
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • •••
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••• •••••• • ••••• •••• • •••
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ···s::::::: •• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • •••

•••• • •••• ••••• • •••••• •••••• • •••••••• ••••••• • •••••••••• ••••••• • •••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••• • ••••• •••••••••••• • ••••• •••••••••• • •••• •••••••• • ••• •••••• • ••• •••• ••••• ••••••• •••• • ••••••• •••• • •••••• •••••••••••••• •••••••••••• •••••••••••• •••••••••••••• •••• • •••••• •••• • ••••••• ••••••• ••••• •••• ••••
•••• • •••• ••••• • •••••• •••••• • •••••••• ••••••• • •••••••••• ••••••• • •••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••• • ••••• •••••••••••• • ••••• •••••••••• • •••• •••••••• • ••• •••••• • ••••• •••••• •••••• •••••• •••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • ••• :::::: •••••• ••••••

•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• ••••••••••••••••••
r' :::: ••• :::: ••• ::::

•••• •••• • ••• •••• •••• • ••• •••••• •••• • ••••• •••••• • ••••• •••••• • ••••• •••••• • •••••
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• •••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • •••

•••• • ••••• ••••• • ••••• •••••• • ••••• ••••••• • ••••• ••••••• •••• • ••• •••• ••••• • ••• •••• •••••• • ••• •••• • •••••••••• ••••••••••••••••••• ••••••••••• • ••••• •••••••••• • •••• •••••••• • ••• ••••••

IBM System/3
Model 10 Disk System
Control Programming
Reference Manual

Program Number 5702-SC1

GC21-7512-6

PREFACE

This manual provides the new programmer with the information he needs to run
programs on the IBM System/3 Model 10 Disk System and to use the system utility
programs for doing jobs such as preparing disks for use or updating system libraries.
This information is divided into two parts:

• Part I - operation control language (OCL) statements needed to run programs in
the Disk System.

• Part II - system utility programs and utility control statements needed to run them.
Programming support for the 5445 Disk, 3410/3411 Magnetic Tape Subsystem,
Overlay Linkage Editor and Checkpoint/Restart features is not included on the
distribution disk cartridge unless ordered by the user.

Note: In this publication there are some references to support of 64K bytes of main
storage. A System/3 Model 10 with a 64K processing unit is available only as an
RPQ. Your IBM Marketing Representative can provide information about this.

Related Publications
Publications that are related (not prerequisites) to this one are:

• IBM System/3 Disk System Introduction, GC21-7510

• IBM System/3 Disk System RPG /I Reference Manual, SC21-7504

• IBM System/3 Model 10 Disk System Operator's Guide, GC21-7508

• IBM System/3 Disk System 'H't q!!ide, GC21-7540

• IBM System/3 Disk System RPG /I and System Additional Topics
Programmer's Guide, GC21-7511

• IBM System/3 Disk Concepts and Planning Guide, GC21-7571

• IBM System/3 Subset American National Standard COBOL Compiler and Library
Programmer's Guide, SC28-6459

• IBM System/3 Disk FORTRAN IV Reference Manual, SC28-6874

Seventh Edition (September 1973)

This is a major revision of and obsoletes GC21-7512-5, and Technical Newsletter GN21-7676.
A new disk utility ($DCOPY) has been added. It allows the user to copy or dump the entire
contents of a disk onto tape or tape onto disk. (This program is distributed with the magnetic
tape feature of the SCP).

All references to consecutive organized disk files have been changed to sequential. The FI LE
AND VOLUME LABEL DISPLAY PROGRAM ($LABEL) prints an S for sequential disk files,
when displaying VTOC. Other minor changes are indicated by a vertical line at the left of
the change.

This edition applies to version 09, modification level 00 of the IBM System/3 Model 10 Disk
System and to all subsequent versions and modifications until otherwise indicated in new
editions or Technical Newsletters. Changes are continually made to the specifications herein;
before using this publication in connection with the operation of I BM Systems, consult the
latest IBM System/3 Newsletter, Order Number GN20-2228 for the editions that are applicable
and current.

Requests for copies of I BM publications should be made to your I BM representative or to the
IBM branch office serving your locality.

A form for reader's comments is provided at the back of this piblication. If the form has been
removed, comments may be addressed to IBM Corporation, Publications, Department 245,
Rochester, Minnesota 55901.

@Copyright International Business Machines Corporation 1969, 1970, 1971, 1972, 1973

CONTENTS

HOW TO USE THIS MANUAL iii File Statement Parameter Considerations for Multivolume
Disk Files 65

PART I. OCl STATEMENTS. Multivolume Tape Files 69
File Statement Parameter Considerations for Multivolume

INTRODUCTION TO OCl STATEMENTS 3 Tape Files 70
What is OCl? 3 Split Cylinder Files. 71

OCl and the Job Stream 4 Restrictions for Using Split Cylinder Files 71
Organization of Part I 4 Creating the First Split Cylinder File in a Group 71

Creating Other Split Cylinder Files 72
CODING RULES 5 Accessing Existing Split Cylinder Files 72
Types of Information 5 loading to Existing Split Cylinder Files 72

Statement Identifiers 5 Scratch Split Cylinder Files 72
Parameters 5 Automatic Disk File Allocation 73

General Coding Rules 6 Compiling a Source Program and Storing it in an Object
Statements Beginning with /I 6 Library 73
Statements Beginning with Other Than /I 7 Sample Statements . 74
Continuation. 7 loading Programs in a DPF Environment 74
Comments 8 OCl Considerations For loading Programs in a DPF

Environment 74

STATEMENT DESCRIPTIONS 9 DPF Considerations for 12K Systems 77

DATE Statement 16 Sample Job Streams 77

lOAD Statement 17
Restarting a Checkpointed Program 79

RUN Statement. 20
Programming Considerations 79

SWITCH Statement. 21
Restart Procedure 79

COMPI lE Statement 22
OCl Considerations for Using Checkpoint/Restart. 79

IMAGE Statement 24
Statement Examples 80

FORMS Statement . 27
Example. 80

lOG Statement . 28
READER Statement 29

PART II. SYSTEM UTILITY PROGRAMS. 83

PUNCH Statement 30
NOHAl T Statement 31 INTRODUCTION TO SYSTEM UTILITY PROGRAMS 85
HALT Statement 31 To Write Utility Control Statements . 85
*(Comment) Statements 31 Control Statements . 86
PAUSE Statement 32 Special Meaning of Capital letters, Numbers, and Special

/& Statement 32 Characters 87
/* Statement. 32
DISK FI lE Statement 33

TAPE INITIALIZATION PROGRAM-$TINIT 89

TAPE FilE Statement. 43
OCl Considerations 91

BSCA Statement 50
Messages for Tape Initialization 91

CAll Statement 51
Printout of Volume label 92

PARTITION Statement 52
lOCKOUT Statement 52

TAPE ERROR SUMMARY PROGRAM-$TVES 95

Procedures 53
Error logging Format 95

Example. 54 OCl Considerations 96

Nested Procedures 55
DISK INITIALIZATION PROGRAM-$INIT 97

USING OCl . 59 Parameter Descriptions. 100

Compiling an RPG ,II Program. 60 TYPE Parameter (UIN) . 100

Creating a Disk File. 60 UNIT Parameter (UIN) . 100

loading and Running Programs 61 VERIFY Parameter (UINI 101

I BM Programs 61 ERASE Parameter (UIN) 101

Object Programs Using Card Files. 61 CAP Parameter (UIN) 101

Object Programs Using One Disk File 61 PACK Parameter (VOL) 102

Object Programs Using More Than One Disk File 62 10 (Identification) Parameter (VOLl 102

Object Programs Using One Disk File and External NAME 360 Parameter (VOL) 102

Indicators 62
OCl Considerations 102

Processing Large Indexed Disk Files 63 Examples 102

Multivolume Files 63
Primary Initialization of Two Disks 102

OCl Constderations 64 Messages For Disk Initialization 103

ALTERNATE TRACK ASSIGNMENT PROGRAM DUMP/RESTORE PROGRAM - $DCOPY . 139
-$AlT 105 Parameter Descriptions. 140

Parameter Descriptions. 107 From and To Parameters (COPY PACK) . 140
PACK Parameter 107 PACK Parameter (COPY PACK) 141
UNIT Parameter. 107 OCl Considerations 141
VERIFY Parameter. 107 File Statement When Copying from Disk to Tape
ASSIGN Parameter . 108 (Dump) 141
UNASSIGN Parameter 108 File Statement When Copying from Tape to Disk

OCl Considerations 109 (Restore) . 141
Examples 109 Examples 144

Conditional Assignment 109
Messages for Alternate Track Assignment 110 LIBRARY MAINTENANCE PROGRAM-$MAINT 147

ALTERNATE TRACK REBUilD PROGRAM
Library Description. 147

$BUllD. 111
location of Libraries on Oisk . 147

Parameter and Substitute Data Descriptions. 112
Organization of Library Entries 148

PACK Parameter 112
Organization of this Section 149

UNIT Parameter. 112
Allocate Function 150

TRACK Parameter 112
Library Maintenance Allocate Restrictions 151

lENGTH Parameter 112
TO Parameter 152

DISP (Displacementl Parameter 112
SOURCE and OBJECT Parameters 152

Substitute Data . 113
DIRSIZE Parameter 152

OCl Considerations 113
SYSTEM Parameter 152

Examples 113
WORK Parameter 153

Correcting Characters on an Alternate Track 113
Using the Allocate Function 154

Copy Function 157

FilE AND VOLUME lABEL DISPLAY PROGRAM
Using the Copy Function 164

-$lABEl 115 Delete Function . 169

Parameter Descriptions. 116 Modify Function 171

UNIT Parameter. 116 Rename Function 174

lABEL Parameter 116 OCl Considerations 175

OCl Considerations 119 Examples 175

Examples 120
IBM SYSTEM/3 5445 DATA INTERCHANGE

Printing VTOC Information for Two Files 120
UTI LlTY PROGRAM-$VTOC 183

FilE DELETE PROGRAM-$DElET 121 Parameter Descriptions. 185

Parameter Descriptions. 123
PACK Parameter 185

PACK Parameter 123 UNIT Parameter. 185

UNIT Parameter. 123
OCl Considerations 185

LABEL Parameter 123
DATE Parameter 124

APPENDIX A. IBM SYSTEM/3 STANDARD

DATA Parameter (Remove Only) . 124
CHARACTER SET 187

OCl Considerations 125
Examples 125

APPENDIX B. CONVERSION 189

Deleting One of Several Files Having the Same Name 125
Records To Tracks Conversion 189

Determining the Number of Sequential or Direct

DISK COPY/DUMP PROGRAM-$COPY 127
File Tracks . 189

Parameter Descriptions . 131
Determining the Number of Indexed File Tracks 189

FROM and TO Parameters (COPYPACK) 131
CylinderlTrack to Track Number Conversion 190

OUTPUT Parameter (COPYFI LEI 131
Track Number to Cylinder/Track Conversion 190

DELETE Parameter (COPYFllE) 132
REORG (Re-organize) Parameter (COPYFllE) . 132

APPENDIX C. SYSTEM/360-SYSTEM/370 DISK FilE

WORK Parameter (COPYFllE) 133
COMPATIBILITY. 191

SELECT KEY and SELECT PKY Parameters System/a to System/360-System/370 191

(SELECT) 133
System/360-System/370 to System/3 191

SELECT RECORD Parameters (SELECT) 134 INDEX 193

Copying Multivolume Files 134
Maintaining Proper Volume Sequence Numbers 134
Maintaining Correct Relative Record Numbers 134
Direct File Attributes 134
Copying Multivolume Indexed Files 134

Del Considerations 135
Examples 137

ii

Part I

HOW TO USE THIS MANUAL

This publication contains two parts. Part I describes operation control language
(OCL) statements. Part II describes system utility programs.

Refer to Part I if you want to know:

1. What an OCL statement is.

2. What each OCL statement is used for (function).

3. Where each OCL statement is placed in relation to others and when it is needed
(placement).

4. How each statement must be coded (format).

5. What each statement must contain (contents).

Part II
Refer to Part II if you want to know:

1. What system utility programs are supplied with the system.

2. The function of each utility program.

3. The operation control language (OCL) statements and utility control statements
necessary to request each utility program.

How to Use This Manual iii

iv

PART I. OCL STATEMENTS

oel Statements 1

2

INTRODUCTION TO OCl STATEMENTS

WHAT ISOCL?
Operation control language (OCl) is your means of communicating with the IBM
System/3 Model 10 Disk System. You must write a set of OCl statements for each
program you want to run. Based on the information supplied by the OCl state
ments, the Disk System will load and execute your Disk System programs or
perform system utility functions.

You can supply OCl statements in two ways: (1) punch the statements into
cards, which are then read by the Disk System; (2) use the printer-keyboard to
key the statements directly to the Disk System.

After the Disk System reads a set of OCl statements for a program, it runs the
program. When the program ends, the Disk System reads the set of statements
for the next program, then runs that program. This procedure is repeated until
all OCl statements have been read and the corresponding programs have been run.

The running of your programs is controlled by system control programs. System con
trol programs must be in core storage before your jobs can be run. These programs
are located on disk and are brought into storage by a procedure called initial program
load (lPL). IPl is performed by the operator when the system is turned on. For more
information on IPl, see the IBM System/3 Disk System Operator's Guide, GC21-750S.

The DATE statement is part of the IPl process and must be the first statement pro
vided for your program. (See DA TE Statement in Statement Descriptions for more
information.)

Introduction to oel Statements 3

4

OCL and the Job Stream
The Oel statements you supply form the basis of the job stream. If your program
requires the use of data from the system input device (the device used to read Oel
statements) your program and that data must follow the corresponding OeL. The job
stream, therefore, can contain programs and program data as well as Oel statements.
Figure 1 is an example of a card input job stream.

You can also store sets of Oel statements for your programs outside of the job stream
in a source library on disk. These sets are called procedures. You can instruct the
system tl> merge procedures into the job stream. The ability to store sets of frequent
ly used Oel statements on disk makes it possible to avoid recoding the statements
every time they are used. (See Procedures under Statement Descriptions for more in
formation.)

ORGANIZATION OF PART I
Part I is divided into:

1. Coding Rules defines the general contents of the Oel statements and explains the
rules for writing the statements.

2. Statement Descriptions explains the functions, format, and contents of each OeL.
statement, and the places in the job stream the statement may be used.

3. Statement Examples presents and explains a job stream containing most of the Oel
statements.

eCl Statements for
Second Program

Data for First Program

First Program

~ eCl Statements for First Program

"-_____1- DATE Statement

Figure 1. Job Stream

CODING RULES

TYPES OF INFORMATION
Operation control language (OCl) statements contain, at most, two types of inform
ation: a statement identifier and parameters. A statement identifier is information
that tells one statement from another. A parameter is additional information supplied
with the statement identifier. Figure 2 shows the general form of OCl statements.

Identifier Parameter 1. Parameter 2 •...• Parameter n

Figure 2. General Form of OCL Statements

Statement Identifiers
Every OCl statement needs a statement identifier. The identifiers are as follows:

DATE
lOAD
RUN
SWITCH
COMPilE

IMAGE
FORMS
lOG
READER
PUNCH

NOHAlT
HALT
* (asterisk)
PAUSE
/&

lOAD is an example of a statement identifier.

Parameters

FilE
BSCA
CAll
PARTITION
lOCKOUT

Some statements need parameters. Others do not. (See Statement Descriptions for
an explanation of the statements which need parameters.) Parameters can be
either codes or data. A code is a word or group of characters that has a certain
meaning. Data is information such as the names, locations, and lengths of files on
disk. (See Statement Descriptions for data and code restrictions on parameters.)
In the following example, PROG2 is the name of an RPG II object program, and F1
is a code that stands for the fixed disk on drive one. PROG2 is a data parameter
and F1 is a code parameter.

~. 812 16 "''' 2B "

'I rm1 rffm'11i 111111111111111111
Coding Rules 5

6

Some statements require certain words in parameters to tell one parameter from
another. The words are called keywords. Parameters containing keywords are
called keyword parameters. In Figure 3, NAME·MASTER, PACK·VOL1, and
UNIT·R1 are keyword parameters. NAME, PACK, and UNIT are keywords.
MASTE R and VOL 1 are data parameters. R 1 is a code parameter. There should
always be a hyphen between the keyword and the code or data parame,ter.

Figure 3. Keyword Parameters

GENERAL CODING RULES
In Part 1 of this book, the numbers that appear above statement formats and
examples indicate the card columns or line positions occupied by the statements.
In statement formats, special characters, such as /I, and words written in capital
letters are information that must be used exactly as shown. Words written in
small letters, such as code, program·name, and unit, represent information that
you must supply.

Statements Beginning with / /
The rules for coding the statements are as follows (the term position refers to
either card column or line position):

• Place the II in positions 1 and 2.

• Leave one or more blanks between the II and the word that forms the statement
identifier (LOAD, RUN, CALL, etc.).

• Leave one or more blanks between the end of the statement identifier and the
first parameter.

• If you need more than one parameter, use a comma to separate them. No blanks
are allowed within or between parameters. (For the exception to this rule, see the
description for the HI KEY parameter under Multivolume Files.) Anything
following the first blank is considered a comment (see Comments).

• If you are writing keyword parameters, place t"'~ keyword first and use a
hyphen to separate the keyword from the code or data parameter.

• If the parameter is not a keyword parameter, write the parameters in the order
in which they are discussed in this manual.

Figure 4 illustrates the coding rules. The statement identifiers are LOAD and
FILE. The parameters are PROG1, Rl, NAME-MASTER, UNIT-R1, and PACK

VOL 1. The last three parameters are keyword parameters.

1 • 8 12 ,. 2 • 2. 28 32 36 4D ..
/

~ - II -

Figure 4. Illustration of General Coding Rules

Statements Beginning with Other Than II
* and 1& statements do not require II preceding them when coded. (See Statement
Descriptions for * and 1& statements.)

Continuation
All OCL statements except FI LE must not exceed 96 characters, including blanks
and comments. Because of the large number of parameters possible in a FILE
statement, you can use two or more cards or lines for those statements. Each card
or line you use must not exceed 96 characters. (Data for the IMAGE statement
requires continuation for the cards or lines containing the chain image characters,
but the data follows different continuation rules. See IMAGE Statement under
Statement Descriptions for more information.)

The continuation rules are as follows:

• Place a comma after the last parameter in every card or line except the last.
The comma, followed by a blank, tells the system that the statement is con
tinued in the next card or line.

• Begin each new card or I ine with a II in positions 1 and 2.

• Leave one or more blanks between the II and the first parameter in the card or
line. (See HIKEY Parameter under Multivolume Files for exception to this rule.)

Figure 5 illustrates the continuation rules.

I 4 B 12 16 20 24 2B 32

III FI L.~ ~14 ~E -~ AS 71eIC
/1/ ~'ll Ii: L- -Ill , L. L.I H6 ~A 11 t: -~ 7 1.., , b'f

IV I'll T-~ Jl~ fill(-V I:IIL 1

Figure 5. Illustration of Continuation Rules

Coding Rules 7

8

COli'unents
You can include comments in the following places in your statements:

• Following the // in statements beginning with II. Begin the comment in position 3,
immediately following the II. You can use up to eight characters without blanks.
Leave one or more blanks between the comment and the word forming the state
ment identifier. Figure 6 contains such a comment. The word BI LUNG is the
comment.

• After the last parameter. Leave one or more blanks between the last parameter
and your comment. The comment can be any combination of characters. If the
statement is continued in subsequen~ cards or lines, you can place comments after
the last parameter in any of the cards or lines.

• After statements without parameters. Leave one or more blanks between the
statement identifier and your comment. Examples of statements without
parameters are: /&, // PAUSE, and // RUN.

In addition to writing comments within your DCL statements, you can include whole
cards or lines of comments. The DCl comment statement is provided for that
purpose. (See * (Comment) Statements under Statement Descriptions for more
information.)

Figure 6. Comment Following /I

STATEMENT DESCRIPTIONS

Each OCL statement is described separately in this section. The following informa·
tion is given for each statement:

1. The function of the statement.

2. The placement of the statement in regard to other statements and the circum·
stances under which the statement is needed.

3. The format of the statement.

4. The contents of the statement, explaining the parameters that can be used in the
statement.

Figure 7 gives the function, placement, and restrictions on use for each OCL
statement.

Figure 8 describes the contents of the OCL statements. It is meant for reference
only. If you are not familiar with an entry, or you do not know when to use or
omit it, refer to the proper statement in the remainder of this section.

When using Figure 8, remember that words written in small letters such as filename
or value require a choice on your part, depending on the functions you want the
statement to perform. Refer to Figure 8 to see which parameters are available.
Those parameters that are capitalized must be coded along with the data or code
parameter.

Statement Descriptions 9

PLACEMENT
STATEMENT FUNCTION STATEMENT APPEARS STATEMENT APPEARS RESTRICTIONS ON USE

IN JOB STREAM IN A PROCEDURE

/I DATE Supplies the system with Must follow lOAD or CAll Must follow the LOAD Must be supplied during the
a date, this date is given statement and precede the statement and precede the Initial Program load. The
to disk files being created. RUN statement except at RUN statement (if RUN is effect of the statement is

IPl time, when it must used). tor that job only.
precede the first lOAD
or CAll statement.

/! lOAD * I ndicates that the object Must precede the Must be the first lOAD * cannot be used in
program will be loaded RUN statement

/I statement. program level 2.
from the system input
device following the
RUN statement.

/! lOAD Identifies the program Must precede the Must be the first
to be run and in- RUN statement. II statement.
dicates the disk that
contains the object
library from which it is
to be loaded.

/! RUN I ndicates the end of the Must be the last OCl May be the last Requi red in the job stream
OCl statements for a statement. statement. for each program which is
program and tells system to be run.
to run the program.

/! SWITCH Used to set one or more Must follow lOAD or CAll Must follow the lOAD
external indicators on statement and precede the statement and precede the
or off or leave the in- RUN statement. RUN statement (if RUN is
dicator as it is. used).

/! COMPILE Tells the system where Must follow lOAD or CALL Must follow the lOAD
the source program to statement and precede the statement and precede the
be compiled is located RUN statement. RUN statement (if RUN is
and where to place the used).
object program.

/I IMAGE Tells the system to re- Anywhere among the Must precede the Required if the printer chain
place the chain-image OC l statements. RUN statement lif has been changed.
area with characters RUN is used).
indicated in the fol-
lowing data cards or
characters keyed in
or read from source
library.

/I FORMS I nstructs the system to Anywhere among the Must precede the

change the number of OCl statements. RUN statement lif

lines printed per page. RUN is used).

/I lOG I nstructs system to Anywhere among the Must precede the RUN Device cannot be
start or stop pri nti ng OCl statements. statement lif RUN is specified in program
OCl statements and used). level 2.
codes and indicates the
device to be used to
print them.

/! READER Changes the system input Must precede LOAD or Must precede the In a procedure, the input
device used to read OCl CAll statement or follow LOAD statement lif device is not changed until
statements. the R UN statement and LOAD is used). the procedure is completely

precede the next lOAD executed.
or CALL statement

Figure 7 (Part 1 of 2). Table of OCL Statements

10

PLACEMENT

STATEMENT FUNCTION STATEMENT APPEARS STATEMENT APPEARS RESTRICTIONS ON USE
IN JOB STREAM IN A PROCEDURE

--
/! PUNCH Enables you to change Anywhere among the Must precede the RUN

the system punch device. OCl statements. statement.

/! NOHAlT I nstructs system to Anywhere among the Must precede the RUN Ignored in program level 2.
continue without OCl statements. statement (if RUN is
stopping when a used).
program ends.

/! HALT Instructs system to halt Anywhere among the Must precede the RUN Ignored in program level 2.
when program ends; OCl statements. statement (if RUN is
cancels the effect of usedl.
the NOHAlT
statement.

*(Commentl Used to explain the job Anywhere. Anywhere.
or gi ve the operator
instructions; does not
affect the program in
operation.

/! PAUSE Tells the program to stop Anywhere among the Must precede the
in order to gi ve the OCl statements. RUN statement (if
operator time to per- RUN is used).
form a function.
Operator must restart
program.

/& Provides OCl security Recommended as the first Not allowed in a Can be used in the job stream
from previous job. statement of a job. procedure. only.

/I FilE Supplies information Must follow lOAD or CAll Must follow the lOAD Required for every new file
about the file to the statement and precede the statement and precede the created and existing files being

- system. RUN statement. RUN statement (if RUN used.
is used).

/I BSCA Changes the BSCA line Must follow lOAD or Must follow the lOAD
number. CAll statement and statement and precede

precede the RUN state- the RUN statement (if
ment. RUN is usedl.

1/ CAll Identifies procedure to Must precede the I ndicates chained Can be no more than nine
be merged into job RUN statement. procedures. levels of nested chained
stream and the disk procedures.
containing the source
library from which to
read the procedure.

/! PARTITION Guarantees a minimum Anywhere, among the Must precede the RUN Cannot be submitted in
size to level 2 for a OCl statements. statement (if RUN is program level 2 or when
program in that level. used). program level 2 is processing.

/! lOCKOUT Disables the other pro- Anywhere among the Must precede the RUN Ignored on a non-DPF system.
gram level to allow OCl statements. statement (if RUN is usedl.
fast job initiation in
the program level in
which the lOCKOUT
card was read.

Figure 7 (Part 2 of 2). Table of OCl Statements

Statement Descriptions 11

STATEMENT PARAMETER CODE MEANING OF CODE

/I DATE date mmddyyor System date or date within a set of statements
ddmmyy

/I LOAD asterisk • Program is to be loaded from the system input device

program name name Name of program that is to be loaded from disk

unit Object library resides upon:
R1 Removable disk on drive one
R2 Removable disk on drive two
F1 Fixed disk on drive one
F2 Fixed disk on drive two

/I RUN none

1/ SWITCH i ndicator-setti ngs Refer to SWITCH
Statement under
Statement Descriptions

1/ COMPILE SOURCE SOURCE-name Name of source program

UNIT UNIT-R1 Where disk that contains the source librarv is
R2 located (the meanings of the unit codes are the
F1 same as for LOAD)
F2

OBJECT OBJECT-R1 Where to place the object program (the meanings
R2 of the unit codes are the same as for LOAD)
F1
F2

I/IMAGE format HEX To indicate characters from cards are in hexadecimal
form

CHAR To indicate characters from cards are in EBCDIC form
MEM To indicate characters are from the source library

number . value Number of new characters

name name Identifies the characters in the library

unit R1 Where the disk that contains the library is located

R2 (the meanings of the unit codes are the same as for

F1 LOAD)

F2

1/ FORMS DEVICE DEVICE-name Indi~tes which printer is used

LINES LINES-value Indicates number of lines to be printed per page

1/ LOG code CONSOLE Use printer-keyboard as logging device
PRINTER Use printer as logging device
OFF Stop printing
ON Start printing

1/ READER system input device CONSOLE Pri nter-keyboard
MFCU2 Secondary hopper of MFCU
MFCU1 Primary hopper of MFCU
1442 Card Read/Punch

1/ PUNCH system punch device MFCU2 Secondary hopper of MFCU
MFCU1 Primary hopper of MFCU
1442 Card Read/Punch

Figure 8 (Part 1 of 4)_ Tabla of Paramaters

12

STATEMENT PARAMETER CODE MEANING OF CODE

/I NOHALT none

1/ HALT none

* (Comment) none

/I PAUSE none

/& none

/I FILE NAME NAME-filename Name the program uses to refer to the file

(Disk
Files) UNIT UNIT-R1 Where the 5444 disk that contains or will contain the

R2 file is located (the meanings of the unit codes are the
F1 same as for LOAD)
F2

01 Where the 5445 disk that contains or will contain
02 the file is located_

PACK PACK-name Name of disk that contains or will contain the file

LABEL LABEL-filename Name by which your file is identified on disk

RECORDS or RECORDS-number of Amount of space needed on a disk for a file
TRACKS TRACKS-number

LOCATION LOCATION-track Number of track on which file begins or is to begin
number (5444 disk only)

LOCATION-cylinder Cylinder number on which file begins or is to begin_
number Track assumed zero (5445 disk only).

