i
(11 H (1311
008) o000
0000006~0080008 °
000000003000000000
° 000000006 °
.8 900000000000
e . o000
oo s
e0ee 0000
oeee 0000
e0eceese °
°0V0000 000
0000000 [o
0000000 090000000
0000 [ceoe
° 0000
° oeee
[) 00000000
s00008 [o
oeceo [0
o0 T
00 ¢
s
00006 I
9000)
‘000000)
0000¢ : °
e00 2000
000 o000
e00 °
000 e00
oo o000
))O00S
e0e e
0000000 090
00000000000
00000000000
o000
. 0000
2000 [T bf.
00000 20000060
000000 o
00000060 » 1]
0000000 [
0008 ° °0
°)000
® 0000
° 000
® 000
0000 00
1113 °
©00000
°
[11}
0000 00000
:.ll 0000000
° ®
o
°
00¢
0)0
L
°
(1] >
0 20
000000 200
oo
o0
[1]
o0 9 00
° o 00000
° eoee
00000
000000
000000
000800
0000 0000
0000 coee
0000 cocee °
88935282
0000000000 >
0000
000000
000000
00000
000000
0000
.. 9 °
@ °
® °
1]
004 0000
00 o000
J ° :
cseo0e 000
00000 119
U
0000 >
1 00000)00
o 00000
o0 ee00
oeoe
o0 020004
° 1]
00000¢
00000¢
>0
0000 0006
o000 °
0000
©0000
° 28060
2004
1T 200
DO 90
>0
D ¢

IBM System/3

Model 6 .
Operation Control Language and
Disk Utility Programs

Reference Manual

Program Number 5703-SC1

GC21-7516-2

PREFACE

This publication is intended for use by program-
mers who are doing either of the following:

1. Writing Operation Control Language (OCL)
statements needed to run programs in the
system,

2. Writing utility control statements necessary
to run disk utility programs supplied by the
system.

Prerequisite Publications
1BM System/3 Model 6 Introduction, GA21-9122

Other Publications Referenced in This Manual
1BM System/3 Model 6 Operator’s Guide,
GC21-7501

1BM System/3 Disk Sort Reference Manual,
SC21-7522

IBM System/3 Model 6 Conversatiorid Utility
Programs Reference Manual, SC21-7528

1BM System/3 Model 6 Utility Program for
I1BM 1255 Magnetic Character Reader Reference
Manual, SC21-7527

1BM System/3 Model 6 RPG Il Reference
Manual, SC21-7517

Third Edition (September 1971)

L 4

This is a major revision of, and obsoletes, GC21-7516-1 and Technical Newsletter GN21-7575.
Changes are indicated by a vertical line to the left of the change.

This edition applies to version 5, modification 0 of the IBM System/3 Mode! 6 and to all subse-
quent versions and modifications until otherwise indicated in new editions or Technical News-
letters. Changes are continually made to the specifications herein; before using this publication
in connection with the operation of IBM Systems, consult the latest IBM System/3 Newsletter
Order Number GN20-2228 for the editions that are applicable and current,

Requests for copies for IBM publications should be made to your 1BM representative or to the
IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been

removed, comments may be addressed to IBM Corporation, Programming Publications, Depart-
ment 425, Rochester, Minnesota 55901.

©Copyright International Business Machines Corporation 1971

MACHINE REQUIREMENTS

Conversational OCL and all utility programs except
Library Maintenance can be done using the minimum
configuration of System/3 Model 6.

The minimum configuration is as follows:

o IBM 5406 Processing Unit, Model B2 —
including keyboard

o IBM 5444 Disk Storage Drive

e IBM 5213 Printer

OCL statements from cards and Library Maintenance
functions involving cards require an additional unit:

IBM 5496 Data Recorder, Mode! 1 with System/3
Model 6 On-Line Feature,

CONTENTS

MACHINE REQUIREMENTS .

HOW TO USE THIS MANUAL

PART 1. OPERATION CONTROL LANGUAGE
HOW TO USE PART | .

SUMMARY OF CONVERSATIONAL OCL .
The Job Cycle
The Four OCL Cycles

BUILD and CALL Cycles

System-Operator Interaction During Keyword Promptlng .

End-of-Statement Keys . .
Program Start (PROG START) or Enter Plus
(ENTER+) .
Enter Minus (ENTER—)

Statement Numbers in an OCL Cycle .

Comments

Inquiry Interrupt
Restrictions During Inqunry .
Keyword Sequence for OCL Load Cycle
Keyword-Response Summary {Load Cycle) .-
Keyword Sequence for OCL Build Cycle .
Keyword-Response Summary (Build Cycle) .
Keyword Sequence for OCL Call Cycle
Keyword-Response Summary (Call Cycle)

KEYWORD DESCRIPTIONS .
BUILD NAME .
Duplicate Procedure Names .
Deleting a Source Library Procedure .
BUILDC NAME .
CALL NAME
COMPILE OBJECT .
SOURCE . .
Ina LOAD Cycle
Ina BUILD Cycle
UNIT; Source Unit .
DATE (System Date) .
Qverriding the System Date
Format of the DATE Statement
FILE NAME . . .
FILE NAME for Customer Programs . .
FILE NAME for $RPG, $DSORT, $COPY, $MICR
and $KDE
System-Operator Interactlon Durmg Promptmg of
File Keywords
Multiple Files
UNIT; File Unit .
PACK .
LABEL . . .
RECORDS (and TRACKS)
Responding to TRACKS
Responding to RECORDS .
LOCATION .
RETAIN .
File Creation .
Changing File Desagnatlon of Ex:stmg Flle
Deleting Files

45
45
45
45
45
45
46
46
46
46
46
47
47

a7 .

48
48

48

49
50
50
50
50
50
51
51
51
51
51
52
52

DATE (Fite Date) .
Restriction During File Creatlon

HALT

LOAD NAME .
For Customer Programs
For System Programs

MODIFY .
MODIFY; Changing a Previous OCL Statement .
MODIFY; Deleting a Previous OCL Statement
MODIFY; Entering Comments
MODIFY; Cancelling Job . .
MODIFY; Entering Forms
MODIFY:; Including Control Statements

NOHALT.

READY

RUN

SWITCH .
Indicator Settings
IPL Considerations .
Duration of SWITCH Settmg . :
Operator-System Interaction for SWITCH Statement
(LOAD Cycle)
Operator-System lnteractlon for SWITCH Statement
(BUILD Cycle) . .
Operator-System Interaction for SWITCH Statement
(CALL Cycle)

SAMPLE JOBS . .o
Sample Job 1. Initialize Disk .
Explanation . .
Sample Job 2. Compile an RPG Source Program
Explanation . . .
Sample Job 3. Process Customer Program “INVUPD"
Explanation .
Sample Job 4. Copy F|Ie Dusk to Dnsk
Explanation . .
Sample Job 5. Multi- Frle BUILD
Explanation .
Sample Job 6. Multi- Flle CALL
Explanation . -

PART Il. DISK UTILITY PROGRAMS .

HOW TO USE PART I
Writing Utility Control Statements
Writing OCL Statements . g
Capital Letters, Numbers, and Special Characters

INTRODUCTION
General Program Operation
Library Maintenance Program .
Control Statements .

DISK INITIALIZATION PROGRAM .,

Control Statement Summary for $INIT

Parameter Summary

Parameter Descriptions v e e e e e e
TYPE Parameter (UIN)
UNIT Parameter (UIN)

65

66

67

69
70
71
72
73
74
75
76
77
78
80
81
82

83

85
85
85
85

87
87
88
88

91
92
93
94
94
94

VERIFY Parameter (UIN)

ERASE Parameter (UIN) .

CAP Parameter .

PACK Parameter (VOL)

ID ({ldentification) Parameter (VOL)
OCL Considerations
Example . .

Primary Imtlalrzatlon of Two Dlsks
Messages for Disk Initialization

ALTERNATE TRACK ASSIGNMENT PROGRAM .
Control Statement Summary for $ALT
Parameter Summary
Parameter Descriptions e e
PACK Parameter
UNIT Parameter
VERIFY Parameter
ASSIGN Parameter .
UNASSIGN Parameter .
OCL Considerations
Example .
Conditional Assrgnment e e e .
Messages for Alternate Truck Assngnment . e e s

ALTERNATE TRACK REBUILD PROGRAM
Control Statement Summary for $BUILD
Parameter and Substitue Data Summary
Parameter and Substitue Data Descriptions
PACK Parameter
UNIT Parameter
TRACK Parameter
LENGTH Parameter .
DISP (Displacement) Parameter .
Substitute Data .
OCL Considerations
Example . .
Correcting Characters on an Alternate Track

FILE AND VOLUME LABEL DISPLAY PROGRAM .

Control Statement Summary for $LABEL
Parameter Summary
Parameter Descriptions.
UNIT Parameter
LABEL Parameter .
OCL Considerations
Example .
Printing VTOC Informatlon for Two Fnles

FILE DELETE PROGRAM
Control Statement Summary for $DELET
Parameter Summary
Parameter Descriptions

PACK Parameter

UNIT Parameter

LABEL Parameter

DATE Parameter

DATA Parameter (Remove Only)
OCL Considerations .

Example
Deleting One of Several Flles Havmg the Same
Name . . e e e
Removing One Frle c e e e e .

95
95
95
96
96
97
98
98
99

101

102
103
104
104
104
104
105
105
106
107
107
108

109
109
110
111
111
111
111
111
11
111
112
113
113

115
115
116
116
116
116
119
120
120

121
122
124
126
126
126
126
126
126
127
128

128
129

DISK COPY/DUMP PROGRAM e e e e
Control Statement Summary for $COPY ., . . .
Parameter Summary
Parameter Descriptions .
FROM and TO Parameters (COPYPACK)
OUTPUT Parameter (COPYFILE)
DELETE Parameter (COPYFILE) .
REORG (Reorganize) Parameter (COPYFILE)
WORK Parameter (COPYFILE) .
SELECT KEY and PKY Parameters (SELECT)
SELECT RECORD Parameters (SELECT) .
Copying Multi-Volume Files . .
Maintaining Proper Volume Sequence Numbers .
Maintaining Correct Relative Record Numbers
Direct File Attributes ‘
Copying Multi-Volume Index Flles
OCL. Considerations
Examples.
Copying an Entlre Dnsk .
Copying a File From One Disk to Another .
Printing Part of a File

LIBRARY MAINTENANCE PROGRAM
Library Description . . .
Organization of This Section.

ALLOCATE .

Uses

Control Statement Summary. e e e e e e

Parameter Summary
Parameter Descriptions.
COPY.
Uses . e e e e e
Control Statement Summary: Reader-To-Disk
Control Statement Summary: Disk-To-Printer
Control Statement Summary: Disk-To-Card
Control Statement Summary: Disk-To-Printer and
Card .
Parameter Summary
Parameter Descriptions
DELETE .
Uses
Control Statement Summary
Parameter Summary
RENAME
Use .
Control Statement Summary
Parameter Summary
OCL Considerations
ALLOCATE Examples .
Creating Both Source and Object L|brar|es ona Dnsk
Changing the Size of a Source Library
Deleting the Object Library from a Disk .
COPY Examples .

Copying Minimum System from One DISk to Another .

Printing Library Directories
Replacing a Library Entry: Replacement Commg from
Another Disk

131
132
134
136
136
136
137
137
137
138
138
139
139
139
139
139
140
143
143
144
146

147
147
148
149
149
149
150
151
156
156
158
160
161

162
163
166

176
176
177
178
179
179
179
180
181
182
182
183
184
185
185
186

187

Contents i

DELETE Examples . .
Deleting a Temporary Entry from a L|brary .
Deleting All Temporary Entries With Names That Begln
With Certain Characters
Deleting All Permanent Library Entrles of One Type
RENAME Example .
Renaming a Set of Source Statements ina Source
Library

APPENDIX A: ADVANCED TOPICS FOR OCL
Multi-Volume Files. . P
File Statements for Multl-Volume Flles e e
OCL Considerations
List Requirements . . . « e
OCL Considerations for Multi- Volume Flles
Coding Multi-Volume File Statements . . .
Changing Multi-Volume File Statements with Modlfy
Keyword .
Sample Job 7. Updatmg I\Ihltl-Volume Master Frle .
Explanation
Sample Job 8. Creating a Multl-Volume Indexed Flle .
Explanation .

Sample Job 9. Mamtamlng a Mult| Volume |ndexed F|Ie

with Packed Keys.

Including Sort Source or Utlhty Control Statements in a

Procedure

Sample Job 10. Includmg Utlllty Control Stetements in
a Procedure

Increasing File Size of the RPG Procedure

Entering RPG |l Source Statements from the Keyboard
at Compile Time

Chained Procedures

Sample Job 11. Chained Procedure

APPENDIX B: RECORDS — TRACKS CONVERSION
For Sequential or Direct Files .
For Indexed Files

APPENDIX C: DISK ORGANIZATION
" Volume Table of Contents (VTOC)
Source Library
Object Library
Files

188
188

189
190
191

191

193
193
193
194
194
196
198

198
198
199
199
200

201

202

202
203

203
204
209

212
212
212

213
213
213
213
213

APPENDIX D: OCL FOR THE 22” PRINTER (IBM
2222 PRINTER)

Using the FORMS Statement w1th the 22" Pnnter .

Log Device
MODIFY — Entermg the Keyword FORMS

APPENDIX E: OCL FOR THE IBM 2265-2 DISPLAY
READY — Entering LOG
MODIFY — Entering LOG .

APPENDIX F: OPERATOR’S OCL GUIDE

APPENDIX G: CARD OCL FOR MODEL 6
Assigning Data Recorder As System Input Device
Returning Control to Keyboard

Card Format of OCL Statements .

General Coding Rules

Statement Order

Coding Multi-Volume File Parameters

APPENDIX H: OCL ERROR MESSAGES .

APPENDIX I: CO-RESIDENT SYSTEMS

APPENDIX J: IBM SYSTEM/3 STANDARD CHARACTER

SET

GLOSSARY .

INDEX

214
214
214
215

216
217
218

219
220
220
220
220
223

223
224

225

231

232

233

235

HOW TO USE THIS MANUAL

This publication contains two parts. Part | describes Operation Control Language (OCL)
statements. Part Il describes disk utility programs.

Part |
Refer to Part | if you want to know:

1. What an OCL statement is.

2. How to enter the OCL statements required to run your jobs.

Part Il

Refer to Part |1 if you want to know:

1. What disk utility programs are supplied with the system.
2. The function of each disk utility program.

3. The Operation Control Language (OCL) statements and utility control
statements necessary to request each disk utility program.

How to Use This Manual 1

PART I.
OPERATION CONTROL LANGUAGE

Part I. Operation Control Language 3

Part | of this manual is designed to help you fill
out the OCL guide sheets your operator will use
in response to the OCL prompting for each job.
You can either design an operator’s OCL guide
sheet for your installation or use the pre-printed
form that is available (see Appendix F: Operator’s
OCL Guide).

This part contains a main section and several
appendixes. The main section contains three
different levels of information to program the
primary OCL cycles: LOAD, BUILD, and CALL.

Here is how to use each level of information:

o Use the KEYWORD SEQUENCES for an
overall understanding of the OCL cycle.

e Use the KEYWORD-RESPONSE SUMMARIES
for a quick recall of all the possible entries
for each OCL statement.

o Use the KEYWORD DESCRIPTIONS when
you need a detailed explanation of a particular
keyword.

Keyword Sequences | shows the order of the OCL
keywords for a cycle and
indicates which keywords
require responses.

Keyword-Response lists keywords and possible

Summaries responses for the three OCL
cycles. In the Résponses
column:

o Words or letters in all
capital letters (FORMS,
BUILD, R1) represent
actual entries.

e Words or letters not in
Disk Name) represent

information you must
supply.

all capital letters {mmddyy,

gives detailed information

>
Keyword Descriptions about each keyword.

HOW TO USE PART I
R

The appendixes contain information on program-
ming OCL for complex jobs and special features
or devices.

A. Use Appendix A: Advanced Topics for
OCL for information on:

o Multi-volume files.

e Including sort source or utility control
statements in a procedure.

e Increasing file size of the RPG procedure.

e Entering RPG Il source statements from
the keyboard.

e Chained procedures. The BUILDC
cycle is explained using the three levels
of information used in the main OCL
section.

B. Use Appendix B: Records-Tracks Con-
version for information on how to convert
number of records to number of tracks.

C. Use Appendix C: Disk Organization for
information on how the disk packs are
organized. i

D. Use Appendix D: OCL for the 22"
Printer for information on using the
optional 22 inch printer.

E. Use Appendix E: OCL for the IBM 2265-2
Display for information on using the
2265-2 Display unit for OCL statements.

G. Use Appendix G: Card OCL for Model 6
for information using the online data re-
corder to enter OCL statements on cards.

H. Use Appendix H: OCL Error Messages
for detailed explanation of error messages

printed during OCL prompting.

I Use Appendix I: Co-Resident Systems
for information on using System/3 BASIC.

How to Use Partl 5

Every job run on the Model 6 requires a set of
Operation Control Language (OCL) statements to
give the system information about the job to be
run (such as what program to use, what files to
use, what job date to use, etc.). An OCL statement
consists of a keyword and a response.

The OCL for Model 6 is called conversational OCL
because it is really a conversation between the
system and the operator. The system prints a
keyword and waits for the operator to respond.

SUMMARY OF CONVERSATIONAL OCL
|

THE JOB CYCLE

The system will prompt READY when it is ready
to run jobs. (For information on preparing the
system to run jobs, see the /BM System/3 Model
6 Operator’s Guide, GC21-7501.) The response
to READY tells the system what type of cycle
you want to run,

Summary of Conversational OCL

7

Job Cycle

System prompts READY

!
1 To change To change To elxecute To build a
To halt input device log device ajob procedure
after
each job To continue
{ from job to
Operator Operator Operator , Operator job without
% types types types % types halting
READER LOG LOAD BUILD
Operator Operator
Operator %types % types
types CALL BUILDC
HALT
' : Opergtor Operator
See Appendix G: See READY — supplies % types
Card OCL for Entering LOG ocL NOHALT
Model 6 in Appendix E statements
System reads .
OCL statements @ Operator
from supplies
procedure OCL
statements

System puts
statements in
procedure

System loads and
executes program

System prompts READY

THE FOUR OCL CYCLES
There are four OCL cycles: LOAD, BUILD, CALL,
and BUILDC. The cycle you use depends on the
type of job you're going to run.

Type of Job OCL Cycle Result
For jobs you want to LOAD Provides the OCL statements
run only a few times necessary to run the job
‘For jobs you will BUILD ~ Puts the OCL statements
run frequently ' for a job into a source library
procedure®
CALL Calls the procedure™ from
the source library
BUILDC** Chains procedures*

* A set of OCL statements in a source library is called a procedure.

* ¥

See Chained Procedure in Appendix A.

BUILD and CALL Cycles response to any of these BUILD keywords

Using the BUILD and CALL cycles for jobs you
run frequently saves operator time. Once the
OCL statements for a job are putin a source
library (with a BUILD cycle), you can request
them (with a CALL cycle) anytime you want to
run the job. Since the CALL cycle normally
prompts only four keywords, the operator time
involved is minimal.

Delayed Responses in the BUILD Cycle
Responding to a keyword by typing a question
mark is referred to as a delayed response. De-
layed responses are valid only in the BUILD
cycle and only after keywords that contain a
delayed response in the keyword-response
chart (see Keyword-Response Summary
(Build Cycle) in Appendix A). A delayed

will do the following:

Cause the system to reprompt the keyword
during the CALL cycle.

Force the operator to respond to the keyword
when it is reprompted during the CALL cycle.
(The system won't continue the CALL
prompting cycle until the operator types a
valid response.)

Summary of Conversational OCL

Printer

Halt Code Display Keyboard

Keyboard
Program Start Key Single Quote Field Erase Key Enter — Key
(For Multi-Volume Files)
\ ezl sl el "N 1= X ENTER
01 02 || 03 || 04 \ITAB 1 2 3 4 5 & 7 8 9 0 . - ||IBKSP ERASE _
osffos |l o7]fo8 [lprogll @ I W || EllRIT]Y[Ul']lo " P _LllRETURN 7]I 8 |l o
o9 lf1o 1|l 2||START|lAa]lls||olfF]lcwllslllci:i]|? "
; * 4) 5 6 ENTER
[+
13 |[14 || 15 sHIET || 2 x" cllv]ein " M " <> \SH.FT " 1 " 2| 3
i - [A
Comma Question Mark Asterisk Enter + Key
{To Delete a Previous (For Delayed (For Comment)
OCL Statement) Response)

10

SYSTEM-OPERATOR INTERACTION DURING
KEYWORD PROMPTING
The system analyzes the operator’s response to each
keyword. If the response contains a formatting
error (such as invalid characters or duplicate pro-
cedure names), the system prints an error message
and reprompts the keyword. Appendix H lists
the error messages and a description of what
caused the error. If the operator does not know
the correct response, entering /* as a response to
any prompt will cancel the job and cause READY
to be prompted.

Summary of Conversational OCL 11

System-Operator Interaction During Keyword Prompting

System prompts keyword

Question:
Does operator’s OCL. guide
show a response to the keyword

YES NO

Operator types
in response

!

Operator presses end-of-statement
key to indicate end of statement

Question:
Does response contain
error (s)

YES NO

System prints System prompts
error message next keyword in
or code the cycle

Operator looks up

error message or code
and possible options in
operator’s manual

Operator uses one
of the options

e

END-OF-STATEMENT KEYS

The operator must respond to each keyword that
the system prompts. The operator responds to a
keyword by typing the required information (if
the keyword applies to the job) and by pressing

an end-of-statement key. The end-of-statement
key can be either PROG START or ENTER —
The Keyword-Response Summary charts in
Appendix A explain the effect of end-of-statement
keys on the prompting sequence.

Program Start (PROG START) or Enter Plus
(ENTER+)

Pressing the PROG START or ENTER+ key
tells the system that the response is complete
and to prompt the next keyword.

Enter Minus (ENTER-)

Pressing the ENTER— key to end a response causes
different processing depending on what keyword
was prompted and what type of OCL cycle is

being run.

Pressing ENTER— After LOAD NAME or UNIT
ina LOAD Cycle: 1f the ENTER— key is used
as an end-of-response to the LOAD NAME or
UNIT prompts in a LOAD cycle, the remaining
keywords in the cycle will be bypassed and
MODIFY prompted.

Pressing ENTER— After LOAD NAME or UNIT in a
ina BUILD Cycle: 1f the ENTER— key is used as
an end-of-response to the LOAD NAME or UNIT
prompts in a BUILD cycle, the system will prompt

- COMPILE OBJECT, SOURCE, or UNIT.

Pressing ENTER— After FILE NAME: 1f the
ENTER— key is used as an end-of response to
the FILE NAME prompt, the system prompts
KEY LENGTH and HIKEY for multi-volume
indexed files (see Multi-Volume Files in
Appendix A).

Pressing ENTER— in the File Keywords: |f the
operator responds to FILE NAME, he must also
respond to the next two file keywords: UNIT and
PACK. He can, however, bypass any or all of the
rest of the file keywords. To bypass a single key-
word he presses the PROG START key as a
response. To bypass all of the remaining file
keywords he presses the ENTER— key either as
an end-of-response or as a response. Pressing the
ENTER— key causes the system to prompt FILE
NAME for the next file.

STATEMENT NUMBERS IN AN OCL CYCLE

Statement numbers are assigned by the system to
statements in an OCL cycle. These statement
numbers are used by the operator when using
MODIFY to reference previous OCL statements.

Each OCL statement, except READY and
MODIFY, is assigned a three digit number. The
first number in a BUILD or CALL cycle is 000,
and in a LOAD cycle 010.

The statement number is incremented by 10 for
each major keyword (DATE, SWITCH, COM-
PILE OBJECT, FILE NAME, etc.), and by one
for each minor keyword {UNIT, PACK, LABEL,
RECORDS, etc.).

When the INCLUDE keyword is used to add
utility control statements or sort source state-
ments to a procedure, these included statements
are assigned two-digit statement numbers. These
statement numbers start with 00 and are incre-
mented by one for each included statement.

The sample OCL jobs show the statement numbers
assigned under various OCL cycles.

COMMENTS

Comments can be entered after any response on
the same line if at least one space is left between
the response and the comment (see Modify:
Entering Comments under MODIFY in Part |

to add comments during MODIFY time).

Summary of Conversational OCL 13

INQUIRY INTERRUPT

14

Certain programs can be interrupted while they
are being processed. A request for interruption
is called an inquiry request (made by depression
of the inquiry key on the keyboard). Programs
are usually interrupted to permit another pro-
gram to run. Control is then given back to the
first program.

The instructions given the compiler at compile
time determine the inquiry type of a program.

The three types of programs include:

1. A program that cannot be interrupted
(does not recognize an inquiry request).

2. A program that can be interrupted (does
recognize an inquiry request). Thisis a
B-type inquiry program.

3. An inquiry program that can only be
executed when an inquiry request is
made. This is an I-type program.

Usually I-type programs are read in only when a
program is interrupted. In this case the inquiry
program will not recognize an inquiry request.
However, if an inquiry program is loaded in the
normal manner (not because of a program inter-
rupt), it can only be executed when an inquiry
request is made. While this program is running,
it will not recognize an inquiry request.

The inquiry interrupt involves these three steps:

1. When the program recognizes an inquiry
request, a Roll-Out routine moves the
interrupted program from main storage
to disk.

2. The program for which the interrupt was
requested must be loaded normally. The
interrupting program may be any type.
This interrupting program cannot be
interrupted.

3. After the interrupting program is executed,
the interrupted program moves back into
main storage using a Roll-In routine. The
interrupted program begins execution at
the point of interruption and terminates
in a normal manner.

The /BM System/3 Model 6 RPG |l Reference
Manual, SC21-7517, describes coding necessary
to define inquirable programs.

Restrictions During Inquiry

Inquiry always causes the conversational OCL
scheduler to be used, even if the interrupted
program was running under the card scheduler.
The OCL statements cannot be read from cards
during inquiry.

The Log device cannot be changed during inquiry.

Keyword Sequence for OCL Load Cycle

eywords that must be answered
n every LOAD cycle.

LOAD NAME

eywords ha are promp d only
if response to LOAD NAME was
name of compiler

DATE

FILE NAME

Keywords that must be answered

QUESTION: fileused i

No - Does operator respond

with a file name?
)

Yes
|

MODIFY

This keyword must be answered in every

Summary of Conversational OCL

15

Keyword-Response Summary (Load Cycle)

KEYWORDS

READY

RESPONSES

LOAD

CONSIDERATIONS

LOAD NAME

None

PROG START

System prompts LOAD NAME

PROGRAM NAME
(Not Compiler)

Name of program to be run .

I/ PROG START
L

System prompts DATE after
UNIT

ENTER—-

System prompts MODIFY after
UNIT

COMPILER
PROGRAM NAME

L

Name of compiler to be run (§RPG for
RPG I Compiler)

PROG START

!

System prompts COMPILE
OBJECT after UNIT

16 Keyword-Response Summary (L.oad Cycle)

KEYWORDS

RESPONSES

CONSIDERATIONS

R1,R2,F1, or F2

COMPILE OBJECT

Location of the disk whose object library
contains the program to be run.

/‘ PROG START

System prompts next keyword
(see LOAD NAME in this chart)

ENTER— System prompts MODIFY if
: not compiler
R1,R2,F1, or F2 Your systemlhas more than one Objef:t library
and you don’t want to put the compiled pro-
gram in the object library which contains the
compiler.
PROG START System prompts SOURCE
I

No Response

PROG START

System will put the compiled program
in the object library which contains

the compiler. Prompt SOURCE

Summary of Conversational OCL

e BT

17

KEYWORDS RESPONSES CONSIDERATIONS

Name of Source Name assigned to RPG 1l source program when
Program the KSE or Library Maintenance Utility Pro-
I gram put it in a source library
PROG START System prompts UNIT
E |

R1,R2,F1, or F2 Location of the disk whose source library
' contains the RPG Il source program

PROG START System prompts DATE
L
| DATE
mmddyy or Required when job date is not the same as
ddmmyy the system date. (Responses must follow
l format established during sysgen.)
PROG START System prompts SWITCH
|

No Response

Either no date is required for the job
. -or-

you're going to use the system date.

System prompts SWITCH.

PROG START

@ For information about the KSE Program see the /BM System/3 Model 6 Conversational Utility
| Programs Reference Manual, SC21-7528.

For information about the Library Maintenance Program see Part 11 of this manual.

18 Keyword-Response Summary {Load Cycle)

KEYWORDS

RESPONSES

—

SWITCH
{(XXXXXXXX)

8-position setting
(combination of
1's,0's, and X's)

CONSIDERATIONS

Required to change external indicators in RPG
programs. Three choices for each position:

1 = turn indicator on

0 = turn indicator off

X = leave indicator as is

PROG START

System prompts FILE NAME

No Response

FILE NAME

PROG START

or you want to use the current

Job does not use external indicators

setting. System prompts FILE NAME

File name of file

/ used by program

Columns 7-14 of RPG File Description
Specifications, or predefined file name for
system programs

System prompts UNIT

l/ PROG START
|

ENTER—

System prompts KEY LENGTH
(see Multi-Volume Files in

Appendix A)

No Response

PROG START

Either your job uses no files at all
-or-

you have already described all the
files the job uses. You want the
system to prompt MODIFY

Summary of Conversational OCL

5

19

UNIT

KEYWORDS RESPONSES

R1,R2,F1, or F2

CONSIDERATIONS

During a file creation run —
location of disk where you want
to write the file,

During other runs — location of disk which
contains the file to be processed

PROG START

System prompts PACK

PACK

{

Disk Name

During a file creation run — the name which
identifies the disk on which you want to
write the file,

During other runs — name which identifies
the disk on which the file is located

PROG START

System prompts LABEL

ENTER—

System prompts FILE NAME for
next file

20 Keyword-Response Summary (Load Cycle)

KEYWORDS RESPONSES CONSIDERATIONS

LABEL
. i hen VTOC Filename is different
VTOC Filename Required w
/ : than response to FILE NAME
|4
(PROG START System prompts RECORDS
o L
r or
I\ ENTER— System prompts FILE NAME for
next file
L

No Response

You don’t want to respond to this
PROG START keyword; you want the system to
l_ prompt RECORDS
RECORDS
/ 1-999999 Number of records in the file
PROG START System prompts LOCATION
T
or or
l\ System prompts FILE NAME for
ENTER- next file
T

No Response

You don’t want to respond to this
PROG START keyword; you want system to
I prompt TRACKS

@ At file creation time, either the number of records or the number of tracks must be specified.
S
———

M

Summary of Conversational OCL 21

KEYWORDS RESPONSES CONSIDERATIONS

TRACKS @
1-398 Number of tracks the file will occupy

I

PR

OGI START System prompts LOCATION
or

ENTER— System prompts FILE NAME for

. next file

No Response

You don’t want to respond to this
PROG START keyword; you want system to
L prompt LOCATION

LOCATION

8.405 Use during file creation runs if you want
) to specify a beginning track location for
1 the file
'/ PROG START System prompts RETAIN
I
or
ENTER— System prompts FILE NAME for
next file
I
No Response
PROG START You don‘t want to respond to this
keyword; you want system to

| prompt RETAIN

@ At file creation time, either the number of records or the number of tracks must be specified.
If operator entered number of RECORDS, TRACKS will not be prompted.

22 Keyword-Response Summary (Load Cycle)

KEYWORDS RESPONSES CONSIDERATIONS
RETAIN
P — permanent
P, T,S,or A ‘T — temporary
S — scratch
|_ A — activate scratch

System prompts DATE

PROG START
I
olr\

ENTER-

System prompts FILE NAME for
next file

No Response

DATE

PROG START

If file is being created, file
designation will be T. System
prompts DATE.

mmddyy or
ddmmyy

Required when job uses a file whose name
and label are the same as those of another
file on the same disk. (Response must
follow format established during sysgen.)

PROG START

—

System prompts FILE NAME for
next file

No Response

PROG START

You don't have to respond to this
keyword; you want system to
prompt FILE NAME, for next file

Summary of Conversational OCL 23

KEYWORDS

MODIFY
{Operator can use
one, all, or a
combination of
the responses.)

RESPONSES CONSIDERATIONS
Used only if CRT display or 22" printer on

LOG , system (see Appendixes D and E)
CANCEL | Cancel job

rOGSTART | Srmeem teAoY e
FORMS Change lines per page printed output

l for system programs
PROG:TART System prompts FORMS DEVICE

Asterisk (*)
Followed by comments

I

Enter comment.

PROG START

System waits for next
MODIFY response

Statement number
and comma

24

To delete statement

PROG START

System waits for next
MODIFY response

Keyword-Response Summary (Load Cycle)

KEYWORDS

RESPONSES

CONSIDERATIONS

Statement number

L

To correct statement

PROG START

System waits for correct statement

RUN

Tells system —
a. The LOAD cycle is complete
b. Run the job

PROG START

System runs job

1

Summary of Conversational OCL 25

Keyword Sequence for OCL Build Cycle

BUILD NAME

Keywords that must be answered

LOAD NAME

| compiLE oBsECT |

Prompted only if response to
. LOAD NAME or UNIT ended

with ENTER— key.
UNIT

DATE

SWITCH

FILE NAME

QUESTION:
No «—— Does operator respond

with a file name?
1

Yes

Keywords that must be answered for
every file used in the job.

MODIFY

must be answered in every BUILD sequence

26

Keyword-Response Summary (Build Cycle)

KEYWORDS

READY

RESPONSES

BUILD

CONSIDERATIONS

None

BUILD NAME

PROG START

System prompts BUILD NAME

L

Procedure Name

Maximum of six alphameric characters,
Must begin with alphabetic characters.

Must not be DIR, SYSTEM, or ALL

PROG START

System prompts UNIT

R1,R2,F1, or F2

Location of the disk where you want to
put procedure. (Procedure is placed in

the source library of the disk operator
specifies.)
PROG START System prompts LOAD NAME

g -

Summary of Conversational OCL 27

KEYWORDS

LOAD NAME

or

RESPONSES

Program Name

CONSIDERATIONS

Name of program to be run

UNIT

-
PROG START System prompts DATE after UNIT
| I
Compiler Name Name of compiler to be run ($RPG for
RPG Il compiler).
T
ENTER— System prompts UNIT then
COMPILE OBJECT, SOURCE, UNIT
l
R1,R2,F1, or F2 Location of disk whose object library
T contains program
/ PROG START System prompts DATE
T
or
'\ ENTER— System prompts COMPILE OBJECT
—

? {(Delayed Response)

CALL cycle

Forces operator to respond to unit during

d

PROG START

or

System prompts DATE

AN

ENTER-

System prompts COMPILE OBJECT

28 Keyword-Response Summary (Build Cycle)

KEYWORDS RESPONSES CONSIDERATIONS

COMPILE
OBJECT

R1,R2,F1,0or F2 Your system has more than one object
library and you don’t want to put the
compiled program in the object library
which contains the compiler

PROG START System prompts SOURCE

No Response

PROG START

System will put the compiled

contains the Compiler, System
prompts SOURCE

program in the object library which

You will tell the system where to put the

?
? (Delayed Response) compiled program during the CALL cycle.

PROG START System prompts SOURCE
I

SOURCE

Name of Source

Program Name assigned to source program when

the KSE or Library Maintenance Utility
Program put it in a source library

PROG START

System prompts UNIT

? (Delayed Response) You will supply the name of the source
program during the CALL cycle.

| -

PROG START System prompts UNIT
T

-
2ok)
£

-
2

T,

Summary pf Conversational OCL 29

Ry
~
Fiis
s
-y

KEYWORDS RESPONSES

UNIT

CONSIDERATIONS

R1,R2,F1,0r F2 Location of the disk whose source library
T contains the RPG source program
\
\ PROG START System prompts DATE

L

? (Delayed Response) You will supply the location of the source
program during the CALL cycle
L
PROG START System prompts DATE
| I
mmddyy or ddmmyy To put a job date in the procedure
(Response must follow format established

I during system.)

L

PROG START System prompts SWITCH
| -
? (Delayed Response) Forces operator to supply DATE
during CALL cycle

PROG START

T

System prompts SWITCH

No Response

PROG START

1

If no date is necessary for job
or system date is acceptable. DATE
will not be part of procedure

30 Keyword-Response Summary (Build Cycle)

KEYWORDS RESPONSES CONSIDERATIONS

SWITCH

8-position setting
(combination of Required to change external indicators in
1's, 0's, and X's) programs. Three choices for each position:

1 = turn indicator on
0 = turn indicator off
X = leave indicator as is

PROG START System prompts FILE NAME
—
? (Delayed Response) Forces operator to respond to SWITCH
during CALL cycle
| —
PROG START
System prompts FILE NAME
No Response
PROG START Job does not require external
i indicators. SWITCH will not be
' [part of procedure

Summary of Conversational OCL 31

KEYWORDS

FILE NAME

RESPONSES

CONSIDERATIONS

File name of file
used by program

Columns 7-14 of RPG File Description
Specifications, or predefined filename
for system programs

'/ PROG START System prompts UNIT

or

'\ ENTER—

System prompts KEY LENGTH
(see Multi-Volume Files in

L

Appendix A).

? (Delayed Response)

Forces operator to respond to FILE NAME
during CALL cycle

PROG START . System prompts UNIT
T
No Response
PROG START Either your job uses no files at all
-or- you have already described all

the files the job uses. You want
the system to prompt MODIFY

32 Keyword-Response Summary (Build Cycle)

KEYWORDS

UNIT

RESPONSES CONSIDERATIONS

R1,R2,F1,0or F2

During a file creation run —
location of disk where you want to

write the file.

During other runs —
location of disk which contains the
file to be processed.

PROG START System prompts PACK

T
? (Delayed Response) Forces operator to respond to UNIT
during CALL cycle

PACK

PROG START System prompts PACK
I

Disk Name During a file creation run —
the name which identifies the disk on

which you want to write the file.
During other runs —

name which identifies the disk on

which the file is located.

PROG START System prompts LABEL
| N
ENTER— System prompts FILE NAME
for next file

? (Delayed Response) Forces operator to respond to PACK
during CALL cycle

PROG START System prompts LABEL

ENTER— System prompts FILE NAME

Summary of Conversational OCL

33

KEYWORDS RESPONSES CONSIDERATIONS

VTOC Filename

Required when VTOC Filename is different

I than response to FILE NAME
TART

l/ PROG S System prompts RECORDS
1

or

l\ ENTER— System prompts FILE NAME
T for next file

? (Delayed Response) Forces operator to respond to LABEL
during CALL cycle

l/ PROG START

System prompts RECORDS

or

I\ ENTER— System prompts FILE NAME

No Response

PROG START You don’t want to respond to this

keyword, you want the system to

I prompt RECORDS

34 Keyword-Response Summary (Build Cycle)

KEYWORDS | RESPONSES CONSIDERATIONS

RECORDS
/ 1-999999 Number of records in the file.
I
PROG START
|/ System prompts LOCATION
or or \
k ENTER-— System prompts FILE NAME for
next file
1
N
? (Delayed Response) Forces operator to respond to RECORDS
during CALL cycle

—

'/ PROG START System prompts LOCATION

-or or -k

l\ ENTER-

System prompts FILE NAME

No Response

PROG START You don’t want to respond to this
keyword; you want system to
| prompt TRACKS.

When a file is created, either the number of records or the number of tracks must be specified.
If operator entered number of RECORDS, TRACKS will not be prompted.

