Operation Control Language and

Disk Utility Programs

-Reference Manual
Program Number 5703-SC1

IBM System/3
Models 4 and 6

s .

GC2175165
File No. $3-36

ooo mmommooooow " oo0co0e0

200000

oo 00 00000 oo 20000 000000 000000000000000 00000 00 o
000000 0000000 0000000 oo 000000000. oo 90000 000000000 0000000000000000 00000 o0 090
0000 0000000000000 00000000 0000000C 100000 o 0000 000000 0 00000 0000000 00000 00000 oo C 090
0000 0000000020000 00000000 00000000 000000000000 000000 000000 000000000000 0000000000000000 0000 0o 000
oo 8000 00 - 000000 . 000 00 ° 00000 00000 00 0000 . © 00 ~ 00C¢ 000¢)
000 00000 ¢ 000 0600000 ° 0000 2000 00 20 60 0000 © 00 oo 000¢ o
o 0000 000 000 0000000 ceo 000000600 00000 0000 0o
00 0000000000 00000000000 000000 0000000 oo .0 00¢ o
200¢ 0000000000 c 900000000 00000 000000 00000000 ‘0000 0o 00 oc
0000 0000060000 - 00000000000 0000 ° 9000 ° , 0000 ° o o
0000 00000000000 ° 0000 00000, 0000 0000 o¢ 0000 ©000000000. . 0000 90000000 9
: 0000 0000 00000 0000 o 000 o 0000 00000 5600 0000 o o 00¢
0000 0000 00000 0000 00000 0000 00000 00000 o¢ 0o o ° 0000 o 008
0000 0000 00000 3000 000 0000 00000 00000 9000 oo ° ° 00006 o 003
00000000 00000000000000 006800 000 000000 00000 : ° oo o o 00000000 ° 0o
00000000 0000000000000 000000 000 000000 0000000000 0000000 000000809000 oo 00000000 00000 00 0o
00000000 600000000000 000000 O 000000 00000000000 0000000 00006000000 00000000 50000 00 690
00000000 6000000000 6000 o 000000 ©98909000 ©000000 000000000 00000 000000000 ocooe oo 0000

Fifth Edition (June 1978)

This is a major revision of, and obsoletes, GC21-7516-4 and Technical Newsletters
GN21-5328 and GN21-5521. Changes are indicated by a vertical line at the left of the
change.

This edition applies to version 15, modification 0 of the System Control Programming for
the IBM System/3 Models 4 and 6 and to all subsequent versions and modifications until
otherwise indicated in new editions or technical newsletters. Changes are periodically
made to the information herein; before using this publication in connection with the
operation of IBM systems, refer to the latest /BM System/3 Bibliography, GC20-8080,
for the editions that are applicable-and current.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to your 1BM
representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Address

your comments to IBM Corporation, Publications, Department 245, Rochester, Minnesota
55901. Comments become the property of IBM. :

© Copyright International Business Machines Corporation 1971, 1973, 1975, 1978

This publication is intended for use by programmers who .
are doing either of the following:

1. Writing Operation Control Language (OCL) state-
ments needed to run programs in the system.

2. Writing utility control statements necessary to run
disk utility programs supplied by the system.

Notes: ,

1. In this publication there are some references in support
of 24K and 32K bytes of main storage. A System/3
Model 6 with these main storage sizes is available only
as an RPQ. Your |BM Marketing Representative can
provide information about this. ‘

2. All references, in this manual, to DATA96 apply to the
System/3 Model 6 only,

Prerequisite Publications

IBM System /3 Model 4 Introduction, GC21-5146

I1BM System /3 Model 6 Introduction, GA21-9122
"IBM System/3 Models 4 and 6 System Programmer’s

Guide, GC21-7530

Other Publications Referenced in this Manual

IBM System /3 Model 6 Operator’s Guide, GC21-7501

IBM System/3 Disk Sort Reference Manual, SC21-7522

IBM System /3 Models 4 and 6 Conversational Utility
Programs Reference Manual, SC21-7528

IBM System /3 Model 6 Utility Program for I1BM 1255
Magnetic Character Reader Reference Manual, SC21-7527

*

IBM System /3 Models 4 and 6 RPG |l Reference Manual,
SC21-7517

SYSTEM CONFIGURATION

For information concerning the minimum system configu-
ration for the IBM System/3 Models 4 and 6 and additional
devices supported, see one of the following publications

as appropriate for your System/3 model:

® /BM System/3 Models 4, 6, 8, 10, and 12 System
Generation Reference Manual, GC21-5126

® /BM System/3 Model 4 Introduction, GC21-5146

® /BM System/3 Model 6 Introduction, GA21-9122

PART I. OPERATION CONTROL LANGUAGE

INTRODUCTION TO OCL
How to Use Part |
Operator’s OCL Guide .

CONVERSATIONAL OCL
The Job Cycle
The LOAD Cycle
The BUILD Cycle
The BUILDC Cycle..
The CALL Cycle

System-Operator Interaction Dunng Keyword Promptmg .

Keyboard

End-of-Statement Kevs

Statement Numbers in an OCL Cycle
Comments

Keyword Sequence for OCL Load Cycle
Keyword-Response Summary (Load Cycle) .
Keyword Sequence for OCL Build Cycle .
Keyword-Response Summary (Build Cycle) .
Keyword Sequence for OCL BUILDC Cycle .
Keyword-Response Summary (BUILDC Cycle) .
Keyword Sequence for OCL Call Cycle
Keyword-Response Summary (Call Cycle)

CARD OCL FOR MODEL 6

Assigning Data Recorder or 3741 as System Input Devnce .

IBM 129 Programming Considerations
Returning Control to Keyboard
Control Statements in Procedures .
Card Format of OCL Statements .
OCL Statements .
General Coding Rules
Statement Order
Coding Multi-Volume File Parameters

KEYWORD DESCRIPTIONS .
BUILD NAME .
Duplicate Procedure Names .
Deleting a Source Library Procedure .
BUILDC NAME .
CALL NAME
COMPILE Keywords
Compile Object Keyword
Source Keyword
Unit Keyword
DATE
Overriding the System Date
Format of the DATE Statement
EJECT
FILE Keywords . .
System-Operator Interactnon Dunng Promptmg of
File Keywords .
Unit Keyword
Pack Keyword
Label Keyword .

WNN

QORONNNOOOOO DS

NN NRN = o o
NNOOOONO =00

29
29
29
29
30
30
30
31

32

33
33
33
33
33
33
34
34
34
34
34
36
36
36
35

35
36
36
36

Records and Tracks Keyword .
Location Keyword .
Retain Keyword .
Date Keyword
HALT
LOAD NAME
For Customer Programs
For System Programs
MODIFY Keyword .

System-Operator Interaction Dunng MOdIfICﬂtIOI’I .

Changing a Previous OCL Statement .
Deleting a Previous OCL Statement
Entering Comments .
Cancelling Job .
Changing Forms Length
Changing Punch Device .
Including Control Statements .
NOEJECT
NOHALT
READY
RUN
SWITCH .
Indicator Settings
IPL. Considerations . .
Duration of SWITCH Settlngs
Operator-System Interaction for SWITCH
Statement (LOAD Cycle) .
Operator-System Interaction for SWITCH
Statement (BUILD Cycle)
Operator-System Interaction for SWITCH
Statement (CALL Cycle) .

USING OCL .
Multi-Volume Files .
Creation .
Processing .
OoCL Consnderatlons
List Requirements
File Statement Summary
Coding Multi-Volume File Statements
Changing Multi-Volume File Statements with
MODIFY Keyword .
Including Sort Source or Utility Control Statements
ina Procedure .
Increasing File Size of the RPG Procedure
Maximum Number of Files in SWA
Processing Large Indexed Disk Files
Entering RPG Il Source Statements From the
Keyboard at Compile Time
Inquiry Interrupt
Restrictions During Inquiry
Chained Procedures . . .
OCL for the IBM 2222 Prmter
Using the FORMS Statement .
Log Device
MODIFY — Entermg the Keyword FORMS

Contents

37
37
37
38
38
39
39
39
40
40
42
42
43
43

45

47
47
47
48
48

48
49
50
50

51
51
51
51
51
52

55
55

55
55
55
56

56
57
57
57
58

568
58

Contents . v

OCL for the IBM 2265-2 Display .
READY — Entering LOG
MODIFY — Entering LOG .

OCL Error Messages

Co-Resident Systems

SAMPLE JOBS . -
Sample Job 1. Initialize Disk . .
Sample Job 2. Compile an RPG Source Program

Sample Job 3. Process Customer Program “INVUPD"' ,

Sample Job 4. Copy File Disk to Disk

Sample Job 5. Multi-File Build

Sample Job 6. Multi-File Call .

Sample Job 7. Update Multi-Volume Master Fnle

Sample Job 8. Create a Multi-Volume Indexed File

Sample Job 9. Maintain a Multi-Volume Indexed File
With Packed Keys .

Sample Job 10. Include Utlllty Control Statements
in a Procedure . .

Sample Job 11. Chain Procedures

PART II. DISK UTILITY PROGRAMS .

INTRODUCTION TO DISK UTILITY PROGRAMS
General Program Operation
All Programs Except Library Mamtenance
Library Maintenance Program .
Using Disk Utilities .
Control Statements .
Writing OCL Statements
Utility Control Statements .
OCL Statements .

DISK INITIALIZATION PROGRAM (SINIT)
Functions
Naming a Disk
Writing Track and Sector Addresses
Checking for Defective Tracks (Surface Analysns)
Assigning Alternate Tracks . L
Options .
Type of Inmallzatron
Number of Disks . .
Erasing Alternate Track Assrgnments
Additional Disk Identification .
Surface Analysis Option '
Control Statements . .
Control Statement Summary
Parameter Summary
Parameter Descriptions .
TYPE Parameter (UIN) .
UNIT Parameter (UIN) .
VERIFY Parameter (UIN) .
ERASE Parameter (UIN)
CAP Parameter
PACK Parameter (VOL)
ID (ldentification) Parameter (VOL)
OLDPACK Parameter (VOL)

vi

59
59
59
60
62

63
64
65
66
67
69
71
72
73

75

76
77

79
80
80
80
81
81
81
82

82
82

83
83
83
83
83
83
84
84
85
85
85
85
85
86
87
88
88
88

88
89

89
89

OCL Considerations

LOAD Sequence

BUILD Sequence
Example . .

Primary Imtuallzatlon of Two Dlsks
Messages for Disk Initialization

ALTERNATE TRACK ASSIGNMENT PROGRAM (SALT)
Functions
Writing Track Addresses
Checking for Defective Tracks . .
Printing Sectors Containing Incorrect Data
Assigning an Alternate Track
Options
Type of Assngnment
Number of Alternate Tracks
Surface Analysis .
Control Statements .
Control Statement Summary .
Parameter Summary: ALT (Alternate) Statement .
Parameter Descriptions .
PACK Parameter
UNIT Parameter .
VERIFY Parameter .
ASSIGN Parameter .
UNASSIGN Parameter .
OCL Considerations
LOAD Sequence
BUILD Sequence
Example .
Conditional Asslgnment .
Messages for Alternate Track Assrgnment

ALTERNATE TRACK REBUILD PROGRAM ($BUILD) .
Functions .
Locating Incorrect Data
Control Statement Summary
Replacing Incorrect Data
Options . .
Parameter and Substltute Data Summary
Number of Characters .
Number of Tracks .
Parameter and Substitute Data Descrlptlons
PACK Parameter
UNIT Parameter .
TRACK Parameter .
LENGTH Parameter
DISP (Displacement) Parameter
Substitute Data .
OCL Considerations
LOAD Sequence
BUILD Sequence
Example .
Correcting Characters on an Alternate Track

FILE AND VOLUME LABEL DISPLAY PROGRAM
($LABEL) .
Functions
Print VTOC Informatnon
Print Headings
Options

90
920
20
91
91
92

93
93
93
23
23
93
94
94
95
95
95
95
95
96
96
96
96
96
96
97
97
97
98
98
99

100
100
100
100
100
100
100
101
101
101
101
101
101
101
101
101
102
102
102
103
103

105
105
105
1056
105

EntireContentsof VTOC 105
File InformationOnly e e e 105
Numberof FileNames 105
Control Statements.t 105
Control StatementsSummary 0. ... 106
Parameter Summary (Display Statement) 106
Parameter Descriptions. it it ittt i 106
UNIT Parameter. v o i it i it et et e e nn e 106
LABELParameter 107
OCL Considerations v ottt v vt et e annnaas 110
LOADSeqUenCe v v vt vttt et ennenen 110
BUILD Sequence v v v v ittt me et e e ee 110
Exampleo e e e e e 111
Printing VTOC Information for Two Files. 11
FILE DELETE PROGRAM ($DELET) cee. 12
Functions it ittt i e e e e 112
VTOC File Reference 112
Erase FileInformation. 112
Options. ittt i e e e e e 112
DeletingaFile. 112
Numberof Files. un.. 112
Numberof FileNames. 113
Control Statements.t vttt it e et e 113
Control Statement Summary e e 113
ParameterSummary 114
Parameter Descriptions. i it e 114
PackParameterttt 114
UnitParameter i iin it inennen. 114
Label Parameter.ttt et 114
Date Parameter it v it ittt e e 115
Data Parameter (REMOVE StatementOnly) 115
OCL Considerations vt itneneunnean 116
LOADSEqQUENCE . . « v v v vttt e e et e e e e 116
BUILDSequence e e e s 116
Example e e e .. 117
Deleting One of Several Files Having the Same Name 117
RemovingOne File. 118
COPY/DUMP PROGRAM (SCOPY) v v i v o nenn 119
FUNCHIONS & . . it e et e e e e e e e e 119
DiskorFilelocation. 119
Using a Work Area e e e e e e e e e e e e 119
Identifyingthe Device 119
CopyingaPortionofaFile 119
Printinga PortionofaFile. 119
Record Keys and Relative Record Numbers. 119
Options. e 120
Copying and Prmtmg 120
DeletingRecords it i it it e 121
Reorganizinga File. ittt e vt 121
Copying Multivolume Files 122
Maintaining Correct Date and Volume Sequence Numbers . 122
Maintaining Correct Relative Record Numbers 122
Direct File Attributes., 122
Copying Multivolume Index Files. e e e e e 122
Control Statements. v v v v v o vttt b e 123
Control StatementSummMary« . v v v v v v v v v v . 124
Parameter Summary e e .. 127

Parameter Descriptions. v . v v v v i e it e
FROM and TO Parameters (COPYPACK Statement).
OUTPUT Parameter (COPYFILE Statement)
INPUT Parameter (COPYFILE Statement)
LENGTH Parameter ({COPYFILE Statement).
DELETE Parameter (COPYFILE Statement)
REORG (Reorganize) Parameter (COPYFILE

Statement)o . e e e
WORK Parameter (COPYFILE Statement)
SELECT KEY and PKY Parameters (SELECT

Statement) e e e
SELECT RECORD Parameters (SELECT Statement)
FILE Parameter (SELECT Statement)
LENGTH and LOCATION Parameters (KEY Statement) . .

Card and Diskette Considerations (JCOPY).
Card or Diskette lnput.
Card or DisketteOutput.o v v v v...

OCL Considerations innenna.
LLOAD Sequence for Copying an Entire Disk
BUILD Sequence for Copying an Entire Disk
LOAD Sequence for Copying or Printing Files
BUILD Sequence for Copying or Printing Files.

Examples. e
Copyingan Entire Disk.0...
Copying a File from One Disk to Another.
Printing PartofaFile.
Copy a Disk FiletoaCardFile.
Copy a Disk File to the 3741 (Diskette)
Copy a Disk File to the 3741 (Diskette} and Print a Part

oftheFile
Copy a Card File to a Diskette and Print the Entire File. . .
Copy and Print a Portion of a File on a Diskette to a

CardDevice @it e
Copy a Diskette File to a Disk File and Print only the

CopiedRecords00ouu....
Create an Indexed File from a Sequential Card File
Create an Indexed Disk File from Sequential Disk Input. . .

Contents

144
145

147
149

vii

LIBRARY MAINTENANCE PROGRAM (SMAINT).
Library Description. v v v v i vt i i i
Organization of this Section. PN

ANOCAtE . . o v e e e e e e e e e e e e e

Allocate Considerations and Restrictions
Control Statement Restrictions . . . v v v v v v v o v v v u. .
Allocate Control StatementSummary
Allocate ParameterSummary v v v o i v v e ..
Parameter Descriptions. e
TOParameter« v v v v v v bt et st e e e
SOURCE and OBJECT Parameters.« v o« v oo v v
DIRSIZEParameter v v v v v vt e oo oo o uonn
SYSTEMParameter. v v v v v v vttt v o v o
WORKParameter. v v v v v v v s vt vvee s o
Using the Allocate Function.
Compress in Place (OBJECT-[R NUMBER])
GO Y « v v it e e e e e e e e et e
COPY Contro! Statement Summary: Reader-to-Library. . .
COPY Control Statement Summary: File-to-Library
COPY Control Statement Summary: Library-to-
Library . . . v i i e e e e e e e e e e e
COPY Control Statement Summary:
and/orCard e e e e e
Copy Parameterst i v i it i i v i e
Usingthe Copy Function
Sample System Directory Printout
Using the System Directory to Determine if the Object
Library should be Reorganized e
Source Library Directory i e ..
Object Library Directory.o v v it v vt vt
Delete . . i i i e e e e e e e e e e
Control StatementSummary
DeleteParameters. v v v v v vt v i i v et e e e

Control Statement Summary e e e e
Modify Parameter. ¢ . v v v i i e
Remove, Replace, Insert Parameters
Rename v vt ittt it i e i e e e e
Control StatementSummary oot v e 0o
Rename Parameters.o v v ittt e e
OCLConsiderations v v v e ennneens
LOAD Sequence e e e e e
BUILD Sequence v v v vt ittt e it eannnn
Allocate Examples v v o v it vt i et e e
Creating Both Source and Object Libraries on a Disk.
Changing the Size of a Source Library

Deleting the Object Library fromaDisk.

viii

Copy EXamples . . v v v v v v et o ittt i e 186
Copying Minimum System from one Disk to Another 186
Printing Library Directories o v v v v v v v 187
Replacing a Library Entry: Replacement Coming from

Another Disk. ¢ i it i i i i it i i 188
Copying a Disk FiletoaLibrary 189
Copying a Procedure from the System Input Device 190

Delete Examples i it i it ittt e 191
Deleting a Temporary Entry froma Library. 191
Deleting All Temporary Entries with Names that Begin with

Certain Characters. v v v v o v v o v v o v o v o v o 192
Deleting All Permanent Library Entries of One Type. 193

Modify EXamples. v v v v vt v v e vt a e i 194
Replacing Statements inaProcedure. 194
Removing Source Statements fromaModule 195
Inserting a Statement in aSourceModule 196

Rename Example. vt vt ittt it it 197
Renaming a Set of Source Statements in a Source

Library o i e e e e e it e 197

APPENDIX A: IBM SYSTEM/3 STANDARD

CHARACTERSETttt c i et s enennannass 198
APPENDIX B: RECORDS — TRACKS CONVERSION. 199
For Sequential or DirectFiles. 199
ForlIndexedFiles. 199
APPENDIX C: DISK ORGANIZATION0. 200
Volume Table of Contents (VTOC). 200
Source Library i e e 200
ObjectLibrary. v v it i et e i e i 200
2212 200
APPENDIX D: INQUIRYPROGRAMc.0.. 201
Requesting Inquiry in an Interrupt Environment. 201
Classifying Programs for Inquiry 202
Inquiry in an Interrupt Environment. 203
Planning Inquiry Programs. v v i v o v v oo 204
APPENDIX E: LIBRARY ENTRY RETRIEVAL
SUBROUTINE(SUBR15). . . =+ vt e vttt e v e v annn 205
UsingSUBRISWithRPG Il 206
Error Identification. v it e 207
EXample . « o i i it e e e s e s 207
GLOSSARY . . it vttt vttt st s snensnnnansanas 209
INDEX . . i i ittt ittt e as s s cnannnanananens 210

This publication contains two parts. Part | describes
Operation Control Language (OCL) statements. Part Il
describes disk utility programs.

Part |

Refer to Part | if you want to know:

1. What an OCL statement is.

2. How to enter the OCL statements required to run
your jobs.

How to Use This Manual

Part 11

Refer to Part Il if you want to know:

1.

What disk utility programs are supplied with the
system.

The function of each disk utility program.
The Operation Control Language (OCL) statements

and utility control statements necessary to request
each disk utility program.

How to Use This Manual ix

PART I
OPERATION CONTROL LANGUAGE

Operation Control Language 1

Introduction to OCL

Before the IBM System/3 Model 6 can run a program, it
must know what you want it to do and where to find the
information it will need to do the job. You supply the
what and where information in a series of OCL (operation
control language) statements. The system can’t run any of
your programs unless each one is accompanied by a series
of OCL statements. A series of OCL statements is called

an OCL cycle. There are four OCL cycles: LOAD, BUILD,
BUILDC, and CALL.

Part | of this manual is designed to help you select an OCL
cycle and fill out the OCL guide sheets your operator will
use in response to the OCL prompting for each job. -You
can either design an operator’s OCL guide sheet for your
installation or use the pre-printed form that is available
(see Operator’s OCL Guide).

HOW TO USE PART |

The Conversational OCL section of this manual contains
information on responding to OCL prompting. There are
three levels of information for the four OCL cycles.

Here is how to use each level:

® Use the KEYWORD SEQUENCES for an overall under-
standing of the OCL cycle. The sequences show the
order of the OCL keywords for a cycle and indicate
which keywords require responses.

® Use the KEYWORD-RESPONSE SUMMARIES for a
quick recall of all possible entries for each OCL state-
ment. In the responses column of the summary charts:

— Words or letters in all capital letters (FORMS,
BUILD, R1) represent actual entries.

— Words or letters not in all capital letters (mmddyy,
Disk Name) represent information you must supply.

® Use the KEYWORD DESCRIPTIONS when you need a
detailed explanation of a particular keyword.

The section titled Using OCL contains information on pro-
gramming OCL for complex jobs and special features or
devices.

OPERATOR’S OCL GUIDE

The operator’s OCL guide is available for you to use to tell
your operator how to respond to the OCL prompting for a
job. The CALL cycle is not included on the guide because
the OCL prompting for that cycle is so short.

For information on filling out the OCL guide, see /BM

System/3 Model 6 System Programmer’s Guide,
GC21-7530.

GX21-9126°_
IBM Printed in US.A.
® International Business Machines Corporation
System/3 Model 6
Job .
Date OPERATION CONTROL LANGUAGE (OCL) GUIDE
Keywords Responses Considerations
rlea[oly slufi JL]o -
0l0 o BlUJIJL DI N |A E Procedure Name
ojon VN T F1, R1, F2 or R2
0f1[0 L [O|A|D N AMI(E Columns 75-80 of RPG Control Card or System Program Name _
[Other Possible Entry
o1 U N T F1, R1, F2 or R2 (Lines 020-058)
ol2]o plAlT|E mmddyy or ddmmyy ? for Delayed Response]
0i3|o S Wi [T [CH 1-On, 0-Off, X-No Change
0l4]0 FIV]LIE N [AMIE Columns 7-14 of RPG File Description ifications or P il
0lal1 U IND|T F1, Rt, F2 or R2
0]4]2 P [AC |K Disk Name (Assigned by Disk Initialization Program)
o0la|3 L |AB |E]|L VTOC File Name (if different than response to FILE NAME}
01414 R|E[C|O|R[D]S 1-999999 (Maximum Number of Records in File)
0]4|5 T |RJA[C[K|S 1-398 (Maximum Number of Tracks for this File)
0/4(6 L JOC JAIT|I |JO|N 8-405 Location of First Track of File
01417 RIE[T [A]l [N S-Scratch, T-Temporary, P-Permanent
0|48 D [A[T |E mmddyy or ddmmyy
afslo FltiL]e NJAIMIE Columns 7-14 of RPG File Description Specifications or Predefined File Name
0]5]1 UNJLT F1, R1, F2 or R2
0)5]|2 P |A|C [K Disk Name {Assigned by Disk Initialization Program}
0(5(3 LIABIE|L VTOC File Name (if different than response to FILE NAME}
0)5|4 R[(E|C|O|R|D|S 1-999999 {Maximum Number of Records in File}
0]|5|5 T [R[AJC[K[S 1-398 {Maximum Number of Tracks for this File)
0/5(6 LIO|C|A|TII]O|N 8-405 Location of First Track of File
0|57 R|E[T[A|L|N S-Scratch, T-Temporary, P-Permanent
0|5|8 D|A|T|E mmddyy or ddmmyy
M{OJD|V[F]Y, MODIFY OPTIONS
1. Enter RUN
2. Enter CANCEL
3. Correct Statement
Enter Statement number
Retype or delete {,) response
4. Create new Statement
INCLUDE, LOG, FORMS, *{For Comments)

Introductionto OCL 3

Conyersational OoCL

Every job run on the Model 6 requires a set of Operation
Control Language (OCL) statements to give the system in-
formation about the job to be run (such as what program
to use, what files to use, what job date to use, etc.). An
OCL statement consists of a keyword and a response.

The OCL for the Model 6 is called conversational OCL be-
cause a question and answer procedure is used. The sys-
tem prints the question called a keyword, and the operator
supplies the answer called a response. The keyword tells
the operator the type of information required by the sys-
tem. For example, the keyword FILE NAME indicates
that the name of one file used in the program must be
supplied. By printing a keyword, the system is prompting
the operator for a response.

The operator responds to each keyword that applies to the
job by typing in the relevant information. (When the sys-
tem prompts FILE NAME, for example, the operator types
the name of one file that the job uses.) If the system
prompts a keyword that doesn’t apply to the job, the
operator bypasses the response.

THE JOB CYCLE

The system will prompt READY when it is ready to run
jobs. (For information on preparing the system to run jobs,
see the /BM System/3 Model 6 Operator’s Guide, GC21-
7501.) The response to READY tells the system what type
of OCL cycle you want to run.

There are four OCL cycles: LOAD, BUILD, BUILDC, and
CALL. Of the four cycles, only the LOAD cycle is inde-
pendent; that is, you can run a job by responding just to

the keywords in that cycle. The other three cycles are inter-
related; to run a job you must use two or more of them.

The OCL cycle you choose to use should be based on fre-
quency of program use and whether the program will be
run alone or with a group of programs.

For infrequent jobs use:

LOAD This provides the OCL statements needed to

run the job.
For frequent jobs use one of these:

BUILD This puts the OCL statements for a job into a

source library procédure.
BUILDC This chains the procedures.
CALL

This calls a procedure from the source library.

Note: A set of OCL statements in a source library is called
a procedure,

900 {EUONESIIAUOD

S

YOU WANT
TO DO THIS

OPERATOR
DOES THIS

SYSTEM

DOES THIS

Operator

types
NOHALT

Y
Continues
from job to
job without
halting

Continue from Halt after
job to job with-
out halting

each job

Operator

types
HALT

Y
Halts
after
each

job

Stop page
eject at
end of job

Operator
types
NOEJECT

Y
System does
not eject
a page at

end of job

System Prompt§ READY

Eject page at

end of job

(cancel NOEJECT
statement)

Operator

types
EJECT

\4
System
ejects a
page at
end of job

System Prompts READY

device device device
Operator Operator ‘Operator
types types types
READER LOG PUNCH

(See index (See index (See index
entry card entry LOG) entry PUNCH)
ocL) ‘

Y \/ \
Changes Changes Changes
Input Log Punch
Device Device Device

Change input Change log Change punch Execute

job

Operator
types
LOAD

and supplies
OCL state-
ments

OR

Operator
types

CALL and
system reads
OCL state-
ments from
procedure -

System loads
and executes
program

Build a
procedure

Operator
types
BUILD

and supplies
OCL

OR

Operator
types
BUILDC and
supplies OCL

v
System puts
statements in
procedure

The LOAD Cycle
When you use a LOAD cycle, you‘re telling the system:

1. Here are the OCL statements for my program.

2. Go to the disk drive | specify and find the program |
want to run.

3. Load the program into the processing unit.
4, Run my program.

The LOAD cycle OCL statements are not saved. If you
want to run the same job again, your operator must respond
to all the keywords in the LOAD cycle again. It's best to
use the LOAD cycle for jobs you run infrequently because
this cycle has many keywords and takes quite a while for
responses.

The BUILD Cycle
When you use a BUILD cycle, you're telling the system:

1. Here are the LOAD cycle OCL statements for job
XXXX.

2. Store the LOAD cycle statements on disk so that they
can be used whenever | want to run the program.

3. Do not run the program now.

Once the set of OCL statements is written on a disk, the
set of statements is referred to as a procedure. The process
of writing the statements on the disk is referred to as build-
ing a procedure. You use the BUILD cycle to build a
procedure.

W

Although the BUILD cycle is the longest of all the OCL
cycles in terms of operator time required, it doesn‘t run a
job. Its function is to save the OCL statements for a job

by writing them on one of the disks. The advantage of the
BUILD cycle is that once the OCL statements are stored on-
the disk, the program can be run using them rather than by
keying all the required statements.

Delayed Responses in the BUILD Cycle

Responding to a keyword by typing a question mark is re-
ferred to as a delayed response.‘ Delayed responses are valid
only in the BUILD cycle and only after keywords that con-
tain a delayed response in the keyword-response chart (see
Keyword-Response Summary — Build Cycle). A delayed
response to any of these BUILD keywords will do the
following:

® Cause the system to reprompt the keyword during the
CALL cycle.

® Force the operator to respond to the keyword when it is
reprompted during the CALL cycle. (The system won't
continue the CALL prompting cycle until the operator
types a valid response.)

Control Statements in Procedures

HALT, NOHALT, LOG, READER, PUNCH, and PAUSE,
are ignored when read from procedures during the CALL
cycle and are not put into a procedure during a BUILD
cycle.

The BUILDC Cycle

When you use a BUILDC cycle, you're telling the system:

1. I want to prepare a procedure to run a series of jobs
which are always executed one after the other with

no interruption.

2. The OCL statements for each job in the group are
in procedures stored on disk.

3. Here are the names and disk drive locations of the
* procedures for each job in the group.

4, Build a chained procedure, establishing a sequence in
which the individual procedures are run.

A chained procedure is a list of the procedures for each job
in a group, in the order you want to run them. The list
contains:

1. The name of the procedure for each job.

2. The disk drive on which the procedure is located.
The process of writing the list on a disk is referred to as

building a chained procedure. BUILDC stands for build
chained. ’

The CALL Cycle

CALL is the shortest OCL cycle, having only four keywords.

When you use a CALL cycle, you're telling the system:
1. Locate, on disk, the procedure | built for job xxxx.
2. Use it to run job xxxx.

The CALL cycle is always linked to a BUILD or a BUILDC
cycle.

SYSTEM-OPERATOR INTERACTION DURING
KEYWORD PROMPTING

The system analyzes the operator’s response to each key-
word. If the response contains a formatting error (such as
invalid characters or duplicate procedure names), the sys-
tem prints an error message and reprompts the keyword. If
the operator does not know the correct response, entering
/* as a response to a\ny' prompt will cancel the job and cause
READY to be prompted.

System prompts keyword

<5
<

Does operator’s OCL guide
show a response to the keyword

|

YES NO

Operator types
in response
L

Operator presses end-of-statement
key to indicate end of statement

Does response contain errors

l

YES NO

|

System prompts
next keyword in
the cycle

System prints
error message
or code

Operator looks up
error message or code
and pbssible options in
operator's manual

l

Operator uses one
of the options

Conversational OCL 7

Keyboard

Command Key Lights System Status Lights . System Control Switches

These lights tell the operator 1/O attention lights indicate those These switches start and control
which command keys have devices that need operator attention. the system.,

been turned on. The halt code and field/operation

lights show system status.

LT 8 vreRa|

ST

S RN s SOeEE
T Lobiy ol] AT VT MG B
o L'} wuy o

-

10-Key
Numeric
Keyboard
Command Keys Alphameric Keyboard
Program Start Key Single Quote Field Erase Key Enter — Key

\ (For Multi-Volume Files) \ \
01| 02 03 || 04 mvg % fllgl[g Slall ol) | T
aflwl] e JI R " T " vy [full: " 0 " P | RE TURN
Fila R

09 q| 10 || 11 | 12 A S ll,D H J K Il L

lz X c“v]e Nl m <JI>

05 {| 06 || 07 || 08

CSHIFT

Command Keys Alphameric and Special Character Keys Numeric Keys Enter + Key

Question Mark

(For Delayed The shaded keys
Response} are function keys

End-Of-Statement Keys

The operator must respond to each keyword that the sys-
tem prompts. The operator responds to a keyword by
typing the required information (if the keyword applies to
the job) and by pressing an end-of-statement key. The end-
of-statement key can be either PROG START or ENTER —
The Keyword-Response Summary charts in Appendix A
explain the effect of end-of-statement keys on the prompt-
ing sequence.

Program Start (PROG START) or Enter Plus (ENTER+)

Pressing the PROG START or ENTER+ key tells the sys-
tem that the response is complete and to prompt the next
keyword.

Enter Minus (ENTER-)

Pressing the ENTER— key to end a response causes differ-
ent processing depending on what keyword was prompted
and what type of QOCL cycle is being run.

Pressing ENTER— after LOAD NAME or UNIT ina LOAD
Cycle: If the ENTER— key is used as an end-of-response
to the LOAD NAME or UNIT prompts ina LOAD cycle,
the remaining keywords in the cycle will be bypassed and
MODIFY prompted.

Pressing ENTER— after LOAD NAME or UNIT in a BUILD
Cycle: 1fthe ENTER— key is used as an end-of-response
to the LOAD NAME or UNIT prompts in a BUILD cycle,
the system will prompt COMPILE OBJECT, SOURCE, or
UNIT.

Pressing ENTER— after FILE NAME: |f the ENTER— key
is used as an end-of-response to the FILE NAME prompt,
the system prompts KEY LENGTH and HIKEY for multi-
volume indexed files (see Multi-Volume Files in Appendix
A).

Pressing ENTER— after CALL NAME or UNIT ina CALL
Cycle: |f the ENTER— key is used as an end-of-response
to the CALL NAME or UNIT prompts in a CALL cycle,
the OCL and any included control statements in the called
procedure are not displayed. However, OCL statements
with delayed responses are displayed and the system waits
for a response. MODIFY is not prompted after either the
OCL statements or the included control statements.

Pressing ENTER— in the File Keywords: |f the operator
responds to FILE NAME, he must also respond to the next

‘two file keywords: UNIT and PACK. He can, however,

bypass any or all of the rest of the file keywords. To by-
pass a single keyword he presses the PROG START key as
a response. To bypass all of the remaining file keywords
he presses the ENTER— key either as an end-of-response
or as a response. Pressing the ENTER— key causes the sys-
tem to prompt FILE NAME for the next file.

Statement Numbers in an OCL Cycle

Statement numbers are assigned by the system to state-
ments in an OCL cycle. These statement numbers are used
by the operator when using MODIFY to reference previous
OCL statements.

Each OCL statement, except READY and MODIFY, is as-
signed a three digit number. The first number in a BUILD
or CALL cycle is 000, and in a LOAD cycle 010.

The statement number is incremented by 10 for each major
keyword (DATE, SWITCH, COMPILE OBJECT, FILE
NAME, etc.), and by one for each minor keyword (UNIT,
PACK, LABEL, RECORDS, etc.).

When the INCLUDE keyword is used to add utility control
statements or sort source statements to a procedure, these
included statements are assigned two-digit statement num-
bers. These statement numbers start with 00 and are incre-
mented by one for each included statement.

The sample OCL jobs show the statement numbers assigned
under various OCL cycles. i

Conversational OCL. 9

Comments

Comments can be entered after any response on the same
line if at least one space is left between the response and
the comment (see Modify: Entering Comments under
MODIFY in Part | to add comments during MODIFY time).

Keyword Sequence for OCL Load Cycle

| READY |
I Keywords that must
| LOADNAME | % be answered in every
L LOAD cycle.
| uniT |
[compiLE oByecT|) Keywordsthatare
T prqmpted only if
I SOURCE I response to LOAD
1 NAME was name of
I UNIT L . J compiler.
| DATE]
| switcH]
e
| FILE NAME |
No -e— Does operator respond
with a file name? Keywords that must
Yes be answered for
every file used in job.
| uniT |
1
| PACK
| LABEL |
1
| RECORDS |
: T
| TRACKS |
1
| LocaTiON |
A
| RETAIN |
I
| bATE |
> This keyword must be
I MODIFY] answered in every

LOAD cycle.

10

Keyword-Response Summary (Load Cycle)

Keyword Response

Consideration

READY LOAD
Press PROG START
LOAD NAME — Program Name
(Not Compiler)
Press PROG START

OR OR
Press ENTER—

Press PROG START
UNIT R1,R2,F1,0r F2
Press PROG START
OR
Press ENTER—

COMPILE OBJECT I— R1,R2,F1,or F2

OR
L Press PROG START

No Response

Press PROG START
SOURCE Name of Source Program

Press PROG START

— Compiler Program Name

None

System prompts LOAD NAME
Néme of program to be run

System prompts DATE after UNIT

System prompts MODIFY after UNIT

Name of compiler to be run ($RPG for RPG || Compiler)
System prompts COMPILE OBJECT after UNIT
Location of the disk whose object library contains the
program to be run.

System prompts next keyword (see LOAD NAME in this
chart)

System prompts MODIFY if not compiler
Your system has more than one object library and you
don’t want to put the compiled program in the object

library which contains the compiler. -

System prompts SOURCE

System will put the compiled program in the object library
which contains the compiler. Prompt SOURCE

Name assigned to RPG Il source program when the KSE or
Library Maintenance Program put it in a source library

System prompts UNIT

For information about the KSE Program see the /BM System/3 Model 6 Conversational Utility Programs Reference Manual, SC21-7528.
For information about the Library Maintenance Program see Part |l of this manual.

Conversational OCL 11

Keyword-Response Summary (Load Cycle) (Continued)

Keyword Respaonse Consideration
UNIT R1,R2,F1,0or F2 Location of the disk whose source library contains the
RPG [l source program
Press PROG START System prompts DATE
DATE — mmddyy or ddmmyy Required when job date is not the same as the system
date. (Responses must follow format established during
OR system generation.)

Press PROG START

“— No Response

Press PROG START

SWITCH 8-position setting
{(XXXXXXXX) —— (combination of 1‘s, 0’s,
and X's)

OR
Press PROG START

L— No Response

Press PROG START

FILE NAME ___ File name of file used

by program

Press PROG START
OR OR
Press ENTER—

— No Response

Press PROG START

12

System prompts SWITCH

Either no date is required for the job
OR

you're going to use the system date.

System prompts SWITCH.

Required to change external indicators in programs. Three
choices for each position:
1 turn indicator on
0 = turn indicator off
X leave indicator as is

System prompts FILE NAME

* Job does not use external indicators or you want to use the

current setting. System prompts FILE NAME

Columns 7-14 of RPG File Description Specifications, or
predefined file name for system programs

System prompts UNIT

System prompts KEY LENGTH (see Multi-Volume Files
in Appendix A)

Either your job uses no files at all

OR
you have already described all the files the job uses. You
want the system to prompt MODIFY

Keyword-Response Summary (Load Cycle) {Continued)

Keyword Response Consideration
UNIT R1,R2,F1,0or F2 During a file creation run — location of disk where you
want to write the file.
During other runs — location of disk which contains the
file to be processed.
Press PROG START System prompts PACK.
PACK Disk Name During a file creation run — the name which identifies
the disk on which you want to write the file.
During other runs — name which identifies the disk on
which the file is located.
Press PROG START System prompts LABEL.
OR
Press ENTER— System prompts FILE NAME for next file.
LABEL — VTOC Filename Required when VTOC Filename is different than response
to FILE NAME.
Press PROG START System prompts RECORDS
OR OR
Press ENTER— System prompts FILE NAME for next file.
— No Response
: Press PROG START You don’t want to respond to this keyword; you want the
system to prompt RECORDS
RECORDS @ — 1-999999 Number of records in the file.
Press PROG START System prompts LOCATION.,
OR OR

Press ENTER—

— No Response

Press PROG START

System prompts FILE NAME for next file.

You don’t want to respond to this keyword; you want
system to prompt TRACKS.

o At file creation time, e/ther the number of records or the number of tracks must be specified.

Conversational OCL

13

Keyword-Response Summary (Load Cycle) (Continued)

I Keyword Response

Considerations 1

TRACKS @ 1-398
!' Press PROG START
OR OR
Press ENTER—

No Response

Press PROG START

LOCATION — 8-405

Press PROG START
OR
Press ENTER—

OR

— No Response

Press PROG START

RETAIN — P, T,S,orA

Press PROG START
OR
Press ENTER—

— No Response

Press PROG START

Number of tracks the file will occupy.
System prompts LOCATION.

System prompts FILE NAME for next file.

You don't want to respond to this keyword; you want

system to prompt LOCATION.

Use during file creation runs if you want to specify a begin-
ning track location for the file.

System prompts RETAIN.

System prompts FILE NAME for next file.

You don’t want to respond to this keyword; you want
system to prompt RETAIN.

P — permanent

T — temporary

S — scratch

A — activate scratch

System prompts DATE.

System prompts FILE NAME for next file.

If file is being created, file designation will be T. System
prompts DATE.

At file creation time, either the number of records or the number of tracks must be specified.
If operator entered number of RECORDS, TRACKS will not be prompted.

14

Keyword-Response Summary (Load Cycle) (Continued)

h(eyword Response Considerations
DATE mmddyy or ddmmyy Required when job uses a file whose name and label are
r the same as those of another file on the same disk.
(Response must follow format established during sysgen.)
OR
Press PROG START System prompts FILE NAME for next file.
No Response
Press PROG START You don’t have to respond to this keyword; you want
system to prompt FILE NAME, for next file.
MODIFY LOG Used only if CRT display or 2222 printer on system.

(Operator can
use one, all, or a
combination of
the responses.)

Press PROG START
CANCEL

Press PROG START
FORMS

Press PROG START
PUNCH

Press PROG START

Asterisk (*)
Followed by comments

Press PROG START
Statement number and comma
Press PROG START
Statement number
Press PROG START

RUN

Press PROG START

System prompts LOG DEVICE.
Cancel job.

System prompts READY or displays end-of-job halt.

Change lines per page printed output for system programs.

System prompts FORMS DEVICiE.
Change the system punch device.

System prompts PUNCH.

Enter comment.

System waits for next MOD!FY response.
To delete statement
System waits for next MODIFY response.
To correct statement (LOAD NAME cannot be changed).
System waits for correct statement.
Tells system —
a. The LOAD cycle is complete.

b. Run the job.

System runs job

Conversational OCL

15

Keyword Sequence for OCL Build Cycle

| READY |
I Keywords that must

| BUILD NAME I be answered in every

WNIT . J BUI!_DcycIe.
-

| LoaDNAME |

[UNIT ' 1

1
| compiLE OBJECT |

Prompted only if response to
| souRce | { LOAD NAME or UNIT ended
- ' with ENTER— key.

[uniT

| DATE |

-

| switcH |

|
*

| FILE NAME |

Mo -z— Does operator respond

with a file name? Keywords that must

Yes be ansvyered for
every file used in job.

[uniT |

|
| LABEL B

| RECORDS

| TRACKS

| LocaTiON

| RETAIN
1

| PACK

LJ L J——JL _JL_

| DATE

P

This keyword must be
| MODIFY J answered in every
LOAD cycle.

16

Keyword-Response Summary (Build Cycle)

Keyword Response Considerations
READY BUILD None

Press PROG START System prompts BUILD NAME
BUILD NAME Procedure Name Maximum of six alphameric characters.

Press PROG START

UNIT R1,R2, F1, or F2

Press PROG START

LOAD NAME I_ Program Name
OR Press PROG START
Compiler Name

Press ENTER—

UNIT — R1,R2,F1,0or F2

Press PROG START
OR OR
Press ENTER—

— ? (Delayed Response)

Press PROG START
OR
Press ENTER—

Must begin with alphabetic characters.
Must not be DIR, SYSTEM, or ALL

System prompts UNIT.
Location of the disk where you want to put procedure.
(Procedure is placed in the source library of the disk

operator specifies.)

System prompts LOAD NAME

Name of program to be run.

System prompts DATE after UNIT.

Name of compiler to be run ($RPG for RPG Il compiler).

System prompts UNIT then COMPILE OBJECT, SOURCE,

UNIT

Location of disk whose object library contains program
System prompts DATE

System prompts COMPILE OBJECT

Forces operator to respond to unit during CALL cycle.
System prompts DATE.

System prompts COMPILE OBJECT

Conversational OCL

17

Keyword-Response Summary (Build Cycle) (Continued)

Keyword ’ Response Considerations
COMPILE- — R1,R2,F1,0or F2 Your system has more than one object library and you
OBJECT don’t want to put the compiled program in the object
library which contains the compiler,
OR
Press PROG START

No Response

OR Press PROG START

— ? (Delayed Response)

Press PROG START

SOURCE — Name of Source Program

OR
Press PROG START

— ? (Delayed Response)
Press PROG START
UNIT . R1,R2,F1,0r F2

olR- Press PROG START

? (Delayed Response)

Press PROG START

18

System prompts SOURCE.

System will put the compiled program in the object library
which contains the compiler. System prompts SOURCE.

You will tell the system where to put the compiled program
during the CALL cycle.

System prompts SOURCE.

Name assigned to source program when the KSE or
Library Maintenance Program put it in a source library.
library.)

System prompts UNIT.

You will supply the name of the source program during
the CALL cycle.

System prompts UNIT.

Location of the disk whose source library contains the
RPG source program

System prompts DATE.

You will supply the location of the source program during
the CALL cycle.

System prompts DATE.

Keyword-Response Summary (Build Cycle) (Continued)

Keyword Response Considerations
DATE — mmddyy or ddmmyy To put a job date in the procedure. (Response must
follow format established during sysgen.)
OR
Press PROG START System prompts SWITCH.
].E: ? (Delayed Response) Forces operator to supply DATE during CALL cycle.
OR Press PROG START System prompts SWITCH.
L No Response
Press PROG START If no date is necessary for job or system date is acceptable.
DATE will not be part of procedure.
SWITCH — 8-position setting Required to change external indicators in programs.
(combination of 1's, Three choices for each position:
0's, and X's) 1 = turn indicator on
0 = turn indicator off
OR X = leave indicator as is
Press PROG START System prompts FILE NAME.
F ? (Delayed Response) Forces operator to respond to SWITCH during CALL cycle
OR Press PROG START System prompts FILE NAME
— No Response
Press PROG START Job does not require external indicators. SWITCH will
not be part of procedure.
FILE NAME —— File name of file used Columns 7-14 of RPG File Description Specifications, or

by program
Press PROG START

OR OR
Press ENTER—

— ? (Delayed Response)

OR Press PROG START

—— No Response

Press PROG START

predefined filename for system programs.
System prompts UNIT.

System prompts KEY LENGTH (see Multi-Volume Files
in Appendix A).

Forces operator to respond to FILE NAME during CALL
cycle.

" System prompts UNIT

Either your job uses no files at all

OR
you have already described all the files the job uses. You
want the system to prompt MODIFY

Conversational OCL 19

Keyword-Response Summary (Build Cycle) (Continued)

Keyword Response Considerations
UNIT — R1,R2,F1,0r F2 During a file creation run — location of disk where you
want to write the file.
During other runs — location of disk which contains the
OR file to be processed.
Press PROG START System prompts PACK.
— ? (Delayed Response) Forces operator to respond to UNIT during CALL cycle.
Press PROG START System prompts PACK.
PACK — Disk Name During a file creation run — the name which identifies the
disk on which you want to write the file.
During other runs — name which identifies the disk on
which the file is located.
OR
Press PROG START System prompts LABEL.
OR ,
Press ENTER— System prompts FILE NAME for next file.
— ? (Delayed Response) Forces operator to respond to PACK during CALL cycle.
Press PROG START System prompts LABEL.
OR
Press ENTER— System prompts FILE NAME.
LABEL — VTOC Filename Required when VTOC Filename is different than response

20

Press PROG START
OR OR
Press ENTER—

—— ? (Delayed Response)
Press PROG START

OR OR
Press ENTER—

— No Response

Press PROG START

to FILE NAME.

System prompts RECORDS.

System prompts FILE NAME for next file.

Forces operator to respond to LABEL during CALL cycle.
System prompts RECORDS.

System prompts FILE NAME.

You don‘t want to respond to this keyword; you want the
system to prompt RECORDS.

Keyword-Response Summary (Build Cycle) (Continued)

Keyword Response Considerations
RECORDS @ r— 1-999999 Number of records in the file.
Press PROG START System prompts LOCATION.
OR OR

Press ENTER—

— ? (Delayed Response)

Press PROG START
OR OR
Press ENTER—

No Response

Press PROG START

TRACKS — 1-398

Press PROG START
OR OR
Press ENTER—

il

? (Delayed -Response)

Press PROG START
OR
Press ENTER—

~— No Response

Press PROG START

System prompts FILE NAME for next file.

