracks on every disk that
can be used as alternates. These tracks,
in addition to tracks 0 and 1, can't be
replaced; that is, they can't have an
alternate assigned to them.

Surface Analysis Option

You can tell the program to do surface
analysis from 1 to 255 times before
judging whether or not tracks are
defective. A track is judged usable
only after successfully completing
every check. If at any time during sur­
face analysis incorrect data is found,
the track on which the data was written
is judged defective, and an alternate
is assigned to it.

CONTROL STATEMENTS

You must supply the following control
statements to specify the program
options you want:

1.

2.

AL Tstatement-indicates the
name and unit of the disk con­
taining the defective track, the
number of times you want surface
analysis done, and the tracks to
which you want to assign alter­
nates or for which you wish to
cancel assignment of an alternate
track.

END statement-indicates the
end of control statements.

77

CHAPTER 17. ALTERNATE TRACK REBUILD PROGRAM

An alternate track may contain some incorrect data. In order to correct this data,
you must use the Alternate Track Rebuild program.

FUNCTIONS

The process of correcting data consists
of:

• Locating incorrect data.

• Replacing incorrect data.

Locating Incorrect Data

The Alternate Track Assignment pro­
gram prints a listing of all track
sectors that may contain incorrect
data. You will find, on the listing,
the name of the disk, the track and
sector numbers of the area suspected
of containing incorrect data, and the
data from these sectors.

Replacing Incorrect Data

The Alternate Track Rebuild program
will replace the number of characters
you indicate in the positions you
indicate. You must key the new
characters in hexadecimal form. These
characters are called substitute data.

OPTIONS

The Alternate Track Rebuild program
gives you the following options:

• You may correct as many characters
as you wish on one track.

• You may correct data on more than
one track.

You specify the options you want in
control statements (see Control State­
ments in this chapter).

Number of Characters

You may replace from 2 to 256 charac­
ters on one track in one run. You can
do this by replacing all the characters
(including correct data) or just groups
of incorrect data.

Number of Tracks

The Alternate Track Assignment pro­
gram prints the track and sector numbers
for those areas that contain incorrect
data. You can correct one or more
of these tracks in one program run.
The possible tracks you can correct
are 8 through 405 and the sectors
are 0 through 23. Tracks 0 through 7
can't be corrected.

79

80

CONTROL STATEMENTS

You must supply the following con­
trol statements to specify the program
options you want:

1. REBUILD statement-indicates
the name of the disk containing
incorrect data, the track and
sectors to be corrected, and the
position and number of charac­
ters to be replaced. A REBUILD
statement is needed for each
group of characters to be corrected.
The substitute data follows each
REBUILD statement.

2. END statement-indicates the
end of control statements.

CHAPTER 18. FILE AND VOLUME LABEL DISPLAY PROGRAM

You may need to obtain specific information about a file; find space available for
libraries or new files; or check the contents of a disk for libraries, temporary data
files, or permanent data files. In order to do any of these, you need information
contained in the volume table of contents (VTOC). To obtain this information you
must use the File and Volume Label Display program.

FUNCTIONS

This program allows you to:

• Print VTOC information.

• Print headings for file information.

Print VTOC Information

The VTOC is an area on disk that
contains information about the contents
of the disk. Every disk contains a
VTOC. The File and Volume Label
Display program allows you to access
this information.

Print Headings

If the file information you requested
from the VTOC overflows onto
another page, the program prints the
headings for the information at the
top of the next page. It will do this
for each succeeding new page.

OPTIONS

The File and Volume Label Display
program gives you the following
options:

• You may specify a printout of the
entire VTOC or a printout of VTOC
information for certain data files.

• You may specify up to 20 file
names in one run.

You specify the options you want in
control statements (see Control State­
ments in this chapter).

Entire Contents of VTOC

There are many reasons why you may
want to print the entire VTOC. You
may want to check which tracks are
assigned alternates or how many
alternate tracks are still available for
use. You may also want to check the
boundaries of libraries or check for
permanent or temporary data files.

81

82

File Information Only

You may request information for
specific files. You may want this
information to find out file names,
file designations, or disk areas reserved
for files. You may also use it to deter­
mine the relationship of multivolume
files.

Number of File Names

When you specify a file name, you must
use the name that identifies the file
in the VTOC. You are allowed to
specify up to 20 file names in one
program run.

CONTROL STATEMENTS

You must supply the following con­
trol statements to specify the program
options you want:

1.

2.

DISPLAY statement-indicates
whether you want the entire
VTOC or specific file informa­
tion from the VTOC. It also
indicates the unit of the disk
containing VTOC information.

END statement-indicates the
end of control statements.

CHAPTER 19. FILE DELETE PROGRAM

You may find that you no longer need the information in a file. You can free the
space in a file for use by new files by using the File Delete program.

FUNCTIONS

This program allows you to:

• Eliminate file references in the
VTOC.

• Erase information in a file.

VTOC File References

The File Delete program allows you to
remove the VTOC references to a file
by removing the reference. However,
the file reference is not physically
removed from the VTOC until normal
end of job has occurred.

Erase File Information

You may erase a file from the disk as
well as removing the file reference in
the VTOC. This involves erasing the
information contained in the file.
Its space is then made available for
any new files.

OPTIONS

The File Delete program gives you the
following options:

• You may choose to delete files in
one of two ways: remove or
scratch.

• You may delete some or all files
from a disk.

• You may specify up to 52 file names
in one job.

You specify the options you want in
control statements (see Control State­
ments in this chapter).

Deleting a File

If you wish to delete a permanent
file, you must use the File Delete
program. If you delete a temporary
file, you may use either the File
Delete program or change the file
designation when you use the file. You
may either remove or scratch a file.

83

84

Removing a File

When you remove a file from a disk, you
are removing the file reference from
the VTOC. You may also erase the
file from the disk, leaving its area
available for use by other files.

Scratching a File

The File Delete program allows you to
scratch a file if you find you may need
to reference it later. When you scratch
a file, the VTOC reference is not
removed but changed to designate a
scratch file. You can use the file until
a permanent file is created in its place.

Number of Files
You may remove some or all files on
a disk. If a file name applies to more
than one file, all the files with that
name are deleted. You can keep this
from happening by identifying the
files with both name and date.

Number of File Names

You may specify as many file names
as the control statement will allow.
If you specify more, you must use
more than one statement. However,
you are only allowed to specify 52
file names in one job.

CONTROL STATEMENTS

1. REMOVE statement-indicates
the name and unit of the disk,
what files are to be removed, and
whether or not you are erasing
the data for the file.

2.

3.

SCRATCH statement-indicates
the name and unit of the disk
and what files you wish to scratch.

END statement-indicates the end
of control statements.

CHAPTER 20. DISK COPY/DUMP PROGRAM

You may need to check records in a file for errors. In order to do this you need to
print a copy of the file. It is important to provide a reserve disk or file for disks
containing libraries or permanent data files in case something happens to the original
disk or file. You can copy the disk or file using the Disk Copy/Dump program.

FUNCTIONS

Copying a disk or file involves:

• Identifying disk or file locations.

• Using a work area.

Printing a file involves:

• Identifying the portion to be
printed.

• Printing record key or relative
record numbers.

Disk or File Location

In order to copy a disk or file, you
must specify the unit on which the
disk or file is located and the unit to
which it is to be copied. You can
copy from one disk to another or from
one area to another on the same disk
(the latter applies to only part of a disk
or file). Information for copying a
file is contained in your responses to
the OCL keywords prompted for the
Disk Copy/Dump program (see the
IBM System/3 Model 6 Operation
Control Language and Disk Utility
Programs Reference Manual,
GC21-7516).

Using a Work Area

When you are copying a disk or file
to another disk but have only one disk
drive, you must use available space on
the fixed disk on drive one. The disk
you copy from must be a removable
disk. The information from the disk
you are copying is transferred to the
available space on the fixed disk where
it remains until another removable
disk is mounted. This is the removable
disk to which the information is copied.

If you are copying a file from one area
on a removable disk to another area on
the same disk you needn't use a work
area on the fixed disk.

Printing a Portion of a File

You can print all or part of a file.

Record Keys and Relative Record
Numbers

For indexed files the Disk Copy/Dump
program will print each record key
(used to access the record) followed
by the contents of the record. The
records are printed either in the order
their keys appear in the index. portion
of the file or as they appear in the
file itself. For sequential and direct
files, a record is printed with its
relative record number (used to access
the record) preceding the record. The
records are printed in the order they
appear in the file.

85

86

OPTIONS

The Disk Copy/Dump program allows
you the following options:

• You may copy an entire disk or
a file.

• You may print part or all of a file.

• You may delete records from a
file.

• You may reorganize a file.

You specify the options you want in
control statements (see Control State­
ments in this chapter).

Copying and Printing

You may specify any of the following
copy or print combinations:

• Copy an entire disk.

• Copy a data file.

• Copy and print a data file.

• Copy a data file, but print only
part of the file.

• Print an entire data file.

• Print only a part of a data file.

Deleting Records

If you wish to delete records from a
file while copying or printing, you
must indicate the type of-record you
wish to omit. To do this, you must
specify the identifying character (any
of the standard System/3 character set
except commas, apostrophes, and
blanks) and the position of the charac­
ter in the records (maximum position
999). The records that are deleted
are printed. When the records of a
file are being printed, the deleted
records are indicated.

Reorganizing a File

When you are copying an indexed file
you can reorganize it. The records
in the data portion are put in the same
order as their index keys leaving the
original of the file you are copying
unaffected. If you are both copying
and printing an indexed file, you must
specify reorganization.

CONTROL STATEMENTS

You must supply the following control
statements to specify the program
options you want:

1. COPYPACK statement-indicates
that an entire disk is to be copied.
It contains the unit of the disk
to be copied and the disk to which
the copying is being done.

2. COPYFILE statement-indicates
that all or part of a data file is
being copied or printed or both,
whether the file is to be reorgan-
ized, and whether any records
are to be deleted. It also allows
you to specify if you want a
work area.

3. SELECT KEY statement-
indicates, according to record
keys, which part of an indexed
file you want printed.

4. SELECT RECORD statement-
indicates, according to relative
record numbers, which part of
a file you want printed.

5. END statement-indicates the
end of control statements.

CHAPTER 21. LIBRARY MAINTENANCE PROGRAM

Your programs are stored on disk in an area called a library. You can update or add
new entries in this library. In order to do so, you must use the Library Maintenance
program.

FUNCTIONS

The Library Maintenance program
has four functions:

• Allocate

• Copy

• Delete

• Rename

Allocate

The allocate function of the Library
Maintenance program allows you to:

• Create libraries.

• Change the size of libraries.

• Delete libraries.

o Reorganize libraries.

Creating Libraries
Creating a library involves:

• Assigning a library to a disk.

• Assigning space for the library
directory.

• Using a work area.

Assigning a Library to a Disk. You are
allowed one source and one object
library per disk. The libraries can
be located anywhere on the disk
where space is made available as long
as the source library precedes the
object library. You needn't have both
libraries for a disk.