LOCATION-cylinder Cylinder number, track number on which file begins
numberltrack number or is to begin (5445 disk onlyl.

LOCATION-filename Filename of a split cylinder file that is the first split
cylinder file in a group, or is an already existing split
cylinder file. (5445 disk only). For further discus-
sion see Split Cylinder Files.

RETAIN RETAIN-T Temporary file
S Scratch file
P Permanent file
A Reactivate scratch fi Ie

DATE DATE-mmddyy Tells the system the date the file was created
ddmmyy

HIKEY HIKEY-'highest List of highest key fields
key {ields allowed' allowed on each pack

SPLIT SPLIT-tracks/cylinders The number of tracks per cylinder needed for the
or split cylinder file; the number of cylinders needed

SPLIT-tracks for a group of split cylinder files (5445 disk only).
For further discussion see Split Cylinder Files.

Figure 8 (Part 2 of 4). Table of Parameters

Statement Descriptions 13

STATEMENT PARAMETER CODE MEANING OF CODE

/I FI LE NAME NAME-filename Name the program uses to refer to the file.

(Tape File) UNIT UNIT-T1 Where the tape that contains or will contain the
T2 file is mounted.
T3
T4

REEL REEL-name Name of the tape that contains or will contain the
file.

-NL The tape is not labeled.

-NS The tape contains non-standard labels.

LABEL LABEL-filename Name by which your file is identified on tape.
or
LAB E L-'character

string'

DATE DA TE-mmddyy Tells the system the date the file was created.
ddmmyy

RETAIN RETAIN-nnn The number of days a file should be retained before
it expires.

BLKL BLKL-block length The number of bytes in a physical block of tape.

RECL RECL-record length The number of bytes in a logical record.

RECFM RECFM-F Fixed length, unblocked records.

-V Variable length, unblocked records.

-D Variable length, unblocked, D-type ASCII records.

-FB Fixed length, blocked records.

-VB Variable length, blocked records.

-DB Variable length, blocked, D-type ASCII records.

END END-LEAVE The tape remains in its present position after the
file is processed.

-UNLOAD The tape is rewound and unloaded after processing.

-REWIND The tape is rewound after processing.

DENSITY DENSITY-200 The tape will be written at 200 bpi (bits per inch)
density.

-556 The tape will be written at 556 bpi density.

-800 The tape will be written at 800 bpi density.

-1600 The tape will be written at 1600 bpi density.

Figure 8 (Part 3 of 41. Table of Parameters

14

STATEMENT PARAMETER CODE MEANING OF CODE

ASCII ASCII-YES An ASCII file is being processed.

-NO An EBCDIC file is being processed.

DEFER DEFER-YES The tape volume will be mounted later.

-NO The tape is presently mounted.

CONVERT CONVERT-ON Data read from or written to a seven track tape fi Ie
will be converted.

-OFF Data read from or written to a seven track tape file
will not be converted.

TRANSLATE TRANSLA TE-ON Data read from or written to a seven track tape fi Ie
will be translated.

-OFF Data read from or written to a seven track tape fi Ie
will not be translated.

PARITY PARITY-EVEN The seven track tape file will be read or written in
even parity.

-ODD The seven track tape file will be read or written in
odd parity.

II BSCA LINE L1NE-1 Change all BSCA DTF line codes to the line number
2 specified.

/I CALL procedure name name Name that identifies the procedure in the source
library

unit R1 Where the disk containing the procedure is located
R2 (the meanings of the unit codes are the same as for
F1 LOAD)
F2

/I PARTITION size value Minimum size of program level 2 in decimal bytes

/I LOCKOUT none

Figure 8 (Part 4 of 4). Table of Parameters

Statement Descriptions 15

DATE STATEMENT

Function

Placement

Format

Contents

Example

16

The DATE statement gives the Disk System a date, called the system date. The
system date is referred to by RPG II field names UDATE, UMONTH, UDAY,
and UYEAR. The preceding field names can also be used when referring to the
date given to the disk files when they were created.

A DATE statement within the set of statements for a program changes the
system date, but only for that program. When the program ends, the date
supplied in the DATE statement at IPl time is again used. There can only be
one DATE statement per job.

A DATE statement is always required during Initial Program load (lPl). It is
the only OCl statement required by the system at that time.

A DATE statement can also appear within any of the sets of statements for your
programs. The DATE statement must follow the lOAD or CAll statement
and precede the RUN statement.

II DATE date

The system date can be in either of two forms: month-day-year (mmddyy) or
day-month-year (ddmmyy). You must specify the form at System Generation
time. (See IBM System/3 Disk System Operator's Guide, GC21-7508, for more
information on System Generation.) The date you specify must be in that form.

The date can be written with or without punctuation. For example, July 25, 1970,
could be specified in anyone of the following ways:
07-25-70
25-07-70
072570
250770

Month, day, and year must each be 2-digit numbers but lead zeros in month and
day may be omitted when punctuation is used (7-25-70 or 25-7-70). In the
punctuated form, any characters except commas, quotes, numbers and blanks
can be used as punctuation.

LOAD STATEMENT

Function

Placement

Format

Contents

The LOAD statement identifies the program to be run and indicates whether the
program will be loaded from the system input device or disk.

One LOAD statement is required within each of the sets of statements for your
programs. If the set of statements appears on the job stream, the only requirement
for the LOAD statement is that it must precede the RUN statement. In procedures,
the LOAD statement must precede the RUN statement. (For more information about
procedures, see Procedures in this section)

The LOAD statement has two formats. The first format is used for object pro
grams loaded from the system input device and cannot be used in a procedure.
The second format is used for programs loaded from disk.

II LOAD *
II LOAD program-name,unit

Asterisk: An asterisk indicates that the object program will be loaded from the
system input device. Program-name and unit parameters must not be included.
The cards or lines that contain the program must follow the RUN statement for
the program and must be followed by /* or 1& to signify the end of the pro!jram.
LOAD* cannot be used in programming level 2 or in procedures (see Using OCL,
Loading Programs in a DPF Environment, for more information on dual programming).

Program-name: The program-name parameter is the name used on disk to identify
the program. Commas, apostrophes, periods, and blanks may not be used in the
program name.

The names you must use for your programs depend on the way the programs were
placed on disk. One way includes a compiler option. You can specify that your
program be placed on disk immediately after it is compiled. The name you supply
to the compiler is the name used to identify the program.

Another way to place your program on disk is by using the library Maintenance
program. If you used that program, the program-name you supplied in the Library
Maintenance control statements is the name used to identify your program. (For
more information, see Library Maintenance in Part II of this book.)

Statement Descriptions 17

LOAD STATEMENT (continued)

The Disk System programs are identified by the following names:

Program Name

Alternate Track Assignment $ALT

Alternate Track Rebuild $BUILD

Assembler $ASSEM

COBOL $CBLOO

Data Recording $DREC

Data Verifying $DVER

Disk Copy/Dump $COPY

Disk Initialization $INIT

Disk Sort $DSORT

Dump Restore $DCOPY

File and Volume Label Display $LABEL

File Delete $DELET

FORTRAN $FORT

Library Maintenance $MAINT

List $CLlST

Macro Processor $MPXDV

MFCU Sort/Collate $CSORT

Overlay Linkage Editor $OLlNK

Reproduce and Interpret $REPRO

Remote Job Entry $$RJE

Restart $$RSTR

RPG II Auto-Report $AUTO

RPG II Compiler $RPG

Tape Initialization $TINIT

18

LOAD STATEMENT (continued)

Example

Tape Sort $TSORT

Tape Error Summary Program $TVES

5445 Data Interchange $VTOC

1255 Utility $MICR

1270/1255 Utility* $MOCR

80-96 Conversion $CNVRT

*Not valid within the United States.

Unit: The unit parameter is a code. It indicates where the disk that contains
the program is located. The codes are as follows:

Code Meaning

Rl Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

The unit parameter is required because your programs can be on any of the
disks on your disk unit. The disk area containing your object program is called
an object library. You can create an object library on any of the disks on your
disk unit by using the Library Maintenance program. (See Library Maintenance
in Part II of this manual.)

In the following sample LOAD statement, $RPG is the name that identifies the
RPG II Compiler.

~. , " " '" '" '" " '" "
11111~rB ~!I) !1tllllll!II!!lllllllllllllllllllll

Fl is the code indicating the fixed disk on drive one, where the compiler would
be located in this case.

Statement Descriptions 19

RUN STATEMENT

Function

Placement

Format

Contents

20

The RUN statement indicates the end of the OCl statements for a program.
After the system reads the RUN statement, it runs the program.

A RUN statement is needed for each of the programs you wa':lt the system to run.
In the job stream, it must be the last statement within each of the sets of OCl
statements for your programs. It can also be the las~ OCl statement in a pro
cedure. (For more information about procedures, see Procedures in this section.)

II RUN

None. (Comments may be entered starting in column 8.)

I

SWITCH STATEMENT

Function

Placement

Format

Contents

Example

The purpose of the SWITCH statement is to set one or more RPG II external
indicators on or off. The indicators are always off after the operator uses the
IPL procedure to start the system. If a SWITCH statement is used to set an
indicator on, the indicator remains on until another SWITCH statement sets it
off, or until the operator again uses the IPL procedure to start the system. There
can be only one SWITCH statement per job.

The SWITCH statement can appear within any of the sets of statements for your
programs. The only requirements for the SWITCH statement are that it must
follow the LOAD or CALL statement and precede the RUN statement.

II SWITCH indicator~settings

Indicator-settings: The indicator-settings parameter is a code that consists of
eight characters, one for each of the eight external indicators (U1-US). The first,
or leftmost, character gives the setting of indicator U 1; the second character
gives the setting of U2; and so on.

The code must always contain eight characters. For each indicator, one of the
following characters must be used:

Character Meaning

o Set the indicator off

Set the indicator on

x Leave the indicator as it is

The code 1 X0110XX would calise the following results:

Indicator Result

U1 Seton

U2 Unaffected

U3 Set off

U4 Set on

U5 Seton

U6 Set off

U7 Unaffected

US Unaffected

Statement Descriptions 21

COMPILE STATEMENT

Function

Placement

Format

Contents

22

The COMPI lE statement tells the system two things: (1) where the source pro
gram to be compiled is locat9d if it is coming from a disk source library; (2) where
the object program is to be placed. (An object program is a source program which
has been compiled or translated into machine language.)

The COMPI lE statement must be within the set of OCl statements that apply
to the compilation. The COMPI lE statement must follow the lOAD or CALL
statement and precede the RUN statement.

II COMPilE parameters

All the parameters are keyword parameters (keywords are in capital letters). The
keywords are: SOURCE, UNIT, and OBJECT.

SOURCe: The SOURCE parameter tells the system the name of the source pro
gram. The keyword SOU RCE must be followed by the name of the source pro
gram on disk. The name is the name by which the source program is identified
on disk in the source library. (For more information concerning the source library
see CALL Statement in this section.)

The only way you can place source programs in a source library is by using the
Library Maintenance program. The program name you supply in Library Main
tenance control statements is the name used to identify the source program in
the library. (For more information, see Library Maintenance in Part II of this
manual.)

If the SOURCE parameter is not used, the source program is assumed to be in the
job stream following the RUN statement.

The SOURCE parameter must always be accompanied by the UNIT parameter.

UNIT: The UNIT parameter is used only when the SOURCE parameter is used.

The UNIT parameter is a code indicating where the disk that contains the source
library is located. The codes are as follows:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

COMPILE STATEMENT (continued)

Example

OBJECT: The OBJECT parameter tells the system where to place the object pro·
gram. The OBJECT parameter may be specified without using the SOURCE and
UNIT parameters. The codes which are used to indicate the disk unit on which
the object program is to be placed are R 1, F2, R2, or F2.

Note: If the OBJECT parameter is omitted, it is assumed that the object program
is to be placed on the same disk as the compiler.

The following sample COMPI LE statement tells the system that the source program
with the name PROG3 is located on the fixed disk on drive one (F 1).

The parameter, OBJECT·R 1, tells the system to place the object program on the
removable disk on drive one.

Statement Descriptions 23

IMAGE STATEMENT

Function

Placement

Format

Contents

24

To operate correctly, the printer requires characters matching those on the
printer chain to be in a special area of core storage called the chain-image area.
When you replace the printer chain with one having different characters, you must
also change the contents of the chain-image area.

The IMAGE statement instructs the system to replace the contents of the chain
image area with the characters indicated by the st~tement. The characters can be
entered from the system input device, or contained in a source library on disk.
The effect of the IMAGE statement is temporary and the system chain image is
returned to the chain-image area when IPl occurs.

The IMAGE statement can appear anywhere among the OCl statements. In a
procedure, it must precede the RUN statement.

II IMAGE parameters

The IMAGE statement tells the system either of two things: (1) the new chain
characters are to be read from the system input device; or (2) the new chain
characters are to be read from the source library.

The IMAGE parameters are:

format-HEX, CHAR, or MEM

number-value

name-name

unit-code

(Coding only HEX, CHAR, or MEM is preferable for format but HEXADECIMAL,
CHARACTER, or MEMBER can be coded.)

Characters From the System Input Device

If you wish to indicate that the new chain characters are to be read from the
system input device, use the following parameters:

Format: Use the word CHAR to indicate that the characters are in EBCDIC form.
Use the word HEX to indicate that the characters are in hexadecimal form.

Number: The number parameter must be used with HEX and CHAR. It must be
a value which is equal to the number of columns or line positions in the data cards
or the data keyed in following the IMAGE statement that contains the new charac
ters. This number must not exceed 240 when the characters are hexadecimal, 120
when characters are EBCDIC. The name and unit parameters must not be coded.

IMAGE STATEMENT (continued)

Following are the rules for punching or keying the new characters:

1. The characters must begin in column or line position 1.

2. Consecutive'card columns or line positions must be used; however, only
the first 80 columns or line positions of the card or line can be used. Hexa
decimal requires an even number of columns or line positions, two per
character.

3. To continue the characters on another card or line begin the characters
in column or line position 1.

Characters From the Source Library on Disk

To indicate that new chain characters are to be read from the source library on
disk, the format parameter must specify the word MEM.

The following parameters must also be included:

Name: The name parameter identifies the source member containing the charac
ters in the library_ The only way you can place the characters in a source library
is by using the Library Maintenance program. The name you supply in Library
Maintenance control statements is the name used to identify the characters in
the source library.

Unit: The unit parameter must be used with the name parameter. It is used to
tell the system where the disk containing the source library is located on the disk
unit. The codes which are used are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Statement Descriptions 25

26

IMAGE STATEMENT (continued)

Example

1

II
I.ct
rr:7

1

® II
~t.

1

© II

4 8

I~ A6~ 'HI?
F'J. I;: 3

12

XI

The IMAGE statement in example A tells the system that the new characters are
on data cards or keyed in. The format parameter indicates that new characters
are in hexadecimal form; the number parameter indicates that there are 120
columns or line positions containing the new characters.

In example B, the new characters, on data cards or keyed in, are in EBCDIC. The
number parameter indicates that there are 48 columns or line positions contain
ing the new characters.

Example C tells the system that the new characters are to be read from the
source library on disk. The format paramet~r indicates that the new chain
characters are in the source library. The name parameter indicates that the
characters were named CHAIN in the source library. The unit parameter indi
cates that the source library containing them is on the removable disk on drive
one (R 1). Examples of the member specified in example C are the data por
tions of examples A and B. The member itself requires a //IMAGE card with
the characters either in hexadecimal or EBCDIC. The number of columns or
line positions containing the characters must also be specified.

(See Library Maintenance in Part II for restrictions on the name used in coding
MEM.)

16 20 24 28 32 36 40 44 48 52 56 60

tl.~
"IF 7F elF 9~ 1zJ~ 7€. ~b 1.16. 21~ b~ FV AL 11 iF 1E17 ~D IH -;'7: 1711J! Inls; !llL

XS ~9 16_ li:ICj ~~ CI.1 C~ Ie Cl4 C.Ii c~ 7 ~C 15!4 6.14 JlI~ Ixl~ ci~ J!~ c7 18.5 ~17 1r4 In~ 1,e1L L4:

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

I~ A l! CW ~II(4
3~ ~, 78 19~ ~~ IS T VIW X1Y ~& 1>1% JK LM INfl fQ IR-f$*A 1+ I .

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

I~ .. ~~ fill; ~ I Clff A I /tJ I /(1

64

64

64

FORMS STATEMENT

Function

Placement

Format

Contents

Example

The FORMS statement enables you to change the number of lines that the print-
er will print per page. The printer automatically assumes the number of lines
per page specified at system generation time unless a FORMS statement is used
or a user program specifies some other number. This number of lines is effective
until another FORMS statement is used or a user program specifies another number.

The FORMS statement can be placed anywhere among the OCL statements.

In a procedure it must precede the RUN statement.

II FORMS parameters

All of the parameters are keyword parameters (keywords are in capital letters).
The parameters are as follows:

{
5203

DEVICE- 5203L
5203R

LINES-value

DEVICE: The keyword for this parameter is DEVICE. It must be followed by
the name of the printing device. For an IBM 1403 Printer or a single carriage IBM
5203 Printer, either 5203 or 5203L is a valid device name. For a dual carriage
IBM 5203 Printer, either 5203 or 5203L specifies the left carriage and 5203R
specifies the right carriage. You may omit the DEVICE parameter entirely.

LINES: The LINES parameter is used to indicate the number of lines per page.
The maximum number of lines that can be specified per page is 112. The LINES
parameter remains in effect until either an IPL is performed or another FORMS
statement for the same device is read. If a line counter specification is used in an
RPG " program, it remains in effect only for the duration of the program.

In the following FORMS statement, the system is using the left carriage of the
5203 Printer. The statement tells the system that the forms length is 88 lines
per page.

1 4 8 12 16 20 24 28 32 36 40 44 48

II ~ ~MlC; F-V Ilr ~- 1;2 .3L iJIL I~(?' -H18

Statement Descriptions 27

LOG STATEMENT

Function

Placement

Format

Contents

28

OCl statements and message codes are printed on the printer·keyboard. If your
system has no printer·keyboard, the statements and codes are printed on the
printer. The device used to print OClstatements and message codes is called
the logging device. If you want to change the logging device, or specify whether
or not the statements and codes are to be printed, you must use a lOG statement.

The lOG statement tells the system to do one of four things:

Use the printer as the logging device

Use the printer·keyboard as the logging device

Stop printing OCl statements and message codes

Start printing OCl statements and message codes

You can use the lOG statement within any of the sets of OCl statements for
your programs. In a procedure it must precede the RUN statement.

II lOG code

Four codes can be used as parameters. The codes are as follows:

Code

CONSOLE

PRINTER

OFF

ON

Meaning

Use printer·keyboard as logging
device

Use printer as logging device

Stop printing

Start printing

Only one code can be used in one lOG statement. The starting of the logging
device is implied when coding CONSOLE or PRINTER.

When the system reads a lOG statement that contains the OFF code, it stops
printing Oel statements and message codes. The only way you can instruct the
system to start printing them again is by using a lOG statement that contains the
ON, PRINTER, or CONSOLE code. When ON is specified printing resumes on
the last logging device specified. However, the system will suspend logging during
the time that the log device (excluding the 5471) is allocated to a program in
either program level. logging resumes when the program using the log device
goes to end of job.

READER STATEMENT

Function

Placement

Format

Contents

The device used to read OCl statements is called the system input device. The
system assumes that the system input device is the primary hopper of the MFCU.
You must use a READER statement if you want to use the printer-keyboard,
secondary hopper of the MFCU, or the 1442 Card Readl Punch as the system
input device.

The READER statement must not come between the lOAD or CAll statement
and a RUN statement. The READER statement must precede the initial lOAD
or CAll statement or follow the RUN statement, preceding the next lOAD or
CAll statement. If you use the READER statement in a procedure, the system
input device is not changed until the procedure is completely executed. If you
use the READER statement to change the system input device, the device you
specify is used to read source programs, control statements, or OCl statements.
Changing the system input device affects the placement of source programs and
control statements as well as OCl statements.

You must place the READER statement in the current system input device.

II READER code

The codes are:

Code Meaning

CONSOLE Printer-keyboard

MFCU2 Secondary H opper of the
MFCU

MFCU1 Primary Hopper of the MFCU

1442 Card ReadlPunch

Statement Descriptions 29

~==P=U=N=C=H=S=T=A=T=E=M=E=N=T======================;================================~I
Function

Placement

Format

Contents

30

The PUNCH statement enables YOy to change the system punch device.

The PUNCH statement can be pl_(.lfd ~nywhere among the OCl statements.
In a procedure it must precede tht RUN statement.

// PUNCH code

Three codes can be used as parameters. They are:

Code

MFCU1

MFCU2

1442

" ,
,I;"~·'~"""'''<',f..~"""'i,,,,.~,,, .. ,,

Meaning

Primary Hopper of the MFCU

Secondary Hopper of the
MFCU

Card Read/Punch

NOHAl T STATEMENT

Function

Placement·

Format

Contents

HALT STATEMENT

Function

Placement

Format

Contents

*(COMMENT) STATEMENTS

Function

Placement

Format

Contents

Normally the system halts when a program ends. The NOHAl T statement tells
the system to continue by reading the next set of OCl statements without stop
ping, when a program ends. The effect of this statement lasts until the system
reads a HALT statement or an IPl occurs. The effect of the NOHAl T statement
is ignored temporarily when an abnormal job halt occurs. The system reverts to
the NOHAl T mode after a response.

A NOHAl T statement can be placed anywhere among the OCl statements. In a
procedure it must precede the RUN statement. The NaHAL T statement is ignored
if loaded in program level 2.

/I NOHAlT

None (Comments may be entered starting in column 11.)

The HALT statement tells the system to halt when a program ends. The operator
can restart the system when he is ready, and the system continues reading the
next OCl statements.

J

The HALT statement is needed only if you want to cancel the effect of a NaHAL T
statement.

A HALT statement can be placed anywhere among the OCl statements. In a
procedure it must precede the RUN statement. The HALT statement is ignored
if loaded in program level 2.

II HALT

None (Comments may be entered starting in column 9.)

Comment statements are commonly used either to explain the jobs or to give the
operator instructions. Operator instructions are usually given in connection with
a PAUSE statement. Comment statements are printed along with the other OCl
statements. They have no other effect on the system.

You can include, in OCl statements, special statements that contain only com
ments. Comment statements must contain an asterisk (*) in column 1. They can
be placed anywhere among the OCl statements in either a job stream or a pro
cedure.

*comment

The comment can be any combination of words and characters. The only require
ment is that an asterisk (*) be in column 1.

Statement Descriptions 31

PAUSE STATEMENT

Function

Placement

Format

Contents

1& STATEMENT

Function

Placement

Format

Contents

/* STATEMENT

Function

Placement

Format

Contents

32

PAu~e~t~t""'hts~~~'~,placed anywhere among the OCL statements. In a pro
cedu';~j'~l'i',""d '<""\\~p.~Ostatement and precede the RUN statement.

II P Av;i:';,:~.~/l!lf;{~r,jt~:;J'::?'.'
:' ::; ". :'.:: ,: .> .. '/ .:'~~'< '~f:'; ':' ,

None (9q&tn,!'Qtf_;,~e entered starting in column 10.)
'. '. '".;. .' i, ..• ' .:.', .. :~', "

1& statElm,n'~ iIIJ! yt""~~ • precautionary measure. Placed in front of your OCL
set. a l~sl.!tftrn''r:I"t'I~.sthe ~y$tem that a new set of OCL statements is coming.
It prevent~)!~4r)~~~~n~from being read as a part of the preceding set of
~~temen~:;~r~~;A;Ii"attempt to read more data from that device will be block-

:,,';'::!,i:j:PlY'
1& stat~rr;~Pl"":l~,"I!IP~.~f'(juired. Itis recommended. however. that you use them
as theflr~~:!~m~)1\!e~h of the sets of OCL statements for your programs.
They arel"'~~~t~~:!,,;,. procedure.

~'::i!;;i.':' 'f>·~'· (:: ..) ... ~,

1&

/* ct .. 'tl;!nlAAtlt ar.~rl'lot true OCL statements. but are used to indicate the end of a
"""" n","' , It card reader or console.

A /* stat!u.~\tt: the last card of an input data file or program
deck.

/*

None (Comments may be entered starting in column 4.)

DISK FI LE STATEMENT

Function

Placement

Format

Contents

The FI LE statement supplies the system with information about disk files. The
system uses this information to read records from and write records on disk.

You must supply a FI LE statement for each of the new disk files that your programs
create, and for each of the existing disk files that your programs use. The FILE state
ment must follow the LOAD or CALL statement and precede the RUN statement.

II FILE parameters

All of the parameters are keyword parameters. The parameters are as follows
(keywords are in capital letters):

NAME·filename (in program)

UNIT-code

PACK'name

LABEL-filename (on disk)

RECORDS-number or TRACKS -number

{

track number (5444 disk only)
LOCATION- cylinder number }

cylinder numberltrack number
filename

RETAIN-code

DATE-date

HI KEY-highest allowed key fields (on pack)

{
trackslcylinder }

SPLIT- or
tracks

5445 Only

5445 only

The NAME, PACK, and UNIT parameters are always required. The others are re
quired only under certain conditions.

NAME: The NAME parameter is always needed. It tells the system the name that
your program uses to refer to the file. The NAME parameter must be placed on
the first card or line if two or more cards or lines are used for the FILE statement.
(See General Coding Rules for rules on continuation.)

For some of the programs, you must use specific names for certain files.

Statement Descriptions 33

DISK FILE STATEMENT (continued)

Program File Name

Disk Copy/Dump Input COPYIN
Output COPYO

Disk Sort Input INPUT
Work WORK (OPTIONAL)
Output OUTPUT

Assembler Input $SOURCE
Work $WORK
Output $WOR K 2 (optional)

COBOL Input $SOURCE These files
Compiler Work $WORK must be on

Work $WORKX a 5444
FORTRAN Input $SOURCE disk device.
Compiler Work $WORK

RPG II Input $SOURCE
Compiler Work $WORK

1255 Utility Output F1255

1270 Utility Output F7055

RPG II Auto Input $SOURCE
Report Work $WORK

Macro Processor Output $SOURCE

Overlay linkage Input $SOURCE
Editor Work $WORK

Any program Work $INDEX44 (For 5444 file)
using large or
indexed files $INDEX45 (For 5445 file)

34

DISK FILE STATEMENT (continued)

The keyword for the parameter is NAME. It must be followed by the filename
used by the program. The name can be any combination of characters except
commas, quotes, or blanks. The first character must be alphabetic. The number
of characters must not exceed 8. The following ,example shows how the NAME
parameter for a file named FILEA would be coded.