Forces operator to respond to RECORDS during CALL
cycle.

System prompts LOCATION.

System prompts FILE NAME.

You don’t want to respond to this keyword; you want
system to prompt TRACKS.

Number of tracks the file will occupy.

System prompts LOCATION.

System prompts FILE NAME for next file.

Forces operator to respond to TRACKS during CALL
cycle.

System prompts LOCATION.

System prompts FILE NAME.

You don’t want to respond to this keyword; you want to
prompt LOCATION.

When a file is created, either the number of records or the number of tracks must be specified.
If operator entered number of RECORDS, TRACKS will not be prompted.

Conversational OCL 21

Keyword-Response Summary (Build Cycle) (Continued)

Keyword Response Considerations _l
LOCATION [—— 8-405 Use during file creation runs if you want to specify a
beginning track location for the file.

Press PROG START
OR
Press ENTER—

OR

—— ? (Delayed Response)

Press PROG START
OR OR
Press ENTER—

L No Response

Press PROG START
RETAIN (—-P,T, S,or A
OR Press PROG START
OR

Press ENTER—
-—= ? (Delayed Response)
Press PROG START

OR
Press ENTER—

OR

—— No Response

Press PROG START

22

>0

System prompts RETAIN.
System prompts FILE NAME for next file.

Forces operator to respond to LOCATION during CALL
cycle. .

System prompts RETAIN.

System prompts FILE NAME.

You don’t want to respond to this keyword; you want
system to prompt RETAIN.

— permanent

— temporary

— scratch

— activate scratch

System prompts DATE.
System prompts FILE NAME for next file.

Forces operator to respond to RETAIN during CALL
cycle.

System prompts DATE.

System prompts FILE NAME.

If file is being created, file designation will be T. System
prompts DATE.

Keyword-Response Summary (Build Cycle) (Continued)

Keyword Response Considerations
DATE — mmddyy or ddmmyy Required when job uses a file whose name and label are
the same as those of another file on the same disk.
(Response must follow format established during sysgen.)
OR
Press PROG START System prompts FILE NAME for next file.
— ? (Delayed Response) Forces operator to respond to DATE during CALL cycle.
OR Press PROG START System prompts FILE NAME.
L— No Response
Press PROG START You don’t have to respond to this keyword; you want
system to prompt FILE NAME for next file.
MODIFY LOG Used only if CRT display or 2222 printer on system.
(Operator can use
one, all, or a com-
bination of the Press PROG START System prompts LOG DEVICE.
responses.)
CANCEL Cancel job.

Press PROG START

PUNCH

Press PROG START
FORMS

Press PROG START

Asterisk (*) Followed
by Comments

Press PROG START

Statement number and comma

Press PROG START
Statement number

Press PROG START

System prompts READY or displays end-of-job halt.

Change the system punch device.

System prompts PUNCH.

Change lines per page printed output for system programs.
System prompts FORMS DEVICE.

Enter comment.

System waits for next MODIFY response.

To delete an OCL or utility control statement in displayed
procedure. Disk Sort specifications cannot be deleted in
this manner. To delete Disk Sort specifications, you must
enter the statement number and press PROG START. When
the system waits for the corrected statement, enter an
asterisk (¥} in position 7.

System waits for next MODIFY response.

To correct statement.

System waits for correct statement.

Conversational OCL 23

Keyword-Response Summary (Build Cycle) (Continued)

Keyword Response

Considerations

INCLUDE

Press PROG START

RUN

Press PROG START -

24

Add system program control statements to a procedure.
System prints ‘ENTER INCLUDED STATEMENTS' and

a 2-digit statement number.

Tells system
a. The BUILD cycle is complete.
b. Run the job.

System runs the job.

Keyword Sequence for OCL BUILDC Cycle

READY

J

BUILDC NAME]

¥

l

1 1 [
C
z
=

CALL NAME |

Y

UNIT

1

Enter— key used after
CALL NAME or UNIT?

Y‘S
;

[MODIFY

]

NO
L1

Keyword-Response Summary (BUILDC Cycle)

Keyword Response Considerations
READY BUILDC None
Press PROG START System prompts BUILDC NAME.
BUILDC NAME Master Procedure Name Maximum of six alphanumeric characters.
Must begin with alphabetic characters. (A-Z or #, @, $)
Must not be DIR, SYSTEM, or ALL.
Commas, blanks, quotes (apostrophes), and periods are
not allowed.
Press PROG START System prompts UNIT.
UNIT R1,R2,F1,o0r F2 Location of the disk where you want to put procedure.

Press PROG START

(Procedure is placed in the source library of the disk
which the operator specifies.)

System prompts CALL NAME.

Conversational OCL

25

Keyword-Response Summary (BUILDC Cycle) (Continued)

26

Keyword Response Considerations
CALL NAME Name of Procedure Name of a procedure in the source library. The procedure
can be an IBM-supplied procedure (RPGB) or a procedure
created by a BUILD or BUILDC cycle.
Press PROG START System prompts UNIT.
OR
Press ENTER— System prompts UNIT then MODIFY.
UNIT R1,R2,F1,0or F2 Location of the disk whose source library contains the
procedure.
Press PROG START System prompts CALL NAME (or MODIFY if ENTER—
OR used after CALL NAME).
Press ENTER— System prompts MODIFY.
MODIFY LOG

(Operator can use
one, all, or a com-
bination of the
responses.)

Press PROG START
CANCEL
Press PROG START

Asterisk (*) followed
by comments

Press PROG START
Statement -number and comma

Press PROG START
Statement number

Press PROG START

RUN

Press PROG START

Used only if CRT display or 2222 printer is on system.

System prompts LOG DEVICE.
Cancel job.
System prompts READY or displays end-of-job halt.

Enter comment.

System waits for next MODIFY response.
To delete OCL or utility control statements.
System Waits for next MODIFY response.
To correct statement.
System waits for correct statement.
Tells system —

a. The cycle is complete.

b. Run the job.

System runs job.

Keyword Sequence for OCL Call Cycle

| READY

| CALL NAME

[UNIT

[MODIFY

Keywords that must be answered

in every CALL cycle.

Keyword-Response Summary (Call Cycle)

Keyword’ Response Considerations
READY CALL None
Press PROG START System prompts CALL NAME.
CALL NAME Procedure Name Procedure name from the source library directory
OR
RPG (the IBM-supplied RPG |l compile procedure)
Press PROG START System prompts UNIT,
OR ‘

Press ENTER— System prompts UNIT, then runs the job. Does not dis-
play the procedure except for statements with delayed
responses. Does not prompt MODIFY.

UNIT R1,R2,F1,or F2 Location of the disk whose source library contains the

PROCEDURE DISPLAYED ON SYSTEM PRINTER o

Press PROG START
OR
Press ENTER—

procedure.
Print procedure.
System runs the job. Does not prompt procedure except

for statements with delayed responses. Does not prompt
MODIFY.

(unless ENTER— key was pressed after CALL NAME or UNIT prompts)

MODIFY
(Operator can use
one, all, or a
combination of
the responses.)

LOG

Press PROG START

CANCEL

Press PROG START

Used only if CRT or 2222 printer on system.

System prompté LOG DEVICE.
Cancel job.

System prompts READY or displays end-of-job halt.

Conversational OCL * 27

Keyword-Response Summary (Call Cycle) (Continued)

Keyword Response Considerations
FORMS Change lines per page of printed output for system programs.
Press PROG START System prompts FORMS DEVICE.
PUNCH Change the system punch device.
Press PROG START System prompts PUNCH

Asterisk (*) Followed
by Comment

Press PROG START

Statement number and comma

Press PROG START

Statement number

Press PROG START

RUN

Press PROG START

@ A Procedures with INCLUDE Statements

Enter comment.

System waits for next MODIFY response.

To delete an OCL or utility control statement in displayed

_procedure: Disk Sort specifications cannot be deleted in

this manner. To delete Disk Sort specifications, you must
enter the,statement number and press PROG START. When
the system waits for the corrected statement, enter an
asterisk (*) in position 7.

System waits for next MODIFY response

.To correct statement in displayed procedure (LOAD

NAME cannot be changed).

System waits for correct statement.

Tells system —
a. The CALL cycle is complete.
b. Run the job.

System runs job.

When a procedure contains Disk Sort source statements or utility control statements, the display part of the CALL
cycle is more complex. See Considerations During a CALL Cycle, under MODIFY; Including Control Statements

in Part I.

B. Procedures with Delayed Responses

The procedure is displayed statement by statement (unless the ENTER— key was pressed after responding to the
CALL NAME or UNIT keywords). When the system reaches a statement which contains a delayed response, it
will display the statement keyword and wait for the operator’s response.

28

The 1BM 5496 Data Recorder Model 1 with System/3
Model 6 Attachment Feature or the IBM 129 Card Data
Recorder with card input/output attachment feature pro-
vides card input/output capability for System/3 Model 6.

The data recorder is selected as system input device during
OCL prompting. (The directly attached 3741 Data Station

Model 1 or 2, or 3741 Programmable Work Station Model
3 or 4 can be selected as the system input device in a
similar manner.) Control is returned to the keyboard by
entering a READER statement in the data recorder or by
performing another program load procedure.

ASSIGNING DATA RECORDER OR 3741 AS SYSTEM
INPUT DEVICE

System Prompts

At IPL time DATE — current date
READER— DATA96
3741
Between jobs READY — READER
DATAQ96
READER—
EA {3741 }

Following the DATA96 or 3741 response, all OCL must
be entered in card image from the data recorder or 3741.

At the time the data recorder is selected as system input
device the following switch settings must be:

Operator Console — DATA RCRDR switch
to ON LINE

5496 Data Recorder — 1. Power switch ON
2. AUTO REL switch ON
3. Print switch ON or OFF
4. All other switches OFF

Operator Enters

Card OCL For Model 6

129 Card Data
Recorder — 1. Power switch ON
2. PROGRAM MODE dial set to
DATA READ
3. PUNCH-DIR PUNCH-VERIFY
switch set to PUNCH
. Print switch ON or OFF
5. REC ADV/CARD FEED switch
set to AUTO

H

— See IBM System/3 3741 Reference
Manual, GC21-5113

Directly attached
3741 Data
Station or 3741
Programmable
Work Station

1BM 129 Programming Considerations

The user should be aware of the following considerations
when programming applications for the IBM 129:

1. System support for the 5496 also supports the 129.
2. Unique diagnostics for the 129 are not provided.

3. Object programs cannot be read or punched correctly
on the 129 {whereas the 5496 provides this function).
Therefore, the system function LOAD* is not sup-
ported for the 129.

4. The OCL command READER-DATAQ6 is used for
either the 5496 or the 129.

RETURNING CONTROL TO KEYBOARD

The keyboard is reassigned as system input device by doing
either of the following:

© Enter a /& statement followed by a // READER KEY
" statement from the Data Recorder. These statements

“must be placed after a // RUN statement and before a
// LOAD or // CALL statement.

@ Perform a program load from the operator console.

Card OCL for Mode! 6 29

CONTROL STATEMENTS IN PROCEDURES

OCL statements that control the entering of other OCL
statements are invalid in procedures. These statements
(HALT, NOHALT, LOG, READER, PAUSE, and the
PUNCH statement) are ignored when read from procedures
during a CALL cycle and are not put in a procedure during
a BUILD cycle.

CARD FORMAT OF OCL STATEMENTS

The following OCL statements can be loaded from the data
recorder or the 3741 (records from the 3741 follow the

same OCL rules as cards from the data recorder). The param-
eters of the statements that are prompted in conversational
mode are described elsewhere in this book. The statements
that are allowed with card input are described in the notes
following this list.

In statement formats, special characters such as //, and
words written in capital letters are information that must
be used exactly as shown. Words written in small letters,
such as code, program-name, and unit, represent informa-
tion that you must supply.

OCL STATEMENTS

// LOAD Program-Name, Unit
// LOAD*

Explanation: An asterisk indicates that the object program
will be loaded from the system input device. Program-name
and unit parameters must not be included. The cards that
contain the program must follow the RUN statement for the
program and must be followed by /* to indicate the end of
the object deck.

// CALL Procedure-Name, Unit

// RUN ‘
KEY
// READER < DATA96
3741
3741
// PUNCH 3DATA96 %
// SWITCH

// COMPILE OBJECT-unit, SOURCE-name, UNIT-unit

Explanation: OBJECT-unit must be the first parameter on
the statement.

30

// FORMS DEVICE—PRIMARY, LINES-number
// FORMS DEVICE—-SECONDARY, LINES-number

Explanation: The DEVICE parameter is optional if read
from cards. If read from a procedure via CALL cycle, the
DEVICE parameter must be present and precede the LINES
parameter. The LINES parameter must be present in either
case.

ON

OFF EJECT
//LOG {CRT ., NOEJECT

PRIMARY

SECONDARY

Explanation: The log device must be on when the system is
in conversational mode. If EJECT/NOEJECT is given by
itself, it must be preceded by a comma:

// LOG ,EJECT
// LOG ,NOEJECT

If neither EJECT nor NOEJECT is coded on the statement,
EJECT is assumed.

/! FILE NAME-filename, UNIT-unit, PACK-name,
// LABEL-filename, RECORDS-number, TRACKS-number,
// LOCATION-track number, RETAIN-code, DATE-date

Explanation: LABEL, RECORDS or TRACKS, LOCA-
TION, RETAIN, and DATA parameters are optional.
NAME-filename must be the first parameter on the
statement.

// NOHALT
// HALT

Ex,lanation: During card input, the system halts each time
a /™ (end-of-job) or /& statement is read. The NOHALT
statement allows the system to-start the next job without a
halt. The HALT statement is used to cancel a NOHALT
condition. If the HALT and NOHALT statements are
placed in a procedure they are not displayed when the pro-
cedure is prompted.

J// PAUSE

Explanation: A PAUSE statement causes the system to
stop until the operator restarts it. PAUSE statements are
usually preceded by comments (*) instructing the operator
to perform some function on the system. If PAUSE state-
ments and comments are placed.in a procedure the com-
ments are displayed during prompting but the system does
not stop.

*

/&
/-x-

Explanation: /* indicates end-of-job. /& is used as a delim-
iter and indicates that a new job is starting. 1f a 3 option
(immediate cancel) was taken at a halt in the preceding job,
the system looks for the next LOAD or CALL statement in
the job stream. The /& statement changes this mode and
tells the system to read the next // card regardless of what
itis. In this manner a // READER KEY statement would
be recognized, returning control to the keyboard.

GENERAL CODING RULES

The rules for coding the OCL statements in cards are as
follows:

1. //in positions 1 and 2.

2. One or more blanks between the // and the word that
forms the statement identifier (LOAD, RUN, CALL,
etc.).

3. One or more blanks between the statement identifier
and the first parameter.

4, If you need more than one parameter, use a comma
to separate them. No blanks are allowed in or
between parameters. Anything following the first
blank is considered a comment.

If you are writing keyword parameters (XXX-xxx),
place the keyword first and use a hyphen to separate
the keyword from the code or data.

If the parameter is not a keyword parameter, write
the parameters in the order in which they are shown.
Keyword parameters can be in any order except in
the following cases:

// COMPILE OBJECT-unit must be the first
parameter.

// FILE NAME-filename must be the
first parameter.

All OCL statements except FILE must not exceed

96 characters. Because of the large number of param-
eters possible in a FILE statement, you can continue
the FILE statement on additional cards. The rules
are:

© Place a comma after the last parameter in every
card but the last. The comma followed by a
blank indicates the statement is continued.

o Begin each new card with // in positions 1 and 2.

O Leave one or more blanks between the // and the
first parameter.

Comments can be placed after the parameters on any
OCL statement (except HIKEY parameters. See
Coding Multi-Volume File Parameters in this appen-
dix). Leave one or more blanks after the last param-
eter and then list the comment. Complete lines of
comments are entered with the *comment statement.

Place an * in column 1 and start the comments in
column 2.

Card OCL for Model 6 31

STATEMENT ORDER

/&

// LOAD

// CALL

// RUN

)/ READER
// SWITCH
// COMPILE

// FORMS

// PUNCH

// LOG
// FILE

// HALT
// NOHALT
// PAUSE
*comments

/* (end-of-
job)

32

should be the first statement of a job.

statement must precede RUN statement in
job stream. If LOAD?, the cards that
contain the program must follow the RUN
statement and be followed by a /™ statement.

statement must precede RUN statement in
job stream.

statement must be last statement within the
set of statements required to run a program.

statement must precede a LOAD or CALL
statement and follow a RUN statement.

statement must follow a LOAD or CALL

statement and must precede a RUN statement.

statement must follow a LOAD or CALL

statement and must precede a RUN statement.

can appear anywhere in the job stream.

can appear anywhere in the job stream.

statement must follow a LOAD or CALL
statement and precede a RUN statement.

statements must follow a LOAD or CALL
statement and precede a RUN statement.

can appear anywhere in the job stream.
can appear anywhere in the job stream.
can appear anywhere in the job stream.
can appear anywhere in the job stream.

follows a program deck or data file entered
from the Data Recorder.

CODING MULTI-VOLUME FILE PARAMETERS

When coding card OCL file statements for multi-volume
files these rules must be followed:

1. Each parameter that requires multiple entries must be-
gin and end with a single quote ('} and have the
entries separated by commas.

2. The HIKEY parameter must contain HIKEY's separated
by commas. When continuation cards are needed for
HIKEY parameters, comments are not allowed on the
cards, and the data must start in column four of the
continuation card.

3. An apostrophe within a HIKEY must be entered as
a double apostrophe or it will be decoded as end of
HIKEYs, and an error will occur.

4. When using only one volume of an indexed multi-
volume file, the HIKEY parameter must be included
with beginning and ending apostrophes. The other
file parameters must not have apostrophes.

5. To indicate packed keys, HIKEY-P'xxxx, XxxX,
xxxx,” must be coded. All characters in packed
HIKEYs must be numeric and all packed HIKEY's
must be the same length.

Key length is not a parameter for indexed files when OCL
statements are entered on cards. Sample job 2 under
Multi-Volume Files in Appendix A would have the follow-
ing four OCL file statements if OCL were on cards:

// FILE NAME-INVMSTR,UNIT-'R1,R2’,
PACK-‘VOLI02,vOLI03,VOLIO3,vVOLI04,

// VOLIOS’' HIKEY-175-200-233W1B2,
380-456-280W3R 6,629-384-300W3F6,

// 949-475-849W8F8,999-999-999W9IF9’,
TRACKS-100,193,150,193,80°,

// LOCATION-'87,8,49,8,8 ,RETAIN-P

Keyword Descriptions

BUILD NAME

BUILDC NAME

When the system prompts BUILD NAME, the operator
responds with a name for the procedure that will be put in
a source library at the end of the sequence. (The operator’s
response to UNIT determines what source library the pro-
cedure will be putin.) At the end of the BUILD cycle, the
system enters the procedure in the source library and puts
the procedure name in the source library directory as a
permanent entry. Restrictions on naming a procedure are:

1. Name must not contain more than six alphanumeric
characters. Blanks, commas, quotes (apostrophes),
and periods are not allowed.

2. First character must be alphabetic (A-Z or #, @, $).

3. Name must not be DIR, SYSTEM, or ALL (these
names are reserved for system use).

Duplicate Procedure Names

If the operator's response to BUILD NAME duplicates the
name of a procedure already in the source library directory,
‘the system prints a message and reprompts BUILD NAME.

The operator can:

1. Proceed — by typing a different name or the same
name and a different unit.

2. Proceed — by typing the same name and unit again.
The new procedure will then overlay the old proce-
" dure in the source library.

3. End the job — see description of error message op-
tions in /BM System/3 Model 6 Operator’s Guide,
GC21-7501.

Deleting a Source Library Procedure

The system gives a P (permanent) designation to all proce-
dures entered into a source library during a BUILD cycle.
Therefore, the only way to delete a procedure from a
source library is to run the Library Maintenance Program.
(For information about the Library Maintenance Program
see Part |l of this manual.)

The response to BUILDC NAME is the name of a master
procedure you want to build. The rules and restrictions
are the same as for the keyword BUILD.

CALL NAME

The response to CALL NAME is the name of the procedure
you want to run. This can be either:

@ The name of a procedure entered in a source library after
a BUILD or BUILDC cycle. (The operator’s response to
the keyword BUILD NAME, or BUILDC NAME deter-
mines the name of the procedure.)

© RPG (the IBM-supplied RPG Il Compile Procedure).

If the operator does not know the procedure name, he can
get a printout of the source library directory by running the
Library Maintenance Program. (See Part |1 of this manual
for more information about this program.)

The operator can call a procedure without displaying all its
OCL statements by pressing the ENTER— key after respond-
ing to CALL NAME or UNIT. The procedure is loaded and
run. The only statements displayed are those with delayed
responses. The system does not prompt MODIFY after
either the OCL statements or the included control
statements.

Keyword Descriptions 33

COMPILE KEYWORDS

COMPILE OBJECT Keyword

The keyword COMPILE OBJECT requires a response (R1,
R2, F1, or F2) if the system has more than one object
library and you do not want to put the compiled program
in the same object library where the compiler resides.

If the operator does not respond to COMPILE OBJECT,
but merely presses the PROG START key, the system
places the compiled program in the object library where
the compiler resides.

F1 refers to the fixed disk on drive one.
R1 refers to the removable disk on drive one.
F2 refers to the fixed disk on drive two.
R2 refers to the removable disk on drive two.

'SOURCE Keyword

In a LOAD Cycle

SOURCE is prompted only when the response to LOAD
NAME is the name of a compiler (such as $RPG). The re-
sponse to SOURCE is the name of the source program you
want to compile. (This name must be the one you used
when you put the program in a source library during a KSE
or Library Maintenance Program run.)

For information about the KSE Program see the /BM
System/3 Model 6 Conversational Utility Programs Refer-
ence Manual, SC21-7528. For information about the
Library Maintenance Program see Part |1 of this manual.)

34

Ina BUILD Cycle

There are two possible responses to SOURCE during a
BUILD cycle: the name of a source program you want to
compile or a delayed response (a question mark). Each
response has a special significance to the system.

Response Tells System
Name of You’re building a procedure that will
Source compile a particular source program. (The
Program program must be in a source library.) The
You Want program name you supply must be the
to Compile one you used when you put the program

in a source library during a KSE or Li-r

- brary Maintenance Program run.
?

(Delayed You’re building a general compile proce-
Response) dure. You will supply the necessary

source program information (name and
location of the source program and where
you want to put the compiled program)
during the.CALL cycle.

UNIT Keyword

The response to UNIT gives the location of the disk whose
source library contains the source program being compiled.
Possible responses are F1, R1,F2, and R2.

F1 refers to the fixed disk on drive one.

R1 refers to the removable disk on drive one.

F2 refers to the fixed disk on drive two.

R2 refers to the removable disk on drive two.

DATE

This DATE keyword lets the operator change the system
date for a particular job. (The system date is used in head-
ings on program listings, in headings on printed output, and
in labels for new files.)

The system date is established at IPL time. This date is
used for every job unless the operator overrides it.

DATE (continued)

FILE KEYWORDS

Overriding the System Date

The operator can override the system date for any single job
by typing in a new date when the system prompts the key-
word DATE. The new system date is used only for the one
job. When that job is finished, the system date automatical-
ly reverts to its IPL setting.

Format of the DATE Statement

Although the operator can override the system date, he
cannot change the date format. The system date format is
established during sysgen as either:

o mmddyy (month/day/year) — For U.S. installations

o ddmmyy (day/month/year) — For World Trade
installations.

The three elements {(month/day/year) can be separated by
any non-numeric symbol (except a comma, quotation mark,

or blank) or run together without any separation.

In a system using the mmddyy format, for example, all of
the following would be valid ways of typing May 12, 1971:

o 05/12/71
o 05-12-71
o 051271

© 5/12/71

EJECT

The operator can respond to the READY prompt with
EJECT. The logging device will then eject the forms to the
top of the next page at the end of each job. EJECT need
only be entered to cancel the effect of a NOEJECT state-
ment.

System-Operator Interaction During Prompting of File

Keywords
System prompts
FILE NAME

Does this job

use a file? NO

YES

[SR

Operator responds

to FILE NAME,

UNIT, and PACK
——

System prompts

next file keyword

Operator responds
to next file
keyword

Is this the last
LNO=¢file keyword
(DATE)?

YES

3

More file
information »NO
necessary?
Operator presses
YES the ENTER—
key

System bypasses
rest of the file
keywords

.

System prompts
FILE NAME

Does the job use

L -
YES another file?

—NQ —> | ——

Operator presses
PROG START

System bypasses
file keywords

System prompts
MODIFY

Keyword Descriptions

35

FILE KEYWORDS (continued)

For every file used in a job, you must respond to the fol-
lowing keywords:

Keyword . Response

FILE NAME FILENAME from the file specification at
compile time
OR
Predetermined file name (for $RPG, $KDE,
$DSORT, $DGSRT, $COPY, or SMICR).

UNIT R1, F1, R2, or F2 (Location of disk where
you want to write a new file or which con-
tains a file to be processed.)

PACK Name assigned to a disk by the Disk Initiali-

zation Program. This name can be one which
identifies a disk on which you want to write
a file during a file creation run or a name
that identifies a disk on which a file is
located.

File Name for Customer Programs
For a file used in an RPG Il compiled customer program,

the operator’s response to FILE NAME is the name in col-
umns 7-14 of the RPG |l File Description Specifications.

File Name for $RPG, $DSORT, $COPY, $MICR, and
$KDE

For $RPG’s predefined file names, see /BM System /3
Models 4 and 6 RPG 1l Reference Manual, SC21-7517.

For $DSORT and $DGSRT, see /BM System /3 Disk Sort
Reference Manual, SC21-7522.

For $COPY, see Part ll of this manual.

For $MICR, see /BM System/3 Model 6 Utility Program for
the IBM 1255 Magnetic Character Reader Reference
Manual, SC21-7527.

For $KDE, see /BM System /3 Models 4 and 6 Conversa-
tional Utility Programs Reference Manual, SC21-7528.

36

Multiple Files

A job often involves several files. When this is the case, the
operator must respond to several series of file keywords.
The first time the system prompts the file keywords, the
operator responds with information about one file. After
the operator responds to DATE, the system will again
prompt FILE NAME. This time the operator responds with
the name of the second file.

When he has responded to the file keywords for all the files
that will be used in the job, the operator should respond to
FILE NAME by pressing PROG START. The system then
bypasses the rest of the file keywords and prompts
MODIFY.

A maximum of 15 file statements can be used for each job
when running in conversational OCL mode. For a maximum
number of files in card OCL mode, see Maximum Number
of Files in SWA.

UNIT Keyword

Possible responses to the keyword UNIT are F1, R1, F2
and R2

F1 refers to the fixed disk on drive one.

R1 refers to the removable disk on drive one.

F2 refers to the fixed disk on drive two.

R2 refers to the removable disk on drive two.

PACK Keyword

Whenever a job involves a disk file you must tell the system
the name of the disk where the file is (or will be) located,
so the system can make sure that disk is mounted before
the job is begun. To tell the system the name of the disk
the file is on, the operator responds to the keyword PACK
with the name assigned to the disk during its initialization.
(The Disk Initialization section of Part Il of this manual
explains the procedure for naming a new disk.)

Although most installations keep a record of the names and
contents of each of their disk packs, the operator can al-
ways get the name of any disk by running the File and Vol-
ume Label Display Program. The disk name is part of the
output of this program.

LABEL Keyword

When a file is created, the system enters a file name in the
VTOC. The keyword LABEL refers to this VTOC file
name. Unless the operator responds to LABEL, the name
entered in the VTOC is the same as the operator’s response
to FILE NAME.

LOAD NAME

For Customer Programs

The response to LOAD NAME is the name of the customer’s
RPG Il program.

For System Programs

The response to LOAD NAME is the name of the specific
system program you want to run.

Name Program

SALT Alternate Track Assignment
$BUILD Alternate Track Rebuild

$CCP Communications Control Program

(Model 4 only)

$COPY Copy/Dump

$KCOPY Copy/Dump

$FORT FORTRAN Compiler (Model 6 only

SINIT Disk Initialization

$LABEL File and Volume Label Display

$DELET File Delete

SMAINT Library Maintenance

$KSE Keyboard Source Entry

$KDE Keyboard Data Entry -

$DIU Data Interchange

$SMICR 1255 Magnetic Character
Reader Utility (Model 6 only)

$RPG RPG [l Compiler

$DSORT Disk Sort

$DGSRT CCP/Disk Sort (Model 4 only)

Keyword Descriptions

39

MODIFY

System-Operator Interaction During Modification

40

System prompts MODIFY

-

<

Do you want to correct a statement?
NO YES

Operator types 3
digit statement
number and
corrected statement.
Y >

Do you want to delete a statement?

NO YES

Operator types 3
digit statement
number and
comma {(,).

Y

\

Do you want to enter a comment?
NO YES
Operator types

asterisk (%)
and comment.

Y

Do you want to enter a FORMS
statement?

NO YES

Operator types
FORMS and new
lines per page
se‘tting.

Do you want to enter a PUNCH

statement? l
Y
NO YES
l Operator types
. PUNCH and new
6 punch device.

Q
A<

Do you want to cancel job?

2

0 YES

Operator types
CANCEL

System erases
OCL cycle

System prompts
READY

Y
Do you want to run the job?

NO YES

Operator types
RUN

!

System runs
job

!

System prompts
READY

Y

Is this a BUILD cycle?

YES NO—— 5

Y

Do you want to include source
statements for the Disk Sort
Program or for one of the

utility programs in the procedure?

YES NO———»

%

MODIFY (continued):

Operator types INCLUDE

]
System prints 2-digit statement number

b
<

Y
Operator types statement

Y
System prints next statement number

Y

Do you want to include another
statement?

NO YES

A\
Operator types RUN

Y
System prompts MODIFY

P

(5]

Note: To delete Disk Sort specifications, you must

enter the statement number and press PROG START.

When the system waits for the corrected statement,
enter an asterisk in column 7 of the statement. Typing
the statement number and comma doesn‘t delete Disk
Sort specifications.

(B)
T

Do you want to change or delete any of
the included statements?

NO YES

Operator types 2-digit statement

number and:

— To correct statement, types
corrected statement.

— To delete statement, types
comma.

— To delete Disk Sort specifi-
cation, types asterisk in

v lposition 7 of statement.

Do you want to cancel the job?

l |

NO YES

Operator types
CANCEL

System erases entire
OCL cycle

System brompt's
READY

Y
Operator types
RUN

System puts the
procedure with

" included statements

in the source
library

System prompts
READY

Keyword Descriptions

a1

MODIFY (continued)

Changing a Previous OCL Statement

System prompts
MODIFY

Enter here if you've
‘already used a
.MODIFY option
in the job

Y
Operator types three-digit
number of OCL statement
(or two-digit number of
included statement) to be
changed and PROG START

System tabs to
position 35 (position
0 after INCLUDE)
and waits for response

Operator. types
new response

YES <«—————More statements
to change?

NO

|

Does operator
want to use another
MODIFY option?

YES NO

!

Operator
types RUN

See keyword description
of the other MODIFY
option

42

Deleting a Previous OCL Statement

System prompts
MODIFY

Enter here if you've
already used a
MODIFY Option

in the job
Y
5 Operator types
three-digit number
of OCL statement
to be deleted
Operator types
comma and PROG
START key
YES <«———— More statements
to delete?
NO
Does operator
want to use another
|v MODIFY option?
YES NO
See keyword Operator types
description of RUN
the other
MODIFY
option

Deleting Multiple Keywords

When the OCL statement number for FILE NAME is
deleted, all keywords for that file will be deleted from the
cycle. For example, the LABEL or DATE keywords could
be deleted from a file keyword statement without deleting
the other keywords for that file. However, if FILE NAME

_is deleted, that entire file would be deleted from the cycle.

MODIFY (continued)

Entering Comments

System prompts
MODIFY

Enter here if you've
already used a
MODIFY option

in the job

V
Operator types:
1. An asterisk (*)

2. A comment

Does operator‘ want
to use another
MODIFY option?

YES NO

See keyword description
of the other MODIFY
option

Operator types
RUN

Points to Remember When Entering Comments

© The usual purpose of-a comment is to remind the oper-
ator of something he must do {mount a new disk pack,
for example) or to document a problem during a pro-
. gram run.

o After the operator types a comment, it is immediately
displayed on the system printer.

© Comments typed during a BUILD cycle become a per-
manent part of the procedure.- They are entered into
the source library along with OCL statements.

© Comments typed during a LOAD or CALL cycle do not
become a permanent part of the job; their only purpose
is to help document the program run.

. Cancelling Job

System prompts MODIFY

Enter here if you've
already used a
MODIFY option

in the job
4
Operator types CANCEL
(System gets ready
to run another job)
Is HALT in effect »YES
NO System displays

end-of-job halt

Operator presses
PROG START

System prompts READY for
next job

Effect of Entering CANCEL During a LOAD Cycle

The entire LOAD cycle will be overlaid by the next OCL
cycle.

Effect of Entering CANCEL During a BUILD Cycle

The entire BUILD cycle will be overlaid by the next OCL
cycle. (If a duplicate procedure is being built, and CAN-
CEL entered, the original procedure remains in the source
library. Except: if CANCEL is entered after INCLUDE,
neither procedure will be in the library.)

Effect of Entering CANCEL Duringa CALL Cycle

The entire CALL cycle will be overlaid by the next OCL
cycle. The original procedure will be unchanged.

Keyword Descriptions 43

MODIFY (continued)

Changing Forms Length

System prompts MODIFY

H

Enter here if you've
already used a
MODIFY option

in the job

Y
Operator types FORMS
- System prompts FORMS DEVICE

Operator presses
PROG START (P/S)
or types PRIMARY
or SECONDARY

System prompts LINES

Operator presses

Operator types
new lines per PROG START
page setting (for current lines
I per page setting)
]

Does operator want to
use another MODIFY
option? |

Y | y

YES NO

See keyword Operator types

description RUN (When the
of the other keyword FORMS is
MODIFY entered in an OCL

options sequence, a system halt
occurs after RUN in case
the operator needs to
change paper in the
printer. The system re-
mains idle untif the oper-
ator enters zero and
presses PROG START.)

44

Purpose of FORMS

Standard output for Model 6 printers is 66 lines per page.
At IPL time, 66 lines per page is established as the forms
length unless a different value was specified during system
generation.

To change the lines per page of printed output for RPG Il
programs, you code line counter specifications. To change
the lines per page of printed output for system programs
(utilities, Disk Sort, and the RPG Compiler), you type the
keyword FORMS and an appropriate response. Minimum
forms length is 12, maximum is 112,

If line counter specifications and an OCL FORMS state-
ment are both used in one job, and if the specified lengths
are different, the system will accept the RPG Il line count-
er specifications and ignore the OCL FORMS statement.

The new lines per page setting (from either an OCL FORMS
statement or an RPG Il line counter specification) remains
effective until another OCL FORMS statement or RPG Il
line counter specification for that device is read.

FORMS can be entered during the MODIFY phase of any
OCL cycle. (The system never prompts FORMS.)

Whenever the operator types FORMS during an OCL cycle,
a system halt follows RUN in case the operator needs to
change the paper in the printer. Job processing does not
resume until the operator enters a zero (option 0) and
presses the PROG START key.

MODIFY (continued)

Changing Punch Device

System prompts
MODIFY

Enter here if
you've already
used a MODIFY
option in the job

B]
Operator types
‘PUNCH

y
System prompts

PUNCH

Operator types
3741 or DATA96
and presses
PROG START

l

Does operator
want to use
another
MODIFY
option?
|
\ Y

YES NO

See keyword Operator types
description of RUN

the other

MODIFY

options

Purpose of Punch

The default punch device can be chosen at system generation.
To change the punch device, the PUNCH statement is used.
PUNCH can be entered during the MODIFY phase of the
LOAD, BUILD, or CALL cycle (it can also be entered when
the system prompts READY— see The Job Cycle). The
PUNCH statement remains effective until another OCL
PUNCH statement is read or until the next IPL.

Keyword Descriptions 45

MODIFY (continued)

Including Control Statements

46

System prompts

MODIFY
Enter here if
you've already
used a MODIFY
option in the job
Y
Operator types
INCLUDE
\

System displays a 2-digit
nqmber for the first
INCLUDE statement

Operator types a
statement

System displays the
next statement
number for the
INCLUDE
statements

— Y ES-¢Is there another

new statement to
be included in the
procedure?

!

NO

Operator types RUN and
presses PROG START

System prompts MODIFY
(allows operator to change
included statements)

6

0
(s

Do you want to change or delete

an included statement? I

NO

YES
¥
LB

Do \fu want to cancel job?——‘

NO

Operator types RUN

System writes
procedure with
included statements in
the source library

System prompts
READY

(8]

Do you want to correct an included

YES

Operator types CANCEL

System erases
procedure

System prompts
READY

statement?

NO

Do you want to
delete included

statement?

YES

‘Operator types 2-digit

statement no. and either
— comma
— asterisk in position 7
(if Disk Sort spec.)
L

YES

Operator types 2-digit
statement number

'NO

Operator enters corrected
statement

¢System spaces to next line

Y

rn

‘MODIFY (continued)

Purpose of INCLUDE

The keyword INCLUDE lets you add system program con-
trol statements to a procedure. INCLUDE tells the system
that the next entry will be a set of control statements for
one of the system programs. (As used here, control state-
ments refer to both the control statements for the utility

programs and the sequence specifications for the Disk Sort
\ program.) A maximum of 25 control statements can be
included in each procedure.

Restrictions After INCLUDE

After including statements in a procedure, the procedure
cannot be changed. MODIFY is prompted to allow chang-
ing included statements. |f CANCEL is used after INCLUDE
in a procedure that overlaid a duplicate procedure, neither
the original nor the new procedure will be in the source
library.

Considerations During a CALL Cycle

When the operator uses the CALL cycle to get the proce-
dure out of the source library, the system displays the pro-
cedure in two separate steps: first the OCL statements,
then the INCLUDE statements. The following shows de-
tails of the two display steps:

1. System displays OCL statements for the job.

® System prompts MODIFY (to give operator a
chance to correct any of the OCL statements).

©® QOperator, after he has made any necessary correc-
tions, types RUN.

2. System displays heading: INCLUDED STATE-
MENTS, then displays the INCLUDE statements.

©® System prompts MODIFY (to give operator a
chance to correct any of the INCLUDE

statements).

® QOperator, after he has made any necessary cor-
rections, types RUN.

® Model 6 runs the job.

If the operator presses the ENTER— key after responding

to CALL NAME or UNIT, the job is run without displaying
the statements or prompting MODIFY (the user program or
utility that is run can display the control statements). State-
ments with delayed responses are still displayed, to allow
the operator to enter the response.

NOEJECT

Normally the logging device ejects a page when end of job
occurs. The operator can respond to the READY prompt
with NOEJECT. The logging device will then not eject the
forms. The NOEJECT statement remains in effect until an
EJECT statement is entered {either in response to a READY
prompt or on a card OCL. // LOG statement) or an IPL
occurs.

NOHALT

Normally the system halts when a job ends. The operator
can respond to the keyword READY with NOHALT. The
:system will then prompt READY for the next job when
each job ends. The NOHALT will remain in effect until a
HALT statement is entered or an |PL occurs.

READY

When the system is ready to begin the OCL sequence for a
new job, it prompts READY. .

The operator responds by typing the name of one of the
four OCL cycles: LOAD, BUILD, BUILDC, or CALL.
The system then prompts the other keywords in the
sequence.

(OCL cycles for the Model 6 are described in the Summary
of Conversational OCL at the front of this manual.)

Keyword Descriptions 47

RUN

RUN is the last entry in any OCL cycle. The operator types
RUN when he is satisfied that the OCL cycle is complete
and correct. The following table shows what happens when
the operator types RUN during any of the three OCL
cycles:

Sequence Result

LOAD Job is run.

CALL Job is run.

BUILD The OCL statements are put in a source

library.

I INCLUDE statements are part of the procedure the
BUILD and CALL cycles require two RUN entries. (See
Considerations During a CALL Cycle under MODIFY —
Including Control Statements in Part |.)

After the operator types RUN, the system processes the
job and end-of-job occurs. The system then prompts
READY for the next job.

SWITCH

The OCL SWITCH statement allows setting the éight external
indicators on or off.

The operator-system interaction involved with the SWITCH

statement is different for each OCL cycle as shown in the
following charts.

48

Indicator Settings

The indicator setting has eight positions, corresponding to
the eight external indicators.

The three possible entries for each position are:
1 — sets corresponding indicator on,
0 — sets the corresponding indicator off.
X — leaves the corresponding indicator unchanged.
For example, if the operator keys in XXXX10XX:
Indicator five will be set on.
Indicator six will be set off.

Indicators one, two, three, four, seven, and eight will be
unchanged.

IPL Considerations

All eight external indicators are set off at IPL. The only
way to set an indicator on is by responding to the keyword .
SWITCH with a new eight-position response containing a 1
in the appropriate position.

Duration of SWITCH Setting
When an OCL SWITCH statement sets an indicator on, the

indicator remains on until another SWITCH statement sets
it off or the next IPL occurs.

Operator-System Interaction for SWITCH Statement

{LOAD Cycle)

System displays
SWITCH and
current indicator
setting

Operator types
new 8-position
setting

Operator presses
PROG START (to
accept current
setting)

l

System prompts
FILE NAME

Keyword Descriptions

49

Operator-Systém Interaction For SWITCH Statement (BUILD Cycle)

System prompts SWITCH
and current indicator
setting |

Opera!or types
8-position indicator
setting

A
Operator presses

PROG START

Operat!r types ?
{delayed response)

Y
Operator presses

PROG START

Operatgr presses
PROG START (if pro-
gram will not use
external indicators, or
if current setting is the
one you want).

(A SWITCH statement
will not be part of the
source library
procedure.)

.V
System prompts
FILE NAME

Operator-System Interaction for SWITCH Statement (CALL Cycle)

During the BUILD cycle, the operator
responded to tTe keyword SWITCH by

Y

Pressing
PROG START

During CALL cycle

Typinga ?
(delayed response)

During CALL cycle

|

System displays
SWITCH and
current indicator
setting

R

Typing 8-position
indicator setting

1

During CALL cycle

Y

Operator types
new 8-position
setting

* Y

Operator presses
PROG START (To
accept current
setting)

Y
(SWITCH will not
be part of the
CALL cycle.)

50

CALL cycle continues

(The keyword SWITCH
and the 8-position
indicator setting are en-
tered in the source library
and displayed with the
other OCL statements
during the CALL

cycle.)

MULTIVOLUME FILES

1f-a file is too large for one disk, you can continue it on one
or more subsequent disks. Such files are called multi-
volume files. (A volume is one disk.) Multivolume files
can be online or offline. A file is online if all volumes are
mounted when the job begins. The number of UNIT and
PACK parameters are equal. An offline file has fewer

. UNIT parameters (shares same unit).

Creation

The ways that you can create a multivolume file depend
on the type of file you are creating. For a sequential and
indexed file, the records are stored in consecutive locations
on disk, in the order that they are read. One disk is filled
at a time.

For sequential files, each volume must be filled before the
next volume is loaded. For indexed files, each volume need
not be filled. Each indexed volume is loaded until a key-
field is reached that is higher than the HIKEY for that
volume, then the next volume is loaded. Indexed files must
be loaded in keyfield sequence. A halt occurs if a volume

is filled and there is not a record with a keyfield equal to
the HIKEY for that volume. For example, suppose the
HIKEY for a volume is 199. You load a record with the
keyfield 195. It is less than the HIKEY, so it is loaded

on the volume. Next, you load a record with the keyfield
200. Record 200 would be loaded on the next volume, and
a halt would occur. The reason for the halt is that you did
not load a keyfield record equal to 199 before you jumped
to a new volume. This halt can be ignored. You can load
the next volume and at some future time insert a keyfield
record equal to the HIKEY. To insert a record after the
loading sequence has passed, a random add must be done.

The date assigned to all volumes of a multivolume file is
the system date that was in the DATE statement when the
first volume of the file was created.

Indexed and sequential files may be either online or offline.

If using removable disks when creating sequential or in-
dexed files, you can mount a disk, wait until the system
indicates it is filled, then mount the next disk. If you
have two drives, you can mount the two disks, wait until
the first one is filled, then replace it with the third while
your program fills the second disk. In either case, you
cannot use more than 40 disks per job.

Using OCL

Space can be allocated on all volumes of a multivolume
file if the volumes are online at the time of the allocation.
Space can also be allocated for an offline file, other than
the initial volume, but the packs must be empty packs or
space (TRACKS and LOCATION) known to be available.
You can use both fixed and removable disks with any on-
line multivolume file.

Space on a volume of a multivolume file is reserved after
one or more records are placed in that volume,

Direct files must be online. Direct files are created in a
non-consecutive manner. When creating such files, you
are required to mount all the disks on your disk unit at the
same time. The maximum number of disks you could use,
therefore, is two if you have only one drive, or three or
four if you have two drives.

Processing

The ways in which you can process multivolume files
depend on the method your program uses to get records
from the file. If records are read from a sequential or
indexed file, you can mount a volume, wait until all of the
records have been read from the volume, then mount the
next volume. If you have two drives, you can mount two
volumes, wait until all of the records have been read from
the first volume, then replace that volume with the third
while your program reads from the second volume. When
you are processing files offline, the disks must be removable.
When online, any combination of fixed and removable
disks is acceptable, but all must be mounted and must
remain mounted.

During the processing of a volume of a multivolume file,
if the system determines that the file date on this volume
is different from the file date on the previous volume, the
system assumes that this volume is not part of the multi-
volume file. The results caused by the difference in dates
depend on the access method you are using:

e If you are using an input access method (reading from
the file), a halt will occur indicating that the system
cannot find the file on this volume.

® |f you are using an add access method (writing to the
file), the system assumes you are extending the file and
the following will occur:
a. The file date in the file label will be changed to the
date of the previous volume.
b. The file label will be changed to reflect an empty file ’
(all pointers are reset).
Using OCL. 51

OCL Considerations

Multivolume files, like other disk files, must be described
in FILE statements. However, because a multivolume
file involves more than one disk, some FILE keywords
require a list of data or codes to describe all of the disks

containing the files. This section explains the considerations

for using these lists. Each list must begin and end with
apostrophes.

List Requirements

The PACK parameter requires a list. The UNIT parameter
may require a list while LOCATION, TRACKS, HIKEY,
and RECORDS require a list if they are stated. The
considerations for using the lists in these parameters are
included in the keyword discussions following.

KEY LENGTH: This keyword will be prompted if the
response to FILE NAME indicated a multivolume file
(see Enter Minus under End-of-Statement Keys in Part 1).
If this is an indexed file, you must respond to KEY

UNIT: The keyword UNIT must be followed by a code or
codes indicating where the disks that contain the file will
be located on the disk unit. No UNIT parameter may be
repeated. The codes are as follows:

Code Meaning

R1 Removable disk on drive one.
F1 Fixed disk on drive one.

R2 Removable disk on drive two.
F2 Fixed disk on drive two.

The order of codes in the UNIT parameter must corres-
pond to the order of names in the PACK parameter.

When you are creating or processing a sequential or in-
dexed file, you can use the same drive for more than one
of the disks; however, the units must then all be removab]e
units. If they are, you must not repeat the code for the
drive in the UNIT parameter. When the number of codes
in the UNIT parameter is less than the number of names in
the PACK parameter, the system uses the codes alternately.

LENGTH with a two-digit number 01 through 29. If this
is not an indexed file pressing the PROG START key will
skip the HIKEY keyword.

If F1 or F2 is specified, the file must be online multivolume,

PACK: The names of the disks that contain, or will contain,
the multivolume file must follow the keyword PACK. (PACK

HIKEY: This keyword must be answered for indexed files.
The highest keyfield for each volume must be entered. All
characters except commas are allowed as keys. The length
of each HIKEY must equal the response to KEY LENGTH
and a HIKEY must be entered for each volume. If a
HIKEY with fewer characters is entered, blanks will be put

into the remaining positions. |f an apostrophe is used as part

of a HIKEY, it must be entered as two apostrophes or it
will be decoded at the end of HIKEY list and an error will
-occur. When using only one volume of an indexed multi-
volume file, the HIKEY must be entered with beginning
and ending apostrophes.

The keys in an indexed file can be packed numeric
characters. To indicate that a file has packed keys, the
operator responds to KEY LENGTH with nn,P where

nn is 01-08. Only numeric characters (0-9) are allowed in
packed HIKEYS. When responding to HIKEY, the
number of characters entered per key is equal to 2nn—1.
I1f the KEY LENGTH response is 07, the HIKEYS would
be 13 characters long.

52

names must be unique for proper functioning.)

When a multivolume file is created, the system writes a
sequence number on the disks to indicate the order of the
disks. The disks are numbered in the order in which you
list their names in the PACK parameter.

When a multivolume file is processed, the system provides
two checks to ensure that the disks are used in the proper
order:

1. It checks to ensure that the disks are used in the
order that their names are listed in the PACK
parameter.

2. It checks the sequence numbers ot the disks used to

ensure that they are.consecutive and in ascending
order (01, 02, and so on).