Assigning Space for the Library Directory.
The Library Maintenance program
creates a separate directory for each
library. A directory for a source or
object library contains information
concerning each library entry. This
information includes the name and
location of the library entry. For a
source library, the first two sectors of
the first track are assigned to the
directory. For an object library which
includes system programs, the first
three tracks are assigned to the directory.
If system programs are not included,
only the first track is assigned to the
directory.

Another type of directory, the system
directory, is also created by this pro­
gram. The system directory contains
information concerning the libraries
and their directories. This information
includes the size of and available space
in the libraries and their directories. The
system directory is contained in the
volume label on any disk pack.

87

88

Using a Work Area. You must use a work
area when you want to create a source
library, but there is not enough avail­
able space preceding the object library.
The object library entries are tempo­
rarily stored in the work area while
that library is being moved to make
space available for the source library.

Changing the Size of Libraries
Changing the size of a library involves:

• Moving the object library when
increasing the source library.

• Moving the object library when
decreasing the source library.

• Moving the object library when
increasing or decreasing the object
library.

• Reorganizing the libraries.

Moving the Object Library when Increasing
the Source Library. The object library

immediately follows the end position
of the source library. If an object
library is present, therefore, the source
library cannot be increased in size
without moving the object library. The
object library must be moved to a
work area temporarily while the source
library is increased. When moved back
from the work area, the object library
immediately follows the new end posi­
tion of the source library.

Moving the Object Library when Decreasing
the Source Library. When the source library

is decreased in size, its end location
moves. If there is an object library
it is moved so that it immediately
follows the source library. The space
that results from the decrease in size of
the source library is shifted to follow
the object library.

Moving the Object Library when Increasing
or Decreasing the Object Library. The end

location of the object library is moved
when the object library increases or
decreases in size. If the object library
decreases, additional space is made
available for file usage following the
object library.

Reorganizing the Libraries. Any time you
change the size of one of your libraries,
the program reorganizes the library.
See Reorganizing Libraries in this
chapter.

Deleting Libraries
When you delete a library, you are
making the area occupied by the library
available for other use.

You are restricted in deleting object
libraries. You can't delete object
libraries containing system programs
that control program loading. Also,
you can't delete the object library
from which the Library Maintenance
program was loaded.

Note: It is important to remember that
when you delete a source library,
the object library is not moved. When
you create a source library after
deleting it, the same space may not be
used for the source library. The object
library (if there is one) must be moved
to make space available for the source
library.

Reorganizing Libraries
Reorganizing a library involves:

• Relocating source library entries.

• Relocating object library entries.

• Using a work area.

Relocating Source Library Entries. When
you delete a source library entry, the
area is used for new entries. Some
times not all of an entry will fit into
this vacated area. It must be continued
in the next available area. Reading
separated entries takes more time than
if the entire entry were located in
one area. Therefore, the Library
Maintenance program relocates each
entry so that it occupies one area
only.

Relocating Object Library Entries. When
you add an entry to the object library
in an area where an entry has been
deleted, there may be space leftover
in this area. The Library Maintenance
program relocates entries so that these
gaps are eliminated. By doing this, you
save space that may be used for other
new entries.

Using a Work Area. The Library Maintenance
program must use a work area when
reorganizing the libraries. Library
entries are temporarily stored in the
work area during reorganization.

Copy

The copy function of the Library
Maintenance program allows you to
copy:

• From reader-to-disk (add or replace
entries)

• From disk-to-disk (copy entries)

• From disk-to-printer (print entries)

• From disk-to-card (punch entries)

• From disk-to-printer-and-card (print
and punch entries)

Copying a library entry involves:

o Identifying the location of an entry.

• Identifying an entry.

• Removing and reinserting blanks
and duplicate characters.

o Compressing object programs and
routines.

Identifying the Location of an Entry. An
entry may be read from.either the
system input device (keyboard or
card reader) or from disk. It can be
copied to disk, printer, or cards.

Identifying an Entry. Entries are identified
by their type and name. Entries that
can be copied include source library,
object library, and system directory
entries. A name identifies specific
entries within the library or directory.
You can also further identify an entry
by designating whether it is temporary
or permanent. This allows the program
to make a check before replacing an
entry.

Removing and Reinserting Blanks and Dupli­
cate Characters. Source statements and

procedures are placed in the source
library. Before source statements are
put in the source library, blanks and
duplicate characters are removed to
save space. When the source statements
are copied, blanks and duplicate charac­
ters are reinserted. Procedures are left
unchanged when placed in the source
library.

Compressing Object Programs and Routines.
Object programs and routines are
compressed, then placed in the object
library. When they are read from the
object library, they remain compressed.

89

90

Delete

Deleting an entry involves:

• Identifying the location of an
entry.

• Identifying an entry.

Identifying the Location of an Entry. The
entry to be deleted is contained on
disk.

Identifying an Entry. Entries are identified
by their type and name. Entries that
can be deleted include source library
and object library entries. A name
identifies the particular entry being
deleted. You can also further identify
an entry by designating whether it is
temporary or permanent.

Rename

The rename function of the Library
Maintenance program allows you to
change the name of a library entry.
Renaming an entry involves identifying
the disk location of the entry to be
renamed.

OPTIONS

The Library Maintenance program gives
you the following options. You can:

• Assign as many tracks to the source
library or object library as are avail­
able on the disk.

• Include system programs in the
object library.

• Specify any of a number of types
of entries to be copied, deleted,
or renamed.

• Specify up to six characters for an
entry name.

• Specify specific entries by name for
the copy and delete uses of this
program.

You specify the options you want in
control statements (see Control State­
ments in this chapter).

Library Size

The maximum library size is the
number of tracks in the available
disk area. The minimum size for the
source library is one track. The mini­
mum size of the object library depends
on whether it is to contain a minimum
system. (A minimum system is made
up of those system programs necessary
to load and run programs.) If the
object library contains a minimum
system, the library can be no smaller
than 30 tracks. Otherwise, the mini­
mum is three tracks.

System Programs

You can include system programs in
the object library. If you do, three
tracks must be assigned to the library
directory, and space must be assigned
for a scheduler work area. (The
scheduler work area is a work area
for one of the system programs, the
Scheduler.) The scheduler work area
immediately precedes the object
library. The Library Maintenance
program automatically assigns this
space.

Types of Entries

For the copy function of the Library
Maintenance program, you can
specify source statements, procedures,
object programs, routines, and system
directory entries.

You can delete or rename source state­
ments, procedures, object programs,
and routines.

Length of Name

The name you specify for an entry
must not exceed six characters. It
can be any of the System/3 characters
except blanks and periods. The first

character must be alphabetic (A-Z,
@,#,or$). It is recommended that
you don't use a dollar sign, however,
since many I BM programs begin with
$. The same rules apply to constructing
a new name for an entry .

. Names of Entries
You can specify an entry or group
of entries for the copy or delete uses
of this program.

COPY FUNCTION OF LIBRARY MAINTENANCE

You Can Copy

You Can Print

You Can Punch

You Can Print
and Punch

• One library entry.
• Library entries with the same name.
• Library entries that begin with certain characters.
• All library entries.
o The minimum system.
o An IBM program.

• One library entry.
• Temporary or permanent library entries with the same name.
• Temporary or permanent library entries with names

beginning with certain characters.
• All temporary or permanent library entries of a certain type.
• Directory entries for library entries of a certain type.
• All library and system directory entries.
• Only the system directory.

• One library entry.
• Temporary or permanent library entries with the same name.
• Temporary or permanent library entries with names beginning

with certain characters.
• Temporary or permanent library entries of a certain type.

• One library entry.
• Temporary or permanent library entries with the same name.
• Temporary or permanent library entries with names beginning

with certain characters.
• Temporary or permanent library entries of a· certain type.

DELETE FUNCTION OF LIBRARY MAINTENANCE

You Can Delete • One library entry.
• Temporary or permanent library entries with the same name.
• Temporary or permanent library entries with names beginning

with certain characters.
• Temporary or permanent library entries of a certain type.

91

92

CONTROL STATEMENTS

You must supply the following con­
trol statements to specify the program
options you want:

1. ALLOCATE statement-indicates
whether you wish to create,
change the size of, delete, or
reorganize the source or object
library. It also indicates the unit
of the disk you are using, how
many tracks you want to assign
to the object library directory,
and where the work area is (if
you use one). You can't use
more than four ALLOCATE
statements per job.

2.

3.

4.

5.

COPY statement-indicates
whether you wish to add, replace,
copy, print, or punch entries.
It also indicates what entries
are to be used, on what unit the
entries are located, their destin-
ation, their designation, and a
new name if you wish the copy
to have a different name.

DELETE statement-indicates
what entries are to be deleted,
the unit they are on, and their
designation.

RENAME statement-indicates
what entries are to be renamed,
the unit they are on, and the
new name you wish to give to
them.

END statement-indicates the
end of control statements.

I
PARTIV. SAMPLEJOBS

93

94

CHAPTER 22. SAMPLE JOBS

Part IV contains six sample jobs similar to what you might run. Each sample job is
organized into three sections:

1. An introductory summary explaining the job.

2. OCL statements (and utility control statements where applicable) for the job.

3. Explanatory notes on individual statements in the job.

95

96

SAMPLE JOB 1. INITIALIZE DISK

You're going to use the Disk Initialization program (located on the fixed disk on drive
one) to initialize the removable disk on drive one. You want to:

• Initialize the entire disk pack.

• Do surface analysis only once.

The name of the new disk will be 12345.

Here are the OCL and utility control statements for the job.

l~EADY- l...OAD CP/S)
**
010 LOAD NAME- $INIT (P/S)
011 UNIT- Fl <ENTER->
**
MODIFY

HUN CP/S)
ENTER 'II ' CONTROL STATEMENT

// UIN UNIT-R1,TYPE-PRIMARY <PIS>
ENTER 'II ' CONTROL STATEMENT

// vrn_ PA~(-12345 (P/S)
ENTER 'II ' CONTROL STATEMENT

// END CP/S)

Explanation

• 010 LOAD NAME

• 011 UNIT

• II UIN UNIT

o II VOL PACK

• II END

$1NIT

$1 NIT is the system name for the Disk Initialization
program.

F1
The Disk Initialization program is located on the fixed
disk on drive one. Pressing ENTER- instead of PROG
START to end response causes DATE, SWITCH, and
file keywords to be bypassed.

R1 ,TYPE-PRIMARY

1. Tells the system to initialize the removable disk
on drive one.

2. Because no other parameters are entered in the
UI N statement, the program will:

• Initialize the entire pack.

• Read and verify the test data on the pack
one time.

- 12345
$1NIT will enter the disk name 12345 in the VTOC.
Whenever a file from this disk is used in a job, the
operator must type 12345 when the system prompts
PACK.

End of control statements.