UNIT: The UNIT parameter is always needed. It tells the system the disk that
contains or will contain the file. The keyword for this parameter is UNIT. It
must be followed by a code that indicates the unit. The codes are as follows:

Rl Removable disk on 5444 drive one

Fl Fixed disk on 5444 drive one

R2 Removable disk on 5444 drive two

F2 Fixed disk on 5444 drive two

01 Removable disk on 5445 drive one

02 Removable disk on 5445 drive two

The previous example shows how the UNIT parameter for a file located on the
removable disk on 5444 drive one would be coded.

Statement Descriptions 35

I. DISK FI LE STATEMENT (continued)

36

PACK: The PACK parameter is always needed for disk files. It tells the system
the name of the disk that contains or will contain the file. The system checks this
name to ensure that the proper disk is being used. (For information about how a
disk is given a name, see Disk Initialization in Part \I of this manual).

The keyword for this parameter is PACK. It must be followed by the name of the
disk. The example under NAME shows how the PACK parameter for a file on a
disk named VOL 1 would be coded.

LABEL: The LABEL parameter tells the system the name by which your file
is identified on disk.

If the file is being created, the name you supply in the LABEL parameter is used
to identify the file on disk. If you omit the LABEL patameter from a disk FI LE
statement, the name from the NAME parameter is used.

If the file is an existing disk file, you must supply a LABEL parameter when the
name your program uses to refer to the file differs from the name by which the
file is identified on disk.

Several versions of a file can be created on the same disk and be given the same
name. If the TRACKS or RECORDS parameter you are using in creating a file
is the same as the TRACKS or RECORDS specified for an existing file you must
specify LOCATION. You can reference each of these files by its name and date,
or by its name and location on disk. Both date and location must be unique for

each version. (See Examples 2 and 4 and File Processing Considerations.)

The keyword for the parameter is LABEL. It must be followed by the name of
the file on disk. The name can be any combination of characters except commas,
quotes, or blanks. The first character must be alphabetic. The number of char
acters must not exceed 8. The LABEL parameter for a file named PAYROLL is
coded in the following example.

1 4 8 12 16 20 ·:::~::::::;:·:·24:.:·:···:·:·:·;·.··~ih:::·::;:;·.:.:.:.~.: · 36 40 44 48 52 56

II ~/L~ ~A~~-~ IL~~·~~~~/- 111~~NI~-~L,PA~~-~OLj

TRACKS or RECORDS: The TRACKS or RECORDS parameter is needed for
files that are being created. The parameter tells the system the amount of space
needed on disk for the file.

If you use the TRACKS keyword, you specify the number of disk tracks needed
for the file.

If you use the RECORDS keyword, you specify the approximate number of
records for the file. The total space allocated will be rounded up to full tracks
allowing adequate space to accomodate at least the number of records indicated.

Either of these two keywords, TRACKS or RECORDS, can appear in the FILE
statement, but not both. The keyword must be followed by a number indicating
the amount of space needed.

I:::::::::=D=ISK F=ILE ST=ATEM=ENT=(conti=nued)======~; ~'J::~~;.::~~:: •.. ======11,
If TRACKS is used,. the 1\tjM/!;.f'ilY\U!~t .• 6iil.within the range 1·398 if you are using
full capacity 5444 disk "111ft! using half capacity 5444 disk packs, the

..... 'J.·!I' .. ~iIii--l·~Ut8. If you are using 5445 disk packs, the
• the following example shows how the

fdr;I,'f1l'l:'i!fOiiiiring20tracks is coded.

If RECORDS is us&(!, 1hei1trrriber can be up to six digits long. The RECORDS

f~ii~f~~ii,i;ni:i~;ffi~~_1 i
LOCA TION: The LOCA TIONparametet is not required. It can, however, be
used for files that are beingete.teC;l. LOCATION is required when creating
several versions of a file or Wlienloading an offline multivolume file to packs
which contain other files. (See Example 4.) It can also be used in referencing
one of several files housingli"e sffflt.llail1:le and same size. LOCATION is not
required if sizes dif1er .. ' ." '.. .

For files that are beii1!r ~r ... ,~p~.n;eter tells the system the number of the
track on which the file is to begih., If it!s omitted, the track is chosen for you.

For files that are ,being i~t4{;~.fi).ameter tells the system the number of
the track on which thefil /:"~Wthi~ case, the system uses the track number
to tell one file from another': .. .

The keyword for this patameter i~L,,:aeAtiON. For the 5444 disk the
LOCATION fo~mat is:

LOCATION·track r'1l."T~~r .
\!' ." '.:.~" ··'t~k ~wn1ber must be between

;.'I'I.""Jiitlf-capacity disk) or
:"~!i(fulI.capacity disk). Tracks

.. (jI..,j are'teserved for the system.
" .,. ". " . :' .

For the 5445 disk the l.otAf'f.I~;'~if~l is: Slash is needed to separate
.... :. '".j

.', .. j~' .'&' " cylinder number and track
LOCATION·cylinder "nf;li1'lbir'ltraek nlliriber number (when both are

\ ' . . \. specified

Cylinder ntlMI'.JII~ mult IMt .>\...l'raCk number must be between 0·19.
bet~nH"~:i.it~o<:.rt.Ck number 0 is assumed if track
is teseti,e~1f~'.~'$Y~. ,ihuinber is not specified .

. ,'1·'; .\;,'. . . ,"

Split cylinder file suPpJft~~ fne~5;~{';~ allows for an additional
LOCATION paramete~: '.

LOCATION·file narne
, ",

For a discussion on h~;~t'
specifying split cylindJRtlMi '.

. :. :';;;':~, ":T :':i:' I..; ,

.,p.rameter is used when
't}i/tinder Files .

Statement Descriptions 37

I DISK FILE STATEMENT (continued)

38

RETAIN: The RETAIN parameter is used to classify files according to their use:
scratch. temporary. or permanent.

A scratch file is normally used only once in a program and not retrieved after
the program has ended. A scratch file cannot be used as an input file unless
RETAIN-A is ~pecified. however. a scratch file can be retrieved if a previous pro
gram has defined it as a permanent or temporary file and then redefined it as a
scratch file. To change a permanent file to a scratch file you must use a utility
program. A temporary file can become a scratch file by using a utility program
or by using a RETAIN-S parameter. A RETAIN-A parameter is needed to change
a scratch file to a temporary file. A scratch file cannot become a permanent file
unless it becomes a temporary file first. A temporary file can be changed to a
permanent file only if the file name is changed and copied as a permanent file.
The system will overlay a scratch file if the disk pack is full and/or file space
is needed by a new file or by a system program.

A temporary file is usually used more than once. The area containing a temporary
file can be only given to another file under one of the following conditions:

1. A FI LE statement containing the RETAIN-S parameter is supplied for the
temporary file. This converts the temporary file to a scratch file_

2. Another file with the same LABE L name is loaded into the exact area
occupied by the temporary file but this only changes the data. Space and
location parameters are required.

3. . The File Delete program is used to delete the file.

The area containing a permanent file cannot be used for any other file until the
File Delete program has deleted the permanent file.

A disk file is classified as scratch. temporary. or permanent when it is created.
If the RETAIN parameter is omitted from the FILE statement when the file is
created. the file is assumed to be a temporary file. The RETAIN parameter may
be omitted when accessing an existing file; however. RETAIN-A must be coded
to reactivate a scratch file which changes to a temporary file.

The keyword for the parameter is RETAIN. It must be followed by a code that
indicates the classifications of the file. The codes are:

Code Meaning

S Scratch file

T Temporary file

P Permanent file

A Reactivate scratch file

The RETAIN parameter for a permanent file is coded as follows:

DISK FILE STATEMENT (continued)

11 4 .:.

VI IlL 1111

:: .:
..

III fJ ~
. ::

DA TE: The DATE parameter tells the system the date of a file. It is used to
ensure that the proper version of the file is referenced.

When a file is created on disk, its LABE L name and creation date are written on
the disk as identification. The system date is the date used. (The system date
is explained under DA TE Statement.) More than one file on a disk can be given
the same name. The creation dates of these files must, however, be different.
To reference such a file, you can use its name and date (see Example 4), or its
name and location on disk. If neither the date nor the location is given, the file
having the latest date is the one automatically referenced. '

The keyword for this parameter is DATE. It must be followed by a 6-digit
number representing the date (two more spaces are allowed for punctuation
delimiters).

The date can be cod~ in one of two forms: month-day-year (mmddyy) or
day-month-year (ddrnmyy). You must specify the form when the system is
generated. The date you specify in the DATE parameter must be in that form.
The date can be coded with or without punctuation. For example, July 31, 1971,
might be coded in anyone of the following ways:

073171
310771
07/31/71
31/07/71

Month, day, and year must each be 2-digit numbers but lead zeros in month and
day may be omitted wn.n punctuation is used (7-31-71 or 31-7-71). A blank,
comma, number, or quote cannot b& used to punctuate the date.

To illustrate this patameter, i!I!lsume that two versions of a file are written on the
same disk. In the next example are the NAME, LABEL, and DATE parameters
for two versions of a file on the same disk, one written on April 5, 1971, the
other on August 3,1911. Both files have the same label: F0001.

.... l€ <1.0 ~~ 48 ~~ ,': : :.:.,.::: .64 . .. , IE II I • 'M
l.l,;{1Il 1 ~, T

R~'r
RJ:"II ..

11= f:;;; r{·: ~@I ~p~ ... , If II .1317 ~h !1j/.T ~1J VII 11 II
.::

: .,: I ':. ·'T
I I I I I I I I I I I

HIKEY: The HIKEY parameter must be used when you define a multivolume
indexed file. The highest keyfield for each pack must be entered. For further
information and an example of HIKEY see Multivolume Files under Using DCL.

SPLIT: The SPLit fJl'ratheter is used when creating and maintaining split
cylinder files on a 544$ disk. For further information on SPLIT see
Split Cylinder FiN}s;

Statement Descriptions 39

40

DISK FILE STATEMENT (continued)

Examples

1 4 8

:II/ :F! L~

The following are examples of FILE statements. In each example, the file is
described first, then the corresponding FILE statement is shown.

Example 1: Suppose that each week you create a disk file that contains the
records for the transactions you had made that week. Assume the following
facts about that file:

The name your program uses to refer to the file is TRANS, which is also
the name you want to use to identify the file on disk.

You are placing the file on a removable disk named VOL03.

You intend to mount the disk on drive one.

You want to save the file for use at the end of the month.

The file contains 225 records.

You are letting the system choose the disk area that will contain the file.

The following example shows how the FILE statement for the preceding file is
coded when using a 5444 disk.

12 16 :zo 24 28 32 36 40 44 48 52 58

~A ~e -1 ~A ~S '4 ell(-v OL fl~ N' IT -III 11 Rf T~ IN -1 R~ en IR 111 .5- 1l~

The FILE statement when using a 5445 disk would be:

Example 2: Suppose you had created, on the same disk (VOL03), four versions
of the transaction file described in the preceding example-one for each of the
weeks in February, 1970. Assume the following:

You had created the files on the following days: 2/6170,2/13170,
2/20/70, and 2/27170 (these were the system dates used for each of the
files).

You want to reference the third file (the one created 2/20170).

You intend to mount the disk on drive one.

The file statement you would need is:

60

DISK FILE STATEMENT (continued)

Example 3: Suppose at the end of the month you combine the files referred
to in Example 2, for use in preparing your monthly bills. Further assume the
following:

Your program uses the name TRANS to refer to the file, but you want to
use the name BILLING to identify the file on disk.

You are expressing the amount of disk space as the number of tracks re
quired to contain the file (assume the number is 15), and you want the
file to begin on track 8.

You are placing the file on a removable disk named VOL01.

You intend to mount the disk on drive one.

The following example shows the FILE statement you would use for this file.

1 4 8 12 16 20 24 28 32 3

III Ft ~e W~ ~Ii -1 ~A ~J l.A 18E L 16 I ~IL I ~Ics
1/1 KI~ trr -R 1 'A It Ie -1/ I'ILtri
1// rltl IAI~ li'~ -1 !j k:lc ~T I ~ -I.
1/1 ~I! 17~ IN -7

Example 4: Suppose you want to create two versions of two files on disk and
later to access one version of each file. Further assume the following:

The names your program u~es to refer to the files are AA and BB, which
are also the names you want to use to identify the files on disk.

File AA is being placed on a fixed disk on drive two named FIXED2.

File BB is being placed on a removable disk named REM5.

You intend to mount the disk on drive two.

One version of each file is created on 5111/70 and 5/12/70.

Disk space and location for the files are:

File

AA

BB

Version

5/11/70
5/12/70

5/11/70
5/12/70

Tracks

10
10

20
20

Location

200
210

200
220

You want to access file AA, version 5/11170 and file BB, version 5112170.

Statement Descriptions 41

42

DISK FilE STATEMENT (continued)

The following OCl statements are needed to create the above versions of files
AA and SS and to access a version of each file.

File Processing Considerations

1

1/
II
II

~

I

1/

I

. 8 12 16 2. 2' 2B 32 36 40 44

III. A S I 8

IT 1,Ii H
~ I

~ - , --- Ii -
IA -
IR -

I~
. -

~ "
,-

IT ~ - - ,-

L J --- - , t

1.11 -
'. -

- IN

IF II

Lt1
II -

I -
l -

ill -112
III

LOCATION and space (TRACKS or RECORDS) must be specified when
you are reloading an existing temporary file.

If you are referencing a file by the DATE parameter and space is given, the
space must be equal to the space given when that file was created.

If you are accessing a file by the LOCATION parameter and space is given,
the space must be equal to the space given when that file was created.

You can create several versions of a file with a program by changing the
locations of the files and using different system dates.

You can create different versions of a file without LOCATION if the space
parameters as well as the system dates are different.

The system assumes that a new file is being created if space is given without
LOCATION or DATE and the given filename was found but its space does
not match.

The DATE parameter is only allowed for accessing existing files.

Whenever a load is performed to an existing file, the system date replaces
the previous date for that file.

If a RETAIN parameter is not specified when reloading an existing file,
the existing file classification is retained.

When a scratch file is created, it is not entered in the Volume Table of
Contents (VTOC). After the job that created the file is run, the file is lost.
The way that an S retain type can appear in the VTOC is to change a T
entry to an S by using RET AI N·S in the FILE statement, or to change a T
or P entry to S by using a $DELET SCRATCH statement.

TAPE FILE STATEMENT

Function

Placement

Format

Contents

The FI LE statement supplies the system with information about tape files. The system
uses this information to read records from and write records to tape.

You must supply a FI LE statement for each new tape file that your program creates,
and for each existing tape file that your program uses. The FI LE statement must
follow the LOAD or CALL statement and precede the RUN statement.

/ / FILE parameters

All parameters are keyword parameters. The parameters are as follows (keywords
are in capital letters):

NAME-filename (in program)

UNIT-code

REEL- {
name
NL
NS

LABEL- { filename (on tape)
'character string'

DATE-date

RETAIN-code

BLKL-block length

RECL-record length

RECFM-code (record format)

END-position of tape after processing

{
1600

DENSITY- 800
556
200

ASCII- ~
YES
NO

DEFER- 1
YES
NO

CONVERT- ~ OFF
ON

TRANSLATE- ~ OFF
ON

PARITY- ~ ODD
EVEN

Statement Descriptions 43

44

TAPE FILE STATEMENT (continued)

The NAME and UNIT parameters are always required. The others are required only
under certain conditions.

NAME: The NAME parameter is required. It tells the system the name that your
program uses to refer to the file. The NAME parameter must be placed on the first
card or line if two or more cards or lines are used for the FI LE statement. (See
General Coding Rules for rules on continuation.)

For the Tape Sort program, you must use specific names for files.

File Name

Input INPUT

Output OUTPUT

Work WORK1

WORK2

WORK3

WORK4 (optional)

For the Dump/Restore program, you must use the name BACKUP in the name
parameter. The keyword for the parameter is NAME. It must be followed by
the filename used by the program. The first character of the NAME must be
alphabetic. The remaining characters can be any combination of characters
except commas, apostrophes, or blanks. The number of characters cannot
exceed 8. The following example shows how the NAME parameter for a file
named FICAOUT would be coded:

OCL STATEMENTS

UNIT: The UNIT parameter is required. It tells the system the tape unit that
contains or will contain the file. The keyword for this parameter is UNIT. It must
be followed by a code that indi,cates the unit. The codes are as follows:

T1 Tape unit one

T2 Tape unit two

T3 Tape unit three

T4 Tape unit four

The previous example shows how the UNIT parameter would be coded for a file
that resides on tape unit two.

TAPE FILE STATEMENT (continued)

REEL: The REEL parameter is required for tape input files and optional for
output files. It identifies the tape that contains or will contain the file. The
system uses this parameter to ensure that the correct tape is being used. (For
information about how a tape is initialized and identified, see Tape Initialization
in Part II of this manual.)

The REEL parameter can be coded as follows:

REEL-nnnnnn

REEL-NL

REEL-NS

This format is used for labeled tape volumes. The volume is
identified by coding a maximum of six characters, excluding
commas, apostrophes, and blanks. NS and N L have special
meanings and may not be used as the name of the reel.

This coding indicates a tape file without a label. The first
record of an unlabeled tape must not be an SO-byte record
beginning with VOLl.

This coding indicates an input tape file with a non-standard
label. These labels do not adhere to the IBM Tape Label
Standard. The first record of a non-standard labeled tape must
not be an SO-byte record with VOL 1 as the first four characters.
REEL-NS is invalid for output files.

If the REEL parameter is not specified for an output file, the system assumes the
output tape contains standard labels. If REEL-NS or.REEL-NL is used, the LABEL,
DATE, and RETAIN parameters may not be entered.

Note: User labels are file labels that follow standard header and trailer label conventions
(ANSI or IBM). They are a variation of standard labels with a partially fixed format.
These labels are sometimes provided by other systems. User labels are not checked by
System/3 tape data management and may not be written as part of the label group.

The example under NAME shows how the REEL parameter would be coded for a file
on a tape named TAPE 1.

LABEL: The LABEL parameter tells the system the name (label) of the tape file as
it exists in the header label.

For file creation, the name you supply in the LABEL parameter is used in the header
label. If you omit the LABEL parameter, the name from the NAME parameter is used
unless REEL-NS or REEL-NL is also specified. Up to eight characters may be supplied
in the LABEL parameter.

For existing files, you must supply the label parameter if the name in the tape label is
different from the name your program uses to refer to the file (the NAME parameter).
If the header label contains a name longer than eight characters, only the first eight
characters are recognized by the system for comparison.

The LABEL parameter may not be used with the parameters REEL-NS or REEL-NL.
The LABEL parameter can be coded as follows:

LABEL-name The name entry must begin with an alphabetic
character and the remaining characters must not be
commas, apostrophes, or blanks.

Statement Descriptions 45

46

TAPE FILE STATEMENT (continued)

LAB E l- 'character string' A label may also be identified using special characters.
The character string must be enclosed in apostrophes,
may not contain commas, and is restricted to eight
characters in length. If an apostrophe is used as a
character, it must be coded as two apostrophes.

DA TE: The DATE parameter tells the system the creation date of an input file.
It is usM to ensure that the proper version of the file is used. The date specified
is compared against the creation date contained in the file label. No comparison
is done when DATE is not specified.

For output files, the system date is always used as the creation date. If the DATE
parameter is specified for an output file, the system compares the specified date
with the creation date of the file already on the tape. If no file exists on the tape,
or a file with a different label exists, or the dates do not agree, the system halts.

The date may be coded in one of two formats: month-day-year (mmddyy), or
day-month-year (ddmmyy). The format must match the format of the system
date chosen at system generation time.

The DATE parameter may not be specified with REEl-NS or REEl-NL.

RETAIN: The RETAIN parameter specifies the number of days a file should be
retained before it expires. This number may be from 0 to 999. After the number of
days has elapsed, the file expires and the system allows the file to be written over.
If the RETAIN parameter is omitted, a value of zero is assumed. A value of 999
indicates a non-expiring permanent tape file.

If an attempt is made to write over an unexpired file, the system halts, allowing
the operator to cancel the job or continue. A tape containing a permanent tape file
must be reinitialized before it can be used for output. The RETAIN parameter may
not pe used with REEl-NS or REEl-NL.

BLKL: The BlKl (block length) parameter specifies the number Qf bytes in a
physical block on tape. The block length can be from 18 bytes to 32,767 bytes.
The maximum length is limited to the main storage not occupied by the program
and supervisor. The block length must be an integral multiple of the record length
for fixed (F) and fixed blocked (FB) files (see RECFM parameter). If an ASCII
file is being used, any existing block prefixes must be included in the block length.

REeL: The RECl (record length) parameter specifies the number of bytes in a
logical record. The maximum record length is 32,767 bytes. The minimum record
length permitted for F and FB type files is 18 bytes (see RECFM parameter).
The record length for V, VB, D, and DB type files must include the four-byte
record descriptor.

TAPE FI LE STATEMENT (continued)

RECFM: The RECFM (record format) parameter identifies the format of the input
or output file records. The parameter entries are:

F Fixed length, unblocked records. Logical and physical records are the same
size.

V Variable length, unblocked records. Each physical record contains one
logical record; the logical record can vary in length.

D Variable length, unblocked records in the D-type ASCII format.

FB Fixed length, blocked records. All records are of equal length and all blocks
are of equal length. Each physical record contains more than one logical
record.

VB Variable length, blocked records. Each physical record contains logical
records of various lengths.

DB Variable length, blocked records in the D-type ASCII format.

END: The END parameter specifies the position of the tape after the file has been
processed. The options are as follows:

LEAVE

REWIND

UNLOAD

The tape remains in the position it was in after the last record was
read or written.

The tape is rewound to the load point.

The tape is rewound and unloaded for removal from the tape drive.

If the END parameter is omitted, REWIND is assumed.

DENSITY: The DENSITY parameter is used to specify the number of BPI (bits per
inch) at which files are to be written or read. The parameter must specify the density
at which the tape was initialized. See $TINIT (Tape Initialization Program) description in
this manual. For nine track tapes this parameter affects only the density of non-labeled
output files. When standard labeled or non-standard labeled tapes are used, the tape
hardware will automatically determine the density at which the tape was initialized.
When a tape is initialized to 1600 bpi with standard labels, any file that is written on
that tape will be in 1600 bpi, regardless of the parameter specified for DENSITY.
No error halts will occur if an incorrect nine track density is specified. The parameter
entries are:

1600 - The file is to be written at 1600 bits per inch (valid for all nine track
tape units).

800 - The file is to be written or read at 800 bits per inch (valid for nine track
dual density tape units or for all seven track tape units).

556 - The file is to be written or read at 556 bits per inch (valid for all seven
track tape units).

Statement Descriptions 47

48

200 - The file is to be written or read at 200 bits per inch (valid for all seven
track tape units).

If the DENSITY parameter is omitted, 1600 bits per inch is assumed on nine
track tape units, and 800 bits per inch is assumed on seven track tape units.

ASCII: The ASCII parameter (ASCII-YES or ASCII-NO) is used to indicate to the
system when an ASCII file is being used. If ASCII files are being used, ASCII-YES
must be coded. ASCII-YES is invalid for files on seven track tape units. If this
parameter is omitted or coded ASCII-NO, an EBCDIC file is assumed.

DEFER: The DEFER parameter (DEFER-YES or DEFER-NO) tells the system
whether the file will be mounted on a tape drive when the file is allocated and
opened. If the tape volume is not online, DEFER-YES must be coded. If the
parameter is omitted, DEFER-NO is assumed.

Note: For RPG II object programs, this option should only be used for files
that use the same drive as a table file. All other files are allocated and opened at
the beginning of the program.

Other programs (such as COBOL object programs) which do not allocate and
open all files at the same time, or which do so conditionally by program logic,
should not use the DEFER-YES option.

CONVERT: The CONVERT parameter tells the system whether the data converter
will be turned on or off. This parameter is valid only for seven track tape files.
CONVERT-ON causes seven track data to be processed in eight bit binary form.
The convertor writes three main storage characters as four tape characters, and
converts the opposite way when reading. CONVERT-ON must be specified when
processing variable length records on seven track tape files. Specifying both
CONVERT-ON and TRANSLATE-ON is invalid. If this parameter is omitted,
CONVERT-OFF is assumed.

TRANSLATE: The TRANSLATE parameter tells the system whether the data
translator will be turned on or off. This parameter is valiq only for seven track
tape files. TRANSLATE-ON causes seven track data to be processed in six bit
BCD form. The translator writes eight bit EBCDIC main storage characters as
six bit BCD tape characters and translates the opposite way when reading.
Specifying both TRANSLATE-ON and CONVERT-ON is invalid. If this param
eter is omitted, TRANSLATE-OFF is assumed.

Note: If CONVERT-OFF and TRANSLATE-OFF are specified, only the six low
order bits of the main storage character are written on the tape. When reading
with CONVERT-OFF and TRANSLATE-OFF the two high order bits ofthe
main storage characters are set to zeros.

PARITY: The PARITY parameter is used to specify the parity at which tape
characters will be processed. This parameter is valid only for seven track tape files.
Data conversion (CONVERT-ON) is invalid with even parity (PARITY-EVEN).
If this parameter is omitted, PARITY-ODD is assumed.

Note: The following are the valid combinations for TRANSLATE, CONVERT,
and PARITY parameters.

- PARITY-ODD, TRANSLATE-OFF, CONVERT-OFF
- PARITY-ODD, TRANSLATE-ON
- PARITY·ODD, CONVERT-ON
- PARITY-EVEN, TRANsLATE·OFF, CONVERT-OFF
- PARITY-EVEN, TRANSLATE-ON

SEVEN TRACK CONSIDERA T/ONS

1. CONVERT, TRANSLATE, PARITY, and/or DENSITY must be specified
for an input file if other than the default parameters were specified for
output when the file was built, otherwise, tape runaway or data check occurs.

2. If an output file has REEL·NL on the file card, the reel must have been
initialized with REEL·NL by the $TlNIT (Tape Initialize) program, other·
wise, tape runaway or data check occu~s.

3. If an output file has REEL·NL on the file card and there is a file existing
on the tape, tape runaway or data check will occur if TRANSLATE,
CONVERT, PARITY, and/or DENSITY parameters for the new file do
not match the characteristics of the old file. The tape should be reinitialized
using $TINIT with REEL·NL if thiS occurs.

, Statement Descriptions 49

BSCA STATEMENT

Function

Placement

Format

Contents

50

The BSCA statement allows you to change all BSCA line specifications in your
program. This allows the use of either BSCA line without recompiling the program.
If the BSCA statement is not entered, the line specifications in the program are not
changed.

The BSCA statement must follow the LOAD or CALL statement and precede the
RUN statement.

II BSCA parameter

The parameter is a keyword parameter. The parameter is LINE-code. The codes are
as follows:

Code Meaning

Change all BSCA line specifications to BSCA line one.