The system stops when it detects a disk that is out of
sequence. The operator can do one of three things:

1. Mount the proper disk and restart the syStem.

2. Restart the system and process the disk that is
mounted if the sequence is ascending (for consecu-
tive input and update processing).

3. End the program.

Consecutive input or update sequence numbers are ignored
if the file was not created as multi-volume. If the file is
multi-volume and the sequence is ascending but not
consecutive, a diagnostic halt is given which allows the
proceed option.

TRACKS or RECORDS: The keyword TRACKS or
RECORDS must be followed by numbers that indicate
the amount of space needed on each of the disks that will
contain the multi-volume file. TRACKS or RECORDS
must be specified. Any multi-volume file load requires a -
TRACKS or RECORDS keyword whether the file
previously existed or not. The order of these numbers
must correspond to the order of the names in the PACK
parameter.

LOCATION: The keyword LOCATION must be followed
by the numbers of the tracks on which the file is to begin
on each of the disks you use for the file. The order of

the numbers must correspond to the order of the names

in the PACK parameter. If you omit the LOCATION
parameter, the system chooses the beginning track on each
of the disks. If LOCATION is specified for one disk, it
must be speciﬁed for all disks. [f the multi-volume file
exists, LOCATION must be given and must be identical
to the LOCATION parameter specified when the file was
created.

RETAIN: RETAIN-S must not be specified unless the file
is online multi-volume. |If RETAIN-S is used for online
multi-volume, it cannot be changed to RETAIN-T unless
also done online.

Using OCL

53

File Statement Summary

KEYWORDS

INDEXED OR SEQUENTIAL FILES

DIRECT FILES

Maximum
Number of Disks

Location
Requirements

Restrictions
on Disk

UNIT:
Operating

Considerations

Relation to

PACK

KEY LENGTH

HIKEY

TRACK
or
RECORDS

LOCATION

10 disks per file statement, 40 disks per job (number of
HIKEYS plus number of packs cannot exceed 40)

R1 or R2 for offline files
No restriction for online files

At file creation time only:

® First disk can also contain programs, procedures,
other files.

® Remaining disks must be used only for the one file.

Single Drive — Disks must be mounted one at a time.
Two Drives — Disks must be mounted in sequence
specified in UNIT statement. ‘

One entry in the UNIT statement can correspond to
more than one disk name in the PACK statement.

Single Drive—2 disks
Two Drives—4 disks

No restriction

All the disks used for the file
can also contain programs,
procedures, other files.

All disks must be on-line
during processing.

A one-to-one correspondence is
required between the entries in
the UNIT statement and the disk
names in the PACK statement.

INDEXED, SEQUENTIAL, OR DIRECT FILES

When processing a file (or a subset of a file) the disk
names must be in the same sequence as they were at
file creation time.

Length must be less than 30
(01—-08 if packed keys).

Used only for Indexed Files. For

Sequential and Direct files, pressing

HIKEY responses must corre-
spond one-for-one with the disk
names in the PACK statement.

HIKEY prompt.

At file creation time:

PROG START will also bypass .

® Number of tracks (or records) must be specified for each disk.
® Number in TRACKS (or RECORDS) statement must correspond one-for-one with the

disk names in the PACK statement.

During subsequent runs; TRACKS (or RECORDS) statement can be included in the OCL
sequence. (For greater detail see keyword descriptions of TRACKS/RECORDS.)

©@ |f specified:

Addresses must correspond, one-for-one with disk names in PACK statement.

® If not specified:
System will allocate space on each disk.

54

Coding Multi-Volume File Statements

1. The operator must begin and end each statement with
an apostrophe.

2. The system displays information about each volume
on a separate line,

3. The system assigns one statement number to the entire
file statement.

Changing Multi-Volume File Statements with MODIFY
Keyword

When using MODIFY keyword to change a multi-volume
file statement (other than HIKEY), the entire response to
the keyword must be re-entered on one line, separated by
commas, with beginning and ending apostrophes.

Example
UNIT Statement is Should be
041 UNIT—"F1 UNIT-"F1
- R1 —R1
- R2 —F2
- F2 — R2

To change at MODIFY time

MODIFY
041 —'F1,R1,F2,R2’
RUN

INCLUDING DISK SORT SOURCE OR UTILITY
CONTROL STATEMENTS IN A PROCEDURE

"The INCLUDE option can be used during MODIFY time
of a BUILD cycle to include Disk Sort source or utility
control statements in a procedure. This is useful if the con-
trol statements are long or complex and the job is run fre-
quently. A maximum of 25 control statements can be in-
cluded in each procedure.

During the BUILD cycle, the INCLUDE option must be
the last MODIFY option used. After the included state-
ments are keyed in, the RUN entry then puts the procedure
and included statements in the source library.

The CALL cycle will be different if the called procedure
has included statements. After the OCL statements are
printed, MODIFY will be prompted to allow changes to

the OCL statements. After the operator types RUN, the
system will print INCLUDED STATEMENTS and then
list the statements. MODIFY will now be prompted
again, to allow changes to be made to the included state-
ments. The operator types RUN to run the job.

For an example of Including Disk Sort Source Statements
in a procedure see the /BM System/3 Disk Sort Reference
Manual, SC21-7522.

An example of including Utility Control statements in a
procedure is shown in sample job 10 (see Sample Jobs at
end of this part).

INCREASING FILE SIZE OF THE RPG PROCEDURE

The IBM-supplied compile procedure can only compile
RPG Il programs with less than 400 statements. To
compile larger programs, the file statements must be
modified to increase their size above 10 tracks (see
Modify; Changing a Previous OCL Statement in Part 1).
Using the MODIFY option will only increase the file size
for one compile. The RPG Il procedure will not be
changed in the source library. To change the procedure in
the source library you must either build a new procedure
(see BUILD NAME in Part 1), use the Library Maintenance
Modify function, or use the KSE utility program.

Maximum Number of Files in SWA

The scheduler work area (SWA) is used to temporarily save
file label information while processing a program (see
Library Maintenance Program for information on creating
an SWA). The file labe! information is ten sectors, and it
can contain a maximum of 40 entries, each one 64 bytes.

This manual states that a maximum of 40 files (or 40 vol-
umes of a multivolume file (MVF)) can be specified for
one program. In some cases, the maximum will be less.
Generally, one label is required for each file. One F1 label
represents one FILE statement for disk. For multivolume
files, there is one F1 label for each PACK.

Additionally, one F7 label is used for each volume of an
indexed multivolume file to contain HIKEY information.

The special allocate function of the SCP might require an
F1 entry in the SWA even though it is not specified by

the user. For example, the Disk Sort has an auto-allocate
function wherein the system, not the user, locates work
space for the sort. Also, some of the SCP utility functions,
such as the WORK-YES option of $COPY (COPYFILE
intermediate), use the special allocate routines.

Using OCL 55

The following examples might help to determine the num-
ber of SWA entries required for a run. A direct file requires
the same number of entries as a sequential file:

Type of Number of Number of
Disk File Volumes SWA Entries
Sequential 1 1
Sequential (MVF) 3 3
Indexed (created as
single volume) 1 ' 1
Indexed (created as MVF) 1 2
Indexed (created as MVF) 3 6
Special allocate
$COPY WORK-YES 1 1
$DSORT (auto-allocate) Upto4 Upto 4
$SMAINT Upto4d Up to 4!

'Not including files specified for the file-to-library
function.

For example, if you are copying (using $COPY) a multi-
volume indexed file on five volumes, 10 entries would be
required for the input file and 10 entries would be required
for the output file. In addition, if COPYFILE intermediate
(WORK-YES) is used, one entry would be required by the
$COPY program.

Thus, by summing the requirements for your program, you
can determine whether you have exceeded the maximum
allowable number of SWA entries (40).

PROCESSING LARGE INDEXED DISK FILES

When additions are made to a large indexed file, the

amount of time needed to sort the keys of the index at end-
of-job may become excessive. This sort time can be reduced
by using a work file.

The work file is used to merge the added keys into the
index and must be large enough to contain all of the keys
added to the file. 1f the program adds records to more
than one indexed file, the work file must be large enough
to contain all the keys added to the file having the greatest
number of additions.

56

The work file must be named $INDEX44 and should be
located as close as possible to the index being sorted. To
compute the number of tracks required for the work file,
use the following formula:

256
number of adds +<keylength+3>+ 24 = tracks

After dividing 256 by keylength+3, the remainder should
be dropped. After the other divisions, round the quotient
to the next higher whole number.

If the work file is not large enough to contain all the index
keys, the keys are sorted in the normal manner without
using a work file. If possible, the work file should be
located on a different disk drive than the indexed file

‘whose keys are being sorted. If this is not possible, the

work file should be as close as possible to the beginning
of the file whose keys are being sorted. This minimizes
the disk seek time.

The work file can be used with multivolume files. However,
it cannot be located on a pack that contains one of the
offline volumes of a multivolume file. The pack containing
the work file must remain online while running the job.

The work file must be RETAIN-S. If RETAIN-T or
RETAIN-P is specified, the system will default to
RETAIN-S,

For small indexed files (10 tracks or less) where the sort
time is negligible, the use of the work file will not improve
performance and should not be used.

To use this performance option, no change is needed to
your source program. Also, programs need not be re-
compiled to use this option. Only the additional OCL
FILE statement is needed to use this option.

ENTERING RPG Il SOURCE STATEMENTS FROM THE
KEYBOARD AT COMPILE TIME

The IBM-supplied compile procedure requires that the

RPG Il source statements be in the source library of a disk.
By using the Keyboard Source Entry Utility (8KSE), source
statements can be format checked as they are put on disk.

The source statements can, however, be entered from the
keyboard at compile time. These statements are read by
the compiler and checked for format errors. If any errors
are found they cannot be corrected and the compile will
not be successful. The compile job must be rerun and all
source statements keyed in again.

To key in source statements from the keyboard, the
IBM-supplied compile procedure RPG is used. This pro-
cedure does not prompt COMPILE OBJECT, SOURCE,
or UNIT.

Inquiry Interrupt

Certain programs can be interrupted while they are being
processed. A request for interruption is called an inquiry
request (made by operation of the inquiry switch on the
system control panel). Programs are usually interrupted to
permit another program to run. Control is then given back
to the first program.

The instructions given the compiler at compile time
determine the inquiry type of a program.

The three types of programs include:

1. A program that cannot be interrupted (does not
recognize an inquiry request).

2. A program that can be interrupted (does recognize
an inquiry request). This is a B-type inquiry program.

3. An inquiry program that can only be executed when
an inquiry request is made. This is an I-type program.

Usually |-type programs are read in only when a program is
interrupted. In this case the inquiry program will not
recognize an inquiry request. However, if an inquiry
program is loaded in the normal manner (not because of a
program interrupt), it can only be executed when an inquiry
request is made. While this program is running, it will not

. recognize an inquiry request.

The inquiry interrupt involves these three steps:

1. When the program recognizes an inquiry request, a
Roll-Out routine moves the interrupted program
from main storage to disk.

2. The program for which the interrupt was requested
must be loaded normally. The interrupting program
may be any type. This interrupting program cannot
be interrupted.

3. After the interrupting program is executed, the
interrupted program moves back into main storage
using a Roll-In routine.” The interrupted program
begins execution at the point of interruption and
terminates in a normal manner.

The /BM System/3 Model 6 RPG |! Reference Manual,
SC21-7517, describes coding necessary to define inquiry
programs.

Restrictions During Inquiry

Inquiry always causes conversational OCL to be used, even
if the interrupted program was running using the card OCL.
The OCL statements cannot be read from cards during
inquiry.

If the interrupted program uses offline, multivolume files
(RPG I1), the inquiry program must not require files on
the same removable unit.

The log device cannot be changed during inquiry.

CHAINED PROCEDURES

A finished job usually requires that more than one program
be run. Several customer programs with utility programs
between them may be required to complete the finished
report. This sequence of programs can be put in chained
procedures.

By chaining procedures, several benefits can be realized,
including:

© Programs are always run in the correct sequence.

® Operator intervention and, therefore, chance of
operator error, is decreased.

@ File space can be saved. Files used to pass data from
job to job can be scratched after the last program.

© Files are less likely to be destroyed by running non-
related programs between programs of a job.

To chain procedures, the operator first builds a master
procedure to chain together other procedures. This is
done by responding to READY with BUILDC. The system
will then repetitively prompt CALL NAME and UNIT,
allowing the operator to respond with the name and unit of
the procedures that are to be chained. When all procedure
names have been entered, the operator responds to CALL
NAME or UNIT with the ENTER MINUS (ENTER-) key.
The system then allows the operator to MODIFY the
entries. When RUN is entered, the master procedure is put
in the source library as a permanent entry. ‘

Master procedures can call other master procedures up to
9 levels. The original master procedure called (level 1} can
call another master procedure (level 2), which can call
another master procedure (level 3), etc., on up to 9 levels.
Care must be taken to avoid calling a master procedure
that was already called earlier in the chain or an endless

Using OCL 57

loop will result. A master procedure can contain only
CALL and UNIT statements.

Delayed responses are not allowed in a BUILDC cycle.
However, the called procedures can contain delayed
responses.

To run the chained procedures, the operator initiates a
CALL cycle, responds to CALL NAME with the name of
the master procedure, and responds to UNIT with location
of the procedure. Each procedure is then called by the
master procedure and run.

When running chained procedures, the operator is never
prompted MODIFY to make changes.

If the operator presses the ENTER—key after responding
to CALL NAME or UNIT, only the CALL NAME and
UNIT statements of each chained procedure will be dis-
played. All other OCL statements (except those with
delayed responses) and included control statements are
not displayed.

If HALT is specified, the system will not halt until the last
job of a chain is complete.

OCL FOR THE IBM 2222 PRINTER

The IBM 2222 printer provides the MODEL 6 system with
the ability to print on two forms. Each form has its own
forms tractor. The left tractor is called PRIMARY and the
-right tractor is SECONDARY.

Using the FORMS Statement

The lines per page setting of the PRIMARY and
SECONDARY tractors can be different. (For example,

the PRIMARY tractor could print 25 lines per page, while
SECONDARY prints the standard 66 lines per page.)
Separate settings are specified by entering different FORMS
statements for each tractor during the MODIFY phase.

Log Device

The log device is used to print OCL statements and error
messages and codes. The PRIMARY tractor will be the
log device at IPL time when the 2222 Printer is used. The
secondary tractor can be assigned as the logging device by
entering LOG at either READY or MODIFY time. If the
secondary tractor is the logging device, logged data begins
in print position 110. (See READY-Entering LOG and
MODIFY-Entering LOG).

If the log device is used for normal program output, the
error messages and codes are not printed.

58

MODIFY — Entering the Keyword FORMS
System prompts MODIFY

Enter here if you've
already used a
MODIFY option in .
the job

Y
Operator types FORMS

System prompts FORMS
DEVICE

Operator types

PRIMARY SECONDARY

System prompts LINES

Operator types Operator presses

new lines per PROG START
page setting (for current lines
per pagg)

Does operator want to
use another MODIFY

¢_— option? 1

YES NO

Y

See keyword

Operator types RUN

description {When the keyword FORMS
of the other is entered in an OCL se-
MODIFY quence, a system halt oc-
option curs after RUN in case

the operator needs to
change paper in the print-
er. The system remains
idle until the operator
presses PROG START)

OCL FOR THE 1BM 2265-2 DISPLAY

The IBM 2265-2 display unit can be used as the system log-
ging device. The logging device displays OCL statements,
utility control statements, job comments, and error messages
and codes. The log device can also be used for normal out-
put from the job being run. Error messages and codes are
not displayed if the 2265-2 is used for normal job output.

When the 2265-2 (CRT) is used as the logging device, an ad-
ditional 1K of core storage is needed for the system, thus
reducing the core available for the user program.

The operator can assign either the CRT display or the print-
er as the logging device. If the operator changes the logging
device the change remains in effect until either:

© The operator specifically overrides the change with
another LOG statement.

© The next IPL procedure.

READY - Entering LOG

System prompts READY
Operator types LOG

System prompts
LOG DEVICE

Operatoi types:

Y

CRT 'SECONDARY

PRIMARY

System assigns
primary tractor
as logging device.

System assigns
secondary tractor
as logging device.

System assigns
CRT as logging
device.

System prompts READY

Note: The CPU usage meter will continue to run during
halts (other than end-of-job halt in halt mode) when the
CRT is used as the logging device or when it is used by the
customer program. To stop the usage meter, the system
START/STOP switch should be moved to the STOP position.
This will blank the CRT display, but the halt will continue
to be displayed in the halt code indicator lights on the sys-
tem console. When halt ABCD 12345 occurs (end-of-job

in HALT mode), the CRT is blanked and the usage meter

is stopped.

MODIFY — Entering LOG

System prompts MODIFY

. Enter here if
you‘ve already
used a MODIFY
option in the job

]

Y

Operator types LOG

System prompts
LOG DEVICE

Operator types:

CRT SECONDARY PRIMARY

System assigns
primary tractor

System assigns
secondary tractor

System assigns
CRT as logging

device as logging device. as logging device.
| i |
Does operator want to
use another MODIFY
YES <«——option? > NO

See keyword description Operator types
of the other MODIFY RUN
option

UsingOCL 59

OCL ERROR MESSAGES

Message

"MESSAGE #00 — NO PROGRAM NAME GIVEN
MESSAGE #01 — NO UNIT GIVEN
MESSAGE #02 — INVALID PROGRAM NAME SPECIFIED
MESSAGE #03 — INVALID UNIT SPECIFIED

MESSAGE #04 — PROGRAM NOT FOUND ON
SPECIFIED UNIT

MESSAGE #05 — NO PROCEDURE NAME GIVEN

MESSAGE #06 — SOURCE NOT FOUND ON SPECIFIED
UNIT

MESSAGE #07 — INVALID PROCEDURE NAME

MESSAGE #08 — MULTIVOLUME FILE RESPONSES
NOT IN 1-1 RATIO

MESSAGE #09 — PROCEDURE NOT FOUND ON
SPECIFIED UNIT

MESSAGE #10 — INVALID SWITCH SETTINGS

MESSAGE #11 — NO SOURCE NAME GIVEN
MESSAGE‘#12 — INVALID SOURCE NAME SPECIFIED
MESSAGE #13 — INVALID DATE SPECIFIED

MESSAGE #14 — TOO MANY RESPONSES TO A
MULTIVOLUME FILE KEYWORD

MESSAGE #15 — NO FILE NAME GIVEN

MESSAGE #16 — NO PACK GIVEN
MESSAGE #17 — INVALID FILE NAME SPECIFIED
MESSAGE #18 — INVALID LABEL SPECIFIED

MESSAGE #19 — INVALID PACK SPECIFIED

60

Explanation

Response to LOAD NAME was blank.
Response to UNIT was blank.
Response to LOAD NAME was invalid.
Response to UNIT was invalid.

The program indicated by your response to LOAD NAME
was not found in the object library of the unit specified.

Response to CALL NAME or BUILD NAME was blank.

The source module specified by your response to SOURCE
was not found in the source library of the unit specified.

Response to BUILD NAME or CALL NAME was invalid.

The number of responses to file keywords PACK, HIKEY,
LOCATION, TRACKS, or RECORDS were not equal.

Procedure specified by response to CALLL NAME was not
found in source library of the unit specified.

Response to SWITCH was other than eight positions of X,
1,0or0.

Response to SOURCE was blank.
Response to SOURCE was invalid.
Response to DATE in file keywords was invalid.

Only ten volumes are allowed in each multivolume file.

Procedure contains file keyword‘s but no FILE NAME
response.

Procedure contains file keywords but no PACK response.
Response to FILE NAME was invalid.
Response to LABEL was invalid.

Response to PACK was invalid.

Message

Explanation

MESSAGE #20 — INVALID RETAIN DESIGNATION
SPECIFIED

MESSAGE #21 — INVALID TRACKS SPECIFIED

MESSAGE #22 — MAXIMUM FILE STATEMENTS
ENTERED

MESSAGE #23 — BOTH TRACKS AND RECORDS
SPECIFIED

MESSAGE #24 — INVALID RECORDS SPECIFIED
MESSAGE #25 — INVALID LOCATION SPECIFIED

MESSAGE #26 — DEVICE NOT SUPPORTED

MESSAGE #27 — INVALID DEVICE

MESSAGE #28 — INVALID NUMBER OF LINES
MESSAGE #29 — INVALID REQUEST

MESSAGE #30 — INVALID STATEMENT NUMBER

MESSAGE #31 — TOO MANY UTILITY CONTROL

STATEMENTS IN PROCEDURE—-JOB

CANCELED

MESSAGE #32 — RUN OUT OF SPACE IN THE
SCHEDULER WORK AREA

MESSAGE #33 — RESPONSE REQUIRED—DELAYED
RESPONSE IN CALLED PROCEDURE

MESSAGE #34 — TOO MANY MULTIVOLUME FILE
UNITS SPECIFIED

MESSAGE #35 — DELAYED RESPONSE (?) NOT
ALLOWED

MESSAGE #36 — JOB CANCELED

MESSAGE #37 — MULTIVOLUME FILE NOT VALID
THIS STATEMENT

MESSAGE #38 — ENTER MINUS (-) NOT ALLOWED

Response to RETAIN other than P, T, S, or A.

No more than 15 FILE statements can be specified in a job.

Procedure contains responses to both TRACKS and
RECORDS.

Response to LOCAT!ION must be 8 through 405.

CRT, data recorder, or 3741 was specified but is not on
the system.

Response to DEVICE, PUNCH, or READER invalid.
Response to LINES not between 12 and 112.
Response to MODIFY was invalid.

Invalid statement number entered as response to modify.

Number of units specified exceeds number of packs
specified.

/* was entered or job was canceled because of errors.

Multiple responses not allowed for this keyword.

The ENTER— key is only allowed for certain keywords in
the BUILD cycle.

UsingOCL 61

Message

Explanation

MESSAGE #39 — ERRORS IN PROCEDURE—JOB
CANCELED

MESSAGE #40 — ERRORS IN OCL STATEMENT
MESSAGE #41 — ERRORS IN RESPONSE

MESSAGE #42 — DUPLICATE PROCEDURE NAME
IN LIBRARY

MESSAGE #43 — DUPLICATE PROCEDURE DELETED

MESSAGE #44 — INVALID KEYWORD

MESSAGE #45 — TOO MANY UTILITY CONTROL
STATEMENTS ENTERED

MESSAGE #46-— PERMANENT DISK ERROR

MESSAGE #47 — RUN OUT OF SPACE IN PROCEDURE
LIBRARY—JOB CANCELED

MESSAGE #48 — INVALID SYSTEM DATE SPECIFIED

MESSAGE #49 — DUPLICATE KEYWORD

MESSAGE #50 — RESPONSE REQUIRED

MESSAGE #51 — TOO MANY PACKS, HIKEYS, OR
BOTH SPECIFIED

MESSAGE #52 — DUPLICATE MULTIVOLUME FILE
UNIT SPECIFIED

MESSAGE #53 — INVALID RESPONSE DURING
INQUIRY

MESSAGE #54 — INVALID HIKEY SPECIFIED

MESSAGE #55 — INVALID HIKEY LENGTH SPECIFIED

MESSAGE #56 — HIKEYS OUT OF SEQUENCE

MESSAGE #57 — REQUIRED KEYWORD DELETED

CO-RESIDENT SYSTEMS

IBM System/3 Model 6 users who have co-resident systems
(both disk system management and System/3 BASIC) can

62

Response to BUILD NAME is already in source library of
unit specified.

New procedure being entered will overlay old procedure
with same name.

Keyword found in procedure is invalid, or response to
READY is invalid.

Only 25 utility control statements may be entered.

A procedure contains a duplicate keyword.

You must respond to this keyword; PROG START as the
only response is not allowed.

The total number of PACK and HIKEY keywords cannot .
exceed 52.

Cannot change logging device or change to card OCL.

Response (number) to HIKEY exceeds response (number)
to KEY LENGTH
Response to KEY LENGTH is greater than 29, or is 00.

Responsesto HIKEY must be in ascending sequence.

Job canceled.

transfer control from disk system management to System/3’

BASIC by responding to READY with ENTER BASIC.

This section presents a typical sequence of jobs:

o

Initialize a disk.

Compile an RPG |l source program.

Run the cbmpiled program.

Copy a file from one disk to another.

Build a procedure to run a multi-file job.
Call and modify the procedure built in job 5.
Update a multi-volume master file.

Create a multi-volume indexed file.

Maintain a multi-volume indexed file with packed keys.

Include utility control statements in a procedure.

Chain procedures.

Sample Jobs

Each sample job is organized into three sections:
1. An introductory summary explaining the job.

2. The OCL statements (and—where applicable—the
utility control statements) for the job.

3. Explanatory notes on individual statements in the
job.

The examples shown are actual computer printouts. End-
of-statement keys used are shown in parenthesis to indicate
actual operator response. These are shown for example only
and will not be printed on normal OCL printouts.

Any response without end-of-statement key indicated is
printed by the system without operator intervention.

in the following examples, the symbol P/S means
program start.

Sample Jobs 63

SAMPLE JOB 1. INITIALIZE DISK

We're going to use the Disk Initialization Program (located on the fixed disk on drive one) to initialize the removable disk on
drive one. We want to: ‘

© |nitialize the entire disk pack.
© Do surface analysis only once.
The name of the new disk will be 12345.

Here are the OCL and utility control statements for the job.

READY— ' L.Oan (p/s)
66 I6 I I 336 96 96 3 96 96 3 36 36 96 96 36 36 36 96 96 26 36 96 36 36 36 36 36 96 36 36 96 96 36 3636 36 96 96 96 36 36 36 30 I 36 IE I I 3 36 IE I I I 36 3 I I I 36
010 LOAD NAME - FINIT (P/S)
0L UNIT- 1 (ENTER-)

69636 36 16 36 36 36 3 3096 6 I 3 360 96 369 96 I 96 36 36 36 6 I 96 I6 I IE 6 I 9606 I IC I 0 I 6 I IE 636 3 IEIE I I I H W66 I I I IE K
MODIFY

RN (/8

ENTER *77 % CONTROL STATEMENT
SOOUTN UNTT=R1 » TYFE-PRIMARY (P/S)

ENTER *//7 ¢ CONTROL STATEMENT
/7 VO PACK-12345 (P/S)

ENTER *//7 ¥ CONTROL STATEMENT
A7 END (P/S)

Explanation
© 010 LOAD NAME — SINIT
$SINIT is the system name for the Disk Initialization Program.
© 011 UNIT - F1 The Disk Initialization Program is located on the fixed disk on drive one. Pressing ENTER~—
instead of PROG START to end response causes DATE, SWITCH, and FILE keywords to
be bypassed.
o //UINUNIT — R1, TYPE-PRIMARY
1. Tells the system to initialize the removable disk on drive one.
2. Because no other parameters are entered in the UIN statement, the program will:
o Initialize the entire pack.
© Read and verify the test data on the pack one time.
o // VOL PACK— — S$INIT will enter the disk name 12345 in the VTOC. Whenever a file from this disk is used
12345 in a job, the operator must type 12345 when the system prompts PACK.
o //END

64

SAMPLE JOB 2. COMPILE AN RPG Il SOURCE PROGRAM'

We're going to use the 1BM-supplied procedure RPGB (located in the source library on the fixed disk on drive one) to
compile a source program INVUPD (an inventory update) located on R1. The RPG |l Compiler (the program to compile
RPG 11 source programs) is also located on R1. We want to put the compiled program in the object library on R1. Here are
the OCL statements for the job.

Explanation

000 CALL NAME -

010 LOAD NAME -

011 UNIT

020 COMPILE OBJECT - —

021 SOURCE

022 UNIT

020 MODI!FY

RPGB
Tells the system you want to use the IBM-supplied Compile Procedure (RPGB).

$RPG

Tells the system you want to use the RPG Il Compiler (the program to compile RPG I|
source programs).

R1

The RPG |1 Compiler is located on R1.

F1
The object program will be put in the object library of the disk on F1.

INVUPD

The SOURCE statement in the RPGB procedure requires a delayed response. When the
system reaches the SOURCE statement in the display sequence, it prompts SOURCE and
waits for the operator’s response. :

R1
The response tells the system that the program to be compiled {(INVUPD) is located on R1.

R1
1. System prompts MODIFY.

2. Operator types 020, telling system he wants to change that statement. (He does not
want the system to put the compiled program on F1.)

3. System tabs to position 37 and waits for response.

4, Operator types new response — R1. The system will put the compiled program on R1.

READY - call. (P/S)
000 CALL NAME -~ RFGE (P/S)
001 UNIT- F1 (P/S)
EX 2 XXX SIS EEEELSEEELEELEESEEESLLLEL LR EELEE S LS E.E.1
010 LoAn NAME~$RFG

011 . UNLT-RL

020 COMFILE ORJECT-F1

021 : SOURCE- NGUED (P/S)
022 UNIT-R1

030 FILE NAME~SWORK

031 UNIT-F1

032 FACK-F1F1F1

033 TRACKS—20

034 RETAIN-S

040 FILE NAME-$S0URCE .
041 UNIT-F1

042 FACK-F1F1F1

043 TRACKS-20

044 RETAIN-S

P I I JE JEJE I I I 36 36 I 36 I 6 B I IE I I I 36 FE I I NI F A6 I W W IM MR R RN
MODIFY

020 (P/S) K1 (P/S)
RUN (P/S)

Sample Jobs 65

SAMPLE JOB 3. PROCESS CUSTOMER PROGRAM “INVUPD"

We’re going to run the customer program INVUPD, compiled in SAMPLE JOB 2 and located on the removable disk on

drive one. The job uses one file, INV, located on R2. The name of the disk wh_ich contains the file INV is 123456. Here

are the OCL statements for the job.

REATIY ~ L.OAG (P/S)
6 I 96 666 A6 6 IE TE 36 66 I I 3 I I I I I6 I e 36 I 96 6 e I I I 6 A I 36 3 I IE 3 I 6 I 36 I I e I 6 IE I IE e 36 I I I A I 3 I
010 LOAT NOME - TNV (P/S)
011 URET- R1 (P/S)

020 DATE (12708770 - (P/8)

020 SWITCH (00000000 - (P/S) :

040 FILE ' MNAME - imy (P/S)
041 ' UMNET - 2 (P/S)

G042 FACK- L2E45S (P/S)
043 LAREL -~ (ENTER-)
050 FILE MAME - (P/S)

36 56 36 36 3 36 36 36 3 36 I6 636 3636 6330 3 3636 36 W 96 36 6 336 3696 I 6 96 96 96 I 36 3 6 e 36 T 66 I3 6 I IE 6 I I 663 2
MODIFY

UM (P/S)

Explanation

o 020 DATE — (12/08/70)
We'll use the current system date for the job.

® (030 SWITCH — (00000000) — (P/S)
The program doesn’t use external indicators so the operator doesn’t care about the switch
setting and responds by pressing the PROG START key.

® 043 LABEL — Press the ENTER— key
Responding to LABEL by pressing the ENTER— key tells the system to bypass the rest of
the file keywords and prompt FILE NAME.

® (050 FILE NAME — (P/s)

Responding to FILE NAME by pressing'PROG START causes the system to bypass the

rest of the file keywords and prompt MODIFY.

66

SAMPLE JOB 4. COPY FILE DISK TO DISK

We're going to copy an employee master file from R1 to'R2. The second file will serve as a back-up in case the original file
is damaged in some way, such as track becoming defective or a portion of the file being overlaid. When the master file was
created the programmer:

1. Responded to FILE NAME with EMASTFIL.

2. Responded to PACK with VOLO0G.

3. Responded to LABEL with EMPMAST.

4, Responded to TRACKS with 15,

These responses caused the system to put the name EMPMAST in the VTOC on VOLOG6.

Here are the OCL and utility control statements we will use to copy the master file from R1 to R2.

HEATIY ~ LOAG (P/S)
9 36 36 3 3 36 36 36 I I6 36 6 96 36 36 36 3 36 36 36 I I 36 36 I6 I6 I 6 36 6 36 36 36 I 3 36 36 IEIE IEIE IE I I 36 36 3 336 36 36 I6 36 I I 666 6 I I I
Qi LOAT MAME -~ SOEY (P/S)
Q1 COUNIT- Fi_ (P/s)
020 LATE (12708770 - (P/S)
OR0 SUWITOCH (00000000 - (P/S)
04C¢ FILE HAME ~ , COPYIM (P/S)
41 UNTT - 1 /sy
042 PR~ VL. (P/S)
043 LAREL -~ EMPensT (ENTER-)
050 FILE NAME -~ COFYO (P/S)
OuL UNIT - fz (P/S)
QE2 FATK- VOLO2 (P/S)

COEE LAREL - EMPMnGETE (P/S)
0% 4 RECORDES- (P/s)
O0E TRATUKES- 1% (p/s)
056 LOCATION- (P/S)
Q57 : RETATIN- I (ENTER-)
0&0 FILE MAME -
B 36 3 36 36 36 36 36 30 9 36 I I 36 36 36 36 6 36 T 96 I I 36 I 36 36 36 36 36 36 36 36 36 I6 36 I6 36 96 I6 36 30 36 I 36 36 36 36 66 36 3 I 203 00 6 9 I K

MOnIFyY

RUN (P/s)

ENTER *// * CONTROL STATEMENT
v/ COPYFILE OUTPUT-DISK (P/S)

ENTER */7 7 CONTROL STATEMENT
/7 END O (P/S)

Sample Jobs 67

Explanation

¢ 010 LOAD NAME

© 011 UNIT

® 020 DATE

® (030 SWITCH

® 040 FILE NAME

© 043 LABEL

® (050 FILE NAME

® (053 LABEL

® (055 TRACKS

o 057 RETAIN

® COPYFILE OUTPUT

— $CoPY

$COPY is the system name for the Copy/Dump Program.

F1
The Copy/Dump Program is on F1.

{xx/%x/xx)
We will use the current system date for the job.

(00000000)
The program does not use external indicators, so operator does not care about the
switch setting and responds by pressing PROG START.

COPYIN
COPYIN is the predefined file name you must use for the input file whenever you use
Copy/Dump Program.

EMPMAST

EMPMAST is the VTOC file name for the COPYIN file. You must supply this name so
the system knows which file to use for COPYIN. Pressing the ENTER— key causes the-
system to bypass the rest of the file keywords and prompt FILE NAME.

COPYOQ
COPYO is the predefined file name you must use for the output file whenever you use
the Copy/Dump Program.

EMPMAST2
The system enters EMPMAST2 in the VTOC on VOL07. EMPMAST2 is the name by
which the system will identify the back-up file.

15

Because we are creating a new file, we must respond to one of the space keywords
(TRACKS and RECORDS). We specify 15 tracks because that is what we specified
for the original file.

P

The back-up file is to be permanent to protect it against inadvertent overlaying.
Pressing the ENTER— key causes the system to bypass the rest of the file keywords
and prompt FILE NAME. '

DISK
The COPYFILE statement tells the program to copy the designated file from R1 to R2.

SAMPLE JOB 5. MULTI-FILE BUILD

Each day the customer runs a daily transaction job which creates a daily transaction file. Each day’s file has a different
name and date. We are going to build a procedure to use these daily files to create a weekly transaction file (WKLYTR).

The weekly transaction program is located in the object library of fixed disk 1.

i (Prs)

. (P/S)

{p/s)

B OO 1O O L O O o 1 L R O TR L O o O e T 1
ik (P/S)

(P/s)

FLLE (P/S)

(p/S)
Falzlom (P/s)
(P/S)
(P/S)
(P/S)
(P/S)
(P/S)
+ (P/S)
WE TR WEDHESDEYS FILE (P/S)
i (P/S)
Faiioi (PIS)
(p/s)
(P/s)
(P/S)
(p/s)
(p/S)
H(P/S) : '
THUTR THURSTDIAYS FILE (P/S)
FilL (F/8)
FACKOR (F/8)
073 LAREL~ (p/s) ’
074 RECORIS~— (p/s)
075 TRACKS- (P/S)
076 LOCATION- (P/S)
077 RETAIN- (p/s)
078 . DATE- 2 (p/s)
080 FILE NAME -~ FRITR FRIDAYS FILE (P/S)
081 UNIT- Fi (P/S)
082 FACK-— FACKOS (P/S)
083 _ LAREL— (P/S)
084 RECORDS— (P/s)

Sample Jobs 69

085
086
087
088
090 FILE
091
092
093
094

862

100 FILE

TRACKS— (P/S)
ILOCATION- (P/S)
RETAIN- (P/S)
DATE- ? (P/S)
NAME~ WKLYTR (P/S)
UNIT- K1 (P/S)
FACK- FACKO4 (P/S)
LAREL~ (p/s)
RECORDS- SO0 (P/S)
LOCATTON- (P/S)
RETATN- F (ENTER-)
NAME- (P/S)

VE 33636 96 36 IEIE 30 I 30 3 036 M I NI I I M I I HIEH M IR W IR I I I N MMM MWK H RN NN

MODIFY

RLIN (P/S)

Explanation

o 000 BUILD NAME
o 001 UNIT
6 020 DATE

© 030 SWITCH
(00000000)

© 040 FILE NAME

© 048 DATE
© 090 FILE NAME
© 094 RECORDS

o 096 RETAIN

© 100 FILE NAME

© RUN

70

WTR
The procedure name in the source library is WTR.

R2
The procedure is located on unit R2,

(P/S)
The date statement is not part of the procedure.

11111 XXX (P/S)
The first five external indicators are used to tell the program which input files are to be
used (Monday ~ Friday).

MONTR MONDAYS FILE
The file name for each day is different. The comment (MONDAYS FILE) will become
part of the procedure.

? (P/S)
The date each file was created is supplied at CALL time, when the job is run.

WKLYTR (P/S)
The output file is called WKLYTR and put on PACKO04 on unit R1.

500 (P/S)
Our output file contains up to 500 records.

P (ENTER-)

We want to make this a permanent file. The ENTER— key caused DATE to be skipped and

FILE NAME prompted.

(P/S)
We are finished with file statements, prompt MODIFY.

Put the procedure in the source library.

SAMPLE JOB 6. MULTI-FILE CALL

We are going to run the procedure we built in sample job. 5. However, this week Thursday was a holiday so there are only
four input files. We can still use the same procedure if we delete an input file at MODIFY time.

REA&DY - Gl (P/S)
000 CALL NATE -~ Wik (P/S)’
001 UNIT- F1 (p/s)
e e T2 W e I I T I I K I I I e e I I e e I T I T e H e He K He He TP I W e e H K IR IR K I
010 LDAD HAHE-~WKYRUN
. 011 UMIT~F1
020 SWITCH =L 1L LKAR
030 FILE NAHE~HOMTH
031 UNIT-F1
FACK-FACKOSH
DATE~ 475771 AP/S)
G40 FILE MAME-TUETR
041 UMLIT-F1
042 FACK-FACKOH
04 DATE~ 476771 (P[S)
050 FILE HAHE- ur LTE
051
052 FACK- mcwm
053 DATE- /7775 (PIS)
G060 FILE MAMHE-THUTR
061 UMIT~F1
062 FACK-PACKGEH
0673 OATE~- 476771 (P/S)
070 FILE NAME~FRITR
071 UNIT~F1
072 FACK-FACKOH
0735 LATE~ 4/7/7L (P/S)

UB', FYLE |lnnL L\IM YTR

9 P I I I T P I 6 I I I I D6 36 B I I 6 I I D6 I 6 96 3 2 36 6 36 6 K I NI I N H U6 I B 3K I 3 9 I B9 D6 36 B8 D 36 6 36 6 96
MODIFY

02 (PIS) LLLOLXHAA (P/S)

G6Oy (P/S)

* THURSDAYS FLLE WOT USED BECAUSE OF HOLIDAY: Wl RUN THET D&Y

kUit - (P/S))

(P/s)

Explanation
© 033DATE — 4/5/71
. ® 043 DATE - — 4/6/11

‘e 053 DATE — 4/7/11

® 063 DATE — 4/8/71

@ 073 DATE — 4/9/71
We must supply the date for each day’s input file because we gave a delayed response (?) at
BUILD time. Thursday’s date is entered even though we will delete the file later. A date
should be entered to continue the cycle.

o MODIFY 020 — We set off switch four to indicate Thursday’s file is missing.

® MODIFY 060 — We delete the entire file for Thursday and enter a comment to explain why.

e RUN — Start the job.

Sample Jobs 71

SAMPLE JOB 7. UPDATE MULTI-VOLUME MASTER FILE

Every Monday the XYZ Novelty Company prepares customer invoices, updates their customer master file, and updates
their inventory file. Because the company has a huge customer file they’ve had to put the file on two disks: customer
names beginning with A-L on one disk and the remaining customer names on a second disk. When he created this
multi-volume master file, XYZ's programmer assigned the following identifying information:

1. A-L customer names:
FILE NAME — CMASTER
PACK — vOLO1

2. M-Z customer names: ‘
FILE NAME — CMASTER
PACK — VOL02

Because the company often needs information on individual customers, the programmer designed the customer master file
as a direct file. The program to update the customer master file is CMUPDA. Here are the OCL statements for the job.

E ALY - L.Oask (P/S)
e e e W 6 e A 6 I A 9 I I AR W W A I I S6 26 9 A A6 6 3 N R FITIRIE

10 L AT 3 (P/S)

_ T T i1 (P/S)

20 DATE (12708570 - (P/S)
BUTTOH (00000000}

040 FILE NAME -~

041 COUNET - ,
- k1 (P/S).

042 PR *UOLOL (P/S)
Y (ENTER=)

050 FILE HAME -~
P I I A I I I I I I I I TSI A I I I I
MODTFY

Fi (P/S)

Explanation

e 041 UNIT — 'F1
R1’
The single quotation marks tell the system the file CMASTER is a multi-volume file. F1, R1
tells the system the file is split between the fixed and removable disks on drive one.

® 042 PACK - ‘VOLO1
vVOL02
The single quotation marks tell the system the file is on more than one disk pack. VOLO1,
VOLO02 tells the system the name of the disk packs containing the file. Pressing the
ENTER- key causes the system to bypass the rest of the file keywords and prompt
FILE NAME.

® 050 FILE NAME — Pressing the PROG START key causes the system to bypass all the file keywords and
prompt MODIFY.

72

SAMPLE JOB 8. CREATE A MULTI-VOLUME INDEXED FILE

We are creating an inventory file. The file is very large and requires five packs. It is an indexed file with a 15 position
keyfield; the keyfield consists of part number and warehouse location. The file is divided among the five volumes as follows:

Volume 101 Keyfields 000-000-000W1B1 to 175-200-233W1B2
102 175-200-233W1B3 to 380-456-280W3R6
103 380-456-287W7B3 to 629-384-300W3F6
104 629-384-301W7B6 to 949-475-849W8F8
105 949-476-836WAF8 to 999-999-999WSF9

The processing starts with 101 on unit R1 and 102 on unit R2. After processing 101, the program processes 102 allowing
the operator to remove 101 and mount 103 on unit R1. Likewise, |04 replaces 102 and 105 replaces 103.

READY~ L.Oal (P/S) :
**************************ﬁ*%*********k*****ﬁ-K-hi*%k*%**kﬁ-}"**%'}th-'1
010 LOAD NAME- CRTINY (P/S)
011 UNIT- ' F1 (p/s)
020 DATE (L2/31L770) - (P/S)
030 SWITCH <00000000) -~ (P/S)
040 FILE NAME- INUMSTR (ENTER-)

REY LENGTH- 15 (P/S)
044 HIKEY- FLPE-200-283WLERE(P/S)
Q4R HIKEY- 3B0-456-280W3ERSG (P/S)
04C HIKEY- HR2P-EB4-Z00WEF S (P/S)
Q40 HIKEY - 4P A7 E-BAPURFE (P/S)
O4E HIKEY- GRP-QRP-QQFUPFP Y (P/S)
041 UNIT- 'Rl (P/S)

- B2 (P/S)

042 FACK- TUOL.TOL (P/S)

- VOL.TO2 (P/S)
- YOLTOE (P/S)
- YOLLTOA (P/S)
- YOL.TOSY (P/S)

043 LAREL - (P/s)
044 RECORIS~ (P/s)
045 TRACKS— 100 (P/S)

- 193 (P/S)
- 150 (P/S)
- 193 (P/S)
- 80* (P/S)
046 LOCATION- r837 (P/S)
- 8 (P/s)
- 49 (P/S)
- 8 (P/s)
- 8¢ (P/S)
047 RETAIN- * (ENTER-)
050 FILE NAME - (P/s)
FE 3 63 B 396 36 36 36 6 36 36 3636 96 36 36 96 36 36 36 36 36 96 36 96 96 36 36 36 36 96 36 96 36 96 36 6 36 336 96 96 9 96 9 96 3 6 36 30 A6 30 I3 000 MM AE N
MODIFY

RUN (P/S)

Sample Jobs 73

Explanation

74

KEY LENGTH:

045 TRACKS
046 LOCATION

All characters except commas are allowed as part of the HIKEY. If apostrophes are used as
part of the key, two apostrophes must be entered for each one in the key. The number of
characters entered for HIKEYs must equal KEY LENGTH.

No statement number js assigned KEY LENGTH. This keyword cannot be changed at
MODIFY time.

The file need not occupy the entire volume if the number of tracks and the starting
location are given. You must be sure these areas are available because the system cannot
check offline packs.

SAMPLE JOB 9. MAINTAIN A MULTI-VOLUME INDEXED FILE WITH PACKED KEYS

We are maintaining a multi-volume indexed file. The file occupies four volumes. The keyfield is 15 characters long in

packed format. The keyfield takes eight bytes in the record. The file is divided as follows:

Volume P01
P02
P03
P04

The OCL required to use this file is as follows:

FE AT -

Keyfields 000 000 000 000 000 through 000 025 000 000 000
000 025 000 000 001 through 000 050 000 000 000
000 050 000 000 001 through 000 075 000 000 000
000 075 000 000 001 through 000 100 000 000 000

LDédy (P/S)

e 3 e 9 3 3 06 36 36 0 6 D D6 D B D0 D0 D e 3 0 0 36 D B 360 3 26 3 36 606 36 36 96 36 36 36 30 36 36 36 36 3 3 3 3 3 36 36 O 36 3 3 36 36 9 36 3¢ 9

010 L0aAD
011
020 DATE

030 SWITOH

040 FILE

04y
D40
04T
04T
041

042

043
050 FILE

e e 3 9 98 Mo b 0 3 0 3 30 3 3 M 36 98 3 30 36 36 90 6 Db 3 3 N 0 I 0 2 6 30 36 0 3 30 3 30 36 96 36 3 I 36 3 3 36 6 3 36 36 0 26 N 3 6 3 90 3 356

MOTTEY

FLlid (P/S)

HAME -

LI
(7097200

(00000000 -

NEAFE -

WEY LENGTH-

HEREY

HIKEY -~

HIKEY -

HIKEY -

LHET -

F AT -

LaBEL -~
M EME -

PR (P/S)

FiL (P/S)

(P/S)

(P/S)

FavROLL. (ENTER-)

DT (P/S)
YOODOEEHO0000000 (P/S)
OOOOHODOHOOHOGN (P/S)
DOOLPEOHOOOO000 (P/S)
OOGLODOOLOOOHNOY (P/S)
YR (P/S)

B2 (P/S)

PUOLFOL (P/S)

VOLFOR (P/S)
VLGOS (P/S)
VILFO4Y (P/S)
ALGONT - (ENTER-)
(P/S)

Sample Jobs

75

SAMPLE JOB 10. INCLUDE UTILITY CONTROL STATEMENTS IN A PROCEDURE

Sample job 1 showed an OCL LOAD cycle for initializing the removable disk on drive one. This sample job shows how to
do the same job using BUILD and CALL cycles and including the Utility Control Statements in the procedure.