97

98

SAMPLE JOB 2. COMPILE AN RPG SOURCE PROGRAM

You're going to use the I BM-supplied procedure RPGB (located in the source library
on the fixed disk on drive one) to compile a source program INVUPD (an inventory
update) located on R1. The RPG 11 Compiler (the program to compile RPG 11 source
programs) is also located on R1. You want to put the compiled program in the object
library on R1. Here are the OCL statements for the job.

l~EADY-

000 CALL
()0:1.

NAME-·
UNIT-·

CAL.I... < P /S)
F~PGB (P/S)
F:t. <P/S)

**
010 LOAD NAME-SRPG
011 l.JNIT-R1
020 COMPILE OBJECT-Fl
021 SOURCE- INVUPD <P/S)
022 UNIT-Rl
030 FILE NAME-$WORK
031 UNIT-Fi
032 PACK-F1F1F1
033 TRACKS-20
034 RETAIN-S
040 FILE NAME-$SOURCE
041 UNIT-Fl
042 PACK-F1F1F1
043 TRACKS-20
044 RETAIN-S
**
MODIFY

020 (P/S) Rl <PIS)

RUN (P/8)

Explanation

o 000 CALL NAME

• 010 LOAD NAME

• 011 UNIT

• 020 COMPILE OBJECT

RPGB
Tells the system you want to use the I BM-supplied
compile procedure (RPGB).

$RPG
Tells the system you want to use the RPG 11 Compiler
(the program to compile RPG 11 source programs).

R1
The RPG 11 Compiler is located on R 1.

- F1

• 021 SOURCE- INVUPD

• 022 UNIT

• 020 MODIFY

The SOURCE statement in the RPGB procedure requires
a delayed response. When the system reaches the SOURCE
statement in the display sequence, it prompts SOURCE
and waits for the operator's response.

R1
The response tells the system that the program to be
compiled (INVUPD) is located on R1.

R1

1. System prompts MODI FY.

2. Operator types 020, telling system he wants to
change that statement. (He does not want
the system to put the compiled program on F1 .)

3. System tabs to position 37 and waits for response.

4. Operator types new response - R 1. The system
will put the compiled program on R 1.

99

100

F<Ef.~DY····

SAMPLE JOB 3. PROCESS CUSTOMER PROGRAM "INVUPD"

You're going to run the customer program INVUPD, compiled in SAMPLE JOB 2
and located on the removable disk on drive one. The job uses one file, INV,
located on R2. The name of the disk which contains the file INV is 123456.
Here are the OCL statements for the job.

l...CU~:O (P/B)

**
<H 0 LDf.~It Nf.~ML::>.. lNVl.JP:O (P./~:D
0:1. :I. UNIT.... F~l. (P/B)
020 Df.-lTE
0:30 Bl>,! ITCH
040 FILE
04:L
042
04:3
0~50 FI LE

<:L2/0B/70)
(()()()()()()()())

Nf.~ME-·

UNIT-·
PACI<

Lf.lBEL
Nt-~ME

(P/B)
< P./~:>)
IN' . .J (P./B)
1=~2 (P/B)
:l ::.~:·54!=.:i<:':. (P ./B)

(F'./B)

**
MODIFY

Explanation

• 020 DATE

• 030 SWITCH

• 043 LABEL

- (12/08/70)
We'll use the current system date for the job.

- (00000000) - (P/S)
The program doesn't use external indicators so the
operator doesn't care about the switch setting and
responds by pressing the PROG START key.

(ENTER-)
Responding to LABEL by pressing the ENTER- key
tells the system to bypass the rest of the file keywords
and prompt Fl LE NAME.

• 050 FILE NAME (P/S)

• MODIFY

Responding to Fl LE NAME by pressing PROG START
causes the system to bypass the rest of the file keywords
and prompt MODI FY.

101

102

SAMPLE JOB 4. COPY FILE DISK TO DISK

You're going to copy an employee master file from R1 to R2. The second file will
serve as a back-up in case the original file is damaged in some way, such as a track
becoming defective or a portion of the file being overlayed. When the master file
was created, you:

1. Responded to Fl LE NAME with EMASTFI L.

2. Responded to PACK with VOL06.

3. Responded to LABEL with EMPMAST.

4. Responded to TRACKS with 15.

These responses caused the system to put the name EMPMAST in the VTOC on
VOL06. .

Here are the OCL and utility control statements you will use to copy the master
file from R1 to R2.

F~Er:~:oy.... l ... Clr.YO (P./B)

**
O:LO L.Dt~1D Nr~~ME···· ~!;COPY (P./B)
0:1. :I. UNIT-·· F:I. (P/~;:;)

020 DATE <12/08/70)
030 SWITCH <00000000)
040 FILE NAME-

_ 04:1. UNIT-
042
04:·~

0~50 Fil ... E
Q~::i :I.
0~:=;2

o~::i:·5

o~:i4

05~7.i
o~=;6

0~:=;7

060 Fil ... E

P{~CK-..
l ... t::lBEI ... ····

NAME-··
UNIT-··
PACK····

Lf.~BEI ... " ..
1:~Eco1:;:DS· ...
THf~CKS-·

L.DCf.~lIDN-..
F<ETAIN····

Nf.lME-·

(P./~:;;)
<P./S)
COPY IN (P/E;)

•,JDl ... 06 < P./~:;;)
i:::MPMr:~BT (ENTER···)
CDPYD <P/B)

1.JDLO~~· 1: P./B)
l::JvtPMr:·~BT2 < P./B)
<P./B)
:l~5 < P/B)
(P./B)
P (ENTl:::i:;:····)
<P./B)

**
MODIFY

4~UN <P/S)
ENTER 'II ' CONTROL STATEMENT

// COPYFILE OUTPUT-DJ:SI.;;' (F'/S)
ENTER 'II ' CONTROL STATEMENT

// END (f'/S)

Explanation

• 010 LOAD NAME

• 011 UNIT

• 020 DATE

• 030 SWITCH

• 040 FILE NAME

• 043 LABEL

• 050 FILE NAME

• 053 LABEL

• 055 TRACKS

- $COPY
$COPY is the system name for the Disk Copy/Dump
program.

F1
The Disk Copy/Dump program is on F1.

- (12/08/70)
You'll use the current system date for the job.

(00000000)
This program doesn't use external indicators, so the
operator doesn't care about the switch setting and
responds by pressing PROG START.

COPY IN
COPY IN is the predefined file name you must use for
the input file whenever you use the Disk Copy/Dump
program.

EM PM AST
EMPMAST is the VTOC file name for the COPYIN file.
You must supply this name so the system knows which
file to use for COPYIN. Pressing the ENTER- key
causes the system to bypass the rest of the file keywords
and prompt Fl LE NAME.

COPYO
COPYO is the predefined file name you must use for the
output file whenever you use the Disk Copy/Dump pro­
gram.

EMPMAST2
The system enters EMPMAST2 in the VTOC on VOL07.
EMPMAST2 is the name by which the system will identify
the back-up file.

15
Because you are creating a new file, you must respond to one
of the space keywords (TRACKS and RECORDS). You
specify 15 tracks because that's what you specified for
the original file.

• 057 RETAIN - P
The back-up file is to be permanent to protect it against
inadvertent overlaying. Pressing the ENTER- key causes
the system to bypass the rest of the file keywords and
prompt FILE NAME.

• COPY Fl LE OUTPUT - DISK
The COPYF I LE statement tells the program to copy the
designated file from R1 to R2.

103

l~EADY-
000 BUILD
OOl.

SAMPLE JOB 5. MUL TIFILE BUILD

Each day the customer runs a daily transaction job which creates a daily transaction
file. Each day's file has a different name and date. You are going to build a procedure
to use these daily files to create a weekly transaction file (WKL YTR). The weekly
transaction program is located in the object library of F1.

NAME­
UNI T-

BUILD <PIS>
WTR <PIS)
1~2 <PIS>

**
010 LOAD NAME- WKYRUN <PIS>
011 UNIT- Fl (PIS>
020 DATE <PIS)
030 SWITCH <00000000) <PIS>
040 FILE NAME- MONTR MONDAYS FILE <PIS>
041 UNIT- F1 <PIS>
042 PACK- PACK08 <PIS)
043 LABEL- CP/S)
044 RECORDS- <PIS>
045
046
047
048
050 FILE
051
()52
053
054
055
056
057
058
060 FILE
061
062
063
064
065
066
067
068
070 FILE
071
072
073
074
075
076
077
078
080 FILE
081
082
083

104

TRACl"\S-·
LOCATION-·

RETAIN-·
DATE­
NAME­
UNIT­
PACK-

LABEL­
RECOF<DS­

TRACKS­
LOCATION-

RETAIN­
DATE­
NAME­
UNI T­
PACK-

LABEL­
RE:CORDS­

TRACKS­
LOCATION-

RETAIN­
DATE­
NAME­
UNIT­
f'ACK·-·

LABEL­
RECORDS­

TRACKS­
LOCA TI ON-

RETAIN­
LlATE­
NAME­
UN IT­
PACK-

LABEL-

CPIS)
<PIS>
<PIS>
? CP/S)
TUETR TUESDAYS FILE <PIS)
F:I. <PIS>
PACl,08 <PIS)
<PIS>
<PIS>
<PIS)
<PIS>
<PIS>
? <PIS>
WEDTR WEDNESDAYS FILE <PIS>
F1 <PIS>
PACK08 (PIS)
<PIS>
<PIS>
<PIS>
<PIS>
<PIS>
? <PIS)
THUTR THURSDAYS FILE <PIS)
Fl. < Pl~:D
PACK08 <PIS>
(Pl~:>>

<PIS>
<PIS>
<PIS>
<PIS)
? (PIS>
FRITR FRIDAYS FILE <PIS>
Fl. <PIS)
PACK08 < l='IS >
<PIS,>

084
085
086
087
088
090 FILE
091
092
093
094

8?~
1.00 FILE

RECORDS­
TRACKS­

LOCATION-
RETAIN­

DATE­
NAME-
UNIT-·
PACK-

LABEL­
RECORDS-

LO~~t ~~~=
NAME-

<P/S)
<P/S)
(P/S)
(P/S)
? (P/S)
Wl'\LYTR < F'/S >
Rl. <PIS>
PACl<04 (F'/S)
CF'/S)

~j()() CP/S)
(P/S)
F' <ENTER-·>
<P/S)

**
MODIFY

HUN (P/S)

Explanation

o 000 BUI LO NAME

• 001 UNIT

• 020 DATE

• 030 SWITCH

• 040 FILE NAME

• 048 DATE

• 090 Fl LE NAME

• 094 RECORDS

• 096 RETAIN

o 100 FILE NAME

o RUN

- WTR
The procedure name in the source library is WTR.

- R2
The procedure is located on R2.

- (P/S)
The date statement isn't part of the procedure.

- (00000000) - (P/S)
The external indicators aren't used by the program.

- MONTR MONDAYS FILE
The file name for each day is different. The comment
(MONDAYS FILE) will become part of the procedure.

- ? (P/S)
The date each file was created is supplied at CALL time,
when the job is run.

- WKL YTR (P/S)
The output file is called WKL YTR and put on PACK04
on R1.

- 500 (P/S)
Your output file contains up to 500 records.

- P (ENTER-)
You want to make this a permanent file. The ENTER- key
caused DATE to be skipped and Fl LE NAME prompted.

- (P/S)
You are finished with file statements, prompt MODI FY.

- Put the procedure in the source I ibrary.

105

t=~EADY-

000 CALL
00:1.

SAMPLE JOB 6. MUL TIFILE CALL

You are going to run the procedure you built in sample job 5. However, this week
Thursday was a holiday so there are only four input files. You can still use the same
procedure if you delete an input file at MODI FY time.