2 Change all BSCA line specifications to BSCA line two.

CALL STATEMENT

Function

Placement

Format

Contents

Example

CALL statements are needed only when you want to merge procedures into the
job stream.

To understand the funtion of the CALL statement, you must understand the
relationship between the job stream and procedures. The job stream contains
the OCL statements that control the system. The system reads it either from
cards or the printer-keyboard. Procedures are sets of OCL statements in a source
library on disk. They have no effect on the system until they are merged into
the job stream.

You can modify the procedure identified by a CALL statement, by providing
other OCL statements (procedure override statements, see Changing Procedure
Parameters) after the CALL statement. These statements temporarily modify the
procedure. The last statement of the CALL sequence must be a RUN statement.
The RUN statement is required, however, whether or not you supply other OCL
statements. (Procedures are further explained in Procedures.)

CALL statements can be used in the job stream or in a procedure. They are, in
effect, replaced by the procedures they identify. The last statement of the CALL
sequence must be a RUN statement.

II CALL procedure-name,unit

Procedure-name: The procedure-name is the name that identifies the procedure
in the source library. You supply the procedure-name in the Library Mainten
ance control statements when you use the program to place the procedure in the
library. (See Library Maintenance in Part II of this manual for restrictions on
procedu re-name.)

Unit: The unit parameter is a code. The code indicates where the disk that con
tains the procedure is located on the disk unit. The codes are as follows:

Code Meaning

Rl Removable disk on drive one

Fl Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

There is no CALL statement example here. The following section, Procedures,
contains CALL statement examples.

Statement Descriptions 51

PARTITION STATEMENT

Function

Placement

Format

Content

LOCKOUT STATEMENT

Function

Placement

Format

Content

52

The PARTITION statement is used only in DPF systems and guarantees a minimum
size to program level two for a program in that level.

The PARTITION statement can be placed anywhere among the OCL statements
preceding the RUN statement.

1/ PARTITION size

Size: The size parameter specifies the number of bytes of storage needed for
program level two. (See Loading Programs in a DPF Environment.)

The LOCKOUT statement is used only in DPF systems.

It is used to suspend the other program level to allow fast job initiation in the
program level in which it is entered. Job initiation is slowed if both program
levels use the system transient area andlor disk drive one. The other program
level remains suspended until job initiation is complete.

Note: This statement should not be used when .the active program level is using
time dependent devices such as BSCA and serial I/O channel.

The LOCKOUT statement can be placed anywhere among the OCL statements,
but must precede the RUN statement.

// LOCKOUT

None (Comments may be entered starting in column 12.)

PROCEDURES
Procedures are sets of OCl statements in a source
library on disk. Procedures can be put into the
source library by using the Library Maintenance
program. (See Part II of this manual, Library
Maintenance, Copy Function, Reader-to-Disk.)
Procedures must contain one and only one, lOAD state·
ment. All other OCl statements except 1& are allowed
in procedures. The CAll statement is allowed only in
nested procedures (see Nested Procedures). Object pro
grams loaded from cards (lOAD*) are not allowed
in procedures. The object programs are loaded
from the system input device. However, lOAD*
statements are allowed in procedures.

A maximum of 25 utility control statements can
be included in procedures for the utility programs.
The utility statements must follow the OCl state
ments in the procedure. (See Library Maintenance,
Part II of this manuaL) A RUN statement must be
the last OCl statement in the procedure to separ
ate the OC l statements from the uti! ity control
statements. The RUN statement in the job stream,
rather than the one in the procedure, causes the
system to run the program.

An example of a procedure is shown in Figure 9.
This procedure will be referred to in all of the
following examples. Assume that the name of the
procedure is PROC1. The procedure-name is the
name that identifies the procedure in the source
library. Further assume that the procedure is
contained on the fixed disk on drive one (F 1).

Normal Procedure Call

I

V
I

~I/
II

lI/

To merge the procedure (unchanged) into the job
stream, the statements in Figure 10 would be used
in the job stream.

4 8 12 16 20 24 28 32

Lio 14[tj leN DIM I~ IJ<l2
IFI I1.E 1It1~ ~I! -1Zl 1At. Ir~ IT itJIAi liT -IF IlIA IcIIC
FI LE ~<4 ~Ii IA Cit" 17~ h IL~ 111E L -IT riA t.
1..,;lw IT CH IX I>o((lJI1 IxX I,
III v ~

Figure 9. Procedure Example

36

_IIJ I~I,

lui" /IT

Figure 10. Normal Call for Procedure

Changing Procedure Parameters

I

III)

II/
'III
II/

You can change any of the parameters in any of the
statements in the procedure for one job, by placing
procedure override statements between the CAll
and RUN statements. Procedure override statements
modify the procedure for one job only. For example,
assume you wanted to make the following changes
to procedure PROC1 (see Figure 9):

• In the first FilE statement (NAME-DAl TOT),
change the RECORDS parameter from RECORDS-
1500 to R ECOR DS-1750.

• Change the parameter in the SWITCH statement
from XXX01XXO to XXX10XX1.

Figure 11 shows the statements needed in the job
stream to call and modify PROC1. Note that the
NAME parameter is also supplied in the FILE state
ment. This is necessary to identify the FilE state
ment to which the change applies.

4 8 12 16 20 24 28 32

ItlA LL pl~ Cl 1
FI Lie ~iA I,t:E _Ill AL lril"lT 5-117 I~r~

!.5lk 1fT f'H ~I'l(l>Il d~ Xl
R'JN

Figure 11. Call for Procedure: Changing Parameters

Delete a Procedure Parameter

40

1l1li14

-It.I 1

Besides changing a parameter you can delete a para
meter in a procedure statement entirely if it is a
keyword parameter. To delete a parameter in any
of the statements you must code the keyword and
the hyphen and follow them immediately with a

44 48 52 58 60 64 68 72

I~ Ii C lei"; h:iS -11 151ti lei , RE rlJl IN -p
I~A I" Ie -III 0 IaIll 111 IAIT e-klll Ilia: 141) 1111

Statement Descriptions 53

comma. The statement in Figure 12 deletes the
RETAIN parameter completely.

Figure 12. Deleting a Procedure Parameter

Adding a Statement

I

IV
11/
IV

You can add statements to the procedure by plac
ing the statements you are adding between the
CALL and RUN statements. For example, assume
that you wanted to add a NOHAL T statement to
the procedure. Figure 13 shows the statements
needed in the job stream.

4 8 12 16 20 24 28 32

"l4 f'R ell fl
~It HIA LIT
i«lrll'i.

Figure 13. Call for Procedure: Adding a Statement

Add Missing Parameter
You can omit any of the parameters from all OCL
statements in a procedure. If you do, you must
supply the missing parameters between the CALL
and RUN statements. For example, assume that
the procedure contained the LOAD statement
shown in Figure 14. The statements in Figure 15
would be needed in the job stream to run the
ENDMON program. Note that the entire LOAD
statement did not have to be supplied. Only the
missing parameter was included.

II CALL PROC1,F1
XX LOAD ENDMON,R2

Figure 14. LOAD Statement Missing a Parameter

I " 4 8 12 16 20 24 28 32

II cl4 ILL Iplll llC 1. Fl
/1 ~l> ~~ n", ON
/1 ClI'"

Figure 15. Call for Procedure Supplying a Missing Parameter

Example

1

IV
IV
IV
II
III

4

Procedure override statements are printed on the
logging device along with the statements in the
job stream. Assume that the statements in Figure
16 are used in the job stream. The statements
from the procedu~e would be merged with the
preceding statements and printed as shown in
Figure 17.

Statements preceded by XX represent the pro
cedure statements as they appear in the source
library. The CALL and RUN statements and
any statements which are intended as overrides to
procedure statements or additions to the procedures
begin with II.

8 12 16 20 24 28 32
IA~ II ((" r.t .1

f-I ~IE NA M~ -~ AIL 71111 -1 7~'
l5111 Irr Irl.j '0 Xl! IlIX :z

7
fWW

Figure 16. Call for Procedure Example

XX FILE NAME-DALTOT,UNIT-F2,PACK-VOL04,RECORDS-1500,RETAIN-P
II FILE NAME-DALTOT,RECORDS-1750

54

XX FILE NAME-ACCTOT,LABEL-TOTAL,UNIT-R1,PACK-VOL02,DATE-01/04171
XX SWITCH XXX01XXO
II SWITCH XXX10XX1
II NOHALT
XX RUN
I I RUN

Figure 17. Printout of Sample Case

Nested Procedures
Some procedures are done in the same order every
time a job is performed. Nesting procedures is a
convenient way to link the procedures together
and requires you to call only the first procedure.
Each procedure will call the next procedure until
the job has been completed.

By nesting procedures together several benefits can
be realized.

• Programs are always run in the correct sequence.

• Operator intervention (and chance of operator
error) is decreased.

• File space can be saved. Files used to pass data
from job to job can be scratched after the last
program.

• Files are less likely to be destroyed by running
nonrelated programs between programs of a job.

Here is an example of how nested procedures might
be used. Suppose you want to back up a fixed disk
pack containing files which will be used in the
future. The OCl statements and utility control
statements to copy one disk pack (F2) to another
disk (R2) would look like this if nested procedures
were not used:

I , 10 14 " " 25

II Lif] liD jM AI Nt IF!.
II !litH}

30

II AL LO CA TF TO. -R ~I SO Ull ce. -f/J DB
II ':Nrl

II 1/111 All: 1$ITl I~L E.1i 11Ft
1/ IRUN

JE.

II ~Il; ~O y'~ 'tlN I~ -~ 21J PVI CK -X XX XI.l(I}(
// iE:Nr

II I~ ~1l $C IPY)~1
II RUN
II Co IPt IF~ elk ~~ "M -11= 21 iT In - RI.2
1/ ~wlz:

J5

CT -;)

IAll!f.

I

By using nested procedures these control statements
could be stored on disk and the job could be per
formed by calling only one procedure. Figure 18
shows the three procedures needed to perform the
copy job described. There is only one CALL state
ment necessary in the job stream from the system
input service.

This CALL statement links the job stream to a
master procedure (CPYF22) which is used to call
the procedure necessary to perform the job.
CPYF22 contains three CALL statements that call
the three procedures necessary to copy F2 to R2.
Notice that CPYF22 contains only CALL statements.
Any procedure within nested procedures can consist
entirely of CALL statements and does not need a
RUN statement to indicate the end of the procedure.
Nested procedures allow you to have an unrestricted
number of CALL statements in a procedure. There
fore CPYF22 could have more then three CALL
statements if you felt it necessarY,to add any pro
cedures.

'" .. , 50 55 .. 65

L- Vir o~ .-

-

Statement Descriptions 55

56

Laval 1 Lavel2
System Input Davice

/I CALL CPYF22,F1 CPYF22

/I RUN I' /I CALL DEALlS,F1 DEALIS

/I CALL DEALF1 ,F1!' , l
~\J

/I LOAD $MAINT,F1
/I RUN

\
/I CALL CYF2R2,F1 ~. \ ~

\ ~
/I ALLOCATE

Figure 18. Nested Procedures

Figure 19 is an inventory application of nested
pr'!cedures. A company issues daily reports on
goods bought and sold by calling the DAY pro
cedure. By nesting procedures together a daily
report and a weekly report can be written by
calling the WEEK procedure. Once a month
II CALL MONTH is used to write out daily, weekly,
and monthly reports. Finally, monthly, weekly,
daily, and yearly reports are written once a year by

/I CALL YEAR /I CALL MONTH

Year

/I CALL MONTH Month

/I CALL END1
I'

/I CALL WEEK
,

If CALL MONSUM

END1

Year End

\ Report

Figure 19. Inventory Example

I'
,\

."

\

~, /I END ,
\ \\ DEALF1 \~ ~
\ \\

" \ \
/I LOAD $DELET, F1
/I RUN

\ /I REMOVE
\' /I END

CYF2R2 \~
\ /I LOAD $COPY,F1

\ /I RUN

\ /I COPYPACK •••
/I END

calling the YEAR procedure which nests all of the
other procedures together.

No more than nine levels of CALL procedures can
be nested together. Levels of procedures are deter
mined by the number of CALL statements away
from the system input device a procedure is
located. For instance, in Figure 19 when II CALL
YEAR is given in the system input device, the

/lCALLWEEK /I CALL DAY

Week

I/CALL DAY

/I CALL WEKSUM I'

MONSUM

Monthly
Report

J Day

'\ Daily
~~ Report

\ " ,"'-__ ---I

\~ WEKSUM

\\ Weekly

\, Report

YEAR procedure would be one level away from
the system input device. MONTH and END1 pro
cedures are two levels away from the system input
device when II CAll YEAR is given.

By using nested procedures, fewer control state
ments are needed in the job stream from the
system input device. However, certain rules must
be followed to make nested procedures work:

1. No more than nine levels of procedures are
permitted.

2. Each procedure may have an unrestricted num
ber of CAll statements to the next level of
procedures.

3. Only utility control statements can follow a

RUN statement.

4. Procedure additions or overrides supplied between
the CAll and RUN statements in the job
stream are merged between the first lOAD and
RUN statements encountered in the procedures
(see Example of Nesting Procedures).

5. Any OCl statements permitted before the RUN
statement in the job stream are also permitted
anywhere before the RUN statement in a pro
cedure (see Example of Nesting Procedures).

Example of Nesting Procedures
Suppose you want to decrease operator intervention
by using the NOHAlT statement. In Figure 18 the
NOHAl T statement could be placed between the
CAll and RUN statements in the system input
device. In this case it would be read as an additional
OCl statement for the DEALIB procedure.
However, it could be placed anywhere in the master
procedure, CPYF22, or anywhere before the RUN
statement in the DEALlB, DEAlF1, or CYF2R2
procedures. The rule would still be followed no mat
ter what procedure contained the additional OCl
statement.

Statement Descriptions 57

58

This section is designed to aid you in your use of DCl. The topics described in this
manual involving the use of DCl are:

• Compiling an RPG II program

• Processing a card file

• Creating and processing a disk file

• Processing two disk files

• Processing large indexed disk files

• Processing a disk file that uses external indicators

• Creating and processing multivolume files

• Creating and processing split cylinder files

• Automatic file allocation

• Storing programs and procedures into libraries

• Checkpoint/restart

• Dual programming feature

• Statement examples

For a more complete explanation of the statements, their parameters, and coding
rules refer to Statement Descriptions and Coding Rules in Part I of this manual.

USING oel

Using OCL 59

COMPILING AN RPG II PROGRAM

•

/J
IJ
II

60

After your RPG II program is written and recorded
in cards, it must be compiled. To compile an RPG
II program, two OCL statements are required,
CALL and RUN.

4 8 12 16 20 24 28 32

ill AD * 1/ Ll NA NE -lll ijT1 IS K ~A "K - ilL j. IL 11
RtLW

36

1-11 1

In the preceding example the first statement, II CALL
RPG,Fl, tells the system to get the procedure that
loads the RPG II Compiler from the fixed disk. The
second statement II RUN, tells the system to run the
compiler program. The source deck may follow the
RUN statement or be called from disk using a
CaMPI LE statement.

CREATING A DISK FILE

40

ra

To create a sequential, direct, or indexed disk
file you must tell the system the size of the
file and the use of the file. To state the file
size (using the FI LE statement), two keywords
are available: TRACKS and RECORDS. You
may use one or the other, but not both.

If you use RECORDS, the system calculates the
disk space required and converts it to tracks for
you. If you use the TRACKS parameter, there is
no need for the system to perform these calcula
tions.

A file is classified as scratch, temporary, or perma
nent when it is created. You use the RETAIN para

meter of the FILE statement to tell the system how
to classify the use of a file. If you omit the
RETAIN parameter, the file is assumed to be a
temporary file.

For example, you want to create a master file of
names and addresses. You would code the following:

44 46 52 56 60 64 68 72

1,.1'\ II 41. 61 2~ Fe TA IN -p

(This master file is classified as permanent.)

LOADING AND RUNNING PROGRAMS

I BM Programs
Many IBM programs require only two Oel state
ments, lOAD and RUN.

The following examples show the Oel cards needed
to load and run two IBM programs. (The Disk
Initialization and File Delete programs are discussed
in Part II of this manual.)

1/ RUN

/I lOAD $INIT, F1

-
The Disk Initialization program
is loaded and run.

1/ RUN

/ II lOAD $DElET, F1

The File Delete program is
loaded and run.

11

1/1

I

1111

Object Programs Using Card Files
lOAD and RUN are the only two Oel statements
needed to load and run RPG II programs that use
no disk files. To run a certain job, the object pro
gram must be loaded into storage. To load an ob
ject program that is on cards (object deck), an ...
must follow the word lOAD. (The'" tells the sys
tem that an object deck follows the RUN state
ment.)

For example, only these two statements are re
quired for a program that prints data from a
transaction card file.

Object Programs Using One Disk File

4

IJ. A

F L

~ W

8

To load and run an object program that uses a
disk file, another Oel statement is required:
FI LE. Three items of information must follow
the word FilE:

• The name of the file.

• The name of the disk pack the file is on.

• The location of the disk pack.

For example, you want to load and run an object
program using a disk file named SEQDISK. The
file resides on removable disk pack named VOL 1.
You would code the following:

12 16 20 24 28 32 36

~'*

• At1l1lo 1i CK l (, 1'1U
!!J!

II I
II I

40

Using Oel 61

Object Programs Using More Than One Disk
File

1

VV
II
II I
II

One FILE statement is required for each disk file
used by a program. To load and run an object
program that uses two disk files, two FILE state
ments are required.

In the following example, two disk files are used:
an input file (lNDISK) and an output file (OUT
DISK).

4 8 12 16 20 24 28 32

I" AT ~
36

F/ IE. ~A "'IE. -1 I~~ lis II< I fA elk. -v ilL 1 ~,~ /17 - 1<1
F/ LE. ~JI I~ E. - lul7 ~I S~ ,f AC ~- vr. iLt Uw 17
f(/JN

The first FI LE statement contains information
needed to access the data in that file. The second
FILE statement contains information needed to
create an output file.

-1<1.

Object Programs Using One Disk File and
External Indicators

1

VI

II

II

II/

62

4

The SWITCH statement is used to set external in
dicators (Ul-U8 on RPG " specifications sheets)
on or off. External indicators are used to regulate
when certain functions are performed.

In the following example,you are running a program
using one disk file (lNVMSTR), an inventory master
file.

8 12 16 20 24 28 32 36

l~ At. f*

1-/ :/11: N~ ~~ -/ J I)l r~ -V 0 ' t Ij~ /7 -1/(1.1

~~ JI7 II',~ I

~ ~

In order for the program to perform certain func
tions, such as updating and output, the first exter
nal indicator (Ul) must be turned on. In the
SWITCH statement the eight characters correspond
to the eight external indicators. In this program only
one external indicator (U 1) is used.

40 44 48 52 56 60 64 68 72

I~I= I'ln Itllr. 5- &7 21¢ II II< '1:.7 III ~-f'

40 44 48 52 56 60 64 68 72

Processing Large Indexed Disk Files
When additions are made to a large indexed file, the
amount of time needed to sort the keys of the index
at end-of-job time may be excessive. This sort time
can be reduced by using a work file.

The work file is used to merge the added keys into
the index, and must be large enough to contain all
of the keys added to the file. If the program adds
records to more than one indexed file, the work
file must be large enough to contain all the keys for
the file with the greatest number of additions. The
work file should be located as close as possible to
the index being sorted.

If the indexed file is on a 5444 disk, the work file
must be named $INDEX44 and be located on a 5444
disk. If the indexed file is on a 5445 disk, the work
file must be named $INDEX45 and be located on a
5445 disk. To determine the number of tracks re
quired for the work file, use the following formulas:

256
number of adds + (key length+3) + 24 = tracks for

5444 disk

256
number of adds + (key length+4) + 20 = tracks for

5445 disk

After dividing 256 by keylength+x, the remainder
should be dropped. After the other divisions, round
the quotient to the next highest whole number.

If the work file is not large enough to contain all the
index keys, the keys are sorted in the normal manner
without using the work file. If possible, the work
file should be located on a different disk drive from
the indexed file whose keys are being sorted. If this
is not possible, the work file should be as close as
possible to the beginning of the file whose keys are
being sorted. This minimizes the disk seek time.

The work file can be used with multivolume files.
However, it cannot be located on a pack that contains
one of the offline volumes of a multivolume file. The
pack containing the work file must remain online
while the job is run. The work file must be RETAIN-S.
If RETAIN-T or RETAIN-P is specified, the system
forces it to RETAIN-S.

For small indexed files of 10 tracks or less where the
sort time is negliglible, a work file will not improve
performance and should not be used.

To use this performance option, no change is needed
to your source program. Also, programs need not be
recompiled to use this option; only the additional
OCL FI LE statement is needed.

MULTIVOLUME FILES

File Statements for Multivolume Files
If a file is too large for one disk, you can con
tinue it on one or more subsequent disks. Such
files are called multivolume files. (A volume is
one disk.) Multivolume files can be online or
offline. A file is online if all volumes are
mounted when the job begins. The UNIT and
PACK parameters are equal. An offline file has
fewer UNIT parameters (shares same unit).

Creation
The ways that you can create a multivolume
file depend on the type of file you are creating.
For a sequential and indexed file, the records
are stored in consecutive locations on disk, in
the order that they are read. One disk is filled
at a time.

For sequential files, each volume must be
filled before the next volume is loaded. For
indexed files, each volume need not be filled.
Each indexed volume is loaded until a key field
is reached that is higher than the H I KEY for that
volume, then the next volume is loaded. Indexed
files must be loaded in key field sequence. A halt
occurs if a volume is filled and there is not a
record with a key field equal to the HIKEY for
that volume. For example, suppose the HIKEY
for a volume is 199. You load a record with the
key field 195. It is less than the HI KEY, so it is
loaded on the volume. Next, you load a record
with the key field 200. Record 200 would be
loaded on the next volume, and a halt would
occur. The reason for the halt is that you did
not load a key field record equal to 199 before
you jumped to a new volume. This halt can be
ignored. You can load the next volume and at
some future time insert a key field record equal
to the HIKEY. To insert a record after the load
ing sequence has passed, a random add must be
done.

Using Oel 63

Indexed and sequential files may be either
online or offline.

If using removable disks when creating sequential
or indexed files you can mount a disk, wait until
the system indicates it is filled, then, mount the
next disk. If you have two drives, you can mount
the two disks, wait until the first one is filled, then
replace it with the third while your program fills
the second disk. In either case, you cannot use
more than 40 disks per job.

Space can be allocated on all volumes of a multi
volume file if the volumes are online at the time
of the allocation. Space can also be allocated for
an offline file, other than the initial volume, but
the packs must be empty packs or space (TRACKS
and LOCATION) known to be available. You can
use both fixed and removable disks with anyon
line multivolume file. Space for a volume of a
multivolume file will be reserved after one or
more records are placed in that volume.

Direct files must be online. Direct files are created
in a non-consecutive manner. When creating such
files, you are required to mount all the disks on
your disk unit at the same time. The maximum
number of 5444 disks you could use, therefore, is two
if you have only one drive, or three or four if
you have two drives. The maximum number of 5445
disks is one if you have one drive, or two if you have
two drives.

Processing
The ways in which you can process multivolume
files depend on the method your program uses
to get records from the file. If records are read
from a sequential or indexed file, you can mount
a disk, wait until all of the records have been read
from the disk, then mount the next disk. If you
have two drives, you can mount two disks, wait
until all of the records have been read from the
first disk, then replace that disk with the third
while your program reads from the second disk.
When you are processing files offline the disks must
be removable. When online, any combination of
fixed and removable disks is acceptable, but all
must be mounted and must remain mounted.

Figure 20. FILE Statement for a Disk Multivolume File

64

OCL Considerations

When a file consists of more than one volume, the
FI LE statement parameters require different coding.

Multivolume Disk Files
The FI LE statement for multivolume disk files re
quires that you define and code-additional parameters
for these keywords: PACK, UNIT, TRACKS,
RECORDS, and' LOCATION.

These additional parameters are necessary for two
reasons:

1. When processing disk files contained on more than
a single volume, the system requires information
about each volume in order to perform all the
protection and checking functions necessary.

2. Additional information is needed to determine
and check the sequence in which the volumes
are processed and when they are to be mounted
on the disk drives.

The rules for coding a list of data or codes after a
keyword are as follows:

1. The list must be enclosed by apostrophes.

2. The items in the list must be separated by com
mas. No blanks are allowed within or between
items.

Figure 20 shows an example of lists in parameters.
The file is online.

The PACK parameter requires a list. The UNIT par
ameter may require a list while LOCATION,
TRACKS, HIKEY, and RECORDS require a list
if they are stated. The considerations for using the
lists in these parameters are included in the para
meter discussions following. The functions of the
parameters are explained under Disk FILE Statement.
(Parameters not mentioned here are used as explained
under Disk FILE Statement.)

56 60 64 58 72

FILE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME DISK FILES

PACK

UNIT

The names of the disks that contain or will contain the multivolume file must
follow the keyword PACK. (PACK names must be unique for proper function
ing.)

When a multivolume file is created, the system writes a sequence number on the
disks to indicate the order of the disks. The disks are numbered in the order in
which you list their names in the PACK parameter.

When a multivolume file is processed the system provides two checks to ensure
that the disks are used in the proper order.

1. It checks to ensure that the disks are used in the order that their names
are listed in the PACK parameter.

2. It checks the sequence numbers of the disks used to ensure they are con
secutive and in ascending order (01,02, and so on).

The system stops when it detects a disk that is out of sequence. The operator
can do one of three things:

1. Mount the proper disk and restart the system.

2. Restart the system and process the disk that is mounted if the sequence
is ascending (for consecutive input and update).

3. End the program.

Consecutive input or update sequence numbers are ignored if the file was not
created as multivolume. If the file is multivolume created and the sequence
is ascending but not consecutive, a diagnostic halt is given which allows the
proceed option.

The following is an example of the PACK parameter for an offline multivolume
file that is contained on three disks, named VOL 1, VOL2, and VOL3.

4 8 12 16 20 24 28 .;3~ ~ '~""""""" :,~.. ~

.. ::::::::::::::::::}::::::::::::::: ::::':.: .. ,:.:.:.:.:.:.:.:.::::::.:: ::::::::"::::::::::::::::::: I

The keyword UNIT must be followed by a code or codes indicating the location
on the disk unit that contains or will contain the file. No UNIT parameter may
be repeated. The codes are as follows:

Codes Meaning

R1 Removable disk on 5444 drive one

F1 Fixed disk on 5444 drive one

R2 Removable disk on 5444 drive two

F2 Fixed disk on 5444 drive two

D1 Removable disk on 5445 drive one

02 Removable disk on 5445 drive two

Using Oel

I

65

1

lIlI
1/11

66

FILE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME DISK FILES (continued)

®

®
TRACKS or RECORDS

4 8 12 I. 20

IJ: ." ~~ I' I~ ~ILII

The order of codes in the UNIT parameter must correspond to the order of
names in the PACK parameter.

A multivolume file must not have one volume on a 5444 disk drive and another volume
on a 5445 disk drive. All volumes of a file must be on the same type of disk drive.