READY - RUTLIY (P/S)

000 BUILD NAaME-~ INITRI (P/S)

001 UNIT— Fi (P/S) ,

HEEKK AR EEE R R R AR R R RR R AR RN A E R R R ER R R RN FRR RN RN R LR R RN R R KRR E R R RE KR
010 L.OAD MAME -~ SINIT (P/S)

Q11 UNIT- F1 (P/S)

020 DATE .- (P/S)

030 SWITCH (00000000) - (P/s)

340 FILE NAME-— (P/s)

HHFREREREP AR BEEERBEEE LRI L LR R EEEE XA IR XX R H IR H I H H I H IR NI I RN I
MOLIFY

INCLUDE (P/s)

N6 NI e I T I I 6 IE 366 IE I I I I 363 HE I I IE 0 I IE I IE I IEIE A6 I I IE I I 6 IEIE I IE K I IE I I 6 I IE IE I I W I I6 I I I
ENTER UTILITY CONTROL STATEMENTS

00

A7 UM UNTT-RL TYFE-FRIMARY (P/S)
01

£ NOL: PACK-12345 (P/S)

02

A7 END (P/S)
03

RUN (P/S)
FE I 36396 3636 36 36 3636 90 96 3636 36 96 6 696 JEH 3036 10 36 3 96 96 2696 36 36 3 36 36 96 9 90 96 36 36 36 96 96 16 96 96 3 96 36 6 96 9 36 3696 9 96 96 3 36 ¢

MODIFY

READY - Cal.L. (P/s)

Q00 Call NAME- INITRI (P/S)

D01 UNIT- 1 (P/s)

36936 I 366 36 36 6 36 3696 96 3 95 36 6 96 363636 36 96 36 30 36 30 30 36 36 30 6 90 9 96 90 36 96 96 90 0 36 36 36 9636 3636 36 36 36 36 96 96 36 96 36 36 96 96 9 96 96 3¢
310 LOAD NAME-SINIT

oLy UNIT-F1

THMODTFY

KLIN - (P/S)

96 3696 36 36 3636 I I W 6 IE 60T I I I I I I I 36 30 I 36 6960066 6 I I I I 3 I I I I I IE 6 I 6 6 6696 I I I I I I I M I
INCLUDED STATEMENTS

OO0 /7 UIN UNIT-RL TYPE-FRIMARY

Ol /7 VOL FACK-12340

Q2 7/ END

3696 36 36 96 36 36 36 36 36 636 96 96 96 36 36 30 96 6 36 I 36 36 36 36 36 I I IE 36 63 I I 36 I 6 I I 36 36 I I I I I 6 I IE I I6H I IE 6 66 I I I 626
MOOIFY

RUM(P/S)

76

SAMPLE JOB 11. CHAIN PROCEDURES

We’re going to use the BUILDC cycle to chain two procedures created with the BUILD cycle. First, we use the BUILD

cycle to build procedures to use the Conversational Utilities ($KSE and $KDE).

After the chained procedure is built, the CALL cycle is used to run the chained procedures.

READY- BUILD (P/S)
000 BUILD NAME — KSE (P/S)
001 UNIT- F1 (P/S)

369636 36 36 36 2636 36 36 3636 3606 3636 06 3636 26 36 06 30 30 I 069600 00 336 36 2660606 36 30 30 3303 0 K6 36 K3 00K KKK
010 LOAD NAME - SKSE (P/S)

011 UNIT- 1 (P/S)
020 DATE - (P/S)
030 SWITCH (00000000) - (P/S)
040 FILE NAME- {P/s)

FE 36 I 36 2 3 I I 36 I I P IE I K I I I I I K IE I I I I I I I I I W I I I I W I IC e W ;I I F I FEH MW N KN
MODIFY

RUN (P/S)

READY~ BUTLY (P/S)
000 BUILD NAME -~ KoE (P/S)
001 UNLT- ¥1 (P/S)
1222232233233 3332322222222 XL ELELLEETSSEEESEESDED LS L L EIEEE TR S
010 LOAD NAME - sknE (P/S)
o1l UNTT- 1 (P/S)

020 DATE - (P/S)

030 SWITCH (00000000) - (P/S)

040 FILE NAME - KUEFTLE (P/S)
041 UNIT- #1 (P/S)

042 FACK- F1F1FL (PIS)
043 LAREL - DRIVZ2 (P/S)
044 RECORDIS~ 4 (P/S)

045 LLOCATION- {P/S)

046 RETAIN- T (P/S)

047 DATE- (p/s)

050 FILE NAME~— {P/S)

966 36 96 36 36 36 36 96 36 36 36 36 36 3636 3636 336 36 26 906 36 36 3 366 I 6 IEIE I I 0 M A6 I 6 36 I 33000 6 03I 6 H KKK
MODIFY

RUN (P/S)

READY—) BUILLC (P/S)

000 BUILDC NAME— MASTER (P/S)

001 UNLIT- F1 (P/S)

X636 I 36 36 IE I 36 IE I I 36 I€ I 36 I3 I IE I IE I I I I 3 I FE I I I I3 I IE I I I I ;I I A I I I I B, I I3 I, K W W, A
010 CALL NAME- KSE (P/S)

o011 UNIT- 1 (P/S)

020 CALL NAME— ©KnE (P/S)_

021 UNIT- F1 (ENTER-)

BT I I 2 I I I 2 I I I I 36 I I I K I I A0 I I M IE I I I I I NI I I W IE I I IEIE I NI H I I WD K I IE K N
MODIFY

RUN (P/S)

READY~ AL (P/S)

000 CALL NAME~ STER (P/S)

001 UNIT- 1 (P/S)

000 CALL NAME-KSE

001 UNIT-F1

I I 3 I I I B I I I I I I I I I I I I I I I IEIE I I, A A I I I NI I B W W KNIV R W R IR I I MBI N KN
010 LOAD NAME-$KSE

o011 UNIT-F1

¥ I DE I 36 I I IEIE I IE I I B K I IE I I I FE I 36 FE I A KK I NI I F I I I I I I IE W I I WK I I IR WA, I NN KN
FORMAT DESCRIPTION ? YES (P/S)

FORMAT TYPE - KL (P/S)

Sample Jobs

77

NEW SOURCE MODULE ? YES (P/S)
SOURCE MODULE HAME - KOEFOR (P/S)
SOURCE MODULE UNIT - F1 (P/S)

06672 NEW STATEMENTS MAY EE ADDEDN TQ SOURCE ENTRY

00000 HO1 094 (P/S)

00010 A00S (P/S)

00020 A091 (P/S)

00030 HO2 (COMMAND KEY 06 FRESSED
END OF JOR ? YES (P/S)

KSE END OF JOE

000 CALL NAME-KDE
001 UNIT-F1
3636 336 I3 960636 I I 36 I 66 0606 36 3306 I I IR I I IR IE I IR H I NI R N
010 LOAD NAME-$KIIE
011 UNIT-F1
NAME-KDEFIILE
UNIT-F1

FACK-FILF1F1
LABEL-DRIV2
RECORDG—4
RETAIN-T
330 I3 I I I NI I I IC I NE I NC I IE KT NEB I I I I I I IE I 6 I I KKK KK

FORMAT NAME — KDEFOR (P/S)
FORMAT UNIT - 1 (P/S)
UISFLAY FORMATS ? YES (P/S)
H01096

AOOS

A091,

NEW KDE FILE 2 YES (P/S)
KEY FIELD START - N0 (P/S)
SELECT FORMAT NUMBER - 01 (P/S)

* *

00000 THIS I8 AN EXAMFLE OF CHAIN FROCEDURE ON THE MODEL & (F/8)

00010 KSE WAS THE FIRST JOR EXECUTEDN AND KDE WAS THE SECOND AND LAST JOR (F/8)

00020 THE CHAIN WAS INITIATED RY CALLING MASTERy WHICH WAS BUTLT TN & BULLIC CYCLE (F/79)

00030 (COMMAND KEY 06 FRESGEDD

FE MM I K I IR I I I I I W I I I I IC I NN NN IEICIE I I NI NI I IEIEIE I NI I W NI WP IE NI WE I KRB I I KN KKK

BATCH ACCUMULATORS 00 01 02 03 04
0 0 0 0 0
05 06 07 08 09
0 0 0 0 0

FINAL ACCUMULATORS 00 01 02 03 04
0 0 Y] 0 Q
05 06 07 08 09
o] 0 O 0 0

I I X IE I I I IE 6 I I 36 36 3636 36 36 36 3 36 36 36 36 36 36 3 36 36 3 36 36 36 96 96 36 96 36 36 36 36 36 36 36 36 36 33K I I I I NI K I I I IE I I I I I I I IE I I I I I I K I I I I 30 B I I I I I A MM K
END OF JOR ? YES (P/S)

KDE END OF JOE

78

PART 11
DISK UTILITY PROGRAMS

Part 1. Disk Utility Programs 79

Introduction to Disk Utility Programs

Every method of data processing requires a certain-amount
of maintenance work to keep it in good running order.

For example, you must make back-up copies of important
files, and remove out-of-date files. The Disk Utility prog-
rams are a collection of maintenance programs to serve
your data-processing system. The Disk Utility programs
are:

Disk Initialization

Alternate Track Assignment
Alternate Track Rebuild

File and Volume Label Display
File Delete

Copy/Dump

Library Maintenance

You might use one of the preceding utility programs to:
© Prepare disks for use.

© Replace defective tracks.

® Replace incorrect data on a track.

@ Print VTOC (volume table of con’;ents) information.
© Delete files from a disk.

© Copy or print files.

® Maintain system libraries.

GENERAL PROGRAM OPERATION

The utility programs require control statements describing
the jobs you want done. They read these statements from
the system input device, or from procedures stored in a
source library on disk. The system input device is normally
the keyboard, but the operator can specify another device
by his response to the OCL keyword READER during
initial program loading (IPL).

The following diagrams outline the general way the utility

programs operate. Assume that the programs are reading
control statements from the keyboard.

80

All Programs Except Library Maintenance

Operator keys OCL
sequence to load and
run programs

Utility Program prints:
ENTER ‘//' CONTROL
STATEMENT
Program reprompts
until // END is
entered
ﬂk
Operator keys control
statement for utility
program

Last Control —»NO

Statement
// END?

YES

Program does
requested function

Program ends

_ Library Maintenance Program

Operator keys OCL
sequence to load and
run program

Program prints:
ENTER ‘//' CONTROL
STATEMENT

T

<

Operator keys the
control statement
for a particular
program use

Y
Program does the
requested function

Y
Program prints:
ENTER ‘//' CONTROL
STATEMENT

¥

> YES —

More Library
Maintenance functions?

NO

v
Operator keys: // END

Y
Program ends

USING DISK UTILITIES

To use utility programs, you must write utility control
statements and operation control language (OCL) state-
ments. In this manual, therefore, the information for
every program is divided into five sections:

® Control statement summary

® Parameter summary

® Parameter descriptions

OCL considerations
® Examples

The first three sections are to guide you in writing utility
control statements. The OCL section is to guide you in
writing OCL statements. The examples will help you in
both.

Control Statements

Every control statement is made up of an identifier and
parameters. The identifier is a word that identifies the
control statement. It is always the first word of the state-
ment {following // blank in positions 1-3). Parameters are
information you are supplying to the program. Every
parameter consists of a keyword, which identifies the
parameter, followed by the information you are supplying.

In writing the statements, use the manual in the following
way: :

1. Look at the CONTROL STATEMENT SUMMARY
to determine which control statements and parameters
apply to the program use you are interested in. (The
program uses are stated in the text preceding the
control statement summary.)

2. If you need information about the contents or
meanings of particular parameters, look at the
PARAMETER SUMMARY.

3. If you need more detailed inforniation about param-
eters, read the PARAMETER DESCRIPTIONS
following the parameter summary.

4. If you need examples of specific jobs, look at the
EXAMPLE section. All examples show the-OCL
and utility control statements needed to load and
run the utility programs for specific jobs. The
statements are shown in the form they are pfinted
on the system printer.

Introduction to Disk Utility Programs 81

Coding Rules
The rules for writing control statements are as follows:

1. //blank. All control statements must have // blank
in positions 1-3.

2. Statement Identifier. Begin in position 4 or after
of the statement. Do not use blanks within the
identifier.

3. Blanks. Use one or more blanks between the identi-
fier and the first parameter. Do not use them any-
where else in the statement.

4, Statement parameters. Parameters can be in any
order. Use a comma to separate one parameter from
another. Use a hyphen (-) within each parameter to
separate the keyword from the information you
supply. Do not use blanks within or between
parameters.

5. Statement parameters containing a list of data after
the keyword. Use apostrophes (') to enclose the
items in the list. Use a comma to separate one item
from another. For/example: UNIT-'R1,R2' (R1 and
R2 are the items in the list).

6. Statement length. All control statements except
Disk Initialization and Library Maintenance state-
ments must not exceed 96 characters. The following
Library Maintenance statements can be continued
on another statement (see continuation rules for
card OCL in Part 1 of this manual):

// ALLOCATE

// COPY (except COPY statements read from a file)

// DELETE

// MODIFY (not REMOVE, REPLACE, or INSERT
statements)

// RENAME

The Disk Initialization statement // VOL can also be
continued.

The following example shows a control statement. The
statement identifier is COPY. The parameter keywords are
FROM, LIBRARY, NAME, and TO. The information you
supply is F1, O, SYSTEM, and R1.

// COPY FROM-F1,LIBRARY-O,NAME-SYSTEM,TO-R1

82

End-Control Statement

The END statement is a special control statement that
indicates the end of control statements. It consists of the
letters // END in positions 1-6 and must always be the last
control statement for the programs.

WRITING OCL STATEMENTS

To write OCL statements to run a utility program, look at
the OCL CONSIDERATIONS section for that program.
There you will find a list of the required keywords and
responses for LOAD and BUILD sequences. {Keywords
not listed can be bypassed.) Should you need more general
information about OCL, or more specific information about
the keywords, see Part | of this manual.

Note: Capitalized words and letters, numbers, and special
characters have special meanings in OCL and utility control
statement descriptions in this manual.

Utility Control Statements

In utility control statements, capitalized words and letters
must be written as they appear in the statement description.
Sometimes numbers appear with the capitalized informa-
tion. These numbers must also be written as shown.

Words or letters that are not capitalized mean you must use
a value that applies to the job you are doing. The values
you can use are listed in the parameter summaries for the
control statements.

Braces and brackets ({ [] }) sometimes appear in param-

- eters shown in control statement summaries and parameter

summaries. They are not part of the parameters. Braces
indicate that you must choose one of several values to com-
plete the parameter. For example, RETAIN -ll,' means you
can use either RETAIN-T or RETAIN-P. Brackets indicate
optional parameters. For example, [, TO-'key’] is an option-
al parameter that may or may not be used.

OCL Statements

In OCL statements, keywords are capitalized. Responses
that are shown in capital letters must be written as shown.
If numbers or special characters are included with the
capital letters, they must be written as part of the response.
For example, $INIT is the name of the Disk Initialization
program and must be written exactly as shown. Responses
that are not capitalized mean you must use the value that
applies to the job you are doing.

Disks that are being used for the first time must be pre-
pared for use. This process is called /initialization. You

can also use a disk that has been used before by reinitializing
that disk (any data on the disk is destroyed). You use the
Disk Initialization program to perform initialization.

FUNCTIONS)

lnit';alizing a disk involveé:

© Naming the disk.

@ Writing track and sector addresses on the disk.
® Checking for defective tracks.

©® Assigning alternate tracks to any defective tracks.

Naming a Disk

You must name every disk you intend to use. The
operator uses this name to ensure that the correct disks are
being used for a job. He supplies the disk name in either
OCL statements or program control statements. The
system checks this name against the name stored as
identification on the disk pack. If the names don‘t match,
" a halt occurs and a message is printed to the operator. The
operator may then change disks. All this must happen
before a Model 6 program can use a disk.

Writing Track and Sector Addresses

A disk contains 200 or 400 tracks, each of which is divided
into 24 sectors. An area at the beginning of every track
and sector is set aside for an address. These addresses are
necessary for locating data.

Disk Initialization Program ($SINIT)

Track and sector addresses are not written on disks when
the disks are manufactured. You must do this before you
use the disks. The Disk Initialization program does it for
you.

Checking for Defective Tracks (Surface Analysish

The Disk Initialization program checks the condition of

“tracks. It does this by writing data on the tracks, then

reading and checking the data to ensure it was recorded
properly. If the check shows that the data is incorrect,
the track on which the data was written is considered
defective. This process is called surface analysis.

Assigning Alternate Tracks

If a defective track is found during surface analysis, an
alternate track is assigned to it. The sole purpose of the
alternate track is to act as a substitute for the defective
track. Model 6 programs attempting to use the defective
track will automatically use the alternate instead.

If either track O or 1 is defective, the program considers the
disk unusable and stops initializing it. Tracks O and 1 are
used only by the system and cannot have alternates
assigned to them.

Every disk has six alternate tracks. Therefore, a maximum
of six defective tracks may be assigned alternates on a disk.
If there are more, the disk is considered unusable.

If tracks become defective after a disk is initialized, another
program (Alternate Track Assignment) is used to assign
alternate tracks. Disks need not be reinitialized to assign
alternate tracks.

Disk Initialization Program ($INIT) 83

OPTIONS

The Disk Initialization program allows you the following
options:

® You may choose one of three types of initialization:
primary, secondary, or clear.

® You may initialize up to three disks during the same
program run.

® During primary initialization, you may decide whether
to erase alternate track assignments already on the disk
or leave them assigned.

® You may use up to ten characters, in addition to the disk
name, to further identify a disk.

® You may specify the number of times you want the
program to do surface analysis.

You specify the options you want in control statements
(see Control Statements in this chapter).

Type of Initialization

The program offers three types of initialization: primary,
secondary, and clear. The type you choose determines the
portion of the disk that will be initialized. The portions of
a disk that can be initialized depend on the data-storage
capacity of your disk drive.

Disk drives of differing storage capacities are available for
your system. All drives use the same type of disks. The
only difference is the number of tracks the drives can use.
The larger the drive capacity, the more tracks the drive can
use,

If you increase the capacity of your disk drives, more tracks

on your disks become available for use. These additional

tracks must be initialized before being used. The three

types of initialization allow you the following options

according to type. |

® Primary or clear—initializing all tracks corresponding to
the new capacity, including any that were previously
initialized.

© Secondary—initializing only the additional tracks made
available by the increased capacity.

84

Primary Initialization

Primary initialization applies to new disks, or disks you
have used but want to initialize again. The program ini-
tialized all tracks corresponding to the capacity of the
drives on which the disks are mounted. Tracks that were
previously initialized are initialized again. Any data on the
tracks is destroyed.

You can use primary initialization on a disk as often as you
want. However, the program will not initialize disks con-
taining libraries, temporary data files, or permanent data
files. You must delete data files with the File Delete Pro-
gram and libraries with the allocate function of the Library
Maintenance Program.

Secondary Initialization

Secondary initialization applies to disks that were initialized
on drives of less capacity than drives you are now using.
When you increase the capacity of your drives, more tracks
on your disks become available for use. You must initialize
the additional tracks. Use secondary initialization if you do
not want information destroyed on tracks already in use.
The program initializes' the additional tracks only. Tracks
already in use are not disturbed.

The program will not do secondary initialization on new
disks or disks that have already been initialized to the
capacity of the drives on which they are mounted.

Clear Initialization

Clear initialization applies to new disks or disks previously
used that require reinitialization due to invalid pack labels
or an unrecoverable disk error. All tracks corresponding to
the capacity of the drives on which the disks are mounted
are initialized. Tracks that were previously initialized are
reinitialized.

CAUTION
All libraries, temporary data files, or permanent data files
are completely wiped out.

Number of Disks

The Disk Initialization program can initialize a maximum

of three disks during one program run. The type of ini-
tialization you specify for a program run applies to all

disks being initialized during that run. The disks, however,
must-be mounted at the same time. You can't, for example,
initialize more than one removable disk on a given drive
during the same program run,

Erasing Alternate Track Assignments

You can use primary or clear initialization to reinitialize
disks that have been used. However, alternate track assign-
ments could exist on such disks. The primary initialization
function of the Disk Initialization program, therefore, gives
you the option of:

@ Erasing existing alternate track assignments and check-
ing the condition of all tracks.

o [eaving existing alternate track assignments and check-

ing only those tracks to which alternates are not assigned.

The option you choose applies to all disks being initialized
during the program run. :

Additional Disk Identification

When you name a disk during primary or clear initialization,
you can use up to ten characters, in addition to the disk
name, to further identify the disk. The additional identifi-
cation is strictly for your use. It is not used by the check-
ing programs to ensure that the right disks are being used.

If you use the File and Volume Label Display program to
print VTOC (volume table of contents) information from a
disk, the additional identification is printed with the disk
name.

Surface Analysis Option

You can tell the Disk Initialization program to perform
surface analysis from 1 to 255 times before judging whe-
ther or not tracks are defective. A track must successfully
complete every check before being judged usable. If incor-
rect data is detected during surface analysis, the track on
which the data was written is judged defective and an
alternate is assigned to it.

The number of times you specify surface analysis to be
performed applies to all disks being initialized during the
program run. The time required for initialization is increas-
ed if you request surface analysis to be performed more
than once.

CONTROL STATEMENTS

You must supply the following control statements to spe-
cify the program options you want:

1. UIN statement—indicates the type 6finitialization,
the number of disks being initialized, the number of
times you want surface analysis performed, and whe-
ther or not you want previous alternate track assign-
ments erased. One UIN statement is required per
program run.

2. VOL statement—indicates the name you assign to the
disk, plus any additional identification you want to
give the disk. The VOL statement applies to primary
and clear initialization only. One is required for
every disk you initialize. Comtinuation statements
are permitted.

3. END statement—indicates the end of control state-
ments.

Disk Initialization Program ($INIT) 85

Control Statement Summary

Type of Initialization Control Statements 0

Primary

code

// UIN TYPE-PRIMARY,UNIT- % s ,
codes

% ,VERIFY-number,CAP- 3 HALF %

FULL

New Disks // VOL PACK-name,|D-characters

/l END

‘codes” YES FULL

Disk already in

R // VOL PACK-name,lD-characters,OLDPACK-name
use (reinitialize)

// END

; /1 UIN TYPE-PRIMARY,UNIT-,COde 2»,VERIFY-number,ERASE-;NO ;,CAP-gHALF
Secondary 0

.) // UIN TYPE-SECONDARY,UNIT- §5°%€ z ,VERIFY-number
Disk already in codes
use // END
// UIN TYPE-CLEAR,UNIT-{ €°9¢ ‘ VERIFY-number,cAp- { HALF
codes’ ! ‘ FULL
Clear e 7 VOL PACK-name,ID-characters, OLDPACK-name

// END
o Control statements are required in the order they are listed: UIN, VOL, END or UIN, END.
For primary and clear initialization, one VOL statement is required for each disk listed in the UNIT parameter of the UIN state-
ment. The PACK parameter in the first VOL statement applies to the first disk listed in the UNIT parameter. The PACK

parameter in the second VOL statement applies to the second disk listed in the UNIT parameter, and so on.

e VOL statements are not required for secondary initialization because the disks are already named.

86

Parameter Summary

UIN (Input Definition) Statement

TYPE-PRIMARY

TYPE-SECONDARY

TYPE-CLEAR

UNIT-code
UNIT-"code,code’
UNIT-"code,code,code’

VERIFY-number

ERASE-YES
ERASE-NO

CAP-HALF

CAP-FULL

Primary initialization. Initialize the disks to the capacity of the drives on which they
are mounted. Tracks already initialized are re-initialized. The program will not
initialize disks containing libraries, temporary data files, or permanent data files.

Secondary initialization. Applies only to disks that were initialized on drives of less
capacity than the drives you are now using. It means initialize the uninitialized por-
tions of the disks to the capacity of the drives on which the disks are mounted. Tracks
already initialized are not disturbed.

. Clear initialization. Initialize the disks to the capacity of the drives on which they are

mounted. Tracks already initialized are re-initialized. Active files and library checking
is bypassed and any data on the tracks is destroyed.

Disk location {one disk). Possible
codes:

Disk location (two disks). R1, F1,
R2, F2

Disk location (three disks).

Do surface analysis the number of times indicated {number can be 1-255). VERIFY-1
is assumed if you omit the parameter.

Primary initialization only. ERASE-NO is
assumed if you omit the parameter.

Retest defective tracks.
Do not retest defective tracks.
The CAP Keyword forces ERASE-YES. Pack

is initialized to capacity of the drive if this
keyword is omitted.

Initidlize a disk to half capacity
even if on a full capacity drive.

Initialize a disk to full capacity.

VOL (Volume) Statement

PACK-name

ID-characters

OLDPACK-name

Disk name. Can contain any of the standard System/3 characters except apostropnes,
leading or embedded blanks, and embedded commas. Its length must not exceed six
characters. '

Additional identification. Can contain any of the standard System/3 characters
except apostrophes, leading or embedded blanks, and embedded commas. Its length
must not exceed ten characters. If you omit this parameter no additional identifica-
tion is written on the disk.

Current disk name of the disk to be initialized. See PACK Keyword (above) for valid
responses.

Disk Initialization Program ($INIT)

87

PARAMETER DESCRIPTIONS

TYPE Parameter (UIN)

The TYPE parameter indicates the type of initialization you
want the program to do: primary, secondary, or clear. The
type of initialization and the capacity of the disk drives on
which the disks are mounted determine which disk tracks
will be initialized. If this parameter is omitted, primary is
assumed.

UNIT Parameter (UIN)

The UNIT parameter (UNIT-code) tells the location of the
disks you want to initialize. The program can initialize up

to three disks during one program run.

The form of the UNIT parameter depends on the number of
disks you are initializing:

1. For one disk, use UNIT-code
2. For two disks, use UNIT-'code,code’
3. For three disks, use UNIT-‘code,code,code’

The codes indicate the locations of the disks:

Code Location
R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.
R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

For primary and clear initialization, the order of codes
must correspond to the order of VOL control statements.
If, for example, you had used the parameter UNIT-‘R1,R2’,
the first VOL statement applies to the removable disk on
drive 1 and the second VOL statement to the removable
disk on drive 2. (No VOL statements are required for
secondary initialization. The disk is already named.)

VERIFY Parameter (UIN)

The VERIFY parameter (VERIFY-number) concerns sur-
face analysis. It enables you to indicate the number of
times you want the program to do surface analysis before
judging whether or not tracks are defective. The number
can be from 1-255. If this parameter is omitted, VERIFY-1
is assumed. -

88

ERASE Parameter (UIN)

The ERASE parameter concerns alternate track assignment.
It applies only to disks that have already been initialized
and used, but you are reinitializing using primary initializa-
tion. ‘

The condition of tracks on such disks has been tested at
least once before (during the previous initialization) and
tracks that were found to be defective during surface analy-
sis were assigned alternates. The ERASE parameter, there-
fore, enables you to indicate whether you want the program
to (1) retest the tracks to which alternate tracks are already
assigned or (2) leave the alternate tracks assigned without
retesting the tracks.

The parameter ERASE-YES means to retest. If you tell
the program to retest, it erases any existing alternate track
assignments, and tests all tracks as though the disk were
new.

The parameter ERASE-NO means not to retest. If you
tell the program not to retest, it tests only those tracks to
which no alternate tracks are assigned. Alternate tracks
previously assigned remain assigned.

CAP Parameter

The CAP parameter determines the size of the pack when it
is initialized. The CAP-HALF parameter means to initialize
the pack to half capacity even if it is on a full capacity drive.
The CAP-FULL parameter means to initialize the pack to
full capacity. CAP-FULL should not be used on a half
capacity system. The use of the CAP keyword forces
ERASE-YES.

Disk Drive Capacity

Disk drives of different data-storage capacities are available
for System/3 Model 6. All drives use the same type of
disks. The only difference is the number of tracks the
drives can use: the larger the drive capacity, the more
tracks the drive can use. However, you must initialize the
disk tracks before using thern. :

PACK Parameter (VOL)

The PACK parameter {PACK-name) applies to primary and
clear initialization only. During primary and clear initializa-
tion, the Disk Initialization program writes a name on each
disk. It uses the name you supply in the corresponding
PACK parameter. (One VOL control statement containing
a PACK parameter is required for each disk.)

The name can be any combination of standard System/3
characters except apostrophes ('), leading or embedded
blanks and embedded commas (due to their delimiter
function) (see Appendix A). Its length must not exceed six
characters. The following are valid disk names: 0, FO001,
012, A1B9, ABC.

In general, disk names are used for checking purposes.
Before a program uses a disk, the disk name is compared
with a name you supply (either in OCL statements or con-
trol statements required by the program). If the names do
not match, a message to the operator is printed. In this
way, programs cannot use the wrong disks without the
operator knowing about it.

ID (ldentification) Parameter (VOL)

The ID parameter {ID-characters) applies to primary and
clear initialization only. It enables you to include up to

ten characters, in addition to the disk name, to further
identify a disk. The information is strictly for your use. .
(It is not used for checking purposes by the system.} If you
use the File and Volume Label Display program to print
the disk name, it will also print the additional identification
for you.

The additional identification can be any combination of
standard System/3 characters except apostrophes ('),
leading or embedded blanks, and embedded commas (due
to their delimiter function). However, the maximum num-
ber is ten.

OLDPACK Parameter (VOL)

The OLDPACK parameter (OLDPACK-name) is used to
verify that a specific disk is mounted before initialization is
started. |f the name of the disk mounted does not match
the name you specify, the program halts.

The name specified can be any combination of standard
System/3 characters except apostrophes, leading or embed-
ded blanks, and embedded commas. lts length must not
exceed six characters.

Disk Initialization Program (SINIT} 89

OCL CONSIDERATIONS

LOAD Sequence

Keywords 0 Responses e Considerations

READY LOAD None

LOAD NAME SINIT Name of Disk Initialization program.

UNIT ' R1,R2, F1,or F2 Location of disk containing Disk Initialization program.
MODIFY RUN None

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

BUILD Sequence
Keywords 0 Responses e Considerations
READY BUILD None
BUILD NAME Procedure name Name by which procedure will be identified in source
library.
UNIT R1, R2, F1, 0or F2 Location of disk containing source library.
LOAD NAME | SINIT Name of Disk Initialization program.
UNIT R1, R2, F1,0or F2 Location of disk containing Disk Initialization program.
MODIFY I_ INCLUDE Response when including control statements in
utility control statements procedure.

OR RUN

I—- RUN

Response when not including control statements in
procedure.

o Only the keywords listed here are required. You can bypass the rest.

9 You end every response by pressing PROG START.

90

EXAMPLE
Primary Initialization of Two Disks

Statements

READY

khkkkkkkkkhhkkkhkkkhkhkkkkkkk*k

010 LOAD NAME
011 UNIT
020 DATE (XX/XX/XX) -

030 SWITCH (00000000)

040 FILE NAME -

kkkkkkkkkhkkhkkhkhhkhkkkhkkkhkkkk

MODIFY

ENTER '//' CONTROL STATEMENT g

// UIN UNIT-'F2,R2',TYPE-PRIMARY)

ENTER '//' CONTROL STATEMENT
// VOL PACK-2222

ENTER ' // ' CONTROL STATEMENT
// VOL PACK-PAYROL, ID-0 10270

ENTER '//' CONTROL STATEMENT
// END

Explanation

OCL LOAD Sequence.

Boxed areas are operator responses. .

Keywords for which no responses are
shown are the ones bypassed. |f you
press ENTER— after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODIFY even
though the two words do not appear
on the same line.

Message printed by Disk Initialization program.

Control statement-supplied by operator.

Sequence repeats until operator enters
END statement.

® Disk Initialization program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

® The two disks on drive 2 are being initialized (UNIT-'F2, R2’ in UIN statement).

® The fixed disk (F2) will be given the name 2222 (PACK-2222 in first VOL statement).

® The removable disk (R2) will be given the name PAYROL (PACK-PAYROL in second VOL statement). Additional
identifying information, 010270, will be written on the removable disk {ID-010270).

Disk Initialization Program {$IN1T)

91

MESSAGES FOR DISK INITIALIZATION

Message

Meaning

INITIALIZATION
ON XX COMPLETE

INITIALIZATION ON XX
TERMINATED

**ALTERNATE TRACKS
ASSIGNED™**

PRIMARY TRACK XXX
ALTERNATE TRACK XXX

UNRECOVERABLE ERROR;
RE-INITIALIZING PACK

92

This message is printed when initialization of a disk is complete. XX indicates the
unit (R1, R2, F1, or F2) on which the initialization is complete.

This message is printed when initialization of a-disk must be terminated for one of
the following reasons:

1. Cylinder zero is defective.

2. More tﬁan six tracks are defective.

3. | Possible disk hardware error exists.

4, The program attempted to initialize the disk ten times without success.

After this message is printed, halt A13 will occur. XX indicates the unit (R1,
R2, F1, or F2) on which the initialization is terminated.

These two messages are printed when a primary track is defective and an alternate
track is assigned to it.

XXX indicates the tracks involved.

This message is printed when the Disk Initialization program determines that the
disk has not been initialized properly. The program will again attempt to initialize
the disk correctly with ERASE-YES forced. The maximum number of times that
the program will attempt to initialize a disk is ten. After that number of times,
halt A13 occurs.

Sometimes a disk track causes a reading or writing error
during a job and an alternate track must be assigned to re-
place the defective track. The process of assigning an
alternate track is performed by the Alternate Track Assign-
ment program.

FUNCTIONS

The process of assigning an alternate track consists of:
@ Writing track addresges on disk.

@ Checking for defective tra'cks.

© Printing all track sectors that contain incorrect data.

@ Assigning an alternate track.

Writing Track Addresses

Any time a track causes reading or writing errors during a
job, the system stops the program currently in operation
and writes the track address in a special area on the disk.
All disks contain such an area. The program can then
locate a track by using the addresses stored in this area.
As long as there are alternate tracks available for use,
assignment can beé done for all the tracks identified in this
area.

Checking For Defective Tracks

The Alternate Track Assignment program uses a procedure
‘called surface analysis to test the condition of tracks.
Surface analysis consists of writing test data on a track,
then reading the data to ensure it was written properly.

Before doing surface analysis, the Alternate Track Assign-
ment program transfers any data from the track to an

“alternate track. This is the alternate that will be assigned
if the track proves to be defective.

Alternate Track Assignment Program ($ALT)

In judging whether or not the track is defective, the prog-
ram does surface analysis the number of times you specify
in the VERIFY parameter. If you omit the parameter, the
program does surface analysis once. |f the track causes
reading or writing errors any time during surface analysis,
the program considers the track defective.

Printing Sectors Containing Incorrect Data

If a track is defective, some of the data transferred to the
alternate track could be incorrect. Therefore, when reading
data from the defective track, the program logs all track
sectors containing data that caused reading errors. Fora
hard-copy printout, the printer must be assigned as the
logging device. Characters that have no print symbol are
printed as two-digit hexadecimal numbers. The following
is an example:

ABCDE GH123 45...
B A
6 5

Appendix A lists the characters in the standard character
set and their corresponding hexadecimal numbers.

To correct errors on the alternate track, use the Alternate
Track Rebuild program.

Assigning An Alternate Track

An alternate track is assigned if a track is defective. When
the program assigns an alternate, it transfers the contents
of the defective track to the alternate. The alternate track
is then automatically used any time the program attempts
to use the defective track.

There are six alternate tracks. The program will not do
conditional assignment if all six are already in use. An alter-
nate track can replace any track except 0 and 1 (which are ~
reserved for system use) and 2 through 7 (which are the
alternate tracks).

Alternate Track Assignment Program ($ALT) 93

OPTIONS

The Alternate Track Assignment program gives you the
following options:

© You may choose one of three types of assignment—
conditional, unconditional, or cancel prior.

@ You may use up to six alternate tracks on every disk.

© You may specify the number of times you want the
program to do surface analysis.

You specify the options you want in control statements
(see Control Statements in this chapter).

Type of Assignment

The program offers three types of assignment: conditional,
unconditional, and cancel prior. The three types of
assignment allow you the following options according

to type.

© Conditional—testing the condition of a track and
“assigning an alternate if it is defective.

@ Unconditional—assuming a track is defective and
assigning an alternate.

@ Cancel prior—canceling an alternate track assignment.

Conditional Assignment
Conditional Assignment consists of testing the condition of
a track (surface analysis) and, if the track is defective,

assigning an alternate track to replace it. It is the normal
use of the Alternate Track Assignment program.

Situation: Conditional assignment applies to tracks that
cause reading or writing errors during a job. Anytime a
track causes such errors, the system does the following:

1. Stops the program currently in operation.

2. Writes the track address in a special area on the disk.

94

When you use the Alternate Track Assignment program to
do conditional assignment, the program locates the tracks
by using the addresses in the special area on disk. All disks,
fixed and removable, have such an area. The program will
do conditional assignment for all tracks identified in the
area (one at a time}, as long as there arealternate tracks
available for assignment.

Unconditional Assignment

You have used the Alternate Track Assignment program
to do conditional assignment. The test on the track
indicated that the track was not defective (an alternate,
therefore, was not assigned). But the track still causes
reading or writing errors, and you want to assign an
alternate to it. For this reason you should assign an
alternate track using unconditional assignment. Alternate
tracks are assigned without first testing the condition of
the tracks suspected of being defective. (A conditional
assignment is forced after an unconditional request to
check any other tracks that previously caused errors.)

Cancel Prior Assignment

Cancel prior assignment is used when a defective trackwas
found, but all alternates are in use. You want to free an
alternate so you can recover the data from the defective
track. Canceling an assignment involves transferring the
data from an alternate track back to the track to which
the alternate was assigned. Prior to transferring the data
back to the original track, the Alternate Track Assignment
program tests the condition of the original track. If the
track is found defective, the program stops and one of
three options is. taken:

® You leave the assignment as it is but continue checking
other assignments (if there are any), or the program ends.

® You cancel the assignment regardless of the condition of
the original track. Before freeing the alternate, however,
you would normally copy (to another disk) the file or
library entry that uses the alternate. This saves the data
that is already on the alternate.

® You test the track again.

You must run the File and Volume Label Display program
to determine to what tracks alternates are assigned.

Number of Alternate Tracks

There are six tracks on every disk that can be used as
alternates. These tracks, in addition to tracks 0 and 1,
can’t be replaced; that is, they can’t have an alternate
assigned to them.

Surface Analysis

You can tell the program to do surface analysis from 1 to
255 times before judging whether or not tracks are
defective. A track is judged usable only after successfully
completing every check. If at any time during surface
analysis incorrect data is found, the track on which the
data was written is judged defective, and an alternate is
assigned to it.

Control Statement Summary

CONTROL STATEMENTS

You must supply the following control statements to
specify the program options you want:

1. ALT statement—indicates the name and unit of the
disk containing the defective track, the number of
times you want surface analysis done, and the
tracks to which you want to assign alternates or
for which you wish to cancel assignment of an
alternate track. There can be only 6 ALT statements
per job. '

2. END statement—indicates the end of control
statements.

For each use, the program requires the statements in the
order they are listed: ALT, END.

Use Control Statements

Conditional Assignment
// END

Unconditional Assignment
/I END

Cancel Prior Assignment
// END

Parameter Summary: ALT (Alternate) Statement

// ALT PACK-name,UNIT-code,ASSIGN-

/Il ALT PACK-name,UN|T-code,UNASSIGN-i

/! ALT PACK-name, UNIT-code,VERIFY-number

%,““k 2 ,VERIFY-number
tracks”
track

) , E,VERIFY-number
tracks

Parameter Meaning

PACK-name Name of the disk.
UNIT-code

VERIFY-number

Location of the disk. Possible codes are R1, F1, R2, F2.

In testing the condition of a track, do surface analysis the number of times indicated

(number can be 1-265). If VERIFY parameter is omitted, do surface analysis once.

ASSIGN-track

ASSIGN-"track,track,...’
track {maximum is six).

UNASSIGN-track

UNASSIGN-"track,track,...”
(maximum is six).

Assign an alternate (unconditionally) to one track.

Cancel one alternate track assignment.

Use track numbers 8-405 to
identify tracks.

Assign one alternate (unconditionally) to each

Use track numbers 8-405 to
which alternates are assigned.

Cancel two or more alternate track assignments

Alternate Track Assignment Program ($ALT) 95

PARAMETER DESCRIPTIONS

PACK Parameter

The PACK parameter (PACK-name) tells the program the
name of the disk containing the defective tracks. This is
the name written on the disk by the Disk Initialization
program.

The Alternate Track Assignment program compares the
name in the PACK parameter with the name on the disk
to ensure they match. In this way, the program ensures
that it is using the right disk.

UNIT Parameter
The UNIT parameter (UNIT-code) indicates the location of

the disk containing defective tracks. Codes for the possible
locations are as follows:

Code Location
R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.
R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

VERIFY Parameter

The VERIFY parameter (VERIFY-number) enables you to
indicate the number of times you want the program to do
surface analysis before judging whether or not the track is
defective. The number can be from 1-255. If you omit
the parameter, the program does surface analysis once.

96

ASSIGN Parameter

The ASSIGN parameter (ASSIGN-track) applies to uncon-
ditional assignment. It tells the program which tracks you
want alternates assigned to.

You can assign alternates to any tracks except 0-7.

The form of the ASSIGN parameter depends on the num-
ber of tracks you want to specify. For one track, use
ASSIGN-track; for two tracks, use ASSIGN-‘track,track’;
and so on. You can specify up to six tracks.

Use the track numbers (8-405) to identify the tracks. For
example, the parameter ASSIGN-'50, 301,353’ causes the
program to assign alternate tracks to tracks 50, 301, and
353.

UNASSIGN Parameter

The UNASSIGN parameter (UNASSIGN-track) applies to
cancelling alternate track assignments. It identifies tracks
for which you want the program to cancel assignments.

You can cancel up to six assignments. The form of the
UNASSIGN parameter depends on the number of assign-
ments you want to cancel. For one assignment, use
UNASSIGN-track; for two assignments, use UNASSIGN-
‘track,track’; and so on.

Use the track numbers (8-405) to identify the tracks. For
example, the parameter UNASSIGN-‘560,301,352' causes
the program to cancel alternate-track assignments for
tracks 50, 301, and 352.

OCL CONSIDERATIONS

LOAD Sequerice

Keywords @ Responses e Considerations

READY LOAD None

LOAD NAME SALT Name of Alternate Track Assignment program.

UNIT R1,R2,F1,or F2 Location of disk containing Alternate Track Assignment
program.

MODIFY RUN None

@ Only the keywords listed here are required. You can bypass the rest.

@ You end every response by pressing PROG START.

BUILD Sequence

Keywords@ Responses e Considerations

READY BUILD None

BUILD NAME procedure name Name by which procedure will be identified in source
library.

UNIT R1,R2,F1,0or F2 Location of disk containing source library.

LOAD NAME SALT Name of Alternate Track Assignment program.

UNIT . R1,R2,F1,0r F2 Location of disk containing Alternate Track Assignment
program.

MODIFY -INCLUDE Response when including control statements in procedure.

I utility control statements
OR RUN

L—— RUN

Response when not including control statements in
procedure.

@ Oniy the keywords listed here are required. You can bypass the rest.

@ You end every response by pressing PROG START.

Alternate Track Assignment Program ($ALT) 97

EXAMPLE

Conditional Assignment

Situation

" Assume that during a job the system printed a message telling the operator it found a defective track on the removable disk
on drive 1. (The name of the disk is BILLNG.) Before doing more jobs, the operator wants to use the Alternate Track
Assignment program to check the condition of the track and assign an alternate to the track if it is defective.

Statements

READY

LR RS RS EE LRSS E LR LR E X

010 LOAD NAME
011 UNIT
020 DATE (XX/XX/XX) =

030 SWITCH (00000000)

040 FILE NAME -

khkhkkhkhkhkhhhhkhrkhdhhhrihhkhhhk

ENTER '//' CONTROL STATEMENT

// ALT PACK- BILLNG UNIT Rl

// END

Explanation

ENTER '//l CONTROL STATEMENT

N—— |

OCL LOAD Sequence,

'‘Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER— after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODIFY
even though the two words do not
appear on the same line.

Message printed by Alternate Track
Assignment program,

Control statement supphed by operator

System reprompts. END statement
terminates sequence.

@ Alternate Track Assignment program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

© The name of the disk (BILLNG) and its location (removable disk on drive 1) are indicated by the PACK and UNIT

parameters in the ALT statement.

® Because we omitted the VERIFY parameter from the ALT statement, the program does surface analysis once when it

tests the condition of the track.

98

MESSAGES FOR ALTERNATE TRACK ASSIGNMENT

Message Meaning

ALTERNATE TRACK This message is printed when an alternate track has been assigned to a defective
ASSIGNED track and the data has been transferred to the alternate track.

PRIMARY TRACK HAS . This message is printed when it is determined that a primary track is not defective.
BEEN TESTED OK -

TRACK xxx, UNIT zz xxx is the primary track number and zz is the unit involved.

PRIMARY TRACK STILL This message is printed when the Alternate Track Assignment program determines
DEFECTIVE that the track is still defective.

DATA TRANSFERRED This message is printed when the data is transferred back to the primary track.
BACK TO PRIMARY

TRACK

**SECTOR WITH DATA This message is printed when the Alternate Track Assignment program found an error
ERROR** when transferring data. The sector that has the error is printed out.

PRIMARY TRACK xxx This message is printed after ALTERNATE TRACK ASSIGNED and DATA
ALTERNATE TRACK vyyy, TRANSFERRED BACK TO PRIMARY TRACK. xxx is the primary track number,
UNIT-zz yvyy is the alternate track number, and zz is the unit involved.

Alternate Track Assignment Program ($ALT) 99

Alternate Track Rebuild Program ($BUILD)

An alternate track assigned by the Alternate Track Assign-
ment program may contain some incorrect data. In order
to correct this data, you must use the Alternate Track
Rebuild program.

FUNCTIONS

The process of correcting data consists of:
© | ocating incorrect data.

@ Replacing incorrect data.

Locating Incorrect Data

The Alternate Track Assignment program prints a listing of
all track sectors that may contain incorrect data. You will
find, on the listing, the name of the disk, the track and
sector numbers of the area suspected of containing incorrect
data, and the data from these sectors.

Replacing Incorrect Data

The Alternate Track Rebuild program will replace the num-
ber of characters you indicate in the positions you indicate.
You must key the new characters in hexadecimal form.
These characters are called substitute data.

OPTIONS

The Alternate Track Rebuild program gives you the
following options:

© You may correct as many characters as you wish on one
track.

® You may correct data on more than one track.

You specify the options you want in control statements
(see Control Statements in this chapter).

Control Statement Summary

Parameter and Substitute Data Summary

Control Statement

// REBUILD PACK-name,UNIT-code, TRACK-location,LENGTH-
number,DISP-position

Substitute Data
// END

To replace characters 1-12 and 75-78 of a sector, you can
use either of the following:

~ --—-1.——Use one REBUILD statement to replace all the

characters with a LENGTH parameter of 78.

2. Use one REBUILD statement for every set of
positions you correct.

The data you want to substitute must follow the REBUILD
statements to which it applies. The order of the state-
ments and data in the preceding example would be:

// REBUILD statement
data
/! END

for positions 1-78

// REBUILD statement
data

// REBUILD statement
data

// END

for positions 1-12

for positions 75-78

100

REBUILD Statement Meaning
PACK-name Name of the disk.

Location of the disk. Possible codes
are R1, F1, R2, F2.

UNIT-code

Number of track and sector contain-
ing incorrect data. Number is printed
by Alternate Track Assignment prog-
ram. Track number must be three

TRACK-location

digits. (TRACK-01109 means track
11 sector 9).
LENGTH-number Number of characters being replaced.
Number can be 2-256 and must be a
multiple of 2 (2, 4, 6, etc.).

Position of the first character being
replaced in the sector. Position can
be 1-255.

DISP-position

Substitute Data

Code each character in hexadecimal form. Follow every second
character, except the last, with a comma. EXAMPLE: The
numbers 123456 would be coded as F1F2,F3F4,F5F6. (Appen-
dix A lists the hexadecimal codes for System/3 characters.)

_ digits; sector number must.be two —--

Number of Characters

You may replace from 2 to 256 characters on one track in
one run. You can do this by replacing all the characters
(including correct data) or just groups of incorrect data.

Number of Tracks

The Alternate Track Assignment program prints the track
and sector numbers for those areas that contain incorrect
data. You can correct one or more of these tracks in one
program run. The possible tracks you can correct are 8
through 405 and the sectors are O through 23. Tracks O
through 7 can’t be corrected.

PARAMETER AND SUBSTITUTE DATA
DESCRIPTIONS

PACK Parameter

The PACK parameter (PACK-name) tells the program the
name of the disk that contains the alternate track being
corrected. This name is the one written on the disk by the
Disk Initialization program.

The Alternate Track Rebuild program compares the name
in the PACK parameter with the name on the disk to
ensure they match. In this way, the program ensures that
the program is using the right disk.

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location of
the disk that contains the alternate track being corrected.
Codes for the possible locations are as follows:

Code Location
K1 Removable disk on drive 1.
F1 Fixed disk on drive 1.

R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

TRACK Parameter

The TRACK parameter (TRACK-location) identifies the
track and sector that contains the data being corrected. The
deféctive track, not the alternate track, is the one you refer
to. Referencing the defective track is the same as
referencing the alternate track.

Use the track and sector numbers in the TRACK parameter.
The possible track numbers are 008-405. Always use three
digits. The possible sector numbers are 00-23. Always use
two digits. The track number must precede the sector num-
ber. For example, the parameter TRACK-11019 means
track 110, sector 19.

Track and sector numbers are printed by the Alternate Track
Assignment program when it prints data from sectors that
contain incorrect data.

LENGTH Parameter

The LENGTH parameter (LENGTH-number) tells the pro-
gram how many characters you are replacing in the sector.
You must replace characters in multiples of 2 (2, 4, 6, and
so on). The maximum is 256, which is the capacity of a
sector. '

Length applies to characters that occupy consecutive posi-
tions in the sector. If the characters you want to replace
do not occupy consecutive positions, you must either
replace more characters or use more than one REBUILD
statement. For example, to replace characters 10-11 and
24-25 in a sector, you can do either of the following:

1. Use one REBUILD statement to replace characters
10-25 (LENGTH-16).

2. Use two REBUILD statements to replace characters
10-11 (LENGTH-2) and 24-25 (LENGTH-2).

DISP (Displacement) Parameter

The DISP parameter (DISP-position) indicates the position
of the first character being replaced in the sector. The posi-
tion of the first character in the sector is 1; the position of
the second character is 2; and so on. The maximum posi-
tion is 255.