NAME-··
UNIT-

CAL.I... (P /S >
WTR (F'/S)
1:~2 < P/S >

**
010 LOAD NAME-WKYRUN
011 UNIT-Fl
020 FILE
021.
022
02:~

030 FILE
031.
032
033
040 FILE
041.
042
043
050 FILE
051.
052
0:;3
060 FILE
061.
06~~

06~3

070 FILE
071
()"72

073
074

NAME--MoN·n~

UNIT-Fl
PACl\-PACKOB
I:IATE­
NAME-TUETR
UNIT-Fl.
PACK-PACK08
DATE­
NAME-WEDTR
UNIT-Fl.
PACl\-PACK08
DATE­
NAME-THUTR
UNIT-Fl.
PACK-PACl·\08
DATE-·
NAME-FRI TR
UNIT-Fl
F'ACl\-PACl\OB
DATE­
NAME-Wl·\I. .. YTI~
UNIT-F~:t.

Pi:\ CI\-· PAC I'\ 0 4
1:~ECOl~Ds-~;oo

l~ETfiIN-P

4/~5/71. < P/S >

4/6/'71. (F'/S)

A/7171. <PIS>

4/B/71 CP/S)

4/9//':I. (P/S >

**
MODIFY

·O!.:;o., < P /S >

* THURSDAYS FILE DELETED BECAUSE OF HOLIDAY, NO RUN THAT DAY <PIS>

l~UN (P/S >

106

Explanation

• 023 DATE

• 033 DATE

• 043 DATE

• 053 DATE

• 063 DATE

• MODIFY 050

• RUN

- 4/5/71

- 4/6/71

- 4/7/71

- 4/8/71

- 4/9/71
You must supply the date for each day's input file because
you gave a delayed response (?)at BUILD time. Thurs­
day's date is entered even though you will delete the
file later. A date should be entered to continue the cycle.

- You delete the entire file for Thursday and enter a
comment to explain why.

- Start the job.

107

108

II
PART V. REVIEW QUESTIONS

109

110

CHAPTER 23. REVIEW QUESTIONS

Part V includes review questions for chapters 2 through 11 of this manual. You should
use these questions to check your understanding of the important concepts of these
chapters.

The questions are divided into chapters; sometimes two chapters are included in one
group of questions. The answers are organized in the same manner and follow the
entire group of questions.

Questions

Chapters 2 and 3
1. -----are required to supply information for the system to run jobs.
2. The system requests information by printing a and the operator

3.

Chapter 4
1.
2.
3.
4.
5.

6.
7.

enters a----
What is the purpose of the end-of-statement keys?

Why is the LOAD cycle called independent?,
LOAD cycle OCL statements are saved. True or false?
A set of OCL statements written on disk is referred to as a ___ _
The purpose of the BU I LD cycle is to
After the BU I LD cycle is complete, the operator can run the --­
cycle to run the job.
The BUI LDC cycle is used to build a ___ _

What is the advantage of the BUI LDC cycle?

Chapters 5 and 6
1. What is the first keyword in every cycle?
2. What are the two functions of this keyword?
3. What response is made to prompt LOAD NAME?
4. What response is made to prompt BUILD NAME?
5. What is the meaning of the response to the prompt UNIT after

a) LOAD NAME, and after
b) BUILD NAME?

6. CALL NAME asks for the name of the ____ you want to use.

111

112

Chapters 7 and 8
1. What keyword calls for the disk unit on which an object program is to be

written after compilation?
2. What are the three file keywords for which a response must be given prior

to running a job?
3. You would respond to the prompt if you want the system to

calculate how much space is required for your file.
4. Why would you not respond to the prompt LOCATION?
5. ln'1which cycle is a delayed response valid?
6. MODI FY is prompted when the operator presses P.ROG START after the

----prompt.

Chapter 9
1.
2.

3.
4.

What are the two methods used to cancel a job?
How does the system indi_cate which statements may be corrected or
deleted?
Additional operator instructions are provided by statements.
The LOAD cycle allows you to include instructions for a system program.
True or false?

Chapters 10 and 11
1. What response to MODI FY tells the system to run the job?
2. Some CALL cycles will have two MODIFY statements. True or false?
3. What indication does the operator have that there is an error in an OCL

statement?
4. How many times will the system reprompt a keyword following an error?

Answers

Chapters 2 and 3
1. OCL statements
2. keyword; response
3. The end-of-statement keys are pressed by the operator to indicate the end

of his response.

Chapter 4
1.

2.
3.
4.
5.
6.
7.

The LOAD cycle is called independent because you can run a job by responding
just to the keywords in that cycle.
false
procedure
save the OCL statements for a job by writing them on disk.
CALL
chained procedure
It allows you to run a group of jobs without stopping between each one to
supply OCL statements.

Chapters 5 and 6
1. READY
2. a) Tell the system which OCL cycle you want to use.

b) Assign the logging device.
3. The name of the program you want to load into the processing unit.
4. The name of the procedure you are building.
5. a) The disk unit on which the program you want to run is stored.

b) The disk unit on which the procedure you are building is to be stored.
6. procedure

113

114

Chapters 7 and 8
1. COMPILE OBJECT
2.
3.
4.

5.
6.

Chapter 9
1.

2.
3.
4.

FILE NAME, UNIT, and PACK
RECORDS
You wouldn't respond if you don't wish to determine where your file should
be stored on disk. The system will then determine where the file is to go.
BUILD cycle
FILE NAME

a) You can respond with CANCEL to the MODI FY prompt.
b) You can respond with/* after any prompt.
The system outlines them with a border of asterisks.
comment
false

Chapters 10 and 11
1. RUN
2. true
3. The system prints an error message directly below the statement.
4. Until the operator gives a valid response.

APPENDIX A. OPERATOR'S OCL GUIDE

After you decide which OCL cycle you want to use for your job and how you want
to respond to all the keywords in the cycle, you must give this information to your
operator. One way you can do this is by filling out an Operator's OCL Guide. (Copies
of the Operator's OCL Guide, GX21-9126, are available from your local IBM
branch office.)

The Operator's OCL Guide has three sections: the left-hand section for the printed
keywords, the middle section for you to fill in the responses to those keywords, and the
right-hand section to remind you of some of the programming considerations that
apply to the keywords.

When you're filling out the guide, use the upper left-hand corner to identify the job.
If your installation has more than one programmer, be sure to fill in the space for job
programmer so that your operator will know who to call in case he has a problem
with the job.

IBJ.1 GX21·9126-0
Printoo in U.S.A.

I nternatlonal Business Machines Corporation
/ ""'I

System/3 Model 6
Job

Date_ Job Identification -- OPERATION CONTROL LANGUAGE (OCL) GUIDE

Programmer
.,,,!

17"' Keywords ""\Ir" Responses I Consid&rations "'"""

R E A DY B UI L D

0 0 0 0 B UI L D N AM E Procedure Name

0 0 1 u NI T F1, R1, F2 or R2 ~Other Possible Entry I
0 1 0 L 0 A D N AM E Columns 75-80 of RPG Control Cord or System Pr011rem Name I Lines 020-058)

F1, R1, F2 or R2
7 for Delayed Response

0 1 1 u NI T
0 2 0 D AT E mmddyy or ddmmyy

0 3 0 s WI T C H 1-0n, 0-0ff, X-No Change

0 4 0 F I L E N AM E Columns 7-14 of RPG File Description Specifications or Predefined Filename

0 4 1 u NI T F1, R1, F2 or R2

0 4 2 p AC K Disk Name !Assigned by Disk Initialization Pr011ram)

0 4 3 L AB E L VTOC File Name lif different than respcnse to Fl LE NAME)

0 4 4 R E C 0 R D S 1·999999 !Maximum Number of Records in Fiie)

0 4 5 T RA c K s 1-398 !Maximum Number of Tracks for this Fila)

0 4 6 L oc AT I 0 N 8-405 Location of First Track of File

0 4 7 R E T Al N $-Scratch, T-Tempcrary, P-Permanent

0 4 8 D AT E mmddyy or ddmmyy

0 5 0 F I L E N AM E Columns 7-14 of RPG File Description Specifications or Predefined File Name

0 5 1 u NI T F1, R1, F2 or R2

0 5 2 p AC K Disk Name (Assigned by Disk Initialization Program)

0 5 3 L AB E L VTOC Fila Name lif different than response to Fl LE NAME)

0 5 4 R E C 0 R D S 1·999999 !Maximum Number of Records In Fiie)

0 5 5 T RA c K s 1-398 !Maximum Number of Tracks for this Fiie)

0 5 6 L 0 c AT I 0 N 8-405 Location of First Track of Fila

0 5 7 R E T A I N S-Scratch, T-Tampcrary, P-Permanant

0 5 8 D AT E mmddyy or ddmmyy

MOD I F y
MODIFY OPTIONS

1. Enter RUN
2. Enter CANCEL

Keywords Response
3. Correct Statement

Considerations Enter Statement number
Retype or dalata (,) response

4. Craeta new Statement
INCLUDE, LOG, FORMS, "IFor Comments)

II.. ~

115

IBJ.1
Job--------

Date _____________ _

Programmer

Keywords

RE A 0 y

0 0 0 B UI L D N AM E
0 0 1 u NI T

0 1 0 L o .t.. D N AM E

0 1 1 u NI T

0 2 0 D AT E
0 3 0 s WI T C H

0 4 0 F I L E N AM E

0 4 1 u NI T

0 4 2 p AC K

0 4 3 L AB E L
0 4 4 R E C 0 R

0 4 5 T RA c K

0 4 6 L 0 c A T

0 4 7 R E T A I
0 4 8 D AT E

0 5 0 F I L E N AM E

0 5 1 u NI T

0 5 2 p AC K

0 5 3 L AB E L
0 5 4 R EC 0 R

0 5 5 T RA c K

0 5 6 L oc A T

0 5 7 R ET A I

0 5 8 D AT E

M OD I F y

V"

Wliat part of the OCL Guide you fill out depends on what cycle you're using for the
job. For LOAD cycles, you use the right-hand side of the Response section. For
BU I LD cycles, you use the left-hand side of the Response section. For the two short
cycles, BUI LDC and CALL, you use the blank area at the bottom of the guide. (For
the BUI LDC and CALL cycles you must fill in both the keywords and the responses.)

International Business Machines Corporation

System/3 Model 6

GX21-9126-0
Printed In U.S.A.