When you are creating or processing a sequential or indexed file, you can use
the same drive for more than one of the disks, however, the disks must then all
be removable disks. If you do, you must not repeat the code for the drive in the
UNIT parameter. When the number of codes in the UNIT parameter is less than
the number of names in the PACK parameter, the system uses the codes alternately.

For the 5445 the UNIT parameter can have a maximum of two unit codes.
When two unit codes are given, the volumes must be mounted alternately in
the order indicated by the unit codes. If all the volumes are to be mounted
on the same drive, you specify only one unit code.

If any fixed unit, F 1 or F2, is specified, the file must be online multivolume.

Assume that your program processes an offline file consecutively. Further
assume the following:

The disks containing the file are named VOL 1, VOL2, and VOL3, respectively.

You intend to mount VOL 1 and VOL3 on 5444 drive one, and VOL2
on 5444 drive two.

In the following examples, line A shows the PACK and UNIT parameters for the
file. If all three disks were used on 5444 drive one, the UNIT parameter in line B
would have been used.

4 8 12 16 20 24 28 32 36 40 44 4ll.......... 52

A keyword, TRACKS or RECORDS, must be followed by numbers that indicate
the amount of space needed on each of the disks that will contain the multivol
ume file. TRACKS or RECORDS must be specified. Any multivolume file
load requires a TRACKS or RECORDS parameter whether the file previously
existed or not. The order of these numbers must correspond to the order of the
names in the PACK parameter. For example, assume the following:

Your program is creating a sequential (offline) file on three disks:
VOL 1, VOL2, and VOL3.

The first 50 records are to be placed on VOL 1, the next 500 on VOL2,
and the last 200 on VOL3.

The PACK and RECORDS parameters for the file are:

24 28 32 38 40 44 48 62 68 60 64 88

11 '. '.' ..

12 I .. ~ Ill! I' ~ l51G 1!~lj IJ~ ~ ~~l
I,:,

72

FILE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME DISK FILES (contin",ed)

LOCATION The keyword LOCATION must be followed by the numbers of the tracks on
which the file is to begin on each of the disks you use for the file. The order
of the numbers must correspond to the order of the names in the PACK para
meter. For example, assume the following:

The disks containing the file are: VOL 1, VOL2, and VOL3.

The tracks on which the file is to begin on each disk are: track 198 in
VOL 1, track10 in VOL2, and track 8 in VOL3.

The PACK and LOCATION parameters for the file are shown in the following
example. If you omit the LOCATION parameter, the system chooses the be
ginning track on each of the disks. If LOCATION is specified for one disk, it
must be specified for all disks. If the multivolume file exists, LOCATION must
be given for all disks and must be identical to the LOCATION parameters spec
ified when the file was created.

4

ill]:,
8 12 16 20 24 28 32 36 40 44

III l-1 ~ t -1M v Il E) R S - 'I~" I sis ~ , 15" I ,

48 52 56 60 64 68 72

1/1
III
III

RETAIN

HIKEY

RETAIN-S must not be specified unless the file is online multivolume. If
RETAIN-S is used for online multivolume, it cannot be changed to RETAIN-T
unless also done online_

The HIKEY parameter is used only for multivolume indexed files. HIKEY
limits the highest keyfield that can be put on each pack of a multivolume file.
The following example contains an example of a HIKEY parameter list using
the file used in example A under Unit. In this case the three volumes contain
lists of names. The highest keyfield allowed on the first volume is JONES. This
means that all the records beginning with A and including JONES will be pro
cessed on this volume. Since HIKEY parameters must be in ascending order,
the next volume should contain all of the records with names following JONES
and including NICHOl. The last volume will contain all the records with names
that come after NICHOl.

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

III 1t.~~If.;··· ~1Ji1.r..~Ia;· ... ·.: .. ""lei : I PA 1~-'voJ.j., VOL2. IvOLa'

Using Del 67

1

II
II

68

FilE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME DISK FILES (continued)

4
iF, ~~
WI ~c

8 12 16 20

INA ~~ -M 'U- IL If UI-J

OCl considerations for the HI KEY parameter are:

1. All characters except commas are valid.

2. The list of HIKEY parameters must begin and end with an apostrophe
even if only one parameter is specified. A single apostrophe in a key field
must be written as a double apostrophe in the HIKEY parameter.

3. For each PACK parameter specified, there must be a corresponding
HIKEY keyfield parameter for that pack.

4. The HIKEY fields must be equal in length and must be specified in

ascending order.

5. The maximum length of a HIKEY field is 29 characters.

6. The HIKEY fields must be the same length as the keys on file.

7. Continuation of HIKEY sublists must begin in column 4 of the continuation
card, following the II blank.

S. Comments must not follow the last comma on a file statement where the last
parameter is an incomplete HI KEY sublist.

Packed HIKEY: The packed HIKEY parameter has all the OCl considerations
for HIKEY including the following restrictions:

1. The first character following the HIKEY keyword and dash (HIKEY-) must
be a P to indicate packed HIKEY.

2. All characters in the packed HIKEY must be zoned numerics (0-9).

3. The number of digits in each packed key must be the same.

4. The number of zoned numeric characters per packed HIKEY must not ex
ceed 15, since the maximum packed key field length is S.

The following example shows a packed HIKEY parameter. In the example the
key field length of MVFllE is 2. The HIKEYs are X'OS5F', X'092F', and
X'IOSF' for VOL 1, VOl2, and VOl3 respectively. The first two packed keys
required a leading zero to make the lengths consistent.

24 28 32 36 40 44 48 52 56 60 64 68

IT I 1Rf. R2.' PII C~ - I II" l.t VO L2 Va L:~ I
)

72

)1- pi ala _Ii J rzlt:; 21, 1(6 $! ,

Multivolume Tape Files
The FI LE statement for processing multivolume tape
files requires that you define and code the UNIT and
REEL parameters differently than you would for
single volume files. There are two reasons for this:

1. When processing tape files contained on more than
a single volume, the system requires information
about each volume in order to perform all the
checking and protection functions necessary.

2. Additional information is needed to determine
and check the sequence in which the volumes are
processed and when they are to be mounted on the
tape drives.

When an end of volume condition is reached on a
multivolume file, that volume will rewind to load
point and unload. The message 'EOV Tn' will be
printed if LOG is on (where n = 1,2,3 or 4). If the
drive that is to contain the next volume (whether
the same drive or another drive), is not in a ready
condition, the system will come to I/O attention.
Processing continues when the drive which is to con
tain the next volume is made ready. If you are using
alternating drives, and the next volume is mounted
and the drive is ready when end of volume is
reached, the message is printed and processing con
tinues without stopping.

For multivolume tape files, the UNIT and REEL
parameters of the FILE statement may require a list
of codes. When coding a list of codes, the following
rules must be followed:

1. The list must be enclosed by apostrophes.

2. The .items in the I ist must be separated by commas.

3. Nine and seven track units cannot be intermixed.

The considerations for coding multivolume parameters
are included in the following parameter discussions.
The functions of the parameters are explained under
Tape File Statement. Parameters not mentioned
here are used as explained under Tape File Statement.

Using OeL 69

FILE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME TAPE FILES

REEL

UNIT

~ /1 , Lf ~A ~~

<!: /1 'f I N~ ~J:

CS 1:/ I L. E IVA MIE

70

-(~V

-II NY

The names of the tapes that contain or will contain the multivolume file must
follow the keyword REEL (40 names maximum). If the input tapes are not
labeled or .contain non-standard tape labels, the REEL parameter must be
coded REEL-'NL,n' or REEL-'NS,n', where n is the number of volumes in the
file (99 volumes maximum). For output files, the n in REEL-'NL,n' is ignored.

The keyword unit must be followed by a code or codes indicating the location of the
tape unit that contains or will contain the file. No UNIT parameter may be repeated.
The order of codes in the UNIT parameter must correspond to the order of names
in the REEL parameter. When the number of codes in the UNIT parameter is less
than the number of codes in the REEL parameter, the units are used alternately.

In the following examples, line A shows a tape multivolume file consisting of three
reels. The volumes must be mounted as follows:

INVREEL 1 on tape unit T1

INVREEL2 on tape unit T2

INVREEL3 on tape unit T3

MA 5 Rl: It. - IIf.4 IVR l=lc I IW IV t;E ~ IN VRF :\ ' WJN Irr -'1 Tb 1:3'

,-.A :> I~IE I::l - ~ ~ l3 uN itT \ tT , ~ I

Irt Iw~ A~ ~~ FI -'N II S' liN , T -IT

Line B shows a three-volume file with non-standard tape labels. The volumes must
be mounted as follows:

First volume on tape unit T1

Second volume on tape unit T2

Third volume on tape unit Tl

Line C shows a three-volume file with unlabeled reels. The volumes must be mounted
in sequence on tape unit T1.

SPLIT CYLINDER FILES
To use split cylinder file support, two parameters
(SPLIT and LOCATION) are specified on the FILE
statement. The SPLIT parameter specifies the size of
each split cylinder file. It can also be used to specify
the size of the group of split cylinder files you want'
on disk. The LOCATION parameter determines
where on the 5445 disk each split cylinder file can be
found. For further discussion of split cylinder file
concepts, see IBM Systeml3 Disk Concepts and
Planning Guide, GC21·7571.

Restrictions for Using Split Cylinder Files
1. Split cylinder files can only be direct or sequential

files and cannot be multivolume files

2. Split cylinder files can only be used with the 5445
disk and not the 5444 disk.

3. TRACKS or RECORDS parameters must not be
specified.

4. Labels must be unique. Therefore, the DATE
parameter is used only to further qualify the split
cylinder file. The file date is always the current
system date for the job.

5. When processing the file, the block length
cannot be longer than the space available on
one cylinder of a split cylinder file.

Creating the First Split Cylinder File in a Group
The SPLIT parameter is required when creating the
first split cylinder file in a group of split cylinder
files. The LOCATION parameter is optional.

The SPLIT parameter entries are:

SPLIT-tracks per cylinder/number of cylinders

The tracks per cylinder entry specifies the amount of
space needed on each cylinder for the first split
cylinder file. The cylinders entry shows the number
of cylinders needed for the whole group of split
cylinder files to be specified.

The LOCATION parameter is optional since the
system.will find a starting location for the split file
group. However, if you want to specify a particular
cylinder, you may.

The LOCATION entries are:

LOCATION-cylinder number/track number

The split cylinder file group must always start at
track O. Since 0 will always be the entry for track,
you can omit it from the LOCATION parameter and
use:

LOCATION-cylinder number

File Statement Example: First Split Cylinder File in a
Group

Must be unique name. File is temporary file.

4 tracks per cylinder are needed
to contain this file; 3 cylinders
are needed to contain the series
of files.

~ , II I I

'\ Thl' m. w;U ,~'" ." FI", mL. '~" ."
volume 1, drive 1. cylinder 5, track O.

lOCATION is optional
(see Coding Notesl.

Using Oel 71

Coding Notes:

1. On the SPLIT parameter, tracks per cylinder,
must be 1-19 and the number of cylinders speci
fied must be 1-199.

2. On the LOCATION parameter, the cylinder num
ber must be 1-199 and the track number, if
specified, must be O.

3. LOCATION-5 could be the location entry in this
example since track 0, the required track entry,
need not be specified. The LOCATION parameter
itself is optional.

Creating Other Split Cylinder Files
To create the rest of the split cylinder files in a group
both the SPLIT and LOCATION parameters are
required. The SPLIT parameter must be in the
format:

SPLIT-tracks per cylinder

This entry, tracks per cylinder, indicates the number
of tracks needed on each cylinder for the file
specified.

The LOCATION parameter must be the filename of
either the first split cylinder file in the group or any
other split cylinder file in the group that was created
in a previous job.

LOCA TI ON-fi lename

File Statement Example: Other Split Cylinder Files

Must be unique name.

72

I I I I

This file will reside
on volume 1, drive 1.

I I I

Coding Notes:

1. On the SPLIT parameter, tracks per cylinder must
be 1-19.

2. On the LOCATION parameter, the filename must
be the name of a temporary or permanent split
cylinder file in the same group.

Accessing Existing Split Cylinder Files
To access existing split cylinder files, the SPLIT and
LOCATION parameters are not required. Their use
would only be needed to further qualify the file
being accessed.

Loading to Existing Split Cylinder Files
To load to existing split cylinder files,- the SPLIT
parameter is required and the LOCATION may be
required or optional. The SPLIT parameter specified
for loading must agree with the SPLIT parameter of
the existing split cylinder file. If the format of the
SPLIT parameter is tracks per cylinder/cylinders, the
LOCATION parameter is required and must match
the cylinder number/track number of the existing
split cylinder file. If the format of the SPLIT para
meter is tracks per cylinder, the LOCATION para
meter is optional.

Scratch Split Cylinder Files
Split cylinder files may be created as temporary or
permanent files and in subsequent jobs made scratch
files. However, the scratch files remain on the 5445
disk only until the area is needed for the allocation
of a new file. Then, the scratch split cylinder file is
deleted. If you have scratched split cylinder files
and you want to make sure they are not deleted, you
may reactivate them to temporary files by using a
RETAIN-A on the FILE statement.

File is a temporary file.

4 tracks per cylinder are needed for this
file. 4 tracks per cylinder on 3 cylinders
(specified on first split cylinder file) means
that File B has 12 tracks allocated to it.

Filename of a split
cylinder file already
specified.

AUTOMATIC DISK FILE ALLOCATION
You can allocate disk space for a file by determining
the size of the file and the location of an available
number of tracks that can contain that file. (If you
have planned the location of your files, you know
where files are located and the tracks that are
available for further allocation. The Disk File
Layout Chart, GX21-9108, is available to docu
ment your file locations.) After you have deter
mined where to place your file, you can code the
LOCATION parameter of the FILE statement to
tell disk system management on which track the
file is to begin. Figure 21, part A, is a sample
FILE statement containing a LOCATION para
meter to tell disk system management that
F I LEA is to be located on disk VOL 1 beginning
on track 10.

If, as in Figure 21, part B, no LOCATION para
meter is coded, F I LEA is located on the disk pack
automatically for you. The process used by disk
system management to allocate file space for you
is known as automatic file allocation.

COMPI LING A SOURCE PROGRAM AND
STORING IT IN AN OBJECT LIBRARY

®
@

The COMPI LE OCL statement tells disk system
management to:

1. Compile a source program from a source
library and store the object program in an ob
ject library, or

2. Compile a source program from cards and store
the object in an object library.

1 4 8 12 16 20 24 28 32

lIIi
II '1:1 lJiI= IA I' le~ IJ 1.1' .J; ,,. /(-Ivlt IL.:I II III
iJI '1:, 1L~ 'Nh~ -J: 1 ~~ J~ ,.., ~- III~ Lt IJ u HI

Figure 21. File Statement and Use of the lOCATION Parameter

36

17-V<
7- IRIJ

The format of the COMPILE statement looks like
this:

{Rll {Rl'}
/I COMPILE SOURCE-name,UNIT- ~~ f OBJECT-i ~~

1)17
li1

The SOU RCE keyword parameter is used if the
source program is located in a source library. You
must supply the same name given to the source
program when it was stored in the library by the
Library Maintenance program. The UNIT para
meter must be used with the SOU RCE parameter
to identify the disk location of the source program
to be compiled.

If the SOURCE keyword parameter is not used,
the source program is assumed to be on cards
following the RUN statement in the job stream.

The OBJECT keyword parameter tells the system
where the disk which will contain the object
program is located. If the source program is on
cards, the OBJECT keyword parameter is the only
parameter which can be specified. If the OBJECT
keyword parameter is omitted in either case, the
object program is placed on the same disk pack as
the compiler.

For example, for RPG II programs, the name assigned
to the object program in the object library is the name
you assigned in the Program Identification (columns
15-80) in the RPG II Control Card. If you did not
assign a name in these columns, RPGOBJ is assumed.

40 44 48 52 56 60 64 68

-~ ~ J ~iI'I I,.I.A: ." :1\ - jl(z
I" /I ;,oil Ic_ ~a

Using DCl 73

Sample Statements

1

l't
II
II I
II I

/~
/ I

/I
1/
/I
/I

74

5

4 8 12 16 20 24 28 32 36

~l. i£ 1(11' 6, Ft
'r1IJ 1l.IF Ie;. -C; AL Is, NI 17 - ~l:l I."

Xl}, I'J

This sample job stream tells the system that the
source program named SALES is located on a
fixed disk on drive one (Fl). The OBJECT-Rl
keyword parameter tells the system to place the
object program on a removable disk on drive one
(Rl).

LO AD $R Pf!) F-t
CO fliP ILE 08 JE C!T -R!
f!r LIE I" .4 IH -~ I"~ RII(aN IT - Fi Pit CK -I~
J:ir LE. 1"4 IME -~ 50 uR CE I" I IT - If I. PI! ell(
Rulli

IUR CE DE CK)

iF

-1=

This sample job stream compiles a source program
on cards and stores it in an object library on R 1.
If the OBJECT parameter was not coded, the pro
gram would be compiled and placed into the
same object library as the compiler (Fl).

1F-

ilf

40 44 48 52 56 60 64 68 72

T'_ ~1

t IRE Til ITN -s 17 ~ 4C 1(15 - 2 Itt
I.lf .l RE Til IN -Is IT RA Kls - 2111l

LOADING PROGRAMS IN A DPF ENVIRON
MENT

A program can be loaded into either program level
first. You tell the supervisor which system input
device contains the job streams for the programs
by selecting the device on the Dual Program Control
Switch. (Refer to the IBM Systeml3 Disk System
Operator's Guide, GC21-7508 for further operating
procedures.) When preparing your job streams,
you should be aware of the following OCl consider
ations:

OCl CONSIDERATIONS FOR LOADING PROGRAMS IN A DPF ENVIRONMENT

DATE statement

LOG statement

The DATE statement you use as an IPl statement to set the system date must be
supplied with the first program loaded in one program level. The DATE statement
must precede the set of statements for the first program. In the device associated
with the other program level, a DATE statement must not precede the sets of
statements for the programs being run in that level.

A DATE statement that temporarily changes the system date can be used within
the set of Oel statements for programs in either program level. This DATE
statement applies only to the program for which it is used.

lOG statements can be placed anywhere among the statements in either job
stream. There are, however, certain restrictions on their use.

Only lOG statements for program level 1 can tell the system to use a dif
ferent logging device. Only ON or OFF can be specified in program level 2.
The device used for level 1 is also used for level 2.

OCl CONSIDERATIONS FOR lOADING PROGRAMS IN A DPF ENVIRONMENT (continued)

NOHAl T statement

HAL T statement

IMAGE statement

FORMS statement

lOAD statement

lOCKOUT statement

PARTITION statement

LOG must be on for both program levels before logging can occur. If a
LOG statement for either program level stops the logging function, logging
is stopped for both levels. The program level that turned the logging device
off must turn it back on before logging can resume. If both levels specify
OFF, then both program levels must turn the logging device back on before
logging can resume.

When the printer is the logging device, OCL statements and message codes
are not printed if the program in either level uses the printer as an output
device.

The following example shows sample LOG statements in a job stream:

I 4 8 12 16 20 24 28 32

/1 L !"c;. Ii III I !AI 17~~
1/ L I,., A I" ltlR ~~11 1
1/ ~ 1J
11/ ~ G "if!F
II/ A It: I~'D 11'1<1:11 I~ 1
II J Iii Ic.N
II Ii 1(;.6 ~

Note: The first LOG statement indicates that the printer is used as the logging
device while program PROG1 is being run. OCL statements and error messages
are not printed for program PROG2 because of the second LOG statement. The
third LOG statement causes the logging device to be used again.

The NOHAL T statement is ignored for program level 2. The program in this
level always stops after each job.

The HALT statement is ignored by program level 2.

The IMAGE statement is invalid and the job cannot be run, if the other level has
the printer allocated to it.

The FORMS statement is invalid and the job cannot be run, if the other level has
the printer allocated to it.

The LOAO* statement cannot be used in program level 2.

The LOCKOUT statement is used only on a OPF system. It is used to suspend the
other program level to allow faster job initiation in the program level in which it is
entered.

The PARTITION statement is used only on a OPF system. It is used to guarantee
a minimum size to level 2 for a subsequent program in that level.

Using eeL 75

OCL CONSIDERATIONS FOR LOADING PROGRAMS IN A DPF ENVIRONMENT (continued)

Supervisor Supervisor

Program Level 1 Program Level 1

Unused Area Unused Area

1--------------------

76

+
Storage needed for
Program Level 2

I (a minimum of 5K bytes

Program Level 2 + (a minimum of 5K bytes I
I for systems with 16K bytes or

I
of storage is reserved) I

I more of main storage.
i

Without a PARTITION Statement With a PARTITION Statement

If level 1 is not using the storage and a If a PARTITION statement is used, the
assigned storage can only be used by the
program in level 2. It is reserved. Even
when the program in level 2 comes to
end of job that storage is reserved for
future programs in level 2.

program is loaded into level 2, it is assigned
the number of bytes requested by program
attributes or a minimum of 5K bytes for systems
with 16K bytes or more of main storage. When
the program in level 2 comes to end of job, the
storage for level 2 is no longer reserved and
level 1 can use it.

If you do not use a PARTITION statement and, therefore, do not indicate the
minimum size of program level 2, the system automatically assigns, during
execution, the storage needed to level 2 or a minimum of 5K bytes for systems
with 16K bytes or more of main storage. You cannot submit a PARTITION
statement in program level 2 or when program level 2 is processing. In a
procedure the PARTITION statement must follow the LOAD statement and
precede the RUN statement.

The format of the PARTITION statement is:

II PARTITION size

You must state the minimum number of bytes of storage you want to save for
program level 2. The number must be equal to or greater than 5120. The

amount of storage you specify is rounded to the next highest 256 byte increment
by the supervisor, ifit is not a multiple of 256.

OPF Considerations for 12K Systems
All programs require 5K bytes of storage for initia·
tion and termination even though a program may
occupy less than 5K. System programs use this
storage for performing system functions just prior
to loading the user's object program (initiation) and
again immediately following the end of object pro
gram execution (termination).

This 5K requirement also affects DPF. For inde
pendent initiation and termination of a program on a
DPF system, at least 5K bytes of storage must be avail
able for each program level, regardless of the size of
the program to be executed. If a program needs less
than 5K while another program requires the remain
ing storage which is 5K or larger, the smaller pro-
gram must be initiated first so that the storage re
quired by the system for initiation will be available.
The system can then use all the storage not re-
quired by the smaller program for the larger program.
However, the smaller program must wait for termin
ation of the larger program, so that 5K is available
for the smaller program's termination.

In a 12K DPF system only limited independent
initiation and termination is allowed. With a 4K
minimum size requirement for the supervisor only
8K is available for user programs. Independent pro
gram initiation and termination for each program
is possible if each program being run occupies 3K
or less of storage. The remaining 2K of storage is
used alternately by either program to satisfy the
5K system requirement. If one program needs more
than 3K, the smaller program must be initiated first
and can have a maximum executing size of 3K. The
larger program is then initiated and can occupy the
remaining storage. The larger program level must
be terminated before the smaller program level.

Sample Job Streams
Suppose you had four jobs to be run requiring the
I/O shown in Figure 22. Jobs 1 and 2 and Jobs
3 and 4 can be run together, because they do not
require the same I/O devices. If Job 2 finishes
before Job 1, you could run Job 4 because Jobs 1
and 4 do not require the same devices. If, on the
other hand, Job 1 finishes first, Job 3 could not
be run with Job 2, because both jobs require the
printer for output.

Figure 23 shows the job streams required to load
the four jobs. Assume the system has the mini·
mum system configuration plus the 5471 Printer·
Keyboard and dual drives. The Dual Program
Switch indicates from which device OCl statements
are read. M FCU refers to hopper 1. At system
generation time P·KB was assigned to the 5471
Pri nter-keyboard.

Program
Level 1

Program
Level 2

JOB1

An inquiry
program that:

• Reads printar·
keyboard.

• Reads disk.

• Writes printer·
keyboard.

JOB2

An inventory
updating program
that:

• Reads cards.

• Reads disk.

• Updates disk.

• Prints.

Figure 22. Job Scheduling for OPF

JOB3

A stock status report
that:

• Reads disk.

• Prints.

JOB4

A detail punching
job that:

• Reads cards.

• Punches cards.

Using· OeL 77

1 • 8 12 ,. 20 24 28 32 3B 40 52 .. 00 72 7B 80 82 ..
E P 0 I ~

P S 'ff p , CL R,itIi -

IT '1- -, s
iii I 11 : ,
1"1 I~ , I -

I FIL IA ~ , -F - I

I' () $ L S I - , hi,
I"

u L ,
It: Ik'I ,.

p S ,
I 14 p 11; D D , 0 ,

IL IA -, , - - IT
T 17 - - IA "

,
11/ 16 - I" s I~ , I 0

" IE: II/ I~ JO
~----Id of -- --

H W , A L HIS

/I 14 • F l S IUS Ie , , -
I IN - U - C , 12 .. , II f ~ o " ~ , If

IA. IJ

N ISP A L SS L III -
S

A D liN

II IE . - t" L - It Ie IF F D~ C
/ ICI

- t -- -
l!! .- - -

Figure 23. Sample Job Stream

78

Restart Procedure RESTARTING A CHECKPOINTED PROGRAM
Checkpoint is a means of recording the status of a
problem program at desired intervals. Restart is a
means of resuming the execution of the program
from the last checkpoint rather than from the begin
ning. if processing is terminated for any reason (with
the exception of a controlled cancel) before the
normal end of job. For example, a power failure may
occur and cause an interruption.

To restart the interrupted job at the last checkpoint,
submit the following OCl statements:

II lOAD $$RSTR, unit
II RUN

The unit in this example is a pack with module
$$RSTR. If an IPl occurs it must be from the pack
with the active checkpoint.

Programming Considerations
• CheckpointlRestart enables the user to restart a

checkpointed program from the last checkpoint
taken provided no intervening program executions
have taken place.

• Sufficient disk space is allocated by Library
Maintenance on a checkpoint system pack (5444)
at System Generation or Library Maintenance
time to allow one active checkpoint. On a system
with Checkpoint and Inquiry, the disk space will
be used by both functions. The checkpoint pro
gram cannot be an inquiry evoking program since
the disk space is used by both facilities.

If an intervening program is run, an IPl must occur
and be from a pack other than the pack that contains
the active checkpoint. Programs executed under con
trol of the new IPl system must not access disk vol
umes used in the active checkpointed program or
modify the object library where the checkpointed
program resides.

Other OCl statements that may be required are the
PARTITION and lOG statements.

• Checkpoint requests are accepted only in program
level 1. Check pointed programs must be restarted
in program level 1. If program level 2 is used to
execute a checkpointed program, the checkpoint
requests are ignored.

OCL CONSIDERATIONS FOR USING CHECKPOINT/RESTART

PARTITION statement

LOG statement

A PARTITION statement may be required at restart to guarantee
the required minimum level 2 size. See Loading Programs in a
DPF Environment for further information on the PARTITION
statement.

A halt will occur if restart is attempted without sufficient
space in program level 1. An immediate cancel is taken.

Checkpoints can only be taken in program level 1. To
restart a checkpointed program, program level 1 must be
used. If level 2 is used to execute a checkpointed program,
the checkpoint requests are ignored.