Beginning at the position you indicate, the Alternate Track
Rebuild program replaces the number of characters you
indicate in the LENGTH parameter.

v

Substitute Data

After each REBUILD statement, you must key the substi-
tute characters that apply to that statement. The characters
must be in hexadecimal form. Appendix A shows the hexa-
decimal forms of the characters in the standard character
set.

Include a comma after every second character. For
example, the data F1F2,F3F4,F5F6 represents 123456.
F1 is the hexadecimal form of 1; F2 is the hexadecimal
form of 2; and so on.

Key only the number of characters you indicated in the
LENGTH parameter in the REBUILD statement.

Alternate Track Rebuild Program ($BUILD) 101

OCL CONSIDERATIONS

LOAD Sequence

Keywords @ Responses @ Considerations

READY LOAD None

LOAD NAME $BUILD Name of Alternate Track Rebuild program.

UNIT R1, R2, F1, or F2 Location of disk containing Alternate Track Rebuild
» program.

MODIFY RUN None

o Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

BUILD Sequence

Keywords @ Responses@ Considerations

READY BUILD i None

BUILD NAME procedure name Name by which procedure will be identified in source
library.

UNIT R1, R2, F1 or F2 Location of disk cohtaining source library.

LOAD NAME $BUILD Name of Alternate Track Rebuild program.

UNIT R1, R2, F1, or F2 Location of disk containing Alternate Track Rebuild
program. :

MODIFY ~ RUN®* . Responsewhennotincluding control statementsin

Tt procedure.

@ Only the keywords listed here are required. You can bypass the rest.
@ You end every response by pressing PROG START.

*BUILD does not allow utility control statements in the procedure.

102

EXAMPLE
Correcting Characters on an Alternate Track

Situation

Assume that the Alternate Track Assignment program
printed the following information:

SECTOR WITH DATA ERROR
TRACK 05020
ABCDEF GH1 34567890... { (Assume the entire contents of the sector

B A was printed.)
6 5

It means that errors were detected in sector 20 of track 50.

In checking the characters printed by the program, you
found that the seventh and eleventh characters in the
sector are incorrect and you want the operator to run the
Alternate Track Rebuild program to correct them.

Alternate Track Rebuild Program ($BUILD) 103

Statements

READY -

hhkhhhhhkhhhhhhhhhhhhhhhk
OCL LOAD v
010 LOAD NAME - LOAD Sequence,
Boxed areas are operator responses.
011 UNIT - ‘
Keywords for which no responses are
020 DATE (XX/XX/XX) - shown are the ones bypassed. If you

press ENTER— after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

030 SWITCH (00000000)

040 FILE NAME -
' RUN is the response to MODIFY
hhkhhhhkhhhkhhhhhhhkhhrhkdk even though the two words do not
appear on the same line.
MODIFY

ENTER '//' CONTROL STATEMENT Message pririted by Alternate Track
Rebuild program.
// REBUILD PACK-BILLNG ,UNIT-R1,TRACK-05020,LENGTH-6,DISP-7 Control
Message printed by Alternate Track statements
ENTER HEX DATA STATEMENT Rebuild program. and substitute
C6C7,C8F1,F2F3 t
! ! data supplied
ENTER ' // ' CONTROL STATEMENT Message printed by Alternate Track by the
// END } Rebuild program. operator
Explanation

@ Alternate Track Rebuild program is loaded from the fixed disk on drive 1 (UNIT F1 in OCL sequence)

® The name of the removable dlsk (BI LLNG) and its location (drlve 1) are indicated in the PACK and UNIT parameters in
the REBUILD statement.

® The sector containing the incorrect characters is sector 20 of the alternate track assigned to track 50 (TRACK-05020).
The seventh character in the sector is the first character being replaced (DISP-7):

® The seventh through twelfth characters in sector 20 are being replaced (LENGTH-6). We included the twelfth character
because the number of characters being replaced must be a multiple of 2. By also replacing the characters between the

incorrect ones, we needed only one REBUILD statement.

©® The substitute characters follow the REBUILD statement. They are F (C6), G (C7), H (C8)L1 gF1), 2 (F2), and 3 (F3). .-.-—

104

You may need to obtain specific information about a file;
find space available for libraries or new files; or check the
contents of a disk for libraries, scratch data files, temporary
data files, or permanent data files. In order to do any of
these, you need information contained in the volume table
of contents (VTOC). To obtain this information you must
use the File and Volume Label Display program.

FUNCTIONS
This program aliows you to:
-Q Print VTOC information.

® Print headings for file information.

Print VTOC Information

The VTOC is an area on disk that contains information
about the contents of the disk. Every disk contains a
VTOC. The File and Volume Label Display program allows
you to print this information.

The printed VTOC information is a readable, up-to-date
record of the contents of the disk. There can be any num-
ber of reasons why you might need the information. Some
of the more common ones are as follows:

1. Before re-initializing a disk, you might want to check
its contents to ensure that it contains no libraries,
permanent data files, or temporary data files.

2. You want to find out what disk areas are available for
libraries or new files.

3. You want specific file information, such as the file
name, designation (permanent, temporary, scratch),
or the space reserved for the file.

Print Headings

If the file information you requested from the VTOC over-
flows onto another page, the program prints the headings
for the information at the top of the next page. It will do
this for each succeeding new page.

File and Volume Label Display Program ($LABEL)

OPTIONS

The File and Volume Label Display program gives you the
following options:

1. Print the entire Volume Table of Contents (VTOC)
from a disk.

2. Print only the VTOC information for certain data
files. You may specify up to 20 file names in one
run.

In both cases, the program also prints the name of the disk.

Entire Contents of VTOC

There are many reasons why you may want to print the

entire VTOC. You may want to check which tracks are

assigned alternates or how many alternate tracks are still
available for use. You may also want to check the boun-
daries of libraries or check for permanent, temporary, or
scratch data files.

File Information Only

You may request information for specific files. You may
want this information to find out file names, file designa-
tions, or disk areas reserved for files. You may also use it
to determine the relationship of multivolume files.

Number of File Names

When you specify a file name, you must use the name that
identifies the file in the VTOC. You are allowed to specify
up to 20 file names in one program run.

CONTROL STATEMENTS

You must supply the following control statements to speci-
fy the program options you want:

1. DISPLAY statement — indicates whether you want
the entire VTOC or specific file information from the
VTOC. It also indicates the unit of the disk contain-
ing VTOC information.

2. END statement — indicates the end of control statements.

File and Volume Label Disnlay Program (SLABEL) 105

Control Statement Summary

"PARAMETER DESCRIPTIONS

Uses Control Statement o
Print entire // DISPLAY UNIT-code, LABEL-VTOC) UNIT Parameter
vToC: // END : B :
Print only file // DISPLAY UNIT-cods, LABEL- f;!:ename %9 T ;The‘ l:iNlT par?meter (UNIT-ct?de) mdu::ates tt-1e Ioc'atlon of
information // END flenames © . the disk containing the VTOC information being printed.
from VTOC: . Codes for the possible locations are as follows:
€@ For each use, tr!e program requires the statements in the » " Code ' Location
order they are listed: DISPLAY, END. :
© The number of filenames you list for a program run may S R’_ Removable disk on drive 1.
not exceed 20. (VTOC is considered as one filename.) SR o Fixed disk on drive 1.
. ~.. R2 ' Removable disk on drive 2.
Parameter Summary (Display Statement) o F2 Fixed disk on drive 2.
Parameter Meaning
UNIT-code Location of the disk-contain-

LABEL-VTOC

LABEL-filename

LABEL-‘filename.filename,... Print VTOC information for

106

ing the VTOC information
being printed. Possible codes
are R1,F1,R2, F2.

Print entire contents of VTOC. ~

~ Print VTOC information for.
one file.

more than one file. The
number of filenames you list
for a program run may not
exceed 20. (VTOC is consi-
dered as one filename.)

LABEL Parameter

The LABEL parameter indicates the information you
wanted printed: the entire contents of the VTOC or only
the information for certain files. The VTOC is an area on
disk that contains information about the contents of the
disk. Every disk, fixed and removable, contains a VTOC.

An example of a VTOC printout is as follows:

PACK-111111 1D-ANDERSUN
NO. OF ALTERNATE TRACKS AVAILABLE-2
TRACKS WLTH ALTERNATE ASSIGNED-302,200
DEFECTIVE ALTERNATE TRACKS-3,5

DEVICE CAPACITY-400

LIBRARY EXTENT-- START END EXTENUDED END
008 027 027

AVAILABLE SPACE ON PACK
LUCATIGON TRACKS

028 367
399 001
401 0ol

PACK-111111 UNI T=R1 DATE 11/11/70

FILE FILE KEEP FILE REC KEY KEY
NAME DATE TYPE TYPE LEN LEN LOC
COsT 12/31/23 T S 0128
MASTER 12731723 P S 0128
EMPLOYEE 11/14/170 P 1 0128 05 0005
UPDATE 11715/70 T 1 0128 05 0005
PARTS 12731723 T D 0128
SERIAL 12/31/23 T S o128
ADDRESS 12731723 T S 0080
BACKUP 12/31/723 S S 0128

NEXT AVAIL
RECORD

405/11/129
404/11/7129
*RxE

396/11/129

Lt 3
398/11/7129
397/06/065
3997117129

File'and Volume Label Display Program (SLABEL)

NEXT AVAIL
KtY

402/C1/129
395/70C/185

INDEX
START END

402
395

402
395

DATA

START END
405 405
404 404
403 403
396 396
400 400
398 398
397 397
399 399

123

VoL

107

The meaning of the VTOC information is as follows:

Heading

Meaning

PACK-name
|D-characters

NUMBER OF ALTERNATE TRACKS
AVAILABLE-number

TRACKS WITH ALTERNATE ASSIGNED
DEFECTIVE ALTERNATE TRACKS
DEVICE CAPACITY-number

LIBRARY EXTENT

START

END

EXTENDED END

AVAILABLE SPACE ON PACK
LOCATION
TRACKS

PACK-name

UNIT-code

__ DATE-xx/XX/XX - -

FILE NAME
FILE DATE

KEEP TYPE

FILE TYPE

108

Name of the disk.

" Additional disk identification (if any).

Number of alternate tracks available for assignment.

Numbers of primary tracks that have been assigned an alternate.
Numbers of the alternate tracks that are defective.
Disk drive capacity (number of tracks).

Boundary of libraries on the disk. (If the disk contains no libraries, these

- headings are not printed.)

Track on which library begins. If the disk contains both source and
object library, START refers to begin-
Track on which library ends. ning of source library and END refers

to end of object library.
Object Iyibrary only. Track on which extension to library ends. When
object library is full, temporary entries can be placed in space following
end of library, provided that space is available.
Availéble disk areas.
First track in available area.
Number of tracks available.
Name of the disk.
Location of the disk containing the VTOC information.
Current system date.”
Name that identifies file in VTOC.
Date given thg fi!e when file was placed on disk.
File designation:

P = permanent
T = temporary

S = scratch
File type:

I = indexed

S = sequential

D = direct

B = BASIC file

Heading Meaning
REC LEN Number of characters in each record in file.
KEY LEN Indexed files only. Number of characters in each record key.
KEY LOC Indexed files only. Position in record occupied by |a_st character of

NEXT AVAIL RECORD

NEXT AVAIL KEY

INDEX
START END

DATA
START END

VoL
SEQ

record Key.

Beginning location of next available record in file. Location is track, sector,
and position within sector.

EXAMPLE: 099/18/006 = track 99, sector 18, position 6. If the first byte of
the next available record occurs in the next track after the end track of
DATA START END then this field will contain ****.

Indexed files only. Beginning location of next available record key in index
portion of file. Location is track, sector, and position within sector.
EXAMPLE: 090/10/006 = track 90, sector 10, position 6. 1f the first byte of
the next available key occurs in the next track after the end track of INDEX
START END, then this field will contain ****,

Indexed files only. Tracks on which index starts (START) and ends (END).
Disk area reserved for the file. START is the first track of the area. END
is the last track. For indexed files, this refers to the data portion of the file.

VOL SEQ applies to multivolume files only. It indicates the order of this
disk as it relates to the other disks containing the remaining portion of the file.

File and Volume Label Display Program ($LABEL) 109

OCL CONSIDERATIONS

LOAD Sequence
Keywords 0 Responses e Considerations
READY LOAD None
LOAD NAME $LABEL Name of File and Volume Label Display program.
UNIT R1, R2, F1, or F2 Location of disk containing File and Volume Label
Display program.
MODIFY RUN None

@ Only the keywords listed here are required. You can bypass the rest.

@ You end every response by pressing PROG START.

BUILD Sequence

Keywordso Responses 9 Considerations:
READY BUILD None
BUILD NAME procedure name Name by which procedure will be identified in source
library.
UNIT R1, R2, F1, or F2 Location of disk containing source library.
LOAD NAME $LABEL Name of File and Volume Label Display program.
UNIT R1, R2, F1, or F2 Location of disk containing File and Volume Label
Display program.
MODIFY INCLUDE ~ Response when including control statements in.. .
e e l ‘utility control statements procedure.
OR RUN
RUN Response when not including control statements in
procedure.

o Only the keywords listed here are required. You can bypass the rest.

9 You end every response by pressing PROG START.

110

EXAMPLE

Printing VTOC Information for Two Files

Statements

READY -

khkkkkkkkkkkhkkkkhkkhkkkhkkkkkkk

OCL LOAD Sequence,

o0 LOA'D NANE Boxed areas are operator responses.
- oNIt - Keywords for which no responses
020 bAIE XA - o st ENTER. st
030 SWITCH (00000000) - SarTOH, g FILENAE.
040 FILE NAME ' _ keywords are not prompted.

RUN is the response to MODIFY
even though the two words are
not on the same line,

khkkkkkkhhkkkhkkhkhkkkkkkkkkhkxk*

MODIFY

2 Message printed by File and

CONTROL STATEMENT Volume Label Display program.

ENTER '//'

_ ' Control statement supplied by
// DISPLAY UNIT-R1l,LABEL-'BILLNG,INVO1l % operator. .

ENTER '//' CONTROL STATEMENT
// DISPLAY UNIT-F2,LABEL-VTOC
ENTER '//" CONTROL STATEMENT

// END.

Sequence repeats until operator
enters END statement.

Explanation
® The File and Volume Label Display program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

@ The files for which information is printed are named BILLNG and INVO1 (LABEL-’BILLNG INVO1’ in first DISPLAY
statement). They are located on the removable disk on drive 1 (UNIT-R1).

® |nformation from the entire VTOC on F2 is printed.

File and Volume Label Display Program ($LABEL) 111

File Delete Program ($DELET)

You may find that you no longer need the information in a
file. You can free the space in a file for use by new files by
using the File Delete program.

The program may be used on temporary, scratch and
permanent files. To delete permanent files, you must use
the File Delete program. You can scratch temporary files
by using the File Delete program or by changing the file
designation from temporary to scratch (using the OCL
keyword RETAIN) when you use the file.

FUNCTIONS
This program allows you to:

@ Eliminate file references in the VTOC.

@ Erase information in a file.

VTOC File References

The File Delete program allows you to remove the VTOC
references to a file by removing the reference (SCRATCH
statement). However, the file reference is not physically
removed from the VTOC until normal end of job has
occurred. »

Erase File Information

* You may erase a file from the disk as well as removing the

file reference in the VTOC (REMOVE statement). This
may involve erasing the information contained in the file.
Its space is then made available for any new files.

OPTIONS
The File Delete program gives you the following options:

© You may choose to delete files in one of two ways:
remove or scratch.)

© You may delete some or all files from a disk.

@ You may specify up to 40 file names in one job.

112

program.

You specify the options you want in control statements
(see Control Statements in this chapter).

Deleting a File

If you wish to delete a permanent file, you must use the
File Delete program. If you delete a temporary file, you
may use either the File Delete program or change the file
designation when you use the file. You may either remove
or scratch a file. No file is physically scratched or removed
from the VTOC until end of job has occurred.

Removing a File

When you remove a file from a disk (REMOVE statement),
you are removing the file reference from the VTOC. You
may also erase the data in the file from the disk.

Scratching a File

The File Delete program allows you to scratch a file if you
find you may need to reference it iater. The SCRATCH
statement does not erase files from the disk. It'changes
their designation to scratch (S) in the Volume Table of
Contents (VTOC). By doing this, the program makes the
areas that contain the files available for other files or for
system programs. You can use the file until a permanent
file is created in its place or it is removed by a system

A halt will occur if an attempt is made to create a new mul-
tivolume file that will have the same label on disk as an
existing single volume file, or an attempt is made to create
a single volume file bearing the same label as an existing
multivolume file. The halt will occur even though the exist-
ing file is a scratch file.

Number of Files

You may remove some or all files on a disk. if a file name
applies to more than one file, all the files with that name
are deleted. You can keep this from happening by identify-
ing the files with both name and date.

Number of File Names

You may specify as many file names as the control state-
ment will allow. If you specify more, you must use more
than one statement. However, you are only allowed to
specify 40 file names in one job.

CONTROL STATEMENTS
1. REMOVE statement—indicates the name and unit of
the disk, what files are to be removed, and whether

or not you are erasing the data for the file.

2. SCRATCH statement—indicates the name and unit of
the disk and what files you wish to scratch.

3. END statement—indicates the end of control state-
ments.

Control Statement Summary

LUse Control Statements o 1

Scratch all // SCRATCH PACK-name, UNIT-code, LABEL-VTOC
filesin the // END
VTOC:

Scratch only // SCRATCH PACK-name, UNIT-code, LABEL-filename, DATE-date e
one filein // END
the VTOC:

filename
Scratch // SCRATCH PACK-name, UNIT-code, LABEL- ; Py i

R filenames
multiple // END

files in the
VTOC:

NO
Remove all // REMOVE PACK-name, UNIT-code, LABEL-VTOC, DATA- < or
files from - // END YES
disk:

Remove filename e NO
only the /| REMOVE PACK-name, UN!IT-code, LABEL- %'filenames’ ‘ . DATE-date, DATA- < or
files named // END YES

from disk:

0 For each use, the program requires the statements in the order they are listed: SCRATCH, END, or
REMOVE, END.

Use this form of the SCRATCH or REMOVE statement when two or more files have the same name and
you want to delete one of them.

File Delete Program ($DELET) 113

Parameter §ummary

Parameter Meaning

PACK-name Name of the disk.

UNIT-code L‘ocation of the disk. Possib‘le‘ podes are R1, F.‘1 , R2, F2.
LABEL-VTOC

LABEL-filename

Scratch or remove all files from the VTOC.

Scratch or remove only the

“In this way, the program ensures that it is using the right

file named in the VTOC.

Use names that identify files in .

VTOC. (These are the names . RO

Scratch or remove only
the files named in the

LABEL-'filename,filename,...

you gave the files when you
placed them on disk.)

VTOC.
DATE-date Date of the file being deleted. Date must be a 6-digit number.
EXAMPLE: DATE-062070 means June 20, 1970.
NO .
DATA- < or Delete files from disk as well as VTOC.
YES

PARAMETER DESCRIPTIONS

Pack Parameter

The PACK parameter (PACK-name) tells the program the
name of the disk that contains the files being deleted. The
name you sapply in this parameter is the one written on
the disk by the Disk Initialization program.

The File Delete program compares the name in the PACK
parameter with the name on the disk to ensure they match.

disk.

Unit Parameter

The UNIT parameter (UNIT-code) tells the program the
location of the disk containing the files being deleted.
Codes for the possible locations are as follows:

Code Location
R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.

.R2 Removable disk on drive 2.
F2 *Fixed disk on drive 2.

114

Label Parameter

The LABEL parameter identifies the files you want to
delete from the disk. 1ts form depends on the files you are
deleting:

Form Files Deleted

LABEL-VTOC All of them.

LABEL-filename Only the file that is named. The

file. If it does, all of those files are
deleted unless you use a DATE par-
ameter to identify a particular one.

LABEL-‘filename,
filename,...”

Only the files that are named. A
name can apply to more than one
file. If it does, all of those files are
deleted. (You can list as many file-
names as the statement can hold;
the statement length, however, is
restricted to 96 characters. Addi-
tional REMOVE or SCRATCH
statements may be used for addi-
tional filenames. The maximum
number of files that can be deleted
in one run is 40.)

___name can apply to more thanone

. Data Parameter (REMOVE Statement Only)

Date Parameter
“* The DATA parameter lets you delete the files specified dir-
The DATE parameter {DATE-date) applies to.two or more’ ectly from the disk as well as from the VTOC. '
files that have the same name. l'.c.tellsvthe program the date -

of the one you want to delete.

If YES is coded in this parameter then the file specified will

be removed from the disk and any reference to it in the

VTOC will be removed. |n addition, a message will be

printed on the system logging device for each file removed
‘from the disk in this format:

Every file on disk has a date, which is given to the file at
the time it is created. When two or more files have the same.
name, the dates are used to tell one file from another.

‘DATA REMOVED FOR FILE XXXXXX
DATE 000000’

The date is a six-digit number: two digits for day, two for ,:'; ,
month, and two for year. Day, month, and year can be in . ;
one of two orders: (1) month, day, year and (2) day, month s
year. For example 061870 and 180670 both mean June - "' DATA-YES should be used only if file security is required.
18, 1970. : L a The time needed to remove the data is much greater than

" the time needed to remove the VTOC entry.

In the DATE parameter, be sure to specifY day, mdrith, ahd e i

year in the same order as when you placed the file ondisk. =~ =~ . -, .
© 220 1£NO s coded in this parameter, then the file speci-ied will

not be removed from the disk. However, any reference to
itin the VTOC will be removed. If this parameter is not
used, DATA-NO is assumed. '

File Delete Program ($DELET) 1156

OCL CONSIDERATIONS

LOAD Sequence

Keywords @ Responses @ ‘ Considerations

READY LOAD None

LOAD NAME . $DELET Name of File Delete program.

UNIT R1, R2, F1, or F2 Location of disk containing File Delete program.
MODIFY RUN ‘ None

@ Only the keywords listed here are required. You can bypass the rest.

@ You end every response by pressing PROG START.

BUILD Sequence

Keywords @ Responses @ Considerations
READY BUILD None
BUILD NAME procedure name Name by which procedure will be identified in source
library.
UNIT R1, R2, F1, or F2 Location of disk containing source library.
LOAD NAME $DELET Name of File Delete program.
UNIT : R1, R2, F1, or F2 Location of disk containing File Delete program.
MODIFY INCLUDE Response when including control statements in
I-_utility control statements procedure. '
OR RUN
RUN Response when not including control statements

in procedure.
@ Only the keywords listed here are required. You can bypass the rest.

@ You end every response by pressing PROG START.

116

EXAMPLE

Deleting One of Several Files Having The Same Name

Situation

Assume that three files on a removable disk have the same name: INVO01. The dates of these files are 6/16/70, 8/18/70, and

11/15/70. You want to delete the 6/16/70 version.

Statements

READY
hkkkkhhhhhhkhkhkhhhhhkhkkxk

OCL Load Sequence

010 LOAD NAME
011 UNIT Boxed areas are operator responses.
020 DATE (XX/XX/XX) - Keywords for which no responses are

shown are the ones bypassed. If you
press ENTER— after responding to

, UNIT, the DATE, SWITCH, and FILE
040 FILE NAME - NAME keywords are not prompted.

030 SWITCH (00000000)

khkkkhkkhkhkhkkhkkhkkhhkkhkkhhkdkhkx* RUN is the response to MODIFY

even though the two words do not
MODIFY appear on the same line.

ENTER '//' CONTROL STATEMENT ; Message printed by File Delete program.
Controi statement

// SCRATCH PACK-00001,LABEL-INVO1,UNIT-R1,DATE-061670 | supplied by
operator.

ENTER '//' CONTROL STATEMENT % Sequence repeats until operator
// END , enters END statement.

Explanation

File Delete program is loaded from the fixed disk on drive 1 {UNIT-F1 in OCL sequence).

Disk that contains the file being deleted is named 00001 (PACK-00001 in SCRATCH statement).

® Because two other files have the name INVO01, the date (061670) is needed to complete the identification of the file
you want to delete (LABEL-INVO1 and DATE-061670).

® The removable disk containing the file to be deleted is on drive 1 (UNIT-R1).

File Delete Program ($DELET)

117

Removing One File

Situation

You want to remove a file named INV02 from the pack mounted on R1.

Statements

READY

hkhkkkhkkhkhkkkhkkkkhkkkhkkhkhkhkkhkkhkkkkkk

OCL Load Sequence.

010 LOAD NAME
Boxed areas are operator responses.
011 UNIT :
Keywords for which no responses are
020 DATE (XX/XX/XX) =

shown are the ones bypassed. If you
press ENTER— after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

030 SWITCH (00000000)

040 FILE NAME -
khkkkhkhkhhhhkhhhhhhhhhrhhk RUN is the response to MODIFY
even though the two words do not
MODIFY appear on the same line.
ENTER '//' CONTROL STATEMENT % Message printed by File Delete program.

// REMOVE PACK-00001,LABEL-INV02,UNIT—-R1,DATA-YES § gﬂgg;ﬁ?mﬂnﬂmmmd

'DATA REMOVED FOR FILE INV02 DATE 000000' | Printed by File Delete.

Sequence repeats until operator
ENTER '//' CONTROL STATEMENT |~ oot s o P
// END ’

Explanation
6 File Delete program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

o Disk that contains the file being removed is named 00001 (PACK-00001 in REMOVE statement).

©

The removable disk containing the file to be removed is on drive 1 (UNIT-R1).

©

DATA-YES indicates that the file data as well as the file VTOC reference is to be removed.

118

You might need to check records in a file for errors. In
order to do this you need to print a copy of the file. Itis
important to provide a reserve disk, diskette, or permanent
data files in case something happens to the original disk,
diskette, cards or files. You can copy the disk, diskette,
cards, or file using the Copy/Dump programl .

FUNCTIONS

Copying a disk or disk file involves:
Identifying disk or file locations in OCL.
Using a work area.

Copying diskette or card files involves:
Identifying the device in the control statement.

Printing a file involves:
Identifying the portion to be printed.
Printing record key or relative record numbers.

Disk or File Location

In order to copy a disk or file, you must specify the unit on
which the disk or file is located and the unit to which it is
to be copied. You can copy a file from one disk to another
or from one area to another on the same disk.

Using a Work Area

When you are copying a file from one removable disk to
another removable disk but have only one disk drive

(R1 and F1), you must use a work area on the fixed disk
on drive one. The disk you copy from must be a removable
disk. The data from the file you are copying is transferred
to the work area on the fixed disk where it remains until
another removable disk is mounted. This is the removable
disk to which the data is copied.

If you are copying a file from one area on a removable disk
to another area on the same disk you need not use a work
area on the fixed disk.

1The Copy/Dump program can be called by either the name
$COPY or the name $KCOPY.

Copy/Dump Program ($COPY)

Identifying the Device

In order to copy a diskette or card file, you must identify
the device and indicate if it is an input or output file on
the control statement. You can copy all or part of a file.

Copying a Portion of a File

You can copy all or part of a file.

Printing a Portion of a File

You can print all or part of a file.

Record Keys and Relative Record Numbers

For indexed files the Copy/Dump program will print each
record key (used to access the record) followed by the
contents of the record. The records are printed either in
the order their keys appear in the index portion of the file
or as they appear in the file itself. For sequential and dir-
ect files, a record is printed with its relative record number
(used to access the record) preceding the record. The
records are printed in the order they appear in the file.

Copy/Dump Program ($COPY) 119

OPTIONS

The Copy/Dump program allows you the following options:

@ Copy an entire disk or a file.
© Copy part of a file.

@ Copy all or part of a data file from disk, diskette or
cards to disk, diskette or cards.

o Print part or all of a file.
© Delete records from a file.
© Reorganize a file.

You specify the options you want in control statements
(see Control Statements in this chapter).

Copying and Printing

You can specify any of the following copy or print
combinations:

@ Copy an entire disk.

© Copy a data file.

@ Copy a part of a data file.

© Copy and print a data file.

@ Copy a data file, but print only part of the file.

® Copy and print only part of a file.

® Print an entire data file,

© Print only a part of a data file.

On a Model 6 with 8K of main storage, a halt may occur if
all options on a COPYFILE are specified for files with large
records (256-bytes). This halt (A234) occurs because not
enough main storage is available. To avoid this halt, con-
sider the following changes to the COPYFILE statement:
1. Specify OUTPUT-DISK instead of OUTPUT-BOTH.

2. Specify REORG-NO instead of REORG-YES.

3. Specify OMIT- instead of DELETE-.

120

Copying Entire Disk

‘ When copying a disk, Copy/Dump program transfers the

contents of the disk to another disk. The contents of the
two disks will be the same, except for the disk names and
alternate track information, which may be different.

The disk you are copying can contain libraries or data files
or both. The disk that is to contain the copy must not
have libraries, temporary data files, or permanent data files.

The program can copy the contents of the removable disk

to another using one disk drive. The drive, however, must
be drive 1. To do this, the program uses available space on
the fixed disk on drive 1. It fills the available space with
information from the disk you are copying. Then it prints

a message telling the operator to mount the other removable
disk (the one to contain the copy) on drive 1. After trans-
ferring the information from the fixed disk to the removable
disk, the program prints another message telling the operator
to remount the disk you are copying. The program repeats
this procedure until all information has been transferred.

Until the contents of the disk are completely copied on the
new disk, portions of the new disk are changed to prevent
accidental usage of a partially filled disk. Therefore, if the
copying process is stopped before it is completed, the pack
is unusable. You can restart the copying process by reload-
ing the copy program or you can restore the disk by
reinitializing.

After a successful copy the copy program prints a message:

COPYPACK IS COMPLETE

Copying Files

The Copy/Dump program can copy a file from disk, cards,
or diskette to disk, cards, or diskette, or from one area to
another on the same disk.

The program can copy a file from one removable disk to
another using one disk drive. The drive, however, must be
drive 1. (See WORK Parameter in this section for more
information.)

Your responses to the OCL keywords prompted for the

. Copy/Dump program indicate (1) the name and location
of the disk file being copied and (2) the name and location
of the disk file being created. See OCL Considerations in
this section.

Note: An OCL statement is not required for a card or disk-
ette file. The COPYFILE control statement describes card
or diskette files.

In copying a filé, the program can omit records. (See
DELETE Parameter in this section for more information.)

In copying an indexed file, the program can reorganize
records in the data portion such that they are in the same
order as their keys are listed in the index. (See REORG
Parameter in this section for more information.)

Printing Files

The program can print all or part of the data file. To print
only part, the program needs a SELECT control statement.
(See SELECT KEY and PKY Parameters and SELECT
RECORD Parameters in this section.) If you do not use a
SELECT statement, the entire file is printed.

If you use SELECT KEY (or PKY) or REORG-YES,
records from indexed files are printed in the order their
keys appear in the index portion of the file; otherwise,
they are printed as they appear in the file. For each record,
the program prints the record key followed by the contents
of the record.

Records from sequential and direct files are printed in the
order they appear in the file. For each record, the program
prints the relative record number followed by the contents
of the record.

The program uses as many lines as it needs to.print the con-
tents of a record. If OUTPUT- is specified, only printable
charactérs are printed. |f OUTPTX- is specified, all charac-
ters are printed with their 2-digit hexadecimal value.
Appendix A lists the hexadecimal values for characters in
the standard character set.

The following is an example of the way the program prints
a 20-character record when OUTPUT- is specified:

'ABCDE GHIJ12345

If OUTPTX- is specified, the same record would be printed:

ABCDE GHIJ12345
CCCCCBCCCDFFFFF44444
12345678911234500000

After printing the last record, the printer triple-spaces and
prints the following message:

(number) RECORDS PRINTED

Deleting Records

If you want to delete records from a file while copying or
printing, you must indicate the type of record you want to
omit. To do this, you must specify the position of the -
character in the records (maximum position 9999) and the
identifying character (any of the standard System/3 charac-
ter set except commas, apostrophes, and blanks). The
records that are deleted are printed. When the records of a
file are being printed, the deleted records are indicated.

Reorganizing a File

When you are copying an indexed file you can reorganize it.
The records in the data portion are put in the same order as
their index keys leaving the original of the file you are copy-
ing unaffected. If you are both copying and printing an in-
dexed file, you must specify reorganization. :

Copy/Dump Program ($COPY) 121

COPYING MULTIVOLUME FILES

When copying multivolume files, the first volume of the
input file has to be online when the job is initiated.

Maintaining Correct Date and Volume Sequence Numbers

To maintain the correct date and volume sequence numbers
you must:

® Copy all the volumes of the file in one execution of
$COPY, or

® Copy only one volume of the file in each execution of
$COPY.

For example, if you copy a 3-volume file one volume at a
time (volume 1 in the first execution, volume 2 in the
second execution, and volume 3 in the third execution),

the output file volumes will retain the original input date
and volume sequence numbers. Or, if you copy all the
volumes (1, 2, and 3) in the same execution, the system

will assign the current system date and new volume sequence
numbers in the output file. However, if you copy only
volumes 2 and 3 in one execution, the output file volumes
will be assigned the current system date and volume sequence
numbers 1 and 2.

Maintaining Correct Relative Record Numbers

To maintain correct relative record numbers when copying
one volume of a multivolume direct file, the size of the
output volume must be the same size of the input volume.
(If you want to increase the size of a file, you must copy
the entire file.) If, for example, you copy the first volume
of a 2-volume file and increase the number of records on
that volume, you are also increasing relative record numbers
of all the records on the next volume. Therefore, output
and input volume extents must be equal if you are copying
only one volume of a multivolume direct file.

Note: You cannot use the copy program to copy a single
volume file to a multivolume file. End of extents will
probably occur after the first volume of output. If the
output file is a new file, the copy program will not create
it as a multivolume file.

122

Direct File Attributes

If you copy a whole multivolume direct file in one run, the
output file will be given sequential attributes in the Volume
Table of Contents (VTOC). However, this does not affect
file processing. A file with either sequential or direct attri-
butes can be accessed by a consecutive or direct access
method. If only one volume is copied, the direct attribute
will be maintained.

Copying Multivolume Index Files

If you want to copy a multivolume indexed file, REORG-
YES must be given. Since an unordered multivolume indexed
load is not permitted, a REORG-NO will cause a halt if an
out-of-sequence record is found. If you would prefer not to
reorganize the file, each volume of the file must be copied as
a single volume file. When copying each volume separately,
it can be either ordered or unordered. When copying one
volume of a multivolume indexed file, either REORG-YES
or REORG-NO may be specified. HIKEY parameter(s) of
the output file must be the same as the highest key(s) of
each input volume,

CONTROL STATEMENTS

You must supply the following control statements to
specify the program options you want:

1. COPYPACK statement—indicates that an entire disk
is to be copied. It contains the unit of the disk to
be copied and the disk to which the copying is being
done.

2. COPYFILE statement—indicates that all or part of a
data file is being copied or printed or both, whether
the file is to be reorganized, and whether any records
are to be deleted.

3. SELECT KEY (or PKY) statement—indicates,
according to record keys, which part of an indexed
file you want copied or printed. The SELECT PKY
parameter applies to selecting part of an indexed
file that contains packed keys.

4. SELECT RECORD statement—indicates, according
to relative record numbers, which part of a file you
want copied or printed.

5. KEY statement—indicates that an indexed file will be
built from a sequential file.

6. END statement—indicates the end of control
statements.

Copy/Dump Program ($COPY)

123

Contro! Statement Summary

Uses @

Control Statements e

Copy an Entire Disk: {

Copy a Data File

Copy and Print
a Data File:

Copy a Data File,
But Print Only a
Part of the File:

File:

124

5

Print an Entire Data {

// COPYPACK FROM—code, TO—code

// END

FILE @

OUTPTX~— DISK 3741 DELETE-
// COPYFILE {OUTPUT—} 3741 JNPUT- {DATA96 } L,LENGTH—number, {OMIT—
DATA96
w1©@ 010
,REORG- {YES} JWORK-— {YES}
I/ END
BOTH
y corvene{QUIDL) T neor- T8 i VS,
‘PRINT,DATA96’

oMIT— ‘position,character’, REORG-YES,WORK— YES

()2 (20

/I END

(5]

BOTH
/I COPYFILE { 83?;3);:} "PRINT,3741" % JINPUT— { 303:71 AQG} LENGTH-number,
"PRINT,DATA96’

OMIT— position,character’', REORG—YES WORK~— YES

o} Desnonc {12

FROM-1,
/1 SELECT KEY,{TO_ } key @

/I SELECT KEY,FROM—'key’, TO—'key’ o

/! SELECT RECORD,{ FROM- } number e
TO-

// SELECT RECORD,FROM—number, TO—number

/I SELECT PKY,{_T_g?M_} ‘key* 0

// SELECT PKY,FROM—'key‘,TO—'key‘o

/I END

OUTPTX— 3741
Il COPYFILE {ourpur—} PRINT,INPUT—{ DATA96 },LENGTH-—number (5]
Il END

} ‘position,character’

Uses @

Control Statements @

Print’Only a Part
of a Data File

Print and Copy
a Part of a Data
File

Copy a Part of
a Data File

3741
DATA96

OUTPTX~

/I COPYFILE ’OUTPUT—

$ PRINT,INPUT— 3

FROM-] ,
/I SELECT KEY, i Ton Tt ke @

// SELECT KEY,FROM—"key’, TO—"key’

/I SELECT RECORD, § ;g‘_’”‘“ number @ one of these @

/

~

SELECT RECORD,FROM—number, TO—number

FROM—{ ,
/ SELECTPKY,?TO_ % key' @

~

// SELECT PKY,FROM—'key’, TO—"key’ @

~

// END

// COPYFILE ’ OUTPUT— PRINT,3741’

OUTPTX~ g BOTH
‘PRINT,DATAQ6'

3741 %
$ ANPUT— i DATA96

FROM—

TO- key

// SELECT KEY, ;

/I SELECT KEY,FROM—'key’, TO—"key’,FILE-YES

FROM—

L
// SELECT RECORD, To—

i number,FILES—YES

// SELECT RECORD,FROM—number,TO—number,FILE—YES

FROM~—

! TO-

~

SELECT PKY, ’ ‘key’,FILES—YES

/

~

SELECT PKY,FROM—'key’, TO—'key’,FILE-YES

/I END
FILE
OUTPTX— |) DISK 3741
" COPYF'LE; OUTPUT- % 3741 "NPUT'; DATA96
DATA96
/1 SELECT KEY, ’:?,SM_ i'key‘,FlLES—YES

// SELECT KEY,FROM—'key’, TO—'key’,FILE—~YES

ROM— ‘
(0]

/] SELECT RECORD,’ _T_ — number,FILES—YES

/! SELECT RECORD,FROM—number, TO—number,FILE-YES

ROM"G ‘key',FILES—YES

F
/I SELECT PKY, 3 TO-

// SELECT PKY,FROM-'key’,FILE-YES

// END

‘ ,LENGTH—number WORK— ’

g L,LENGTH—number @

,LENGTH—number WORK~—

@ NO‘@

YES

NOe

YES

One of these

Copy/Dump Program ($COPY)

125

Uses o Control Statements e

FILE
Building an OUTPTX— _ 3741 _
e // COPYFILE {OUTPUT_ DISK ¢ INPUT—{ °C b LENGTH—number (5]
BOTH
froma
lsflque"“a' /I KEY LENGTH—number,LOCATION—number
e

// END

The program uses include the possible combinations of copying and printing files.

For each use, the program requires the control statements in the order they are Iiste_d: COPYPACK, END; COPYFILE, END;
COPYFILE,SELECT,END,COPYFILE,KEY,END; and COPYFILE,SELECT,KEY,END.

Needed only if you want to delete a certain type of record. DELETE cannot be used with direct files.

Applies only to indexed files. When OUTPUT-BOTH is specified, REORG-YES is required.

Optional when using the 3741 for input or output. The record length defaults to 96 if LENGTH is not specified.

Identifies the portion you want to print.

Index files with packed keys.

WORK-YES is required if you are copying the file from one removable disk to another removable disk using the same disk
drive (drive one), WORK-NO may be used, but is not required, if you are copying the file from one area to another on the
removable disk on drive one.

©00 0660 00

126

Parameter Summary

COPYPACK Statement Parameters

Meaning

FROM-code
TO-code
COPYFILE Statement Parameters

OUTPUT-DISK

OUTPUT-FILE

3741
OUTPUT- { DATADS }

OUTPUT-PRINT

OUTPUT-BOTH

"PRINT,3741' }

OUTPUT‘{ ‘PRINT,DATAQ6E'

PRINT

BOTH
‘PRINT,3741°
‘PRINT,DATASE' -

OUTPTX—

3741
INPUT— { DATAQG}

LENGTH-number

DELETE-'position,character’
-or-
OMIT-'position,character’

REORG-NO @

REORG-YES @

WORK-NO

WORK-YES §

Location of disk to be copied. Possible codes are R1, F1, R2, F2,

Location of disk to contain the copy. Possible codes are R1, 1, R2, F2.

Copy the file from one disk to another, or from one area to another on the same disk. @

Copy the file from one disk to another, or from one area to another on the same disk (inter-
changeable with QOUTPUT-DISK).

Copy the file to the device specified. When this parameter is used, a COPYO file statement
must not be used.

Print the entire file or only part of the file. @
Copy the file from one disk to another, or from one area to another on the same disk. @

Also print the entire file or only part of it.

Copy the file to the device specified and print all or part of the file. When this parameter is
used, a COPYO file statement must not be used.

- Printed output will be displayed in hexadecimal values. If 3741 or DATAS6 is used, a COPYO

file statement must not be used. ‘BOTH' refers to printer and disk.

Copy the file from the device specified. |If this keyword is used, a COPYIN file statement must
not be used.

Specifies the record length for the 3741. Number must be an integer from 1 to 128. If this key-
word is not specified, a record length of 96 will be assumed. It will be'ignored if used with any
other device.

These parameters are optional. |t means that all records with the specified character in the specified
record position are deleted. DELETE causes deleted records to be printed. OMIT causes deleted
records not be printed. Position can be any position in the record (the first position is 1, second 2,
and so on}. The maximum position is 9999.

Indexed files only. Copy records in the same way as they are organized in the original file (the file
from which thé records are copied). :

Indexed files only. Reorganize the records so that the records in the data portion of the file are in
the same order as their keys are listed in the index.

May be used, but is not required, for copying a file from one area to another area on the same
removable disk on drive one (R1). It means: do not use a work area.

Required for copying a file from one removable disk on drive one to another removable disk on that
drive. It means: use a work area on the fixed disk on drive one.

Copy/Dump Program ($COPY) 127

SELECT Statement Parameters

Meaning

* KEY { FROM-key’
PKY

RECORD,TO-number

% KEY

,FROM-key’,TO-'key’
PKY v Y

RECORD,FROM-number

3 KEY
PKY

% ,TO-‘key’

RECORD,FROM-number,
TO-number

FILE-YES

FILE-NO

KEY-statement
LENGTH-number

LOCATION-number

Indexed files only. Print or copy only the part of the file from the record key that is specified in
the FROM parameter to the end of the file.

Print or copy only the part of the file from the start of the file to the record number specified
in the TO parameter.

Indexed files only. Print or copy only the part of the file between the two record keys that
are specified in the FROM and TO parameters (including the records indicated by the parameters).
To print or copy only one record, make the FROM and TO record keys the same.

Print or copy only the part of the file from the relative record number specified in the FROM
parameter to the end of the file.

Indexed files only. Print or copy only the part of the file from the start of the file to the record
key specified in the TO parameter.

Print or copy only the part of the file between the relative record numbers indicated by the
parameters {including the records indicated by the parameter). To print or copy only one record,
the FROM and TO record keys should be the same.

Only selected records are copied to the file named in the COPYO file statement or to the device
(3741 or DATA96) specified in the OUTPUT keyword parameter of the // COPYFILE control
statement. The file will be sequential if no // KEY statement is used. When a // KEY statement
is used, the output file will be indexed and the device specified in the COPYO file statement must
be a disk.

Only selected records are printed if OUTPUT-PRINT is used. If OUTPUT-BOTH is used, selected
records are printed and the entire file is copied to the file named in the COPYO file statement or
the device (3741 or DATA96) specified in the OUTPUT keyword parameter of the // COPYFILE
control statement.

Identifies the length of the key field. The number can be from 1 to 29.

Identifies the starting location of the key field in the input record. The number can be from 1 to
16,384.

Q In the OCL load sequence, the operator indicates which file-is to be copied or printed unless the files are 3741 or DATA96. For
files being copied, he must also indicate whether the file is being copied from one disk to another or from one location to another
on the same disk using the COPYO and COPY N file statements. COPYO and COPYIN file statements are invalid for 3741 and
DATAS6. For 3741 and DATA96, the INPUT and OUTPUT keywords in the // COPYFILE statement are used.

@ " REORG-NO is assumed if you omit the REORG parameter. When OUTPUT-BOTH is used for indexed files, REORG-YES is

required.

®

128

If the WORK keyword is not specified, NO is assumed.

PARAMETER DESCRIPTIONS
FROM and TO Parameters (COPYPACK Statement)

The COPYPACK statement is used to copy the contents of
one disk to another. It has two parameters: FROM and
TO. They tell the program the locations of the two disks
on the disk units.

The FROM parameter (FROM-code) indicates the location
of the disk you are copying. The TO parameter (TO-code)
indicates the location of the disk that is to contain the
copy.

Codes for the possible locations are as follows:

Code Location

R1 Removable disk on drive 1.
F1 Fixed disk on _drive 1.

R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

OUTPUT Parameter (COPYFILE Statement)

The QOUTPUT parameter is used when copying and printing
card, diskette, or disk data files. It indicates whether you
want the program to copy, print, or copy and print a file.
The OUTPTX parameter can be used to display printed out-
put in hexadecimal values.

The parameter OUTPUT-DISK or QUTPUT-FILE means to
copy the file to disk. OUTPUT-PRINT means to print the
file; OUTPUT-BOTH means to copy and print the file.
OUTPUT-DATA96 or OUTPUT-3741 means to copy the
file to the device named in the keyword parameter. QUT-
PUT-'PRINT,DATA96' or OUTPUT-'PRINT,3741’ means
to copy and print the file to the device named in the key-
"word parameter and print the file.

The output file must be a new file when copying to disk
unless the existing file you are copying over is a temporary
file in which case the following rules apply.

1. If RECORDS were used to create the existing tempor-
ary file then the COPYO file card must specify
RECORDS and LOCATION. RECORDS must be
equal to the number used to create the original file.

2. 1 TRACKS were used to create the existing tempor-
ary file then the COPYO file card must specify
TRACKS and LOCATION. TRACKS must be equal
to the number used to create the original file.

INPUT Parameter (COPYFILE Statement)

The INPUT parameter is used when copying from either
the 3741 or the DATA96. INPUT-3741 or INPUT-
DATAO9G6 indicates that the input file to be copied is on the
device named in the INPUT keyword parameter.

LENGTH Parameter (COPYFILE Statement)

This parameter identifies the record length for the 3741

and is any number from 1 to 128. This keyword is optional
whether the 3741 is being used as input or output. If this
parameter is not specified, the record length defaults to 96.

When the 3741 is used, the length parameter must be equal
to the record length in the HDR1 label on the 3741 and is
any number from 1 to 128.

When the 3741 is used as output and the input is disk or
DATA96, the LENGTH parameter can be any number
from 1 to 128 regardless of the record length of the disk
INPUT device. If the record length specified on the 3741
is greater than the record length from the input file, the
remainder of the record will be filled with blanks (X’40').
If the record length from the disk, card or tape file is great-
er than the LENGTH specified, the record is truncated.

This keyword will be ignored if used with a device other
than a 3741.

Cupy/Dump Program ($COPY) 129

DELETE Parameter (COPYFILE Statement)

In copying a data file, the Copy/Dump program can omit
records of one type. The DELETE parameter identifies the
type of records. Use of the DELETE parameter is optional.
If you do not use it, no records are deleted.

The form of the parameter is DELETE-'position,character’.
Position is the position of the character in the record. It
can be any position in the record (the first position is 1,
the second 2, and so on) up to the maximum position of
9999. Character is the character, except for apostrophes,
blanks, or commas, that identifies the record. For example,
with the parameter DELETE-'100,R’, all records with an R
in position 100 are deleted. By specifying the hexadecimal
code for the character, any character {including apostrophes,
blanks, commas, and packed data) can be used to identify
the record to be deleted. For example, with the parameter
DELETE-"100,X40’, all records with a blank (hexadecimal
40) in position 100 are deleted.

Deleted records are always printed. If you are both copy-
ing and\printing a data file, deleted records are printed with
the other records that are printed. The deleted records are
preceded by the word DELETED.

The OMIT keyword can be used instead of DELETE. The
deleted records are not printed if OMIT is used.

REORG (Reorganize) Parameter (COPYFILE Statement)

In copying an indexed file, the program can reorganize the
file, such that the records in the data portion are in the
same order as their keys in the file index. The REORG
parameter tells the program whether or not to reorganize
the file.