OPERATION CONTROL LANGUAGE (OCL) GUIDE

I' "' /'
""'

Re por ses Considerations

B u I L D O_B L 0 A D
Procedure Name

Fl, R1, F2 or R2 ~Other Possible Entry j
Columns 75-80 of RPG Control Card or System Program Name Lines02~1

F1, R1, F2 or R2
7 for Delayed Response

mmddyy or ddmmyy

1-0n, 0.0ff, X-No Change

Columns 7-14 of RPG File Description Specifications or Predefined Filename

F1, R1, F2 or R2

For For
Disk Name (Assigned by Disk Initialization Program)

VTOC File Name (if different than response to Fl LE NAME)

D S BUILD LOAD 1-999999 (Maximum Number of Records In Fiie)

s 1·398 (Maximum Number of Tracks for this File)

I 0 N cycle cycle 8-405 Location of First Track of File

N S.SCretch, T·Temporary, P-Permanent

mmddyy or ddmmyy

Columns 7-14 of RPG File Description Specifications or Predefined Fiie Name

F1, R1, F2 or R2

Disk Name (Assigned by Disk I nltiallzetion Program)

VTOC File Name (if different than response to Fl LE NAME)

D S 1-999999 (Maximum Number of Records In File)

s 1·398 (Maximum Number of Tracks for this Fiie)

I 0 N 8-405 Location of First Track of File

N S.SCratch, T·Temporary, P·Permanent

mmddyy or ddmmyy

MODIFY OPTIONS

~ '- ..) ~ ..)
~ 1. Enter RUN

""'
2. EnterCANCEL
3. Correct Statement

Enter Statement number

For BUILD C and CALL cycles Retype or delete (.) response
4. Creata new Statement

l INCLUDE, LOG, FORMS, "(For Comments)

r-.... ..L

116

FILLING OUT THE OCL GUIDE FOR LOAD CYCLE

If you're using a LOAD cycle for your job, cross out the BU I LO response in the
first line and enter your responses in the LOAD column. Here is how you would
fill out the sheet if you were using the LOAD cycle to run a weekly inventory program
{INVENT), which is located on the fixed disk on drive one (F1). The job uses one
file (MASTER) which is written on the disk named VOL03. VOL03 is the removable
disk on drive one (R1).

IB:ft1
Job :Ct./ I/ eN Tog Y

oate /s/z.3/7L
Programmer __ 5_._.5__._PH_I_• /:_~---

Keywords

RE A OY
0 0 0 B UI L D N AM E

International Busln ... Machines Corporation

System/3 Model 6

OPERATION CONTROL LANGUAGE (OCL) GUIDE

Responses

La_ ...n.

Name

Considerations

GX21-9126-0
Printed in U.S.A.

0 0 1 u NI T
'"~

F1, RI,. F2 or R2 [Other Possible Entry

~ Z NT · A blank line indicates that the operator's J 0 1 0 L 0 AD N AM E

0 1 1 u NI T
0 2 0 D AT E .-- only response is to press the PROG START -0 3 0 s WI T CH key.,
0 4 0 F I L E N AM E l2&5iT£R
0 4 1 u NI T 11{.:t F1, R1, F2 or R2

0 4 2 p AC K lJlp [J:l£ Disk Name (Assigned by Disk Initialization Program)

0 4 3 L AB E L VTOC File Name (if different than response to FILE NAME)

0 4 4 R EC 0 R D S 1-999999 (Maximum Number of Records in File)

0 4 5 T RA C K S 1-398 (Maximum Number of Tracks for this File)

0 4 6 L 0 c AT I 0 N 8-405 Location of First Track of File

0 4 7 R E T Al N SScratch. T·Tempe>rary. P-Permanent

0 4 8 D AT E The inventory program uses one file. When --1
0 5 0 F I L E N AM E ELS_~ __,
0 5 1 u NI T the system prompts FILE NAME the second......,
0 5 2 p AC K

time, pressing the PROG START key tells it -1 0 5 3 L AB E L
0 5 4 R E C 0 R D S to bypass the series of file keywords and

-
-

0 5 5 T RA C K S
prompt MODIFY. 0 5 6 L OC AT I 0 N

-

-
0 5 7 R ET A I N IL S.Scretch, T-Temporery, P-Permanent

0 5 8 D AT E mmddyy or ddmmvv

M 0 D I F y ~l/Al MODIFY OPTIONS

1. Enter RUN
2. Enter CANCEL
3. Correct Statement

Enter Statement number
Retype or delete I.I response

4. Create new Statement
INCLUDE, LOG, FORMS, •(For Comments)

117

FILLING OUT THE OCL GUIDE FOR BUILD CYCLE

IBJ.1

When you use a BU I LD cycle, cross out
1
the LOAD response in the first line and enter

your responses in the BUILD column. Here's how you would fill out the sheet to build
a procedure named WKBILL (weekly billing) to produce a weekly billing report. Assume
you want to put the procedure on R 1. To produce the report you run the program
BILLING (billing) which is on F1. The program uses two files: CUSTFILE (customer
file) and OR DF LE (order file). Both files are on R 1. The name of the disk is VOL05.

GX21·9126-0
Printed In U.S.A.

Job WeeJ'ly 8//J)I~ ~17~1!'~1-~
International Business Machines Corporation

System/3 Modal 6

Date l~M471 OPERATION CONTROL LANGUAGE (OCL) GUIDE

Programmer £ Sm;/A
Keywords Responses Considerations

RE A OY
0 0 0 B UI L D N AM E
0 0 1 U NI T
0 1 0 L 0 AD N AM E

0 1 1 U NI T

BUI LO lndtiiii
t---"-'"-"-~-"--"'-'~--!::.~:.:.--.:...:....:.:.:-=..~~~~~J1LL~l(~/J,~'L.~,'..._.L.L--~-+- _Prn_c_ed_ura_N_•m_e~~~~~~~~~~

fl. f Fl, RI, F2 or R2

8.J. l. [...!J{_t; Columns 75-80 of RPG Control Card or System Program Nama

~f' Fl, RI, F2 or R2

0 2 0 D AT E mmddyy or ddmmyy

0 3 0 s WI T C H l·On, ().Off, X-No Change

~
Other Possible Entry J
(Lines 020-0581
7 for Oelayed Responsa

0 4 0 F I L E N AM E Columns 7-14 of RPG File Description Specifications or Predefined Filename

0 4 1 U NI T Fl, RI, F2 or R2

0 4 2 p AC K Disk Name (Assigned by Disk Initialization Program)

0 4 3 L AB E L VTOC File Name (if different than response to FILE NAME)

0 4 4 R E C 0 R D S 1·999999 (Maximum Number of Records in File)

0 4 5 T RA c K s 1·398 (Maximum Number of Tracks for this File)

0 4 6 L 0 c A T I 0 N 8-405 Location of First Track of File

0 4 7 R ET A I N S.Scretch, T·Temporary, P-Permanent

0 4 8 D AT E mmddyy or ddmmyy

0 5 0 F I L E N AM E Columns 7-14 of RPG File Description Specifications or Predefined File Nama

0 5 1 u NI T Fl, RI, F2 or R2

0 5 2 p AC K Disk Name (Assigned by Disk Initialization Program)

0 5 3 L AB E L VTOC File Name (if different than responsa to FILE NAME)

0 5 4 R E C 0 R D S 1-999999 (Maximum Number of Records In File)

0 5 5 T RA C K S 1·398 (Maximum Number of Tracks for this Fiie)

0 5 6 L 0 c AT I 0 N 8-405 Location of First Track of File

0 5 7 R ET Al N S-Scratch, T-Temporary, P-Permanant

0 5 8 D AT E mmddyy or ddmmyy

11 9 D I E y

~:-Jt_fi_ 7Z.&YE ~ ~ ~ The sheet has preprinted keywords for
~"""'"'-""~'-'---1-----------F-ll-""'-'-----+-i:="'--...._ two files per cycle. You write in the
..-------------t--------third FILE NAME prompt.

_J 4. Create new Statement
INCLUDE, LOG, FORMS, "(For Comments)

118

FILLING OUT THE OCL GUIDE FOR BUI LDC OR CALL CYCLE

You use the bottom of the guide for either a CALL or BUI LDC cycle. For these cycles
you must fill in both the keywords and the responses. Here's how you would fill out
the sheet to CALL the procedure WKBI LL to run your weekly billing report.

IB~

Job Weekly .8j//J:;,~

Date rll J#b_t , i

Programmer S. Sm/f A.

~ Keywords

RNDY
0 0 GB UI L 0 N
0 0 1 ~ u

AM E
NI T

International Business Machines Corporation

System/3 Model 6

OPERATION CONTROL LANGUAGE (OCL) GUIDE

Responses

B u I L D
Procedure Name

F1, RI, F2 or R2

Considerations

0 1 0 L~A 0 N AM E

o~
Columns 75-80 of RPG Control Card or System Program Name

:s:: ~ F1, R1, F2 or R2 0 1 1 u NI T
0 2 0 0 AT E""'-. L mmddyy or ddmmyy

0 3 0 s WI T cX L 1-0n, ().Off, X-No Change

GX21-9126-0
Printed in U.S.A.

~Other Possible Entry j
(Lines 020-0581
7 for Delayed Response

0 4 0 F I L E ~M E z Columns 7-14 of RPG File Description Specifications or Predefined Filename

0 4 1 u N").... T L F1, R1, F2 or R2

0 4 2 p ACX z Disk Name !Assigned by Disk Initialization Program)

0 4 3 L AB EJS:. z VTOC File Name (if different than response to FILE NAME)

0 4 4 R E C 0 R ~ ~ 1-999999 (Maximum Number of Records in File)

0 4 5 T RA c K s ~ 1-398 (Maximum Number of Tracks for this File)

0 4 6 L oc A T I 21i~ 8·405 Location of First Track of File

0 4 7 R E T A ·~ ~ SScratch, T-Temporary, P-Permanent

0 4 8 0 AT~ ~ mmddyy or ddmmyy

0 5 0 F I L E NALE ~
Columns 7-14 of RPG File Description Specifications or Predefined File Name

0 5 1 ~IT F1, RI, F2 or R2

0 5 2 z4 AC K ~
Disk Name (Assigned by Disk Initialization Program)

0 5 3 AB E L VTOC File Name (if different than response to FILE NAME)

0 5 4 z R E C 0 R 0 s ~ 1-999999 (Maximum Number of Records in File)

0 5 5 L T RA c K s ~ 1-398 (Maximum Number of Tracks for this File)

0 5 a L L oc A T I 0 N

~
8-405 Location of First Track of File

0 5:z R ET A I N SScratch, T-Temporary, P-Permanent

_9&: 8 0 AT E

~
mmddyy or ddmmyy

_LM 0 0 I F y
MODIFY OPTIONS

" fffi_AP}"_ [kAL.L 1. Enter RUN
2. Enter CANCEL
3. Correct Statement

~ 7Z_AMG liilll!81 LZ Enter Statement number
Retype or delete (,) response

U.NIL Id"'.!
4. Create new Statement

INCLUDE, LOG, FORMS, *{For Comments)

n__o]l/ ;:--r._ ~u~

119

FILLING OUT THE OCL GUIDE FOR MORE THAN TWO FILES

IBJ.41
Job--------

Date _____________ _

Several of your jobs may use more than two files. By using both sides of the Response
section, you can indicate responses for the keywords for four files. (This applies
only when you're using either a LOAD or BUILD OCL cycle.)

International Business Machines Corporation

System/3 Model 6

OPERATION CONTROL LANGUAGE (OCL) GUIDE

GX21-9126-0
Printed In U.S.A.