Summary of Conversational OCL 35

KEYWORDS

TRACKS

RESPONSES

1-398

CONSIDERATIONS

Number of tracks the file will occupy

PROG START

System prompts LOCATION

;
N

ENTER-

System prompts FILE NAME for .
next file

\ 7/

? (Delayed Response)

or

Forces operator to respond to TRACKS
during CALL cycle

d

PROG START

or

System prompts LOCATION

N

ENTER—-

System prompts FILE NAME.

No Response

PROG START

|

You don’t want to respond to
this keyword; you want to prompt
LOCATION

When a file is created, either the number of records or the number of tracks must be specified.
If operator entered number of RECORDS, TRACKS will not be prompted.

36 Keyword-Response Summary (Build Cycle)

KEYWORDS RESPONSES CONSIDERATIONS

EERN D FIEES w77V Slaniis

. Tw.
{ pisTiNEY! st/ BE LAGE

2 arff""” ergarre

LOCATION

/ 8-405 Use during file creation runs if you want to
specify a beginning track location for the
| file

PROG START

or or I

N

System prompts RETAIN

ENTER- System prompts FILE NAME for
next file
L
? (Delayed Response) Forces operator to respond to LOCATION
during CALL cycle
|/ PROG START System prompts RETAIN
T
or or

l\ ENTER-

System prompts FILE NAME

\ No Responsé

PROG START . You don’t want to respond to this
keyword; you want system to
] prompt RETAIN

Summary of Conversational OCL 37

KEYWORDS RESPONSES CONSIDERATIONS

A
- . Qﬂ’lﬁ/ G e \
RETAIN I f\) F,g (S
P,T,S,orA P — permanent
T — temporary
S — scratch
A — activate scratch
PROG START System prompts DATE
|
or
l\ ENTER-— System prompts FILE NAME for
next file
I
? (Delayed Response) Forces operator to respond to RETAIN
) during CALL cycle
L
‘/ PROG START System prompts DATE
]
or
l\ ENTER- System prompts FILE NAME.
L

No Response

PROG START If file is being created, file
designation will be T. System
L prompts DATE

38 Keyword-Response Summary {Build Cycle)

KEYWORDS

RESPONSES

DATE

MODIFY
(Operator can use
one, all, or a
combination of
the responses.)

mmddyy or ddmmyy

CONSIDERATIONS

M‘”w/){,/
’J;Y ;0‘\)6 =S
ACC’"'

Required when job uses a file whose name
and label are the same as those of another
file on the same disk, (Response must

follow format established during system.)

PROG START

System prompts FILE NAME for

next file

? (Delayed Response)

L

Forces operator to respond to DATE during

CALL cycle

PROG START

System prompts FILE NAME.

No Response

PROG START

You don‘t have to respond to this
keyword; you want system to prompt

FILE NAME for next file

LOG Used only if CRT display or 22" printer on
system (see Appendixes D and E)
PROG START System prompts
I LOG DEVICE
CANCEL Cancel job
|
PROG START System prompts READY or
displays end-of4ob halt.

Summary of Conversational OCL 39

KEYWORDS

RESPONSES

FORMS

CONSIDERATIONS

Change lines per page printed
output for system programs

PROG START

System prompts FORMS DEVICE

Asterisk (*) Followed
by Comments

Enter comment

PROG START

System waits for next MODIFY
response

Statement number
and comma

To delete statement

PROG START

System waits for next MODIFY
response

!

Statement number

To correct statement

PROG START

System waits for correct statement

L

INCLUDE Add system program control statements
[to a procedure
PROG START System prints 'ENTER INCLUDED
STATEMENTS' and a 2-digit statement
| no
RUN Tells system

a. The BUILD cycle is complete,
b. Run the job

PROG START

System runs job

L

40 Keyword-Response Summary (Build Cycle)

Keyword Sequence for OCL Call Cycle

CALL NAME

Keywords that must be answered
in every CALL cycle.

MODIFY

Summary of Conversational OCL 41

Keyword-Response Summary (Call Cycle)

KEYWORDS

READY

RESPONSES

CONSIDERATIONS

CALL

CALL NAME

None

PROG START

System prompts CALL NAME

ol

uféwj:gs C.PW A {}fjﬁ”@ F_ 9 /-
/\ o

Procedure Name

UNIT

Procedure name from the source
library directory

-or-
RPG (the IBM-supplied RPG Il
compile procedure)

PROG START

System prompts UNIT

R1,R2,F1,0or F2

|

Location of the disk whose source library
contains the procedure

PROG START

Print procedure

42 Keyword-Response Summary (Call Cycle)

/

-

KEYWORDS RESPONSES '~ CONSIDERATIONS

0)

PROCEDURE DISPLAYED ON SYSTEM PRINTER

MODIFY
(Operator can use
one, all, ora
combination of
the responses.)

LOG .
) Used only if CRT or 22" printer on system
I (see Appendixes D and E)
PROG START System prompts
. LOG DEVICE
CANCEL Cancel job
L
PROG START System prompts READY or
. displays end-ofjob halt.
FORMS Change lines per page of printed output for
. system programs
PROG START System prompts FORMS DEVICE
L
Asterisk (*)
Followed by Enter comment
Comment
PROG START System waits for next MODIFY
response

L

Procedures with INCLUDE Statements
When a procedure contains SORT source statements or utility control statements, the display
part of the CALL cycle is more complex. See Considerations During a CALL Cycle, under

MODIFY; Including Control Statements in Part |.

B. Procedures with Delayed Responses
The procedure is displayed statement by statement. When the system reaches a statement

which contains a delayed response, it will display the statement keyword and wait for the
operator’s response.

Summary of Conversational OCL

KEYWORDS

RESPONSES

CONSIDERATIONS

Statement number

To delete statement in displayed

and comma procedure
PROG START

System waits for next MODIFY
response.

| .

Statement number
and corrected

To correct statement in displayed
procedure

statement
L
PROG START System waits for correct
. statement
RUN Tells system —
a. The CALL cycle is complete.
b. Run the job
PROG START

System runs job

44 Keyword-Response Summary (Call Cycle)

BUILD NAME

When the system prompts BUILD NAME, the
operator responds with a name for the procedure
that will be put in a source library at the end of
the sequence. (The operator’s response to UNIT
determines what source library the procedure
will be put in.) At the end of the BUILD cycle,
the system enters the procedure in the source
library and puts the procedure name in the
“source library directory as a permanent entry.
Restrictions on naming a procedure are:

1. Name must not contain more than six alpha-
numeric characters. Blanks, commas, quotes
(apostrophes), and periods are not allowed.

2. First character must be alphabetic (A-Z or
#, @, 39). :

3. Name must not be DIR, SYSTEM, or ALL
(these names are reserved for system use).

Duplicate Procedure Names

If the operator’s response to BUILD NAME
duplicates the name of a procedure already
in the source library directory, the system
prints a message and reprompts BUILD
NAME.,

The operator can:

1. Proceed — by typing a different name
or the same name and a different unit.

2. Proceed — by typing the same name and
unit again. The new procedure will then
overlay the old procedure in the source
library.

3. End the job - see description of error
message options in /BM System/3 Model 6
Operator’s Guide, GC21-7501.

Deleting a Source Library Procedure

The system gives a P (permanent) designation to
all procedures entered into a source library during
a BUILD cycle. Therefore, the only way to
delete a procedure from a source library is to run
the Library Maintenance Utility Program. (For
information about the Library Maintenance
Utility Program see Part || of this manual.)

BUILDC NAME

Refer to Chained Procedures in Appendix A.

CALL NAME

The response to CALL NAME is the name of the
procedure you want to run. This can be either:

e The name of a procedure entered in a source
library after a BUILD or BUILDC cycle. (The
operator’s response to the keyword BUILD
NAME, or BUILDC NAME determines the
name of the procedure.)

e RPG (the IBM-supplied RPG Il Compile
Procedure).

If the operator does not know the procedure
name, he can get a printout of the source library
directory by running the Library Maintenance
Utility Program. (See Part Il of this manual for
more information about this program.)

Keyword Descriptions

EYWORD DESCRIPTIONS

45

COMPILE OBJECT

The keyword COMPILE OBJECT requires a
response (R1, R2, F1, or F2) if the system
has more than one object library and you do
not want to put the compiled RPG 1l program
in the same object library where the RPG 11
Compiler resides.

If the operator does not respond to COMPILE
OBJECT, but merely presses the PROG START
key, the system places the compiled RPG |1
program in the object library where the RPG
Compiler resides.

F 1 refers to the fixed disk on drive one.

R1 refers to the removable disk on drive one.

F2 refers to the fixed disk on drive two.

R2 refers to the removable disk on drive two.

SOURCE

Ina LOAD Cycle

46

SOURCE is prompted only when the response
to LOAD NAME is the name of a compiler
(such as $RPG). The response to SOURCE

is the name of the source program you want
to compile. (This name must be the one you
used when you put the program in a source
library during a KSE or Library Maintenance
Program run.

In a BUILD Cycle

There are two possible responses to SOURCE
during a BUILD cycle: the name of a source
program you want to compile or a delayed
response. Each response has a special
significance to the system,

Response Tells System

Name of You're building a procedure that

Source will compile a particular source

Program program. (The program must be

You Want in a source library.) The program

to Compile name you suipply must be the one
you used when you put the
program in a source library during
a KSE or Library Maintenance
Program run,

Delayed You're building a general RPG |1

Response compile procedure. You will

?)

supply the necessary source program
information (name and location of
the source program and where you
want to put the compiled program)
during the CALL cycle.

UNIT; SOURCE UNIT
Possible responses to the keyword UNIT are F1,
R1, F2, and R2.

F1 refers to the fixed disk on drive one.
R1 refers to the removable disk on drive one.
F2 refers to the fixed disk on drive two.
R2 refers to the removable disk on drive two.

For information about the KSE Program see the
1BM System/3 Model 6 Conversational Utility
Programs Reference Manual, SC21-7528. For
information about the Library Maintenance
Program see PART Il of this manual.

DATE (SYSTEM DATE) The three elements (month/day/year) can be

This DATE keyword lets the operator change separated by any non-numeric symbol (except

the system date for a particular job. (The system a comma, quotation mark, or blank) or run

date is used in headings on program listings, in together without any separation.

headings on printed output, and in labels for

new files.) In a system using the mmddyy format, for
example, all of the following would be valid

The system date is established at IPL time. This ways of typing May 12, 1971:

date is used for every job unless the operator over-

rides it. e 05/12/71

Overriding the System Date

05-12-71
The operator can override the system date for ¢
any single job by typing in a new date when e 051271
the system prompts the keyword DATE. The
new system date is used only for the one job. o 5/12/71

When that job is finished, the system date
automatically reverts to its IPL setting.

Format of the DATE Statement
Although the operator can override the system
date, he cannot change the date format. The
system date format is established during sysgen
as either:

e mmddyy (month/day/year) — For U.S.
installations

e ddmmyy (day/month/year) — For World
Trade installations

Keyword Descriptions 47

FILE NAME

For Each File Used in a Job, The
Operator Must Supply This Type
of Information:

By Responding to
the Keyword:

With:

which the file is located
(For all other runs)

1. Name of File FILE NAME FILENAME from the
file specification
at compile time.
Predefined filename
(for $RPG, $KDE, $DSORT,
$COPY).
2A. Location of disk where you want
to write the file R1or F1
(For a file creation run) (For systems with one disk drive
—or— UNIT —or —
2B. Location of disk which contains R1,F1, R2,or F2
the file to be processed (For systems with two disk
(For all other runs) drives)
3A. Name which identifies the disk on
which you want to write the file
(For a file creation run)
—or — PACK Name assigned to disk by Disk
3B. Name which identifies the disk on Initialization Utility Program

FILE NAME for Customer Programs

For a file used in an RPG Il compiled customer
program, the operator’s response to FILE NAME
is the name in columns 7-14 of the RPG Il File

Description Specifications.

FILE NAME for $RPG, $DSORT, $COPY,

$MICR, and $KDE

.For $RPG’s predefined file names see /1BM
System/3 Model 6 RPG |1 Reference Manual,

S§C21-7517.

For $DSORT see /BM System/3 Disk Sort
Reference Manual, SC21-7522,

For $COPY see Part Il of this manual.

For SMICR see /1BM System/3 Model 6 Utility
Program for the IBM 1255 Magnetic Character
Reader Reference Manual, SC21-7527.

For $KDE see /BM System/3 Model 6
Conversational Utility Programs Reference

Manual, SC21-7528.

’ §ys,tem-0perator Interaction During Prompting of File Keywords

System prompts
FILE NAME

Question:
Does this job "
use a file?

NO

YIES

Operator responds
to FILE NAME,
UNIIT, and PACK

¥

System prompts
next file keyword

Question: _
: !Vlore f|le. NO
information ‘
necessary?

YES Operator presses

the ENTER — key
Operator responds

to next file keyword
’ System bypasses rest
of the file keywords

Question:

Is this the last
file keyword
(DATE) ?

YIES

System proﬁpts
FILE NAME

258
;‘-"ﬁ"‘ff
,{-::»?3,3‘:
22

s
#

%
%

~ Question:
* Does the job use NO
another file?

YES +—r

Opefator presses
PROG START

System bypasses
file keywords

a8
wﬁ?&\x %‘% System prompts
MODIFY

Keyword Descriptions

Multiple Files

A job often involves several files. When this is the
case, the operator must respond to several series
of file keywords. The first time the system
prompts the file keywords, the operator responds
with information about one file. After the opera-
tor responds to DATE, the system will again
prompt FILE NAME. This time the operator
responds with the name of the second file.

When he has responded to the file keywords for
all the files that will be used in the job, the opera-
tor should respond to FILE NAME by pressing
PROG START. The system then bypasses the
rest of the file keywords and prompts MODIFY,

A maximum of 15 file statements can be used for
each job.

UNIT; FILE UNIT

Possible responses to the keyWord UNIT are F1,
R1, F2,and R2.

F1 refers to the fixed disk on drive one.
R1 refers to the removable disk on drive one,
F2 refers to the fixed disk on drive two.
R2 refers to the removable disk on drive two.

PACK

50

Whenever a job involves a disk file you must tell
the system the name of the disk where the file is
(or will be) located, so the system can make sure
that disk is mounted before the job is begun. To
tell the system the name of the disk the file is on,
the operator responds to the keyword PACK with
the name assigned to the disk during its initiali-
zation. (The Disk Initialization section of Part 11
of this manual explains the procedure for naming
a new disk.)

Although most installations keep a record of the
names and contents of each of their disk packs, the
operator can always get the name of any disk by
running the File and Volume Label Display Utility
Program. The disk name is part of the output of
this program.

LABEL

When a file is created, the system enters a file name
in the VTOC. The keyword LABEL refers to this
VTOC file name. Unless the operator responds to

- LABEL, the name entered in the VTOC is the

same as the operator’s response to FILE NAME.
LABEL requires a response:

1. At file creation time, if you want the
VTOC file name to be different from the
operator’s response to FILE NAME. (For
example, if the RPG |l file name is A but
the disk already has an A file, a response
to LABEL would be required, and the
response would have to be something
other than A.)

2, During a program run, if you are using a
file whose VTOC file name is different from
the operator’s response to FILE NAME.

RECORDS (AND TRACKS)

When a file is created, the operator must tell the
system how much disk space to allocate for the
file. He does this by responding to one of the
two space keywords: TRACKS and RECORDS.
(If the operator responds to RECORDS,
TRACKS will not be prompted.)

The following chart shows the possible responses
to these keywords and how the system interprets

the responses.

Keyword

Operator

Response Tells System

TRACKS 1-398

Number of disk tracks
needed for the file

RECORDS | 1-999999

Number of records
in the file

Responding to TRACKS

The response to TRACKS is the number of disk
tracks the records in a file will occupy. (Appendix
B reviews how to convert the number of records in
a sequential, direct, or indexed file into the num-
ber of tracks that would be required to contain
the file records on a disk.)

Responding to RECORDS

LOC

RET

If the operator does not want to convert record
numbers into track requirements himself, the
system will do it for him. The system determines
the track requirements for a file when the opera-
tor responds to RECORDS.

ATION

LOCATION requires a response during file
creation if you want to control the placement
of files on the disk. LOCATION is required
when creating several versions of the same
file. It can also be used to reference one of
several files having the same name.

The response to LOCATION is the track where
you want the file to begin. Possible responses
are 8 through 405. (Tracks O through 7 are
reserved for system use.)

If the operator does not respond to the keyword
LOCATION when a new file is created, the system
places the file in whatever available area it fits best.

AIN

The keyword RETAIN applies to file designation.
Files can be designated: P (permanent), T (tempo-
rary), or S (scratch).

The operator responds to RETAIN either:

1. At file creation, to give a designation to the
file being created.

2. When 'accessing a file, to change the designa-
tion of a file from T toSor fromS+to T.

File Creation

A file designation (along with the file name, length,
and other related information) is placed in the
VTOC when afile is created. The operator controls
file designation by his response to RETAIN. (If
the operator does not respond to RETAIN, the
system gives the file a T designation.)

File Designations

Permanent Files

Because permanent files are protected against
inadvertent overlaying or altering, give a P designa-
tion to all the files you want to keep.

Temporary Files

Give a T designation to a file if you plan to use it
several times within a couple of days and will not
need it after that.

Scratch Files

Give an S designation to any file you plan to use
only once. When a scratch (S) file is created, it is not
entered in the Volume Table of Contents (VTQOC).
After the job that created the file is run, the file is
lost. The way that an S retain type can appear in the
VTOC is to change a T entry to an S by using
RETAIN-S in the file statement, or changea T or P
entry to S by using a SDELET SCRATCH statement.

The file designation dictates how much freedom
you have in overlaying or changing a file. The
following chart summarizes how each file designa-
tion restricts your freedom to overlay or change

a file.

Restrictions

P The only way to change a
permanent file is to delete it by

running the File Delete Utility
program.

T The only way to overlay a
temporary file is to load a new

file over it. To do this, the
operator’s responses to all the
file keywords must duplicate
those of the present T file.

" The system will overlay a
scratch file if the disk pack is

full and/or file space is needed.

Keyword Descriptions 51

Changing File Designation of Existing File

When the system prompts RETAIN, the operator
can:

e Accept the current file designation. (By
pressing PROG START)

® Change a temporary file to a scratch file (by
typing an S). The VTOC will contain an S entry
for the file.

® Change a scratch file listed in the VTOC to a
temporary file by typing an A.

Deleting Files

The operator can delete any file by running the
File Delete Utility Program, which changes the
file designation in the VTOC to S. This effectively
deletes the entire file, because the system will
overlay the file area as soon as more file space is
needed. When the file area is overlayed, the file
name is erased from the VTOC.

DATE (FILE DATE)

52

This keyword (prompted after the keyword
RETAIN) refers to the system date in effect when
a file was created.

The system date is established at IPL. This date
is used for every job unless the operator over-
rides it. :

DATE requires a response only if the job being run
uses a file whose name and label are duplicated by
another file on the same disk. In this case, the
operator responds to DATE by typing in the system
date in effect when the file he wants to use was
created. With this date, the system can distinguish
one file from others on the same disk with the

same VTOC file name and label.

If neither the date nor the location is given, the
file having the latest date is the one automatically
referenced.

If the operator does not know what the system
date was when the file was created, he can get a
printout of the creation dates for all files on a
disk by running the File and Volume Label Dis-
play Utility Program. (Detailed information on
this program is available in Part |1 of this
manual.)

Restriction During File Creation

A response to DATE tells the system that this
file already exists. If DATE is entered during
a file creation run a FILE NOT FOUND error
occurs,

HALT

The operator can respond to the keyword READY
with HALT. The system will then halt at the end
of each job. HALT need only be entered to cancel
the effect of a NOHALT statement.

LOAD NAME

For Customer Programs
The response to LOAD NAME is the name of the .
customer’s RPG Il program.

For System Programs
The response to LOAD NAME is the name of the
specific system program you want to run.

More Information

Name Program About the Program
In
$ALT Alternate Track Assignment
$BUILD Alternate Track Rebuild
$COPY Disk Copy/Dump
SINIT Disk Initialization Part 1l of this manual
$LABEL File and Volume Label Display
$DELET File Delete
$MAINT Library Maintenance
$KSE Keyboard Source Entry
1BM System/3 Model 6
$KDE Keyboard Data Entry Conversational Utilities Reference Manual,
. SC21-7528
$DIU , Data Interchange
$MICR 1255 Magnetic Character IBM System/3 Model 6 Utility Program for
Reader Utility 1255 Magnetic Character Reader
Reference Manual, SC21-7527
$RPG RPG I Compiler 1BM System/3 Model 6 RPG 1/
Reference Manual, SC21-7517
$DSORT Disk Sort I1BM System/3

Disk Sort Reference Manual, SC21-7522

Keyword Descriptions 53

MODIFY

System prompts MODIFY

Do you want to correct a statement?

NO YES

Operator types 3
digit statement
number and
co:rected statement.

= DO you want to delete a statement?

NO YES

Operator types 3
digit statement
number and
comma (.).

- Do you want to enter a comment?

NO YES

Operator types
asterisk (*)
and comment.

a7
< s Do you want to enter a FORMS
g statement? I
NO YES

Operator types
FORMS and new
lines per page
se&ting.

,\-

Do you want to canclel job?

NO Y|ES

Operator types
CANCEL

System erases
OCL cycle

System prompts
READY

Do you want to run the job?

NO YES

Operator types
RUN

System runs
job

System prompts
READY

~ |s this a BUILD cycle?
|

YES NO

Do you want to include source
statements for the Disk Sort
Program or for one of the

utility programs in the procedure?

|
ﬁ
YES NO

Operator types INCLUDE

System prints 2-digit statement number

Operator types statement

Do you want to include another
statement?
|]
NO YES

: System prints next statement number

Operator types RUN

System prompts MODIFY

T

. Do you want to change or delete any of
the included statements?

NO YES

Operator types 2 digit
statement number and
comma (to delete)

or the new

statement (to correct)

Do you want to cancel the job?

NO YES

Operator types
CANCEL

em erases entire

Operator types
RUN

System puts the
procedure with
included statements
in the source
library

System prompts
READY

Keyword Descriptions 55

MODIFY:; Changing a Previous OCL Statement

56

s B System prompts
ﬁﬁﬁgg MODJFY

Enter here if you've
already used a
MODIFY option

in the job

Operator types three-digit

number of OCL statement
r____'_. (or two-digit number of
included statement) to be
changed and PROG START

System tabs to
position 35 (position
0 after INCLUDE)
and waits for response

Operator types
new response

L™, Question:
More statements
to change?

NO

Question:

Does operator

want to use another
MODIFY option?

1

YES NO

Operator
types RUN

See keyword description
of the other MODIFY
option

'MODIFY:; Deleting a Previous OCL Statement

System prompts

ENTER here if you've
already used a
MODIFY Option

in the job

Operator types

three-digit number
— of OCL statement

to be deleted

Operator types
. comma and PROG

START key

Question:
More statements
to delete?

YES ——uuu

Question:

Does operator
want to use another
MODIFY option?

YES NO

See keyword Operator types

description of RUN .

the other .

MODIFY

option

Deleting Multiple Keywords keywords could be deleted from a file keyword

When the OCL statement number for FILE NAME statement without deleting the other keywords for
is deleted, al! keywords for that file will be deleted that file. However, if FILE NAME is deleted, that
from the cycle. For example, the LABEL or DATE entire file would be deleted from the cycle.

Keyword Descriptions 57

MODIFY; Entering Comments

System prompts
MODIFY

Enter here if you've
already used a
MODIFY option

in the job

Operator types:
1. An asterisk (*)
2. A comment

Question:
Does operator want

" to use another
] MODIFY option? ‘

YES NO

of the other MODIFY RUN
option

See keyword description % (!perator types

Points to Remember When Entering Comments

e The usual purpose of a comment is to remind
the operator of something he must do (mount
a new disk pack, for example) or to document
a problem during a program run.

e After the operator types a comment, it is
immediately displayed on the system printer.

e Comments typed during a BUILD cycle be-
come a permanent part of the procedure. They
are entered into the Source Library along with
OCL statements.

e Comments typed during a LOAD or CALL
cycle do not become a permanent part of
the job; their only purpose is to help document
the program run.

MODIFY; Cancelling Job I Effect of Entering CANCEL During a LOAD Cycle

The entire LOAD cycle will be overlaid by the next.
System prompts MODIFY OCL cycle.

Enter here if you've | Effect of Entering CANCEL During a BUILD Cycle

already used a The entire BUILD cycle will be overlaid by the
MODIFY option next OCL cycle. (If a duplicate procedure is
in the job being built, and CANCEL entered, the origipal

procedure remains in the source library. Except:
if CANCEL is entered after INCLUDE, neither

% Operator types CANCEL procedure will be in the library.)
Effect of Entering CANCEL During CALL Cycle
Operator presses The entire CALL cycle will be overlaid by the next
PROG START OCL cycle. The original procedure will be un-
changed.

(System gets ready
to run another job)

Question:
Is HALT in effect

L

NO YES

L

Y
System displays
end-of-job halt

Operator presses
PROG START

System prompts READY

@ Operator types
|

{ !
LOAD BUILD CALL

Keyword Descriptions 59

MODIFY; Entering Forms

oz Wx.

System prompts MODIFY

Enter here if you've
already used a
MODIFY option
in the job

Operator types FORMS

Operator presses
PROG START (P/S)
or types PRIMARY

23

2
%
=5

it i
B

System prompts FORMS DEVICE

System prompts LINES

Operator types
new lines per
page setting

Operator presses
PROG START
(for current lines

per page setting)
—

o Question: Does

iﬁi&' operator want to use
another MODIFY
option?

See keyword
description
of the other
MODIFY
option

®

0

:

Op_eraior types

RUN (O

Whenever the keyword FORMS is entered in an OCL sequence a system halt occurs after RUN in case the operator needs to change
the paper in the printer.. The system remains idle until the operator enters zero and presses the PROG START key.

Purpose of FORMS

Standard outputs for Model 6 printers is 66 lines
per page. At IPL time, 66 lines per page is estab-
lished as the forms length unless a different value
was specified during system generation.

To change the lines per page of printed output
for RPG Il programs, you code line counter
specifications. To change the lines per page of
printed output for system programs (utilities,
SORT, and the RPG Compiler), you type the
keyword FORMS and an appropriate response.

If line counter specifications and an OCL FORMS
statement are both used in one job, and if the
specified lengths are different, the system will
accept the RPG Il line counter specifications and
ignore the OCL FORMS statement.

The new lines per page setting (from either an OCL
FORMS statement or an RPG |l line counter speci-

fication) remains effective until another OCL FORMS
statement or RPG Il line counter specification is read.

FORMS can be entered during the MODIFY phase
of any OCL cycle. {The system never prompts
FORMS.)

Whenever the operator types FORMS during an
OCL cycle, a system halt follows RUN in case
the operator needs to change the paper in the
printer. Job processing does not resume until the
operator enters a zero {option 0) and presses the
PROG START key.

For additional operating information, including
line counter considerations, related to the key-
word FORMS, see the /BM System/3 Model 6
Operator’s Guide, GC21-7501

Keyword Descriptions 61

MODIFY:; Including Contol Statements

T

Question: Do you want to change or delete
an included statement?

| |

Operator types option in the job NO YES

INCLUDE ' é\)
. i .Question: Do you want to cancel job? —-l

System displays a 2-digit NO YES
umber for the first
INCLUDE statement Operator types RUN Operator types CANCEL

i used a MODIFY

Operator types a
statement

System erases
procedure

*: System writes

! procedure with
included statements in

System displays the the source library

next statement

* number for the
INCLUDE
statements

System prompts
READY

Question: |s there
another new statement
to be included in the

procedure? . .
-Question: Do you want to correct an included
statement?
=YES NO I]
| NO YES
Operator types RUN and l Operator types 2-digit

Question: Do you want
to delete included j
statement?

] :
YES NO

presses PROG START statement number

System spaces to next line

;; System prompts MODIFY
i (allows operator to change
“ included statements)

Operator enters corrected
statement
Operator types

2-digit statement
number and comma

62

Purpose of INCLUDE
The keyword INCLUDE lets you add system
program contro! statements to a procedure.
INCLUDE tells the system that the next entry
will be a set of control statements for one of
the system programs. {As used here, control
statements refer to both the control statements
for the utility programs and the sequence
specifications for the SORT program.) A maximum
of 25 control statements can be included in each
procedure.

Restrictions After INCLUDE
After including statements in a procedure, the
procedure cannot be changed. MODIFY is
prompted to allow changing included statements.
If CANCEL is used after INCLUDE in a pro-
cedure that overlaid a duplicate procedure,
neither the original nor the new procedure
will be in the source library.

Considerations During a CALL Cycle
When the operator uses the CALL cycle to get
the procedure out of the source library, the
system displays the procedure in two separate
steps: first the OCL statements, then the
INCLUDE statements. The following shows
details of the two display steps:

1.

System displays OCL
statements for the
job.

System prompts
MODIFY (to give
operator a chance to
correct any of the
OCL statements).

statements

Operator, after he has
made any necessary
corrections, types
RUN.

System displays heading: 3
INCLUDED STATEMENTS.

System prints the INCLUDE
statements.

System
isplays
NCLUDE
statements

System prompts
MODIFY (to give
operator a chance to
correct any of the
INCLUDE statements).

Operator, after he has
made any necessary
corrections, types
RUN.

Model 6 runs the job.

NOHALT

Normally the system halts when a job ends. The
operator can respond to the keyword READY with
NOHALT. The system will then prompt READY for
the next job when each job ends. The NOHALT will
remain in effect until a HALT statement is entered
or an IPL occurs.

Keyword Descriptions 63

READY

When the system is ready to begin the OCL
sequence for a new job, it prompts READY.

The operator responds by typing the name of one
of the four OCL cycles: LOAD, BUILD, BUILDC,

or CALL. The system then prompts the other key-

words in the sequence.

(OCL cycles for the Model 6 are described in the
Summary of Conversational OCL at the front
of this manual.)

RUN

RUN is the last entry in any OCL cycle. The
operator types RUN when he is satisfied that the
OCL cycle is complete and correct. The table
shows what happens when the operator types
RUN during any of the three OCL cycles.

Sequence Effect

LOAD

Job is run.

CALL @

BUILD @ " The OCL statements are
put in a source library.

(D 1f INCLUDE statements are part of
the procedure the BUILD and CALL
cycles require two RUN entries. (See
Considerations During a CALL Cycle
under MODIFY - Including Control
Statements in Part 1.)

After the operator types RUN, the system
processes the job and end-of-job occurs.

The system then prompts READY for the
next job.

SWITCH
The OCL SWITCH statement allows changing the
eight external indicators used by RPG Il programs.

(External indicators are discussed in the /BM
System/3 Model 6 RPG Il Reference Manual;
SC21-7517.)

The operator-system interaction involved with the
SWITCH statement is different for each OCL cycle
as shown in the following charts.

Indicator Settings
The indicator setting has eight positions, corres-
ponding to the eight external indicators,

The three possible entries for each position are:
e 1 — sets corresponding indicator on.
o 0 — sets the corresponding indicator off.

o X — leaves the corresponding indicator un-
changed.

For example, if the operator keys in XXXX10XX:
o Indicator five will be set on.
e Indicator six will be set off.

e Indicators one, two, three, four, seven, and
eight will be unchanged.

IPL Considerations
All eight external indicators are set off at IPL.
The only way to set an indicator on is by re-
sponding to the keyword SWITCH with a new
eight-position response containing a 1 in the
appropriate position.

Duration of SWITCH Setting
When an OCL SWITCH statement sets an
indicator on, the indicator remains on until
another SWITCH statement sets it off or the
next IPL occurs.

Operator-System Interaction For SWITCH
Statement (LOAD Cycle)

System displays

SWITCH and
current indicator .
setting
Operator types Operator presses
new 8-position PROG START (to
setting accept current
setting)

System prompts
FILE NAME

Keyword Descriptions 65

Operator-System Interaction For SWITCH Statement (BUILD Cycle)

. System prompts SWITCH
and current indicator
setting

Operator types Operator types
8-position indicator delayed response (?)
setting

Operator presses Operator presses
PROG START PROG START

|

Operator presses
PROG START (If
program will not
use external indica-
tors, or if current
setting is the one
you want).

(A SWITCH state-
ment will not be
part of the source
library procedure.)

66

Operator-System Interaction for SWITCH Statement (CALL Cycle)

% During the BUILD cycle, the operator
responded to the keyword SWITCH by

|

Pressing
PROG START

|

Typing a
delayed response (?)

During CALL cycle

System displays
SWITCH and
current indicator
setting

Typing 8-position
indicator setting

During CALL cycle

Operator types
new 8-position
setting

¥

Operator presses
PROG START (To
accept current
setting)

(SWITCH will not
be part of the
CALL cycle.)

CALL cycle continues

{The keyword SWITCH

and the 8-position
indicator setting

are entered in the
source library and

~ displayed with the

other OCL statements
during the CALL
cycle.)

Keyword Descriptions

9

67

E——
SAMPLE JOBS
SE—

This section presents a sequence of six typical jobs:
1. Initialize a disk.
2. Compile an RPG |l source program,

3. Run the compiled program.

»

Copy a file from one disk to another.

5. Build a procedure to run a multi-file job.

6. Call and modify the procedure built in job 5.
-Each sample job is organized into three sections:
1. Anintroductory summary explaining the job.

2. The OCL statements (and — where applicable — the utility control statements) for
the job.

3. Explanatory notes on individual statements in the job.
The examples shown are actual computer printouts. End-of-statement keys used are
shown in parenthesis to indicate actual operator response. These are shown for example

only and will not be printed on normal OCL printouts.

Any response without end-of-statement key indicated is printed by the system without
operator intervention.

Sample Jobs 69

SAMPLE JOB 1. INITIALIZE DISK
We're going to use the Disk Initialization Program (located on the fixed disk on
drive one) to initialize the removable disk on drive one. We want to:
e Initialize the entire disk pack:
e Do surface analysis only once.

The name of the new disk will be 12345.

Here are the OCL and utility control statements for the job,

READY - LOAL CFAS)

3696 FEI6I6T6 6 36 363636 36 36 36 96 3696 36 96 390 36 96 96 9696 36 36 36 96 96 96 96 96 36 36 36 36 36 36 6 6 363636 36 06 96 96 96 96 9636 36 96 96 96 96 96 I
010 .OAD NAME -~ SINIT (F/78)

011 UNIT- F1 (ENTER-)

FE I 36 36 IE I 36 I I I I I I I IEIEIEIEICIC I I 6 IE IE I I IEIE W IE IE 6 IEIEIEIC I I IE I I6 I IEIEIC I IC I I I I I JE I I I I
MODIFY

FUN (P8

ENTER *//7 ¥ CONTROL STATEMENT
JAUIN UNTT-RE » TYFE-FRIMARY (F/8)

ENTER */7 ¢ CONTROL STATEMENT
L7 VO FACK-12345 (F/5)

ENTER Y77 * CONTROL STATEMENT
S/ END (Prs)

70

Explanation

e 010 LOAD NAME — $INIT
SINIT is the system name for the Disk Initialization Program.

e 011 UNIT — F1 The Disk Initialization Program is located on the fixed disk on drive one.
Pressing ENTER- instead of PROG START to end response causes DATE,
SWITCH, and File keywords to be bypassed.

e //UIN UNIT — R1, TYPE-PRIMARY

1. Tells the system to initialize the removable disk on drive one.

2. Because no other parameters are entered in the UIN statement, the
program will:

o Initialize the entire pack.

o Read and verify the test data on the pack one time.

e //VOL PACK- — S$INIT will enter the disk name 12345 in the VTOC. Whenever a file from this
12345 disk is used in a job, the operator must type 12345 when the system prompts
PACK.
o //END End of control statements.

Sample Jobs 71

SAMPLE JOB 2. COMPILE AN RPG SOURCE PROGRAM
We're going to use the IBM-supplied procedure RPGB (located in the source library
on the fixed disk on drive one) to compile a source program INVUPD (an inventory
update) located on R1. The RPG Il Compiler (the program to compile RPG |1
source programs) is also located on R1. We want to put the compiled program
in the object library on R1. Here are the OCL statements for the job,

READY - Call. (F/8)
000 CALL NAME - REGER (F/78)
001 UNTT- F1 C(F/8)

36 36 3630 3 36 36 I6 36 36 36 I 36 I I 6 I I 6 366 36 I IE I I I B3I H I I I 6 I I I IE I IE I IE I I I I IEIE I 0 I ICIEIE I I
010 LOAD NAME - $RF G

011 UNIT-R1L

020 COMPILE OBJECT-F 1

021 SOURCE~ INVUFTE (F/8)
022 UNIT-R1

030 FILE NAME-$WORK

031 UNIT-F1

032 , FACK-F1F1F1

033 TRACKS-20

034 RETAIN-S

040 FILE NAME-$S0URCE

041 UNIT-F1

042 FACK-F1F1F1

043 TRACKS-20

044 RETAIN-S

HREEREKEEKNEERENRRE R RN R RN EE R R RN RERRRERRR RN AR RR R RN RRRH RN
MODIFY '

020 (P/S) R1 (F/7%)

RUN (FPr5)

72

Explanation

® 000 CALL NAME

¢ 010 LOAD NAME

® O011.UNIT

® 020 COMPILE

OBJECT

® 021 SOURCE

® 022 UNIT

® 020 MODIFY

'~ RPGB

Tells the system you want to use the IBM supplied Compile Procedure
(RPGB).

$RPG

Tells the system you want to use the RPG 1| Compiler (the program to '

compile RPG |I source programs).

R1 v
The RPG Il-Compiler is located on R1.

F1 .
The object program will be put in the object library of the disk on F1.

INVUPD

The SOURCE statement in the RPGB procedure requures a delayed response.
When the system reaches the SOURCE statement in the display sequence, it

prompts SOURCE and waits for the operator’s response.

R1

The response tells the system that the program to be complled
(INVUPD) is located on R1.

R1

1. System prompts MODIFY,

2. Operator types 020, telling system he wants to change that statement.
(He does not want the system to put the compiled program on F1.)

3. System tabs to position 37 and waits for response.

4, Operator types new response—R1. The system will put the
compiled program on R1,

Sample Jobs 73

SAMPLE JOB 3. PROCESS CUSTOMER PROGRAM “INVUPD"

We're going to run the customer program INVUPD, compiled in SAMPLE JOB 2
and located on the removable disk on drive one. The job uses one file, INV,
located on R2. The name of the disk which contains the file INV is 123456.

Here are the OCL statements for the job.