REORG-YES means to reorganize. REORG-NO means
not to reorganize. REORG-NO is assumed if you omit the
keyword.

If you tell the program to reorganize the file, the reorgani-
zation applies to the copy of the file rather than the original
file. The original file is not affected.

Reorganization (REORG-YES) is required any time you

are both copying and printing an indexed file (OUTPUT-
BOTH).

130

WORK Parameter (COPYFILE Statement)

The WORK parameter applies to copying a data file from
one removable disk to another removable disk using the
same disk drive (drive 1). It tells the program whether or
not to use a work area on the fixed disk on drive 1.

The parameter WORK-YES means to use a work area.
WORK-NO means not to use a work area.

Note: The following 1able shows the maximum number
of volumes that can be copied in one run using the WORK
parameter:

Single-
Volume Multivolume Consecutive
Indexed Indexed or Direct
Parameter Files Files Files
WORK-YES 19 volumes 9 volumes - 19 volumes
WORK-NO 20volumes 10 volumes 20 volumes
Work Area

If you have only one disk drive (R1 and F1), acommon
use of the Copy/Dump program might be to copy a file
from one removable disk to another removable disk. To
do this, the program must use a work area on the fixed
disk.

SELECT KEY and PKY Parameters (SELECT Statement)

The SELECT KEY and SELECT PKY parameters apply to
copying part of an indexed file. The parameters are FROM
and TO.

The FROM parameter (FROM-‘key’) gives the key of the
first record to be selected. The TO parameter (TO-'key’)
gives the key of the last record to be selected. The record
key between those two in 'ghe file index identify the remain-
ing records to be selected. If you want to select only one
record, use the same record key in both the FROM and TO
parameters.

For example, the parameters FROM-‘000100’ and
TO-'000199’ mean that records identified by keys 000100
through 000199 are to be selected.

If the file index does not contain the key you indicate in
a FROM parameter, the program uses the next higher key
in the index.

> You can omit the FROM or the TO parameter, but not
both. If you omit the FROM parameter, the program
assumes that the first key in the index is the FROM key.
If you omit the TO parameter, the program assumes that
the last key in the index is the TO key.

With the SELECT KEY parameter (but not PKY) you can
use less characters in the FROM or TO parameter than are
contained in the actual keys. If you do, the program ignores
the remaining characters in the key. The number of charac-
ters used in the FROM and TO parameters need not be the
same.

For example, assume that the following are consecutive
record keys in an index: 99999, A1000, A1119, A1275,
A1900, A1995, and A2075. The parameters FROM-’A1’
and TO-'A199’ refer to record keys A1000 through A1995.

1f none of the keys in the file index begin with the charac-
ters you indicate in a FROM parameter, the program uses
the key beginning with the next higher characters.

For example, assume that four consecutive record keys in
an index begin with these characters: A1,A2,A8, and B1.
The parameters FROM-'A3’ and TO-'A9’ would refer to .
the key beginning with the character A8.

SELECT RECORD Parameters (SELECT Statement)

The SELECT RECORD parameters can apply to any file,
but are normally used for sequential and direct files. These
parameters use relative record numbers to identify the
records to be selected.

Relative record numbers identify the record’s location with
respect to other records in the file. The relative record
number of the first record is 1, the number of the second
record is 2, and so on.

The SELECT RECORD parameters are FROM and TO. The
FROM parameter (FROM-number) gives the relative record
number of the first record to be selected. The TO parameter
(TO-number) gives the number of the last record to be selec-
ted. Records between those two records in the file are also
selected. If you want to select only one record, use the
same record number in the FROM and TO parameters.

For example, the parameters FROM-1 and TO-30 mean that
the first thirty records {1-30) in the file will be selected.

You can omit the FROM or the TO parameter, but not
both. If you omit the FROM Parameter, the program
assumes FROM-1. If you omit the TO parameter, the pro-
gram assumes that the number of the last record in the file
is the TO number.

Note: The maximum number allowed is 16,777,215.

FILE Parameter (SELECT Statement)

This parameter allows only selected records to be copied to
a disk, card, diskette or printer.

Copy/Dump Program ($COPY) 131

LENGTH and LOCATION Parameters (KEY Statement)

The KEY statement is used when building an indexed file
from a sequential file. The LENGTH parameter specifies
the length (1 to 29) of the key field. The LOCATION
parameter specifies the starting location (1 to 16384) of

the key field in the input record. When the KEY statement
is used, the file described in the COPYO file statement must
be a disk file; and OUTPUT-DISK, OUTPUT-FILE or
OUTPUT-BOTH must be specified in the COPYFILE control
statement.

132

CARD AND DISKETTE CONSIDERATIONS ($COPY)
Card or Diskette Input

For card or diskette input files, end-of-file will be deter-
mined by the presence of a record with /* in positions 1
and 2 and positions 3 through 80 or 3 through 96 or 3
through 128 blank. This allows a card or diskette input
file to contain /* records, assuming that at least one charac-
ter is in positions 3 through 80, 3 through 96 or 3 through
128. A /& is handled the same as a /* record unless the
input device is the system READER. The presence of a
record with /& in positions 1 and 2 from the system
READER will be regarded as absolute end of file.

Card or Diskette Output

If the input record size (in bytes) is greater than the size

of the card or diskette record, the input record will be
truncated. If the input record size is less than the size of
the card or diskette record, the remaining portion of the
card or diskette record will contain blanks. For example,

if the input file contains 60-byte records, the card will con-
tain blanks in columns 61 through 80 or 61 through 96 or
61 through 128. The diskette will be blank in the remaining
portion of the record length specified.

OCL CONSIDERATIONS

LOAD Sequence for Copying an Entire Disk

Keywords 0 Responses @ Considerations

READY LOAD None

'LOAD NAME $corPY Name of Copy/Dump program.

UNIT R1, R2, F1, or F2 Location of disk containing Copy/Dump program.
MODIFY ' " RUN None

o Only the keywofds listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

BUILD Sequence for Copying an Entire Disk

Keywords @ Responses @ Considerations
READY BUILD None
BUILD NAME procedure name Name by which procedure will be identified in source
library.
UNIT R1, R2, F1,or F2 Location of disk containing source library..
LOAD NAME $COPY Name of Copy/Dump program.
UNIT R1, R2, F1, or F2 Location of disk containing Copy/Dump program.
MODIFY INCLUDE Response when including control statements in
i_— utility control statements procedure.
OR RUN
|—RUN Response when not including control statements in
procedure

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

Copy/Dump Program ($COPY)

133

LOAD Sequence for Copying or Printing Files:

Keywords o Responses @ Considerations

READY LOAD None

LOAD NAME . $COPY Name of Copy/Dump program.

UNIT R1, R2, F1, or F2 Location of disk containing Copy/Dump program.

FILE NAME COPYIN Name Copy/Dump program uses to refer to file to be
copied (input file). ‘

UNIT R1, R2, F1, or F2 Location of disk containing file to be copied.

PACK . disk name Name of disk containing file to be copied.

LABEL file name Name by which file to be copied is identified on disk.

FILE NAME I—— COPYO Name Copy/Dump program uses to refer. to output file

OR being created. :
L_ Press PROG START If you are only printing records from a file, press PROG

START instead of typing COPYOQ. The next keyword
prompted will be MODIFY.

UNIT R1, R2, F1,0or F2 Location of disk on which output file is to be created.

PACK disk name Name of disk on which output file is to be identified on
disk.

LABEL file name Name by which output file is to be identified on disk.

RECORDS or TRACKS number
RETAIN T,P,orS

MODIFY RUN

Size of output file expressed either as number of records
(RECORDS) or number of disk tracks (TRACKS).

Designation (temporary, permanent, or scratch) of
output file.

None

o Only the keywords listed here are required. You can bypass the rest.

9 You end every response by pressing PROG START.

134

BUILD Sequence for Copying or Printing Files

RECORDS or TRACKS number

RETAIN T,P,orS
MODIFY INCLUDE
‘—_utility control statements
OR RUN
RUN

Keywords@ Responses e Considerations

READY BUILD None

BUILD NAME procedure name Name by which procedure will be identified in source
library.

U_NIT R1, R2, F1, or F2 Location of disk containing source library.

. LOAD NAME $corPY Name of Copy/Dump program.

UNIT : : R1, R2, F1, or F2 Location of disk containing Copy/Dump program.

FILE NAME' COPYIN Name Copy/Dump program uses to refer to file to be
copied {input file).

UNIT R1, F1, R2, or F2 Location of disk containing file to be copied.

PACK disk name Name of disk containing file to be copied.

LABEL file name Name by which file to be copied is identified on disk.

FILE NAME ,—COPYO Name Copy/Dump program uses to refer to output file

OR being created.
L—Press PROG START If you are only printing records from a file, press PROG

START instead of typing COPYO. The next keyword
prompted will be MODIFY.

UNIT R1, R2, F1, or F2 Location of disk on which output file is to be created.

PACK disk name Name of disk on which output file is to be created.

LABEL file name Name by which output file is to be identified on disk.

Size of output file expressed either as number of records
(RECORDS) or number of disk tracks (TRACKS).

Designation (temporary, permanent, or scratch) of output
file. ‘

Response when including control statements in

procedure.

Response when not including control statements in
procedure.

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

Copy/Dump Program ($COPY) 135

EXAMPLES

Copying an Entire Disk

Statements

READY

kkkhhkkhkhkrkhhkhhkhhkhhkhhkhkihhik

OCL LOAD Sequence
010 LOAD NAME

Boxed areas are operator responses.
011 UNIT

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

020 DATE (XX/XX/XX)

030 SWITCH (00000000)

040 FILE NAME -
RUN is the response to MODIFY
even though the two words do not

kkkkhkhhhkhhhhhhhdhhhrkhkd
) appear on the same line.

MODIFY

ENTER '//' CONTROL STATEMENT)} Message printed by Copy/Dump program.
// COPYPACK FROM-F2,TO-R2 } Control statement supplied by operator.

ENTER '//' CONTROL STATEMENT ‘ System reprompts. END statement
// END terminates sequence.

COPYPACK IS COMPLETE } Message printed by Copy/Dump program
to indicate successful copy.

Explanation

® The Copy/Dump program is loaded from the fixed disk on drive 1 {UNIT-F1 in OCL sequence).

® The contents of the fixed disk on drive 2 (FROM-F2 in COPYPACK statement) are copied onto the removable disk on
drive 2 (TO-R2).

136

Copying a File From One Disk to Another

Statements

READY
khkkhkkhkkkhkhkhkhkhkkkkkkk
010 LOAD NAME

011 UNIT

020 DATE -
030 SWITCH -

040 FILE NAME

. File to be
(input file) OCL LOAD Sequence

042 PACK

Boxed areas are operator responses.
043 LABEL :

Keywords for which no responses
050 FILE NAME are shown are the ones bypassed.
051 UNIT RUN is the response to MODIFY

even though the two words do
052 PACK not appear on the same line.
053 LABEL File being

created

054 RECORDS (output file)
055 TRACKS
056 LOCATION
057 RETAIN

khkkkkkkkkkkkkkkkkkkkkkkkk

MODIFY

RN

ENTER '//' CONTROL STATEMENT (’ Message printed by Copy/Dump program.
// COPYFILE OUTPUT-DISK ‘ Control statement supplied by operator.
ENTER '//' CONTROL STATEMENT System reprompts. END statement ter-
} minates sequence.
// END

Copy/Dump Program {$COPY) 137

Explanation
® Copy/Dump program is loaded from fixed disk on drive 1 (UNIT-F1 in OCL sequence).
® Input file (OCL sequence):
1. Name that identifies file on disk is MASTER (LABEL-MASTER).
2. Disk that contains the file is the fixed disk on drive 1 (UNIT-F1). Its name is A1 (PACK-A1).
® Qutput file (OCL sequence):
1. Name to be written on disk to identify the file is BACKUP (LABEL-BACKUP).
2. Disk that is to contain the file is the removable disk on drive 1 (UNIT-R1). Its name is B2 (PACK-B2).
3. The file is to be permanent (RETAIN-P).
4.. The length of the file is 50 tracks {TRACKS-50).

® The COPYFILE statement tells the program to create the output file using all the data from the input file. The output
fi‘le is a copy of the input file.

138

Printing Part of a File

Statement

READY -

kkkkkkkkkkkkhkkkkkkkkkk

010 LOAD NAME -
011 UNIT - OCL LOAD Sequence .
020 DATE - Boxed areas are operatbr responses.
030 SWITCH - Keywords for which no responses are
: ' i shown are the ones bypassed.
040 FILE NAME '
RUN is the response to MODIFY
041 UNIT even though the two words do not
Input file appear on the same line.
042 PACK
043 LABEL
050 FILE NAME -
hkhkhkhkhkhkhkhhhkhhhkkdhhhk
MODIFY -
?%Z“
.
poo i
ENTER '//' CONTROL STATEMENT } Message printed by Copy/Dump program.
// COPYFILE OUTPUT-PRINT } Control statement supplied by operator.

ENTER '//' CONTROL STATEMENT

// SELECT KEY,FROM-'ADAMS',TO-'BAKER' Sequence repeats until operator enters
ENTER '//' CONTROL STATEMENT END statement.

// END

Explanation
® Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).
® |Input file (OCL sequence):
1. Name that identifies the file on disk is BACKUP {LABEL-BACKUP).
2. Disk that contains the file is the removable disk on drive 1 (UNIT-R1). Its name is B2 (PACK-B2).
® The file is being printed (COPYFILE statement).

® The file is an indexed file. The part being printed is identified by the record keys from ADAMS to BAKER in the index
(SELECT statement).

Copy/Dump Program ($COPY) 139

Copy a Disk File to a Card File

Statement

READY

khkhhkkrkkhrrhhrhkrkihdrk

010 LOAD NAME -
011 UNIT -
020 DATE

030 SWITCH

040 FILE NAME

041 UNIT

042 PACK

043 LABEL

Input file

OCL LOAD Sequence
Boxed areas are operator responses.

Keywords for which no responses are shown
are the ones bypassed.

RUN is the response to MODIFY even
though the two words do not appear on

050 FILE NAME

khkkkdhkkhkdrkhhhkkhhkhhkhhkik

MODIFY

ENTER "//" CONTROL STATEMENT }
// COPYFILE OUTPUT-DATA96 }
ENTER '//' CONTROL STATEMENT }

// END

Explanation

the same line.

Message printed by Copy/Dump program.
Control statement supplied by operator.

Sequence repeats until operator enters END
statement.

© Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

o Input file (OCL sequence):

1. Name that identifies the file on disk is MASTER (LABEL-MASTER).

2. Disk that contains the file is the removable disk on drive 1 (UNIT-R1). Its name is RIR1R1 (PACK-R1R1R1).

o The file is being copied to cards OUTPUT-DATA96 (COPYFILE statement).

140

Copy a Disk File to the 3741 (Diskette)

Statement

READY -

kkkkkhkhkhkkkhkkkkkkkkhkkhk*k

0lo0 LOAD NAME -
011 UNIT
020 DATE

OCL LOAD Sequence
030 SWITCH

Boxed areas are operator responses.

040 FILE NAME

Keywords for which no responses are

041 © UNIT shown are the ones bypassed.
Input file
042 PACK RUN is the response to MODIFY even
though the two words do not appear on
043 LABEL the same line.
050 FILE NAME
Khkhhdkhhkhhkhhkhhkhhkhhhhhkkk
MODIFY
ENTER' '//' CONTROL STATEMENT } Message printed by Copy/Dump program.

// COPYFILE OUTPUT-3741,LENGTH-128 } Control Statement supplied by operator.

ENTER '//' CONTROL STATEMENT Sequence repeats until operator enters END
statement.
// END
Explanation

0 Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).
L] Input.file (OCL sequence):
1. Name that identifies the file on disk is SALES (LABEL-SALES).
2. Disk that contains the file is the removable disk on drive 1 (UNIT-R1). Its name is RIR1R1 (PACK-R1R1R1).

o The filé is being copied to the 3741 diskette QUTPUT-3741 (COPYFILE statement). The record length on the 3741
output file is 128 (LENGTH-128).

Copy/Dump Program ($COPY) 141

Copy a Disk File to the 3741 (Diskette) and Print a Part of
the File

Statement

READY

010 LOAD NAME

011 UNIT
020 DATE
OCL LOAD Sequence
030 SWITCH ‘
Boxed areas are operator responses.
040 FILE NAME
Keywords for which no responses are
041 UNIT l shown are the ones bypassed.
input file |
042 PACK RUN is the response to MODIFY even
though the two words do not appear on
043 LABEL the same line.
050 FILE NAME
kkkkhhkhkkhhhkrkkhhrkrrakd
MODIFY /
ENTER '//' CONTROL STATEMENT } Message printed by Copy/Dump program.

// COPYFILE OUTPUT-'PRINT,3741',LENGTH-80 } Controlstatement supplied by operator.
ENTER '//' CONTROL STATEMENT

// SELECT RECORD,FROM-5,TO0-325 Sequence repeats until operator enters END

statement.
ENTER '//' CONTROL STATEMENT

// END
Explanation
© Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).
® |NPUT file (OCL sequence): |
‘1. Name that identifies the file on disk is BACKUP (LABEL-BACKUP).
2. Disk that contains the filé is the removable disk on drive 1 (UNIT-R1). Its name is R1IR1R1 (PACK-R1R1R1).
© The entire file will be copied from disk to the 3741 (OUTPUT-3741). The record length of the file on the 3741 is

80 (LENGTH-80). Records 5 through 325 will be printed (RECORD,FROM-5,TO-325).
142 .

Copy a Card File to a Diskette and Prinﬁ the Entire File

Statement

READY -

kkkkhkkhkkhkkrkkhkhkhkhhkkk

0lo LOAD NAME -

011 UNIT - OCL LOAD Sequence

020 DATE > Boxed areas are operator responses.

030 SWITCH RUN is the response to MODIFY even
though the two words do not appear on -

040 FILE NAME the same line.

kkkkbkhkhkkkhhkhhkhkkkhkkhkkkik

s

MODIFY /

ENTER '//' CONTROL STATEMENT } Message printed by Copy/Dump program.

Control statement supplied

// COPYFILE OUTPUT-'PRINT,3741',INPUT-DATA96,LENGTH-96 { /o000 "

1]
ENTER / / CONTROL STATEMENT Sequence repeats until operator enters END

// END statement.

Explanation
© Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

© The entire card file from the DATA96 (INPUT-DATA96) will be copied to the 3741 diskette and printed
(OUTPUT-'PRINT,3741’). The record length of the output file on the 3741 will be 96 (LENGTH-96).

Copy/Dump Program ($COPY) 143

Copy and Print a Portion of a File on a Diskette to a Card
Device

Statement

READY -

khkhkhkkkkkkkkhkkkkkkkhkikk

010 LOAD NAME - OCL LOAD Sequence

011 NAME -

Boxed areas are operator responses.

020 DATE) Keywords for which no responses are
shown are the ones bypassed.
030 SWITCH

RUN is the response to MODIFY even
though the two words do not appear
on the same line.

040 FILE NAME

khkhkkkkkkhhkkkhhhkhhkhkkkkkk

MODIFY

ENTER '\ //' CONTROL STATEMENT } Message printed by Copy/Dump program.

// COPYFILE OUTPUT-'PRINT,DATA96',INPUT-3741,LENGTH-100) ¢nirol statement supplied

by operator.
ENTER '//' CONTROL STATEMENT ¥ operator

// SELECT RECORD,FROM-16,TO-67,FILE-YES

Sequence repeats until operator enters END

] 1
ENTER '//' CONTROL STATEMENT statement.

// END

Explanation
® Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1).

® Records 16 through 67 will be copied (FILE-YES) to the DATA96 and printed (OUTPUT-‘PRINT,DATA96') from
the 3741 diskette (INPUT-3741) and the record length in the HDR1 label on the 3741 diskette is 100 (LENGTH-100).

Note: Only the first 96 positions of the diskette records will be copied to the DATA96.

144

Copy a Diskette File to a Disk File and Print Only the
Copied Records ‘

Statement

READY -
khkkkhkhkdhhkhkhhkkhkhkkidhkhkkhkkhkkk%k
010 LOAD -

011 UNIT -

020 DATE

030 SWITCH
OCL LOAD Sequence

040 FILE NAME

Boxed areas are operator responses.
041 UNIT

Output file Keywords for which no responses are

042 PACK shown are the ones bypassed.
043 LABEL RUN is the response to MODIFY even

though the two words do not appear
044 TRACKS on the same line.
045 RETAIN

050 FILE NAME
kkkkRkkhhhhhkhhhhhhkrk*

MODIFY

‘rU

ENTER '//' CONTROL STATEMENT ' } Message printed by Copy/Dump program.

// COPYFILE OUTPUT-BOTH,INPUT-3741,LENGTH-50
o Control statement supplied by operator.
ENTER '//' CONTROL STATEMENT

// SELECT RECORD,FROM-10,TO-300,FILE-YES

Sequence repeats until operator enters END

] L]
ENTER '//' CONTROL STATEMENT statement.

// END

Copy/Dump Program ($COPY) 145

Explanation
® Copy/Dump program is loaded from the fixed disk oﬁ drive 1 (UNIT-F1 in OCL sequence).
® QUTPUT file (OCL sequence):

1. Name to be written on disk is MASTER (LABEL-MASTER]).

2. Diék that is to contain the file is the removable disk on drive 2 (UNIT-R2). Its name is R2R2R2
(PACK-R2R2R2).

3. Thesize of the file is 5 tracks (TRACKS-5).
4. The file is to be temporary (RETAIN-T).

® Records 10 to 300 will be copied (FILE-YES) and printed (OUTPUT-BOTH). Input is the 3741 (INPUT-3741)
and the record length in the HDR1 label on the 3741 is 50 {(LENGTH-50). :

146

Create an Indexed File from a Sequenfial Card File

Statement

READY

kkhkkkkkkhkhkkkhkkkkkhkkkkhkk®
i

010 LOAD NAME -
011 UNIT
020 DATE -
030 SWITCH OCL LOAD Sequence
040 FILE NAME Boxed areas are operator
responses.
041 IT
UN Keywords for which no
042 LABEL responses are shown are
Output the ones bypassed.
File
043 PACK RUN is the response to
044 TRACKS MODIFY even though the
two words do not appear
045 RETAIN on the same line.
050 FILE NAME -

kkkkkkhkkkkkkkhkkkkkkkkkk

MODIFY

ENTER '//' CONTROL STATEMENT Message printed by Copy/Dump program.
// COPYFILE OUTPUT-DISK,INPUT-DATA96 Control statement supplied by opérator.
ENTER '//' CONTROL STATEMENT
// KEY LENGTH-5 s LOCATION-1 Sequence repeats until operator enters
END statement.

ENTER '//' CONTROL STATEMENT

// END

Copy/Dump Program ($COPY) 147

Explanation
® Copy/Dump program is loaded from fixed disk on drive 1 {UNIT-F1 in OCL sequence).
® OUTPUT file (OCL sequence):

1. Name to be written on disk is SALES (LABEL-SALES).

2. Disk that is to contain the output file is the removable disk on drive 2 (UNIT-R2). Its name is R2R2R2
‘ (PACK-R2R2R2).

3. The file is to be temporary (RETAIN-T),
4. The size of the file is 15 tracks (TRACKS-15).

® The COPYFILE statement tells the program that all records will be copied (OUTPUT-DISK) from card input
(INPUT-DATAS6).

® The KEY statement tells the program to create an index of 5-byte keys (LENGTH-5) starting in position 1
(LOCATION-1).

148

Create an Indexed Disk File from Sequential Disk Input

Statement

READY -

kkkhkkhkhdhkhhhhdhkikhhkhkdkx

010 LOAD NAME -
011 UNIT -
020 DATE
030 SWITCH
040 FILE NAME .
OCL LOAD Sequence
41 UNIT
0 Input Boxed areas are operator
042 PACK File responses.
043 LAREL Keywords for which no
responses are shown are
050 FILE NAME the ones bypassed.
, RUN is the response to
051 UNIT MODIFY even though
the two words do not
052 PACK appear on the same line.
053 LABEL Output
File
054 RECORDS
055 LOCATION-
056 - RETAIN
060 FILE NAME -
hkhkkhkkhhhhhhhhhhhhhrhhhk
MODIFY
ENTER '//' CONTROL STATEMENT Message printed by Copy/Dump program.
// COPYFILE OUTPUT-DISK Control statement supplied by operator.
ENTER '//' CONTROL STATEMENT
// KEY LENGTH-5,LOCATION-1 Sequence repeats until operator enters
ENTER '//' CONTROL STATEMENT END statement.
// END

Copy/Dump Program ($COPY) 149

Explanation

® Copy/Dump program is loaded from fixed disk on drive 1 (UNIT-F1 in OCL sequence).

® Input file (OCL sequence)

1.

2.

Name that identifies file on disk is CONSVF (LABEL-CONSVF).

Disk that contains the file is the removable disk on drive 1 (UNIT-R1).

.® Qutput file (OCL sequence)

1.

2.

4,

5,

Name to be written on disk to identify the file is INDSVF (LABEL-INDSVF).

Disk that is to contain the file is the removable disk on drive 2 (UNIT-R2). Its name is R2R2R2
(PACK-R2R2R2).

The file is to be temporary (RETAIN-T).
The file will contain 50 records (RECORDS-50).

The file is located at track 8 (LOCATION-8).

® The COPYFILE statement tells the brogram to create the output file (OUTPUT-DISK) using all the data from the
input file.

® The KEY statement tells the program to create an index of 5-byte keys (LENGTH-5) starting in position 1
(LOCATION-1).

150

Library Maintenance Program (SMAINT)

Your programs are stored on disk in an area called a /ibrary.
You can update or add new entries in this library. 1n order
to do so, you must use the Library Maintenance program.

The Library Maintenance program ($MAINT) has five func-
tions:

Function Meaning

Allocate Create (reserve space for), delete, reorganize,
and change the sizes of libraries; create the
scheduler work area and roll-in/roll-out area
on a system pack.

Copy Place entries in, and display the contents of,
libraries.

Delete Delete library entries.

Modify Modify source library entries.

Rename Change the names of library entries.

The control statements you must supply depend on the
function you are using.

All packs referenced by the control statements must remain
online during the Library Maintenance run.

Library Description

Source Library

The source library is an area on disk for storing procedures
and source statements. Procedures are groups of OCL
statements used to load programs. The statements can be
followed by input data for the programs. (Procedures for
utility programs can, for example, contain utility control
statements.) Source statements are sets of data, the most
common of which are RPG !l source programs and Disk
Sort sequence specifications.

Object Library

The object library is an area on disk for storing object pro-
grams and routines. Object programs are programs and sub-
routines in such a form that they can be loaded for execu-
tion. (They are sometimes called load modules.) Routines
are programs and subroutines that need to be link-edited
into object programs before they can be loaded for execu-
tion. (They are sometimes called object modules.)

Location of Libraries on Disk

Libraries can be located anywhere on disk. However, the
location of a source library with respect to an object library
is always the same: ‘

User Area Source Library | Scheduler Roll-in/
0@ Data Files | @ Procedures Work Area | Roll-out
® Source Area
Statements
LTracks 0-7
Objeét Library User Area

® Object Programs | @ Data Files
© Routines

‘Upper Boundary

The boundaries of a source library are fixed. They can be
changed only by the allocate function of the Library Main-
tenance program. The upper boundary of an object library,
however, can be moved as additional space is needed when
entries are placed in the library. This happens only if space
is available following the library and if the entries being
placed beyond the normal boundary are not permanent
entries.

Organization of Library Entries

Entries are stored in the object library serially; that is, a
20-sector program occupies 20 consecutive sectors. Tem-
porary entries follow all permanent entries in the object
library. :

If necessary, the upper boundary is changed to allow more
space for temporary entries. The upper boundary of the
library is extended to the end of. the pack or to the first
temporary or permanent file, aliowing the maximum
amount of space for the temporary library entry. At the
successful completion of the copy, the upper boundary is
returned to the track boundary at the end of the last;
temporary entry. If the copy was not completed successful-
ly, the upper boundary may remain extended. When a per-
manent entry is placed in the library or the library is reorg-
anized, all temporary entries are deleted and the upper
boundary returns to its original location. Permanent entries
cannot exceed the original upper boundary.

Library Maintenance Program ($MAINT) 151

Gaps can occur in the object library when an entry is delet-
ed. The associated directory entries will point to these gaps.
When the Library Maintenance program places a new entry
in the library, it searches the directory for a gap that has-
the same number of sectors, or the fewest number of sectors
over the number required by the new entry. If the entry is
smaller than the gap, the last part of the gap will not be
pointed to by a directory entry. Since this gap has no dir-
ectory entry, it will not be used until the library is reorgan-
ized.

If the number of unusable sectors becomes excessive, the
library should be reorganized. In reorganizing entries, the
Library Maintenance program deletes temporary entries and
shifts permanent entries so that gaps do not appear between
them. This makes more sectors available for use.

The source library differs from the object library in that
entries within the source library need not be stored in con-
secutive sectors. An entry can be stored in many widely
separated sectors with each sector pointing to the sector
that contains the next part of the entry. When an entry is
placed in the source library, it is placed in as many sectors
as required regardless of where the sectors are located within
the library.

The boundary of the source library cannot be expanded;
therefore, an entry must fit within the available library
space. To provide as much space as possible within the
prescribed limits of the source library, the system compres-
ses entries. That is, blanks and duplicate characters are
removed from entries. Later, if the entries are printed or
punched, the blanks and duplicate characters are reinserted.
When the size of the source library is changed or the source
library is reorganized, all temporary entries are deleted.

Library Directories

The program creates a separate directory for each library.
Every library entry has a corresponding entry in its library
directory. The directory entry contains such information
as the name and location of the library entry. The program
also creates a system directory, which contains information
about the size and available space in libraries and their
directories.

152

Organization of This Section

The five functions are described separately. Every descrip-
tion contains the following:

1. List of specific uses.

2. Control statement summary indicating the form of
the control statement needed for each use.

3. Parameter descriptions explaining, in detail, the con-
tents and meanings of the parameters.

4, Function descriptions explaining the details of each
function.

b. Examples that include OCL statements, utility control
statements, and explanations of their use.

OCL considerations for the program precede the examples.

ALLOCATE

The allocate function of the Library Maintenance program
allows you to:

©® Create libraries, scheduler work area, and roll-in/roll-out
area.

® Change the size of libraries.
© Delete libraries.

© Reorganize libraries.

Creating Libraries

Creating a library involves:

® Assigning a library to a disk.

® Assigning space for the library directory.

® Using a work area.

Assigning a Library to a Disk: You are allowed one source
and one object library per disk. The libraries can be located
anywhere on the disk where space is made available as long

as the source library precedes the object library. You
needn’t have both libraries on a disk.

Assigning Space for the Library Directory: The Library
Maintenance program creates a separate directory for each
library. A directory for a source or object library contains
information concerning each library entry. This informa-
tion includes the name and location of the library entry.
For a source library, the first two sectors of the first track
are assigned to the directory. For an object library which
includes system programs, the first three tracks are assigned
to the directory. If system programs are not included, only
the first track is assigned to the directory. The directory
size is overridden by the DIRSIZE parameter if used (see
DIRSIZE).

Another type of directory, the system directory, is also
created by this program. The system directory contains
information concerning the libraries and their directories.
This information includes the size of and available space
in the libraries and their directories. The system directory
is contained in the volume label on any disk pack.

Allocate Considerations and Restrictions

This program has restrictions and operating conditions that
the user must be aware of when maintaining libraries.

Allocation of Disk Space

The Library Maintenance program allocates disk space for
each of the following functions:

Create a library
® Increase the size of a library
® Reorganize a library

® Dynamically extend an object library to copy temporary
entries to the library

® Sort a directory before it is printed

© Modify a source library entry

The space allocated by the program is the first contiguous
space large enough for the function to be performed. The
Library Maintenance program will use as much space as is
available to the end of the pack or to the first temporary
or permanent data file, removing all scratch files in this
area. |f within asingle load of the program, there are
functions performed which require more than four disk
areas to be allocated, a halt will occur. The Library Main-
tenance program must be reloaded to continue.

Removing Temporary Entries

When a library is reorganized, its size is changed, or it is
moved, all temporary entries in that library are deleted.
This applies to both the source and object libraries.

Library Restrictions

The Allocate function cannot reference the libraries on the
pack from which the Library Maintenance Program or the
system was loaded. For example, if the system was loaded
(IPL) from F1 and the Library Maintenance Program was
loaded from R1, the source or object libraries on F1 and
R1 cannot be referenced on an ALLOCATE statement.

Moving the Object Library

When creating or changing the size of the source library on

a pack that contains an object library, the object library is
moved and reorganized and all temporary entries are deleted.
Control Statement Restrictions .

The SOURCE or OBJECT parameter must be specified in
the ALLOCATE statement. |f the SYSTEM or DIRSIZE

parameter is specified, the OBJECT parameter must also
be specified.

Library Maintenance Program ($MAINT) 183

Allocate Control Statement Summary

// ALLOCATE TO-code,SOURCE ;“mbe’ ,OBJECT- 'F‘{""'be' SYSTEM- '323 ,DIRSIZE-number, WORK-code
Use o . Parameter Needed e
Create: TO’code,SOURCE~number,WORK-codeve
Source Change Size: TO-code, SOURCE-number WORK-code
Library Delete: TO-code, SOURCE-0
Reorganize: TO-code,SOURCE-R,WORK-code
Create: TO-code,0BJECT-number,SYSTEM- {No
YES
Obiect Change Size: TO-code,OBJECT-number, WORK-code)
j
Library Delete: TO-code,OBJECT-0
Reorganize: TO-code,OBJECT-R,WORK-codeo

o You can indicate a source library use, any object library use, or uses involving both libraries (for example, deleting the source library
and changing the size of the object library).

o If you are indicating uses for both libraries, use only one TO parameter. (The libraries must be on the same disk.) Also, use only one
WORK parameter if both uses require a WORK parameter.)

e The WORK parameter is needed only if the disk contains an object library that you are not deleting.

o The WORK parameter is needed only if other functions are also being performed.

154

Allocate Parameter Summary

Parameter

Meaning

TO-code

SOURCE-number (no source library on disk)

SOURCE-number (source library already on disk)

SOURCE-R
OBJECT-number (no object library on disk)

OBJECT-number (object library already on disk)

OBJECT-R

DIRSIZE-number

SYSTEM-NO
SYSTEM-YES

WORK-code

Location of disk that contains or will contain the library. Possible codes
are R1, F1, R2, and F2

Create a source library. Number indicates the number of tracks you want to assign.

Delete or charge the size of the source library. Use depends on number:

Number Use
0 Delete
Any number but zero Change size

Reorganize the source library.

Create an object library. Number indicates the number of tracks you want to assign.
Delete or change the size of the object library. Use depends on number:

Number Use

0 ' Delete

Any number but zero Change size

Reorganize the object library.

Number of tracks you want for the directory when creating, reallocating, or
reorganizing the object library.

Do not create a scheduler work area. This will be a program pack.
Create a scheduler work area. This will be a system pack.

Location of disk containing space the program can use as a work area. Possible codes
are R1, F1, R2, or F2. Cannot be the same disk that was specified in the TO-code.

Library Maintenance Program ($MAINT) 155

PARAMETER DESCRIPTIONS

TO Parameter

The TO parameter (TO-code) indicates the location of the
disk that contains, or will contain, the library. If the pro-
gram use involves both libraries, the libraries must be on the
same disk. The TO parameter cannot be the same unit from
which the Library Maintenance program or the system was
loaded.

Codes for the possible locations are as follows:

Code Location
R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.
R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

SOURCE and OBJECT Parameters

The SOURCE and OBJECT parameters identify library
uses:

Parameter Use
SOURCE-number If the disk contains no library, this
OBJECT-number parameter means create a library.

(number is not Number is the number of tracks
zero) you want to assign to the library.

If the disk contains.a library, this
parameter means change the library
size. Number is the number of
tracks you want to assign to the

library.
SOURCE-0 Delete the library.
OBJECT-0
SOURCE-R Reorganize the library.
OBJECT-R

156

DIRSIZE Parameter

The DIRSIZE parameter allows the user to specify the size
of the object library directory. The number of tracks spe-
cified (1-9) overrides the SYSTEM parameter in determin-
ing directory size. Each track can contain 288 directory
entries. One entry is needed for the directory, so the formu-
la for the number of entries in a directory is (t x 288)-1,
where t is the number of tracks. If the DIRSIZE parameter
is omitted, the SYSTEM parameter determines the direc-
tory size.

SYSTEM Parameter

The SYSTEM parameter applies when creating, changing
the size of, and reorganizing object libraries. It tells the
program whether you intend to include system programs
in the library and create a system pack that can be used to

- perform initial program load. If system programs are to be

included, a scheduler work area must be assigned. See
Using the Copy function, Library to Library for informa-
tion about creating a system pack.

Space for the scheduler work area is assigned immediately
preceding the object library. If the disk contains a source
library, the work area is between the source and object
libraries. For information about the size of the scheduler
work area, see Creating an Object Library under Using the
Allocate Function.

The following charts show the results of coding the SYS-
TEM parameter for different allocate uses.

Creating an Object Library

Parameter Scheduler Work Area Directory Size*
SYSTEM-YES Created Three Tracks
SYSTEM-NO Not Created One Track

not coded Not Created One Track

* The directory size is overridden if the DIRSIZE parame-
ter is used.

Changing the Size or Reorganizing an Object Library on a
Pack That Contains a Scheduler Work Area

Parameter Scheduler Work Area Directory Size*
SYSTEM-YES Retained \ not changed
SYSTEM-NO Removed not changed
not coded Retained not changed

*The directory size is overridden if the DIRSIZE parameter
is coded.

Changing the Size of or Reorganizing an Object Library on
a Pack That Does Not Contain a Scheduler Work Area

Parameter Scheduler Work Area Directory Size*
SYSTEM-YES Created not changed
SYSTEM-NO Not Created not changed
wnot coded Not Created not changed

*The directory size is overridden if the DIRSIZE parameter
is coded.

WORK Parameter

The WORK parameter (WORK-code) indicates the location
of the disk that contains a work area. Library entries are
temporarily stored in the work area while the program
moves and reorganizes libraries.

Codes for the possible disk locations are as follows:

Code Location

R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.
R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

When the WORK parameter is coded on an ALLOCATE

statement, an additional allocation of disk space may resulit.

{See index entry. Allocation of Disk Space.)

Size of the Work Area: The work area must be large enough
to hold the directory and the permanent entries of the source
library, object library, or both libraries depending on the
program use. If you are combining uses, such as changing

the sizes of both libraries, the work area must be large enough
to hold the contents of both libraries. ‘

Use Contents of Work Area

Create a source library (disk Object library.

contains an object library).

Source library and ob-
ject library.

Change source library size
(disk contains an object
library).

Change source library size Source library.
(disk doesn’t contain an

object library).

Reorganize source library. Source library.

Change object library size. Object library (see

Compress in Place).

Reorganize object library. Object library (see

Compress in Place).

Library Maintenance Program (SMAINT) 167

Location of Work Area on Disk: The program uses the
first available disk area large enough to hold the library, or
libraries.’

Location of Disk Containing the Work Area: The work
area can be on either disk on either drive. However, it can-
not be the same disk as the one you specified in the TO
parameter. The only requirement is that the disk must have
an available area large enough for the work area. If your
system has two disk drives, the program works faster if the
disk containing the libraries is on a different drive than the
disk containing the work area.

Using the Allocate Function

Creating a Source Library (SOURCE-number)

Source Library Size
® Minimum: One track
© Maximum: Number of tracks in the available area

® Regardless of the number of tracks you specify, the first
two sectors of the first track are assigned to the library
directory. Additional sectors are used as needed for the
directory.

Placement of Source Library (Disk With an Object Library)

® The source library must immediately precede the object
library. A disk area large enough for the source library
must follow the object library because the program
moves the object library to make room for the source
library. To do this, the program needs a work area.
(See WORK Parameter.) The object library is reorgan-
ized and all temporary entries are deleted.

® If you allocate a source library after deleting it, the
program automatically moves the object library to make
room for the source library. The starting location of
the source library is the previous starting location of the
object library.

Placement of the Source Library (Disk Without an Object
Library): The program assigns the source library to the
first available disk area large enough for the library. If you
allocate a source library after deleting it, the source library
is assigned the same way.

158

Disk Space before creating the Source Library:

Object Library |Available Space Customer
(30 tracks) (15 tracks) Files
0-7 ; 8-37 je—38-52
Tracks

Disk Space after creating the Source Library:

Source Object Library | Available | Customer
Lib. (30 tracks) Space Files
(5 tracks) (10 tracks)

| 07 | 812 fe—13-42—}+—43-52—

-Tracks

Changing the Size of (Reallocating) a Source Library
{SOURCE-number)

Any time the program changes the source library size, it
reorganizes both the source and object libraries and deletes
all temporary entries. (See Reorganizing a Source Library.)
To do this, it needs a work area. (See WORK Parameter.)

Making the Source Library Larger

© |f the disk contains an object library, space must be
available immediately following the object library. The
program moves the object library to make tracks avail-
able at the end of the source library.

- @ If the disk does not contain an object library, space

must be available immediately following the source
library.

Disk Before Tracks Are Added to Source Library:

Source Object Available Customer
Library Library Space Files
(10 tracks)| (30 tracks) | (15 tracks)

071 817 |«—1847—~ 4862 |
Tracks

Disk After Five Tracks Are Added to Source Library:

Source Object Available Customer
Library Library Space Files

(15 tracks)] (30 tracks) |(10 tracks)
lo7| 822 |*—2352—| 5362 |
Tracks

Making the Source Library Smaller

© If the disk contains an object library, the program
moves the end location of the source library to make
the library smaller. The object library is moved and
space becomes available following the object library.

© If the disk does not contain an object library, the
program moves the end location of the source library to
make the source library smaller.

Disk Before Source-Library Size Was Decreased:

To retain the deleted space for library usage, the additional
parameter OBJECT-R may be used with SOURCE-Q on the
same allocate statement. As a result the starting location

of the library will remain the same.

Disk Before Source Library Deleted

Disk After Source Library Deleted With Object Library
Reorganized (SOURCE-0 with OBJECT-R)

Source Object Library Customer
Library (30 tracks) Files
(15 tracks)

0-7 }+—8-22 23-52

Source Object Customer -
Library Library . Files Object Library Available
(15 tracks) (30 tracks’) (30 tracks) Space
07 +—822—}+——2352— (16 tracks)
Tracks
07 8-37 38-52

Disk After Five Tracks Were Taken From Source Library:

Source | Obiject Available | Customer Reorganizing a Source Library (SOURCE-R)
Library Library Space Files
(10 tracks) (30 tracks) | (5 tracks)
lo7l 817 |«—18-47—> 4852 | Reason for Reorganizing the Library: Areas from which
Tracks source library entries {(procedures or source) are deleted

are completely reused for new entries. If an entry exceeds
the space in such an area, the program puts as much of the
entry as will fit in the area and continues the entry in the
next available area. In this way, the program efficiently
uses library space. This can, however, decrease the speed

at which those entries can be read from the library. There-
fore, if you frequently add and delete source library entries,
you should reorganize your source library periodically.

Deleting a Source Library (SOURCE-0)

The program makes the disk area occupied by the source
library available for other use (disk files). The starting
location of the library is moved to the start of the ob-

- ject library.

If you try to reinstate a source library, the program checks
to make sure there is enough space to contain the combined
source and object libraries (the check begins at the starting
location of the library).

Reorganizing the Library: The program relocates entries
so that no entry is started in one area and continued in
another. All temporary entries are deleted. The program

Disk Before Source Library Deleted needs a work area. {See WORK Parameter.)

Creating an Object Library (OBJEC T-number)
Source Object Library Customer
Library (30 tracks) Files
(15 tracks)]) .
- Object Library Size
07 { 8-22 l 23-52 {

® Minimum: Three tracks, including the directory tracks.

Disk After Source Library Deleted (SOURCE-0 only) ‘
© Maximum: Number of tracks in available area.

Available Object Library | Customer © Library Directory: The first three tracks in the library
Space (30 tracks) Files for the lib . . li .
(15 tracks) are reserved for the library directory if the library is to
- contain system programs; otherwise, only the first track
07 8-22 2352 —» is used. |fthe DIRSIZE parameter is entered, the
Tracks directory size specified is used.

Library Maintenance Program (SMAINT) 159

e Scheduler Work Area: The scheduler is a component of
the System/3 SCP that reads and processes OCL state-
ments. It uses a work area on disk, called the scheduler
work area (SWA), to temporarily save OCL file label in-
formating during the processing of a program. The area
is allocated when SYSTEM-YES is specified. The work
space is not included in the number you specify in the
OBJECT parameter; the space is calculated and assigned
by the Library Maintenance program. The amount of
space needed depends on whether the inquiry capability
is generated in the supervisor. All systems require two
tracks, the inquiry feature requires additional tracks for
a Roll-in/Roll-out atea. The number of tracks needed
depends on the main storage size of the system.

Main Storage Size Roll-in/Roll-out Tracks

8K 4
12K 4
’16K 5
24K ’ 6
32K 8

The SWA contains disk pack usage information, F1 and F7
label information, an initiator table, utility control card area,
and miscellaneous work areas. (See Maximum Number of
Files in SWA.)

Placement of Object Library (Disk With a Source Library):
Space for the object library must be available immediately
following the source library.

Placement of Object Library (Disk Without a Source
Library): The program assigns the object library to the
first available disk area that is large enough.

Changing the Size of (Reallocating) an Object Library
(OBJECT-number)

Making the Library Larger: The number of tracks you
want to add must be available immediately following the
object library. The program assigns the additional tracks
to the library. (The starting location of the library remains
unchanged.)

160

Making the Library Smaller: The program moves the end
location of the object library to decrease the library size.
Tracks, therefore, become available followingthe library.

Reorganizing the Library: Any time the program changes
the library size, it also reorganizes the library and deletes

all temporary entries. (See Reorganizing an Object Library.)
If other functions are also being performed with the reorgani-
zation, the program needs a work area. (See WORK Param-
eter.) If not, a work area is not used. (See Compress in
Place.)

Deleting an Object Library (OBJECT-0)

The program makes the disk area occupied by the object
library (and the scheduler work area if this was a system
pack) available for other use.

Reorganizing an Object Library (OBJECT-R)

Gaps can occur between object library entries when you

add and delete entries. By reorganizing the library, these
gaps are removed. When the library is reorganized, all
temporary entries are deleted. If other functions are also
being performed with the reorganization, the program needs
a work area. (See WORK Parameter.) If not, a work area

is not used. (See Compress in Place.)

Compress in Place (OBJECT-{ R })

Number
If the object library is being reorganized or the size of the
object library is being changed and no other functions are
being performed, the object library is compressed in place.
This means that the library is reorganized with all gaps
removed and all temporary entries are deleted without
using a work area. The WORK parameter is ignored if it is
supplied.

A work area is needed if a source library function is being
performed or if the directory size (DIRSIZE parameter)
or the pack type (SYSTEM parameter) is being changed
in conjunction with an object library function.

Compress in place allows the user with a single-spindle or
half capacity system to reorganize the object library.

COPY

The copy function of the Library Maintenance program
allows you to copy:

Reader-to-Library: Add or replace a library entry. The
reader is the system input device.

File-to-Library: Add or replace one or more library entries.

A 5444 disk file is the input.

Library-to-Library

o Copy one library entry (or those entries with the same
name from all libraries).

o Copy library entries that have names beginning with
certain characters.

© Copy all library entries.

© Copy minimum system.

Library-to-Printer

Print one library entry (or those entries with the same
name from all libraries).

Print library entries that have names beginning with
certain characters.

Print all library entries of a certain type.

Print directory entries for library entries of a certain
type.

Print entries from all directories including the system
directory.

Print system directory only.

Library Maintenance Program ($MAINT)

161

Library-to-Card

© Punch one library entry {or those entries with the same
name from all libraries).

® Punch library entries that have names beginning with
certain characters.

® Punch all library entries of a certain type.

Library-to-Printer And Card

® Print and punch one library entry (or those entries with
the same name from all libraries).

© Print and punch library entries that have names beginning
with certain characters.

® Print and punch all temporary or permanent library
entries of a certain type.

Copying a library entry involves:
® |dentifying the location of an entry.
® [dentifying an entry.

@ Removing and reinserting blanks and duplicate
characters.

ldentifying the Location of an Entry. An entry can be
read from the system input device, a file or from disk. It
can be copied to disk, printer, or cards.

Identifying an Entry. Entries are identified by their type
and name. Entries that can be copied include source
library and object library entries. A name identifies
specific entries within the library. You can also further
identify an entry by designating whether it is temporary
or permanent. This allows the program to make a check
before replacing an entry.

Removing and Reinserting Blanks and Duplicate Characters.
Before source statements or procedures are put In tne
source library, blanks and duplicate characters are removed
to save space. When the source statements or procedures
are used blanks and duplicate characters are reinserted.