Restart requires 5K of storage, therefore level 2 must be
such that level 1 has 5K.

A lOG statement may be required at restart to reestablish the
logging device. See LOG Statement under Statement Descrip
tions and Loading Programs in a DPF Environment for further
information on the lOG statement.

Using Oel 79

STATEMENT EXAMPLES
This section shows an example that illustrates
some of the uses of the OCL statements. The
example consists of a series of jobs. The jobs in
volve three files: customer, inventory, and transac
tion. The customer file contains such information
as customer names and addresses, total amounts
of charges over a period, and total amounts of
payments over the same period. The inventory
file contains such information as item numbers
and descriptions, prices of the items, and the
numbers of items in stock. The transaction file
contains such information as orders for items, re
fund orders for items returned, and customer
payments. The transaction file is used to update
the inventory and customer files.

Example
The OCL statements for the jobs are shown in
Figure 24. Sets of statements in the figure are
numbered. The explanations corresponding to
those numbers are given in the following section.

Explanation

80

1. The DATE statement supplies the system date,
10/20171. It must be read by the system before
the first LOAD or CALL statement after initial
program load.

1 • • 12 , . '" 2 • 2. 32

{ I rr ICim 1

t
I
I , II I

/I
u , , A S

<
II

~
I L If)

I III
C II S I

~ I I lZ s / 11
U

{II O'll

figure 24 (Part 1 of 41. Oel Statement Example

36 '" ..

I 17

I

1X

2. Two programs are being compiled: one that
transfers the customer file from cards to disk;
and one that transfers the inventory file from
cards to disk. The OCL statements for the
RPG II Compiler are in a procedure called RPG.
A CALL statement, therefore, is used to instruct
the system to read the procedure each time the
compiler is to be run. The procedure is located
on the fixed disk on drive one.

The RPG II source programs following each set
of CALL and RUN statements are input to the
compiler. Like a" input, each source program
must be followed by a /* card. However, to
be safe, /& statements were used before each
LOAD and CALL statement in case the /* cards
had not been placed after the source programs.

3. In the next two jobs, the object programs just
compiled will be run. The comment and PAUSE
statements are to remind the operator to place
the object- program cards after the correspond
ing sets of OCL statements.

4. The system stops, temporarily, after each of the
preceding compilations, giving the operator
time to ensure that the compilations were
successful. However, there is no need for the
system to stop after the next few jobs. A
NOHAL T statement, therefore, is given at
this point.

.. 52 .. •• 12 76 80

I)

10 IS)

T 1/

5. The two object programs previously compiled
are being run to transfer the customer and in
ventory files, respectively, to disk.

In each case, a disk file is being created. Both
files are permanent. The name that will iden
tify the customer file on disk is CUST; the
inventory-file name is INV. The date for both
files will be 10/20/71.

1 . 8 12 16 20 2. 28 32

I
II ~

36

II IL II -c J - J IN -Fj
1/ \'.I

IJ c 0 A (A ~FIE. s s e
I

17 All. S (US Ie I L)

I

I - - -
1/
I ilZ -~ --I TVi PAc -vo 2! I - 11

OJ) 0 N ~ I Vic E.
I
I I" I -c C
I , 1

T Ill. S (J ~I'VI- _) +~ / ,

I
/1 LL P6 IF
I

A (ANS 5 ,
I

1'1 PI III Q j\1 I N,'I ~
II Iii I

I

Figure 24 (Part 2 of 41. OCl Statement Example

1 . 8 12 16 2. 2 • 28 32 36

IW- -
III ~

'" If IlL ~ -11 5 -YoL2 1/ I - L
/I ~ ~

j (iA S E- rr S
/ --

17J 17 IA S (I W
/

1

/I ~ L

I
III' III)

/I If IlL ~ -I rT) 8 - SI -
I If IlL I 21 I

1/ I U I L- S, C -
I ~ ~

~ ~ p C ,IF' ITI 5

Figure 24 (Part 3 of 4). OCl Statement Example

40 ..
: 11~

I

1

5- ~

IL 0
i

1

I I

-

.. ..
, -

I N L

1 I -
L.2, '17-

The cards containing the records to be trans
ferred to disk are being read from the same
device as the DCL statements. In each case, the
cards must immediately follow the program
that reads them. If the programs had been
loaded from disk, the cards would have fol
lowed the RUN statement in each case.

.. 52 56 60 .. 6B 72 76 80 84

I -
._.- - - - -

IR 1 --

I 1.1<

I --- - - T

,
I

17 I -p I
,

,
- - ,

IS)
-f I

I

I I
+ ----

-

, I i
I ,

1 , I

I)

E. T C F ~ 1/ ~ -
I
L

.. 52 .. 60 M .. " " .0 ..
I +tt + 1

L _I + !
, 1

IS ,
I

I I r- !
,
,

- ~ tT

- ~ Ia I1J

i -
- - -- [1

I It I I-

I ' I 1 !
I , II I I
I I U I J

Using Oel 81

6. A program that transfers a transaction file,
TRANS, from cards to disk is being compiled.
Because the resulting object·program cards are
to be placed with the next set of OCl state
ments, comment and PAUSE statements are
used to remind the operator.

7. The transaction file is first transferred from
cards to disk, and then sorted on disk by the
Disk Sort program .. A HALT statement pre
cedes the sort job so that the system wi II stop
after the sort job. This gives the operator a
chance to check any diagnostic messages to en
sure that the sort was successful. The HALT
statement remains in effect for the remaining
jobs.

1

The INPUT and OUTPUT files are the same.
The transaction file is read, sorted, and then
written back on the same area of disk.

1 • 8 12 ,. 2. 24 28 32

I

" P I
I

(I

" -

" 1
/I I I , - I I -

I I S - I
1/

I

-

Figure 24 (Part 4 of 4). DeL Statament Example

82

J8

I)

1

The sort specification cards following the
RUN statement are input to the Disk Sort
program. Like all input, the last card must be
a /* card.

8. The program that updates the inventory file
with information from the transaction file is
compiled. Comment and PAUSE statements
again remind the operator to include the ob
ject-program cards with the next set of OCl
statements.

9. The program just compiled is run to update
the inventory file. This program can also print
the transactign-file records. The printed out
put file, however, is conditioned by external
indicator U 1. Because the SWITCH state-
ment sets U1 on, the transaction records will
be printed. If the SWITCH statement had not
been used, the indicator would have remained
off and the records would not have been printed
(external indicators are all initialized off at
IPl time) .

.. 52 56 •• 64 6. 72 76 .0 a.

~

PART II. SYSTEM UTILITY PROGRAMS

System Utility Programs 83

84

INTRODUCTION TO SYSTEM UTILITY PROGRAMS

The Disk System includes a group of disk resident utility programs. These pro
grams do a variety of jobs, from preparing disks and tapes for use to maintaining
the system libraries. The utility programs are:

• Tape Initialization

• Tape Error Summary Program

• Disk Initialization

• Alternate Track Assignment

• Alternate Track Rebuild

• File and Volume Label Display

• File Delete

• Disk Copy/Dump

• Dump/Restore

• Library Maintenance

• 5445 Data Interchange Utility

The information for every program is divided into five sections:

• Control statement summary

• Parameter summary

• Parameter descriptions

• OCL (operation control language) considerations

• Examples

TO WRITE UTILITY CONTROL STATEMENTS
To write utility control statements (see Control Statements), use the sections in the
following way:

1. Look at the Control Statement Sl!mmary to determine which control statements
and parameters apply to the program uses you are interested in. (The program
uses are stated in the text preceding the Control Statement Summary.)

2. If you need information about the contents or meanings of particular parameters,
look at the Parameter Summary.

3. If you need more detailed information about parameters, read the Parameter
Descriptions following the Parameter Summary.

4. If you need examples of specific jobs, look at the Example section. All examples
show the OCL statements and utility programs for specific jobs.

5. To find information concerning the use of the utility programs, refer to
DCL Considerations for the necessary OCL statements.

System Utility Programs 85

86

Control Statements
All of the programs require utility control statements, which you must supply.
These statements give the program information concerning the output you want
the program to produce or the way in which you want the program to perform
its function. The programs read these statements from the system input device.
They must be the first input read by the programs.

Every control statement is made up of an identifier and parameters. The identifier
is a word that identifies the control statement. It is always the first word of the
statement. Parameters are information you are supplying to the program. Every

parameter consists of a keyword, which identifies the parameter, followed by the
information you are supplying.

Coding Rules
The rules for constructing control statements are as follows:

1. Statement identifier. II followed by a blank should precede the statement identi
fier. Do not use blanks within the identifier.

2. Blanks. Use one or more blanks between the identifier and the first parameter.
Do not use them anywhere else in the statement.

3. Statement parameters. Parameters can be in any order. Use a comma to separate
one parameter from another. Use a hyphen (-) within each parameter to separate
the keyword from the information you supply. Do not use blanks within or be
tween parameters.

4. Statement parameters containing a list of data after the keyword. Use apostrophes
(') to enclose the items in the list. Use a.comma to separate one item from another.
For example: UNIT-'R1,R2' (R1 and R2 are the items in the list).

5. Statement length. All control statements except Library Maintenance state
ments must not exceed 96 characters. The following Library Maintenance
statements can be continued on another statement. (See Continuation under
Coding Rules in Part I of this manual.)

II ALLOCATE
II COpy (except for file-to-library)
II DELETE
II MODIFY (not REMOVE, REPLACE, or INSERT statements)
II RENAME

The following is an example of a control statement:

II COpy FROM-F1,LlBRARY -O,NAME-SYSTEM, TO-R1

The statement identifier is COPY. The parameter keywords are FROM, LIBRARY,
NAME, and TO. The information you supply is F1, 0, SYSTEM, and R1.

End Control Statement
The END statement is a special control statement that indicates the end of control
statements. It consists of /I END starting in position 1 and must always be the last
control statement for the programs.

SPECIAL MEANING OF CAPITAL LETTERS, NUMBERS, AND SPECIAL
CHARACTERS

Capitalized words and letters, numbers, and special characters have special meanings
in Oel and utility control statement descriptions.

In utility control statements, capitalized words and letters must be written as they
appear in the statement description. Sometimes numbers appear with the capitalized
information. These numbers must also be written as shown.

Words or letters that are not capitalized mean you must use a value that applies to
the job you are doing. The values that can be used are listed in the parameter sum
maries for the control statements.

Braces ({ }) sometimes appear in parameters shown in control statement sum
maries and parameter summaries. They are not part of the parameters. They simply
indicate that you must-choose one of several values to complete the parameter. For
example, RETAIN- ~ P f means you can use either RETAIN-T or RETAIN-P.

Introduction to System Utility Programs 87

88

TAPE INITIALIZATION PROGRAM-$TINIT

The Tape Initialization Program prepares tapes for use. It writes IBM standard
volume labels on tape in order for tape data management to perform IBM standard
label processing. The program is available on either card or disk.

The Tape Initialization Program performs these functions at your request:

• CHECK labeled tapes for a volume label and an unexpired file before writing
a new volume label.

• CLEAR labeled or unlabeled tapes by bypassing CHECK and unconditionally
initializing the tape.

• DISPLAY the volume and header labels.

All tapes must be initialized before use. Tapes that have been initialized need not
be reinitialized unless you want to write a new volume label or use a tape that
contains a permanent file for output. This program can either initialize (CLEAR
or CHECK) or DISPLAY one tape per unit during the same program run.

Tape Initialization Program-$TINIT 89

90

CONTROL STATEMENT SUMMARY

Use

Check for an expired
file and a label, then
write a new label.

Write volume label
without checking
for old label.

Display vol ume
label.

Control Statement

/I VOL UNIT m}
DENSITY-

1/ END

1600

5 soo
1 556

200

I/VOLUNIT- m}
DENSITY-

1/ END

1600

.j 800 l
1 556 5

200

,REEL- 5 NL t
1 xxxxxx ~ ,TYPE-CHECK,ASCII- ~ ~~s f '

,ID-yy ... yy

,REEL- j NL t ,TYPE-CLEAR,ASCII- 5 YES t 1 xxxxxx~ 1~ f

,ID-yy ... yy

/I VOL UNIT- {E } ,TYPE-~ISPLAY ,DENSITY ~ 800 ~
556
200

1/ END

Notes: 1. If density is not specified, the default for seven track tape units is 800 bpi, the default for nine track tape units is
1600 bpi.

2. The DENSITY parameter on display volume label is valid only for seven track tape units.

3. Valid density for seven track tape units is 200, 556, and 800 bpi. Valid density for nine track tape units is 800
bpi (if dual density feature is installed), and 1600 bpi. .

PARAMETERS

TYPE-CHECK

TYPE-CLEAR

TYPE-DISPLA Y

UNIT-code

REEL-NL

REEL-xxxxxx

ASCII-YES

ASCII-NO

Check to see if the file has expired, then write a new label. Do not use this on blank tapes because
the program attempts to read a blank tape causing tape runaway.

Write a new volume label without checking for an expired file.

Print the contents of the volume label and the header labels.

Specifies which tape drive contains the tape to be initialized. Possible codes are: Tl, T2, T3,
and T4. A separate VOL statement is needed for each tape unit that contains a tape to be
initialized.

Specifies that an unlabeled tape is to be generated.

Specifies the volume serial number that the Tape Initialization program writes on tape. Must be
alphabetic A-Z, @, #, $, or numeric 0-9.

The tape is written in ASCII code. This is invalid for seven track tape.

The tape is written in EBCDIC code. If the ASCII parameter is omitted, NO is assumed.

PARAMETERS (continued)

DENSITY-200

DENSITY-556

DENSITY-800

DENSITY-1600

I D-xxxxxxxxxx

The tape is written at a density of 200 bits per inch. The file written on this tape unit must be
written at this density.

The tape is written at a density of 556 bits per inch. The file written on this tape unit must be
written at this density.

The tape is written at a density of 800 bits per inch. The file written on this tape must be
written at this density ..

The tape is written at a density of 1600 bits per inch. The file written on this tape must be
written at this density.

Provides an additional identification field. This field is not processed by the system. A maximum
of ten characters can be used if ASCII-NO is specified. If ASCII-YES is specified, 14 characters
can be used. This is an optional parameter.

OCl CONSIDERATIONS
The following OCl statements are needed to load
the Tape Initialization program.

II lOAD $TINIT,CODE
II RUN

The code you supply depends on the location of the
disk containing the Tape Initialization program. The
codes are as follows:

Code Meaning

Rl Removable disk on 5444 drive
one.

Fl Fixed disk on 5444 drive one.

R2 Removable disk on 5444 drive
two.

F2 Fixed disk on 5444 drive two.

MESSAGES FOR TAPE INITIALIZATION

Message Meaning

INITIALIZATION ON This message is printed when initialization of a tape is complete.
xx COMPLETE xx indicates the unit (T1, T2, T3, or T4) on which the

initialization is complete.

Tape Initialization Program-$TINIT 91

PRINTOUT OF VOLUME LABEL
The following sample jobs shows the format of data
printed by the Tape Initialization Program from a
nine track tape unit and from a seven track tape
unit.

II LuAD $TINIT,Fl
1/ HALT
il RUN
II VUL UNIT-Tl,TVPE-DISPlAV
II VUL UNIT-T2,TVPE-OISPlAY
/I END

*** DISPlAV ON UNIT Ti ***
lABH
Vall

LABEL
HORl

SERIAL
TlTlTl

OWNER CuDE

FllE iDENTIFIER.
fllEl

FILE SERIAL
TUlTl

VOL SEQ NO
0001

CRI:ATE DATE
72251

EXPIRE DATE
722'H

LABEL
HDRZ

KEC fORM
F

BlK lENG
00018

HC lENG
00018

RECURDING TECH
E

PR TR CNTRL BlK ATTR

LABEL
VUll

LAREl
HDRl

LABEL
HDR2

St:RIAl
T2T212

UWNtR CUDE

FILE il.iENTIFIE:i(
FILE2

REC FORM
F

BlK LENG
UOitiO

II LOAD STINIT,fl
II RUN
II VOL UNIT-Tl,TVPE-OISPLAY
II VOL UNIT-TZ.TVPE-OISPLAV
II VOL U~IT-T3.TVPE-OISPLAY
II VOL U~IT-T4,TYPE-DISPLAV
/I END

92

LABel
VOll

LABEl
HORl

LABEL
HDR2

LABEL
VOLl

LABEL
HORl

lABEL
HORZ

SERIAL
XRAV03

OwNER CCIOE

FILE IDENTIfIER
TAPE OUT

REC FORM
F

SERIAL
USERl4

BLK L-:NG
012bO

OWNER CODE

FILE IDENTIFIER
TAPOUT

REC FORM
f

BLK LENG
00080

*** DISPLAY ON UNIT T~ ***

FILE SERIAL
T2T2T2

VOL SEQ NO
0001

CREATE DATE
72251

EXPIRE OATE
72251

Kt'C LENG
(00018

RECORDlNG TECH
r

PRTIl. CNTRL ~LK ATTR
B

*** DISPLAY ON UNIT Tl .**

FILE SERIAL
XRI\Y03

VOL SEQ NO
0001

REC LENG
00084

RECORDING TECH

*** DISPLAY ON UNIT TZ ***

FtL,E SERIAL
USER14

VOL SEQ NO
0001

R!':C LENG
00080

RECORDING TECH

CREATE DArE
72082

EXPIRE DATE
99999

PUR CNTRl 6LI< A~TR

6

CREATE DATE
720b7

EXPIRE DATE
72081

PRTR CNTRL BlK AifR

LABEL
VOLl

SERIAL
XRAY04

••• DISPLAY. ON UNIT T3 •••
OWNER CODE

LABEL
HOIU

FILE IDENTIFIER
TAPE OUT

FILE SERIAL
XRAY04

VOL SEQ NO
0001

CREATE DATE
72083

EXPIRE DATE
99999

LABEL
HDRZ

LABEL
VOll

REt FORM
F

SERIAL
TEST4

BLK LENG
01260

OWNER CODE

REC LENG
00084

RECORDING TECH

••• DISPLAY ON UNIT T4 •••

PRTR CNTRL

ASCII TAPE LABEL

BLK ATTR
B

MEANING OF VOLUME LABEL INFORMATION

Display of Volume Label

Heading

LABEL

SERIAL

OWNER CODE

Display of Header 1 Label

Heading

LABEL

FILE IDENTIFIER

FILE SERIAL

VOL SEQ NO

Meaning

VOL 1 indicates this is a volume label.

The volume serial number (from the REEL parameter).

Additional identification (from the 10 parameter).

Meaning

HDRl indicates this is a header 1 label.

The filename of the file on tape. This is the name from the LABEL parameter of the OCl FI lE
statement when the file was created.

The serial number of the tape volume. This is the same as the SERIAL field in the volume label.

The sequence number of this volume in a multivolume file.

Tape Initialization Program-$TINIT 93

94

MEANING OF VOLUME lABEL INFORMATION Icontinued}

Display of Header 1 label lcontinued)

Heading

CREATE DATE

EXPIRE DATE

Display of Header 2 Label

Heading

lABEL

REC FORM

BLK lENG

REC lENG

RECORDING TECH

PRTR CNTRl

BlK ATTR

Meaning

The date this file was created. This is a Julian date. The format is yyddd where yy is the last two
digits of the year and ddd is the day in the year. Example: 72094 = the 94th day of 1972, or
March 3, 1972.

The date this file expires. This Julian date is the creation date plus the number of days specified
by the RETAIN parameter on the OCl FilE statement.

Meaning

HDR2 indicates this is a header 2 label.

The record format of this file. IFrom the RECFM parameter on the OCl FI lE statement when this
file was created.) The formats are:

F - Fixed length

v - Variable length

U - Undefined length

Block length. IFrom the BlKl parameter on the OCl FI lE statement when this file was created.)

Record length. I From the RECl parameter on the OCl FI lE statement when this file was created.)

T Odd parity with translation

C Odd parity with conversion

E Even parity without translation

ET Even parity with translation

blank Odd parity without translation or conversion

Printer control character. This field will be blank on tapes created on System/3. For tapes
created on other systems, the characters are:

A ASCII control characters

M Machine control characters

blank No control characters

Block attributes:

B Blocked records

S Spanned records

R Blocked and spanned records

blank Neither blocked nor spanned

Note: Spanned records cannot be created on System/3.

TAPE ERROR SUMMARY PROGRAM-$TVES

The IBM System/3 Disk System keeps track of errors that occur on the tape drives.
This error information is stored in the Customer Engineer tracks on 5444 fixed
drive one. You should run the Tape Error Summary Program periodically to provide
a summary, by volume and by unit, of temporary read and write errors.

There are no control statements necessary for this program. After being loaded
from the program or system pack, the Tape Error Summary Program reads the data
from the disk and sorts it by volume and unit. When all the data is read or the
available main storage is filled, the error data is printed. If no tap'e errors are
recorded, the message THERE ARE NO VALID TAPE ERRORS LOGGED is
printed.

ERROR LOGGING FORMAT

SUMMARY MAGNETIC TAPE ERROR STATISTICS BY VOLUME DATE 03/27/72

CD CD CD CD CD
VOLUME SIO TEMP TEMP WRITE
SERIAL COUNT READ WRITE SKIP

Tl, 06512 0000 0028 0028
TAPEl 00016 0000 0001 0001
TAPE3 00021 0000 0001 0001

SUMMARY MAGNETIC TAPE ERROR STATISTICS BY TAPE UNIT DATE 03/27/72

CD CD CD CD @
TAPE SIO TEMP TEMP WRITE DIAG
UNIT COUNT READ WRITE SKIP TRACK

Tl 06528 0000 0029 0029 0000
T4 00021 0000 0001 0001 0000

For unlabeled tapes and the first volume of a multivolume file that has more than two volumes per unit,
""" is printed as the volume serial. For tapes with non-standard labels, ****** is printed as the volume
label.

The number of tape operations performed. (510 means Start 1/0.1

Temporary read errors.

Temporary write errors.

Write skips caused by temporary write errors.

Diagnostic track errors. This is used by IBM Customer Engineers.

Tape Error Summary Program-$TVES 95

OCLCONSIDERATIONS

96

The following OCL statements are needed to load
the Tape Error Summary Program.

II LOAD $TVES,code
II RUN

The code is the disk unit that contains the program
(F1, R1, F2, or R2).

DISK INITIALIZATION PROGRAM-$INIT

All disks must be initialized before use. Disks that have been initialized need not
be re-initialized unless you want to erase their contents and rename them.

The Disk Initialization program prepares disks for use. It does this by:

• Writing track and sector addresses on the disk.

• Checking for defective tracks, a process called surface analysis.

• Assigning alternate tracks to any defective tracks found.

• Writing a name on each disk to identify the disk.

• Formatting the volume table of contents.

The process is called initialization. The program can initialize up to five disks
during the same program run.

There are three types of initialization: primary, secondary, and clear. Primary is
used to initialize any disk to disk drive capacity. Secondary is used only when
using the 5444 disk and only when the drive capacity of your system is increased
and you have programs and data on your disks that you want to keep. Clear is
used to unconditionally initialize a disk.

CAUTION

Clear will destroy any files or libraries that
were previously on disk.

The control statements you supply for the Disk Initialization program depend
on the type of initialization and the number of disks you are initializing.

Disk Initialization Program-$INIT 97

CONTROL STATEMENT SUMMARY

Type of Initialization Control Statements Q)

PrimaryeD:

/I UIN TYPE-PRIMARYCD,UNIT-{ ,cod de ,If ,VERIFY-number ,CA;!:J{ HALF}
\ co es CD FULL

/I VOL PACK-name,ID-characters,NAME360-characters

New Disks

II END

Disk alreadY in
use (reinitialize)

CD
j code l {NO l {HALF} II UIN TYPE-PRIMARy,UNIT-t'codes' f ,VERIFY-number,ERASE- YES f ,CAP- FULL

CD

Secondary 0:
Disk already in
use

Clear CD:

II VOL PACK-name,ID-characters,NAME360-characters

II END

J code l II UIN TYPE-SECONDARY,UNIT-), d 'f ,VERIFY-number
\ co es

II END

CD J code t { HALF} II UIN TYPE-CLEAR,UNIT-), 'f ,VERIFY-number,CAP-
\ codes FULL

II VOL PACK-name,lD-characters,NAME360-characters CD
II END

Q) Control statements are required in the order they are listed: UIN, VOL, END or UIN, END_

98

eD For primary initialization, one VOL statement is required for each disk listed in the UN IT parameter of the
UIN statement. The PACK parameter in the first VOL statement applies to the first disk listed in the UNIT
parameter. The PACK parameter in the second VOL statement applies to the second disk listed in the UNIT
parameter, and so on.

CD If the TYPE parameter is omitted, TYPE-PRIMARY is assumed.

o VOL statements are not required for secondary initialization because the disks are already named.

CD If the TYPE parameter CLEAR is selected, ERASE-YES is assumed.

CD CAP-FULL should not be used on a half capacity system and can only be used on the 5444 disk.

CD NAME 360 can be used.only for the 5445 disk.

PARAMETER SUMMARY

UIN (Input Definition) Statement

TYPE-PRIMARY

TYPE-SECONDARY

TYPE-CLEAR

UNIT-code

UNIT-'code,code'

UNIT-'code,code,code'

UNIT-'code,code,code,code'

UNIT-'code,code,code,code,
code'

VERIFY-number

ERASE-YES

ERASE-NO

CAP-HALF CD
CAP-FULL CD

VOL (Volume) Statement

PACK-name

I D-characters

NAME360-characters

Primary initialization. Initialize the disks to the capacity of the drives on which they
are mounted. Tracks already initialized are re-initialized. The program will not
initialize disks containing libraries, temporary data files, or permanent data files.

Secondary initialization (5444 disk only!. Applies only to disks that were
initialized on drives of less capacity than the drives you are now using. It means
initialize the uninitialized por!ions of the disks to the capacity of the drives on
which the disks are mounted. Tracks already initialized are not disturbed.

Clear initialization. Initialize the disks to the capacity of the drives on which they
are mounted. Tracks already initialized are re-initialized. Active files and library
checki ng is bypassed and ..any data on the tracks is destroyed.

Disk location (one disk). - Possible
codes:

Disk location (two disks). R1, F1,

R2,F2
Disk location (three disks). D1, D2

Disk location (four disks).

Disk location (five disks!' -

Do surface analysis the number of times indicated (number can be 1-255). VERI FY-1
is assumed if you omit the parameter.

Retest defective tracks.

Do not retest defective tracks.

]
Primary initialization only. ERASE-NO is
assumed if you omit the parameter.

Initialize a disk to half capacity even if on a full capacity drive (5444 disk only!.

Initialize a disk to full capacity (5444 disk only).

Disk name. Can contain any of the standard System/3 characters except apostrophes,
leading or embedded blanks, and embedded commas@ Its length must not exceed
six characters.

Additional identification. Can contain any of the standard System/3 cha~ers
except apostrophes, leading or embedded blanks, and embedded commas\.!). Its
length must not exceed ten characters. If you omit this parameter no additional
identification is written on the disk.

Additional identification for 5445 disk. The name will be placed in the
System/360 format 1 DSCB. Can contain any of the standard System/3
characters except apostrophes, leading or embedded blanks, and embedded
commas (!) . Its length must not exceed 44 characters. If you omit this
parameter the program defaults to SYSTEM/3.DATA.