REALY -

LOAT (P rsD

P66 I 36963636 36636 I 36 36 30 36 96 36 36 I6 I 66 6 I 36 I I e I M I 6 I I I P I I I 36 A IE IEIC Y I 6 I6 I I I 6 I I I I A I A I

Q10 LOAD
O1i

020 DATE
030 SWITCH
040 FILE
041

042

043

050 FILE

NAME -~

LNET -
(127087720 -
(00000000 -
MNAME ~

UNIT-

FACK-

LAREL -~

MAME~

THVUFD A8
R1 <80
(8D

(P

TN (P A0
2 (Pes)
D
ENTER-)
(80

3636 6 63 36 ;I J6 IC IE I I6 A6 IE I W W 36 6 IE I 6 W 36 36 I 636 I e I G I I I e I I I 3 9 A A 36 ICICIEI6 3660 I I I I 30 6 I

MOLILFY

FUN (/8D

74

Explanation

e 020 DATE — (12/08/70)
We'll use the current system date for the job.

e 030 SWITCH — (00000000) — (P/S)
The program doesn’t use external indicators so the operator doesn’t care
about the switch setting and responds by pressing the PROG START Kkey.

e 043 LABEL — Press the ENTER- key
' Responding to LABEL by pressing the ENTER- key tells the system
to bypass the rest of the file keywords and prompt FILE NAME.

e 050 FILE NAME — (P/S)

Responding to FILE NAME by pressing PROG START causes the
system to bypass the rest of the file keywords and prompt MODIFY,

Sample Jobs 75

SAMPLE JOB 4. COPY FILE DISK TO DISK

REATY -
696 36 36 3696 36 96 I6 I 36 I6I6 36 I 6 96 36 36 36 36 36 I I6 36 36 I I I6 36 36 I6 6 I6 96 I 36 I I I I I IE 36 36 3 36 36 3 I 6 366 36 I I I3 I 363 3

010
011
020
O30
Q40
G4
042
043
050
051
OH2
053

054

We’re going to copy an employee master file from R1 to R2. The second file will
serve as a back-up in case the original file is damaged in some way, such as a track
becoming defective or a portion of the file being overlayed. When the master file

was created the programmer:

1. Responded to FILE NAME with EMASTFIL.
2, Responded to PACK with VOLO6.

3. Responded to LABEL with EMPMAST.

4, Responded to TRACKS with 15,

These responses caused the system to put the name EMPMAST in the VTOC on
VOLO6.

Here are the OCL and utility control statements we will use to copy the master
file from R1 to R2.

LOAG (g0
MHAME -~ SEOFY A5
UNTT - Fi1oCpPss)
CL2708/,70 - (FrE)
(OO0O0000) ~ AR
MAME -~ CCOPY TN CFsED
UNI T Fd PSR
PATK- VL8 (A
LABEL - EMPMasT
MAME - COPY((PsD
UNET e (s
PACK- V0%
LADEL - E M
RECORDE~

L.OAG
NATE

SWITOCH
FILE

FILE

AR

CEMTER-)

(PG

GBS
056
057
060 FILE

TRACKS-
LOCATION-
RETATN-
-~ NAME-

15 Ry
(/60
FroOCENTEF-)
6

I I I 36 I I I 6 I 6 6 6 I I I I6 6 A I 6 36 36 I 6 I I I I IE I I IE IE 3 IE IE IE IE IE 36 I I I I6 30 IC I IC I I I I I W A I8 e IEIE I 6

MOUILFY
RUN «(F/8)

ENTER *//7 * CONTROL STATEMENT

v/ COPYFILE QUTPUT-DISK (F/8)

ENTER *//7 * CONTROL STATEMENT

77 END (P/SY

76

Explanation

e 010 LOAD NAME
e 011 UNIT

e 020 DATE

e 030 SWITCH
e 040 FILE NAME

e 043 LABEL

e 050 FILE NAME
e 053 LABEL

e 055 TRACKS

e 057 RETAIN

e COPYFILE OUTPUT

— $COoPY

$COPY is the system name for the Disk Copy/Dump Program.

F1
The Copy Disk Program is on F1.

(12/08/70) ‘
We'll use the current system date for the job.

(00000000)
This program doesn’t use external indicators, so operator doesn’t care
about the.switch setting and responds by pressing PROG START.

COPYIN
COPYIN is the predefined file name you must use for the input file
whenever you use Disk Copy/Dump Program.

EMPMAST

EMPMAST is the VTOC file name for the COPYIN file. You must
supply this name so the system knows which file to use for COPYIN.
Pressing the ENTER- key causes the system to bypass the rest of the
file keywords and prompt FILE NAME.

COPYO
COPYO is the predefined file name you must use for the output file
whenever you use the Disk Copy/Dump Program.

EMPMAST2
The system enters EMPMAST?2 in the VTOC on VOL07. EMPMAST2
is the name by which the system will identify the back-up file.

15 v

Because we are creating a new file we must respond to one of the space
keywords (TRACKS and RECORDS). We specify 15 tracks because
that's what we specified for the original file.

P

The back-up file is to be permanent to protect it against inadvertent
overlaying. Pressing the ENTER- key causes the system to bypass the
rest of the file keywords and prompt FILE NAME.

DISK

The COPYFILE statement tells the program to copy the designated file
from R1 to R2.

Sample Jobs

77

SAMPLE JOB 5. MULTI-FILE BUILD

Each day the customer runs a daily transaction job which creates a daily transaction
file. Each day’s file has a different name and date. We are going to build a
procedure to use these daily files to create a weekly transaction file (WKLYTR).
The weekly transaction program is located in the object library of fixed disk 1.

READY-

200
Q01

RUILD NAME-
UNIT-

BUTLD (F/8)
WTR (P75
R2 (Frs)

010
011

020
030
040
041

0432
043
044
045

046

047

048
050
031
52
053
054
Q55
056
057
058
Q60
061

Q62
063
464
Q65
066
V&7
068

78

LLOAD NAME—
UNTT -

NATE -
SWITCH (00000000 -
FILE NAME~
UNTT -

FACK-

LABEL~

RECORISG~

TRACKS~

LOCATION~-

RETATN-

DATE-

FILE NAME~-
UNT T~

FACK-

LLABEL-

RECORDS -

TRACKS—

LOCATION~

RETAIN-

DATE-

FILE CNAME-—
UNIT~

FaCK—

L.ABEL -

RECORIS-

TRACKS~

LOCATION-

RETATIN-

nate-

MEYRUN (FA8)

Fi (Fr/5)

(A8

(P r8)

MONTR MONDIAYS FILE (P78
FlL (P78

FACKOE (F/78)

(F/8)
(Fr8)
(F78)
CFrad
(F/5)
P ARG

TUETR TUESHAYS FILE (F78)
Fi (s

FACKO8 (F/8)

(F78)

(FA5)

(Fr8)

(F/8)

(Fr8)

? ARS8

WEDTR WEIINESDAYS FILE (F/738)

Fi (P78
FACKROE (Fr8)
CFPAG)

(P8

(P75

FrE)

s
?ARSE)

070 FILE
071
072
073
074
075
076
077
078
080 FILE
081
082
083
084
085
086
087
088
020 FILE
091
092
093
094

852

NAME-
UNIT-
FACK=
LAREL~
RECORDIS~
TRACKS—
LOCATION-
RETAIN-
DATE-
NAME~
UNIT-
FACK~
LAREL~
RECORDS-
TRACKS-
LOCATION-
RETAIN-
DATE-
NAME -
UNTT=
FACK-
LABEL~
RECORIS-
LOCAT ION-

THUTR

Fi oP/8)
FACKO8 (F/7%)
P78

(F/78)

LF/9)

(F/785)

(P/5)

2 FP/8)
FRITR

F1 (F/8)
FACKRO8 (F/8)
(P8

(F/75)

(P/8)

(F/78)

(F/5)

2?2 AP/E)
WKLYTR (F/8)
Ri (F/78)
FACKO4 (F/8)
(F78)

SO0 (PG
{(F/5)

THURSDAYS FILE (P/8)

FRIDAYS FILE (F/79)

RETALN- B CENTER-)
100 FILE NAME -~ {F/78)
3696 36 36336 336 36 36 36 3 96 36 36 03639696 6 JE 36 3 36 3636 96 936 9 6 6 3636 36 36 96 36 36 96 36 36 36 36 36 36 36 96 36 36 36 36 36 36 36 36 90 96 46 330

MODIFY

RUN (P/5)

Sample Jobs

79

Explanation

80

-o 000 BUILD NAME
e 001 UNIT

e 020 DATE

e 030 SWITCH

e 040 FILE NAME

e 048 DATE

e 090 FILE NAME
e 094 RECORDS

e 096 RETAIN

e 100 FILE NAME

e RUN

WTR :
The procedure name in the source library is WTR.

R2
The procedure is located on unit R2,

(P/S)
The date statement is not part of the procedure.

{00000000) — (P/S)
The external indicators are not used by the program.

MONTR MONDAYS FILE
The file name for each day is different. The comment (MONDAYS
FILE) will become part of the procedure.

? (P/S)
The date each file was created is supplied at CALL time, when the job
is run. '

WKLYTR (P/S) ‘
The output file is called WKLYTR and put on PACKO4 on unit R1.

500 (P/S)
Our output file contains up to 500 records.

P (ENTER-)
We want to make this a permanent file. The ENTER- key caused
DATE to be skipped and FILE NAME prompted.

(P/S)
We are finished with file statements, prompt MODIFY.

Put the procedure in the source library.

SAMPLE JOB 6. MULTI-FILE CALL

We are going to run the procedure we built in sample job 5. However,

this week Thursday was a holiday so there are only four input files.
We can still use the same procedure if we delete an input file at

MODIFY time.
READY - CAaLL (F/9)
Q00 CALL NAME - WTR (A8
001 UNIT- k2 (8D
636 36 36 36 3696 36 6 36 96 36 36 36 36 6 96 96 36 3 36 36 2 I 0 36 3 36 36 I 36 363 30 96 3 3 6 3 I 66 I IE 6 I I6 6 I IE 6 I 96 I I 6 36 I 6 9 6
010 LOAD NAME-WKYRUN
D11 UNTT-F1
020 FILE NAME~-MONTR
021 UNIT-F1
022 FACK-FACKOS
Q23 DATE- ALHSTL (PSS
030 FILE NAME-TUETR
031 UNIT-F1
032 FACK-PACKOB
033 DATE- 4746771 (F/8)
040 FILE NAME-WEDTR
041 UNIT-F1
042 FACK-PACKOS
043 DATE- Ar7F7L (F/78)
030 FILE NAME-THUTR
051 UNIT-F1
052 FACK-FACKOS
053 DATE~ As87571 (F/7S)
060 FILE NAME-FRITR
061 ' UNIT-F1
062 FACK-FACKOS
063 DATE- 479771 (FrE)
070 FILE NAME-WRLY TR
Q071 UNIT-R1
072 FACK-FACKOA
073 RECORDIS-500
074 RETAIN~F
3369 303 36 36 30 3 36 336 I I 396 0 I 6 3636 I 36 I 96 I 3¢ I I 0 I6 B I 6 I 3636 36 I 6 I 6 I 36 I 6 IEIEIE 6 W I I B I D6 IC K I 36
MOLITFY

OEQy (P/S)

¥ THURSDAYS FILE DELETED BECAUSE OF HOLEDAY » NO RUN THAT DAY (F/5)

RUN (FP/5)

Sample Jobs

81

Explanation

82

023 DATE

033 DATE

043 DATE

053 DATE

063 DATE

MODIFY 050

RUN

4/5/71

4/6/71

4/7/71

4/8/71

4/9/71

We must supply the date for each day’s input file because we gave a
delayed response (?) at BUILD time. Thursday’s date is entered

even though we will delete the file later. A date should be entered to
continue the cycle.

We delete the entire file for Thursday and enter a comment to explain why,

Start the job.

PART II. |
DISK UTILITY PROGRAMS

Part Il. Disk Utility Programs 83 -

To use utility prograins, you must write utility
control statements and operation control
language (OCL) statements. In this manual,
therefore, the information for every program is
divided into five sections:

e Control statement summary

o Parameter summary

e Parameter descriptions

e OCL considerations

e Examples

The first three sections are to guide you in writing
utility control statements. The OCL section is to

guide you in writing OCL statements. The ex-
amples will help you in both.

Writing Utility Control Statements

You may write utility control statements on
whatever paper or preprinted forms you like. In
writing the statements, use the manual in the
following way:

1. Look at the CONTROL STATEMENT
SUMMARY to determine which control
statements and parameters apply to the
program use you are interested in. (The
program uses are stated in the text pre-
ceding the control statement summary.)

2. If you need information about the contents
or meanings of particular parameters, look
at the PARAMETER SUMMARY.

3. If you need more detailed information
about parameters, read the PARAMETER
DESCRIPTIONS following the parameter
summary,

4, If you need examples of specific jobs, look
at the EXAMPLE section. All examples
show the OCL and utility control statements
needed to load and run the utility programs
for specific jobs. The statements are shown
in the form they are printed on the system
printer,

_
HOW TO USE PART Ii
, /

Writing OCL Statements

To write OCL statements to run a utility program,
look at the OCL CONSIDERATIONS section for
that program. There you will find a list of the re-
quired keywords and responses for LOAD and
BUILD sequences. (Keywords not listed can be
bypassed.) Should you need more general infor-
mation about OCL, or more specific information
‘about the keywords , see Part | of this manual.

Capital Letters, Numbers, and Special Characters

Capitalized words and letters, numbers, and

special characters have special meanings in OCL

and utility control statement descriptions in this
manual.

Utility Control Statements

In utility control statements, capitalized words
and letters must be written as they appear in the
statement description. Sometimes numbers
appear with the capitalized information. These
numbers must also be written as shown.

Words or letters that are not capitalized mean you
must use a value that applies to the job you are
doing. The values you can use are listed in the
parameter summaries for the control statements.

Braces ({ }) sometimes appear in parameters
shown in control statement summaries and param-
eter summaries. They are not part of the param-
eters. They simply indicate that you must choose
one of several values to complete the parameter.
For example, RETAIN { T} means you can use
either RETAIN-T or RETAIN-P.

OCL Statements

In OCL statements, keywords are capitalized.
Responses that are shown in capital letters must
be written as shown. If numbers or special charac-
ters are included with the capital letters, they
must be written as part of the response. For
example, $INIT is the name of the Disk Initiali-
zation program and must be written exactly as
shown. Responses that are not capitalized mean
you must use the value that applies to the job you
are doing.

How to Use Part Il 85 -

86

INTRODUCTION
T ICEIRI
The disk system management programs include All Programs
the following utility programs: Except Library Maintenance

e Disk Initialization

e Alternate Track Assignment Operator keys OCL
sequence to load and
e Alternate Track Rebuild run programs

o File and Volume Label Display

o File Delete

Utility Program prints:

/ Preguam. b
e Disk Copy/Dump ‘ﬁﬁ ENTER ‘//' CONTROL
STATEMENT
e Library Maintenance
Program reprompts
until // END is
These programs, residing on disk, do a variety of entered

necessary jobs: from preparing disks for use to

adding new or changed programs to the system. Operator keys control

statement for utility

General Program Operation program

The utility programs require control statements
describing the jobs you want done. They read
these statements from the system input device,
or from procedures stored in a source library on
disk. The system input device is normally the
keyboard, but the operator can specify another
device by his response to the OCL keyword
READER during initial program loading {IPL).

QUESTION: Last NO
Control Statement
// END

The following diagrams outline the general way
the utility programs operate. Assume that the
programs are reading control statements from the
keyboard.

YES

FPregeom..

—ﬁ:i@ Program ends

Introduction 87

Library Maintenance Program

B

A

Progrem..

Operator keys OCL
sequence to load and
run program

Program prints:
ENTER ‘ //* CONTROL
STATEMENT

Operator keys the
control statement
for a particular
program use

Program does the
requested job

Program prints:
ENTER ‘' //* CONTROL
STATEMENT

QUESTION: More YES

Library Maintenance ——————
Jobs

NO

Operator keys: // END

Program ends

Control Statements

Every control statement is made up of an identifier
and parameters. The identifier is a word that iden-
tifies the control statement. It is always the first
word of the statement (following // blank in posi-
tions 1-3). Parameters are information you are
supplying to the program. Every parameter con-
sists of a keyword, which identifies the parameter,
followed by the information you are supplying.

Coding Rules

The rules for writing control statements are as
follows:

1. //blank. All control statements must have
// blank in positions 1-3.

2. Statement Identifier. Begin it in position
4 or after of the statement. Do not use
blanks within the identifier.

3. Blanks. Use one or more blanks between
the identifier and the first parameter. Do
not use them anywhere else in the statement.

4, Statement parameters. Parameters can be in
any order. Use a comma to separate one
parameter from another. Use a hyphen (-}
within each parameter to separate the
keyword from the information you
supply. Do not use blanks within or
between parameters.

5. Statement parameters containing a list of
data after the keyword. Use apostrophes ()
to enclose the items in the list. Use a
comma to separate one item from another.
For example: UNIT-'R1,R2’' (R1 and R2
are the items in the list).

6. Statement length. Control statements must
not exceed 96 characters.

The following example shows a control statement.
The statement idgntifier is COPY. The parameter
keywords are FROM, LIBRARY, NAME, and TO.
The information you supply is F1, O, SYSTEM,
and R1.

// COPY FROM-F1,LIBRARY-O,
NAME-SYSTEM,TO-R1

End Control Statement
The END statement is a special control statement
that indicates the end of control statements. It
consists of the letters // END in positions 1-6 and
must always be the last control statement for the
programs,

introduction 89

90

The Disk Initialization program ($INIT) pre-
pares disks for use. It does this by:

e Writing track and sector addresses on the disk.

e Checking for defective tracks, a process called
surface analysis.

e Assigning alternate tracks to any defective
tracks found.

e Writing a name on each disk to identify the
disk.

e Formatting cylinder 0 (zero).
The process is called initialization. The program can

can initialize up to three disks during the same
program run,

DISK INITIALIZATION PROGRAM
L

All disks must be initialized before use. Disks
that have been initialized need not be re-
initialized unless you want to erase their con-
tents and rename them.

There are three types of initialization: primary,
secondary, and clear. Primary is used to initialize
the entire disk. Secondary is used only when the
disk capacity of your system is increased and

you have programs and data on your disks that
you want to keep. Clear is used to unconditionally
initialize a disk regardless of the presence of any
files or libraries. Therefore, the use of this param-
eter is not recommended. The control statements
you supply for the Disk Initialization Program
depend on the type of initialization and the
number of disks you are initializing.

Disk Initialization Program 91

CONTROL STATEMENT SUMMARY for $INIT

— Use —

Primary
Initialization

New Disks

L

— Control Statements —

-
oty

R, -

// UIN TYPE-PRIMARY,UNIT- {
// VOL PACK-name,ID-characters

// END

P
1'!

E END A5

odes } VERIFY-number,CAP- {HALF

Disks already in
use (reinitialize)

// UIN TYPE-PRIMARY,UNIT- { code

‘codes’

// VOL PACK-name,ID-characters

// END

} VERIFY-number, ERASE- {NO

YES

} caP. {H;&[E}

FULL

®

®

Secondary
Initialization

Disks already
in use

| -

//UIN TYPE-SECONDARY ,UNIT- {

// END

code
‘codes’

} _ VERIFY-number

Clear
Initialization

010

Disks already
in use

@ Contro! statements are required in the order they are listed: UIN, VOL, END or UIN, END. The TYPE-PRIMARY,

// UIN TYPE-CLEAR,UNIT- {,°°de)
codes

// VOL PACK-name,|D-characters
// END

} VERIFY-number,CAP {"A'-F

FULL

|
®

VERIFY, and ERASE parameters are optional.

' @ For primary or clear initialization, one VOL statement is required for each disk listed in the UNIT parameter of
the UIN statement. The PACK parameter in the first VOL statement applies to the first disk listed in the UNIT
parameter. The PACK parameter in the second VOL statement applies to the second disk listed in the UNIT

parameter, and

sO on.

@ VOL statements are not required for secondary initialization because the disks are already named.

@ If the TYPE parameter CLEAR is selected, ERASE-YES is assumed.

@ CAP-FULL should not be used on a half capacity system.

92

PARAMETER SUMMARY

UIN (Input Definition) Statement

TYPE-PRIMARY.

Primary initialization. Initialize the disks to the capacity of the drives on which
they are mounted. Tracks already initialized are reinitialized.

TYPE-SECONDARY

Secondary initialization. Applies only to disks that were initialized on drives of less
capacity than the drives you are now using. It means initialize the uninitialized
portions of the disks to the capacity of the drives on'which the disks are mounted.
Tracks already initialized are not disturbed.

Clear initialization. Initialize the disks to the capacity of the drives
on which they are mounted. Tracks already initialized are re-
initialized. Active files and library checking is bypassed and any
data on the tracks is destroyed.

Error logging areas on F1 are saved.

Disk location (one disk).

Possible codes are

Disk location (two disks). R1,F1,R2,F2,

Disk location (three disks).

VERIFY-number

Do surface analysis the number of times indicated (number can be 1-255).
VERIFY-1 is assumed if you omit the parameter.

Retest defective tracks. Primary initialization

only. ERASE-NO is

ERASE-NO

assumed if you omit
the parameter.

Do not retest defective tracks.

CAP-HALF

Initialize a disk to half
capacity even if on a full
capacity drive.

The CAP keyword forces
ERASE-YES. Pack is

initialized to the capacity
of the drive if this keyword

CAP-FULL

Initialize a disk to full
capacity.

is omitted.

Disk Initialization Program

93

VOL (Volume) Statement

six characters.

Disk name. Can contain any of the standard System/3 characters except
apostrophes (') and leading or embedded blanks. Its length must not exceed

Additional identification. Can contain any of the standard System/3 characters’
except apostrophes () and leading or embedded blanks. Its length must not
exceed ten characters. |f you omit this parameter, no additional identification
is written on the disk.

PARAMETER DESCRIPTIONS

| TYPE Parameter (UIN)

The TYPE parameter indicates the type of
initialization you want the program to do:
primary, secondary, or clear. The type of
initialization and the capacity of the disk
drives on which the disks are mounted
determine which disk tracks will be
initialized. If this parameter is omitted,
primary is assumed.

Disk Drive Capacity

Disk Drives of different data-storage capacities
are available for System/3 Model 6. All drives
use the same type of disks. The only difference
is the number of tracks the drives can use: the
larger the drive capacity, the more tracks the
drive can use. However, you must initialize

the disk tracks before using them.

Primary Initialization

94

Primary initialization applies to new disks, or
disks you have used but want to initialize again.
The program initializes all tracks corresponding
to the capacity of the drives on which the disks
are mounted. Tracks that were previously
initialized are initialized again. Any data on the
tracks is destroyed.

You can use primary initialization on a disk as
often as you want. However, the program will
not initialize disks containing libraries, tempo-
rary data files, or permanent data files. You
must delete data files with the File Delete
Program and libraries with the allocate function
of the Library Maintenance Program.

Secondary Initialization

Secondary initialization applies to disks that
were initialized on drives of less capacity than
drives you are now using. When you increase
the capacity of your drives, more tracks on
your disks become available for use. You must
initialize the additional tracks. Use secondary
initialization if you do not want information
destroyed on tracks already in use. The pro-
gram initializes the additional tracks only.
Tracks already in use are not disturbed.

The program will not do secondary initialization
on new disks or disks that have already been
initialized to the capacity of the drives on which
they are mounted.

Clear Initialization

Clear initialization applies to new disks but only
to those which cannot be used because of in-
valid pack labels or some other unrecoverable
disk error. All tracks corresponding to the
capacity of the drives on which the disks are
mounted are initialized. Tracks that were pre-
viously initialized are reinitialized.

Warning: All libraries, temporary data files, or
permanent data files are completely wiped out.

I UNIT Parameter (UIN)

The UNIT parameter (UNIT-code) tells the
location of the disks you want to initialize.
The program can initialize up to three disks
during one program run.

The form of the UNIT parameter depends on
the number of disks you are initializing:

1. For one disk, use UNIT-code
2. For two disks, use UNIT-'code,code’
3. For three disks, use UNIT-'code,code,code’

The codes indicate the locations of the disks:

Code Location
R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.
R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

For primary and clear initialization, the order
of codes must correspond to the order of VOL
control statements. If, for example, you had
used the parameter UNIT-'R1,R2’, the first
VOL statement applies to the removable disk
on drive 1 and the second VOL statement to
the removable disk on drive 2. (No VOL
statements are required for secondary initiali-
zation. The disk is already named.)

VERIFY Parameter (UIN)

The VERIFY parameter (VERIFY-number)
concerns surface analysis. It enables you to
indicate the number of times you want the
program to do surface analysis before judging
whether or not tracks are defective. The
number can be from 1-255, If this parameter
is omitted, VERIFY-1 is assumed.

Surface Analysis

Surface analysis is a procedure for testing the
condition of tracks. It consists of writing test
data on tracks, then reading the data to ensure
it was recorded properly.

In judging whether or not tracks are defective,
the program does surface analysis the number of
times you specify in the VERIFY parameter.

If you omit the parameter, surface analysis is
done once. Tracks that cause reading or writing
errors any time during surface analysis are con-
sidered defective, but can be assigned alternates.

If the program finds more than six defective
tracks, it considers the disk unusable and stops
initializing the disk. Only six alternate tracks are
available. (If you specified ERASE-NO, try to
reinitialize with ERASE-YES.)

If either track O or 1 is defective, the program
considers the disk unusable and stops initializing
it. Tracks 0 and 1 are used only by the system
and cannot have alternates assigned to them.

| ERASE Parameter (UIN)

The ERASE parameter concerns alternate track
assignment. It applies only to disks that have
already been initialized and used, but you are
reinitializing using primary initialization.

The condition of tracks on such disks has been
tested at least once before (during the previous
initialization) and tracks that were found to be
defective during surface analysis were assigned
alternates. The ERASE parameter, therefore,
enables you to indicate whether you want the
program to (1) retest the tracks to which alter-
nate tracks are already assigned or (2) leave the
alternate tracks assigned without retesting the
tracks.

The parameter ERASE-YES means to retest. If
you tell the program to retest, it erases any existing
alternate track assignments, and tests all tracks as
though the disk were new.

The parameter ERASE-NO means not to retest. If
you tell the program not to retest, it tests only
those tracks to which no alternate tracks are
assigned. Alternate tracks previously assigned
remain assigned.

CAP Parameter

The CAP parameter determines the size of the pack
when it is initialized. The CAP-HALF parameter
means to initialize the pack to half capacity even if

it is on a full capacity drive. The CAP-FULL param-
eter means to initialize the pack to full capacity. The
use of the CAP keyword forces ERASE-YES.

Defective tracks are not retested if the ERASE
parameter is omitted.

Disk Initialization Program 95

Alternate Track Assignment

Alternate track assignment is the process of
assigning an alternate track to a defective track.

If the Disk Initialization program finds a defective
track during surface analysis, it assigns an alternate
track to the defective track. The alternate is, in
effect, a substitute for the defective track. Any
time a program attempts to use the defective
track, it will automatically use the alternate in-
stead. Each disk has six alternate tracks

(tracks 2-7).

If tracks become defective after a disk is initialized,
another program (Alternate Track Assignment) is
used to assign alternate tracks. Disks need not be
reinitialized to assign alternate tracks.

PACK Parameter (VOL)

96

The PACK parameter (PACK-name) applies to
primary and clear initialization only. During
primary and clear initialization, the Disk
Initialization program writes a name on each
disk. It uses the name you supply in the cor-
responding PACK parameter. (One VOL con-
trol statement containing a PACK parameter
is required for each disk.)

The name can be any combination of standard
System/3 characters except apostrophes (') and
leading or embedded blanks (see Appendix J).
Its length must not exceed six characters, The
following are valid disk names: 0, FO001, 012,
A1B9, ABC.

In general, disk names are used for checking pur-
poses. Before a program uses a disk, the disk name
is compared with a name you supply (either in
OCL statements or control statements required

by the program). If the names do not match, a
message to the operator is printed. In this way,
programs cannot use the wrong disks without the
operator knowing about it.

ID (ldentification) Parameter (VOL)

The ID parameter (1D-characters) applies to
primary and clear initialization only. Iten-
ables you to include up to ten characters, in
addition to the disk name,‘td further identify
adisk. The information is strictly for your use.
(It is not used for checking purposes by the
system.) If you use the File and Volume Label
Display program to print the disk name, it will
also print the additional identification for you.

The additiona! identification can be any com-
bination of standard System/3 characters except
apostrophes (') and leading or embedded blanks.
However, the maximum number is ten.

OCL CONSIDERATIONS

LOAD Sequence
Keywords Responses Considerations
READY LoD | ———
LOAD NAME SINIT Name of Disk Initialization program.
UNIT R1, R2, F1,0r F2 Location of disk containing Disk Initialization program.
MODIFY RUN —_———

Only the key- You end every

words listed here response by pressing

are required. You PROG START.

can bypass the rest.
BUILD Sequence
Keywords Responses Considerations
READY Buw | ——_—
BUILD NAME Procedure name Name by which procedure will be identified in source

library. :
UNIT - R1, R2, F1, or F2 Location of disk containing source library.
LOAD NAME SINIT Name of Disk Initialization program.
UNIT R1, R2, F1,0or F2 Location of disk containing Disk Initialization program.
MODIFY ® INCLUDE Response when including control statements in
utility control statements procedure.
RUN
® RUN Response when not including control statements
in procedure.

Only the key- You end every

words |I?16d here response by pressing

are required. You PROG START.

can bypass the rest.

Disk Initialization Program 97

EXAMPLE

Primary Initialization of Two Disks

READY

kkhkkkhkkhhkkhhhkhhkhkhkkhkkhkrkhkkhk%k

010 LOAD NAME
011 UNIT OCL LOAD Sequence
020 DATE (XX/XX/XX) Circled areas are operator responses.

030 SWITCH (00000000) Keywords for which no responses are
shown are the ones bypassed. |f you
press ENTER— after responding to
UNIT, the DATE, SWITCH, and FILE

NAME keywords are not prompted.

040 FILE NAME
R Y R R LX)
"RUN is the response to MODIFY even

though the two words do not appear
on the same line.

MODIFY

ENTER '//' CONTROL STATEMENT

// UIN UNIT-'F2,R2',TYPE-PRIMARY Control statement supplied by operator.

ENTER '//' CONTROL STATEMENT
// VOL PACK-2222

ENTER '//' CONTROL STATEMENT
// VOL PACK-PAYROL,ID-010270

ENTER '//' CONTROL STATEMENT
// END

Sequence repeats until operator enters
END statement.

Explanation:

Message printed by Disk Initialization program.

o The two disks on drive 2 are being initialized (UNIT-'F2,R2’ in UIN statement).
e The fixed disk (F2) will be given the name 2222 (PACK-2222 in first VOL statement).

e The removable disk (R2) will be given the name PAYROL (PACK-PAYROL in second VOL statement).
Additional identifying information, 010270, will be written on the removable disk {ID-010270).

°
-

98

MESSAGES FOR DISK INITIALIZATION

Message

Meaning

s a———————

- |

INITIALIZATION
ON XX COMPLETE

INITIALIZATION ON XX
TERMINATED

**ALTERNATE TRACKS
ASSIGNED**

PRIMARY TRACK XXX
ALTERNATE TRACK XXX

UNRECOVERABEL ERROR;
RE-INITIALIZING PACK

This message is printed when initialization of a disk is complete. XX indicates
the unit (R1, R2, F1, or F2) on which the initialization is complete.

This message is printed when initialization of a disk must be terminated for
one of the following reasons:

1. Cylinder zero is defective.
2. More than six tracks are defective.
3. Possible disk hardware error exists.

4, The program attempted to initialize the disk ten times without
succeess.

After this message is printed, halt A13 will occur. XX indicates the unit
(R1, R2, F1, or F2) on which the initialization is terminated.

These two messages are printed when a primary track is defective and an
alternate track is assigned to it.

XXX indicates the tracks involved.

This message is printed when the Disk Initialization program determines that
the disk has not been initialized properly. The program will again attempt to
initialize-the disk correctly with ERASE-YES forced. The maximum
number of times that the program will attempt to initialize a disk is ten.
After that number of times, halt A13 occurs.

Disk Initialization Program 99

100

The Alternate Track Assignment program
(SALT) assigns alternate tracks to disk tracks
that become defective after they are initialized.
An alternate track is a track that can be assigned
to replace another track. When the program
assigns an alternate, it transfers the contents of
the defective track to the alternate. Every disk

ALTERNATE TRACK ASSIGNMENT PROGRAM
I

has six alternate tracks. An alternate track can
replace any track except tracks 0 and 1 or
another alternate track.

The program has three uses. The control state-
ments you must supply depend on the program
use.

Program Use

Conditional assignment.

Program tests the condition of a track and
assigns an alternate to it if it is defective.
(This is the normal use.)

Unconditional assignment.®

Program assumes the track is defective and
assigns an alternate to it without testing its
condition.

Cancel prior assignment.®

Program cancels alternate-track assignment
to free the alternate for use with another
track.

Situation

Anytime a disk track causes reading or writing errors during a
job, the system prints a message requesting that you run the
Alternate Track Assignment program. You would normally
use the program to do conditional assignment,

You have used the Alternate Track Assignment program to do
conditional assignment. The test on the track indicated that
the track was not defective (an alternate, therefore, was not
assigned). But the track still causes reading or writing errors,
and you want to assign an alternate to it.

A defective track was found, but all alternates are in use.
You want to free an alternate so you can recover the data
from the defective track. Before freeing the alternate, how-
ever, you would normally copy (to another disk) the file or
library entry that uses the alternate. This saves the data that
is already on the alternate. Run the File and Volume Label
Display Program to determine which tracks are assigned
alternates.

Conditional assignment is forced each time after an unconditional request.

Alternate Track Assignment Program 101

CONTROL STATEMENT SUMMARY FOR $ALT

— Use — — Control Statements — @

Conditional Assignment /! ALT PACK-name,UNIT-code,VERIFY-number @

" // END

track

Unconditional Assignment |// ALT PACK-name,UNIT-code,ASSIGN- i,tracks,

} VERIFY-number

// END

track

s ; \VERIFY-numbe

Cancel Prior Assignment // ALT PACK-name,UNIT-code,UNASSIGN- %

ND
T /I E

@ For each use, the program requires the statements in the order they are listed: ALT, END.

@ Optional parameter.

@ Optional parameter; applies to the automatic conditional assignment.

102

PARAMETER SUMMARY

ALT (Alternate) Statement

Name of the disk.

UNIT-code Location of the disk. Possible codes are R1, F1,
R2, F2.
-number In testing the condition of a track, do surface

analysis the number of times indicated (number
can be 1-255). If VERIFY parameter is omitted,
do surface analysis once.

N-track Assign an alternate
{unconditionally) to Use track numbers
one track. (8-405) to
identify tracks.
Tracks 0-7 are
-‘track,track,...’ Assign one alternate used by the system
unconditionally to and cannot be
each track assigned alternates.

(maximum is six).

GN-track Cancel one alternate-
track assignment. Use track numbers
(8-405) to which
alternates are

assigned.

UNASSIGN-‘track, track,...’ Cancel two or more
alternate-track
assignments
{(maximum is six). @

@ Before cancelling an assignment, the program tests the condition of the track to which the alternate is
assigned. The assignment is cancelled if the test indicates that the track is not defective. If the test
indicates that the track is defective, the program does not cancel the assignment unless the operator tells
it to do so.

Alternate Track Assignment Program 103

PARAMETER DESCRIPTIONS

| PACK Parameter
The PACK parameter (PACK-name) tells the
program the name of the disk containing the
defective tracks. This is the name written on
the disk by the Disk Initialization program.

The Alternate Track Assignment program com-
pares the name in the PACK parameter with the
name on the disk to ensure they match. In this
way, the program ensures that it is using the
right disk.

| UNIT Parameter

The UNIT parameter (UNIT-code) indicates the
location of the disk containing defective tracks.
Codes for the possible locations are as follows:

Code Location
R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.

R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

| VERIFY Parameter
The VERIFY parameter (VERIFY-number)
enables you to indicate the number of times
you want the program to do surface analysis
before judging whether or not the track is
defective. The number can be from 1-255.
If you omit the parameter, the program does
surface analysis once.

Conditional Assignment
Conditional Assignment consists of testing the
condition of a track (surface analysis) and, if the
track is defective, assigning an alternate track to
replace it. It is the normal use of the Alternate
Track Assignment program.

Situation: Conditional assignment applies to tracks
that cause reading or writing errors duringa
~ job. Anytime a track causes such errors, the
system does the following:

1. Stops the program currently in operation.

2. Writes the track address in a special area
on the disk.

104

When you use the Alternate Track Assignment
program to do conditional assignment, the program
locates the tracks by using the addresses in the
special area on disk. All disks, fixed and removable,
have such an area. The program will do con-
ditional assignment for all tracks identified in the
area (one at a time), as long as there are alternate
tracks available for assignment.

Surface Analysis: Surface analysis is a procedure the
program uses to test the condition of tracks. It
consists of writing test data on a track, then
reading the data to ensure it was written properly.

Before doing surface analysis, the Alternate Track
Assignment program transfers any data from the
track to an alternate track. This is the alternate
that will be assigned if the track proves to be
defective.

In judging whether or not the track is defective, the
program does surface analysis the number of times
you specify in the VERIFY parameter, If you omit
the parameter, the program does surface analysis
once. If the track causes reading or writing errors
any time during surface analysis, the program con-
siders the track defective.

Assignment of Alternate Tracks: If a track proves to be
defective, the program assigns an alternate track.
The alternate becomes, in effect, a substitute for
the defective track. Any time a program at-)
tempts to use the defective track, it automatically
uses the alternate instead.

There are six alternate tracks. The program will
not do conditional assignment if all six are already
in use,

Incorrect Data: If a track is defective, some of the data
transferred to the alternate track could be in-
correct. Therefore, when reading data from the

--defective track; the program prints all track
sectors containing data that caused reading errors,
Characters that have no print symbol are
printed as two-digit hexadecimal numbers. The
following is an example:

ABCDE GH123 45...
B A
6 5

Appendix J lists the characters in the standard
character set and their corresponding hexadecimal
numbers.

To correct errors on the alternate track, use the
Alternate Track Rebuild program.

| ASSIGN Parameter

The ASSIGN parameter {ASSIGN-track) applies
to unconditional assignment. It tells the pro-
gram which tracks you want alternates assigned
to.

You can assign alternates to any tracks except 0-7.
Tracks 0-7 are for system use only.

The form of the ASSIGN parameter depends on
the number of tracks you want to specify. For
one track, use ASSIGN-track; for two tracks, use
ASSIGN-"track,track’; and so on. You can specify
up to six tracks.

Use the track numbers (8-405) to identify the
tracks. For example, the parameter ASSIGN-'50,
301,353’ causes the program to assign alternate
tracks to tracks 50, 301, and 353.

Unconditional Assignment

Unconditional assignment applies to tracks that
occasionally cause read or write errors. Such tracks
might not cause errors when tested by the Alternate
Track Assignment program during conditional
assignment. |f they don‘t, the program will not
assign alternate tracks to them. If you stil! want

to assign alternates to these tracks, use unconditional
assignment. In doing unconditional assignment,

the program assigns alternates without first testing
the condition of the tracks suspected of being
defective.

| UNASSIGN Parameter

The UNASSIGN parameter {UNASSIGN-track)
applies to cancelling alternate track assignments.
It identifies tracks for which you want the pro-
gram to cancel assignments.

You can cancel up to six assignments. The form
of the UNASSIGN parameter depends on the
number of assignments you want to cancel. For
one assignment, use UNASSIGN-track; for two
assignments, use UNASSIGN-'track,track’; and
so on.

Use the track numbers (8-405) to identify the
tracks. For example, the parameter UNASSIGN-
'60,301,352’ causes the program to cancel
alternate-track assignments for tracks 50, 301,
and 352,

Cancel Prior Assignment

Cancelling an alternate-track assignment consists
of transferring the data from an alternate track
back to the original track (the track to which the
alternate is assigned), therefore freeing the
alternate from being the substitute for the original
track.

Before transferring data back to the original track,
the Alternate Track Assignment program tests the
condition of the original track. If the test indicates
that the track is defective, the program stops.
Through the restart procedure you choose, you can
tell the program to do one of three things:

1. Leave the assignment as it is. If there are
other tracks for which you are cancelling
assignments, the program continues with
those. Otherwise it ends.