162

COPY Control Statement Summary: Reader-To-Library

Add or Replace a Library Entry

// COPY FROM-READER,LIBRARY- ,NAME-name,

DO 9w

TO-code, RETAIN-

D 9|+

Library Entry:

// CEND Must always follow the source or object
entry being placed into the source or
object library.

Note: /* or /& statements cannot be present in the
entries being copied into the libraries.

COPY Control Statement Summary: File-To-Library

Add or Replace One or More Library Entries

// COPY FROM-DISK,FILE-filename, RECL- %80;

96

TO-code, RETAIN- ; S i

Example of data in disk file:
// COPY FROM-READER,LIBRARY-O,RETAIN-P,

NAME-DECKO1 o

load module

// CEND

// COPY LIBRARY-S,NAME-DECKO02 0

source module

// CEND

// END @

) Only the LIBRARY and NAME parameters are required.
Other parameters are ignored.

9 The // END statement read from the file is optional.
It causes the next statement to be read from the
system input device or procedure. A // END state-
ment must still be read from the system input device
or procedure to indicate the end of the Library
Maintenance control statements.

COPY Control Statement Summary: Library-To-Library

Copy One Library Entry (or Entries with the Same Name from All Libraries)

S
; : o
// COPY FROM-code, LIBRARY- g /NAME-name, TO-code,RETAIN-< P »>,NEWNAME-name
R
ALL

Copy wI}..ibrz!ry Entries that Have Names Beginning with Certain Character;

S
P

T
// COPY FROM-code,LIBRARY- O ,NAME-characters.ALL,TO-code,RETAIN- < P 2, NEWNAME-characters
R R‘

ALL
Copy All Library Entries
S
: Y]
// COPY FROM-code,LIBRARY-{ O "NAME-ALL,TO-code,RETAIN-{ P
R R
ALL

Copy Minimum System

/! COPY FROM:-code, LIBRARY-O,NAME-SYSTEM, TO-code e

o NEWNAME parameter is needed in any of the following cases:

1. If you want the copy to have a different name than the original entry.

2. If you want to replace an entry on the TO disk with an entry from the
FROM disk, but the entries have different names.

3. If you want the names of the copies to begin with different characters

than the names of the original entries, the same number of characters
must be in the NEWNAME parameter as in the NAME parameter.

4, 1f the FROM and TO units are the same.
Note: NEWNAME cannot be DIR, ALL, or SYSTEM.

Q The FROM and TO parameters cannot be the same.

Library Maintenance Program ($MAINT) 163

COPY Control Statement Summary: Library-To-Printer And/or Card

Print And/or Punch One Library Entry (or Entries with the Same Name from All Libraries)

[
» P PUNCH
/! COPY FROM-code, LIBRARY-{ O \ NAME-name,TO- < PRINT
R PRTPCH
ALLY

Print And/or Punch Temporary and Permanent Library Entries that Have Names Beginning with Certain Characters

S .
) P PUNCH
// COPY FROM-code,LIBRARY- { O ¢,NAME-characters.ALL,TO- { PRINT
R PRTPCH
ALL

Print And/or Punch All Temporary and Permanent Library Entries of a Certain Type

g PUNCH
// COPY FROM-code,LIBRARY- o ,NAME-ALL, TO- < PRINT
R PRTPCH

Print Directory Entries for Library Entries of a Certain Type

S

_YP.
// COPY FROM-code,LIBRARY-< i » ,NAME-DIR,TO-PRINT
R

Print Entries from All Directories Including System Directory

// COPY FROM-code, LIBRARY-ALL,NAME-DIR,TO-PRINT

Print System Directory Entries Only

// COPY FROM-code,LIBRARY-SYSTEM,NAME-DIR,TO-PRINT

Print Directory Entries, Omitting Selected Entries

name

// COPY FROM-code,LIBRARY- characters.ALL

,NAME-DIR,TO-PRINT,OMIT-

>IJOT®

164

Copy Parameters

Parameter

Meaning

FROM-READER

FROM-code

FROM-DISK

FILE-filename

80
ecu {29

LIBRARY-

TOoT®H

LIBRARY-ALL
LIBRARY-SYSTEM
name

NAME- {characters.ALL
ALL

Entry to be placed in library is to be read from system input device-.

Location of disk containing library entries being copied, printed, or punched. Possible
location codes are:

Code Meaning

R1 Removable disk on drive one
F1 ‘ Fixed disk on drive one

R2 Removable disk on drive two
F2 Fixed disk on drive two

The entry or entries to be placed into a library or libraries reside in a 5444 disk file. The
disk file must be described by an OCL FILE statement.

For a file-to-library copy, this parameter is needed to identify the file on disk. The
filename must match the filename on the OCL FILE statement.

For a file-to-library copy, this parameter gives the size of the disk records. Only 80
or 96 column card image records are allowed. 1f this parameter is omitted, 96

is assumed.

Type of library entries involved in copy use. Possible codes are:

Code Meaning

S Source statements (source library)
P OCL. procedure (source library)
(o] Object programs (object library)
R Routines (object library)

All types of entries (S, P, O, and R) from both libraries are involved in copy use.
Only sys;em directory entries are being printed.

Specific library entries on the FROM pack, of the type indicated in LIBRARY
parameter, involved in copy use. Possible information is:

Information Meaning

name Name of the library entry involved.

characters. ALL Only those entries beginning with the indicated characters. For

example, SMA.ALL means the Library Maintenance program
(SMAINT). ’

ALL All entries. (The type indicated in LIBRARY parameter.)

Library Maintenance Program ($MAINT)

165

Parameter Meaning

NAME-SYSTEM System programs that make up the minimum system and IPL information contained
on cylinder O are copied. The minimum system is made up of system programs necessary
to load and run programs. System programs necessary to generate and maintain the
system such as utilities are not included in the minimum system.

NAME-DIR Directory entries for all library entries of the type indicated in the LIBRARY parameter
are involved in the copy use. If the LIBRARY parameter is LIBRARY-ALL, system
directory entries are also printed.

RETAIN-{%} Adding Entry to Library. RETAIN gives designation of the TO entry:
" Code Meaning
T Temporary
PorR Permanent

Replacing Existing Library Entry. RETAIN gives designation of the TO entry and
tells program whether to halt before replacing entry:

Code Meaning

T Temporary designation. Halt before replacing entry.

P Permanent designation. Halt before replacing entry.

R Permanent designation. Do not halt before replacing entry.

Printing or Punching Entries. The RETAIN parameter is ignored.

TO-code Location of disk that is to contain the copies of the entries:
Code Meaning
R1 Removable disk on drive one
F1 Fixed disk on drive one
R2 Removable disk on drive two
F2 Fixed disk on drive two

TO-PRINT Entries are being printed.

TO-PUNCH Entries are being punched.

TO-PRTPCH Entries are being printed and punched.

NEWNAME-name Name you want used on the TO disk to identify the entries being put on that disk.
If you omit this parameter, the program uses the NAME parameter in naming the
entries.

NEWNAME-characters Beginning (‘:haracters'you want.to use in names identifying entries being put on TO

disk. You must use the same number of characters as in the NAME parameter
(NAME-characters.ALL). If you omit this parameter, the program uses the NAME
parameter’in naming the entries.

OMIT-name When printing directory entries, omit the entry specified by name.

OMIT-characters.ALL When printing directory entries, omit all entries with these beginning characters.

166

Using the Copy Function

Library Directories

Source and Object Library Directories

® The source and object libraries have separate library
directories. Every library entry has a corresponding
entry in its library directory. The directory entry con-
tains such information as the name and location of the
library entry. (See Printout of Directory Entries.)

® The Library Maintenance program makes entries in the
directories when it puts entries in the libraries.

System Directory

@ Every disk that contains libraries contains a system
directory. The system directory contains information
about the sizes of and available space in libraries and
their directories. (See Printout of Directory Entries.)

@ The Library Maintenance program creates and maintains

the system directory.

Naming Library Entries

Characters to Use: Use any combination of System/3
characters except blanks, commas, quotes, and periods.
(Appendix A lists the characters.) The names of most IBM
brograms begin with a dollar sign ($). Therefore, to avoid
possible duplication, do not use a dollar sign as the first
character in the names you use for your entries. The first
character must be alphabetic.

Length of Name: The name can be from one to six
characters long.

Restricted Names: Do not use the names ALL, DIR, and
SYSTEM. They have special meanings in the NAME and
NEWNAME parameters.

‘Entries with the Same Name: For each of the two physical

libraries, source and object, there are two types of entries.
The source library has type P and type S entries. The
object library has type O and type R entries. Entries of the
same type cannot have the same name, but entries of
different types may. For example, two procedures in
source library cannot have the same name, but a procedure
and a set of source statements can.

Retain Types

Temporary Entries

@ Temporary entries are entries you do not intend to keep

in your libraries. They are normally used only once or a
few times over a short period.

In the.object library, temporary entries are placed to-
gether following the permanent entries. Any time a
permanent entry is added to the library, all temporary
entries are deleted. - Temporary entries are also deleted
when you replace one permanent entry with another.

In the source library, temporary and permanent entries
can be in any order. One entry is placed after another
regardless of their designations. Temporary entries,
therefore, are not automatically deleted every time you
add a permanent entry. However, when the source
library is reallocated or reorganized, only permanent
entries will remain.

You can use temporary entries as often as you like until
they are deleted.

A temporary entry cannot replace a permanent entry.

Permanent Entries

Permanent entries are entries you intend to keep in your
libraries. They are normally entries you use often or at
regular intervals (once a week, once a month, and so on).

The program will not delete permanent entries unless
you use the delete function of Library Maintenance
to delete them, or the allocate function to delete the
entire library.

Library Maintenance Program (SMAINT) 167

Reader-to-Library

Input: The program reads one library entry. It can be any
one of the following types:

1. Source statements

2. Procedure

3. Object program

4, Routine

The entry is read from the system input device,_ which is
normally the keyboard. The operator can, however,
change the system input device by using the OCL

READER statement.

The header card on an object deck (H in column 1) con-

tains the date the deck was punched. This date is in columns

58-63 and is in the format of the system date, either
mmddyy or ddmmyy.

Output

® Blanks and duplicate characters are removed from source
statements and procedures before they are put in the
source library. The program does not check them for
errors.

® Object programs and routines are placed in the object
library after sequence and checksum information is
removed.

Adding Entries: The program can add a new entry to a
library. The name of the entry is taken from the NAME
parameter. See Naming Library Entries for valid names.
The RETAIN parameter specifies whether the entky will
be temporary or permanent. If the RETAIN parameter is
omitted, RETAIN-T is assumed (see Retain Types).

Replacing Existing Entries

e The program can replace an existing library entry with
the entry you are putting in the library. The RETAIN
parameter specifies the new retain type. If the RETAIN
parameter is omitted, RETAIN-T is assumed. A tempo-
rary entry cannot replace a permanent entry.

® The program can halt before replacing an existing entry.
Whether it does depends on the RETAIN parameter you
use. (See RETAIN parameter.)

168

® Before the new entry is added, the duplicate entry is
deleted. Additional library space is not needed unless
the new entry is larger than the old one.

File-to-Library

Input: The disk file can contain one or more library entries.
The entries must be in the format put-out by the library-to-
card function or by the linkage editor. The // COPY state-
ment at the beginning of each entry contains the name of
the entry and the type of library (S, P, O, R). A // CEND
statement must follow each entry in the file.

The disk file must be a sequential 5444 file and be defined

by a FILE statement in the OCL for the Library Maintenance
program. Multivolume files are not supported.

Output: The output from the file-to-library function is
the same as for the reader-to-library function except that
temporary entries are not allowed.

Library-to-Library

Input: The program can copy one or more library entries
from one disk to another. The types of entries can be:

1. Source statements

2, Procedures

3. Object programs

4. Routines

5. All the precediﬁg types

6. Minimum system

The NAME and LIBRARY parameters specify which entries
to copy.

Output

® The entries, regardless of their type, are copied from one
disk to the other without change.

® Entries can be copied and renamed on the same disk by
using the NEWNAME parameter. (See VEWNAME
parameter and Naming Library Entries.)

‘® Copying a minimum system (LIBRARY-O, NAME-
SYSTEM) or all of the types (LIBRARY-ALL, NAME-
ALL) are the functions used to create a system pack
that can be used to perform initial program load
(Copying LIBRARY-ALL, NAME-ALL wili create a
system pack only if the FROM pack is a system pack.)
Because of this use, the object library on the disk you
specify in the TO parameter must be empty (it cannot
contain any entries or deleted entries). Also the object
library on the TO pack must have been allocated with a
scheduler work area and a roll-in/roll-out area at least as

. large as those on the FROM pack.

® The RETAIN parameter specifies whether the entries
will be temporary or permanent. If the RETAIN param-
eter is omitted. RETAIN-T is assumed. When the
parameters LIBRARY-ALL and NAME-ALL or
LIBRARY-O and NAME-SYSTEM are used, RETAIN-P
is assumed and RETAIN-T is invalid.

Adding Entries

® You can omit the NEWNAME parameter. If you do, the
name used for the copy is taken from the NAME param-
eter. (The copy will have the same name as the original
entry.)

o if NAMEJALL is specified, the names by which the
entries are identified on the FROM disk are also used
on the TO disk to identify the entries.

Replacing Existing Entries

® The program can replace existing entries with the entries
you are putting in the library. If the entry ybu are
copying (the entry on the disk you identify in the
FROM parameter) has the same name as the entry you
are replacing (the entry on the disk you identify in the
TO parameter), you must omit the NEWNAME param-
eter because the NEWNAME parameter cannot be the
same as the NAME parameter. If the names are not the
same, you must use the NEWNAME parameter to give
the name of the entry being replaced.

® The program can halt before replacing an existing entry.
Whether it does depends on the RETAIN parameter
(see RETAIN Parameter).

9 A temporary entry cannot replace a permanent entry.

Library-to-Printer and/or' Card

Types of Entries that Can Be Printed or Punched

® The program can print or punch one or more library
entries. They can be any one of the following types:

1. Source statements

2. Procedures

3. Object programs

4. Routines

5. All of the preceding types (limited to entries

having the same name and entries beginning with
the same characters).

® The program can print (but not punch) the following
types of directory entries:

1. Source statements

2. Procedures

3. Object programs .

4. Routines

5. System directory

6. All of the preceding types

The program will sort directory names before printing
them only if there is available work space on the FROM
pack. This causes an allocation of disk space that counts

toward the total of four allowable allocations. (See
Index Entry Allocation of Disk Space.)

Library Maintenance Program (3MAINT) 169

Printed or Punched Library Entries ' Printout of Directory Entries

® Blanks and duplicate characters are re-inserted into source ~ ® The format of the system directory is shown under

statements and procedures to make them readable. Sample System Directory Printout. If there is no source
library on the pack, the message NO SOURCE LIBRARY
® Object programs and routines are printed and punched EXISTS ON THIS PACK is logged. If there is no object
after sequence information and checksum information library on the pack, the message NO OBJECT LIBRARY
(punch only) has been added. EXISTS ON THIS PACK is logged.
® The library entries, when punched, are preceded by a ® The format of the source library directory printout is
// COPY statement of the reader-to-library format and shown under Source Library Directory. If there is no
followed by a // CEND statement. source library on the pack, the message NO SOURCE

LIBRARY EXISTS is logged. If a source library exists
but is empty, the message NO SOURCE DIR ENTRIES
EXIST is logged.

® The format of the object library directory printout is
shown under Object Library Directory. - |f there is no
object library on the pack, the message NO OBJECT
LIBRARY EXISTS is logged. If an object library exists
but is empty, the message NO OBJECT DIR ENTRIES
EXIST is logged.

170

Sample System Directory Printout

SYSTEM DIRECTORY FROM R1 VOLUME ID RIRLR1 10/20/73

SQURCE LIBRARY SECTION

SOURCE DIRECTORY LOCATION

NEXT AVAILABLE LI3RARY SECTOR

END OF LIBRARY

NUMBER OF DIRECTORY SECTORS

NUMBER OF PERMANENT LIBRARY SECTORS
NUMBER OF ACTI1VE LIBRARY SECTORS
NUMBER OF AVAILABLE L1BRARY SECTORS
ALLOCATED SIZE OF LIBRARY

UBJECT LIBRARY SECTION

" OBJECT DIRECTORY LOCATION

ALLOCATED SIZE OF DIRECTORY

START OF LIBRARY

ALLOCATED END UF LIBRARY

EXTENDED END OF LIBRARY

NUMBER OF AVAILABLE PERMANENT DIRECTORY ENTRIES
NUMBER 0OF AVAILABLE TEMPORARY DIRECTORY ENTRIES
FIRST TEMPURARY DIRECTORY ENTRY

NEXT AVAILABLE TEMPORARY DIRECTOIRY ENTRY

NEXT AVAILABLE LIBRARY SECTOR FOR PERMANENTS
NEXT AVAILABLE LIBRARY SECTOR FOR TEMPORARIES

NUMBER OF AVAILABLE LIBRARY SECTORS FOR PERMANENTS
NUMBER OF AVAILABLE LIBRARY SECTORS FUR TEMPORARIES

NUMBER OF ACTIVE LIBRARY SECTORS

" NUMBER OF ACTIVE UOBJECT PERMANENT LIBRARY SECTDRS
NUMBER OF ACTIVE ROUTINE PERMANENT LIBRARY SECTORS

ALLOCATED SIZE OF LIBRARY

ROLL-IN/ROLL-0UT LOCATION
ROLL-IN/ROLL-0UT SIZE

SCHEDULER WORK AREA LOCATION
SCHEDULER WORK AREA SIZE

START OF LIBRARIES
END OF LIBRARIES

Library Maintenance Program ($MAINT)

008-00
036-23
047-23

630
688
265

40

U55-00
6
061-20
379-23
379-23
732
697
058-10-231
058-13-210
288-09
296-21
2199
1995
5495
4693
598
325

950-00
5

048-00
7

V08-00
379-23

17

Using the System Directory to Determine if the Object
Library Should Be Reorganized

The following are not updated when an object library entry
is deleted:

© Number of available directory entries

© Next available directory entry

©® Next available library sector

© Number of available library sectors

These reflect only contiguous space which can be used,
therefore, gaps are not included. (See Organization of
Library Entries, Object Library.)

To calculate the total number of sectors that could be
made available for permanent entries if the object library

is reorganized, perform the following procedure (Take
values from Sample System Directory Printout):

1. Determine the object library size in sectors
Allocated size of library = 325
Allocated size of directory = - 6
Object library size (tracks) = 319

x 24
Object library size (sectors) = 7666

2. Determine the number of permanent object library
sectors

Number of active object perm-

anent library sectors = 4693
Number of active routine perm-
anent library sectors = 4598

Number of permanent object
library sectors = 5291

172

3. Determine the number of contiguous sectors that

will be available at the end of the library if the lib-
rary is reorganized to remove all gaps and temporary
library entries.

Object library size (sectors) -

from step 1 = 7656
Number of permanent object

library sectors from step 2 = -5201
Number of available sectors = 2365

4, Compare the number of available sectors calculated

to the number of available library sectors for perman-
ents.

Number of available sectors

from step 3 = 2365
Number of available library

sectors for permanents = -2199
Difference in sectors = 166

The difference (166) represents the amount of contiguous
space that can be gained by reorganizing the object library.

Source Library Directory

Printout

SOURCE DIRECTORY FROM XX VOL ID XXXXXX MM/DD/YY

ADDRESS
TYPE NAME LAST®@ ATTRI #SECTORS
X XXXXXX TTT-SS X XXXX
Explanation
Heading Meaning
TYPE S=source statements

P=procedure

NAME Name of library entry (up to six characters)
ADDRESS Addresses of first and last sectors that contain the library entry. Addresses

(FIRST and LAST)

ATTRI (Attribute)

#SECTORS

are expressed by track and sector numbers. EXAMPLE: 008-03 means
track 8, sector 3.

T=temporary
P=permanent

Total number of sectors used for the library entry.

Library Maintenance Program ($MAINT) 173

Object Library Directory

Printout

OBJECT LIBRARY FROM XX VOL. ID XXXXXX MM/DD/YY

DISK cyL/ TXT- LINK RLD ENTRY CORE TOT

TYPE NAME ADD SEC CAT ADDR DISP PNT SEC ATTR LEVEL SEC

X X XXXXXX TTT/SS‘ CC/SS XXX XXXX XX XXXX XXX XXXX XXX XXXX

Explanation

Heading Meaning

TYPE The first character printed indicates the attributes of the entry as follows:

P = permanent

T = temporary
The second character printed indicates the type of module the entry is.
Its meaning is as follows:

O = object program

R = routine

NAME Name of library entry (up to six characters)

DISK ADD Address where library entry begins on disk. EXAMPLE: 015/10 means
track 15, sector 10 (in decimal). T = track, S = sector.

CYL/SEC Address where library entry begins on disk (in hexadecimal). C = cylinder,

S = sector.

TXT-CAT For object programs, this number indicates the number of sectors used for
the text portion of the library entry. Object programs consist.of two parts:
text and RLD. Text is the program or routine instructions. RLD is
information used in loading the program for exeeution.

For routines, this number is the category of the routine. This number is used
by the Overlay Linkage Editor for determining overlays.

LINK ADDR Object programs only. Assigned hexadecimal core address of this library
entry.

RLD DISP Object programs only. 1t indicates the hexadecimal position in which RLD
information begins in the last text sector. If the last text sector contains no
RLD information, the RLD displacement is 0, indicating the information
starts in the next sector.

ENTRY PNT Object programs only. Main storage address (hexadecimal) where program
execution begins before relocations.

CORE SEC Core size given in sectors, required to run the program.

174

«

Heading Meaning

ATTR Byte 1:

Bit 0=1—Permanent entry
Bit 0=0—Temporary entry

Bit 1=1—Inquiry. This program requires that the Inquiry switch be operated
to start processing.

Bit 2=1—Inquiry invoking. This program runs in program level 1 and
can be rolled out to allow an Inquiry program to run.

Bit 3 Reserved
Bit 4=1—Source required. This program requires the allocation of the
$WORK and $SOURCE files. $SOURCE must be filled either

from the system input device or a source library.

Bit 5=1—Deferred mount. This program accepts mounting of packs
during its execution.

Bit 6=1—PTF applied. A program temporary fix (PTF) has been applied
to this program. ’ S

Bit 7=1—0verléy object program
Byte 2:

Bit 0=1—System Input dedication. The system input device must be
dedicated to this program. The device is released when no longer needed.

Bit 1 Reserved

-Bit 2=1—Direct source read. This program can have a COMPILE state-
ment and a no-source-required attribute (byte 1, bit 4=0).
The program will access the source itself.

Bit 3-4 Reserved

Bit 5=1—Program common. This program requires that a new load
address be calculated at load time to place it in main storage
beyond its own program common region.

Bits 6-7 Reserved

LEVEL Release level of system programs. For user programs this can be assigned
in the Overlay Linkage Editor

TOT SEC Total number of disk sectors occupied by the library entry

Library Maintenance Program ($MAINT) 175

DELETE

Uses

® Delete a temporary or permanent entry from a library
{or entries with the same name from all libraries).

® Delete temporary or permanent entries that have names
beginning with certain characters.

® Delete all temporary or permanent entries of a certain
type.

Control Statement Summary

Delete Considerations and Restrictions

The following apply to the delete function:

System modules cannot be deleted from the active
system pack (the pack the system was loaded from
during IPL).

When all temporary entries are deleted from the object
library using LIBRARY-O,NAME-ALL,RETAIN-T, the
temporary routines (LIBRARY-R) are also deleted.

The RETAIN parameter must match the attribute of the
entry in the library otherwise the entry is considered not
found. RETAIN-T is assumed if the RETAIN parameter
is omitted.

Library Maintenance modules cannot be deleted from
the active program pack.

S

R
ALL

S
P
/| DELETE FROM-code,LIBRARY- o

R
ALL

S
P
(o}
R

// DELETE FROM-code,LIBRARY-

Delete All Temporary or Permanent Entries of a Certain Type

Delete a Temporary or Permanent Library Entry (or Entries with the Same Name from All Libraries)
P T
/! DELETE FROM-code,LIBRARY- 0o ,NAME-name,RETAIN- F
Delete Temporary or Permanent Entries With Names Beginning With Certain Characters

/NAME-characters ALL,RETAIN- {—P'}

,NAME-ALL,RETAIN-{E}

T

176

Delete Parameters

" Parameter Meaning
R1
FROM- ;12 Location of disk that contains library entries you are deleting. Possible codes are:
F2 Code Meaning
R1 Removable disk on drive one
F1 Fixed disk on drive one
R2 Removable disk on drive two
F2 Fixed disk on drive two.
S
P
LIBRARY-< O Type of entries being deleted. Possible codes are:
R
ALL Code Meaning
S Source statements (source library)
p Procedures (source library)
0 Object programs (object library)
R Routines (object library)
ALL All types of entries (S, P, O, and R) are being deleted.
name
NAME- <characters.ALL Particular entries, of type indicated in LIBRARY parameter, being deleted. These
ALL entries are further identified by the RETAIN parameter. Possible codes are:
Code Meaning
name Name of the library entry, or entries, being deleted.
characters., ALL Entries that have names beginning with the indicated characters.
You can use up to five characters. EXAMPLE: NAME-INV.ALL
refers to the entries having names that begin with INV.
ALL All entries (of the type indicated in LIBRARY parameter).
NAME-ALL cannot be used with LIBRARY-ALL.
I
RETAIN- Designation of entries being deleted:
P

Code

T

P

Meaning

Temporary

Permanent

Library Maintenance Program ($MAINT) 177

MODIFY

Uses

The Modify function is intended primarily for maintenance
of source statements and procedures by using card input.
The Modify function can be used to:

Reserialize a source library entry.

List the statements in a source library entry.
Remove statements from a source library entry.
Replace source library statements.

Insert statements into a source library entry.

Modify Considerations and Restrictions

o At least three control statements must be entered to

modify the source library. A // MODIFY statement is
needed to describe the library entry. A // REMOVE,
// REPLACE, or // INSERT statement describes the
type of modification. A // CEND statement indicates
the end of the MODIFY control statements.

The disk specified by the WORK parameter in the

// MODIFY statement must contain a work area

large enough to hold the modified source library entry.
The sequence numbers specified by the FROM-seqno,
TO-segno, and AFTER-seqno parameters on the

// REMOVE, // REPLACE, and // INSERT statements
must be valid numbers and exist in the source library
entry. There are no default values for these parameters.
The number of digits entered must be the same as the
number of positions specified by the SEQFLD
parameter.

All statements in a source library entry must have
ascending sequence numbers in the positions specified
by the SEQFLD parameter.

178

Multiple operations (REMOVE, REPLACE, INSERT)
may be performed within the same MODIFY run if they
are done in an ascending sequential order. That is, the
FROM sequence number in a REMOVE or REPLACE
statement must be greater than the last sequence num-
ber in the preceding statement. The AFTER sequence
number of an INSERT statement must be equal to or
greater than the last sequence number of the preceding
statement. Consecutive INSERT statements must not
have the same sequence number.

When modification is complete, the directory entry
is written back with a permanent attribute.

" The control statements following the // MODIFY state-

ment are read from the system input device.

Sequence numbers are a physical part of the source
record and must be placed where they will not conflict
with other data in the record. In a procedure the
sequence numbers should be placed near the end of the
record beyond the OCL and utility control statement's
keywords and parameters.

Invalid responses may result for OCL procedures with
delayed responses, because when the procedure is called,
the sequence number may be recognized as the response.

The sequence numbers should be placed in source state-
ments where they will not overlay data. For example,
data could be destroyed if sequence numbers were
placed in RPG Il source statements that contained
compile-time tables. If the statement contains table
data in positions 1-85, the sequence numbers for the
source module shoulid begin after position 85 (86-96).

Since the REMOVE control statement is valid for both
the $DELET utility and $MAINT utility, care should
be used when modifying a SDELET procedure. The
program will attempt to determine if the REMOVE
statement is data or if it is a control statement. Ifa
determination cannot be made, the program will halt
and wait for further instructions.

If LIST-YES is specified and a printer error occurs during
the listing of the source library entry, responding to the
halt with a 2 option will cause the listing to stop. The
modified entry will then be placed back into the library
before terminating the function with a controlled cancel.

Control Statement Summary

Initiate Modification
s YES YES
// MODIFY NAME-name,FROM-code, LIBRARY- {P} ,WORK-code,RESER- < NO LLIST- { },
ONLY :
SEQFLD-xxyy,INCR-number
"Control Statements Following // MODIFY
Delete all statements between and including the FROM and TO sequence numbers.

// REMOVE FROM-seqno, TO-seqno

» Replace all statements between and including the FROM and TO sequence numbers with the statements supplied.

// REPLACE FROM-seqno,TO-seqno

1-n statements to replace those removed

Insert the supplied statements after the statement indicated by the AFTER parameter.
// INSERT AFTER-seqno
1-n statements to be inserted

Terminate Modification

// CEND must follow the control statements to terminate the modify function.

Library Maintenance Program ($MAINT)

179

Modify Parameter

Parameter Meaning

NAME-name Name of the entry you are moditying. This is the name that identifies the entry
in the library directory.

FROM-code Location of the disk that contains the entry you are modifying. Possible codes are:
Code Meaning
R1 Removable disk on drive one
F1 Fixed disk on drive one
R2 Removable disk on drive two
F2 Fixed disk on drive two
LIBRARY- {ﬁ} Type of library entry you are modifying. Possible codes are:
Code Meaning
S Source statements (source library)
P Procedures (source library)
WORK-code Location of the disk containing space the program can use as a work area. Possible
codes are:
Code Meaning
R1 Removable disk on drive one
F1 Fixed disk on drive one
R2 Removable disk on drive two
F2 Fixed disk on drive two
YES
RESER-<NO Specifies whether reserialization should be done when the entry is placed back in the
ONLY source library. Possible information is:
Information Meaning
YES Reserialization is done.
NO Reserialization is not done. NO is assumed if the RESER parameter
is omitted. '
ONLY Reserialize only; no other maintenance is done. When this is coded,
no REMOVE, REPLACE, INSERT, or CEND statements can be
entered.
YES - " . ies .
LIST- NO Specifies whether the source library entry should be listed as the modified entry is
— placed back into the source library. NO is assumed if the LIST parameter is omitted.

SEQFLD-xxyy The starting and ending positions of the field that contains the sequence number. The
sequence number can be up to eight digits long. The starting position is entered first
(xx) and then the ending position (yy). If this parameter is not entered, 9296 is
assumed.

INCR-number Increment value for sequence field if reserialization (RESER-YES or RESER-ONLY}) is

specified. The value can be up to five digits. If this parameter is not entered, a value
of 10 is assumed.

180

" Remove, Replace, Insert Parameters Rename Parameters

Parameter Meaning "Parameter Meaning v
FROM-seqno The sequence number of the first FROM-code Location of disk that contains the entry
statement to be used in the you are renaming. Possible codes are:
operation.
Code Meaning
TO-seqno The sequence number of the last
statement to be used in the R1 Removable disk on drive one
operation.
F1 Fixed disk on drive one
AFTER-segno The sequence number of the state-
ment after which the new state- R2 Removable disk on drive two
ments are to be added. .
s F2 Fixed disk on drive two
P
LIBRARY Type of library entry you are renaming.
RENAME g Possible codes are:
Code Meaning
Uses
S Source statements {source
. library)
@ Change the name of a library entry.
P Procedures (source library)
© Change the names of library entries that have names . . .
beginning with certain characters. 0 Object programs (object library)
R Routines (object library)
Rename Considerations and Restrictions NAME-name Current name of the entry you are re-

@ System modules should not be renamed on the active
system pack (the pack that the system was loaded NAME-characters.ALL
from during IPL).

@ Library Maintenance modules should not be renamed

on the active program pack. NEWNAME:-name

Control Statement Summary

Change the Name of a Library Entry or Entfies with
‘the Same Name in All Libraries

S

// RENAME FROM-code,LIBRARY-{F S,

NAME-name,NEWNAME-name

Change the Name of Library Entries that have Names
Beginning with Certain Characters

. s

-/l RENAME FROM-code,LIBRARY-¢P %
NAME-characters.ALL, o
NEWNAME-characters R

NEWNAME-characters

naming. This is the name that identifies
the entry in the library directory.

Only those entries beginning with the
indicated characters. (You can use up
to five characters.)

New name you want to give the entry.
Follow these rules to construct the name:

1. You can use any System/3 charac-
ters except blanks, commas, quotes,
and periods. {Appendix A lists the
characters.) The names of most
IBM programs begin with a dollar
sign ($). Therefore, to avoid
possible duplication, do not use a
dollar sign as the first character in
the names you use for your entries.
The first character must be
alphabetic.

2. You can use up to six characters,
but you cannot use the names ALL,
DIR and SYSTEM. They have
special meanings in the NAME
parameter.

Beginning characters you want to use in
names identifying the copies. (You can
use up to five characters.)

Library Maintenance Program ($MAINT) 181

OCL CONSIDERATIONS

LOAD Sequence
Keywords 0 Responsese " Considerations
READY LOAD None
LOAD NAME SMAINT Name of Library Maintenance program.
UNIT R1, R2, F1, or F2 Location of disk containing Library Maintenance program.
MODIFY RUN , None

Only the keywords listed here are required. You can bypass the rest, unless the copy file-to-library function is to be
used. The FILE keywords must be responded to, to define the file.

e You end every response by pressing PROG START.

BUILD Sequence

[Keywords 0 Responses'e Considerations
READY BUILD None
BUILD NAME procedure name Name by which procedure will be identified in source:
library.
UNIT R1, R2, F1, or F2 Location of disk containing source library.
LOAD NAME $SMAINT Name of Library Maintenance program.
UNIT R1, R2, F1, or F2 Location of disk containing Library Maintenance program.
- MODIFY INCLUDE Response when including control statements in procedure.
| utility control statements
OR RUN
RUN Response when not including control statements in
procedure.

a Only the keywords listed here are required. You can bypass the rest, unless the copy file-to-library function is to be
used. The FILE keywords must be responded to, to define the file.

e You end every response by pressing PROG START.

182

ALLOCATE EXAMPLES

Creating Both Source and Object Libraries on a Disk

Statements

READY

kkkkkhkkhkkkhhkhkkhkkhkkkkk

010 LOAD NAME OCL LOAD Sequence.

Boxed areas are operator responses..

011 UNIT

Keywords for which no responses
020 DATE - are shown are the ones bypassed.
030 SWITCH - RUN is the response to MODIFY
040 FILE N _ even though the two words do not

appear on the same line.

khkkhkkkhhkkhkkhkkhkhkkhkhkkkx

MODIFY -
7

} Message printed by Library Maintenance
program,

// ALLOCATE TO-R1l,SOURCE-12 ,OBJECT-45 ,SYSTEM-YES }

ENTER '//' CONTROL STATEMENT

Control statement supplied
by operator.

' Program creates libraries, then asks for another
|} 1 ’
ENTER '//' CONTROL STATEMENT } control statement.
} END statement, supplied by operator, ends
// END the program.
Explanation

® Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence}.
® Libraries are being created on the removable disk on drive 1 (TO-R1 in ALLOCATE statement).
® Source library space is twelve tracks long (SOURCE-12).

© Object library space is 45 tracks long (OBJECT-45). The object library will contain system programs (SYSTEM-YES).
Thus, the disk area will also include space for the Scheduler work area.

Library Maintenance Program (SMAINT) 183

Changing the Size of a Source Library

~ Statements

READY -

kkkkkhhkkhkhkhhkikhkkkhkhkk

010 LOAD NAME - OCL LOAD Sequence.
011 UNIT - Boxed areas are operator responses.
020 DATE - Keywords for which no responses
are shown are the ones bypassed.
030 SWITCH -
RUN is the response to MODIFY
040 FILE NAME -~ even though the two words do

not appear on the same line.
khkkkhkkkkhhkhkkhhhkkdk

MODIFY -

Message printed by Library Maintenance
program.

ENTER '//' CONTROL STATEMENT t
// ALLOCATE TO-R1l,SOURCE-15,WORK-F1l i Control statement supplied by operator.

Program changes size of library, then asks
for another control statement.

ENTER '//' CONTROL STATEMENT

// END E End statement, supplied by operator, ends
the program.

Explanation

© Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1in OCL sequence).

Source library is located on the removable disk on drive 1 (TO-R1 in ALLOCATE statement).

Size of the source library is being changed to 15 tracks (SOURCE-15).

© Any time the program changes the size of a source library, it reorganizes the library. To do this, it needs a work area.
This area is on the fixed disk on drive 1 (WORK-F1).

184

Deleting the Object Library From a Disk

Statements

READY -

kkkkhkhkhkhkhkhkkkhkkhhkhkkhihkkk*k

010 LOAD NAME T - OCL LOAD Sequence.

011 UNIT - Boxed areas are operator responses.

020 DATE - Keywords for which no responses are
shown are the ones bypassed.

030 SWITCH -

RUN is the response to MODIFY
even though the two words do
not appear on the same line.

040 FILE NAME -

Khkkhhhhhhhhkhhhhkhdhhrd ks

MODIFY

ENTER '//' CONTROL STATEMENT % Message printed by Library Maintenance
program,
// ALLOCATE TO-R1,0BJECT-0 % Control statement supplied by operator.
ENTER ' // ' CONTROL STATEMENT % Program deletes library, then asks for
another control statement.
// END % END statement, supplied by operator, ends
the program.
Explanation

© Library Maintenance program is loaded from the fixed disk on drive 1 ({UNIT-F1 in OCL sequence).
© Object library is located on the removable disk on drive 1 (TO-R1 in ALLOCATE statement).

© OBJECT-0 parameter tells the program to delete the object library. If a scheduler work area precedes the object library,
it is also deleted.

Library Maintenance Program ($MAINT) 185

COPY EXAMPLES

Copying Minimum System from One Disk to Another

Statements

READY

kkhkkkkhkhkhhkhkkhkhkhhhkhkhkhkhrhkd

010 LOAD NAME 'OCL LOAD Sequence.
011 UNIT Boxed areas are operator responses.
020 DATE - Keywords for which no responses are
030 SWITCH _ shown are the ones bypassed.

_ RUN is the response to MODIFY
040 FILE NAME even though the two words do not
R T L L LR R R E appear on the same line.
MODIFY

|

Message printed by Library Maintenance
program,

ENTER '//' CONTROL STATEMENT s

Control statement supplied
// COPY FROM-F1,LIBRARY-O,NAME-SYSTEM,TO-RL | e e oo PPl

Program copies programs, then asks
for another control statement.

ENTER '//' CONTROL STATEMENT ;

END statement, supplied by operator, ends
// END 2 the program.

Explanation

® |ibrary Maintenance program is loaded from the fixed disk on drive 1 {UNIT-F1 in OCL sequence).

® System programs are in the object library on the fixed disk on drive 1 (LIBRARY-O and FROM-F1 in COPY statement).
® The NAME parameter (NAME-SYSTEM) tells the program to copy the system programs.

® The disk that is to contain the copy is the removable disk on drive 1 (TO-R1).

186

Printing Library Directories

Statements

READY

AR xhkkkhhkkkkkhkkkkkhhhhhhhkhkk

010

LOAD NAME
OCL LOAD Sequence.
011 UNIT
Boxed areas are operator responses..
020 DATE ' -
Keywords for which no responses
030 SWITCH : - are shown are the ones bypassed.
040 FILE NAME - RUN is the response to MODIFY
even though the two words do
khkkhhkhhkkhkhhkkhkhhkhhkhrrhdd not appear on the same line.
MODIFY
ENTER ' / /v CONTROIL STATEMENT } Message printed by Library Maintenance
program.

// COPY FROM-R1,LIBRARY-ALL,NAME-DIR,TO-PRINT,OMIT-$.ALL E

Control statement supplied
by the operator.

ENTER '//' CONTROL STATEMENT % Program prints directories, then asks for

another control statement.

// END % END statement, supplied by operator, ends

the program.

Explanation

© Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

@ All library directories and the system directory on the removable disk on drive 1 are printed (COPY statement):

1.

2.

FROM identifies the disk containing the directories.
LIBRARY indicates which directories are to be printed.
NAME and TO indicates that the program is to be printing directories.

Entries beginning with a $ are not printed.

Library Maintenance Program {$MAINT) 187

Replacing a Library Entry: Replacement Coming From Another Disk

Situation

Assume that you have two versions of an object program:
1. New version on the removable disk on drive 1.

2. Old version on the fixed disk on drive 1.

Both versions have the same name (ACCT) and designation {permanent). You want to replace the old version with the new
version.

Statements
READY
hhkhkhhhhhhhhhrdhhdhhhhhk OCLLOADSequence
010 LOUAD NAME
Boxed areas are operator responses.
011 UNIT
g Keywords for which no responses are
020 DATE - shown are the ones bypassed.
030 SWITCH - RUN is the response to MODIFY
: even though the two words do
040 FILE NAME - not appear on the same line.
*khkkhhhkhhdhhkhhhhhrhhhrhkkk
MODIFY -
ENTER '//' CONTROL STATEMENT % Message printed by Library Maintenance
program.,
// COPY FROM-R1,LIBRARY-O,NAME-ACCT,TO-F1,RETAIN-R gs’;‘r::astf:eme"t supplied
p .
ENTER '//' CONTROL STATEMENT G Program replaces library entry, then asks for
another control statement.
// END % END statement, supplied by operator, ends the
program.
Explanation

® Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

© LIBRARY-O, NAME-ACCT, and FROM-R1 in the COPY statement tell the program to read the object program named
ACCT from the removable disk on drive 1.

© TO-F1 tells the program to copy the object program to the fixed disk on drive 1. There is no NEWNAME parameter in
the COPY statement. Therefore, the name the program will have on the fixed disk is ACCT (NAME-ACCT). Since the

old version of the program already exists on the fixed disk under that name, the old version is replaced.

@ The Library Maintenance program normally halts before replacing a library entry. The RETAIN-R parameter, however,
‘tells the program to omit that halt. '

188

Copying a Disk File To a Library

Statements
READY
SI::;*igz;******.** ""‘**:’;:’;z******** FkRHK OCL LOAD Sequence
8;.%: DATE (XX/XX/XX) UNIT- Boxed areas are operator
030 SWITCH (00000000) . - respansss

- 040 FILE ‘ NAME- Keywords for which no re-
041 - UNIT- sponses are shown are the
g:g : ‘ LZQEE" ones bypassed.
050 FILE : NAME- RUN is the response to

sk sk sk ol ste sk ste sl sle sk sle e o) 2 5% sl sk sk sl sl ol sk sk sk sk sk sk sle sk .
e 2 35 3¢ 3k 3¢ e e o S ofe e ek < 51 3¢ e e e i Sk 3 3l Sl 3ie 3k S 3je 3je 3ic 3je e e S i sie ke ke 2ie MODIFY even though the

MODIFY two words do not appear
on the same line

NTER'//' CONTROL STATEMENT 1} Message printed by Library
. Maintenance program.
COPY FROM—DISK,TU—FL,RETAIN—P,FILE—BSCAFILE% : Control statement supplied

by operator.
XX COPY LIBRARY-P,NAME-PAYREC
XX COPY LIBRARY-0,NAME-PAYREC

Control statements from disk

file.
XX END ne
Program copies programs, then
. asks for another control state-
ENTER '//' CONTROL STATEMENT z ment.
// END § END statement, supplied by

operator, ends the program.

Explanation
® The OCL for a File-to-Library copy must contain a FILE statement for the disk file.

® The filename on the // COPY statement (FILE BSCAFILE) matches the filename on the OCL FILE statement
(NAME-BSCAFILE).

® The // COPY statement does not contain a RECL parameter, so a record length of 96 is assumed.

@ All source and object decks in the disk file must have a // COPY statement as the first card image and a // CEND state-
ment as the last card image. These // statements (including the // END statement) are logged with XX replacing the
/1 to indicate they were read from disk rather than from the system input device or a procedure.

® The // END statement read from the file {printed XX END), causes the next statement to be read from the system input

device or procedure. A // END statement must still be read from the system input device or procedure to indicate the
end of the Library Maintenance control statements.

Library Maintenance Program (SMAINT) 189

Copying a Procedure From the System Input Device

Statements
READY-
hhkdhhkhkhhhhkthhhhhhrhdhhhkhk
010 LOAD NAME -
011 UNIT-

020 DATE (11/27/73) -
030 SWITCH (00000000) -

040 FILE NAME -
hhkhkhkhhhhhkhhhhhhhhhrhkhhkd
MODIFY

ENTER '//' CONTROL STATEMENT

// COPY FROM-READER,TO-F1,LIBRARY-P,NAME-COPYF1l

// LOAD $COPY,Fl

// RUN

// COPYPACK FROM~-F1,TO-R1l
// END

// *CEND

ENTER '//' CONTROL STATEMENT

// END

Explanation:

© FROM-READER tells the Library Maintenance program
to read the statements from the system input device.

©® The procedure (LIBRARY-P) is written to the source
library on F1 (TO-F1), named COPYF1 (NAME-
COPYF1), and given the default attribute of temporary.

@ All statements following the // COPY statement are

entered into the library until the // CEND statement is
read to terminate the copy.

190

2
;
i

OCL LOAD Sequence

Boxed areas are operator
responses.

Keywords for which no
responses are shown are
the ones bypassed.

RUN is the response to
MODIFY even though the
two words do not appear
on the same line.

Message printed by Library
Maintenance Program.

Control statement supplied
by the operator.

Procedure copied to the
source library. These
statements are supplied
by the operator.

Message printed by Library
Maintenance Program asking
for another control
statement.

END statement, supplied
by operator, ends the
program.

DELETE EXAMPLES

Deleting a Temporary Entry From a Library

Statements

-READY
hkkhkkkkhhhhhkkkkkkhkkhkhk*

OCL LOAD Sequence

010 LOAD NAME
Boxed areas are operator responses.
011 UNIT
) Keywords for which no responses are
020 DATE - shown are the ones bypassed.
030 SWITCH - RUN is the response to MODIFY
even though the two words do
040 FILE NAME - not appear on the same line.
kkkkhkhhhkkhkhdhhhhxhhhkdhhk
MODIFY -
ENTER l//l CONTROI STATEMENT g Message printed by Library Maintenance
program.

// DELETE FROM-R1l,LIBRARY-S,NAME-PAYROL $ Control statement supplied by operator.

ENTER '//' CONTROL STATEMENT % Program deletes library entry, then asks
for another control statement.

// END % END statement, supplied by operator, ends
the program.

Explanation.
® Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

® The program deletes a set of source statements (LIBRARY-S in DELETE statement) named PAYROL (NAME-PAYROL)
from the removable disk on drive 1 (FROM-R1).

® The absence of a RETAIN parameter implies that the entry designation is temporary. |f the designation were permanent,
RETAIN-P would have been required.

Library Maintenance Program ($MAINT) 191

Deleting All Temporary Entries With Names That Begin With Certain Characters

Statements

READY

khkkkkkhkhkhkkkkkhkkhhkkkhkhkhhhkkhkik

010 LOAD NAME

OCL LOAD Sequence
011 UNIT

Boxed areas are operator responses..
020 DATE -

Keywords for which no responses aré
030 SWITCH - shown are the ones bypassed.
040 FILE NAME - RUN is the response to MODIFY

even though the two words do

khkkkkkkhkkkkhhhhkhkkkhhkhkkikkk not appear on the same line.

MODIFY

ENTER '//' CONTROL STATEMENT % Message printed by Library Maintenance
program. o

// DELETE FROM-R1,LIBRARY-ALL,NAME-INV.ALL % Control statement supplied by operator.

ENTER '//' CONTROL STATEMENT % Program deletes entries, then asks
for another control statement.

// END % END statement, supplied by operator,
ends the program.

Explanation

o | ibrary Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

® The entries being deleted are on the removable disk on drive 1 (FROM-R1 in DELETE statement).

® The program deletes all entries from both source and object libraries (LIBRARY-ALL) that have names beginning with
the characters INV (NAME-INV.ALL).

® The absence of a RETAIN parameter implies that temporary entries are being deleted.

-2l
Wi
N

Deleting All Permanent Library Entries of One Type

Statements

READY : -

khkkkhkkkhhkhhkhkkhkhkhkkhkkkhkkhkhkkkix

010 LOAD NAME -
011 | UNIT -
020 DATE -
030 SWITCH -
040 FILE NAME -

kkkkkkkkhhkhhikkhkhkhkhixkhkhkkkk

MODIFY -

ENTER '//' CONTROL STATEMENT i

OCL LOAD Sequence

" Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do
not appear on the same line.

Message printed by L.ibrary Maintenance <
program.

// DELETE FROM-R1,LIBRARY-~P,NAME-ALL,RETAIN-P % Control statement supplied by operator.

ENTER '//' CONTROL STATEMENT %

// END ‘ %

Explanation

Program deletes entries, then asks for another
control statement.

END statement, supplied by operator, ends
the program

® Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

® The entries being deleted are on the removable disk on drive 1 (FROM-R1 in DELETE statement).

® All permanent procedures are being deleted from the source library (LIBRARY-P,NAME-ALL,R ETAIN-P).

Library Maintenance Program ($MAINT)

193

MODIFY EXAMPLES

Replacing Statements in a Procedure

Statements

OCL LOAD Sequence
Boxed areas are operator

READY- responses.