Programmer __________ _

Keywords Responses Considerations

RE A DY B u I L D

~ 0 0 0 B UI L D N AM E Procedure Name

0 0 1 u NI T F1, R1, F2 or R2 ~Other Possible Entry J
0 1 0 L 0 AD N AM E Columns 75-80 of RPG Control Card or System Program Name Lines 020-058)

F1, R1, F2 or R2
7 for Delayed Response

0 1 1 u NI T

0 2 0 D AT E mmddyy or ddmmyy

0 3 0 s WI T C H 1-0n, 0-0ff, X-No Change

0 4 0 F I L E N AM E v
"""

II'" ' Columns 7-14 of RPG File Description Specifications or Predefined Filename

0 4 1 u NI T F1, R1, F2 or R2

0 4 2 p AC K Disk Name !Assigned by Disk Initialization Program)

0 4 3 L AB E L VTOC File Name lif different than response to Fl LE NAME)

0 4 4 R E C 0 R D S :EILE ~II ... E 1 ·999999 !Maximum Number of Records In Filel

0 4 5 T RA c K s 1-398 (Maximum Number of Tracks for this File)

0 4 6 L 0 c A T I 0 N 8-405 Location of First Track of Fila

0 4 7 R ET A I N S-Scratch, T·Temporary, P-Permanent

0 4 8 D AT E mmddyy or ddmmyy

0 5 0 F I L E N AM E r Columns 7·14 of RPG File Description Specifications or Predefined File Name

0 5 1 u NI T F1, R1, F2 or R2

0 5 2 p AC K Disk Name (Assigned by Disk I nltlallzatlon Program I

0 5 3 L AB E L VTOC File Name (if different than response to Fl LE NAME)

0 5 4 R EC 0 R D S .El...b._E Fl L..E:_ 1-999999 (Maximum Number of Records In File)

0 5 5 T RA c K s 1-398 (Maximum Number of Tracks for this File)

0 5 6 L oc A T I 0 N 8-405 Location of First Track of File

0 5 7 R E T A I N S-Scratch, T-Temporary, P-Permanent

0 5 8 D AT E ~ ..,!_ ~ mmddyy or ddmmyy

M 0 D I F y
MODIFY OPTIONS

1. Enter RUN
2. Enter CANCEL
3. Correct Statement

Enter Statement number
Retype or delete I.I roaponse

4. Create new Statement
INCLUDE, LOG, FORMS, "(ForCommenul

120

Here's how you would fill out the sheet to build a procedure with three files.

IBft'I GX21·9126-0
Printed in U.S.A.

Job /f t:Jced?IH! /;;. #on/Afr ,f:t.;ioi-f
International Business Machines Corporation

System/3 Model 6

Date 1)/&ftt OPERATION CONTROL LANGUAGE (OCL) GUIDE

Keywords Responses Considerations

RE A DY B u I L D

o~ 0 0 0 B UI L D N AM E r.BY .r (') _fi_ Procedure Name

0 0 1 u NI T le~ Ft, Rt, F2 or R2 rther Possible Entry J
0 1 0 L 0 AD N AM E IP.e-""f'_pgT Columns 75-80 of RPG Control Card or System Program Name Lines 020-0581

IR.t -f-~
F1, R1, F2 or R2

1 for Delayed Response
0 1 1 u NI T
0 2 0 D AT E mmddyy or ddmmyy

0 3 0 s WI T C H I/ "' 1-0n, G-Off, X-No Change

0 4 0 F I L E N AM E 'IE! t.Z#J;__ IE/L.:.E.:U Columns 7-14 of RPG File Description Specifications or Predefined Filename

0 4 1 u NI T ~ ff F1, R1, F2 or R2

0 4 2 p AC K IV/.}_L.13_ Disk Name (Assigned by Disk Initialization Program)

0 4 3 L AB E L VTOC File Name (if different than response to Fl LE NAME)

0 4 4 R E C 0 R D S 1-999999 (Maximum Number of Records in File)

0 4 5 T RA c K s 1-398 (Maximum Number of Tracks for this File)

0 4 6 L 0 c AT I 0 N 8-405 Location of First Track of F lie

0 4 7 R ET A I N SScratch, T-Temporary, P-Permanent

0 4 8 D AT E mmddyy or ddmmyy

0 5 0 F I L E N AM E Flt-£~2 l.fl.S Columns 7·14 of RPG File Description Specifications or Predefined File Name

0 5 1 u NI T F.L F1, R1, F2 or R2

0 5 2 p AC K [@~ Disk Name (Assigned by Disk Initialization Program)

0 5 3 L AB E L VTOC Fila Name (if different than response to FILE NAME)

0 5 4 R E C 0 R D S 1-999999 (Maximum Number of Records in File)

0 5 5 T RA c K s t-398 (Maximum Number of Tracks for this File)

0 5 6 L 0 c A T I 0 N 8-405 Location of First Track of File

0 5 7 R ET A I N SScratch, T-Temporary, P-Permanent

0 5 8 D AT E mmddyy or ddmmyy

M 0 D I F y [.£UN MODIFY OPTIONS

1. Enter RUN
2. Enter CANCEL
3. Correct Statement

Enter Statement number
Retype or delete (,) response

4. Create new Statement
INCLUDE, LOG, FORMS, "(For Comments)

121

122

APPENDIX B. GLOSSARY

Activated file - A file whose designation is being changed from scratch to temporary.
Alphabetic - Containing characters A-Z, $, #, and @.

Alphanumeric - Containing both alphabetic and numeric characters.
Chained procedure - Procedures that are connected with an established sequence in
which they are to be run.
Compile keywords - Keywords that request information needed to compile a source
program.
Compiler - Translates source programs into machine language.
Conversational OCL - OCL for Model 6, called conversational because of the conver­
sation between system and operator.
Data processing system - A network of machine components capable of accepting
information, processing it according to a plan, and producing the desired results.
Disk - A physical element of disk storage.
Disk storage - A storage device which uses magnetic recording on flat rotating disks.
End-of-job halt- System halt at the end of every job to give the operator time for any
necessary maintenance before beginning the next job.
End-of-statement key - Must be pressed to indicate the end of a response.
Field - In a record, a specified area used for a particular category of data.
File - Group of related records.
File keywords - Keywords that request information needed about a file.
Included statements - Statements you wish to insert in a procedure.
IPL - (Initial Program Load) The process by which the operator loads the program
that controls the operation of the system into storage.
Input- Information to be processed.
Job - A piece of work you need done for which a program is written.
Job cycle - The steps involved in carrying out a job.
Job stream - The OC L statements needed for a program.
Keyword- A word, printed by the system, requesting information needed for your
program.
Minimum system - System programs necessary to load and run programs.
Numeric - Containing numbers 0 through 9.
Object library- Contains compiled programs, routines, and system programs.
Object library directory - Information concerning each library entry.
Object program - A compiled program stored in the object library.
OCL statement - Consists of a keyword and a response.
Output- Information that has been processed.
Permanent file - Maintained permanently on disk.
Procedure - Sequence of OCL statements in a source library.
Program - Set of instructions written for a job.
Program keywords - Keywords that request information needed about a program.
Prompt - A printed keyword.
Record - Fields grouped together.
Response - A reply to the system's prompted keyword.

124

Scheduler - Program that provides job-to-job transition.
Scheduler work area - Work area for the Scheduler.
Scratch file - A file used only by the current program which may be overwritten.
Sector - Section of a disk track. There are 24 for each track.
Source library - Contains procedures and source programs.
Source library directory - Information concerning each library entry.
Source statements - Program instructions that have not been compiled.
System directory- Information concerning the libraries and their directories.
Temporary file - A file with short term usefulness which may be overwritten.
Track - Concentric circles on a disk.
Utility programs - Maintenance programs.
VTOC- (volume table of contents) Area on disk containing information about the
contents of the disk.

OPERATION CONTROL LANGUAGE

* response to MODI FY 45

activated file 37
advantage of BUILD cycle 18
advantage of BUI LDC cycle 21
advantage of disk 9
alphameric and special character keys 6

beginning an OCL cycle 25
READY (see READY statement)
starting a new job 25

BUILD cycle
advantage 18
as related to BUI LDC cycle 22
as related to CALL cycle 19
beginning BUILD cycle 25
building a procedure 18
ending BU I LD cycle 55
file keywords used in BUILD cycle 35
filling out Operator's OCL Guide 118
function 18
including instructions for a system program 48
interaction of programmer, operator, and
system 19, 22
program keywords (see program keywords
used in BUILD cycle)
prompting MODI FY twice 50
summary 62
used in compiling an RPG 11 program 33
using a delayed response 29, 40
what you are telling the system 18

BUI LDC cycle
advantage 21
as related to BU I LD cycle 22
as related to CALL cycle 22
beginning BUI LDC cycle 25
building a chained procedure 20
disadvantage 21
ending BU I LDC cycle 55
filling out Operator's OCL Guide 119
interaction of programmer, operator, and
system 22
program keywords (see program keywords in
BU I LDC cycle)

summary 63
what you are telling the system 20

BUI LDC NAME 29
BUILD NAME 29
building a chained procedure 20
building a procedure 18
business applications for IBM System/3 Model 6 3
byte 4

J_

CALL cycle
as related to BU I LDC cycle 22
as related to BU I LD cycle 19
beginning CALL cycle 25
ending CALL cycle 55
filling out Operator's OCL Guide 119
interaction of programmer, operator, and
system 19, 22
program keywords (see program keywords
used in CALL cycle)

prompting MODI FY twice 50
summary 63
used in compiling an RPG 11 program 32
what you are telling the system 19

CALL NAME
in BUI LDC cycle 29
in CALL cycle 30
UNIT after CALL NAME 30

CANCEL response to MODIFY 43
canceling a job 43
chained procedure 20

building using BUI LDC cycle 20
example 21

charts of file keyword responses
possible responses 42
required responses 42

combined files 10
command key lights 7
command keys 6
comments

* response to MODI FY 45
inserting in a cycle 45
from operator to programmer 46
from programmer to operator 47

compile keywords 31
COMPILE OBJECT 31
responses 31
SOURCE 31
UNIT 31
using BUILD cycle to compile an RPG II
program 33

using CALL cycle to compile an RPG 11
program 32
using LOAD cycle to compile an RPG 11
program 33

COMPILE OBJECT, used as a compile keyword 31
compiling an RPG 11 program 59

example 59
I BM-supplied procedures

RPG 59
RPGB 59

using BUILD cycle 33
using CALL cycle 32
using LOAD cycle 33

conversational OCL
keyword 14
prompting 14
response 14

correcting OCL statements 44
cylinders 10

INDEX

125

126

DA TE, as a file keyword
for multivolume files 39
for single volume files 38

DATE, as a program keyword
in BUI LO cycle 29
in LOAD cycle 28

delayed response, in BUI LO cycle 29, 40
deleting OCL statements using MODI FY
statement 44, 45

description, I BM 5213 Printer 8
description, I BM 5406 Processing Unit 4
description, I BM 5444 Disk Storage Drive 9
description, keyword console 5
disadvantage, BU I LDC cycle 21
disadvantage, LOAD cycle 17
disk (see I BM 5444 Disk Storage Drive)
disk organization, I BM 5444 Disk Storage Drive 10

file (see file)
record 10

Disk Sort, including instructions in using MODI FY
statement 48
Disk Utility programs, including instructions in
using MODI FY statement 48

display file 10

end-of-statement keys
ENTER+ 15
ENTER- 15
PROG START 15
using with file keywords 40
using with program keywords 30

ending an OCL cycle 55
BUI LO cycle 55
BUI LDC cycle 55
CALL cycle 55
LOAD cycle 55
RUN response to MODI FY 55
two MODI FY-RUN statements, example 56