2. Cancel the assignment and transfer the data
back to the original track regardless of the
condition of the original track.

3. Test the track again.

Cancelling assignments is not often done. It applies
to cases where a defective track is found, but all
six alternates are in use. To recover the data from
the defective track, you might want to cancel an
alternate-track assignment to free the alternate
track. Normally this involves copying, to another
disk, a file or library entry that uses an alternate
track, then freeing the alternate for use with the
defective track you found. Run the File and
Volume Label Display Program to determine
what tracks are assigned altnerates.

Alternate Track Assignment Program 105

OCL CONSIDERATIONS

LOAD Sequence
Keywords Responses Considerations
READY LOAD —_——
LOAD NAME $SALT Name of Alternate Track Assignment program.
UNIT R1,R2,F1,or F2 Location of disk containing Alternate Track Assignment
program.
MODIFY RUN | e———
Only the key- You end every
words listed here response by pressing
are required, You PROG START.
can bypass the rest.
BUILD Sequence
Keywords Responses Considerations
READY guyuo | ————
BUILD NAME procedure name Name by which procedure will be identified in source
library.
UNIT R1,R2, F1, or F2 Location of disk containing source library.
LOAD NAME SALT Name of Alternate Track Assignment program.
UNIT R1,R2, F1, or F2 Location of disk containing Alternate Track Assignment
program.
MODIFY e INCLUDE Response when including control statements
utility control statements in procedure.
——————— “RUN - e
e RUN Response when not including control statements
in procedure.
Only the key- You end every
words listed here response by pressing
are required. You PROG START.
can bypass the rest.

106

EXAMPLE

Conditional Assignment

Situation

Assume that during a job the system printed a message telling the operator it found a defective track on the removable
disk on drive 1. (The name of the disk is BILLNG.) Before doing more jobs, the operator wants to use the Alternate
Track Assignment program to check the condition of the track and assign an alternate to the track if it is defective.

Statements

READY

kkhkkkkkkhhkhkhkkhkhhkhkkhhkhkhhkhkkk

010 LOAD NAME

01l UNIT
OCL LOAD Sequence

020 DATE (XX/XX/XX)

Circled areas are operator responses.
030 SWITCH (00000000) Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER— after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

040 FILE NAME

kkkkkkhkhkkkhkhkkhkkhkhkkhhhkhkhkkhik

_M??IFY RUN is the response to MODIFY
e even though the two words do not

appear on the same line.

Message printed by Alternate Track

ENTER '//' CONTROL STATEMENT Assignment program.

// ALT PACK-BILLING,UNIT-R1 Control statement supplied by operator.
ENTER '//' CONTROL STATEMENT

System reprompts. END statement
// END

terminates sequence.

Explanation

® Alternate Track Assignment program is loaded from the fixed disk on drive 1 (UNIT-F1in OCL sequence).

® The name of the disk (BILLNG) and its location (removable disk on drive 1) are indicated by the PACK and UNIT
parameters in the ALT statement.

® Because we omitted the VERIFY parameter from the ALT statement, the program does surface analysis once when
it tests the condition of the track.

Alternate Track Assignment Program 107

MESSAGES FOR ALTERNATE TRACK ASSIGNMENT

Message

Meaning

ALTERNATE TRACK ASSIGNED

PRIMARY TRACK HAS BEEN
TESTED OK

PRIMARY TRACK STILL
DEFECTIVE

DATA TRANSFERRED BACK TO
PRIMARY TRACK

SECTOR WITH DATA ERROR

PRIMARY TRACK xxx ALTERNATE
TRACK yyy, UNIT-zz

This message is printed when an alternate track has been assigned
to a defective track and the data has been transferred to the
alternate track.

This message is printed when it is determined that a primary track
is not defective.

This message is printed when the Alternate Track Assignment
program determines that the track is still defective.

This message is printed when the data is transferred back to the
primary track.

This message is printed when the Alternate Track Assignment
program found an error when transferring data. The sector that
has the error is printed out.

This message is printed after ALTERNATE TRACK ASSIGNED and
DATA TRANSFERRED BACK TO PRIMARY TRACK. xxx is the
primary track number, yyy is the alternate track number, and zz is the
unit involved.

108

S A AT
ALTERNATE TRACK REBUILD PROGRAM

The Alternate Track Rebuild program ($BUILD) printed by the Alternate Track Assignment pro-
enables you to correct data that could not be gram when it assigned the alternate track. The list-
transferred correctly to an alternate track. Many ing tells you the name of the disk and numbers of

alternate tracks can be corrected during a pro- the track and sectors suspected of containing
gram run. You must supply the control state- incorrect data. It also includes the data from
ments and data used to correct the errors, these sectors, which you can use to locate in-

correct data.
In writing control statements for this program,
you will need the information in the listing

CONTROL STATEMENT SUMMARY FOR $BUILD

// REBUILD PACK-name,UNIT-code, TRACK-location, LENGTH-num ser,DISP-position @
Substitute data

/I END

@ At least one REBUILD statement is needed for every sector you correct. |f the characters you
replace in a sector occupy consecutive positions, you need only one REBUILD statement for that
sector. Otherwise, you need one statement for every group of characters that do not occupy
consecutive positions. For example, to replace characters 1-12, 75-78, and 232-235 in a sector,
you would need three REBUILD statements.

The data you want to substitute must follow the REBUILD statements to which it applies.
The order of statements and data in the preceding example would be:

REBUILD statement
data

for positions 1-12

REBUILD statement for positions 75-78

data

REBUILD statement
data

for positions 232-235

END

Alternate Track Rebuild Program 109

PARAMETER AND SUBSTITUTE DATA SUMMARY

REBUILD Statement

PACK-name

TRACK-location

110

DISP-position

Name of the disk.

Location of the disk. Possible codes are R1, F1,
R2, F2.

Number of track and sector containing incorrect data.
Number is printed by Alternate Track Assignment program.
Track number must be three digits. Sector number must
be two digits. For example:

TRACK-01109 means track 11, sector 9.

Number of characters being replaced. Number can be
2-256 and must be a multiple of 2 (2, 4, 6, etc.)

Position of the first character being replaced in the sector.
Position can be 1-255,

Key each character in hexadecimal form. Follow every second character, except the last, with a comma.
EXAMPLE: The numbers 123456 would be keyed as F1F2, F3F4, F5F6.

PARAMETER AND SUBSTITUTE DATA
DESCRIPTIONS

| PACK Parameter

The PACK parameter (PACK-name) tells the
program the name of the disk that contains the
alternate track being corrected. This name is
the one written on the disk by the Disk
Initialization program.

The Alternate Track Rebuild program compares
the name in the PACK parameter with the name
on the disk to ensure they match, In this way,
the program ensures that the program is using
the right disk.

| UNIT Parameter

The UNIT parameter (UNIT-code) indicates the
location of the disk that contains the alternate
track being corrected. Codes for the possible
locations are as follows:

Code Location
R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.

R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

| TRACK Parameter

The TRACK parameter (TRACK-location)
identifies the track and sector that contains
the data being corrected. The defective track,
not the alternate track, is the one you refer to.
Referencing the defective track is the same as
referencing the alternate track.

Use the track and sector numbers in the TRACK

parameter. The possible track numbers are 008-405.

Always use three digits. The possible sector num-
bers are 00-23. Always use two digits. The track
number must precede the sector number. For
example, the parameter TRACK-11019 means
track 110, sector 19.

Track and sector numbers are printed by the
Alternate Track Assignment program when it
prints data from sectors that contain incorrect
data.

| LENGTH Parameter

The LENGTH parameter (LENGTH-number)

tells the program how many characters you are
replacing in the sector. You must replace charac-
ters in multiples of 2 (2, 4, 6, and so on). The
maximum is 256, which is the capacity of a sector.

Length applies to characters that occupy con-
secutive positions in the sector. If the characters
you want to replace do not occupy consecutive
positions, you must either replace more characters
or use more than one REBUILD statement. For
example, to replace characters 10-11 and 24-25 in
a sector, you can do either of the following:

1. Use one REBUILD statement to replace
characters 10-25 (LENGTH-16).

2, Use two REBUILD statements to replace
characters 10-11 (LENGTH-2) and 24-25
(LENGTH-2).

DISP (Displacement) Parameter

The DISP parameter (DISP-position) indicates the
position of the first character being replaced in the
sector. The position of the first character in the
sector is 1; the position of the second character

is 2; and so on. The maximum position is 255.

Beginning at the position you indicate, the Alternate
Track Rebuild program replaces the number of char-
acters you indicate in the LENGTH parameter.

Substitute Data

After each REBUILD statement, you must key the
substitute characters that apply to that statement.
The characters must be in hexadecimal form.
Appendix J shows the hexadecimal forms of the
characters in the standard character set.

Include a comma after every second character.

For example, the data F1F2,F3F4,F5F6 represents
123456. F1 is the hexadecimal form of 1; F2 is
the hexadecimal form of 2; and so on.

Key only the number of characters you indicated

in the LENGTH parameter in the REBUILD
statement.

Alternate Track Rebuild Program 111

OCL CONSIDERATIONS

LOAD Sequence
Keywords Responses Considerations
READY roab | ———
LOAD NAME $BUILD Name of Alternate Track Rebuild program.
UNIT R1,R2, F1,or F2 Location of disk containing Alternate Track Rebuild
program.
MODIFY RUN] ———
Only the key-
words listed here You end every]
are required. You response by pressing
can bypass the rest. PROG START.

BUILD Sequence
Keywords Responses Considerations
READY Buikb | ———
BUILD NAME procedure name Name by which procedure will be identified in source
library.
UNIT R1,R2,F1or F2 Location of disk containing source library.
LOAD NAME $BUILD Name of Alternate Track Rebuild program.
UNIT R1,R2,Flor F2 Location of disk containing Alternate Track Rebuild
program,
MODIFY RUN* Response when not including control statements
in procedure.
Only the key- You end every
words listed here :
X response by pressing
are required. You PROG START
can bypass the rest.)

*$BUILD does not allow
utility control statements

in the procedure,

112

EXAMPLE

Correcting Characters on an Alternate Track

Situation

Assume that the Alternate Track Assignment program printed the following information:

PACK-R1
TRACK AND SECTOR BAD-05020
ABCDEF GH1 34567890... (Assume the entire contents of the sector

B A was printed.)
6 5

It means that errors were detected in sector 20 of track 50 on the removable disk on drive 1. (Assume the name of the
disk is BILLNG.)

In checking the characters printed by the program, you found that the seventh and eleventh characters in the sector are
incorrect and you want the operator to run the Alternate Track Rebuild program to correct them.

Alternate Track Rebuild Program

113

Statements

READY -
XXX EX TR T EERE L LR L LS R EE S &
010 LOAD NAME -
011 UNIT -
020 DATE (XX/XX/XX)
030 SWITCH (00000000)

040 FILE NAME -
hkhkkhhkhkhhkhhkhhhkhhhdhkhdk

MODIFY

// REBUILD PACK-BILLING,UNIT-R1,TRACK-05020,LENGTH-6,DISP-7
c6C7,C8F1,F2F3

// END

OCL LOAD Sequence
Circled areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER— after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

‘RUN is the response to MODIFY
even though the two words do not
appear on the same line.

Message printed by Alternate Track

]]
ENTER '//' CONTROL STATEMENT Rebuild program.

Control
statements
and substitute

Message printed by Alternate Track

ENTER HEX DATA STATEMENT Rebuild program.

Message printed by Alternate Track

L] 1
ENTER '//' CONTROL STATEMENT Rebuild program.

operator

Explanation

Alternate Track Rebuild program is loaded from the fixed disk on drive 1 (UN!IT-F1 in OCL sequence).

The name of the removable disk (BILLNG) and its location (drive 1) are indicated in the PACK and UNIT parameters
in the REBUILD statement.

The sector containing the incorrect characters is sector 20 of the alternate track assigned to track 50 (TRACK-05020).
The seventh character in the sector is the first character being replaced (DISP-7).

The seventh through twelfth characters in sector 20 are being replaced (LENGTH-6). We included the twelfth character
because the number of characters being replaced must be a multiple of 2. By also replacing the characters between the

incorrect ones, we needed only one REBUILD statement.

The substitute characters follow the REBUILD statement. They are F (C6), G (C7), H (C8), 1 (F1), 2 (F2), and 3 (F3).

114

R A N A R
FILE AND VOLUME LABEL DISPLAY PROGRAM
D P S A Y R S R

The File and Volume Label Display program The printed VTOC information is a readable, up-

(SLABEL) has two uses:

to-date record of the contents of the disk. There
can be any number of reasons why you might

1. Print the entire Volume Table of Contents need the information. Some of the more common

(VTOC) from a disk.

ones are as follows:

2. Print the VTOC information for certain 1. Before reinitializing a disk, you might want
data files. to check its contents to ensure that it
contains no libraries, permanent data files,
In both cases, the program also prints the name or temporary data files.
of the disk.

2. You want to find out what disk areas are
available for libraries or new files.

3. You want specific file information, such
as the file name, designation (permanent,
temporary, scratch), or the space reserved
for the file.

The control statements you supply for the program
depend on the program use.

CONTROL STATEMENT SUMMARY FOR $LABEL

— Uses —

Print entire VTOC

— Control Statements — @

// DISPLAY UNIT-code, LABEL-VTOC

// END

Print only file
information from
VTOC

L

filename }

// DISPLAY UNIT-code, LABEL-<,.. ,
filenames

// END

@ For each use, the program requires the statements in the order they are listed: DISPLAY,END.

@ More than one DISPLAY statement may be used before the END statement. However, the total
number of filenames on all the DISPLAY statements cannot exceed 20, where VTOC is

considered as one name.

File and Volume Label Display Program 115

PARAMETER SUMMARY

DISPLAY Statement

LABEL-‘filename,filename,...’

Location of the disk. Possible codes are R1, F1,
R2, F2.

Print entire contents of VTOC.

Print VTOC information for one file.

Print VTOC information for more than one file. You may list as
many filenames as the statement will hold. The control statement
length is restricted to 96 characters. Maximum is 20 filenames on
all DISPLAY statements.

PARAMETER DESCRIPTIONS

| UNIT Parameter

116

The UNIT parameter (UNIT-code) indicates the
location of the disk containing the VTOC informa-
tion being printed. Codes for the possible locations
are as follows:

Code Location
R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.

R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

| LABEL Parameter

The LABEL parameter indicates the information
you wanted printed: the entire contents of the
VTOC or only the information for certain files.
The VTOC is an area on disk that contains infor-
mation about the contents of the disk.. Every disk,
fixed and removable, contains a VTOC.

‘Entire Contents of VTOC

The parameter LABEL-VTOC means to print the
entire contents of the VTOC. The meaning of the
information the program prints is given in the fol-
lowing chart. Headings that are listed are the ones
printed by the program to identify the information.

If the program needs more than one page to list the
file information, it prints the headings for the file
information at the top of each new page.

Meaning of VTOC Information

— Heading —

PACK-name

NUMBER OF ALTERNATE TRACKS

AVAILABLE-number

TRACKS WITH ALTERNATE
ASSIGNED

i{VE ALTERNATE TRACKS

DEVICE CAPACITY-number

START

END

EXTENDED END

AVAILABLE SPACE ON PACK

LOCATION

TRACKS

PACK-name
UNIT-code

DATE-xx/xx/xx

FILE NAME

FILE DATE

— Meaning —

Name of the disk.

Additional disk identification (if any).

Number of alternate tracks available for assignment.

Tracks that have an alternate assigned to them.

Numbers of the alternate tracks that are defective.

Disk drive capacity {(number of tracks).

Boundary of libraries on the disk. (If the disk contains no libraries,
these headings are not printed.)

If disk contains both source
and object library START
refers to beginning of source
library and END refers to end
of object library.

Track on which library begins. |

Track on which library ends.

Object library only. Track on which extension to library ends. When
object library is full, temporary entries can be placed in space following
end of library, provided that space is available.

I Available disk areas. J

LFirst track in available area.

I Number of tracks available. hl i

Name of the disk.
Location of disk containing VTOC information

[Current system date,

| Name that identifies file in VTOC. |
l Date given the file when file was placed on disk. I

File and Volume Label Display Program 117

— Heading —

PACK-name

UNIT-code (continued)

®

If the first byte of thé next available record occurs in the next track after the end track of DATA START END
then this field will contain****

®

KEEP TYPE

FILE TYPE

REC LEN
KEY LEN
KEY LOC

NEXT AVAIL
RECORD

NEXT AVAIL
KEY

INDEX
START END

DATA
START END

VOL
SEQ

. File Information Only .

The parameter LABEL-filename or LABEL-

— Meaning —

File designation:
P=permanent.
T=temporary.

S=scratch.

File type:
I=Indexed. D=Direct.
C=Consecutive. B=BASIC.

l Number of characters in each record in file.

| Indexed files only. Number of characters in each record key. j

Indexed files only. Position in record occupied by last character
of record key.

Beginning location of next available record in file. Location is track,
sector, and position within sector. EXAMPLE: 09918006=track 99,
sector 18, position 6.

Indexed files only. Beginning location of next available key in index
portion of file. Location is track, sector, and position within sector.
EXAMPLE: 09010006=track 90, sector 10, position 6.

Indexed files only. Tracks on which index starts (START) and ends (END). I

Disk area reserved for the file. START is the first track of the area. END
is the last track. For indexed files, this refers to the data portion of the file.

VOL SEQ applies to multi-volume files only. It indicates the order of this
disk as it relates to the other disks containing the remaining portions of the
file.

If the first byte of the next available key occurs in the next track after the end track of INDEX START END,
then the field will contain ****

The program prints the file information for each of
the files you list. This is the information described

‘filenames’ means to print certain file information for the headings PACK name and FILE LABEL in
from the VTOC. For one file, use LABEL-filename; the preceding chart, Meaning of VTOC Information.
for two files, use LABEL-‘filename,filename’; and

so on. (Use the names that identify the files in the If the program needs more than one page to list

VTOC.) You can list as many filenames as the

the file information, it prints headings for the file

statement will hold. The statement length, how- information at the top of each new page.
ever, is restricted to 96 characters. Maximum is
20 filenames on all DISPLAY statements,

118

OCL CONSIDERATIONS

LOAD Sequence
Keywords Responses Considerations
READY oAb I ———
LOAD NAME $LABEL Name of File and Volume Label Display program.
UNIT R1,R2,F1,or F2 Locétion of disk containing File and Volume Label
Display program.
MODIFY RUN] e
Only the key- You end every
words listed here response by pressing
are required. You PROG START.
can bypass the rest.
BUILD Sequence
Keywords Responses Considerations
READY BUuLDOD I
BUILD NAME procedure name Name by which procedure will be identified in source
library.
UNIT R1, R2,F1,or F2 Location of disk containing source library.
LOAD NAME $LABEL Name of File and Volume Label Display program.
UNIT R1,R2,F1,0r F2 Location of disk containing File and Volume Label
Display program.
MODIFY © INCLUDE Response when including control statements
utility control statements in procedure.
RUN
® RUN Response when not including control statements
in procedure.
Only the key- You end every
words listed here response by pressing
are required. You PROG START.
can bypass the rest.

File and Volume Label! Display Program

119

EXAMPLE

Printing VTOC Information for Two Files
READY

A AR R LR SR A AL TR SR TR R
010 LOAD NAME

011 UNIT

OCL LOAD Sequence

Circled areas are operator responses,

020 DATE (XX/XX/XX)

030 SWITCH (00000000)

Keywords for which no responses
are shown are the ones bypassed.
If you press ENTER- after
responding to UNIT, the DATE,
SWITCH, and FILENAME
keywords are not prompted.

040 FILE NAME -

kkhkkhkhkkhkkkkhkkhhkhkhhdhhhhhhhhdd

MODIFY

o RUN is the response to MODIFY
even though the two words are
not on the same line.

Message printed by File and

ENTER '//' CONTROL STATEMENT Volume Label Display program.

// DISPLAY UNIT-R1l,LABEL-'BILLING,INVOl' Control statement supplied by
operator.
ENTER '//' CONTROL STATEMENT
// DISPLAY UNIT-F2,LABEL-VTOC
ENTER '//' CONTROL STATEMENT
// END

Sequence repeats until operator
enters END statement.

. Explanation:
© The File and Volume Label Display program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

® The files for which information is printed are named BILLING and INVO1 (LABEL-'BILLING,INVO1’ in first
DISPLAY statement). They are located on the removable disk on drive 1 (UNIT-R1).

® |[nformation from the entire VTOC on F2 is printed.

120

The File Delete program ($DELET) has three uses:

o Remove all files from a disk.

e Remove only the files you name.

" @ Scratch file references in the Volume Table

of Contents (VTOC).

Deleting files frees the space they occupy for
use by new files.

R
FILE DELETE PROGRAM
A

The program may be used on temporary, scratch,
and permanent files. To delete permanent files,
you must use the File Delete program. You

can scratch temporary files by using the File
Delete program or by changing the file designation
from temporary to scratch (using the OCL key-
word RETAIN) when you use the file.

The control statements you supply for the
program depend on the program use.

File Délete Program 121

— USE —

Scratch all files
in the VTOC.

CONTROL STATEMENT SUMMARY FOR $DELET

®

— CONTROL STATEMENTS — —

// SCRATCH PACK-name, UNIT-code, LABEL-VTOC

// END

Scratch only the
files named in
the VTOC

// SCRATCH PACK-name, UNIT-code, LABEL-filename, DATE-date @

// END

// SCRATCH PACK-name, UNIT-code, LABEL- \:l!ename '
filenames
// END

Remove all files
from the disk.

// REMOVE PACK-name, UNIT-code, LABEL-VTOC,

NO
DATA- {YE S}

// END

Remove only the
files named from
the disk.

// REMOVE PACK-name, UNIT-code, LABEL-filename,
NO
DATE-date, DATAT {YES

// END

// REMOVE PACK-name, UNIT-CODE, LABEL- {fllename }

‘filenames
NO
DATA- {YES}

// END

@ For each use, the program requires the statements in the order they are listed: SCRATCH, END or
REMOVE, END.

The SCRATCH statement does not erase files from the disk. 1t changes their designation to scratch (S} in
the Volume Table of Contents (VTOC). By doing this, the program makes the areas that contain the
files available for other files. A halt will occur if an attempt is made to create a new multi-volume file
that will have the same label on disk as an existing single volume file, or if an attempt is made to create

a single volume file bearing the same label as an existing multi-volume file. The halt will occur even
though the retain on the existing file is scratch. If a REMOVE statement is used, files are erased from
the disk. No file is physically scratched or removed from the VTOC until end of job has occurred.

@ Use this form of the SCRATCH or REMOVE statement when two or more files have the same name and
you want to delete one of them. At least one SCRATCH or REMOVE statement is required by the
program. When deleting files, you can list as many filenames as the statement will hold. The statement
length, however, cannot exceed 96 characters. If you want to delete more files than you can specify
in one SCRATCH or REMOVE statement, use additional statements. The END statement must follow
the last SCRATCH or REMOVE statement.

File Delete Program

123

PARAMETER SUMMARY

Scratch Statement

LA

DATE-date

124

Name of the disk.

Location of the disk. Possible codes are R1, F1,

R2, F2.

Scratch all files from VTOC.

Scratch only file named

from VTOC.

-‘filename, filename,...’

Scratch only the files
named from VTOC.
(You may list as many
filenames as you want.)

Use names that identify
filesin VTOC. These are
the names that you gave the
files when you placed them
on disk.

Date of the file being deleted. If two more more files have the same
name you list in the LABEL parameter, they will all be deleted unless
you use a DATE parameter to indicate a particular file._

Date must be a six-digit number. EXAMPLE: DATE-062070 means

June 20, 1970.

Remove Statement

I Name of the disk.

UNIT-code Location of the disk. Possible codes are R1, F1,
R2, F2.

Delete all files from the disk.

Delete only the file named

4 Use names that identify
from the disk.

files in VTOC. These are
the names that you gave the
files when you placed them
on disk.

LABEL-filename

LABEL-‘filename,filename,...’ Delete only the files
named. (You may
list as many filenames

as you want.)

DATE-date Date of the file being deleted. If two more files have the same
name you list in the LABEL parameter, they will all be deleted unless
you use a DATE parameter to indicate a particular file.

Date must be a six-digit number. EXAMPLE: DATE-062070 means
June 20, 1970.

Removes the data for the referenced files

DATA YES from the disk.

'File Delete Program 125

PARAMETER DESCRIPTIONS

| PACK Parameter

The PACK parameter (PACK-name) tells the
program the name of the disk that contains the
files being deleted. The name you supply in
this parameter is the one written on the disk
by the Disk Initialization program,

The File Delete program compares the name

in the PACK parameter with the name on the disk
to ensure they match. In this way, the prog'ram
ensures that it is using the right disk.

| UNIT Parameter

The UNIT parameter (UNIT-code) tells the
program the location of the disk containing
the files being deleted. Codes for the possible

locations are as follows:

Code Location
R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.

R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

| LABEL Parameter

The LABEL parameter identifies the files you
want to delete from the disk. Its form depends
on the files you are deleting:

Form
LABEL-VTOC

LABEL-filename

LABEL-'filename,
filename,..."

126

Files Deleted
All of them.

Only the file that is named.
The name can apply to more
than one file. If it does, all
of those files are deleted
unless you use a DATE
parameter to identify a
particular one,

Only the files that are
named. A name can apply
to more than one file. If
it does, all of those files
are deleted. (You can

list as many filenames as
the statement can hold;
the statement length,
however, is restricted

to 96 characters. Ad-

ditional REMOVE or
scratch statements may
be used for additional
filenames. The maxi-
mum number of files
that can be deleted in
one run is 52.)

Deleting Files

The File Delete program does not erase files from

the disk unless DATA-YES is specified on a REMOVE
statement. |t changes their designation to scratch (S).
By doing this, the program makes the areas that con-
tain the files available for other files.

| DATE Parameter

The DATE parameter (DATE-date) applies to
two or more files that have the same name. [t
tells the program the date of the one you want to
delete.

Every file on disk has a date, which is given to the
file at the time it is created. When two or more
files have the same name, the dates are used to
tell one file from another.

The date is a six-digit number: two digits for day,
two for month, and two for year. Day, month,
and year can be in one of two orders: (1) month,
day, year and (2) day, month, year. For example
061870 and 180670 both mean June 18, 1970.

In the DATE parameter, be sure to specify day,
month, and year in the same order as when you
placed the file on disk.

| DATA Parameter (Remove Only)

The DATA parameter lets you delete the files
specified directly from the disk as well as from
the VTOC.

If YES is coded in this parameter then the file
specified will be removed from the disk and any
reference to it in the VTOC will be removed. In
addition, a message will be printed on the Syslog
device for each file removed from the disk in this
format:

‘DATA REMOVED FOR FILE XXXXXX
DATE 000000’

If NO is coded in this parameter, then the file
specified will not be removed from the disk.
However, any reference to it in the VTOC will
be removed. If this parameter is not used,
DATA-NO is assumed.

OCL CONSIDERATIONS

LOAD Sequence
Keywords Responses Considerations
READY LoAD | ————
LOAD NAME $DELET Name of File Delete program.
UNIT R1,R2,F1,or F2 Location of disk containing File Delete program.
MODIFY Ruh !
-Only the key- You end every
words listed here response by pressing
are required. You PROG START.
can bypass the rest.
BUILD Sequence
Keywords Responses Considerations
READY BUILD —_—
BUILD NAME procedure name Name by which procedure will be identified in source
library.
UNIT R1,R2,F1,0r F2 Location of disk containing source library.
LOAD NAME $DELET Name of File Delete program.
UNIT R1,R2,F1,or F2 Location of disk containing File Delete program.
MODIFY e INCLUDE Response when inciuding control statements in
utility control statements procedure.
RUN
® RUN Response when not including control statements
in procedure.
Only the key- You end every
words listed here response by pressing
are required. You PROG START.
can bypass the rest.

File Delete Program 127

EXAMPLE

Deleting One of Several Files Having the Same Name

Situation

Assume that three files on a removable disk have the same name: INVO1. The dates of these files are 6/16/70,
8/18/70, and 11/156/70. You want to delete the 6/16/70 version.

Statements

READY

khkkkkkhkhkhkkhkhkkhhhhhikkkikhkikk

010 LOAD NAME
OCL Load Sequence
011 UNIT
Circled areas are operator responses.
020 DATE (XX/XX/XX)

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER— after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

030 SWITCH (00000000)

040 FILE NAME

khkkkkkhkkhhkhhkhhhkhhkkkhkkhk%x

RUN is the response to MODIFY
even though the two words do not

MODIFY
o : appear on the same line.

Message printed by File Delete program.

Control statement
= supplied by
operator.
Sequence repeats until operator
enters END statement.

ENTER '//' CONTROL STATEMENT

// SCRATCH PACK-00001,LABEL~INV0l,UNIT-R1,DATE-061670

ENTER '//' CONTROL STATEMENT
// END

Explanation
® File Delete program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).
® Disk that contains the file being deleted is named 00001 (PACK-00001 in SCRATCH statement).

® Because two other files have the name INVO01, the date (061670) is needed to complete the identification
of the file you want to delete (LABEL-INVO1 and DATE-061670).

® The removable disk containing the file to be deleted is on drive 1 (UNIT-R1).

128

Removing One File

Situation

You want to remove a file named INV02 from the pack mounted on R1.

Statements

READY

khhhkhkhhkhhkhkkkkkkhkhkhkhkkkkk

010 LOAD NAME
OCL Load Sequence
011 UNIT
Circled areas are operator responses.
020 DATE (XX/XX/XX)

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER— after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

030 SWITCH (00000000)

040 FILE NAME
khkhkhkhhhhkhhhkhhkhhkkkhhk

RUN is the response to MODIFY
even though the two words do not
appear on the same line.

MODIFY

ENTER ' // ' CONTROL STATEMENT Message printed by File Delete program.

Control statement supplied

// REMOVE PACK-00001,LABEL-INV02,UNIT-R1l,DATA-YE by operator.

'DATA REMOVED FOR FILE xxxxxxX DATE 000000 Printed by File Delete.

ENTER ' // ' CONTROI STATEMENT Sequence repeats until operator
// END : enters END statement.

Explanation :
e File Delete program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

® Disk that contains the file being removed is named 00001 (PACK-00001 in REMOVE statement).

o The removable disk containing the file to be removed is on drive 1 (UNIT-R1).

o DATA-YES indicates that the file data as well as the file VTOC reference is to be removed.

File Delete Program 129

130

R
DISK COPY/DUMP PROGRAM
L

The Disk Copy/Dump program ($COPY) has three
general uses. The control statements you must

supply depend on the program use.

Program Uses

Common Reasons

Copy entire contents of one
disk to another.

Copy a data file from one disk
to another, or from one area to
another on same disk.

Print all or part of a data file.

Provide a reserve disk in case something
happens to the original disk. Important
disks, such as those containing your
libraries and permanent data files, are
normally the ones you would copy.

Any of the following:

@ Provide a reserve file in case something
happens to the original file.

® Move a file to a larger disk area.

® Reorganize the data portion of an
indexed file. (Data in the copy of the
file is reorganized; the original file is
unchanged.)

@ Delete records-from a file. (Records
are omitted from the copy of the file;

the original file remains unchanged.)

Provide a printed copy of the records in a

file, perhaps for use in checking the records

for errors.

Your responses to file keywords in the OCL sequence used to load the program describe

the disk file being copied or printed. If you are copying the file to disk, the file being
created must also be described in the OCL sequence.

Disk Copy/Dump Program 131

CONTROL STATEMENT SUMMARY FOR $COPY

— USES @ - — Control Statements @ -
Rl R 1
L] . .
Y(-YH Copy an Entire Disk // COPYPACK FROM-code, TO-code
L !/ END
Copy a Data File @1
® no | (® NO
//COPYFILE OUTPUT-DISK,DELETE-"position,character’, REORG- ,”WORK-
or ’ or YES YES
OUTPTX oMIT
/[END
Copy and Print @ @ @
a Data File //COPYFILE OUTPUT-BOTH,DELETE-‘position,character’, ~ REORG-YES, ~WORK- VES
or or
OUTPTX OMIT
// END
Copy a Data File, @

But Print Only a’

Part of the File /| COPYFILE OUTPUT-BOTH,DELETE-‘position,character',CDR EORG-YE
or or
OUTPTX oMIT

// SELECT KEY,FROM-'key'®
-or- @
// SELECT KEY,FROM-'key’, TO-'key’
-or- ®
/] SELECT PKY,FROM-‘key’

-or- @
// SELECT PKY,FROM-‘key’, TO-'key’
-or-
/! SELECT RECORD,FROM-number
-or.
// SELECT RECORD,FROM-number, TO-number

®,

’ WORK'

// END
Print an Entire //- COPYFILE OUTPUT-PRINT
Data File or
OUTPTX
// END

132

— Uses —

— Control Statements —

Print Only a
Part of a
Data File

// COPYFILE OUTPUT-PRINT
or
OUTPTX

// SELECT KEY,FROM-'key”

-or- @
// SELECT KEY,FROM-'key’, TO-key’

-or- @
/I SELECT PKY,FROM-'key’

-or- @
// SELECT PKY,FROM-'key’, TO-'key’
-Or-
// SELECT RECORD,FROM-number
-or-
// SELECT RECORD,FROM-number, TO-number

// END

One

of .
these. @

The program uses include the possible combinations of copying and printing files.

For each use, the program requires the control statements in the order they are listed: COPYPACK,END;

COPYFILE,END; and COPYFILE,SELECT,END.

Needed only if you want to delete a certain type of record.

Applies only to indexed files.

® e 006

(drive 1).

@ Identifies the portion you want to print.

I @ Indexed files with packed keys.

Applies only if you are copying the file from one removable disk to another using the same disk drive

Disk Copy/Dump Program

133

PARAMETER SUMMARY

COPYPACK Statement

FROM-code

COPYFILE Statement

134

OUTPUT-DISK
-or-
OUTPTX-DISK

UT-PRINT
-ol’-
TX-PRINT

OUTPUT-BOTH
.or-
OUTPTX-BOTH

DELETE-'position, character’
-or-
OMIT-'position, character’

G-NO

REORG-YES

Location of disk to be copied. Possible codes are R1, F1,
R2, F2.

Location of disk to contain the copy. Possible codes.are R1,
F1, R2, F2.

Copy the file from one disk to another, or from one area to
another on the same disk. @

Print the entire file or only part of the file. @

Copy the file from one disk to another, or from one area to
another on the same disk. Also print the entire file or only

part of it. @

These parameters are optional. All records with the specified
character in the specified record position are deleted. DELETE causes
deleted records to be printed. Character can be any of the System/3
characters except blank, comma, or apostrophe. Position can be any
position in the record (the first position is 1, second 2, and so on).
The maximum position is 999.

Indexed files only. Copy records in the same way as they are
organized in the original file (the file from which the records are
copied). REORG-NO is assumed if you omit the REORG keyword.

Indexed files only. Reorganize the records so that the records in
the data portion of the file are in the same order as their keys are
listed in the index. When OUTPUT-BOTH is used, REORG-YES
is required. :

COPYFILE Statement (continued)

SELECT Statement

KEY,FROM-‘key’
-or-
PKY,FROM-‘key’

KEY,FROM-‘key’, TO-'key’
-or-
PKY,FROM-‘key’, TO-'key’

RECORD,FROM-number

D,FROM-number, TO-number

May be used in all cases except when copying a file from one
removable disk to another on drive 1, It means: do not use
a work area on the fixed disk on drive 1. WORK-NO is
assumed if you omit the WORK keyword.

Required for copying a file from one removable disk
on drive 1 to another removable disk on that drive. It
means: use a work area on the fixed disk on drive 1.
WORK-NO is assumed if you omit the WORK
keyword. '

Indexed files only. Print only the part of the file from
the record key that is specified in the FROM parameter
to the end of the file.

Indexed files only. Print only the part of the file between

the two record keys that are specified in the FROM and TO
parameters (including the records indicated by the parameters).
To print only one record, make the FROM and TO record

keys the same.

Print only the part of the file from the relative record
number specified in the FROM parameter to the end of
the file.

Print only the part of the file between the relative record
numbers indicated by the parameters (including the records
indicated by the parameter). To print only one record,
make the FROM and TO record numbers the same.

@ In his responses to OCL keywords (FILE NAME, etc.), the operator indicates which file is to be copied or
printed. For files being copied, his responses also indicate whether the file is being copied from one disk to
another or from one location to another on the same disk.

Disk Copy/Dump Program 135

PARAMETER DESCRIPTIONS

| FROM and TO Parameters (COPYPACK)

The COPYPACK statement is used to copy the
contents of one disk to another. It has two
parameters: FROM and TO. They tell the
program the locations of the two disks on the
disk units.

The FROM parameter (FROM-code) indicates

the location of the disk you are copying. The

TO parameter (TO-code) indicates the location
of the disk that is to contain the copy.

Codes for the possible locations are as follows:

Code Location
R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.

R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

Copying Entire Disk

136

When copying a disk, the Disk Copy/Dump
program transfers the contents of the disk

to another disk. The contents of the two
disks will be the same, except for the disk
names and alternate track information, which
may be different.

The disk you are copying can contain libraries
or data files or both. The disk that is to contain
the copy must not have libraries, temporary data
files, or permanent data files.

The program can copy the contents of one re-
movable disk to another using one disk drive.

The drive, however, must be drive 1. To do

this, the program uses available space on the fixed
disk on drive 1. It fills the available space with
information from the disk you are copying. Then
it prints a message telling the operator to mount
the other removable disk (the one to contain the
copy) on drive 1. After transferring the informa-
tion from the fixed disk to the removable disk,
the program prints another message telling the
operator to remount the disk you are copying.
The program repeats this procedure until all
information has been transferred.

Until the contents of the disk are completely
copied on the new disk, three addressing portions
of the new disk are changed to prevent accidental
usage of a partially filled disk. Therefore, if the
copying process is stopped before it is completed,
the pack is unusable. You can restart the copying
process by reloading the copy program or you can
restore the disk by reinitializing.

After a successful copy the copy program prints a
message:

COPYPACK IS COMPLETE

| OUTPUT Parameter (COPYFILE)

The OUTPUT parameter is used when copying and
printing data files. It indicates whether you want
the program to copy, print, or copy and print a
file.

The parameter OUTPUT-DISK means to copy the
file; OUTPUT-PRINT means to print the file; and
OUTPUT-BOTH means to copy and print the file.

QUTPTX can be used instead of OUTPUT to
display the printed output with its hexadecimal
values.

Copying Files

The Disk Copy/Dump program can copy a file
from one disk to another or from one area to
another on the same disk.

Your responses to the OCL keywords prompted
for the Disk Copy/Dump program indicate (1) the
name and location of the file being copied and

(2) the name and location of the copy being
created. See OCL Considerations in this section,

The program can copy a file from one removable
disk to another using one disk drive. The drive,
however, must be drive 1. (See WORK Parameter
in this section for more information.)

In copying a file, the program can omit records.
(See DELETE Parameter in this section for
more information.)

In copying an indexed file, the program can
reorganize records in the data portion such that
they are in the same order as their keys are listed
in the index. (See REORG Parameter in this
section for more information.)

Printing Files

The program can print all or part of the data file.
To print only part, the program needs a SELECT
control statement. (See SELECT KEY and PKY
Parameters and SELECT RECORD Parameters
in this section.) If you do not use a SELECT
statement, the entire file is printed.