Q)The CAP keyword forces ERASE-YES. Pack is initialized to capacity of the drive if this keyword is omitted.

(!)ThiS is due to their delimiter function.

Disk Initialization Program-$INIT 99

PARAMETER DESCRIPTIONS

TYPE Parameter (UIN)
The TYPE parameter indicates the type of initializa
tion you want the program to do: primary, secon
dary, or clear. The type of initialization and the ca·
pacityof the disk drives on which the disks are
mounted determine which disk tracks will be
initialized.

Disk Drive Capacity
Disk drives of different data-storage capacities are
available for the System/3 Model 10 Disk System.
The difference is the number of tracks the drives can
use: the larger the drive capacity, the more tracks
the drive can use. However, you must initialize the
disk tracks before using them.

Primary Initialization
Primary initialization applies to new disks, or disks
you have used but want to initialize again. The pro
gram initializes all tracks corresponding to the
capacity of the drives on which the disks are
mounted. Tracks that were previously initialized
are initialized again. Any data on the tracks is
destroyed.

Note: A 5445 disk with an inval id System/3 label must
be initialized using the clear initialization.

You can use primary initialization on a disk as often
as you want. However, the program will not
initialize disks containing libraries, temporary
data files, or permanent data files. You must de
lete the files using File Delete and the libraries
using the allocate function of Library Maintenance.

Secondary Initialization (5444 Disk Only)

100

Secondary initialization applies to disks that were
initialized on drives of less capacity than the drives
you are now using. When you increase the capacity
of your drives, more tracks on your disks be-
come available for use. You must initialize the
additional tracks. Use secondary initialization
if you do not want information destroyed on
tracks already in use. The program initializes the
additional tracks only. Tracks already in use are
not disturbed.

The program will not do secondary initialization
on new disks or disks that have already been
initialized to the capacity of the drives on which
they are mounted.

Clear Initialization

Clear initialization applies to new disks or disks previously
used that require reinitialization due to invalid pack labels
or some other unrecoverable disk error. All tracks corres
ponding to the capacity of the drives on which the disks
are mounted are initialized. Tracks that were previously
initialized are re-initialized.

Warning: All libraries, temporary data files; or
permanent data files are completely erased.

UNIT Parameter (UIN)
The UNIT parameter (UNIT-code) tells the location
of the disks you want to initialize. The program
can initialize up to five disks during one program
run.

The form of the UNIT parameter depends on the
number of disks you are initializing:

1. For one disk, use UNIT-code.

2. For two disks, use UNIT·'code,code'.

3. For three disks, use UNIT-'code,code,code'.

4. For four disks, use UNIT·'code,code,code,code'.

5. For five disks, use UNIT·'code,code,code,code,
code'.

The codes indicate the locations of the disks:

Code Meaning

R1 Removable disk on
5444 drive one

F1 Fixed disk on 5444
drive one

R2 Removable disk on
5444 drive two

F2 Fixed disk on 5444
drive two

01 Removable disk on
5445 drive one

02 Removable disk on
5445 drive two

For primary initialization, the order of codes must
correspond to the order of VOL control state
ments. If, for example, you had used the parameter
UNIT·'R1,R2', the first VOL statement applies
to the removable disk on drive one and the second
VOL statement to the removable disk on drive
two. (No VOL statements are required for second
ary initialization. The disk is already named.)

You cannot initialize the pack from which you
loaded the Disk Initialization program or the
system pack.

VERI FY Parameter .(UIN)
The VERIFY parameter (VERIFY-number) con·
cerns surface analysis. It enables you to indicate
the number of times you want the program to do
surface analysis before judging whether or not
tracks are defective. The number can be from
1 to 255. The greater the number specified in the
VERIFY parameter the longer it takes to initialize
the disk.

On a 5444, the time for initializing using VERIFY·1
is approximately two and one·half minutes. Each
additional verify takes two minutes and ten seconds.
On the 5445, the time for initializing using VERIFY·1
is approximately 15 minutes. Each additional verify
on the 5445 takes seven minutes.

Surface Analysis
Surface analysis is a procedure for testing the con
dition of tracks. It consists of writing test data
on tracks, then reading the data to ensure it was
recorded properly.

In judging whether or not tracks are defective,
the program does surface analysis the number of
times you specify in the VERIFY parameter. If
you omit the VERIFY parameter, surface analysis
is done once. Tracks that cause reading or
writing errors any time during surface analysis
are considered defective. Qefective tracks can be
assigned alternates. The 5444 has six alternate
tracks available; the 5445 has 60. If the program
finds more than 6 or 60 defective tracks respectively,
it considers the disk unusable and stops initializing it.

The program also considers the disk unusable if either
track 0 or 1 is defective. Tracks 0 and 1 are used only
by the system and cannot have alternates assigned to
them. For the 5445 the program also considers the
disk unusable if any tracks in cylinder 0 are defective.

Alternate Track Assignment
Alternate track assignment is the process of assigning
an alternate track to a defective track. If the Disk
Initialization program finds a defective track
during surface analysis, it assigns an alternate track
to the defective track. The alternate is, in effect,
a substitute for the defective track. Any time a
program attempts to use the defective track, it
will automatically use the alternate instead. Each
5444 disk has six alternate tracks (tracks 2-7). Each
5445 disk has 60 alternate tracks (tracks 4000·4059).

If tracks become defective after a disk is initialized,
another program (see Alternate Track Assignment
Program) is used to assign alternate tracks. Disks
need not be re-initialized to assign alternate tracks.

ERASE Parameter (UIN)
The ERASE parameter concerns alternate track
assignment. It applies only to disks that have
already been initialized and used, but which you
are re-initializing using primary initialization.

The condition of tracks on such disks has been
tested at least once before (during the previous
initialization) and tracks that were found to be
defective during surface analysis were assigned
alternates. The ERASE parameter, therefore,
enables you to indicate whether you want the
program to (1) retest the tracks to which alternate
tracks are already assigned, or (2) leave the alter
nate tracks assigned without retesting the tracks.

The parameter ERASE-YES means to retest. If
you tell the program to retest, it erases any
existing alternate track assignments, and tests
all tracks as though the disk were new.

The parameter ERASE·NO means not to retest.
If you tell the program not to retest, it tests only
those tracks to which no alternate tracks are as
signed. Alternate tracks previously assigned reo
main assigned.

Defective tracks are not retested if the ERASE
parameter is omitted.

CAP Parameter (UIN)
The CAP parameter (5444 disk only) determines pack
size when the pack is initialized. The CAP-HALF
parameter means to initialize the pack to half capacity
(100 cylinders; 200 tracks) even if it is on a full capa
city drive. The CAP-FULL parameter means to ini
tialize the pack to full capacity (200 cylinders; 400
tracks). The use of the CAP keyword forces ERASE·
YES.

Disk Initialization Program-$INIT 101

PACK Parameter (VOL)
The PACK parameter (PACK-name) applies to
primary and clear initializations only. During initiali
zation, the Disk Initialization program writes a
name on each disk. It uses the name you supply
in the corresponding PACK parameter. (One VOL
control statement containing a PACK parameter
is required for each disk.)

The name can be any combination of standard
System/3 characters except apostrophes, leading
or embedded blanks, and embedded commas (due
to their delimiter function). (See Appendix A for
a list of standard System/3 characters.) Its length
must not exceed six characters. The following are
valid disk names: O,FOOO1, 012, A1B9, ABC.

In general, disk names are used for checking pur
poses. Before a program uses a disk, the disk
name is compared with a name you supply
(either in OCl statements or control statements
required by the program). If the names do not
match, the program halts and prints a message.
In this way, programs cannot use the wrong disks
without the operator knowing about it.

10 (Identification) Parameter (VOL)
The 10 parameter (ID-characters) applies to primary
and clear initializations only. It enables you to
include a maximum of ten characters, in addition to
the disk name, to further identify a disk. The char
acters can be any combination of standard System/3
characters (Appendix A) except apostrophes,
leading or embedded blanks, and embedded com
mas (due to their delimiter function). The informa
tion is strictly for your use. (It is not used for
checking purposes by the system.) If you use
the File and Volume label Display program to
print the disk name, it will also print the addition-
al identification for you.

NAME360 Parameter (VOL)

102

The NAME360 parameter (NAME360-name) is used
to specify a filename for data interchange with
System/360-System/370. System/360-System/370
can use data on a System/3 disk pack by treating the
pack like a file. System/3 gives a default filename of
SYSTEM/3.DATA. The NAME360 parameter can be
used if you would like to code a filename of your
own.

NAME360 can contain any of the standard System/3
characters except apostrophes, blanks and commas.
Its length must not exceed 44 characters.

OCl CONSIDERATIONS
The following OClstatements are needed to load
the Disk Initialization program.

II lOAD $INIT, code
/I RUN

The code you supply depends on the location of
the disk containing the Disk Initialization program.
The codes are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

EXAMPLES

Primary Initialization of Two Disks

1

I
:j/
/I

Figures 25 and 26 are examples of the OCl state
ments and utility control statements needed for
the primary initialization of two disks.

4 8 12 16 20 24 28 32

Ln IAn ~I rn rr, f1
RUN

Explanation:

• Disk Initialization program is loaded from the fixed disk on
drive one.

Figure 25. OeL Load Sequence for Disk Initialization

3

1 4 8 12 16 20 24 28 32 3

it IN u~ I ~ -, f2. ,,~ l' 11"1 PE -p RI MI~ I~'I'
II VO p~ CK -1. 21.12
1/ 'v L PIli Ir~ foP I~ Ign , \0 le1 ~2. rr,
1/ ND

Explanation:

• The two disks on drive two are being initialized (UNIT·'F2,R2'
in UIN statementl.

• The fixed disk (F2) will be given the name 2222 (PACK·2222
in first VOL statement).

• The removable disk (R2) will be given the name PAYROL
(PACK·PAYROL in second VOL statement!. Additional
identifying information, 010270, will be written on the removable
disk (10-010270).

Fi!1Ure 26. Utility Control Statements for Primary Initialization

of Two Disks

MESSAGES FOR DISK INITIALIZATION

Message

INITIALIZATION
ON XX COMPLETE

INITIALIZATION ON XX
TERMINATED

**ALTERNATE TRACKS
ASSIGNED**

PRIMARY TRACK XXX
ALTERNATE TRACK XXX

UNRECOVERABLE ERROR;
RE·INITIALIZING PACK

Meaning

This message is printed when initialization of a disk is
complete. XX indicates the unit (R1, R2, F1, F2, 01,
or 02) on which the initialization is complete.

This message is printed when initialization of a disk
must be terminated for one of the following reasons:

1. Cylinder zero is defective.

2. More than 6 5444 tracks or 60 5445 tracks
are defective.

3. Possible disk hardware error exists.

4. The program attempted to initialize the disk
ten times without success.

After this message is printed, halt 33 will occur. XX
indicates the unit (R1, R2, F1, F2, 01, or 02) on
which the initialization is terminated.

These two messages are printed when a primary track
is defective and an alternate track is assigned to it.
XXX indicates the tracks involved.

This message is printed when the Disk Initialization
program determines that the disk has not been
initialized properly. The program will again attempt
to initialize the disk correctly with ERASE·YES forced.
The maximum number of times that the program will
attempt to initialize a disk is ten. After that number of
times, halt 33 occurs.

Disk Initialization Program-$INIT 103

104

ALTERNATE TRACK ASSIGNMENT PROGRAM-$ALT

The Alternate Track Assignment program assigns alternate tracks to disk tracks that
become defective after they are initialized. An alternate track is a track that can be
assigned to replace another track. When the program assigns an alternate, it transfers
the contents of the defective track to the alternatEJ. The 5444 has 6 alternate tracks,
the 5445 has 60. An alternate track can replace any track except 0 and 1 on the 5444
or 0-19 of cylinder 0 on the 5445.

The program has three uses. The control statements you must supply depend on
the program use.

The program uses and the situations to which they apply are as follows:

Program Use

Conditional assignment.
Program tests the condition
of a track and assigns an
alternate to it if it is defec
tive. (This is the normal
use.)

Unconditional Assignment CD
Program assumes the track
is defective and assigns
an alternate to it without
testing its condition.

Cancel prior assignment. CD
Program cancels an
alternate track assignment
to free the alternate for
use with another track.

Situation

Any time a disk track causes reading or writing
errors during a job, the system halts with a code
indicating that a disk error has occurred. You
would now run the Alternate Track Assignment
program to do conditional assignment.

You have used the Alternate Track Assignment
program to do conditional assignment. The
test on the track indicated that the track was not
defective (an alternate, therefore, was not
assigned). But the track still causes reading or
writing errors, and you want to assign an
alternate to it.

A defective track was found, but all alternates
are in use. You want to free an alternate so you
can recover the data from the defective track.
Before freeing the alternate, however, you would
normally copy (to another disk) the file or
library entry that uses the alternate. This saves
the data that is already on the alternate.

CD Whenever you request an unconditional assignment or cancel prior assignment, any
pending suspected defective tracks are checked (conditional assignment).

Alternate Track Assignment Program-$AL T 105

CONTROL STATEMENT SUMMARY

Use Control Statements Q)

Conditional Assignment 1/ ALT@PACK-name.UNIT-code.VERIFY-number
1/ END

Unconditional Assignment @ ~ track ~ ® 1/ ALT PACK-name.UNIT-code.ASSIGN-. k' .VERIFY-number
1/ END trac s

Cancel Prior Assignment 1/ ALT@PACK-name.UNIT-code.UNASSIGN- ~ .trac~.~ .VERIFY-number®
1/ END trac

Q) For each use. the program requires the statements in the order they are listed: ALT. END.

o There can be only 6 AL T statements per job.

® The VE RI FY parameter applies to the automatic conditional assignment that follows the unconditional request.
(See Program Use and Situation.)

PARAMETER SUMMARY: ALT (ALTERNATE) STATEMENT

PACK-name Name of the disk.

UNIT-code Location of the disk. Possible
codes are R1. F1. R2. F2. 01. 02.

VERI FY-number In testing the condition of a track.
do surface analysis the number of
times indicated (number can be
1-255). If VERIFY parameter is
omitted. do surface analysis once.

- Use track num-ASSIGN-track Assign an alter-
bers 8-205 or nate (uncon-
8-405 (for 5444) ditionally) to

one track. 20-3999 (for
5445) to identify

ASSIGN-·track.track •... . Assign one alter- tracks. Tracks

nate (uncon- 0-1 for the 5444

ditionally) to or 0-19 for the

each track 5445 are used by

(maximum the system and

is six). cannot be assign-
- ed alternates.
-

UNASSIGN-track Cancel one
al ternate track Use track num-

assignment. <D bers 8-405 (for
5444). or <D Before canceling an assignment. the program tests the con-

UNASSIGN-·track.track •... • Cancel two or 20-3999 (for dition of the track to which the alternate is assigned. The
more alternate 5445) to which assignment is canceled if the test indicates that the track is
track assign- alternates are not defective. If the test indicates that the track is defective.
ments «(i)Ximum assigned.

the program does not cancel the assignment unless the operator
is six). 1 tells it to do so. -

106

PARAMETER DESCRIPTIONS

PACK Parameter
The PACK parameter (pACK-name) tells the pro
gram the name of the disk containing the defective
tracks. This is the name written on the disk by the
Disk Initialization program. (See Disk Initialization
Program.)

The Alternate Track Assignment program com
pares the name in the PACK parameter with the
name on the disk to ensure they match. In this
way, the program ensures that it is using the right
disk.

UNIT Parameter
The UNIT parameter (UNIT-code) indicates the
location of the disk containing defective tracks.
Codes for the possible locations are as follows:

Code Meaning

R1 Removable disk on
5444 drive one

F1 Fixed disk on 5444
drive one

R2 Removable disk on
5444 drive two

F2 Fixed disk on 5444
drive two

D1 Removable disk on
5445 drive one

D2 Removable disk on
5445 drive two

VERIFY Parameter
The VERIFY parameter (VERIFY-number) con
cerns conditional assignment. (See Program Use
and Situation for unconditional and cancel prior
assignments.) It enables you to indicate the num
ber of times you want the program to do surface
analysis before judging whether or not the track
is defective. The number can be from 1-255. If
you omit the parameter, the program does surface
analysis once.

Conditional Assignment
Conditional assignment consists of testing the
condition of a track (surface analysis) and, if
the track is defective, assigning an alternate track
to replace it. It is the normal use of the Alternate
Track Assignment program.

Situation. Conditional assignment appl ies to tracks that
cause reading or writing errors during a job. Any
time a track causes such errors, the system does
the following:

1. Stops the program currently in operation.

2. Writes the track address in a special area on the
disk.

3. The system then halts with a halt code indicat
ing a permanent disk I/O error. You can then
run the Alternate Track Assignment program.

When you use the Alternate Track Assignment pro
gram to do conditional assignment, the program
locates the tracks by using the addresses in the
special area on disk. All disks, fixed and remova
ble, have such an area. The program will do
conditional assignment for all tracks identified
in the area (one at a time), as long as there are
alternate tracks available for assignment.

Surface Analysis. Surface analysis is a procedure the pro
gram uses to test the condition of tracks. It con
sists of writing test data on a track, then reading
the data to ensure it was written properly.

Before doing surface analysis, the Alternate Track
Assignment program transfers any data from the
track to an alternate track. This is the alternate
that will be assigned if the track proves to be
defective.

In judging whether or not the track is defective, the
program does surface analysis the number of times

you specify in the VER I FY parameter. If you omit
the parameter, the program does surface analysis
once. If the track causes reading or writing errors
any time during surface analysis, the program con
siders the track defective.

Assignment of Alternate Tracks. If a track proves to be
defective, the program assigns an alternate track.
The alternate becomes, in effect, a substitute for
the defective track. Any time a program attempts
to use the defective track, it automatically uses
the alternate instead.

The 5444 has 6 alternate tracks; the 5445 disk has
60. The program will not do conditional assign
ment if all alternate tracks are in use.

Alternate Track Assignment Program-$AL T 107

Incorrect Data. If a track is defective, some of the data
transferred to the alternate track could be incorrect.
Therefore, when reading data from the defective
track, the program prints all track sectors con
taining data that caused reading errors. Characters
that have no print symbol are printed as 2-digit
hexadecimal numbers.

The following is an example:

ABCDE GH123 56 ...
B A
6 4

Appendix A lists the characters in the standard
character set and their corresponding hexadecimal
numbers.

To correct errors on the alternate track, use the AI·
ternate Track Rebuild program.

ASSIGN Parameter
The ASSIGN parameter (ASSIGN-track) applies to
unconditional assignment. It tells the program which
tracks you want alternates assigned to.

For 5444, you can assign alternates to any tracks
except 0-7, which are for system use only. For
5445 you can assign alternates to any tracks
except 0-19 or 4000-4059; for system use only.

The form of the ASSIGN parameter depends on the
number of tracks you want to specify. For one
track, use ASSIGN-track; for two tracks, use
ASSIGN-'track,track'; and so on. You can specify
up to six tracks.

Use the track numbers 8-405 (for 5444) or 20-3999
(for 5445) to identify the tracks. For example, the
parameter ASSIGN-'50,301,353' causes the program
to assign alternate tracks to tracks 50, 301, and 353.

Unconditional Assignment

108

Unconditional assignment applies to tracks that
occasionally cause read or write errors. Such
tracks might not cause errors when tested by the
Alternate Track Assignment program during con
ditional assignment. If they don't, the program
will not assign alternate tracks to them. If you
still want to assign alternates to these tracks, use
unconditional assignment. In doing unconditional
assignment, the program assigns alternates without
first testing the condition of the tracks suspected
of being defective.

UNASSIGN Parameter
The UNASSIGN parameter (UNASSIGN-track)
applies to cancelling alternate track assignments.
It identifies tracks for which you want the program
to cancel assignments.

You can cancel up to six assignments. The form of
the UNASSIGN parameter depends on the number
of assignments you want to cancel. For one assign
ment, use UNASSIGN-track; for two assignments,
use UNASSIGN-'track, track'; and so on.

Use the track numbers 8-405 (for 5444) or 20-3999
(for 5445) to identify the tracks. For example, the
parameter UNASSIGN-'50,301,352' causes the
program to cancel alternate-track assignments for
tracks 50, 301, and 352.

Cancel Prior Assignment
Cancelling an alternate track assignment consists
of transferring the data from an alternate track
back to the original track (the track to which the
alternate is assigned), therefore, freeing the alter
nate from being the substitute for the original
track.

Before transferring data back to the original track,
the Alternate Track Assignment program tests the
condition of the original track. If the test indicates
that the track is defective, the program stops.
Through the restart procedure you choose, you can
tell the program to do one of four things (see ",.
IBM Systeml3 Disk System Halt Guide, GC21-7540):

1. Cancel the assignment and transfer the data back
to the original track regardless of the condition
of the original track.

2. Test the track again.

3. Leave the assignment as it is. If there are other
tracks for which you are cancelling assignments,
the program continues with those. Otherwise,
it ends.

4. Cancel the job.

Cancelling assignments is not often done. It ap
plies to cases where a defective track is found, but
all six alternates are in use. To recover the data
from the defective track, you might want to
cancel an alternate track assignment to free the
alternate track. Normally this involves copying,
to another disk, a file or library entry that uses an
alternate track, then freeing the alternate for use
with the defective track you found.

OCl CONSIDERATIONS
The following OCl statements are needed to load
the Alternate Track Assignment program.

II lOAD $AlT,code
II RUN

The code you supply depends on the location of
the disk containing the Alternate Track Assign
ment program. The codes are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

EXAMPLES

Conditional Assignment
Figures 27 and 28 are examples of the OCl state
ments and utility control statements needed for a
condjJ:ional assignment as described in the following
situation.

Situation

1

I/~
1/
/I

The sytem cancels a job if a defective track is found
on the removable disk on drive one. (The name of
the disk is BI llNG.) Before doing more jobs, the

operator wants to use the Alternate Track Assign
ment program to check the condition of the track
and assign an alternate to the track if it is defective.

4 8 12 16 20 24 28 32

LO AD ~IA liT 11~'l.
~ N

Explanation:

• Alternate Track Assignment program is loaded from the fixed
disk on drive one:

Figure 27. OCl load Sequence for Alternate Track Assignment

1 4 8 12 16 20 24 28 32

1'1 ALT PA If J(-8 I L LN 6, u~ HI' -RI1.
I ~p

Explanation:

• The name of the disk (BI lLNG) and its location (removable
disk on drive onel are indicated by the PACK and UNIT
parameters in the AL T statement.

3

3

• Because we omitted the VERIFY parameter from the AL T
statement, the program does surface analysis once when it tests
the condition of the tracks.

Figure 28. Utility Control Statements for a Conditional
Assignment

Alternate Track Assignment Program-$AL T 109

MESSAGES FOR ALTERNATE TRACK ASSIGNMENT

Message Meaning

ALTERNATE TRACK ASSIGNED This message is printed when an alternate track has been
assigned to a defective track and the data has been trans-
ferred to the alternate track.

PRIMARY TRACK HAS BEEN TESTED This message is printed when it is determined that a
OK primary track is not defective.

PRIMARY TRACK STILL DEFECTIVE This message is printed when the Alternate Track Assignment
program determines that the track is still defective.

DATA TRANSFERRED BACK TO This message is printed when the data is transferred back to
PRIMARY TRACK the pri mary track.

SECTOR WITH DATA ERROR This message is printed when the Alternate Track Assignment
program found an error when transferring data. The sector
that has the error is printed out.

RECORD WITH DATA ERROR This message is printed when the Alternate Track Assignment
program found an error when transferring data. The record
that has the error is printed out.

PRIMARY TRACK xxx ALTERNATE This message is printed after ALTERNATE TRACK
TRACK yyy. UNIT-zz ASSIGNED and DATA TRANSFERRED BACK TO PRIMARY

TRACK. xxx is the primary track number. yyy is the alternate
track number. and zz is the unit involved.

110

ALTERNATE TRACK REBUILD PROGRAM-$BUILD

The Alternate Track Rebuild program enables you to correct data that could not be
transferred correctly to an alternate track. One or more alternate tracks can be
corrected during a program run. You must supply the control statements and data
used to correct the errors.

In writing control statements for this program, you will need the information printed
by the Alternate Track Assignment program when it assigned the alternate track.
The printed information tells you the name of the disk and numbers of the track
and sectors suspected of containing incorrect data. It also includes the data from
these sectors, which you can use to lecate incorrect data. On the 5445, fixed
record refers to a physical 256-byte record, similar to the sector on the 5444.

CONTROLSTATEMENTSUMMAR~
/I REBUI LD PACK·name,UNIT -code,TRACK-location, LENGTH
number,DISP-position

Substitute data

/I END

0TO replace characters 1-12 and 75·78 of a sector, you can use
either of the following:

1. Use one REBUI LD statement to replace all the characters
with a LENGTH parameter of 78.

2. Use one REBUI LD statement for every set of positions'
you correct.

The data you want to substitute must follow the REBUILD
statements to which it applies. The order of the statements
and data in the preceding example would be:

/I REBUI LD statement
data
/I END

/I REBUI LD statement
data
/I REBUILD statement
data
/I END

for positions 1-78

for positions 1·12

for positions 75-78

PARAMETER AND SUBSTITUTE DATA SUMMARY

REBUILD Statement

PACK-name Name of the disk.

UNIT -code Location of the disk. Possible codes are
R1, F1, R2, F2, D1, D2.

TRACK-location 5444 Disk Unit-Number of track and
sector containing incorrect data.
Number is printed by Alternate Track
Assignment program. Track number
must be three digits; sector number
must be two digits. (TRACK-01109
means track 11 sector 9).

5445 Disk Unit-Number of track and
fixed record containing incorrect
data. Number is printed by Alternate
Track Assignment program. Track
number must be four digits; fixed
Record number must be two digits.
(TRACK·011109 means track 111,
fixed record 9).

LENGTH-number Number of characters being replaced.

DISP-position

Substitute Data

Number can be 2-256 and must be a
multiple of 2 (2,4,6, etc.).

Position of the first character being re
placed in the sector. Position can be
1·255.

Code each character in hexadecimal form. Follow every second
character, except the last, with a comma. EXAMPLE: The
numbers 123456 would be coded as F1F2,F3F4,F5F6.
(Appendix A lists the hexadecimal codes for System/3 charac·
ters.)

Alternate Track Rebuild Program-$BUI LD 111

PARAMETER AND SUBSTITUTE DATA
DESCRIPTIONS

PACK Parameter
The PACK parameter (PACK-name) tells the pro
gram the name of the disk that contains the alter
nate track being corrected. This name is the one
written on the disk by the Disk Initialization
program.

The Alternate Track Rebuild program compares the
name in the PACK parameter with the name on the
disk to see if they match. In this way, the pro
gram ensures that the program is using the right
disk.

UNIT Parameter
The UNIT parameter (UNIT-code) indicates the
location of the disk that contains the alternate
track being corrected. Codes for the possible
locations are as follows:

Code Meaning

R1 Removable disk on
5444 drive one

F1 Fixed disk on 5444
drive one

R2 Removable disk on
5444 drive two

F2 Fixed disk on 5444
drive two

01 Removable disk on
5445 drive one

02 Removable disk on
5445 drive two

TRAC K Parameter

112

The TRACK parameter (TRACK-location) identifies
the track and sector that contains the data being
corrected. The defective track, not the alternate
track, is the one you refer to. Referencing the
defective track is the same as referencing the alter
nate track.