ENTER+, end-of-statement key 15
ENTER-, end-of-statement key 15
entering information on the keyboard 6
entering LOG and FORMS statements 45
error messages 57

examples 57
reprompting 57

example
of a chained procedure 21
of compiling an RPG II program 59
of error messages 57
of two MODI FY-RUN statements 56

fields 4
file

activated 37
combined 10
display 10
input 10
output 10
permanent 37
scratch 37
temporary 37
update 10

file keywords 35
in BUI LO cycle 35
DATE 38
delayed response 40
FILE NAME 36
interaction of programmer, operator, and
system 41
LABEL 36
in LOAD cycle 35
LOCATION 37
for multivolume files (see file keywords for
multivolume files)

PACK 36
prompting 36
RECORDS and TRACKS 37
responses (see responses to file keywords)
RETAIN 37
UNIT 36
using end-of-statement keys 40

file keywords for multivolume files 38
DATE 39
FILE NAME 38
HIKEY 38
interaction of operator, programmer, and
system 41
KEY LENGTH 38
LABEL 39
LOCATION 39
PACK 39
RECORDS and TRACKS 39
responses (see responses to file keywords)
RETAIN 39
UNIT 39

FILE NAME
as a file keyword for multivolume files 38
as a file keyword for single volume files 36

filling out Operator's OCL Guide 115
BUILD 118
BUILDC 119
CALL 119
LOAD 117
more than two files 120

fixed disk 9
FORMS statement, as a response to MODI FY 45
function, I BM 5213 Printer 8
function, I BM 5406 Processing Unit 4
function, I BM 5444 Disk Storage Drive 9
function, of keyboard console 5
function keys on keyboard 6
function, MODI FY statement 43
function, READY statement 25

halt code display indicator lights. 7
HI KEY, as a file keyword for multivolume files 38

I BM-supplied procedures for compiling RPG 11
programs

RPG 59
RPGB 59

IBM 5213 Printer 8
description 8
function 8

I BM 5406 Processing Unit 4
byte 4
field 4
function 4
description 4

I BM 5444 Disk Storage Drive 9
advantage 9
cylinders 10
description 9
disk organization (see disk organization,
I BM 5444 Disk Storage Drive)

fixed disk 9
function 9
libraries (see libraries)
removable disk 9
sectors 10
tracks 10

INCLUDE, as a response to MODIFY 48
included statements 49
including instructions for system program 48

Disk Sort program 48
Disk Utility programs 48
INCLUDE response to MODIFY 48
included statements 49
using BUILD cycle 48

including system instructions in a procedure 49
INCLUDE response to MODIFY 48
included statements 49

indicator lights, system display panel
command key lights 7
halt code display 7

inserting comments in an OCL cycle 45
* response to MODI FY 45
comments from operator to programmer 46
comments from programmer to operator 47

interaction of programmer, operator, and system
when using BUILD cycle 19, 22
when using BUI LDC cycle 22
when using CALL cycle 19, 22
when using file keywords 41
when using LOAD cycle 18
when using MODIFY 52

input file 10

KEY LENGTH, as a file keyword for multivolume
files 38
keyboard 6

entering information 6
keys (see keys)

keyboard console 5
description 5
function 5
keyboard (see keyboard)
system control panel (see system control
panel)

system display panel (see system display
panel)

keys
alphameric and special character keys 6
command keys 6
end-of-statement keys (see end-of-statement
keys)

function keys 6
numeric keys 6

keyword
compile keywords (see compile keywords)
file keywords (see file keywords)
program keywords (see program keywords)
prompting a keyword 14

LABEL
as a file keyword for multivolume files 39
as a file keyword for single volume files 36

libraries 10
object library 10
scheduler work c;irea 10
source library 10

LOAD cycle
beginning LOAD cycle 25
disadvantage of LOAD cycle 17
ending LOAD cycle 55
file keywords used in LOAD cycle 35
filling out Operator's OCL Guide 117
interaction of programmer, operator, and
system 18
program keywords (see program keywords
used in the LOAD cycle)

summary 61
used in compiling an RPG 11 program 33
what you are telling the system 17

LOAD NAME
in BUILD cycle 29
in LOAD cycle 28
UNIT after LOAD NAME 28

LOCATION
as a file keyword for multivolume files 39
as a file keyword for single volume files 37

LOG response
MODIFY 45
READY 25

MODIFY 43
canceling a job 43
correcting OCL statements 44
deleting OCL statements 44, 45
entering LOG and FORMS statements 45
function 43
included statements 49
including instructions (see including instructions
for system program)

including system instructions (see including
system instructions in a procedure)
inserting comments (see inserting comments in
an OCL cycle)

prompting MODI FY twice (see prompting
MODI FY twice)

responses (see responses to MODI FY)
running a job 43
used in ending an OCL cycle 55

multivolume files, file keywords (see file keywords
for multivolume files)

127

128

numeric keys 6

object library 10
OCL, conversational (see conversational OCL)
OCL cycle

beginning an OCL cycle (see beginning an
OCL cycle)
BU I LD cycle (see BU I LD cycle)
BUI LDC cycle (see BUI LDC cycle)
CALL cycle (see CALL cycle)
ending an OCL cycle (see ending an OCL
cycle)
LOAD cycle (see LOAD cycle)
summary 61

OCL statement
adding using MODI FY (see adding new OCL
statements)
correcting using MODI FY 44
deleting using MODI FY 44, 45

operator, programmer, and system interaction
(see interaction of programmer, operator, and
system)
Operator's OCL Guide (see filling out an Operator's
OCL Guide)

organization of disk (see disk organization, I BM
5444 Disk Storage Drive)
output files 10

PACK
as a file keyword for multivolume files 39
as a file keyword for single volume files 36

permanent file 37
procedure

building a chained procedure 20
building a procedure 18
chained procedure 20
including system instructions (see including
system instructions in a procedure)

PROG START, as an end-of-statement key 15
program keywor'ds 27

in BUILD cycle (see program keywords, BUILD
cycle)

in BUI LDC cycle (see program keywords,
BUI LDC cycle)

in CALL cycle (see program keywords, CALL
cycle)
in· LOAD cycle (see program keywords, LOAD
cycle)

table of program keywords 30
using end-of-statement keys 30 .

program keywords, BUILD cycle 27
BUILD NAME 29
DATE 29
LOAD NAME 29
SWITCH 29
UNIT after BUILD NAME 29
UN IT after LOAD NAME 29

program keywords, BUI LDC cycle 27
BUILDC NAME 29
CALL NAME 29
UNIT after BUI LDC NAME 29
UNIT after CALL NAME 29

program keywords, CALL cycle 27
CALL NAME 30
UNIT after CALL NAME 30

program keywords, LOAD cycle 27
DATE 28
LOAD NAME 28
SWITCH 28
UNIT after LOAD NAME 28

programmer, operator, and system interaction
(see interaction of programmer, operator, and
system)
prompting conversational OCL 14
prompting file keywords 36
prompting MODI FY twice

in BUILD cycle 50
in CALL cycle 50

POWER ON/OFF switch 7

READY statement
function 25
LOG response to READY 25
responses 25

record 10
RECORDS and TRACKS

as file keywords for multivolume files 39
as file keywords for single volume files 37

relation of BUILD to BUI LDC 22
relation of CALL to BUILD 19
relation of CALL to BUI LDC 22
removable disk 9
reprompting after error messages have been
printed 57

responding to MODI FY with * 45
response, conversational OCL 14
responses to compile keywords 31
responses to file keywords

chart of possible responses 42
chart of required responses 42

responses to MODI FY statement
* response 45
CANCEL response 43
FORMS statement 45
INCLUDE response 48
LOG statement 45
number of a statement 44
number of a statement and a comma 45
RUN response 43

responses to READY statement 25
RETAIN

as a file keyword for multivolume files 39
as a file keyword for single volume files 37

activated file 37
permanent file 37
scratch file 37
temporary file 37

RPG, as I BM-supplied procedure to compile an
RPG 11 program 59

RPG 11 program, compiling (see compiling an
RPG 11 program)

RPGB, as I BM-supplied procedure 59
RUN response to MODI FY 43

ending an OCL cycle 55
running a job 43

running a job using MODI FY 43

scratch fi I e 37
scheduler work area 10
sector 10
SOURCE, as a compile keyword 31
source library 10
standard units of the Model 6 3

I BM 5213 Printer 8
I BM 5406 Processing Unit 4
I BM 5444 Disk Storage Drive 9

starting a new job 25
summary of OCL cycles

BU I LO cycle 62
BUI LDC cycle 63
CALL cycle 63
LOAD cycle 61

SWITCH, as a program keyword
in BUI LO cycle 29
in LOAD cycle 28

switches
POWER ON/OFF 7
SYSTEM START/STOP 7

system control panel switches (see switches)
system display panel indicator lights (see indicator
lights)

system, programmer, and operator interaction
(see interaction of programmer, operator, and
system)
system programs

Disk Sort program 48
Disk Utility programs 48
including instructions in using MODI FY
statement (see including instructions in
system program)

SYSTEM START/STOP switch 7

table of program keywords 30
temporary file 37
track 10
TRACKS and RECORDS-

as file keywords for multivolume files 39
as file keywords for single volume files 37

UNIT
as a compile keyword 31
as a file keyword for multivolume files 39
as a file keyword for single volume files 36
as a program keyword

after BUI LO NAME 29
after BUI LDC NAME 29
after CALL NAME 30
after LOAD NAME 28

UNIT after BUILD NAME 29
UNIT after BUI LDC NAME 29
UNIT after CALL NAME

in BUI LDC cycle 29
in CALL cycle 30

UNIT after LOAD NAME
in BUI LO cycle 29
in LOAD cycle 28

update files 10
using BUI LO cycle.

in compiling an RPG 11 program 33
to include instructions in system program 48

using CALL cycle to compile an RPG 11
program 32

using end-of-statement keys
with file keywords 40
with program keywords 30

using RPG to compile an RPG 11 program 59
using RPGB to compile an RPG 11 program 59
using LOAD cycle to compile an RPG 11
program 33

using several MODI FY statements 51

DISK UTILITY PROGRAMS

additional" disk identification 71
allocate function, Library Maintenance program 87

ALLOCATE statement 92
changing size of libraries (see moving object
library)

creating libraries (see creating libraries using
allocate function)

deleting libraries (see deleting libraries using
allocate function)
reorganizing libraries (see reorganizing libraries
using allocate function)

ALLOCATE statement 92
ALT statement 77
Alternate Track Assignment program

control statements (see control statements,
Alternate Track Assignment program)

functions (see functio,ns of Alternate Track
Assignment program)

number of alternate tracks on a disk 77
options if a defective track is found 76
types of assignment (see types of assignment
for Alternate Track Assignment program)