If you use SELECT or:REORG, records from
indexed files are printed in the order their keys
appear in the index portion of the file; otherwise,
they are printed as they appear in the file. For
each record, the program prints the record key
followed by the contents of the record.’

Records from sequential and direct files are
printed in the order they appear in the file.

For each record, the program prints the relative
record number followed by the contents of

the record.

The program uses as many lines as it needs to
print the contents of a record. If OUTPUT- is
specified, only printable characters are printed.
If OUTPTX- is specified, all characters are
printed with their 2-digit hexadecimal value.
Appendix J lists the hexadecimal values for
characters in the standard character set.

The following is an example of the way the program
prints a 20-character record when OUTPUT-is speci-
fied.

ABCDE GHI J 12345

If OUTPTX- is specified, the same record would
be printed:

ABCDE GHIJ 12345
CCCCCBCCCDFFFFF44444
1234567891 1234500000

After printing the last record, the program triple
spaces and prints the following message:

(number) RECORDS PRINTED

| DELETE Parameter (COPYFILE)

In copying a data file, the Disk Copy/Dump pro-
gram can omit records of one type. The DELETE
parameter identifies the type of records. Use of
the DELETE parameter is optional. If you do not
use it, no records are deleted.

The form of the parameter is DELETE-'position,

character’. Character is the character, except

apostrophes, blanks, and commas, that identifies

the records. Position is the position of the
character in the records (maximum 999). For
example, with the parameter DELETE-"100,
X’ all records with an X in position 100 are
deleted.

Deleted records are always printed. If you are
both copying and printing a data file, deleted
records are printed with the other records that
are printed. The deleted records are preceded
by the word DELETED.

The OMIT keyword can be used instead of
DELETE. The deleted records are not printed
if OMIT is used.

REORG (Reorganize) Parameter (COPY FILE)

In copying an indexed file, the program can
reorganize the file, such that the records in the
data portion are in the same order as their keys
in the file index. The REORG parameter tells
the program whether or not to reorganize the
file.

REORG-YES means to reorganize. REORG-
NO means not to reorganize. REORG-NO is
assumed if you omit the keyword.

If you tell the program to reorganize the file,
the reorganization applies to the copy of the
file rather than the original file. The original
file is not affected.

Reorganization (REORG-YES) is required any
time you are both copying and printing an
indexed file (OUTPUT-BOTH).

| WORK Parameter (COPYFILE)

The WORK parameter applies to copying a
data file from one removable disk to another
using the same disk drive (drive 1). It tells
the program whether or not to use a work
area on the fixed disk on drive 1.

The parameter WORK-YES means to use a work

area. WORK-NO means not to use a work area.

Work Area
If you have only one disk drive, a common use
of the Disk Copy/Dump program might be to
copy a file from one removable disk to another.
To do this, the program must use a work area
on the fixed disk. The output file must be a
new file.

Disk Copy/Dump Program

137

In copying the file, the program fills the work
area with records from the file you are copying.
Then it prints a message telling the operator to
mount the other removable disk (the one to
contain the copy) on drive 1. After transferring
the records from the work area to the re-
movable disk, the program prints another
message telling the operator to remount the
disk containing the file you are copying. The
program repeats this procedure until all records
have been transferred.

If you have two disk drives, you can also use the
same drive to copy a file from one removable disk
to another. The drive, however, must be drive 1.

You can copy a file from one area to another on
the same disk. If you do, and the disk is a remov-
able disk that you plan to mount on drive 1, use
the WORK-NO parameter (WORK-NO is

assumed if the WORK keyword is not used). This
keeps the program from using a work area on the
fixed disk when it transfers the file from one

area to the other.

SELECT KEY and PKY Parameters (SELECT)

138

The SELECT KEY and SELECT PKY param-
eters apply to printing part of an indexed file.
The parameters are FROM and TO.

The FROM parameter (FROM-‘key’) gives the
key of the first record to be printed. The TO
parameter (TO-'key’) gives the key of the last
record to be printed. The record keys between
those two in the file index identify the remaining
records to be printed. If you want to print only
one record, use the same record key in both the
FROM and TO parameters.

For example, the parameters FROM-'000100' and
TO-'000199" mean that records identified by keys
000100 through 000199 are to be printed.

If the file indexA does not contain the key you
indicate in a FROM parameter, the program uses
the next higher key in the index.

You can omit the TO parameter. If you do, the
program assumes that the last key in the index is
the TO key.

With the SELECT KEY parameter (but not PKY)
you can use less characters in the FROM or TO
parameter than are contained in the actual keys.
If you do, the program ignores the remaining char-
acters in the key. The number of characters used
in the FROM and TO parameters need not be the
same.

For example, assume that the following are consecu-
tive record keys in an index: 99999, A1000, A1119,
A1275, A1900, A1995, and A2075. The parameters
FROM-'A1’ and TO-'A199’ refer to record keys
A1000 through A1995.

If none of the keys in the file index begin with the
characters you indicate in a FROM parameter, the
program uses the key beginning with the next
higher characters.

For example, assume that four consecutive record
keys in an index begin with these characters:
A1,A2,A8, and B1. The parameters FROM-'A3’
and TO-'A9" would refer to the key beginning with
the character A8.

| SELECT RECORD Parameters (SELECT)

The SELECT RECORD parameters can apply to
any file, but are normally used for sequential and
direct files. These parameters use relative record
numbers to identify the records to be printed.

Relative record numbers identify a record’s location
with respect to other records in the file. The
relative record number of the first record is 1, the
number of the second record is 2, and so on.

The SELECT RECORD parameters are FROM

and TO. The FROM parameter (FROM-number)
gives the relative record number of the first record
to be printed. The TO parameter (TO-number)
gives the number of the last record to be printed.
Records between those two records in the file are
also printed. If you want to print only one record,
use the same record number in the FROM and TO
parameters.

For example, the parameters FROM-1 and TO-30
mean that the first thirty records (1-30) in the file
will be printed.

You can omit the TO parameter. If you do, the
program assumes that the.number of the last
record in the file is the TO number.

COPYING MULTI-VOLUME FILES

When copying multi-volume files the first volume
of the input file has to be online when the job is
initiated. The output file must be a new file. If
neither condition is satisfied a halt occurs.

Maintaining Proper Volume Sequence Numbers

To maintain proper volume sequence numbers when
copying a multi-volume file, yod must either copy
all the volumes of the file in one run or copy only
one volume for each run of $COPY. For example,
if you copy a 3-volume file one volume at a

time: volume 1 in the first run, volume 2 in the
second run, and volume 3 in the third run; the
volumes wili retain their original sequence numbers
in the output file. Or if you copy all the volumes
(1, 2, and 3) in the same run, the volume sequence
numbers in the new file will be same as in the
original file. However, if you copy only volumes

2 and 3 in one run, their volume sequence num-
bers will be changed to 1 and 2 in the output file.

Maintaining Correct Relative Record Numbers

To maintain correct relative record numbers
when copying one volume of a multi-volume
direct file, the size of the output volume must
be the same as the size of the input volume. (If
you want to increase the size of a file, you must
copy the entire file.) If, for example, you copy
the first volume of a 2-volume file and increase
the number of records on that volume, you are
also increasing relative record numbers of all
the records on the next volume. Therefore,
output and input volume extents must be equal
if you are copying only one volume of a multi-
volume direct file.

Note: You can not use the copy program to
copy a single volume file to a multi-volume file.
End of extents will probably occur after the first
volume of output. |f the output file is a new
file, the copy program will not create it as a
multi-volume file.

Direct File Attributes

If you copy a whole multi-volume direct file
in one run, the output file will be given con-
secutive attributes in the Volume Table of
Contents (VTOC). However, this does not
affect file processing. A file with either con-
secutive or direct attributes can be accessed
by a consecutive or direct access method.

If only one volume is copied, the direct
attribute will be maintained.

Copying Multi-Volume Index Files

If you want to copy a multi-volume indexed file,
REORG-YES must be given. Since an unordered
multi-volume indexed load is not permitted, a
REORG-NO will cause a halt if an out-of-sequence
record is found. If you would prefer not to re-
organize the file, each volume of the file must be
copied as a single volume file. When copying each
volume separately, it can be either ordered or un-
ordered. When copying one volume of a multi-
volume indexed file, either REORG-YES or
REORG-NO may be specified. HIKEY parameter(s)
of the output file must be the same as the highest
key(s) of each input volume.

Disk Copy/Dump Program 139

OCL CONSIDERATIONS

LOAD Sequence for Copying an Entire Disk

Keywords Responses Considerations
READY LOAD ——
LOAD NAME $CoOPY Name of Disk Copy/Dump program.
UNIT R1,R2,F1,0or F2 Location of disk containing Disk Copy/Dump program.
MODIFY RUN —_——
Only the key- You end every
words listed here response by pressing
are required. You PROG START.
can bypass the rest.

BUILD S_equence for Copying an Entire Disk

Keywords Responses Considerations
READY BUILD —_—
BUILD NAME procedure name Name by which procedure will be identified in source
library.
UNIT R1,R2,F1,0or F2 Location of disk containing source library.
LOAD NAME $COPY Name of Disk Copy/Dump program.
UNIT R1,R2,F1,0or F2 Location of disk containing Disk Copy/Dump program.
MODIFY ¢ “INCLUDE Response when including control statements
utility control statements in procedure.
RUN
Response when not including control statements
e RUN in procedure.
Only the key- You end every
words listed here response by pressing
are required. You PROG START.
can bypass the rest.

140

LOAD Sequence for Copying or Printing Files

Keywords Responses Considerations

READY roAD | ————

LOAD NAME $COPY Name of Disk Copy/Dump program.

UNIT R1,R2, F1,0or F2 Location of disk containing Disk Copy/Dump program,

FILE NAME COPYIN Name Disk Copy/Dump program uses to refer to file
to be copied (input file).

UNIT R1,R2,F1,or F2 Location of disk containing file to be copied.

PACK disk name Name of disk containing file to be copied.

LABEL file name Name by which file to be copied is identified on disk.

FILE NAME e COPYO Name Disk Copy/Dump program uses to refer to output
file being created.

@ Press PROG START If you are only printing records from a file, press PROG

START instead of typing COPYO. The next keyword
prompted will be MODIFY.

UNIT R1,R2,F1,or F2 Location of disk on which output file is to be created.

PACK disk name Name of disk on which output file is to be identified on
disk.

LABEL file name Name by which output file is to be identified on disk.

RECORDS or TRACKS number Size of output file expressed either as number of records

' (RECORDS) or number of disk tracks (TRACKS).

RETAIN T,P,orS Designation (temporary, permanent, or scratch) of
output file.

MODIFY RUN | ————

Only the key-

words listed here
are required. You
. can bypass the rest.

response by pressing

T You end every
PROG START.

Disk Copy/Dump Program 141

BUILD Sequence for Copying or Printing Files

Keywords Responses Considerations
READY gUuLD | ———
BUILD NAME procedure name Name by which procedure will be identified in source
library.
UNIT R1, R2, F1, or F2 Location of disk containing source library.
LOAD NAME $COPY Name of Disk Copy/Dump program.
UNIT R1, R2, F1,or F2 Location of disk containing Disk Copy/Dump program.
FILE NAME COPYIN Name Disk Copy/Dump program uses to refer to file to
be copied (input file).
UNIT R1,F1,R2,0or F2 Location of disk containing file to be copied.
PACK disk name Name of disk containing file to be copied.
LABEL file name Name by which file to be copied is identified on disk.
FILE NAME ® COPYO Name Disk Copy/Dump program uses to refer to output
file being created.
® Press PROG START If you are only printing records from a file, press PROG
START instead of typing COPYQ. The next keyword
prompted will be MODIFY.
UNIT R1,R2,F1,or F2 Location of disk on which output file is to be created.
PACK disk name Name of disk on which output file is to be created.
LABEL file name Name by which output file is to be identified on disk.
RECORDS or TRACKS number Size of output file expressed either as number of records
(RECORDS) or number of disk tracks (TRACKS).
RETAIN T,P,orS Designation (temporary, permanent, or scratch) of
output file.
MODIFY ® INCLUDE Response when including control statements
utility control statements | in procedure. :
‘RUN
Response when not including control statements
® RUN in procedure.
Only the key- You end every
words listed here are response by pressing
required. You can PROG START.
bypass the rest.

142

EXAMPLES

 Copying an Entire Disk

READY

khkkkkkhkkhkkhkkkhhkhhkhhkkhkkkx

.010 LOAD NAME
011 | UNIT OCL LOAD Sequence
Circled areas are operator responses.
020 DATE (XX/XX/XX)

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER— after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

030 SWITCH (00000000)

040 FILE NAME

kkhkkkkkkkhkhkkkhhkkhhkhhhkhkhkkidx

RUN is the response to MODIFY
even though the two words do not

MODIFY
appear on the same line.

ENTER '//' CONTROL STATEMENT Message printed by Disk Copy/Dump program.

// COPYPACK FROM-F2,TO-R2 Control statement supplied by operator.

ENTER '//' CONTROL STATEMENT System reprompts. END statement
// END terminates sequence.

Message printed by Disk Copy/Dump program
to indicate successful copy.

COPYPACK IS COMPLETE

Explanation
® The Disk Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

@ The contents of the fixed disk on drive 2 (FROM-F2 in COPYPACK statement) is copied onto the removable disk
on drive (TO-R2).

Disk Copy/Dump Program 143

Copying a File From One Disk to Another

READY

khkkkkkhhkhkkkhkkkhkhhkhkhikkkhkhkk

¥

010 LOAD NAME

011 UNIT
020 DATE
030 SWITCH -
0 4 0 FILE NAME -
041 UNIT - File to be
» _ copied
042 PACK - (input file)
043 ' LABEL _ OCL LOAD Sequence
050 FILE : NAME _ Circled areas are operator respénses.
051 SN - ar how are theanes bypasss.
052 PACK T RUN is the response to MODIFY
053 LABEL - File being wopear on he same ey
- created
054 RECORDS - (output file)
055 TRACKS -
056 LOCATION -
057 RETAIN -

kkhkhkkkhkkkkhhkhkkhkhkkhkkhkkkkk

MODIFY

ENTER '//' CONTROL STATEMENT . i é‘miSSf:;primed by Disk Copy/ Dump

// COPYFILE OUTPUT-DISK

s Control statement supplied by operator.

System reprompts. END statement
¥ terminates sequence,

// END

144

Explanation

® Disk Copy/Dump program is loaded from fixed disk on drive 1 (UNIT-F1 in OCL sequence).
® |nput file (OCL sequence):
1. Name that identifies file on disk is MASTER (LABEL-MASTER).
2. Disk that contains the file is the fixed disk on drive 1 (UNIT-F1). Its name is A1 (PACK-A1).
® Qutput file (OCL sequence):
1. Name to be written on disk to identify the file is BACKUP (LABEL-BACKUP).
2. Disk that is to contain the file is the removable disk on drive 1 (UNIT-R1). Its name is B2 (PACK-B2).
3. The file is to be permanent (RETAIN-P).
4. The length of the file is 50 tracks (TRACKS-50).
® The COPYFILE statement tells the program to create the output file using all the data from the input file.

The output file is a copy of the input file.

Disk Copy/Dump Program 145

Printing Part of a File

READY
khkhkhhhhhhhkhhhhhhhik
010 LOAD NAME

011 UNIT

020 DATE -
OCL LOAD Sequence.

030 SWITCH -
Circled areas are operator responses.

040 FILE NAME -

Keywords for which no responses are
041 UNIT - shown are the ones bypassed.

> Input file.

042 PACK - B2 RUN is the response to MODIFY

even though the two words do not
043 LABEL - BACKUP: appear on the same line.
050 FILE NAME -

hkhkkkhkkkkkkhkdhkhkhhkhhdkkik

MODIFY -

Message printed by Disk Copy/Dump

ENTER '//' CONTROL STATEMENT program.

// COPYFILE OUTPUT-PRINT Control statement supplied by operator.
ENTER '//' CONTROL STATEMENT

// SELECT KEY, FROM-'ADAMS',6TO-'BAKER"
ENTER '//' CONTROL STATEMENT

// END

Sequence repeats until operator enters
" END statement.

Explanation
® Disk Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).
® Input file (OCL sequence):
1. Name that identifies the file on disk is BACKUP (LABEL-BACKUP). ,
2. Disk that contains the file is the removable disk on drive 1 {UNIT-R1). Its name is B2 (PACK-B2).
o The file is being printed (COPYFILE statement).

© The file is an indexed file. The part being printed is identified by the record keys from ADAMS to BAKER in
the index (SELECT statement).

146

The Library Maintenance program (SMAINT) has
four functions:

Function Meaning

Allocate Create (reserve space for), delete,
reorganize, and change the sizes of
libraries.

Copy Place entries in, and display the

contents of, libraries.

Delete Delete library entries.
Rename Change the names of library
- entries,

The control statements you must supply depéend
on the function you are using.

Library Description

The source library is an area on disk for storing
procedures and source statements. Procedures
are groups of OCL statements used to load pro-
grams. The statements can be followed by input
data for the programs. (Procedures for utility
programs can, for example, contain utility con-
trol statements.) Source statements are sets of
data, the most common of which are RPG ||
source programs and Disk Sort sequence specifi-
cations,

The object library is an area on disk for storing
object programs and routines. Object programs
are programs and subroutines in such a form that

they can be loaded for execution. (They are some-

times called executable object programs.) Routines
are programs and subroutines that need further
translation before being loaded for execution.
(They are sometimes called nonexecutable object
programs.)

T S
LIBRARY MAINTENANCE PROGRAM
e T RN

Location of Libraries on Disk

Libraries can be located anywhere on disk. How-
ever, the location of a source library with respect
to an object library is always the same:

L)
L]

User Area | Source Library | Object Library : User Area
i

T—Track 0 Upper Boundary

The boundaries of a source library are fixed. They
can be changed only by the allocate function of the
Library Maintenance program. The upper boundary
of an object library, however, can be moved as ad-
ditional space is needed when entries are placed in
the library. This happens only if space is available
following the library and if the entries being placed
beyond the normal boundary are not permanent
entries.

Organization of Library Entries

Entries are stored in the object library serially;

that is, a twenty-sector program occupies twenty
consecutive sectors. Temporary entries follow all
permanent entries in the object library. This occurs
because a permanent entry causes all temporary
entries to be deleted. The permanent entry is then
loaded into the first available space large enough to
hold it. This is usually the space following the last
permanent entry in the library.

If necessary, the upper boundary is changed to
allow more space for temporary entries. But when
a permanent entry is placed in the library, all tem-
porary entries are deleted and the upper boundary
returns to its original location. Permanent entries
cannot exceed the original upper boundary.

Library Maintenance Program 147

‘Gaps can occur in the object library when a perma-

nent entry is deleted and replaced with a permanent
entry using fewer sectors. The Library Mainte-
nance program scans the library to see what sectors
are available. The entry is then placed into the gap
that has the fewest sectors over and above the
number required by the new entry, If the entry

is the same size, no sectors are lost.

If the number of unusable sectors becomes ex-
cessive, the library should be reorganized. In
reorganizing entries, the Library Maintenance
program shifts entries so that gaps do not appear
between them. This makes more sectors available
for use.

The source library differs from the object library
in that entries within the source library need not
be stored in consecutive sectors. An entry can be
stored in many widely separated sectors with each
sector pointing to the sector that contains the next
part of the entry. When an entry is placed in the
source library, it is placed in as many sectors as
required regardless of where the sectors are lo-
cated within the library.

The boundary of the source library cannot be
expanded; therefore, an entry must fit within the
available library space. To provide as much space
as possible within the prescribed limits of the
source library, the system compresses entries. That
is, blanks and duplicate characters are removed
from entries. Later, if the entries are printed or
punched, the blanks and duplicate characters are
reinserted.

Library Directories

148

The program creates a separate directory for each
library. Every library entry has a corresponding
entry in its library directory. The directory

entry contains such information as the name and
location of the library entry. The program also
creates a system directory, which contains infor-
mation about the size and available space in libraries
and their directories.

Organization of This Section

The four functions are described separately. Every
description contains the following:

1. List of specific uses.

2. Control statement summary indicating
the form of the control statement needed
for each use.

3." Parameter summary explaining the contents
and meanings of control-statement param-
eters,

4, Parameter descriptions explaining, in
detail, the contents and meanings of the
parameters. Because delete and rename
are not complex functions, those functions
do not need this type of description. The
parameter summaries are sufficient,.

5. Examples that include OCL statements,
utility control statements, and explanations
of their use.

OCL considerations for the program precede the
examples.

"ALLOCATE

Uses

Change the sizes of libraries.

Delete libraries.

Reorganize libraries.

CONTROL STATEMENT SUMMARY

Create (reserve space for) libraries.

R

// ALLOCATE TO-code,SOU RCE-{ ““”‘ber}, OBJECT-{ "”’"ber}, SYSTEM-{NO

YES} , WORK-code

R

: Create

Change Size
Source
Library

Change Size
Object

Library Delete

Reorganize

You can indicate
a source-library
use, an object-

involving both

the size of the
object library).

— Parameters Needed

library use, or uses

libraries (for example,
deleting the source
library and changing

WORK parameter needed

‘only if the disk contains

:an object library that you
are not deleting.)

TO-code, SOURCE-number, WORK-code
TO-code, SOURCE-number, WORK-code.

TO-code, SOURCE-0 L
PeETES Al

TO-code, SOURCE-R, WORK-code T} ‘;))
TO-code, OBJECT-number, SYSTEM- NO
YES
TO-code, OBJECT-number, WORK-code
TO-code, OBJECT-0
TO-code, OBJECT-R, WORK-code - RQELETE S Al
Tz H

If you are indicating uses for both
libraries, use only one TO parameter.
(The libraries must be on the same
disk.) Also, use only one WORK
parameter if both uses require a
WORK parameter.

Library Maintenance Program 149

ALLOCATE PARAMETER SUMMARY

SOURCE-0

SOURCE-number

OBJECT-0

OBJECT-number

SYSTEM-NO

WORK-code

150

Location of disk you are using. Possible codes are R1, F1, R2, and F2.

Delete the source library.

If disk does not contain a source library, program creates one.
Numpber indicates the number of tracks you want to assign.

If disk already contains a source library, program changes its size
and reorganizes it. (This includes deleting temporary entries.)
Number indicates the total number of tracks you want in source library.

Reorganize the source library. Program deletes temporary entries
while reorganizing the library.

Delete the object library.

If disk does not contain an object library, program creates one. Number
indicates the number of tracks you want to assign.

If disk already contains an object library, program changes its size and
reorganizes it. (This includes deleting temporary entries.) Number indi-
cates the total number of tracks you want in object library.

Reorganize the object library. Program deletes temporary entries while reor-
ganizing the library.

Assign one track to object library directory. Object library directory
will not be large enough to contain system program entries.

Assign three tracks to object library directory. Object library directory
will be large enough to contain system program entries.

Location of disk containing space the program can use as a work area.
Possible codes are R1, F1, R2, or F2.

Parameter Descriptions

TO Parameter

The TO parameter (TO-code) indicates the location
of the disk that contains, or will contain, the
library. 1f the program use involves both libraries,
the libraries must be on the same disk.

Codes for the possible locations are as follows:

Code Location
R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.

R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

SOURCE Parameter

The SOURCE parameter identifies source-library

uses:

Parameter

SOURCE-number
(number is not
zero)

SOURCE-0

SOURCE-R

Use

If the disk contains no
source library, parameter
means create a source
library. Number is the
number of tracks you

‘want to assign to the

library.

If the disk contains a
source library, param-
eter means change the
library size. Number
is the number of tracks
you want to assign to
the library.

Delete source library.

Reorganize source library.

Disk Considerations for Creating a Source Library
(SOURCE-number)

Number of Source Libraries Allowed: One per disk.

If the disk already contains a source library,
the SOURCE-number parameter causes the
program to change the library size to the num-
ber of tracks indicated in the parameter.

Source Library Size: The minimum size is one track.

The maximum is the number of tracks in the
available disk area.

Regardless of the number of tracks you specify,
the first two sectors of the first track are assigned
to the library directory. Additional sectors are
used as needed for the directory.

Placement of Source Library (Disk With an Object
Library): Source library must immediately precede

the object library. Therefore, a disk area large
enough for the source library must immediately
precede or follow the object library.

If the available disk area follows the object
library, the program moves the object library
to make room for the source library as the
following illustration shows. To do this, it
needs a work area (see WORK Parameter in
this section).

Disk Space Before Source Library:

Object Library
(30 tracks)

Available Space
(15 tracks)

Customer
Files

07i

}=—38-52
Tracks

8-37

Disk Space After Source Library:

Source Object Library | Available | Customer
Lib. (30 tracks) Space Files
(5 tracks) (10 tracks)
[07 | 812 [—13-42 43-52—
) Tracks

Library Maintenance Program

151

Placement of Source Library (Disk Without an
Object Library): Program assigns the source library

to the first available disk area large enough
for the library.

Disk Considerations for Changing the Size of a Source
Library (SOURCE-number)

Making the Source Library Larger: If the disk contains

an object library, space must be available im-
mediately following the object library, The
program moves the object library to make
tracks available at the end of the source library,
as the following illustration shows. The starting
location of the source library remains the same.

If the disk doesn’t contain an object library,
space must be available immediately following
the source library,

Disk Before Tracks Are Added to Source Library:

Source Object Available Customer
Library Library Space Files
(10 tracks)] (30 tracks) |} (15 tracks)
0-7 817 |+~—18-47—> 4862
Tracks

Disk After Five Tracks Are Added to Source Library:

‘Source Object Available Customer
Library Library Space Files
(15 tracks)] (30 tracks) (10 tracks)
o071 822 |—2352—{ 5362 |
Tracks

Making the Source Library Smaller: If the disk contains

152

an object library, the program moves the end
location of the source library to make the library
smaller. The starting location remains the same.
The program then moves the object library so that
no gap appears between the two libraries. Space,
therefore, becomes available following the object
library, not preceding it, as the following illustra-
tion shows:

Disk Before Source-Library Size Was Decreased:

Source Object
Library Library
(15 tracks) (30 tracks

Customer
Files
)

Tracks

0-7 l+—8-22—>|«———23.52 ——

Disk After Five Tracks Were Taken From Source Library:

Source Object Available Customer
Library Library Space Files
(10 tracks)| (30 tracks) | (5 tracks)
lo7! 817 |+—18-47—> 4852
Tracks

If the disk doesn’t contain an object library, the
program moves the end location of the source
library to make the source library smaller. The
starting location remains the same.

Reorganizing the Source Library: Any time the program
changes the library size, it also reorganizes the
library (see Disk Considerations for Reorganizing
a Source Library in this section). To do this, it
needs a work area (see WORK Parameter in this

section).

Disk Considerations for Deleting a Source Library

(SOURCE-0)

The program makes the disk area occupied
by the source library available for other

use.

Disk Before Source Library Deleted

Source Object Library Customer
Library {30 tracks) Files
(15 tracks)

0-7 { 8-22 ! 23-52 %

Disk After Source Library Deleted
Object Library Available Customer
(30 tracks) Space Files
(15 tracks)
07 8-37 38-62
Tracks

Disk Considerations for Creating an Object Library
(OBJECT-number)

Disk Considerations for Reorganiiing a Source Library
(SOURCE-R)

Reason for Reorganizing the Library: Areas from which Number of Object Libraries Allowed: One per disk.

source library entries are deleted are completely
reused for new entries. If an entry exceeds the
space in such an area, the program puts as much
of the entry as will fit in the area and continues
the entry in the next available area. In this way,
the program efficiently uses library space. This
can, however, decrease the speed at which those
entries can be read from the library. Therefore,
if you frequently add and delete source library
entries, you should reorganize your source library
periodically.

Reorganizing the Library: The program relocates entries

s0 that no entry is started in one area and continued
in another. All temporary entries are deleted.

Work Area: The program needs a work area (see WORK

Parameter).

OBJECT Parameter

The OBJECT parameter identifies object-library,
uses:

Parameter Use

OBJECT-number If the disk doesn’t contain
(number not an object library, this
zero) parameter means create
an object library. Num-
ber is the number of
tracks you want to
assign to the library.

If the disk contains an
object library, this
parameter means change
the library size. Number
is the number of tracks
you want to assign to

the library.
OBJECT-0 Delete object library.
OBJECT-R Reorganize object library,

If the disk already contains one, the OBJECT-
number parameter causes the program to change
the library size to the number of tracks indicated
in the parameter.

Object Library Size: Minimum size is 30 tracks if the

object library will contain a minimum system;
otherwise, the minimum is three tracks. (A
minimum system is made up of those system |
programs necessary to load and run programs;

it does not include those programs that generate
and maintain a system.) However, if inquiry, the
Data Recorder, or the CRT (2265-2) are included
in the system, 32 tracks are needed for the system
object library.

Maximum size is the number of tracks in the
available area.

Library directory: The first three tracks in the
library are reserved for the library directory if the
library will contain system programs. Otherwise,
only the first track is reserved..

Scheduler work area: If the library will contain
system programs, the disk area to contain the
library must be large enough to also contain a
work area for the Scheduler program (one of

the system programs). The work area space is
not included in the number you specify in the
OBJECT parameter. It is calculated and assigned
by the Library Maintenance program. The
amount of additional space needed depends on
the capacity of your system and whether your
programming system contains the Inquiry feature:

Scheduler Work Area Size

Capacity No Inquiry Inquiry

8K bytes 2 tracks 5 tracks
12K bytes 2 tracks 6 tracks
16K bytes 2 tracks 7 tracks

Placement of Object Library (Disk With a Source
Library): Space for the object library must be

available immediately following the source
library.

Library Maintenance Program 153

Placement of Object Library (Disk Without a Source

Library): Program assigns the object library to the
first available disk area large enough for the
library.

Disk Considerations for Changing the Size of an Object
Library (OBJECT-number)

Making the Library Larger: The number of tracks you
want to add must be available immediately
following the object library. The program
assigns the additional tracks to the library.

(The starting location of the library remains
unchanged.)

Making the Library Smaller: The program moves the
end location of the object library to decrease .
the library size. Tracks, therefore, become
available following the library.

Reorganizing the Library: Any time the program
changes the library size, it also reorganizes
the library (see Disk Considerations for
Reorganizing an Object Library in this
section). To do this, it needs a work area
(see WORK Parameter in this section).

Disk Considerations for Deleting an Object Library
(OBJECT-0)

Deleting the Library: The program makes the disk
area occupied by the object library available
for other use.

Restriction: The Library Maintenance program will
not delete either of the following object
libraries:

1. The library from which the Library
Maintenance program was loaded.

2. The library containing the system

programs that are controlling pro-
gram loading.

154

Disk Considerations for Reorganizing an Object
Library (OBJECT-R)

Reason for Reorganizing the Library: Gaps can
occur between object-library entries when you
add and delete entries. By reorganizing the
library, you might salvage enough space for
additional entries without increasing the size
of the library.

Reorganizing the Library: Entries are relocated so
that no gaps appear between them. All
temporary entries are deleted.

Work Area: The program needs a work area (see
WORK Parameter in this section).

WORK Parameter
The WORK parameter (WORK-code) indicates the
location of the disk that contains a work area.
Library entries are temporarily stored in the work
area while the program moves and reorganizes
libraries.

Codes for the possible disk locations are as follows:
Code Location

R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.
R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

Disk Considerations for Work Area Location of Disk Containing the Work Area: The work
area can be on either disk on either drive. How-
ever, it cannot be the same disk as the one you

Size of the Work Area: The work area must be specified in the TO parameter. The only require-
large enough to hold the entire source library, ment is that the disk must have an available area
object library, or both libraries depending on large enough for the work area. If your system
the program use: has two disk drives, the program works faster if

the disk containing the libraries is on a different
Use‘® Contents of Work Area drive than the disk containing the work area.
Create a source Obiject library.
library (disk con- | SYSTEM Parameter
tains an object The SYSTEM parameter applies to creating object
library). libraries. It tells the program whether or not you
: intend to include system programs in the library.
Change source Source library and object
library size (disk library. Include System Programs
contains an ob- SYSTEM-YES means you intend to include system
ject library). programs. It causes the Library Maintenance pro-
gram to do the following:
Change source Source library. '
library size (disk 1. Assign three tracks (instead of one) to the
doesn’t contain library directory.
an object
library). 2. Assign space for a scheduler work area.
;ejziall’:;:;ry ﬁg::;‘hbrary and object The directory will be large enough for all system

(disk contains programs: those necessary for program loading
an object library). and running (minimym system), and those neces-
sary for generating and maintaining a system.

Reorganize Source library.

source library Space for the Scheduler work area is assigned
(disk doesn’t con- immediately preceding the object library. If the
tain an object disk contains a source library, the work area will
library). appear between the source and object libraries.

. L For information about the size of the work area,
C?hange 9ble°t Object library. see Disk Considerations for Creating an Object
library size. Library in this section.

Reorganize Object library.

object library. Do Not Include System Programs

SYSTEM-NO means you do not intend to include
system programs in the library. The Library Main-

Location of Work Area on Disk: The program uses tenance program does not assign space for the
the first available disk area large enough to hold Scheduler work area, and it assigns one track
the library, or libraries. (instead of three) to the library directory.
SYSTEM-NO is assumed if you omit the SYSTEM
parameter,

@lf you are combining uses, such as changing the
sizes of both libraries, the work area must be large
enough to hold the contents of both libraries.

Library Maintenance Program 155

CcoPY

Uses

Reader-to-Disk @

Add or replace a library entry.

Copy one library entry.

Copy library entries that have names beginning with certain
characters. (2)

Disk-to-Disk
Copy all library entries. @
Copy minimum system, @

Copy an IBM program.

Print one library entry.

Print library entries that have names beginning with certain
characters. @

Disk-to-Printer
Print all library entries of a certain type. @

Print directory entries for library entries of a certain type. @

Print entries from all directories including system directory.

Print system directory only.

, Punch one library entry.
Disk-to-Card oo . .
Punch library entries that have names beginning with certain
characters. @

Punch all library entries of a certain type. @

156

@@@h@

Print and punch one library entry.

Disk-to-Printer

Print and punch likbrary entries that have names beginning
and Card

with certain characters. @

Print and punch all library entries of a certain type. @

The reader is the system input device. The system input device can be either the keyboard or a

card reader.

You can.specify the following types of entries: source statements, procedures, object programs,
routines, or all of these types.

Minimum system consists of the system programs necessary to load and run programs. It does not
include the system programs necessary to generate and maintain the system.

You can specify one of the following types of entries: source statements, procedures, object
programs, or routines.

Library Maintenance Program

157

Control Statement Summary: Reader-To-Disk

—

Add or Replace a Library Entry (Reader is Keyboard) @

=ohle B
N

S
// COPY FROM-R EADER,LIBRARY-{ B} ,NAME-name,TO-code,RETAlN-{
R

Library Entry

/! CEND

|
Add or Replace a Library Entry (Reader is Card Reader) @

S
T
// COPY FROM-READER,LIBRARY-{ (P) } ,NAME-name,TO-code,RETAIN-{Fl; }
R :

Library Entry

// CEND

@ // COPY statement, library entry, and // CEND statement are all read from the keyboard.

@ // COPY statement, library entry, and // CEND statement are all read from cards.

Control Statement Summary: Disk-To-Disk

4 B
Copy One Library Entry

TOOW

T
// COPY FROM-code,LlBRARY-{ },NAME-name,TO-code,RETAIN- { E },NEWNAME-name @

158

Copy Library Entries That Have Names Beginning With Certain Characters

@

T ™ .
//COPY FROM-code,LIBRARY- ,NAME-characters.ALL,TO-code,RETAIN- { E} /NEWNAME-characters

A

(=] @ - 172]

L

Copy All Library Entries

ol |

}@

S
: P
//COPY FROM-code, LIBRARY-) ,NAME—ALL,TO-code,RETAIN-{

ALL

\

i
Copy Minimum System

// COPY FROM-code,LIBRARY-O,NAME-SYSTEM,TO-code

|
Copy an IBM Program

/1 copYy FROM-code,LIBRARY-O,NAME-$cc.ALL,T0-code,RETAlN-{ g }

@ NEWNAME parameter is needed in either of the following cases:
1. If you want the copy to have a different name than the original entry.

2. If you want to replace an entry on the TO disk with an entry from the FROM disk, but
the entries have different names.

@ If you use T or P in the RETAIN parameter, the TO library entries will have the T or P
retain type. If you use R, the TO library entries will have the same retain type that they
had in the FROM library.

@ Use the NEWNAME parameter only if you want the names of the copies to begin with different
characters than the names of the original entries. The number of characters must equal the
number of characters in the NAME parameter.

Library Maintenance Program

159

160

Control Statement Summary: Disk-To-Printer

|
Print One Library Entry

// COPY FROM-code,LIBRARY- {

DO O

S [NAME-name, TO-PRINT

Print Library Entries That Have Names Beginning With Certain Characters

S

P

//COPY FROM-code,LIBRARY- g /NAME-characters. ALL, TO-PRINT
L

ALL

Print All Library Entries of a Certain Type

|

// COPY FROM-code,LIBRARY-{ ,NAME-ALL,TO-PRINT

O TW”N

f
1

Print Directory Entries for Library Entries of a Certain Type

S
// COPY FROM-code,LIBRARY-{ g },NAME-DIR,TO-PRINT

Print Entries From All Directories Including System Directory

// COPY FROM-code,LIBRARY-ALL,NAME-DIR,TO-PRINT

r

Print System Directory Only

// COPY FROM-code,LIBRARY-SYSTEM,NAME-DIR,TO-PRINT

Control Statement Summary: Disk-To-Card

Punch One Library Entry

4

VOTW

|//copy FROM-code,LIBRARY~{ } ,NAME-name, TO-PUNCH

Punch Library Entries That Have Namés Beginning With Certain Characters

S
P
// COPY FROM-code,LIBRARY- 9{ ,NAME-characters.ALL, TO-PUNCH
ALL

|
Punch All Library Entries of a Certain Type

S
// COPY FROM-code, LIBRARY- { CP) } ,NAME-ALL,TO-PUNCH.
: R

Library Maintenance Program

161

Control Statement Summary: Disk to Printer and Card

Print and Punch One Library Entry-

//COPY FROM-code,LIBRARY-{ } /NAME-name, TO-PRTPCH

TIOoWnN

Print and Punch Library Entries That Have Names Beginning With Certain Characters

S
P
//COPY FROM-code,LIBRARY- 8 ,NAME-characters.ALL,TO-PRTPCH
ALL

|
Print and Punch All Library Entries of a Certain Type

S
//copPy FROM-code,LIBRARY-{ g } ,NAME-ALL,TO-PRTPCH
R

162

Parameter Summary

FROM-READER

FROM-code

s
P
LIBRARY- O
R
LIBRARY-ALL
LIBRARY-SYSTEM

name
{ characters.ALL
ALL

®

Entry to be placed in library is to be read from system input device
which can be a keyboard or card reader.

Location of disk containing library entries being copied, printed, or
punched. Possible location codes are:

Code Meaning

R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.

R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

Type of library entries involved in copy use. Possible codes are:

Code Meaning

S Source statements (source library).
P OCL procedures (source library).
(0] Object programs (object library).
R Routines (object library).

All types of entries (S, P, O, and R) from both libraries are involved
in copy use.

Only system directory entries are being printed.

Specific library entries, of the type indicated in LIBRARY
parameter, involved in copy use. Possible information is:

Information Meaning
name Name of the library entry involved.

characters. ALL

, ALL(D

Only those entries beginning with the indicated
characters (you can use up to five characters).