Sl sie el ok s e e sfe sl e sl o sk sk st sl e e e sl e sde s e leslesie sl sl sk skeskeok 31 3y 3 e sl e e e syl sfe ok o ek e sk i

010 LOAD NAME- Keywords for which no re-

011 UNIT- sponses are shown are the

020 DATE (XX/XX/XX) - o ones bypassed.

030 SWITCH (00000000) -

040 FILE NAME- RUN is the response to

seste oot et steatesiot sttt ok skl st stttk sttt skt stttk etk sl seoR sk sl oR SRR koK MODIFY even though the
two words do not appear on
the same line.

§ Message printed by Library
Maintenance program.

NTER '//' CONTROL STATEMENT

// MODIFY NAME-PROCOL,FROM-R2,LIBRARY-P,WORK-RLyRESER-NO,sLIST-YES

// REPLACE FROM-00101,T0-00102 Control statement supplied by

// FILE NAME-INV4PACK-VOL2,yUNIT-R1,RECORDS-300,RETAIN-P 00101 A

// FILE NAME-WORK,PACK-VOL2,UNIT-RL 00102 operator.

// CEND .

// LOAD BUILD,F1 00100

// FILE NAME-INV,PACK-VOL2,UNIT-RL,RECORDS-300,RETAIN-P 00101 P i J h

// FILE NAME-WORK,PACK-VOL2,UNIT-RL 00102 ':9';3'“ 's‘ihp“’ce ‘"el" en

// RUN 00103 ::Ts‘e:torano er control state-
ENTER '//' CONTROL STATEMENT END statement, supplied by

// END) % operator, ends the program

Explanation

® The procedure named PROCO1 on disk drive R2vis being modified.
® The work space will be on R1.

® The sequence numbers are in default positions 92-96.‘

® Statements with sequence number 00101-00102 are being replaced.
® The module is not reserialized.

@ The module is listed.

194

Removing Source Statements From a Module

Statements

Remdving Source Statements From a Module.
: OCL LOAD Sequence

READY-

3¢ 3 e e ok sl 34 e e o e ok e sie sfe e sie s sk i sk e e 3 e i ek Sie e e e R

010 LOAD NAME- Boxed areas are operator responses.

011 O UNIT-)

020 DATE (XX/XX/XX) - Keywords for which no responses are shown are the ones
"030 SWITCH (00000000) - bypassed.

040 FILE NAME-)

sk 3¢ e e e s s sk e e e e e e sfe o o e e sfe e s s s sk e sie s s e e e st st sl st sl s e Sl sl ke ke ek RUN is the response to MODIFY even though the two

MODIFY words do not appear on the same line.

Eff]TER 1//1' CONTROL STATEMENT % Message printed by Library Maintenance program.

// MODIFY NAME-INPUT1,FROM-RL,LIBRARY-S;WORK-RL,RESER-YES,

/7 LIST-NO,SEQFLD-0105, INCR~-1 \ i h

7/ REMOVE FROM=00124,T0-00156 Control statements supplied by the operator.

// CEND

ENTER '//' CONTROL STATEMENT . % Program removes statements, then asks for another

control statement.

// END ‘
END statement, supplied by operator, ends the program.

-Explanation

® The source module named INPUT1 on disk drive R1 is being modified.

© The work space will be on R1,

-

> The sequence numbers are in positions 1-5 of the statements.

Sequence numbers 00124-00156 are being deleted from the module.

The module is reserialized with increments of one.

The module is not listed.

Library Maintenance Program ($MAINT) 195

Inserting a Statement in a Source Module

Statements

OCL LOAD Sequence
READY-
e sfe sfe sle e e sl ol sl sfe sfe sle sfe sl sfe sl sfe sie sje sl sie sle sie s esiosieseieie ks Boxed areas are operator
010 LOAD NAME—- responses.
011 UNIT-
020 DATE (XX/XX/XX) C- Keywords for which no re-
030 SWITCH (00000000) - sponses are shown are the ones
040 FILE NAME- bypassed.
e e sl sfe e sle sfe sl sje sl s sfe sfe sl sl sfe sk sie e e sfe sl sfe e sfe sie sie sfe sl sie sl sfe e sfe e ki sfe e sk s ok ke ok

RUN is the response to MODIFY
even though the two words do
not appear on the same line.
ENTER '//' CONTROL STATEMENT % Message printed by Library Maintenance program.

MODIFY FROM-F1,WORK-FL,NAME-COST,LIBRARY-S, Control
// RESER-YES,SEQFLD—-8084,LIST-YES statements
// INSERT AFTER-00070 supplied by
000801 3 8 DATE the operator.
// CESND

Source module listed with new entry

ENTER '//' CONTROL STATEMENT 2 :t;c;zrr:;nnitnserts statements, then asks for another control

// END g END statement, supplied by operator, ends the program.

Explanation

@ The source module COST on fixed disk drive one is being modified.
© The work space is on F1.

@ The sequence numbers are in positions 80-84 of the statements.

~® A statement is being inserted after statement number 00070.

The module is reserialized with the default increment value of 10.

The module is listed.

196

RENAME EXAMPLE

Renaming a Set of Source Statements in a Source Library

Statements
READY I - \
>k***********************I*****; _
| ' " OCL LOAD Sequence
010 LOAD ‘ NAME -
. ; Boxed areas are operator responses.
011) pN IT -
Keywords for which no responses are
020 DATE - shown are the ones bypassed.
030 SWITCH - RUN is the response to MODIFY
_ ‘ , even though the two words do
040 FILE NAME - ; not appear on the same line.

i sl e s e e s et ofe s sfeole e e s sfe e siesieofe siesfesfesiese st okl

MODIFY ' -

Message printed by Library viaintenance
program.

ENTER '//' CONTROL STATEMENT ‘
Control statement supplied

// RENAME FROM—RZL,LIBRARY—SyNAME—ACCT.yNEWNAME—ACCTl % by operator.

ENTER '//' CONTROL STATEMENT t Program renames entry, then asks for

another control statement.

// END } END statement, supplied by operator, ends
the program,

Explanation

Library Maintenance program is loaded from the fixed disk on drive 1 {UNIT-F1 in OCL sequence).

The removable disk on drive 1 contains the entry being renamed (FROM-R1 in RENAME statement).

The entry is a set of source statements in the source library (LIBRARY-S). Its name is ACCT (NAME-ACCT).

The entry name is being changed to ACCT1 (NEWNAME-ACCT1).

Library Maintenance Program ($MAINT) 197

Appendix A: 1BM System/3 Standard Character Set

198

Hexadecimal
Character Equivalent
Blank 40 = 7E E6
¢ aA #* _7F E7
4B A C1 E8
< 4c B c2 E9
(4D c c3 Fo
+ 4E D c4 F1
I 4F E c5 F2
& 50 F c6 F3
¢ 5A G c7 F4
$ 5B H cs F5
* 5C | c9 F6
) 5D | } DO F7
; 5E J D1 F8
— 5F K D2 F9
- {minus) 60 L D3
/ 61 M D4
s 68 N D5
% 6C (0] D6
— {underscore) 6D P D7
> 6E Q D8
? 6F R D9
7A S E2
78 T E3
@ 7C U E4
* {Apostrophe) | 7D . \Y% E5

For Sequential or Direct Files

To determine how many tracks will be required for a
sequential or direct file:

1. Number of records x record length = total number
- of characters.

2. Total number of characters +~ 6144 (number of
characters in a track) = number of tracks. (Round
result up to nearest whole number.)

For Indexed Files

To determine how many tracks will be required for an

indexed file:

Step 1. (Tracks Required for Data)

A

Number of records x record length = total
number of characters.

Total number of characters + 6144 = number

of tracks. (Round result up to nearest whole
number.)

Step 2.

Step 3.

Appendix B: Records — Tracks Conversion

(Tracks Required for Index)
A. Key Field length + 3 = index entry iength.

B. 256 (number of characters in a sector) +
index entry length = number of entries per
sector. (Round result down to nearest
whole number.)

C. Number of records + number of entries per
sector = number of sectors. (Round result
up to nearest whole number.)

D.. Number of sectors + 24 (number of sectors
per track) = number of tracks. (Round re-
sult up to nearest whole number.)

(Total Track Requirement)

Result of step 1 + result of step 2 = total number
of tracks required for the indexed file.

Records—Tracks Conversion 199

Appendix C: Disk Organization

Disk Area

Contents

vTOC* Detailed information about each file on disk

Source Library Source Library Directory
RPG Il Source Programs
Disk Sort Specifications

Procedures

KSE Input (Format Descriptions or Source Statements)

Obiject Library Directory
Compiled Programs
System Programs

Object Library

Files User files
System files

*Volume Table of Contents

Volume Table of Contents (VTOC)

The VTOC contains detailed information about each file
on the disk. Much of this information is for system use
only and is of no interest to the programmer. The VTOC
file information significant to the programmer is:

1. Name.

2, Starting track location and number of tracks.

3. Designation (Permanent, Temporary, or Scratch).

4. Organization (Sequential, Direct, or Indexed). ‘

5. Creation date.

200

Source Library

Procedures, RPG 1l source programs, and KSE input reside
in a source library. The source library directory contains
the name and address (track and sector) of each procedure,
RPG I source program, and set of KSE input in the library.

Object Library
Compiled programs and system programs reside in an object

library. The object library directory contains the name and
address (track and sector) of each program in the library.

Files

Identifying information about every file on a disk is con-
tained in the disk VTOC.

A disk is limited to 50 files because the VTOC has space
for identifying only that many files.

This chapter applies only to RPG |l and FORTRAN.

In some data processing applications, customers may make
inquiries that require immediate answers. One customer

~ may want the status of his account; another may want to

- know if an item is in stock for immediate delivery. To
answer these inquiries, your program must be able to
access certain disk records. The object program you use
to retrieve this information is called an inquiry program.
The following discussion generally applies to both RPG Il
and FORTRAN; differences are noted.

Inquiry programs can be executed as part of a normal job
stream, or they can interrupt other programs that are
executing provided the executing program can be inter-
rupted. After a request for inquiry is made, the following
things occur:

1. A program being executed is interrupted.

2. The current status of the program is stored on disk.

Appendix D. Inquiry Program

3. The inquiry program is loaded to retrieve and dis-
play the requested information.

4, The original program is reloaded and execution
resumes,

Requesting Inquiry In an Interrupt Environment

To interrupt a job prior to loading an inquiry program, you
must make an inquiry request. To request inquiry, you use
the system control panel attached to the |BM 5406 Process-
ing Unit (Figure D-2).

AR HEHEHEBEHEHRBRREE SR
05(f06 ||07{/08 QWi E||R]T|Y L o[Pl permdl 7] 8] 9
PROG
) : # -

ooll1ol[11l[12lF™2* [a][s |[o[F|[][H k|l L j ? 45| 6] [enmen

] HCOEEE +
13|[14 |[15][16]| smrr || Z || X | C|[VB N|M| < Sl swEr {1 || 2] 3

0

Figure D-1. Keyboard Format of the Model 6 Keyboard Console

Inquiry Program 201

To make an inquiry request, move the INQUIRY REQUEST
switch on the control panel to the ON position (Figure D-2).
" The OCL statements for the inquiry program are entered
from the keyboard. (At least the READER statement
indicating that the system input device that contains the
OCL statements must be entered from the keyboard.)

» oisk. oISk PROGRAM DATA INQUIRY svirem
omves | sevecr toa0 nceon neovest J - srant
o | roveane G| ot =

olleRel®

Fixeo OFF LINE

Figure D-2. System Control Panel on the Model 6

Classifying Programs for Inquiry

RPG I

Not all RPG Il programs can be interrupted by an inquiry
program. By coding specifications in column 37 (Figure
D-3) on the RPG Il Control Card sheet, you determine

whether the program can be interrupted. The entries
which classify the program are:

© P(blank) — A B-type program is a processing program
that does not recognize an inquiry request. It cannot
be interrupted.

@ B — A B-type program is a processing program that
recognizes an inquiry request, and, therefore, can be
interrupted or stored on disk.

© | — While I-type programs can be loaded as inquiry
programs in an interrupt environment (see note), a
program is usually classified as an I-type when it is
used as an inquiry program that is to remain in main
storage for the servicing of inquiries. An I-type prog-
ram can be executed only by an inquiry request
(moving the INQUIRY REQUEST switch to the ON
position). An l-type program cannot be interrupted
and stored on disk.

Note: An inquiry program that interrupts a B-type program
can be classified as B, B, or I-type. An inquiry program
loaded to perform a complete job is usually classified as a
B-type program. An inquiry program loaded to answer

one request or few requests is usually loaded as an I-type
program (see Planning Inquiry Programs for further
information). If a B-type program is rolled out by an
inquiry program also classified as B-type, the inquiry
program must complete execution before another inquiry
request is made.

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS

GX21-9092-3 UM/0S0"
Printed in US.A.

IBM Business Machinn
) 12 75 76 77 78 79 80
Program Punching Graphic Card Electro Number . Program
iy PageD]o " "
Programmer |Dm Instruction Punch — ldentification
pecifications ?
H 8 Model 20
]
14
& § = "EERE
Core .| core > 3| Number [£ HEEEENERE
Sizeto |5{5|Sizeto] | of print |2 5 z| E|S|al8]| |= Refer to the specific System Reference Library manual for actual entries.
8| Compile § R] Execute 2 8| Positions |S] Address S ‘?, A121R18] I3
UME 10 o B I ‘é ttonsIal toStart HEEERE R
=) H s
E HE 8 g { THEEEHEEERE
£ 8{3 = 3 § <M S e
3 4 sl6l7 8 olto]11}12 13 14]15]18 22| 23 24 25)26}27 28 29 30) 39]40|41]42a3as]4s)45[47]
ofa [u] []

Figure D-3. Inquiry Specification on the Control Card Sheet

202

FORTRAN

A FORTRAN main program'may allow itself to be
interrupted by inquiry programs. Interruption occurs at
CALL INQCHK statements in the main program.

AH inquiry programs have CALL SETINQ as their first
statement. For more information, see the /BM System /3
FORTRAN 1V Reference Manual, SC28-6874, and IBM
System/3 FORTRAN 1V Commercial Subroutines,
SC28-6875.

- Inquiry In an Interrupt Environment

An inquiry program can be loaded into storage as would
any other program, or it can be loaded when an inquiry
request is made to interrupt a program that is executing.
When your system is controlled by one program at any
one time, you have a dedicated system. Therefore, in-an
interrupt environment you must interrupt the executing
program to allow the inquiry program to control the
system. You request an interrupt by moving the IN-
QUIRY REQUEST switch to the ON position. For RPG II,
you can interrupt only B-type programs; for FORTRAN,
you can interrupt only a program containing CALL
INQCHK.

The B-type
program is
rolled out
onto disk.

B-Type

Program

The inquiry
program is
loaded into
storagz.

Inquiry

Program

©

The B-type
program is

rolled back

into storage
upon completion
of the inquiry
program,

B-Type

Program

Figure D-4. Roll-Out and Roll-In of a B-Type Program

Note: An inquiry program cannot be interrupted during
processing.

As soon as the INQUIRY REQUEST switch is moved to
the ON position, the system sets an indicator and the exe-
cuting program completes the execution cycle it is in. A
system routine called roll-out then transfers the B-type pro-
gram from main storage onto disk, retaining the current
status of the program (Figure D-4, insert A). Space is al-
located for the rolled out program at system generation
time. (See the /BM System/3 Model 6 Operator’s Guide,
GC21-7501, for system generation procedures.) For the
scheduler work area size, including space requirements for -
roll-in/roll-out, see Library Maintenance Program ($MAINT)
in this manual.

Inquiry Program 203

Planning Inquiry Programs

Since B-type programs can be interrupted, you must deter-
mine what types of programs should be classified as B-type.
Usually long reports that do not have to be finished
immediately, are classified as B-type. Such a report might
be an end-of-month stock status report.

Inquiry programs that can interrupt B-type programs can
be classified as B, B, or |-type. For example, suppose you
are running an end-of-month stock status report, and now
find you must run a payroll job. The payroll job can roll
out the stock status job to satisfy this requirement. Another
example of an inquiry program that might need to be
loaded immediately would be a request to determine where
a certain inventory item is located so that it can be shipped.
Since the inventory file is online for the stock status re-
port, the location of the item could be determined quickiy
by an inquiry program,

204

Those programs you do not want rolled out should be
B-type. For example, you may be running a payroll job
and checks are positioned for the printer. You may not
want the payroll program rolled out since the operator
may have to remove the checks and not reposition them
correctly. If you are running a teleprocessing program,
you cannot roll out the program because you will lose
telephone connections.

In a dedicated system, an I-type program could be loaded
for a length of time to answer requests. For example, an
I-type program could be loaded during the second shift
of a day to answer inquiries into the amount or location
of items in a warehouse. An I-type program remaining

in main storage can only be executed by moving the
INQUIRY REQUEST switch to the ON position.

Appendix E. Library Entry Retrieval Subroutine (SUBR 15)

The Library Entry Retrieval subroutine is incorporated into
a user-written program in order to retrieve entries from any
library. Library entires are passed to the user program one
record at a time. If these records are written to a 5444
Disk File, that file can be processed by the file-to-library
function of the Library Maintenance program (SMAINT).

With SUBR15, a single library entry or a group of entries
can be retrieved. The user must supply certain informa-
tion, such as the name of the entry, the unit containing
the library (R1, F1, R2, or F2), and the type of library to
be accessed (source, object, procedure, or routine).

The format of the records produced by this subroutine
is the same as the format of the records produced by the
library-to-punch function of $MAINT. The first record
returned to the program by the subroutine for each library
entry is an appropriate COPY statement. The last record
for each entry is a CEND statement.

Note: It is the user’s responsibility to ensure that the
library is not being changed by another program while
SUBR15 is reading from that library.

Library Entry Retrieval Subroutine (SUBR 15)

205

USING SUBR15 WITH RPG Il

Linkage to SUBR15 from an RPG |l programis via an
EXIT statement followed by seven RLABL statements.
Information about subroutine linkage can be found in /BM
System /3 Models 4 and 6 RPG |/ Reference Manual,

SC21-7517.

These RLABL statements must be specified in the follow-

ing order:

Sequence Operation

Result Field

Description

1 RLABL

2 RLABL

3 RLABL
4 RLABL

5 RLABL
6 RLABL

7 RLABL

field

field

field

field

INnn

INnn

INnn

The name of a one-character alphabetic field in the RPG Il program that
contains a code identifying the desired library:

O Object
R Routine
S Source
P Procedure

The name of a six-character alphabetic field in the RPG || program that
contains the name of the desired library entry. A library entry may be
requested by name or-by a partial name followed by a period. If a partial
name is used, all entries in the given library beginning with the characters
preceding the period will be copied.

If copying an entire library, a period alone is sufficient specification.

The name of a two-character alphabetic field in the RPG |l program
that contains the unit containing the desired library: R1, F1, R2, or F2.

The name of an 80-character alphabetic field, or a 96-character alphabetic
field, which is to contain each record processed by the subroutine.

The nn is any RPG Il indicator, which will be set on if the desired library
entry is not found, the library does not exist on the specified unit, or the
system source library get routine ($$SYSG) cannot be found.

The nn is any RPG Il indicator, which will be set on when the request for
service is complete. When this indicator is set on, the RPG Il program can
request another entry or entries.

The nn is any RPG Il indicator, which will be set on every time a record
is passed to the RPG |l program from the subroutine.

Note: The three preceding indicators are set off by SUBR15 upon receiving control from the user program.

206

ERROR IDENTIFICATION Example

The following is an example that shows how an RPG I

If an error is detected in SUBR15, all three indicators are
program can use SUBR15.

set off. Any of the following errors may be detected:
® The unit is not R1, F1, R2, or F2.

© The unit is not supported on the system.

‘® The pack on the specified unit is not initialized.

® The library isnot O, R, S, or P.

® The record length is not 80 or 96 bytes.

® The unit, library, or name was changed before end of
request was returned.

® The three indicators are not unique.

RPG CALCULATION SPECIFICATIONS Fom Xz 0332
IBM ional Business Machine C: e
Program Punching Graphic Card Electro Number 'z2 P 75 76 77 78 79 80
Programmer LDne Instruction | pyneh Fooe D]of_ sofas
C 5 Indicators Result Field ﬂ'jﬂ:{gg,
g‘ z I I @ Arithmetic
2 And And Factor 1 Operation Factor 2 22 [Prus [Minus] zero c 1t
‘ FAEE] 3|y Compare omments
we (823 Name | Length €| Bt m
H 4 5 8 £ £ [CookuptFactor 21is
2|8 512 2 2 & |2 [High | Low |Equal
3 4 sfefy sforofinfizf13)1a]1s)16]17)18 19 20 21 22 23 24 25 26 27}28 29 30 31 3233u3535£££m£2ﬁ¢3«454547 4849 50 51]52]53]54 sslss57sssseog__zsag_£segesse7on 72 73 74
o] Je Lolap AG]] 117
ol2| [c X T SUBRILS
°j3| |e KILAIBL Ll BR Fl
of¢] le RLABIL NAME
°ofs| |¢ LABL UN T 2
ofs| e KILABL CiL96| |96
of7{ lc Lﬁ A Lr 1
ool e 48U In/¢§f
oo| |e LABL LW
o] |c |¢§» CIXCIP
) [e) (50710, ILOOAL
112 |C ‘
13 c
14 [+
15 Cc
1|6 o]
[1(7] |C
1l8| |c
1]9] |c
20 Cc
c
c
Cc
o]
[+
ZZ 1L OL 69 69 19 99 99 v9 £9 Z0 19 03 69 55 £5 93 43 #3 03 £3 18 05 67 67 Lb O Sv ¥ Cb Zv (¥ OV 6 8 LC S€ SC VE LE CC IC OC 6L B2 (Z SC G WE CL CC I OL 61 B LL L SL phEL ZL (L OL 6 8 L 9 8 v € Z +

Library Entry Retrieval Subroutine (SUBR 15}

207

The following list describes preceding RLABL result fields:

208

The field LIBRY contains a code (O, R, S, or P) identi-
fying the library.

The field NAME contains the name of the library entry
or entries to be retrieved.

The field UNIT contains the code (R1, F1, R2, or F2)
identifying the location of the library.

The field RECL96 is a 96-byte field that will contain
each record.

Indicator 01 is set on if the library entry is not found or
if the library does not exist on the specified unit.

Indicator 02 is set on when the request is complete.

Indicator 03 is set on for each record. In this example,
the indicator is used to condition the writing of the
record to a file via the EXCPT operation code; by
branching to LOOP1 another record is requested.

Capsule definitions of some common computer terms used

in this manual.

conversational OCL

CPU

end-of-job-halt

IPL

KDE

KSE

object library

object library
directory

OocL

(Operation Control Language) An
OCL statement consisting of a key-
word and a response.

{Central Processing Unit) Nucleus
of the Model 6 hardware.

system halt at the end of every job
to give the operator time for any
necessary housekeeping chores
before beginning the next job.

{Initial Program Load) The process
by which the operator loads into
core storage the program that con-
trols the operation of the system.

Keyboard Data Entry Utility Pro-
gram)

Keyboard Source Entry Utility
Program

contains compiled programs, system
programs, and routines.

contains name and address (track
and sector) of each object program
in the object library.

(Operation Control Language) An
OCL statement consisting of
statement identifiers and parameters.

procedure

sector

source library

source library
directory

source statements

sysgen

system printer

track

vTOC

Glossary

sequence of OCL statements in a
source library.

section of a disk track. Each track
is divided into 24 sectors.

contains procedures, RPG source
programs, and KSE input.

contains name and address (track
and sector) of each source program

.and procedure in the source library.

program instructions that have not
been compiled (translated) into
machine language.

(system generation)} Process required
to get a system ready to run after
installation.

displays OCL statements, utility
control statements, job comments,
and error codes. (The system
printer can also display the normal
output of the job being run.) Also
referred to as system log device.

Each disk is divided into concentric
circles called tracks. ’

(Volume Table of Contents) That
part of a disk which contains de-
tailed information about every file
on the disk.

Glossary 209

210

// ALLOCATE 154
(see also allocate, library maintenance)
// ALT 95
(see also alternate track assignment
program)
// blank 82
// CEND 162
- {see also copy, library maintenance)
// COPY 162
{see also copy, library malntenance)
// DISPLAY 106
(see also file and volume display
program)
. // END (see END control statement)
// READER 30, 32
// REBUILD 100
(see also alternate track rebuild
program)
// REMOVE 113
(see also file delete program)
// RENAME 181
(see also rename, library maintenance)
// SCRATCH 113
(see also file delete program)
// UIN 86
(see also disk initialization program)
in OCL sample job #1 64
// VOL 86
(see also disk initialization program)
in OCL sample job #1 64

/& 32
/* (end-of-job) 32
card OCL 29

conversational OCL 4
? (see delayed response)

$ALT (alternate track assignment)
(see also alternate track assignment
program)
$BUILD (alternate track rebuild)
(see also alternate track rebuild
program)
as response to LOAD NAME in OCL
cycle 39
$CCP communications control program
$COPY (copy/dump)
(see also copy/dump program)
as response to LOAD NAME in OCL
cycle 39
in OCL sample job #4 67

$DELET (file delete)
(see also file delete program)
as response to LOAD NAME in OCL
cycle 39

$DGSRT CCP/disk sort 39

$DIU (data interchange utility)
as response to LOAD NAME in OCL
cycle 39

$DSORT (disk sort)
as response to LOAD NAME in OCL
cycle 39

$INIT (disk |n|t|allzat|on)
(see also disk initialization program)
as response to LOAD NAME in OCL
cycle 39
in OCL sample job #1 64

$KCOPY (copy/dump program) 119

$KDE (keyboard data entry)
as response to LOAD NAME in OCL
cycle 39

$KSE (keyboard source entry)
as response to LOAD NAME in OCL
cycle 39

$LABEL (file and volume label display)
(see also file and volume label display
program)
as response to LOAD NAME in OCL
“cycle 39

$MAINT (library maintenance)
(see also library maintenance program)
as response to LOAD NAME in OCL
cycle 39

$RPG (RPG compiler)
as response to LOAD NAME in OCL
cycle 39

*comments 32

adding source library entries
(SMAINT) 178
AFTER parameter 181
allocate, library maintenance
control statement summary 154
parameter summary 155
uses 152
ALT control statement 95
(see also alternate track assngnment
program)

Index

211

alternate track assignment program
control statement summary 95
example 98
OCL considerations 97
parameter descriptions 96
parameter summary 95
program name 97
program uses 93
alternate track rebuild program
control statement summary 100
example 103
OCL considerations 102
parameter descriptions 101
parameter summary 100
program name 102
program uses 100
substitute data description 101
substitute data summary 100
alternate tracks
alternate track assignment 96
disk initialization 83
incorrect data on 100
apostrophes in control statements 55, 82
ASSIGN parameter 96
asterisk (see comments)

blanks in control statements 82

BUILD cycle, when to use 6

BUILD NAME
in BUILD keyword-response summary 17
its position in the BUILD cycle 16
keyword description 33

BUILDC cycle, when to use 7

BUILDC NAME
in BUILDC keyword-response summary 25
its position in the BUILDC cycle 25
keyword description 33

CALL cycle, when to use 7
CALL NAME
in the CALL keyword-response summary 27
its position in CALL cycle 27
keyword description 33
CANCEL
as response to MODIFY in BUILD cycle 23
as response to MODIFY in CALL cycle 27
as response to MODIFY in LOAD cycle 15
entering the keyword during MODIFY 43
cancelling alternate-track assignments 94
cancelling job {(see CANCEL)

212

card and diskette considerations (§COPY)
card or diskette input 132
card or diskette output 132
considerations for copying an entire
disk 133
in BUILD keyword-response
summary 133, 135
in LOAD keyword-response summary 133
length and location parameters 132
OCL 133
card OCL input 29 ’
cataloged procedures (see procedures)
CCP/disk sort (SDGSRT) 39
CEND control statement
library-to-card copy 162
reader-to-library copy 161
chained procedures 57
changing
file designation 38
object library size
disk considerations 159, 160
SYSTEM parameter 156
work parameter 157
previous OCL statement during MODIFY
phase 42
printed output for system programs (see
FORMS)
size of source library
control statement 154
disk considerations 158, 159
work parameter 157
status of system printer (see LOG)
character set, standard 198
clear initialization 84
coding rules
control statements 82
disk utility programs 82
general 31
multivolume file parameters 55
statement order 32
commas in control statements
disk utilities 82

OoCL
deleting statement 42
in HIKEY 52
comments

entering comments during MODIFY
phase 43
on response line 10
communications control program ($CCP) 39
COMPILE OBJECT
in BUILD keyword-response summary 17
in LOAD keyword-response summary 11
its position in LOAD cycle 10
its position in the BUILD cycle 16
keyword description 34
compiled RPG program location 34
compiling large RPG source programs 55
compiling RPG source programs
recommended method of 65
compress in place 160
conditional assignment of alternate
tracks 94
configuration i

considerations

allocate 153

delete 176

during a call cycle 27

IPL 48

keyword-response summary
build cycle 17
BUILDC cycle 25
call cycle 27

load cycle 11
modify 178
ocCL

alternate track assignment program 97
alternate track rebuild program 102
disk initialization program 90
file and volume label display
program 110
file delete program 116
library maintenance program 182
multivolume files 52
129 programming 29
3741 data station 29
5496 data recorder 29
continuation rules for card OCL 31
control statements
alternate track assignment
ALT statement 95
alternate track rebuild
REBUILD statement 100
coding rules 82
disk initialization
UIN statement 85
VOL statement 85
file and volume label display
DISPLAY statement 105
file delete
REMOVE statement 113
SCRATCH statement 113
library maintenance
ALLOCATE statement 154
COPY statement 162
DELETE statement 176
INSERT statement 179
MODIFY statement 179
REMOVE statement 179
RENAME statement 181
REPLACE statement 179
required to specify program
options 123
conversational OCL, how it works 4

COPY/DUMP program ($COPY)

card or diskette input 132

card or diskette output 132
considerations (see card and diskette
considerations)

control statement summary 124
COPYFILE statement 126

copying and printing 120

copying entire disk 120

DELETE parameter 130

disk or file location 119

examples 136

FILE parameter 131

functions 119

OCL considerations 133

options 120

parameter descriptions 129

printing files 121

record keys 119

relative record numbers 119
REORG parameter 130 ‘
SELECT KEY and PKY parameter 130
SELECT RECORD parameter 131
using a work area 119

copy, library maintenance

control statement summaries 162

-examples 186

parameter summary 165

uses 161
COPYFILE control statement 123
copying

entire disk 120

files 121

library entries
file to library 161
library-to-card 162
library-to-library 161
library-to-printer 161
library-to-printer and card 162
reader-to-library 161
multivolume index files 122
~one removable disk to another on drive
1 119
COPYPACK statement 123
correcting OCL statements 42
CPU (processing unit)
definition 209
create an indexed file from sequential card
file 147
create an indexed file from sequential disk
input 149
creating object library 159
control statement 154
SYSTEM parameter 155
WORK parameter 155
creating source library 158
control statement 154
WORK parameter 155
customer program name
as response to keyword LOAD NAME in OCL
cycle 39

Index

213

data interchange utility ($DIU)
as response to LOAD NAME in OCL
cycle 39
DATA parameter (8DELET) 115
data recorder to OCL code statements on
cards 29
DATA96 response to keyword READER 29
DATE (file date)
in BUILD keyword-response summary 23
in LOAD keyword-response summary 15
keyword-description of 38
position in BUILD sequence 16
position in LOAD sequence 10
restrictions during file creation
runs 38
DATE (system date)
in BUILD keyword-response summary 19
in LOAD keyword-response summary 12
keyword description 34
position in BUILD sequence 16
position in LOAD sequence 10
DATE parameter of file delete program 115
DATE statement, format of
definition 35
general restrictions 35
defective tracks
address on disk 96
definition (see surface analysis)
retesting of 88
delayed response
definition of, restrictions, effect on
system 6
delayed responses in procedure 27
delete
files 112
library entries 176
object library
control statement 154
disk considerations. 159
previous OCL statement during MODIFY
phase 42
procedures 33
records from a file 121
source library
control statement 154
disk considerations 159
DELETE control statement 176
DELETE parameter (SCOPY) 130
delete, library maintenance
control statement summary 176
examples 191
parameter summary . 177
uses 176
designation of library entry 167
direct files
deleting records from 131
OCL consideration for multivolume
files 52
records-tracks conversion for 199
DIRSIZE parameter 156
disk drive, sectors 83
disk files 200

214

disk initialization program 83
control statements 85
OCL considerations 90
parameter descriptions 88
parameter summary 87
program name 90
program uses 83
disk name
characters allowed in 89
length of 89
response to PACK in OCL cycle 36
uses
alternate track assignment 96
alternate track rebuild 101
disk initialization 89
file delete 114
disk organization 200
DISP (displacement) parameter 101
DISPLAY control statement 106
duplicate procedure names
general discussion 33
operator’s options following 33

EJECT
in card OCL 30
in conversational OCL 5, 35
END control statement 82
end-of-job halt
definition 209
response to READY 5
ENTER- key, bypassing procedure
printout 9, 27, 33
ENTER+ key
purpose of, when to use 9
relationship to the PROG START key 9
uses of 9
entering comments
during the MODIFY phase 43
on response line 10
error code (see error messages)
error messages 60)
errors in OCL statements, how to
correct 42

examples
alternate track assignment, conditional
assignment 98
alternate track rebuild, correcting
characters 193
disk initialization, primary
initialization 91
file and volume label display, printing
VTOC information 111
file delete
deleting one of several files having
same name 117
removing one file 118
library maintenance
changing source library size 184
copy file-to-library 189
copying minimum system 186
creating libraries 183
deleting object library 185
deleting temporary entry 191
deleting temporary entry—special
characters 192
insert source library statements 196
printing library directories 187
removing source library
statements 195
renaming source statements 197
replacing library entry 188
replacing procedure statements 193
OoCL)
chained procedures 77
compile RPG Il source 65
copy disk 67)
include utility control statements in
procedure 76
initialize a disk 64
multifile BUILD 69
multifile CALL 71
multivolume indexed file creation 73
multivolume master file update 72
process customer program 66
external indicators
atIPL 48)
considerations when responding to SWITCH
in BUILD cycle 49
in LOAD cycle 48
current setting displayed in SWITCH
statement. 48
using the SWITCH statement to change 48

file and volume label display program
control statements 105
example 111
OCL considerations 110
parameter descriptions 106
program name 110
program uses 105
file date
keyword description 38
restriction during file creation run 38
file dates 115 !
file delete program : Lo
control statements 113
examples 117, 118
OCL considerations 116
parameter descriptions 114
program name 116
program uses 112
file designation
how to change 38
response to RETAIN in OCL cycle 37
file keywords
system-operator interaction during
prompting of 35
FILE NAME
for $DSORT, $COPY, $MICR, $RPG, and
$KDE 36
for RPG programs 36
in BUILD keyword-response summary 19
in LOAD keyword-response summary 12
its position in BUILD sequence 16
its position in LOAD sequence 10
keyword description 36
file names, file delete 114
file statement summary 54
file-to-library copy function of library
maintenance program 168

am

files
direct 199
indexed 199

multivolume 51
records-tracks conversion for 208
sequential 199
FORMS, entering keyword during MODIFY
phase 44
FROM parameter, library maintenance 165

glossary 209

Index

215

HALT
in card OCL. 30, 32
in conversational OCL 38
halt, end-of-job
definition 209
HIKEY (see multivolume files)
hyphens in control statements 82

IBM-supplied RPG compile procedure (RPG)
as response to CALL NAME in CALL
sequence 26
in sample job #2 65
increasing size of 55

IBM System/3 standard character set 198

ID (identification) parameter 89

INCLUDE
during a CALL cycle 47
entering during MODIFY phase 46
entering during the MODIFY phase 40
including control statements in a
procedure 55

response to MODIFY in BUILD sequence 23

restrictions following keyword 47
sample job 76
special considerations involving INCLUDE
statements 47
INCR parameter of MODIFY statement 180
indexed files
multivolume
file statements for 54
OCL considerations for 51
OCL sample jobs for 73, 75
record-tracks conversion for 199
initial program load (IPL)
definition 209
establishing system date at 34
initialization
clear 84
general definition 83
primary 84
secondary 84
INQUIRY program
classifying programs for inquiry 121
planning inquiry programs 202
requesting inquiry 201
INSERT statement ($MAINT)
control statement 179
functions 178
parameters 181
inserting source library entries
(SMAINT) 178

216

KEY LENGTH (see multivolume files)
keyword
descriptions, OCL 33
flowcharts, what they are and how to use
them 2
prompting 7
response summary
BUILD sequence 17
CALL sequence 27
LOAD sequence 11
what they are and how to use them 2
sequences 2
for each keyword 33
what they are and how to use them 2

LABEL parameter
file and volume label display 107
file delete 114
in BUILD keyword-response summary 20
in LOAD keyword-response summary 13
keyword description 36
position in BUILD sequence 16
position in LOAD sequence 10
when response is required 37
large RPG programs, compiling 55
length on control statements 82
LENGTH parameter 101, 129
library
boundary changes 151
directories
definitions 152
directory printouts 170
object library directory size 156, 157
source library directory size 158, 159
entries
choosing designation 162
copy considerations 162
copy control statements 162
deleting entries 176
naming entries 167
organization®in libraries 151
renaming entries 181
types 151
library entry retrieval subroutine
(SUBR15) 205

library maintenance program
control statement summaries
allocate 154

copy 162
delete 176
modify 179
rename 181
examples
allocate 183
copy 186
delete 191
modify 193

rename 197
library description 151
LIBRARY parameter 165
library to library copy
" considerations 168, 169
control statements 163
library to printer and card copy
considerations 169
control statements = 164
library, object
changing upper boundary 151
definition 209
library, source (see source library)
parameter summaries
allocate 155

copy 165
delete 177
modify 180

rename 181
program name 182
program uses

allocate. 152

copy 161
delete 176
modify 178

rename 181

line counter specifications (see FORMS)

LIST parameter of MODIFY statement
listing source library statements
(BMAINT) 178

LOAD NAME

in BUILD keyword-response summary 17

in LOAD keyword-response summary

keyword description ‘39

position in BUILD sequence 16

position in LOAD sequence 10
LOAD sequence, when to use 6
LOCATION

considerations for multivolume files 50
in BUILD keyword-response summary 22

in LOAD keyword-response summary

keyword description 37

position in BUILD sequence 16

position in LOAD sequence 10
location of libraries on disk

placement of object library 160

placement of source library 158

source with respect to object 151
LOG

CRT as log device 59

entering during MODIFY 59

entering during READY 59

2222 printer as log device 58

maintaining correct
date 122
relative record numbers 122
volume sequence numbers 122
Model 6 disk organization 200
Model 6 job cycle 4
MODIFY (OCL)
changing a previous OCL statement 42
deleting a previous OCL statement 42
disk sort specifications in a
procedure 23, 27
entering CANCEL 43
entering comments 43
entering FORMS 44, 58
entering INCLUDE 46
entering LOG 59
in BUILD keyword-response summary 23
in CALL keyword-response summary 26
in LOAD keyword-response summary 15
keyword description of MODIFY
options 40
not prompted after CALL NAME 33
. position in BUILD cycle 16
position in CALL cycle 27
position in LOAD cycle 10
statement numbers 9
MODIFY statement (SMAINT)
control statement summary 179
functions 178
parameters 180
MODIFY—entering LOG 59
multiple files 36
muitivolume files 51
coding for 55
maintain correct date and volume sequence
number 122
OCL considerations for 52
sample jobs 69

name of source program, as response to LOAD
NAME 34
NAME parameter (BSMAINT) 165
naming library entries 167

characters to use 167

length of name 167

restricted names 167
NEWNAME parameter 166
NOEJECT

in card OCL 30

in conversational OCL 5, 47
NOHALT

in card OCL 30

in conversational OCL. 5, 47

Index

217

object library
changing size
control statement 154
disk considerations 1§57
SYSTEM parameter 156
WORK parameters 157
creating
control statement 154
disk considerations 156
SYSTEM parameter 156
WORK parameter 157
definition 151
deleting
control statement 154
disk considerations 156
reorganizing
control statement 154
disk considerations 156
object library directory
contents 153
definitions 152
printout 170
size 156
OBJECT parameter 156
object programs,. definitions of 151
OCL considerations
alternate track assignment 97
alternate track rebuild 102
copy/dump program 133
disk initialization 90
file and volume label display 110
file delete 116
library maintenance 182
multivolume files 52
OCL cycle 4
OCL guide, sample form 3
OCL, definition 4, 209
operation control language (OCL),
definition of 4, 209
operator's OCL guide, sample form 3
organization of library entries 151
overriding system date 35

218

P {permanent) files
deleting a procedure from a source
library 33
restrictions 37
when to assign a P (permanent)
designation to a file 37
P/S, definiton 63
PACK parameter
alternate track assignment 96
alternate track rebuild 101
considerations for multivolume files 52
disk initialization 89
file delete 114
in BUILD keyword-response summary 20
in LOAD keyword-response summary 13
keyword description 36
OCL 36
position in BUILD sequence 16
position in LOAD sequence 10
parameter 82
parameter descriptions
alternate track assignment 96
alternate track rebuild 101
copy/dump program 129
disk initialization 88
file and volume label display 106
file delete 114
library maintenance
allocate 156

copy 165
delete 177
modify 180

rename 181
permanent (P) files
restrictions 37
when to assign a P (permanent)
designation to a file 37
permanent library entries 151
primary initialization 84
primary tractor
in entering LOG during MODIFY phase 59
lines per page setting for 44, 58
print positions of 44, 58
printing entire VTOC 105
printing file information from VTOC 105
printing files 121
printing library directories 161
printing library entries 161
printing part of an indexed file 139
procedure
definition of 209
deleting 33
inserting statements 178
listing 178
modifying 178
removing statements 178
replacing statements 178

procedure name
response to BUILD NAME in BUILD
cycle 17

response to CALL NAME in CALL cycle 27

restrictions on 33
processing unit (CPU), definition 209
PROG START key
(see also keyword-response summary)
uses of 9
when to use it 9
program names
alternate track assignment ($ALT) 97
alternate track rebuild ($BUILD) 102
disk initialization ($INIT) 90
file and volume label display
(SLABEL) 110
_file delete ($DELET) 116
library maintenance ($MAINT) 182
program operation 80
all program except library
maintenance 80
library maintenance 81
prompting, how its done 4
punching library entries 162

question mark key, purpose 6

reader to library copy
considerations 168
control statements 162
READY
in BUILD keyword-response summary 17
in CALL keyword-response summary 27
in LOAD keyword-response summary 11
keyword description 39
position in BUILD sequence 16
position in CALL sequence 27
position in LOAD sequence 10
position in the Model 6 job cycle 4
READY-entering LOG 59
REBUILD 100
RECORDS
considerations for multivolume files 53
in BUILD keyword-response summary 21
in LOAD keyword-response summary 13
keyword description 37
position in BUILD sequence 16
position in LOAD sequence 10
records-track conversion 199
relative record number 131

REMOVE statement ($DELET) 113
REMOVE statement (SMAINT)
control statement summary 179
functions 178
parameters 180, 181
removing source library statements
($MAINT) 178
RENAME, library maintenance
control statement summary 181
example 197
use 181
renaming library entries 181
REORG (reorganize) parameter 130
reorganizing a file 121
reorganizing object library
control statement 154
disk considerations 160
reorganizing source library
control statement 154
disk considerations 159
REPLACE statement (SMAINT)
control statement summary 179
functions 178
parameters - 180
replacing library entries
library to library copy 161
NEWNAME parameter 166
reader to library copy 161
RETAIN parameter 166
replacing source library entries
($MAINT) 178
requirements
control statements 95, 123
list 52
RESER parameter of MODIFY statement 180
reserializing a source library entry
(SMAINT) 178
restrictions
after include = 47
allocate 153
control statement 153
delete 176
during file creation runs 38
during inquiry 57
library 153
modify 178
temporary files 38
RETAIN parameter
library maintenance program 166
OCL
in BUILD keyword-response summary 22
in LOAD keyword-response summary 14
key description 37
position in BUILD sequence 16
position in LOAD sequence 10
RPG compiler (5RPG), response to LOAD NAME
in OCL cycle 34
RPG file desc, spec, source of RPG filename
in OCL cycle 35
RPG filename, response to FILE NAME in OCL
cycle 35

Index

219

RPG programs
compiling 65
compiling large RPG programs 55
recommended method of compiling 65
RPG source programs’
compiling 65
compiling large RPG source programs 55
recommended method of compiling 65
RUN
keyword description 48
response to MODIFY in BUILD sequence 24
response to MODIFY in CALL sequence 28
response to MODIFY in LOAD sequence 15

S (scratch) files
(see also examples)
restrictions 38
when to apply an S (scratch) designation
to a file 38
scheduler work area 156
scratch (S) files
restrictions 38
when to apply an S (scratch) designation
to a file 38
SCRATCH control statement 113
secondary initialization 84
secondary tractor (of 2222 printer)
entering LOG for 58
lines per page setting for 58
sector, definition 209
SELECT control statement 123
SELECT KEY parameters 131
SELECT PKY parameters 131
SELECT RECORD parameters 131
SEQFLD parameter of MODIFY statement 180
sequence number in MODIFY function 178
sequential files
deleting records from 120, 131
printing part of 119, 123
records-tracks conversion for 199
sequential multivolume files, OCL
considerations for 52
setting external indicators 48
single quotation mark key (see multivolume
files)
SORT source statements ir:
procedure 23, 28
SOURCE
in BUILD keyword-response summary 18
in LOAD keyword-response summary 11
its position in BUILD sequence 16
its position in LOAD sequence 10
keyword description 34

220

source library
adding entries 178
changing size
control statement 154
disk considerations 158
WORK parameter 157
contents 200
creating
control statement 154
disk considerations 158
WORK parameter 157
definition 151, 209
deleting
control statement 154
disk considerations 159
inserting entries 178
listing entries 178
putting procedures in 33
relationship to the BUILD and CALL
sequences 4
removing entries 178
reorganizing
control statement 154
disk considerations 159
replacing entries 178
reserializing entries 178
source library directory
contents 153
definition 152, 209
printout 170, 187
putting procedure names in 33
size 156
SOURCE parameter 156
source statements
as input to the RPG compiler 56
definition 151, 209
source unit 34
special characters, their uses and
location 82
standard character set 198
statement numbers
in modify 40
in OCL cycle 9
status of system printer, consideration
when responding 58
SUBR15 (library entry retrieval
subroutine) 205
substitute data 100
surface analysis
alternate track assignment 95
disk initialization 85
SWITCH
in BUILD cycle 19
in LOAD cycle 12
keyword description 48
position in BUILD sequence 16
position in LOAD sequence 10
sysgen, definition 209
system configuration i

system date
keyword description 34
overriding 35
responding in LOAD sequence 12
responding to in BUILD sequence 19
system directory
definition 153
printout 170
system input device, use in library
maintenance 165
system operator interaction during keyword
. prompting 7
SYSTEM parameter 156
system printer
(see also FORMS and LOGS)
definition 209
system program
changing printed output for (see FORMS
under MODIFY)
included in object library 156
name as response to keyword LOAD NAME in
OCL cycle 39

T (temporary) files
restrictions 38
when to assign a T (temporary)
designation to a file 37

temporary library entries 167

testing condition of disk tracks (see

surface analysis)

TO parameter for library maintenance
allocate 156
copy 166

TRACK parameter ($BUILD) 101

TRACKS o
considerations for multivolume files 53
definition 209
in BUILD keyword-response summary 21
in LOAD keyword-response summary 14
keyword description 37 :
position in BUILD sequence 16
position in LOAD sequence 10

tracks-records conversion 199

TYPE parameter 88

types of library directories 167

types of library entries 167

UIN control statement 86
UNASSIGN parameter 96
unconditional assignment of alternate
tracks 96
UNIT parameter
alternate track assignment 96
alternate track rebuild 101
disk initialization 88
file and volume label display 106
file delete 114
OCL
BUILD unit 34
FILE unit 36
multivolume files 52
SOURCE unit 34
using a work area 119
utility control statements
coding 82
in procedure (see INCLUDE)

VERIFY parameter
alternate track assignment 96
disk initialization 88
VOL control statement 86
VTOC (volume table of contents)
contents - 200
definition 105, 209
example of printout 107
relationship to LABEL 36
printing entire VTOC 105
printing file information only 105
VTOC file name
as response to keyword LABEL
in OCL cycle 36
how to distinguish files with
same VTOC name 38

work area
copy/dump 119
library maintenance 157
WORK parameter)
copy/dump 130
library maintenance 157

1255 MCR utility (8MICR), in response
to LOAD NAME 39

Index

221

222

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
US.A.

{International)

GC21-7516-5

§-91G/-1Z0D °V'S'N Ul paluld (9E-ES "ON 3|1d4) [ENUBN 8d0uBJaaY swelbosd AN s pue 100 9 pPue ¢ s|apo £/S gl