Alternate Track Rebuild program
control statements (see control statements,
Alternate Track Rebuild program)

correcting data on more than one track 79
functions (see functions of Alternate Track
Rebuild program)

number of characters you can correct 79
substitute data 79

alternate tracks
assigning alternate tracks (see assigning
alternate tracks)

canceling assignments . 76
erasing assignments 71
number of alternate tracks on a disk 77

assigning alternate tracks
surface analysis (see surface analysis)
types of assignment (see types of assignment
for Alternate Track Assignment program)
using Alternate Track Assignment program 77
using Disk Initialization program 69

assigning a library to a disk 87
assigning space for a library directory 87
assigning tracks to libraries

to object library 90
to source library 90

assignment, types of (see types of assignment
for Alternate Track Assignment program) I

availability of tracks for initialization affected
by storage capacity 70

0

129

130

blanks
reinserting in source statements 89
removing from source statements 89

cancel prior assignment 76
canceling an alternate track assignment 76
changing size of a library using allocate function
(see moving object library)

checking for defective tracks
surface analysis (see surface analysis)
using Alternate Track Assignment program 75
using Disk Initialization program 69

clear initialization 70
compressing object programs and routines 89
conditional assignment 76
control statements, Alternate Track Assignment
program

ALT statement 77
END statement 77

control statements, Alternate Track Rebuild
program

END statement 80
REBUILD statement 80

control statements, Disk Copy/Dump program
COPYFI LE statement 86
COPYPAC K statement 86
END statement 86
SELECT KEY statement 86
SELECT RECORD statement 86

control statements, Disk Initialization program
END statement 71
UIN statement 71
VOL statement 71

control statements, File Delete program
END statement 84
REMOVE statement 84
SCRATCH statement 84

control statements, File and Volume Label
Display program

DISPLAY statement 82
END statement 82

control statements, Library Maintenance
program

ALLOCATE statement 92
COPY statement 92
DELETE statement 92
END statement 92
RENAME statement 92

copy function of Disk Copy/Dump program
COPY Fl LE statement 86
COPYPACK statement 86
identifying disk or file location 85
possible copy or print combinations 86
using a work area 85

copy function of Library Maintenance program 89
compressing object programs and
routines 89

COPY statement 92
copying possibilities 91
identifying an entry 89
identifying location of an entry 89
reinserting blanks and duplicate characters 89
removing blanks and duplicate characters 89

COPYFILE statement 86
COPY statement 92
copying possibiliti~s

for copy function of Disk Copy/Dump
program 86

for copy function of Library Maintenance
program 91

COPYPAC K statement 86
correcting data

locating incorrect data 79
number of characters you can correct 79
on more than one track 79
REBUILD statement 80
substitute data 79

creating libraries using allocate function 87
ALLOCATE statement 92
a~signing a library to a disk 87
assigning space for a library directory 87
using a work area 88

decreasing object library 88
decreasing source library 88
defective tracks

assigning an alternate track (see assigning
an alternate track)

checking tracks using Alternate Track
Assignment program 75

checking tracks using the Disk Initialization 69
options if a defective track is found 76
surface analysis (see surface analysis)

delete function of Library Maintenance program 90
DELETE statement 92
identifying an entry 90
identifying location of an entry 90
specifying entries by name 91
types of entries you can delete 90

DELETE statement 92
deleting files using File Delete program

files with same name 84
removing files 84
scratching files 84

deleting libraries using allocate function 88
ALLOCATE statement 92
restrictions 88

deleting records using Disk Copy/Dump
program 86

identifying character 86
maximum position of identifying character 86

directory
assigning space for library directories 87
system directory 87

Disk Copy/Dump program
control statements (see control statements,
Disk Copy/Dump program)

deleting records (see deleting records using
Disk Copy/Dump program)

functions (see functions of Disk Copy/Dump
.program)
possible copy or print combinations 86
printing a copy 85
reorganizing a file 86

Disk Initialization program
additional disk identification 71
control statements (see control statements,
Disk Initialization program)

erasing alternate track assignments 71
example 72
functions (see functions of Disk Initialization
program)

how storage capacity affects availability
of tracks 70
maximum number of disks you can initialize 71
types of initialization (see types of initializa­
tion for Disk Initialization program)

disk or file locations, identifying them for copy
function 85
DISPLAY statement 82
duplicate characters

reinserting in source statements 89
removing from source statements 89

eliminating file references in VTOC 84
END statement

for Alternate Track Assignment program 77
for Alternate Track Rebuild program 80
for Disk Copy/Dump program 86
for Disk Initialization program 71
for File Delete program 84
for File and Volume Label Display program 82
for Library Maintenance 92

entire VTOC printout 81
erasing alternate track assignments 71
erasing information in a file 83
example, use of Disk Initialization program 72

File Delete program
control statements (see control statements, File
Delete program)

functions (see functions of File Delete program)
removing files with the same name 84
number of file names in one run 84

file or disk locations, identifying them for copy
function 85
File and Volume Label Display program

control statements (see control statements,
File and Volume Label Display program)

functions (see functions of File and Volume
Label Display program)

number of file names in one run 82
printouts (see printouts by File and Volume
Label Display program)

functions of Alternate Track Assignment program
assigning alternate tracks (see assigning
alternate tracks)
canceling alternate track assignments 76
checking for defective tracks (see checking
for ~efective tracks)

printing all sectors that contain incorrect
data 75

surface analysis (see surface analysis)
writing track addresses on disk 75

functions of Alternate Track Rebuild program
locating incorrect data 79
replacing incorrect data 79

functions of Disk Copy/Dump program
copy (see copy function of Disk Copy/Dump
program)

print (see print function of Disk Copy/Dump
program)

functions of Disk Initialization program
assigning alternate tracks (see assigning
alternate tracks)
checking for defective tracks (see checking for
defective tracks)
naming a disk 69
surface analysis (see surface analysis)
writing track and sector addresses on disk 69

functions of File Delete program
deleting a file (see deleting files using File
Delete program)

eliminating file references in VTOC 84
erasing information in a file 83

functions of File and Volume Label Display
program

printing headings for file information 81
printing VTOC information 81

functions of Library Maintenance program
allocate (see allocate functio'n of Library
Maintenance program)

copy (see copy function of Library
Maintenance program)

delete (see delete function of Library
Maintenance program)

rename (see rename function of Library
Maintenance program)

glossary 123

headings printed for file information 81
how storage capacity affects availability of tracks 70

identifying character 86
identifying disk or file locations for copy
function 85

identifying entries
for copy function 89
for delete function 90

identifying location of an entry
for copy function 89
for delete function 90
for rename function 90

identifying portion to be printed 85
including system programs in object library 90
incorrect data

locating by Alternate Track Rebuild
program 79

printing all sectors that contain incorrect
data 75
replacing by Alternate Track Rebuild
program 79

substitute data 79
increasing object library 88
increasing source library 88

131

132

length of an entry name 90
libraries

changing size of library (see moving object
library)

copying library entries (see copy function of
Library Maintenance program)

creating libraries (see creating libraries using
allocate function)

deleting libraries (see deleting libraries using
allocate function)

deleting library entries (see delete function
of Library Maintenance program) ·

object library (see object library)
renaming library entries (see rename function
of Library Maintenance program)
reorganizing libraries (see reorganizing libraries
using allocate function)

source library (see source library)
Library Maintenance program

control statements (see control statements,
Library Maintenance program)

functions (see functions of Library Mainten-
ance program) ,
including system programs in object library 90
length of entry name 90
minimum system 90
number of tracks assigned to libraries 90
scheduler work area 90
types of entries (see types of entries used by
Library Maintenance program)

locating incorrect data 79
location of an entry for Library Maintenance
program

for copy function 89
for delete function 90
for rename function 90

maximum number of characters in an entry
name 90

maximum number of disks you can initialize 71
maximum position of identifying character used
by Disk Copy/Dump program 86
minimum system 90
moving the object library using allocate function
88

ALLOCATE statement 92
decreasing object library 88
decreasing source library 88
increasing object library 88
increasing source library 88
reorganizing libraries 88

naming a disk 69
number of alternate tracks on a disk 77
number of characters you can correct on a track 79
number of file names you can specify in one
run

using File and Volume Label Display
program 82
using File Delete program 84

number of times you can do surface analysis
using Alternate Track Assignment program 77
using Disk Initialization program 71

number of tracks assigned to object library 90
number of tracks assigned to source library 90

object library
compressing object programs and routines
before putting in object library 89
including system programs in object library 90
moving object library (see moving object
library)

number of tracks assigned to object library 90
relocating entries when reorganizing object
library 89

scheduler work area 90
object program, compressing before putting in
object library 89

options if a defective track is found 76

position of identifying character used by Disk
Copy/Dump program 86
possibilities to copy for copy function 91
possible copy or print combinations 86
primary initialization 70
print function of Disk Copy/Dump program

COPYFILE statement 86
deleting records (see deleting records using
the Disk Copy/Dump program)
identifying portion to be printed 85
possible copy or print combinations 86
printing record key or relative record
numbers 85

SELECT KEY statement 86
SELECT RECORD statement 86

printing all sectors that contain incorrect data 75
printing a copy 85
printing headings for file information 81
printing record key or relative record numbers 85
printing VTOC information 81
printouts, File and Volume Label Display
program

certain VTOC information 82
entire VTOC 81

REBUI LO statement 80
record key numbers printed 85
reinserting blanks and duplicate characters in
source statements 89

relative record numbers printed 85
relocating an object library entry when
reorganizing object library 89

relocating a source library entry when
reorganizing source library 89
REMOVE statement 84
removing blanks and duplicate characters from
source statements 89

removing files 84
rename function of Library Maintenance
program 90

identifying location of an entry 90
RENAME statement 92
types of entries to be renamed 90

RENAME statement 92
reorganizing a file 86
reorganizing libraries using allocate function 88

relocating object library entries 89
relocating source library entries 89
using a work area 89

replacing incorrect data
locating incorrect data 79
on more than one track 79
number of characters you can correct 79
substitute data 79

restrictions on deleting libraries when using
allocate function 88
routines, compressing before placing in object
library 89

scheduler work area 90
SCRATCH statement 84
scratching a file 84
secondary initialization 70
sector addresses written on disk 69
sectors printed that contain incorrect data 75
SELECT KEY statement 86
SELECT RECORD statement 86
source library

decreasing using the allocate function 88
increasing using the allocate function 88
number of tracks assigned 90
relocating entries when reorganizing 89

specifying entries by name
for copy function 91
for delete function 91

substitute data 79
surface analysis

Alternate Track Assignment program 77
Disk Initialization program 71
number of times surface analysis can be
performed 71

system directory 87
system programs included in object library 90

track addresses written on disk
Alternate Track Assignment program 75
Disk Initialization program 69

tracks assigned to object library and source
library 90

types of assignment
cancel prior 76
conditional 76
unconditional 76

types of entries
for copy function 90
for delete function 90
for rename function 90

types of initialization 70
clear 70
primary 70
secondary 70

UIN statement 71
unconditional assignment 76
uses of Model 6 utility programs 67
using a work area

for allocate function 88
for copy function 85

VOL statement 71
VTOC (see volume table of contents)
volume table of contents (VTOC)

eliminating file references within 84
printing VTOC information 81
printout of certain VTOC information 82
printout of the entire VTOC 81

work area
scheduler work area 90
used by allocate function 88
used by copy function 85

writing track addresses on disk 75
writing track and sector addresses on a disk 69

133