All entries (of the type indicated in LIBRARY
parameter).

On a disk-to-disk copy, check that sufficient space has been allocated on the ‘TO’ disk.

Library Maintenance Program

163

NAME-SYSTEM

164

Only system programs that make up the minimum system are involved
in the copy use.

Directory entries for all library entries of the type indicated in the
LIBRARY parameter are involved in the copy use. If the LIBRARY
parameter is LIBRARY-ALL, system directory entries are also printed.

The IBM program with the name beginning with the indicated characters
($Scc) is involved in the copy use. For example, SMA.ALL means the
Library Maintenance program (SMAINT).

Adding Entry to Library. RETAIN gives designation of entry:

Code Meaning
T Temporary.
PorR Permanent.

Replacing Existing Library Entry. RETAIN gives designation of
TO entry and tells program whether to halt before replacing entry:

Code Meaning

T Temporary designation. Halt before replacing
entry.

P Permanent designation. Halt before replacing
entry.

R Use same designation as existing entry. Do not

halt before replacing entry.

Printing or Punching Entries. RETAIN parameter is ignored:

TO-code

TO-PRTPCH:

‘ NE. A\ME-name

NE ME-characters

Location of disk that is to contain the copies of the entries:

Code Meaning

R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.

R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

Entries are being printed.

Entries are being punched.

Entries are being printed and punched.

Name you want used on the TO disk to identify the entries being put on
that disk. 1f you omit this parameter, the program uses the NAME
parameter in naming the entries.

Beginning characters you want to use in names identifying entries being
put on TO disk. You must use the same number of characters as in the
NAME parameter (NAME-characters.ALL). If you omit this parameter,
the program uses the NAME parameter in naming the entries.

Library Maintenance Program

165

Parameter Descriptions Output: Blanks are removed from source statements -
before they are put in the source library.

FROM and TO Parameters Procedures are put in the source library in the form
The FROM parameter identifies the device from in which the program reads them. The program
which the program will copy library or directory does not check them for errors.
entries. The TO parameter identifies the destina-
tion of these entries. Together, the parameters Object programs and routines are placed in the
define the copy function being done: object library after being compressed.

Parameters
System Input Device: The entry is read from the
Reader-to-disk FROM-READER system input device, which is normally the
TO-code keyboard. The operator can, however, change
the system input device to a card reader during
Disk-to-disk FROM-code initial program loading (IPL) using the OCL
TO-code READER statement.
Disk-to-printer FROM-code
TO-PRINT : Replacing Existing Entries: The program can replace
an existing library entry with the entry you are
Disk-to-cards FROM-code putting in the library.
TO-PUNCH
The program can halt before replacing an existing
Disk-to-printer FROM-code entry. Whether or not it does depends on the
and cards TO-PRTPCH RETAIN parameter you use. See RETAIN Param-

eter in this section for more information.

The codes indicating the possible disk locations
are as follows:

Disk Code Meaning
Disk-to-Disk Considerations

R1 Removable disk on drive 1.

F1 Fixed disk on drive 1.

R2 Removable disk on drive 2. Input: The program can copy one or more library
F2 Fixed disk on drive 2. entries from one disk to another. The types

of entries can be:
Reader-to-Disk Considerations 1. Source statements.

2. Procedures.
Input: The program reads one library entry. It can

be any one of the following types: 3. Object programs,

1. Source statements. 4. Routines.

2. Procedure. 5. All of the preceding types.
3. Object program. 6. Minimum system.

4, Routine.
| See LIBRARY Parameter in this section.

166

Output: The entires, regardless of their type, are The program can print the following types of

copied from one disk to the other without directory entries.
change.
1. Source statements.
Disks: The disk from which the entries are copied 2, Procedures.
and the disk to which the entries are copied
must be different disks. 3. Obiject programs.
If you are copying a minimum system, the 4, Routines.
disk you indicate in the TO parameter must not
already contain the minimum system. 5. System directory.
6. All types.
Replacing Existing Entries: The program can replace L .
existing library entries with the entries you are The program will print out sorted names only if
putting in the library. (See NAME Parameter three tracks are left available as a work area.

and NEWNAME Parameter in this section.)

Printout of Library Entries: Blanks and duplicate
characters are reinserted into source statements
to make them readable.

The program can halt before replacing an existing
_entry. Whether or not it does depends on the
RETAIN parameter. See RETAIN Parameter in

this section for more information. . .
Procedures, object programs, and routines are

printed as they exist in the library.

Disk-to-Printer Considerations
Printout of Directory Entries: The following three

, , iltustrations show the three types ofdirectory
Types of Entries That Can Be Printed: The program printouts.

can print one or more library entries. They can

be any of the following types:

1. Source statements.

2. Procedures.

3. Object programs.

4. Routines.

5. All of the preceding types (limited to entries

having the same name and entries beginning
with the same characters).

Library Maintenance Program 167

Source Library Directory

PRINTOUT

SOURCE DIRECTORY FROM XX VOL. ID XXXXXX

ADDRESS NO. OF
TYPE NAME FIRST LAST ATTR SECTORS
X XXXXXX TTT-SS TTT-SS X XXX
EXPLANATION
Heading Meaning
TYPE =source statements
P=procedure
NAME Name of library entry (up to six characters)
ADDRESS Addresses of first and last sectors that contain the library entry. Addresses are

(FIRST and LAST)

ATTR (Attribute)

NO. OF SECTORS

expressed by track and sector numbers. EXAMPLE: 008-03 means track 8,
sector 3.

T=temporary

=permanent

Total number of sectors used for the library entry.

168

Object Library Directory

PRINTOUT

OBJECT LIBRARY FROM XX® VOL. 1D XXXXXX®

@ DISK (DCYL/ TXT LINK RLD ENTRY CORE TOTAL
TYPE NAME ADDRESS™~SEC SEC ADDR DISP POINT SEC ATTR LEVEL SEC
AL XXXXXX TTT/SS CC/SS XXX XXXX XX XXXX XXX XXXX XXX XXXXX
EXPLANATION
Heading Meaning
TYPE ’ P=permanent
A
T=temporary
i O=object
L X
R=routine
NAME Name of library entry (up to six characters)
DISK ADDRESS Address where library entry begins on disk. EXAMPLE: 015/10 means track 15, sector 10
(in decimal).
CYL/SEC Address where library entry begins on disk (in hexadecimal).
TXT SEC Obiject programs only. It indicates the number of sectors used for text portion of library entry.

Object library entries are made up of two parts: text and RLD. Text is the program or routine.
RLD is information used in loading the program or routine for execution.

LINK ADDRESS Object programs only. Assigned core address of this library entry,

RLD DISP Object programs only. It indicates the position in which RLD information begins in the last text
sector. |f the last text sector contains no RLD information, the RLD displacement is O,
indicating the information is in the next sector.

ENTRY POINT Object programs only. Main storage address where program execution begins (includes relocations).

CORE SECTORS Core size, given in sectors, required to run the program,

@ Disk where the directory was printed from.
(@) Volume ID from the disk.
@ A=Attribute,L=Library.

@ T=Track,S=Sector,C=Cylinder

Library Maintenance Program 169

ATTRIBUTES Byte 1:

Bit 0=1—permanent
Bit 0=0—temporary

Bit 1=1—inquiry

Bit 2=1—inquiry evoking

Bit 3=1—must run dedicated

Bit 4=1—requires source information

Bit 5=1—deferred mounting allowed

Bit 6=1—PTF applied

Bit 7=1—No AUTOLINK requested
Bﬂvte 2:

Bit 0=1-Sysin required for execution
Bits 1-7—reserved

LEVEL Release level

TOTAL SECTORS Total number of disk sectors occupied by the library entry

170

System Directory Printout

SYSTEM DIRECTORY FROM XX VOL. ID XXXXXX

SOURCE LIBRARY

Source Directory Location TTTSS
Next Available Library Sector TTT-SS
End of Library TTT-SS
Number of Directory Sectors XXX
Number of Permanent Library Sectors XXX
Number of Active Library Sectors XXX
Number of Available Library Sectors XXX
Allocated Size of Library . YYY

OBJECT LIBRARY

Object Directory Location TTT-SS
End of Directory TTTSS
Start of Library TTTSS
Allocated End of Library TTT-SS
Extended End of Library TTTSS
Number of Available Permanent Directory Entries XXX
Number of Available Temporary Directory Entries XXX
First Temporary Directory Entry TTT-SS-DDD
Next Available Temporary Directory Entry TTT-SS-DDD
Next Available Library Sector for Permanents TTTSS
Next Available Library Sector for Temporaries TTTSS
Number of Available Library Sectors for Permanents XXX
Number of Available Library Sectors for Temporaries XXX
Number of Active Library Sectors XXX
Number of Active O. Permanent Library Sectors XXX
Number of Active R. Permanent Library Sectors XXX
Allocated Size of Library YYY
Roll-in/Roll-out Location TTT-SS
Roll-in/Roll-out Size : YYY
SWA Location TTTSS
SWA Size YYY
Start of Libraries TTTSS
End of Libraries TTT-SS

TTT-SS-DDD means track, sector, and displacement, Displacement is the number of
characters from the beginning of the sector. XXX = number of sectors. YYY = number
of tracks.

Library Maintenance Program

m

Disk-to-Card Considerations

Type of Entries That Can Be Punched
The program can punch one or more of the follow-
ing types of entries into cards:

Source statements.

Procedures.

Object programs.

Routines.

All types limited to those beginning
with the same characters.

agrpLN=

Form of Library Entries in Cards

Blanks and duplicate characters are reinserted into

source statements to make the statements readable.

Procedures, object programs, and routines are
punched as they appear in the library.

COPY Statement

A card contaﬂﬁng a partially completed COPY
statement (/ / COPY FROM-READER) is punched
preceding each library entry. It identifies the be-
ginning of the entry. If you copy the entry from
cards to disk (reader-to-disk), be sure to complete
the COPY statement.

CEND Statement
A card containing a CEND control statement
(//CEND) is punched immediately after each
entry. You need it for copying the entry from
cards to disk at a later time.

Disk-to-Printer-and-Card Considerations
The considerations-for disk-to-printer-and-card
are the same as disk-to-printer and disk-to-card
with this exception: you cannot print and punch
directory entries.

172

LIBRARY Parameter
The LIBRARY parameter identifies the type of
library or directory entries involved in the copy
use. Codes for the possible types are as follows:

Code Meaning
S Source statements (source
library).
P OCL procedures (source library).
0} Object programs {(object library).
R Routines (object library).
All All types from both libraries

(S, P, 0, and R).

SYSTEM System directory entries.

Types of Library Entries

Source Library: Source statements can be any com-
bination of valid System/3 characters. Examples
of source statements are RPG source programs and
sequence specifications for the Disk Sort program.

Procedures are sets of OCL statements. Procedures
for utility programs can include control statements
following the OCL statements.

Object Library: Object programs are programs and sub-
routines in such a form that they can be loaded
for execution. They are sometimes called
executable programs.

Routines are programs and subroutines that need
further translation before being loaded for exe-
cution. They are sometimes called nonexecutable
object programs.

Types of Directory Entries

Source and Object Library Directories: The source and

object libraries have separate library directories.
Every library entry has a corresponding entry in
its library directory. The directory entry contains
such information as the name and location of the
library entry. See Disk-to-Printer Considerations
in this section,

The Library Maintenance program makes entries
in the directories when it puts entries in. the
libraries.

System Directory: Every disk that contains libraries

contains a system directory. The system directory
contains information about the sizes of and
available space in libraries and their directories.

. See Disk-to-Printer Considerations in this section.

The Library Maintenance program creates and
maintains the system directory.

NAME Parameter

The NAME parameter identifies specific entries,
of the type indicated in the LIBRARY parameter,
- involved in the copy use. The information
possible in the NAME parameter is as follows:

Information Meaning
name Name of the library entry to
be copied.
character ALL Only those entries beginning

with the indicated characters.
(You can use up to five
characters.)

ALL All entries (of the type
indicated in LIBRARY
parameter).

SYSTEM Only system programs that
make up the minimum
system.

DIR Directory entries for all
library entries of the type
indicated in LIBRARY
parameter.

$cc.ALL IBM program with the name
beginning with the in-
dicated three characters
($cc). For example:
SMA.ALL refers to Library
Maintenance program
(SMAINT).

Naming Entries

Characters to Use: Use any combination of System/3

characters except blanks and periods (.). (Appendix
J lists the characters.) The names of all IBM
programs begin with a dollar sign ($). Therefore,

to avoid possible duplication, do not use a dollar
sign as the first character in the names you use

for your entries.

Length of Name: The name can be from one to six
characters long.

Restricted Names: Do not use the names ALL, DIR,
and SYSTEM. They have special meanings in
the NAME parameter.

Using Names

NAME-name: For reader-to-disk uses, the entry you
put in the library will be identified by the name
you give in the NAME parameter.

For disk-to-disk uses, the name you give in the
NAME parameter identifies the entry being copied
(the one on the FROM disk). It will also identify
the copy (the one on the TO disk) unless you use
a NEWNAME parameter. See NEWNAME Param-
eter in this section.

Library Maintenance Program 173

NAME-characters.ALL: The NAME parameter identifies

the entries being copied from the FROM disk. The
names of the copies and original entries will be the
same unless you use a NEWNAME parameter
(NEWNAME-characters.ALL). See NEWNAME
Parameter in this section.

NAME-ALL (Disk-to-Disk): The names by which the

entries are identified on the FROM disk will
also be used on the TO disk to identify the
entries.

NAME-SYSTEM. The NAME paraméter indicates that

the minimum system is being copied. The mini-
mum system is made up of system programs
necessary to load and run programs. System
programs necessary to generate and maintain
the system are not included.

NAME-$cc.ALL: The NAME parameter indicates

that an IBM program is being copied. The
names of all IBM programs begin with dollar
sign ($) and are unique within the first three
characters.

RETAIN Parameter

174

The RETAIN parameter supplies the RE-
TAIN code for the TO disk. It also indi-
cates whether you want the program to

halt before replacing existing entries in

the library. When printing and/or punch-
ing library entries, the RETAIN parameter

is not needed. If the RETAIN parameter

is not supplied when copying disk-to-disk

or reader-to-disk, RETAIN-T is assumed;
except when the parameters LIBRARY-ALL
and NAME-ALL or LIBRARY-0 and NAME-
SYSTEM are used, RETAIN-P is assumed.

Codes for the parameter are as follows:

Code Meaning

T Only temporary entries. Halt before
replacing entries,

P Only permanent entries. Halt before
replacing entries.

R Both permanent and temporary entries.
Do not halt before replacing entries.

If you omit the parameter, RETAIN-T is assumed.

Temporary Entries: Temporary entries are entries you

don‘t intend to keep in your libraries. They are
normally used only once or a few times over a
short period.

In the object library, temporary entries are placed
together following the permanent entries. Any
time a permanent entry is added to the library,
all temporary entries are deleted. Temporary
entries are deleted when you replace one per-
manent entry with another.

In the source library, temporary and permanent
entries can be in any order. One entry is placed
after another regardless of their designations.
Temporary entries, therefore, are not deleted
every time you add a permanent entry.

You can use temporary entries as often as you like
until they are deleted.

Permanent Entries: Permanent entries are entries you NEWNAME Parameter

intend to keep in your libraries. They are nor- The NEWNAME parameter applies to disk-to-disk
mally entries you use often or at regular intervals copy uses only. With it, you can give the copies
{once a week, once a month, and so on). different names than the original entries. The
information you can supply in the parameter is as

The program will not delete permanent entries follows:
unless you use the delete function of Library
Maintenance to delete them, or the allocate Information Meaning
function to delete the entire library.

name Name you want to use for

Using the RETAIN Parameter the copy, or copies.

If you use RETAIN-T or RETAIN-P, the designation o

characters. ALL Beginning characters

of the entries you are putting in the library is taken
from the RETAIN parameter. There is one restriction:
a temporary entry cannot replace a permanent entry.

you want to use in names
identifying the copies.

RETAIN-R is normally used to bypass program Considerations for Using NEWNAME Parameter

halts when you are replacing several existing
entries, perhaps with updated versions. |f you
use RETAIN-R and the library does not contain
an entry corresponding to the entry you are
putting in the library (same type and same name),
the program adds the new entry to the library
and gives it a permanent designation.

Copy Does Not Replace an Existing Entry: You can
omit the NEWNAME parameter. If you do,
the name used for the copy will be taken from
the NAME parameter. (The copy will have the
same name as the original entry.)

If you use a NEWNAME parameter, follow these
rules to construct the name:

1. You can use any System/3 characters
except blanks, commas, quotes (apos-
trophes), and periods. (Appendix J
lists the characters.) However, the names
of all IBM programs begin with a dollar
sign ($). Therefore, to avoid possible
duplication, do not use a dollar sign as
the first character in the names you use
for your entries.

2. You can use up to six characters, but
do not use the names ALL, DIR, and
SYSTEM. They have special meanings
in the NAME parameter.

Copy Replaces an Existing Entry: If the entry you
are copying (the entry on the disk you identify
in the FROM parameter) has the same name as
the entry you are replacing (the entry on the
disk you identify in the TO parameter), you
can omit the NEWNAME parameter. If the
names are not the same, you must use a
NEWNAME narameter to give the name of
the entry you are replacing.

Library Maintenance Program 175

DELETE-

Uses
® Delete an entry from a library.

e Delete temporary or permanent library entries that have names beginning with certain characters. (You can

specify the following types of entries: source statements, procedures, object programs, routines, or all of
these types.)

e Delete all temporary or permanent library entries of a certain type. (You can specify the following types
of entries: source statements, procedures, object programs, or routines.)

176

Control Statement Summary

Delete Library Entry

/NAME-name,RETAIN- { s }

OO

// DELETE FROM-code,LIBRARY- {

Delete Temporary or Permanent Entries With Names Beginning With Certain Characters

S
P
//DELETE FROM-code,LIBRARY- 8 ,NAME-characters.ALL,RETAIN- { g }
ALL

Delete All Temporary or Permanent Entries of a Certain Type

T
// DELETE (1) FROM-code (@), LIBRARY- NAME-ALL,RETAIN- {P}

TOTD

@ For LIBRARY-O, RETAIN-T all temporary entries will be deleted from the object library (O and R). New temporary
entries cannot replace deleted temporary entries unless all old temporary entries are deleted. RETAIN-T, NAME-ALL,
and LIBRARY-O can be used to delete all temporary entries.

LIBRARY-O, NAME-ALL, RETAIN-P cannot be used if the unit specified in the FROM parameter is the same disk
on the LOAD statement or the system pack.

Library Maintenance Program

177

Parameter Summary

LIB 0
R
LIBRARY-ALL
name
NA characters.ALL
ALL

RE

178

Location of disk that contains library entries you are deleting. Possible

codes are:

Code

R1

F1

R2

F2

Meaning
Removable disk on drive 1.
Fixed disk on drive 1.
Removable disk on drive 2.

Fixed disk on drive 2.

Type of entries being deleted. Possible codes are:

Code

S

P

0]

R

Meaning
Source statements (source library).
Procedures (source library).
Object programs (object library).

Routines (object library).

All types of entries (S, P, O, and R) are being deleted.

Particular entries, of type indicated in LIBRARY parameter, being
deleted. These entries are further identified by the RETAIN parameter.
Possible codes are:

Code

name

characters. ALL

ALL

Meaning
Name of the library entry, or entries, being deleted.

Entries that have names beginning with the indicated
characters. You can use up to five characters.

EXAMPLE: NAM E-INV.ALL refers to the entries having
names that begin with INV.

All entries (of the type indicated in LIBRARY parameter).
NAME-ALL cannot be used with LIBRARY-ALL.

Designation of entries being deleted: T stands for temporary, and
P for permanent.

RENAME

Use

Change the name of a library entry.

Control Statement Summary

} /NAME-name,NEWNAME-name

OoOvW»m

// RENAME FROM-code,LIBRARY- {

Library Maintenance Program 179

Parameter Summary

FROM-code Location of disk that contains the entry you are renaming.
’ Possible codes are:

Code Meaning
R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.
R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.
S
B Type of library entry you are renaming. Possible codes are:
R
Code Meaning
S Source statements (source library).
P Procedures (source library).
0 Object programs (object library).
R Routines (object library).
NAME-name Current name of the entry you are renaming. This is the name that

identifies the entry in the library directory.

New name you want to give the entry. Follow these rules to construct
the name:

1. You can use any System/3 characters except blanks, commas,
quotes (apostrophes), and periods (Appendix J lists the char-
acters). However, the names of all IBM programs begin with a
dollar sign ($). Therefore, to avoid possible duplication, do
not use a dollar sign as the first character in the names you
use for your entries.

2. You can use up to six characters, but do not use the names
ALL, DIR, and SYSTEM. They have special meanings in the
NAME parameter.

180

OCL CONSIDERATIONS

LOAD Sequence
Keywords Responses Considerations
READY LOAD —_——
LOAD NAME SMAINT Name of Library Maintenance program.
UNIT R1,R2, F1,o0r F2 Location of disk containing Library Maintenance program.
MODIFY RUN | e
Only the key-

“words listed here
are required. You
can bypass the rest.

response by pressing

T You end every

PROG START.

BUILD SEQUENCE
Keywords Responses Considerations
READY Buko 1 ————
BUILD NAME procedure name Name by which procedure will be identified in source
library.
UNIT R1,R2,F1,or F2 Location of disk containing source library.
LOAD NAME SMAINT Name of Library Maintenance program.
UNIT R1,R2,F1,0r F2 Location of disk containing Library Maintenance program.
| MODIFY e INCLUDE Response when including control statements in
utility control procedure.
statements
RUN
Response when not including control statements
e RUN in procedure.
Only the key- You end every
words listed here response by pressing
are required. You PROG START.

can bypass the rest.

Library Maintenance Program 181

ALLOCATE EXAMPLES

Creating Both Source and Object Libraries on a Disk

READY

khkkdhhhkkhkhkkhkhhkhhhkhik

010
011
020
030

040

hkkhkkhhhkhdhkhikkhhhkhhkx

MODIFY

// ALLOCATE TO-R1l,SOURCE-12,0BJECT-45,SYSTEM-YES ¢

ENTER '//' CONTROL STATEMENT

// END

Explanation

ENTER '//' CONTROL STATEMENT

LOAD NAME OCL LOAD Sequence
UNIT Circled areas are operator responses.
DATE Keywords for which no responses
are shown are the ones bypassed.
SWITCH

RUN is the response to MODIFY
even though the two words do not

FILE NAME .
appear on the same line.

Message print.d by Library Maintenance
program,

Control statement supplied
by operator.

Program creates libraries, then asks for another
control statement.

END statement, supplied by operator, ends
the program.

® Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

® Libraries are being created on the removable disk on drive 1 (TO-R1 in ALLOCATE statement).

® Source library space is twelve tracks long (SOURCE-12).

® Object library space is 45 tracks long (OBJECT-45). The object library will contain system programs (SYSTEM-YES).
Thus, the disk area will also include space for the Scheduler work area.

182

Changing the Size of a Source Library

READY

kkhkkkhkkhhkhkhkhhhkkhkhkikkhk*

010
011
020
030

040

kkkkkkhkkhkkhkkkhkkikkhikk

// ALLOCATE TO-R1l,SOURCE-15,WORK-F1l

ENTER '//"

// END

Explanation

LOAD

DATE

SWITCH

FILE

NAME

UNIT

NAME

““ENTER '//' CONTROL STATEMENT

CONTROL STATEMENT

OCL LOAD Sequence.

Circled areas are operator responses.

Keywords for which no responses
are shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

Control statement supplied by operator.

Program changes size of library, then asks
for another control statement.

END statement, supplied by operator, ends

_ the program,

o Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

@ Source library is located on the removable disk on drive 1 (TO-R1 in ALLOCATE statement).

o Size of the source library is being changed to 15 tracks (SOURCE-15).

© Any time the program changes the size of a library, it reorganizes the library. To do this, it needs a work area.

This area is on the fixed disk on drive 1 (WORK-F1).

Library Maintenance Program

183

Deleting the Object Library From a Disk

READY

hhkkkkhkhkhkkhhkhhkhkhkhkhkkhhkkhkk

010 LOAD NAME OCL LOAD Sequence.
011 UNIT Circled areas are operator responses.
020 DATE Keywords for which no responses are
shown are the ones bypassed.
030 SWITCH
RUN is the response to MODIFY
040 FILE NAME “even though the two words do

not appear on the same line.
hkdkhhhkkhhrhhkhhhhhkhhhhrkkk

MODIFY

Message printed by Library Maintenance
program.

ENTER '//' CONTROL STATEMENT

// ALLOCATE TO-R1,0BJECT-0 Control statement supplied by operator.

Program deletes library, then asks for
another control statement.

ENTER '//' CONTROL STATEMENT

END statement, supplied by operator, ends
the program.

// END

Explanation
® Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).
® Object library is located on the removable disk on drive 1 (TO-R1 in ALLOCATE statement).

® OBJECT-0 parameter tells the program to delete the object library. If a Scheduler work area precedes the object
library, the program also deletes the work area.

184

COPY EXAMPLES

Copying Minimum System from One Disk to Another

READY -

OCL LOAD Sequence
hhkkkhkkhhhkhkhkhkhhhhkrhkkkkk
Circled areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

010 LOAD NAME -

011 UNIT - i

RUN is the response to MODIFY
even though the two words do not
appear on the same line.

020 DATE -
030 SWITCH -

040 FILE NAME -

khkkkkkhkhhkhhkhkhhkhkhhkhhkkkhkhikx

MODIFY

Message printed by Library Maintenance
program.

// COPY FROM-F1,LIBRARY-O,NAME-SYSTEM,TO-R1 4

ENTER '//' CONTROL STATEMENT

Control statement supplied
by the operator.
ENTER '//' CONTROL STATEMENT Program copies programs, then asks

for another control statement.
END statement, supplied by operator, ends
the program.

// END

Explanation
® Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

® System programs are in the object library on the fixed disk on drive 1 (LIBRARY-O and FROM-F1 in COPY
statement).

® The NAME parameter (NAME-SYSTEM) tells the program to copy the system programs.

® The disk that is to contain the copy is the removable disk on drive 1 (TO-R1).

Library Maintenance Program 185

Printing Library Directories

READY

OCL LOAD Sequence
hkhkkhkhkhhhkhhhhhhdhhhtrrhk

Circled areas are operator responses.

010 LOAD NAME

Keywords for which no responses
011 UNIT are shown are the ones bypassed..
020 DATE RUN is the response to MODIFY

even though the two words do

030 SWITCH not appear on the same line.

040 FILE NAME

kkhkkkhkkhkkkhkhhhkhkhkhkkhhdhkkhikk

MODIFY

Message printed by Library Maintenance
program.

// COPY FROM-R1l,LIBRARY-ALL,NAME-DIR,TO-PRINT

ENTER '//' CONTROL STATEMENT

Control statement supplied
by the operator.

ENTER '//' CONTROL STATEMENT Program prints directories, then asks for

another control statement.

// END END statement, supplied by operator, ends

the program.
Explanation

® Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

® All library directories and the system directory on the removable disk on drive 1 are printed (COPY statement):
1. FROM identifies the disk containing the directories.
2.
3.

LIBRARY indicates which directories are to be printed. A
NAME and TO indicates that the program is to be printing directories.

186

Replacing a Library Entry: Replacement Coming From Another Disk

Situation

Assume that you have two versions of an object program:

1. New version on the removable disk on drive 1.
2. Old version on the fixed disk on drive 1.

Both versions have the same name (ACCT) and designation (permanent). You want to replace the old version with
the new version.

Statements
READY

OCL LOAD Sequence.

Circled areas are operator responses.

kkkkkkkkkhkhhhhkhrhkkhhhhk
010 LOAD NAME

Keywords for which no responses are
shown are the ones bypassed.

011 UNIT

020 DATE
RUN is the response to MODIFY
even though the two words do
not appear on the same line.

030 SWITCH

040 FILE NAME
kkkhhkkkkhkhhhhkhhhhhhhkdk

MODIFY

Message printed by Library Maintenance
program,

// COPY FROM-R1l,LIBRARY-0,NAME-ACCT,TO-F1l,RETAIN-R

““ENTER '//' CONTROL STATEMENT

Control statement supplied
by operator.

., Program replaces library entry, then asks for

ENTER '//' CONTROL STATEMENT another control statement.

END statement, supplied by operator, ends the

// END program.

Explanation
© Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

o LIBRARY-O, NAME-ACCT, and FROM-R1 in the COPY statement tell the program to read the object program
named ACCT from the removable disk on drive 1.

©® TO-F1 tells the program to copy the object program to the fixed disk on drive 1. There is no NEWNAME parameter
in the COPY statement. Therefore, the name the program will have on the fixed disk is ACCT (NAME-ACCT).
Since the old version of the program already exists on the fixed disk under that name, the old version is replaced.

© The Library Maintenance program normally halts before replacing a library entry. The RETAIN-R parameter,
however, tells the program to omit that halt.

Library Maintenance Program 187

DELETE EXAMPLES

Deleting a Temporary-Entry From a Library

READY

OCL LOAD Sequence.
kkkhhkkkhhhkkhhhhhhkr ks

Circled areas are operator responses.

010 LOAD NAME

Keywords for which no responses are
011 UNIT shown are the ones bypassed.
020 DATE RUN is the response to MODIFY

even though the two words do
not appear on the same line.

030 SWITCH
040 FILE NAME

kkhhkhkkkhkkhkhhkkhkkkkhhkhkhkhhihk*

MODIFY =

Message printed by Library Maintenance
program,

// DELETE FROM-R1,LIBRARY-S,NAME-PAYROL Control statement supplied by operator.

NTER '//' CONTROL STATEMENT

Program deletes library entry, then asks
for another control statement.

ENTER '//' CONTROL STATEMENT

END statement, supplied by operator, ends
the program.

// END

Explanation
@ [ibrary Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

® The program deletes a set of source statements (LIBRARY-S in DELETE statement) named PAYROL
(NAME-PAYROL) from the removable disk on drive 1 (FROM-R1).

® The absence of a RETAIN parameter implies that the entry designation is temporary.
I the designation were permanent, RETAIN-P would have been required.

188

Deleting All Temporary Entries With Names That Begin With Certain Characters

READY OCL LOAD Sequence.

kkkkkkkkkhkkhk .
Fhkkdkkkkkkkkkkk *kkkk Circled areas are operator responses.

010 LOAD NAME Keywaords for which no responses are
shown are the ones bypassed.
011 UNIT
RUN is the response to MODIFY
020 DATE even though the two words do

not appear on the same line.

030 SWITCH
040 FILE NAME

khkkkkkkhkhkkhkhkkkkkhkkkkkkhkkx*k

MODIFY

Message printed by Library Maintenance
program.

// DELETE FROM-R1l,LIBRARY-ALL,NAME-INV.ALL Control statement supplied by operator.

ENTER '//' CONTROL STATEMENT

ENTER '//' CONTROL STATEMENT Program deletes entries, then asks
for another control statement.

END statement, supplied by operator,
ends the program.

// END

Explanation
© |ibrary Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).
® The entries being deleted are on the removable disk on drive 1 (FROM-R1 in DELETE statement).

@ The program deletes all entries from both source and object libraries (LIBRARY-ALL) that have names beginning
with the characters INV (NAME-INV.ALL).

© The absence of a RETAIN parameter implies that temporary entries are being deleted.

Library Maintenance Program 189

Deleting All Permanent Library Entries of One Type

READY OCL LOAD Sequence.

Ak kkk Ak A hrkh kA AR A AAR R AR *® Circled areas are operator responses.

Keywords for which no responses are

010 LOAD NAME shown are the ones bypassed.

011 UNIT

-RUN is the response to MODIFY
even though the two words do
not appear on the same line.

020 DATE
030 SWITCH
040 FILE NAME

hhkkkhhkkhhhkhkhhkkhkhkhkhhkhkkhkk

MODIFY

ENTER '//' CONTROL STATEMENT f Message printed by Library Maintenance
program.

// DELETE FROM-R1,LIBRARY-P,NAME-ALL,RETAIN-P

Control statement supplied by operator.

ENTER ' // ' CONTROL STATEMENT ; Program deletes entries, then asks for another
¥ control statement.
// END ’ END statement, supplied by operator, ends

the program.

Explanation
o Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

© The entries being deleted are on the removable disk on drive 1 (FROM-R1 in DELETE statement).

® All permanent procedures are being deleted from the source library (LIBRARY-P,NAME-ALL RETAIN-P).

190

RENAME EXAMPLE

Renaming a Set of Source Statements in a Source Library

READY
OCL LOAD Sequence.

kkkkkhkhkkhhkhkkhkhkdhhdhhkxkd .
Circled areas are operator responses.

010 LOAD NAME Keywords for which no responses are
shown are the ones bypassed.
011 UNIT
RUN if the response to MODIFY
030 SWITCH even though the two words do
not appear on the same line.
040 FILE NAME

hkkhkhkhkkkkhkkhkkhkhkkkkkhkkkkkkxk

MODIFY

Message printed by Library Maintenance
program.

ENTER '//' CONTROL STATEMENT

Control statement supplied
by operator.

ENTER // ' CONTROL STATEMENT \3;. Program renames entry, then asks for
’ another control statement.

// END END statement, supplied by operator, ends
‘ the program.

Explanation

Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

(-]

The removable disk on drive 1 contains the entry being renamed (FROM-R1 in RENAME statement).
© The entry is a set of source statements in the source library (LIBRARY-S). Its name is ACCT (NAME-ACCT).

@ The entry name is being changed to ACCT1 (NEWNAME-ACCT1).

Library Maintenance Program 191

192

MULTI-VOLUME FILES

File Statements for Multi-Volume Files

~ If a file is too large for one disk, you can con-
tinue it on one or more subsequent disks. Such
files are called multi-volume files. (A volume is
one disk.) Multi-volume files can be online
or offline. A file is online if all volumes are
mounted when the job begins. The UNIT and
PACK parameters are equal. An offline file
has fewer UNIT parameters (shares same unit).

Creation
The ways that you can create a multi-volume
file depend on the type of file you are creating.
For a consecutive and indexed file, the records
are stored in consecutive locations on disk, in
the order that they are read. One disk-is filled
at a time.

For consecutive files, each volume must be

filled before the next volume is loaded. For
indexed files, each volume need not be filled,
Each indexed volume is loaded until a keyfield

is reached that is higher than the HIKEY for that

volume, then the next volume is loaded, Indexed
files must be loaded in keyfield sequence. A halt

occurs if a volume is filled and there is not a
record with a keyfield equal to the HIKEY for
that volume. For example, suppose the HIKEY
for a volume is 199. You load a record with the
keyfield 195. It is less than the HIKEY, so it is
loaded on the volume. Next, you load a record
with the keyfield 200. Record 200 would be
loaded on the next volume, and a halt would
occur. The reason for the halt is that you did
not load a keyfield record equal to 199 before
you jumped to a new volume. This halt can be

ignored. You can load the next volume and at some

future time insert a keyfield record equal to the
HIKEY. To insert a record after the loading se-
quence has passed, a random add must be done.

Indexed and consecutive files may be either
online or offline,

S S R
APPENDIX A: ADVANCED TOPICS FOR OCL
I

If using removable disks when creating consecutive
or indexed files you can mount a disk, wait until
the system indicates it is filled. Then, mount the
next disk. If you have two drives, you can mount
the two disks, wait until the first one is filled, then
replace it with the third while your program fills
the second disk. In either case, you cannot use
more than 52 disks per job.

Space can be allocated on all volumes of a multi-
volume file if the volumes are online at the time

of the allocation. Space can also be allocated for
an offline file, other than the initial volume, but
the packs must be empty packs or space (TRACKS
and LOCATION) known to be available. You can
use both fixed and removable disks with any on-
line multi-volume file,

Direct files must be online. Direct files are created
in a non-consecutive manner. When creating such
files, you are required to mount all the disks on
your disk unit at the same time. The maximum
number of disks you could use, therefore, is two

if you have only one drive, or three or four if

you have two drives.

Processing

The ways in which you can process multi-volume
files depend on the method your program uses

to get records from the file. If records are read
from a consecutive or indexed file, you.can mount
a disk, wait until all of the records have been read
from the disk, then mount the next disk. If you
have two drives, you can mount two disks, wait
until all of the records have been read from the
first disk, then replace that disk with the third
while your program reads from the second disk.
When you are processing files offline the disks must
be removable. When online, any combination of
fixed and removable disks is acceptable, but all
must be mounted and must remain mounted.

Appendix A: Advanced Topics for OCL. 193

OCL Considerations

Multi-volume files, like other disk files, must be
described in FILE statements. However, because
a multi-volume file involves more than one disk,
some FILE keywords require a list of data or
codes to describe all of the disks containing the
files. This section explains the considerations
for using these lists. Each list must begin and
end with apostrophes.

List Requirements

194

The PACK parameter requires a list. The UNIT
parameter may require a list while LOCATION,
TRACKS, HIKEY, and RECORDS require a
list if they are stated. The considerations for
using the lists in these parameters are included
in the keyword discussions following.

KEY LENGTH: This keyword will be prompted
if the response to FILE NAME indicated a multi-
volume file (see Enter Minus under End-of-State-
ment Keys in Part |). If this is an indexed file,
you must respond to KEY LENGTH with a two-
digit number 01 through 29. If this is not an
indexed file pressing the PROG START key will
skip the HIKEY keyword.

HIKEY: This keyword must be answered for
indexed files. The highest keyfield for each
volume must be entered. All characters except
commas are allowed as keys. The length of each
HIKEY must equal the response to KEY LENGTH
and a HIKEY must be entered for each volume. If
a HIKEY with fewer characters is entered, blanks
will be put into the remaining positions. If an
apostrophe is used as part of a HIKEY, it must be
entered as two apostrophes or it will be decoded
at the end of HIKEY list and an error will occur.
When using only one volume of an indexed multi-
volume file, the HIKEY must be entered with
beginning and ending apostrophes.

The keys in an indexed file can be packed numeric
characters. To indicate that a file has packed keys,
the operator responds to KEY LENGTH with nn,P
where nn is 01-08. Only numeric characters (0-9)
are allowed in packed HIKEYS. When responding
to HIKEY, the number of characters entered per
key is equal to 2nn—1. If the KEY LENGTH
response is 07, the HIKEYS would be 13 characters
long.

UNIT: The keyword UNIT must be followed by a
code or codes indicating where the disks that con-
tain the file will be located on the disk unit. No
UNIT parameter may be repeated. The codes are
as follows:

Code Meaning
R1 Removable disk on drive one.
F1 Fixed disk on drive one.
R2 Removable disk on drive two.

F2 Fixed disk on drive two.

The order of codes in the UNIT parameter must
correspond to the order of names in the PACK
parameter,

When you are creating or processing a consecutive
or indexed file, you can use the same drive for more
than one of the disks; however, the units must then
all be removable units. If they are, you must not
repeat the code for the drive in the UNIT param-
eter, When the number of codes in the UNIT
parameter is less than the number of names in

the PACK parameter, the system uses the codes
alternately.

If F1 or F2 is specified, the file must be online
multi-volume.

PACK: The names of the disks that contain, or
will contain, the multi-volume file must follow
the keyword PACK. (PACK names must be
unique for proper functioning.)

When a multi-volume file is created, the system
writes a sequence number on the disks to in-
dicate the order of the disks. The disks are
numbered in the order in which you list their
names in the PACK parameter.

When a multi-volume file is processed, the system
provides two checks to ensure that the disks are used
in the proper order,

1. It checks to ensure that the disks are used
in the order that their names are listed in
the PACK parameter.

2. It checks the sequence numbers of the disks
used to ensure that they are consecutive and
in ascending order (01, 02, and so on).

The system stops when it detects a disk that is
out of sequence. The operator can do one of
three things:

1. Mount the proper disk and restart the
system.

2. Restart the system and process the disk
that is mounted if the sequence is
ascending {for consecutive input and
update).

3. End the program.

Consecutive input or update sequence numbers are
ignored if the file was not created as multi-volume.

If the file is multi-volume and the sequence is
ascending but not consecutive, a diagnostic halt
is given which allows the proceed option,

TRACKS or RECORDS: The keyword TRACKS
or RECORDS must be followed by numbers that
indicate the amount of space needed on each of
the disks that will contain the multi-volume file.
TRACKS or RECORDS must be specified. Any
multi-volume file load requires a TRACKS or
RECORDS keyword whether the file previously
existed or not. The order of these numbers must

correspond to the order of the names in the PACK

parameter,

LOCATION: The keyword LOCATION must be
followed by the numbers of the tracks on which
the file is to begin on each of the disks you use
for the file. The order of the numbers must
correspond to the order of the names in the
PACK parameter. If you omit the LOCATION
parameter, the system chooses the beginning
track on each of the disks. If LOCATION is
specified for one disk, it must be specified for
all disks. 1f the multi-volume file exists,
LOCATION must be given and must be identical
to the LOCATION parameter specified when the
file was created.

RETAIN: RETAIN-S must not be specified un-
less the file is online multi-volume. |f RETAIN-
S is used for online multi-volume, it cannot be
changed to RETAIN-T unless also done online.

Advanced Topics for OCL

195

OCL CONSIDERATIONS FOR MULTI-VOLUME FILES

KEYWORDS SEQUENTIAL FILES " DIRECT FILES
Indexed Consecutive

Maximum 10 disks per file statement, Single Drive—2 disks

Number of Disks 52 disks per job. Two Drives—4 disks

Location R1 or R2 for offline files No restriction

Requirements No restriction for online files

Restrictions At file creation time only: All the disks used for the

on Disk o First disk can also contain programs, file can also contain

procedures, other files. programs, procedures, other
e Remaining disks must be used only for files.
the one file.
UNIT
Operating Single Drive All disks must be on-line
Considerations | Disks must be mounted one at a time during processing.
Two Drives
Disks must be mounted in sequence
specified in UNIT statement.

Relation to One entry in the UNIT statement can A one-to-one correspondence
correspond to more than one disk name in is required between the
the PACK statement. entries in the UNIT statement

and the disk names in the
PACK statement,
PACK When processing a file (or a subset of a file)
the disk names must be in the same sequence
as they were at file creation time.
KEY LENGTH , Length must be less Not used: pressing PROG START will also bypass
than 30 (01-08 if HIKEY prompt.
packed keys).
HIKEY HIKEY responses
must correspond
one-for-one with the
disk names in the
PACK statement.

186

KEYWORDS SEQUENTIAL FILES DIRECT FILES

TRACK At file creation time:
-or- e Number of tracks (or records) must be specified for each disk.
RECORDS o Number in TRACKS (or RECORDS) statement must correspond

one-for-one with the disk names in the PACK statement.

During subsequent runs:
TRACKS (or RECORDS) statement can be included in the OCL sequence.
(For greater detail see keyword descriptions of TRACKS/RECORDS.)

LOCATION e |If specified:
Addresses must correspond, one-for-one with disk names in
PACK statement

e |f not specified:
System will allocate space on each disk,

Advanced Topics for OCL 197

CODING MULTI-VOLUME FILE STATEMENTS

1. The operator must begin and end each
statement with an apostrophe.

2. The system displays information about
each volume on a separate line.

3. The system assigns one statement number
to the entire file statement.

CHANGING MULTI-VOLUME FILE STATE-
MENTS WITH MODIFY KEYWORD

When using MODIFY keyword to change a multi-
volume file statement (other than HIKEY), the
entire response to the keyword must be re-
entered on one line, separated by commas, with
beginning and ending apostrophes.

Example
UNIT Statement is Should be
041 UNIT — ‘F1 UNIT —'F1
— R1 —R1
— R2 —F2
— F2 —R2"

198

To change at MODIFY time
MODIFY

041 - 'F1,R1,F2,R2’
RUN

REATY -

SAMPLE JOB 7. UPDATING MULTI-
VOLUME MASTER FILE

Every Monday the XYZ Novelty Company pre-
pares customer invoices, updates their customer
master file, and updates their inventory file.
Because the company has a huge customer file
they’ve had to put the file on two disks: custo-
mer names beginning with A-L on one disk and
the remaining customer names on a second disk.
When he created this multi-volume master file,
XY?2Z's programmer assigned the following
identifying information:

1. A-L customer names:
FILE NAME — CMASTER
PACK — VOLO1

2. M-Z customer names:
FILE NAME — CMASTER
PACK — VOLO02

Because the company often needs information on
individual customers, the programmer designed
the customer master file as a direct file. The
program to update the customer master file is
CMUPDA. Here are the OCL statements for the
job.

LOAT GfrG)

0 30 96 6 96 36 36 36 36 36 36 36 36 36 36 I I6 3 I 36 3 I6 36 I6 3636 I6 36 36 I I I I I 6 36 I 36 36 36 I 36 36 36 6 6 36 I I I I I I6I6 A6 36 I I 362

Q10 1.0ATD MAME -
011 UNIT T~
020 DATE (12708770 -
O30 SWITCH (000000000

040 FILE NAME -~
041 UNIT—
042 ' FATK-
043 LAREL -~
050 FILE NAME -

CMUFTI (P60
FACRsED
(P

A6

CMASTER (/6D
PEL (S

Rl ¥ (RS
PUCLOL D
VOILOZY R
CENTEF-)
(D

e I I I I I 6 I IE IE I 6 I6IE 36 I A6 I 96 36 IE I6 W I6IE ICIETE I 36 16 IE I6IE W6 I I I IE I I I 66 e I I I IE I 36 I I IE I IE A6 6 9 3 3 I

MONIFY

RUN (/80

Explanation

e 041 UNIT -

o 042 PACK -

o 050 FILE NAME —

'F1

R1’

The single quotation marks
tell the system the file
CMASTER is a multi-volume
file. F1, R1 tells the system
the file is split between the
fixed and removable disks
on drive one.

'VOLO1

VOoLO02'

The single quotation marks
tell the system the file is on
more than one disk pack.
VOLO1, VOLO2 tells the
system the name of the
disk packs containing the
file. Pressing the ENTER-
key causes the system to
bypass the rest of the file
keywords and prompt
FILE NAME.

Pressing the PROG START
key causes the system to
bypass all the file keywords
and prompt MODIFY.

SAMPLE JOB 8. CREATING A MULTI-VOLUME
INDEXED FILE

We are creating an inventory file. The file is very
large and requires five packs. It is an indexed
file with a 15 position keyfield; the keyfield
consists of part number and warehouse location.
The file is divided among the five volumes as
follows:

Volume 101 Keyfields 000-000-000W1B1 to
175-200-233W1B2

102 175-200-233W1B3 to
380-456-280W3R6

103 380-456-287W7B3 to
629-384-300W3F6

104 629-384-301W7B6 to
949-475-849W8F 8

105 949-476-836W4F8 to
999-999-999W9F9

The processing starts with 101 on unit R1 and 102
on unit R2. After processing 101, the program proc-
esses 102 allowing the operator to remove 101 and
mount 103 on unit R1. Likewise, 104 replaces

102 and 105 replaces 103.

Advanced Topics for OCL 199

READY- 1.0an (/%)
HUREREERRRERREAEREEEREE R R R R XN R RRERR R R R ERRERRRER AR EE AR RRNRRRREAX

010 {L0AD NAME- CRTINV (/8)
011 UNIT- F1 (Fr/8)
020 DATE (12/31/723) - LF/8)
030 SWITCH (00000000) - {F75)
040 FILE NAME -~ INUMETR (ENTER-)
KEY LENGTH- 15 PSS

Q44 HIKEY- FL7E-200-233WILRE (P/8)
Q4R HIKEY~ 380-456~280W3IRS (F/8B)
04C HIKEY- HR9-334-F00WIF6 (F/8)
04n HIRKEY- PLY-AFE-BAPUNEBFE (F/E)
04k HIKEY~ PP -PIOUIFPE (/D)
041 UNITT- YR1L CF7S)

- R2*% (F/8)
0432 FACK- TUAOLTOL (F/78)
: - VOL.TOZ (F/78)

- VOL.TO3 (FA5)

- NVOLIOA (F/75)

- VOL.IOSY (/8)
043 LAREL~ (F78)
044 RECORDS— LP78)
045 TRACRS— 100 (F/S)

- 193 (F/5)

- 150 (F/8)

- 193 (F/8)
- 80r (F/85)

046 LOCATION- *87 (F/8)

- 8 (P/5)

- 49 (F/8%)

- 8 (F/5)

- 8 (F/S5)
047 RETAIN~ P CENTER-)
050 FILE NAME -~ {F/78)

FEFEI6 36 3696 36 33636 3 96 36 IE 6 36 96 36 36 96 3636 0 36 36 3636 36 96 36 36 36 36 36 36 10 36 10 36 36 2696 2696 36 06 06 230 I3 I M H MM NN
MODIFY

RUN (P /5)

Explanation

o KEY LENGTH: All characters except commas e 045 TRACKS The file need not occupy
are allowed as part of the 046 LOCATION the entire volume if the
HIKEY. If apostrophes are number of tracks and the
used as part of the key, two starting location are given.
apostrophes must be entered You must be sure these
for each one in the key. areas are available be-
The number of characters cause the system cannot
entered for HIKEY's must check offline packs.

equal KEY LENGTH.

No statement number is
assigned KEY LENGTH.
This keyword cannot be
changed at MODIFY
time.

200

SAMPLE JOB 9. MAINTAINING A MULTI-
VOLUME INDEXED FILE WITH PACKED
KEYS
We are maintaining a multi-volume indexed file.
The file occupies four volumes. The keyfield is
15 characters long in packed format. The key-
field takes eight bytes in the record. The file is
divided as follows:

Volume P01 Keyfields 0060 000 000 000 000
through

000 025 000 000 000

P02 000 025 000 000 001
through

000 050 000 000 000

P03 000 050 000 000 001
through

000 075 000 000 000

P0O4 000 075 000 000 Q01
through

000 100 000 000 000

The OCL required to use this file is as follows:

FE AT - LD (A5
B B e B 9 e 6 96 B I 3 36 06 36 36 3 36 6 D6 D 3 3 3 B D D B 36 6 3 3 3 36 6 36 36 N 2 36 36 3 96 3 3636 36 36 36 96 36 36 36 96 36 36 36 B 36 96,
010 LOAD [RIzTR1 Périll, (P50
bl LI T - LA sED
020 DATE (07709774 - A5
O30 BWITOH (00000000 - LFA50
040 FILE NAME - FécrDLL, CENTER -0
KEY LENGTH- OB (/55
044 HEREY ~ LESTINTS DOOGHO0N {75

D4R HTI OUODEGOHOOOOOLL0 (F/5)
Q410 HIY OOOOFHODOLOOLOO0 L5

D40 HIT O0DOLOOOGHLOOLO0Y (F/5)

D41 DT~ PR ()
- Bt (RS

04D PR PUCLEOL (F/E)
- VL0

043 LAREL -~ LU
050 FILE N - (A5
e O D D 3 36 D36 96 00 30 3 3 369 I 3 36 36 36 D 30 6 0 D636 I 96 36 36 6 6 I I B 36 2 90 M I 0 5 3 3 6 3 3 336 36 26 26 3 96 I 36 96 3 98 It
MOTTEFY

Bl LF S50

Advanced Topics for OCL

201

INCLUDING SORT SOURCE OR UTILITY
CONTROL STATEMENTS IN A PROCEDURE

The INCLUDE option can be used during MODIFY
time of a BUILD cycle to include sort source or
utility control statements in a procedure. This is
useful if the control statements are long or com-
plex and the job is run frequently. A maximum of
25 control statements can be included in each pro-

OCL statements are printed, MODIFY will be
prompted to allow changes to the OCL state-
ments. After the operator types RUN, the
system will print INCLUDED STATEMENTS and
then list the statements. MODIFY will now be
prompted again, to allow changes to be made to
the included statements. The operator types
RUN to run the job.

cedure.
For an example of Including Sort Source Statements
in a procedure see the /BM System/3 Disk Sort

Reference Manual, SC21-7522,

During the BUILD cycle, the INCLUDE option
must be the last MODIFY option used. After
the included statements are keyed in, the RUN
entry then puts the procedure and included state-

. R An example of including Utility Control statements
ments in the source library.

-in a procedure follows.

The CALL cycle will be different if the called
procedure has included statements. After the

SAMPLE JOB 10. INCLUDING UTILITY CONTROL STATEMENTS IN
A PROCEDURE
-Sample job 1 showed an OCL LOAD cycle for initializing the removable disk on
drive one. This sample job shows how to do the same job using BUILD and CALL
cycles and including the Utility Control Statements in the procedure.

READY - BUTLY (F/7%)

000 BUILD NAME -~ INITRI (F/8)

001 UNIT- F1 (Prg)

WIHNHHERHHHIHHRH I KRR H R R KRR AR R R R R E R R RN H R H RN RN IR
010 LOAD NAME -~ SINIT (P/78)

011 UNIT- F1 (P78

020 DATE - (/g

030 SWITCH (00000000) - (F78)

040 FILE NAME~ (F/78)

FMIMIHHIEIH K I E IR M I M I M I IOIEIE T 36 96 36 36 36 36 96 96 36 30303036 36 3 00 30 36 30 030 2 36 30 3 90 30 0 I A
MODIFY

ANCLUNE (F/78)

3363696 36 36 36 36 9 36 3 33696 I 96 36 6 36 96 36 36 3 306 3 96 I I 6 36 I D6 I I 6 6 I I I 6 IE I I I 6 K I I 6 36 I I 6 96 I I I I N
ENTER UTILITY CONTROL STATEMENTS

00

7 UL UNTT-R4» TYPE-PRIMARY (F/45
01

77 VOL: PACK-12348 (F/5)
02

L7 ENI (P8
03

RUN (P/5) :
UK I I I I IEIE 6B 333 I 30336 I 96300 33030 30 3096 96 3696 306 6 36 96 9 96 96 IE 36 96 96 36 96 6 96 96 36 36 36 36 6 96 369696 36 96 3636 36 ¢
MODIFY

202

READY- Cal.l. (F/8)

000 CALL NAME -~ IMITRI (F/78)

001 UNIT- F1 (P75

T I 36 I IEIE 6K I I I6 6 IE 6 36 6 36 36 6 6 36 36 56 3 6 36 36 36 36 36 3 36 36 36 3 36 90 96 96 36 36 36 36 36 36 36 36 36 36 36 36 36 96 9 36 3¢
010 LOAD NAME-$INIT

0Ll UNIT-F1
3696 6 F6 3 6 B0 66636 36 36 696 36 36 5050 3B 363036303600 3000 303630 3696 36 34 36 996 9 9696 96 9 I I 6 3 6 6666 96 I I I 9 99 I

MODTEY

RUN (P/5)

636 6 96 36 36 36 96 36 36 96 6 36 6 96 6 6 36 6 6 6 36 36 B 36 36 36 36 I6 D6 I8 I D I I I I I I 36 I I I I I I I IE I IE I I 26 6 B I I I I I I I I I
INCLUDED STATEMEMNTS

D0 /7 UIN UNIT-RL: TYPE-FRIMARY

01 /7 YOI PACK-1234%

02 // END

69 96 3 I I I I I 6 66 I IE 6 I6 36 36 6 96 36 36 6 36 I6 36 D6 IE B I I6 I DI 36 36 36 I 96 36 D6 I I 36 36 I IE I I IE IE 6 I6 6 I I I I I I IE 36 396

MODIFY

RUN (F/8)

INCREASING FILE SIZE OF THE RPG

PROCEDURE
The IBM-supplied compile procedure can only
compile RPG Il programs with less than 400
statements. To compile larger programs, the
file statements must be modified to increase
their size above 10 tracks (see Modify, Chang-
ing a Previous OCL Statement in Part |). Using
the MODIFY option will only increase the file
size for one compile. The RPG Il procedure
will not be changed in the source library. To
change the procedure in the source library
you must either build a new procedure (see
BUILD NAME in Part 1) or use the KSE
utility program.

ENTERING RPG Il SOURCE STATEMENTS

FROM THE KEYBOARD AT COMPILE TIME
The IBM-supplied compile procedure requires
that the RPG 1l source statements be in the
source library of a disk. By using the Keyboard
Source Entry Utility ($KSE), source statements
can be format checked and syntax checked as
they are put on disk.

The source statements can, however, be entered
from the keyboard at compile time. These
statements are read by the compiler and
checked for format errors. If any errors are
found they cannot be corrected and the compile
will not be successful. The compile job must

be rerun and all source statements keyed in
again.

Advanced Topics for OCL 203

To key in source statements from the keyboard,
the IBM-supplied compile procedure RPG is
used. This procedure does not prompt COM-
PILE OBJECT, SOURCE, or UNIT.

CHAINED PROCEDURES
A finished job usually requires that more than
one program be run. Several customer programs
with utility programs between them may be
required to complete the finished report. This
sequence of programs can be put in chained
procedures.

By chaining procedures, several benefits can
be realized, including:

e Programs are always run in the-correct
sequence.

e Operator intervention and, therefore,
chance of operator error, is decreased.

o File space can be saved. Filgs used to
pass data from job to job can be scratched
after the last program.

o Files are less likely to be destroyed by
running non-related programs between
programs of a job.

To chain procedures, the operator first builds a
master procedure to chain together other pro-
cedures. This is done by responding to READY
with BUILDC. The system will then repetitively
prompt CALL NAME and UNIT, allowing the
operator to respond with the name and unit of

the procedures that are to be chained. When all
procedure names have been entered, the operator
responds to CALL NAME or UNIT with the ENTER
MINUS (ENTER-) key. The system then allows the
the operator to MODIFY the entries. When RUN is
entered, the master procedure is put in the source
library as a permanent entry. '

Master procedures can call other master procedures
up to 9 levels. The original master procedure called
(level 1) can call another master procedure (level 2),
which can call another master procedure (level 3),

204

etc., on upito 9 levels. Care must be taken to avoid
calling a master procedure that was already called
earlier in the chain or an endless loop will result. A
master procedure can contain only CALL and UNIT
statements.

Delayed responses are not allowed in a BUILDC cycle.

However, the called procedures can contain delayed
responses.

To run the chained procedures, the operator
initiates a CALL cycle and responds to CALL
NAME with the name of the master procedure,
Each procedure is then called by the master
procedure and run.

When running chained procedures, the operator
is never prompted MODIFY to make changes.

If HALT is specified, the system will not halt until
the last job of a chain is complete.

READY

1

BUILDC NAME

P

UNIT

CALL NAME

UNIT

QUESTION?
Enter- key used after
CALL NAME or UNIIT?

YéS NO
; I
MODIFY

KEYWORDS _ RESPONSES CONSIDERATIONS

READY

BUILDC

T None

PROG START

System prompts BUILDC NAME.

BUILDC NAME

MASTER
Procedure Name Maximum of six alphanumeric characters.

Must begin with alphabetic characters.
(A-Zor#,@,$)

Must not be DIR, SYSTEM, or ALL.

Commas, blanks, quotes (apostrophes),
and periods are not allowed.

PROG START
|

System prompts UNIT.

R1,R2,F1,0r F2 Location of the disk where you want
to put procedure. (Procedure is
placed in the source library of the disk
which the operator specifies.)

PROG START
I

System prompts CALL NAME.

Advanced Topics for OCL 205

KEYWORDS

CALL NAME

206

RESPONSES

Name of
Procedure

CONSIDERATIONS

Name of a procedure in the source
library. The procedure can be an IBM-
supplied procedure (RPGB) or a proce-
dure created by a BUILD or BUILDC
cycle.

PROG START
| System prompts UNIT.
3
ENTER- System prompts UNIT then
[MODIFY.

R1,R2,F1,0or F2

L

Location of the disk whose source
library contains the procedure.

PROG START System prompts CALL NAME (or

MODIFY if ENTER — used after
CALL NAME).

ENTER-

System prompts MODIFY,

KEYWORDS

MODIFY
(Operator can use
one, all, ora
combination of
the responses.)

RESPONSES

CONSIDERATIONS

LOG Used only if CRT display or 22" printer
is on system (see Appendixes D and E),
PROG START System prompts LOG DEVICE.
l
CANCEL Cancel job.
|
PROG START System prompts READY or
I displays end-of-job halt.
FORMS Change lines per page printed output

for system programs.

PROG START
I System prompts FORMS DEVICE.
Asterisk (*)
Followed by
comments Enter comment.

PROG START

System waits for next MODIFY

response.

Statement number

and comma To delete statement.
L
PROG START System waits for next MODIFY
response.

I

Advanced Topics for OCL 207

KEYWORDS

RESPONSES

Statement number

CONSIDERATIONS

To correct statement.

PROG START

System waits for correct
statement.

RUN

Tells system—
a. The cycle is complete.

b. Run the job.

PROG START

System runs job.

SAMPLE JOB 11. CHAINED PROCEDURE

We’re going to use the BUILDC cycle to chain
two procedures created with the BUILD cycle.
First, we use the BUILD cycle to build pro-
cedures to use the Convérsational Utilities
($KSE and $KDE).

After the chained procedure is built, the
CALL cycle is used to run the chained pro-

cedures.
KREADY - BUTLIY (F/5)
000 RUILD NAME~— R&E (F/78)
001 UNIT- Fi (F/8)
696 36 I I IE IE I I I I I IE I I I I I I IE I I K I I I I X ;I I KK I I I N I I I I K K I IE K, I I K I I KM W N K
010 LOAD NAME- SREE (F/5)
(63 5] UNIT- F1 (F/8)
020 DATE - (Fr78)
030 SWITCH (00000000) - (P/5)
040 FILE NAME - (F/78)

P I I I I I I I I FEIE ;I I I I A, I I I IEIE I I I I I I I I I I I I I I I, I I NI X KA I I I A I NN
MODIFY

RUN (F/9)

READY - BULLIY (F/85)
000 BUILD NAME -~ CRKIED (PA8)
001 UNIT- Fi Prs)

963 36 66336 36 363 I I FE 3636 W 363636 I I 6 366 I I IEIEIEIC 66 I IE I I I IE W IE I B K 0 I 66K BN DI I I I I K K
010 LOAD NAME -

011 UNIT-

020 DATE -

030 SWITCH (00000000) -

040 FILE NAME - MEFTLE

041 UNIT- F1 (F/%)

042 FACK- FLFLFL (F/%)
043 L.ARElL — DRIV2 (F/78)
044 RECORDS- 4 (F/8)

045 LOCATION- (F/8)

046 RETAIN- T (F/8)

047 DATE- (F/78)

050 FILE NAME— P78)

6 I I I I I I FE I I ;I I I I I IE I I I I I I I IE I IE I I I I HE I B I W IR I I I I NI I K I I I I AN K N
MODIFY

RUN (F/85)

Advanced Topics for OCL

209

READY- BUTLIDC (F/78)

000 BUILDRC NAME- MASTER (F/8)

001 UNIT- F1 (F/78)

FEIE I I I 6 I I I 6 I IE I I I I I I 2366 I 66 I I I I IE I KK I IE I I 6K I I I I I 63660 I I ;K K
010 CALL NAME- RSE (F/8)

011 UNIT- F1 (P/38)

020 CALL NAME- KIE (F/7%)

021 UNIT- F1 CENT -}

WK I I BRI I I I I I DI 3696 IC I I IE I T I I K I I I I KN KNI IR K
MOLIFY

RUN (P/8)

READY - . (F/8)
000 CALL NAME- ER(F/S)
001 UNIT~ 1 (F/78)

000 CALL NAME-KSE

001 UNIT-F1

I3 I IE 36 I I I I I I I IE I I I I I I I I WA I A6 I A I I I I K I IE I T I I IC I I IR I IEIE 66 RN

010 LOAD NAME-SKSE
011 UNIT-F1

I 36 36 36 36 36 IE 6 I 36 I IE I I I I I]I I I I IE I I I B I W H KM I I I FE I I W KA K I I I I WA NI IR}

FORMAT DESCRIPTION ?

FORMAT TYPE -

YES (F/S)

KIE (FP/8)

NEW SOURCE MODULE ? YES (F/8)
SOURCE MODULE NAME - KOEFOR (F/78)

SOURCE MODULE UNIT - F1 (F/78)

06672 NEW STATEMENTS MAY RE ALDED TO SOURCE ENTRY

00000 HO1 094 (F/8)

00010 AQOT (F/8)

00020 AOPL (F/8)

Q0030 HO2 CCOMMAND KEY 06 PRESSEDR)
END OF JOR ? YES (F/8)

KSE END OF JOR

210

000 CALL NAME-KDE

001 UNIT-F1

IR I H KK I IEIE KT I I KT KT KNI 0K I I 009600 IE KK NN MR
010 LOAD NAME-SKIIE

011 UNIT-F1

020 FILE NAME-KDEFLLE

021 UNIT-F1

022 PACK-F1F1F1

023 LABEL-DRIVZ

024 RECORDSG -4

025 RETAIN-T

360 3636 33696 96 36 36 9 36 3 H K I I 6 I TE B I 66 I 06 6 96 I D6 9 I 6 I 96 3 I 6 6 9696 96 6 I I 3 96 96 IE I I IE I 6T I K KNI I
FORMAT NAME — KUEFOR (F/8)
FORMAT UNIT - Fi (Prss)
DISPLAY FORMATS ? YES (F/86)
H01096

A0S

ADP1

NEW RDE FILE 2 YES (P/8)
REY FIELD START - NGO (F/G5)
SELECT FORMAT NUMBER - 01 (F/8)

* *

00000 THIS 18 AN EXAMPLE OF CHAIN FROCEDURE ON THE MODEL 6 (F/8)

Q0010 KSE WAS THE FIRST JOR EXECUTED AND KIE WAS THE SECOND AND LAST JOR (F/8)

00020 THE CHAIN WAS INITIATED BY CALLING MASTERy WHICH WAS RUILT IN & BUILDC CYCLE (F/$)
Q0030 (COMMAND KEY 06, FRESSED)

FEIE I I P I I I 6 I I I IE I IE I 6 W I 36 IE I IE I 66 I8 I DI 6 6 I 66 I 0T B R T 36 I 666 36 I I I 636 I 066 90 I I 696 I I W I I H I 6 M I I I K KWK

BATCH ACCUMULATORS 00 01 02 03 04
0 0 o] QO 0
05 064 07 08 09
0] 0 0 0

FINAL ACCUMULATORS 00 01 02 03 04
o] 0 0 o] 4]
05 06 07 08 09
o) 0 o] o] O

63636 9636 96 I 3696 263636236 36 3636 366 3 J 63 3660 0 060606 T 3600630 0606 336060636 06 36 06 36066 3 96 06 6 30 06966 0636 36 060636 6 06 636 0600 0 0 DI KKK NI
END OF JOB ? YES (F/78)

RDE END' OF JOE

Advanced Topics for OCL 211

CONVERSION

APPENDIX B: RECORDS — TRACKS

SRS

‘For Sequential or Direct Files
To determine how many tracks will be required
for a sequential or direct file:

1. Number of records x record length =
total number of characters.

2. Total number of characters & 6144 =~ =
number of tracks. (Round result up to
nearest whole number.)

For Indexed Files
To determine how many tracks will be required
for an indexed file:

Step 1. (Tracks Required for Data)

A. Number of records x record
length = total number of charac-
ters.

B. Total number of characters =6144

= number of tracks. (Round result
up to nearest whole number.)

212 Appendix B: Records — Tracks Conversion

Step 2.

Step 3.

(Tracks Required for Index)

A.

Key Field length + 3 = index entry
length.

256@% index entry length = num-
ber of entries per sector. (Round
result down to nearest whole num-

ber.)

Number of records = number of
entries per sector = number of sec-
tors. (Round result up to nearest

whole number.)

Number of sectors =+ 2 @ =
number of tracks. (Round result
up to nearest whole number.)

(Total Track Requirement)

Result of step 1+ result of step 2 =
total number of tracks required for
the indexed file.

@ Number of characters in a track.

@ Number of characters in a sector.

@ Number of sectors per track.

N : V 7 . N
APPENDIX C:" DISK ORGANIZATION
L e

Disk Area

Contents

vTOC* Detailed information about each file on disk

Source Library Source Library Directory
RPG !l Source Programs
Sort Specifications

Procedures

KSE Input (Format Descriptions or Source Statements)

Object Library Object Library Directory
Compiled Programs

System Programs

Files User files
System files

*Volume Table of Contents

Volume Table of Contents (VTOC)
The VTOC contains detailed information about
each file on the disk. Much of this information is
for system use only and is of no interest to the
programmer. The VTOC file information signifi-
cant to the programmer is:

1. Name.

2. Starting track location and number of
tracks.

3. Designation (Permanent, Temporary, or
Scratch).

4, Organization (Sequential, Direct, or
Indexed).

5. Creation date.

Source Library
Procedures, RPG 11 source programs, and KSE input
always reside in a source library. The source library
directory contains the name and address (track and
sector) of each procedure, RPG 1l source program,
and set of KSE input in the library.

Object Library
Compiled programs and system programs always
reside in an object library. The object library
directory contains the name and-address (track
and sector) of each program in the library,

Files
Identifying information about every file on a disk

is contained in the disk VTOC.

A disk is limited to 50 files because the VTOC has
space for identifying only that many files.

Appendix C: Disk Organization 213

e SIS —
APPENDIX D: OCL FOR THE 22" PRINTER (IBM 2222 PRINTER)
O 0 N I S T

The optional 22" printer provides the MODEL 6
system with the ability to print on two forms. Each
form has its own forms tractor, The left tractor

is called PRIMARY and the right tractor is
SECONDARY.

Using the FORMS Statement with the 22"
Printer
The lines per page setting of the PRIMARY

and SECONDARY tractors can be different.

(For example, the PRIMARY tractor could
print 25 lines per page, while SECONDARY

214 Appendix D: OCL for the 22" Printer (IBM 2222 Printer)

prints the standard 66 lines per page;) Separate
settings are specified by entering different
FORMS statements for each tractor during

the MODIFY phase.

Log Device

The log device is used to print OCL statements
and messages. The PRIMARY tractor will be
the log device at IPL time when the 2222 Printer
is used. The secondary tractor can be assigned
as the logging device by entering LOG at either
READY or MODIFY time. If the secondary
tractor is the logging device, logged data begins
in print position 110. (See READY-Entering
LOG and MODIFY-Entering LOG in Appendix
E.)

MODIFY — Entering the Keyword FORMS

System prompts MODIFY

Enter here if you've
already used a
MODIFY option

in the job

Operator types FORMS

Operator types
|

System prompts FORMS DEVICE

PRIIVIIARY

SECONDARY
J

System prompts LINES

Operator types
new lines per
page setting

Operator presses
PROG START
(for current lines

per page)
|

Question: Does

another MODIFY
option?

YES

See keyword
description
of the other
MODIFY
option

operator want to use

Operator types

RUN @

@ Whenever the keyword FORMS is entered in an OCL sequence a system halt occurs after RUN in case the operator needs
to change the paper in the printer. The system remains idle until the operator presses the PROG START key.

OCL for the 22" Printer (IBM 2222 Printer)

215

APPENDIX E: OCL FOR THE IBM 2265-2 DISPLAY

216

The 1BM 2265-2 display unit can be used as the
system logging device. The logging device dis-
plays conversational OCL statements, utility
control statements, job comments, and error
messages and codes. The log device can also be
used for normal output from the job being run.

When the 2265-2 (CRT) is used as the logging
device, an additional 1K of core storage is needed
for the system, thus reducing the core available

for the user program. This extra core is not needed
if the user program specifies the CRT as an output
device.

" The operator can assign either the CRT display or

the printer as the logging device. If the operator
changes the logging device the change remains in
effect until either:

o The operator specifically overrides the
change with another LOG statement,

@ The next IPL procedure.

Appendix E: OCL for the I1BM 2265-2 Display

READY - Entering LOG

Opei;. tor types LOG

m prompts
DEVICE

Operator types:
I |
CRT SECONDARY PRIMARY
System assigns CRT System assigns . System assigns primary
as logging device. secondary tractor as logging device.
tractor as

logging device.

m prompts READY

OCL for the IBM 2265-2 Display 217

MODIFY —Entering LOG

System prompts MODIFY

Enter here if you've already
used a MODIFY option in the
job

Operator types LOG

System prompts

LOG DEVICE

Operator types:

! 1
CRT SECONDARY PRIMARY

System assigns primary
¢ tractor as logging device.

System assigns CRT System assigns
as logging device secondary
tractor as
logging device.

Question:

Does operator want to

use another MODIFY

option?
Yes No
See keyword description Operator types
of the other MODIFY RUN

option

218

ey Fio

OCL GUID

E

The operator’s OCL guide will be available for
you to use to tell your operator how to respond
to the OCL prompting for a job, The CALL
cycle is not included on the guide because

the OCL prompting for that cycle is so

short.

GX21-9126-

IBM; Business Machines C Printed in U.S.A.

System/3 Model 6

Job

OPERATION CONTROL LANGUAGE (OCL) GUIDE

Date

Keywords Responses Considerations

RIElaloly 1 Blufi Lo ofL b |alo
010 j0 B (U]l IL D N A E |Procedure Name
01011 LN T F1, R1, F2 or R2
of1])0 L |O|A|D N |[AMIE Columns 75-80 of RPG Control Card or System Program Name
ol11 . IN T : F1, R1, F2 or R2
0[210 D(A[(T|E mmddyy or ddmmyy
0|3 10 S {W|1 |T [CIH 1-On, 0-Off, X-No Change
0J4]0 FEJlL|LJE N JAMIE Columns 7-14 of RPG File Descripti ifications or F i Filename
0lal1 uwIND [T F1, R1, F2 or R2
0]4}2 P [AC |K Disk Name (Assigned by Disk Initialization Program)
olals L [AB [E (L VTOC File Name (if different than response to FILE NAME)
0414 R [EIC[OIR|DIS |- 1-999999 (Maximum Number of Records in File)
0(4|5 T {RIA|C|K]|S 1-398 (Maximum Number of Tracks for this File)
0f416 LIOIC|A|T]|I {O|N 8-405 Location of First Track of File
0]4]7 RIET |A|I [N S-Scratch, T-Temporary, P-Permanent
0]4]8 D |A[T |E mmddyy or ddmmyy
0|51]0 FII[LI]E N |AMIE Columns 7-14 of RPG File Descripti ifications or ined File Name
o{s[1 Jun] [T F1, R1, F2 of R2
0}5|2 P |AIC |K Disk Name (Assigned by Disk Initialization Program)
0{5(3 L]AB|E|L VTOC File Name (if different than response to FILE NAME)
0|54 RIEIC|O|R|D|S 1-099999 (Maximum Number of Records in File)
0|55 T [RIA|C K|S 1-398 (Maximum Number of Tracks for this File)
0{5|6 LJO[CjA|T!I |O|N 8-405 Location of First Track of File
0|5]7 R [E|T |A]I [N S-Scratch, T-Temporary, P-Permanent
0[5(8 D (A(T (E mmddyy or ddmmyy
MIOIDILIF| Y MODIFY OPTIONS

1. Enter RUN

2. Enter CANCEL

3. Correct Statement

Enter Statement number
Retype or delete (,) response
4. Create new Statement
INCLUDE, LOG, FORMS, *(For Comments)

Appendix F: Operator’'s OCL Guide 219

APPENDIX G: CARD OCL FOR MODEL 6
e O L RN

The IBM 5496 Data Recorder, Model 1, with
System/3 Model 6 On-Line Feature provides
card input/output capability for System/3
Model 6. The data recorder is selected as system
input device during OCL prompting. Control

is returned to the keyboard by entering a
READER statement in the data recorder or

by performing another program load procedure.

ASSIGNING DATA RECORDER AS SYSTEM
INPUT DEVICE

220

System Prompts Operator Enters

At IPL time DATE

current date

READER — DATA96
Between jobs READY — READER
READER — DATA96

Following the DATA96 response, all OCL must be
entered in card form from the data recorder.

At the time the data recorder is selected as system
input device the following switch settings must be:

Operator Console — DATA RCRDR switch
to ON LINE
Data Recorder — AUTO REL switch to

ON, all others OFF.

Appendix G: Card OCL for Model 6

RETURNING CONTROL TO KEYBOARD

The keyboard is reassigned as system input
device by doing either of the following:

e Enter a /& statement followed by a //
READER KEY statement from the Data
Recorder. These statements must be
placed after a // RUN statement and
before a// LOAD or // CALL statement.

e Perform a program load from the operator
console.

CARD FORMAT OF OCL STATEMENTS

The following OCL statements can be loaded
from the data recorder. The parameters of
the statements that are prompted in con-
versational mode are described elsewhere in
this book. The statements that are allowed
with card input are described in the notes
following this list.

In statement formats, special characters such as
//, and words written in capital letters, dre infor-
mation that must be used exactly as shown.
Words written in small letters, such as code,
program-name, and unit, represent information
that you must supply.

®

o
o
©
n
o
n
L]
— Q)
M - <O
£ 2 -2
= 2t
[od[TX]
=
3)
< AVAra)
)
=4 1
i =)
— T cl +tu
= .wu__ y [L]
] =) Y =
5| () ==
DI E K= W_
o —-5-5 DLNHE
o SN B
MT [S[72) - 1
] e —<N +
(Y5 n=2 ClAa &
2 J W[— UDOn
rY) od = 1 s
— ST [1 (= (S =
P [= (=) =] D= wi] D
= =) 2] 1 <[4
= P .. P =4 =)
=)) | D 3
A m_] <I| =2 \J|
54 i) [= (@) 0
< S (=[] o L
5 1 4 I T T[4 [T o O-r
[Y) < () —
©of 1 2 % J M —] -
o) | [Jud & w0
[7,) [s) 7 P =2 (9] =<~
= L v %] Jeal [—I— (A [N
z ool U (3| I) = =g
w o) fe S| g WLy
= C ™ Wl el (| =Y P (W) P = A [@]
21 w ol K a [A I = I =] [T V4[24)vT] JI-J
E = IO [ol O[]
s| 2 < [y I = B .| o [& WM [¥%]
£ I = <T| <] [= = 4 (L)L G]G0]
8| = » (S) S = e N (VY O = M (ST (] (&) O[O [—
= w, ﬂ X Y I] N (S M =4 2] IS) I (S [R 15N}] | R [
Q =
<| o (@) <1 I~ I~ N S
Lad NN — S N ~ N NGNS NS

221

Card OCL for Model 6

@ An asterisk indicates that the object program will be loaded
from the data recorder. Program-name and unit parameters
must not be included. The cards that contain the program
must follow the RUN statement for the program and must
be followed by /* to indicate the end of the object deck.

®OBJECT-unit must be the first parameter on the state-
ment,

The DEVICE parameter is optional. The LINES param-
eter must be present.

@The log device must be on when the system is in
conversational mode.

LABEL, RECORDS or TRACKS, LOCATION, RETAIN,
and DATE parameters are optional. NAME-filename
must be the first parameter on the statement.

During card input, the system halts each time a /*
(end-of-job) or /& statement is read. The NOHALT
statement allows the system to start the next job without
a halt. The HALT statement is used to cancel a NOHALT
condition. If the HALT and NOHALT statements are
placed in a procedure they are not displayed when the
procedure is prompted.

@A PAUSE statement entered from the data recorder
causes the system to stop until the operator restarts it.
PAUSE statements are usually preceded by comments
(*) instructing the operator to perform some function
on the system, If PAUSE statements and comments
are placed in a procedure the comments are displayed
during prompting but the system does not stop.

@/* indicates end-of-job. /& is used as a delimiter and
indicates that a new job is starting. If a 3 option
{(immediate cancel) was taken at a halt in the preceding
job the system looks for the next LOAD or CALL
statement in the job stream. The /& statement changes
this mode and tells the system to read the next // card
regardless of what it is. In this manner a // READER
KEY statement would be recognized, returning control
to the keyboard.

222

GENERAL CODING RULES

The rules for coding the OCL statements in cards
are as follows:

1. //in positions 1 and 2.

2. One or more blanks between the // and the
word that forms the statement identifier
(LOAD, RUN, CALL, etc.).

3. One or more blanks between the statement
identifier and the first parameter.

4, If you need more than one parameter, use
a comma to separate them. No blanks
are allowed in or between parameters.
Anything following the first blank is
considered a comment.

5. If you are writing keyword parameters
{XXX-xxx), place the keyword first and
use a hyphen to separate the keyword
from the code or data.

6. If the parameter is not a keyword param-
eter, write the parameters in the order
in which they are shown. Keyword
parameters can be in any order except
in the following cases:

// COMPILE OBJECT-unit must be
the first parameter.
// FILE NAME-filename must

be the first parameter.

7. All OCL statements except FILE must not
exceed 96 characters. Because of the large
number of parameters possible in a FILE
statement, you can continue the FILE
statement on additional cards. The rules
are:

o Place a comma after the last parameter
in every card but the last. The comma
followed by a blank indicates the
statement is continued.

o Begin each new card with // in positions
1and 2.

o Leave one or more blanks between the //
and the first parameter.

8. Comments can be placed after the parameters
on any OCL statement (except HIKEY param-
eters. See Coding Multi-Volume File Param-
eters in this appendix). Leave one or more
blanks after the last parameter and then list
the comment. Complete lines of comments
are entered with the * comment statement.
Place an * in column 1 and start the comments
in column 2,

STATEMENT ORDER

/& should be the first statement of a
job.

// LOAD statement must precede RUN state-
ment in job stream. |f LOAD?, the
cards that contain the program must
follow the RUN statement and be
followed by a /* statement.

// CALL statement must precede RUN
statement in job stream.

// RUN statement must be last statement

within the set of statements re-
quired to run a program,

// READER statement must precede a LOAD

/I SWITCH

or CALL statement and follow
a RUN statement.

statement must follow a LOAD
or CALL statement and must
precede a RUN statement.

// COMPILE statement must follow a LOAD

/I FORMS

or CALL statement and must
precede a RUN statement.

can appear anywhere in the job
stream.

Card OCL for Model 6 223

CODING MULTI-VOLUME FILE PARAMETERS

224

// LOG statement must follow a LOAD
or CALL statement and precede
a RUN statement.

// FILE statements must follow a LOAD
or CALL statement and precede
a RUN statement.

// HALT can appear anywhere in the job
stream.

// NOHALT can appear anywhere in the job
stream,

// PAUSE can appear anywhere in the job
stream.

¥comments can appear anywhere in the job
stream.

/* (end-of- follows a program deck or data
job) file entered from the Data
Recorder.

When coding card OCL file statements for multi-
volume files these rules must be followed:

1. Each parameter that requires multiple
entries must begin and end with a single
quote (') and have the entries separated
by commas.

2. The HIKEY parameter must contain
HIKEYs separated by commas. When
continuation cards are needed for HIKEY
parameters, comments are not allowed on
the cards, and the data must start in column
four of the continuation card.

3. An apostrophe within a HIKEY must be
entered as a double apostrophe or it will
be decoded as end of HIKEYSs, and an
error will occur.

4. When using only one volume of an indexed
multi-volume file, the HIKEY parameter must
be included with beginning and ending apos-
trophes. The other file parameters must not
have apostrophes.

5. To indicate packed keys, HIKEY-P'xxxx, XXxXx,
xxxx,” must be coded. All characters in packed
HIKEY's must be numeric and all packed
HIKEYs must be the same length.

Key length is not a parameter for indexed files when
OCL statements are entered on cards. Sample job 2
under Multi-Volume Files in Appendix A would have
the following four OCL file statements if OCL were
on cards:

// FILE NAME-INVMSTR,UNIT-'R1,R2’,
PACK-'VOLI02,vOL103,VvOLI03,VOLI04

// VOLI05' ,HIKEY-"175-200-233W1B2,
380-456-280W3R6,629-384-300W3F6

// 949-475-849W8F 8,999-999-999WIF9’,
TRACKS-'100,193,150,193,80° '

// LOCATION-'87,8,49,8,8" . RETAIN-P

These messages will be given if errors are made
during conversational OCL. Most messages are
self-explanatory and will not need further
reference, however, if the operator is in doubt
as to the meaning of a message references are
given.

. OCL ERROR MESSAG

Appendix H: OCL Error Messages

Number Message Meaning
00 NO PROGRAM NAME GIVEN Response to LOAD NAME was blank.
01 NO UNIT GIVEN Response to UNIT was blank.
02 INVALID PROGRAM NAME
SPECIFIED Response to LOAD NAME was invalid. See LOAD
NAME in Part I.
03 INVALID UNIT SPECIFIED Response to UNIT was invalid. See UNIT in Part I.
04 PROGRAM NOT FOUND ON The program specified by response to LOAD NAME
SPECIFIED UNIT was not found in the object library of the unit specified
by response to UNIT.
05 NO PROCEDURE NAME GIVEN Response to CALL NAME or BUILD NAME was blank.
06 SOURCE NOT FOUND ON The source module specified by response to SOURCE
SPECIFIED UNIT was not found in source library of unit specified by UNIT.
07 INVALID PROCEDURE NAME Response to BUILD NAME or CALL NAME was
invalid. See BU/LD NAME in Part I.
08 MULTI-VOLUME FILE RESPONSES The number of responses to file keywords PACK, HIKEY,
NOT IN 1-1 RATIO LOCATION, TRACKS or RECORDS were not equal.
09 PROCEDURE NOT FOUND ON Procedure specified by response to CALL NAME was not
SPECIFIED UNIT found in source library of unit specified by UNIT.
10 INVALID SWITCH SETTINGS Response to SWITCH was other than eight positions
of X, 1, or 0. See SWITCH in Part I.
11 NO SOURCE NAME GIVEN Response to SOURCE was blank. See SOURCE in

Part I.

226

Number Message Meaning
12 INVALID SOURCE NAME Response to SOURCE was invalid. See SOURCE in
SPECIFIED Part I.
13 INVALID DATE SPECIFIED Response to DATE in file keywords was invalid. See
DATE (File Date) in Part I.
14 TOO MANY RESPONSES TO A Only 10 volumes are allowed in each Multi-Volume
MULTI-VOLUME FILE KEYWORD File. See Multi-Volume Files in Appendix A.
15 NO FILE NAME GIVEN Procedure contains file keywords but not FILE NAME
. response.
16 NO PACK GIVEN Procedure contains file keywords but not PACK response.
17 INVALID FILE NAME SPECIFIED Response to FILE NAME invalid. See F/ILE NAME in
Part I.
18 INVALID LABEL SPECIFIED‘ Response to LABEL is invalid. See LABEL inPart |.
19 INVALID PACK SPECIFIED Response to PACK is invalid. See PACK in Part I.
20 INVALID RETAIN Response to RETAIN other than P, T, S or A. See
DESIGNATION SPECIFIED RETAIN in Part I.
21 INVALID TRACKS SPECIFIED See RECORDS (and TRACKS) in Part |.
22 MAXIMUM FILE STATEMENTS More than 15 file statements entered.

ENTERED

OCL Error Messages

227

Message | Meaning
——— —— — m:

—= ————

23 BOTH TRACKS AND RECORDS Responses to both TRACKS and RECORDS have
SPECIFIED been given. See RECORDS (and TRACKS) in Part |.
24 INVALID RECORDS SPECIFIED See RECORDS (and TRACKS) in Part I.
25 INVALID LOCATION SPECIFIED Response to LOCATION must be 8 through 405.
26 DEVICE NOT SUPPORTED CRT or READER referenced and not on system.
27 INVALID DEVICE Response to DEVICE or READER invalid. See
Modify-Entering FORMS in Part I.
28 INVALID NUMBER OF LINES Response to LINES not between 12 and 112,
29 INVALID REQUEST Response to MODIFY is invalid.
30 INVALID STATEMENT NUMBER Invalid statement number entered as response to modify.
31 TOO MANY UTILITY CONTROL
STATEMENTS IN PROCEDURE-JOB
CANCELLED
32 RUN OUT OF SPACE IN
SCHEDULER WORK AREA
33 RESPONSE REQUIRED-DELAYED
RESPONSE IN CALLED
PROCEDURE
34 TOO MANY MULTI-VOLUME Number of units specified exceeds number of packs

FILE UNITS SPECIFIED

specified.

228

Number Message Meaning
35 DELAYED RESPONSE (?) NOT B
ALLOWED
36 JOB CANCELLED You entered /* or job was cancelled because of errors.
37 MULTI-VOLUME NOT VALID Multi-response to this keyword is not allowed.
THIS STATEMENT
38 ENTER MINUS (-) NOT ALLOWED ENTER- is allowed only during a BUILD cycle for
: some keywords.
39 ERRORS IN PROCEDURE — JOB
CANCELLED
40 ERRORS IN OCL STATEMENT
41 ERRORS IN RESPONSE
42 DUPLICATE PROCEDURE NAME Response to BUILD NAME is already in source
IN LIBRARY library of unit specified. See BU/LD NAME in
Part 1.
43 DUPLICATE PROCEDURE New procedure being entered will overlay old procedure
DELETED with same name.
44 INVALID KEYWORD Keyword found in procedure is invalid or response to
READY is invalid.
45 TOO MANY UTILITY CONTROL Only 40 utility control statements may be entered.
STATEMENTS ENTERED
46 PERMANENT DISK ERROR
47 RUN OUT OF SPACE IN PROCEDURE

LIBRARY — JOB CANCELLED

OCL Error Messages 229

Number Message Meaning
48 INVALID SYSTEM DATE See DATE (System Date) in Part |,
SPECIFIED
49 DUPLICATE KEYWORD A procedure contains a duplicate keyword.
50 RESPONSE REQUIRED You must respond to this keyword. PROG START
is not allowed.
51 TOO MANY PACKS, HIKEYS, Number of HIKEYS plus number of packs exceeds 52.
OR BOTH SPECIFIED Job cancelled.
52 DUPLICATE MULTI-VOLUME See Multi-Volume Files in Appendix A.
FILE UNIT SPECIFIED
53 INVALID RESPONSE DURING Cannot change log device or change to card OCL.
INQUIRY
54 INVALID HIKEY SPECIFIED HIKEY entered is longer than KEY LENGTH
specified or quotes not entered when copying single
volume of multi-volume file.
55 INVALID HIKEY LENGTH Response to KEY LENGTH is greater than 29 or is 00.
SPECIFIED
56 HIKEYS OUT OF SEQUENCE HIKEYS must be in ascending sequence.

230

IBM System/3 Model 6 users who have co-resident
systems (both disk system management and
System/3 BASIC) can transfer control from disk
system management to System/3 BASIC by
responding to READY with ENTER BASIC.

APPENDIX I: CO-RESIDENT SYS

Appendix |: Co-Resident Systems

T

EEes

ey

Ms

231

e ———
APPENDIX J: IBM SYSTEM/3 STANDARD CHARACTER SET
e I e

232

Hexadecimal
Character Equivalent

Blank 40 7E E6
¢ aA 7F E7
4B C1 ES
< 4C c2 E9
(4D c3 FO
+ 4E ca F1
| 4F cs F2
& 50 c6 F3
4 5A c7 F4
$ 5B cs8 “F5
: 5C c9 F6
) 5D DO F7
5E D1 F8
— 5F D2 Fo

- (minus) 60 D3

/ 61 D4

68 D5

% 6C D6

— (underscore) 6D D7

> 6E D8

? 6F D9

7A E2

7B E3

7C E4

‘* (Apostrophe) | 7D E5

Appendix J: |BM System/3 Standard Character Set

W R UL

OSSARY

R A SO S

Capsule definitions of some common computer terms used in this manual.

CPU

end-of-job-halt

IPL

KDE
KSE
object library

object library directory

oCL

overlay
procedure
sector

source library

source library directory
source statements
sysgen

system printer

track

VvTOC

(Central Processing Unit) Nucleus of the Model 6 hardware.

system halt at the end of every job to give the operator time for any necessary
housekeeping chores before beginning the next job.

{Initial Program Load) The process by which the operator loads into core storage
the program that controls the operation of the system.

Keyboard Data Entry Utility Program
Keyboard Source Entry Utility Program
contains compiled programs and system programs.

contains name and address (track and sector) of each object program in the
library.

(Operation Control Language) An OCL statement consists of a keyword and a
response.

to erase data on disk by writing new data over it.

sequence of OCL statements in a source library.

section of a disk track. Each track is divided into 24 sectors.
contains procedures, RPG source programs, and KSE input.

contains name and address (track and sector) of each source program in the
library.

program instructions that have not been compiled (translated) into machine
language.

(system generation) Process required to get a system ready to run after installation.
displays OCL statements, utility control statements, job comments, and error
codes. {The system printer can also display the normal output of the job being
run.)

Each disk is divided into concentric circles called tracks.

(Volume Table of Contents) That part of a disk which contains detailed information
about every file on the disk.

Glossary

233

234

$ALT (Alternate Track Assignment)
(see also alternate track assignment program)
as response to LOAD NAME in OCL cycle 53
$BUILD (Alternate Track Rebuild)
(see also alternate track rebuild program)
as response to LOAD NAME in OCL cycle 53
$COPY (Disk Copy/Dump)
(see also disk copy/dump program)
as response to LOAD NAME in OCL cycle 53
in OCL sample job #4 76
$DELET (File Delete)
(see also file delete program)
as response to LOAD NAME in OCL cycle 53
$DIU (Data Interchange Utility)
as response to LOAD NAME in OCL cycle 53
$DSORT (Disk Sort)
as response to LOAD NAME in OCL cycle 53
$INIT (Disk Initialization)
(see also disk initialization program)
as response to LOAD NAME in OCL cycle 53
in OCL sample job #1 70
$KDE (Keyboard Data Entry)
as response to LOAD NAME in OCL cycle 53
$KSE (Keyboard Source Entry)
as response to LOAD NAME in OCL cycle 53
$LABEL (File and Volume Label Display)
(see also file and volume label display program)
as response to LOAD NAME in OCL cycle 53
$MAINT (Library Maintenance)
(see also library maintenance program)
as response to LOAD NAME in OCL cycle 53
$RPG (RPG Compiler)
as response to LOAD NAME in OCL cycle 53
* (see comments)
/& (card OCL) 223
/*
card OCL 223
conversational OCL 11
// blank 88
/l ALLOCATE 137
(see also allocate, library maintenance)
// ALT 102
(see also alternate track assignment program)
// CEND 158
(see also copy, library maintenance)
/] COPY 158-162
(see also copy, library maintenance)
// COPYPACK 132
(see also disk copy/dump program)
// COPYFILE 132
(see also disk copy/dump program)
/| DELETE 177
(see also delete, library maintenance)
// DISPLAY 115
(see also file and volume display program)
/l END
(see END control statement)
// REBUILD 109
(see also alternate track rebuild program)

// RENAME 179
(see also rename, library maintenance)
// REMOVE 122
(see also file delete program)
// SCRATCH 122
(see also file delete program)
// SELECT KEY 132
(see also disk copy/dump program)
// UIN 92
(see also disk initialization program)
in OCL sample job #1 70
// vOoL 92
(see also disk initialization program)
in OCL sample job #1 70
? (see delayed response)

allocate, library maintenance
control statement summary 149
examples 182
parameter descriptions 151
parameter summary - 150
uses 149
ALT control statement 102
(see also alternate track assignment program)
alternate track assignment
conditional assignment 104
unconditional assignment 105
cancel prior assignment 105
alternate track assignment program 101
control statement summary 102
example 107
OCL considerations 106
parameter descriptions 104
parameter summary 103
program name 106
program uses 101
alternate tracks
alternate track assignment 104
disk initialization 96
incorrect dataon 105
alternate track rebuild program 109
control statement summary 109
example 113
OCL considerations 112
parameter descriptions 111
parameter summary 110
program name 112
program uses 109
substitute data description 111
substitute data summary 110
apostrophes in control statements 88, 193, 195
asterisk
(see comments)
ASSIGN parameter 105

blanks in control statements 88

BUILD NAME
in BUILD Keyword-Response Summary 27
its position in the BUILDcycle 26
keyword description 45

Index

Index

235

BUILD cycle

when touse 9
BUILDC NAME

keyword description 205
BUILDC cycle

when to use 204

CALL NAME
in the CALL Keyword-Response Summary 42
its position in the CALL cycle 41
keyword description 45
CALL cycle
when touse 9
CANCEL
© as response to MODIFY in BUILD cycle 39
as response to MODIFY in CALL cycle 43
as response to MODIFY in LOAD cycle 24
effect of entering during BUILD cycle 59
effect of entering during CALL cycle 59
effect of entering during LOAD cycle 59
entering the keyword during MODIFY 59
cancelling alternate-track assignments 105
cancelling job
see MODIFY considerations in BUILD Keyword-Response
Summary 39
see MODIFY considerations in CALL Keyword-Response
Summary 43
see MODIFY considerations in LOAD Keyword-Response
Summary 24
card OCL input 220-224
CEND control statement
reader-to-disk copy 158
disk-to-card copy' 158
central processing unit (CPU)
definition 233
chained procedures 204
changing a previous OCL statement
during the MODIFY phase 56
changing file designation 52
changing object library size
control statement 150
disk considerations 154
changing printed output for system programs

see FORMS under MODIFY considerations in BUILD cycle 39
see FORMS under MODIFY considerations in CALL cycle 43
see FORMS under MODIFY considerations in LOAD cycle 24

changing size of source library
control statement 150
disk considerations 152
changing status of system printer)
see LOG under MODIFY considerations in BUILD Keyword-
Response Summary 39
see LOG under MODIFY considerations in LOAD Keyword-
Response Summary 24
see MODIFY considerations in CALL Keyword-Response
Summary 43
character set, standard 232
clear initialization 94
coding rules, control statements
use of apostrophes 88
use of blanks 88
use of commas 88
use of hyphens 88
statement length 88

236

- commas in control statements

disk utilities 88
OCL
deleting statement 57
in HIKEY 199
comments
entering comments during the MODIFY phase 58

"COMPILE OBJECT

in BUILD Keyword-Response Summary 29
in LOAD Keyword-Response Summary 17
its position in the BUILD cycle 26
its position in the LOAD cycle 15
keyword description 46
compiled RPG program
location of determined by OBJECT statement 46
compiling large RPG source programs 203
compiling RPG source programs .
recommended method of 72
conditional assignment of alternate tracks 104
control statement summaries
alternate track assignment 102
alternate track rebuild 109
disk copy/dump 132
disk initialization 92
file and volume label display 115
file delete 121
library maintenance
allocate 150
copy 156
delete 177
rename 179
control statements
alternate track assignment
ALT statement 102
alternate track rebuild
REBUILD statement 109
coding rules 88
definition of disk/copy dump 88
COPYFILE statement 132
COPYPACK statement 132
SELECT statement 132
disk initialization
UIN statement 92
VOL statement 92
file and volume label display
DISPLAY statement 115
file delete
REMOVE statement 122
SCRATCH statement 122
library maintenance
ALLOCATE statement 137
COPY statement 158-162
DELETE statement 177
RENAME statement 179 -
conversational OCL
definition and how it works 7
copy, library maintenance
control statement summaries 158-162
examples 185
parameter descriptions 166
parameter summary 163
uses 156
COPYFILE control statement 132
copying disk from one removable disk to another on drive 1 136

" copying entire disk 136

copying filess 136

copying library entries
reader-to-disk 166
disk-to-disk 168
COPYPACK statement 132
correcting OCL statements 56
CPU (Central Processing Unit)
definition 233
requirements for conversational i
creating object library
control statement 149
disk considerations 153
creating source library
control statement 149
disk considerations 151
customer program name
as response to keyword LOAD NAME in OCL cycle 53

DATA parameter 126
DATA96
as response to keyword READER 22
Data Interchange Utility ($D1U)
as response to LOAD NAME in OCL cycle 53
data recorder
used to code OCL statements on cards 220
DATE (file date)
in BUILD Keyword-Response Summary 39
in LOAD Keyword-Response Summary 23
keyword description of 52
position in BUILD sequence 26
position in LOAD sequence 15
restrictions during file creation runs 52
DATE parameter
file delete program 126
DATE statement, format of
definition 47
general restrictions 47
DATE (system date)
in BUILD Keyword-Response Summary 31
in LOAD Keyword-Response Summary 18
keyword description 47
position in BUILD sequence 26
position in LOAD sequence 15
defective tracks
address on disk 104
definition (see surface analysis)
retesting of 95
delayed response
definition of, restrictions, effect on system 9
delayed responses in procedure
see footnote 1B of CALL Keyword-Resbonse Summary
delete, library maintenance
control statement summary 177
examples 188
parameter summary 178
uses 176
DELETE parameter 177
deleting a previous OCL statement
during the MODIFY phase 57
deleting files 126
deleting library entries 176
deleting object library
control statement 150
disk considerations 154
deleting procedures
general discussion 45
deleting records from a file 137

deleting source library
control statement 150
disk considerations 152
designation of library entry 174
direct files
deleting records from 137
OCL consideration for multi-volume files 196
printing part of 138
records-tracks conversion for 212
disk copy/dump program
control statement summary 132
examples 143
considerations, OCL. 140
copying entire disk. 136
copying or printing files 136-137
parameter descriptions 136
parameter summary 134
program name 140
program uses 131
disk drive
capacity 94
requirements for conversational OCL ii
disk files 213
disk initialization program 91
control statement summary 92
example 98
OCL considerations 97
parameter descriptions 94
parameter summary 93
program name 97
program uses 91
disk name
characters allowed in 96
length of 95
response to PACK in OCL cycle 50
uses
alternate track assignment 104
alternate track rebuild 111
disk initialization 96
file delete 126
disk organization 213
disk-to-card copy
considerations 172
control statements 161
disk-to-disk copy
considerations 168
control statements 158
disk to printer and card copy
considerations 172
control statements 162
disk-to-printer copy
considerations 167
control statements 160
DISP (displacement) parameter 111
DISPLAY control statement 115
duplicate procedure names
general discussion 45
operator’s options following 45

END control statement 89
end-of-job halt
definition 233
ENTER - Key
purpose of, when to use 13
use in bypassing non-required file keywords 13
usesof 13

Index

237

ENTER + Key file date

its function and its relationship to the PROG START 13 keyword description 52
key restriction during file creation run 52
purpose of, when touse 13 file dates 126
uses of 13 file delete program
entering comments control statement summary 122
during the MODIFY phase 58 examples 128-129
error code OCL considerations 127
(see error messages) parameter descriptions 126
error code options 2 parameter summary 124
error messages 225 program name 127
errors in OCL statements program uses 121
how to correct using MODIFY statement 56 file designation
examples how to change 52
alternate track assignment response to RETAIN in OCL cycle 51
conditional assignment 107 file keywords
alternate track rebuild system-operator interaction during prompting of 49
correcting characters on alternate track 113 FILE NAME
disk copy/dump for $DSORT, $COPY, $MICR, $RPG, and $KDE 48
copying entire disk 143 for RPG Programs
copying a file 144 in BUILD Keyword-Response Summary 32
printing part of a file 148 in LOAD Keyword-Response Summary 19
disk initialization its position in the BUILD sequence 26
primary initialization 98 its position in the LOAD sequence 15
file and volume label display keyword description 48
printing VTOC information for two files 120 file names
file delete file delete 126
deleting one of several files having same name 128 disk copy/dump 136
library maintenance files, direct
changing source library size 183 records-tracks conversion for 212
copying minimum system 185 files, indexed
creating libraries 182 records-tracks conversion for 212
deleting object library 184 files, multi-volume
deleting permanent entries of one type 190 OCL considerations for 194, 224
deleting temporary entry 188 files, sequential
deleting temporary entries with names beginning with records-tracks conversion for 212
certain characters 189 FORMS
printing library directories 186 entering the keyword during the MODIFY phase 60
renaming source statements 191 FROM parameter
replacing library entry 187 disk copy-dump
OoCL) copying entire disk 136
chained procedures 209 copying or printing files 136
compile RPG Il source 72 library maintenance 166
copy disk 76
include utility control statements in procedure 202 glossary 233

initialize a disk 70

multi-file CALL 81

multi-file BUILD 78

multi-volume indexed file creation 199
multi-volume indexed file update 198

HALT
incard OCL 221,224
in conversational OCL 52

process customer program 74 halt(,’ :fri\:;tcff-:‘ob%s
external indicators ‘0 . .
atIPL 64 HIKEY (see multi-volume files)

how to use this manual 1

considerations when responding to SWITCH in BUILD le 66
w ponding to n cycle hyphens in control statements 88

considerations when responding to SWITCH in LOAD cycle 65
current setting displayed in SWITCH statement 64

using the SWITCH statement to change 64 I1BM System/3 standard character set 232

I1BM-Supplied RPG Compile Procedure {RPG)
as response to CALL NAME in CALL sequence 45
/ increasing size of 203
in sample job #2 72
ID (identification) parameter 96

file and volume label display program
control statement summary 115
example 120
OCL considerations 119

arameter descripti 117 INCLUDE
parameter descriptions during a CALL cycle 63
parameter summary 116

program name 119 entering during the MODIFY phase 62
program uses 115 including control statements in a procedure 202

238

response to MODIFY in BUILD sequence 40

restrictions following keyword 63

sample job 202

special considerations involving INCLUDE statements 63

indexed files
multi-volume
file statements for 198-224
OCL considerations for 196
OCL sample jobs for 198-199
printing part of 149
record-tracks conversion for 212
reorganizing 137
initial program load (IPL)
definition 223
establishing system date at 46
incorrect data on alternate tracks 105
initialization
clear initialization 94
general definition 91
primary initialization 94
secondary initialization 94

KEY LENGTH (see multi-volume files)
keyword 7
keyword descriptions
for each keyword 45-67
~ what they are and how to use them 5

keyword flowcharts

what they are and how to use them 5
keyword prompting '

how it's done 7
keyword-response summary

for the BUILD sequence 27

for the CALL sequence 42

for the LOAD sequence 16
keyword-response summaries

what they are and how to use them 5

LABEL parameter
File and volume label display 116
File delete 126
ocL
in BUILD Keyword-Response Summary 34
in LOAD Keyword-Response Summary 21
its position in the BUILD sequence 26
keyword description 50
position in LOAD sequence 15
when response is required 50
large RPG programs, compiling 203
LENGTH parameter 111
length on control statements 88
library directories
definitions 147
directory printouts 173
object library directory size 153
source library directory size 151
library entries
choosing designation 174
copying entries
considerations 166-175
control statements 158-162
deleting entries 177
naming entries 173
organization in libraries 147
renaming entries 179
types 147,172

library maintenance program
control statement summaries
allocate 150
copy 158-162
delete 177
rename 179
examples)
allocate 183
copy 185
delete 188
rename 191
library description 147
OCL considerations 182
parameter descriptions
allocate 151
copy 166
parameter summaries
allocate
copy 163
delete 179
rename 180
program name 181
program uses
allocate 149
copy 156
delete 176
rename 179
library, object
definition of 233
LIBRARY parameter 172
library, source
definition 233
line counter specifications
(see FORMS)
LOAD NAME
in BUILD Keyword-Response Summary 27
in LOAD Keyword-Response Summary 16
its position in BUILD sequence 26
its position in LOAD sequence 15
keyword description 53
LOAD sequence
when touse 9
LOCATION
considerations for multi-volume files 196
in the BUILD Keyword-Response Summary 37
in the LOAD Keyword-Response Summary 22
its position in BUILD sequence 25
its position in LOAD sequence 15
keyword description 51
location of libraries on disk
source with respect to object 147
placement of source library 151
placement of object library 153

LOG
22" printer as log device 214
CRT as log device 216
entering during MODIFY 218
entering during READY 217

machine requirements ii

Model 6 disk organization 213

Model 6 job cycle 7

MODIFY
changing a previous OCL statement 56
deleting a previous OCL statement 57
entering CANCEL 59

Index

239

MODIFY (continued)
entering comments 58
entering FORMS 60, 215
entering INCLUDE 63
restrictionson 63
entering LOG 218
in BUILD Keyword-Response Summary 39
in CALL Keyword-Response Summary 43
in LOAD Keyword-Response Summary 24
its position in the BUILD cycle 26
its position in the CALL cycle 41
its position in the LOAD cycle 15
keyword description of MODIFY options 54
statement numbers 13
multiple files 50
multi-volume files 193
coding for 198
OCL considerations for 196
sample jobs 198-199

name of source program
as response to COMPILE SOURCE in OCL BUILD cycle 46
as response to COMPILE SOURCE in OCL LOAD cycle 46
NAME parameter 173
naming library entries 173
characters to use 173
length of name 173
restricted names 173
NEWNAME parameter 174
NOHALT
incard OCL 221, 224
in conversational OCL 63

object library
chafiging size
control statement 149
disk considerations 154
creating
control statement 149
disk considerations 153
definition 147
deleting
control statement 149
disk considerations 154
reorganizing
control statement 149
disk considerations 154
object library directory
definitions 148, 172
printout 167 -
size 1563
OBJECT parameter 1563
.object programs, definitions of 147, 172
OCL
definition 7,233
OCL considerations
alternate track assignment 106
alternate track rebuild 112
disk copy/dump 140
disk initialization 97
file and volume label display 119
file delete 127
library maintenance 181
multi-volume files 196
OCL cycle 7-9
OCL guide
sample form 219

240

operation control language (OCL)
definition of 7, 233
operator’s OCL guide
sample form 219
organization of library entries 147
OUTPUT parameter 136
QUTPTX parameter 136
overlay
definition 233
overriding system date 47

P (permanent) file designation
importance in deleting a procedure from a source library 45
P (permanent) files
restrictions 51
when to assign a P (permanent) designation to a file 51
PACK parameter
alternate track assignment 104
alternate track rebuild 111
disk initialization 96
file delete 126
OCL 50
considerations for multi-volume files 194
in BUILD Keyword-Response Summary 34
in LOAD Keyword-Response Summary 21
its position in BUILD sequence 26
its position in LOAD sequence 15
keyword description 50
parameter 88
parameter descriptions
alternate track assignment 104
alternate track rebuild 111
disk copy/dump 136
disk initialization 94
file and volume label display 116
file delete 126
library maintenance
allocate 151
copy 166
parameter summaries
alternate track assignment 103
alternate track rebuild 110
disk copy/dump 134
disk initialization 93
file and volume label display 116
file delete 124
library maintenance
allocate 150
copy 163
delete 178
rename 180
permanent (P) files
restrictions 51
when to assign a P (permanent) designation to a file 51
predefined filenames
for $DSORT, $COPY, $MICR, $RPG, and $KDE programs 48
primary initialization 94
primary tractor
in entering LOG during the MODIFY phase 214
lines per page setting for 214
print positions of 214
printing entire VTOC 116
printing file information from VTOC 116
printing files 137 .
permanent library entries 174
printing library directories 166-173
printing Iibr?ry entries 166-173

printing part of an indexed file 138

printing part of direct file 138

printing part of sequential file - 138

procedure
definition of 147, 172, 233
deleting 45

procedure name
as response to CALL NAME in CALL cycle 45
response to BUILD NAME in BUILD cycle 45
restrictionson 45

PROG START key
usesof 13
(see also keyword-response summary)
when touse it 13

program names
alternate track assignment {($ALT) 106
alternate track rebuild ($BUILD) 112
disk copy/dump ($COPY) 140
disk initialization ($INIT) 97
file and volume label display (FLABEL) 119
file delete (SDELET) 127 :
library maintenance (SMAINT) 181

program operation 87)
all programs except library maintenance - 87
library maintenance 88

prompting
how it'sdone 7

punching library entries 172

question mark key
purpose 9

reader-to-disk copy
considerations 168
control statements 158
READY
in BUILD Keyword-Response Summary 27
in CALL Keyword-Response Summary 42
in LOAD Keyword-Response Summary 16
its position in the BUILD sequence 26
its position in the CALL sequence 41
its position in the LOAD sequence 15
its position in the Model 6 job cycle 7
keyword description 64
REBUILD 110
RECORDS
considerations for multi-volume files 196
in BUILD Keyword-Response Summary 35
in LOAD Keyword-Response Summary 21
its position in the BUILD sequence 26
its position in the LOAD sequence 15
keyword description 50
records-track conversion 212
relative record number 138
REMOVE statement 122
rename, library maintenance
control statement summary 179
example 191
parameter summary 180
use 179
renaming library entries 179
REORG (reorganize) parameter 137
reorganizing indexed files 137
reorganizing object library
control statement 149
disk considerations 154

reorganizing source library
control statement 149
disk considerations 153
replacing library entries
reader-to-disk copy 166
disk-to-disk copy 168
RETAIN parameter 174
NEWNAME parameter 175
RETAIN parameter
library maintenance program 174
OoCL
in BUILD Keyword-Response Summary 38
in'LOAD Keyword-Response Summary 23
its position in BUILD sequence 26
its position in LOAD sequence 15
key description 51
RPG Compiler ($RPG)
as response to LOAD NAME in OCL cycle 53
RPG File Description Specifications
source of RPG Filename in OCL cycle 48
RPG filename
response to FILE NAME in OCL cycle 48
RPG programs
compiling 72
compiling large RPG programs 203
recommended method of compiling 72
RPG source programs
compiling 72
compiling large RPG source programs 203
recommended method of compiling 72
RUN
keyword description 64
response to MODIFY in BUILD sequence 39
response to MODIFY in CALL sequence 43
response to MODIFY in LOAD sequence 24
routines, definitions of 147, 172

S (scratch) files
. restrictions 52
when to apply an S (scratch) designation to a file 51
(see examples)
schedular work area 153
SCRATCH control statement 122

‘scratch (S) files

restrictions 52 i

when to apply an S (scratch) designation to a file 51
secondary initialization 94
secondary tractor (of 22" printer)

entering LOG for 214

lines per page setting for 214
sector

definition 233

~ SELECT control statement 132

SELECT KEY parameters 138
SELECT PKY parameters 138
SELECT RECORD parameters 138
sequential files

deleting records from 137

printing part of 138

records-tracks conversion for 212
sequential multi-volume files

OCL considerations for 196
setting external indicators 64
single quotation mark key

{see multi-volume file)
SORT source statements in a procedure

(see footnote 1A in CALL Keyword-Response Summary)

Index

24

SOURCE
in BUILD Keyword-Response Summary 29, 46
in the LOAD Keyword-Response Summary 18, 46
its position in the BUILD sequence 26
its position in the LOAD sequence 15
keyword description 46
source library
changing size
control statement 149
disk considerations 152
contents 213
creating
control statement 149
disk considerations 151
definition 147, 233
deleting
control statement 149
disk considerations 152
its relationship to the BUILD and CALL sequences 9
putting procedures in 45
reorganizing
control statement 149
disk consideration 153
source library directory
definitions 148, 172, 233
printout 167, 186
putting procedure names in 45
size 151
SOURCE parameter 151
source statements
as input to the RPG Compiler 203
definition 147, 172, 233
source unit 47
special characters
their uses and location 85
standard character set 232
statement numbers 13
in modify 54
status of system printer

consideration when responding to MODIFY with a LOG

statement 214
substitute data 111
surface analysis
alternate track assignment 104
disk initialization 95
SWITCH
in BUILD cycle 66
in CALL cycle 67
in LOAD cycle 65
its position in BUILD sequence 26
its position in LOAD sequence 15
keyword description 64
SWITCH Statement
during a BUILD cycle 66
during a CALL cycle 67
during a LOAD cycle 65
sysgen
definition 233
system date
keyword description 47
overriding 47
responding to in the BUILD sequence 30
responding to in the LOAD sequence 18
system director
definition 148
printout 166

242

system input device
general use 87
use in library maintenance 166
system-operator interaction during keyword prompting
SYSTEM parameter 165
system printer
definition 233
(see also FORMS and LOG)
system program name
as response to keyword LOAD NAME in OCL cycle
system programs — changing printed output for
(see FORMS under MODIFY)
system programs, including in object library 155

T (temporary) Files
restrictions 52
when to assign a T (temporary) designation to a file
temporary (T) files
restrictions 52
when to assign a T (temporary) designation to a file
temporary library entries 174
testing condition of disk tracks {see surface analysis)
TO parameter
disk copy/dump
copying entire disk 136
copying or printing files 136-137
library maintenance
allocate 151
copy 166
TRACK parameter 111
TRACKS
considerations for multi-volume files 196
definition 233
in BUILD Keyword-Response Summary 35
in LOAD Keyword-Response Summary 21
its position in the BUILD sequence 26
its position in the LOAD sequence 15
keyword description 50-51
tracks-records conversion 212
TYPE parameter 94
types of library directories 172
types of library entries 172

UIN control statement 92
UNASSIGN parameter 105
unconditional assignment of alternate tracks 105
UNIT parameter
alternate track assignment 104
alternate track rebuild 111
disk initialization 94
file and volume label display 116
file delete 126
ocL
BUILD unit 26
FILE unit 50
keyword description 34
LOAD unit 15
multi-volume files 196
SOURCE unit 47
utility control statements in procedure
(see BUILD cycle)

VERIFY parameter

alternate track assignment 104
disk initialization 95
VOL control statement 92

1

53

51

51

VTOC (volume table of contents)
contents 213
definition 116, 233
its relationship to LABEL 50
printing entire VTOC 116
printing file information only 116
VTOC file name .
as response to keyword LABEL in OCL cycle 50
how to distinguish two files with the same VTOC file name
and label 52

work area
disk copy/dump 137
library maintenance
allocate function 154-155
schedular 153
WORK parameter
disk copy/dump 137
library maintenance 154

1255 Magnetic Character Reader Utility ($MICR)
in response to LOAD NAME in OCL cycle 53

13 inch printer
requirements for conversational OCL. ii

Index

243

GC21-7516-2

TBM

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
~ (International)

9 13PON g/wialsAg NEN

C-9LGL-LZID "V'S'N ul pajuld

READER’S COMMENT FORM

IBM System/3 GC21-7516-2

Model 6

Operation Control Language and
Disk Utility Programs

Reference Manual

YOUR COMMENTS, PLEASE. ..

Your comments concerning this publication will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC21-7516-2

e,

s

e~y

j

+#— auri Buolw 1INy — — — —:

i

FIRST CLASS
PERMIT NO. 387

ROCHESTER, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . ..

IBM Corporation

General Systems Division
Development Laboratory
Rochester, Minnesota 55901

Attention: Programming Publications, Dept. 425

BV

International Business Machines Corporation

Data Processing Division)

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only) —

1BM World Trade Corporation
.- 821 United Nations Plaza, New York, New York 10017
* (International)

— —— —— — — —— —— . —— —— — —