For the 5444 disk, the possible track numbers are
008-405. Always use three digits. The possible
sector numbers are 00-23. Always use two digits.
The track number must precede the sector number.
For example, the parameter TRACK·11 019 means
track 110, sector 19.

For the 5445 disk, the possible track numbers are
0020-3999. Always use four digits. The possible
fixed record numbers are 01·20. Always use two
digits. The track number must precede the fixed
record number. For example, the parameter
TRACK·111019 means track 1110, record 19.

Track and sector numbers are printed by the Alter·
nate Track Assignment program when it prints data
from sectors that contain incorrect data.

LENGTH Parameter
The LENGTH parameter (LENGTH·number) tells
the program how many characters you are replacing
in the sector or fixed record. You must replace
characters in multiples of 2 (2, 4, 6, and so on). The
maximum is 256, which is the capacity of a sector
or fixed record.

Length applies to characters that occupy consecu·
tive positions in the sector or fixed record. If the
characters you want to replace do not occupy con·
secutive positions, you must either replace all inter·
vening characters or use more than one REBUI LD
statement. For example, to replace characters 10·11
and 24·25 in a sector or fixed record, you can do
either of the following:

1. Use one REBUILD statement to replace charac·
ters 10·25 (LENGTH·16).

2. Use two REBUILD statements to replace charac·
ters 10·11 (LENGTH·2) and 24·25 (LENGTH·2).

DISP (Displacement) Parameter
The DISP parameter (DISP'position) indicates the
position of the first character being replaced in the
sector or fixed record. The position of the first
character is 1; the position of the second character
is 2, and so on. The maximum position you can
specify is 255.

Beginning at the position you indicate, the Alternate
Track Rebuild program replaces the number of char·
acters you indicate in the LENGTH parameter.

Substitute Data
After each REBUI lD statement, you must code the
substitute characters that apply to that statement.
The characters must be in hexadecimal form. Ap
pendix A shows the hexadecimal codes for the
System/3 character set.

Include a comma after every second character.
For example, the data F1 F2,F3F4,F5F6 represents
123456. F 1 is the hexadecimal form of 1; F2 is
the hexadecimal form of 2; and so on.

Code only the number of characters you indicated
in the lENGTH parameter in the R E BU I lD state
ment.

Note: If the lENGTH parameter of the R EBUI lD
statement exceeds 38, at least two substitute data
cards are required. Each substitute data card, except
the last one, must be completely filled with data and·
must have a comma in column 95 and a blank in
column 96. If the 1442 is the only input device,
it is possible to have only one substitute data card.

OCl CONSIDERATIONS
The following OCl statements are needed to load
the Alternate Track Rebuild program.

1/ lOAD $BUllD, code
II RUN

The code you supply depends on the location of
the disk containing the Alternate Track Rebuild
program. The codes are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Remollable disk on
drive two

F2 Fixed disk on drive
two

EXAMPLES

Correcting Characters on an Alternate Track
Figures 29 and 30 are examples of the Oel and
utility control statements needed for correcting
characters on an alternate track.

1 4 8 12. 16 20 24 28 32

II !:.
/I LO AD 58 UI LD ,F1
IJI RuN

I

Explanation:

• Alternate Track Rebuild program is loaded from the fixed disk
on drive one.

Figure 29. OCL Load Sequence for Alternate Track Rebuild

3.

Alternate Track Rebuild Program-$BUI LD 113

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

1/ RE 8 I I> p~ CK - 51 N~ ,U "' T- ~Il. ,iT ~~ t'J(-~ 2.fS --1\ EN 6T -4 , I> ,~ p- !111.!_
7(. Ie, (.~ f1

1/ E:~P

Explanation:

• The name of the removable disk (BI LLNGI and its location (drive onel are indicated in the PACK and UNIT
parameters in the REBUI LD statement.

64

• The sector containing the incorrect characters is sector 0 of the alternate track assigned to track 20 (TRACK-020001.
The character in position 120 is the first character being replaced (DISP-1201.

• The characters in positions 120 through 123 in sector 0 are beirfg replaced (LENGTH-41.

• The substitute characters follow the REBUI LD statement. They are G (C71, H (Cal, I (C91, and 1 (F1 I.

Figure 30. Utility Control Statements for Correcting Characters on an Alternate Track

Situation
Assume that the Alternate Track Assignment pro
gram printed the following information:

SECTOR WITH DATA ERROR

68 72

TRACK
02000

1 ••••••• 10 •••••••• 20 •••••••• 30 •••••••• 40 •••••••• 50 •••••••• 60 •••••••• 70 •••••••• 80 •••••• 88

114

Z ABCDEFGHI JKLMNOPQR STUVWXYZ 0123456789
FFFFFF903B524677 DC CCCCCCD DDDDDDEE EEEEEE FFFFFFOOOOOO
FEDCBAFBEDFEF705 FO ABCDEFO ABCDEF01 ABCDEF ABCDEFOOOOOO

00000000000000000000000000000020001000083000
000000000000000000000000000000024888C2100100

00OOOOOOOOOOOOOOOOOOOOOOOOOC
005A

It !]leans that errors were detected in sector 0 of
track 20. (Assume the name of the disk is BI LLNG,)

In checking the characters printed by the program,
you found that the characters in positions 120-123
in the sector are incorrect and you want the oper
ator to run the Alternate Track Rebuild program
to correct them.

I 55202A

FILE AND VOLUME LABEL DISPLAY PROGRAM-$LABEL

The File and Volume Label Display program has two uses:

1. Print the entire Volume Table of Contents (VTOC) from a disk.

2. Print only the VTOC information for certain data files.

In both cases, the program also prints the name of the disk.

The printed VTOC information is a readable, up·to·date record of the contents of
the disk. There can be any number of reasons why you might need the information.
Some of the more common ones are as follows:

1. Before re·initializing a disk, you might want to check its contents to ensure that
it contains no libraries, permanent data files, or temporary data files.

2. You want to find out what disk areas are available for libraries or new files.

3. You want specific file information, such as the file name, designation (permanent,
temporary, scratch), or the space reserved for the file.

The control statements you supply for the program depend on the program use.

CONTROL STATEMENT SUMMARY PARAMETER SUMMARY (DISPLAY STATEMENT)

Uses Control Statement CD UNIT -code Location of the disk containing
the VTOC information being

Pri nt enti re /I DISPLAY UNIT-code, LABEL-VTOC printed. Possible codes are R1,

VTOC /I END F1, R2, F2, D1, D2.

Print only file /I DISPLAY UNIT-code LABEL_rilename ~ ®
information /I END " filenames'

from VTOC

LABEL-VTOC Print entire contents of VTOC.

LABEL-filename Print VTOC information for
one file.

<D For each use, the program requires the statements in the
LABEL-'filename,filename, .•. Print VTOC inform~on for

more than one file. 1
order they are listed: DISPLAY, END.

® The number of filenames you list for a program run may not
exceed 20. (VTOC is considered as one filename.)

CD The number of filenames you list for a program run may not
exceed 20. (VTOC is considered as one filename.)

File and Volume Label Display Program-$LABEL 115

PARAMETER DESCRIPTIONS

UNIT Parameter
The UNIT parameter (UNIT-code) indicates the
location of the disk containing the VTOC informa
tion being printed. Codes for the possible locations
are as follows:

Code

R1

Fl

R2

F2

D1

D2

Meaning

Removable disk on
5444 drive one

Fixed disk on 5444
drive one

Removable disk on
5444 drive two

Fixed disk on 5444
drive two

Removable disk on
5445 drive one

Removable disk on
5445 drive two

PACK-HU.ll lU-ANI.lt:KSllN

NO. uF ~LTER~ArE TRACKS AVAllABlt:-~

TRACKS ~ITh ALTERNATt ASSIGHt:U-3u~,lUO

uEFtCTiVt AL1ERNATE TRACKS-3,~

UEVICt CAPACITY-400

liBRARY EXTt~T-- START ENU txTENutU E~O
008 021 Ol7

AVAiLABLE SPACE ON PACK
lOCArlON TRACKS

C28 367
39" 001
401 001

PACK-HUll UI~I T-Rl DAft 11/11170
FILE FilE KEEP FlU REC KEY
NAME DATt TYPt: TYPt ltN LEN

COST 09/21171 T S 0J.l8
MASTER iH/14/1l P ~ 01211
EMPLOYEE 12107/10 P 0128 05
UPOA TE -G9/-l4-f-H T v128 05
PAKTS 08/09171 T u 0128
SERIAL -G8-/16l-H T S 0128
ADDKESS 09121171 T S 00110
BACKUP 09/29171 S S 0128

Figure 31. VTOC Printout Example

116

KeY
LOC

0005
0005

LABEL Parameter
The LABEL parameter indicates the information
you want printed: the entire contents of the VTOC
or only the information for certain files. The VTOC
is an area on disk that contains information about
the contents of the disk. Every disk, fixed and re
movable, contains a VTOC.

Entire Contents of VTOC
The parameter LABEL-VTOC means to print the
entire contents of the VTOC. The meaning of the
information the program prints is given in the
following chart. Headings that are listed are the
ones printed by the program to identify the informa
tion. Figures 31 and 32 are examples of VTOC
printouts.

If the program needs more than one page to list
the file information it prints the headings for the
file information at the top of each new page.

NEX r AVA II NEXT AVAIL INOEX UAIA
Ktl.ORU KtY sTAR I ENu START ENu

"U5/11/lL9 .. 05 "O~
404/11/129 404 404

**** "OUC1Ili9 40, 40i ,,(;3 403
3.96/11/129 395/GC/185 395 395 396 390

**** ,,00 40u
396/11/129 Hd 390
:;971ub/vb5 397 397
3991 11/J.29 399 399

VOL
51: \j

00
00
02
00
01
00
00
00

155201A

t>ACK.-U1u lD1 1 -

-j'4--'U-.-u-=f-A-L-=T:-::EC-:t<'-i~""""'A--=TO-I:-'--=T""'R'-A'-\.."-'''7C!)'--, -ol--,V7 A-l,--L-cA-I)-l-t---6U------'-----------"--

LUCATiON rKACK!>

---,.OccU"'1-IO-u-O,------=3°-9:-,.-c1------------ -- --' , --- ,

1 ~91 00 uuOL

OATA
!>TAR'T I:Nu

._ •• "_. __ "H· __

199" 19 COST 09"-1/11 T 0 01Ld **.** 199/10
HA!)Tt,{ 03/14111 P 0 00'10 ••• ** i99/08 J.99/u9

1~9/03/01/101
--- ---- - - . _.-

J.99/02 i99/()3 I:HPLUYI:t: 1Uu7170 t> I 00:11) 0) 0000 199/0UOI/01-i 199/0, 199/07
PART!> 08109/71 r U OL!Jo *"'*** 198/18 191U19
ADfJKI: !)!) 09/Ll/H r S u03u 19i1/10/011 ut;r--- ,,---- J.98/10 198/17
!)f;tHAl 013/16/71 T S 010u 19b/01J01/LOl J.98/01 198/1)
Ut>OA TI: U9J 1417! !> I OluO OJ OOul 199/0tJOU 14, 199/'001'0 I/O 1-~--19YTOii-19<iioo-T99/o1 1'99/uJ.

Figure 32. VTOC Printout Example of 5445 Disk

VUL
51:1./

00
00
00
00
01
OU
OU

File and Volume Label Display Program-$LABEL 117

MEANING OF VTOC INFORMATION

Heading

PACK-name

ID-characters

NUMBER OF ALTERNATE TRACKS
AVA I LABLE-number

TRACKS WITH ALTERNATE ASSIGNED

DEFECTIVE ALTERNATE TRACKS

DEVICE CAPACITY-number

LIBRARY EXTENT

START

END

EXTENDED END

AVAILABLE SPACE ON PACK

LOCATION

TRACKS

PACK-name

UNIT-code

DATE-xx/xx/xx

118

FILE NAME

FILE DATE

KEEP TYPE

FILE TYPE

REC LEN

KEY LEN

KEY LOC

Meaning

Name of the disk.

Additional disk identification (if any).

Number of alternate tracks available for assignment.

Numbers of primary tracks that have been assigned an alternate.

Numbers of the alternate tracks that are defective.

Disk drive capacity (number of tracks) - 5444 disk only.

Boundary of libraries on the disk. Iff the 5444 disk contains no libraries,
these headings are not printed.)

Track on which library begins.] If 5444 disk contains both source and
object library, START refers to begin-

Track on which library ends. ning of source library and END refers
to end of object library.

Object library only (5444 disk only). Track on which extension to library
ends. When object library is full, temporary entries can be placed in space
following end of library, provided that space is available.

Available disk areas.

First track in available area (5444). First cylinder/track in available area (54451.

Number of tracks available.

Name of the disk.

Location of the disk containing the VTOC information.

Program levei date

Name that identifies file in VTOC.

Date given the file when file was placed on disk.

File designation:
P = permanent
T = temporary
S = scratch

File type:
I = indexed

S = sequential

o = direct

SS = split cylinder, sequential

SO = split cylinder, direct
B = basic file

Number of characters in each record in file.

Indexed files only. Number of characters in each record key.

Indexed files only. Position in record occupied by last character of record
key.

Heading

NEXT AVAIL RECORD

NEXT AVAIL KEY

INDEX
START END

DATA
START END

VOL
SEa

Meaning

Beginning location of next available record in file. For 5444 disk, location is
track, sector, and position within sector. For 5445 disk, location is cylinder,
track, fixed record, and position within record. Ij\
EXAMPLE: 099/18/006 = track 99, sector 18, position 6.\!)

050/02/12/006 = cylinder 50, track 2, fixed record 12,

position 6.®
Indexed files only. Beginning location of next available record key in index
portion of file. For 5444 diSk, location is track, sector, and position within
sector. For 5445 disk, location is cylinder, track, fixed record, and position
within record. Ii'
EXAMPLE: 090/10/006 = track 90, sector 10, position 6.\!)

052/03/10/006 = cylinder 52, track 3, fixed record 10,
position 6.0

Indexed files only. For 5444 disk, tracks on which index starts (START) and
ends (END). For 5445 disk, cylinderltrack on which index starts (START)
and ends (END).

Disk area reserved for the file. START is the first 5444 track or 5445 cylinderl
track of the area. END is the last 5444 track or 5445 cylinderltrack. For
indexed files, this refers to the data portion of the file.

VOL SEa applies to multivolume files only. It indicates the order of this disk
as it relates to the other disks containing the remaining portion of the file.

® If the first byte of the next available record occurs in the next track after the end track of DATA START END then this
field will contain ****.

If the first byte of the next available key occurs in the next track after the end track of INDEX START END,
then this field will contain ****.

File Information Only
The parameter LABEL-filename or LABEL-'file
names' means to print certain file information
from the VTOC. For one file, use LABEL-filename;
for two files, use LABEL-'filename,filename'; and so
on. (Use the names that identify the files in the
VTOC.) You can list 20 filenames for a program
run. The statement length, however, is restricted
to 96 characters.

The program prints the file information for each
of the files you list. This is the information des
cribed for the headings PACK name and FI LE
LABEL in the chart, Meaning of VTOC Information.

If the program needs more than one page to list the
file information, it prints headings for the file
information at the top of each new page.

OCL CONSIDERATIONS
The following OCL statements are used to load the
the File and Volume Label Display program.

II LOAD $LABEL,code
II RUN

The code you supply depends on the location of
the disk containing the utility program. The codes
are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

File and Volume Label Display Program-$LABEL 119

EXAMPLES

Printing VTOC Information for Two Files
Figures 33 and 34 are examples of the OCl state
ments and utility control statements needed to
print VTOC information for two files.

1 4 8 12 16 20 24 28 32

I
II l AI> $L ~B EL .Fl
/1 RUN

Explanation:

36

• The File and Volume Label Display program is loaded from the
fixed disk ali drive one;

Figure 33. OCl load Sequence for File and Volume label Display

1 4 8 12 16 20 24 28 32 36

II PI 5P ~~~ NI T-~1 AS ~L -' ! I LNi6 1M '-I"
1/ E~\)

Explanation:

• The files for which information is printed are named BI LLNG
and INV01 (LABEL-'BILLNG,INV01' in DISPLAY statement).
They are located on the removable disk on drive one (UNIT-R1).

40 44

40 44

l'

Figura 34. Utility Control Statements for Printing VTOC information for Two Filas

120

48 52 56 60 64 68 72

48 52 56 60 64 68 72

FILE DELETE PROGRAM-$DELET

The File Delete program ha:; lhree uses:

• Remove all files from a disk.

• Remove only the files you name.

• Scratch file references in the Volume Yable of Contents (VTOC). Deleting files
frees the space they occupy for use by new filtls.

The program may be used on temporary, scratch and permanent files. To delete per
manent files, you must use the File Delete program. You can scratch temporary files
by using the File Delete program or by changing the file designation from temporary to
scratch (using the OCL keyword RETAIN) when you use the file.

The control statements you supply for the File Delete program depend on the function
to be performed.

The SCRATCH statement does not erase files from the disk. It changes their designa
tion to scratch (5) in the Volume Table of Contents (VTOC). By doing this, the prog
ram makes the areas that contain the files available for other files or for system prog
rams. A halt will occur if an attempt is made to create a new multivolume file that
will have the same label on disk as an existing single volume file, or an attempt is made
to create a single volume file bearing the same label as an existing multivolume file.
The halt will occur even though the existing file is a scratch file. If a REMOVE state
ment is used, files are erased from the VTOC. The REMOVE statement can also be
used to erase files from the disk. No file i~ physically scratched or removed from the
VTOC until end of job has occurred.

File Delete Program-$OELET 121

122

CONTROL STATEMENT SUMMARY

Use

Scratch all
files in the
VTOC,

Control Statements CD
/I SCRATCH PACK-name, UNIT-code, LABEL-VTOC
/I END

Scratch only /I SCRATCH PACK-name, UNIT-code, LABEL-filename, DATE-date 0
one file in
the VTOC,

Scratch
multiple
files in
the VTOC

Remove all
files from
disk

Remove
only the
files named
from disk

~ filename ~ /I SCRATCH PACK-name, UNIT-code, LABEL- 'f'l '
I enames

/I REMOVE PACK-name, UNIT-code, LABEL-VTOC, DATA-l ~rO t
YES ~

/I END j filename t
/I REMOVE PACK-name, UNIT-code, LABEL- 1 'filenames' f DATE-date, DATA-

/I END

CD For each use, the program requires the statements in the order they are listed: SCRATCH, END, or
REMOVE, END_

O Use this form of the SCRATCH or REMOVE statement when two or more files have the same name and
you want to delete one of them.

PARAMETER SUMMARY

PACK-name Name of the disk.

UNIT -code Location of the disk. Possible
codes are R1. F1. R2. F2. D1. D2.

LABEL-VTOC

LABEL-filename

Scratch or remove all fi les
from the VTOC.

Scratch or remove -
only the file
named .in the VTOC.

LABEL-·filename.filename •... Scratch or remove
only the files
named in the
VTOC.

Use names
that
identify
files in
VTOC.

CD

DATE-date

DATA _ {~rO }

~ YES

Date of the file being deleted.
Date must be a 6-digit number.
EXAMPLE: DATE-062070
means June 20. 1970.

Delete files from VTOC
and/or disk

CDThese are the names you gave the files when you placed them
on disk.

PARAMETER DESCRIPTIONS

PAC K Parameter
The PACK parameter (PACK-name) tells the pro
gram the name of the disk that contains the files
being deleted. The name you supply in this para
meter is the one written on the disk by the Disk
Initialization program.

The File Delete program compares the name in the
PACK parameter with the name on the disk to en
sure they match. In this way, the program ensures
that it is using the right disk.

UN I T Parameter
The UNIT parameter (UNIT-code) tells the pro
gram the location of the disk containing the files
being deleted. Codes for the possible locations
are as follows:

Code Meaning

Rl Removable disk on
5444 drive one

Fl Fixed disk on 5444
drive one

R2 Removable disk on
5444 drive two

F2 Fixed disk on 5444
drive two

Dl Removable disk on
5445 drive one

D2 Removable disk on
5445 drive two

LASE L Parameter
The LABEL parameter identifies the files you want
to delete from the disk. Its form depends on the
files you are deleting:

Form

LABEL-VTOC

LABE L-filename

Files Deleted

All of them.

Only the file that is
named. The name can
apply to more than one
file. If it does, all of
those files are deleted
unless you use a DATE
parameter to identify a
particular one.

File Delete Program-$DELET 123

Form Files Deleted

LABEL-'filename,filename, ... '
Only the files that
are named. A name
can apply to more
than one file. If it
does, all of those files
are deleted. You can
list as many filenames
as the statement can
hold; the statement
length, however, is
restricted to 96 char
acters. Additional
REMOVE or
SCRATCH statements
may be used for ad
ditional filenames.
The maximum num-
ber of files that can be
deleted in one run is 40.

DATE Parameter

124

The DATE parameter can only be used with
LABEL-filename. The DATE parameter (DATE
date) applies to two or more files that have the
same name. It tells the program the date of the
one you want to delete.

Every file on disk has a date, which is given to the
file at the time it is created. When two or more
files have the same name, the dates are used to
tell one file from another.

If the pack has more than one file with the name you
list in the LABEL parameter, they will all be deleted
unless you use the DATE keyword and parameter to
indicate a particular file. If the DATE keyword is
used, only one filename can be given in the LABEL
parameter for that control statement.

The date is a 6-digit number: t".V0 digits for day,
two for month, and two for year. Day, month,
and year can be in one of two orders: (1) month,
day, year, and (2) day, month, year. For example,
061870 and 180670 both mean June 18, 1970.

In the DATE parameter, be sure to specify day,
month, and year in the same order as they were
specified when you placed the file on disk.

DATA Parameter
The OAT A parameter lets you remove the files
specified directly from the disk as well as from
the VTOC.

If YES is coded in this parameter, the file specified
will be removed from the disk and any reference to
it in the VTOC will be removed. In addition, a
message will be printed on the system log device for
each file removed from the disk in this format:

'DATA REMOVED FOR FI LE XXXXXX
DATE 000000'

DATA-YES should only be used if file security is
required. The time needed to remove the data is
much greater than the time needed to remove the
VTOCentry.

If NO is coded in this parameter, the file specified
will not be removed from the disk. However, any
reference to it in the VTOC will be removed. If
this parameter is not used, DATA-NO is assumed.

OCl CONSIDERATIONS

1

lIlt
IIV
III

The following OCl statements are needed to load
the File Delete program:

/I lOAD $DElET,code
// RUN

The code you supply depends on the location of the
disk containing the utility program. The codes
are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

4 8 12 16 20 24 28 32

L A ~D LE ~t Fit
I~ ~

Explanation:

36

• File Delete program is loaded from the fixed disk on drive one.

Figure 35. OCl load Sequence for File Delete

1 4 8 12 16 20 24 28 32 36

11'1 ~ .. D Air H
p,..

~-~~ ~111 1 t LAB -\ ~v 01 IJ tJ toll
1/ E~I'I

Explanation:

EXAMPLES

Deleting One of Several Files Having the Same
Name

Figures 35, 36, and 37 are examples of the OCl
statements and utility control statements needed
to delete one of several files having the same name
as described in the following situation.

Situation

40

40

T- tl

Assume that thr-ee files on a removable disk have
the same name: INV01. The dates of these files
are 6/16/70,8/18/70, and 11/15/70. You want to
delete the version dated 6/16/70.

44 48 52 56 60 64 68 72

44 48 52 56 60 64 68 72

p~ TI: -, :" r.rJ 16

• Disk that contains the file being deleted is named 00001 (PACK·OOOO1 in SCRATCH statementl.

• Because two other files have the name INV01, the date (0616701 is needed to complete the identification
of the file you want to delete (lABEl·INV01 and DATE·061670).

• The removable disk containing the file to be deleted is on drive one (UNIT·R1).

Figure 36. Utility Control Statements to Delete One Version of a File

File Delete Program-$DELET 125

1 4 8 12 16 20 24 28 32 36

IV ~E ~~ WE PA '"K -" ~" ~l AS EL -I ~i'I I'll INI 11'-

Explanation:

• A REMOVE statement is used instead of a SCRATCH statement.

• Disk that contains the file being deleted is named 00001
(PACK-OOOO1 in REMOVE statement).

• Because two other files have the name INV01, the date (061670)
is needed to complete the identification of the file you want to
delete (LABEL-INV01 and DATE-061670).

• The removable disk containing the file to be deleted is on drive
one (UNIT-R1).

• The YES specification in the DATA parameter will delete all
data from the disk containing information on the specified file.

40 44 48 52

IRI vA irE -~ '1 ~ ,'''

Figure 37. Utility Control Statement to Delete One Version of a File Using a REMOVE Statement

126

56 60 64 68 72

AIT A- IY'ElS

DISK COPY/DUMP PROGRAM-$COPY

The Disk Copy/Dump program has three general uses. The control statements you
must supply depend on the program use.

The program uses and most common reasons for them are as follows:

Program Use

Copy entire contents of one
disk to another.

Copy a data file from one
disk to another, or from one
area to another on same disk.

Print all or part of a data file.

Common Reasons

Provide a reserve disk in case something
happens to the original disk. Important
disks, such as those containing your libraries
and permanent data files, are normally the
ones you would copy.

Any of the following:

• Provide a reserve file in case something
happens to the original file.

• Move a file to a larger disk area.

• Re-organize the data portion of an in
dexed file. (Data in the copy of the file
is re-organized; the original file is un
changed.)

• Delete records from a file. (Records are
omitted from the copy of the file; the
original file remains unchanged.)

Provide a printed copy of the records in a ,
file, perhaps for use in checking the records
for errors.

The OCL sequence used to load the program describes the disk file being copied or
printed. If you are copying the file to disk, the file being created must also be des
cribed in the OCL sequence.

Disk Copy/Dump Program-$CO,..V 127

CONTROL STATEMENT SUMMARY

Uses<D

Copy an Entire Disk

Copy a Data File

Copy and Print
a Data File

Copy a Data File,
But Print Only a
Part of the File

Print an Entire Data
File

Print Only a Part
of a Data File

Control Statements ®
/I COPYPACK FROM-code,TO-code

/I END

II COPYFILE ~ OUTPTX-~ lDELETE"\ ® ~ NO f Ii' 1 NO ~ 10\ -or- OISK, -or- 'position,character', REORG- -or- ,\!IWORK- -or- \!I
OUTPUT- OMIT- YES YES

/I END

/I COPYFILE ~ OUTPTX-f ~DELETE-! 1 NO f
-or- BOTH, -or- 'position,character', ®REORG-YES,0wORK- -or-

OUTPUT- OMIT- . YES

/I END

1/ COPYFILE ~O~:~Tx-·tBoTH'lDE!~TE-l,position,character', CDREORG-YES,0WORK- ~. ~~ l I OUTPUT-~ OMIT- ~ f YES~
/I SELECT KEy,FROM-'key,0 .

-or- t7\
/I SELECT KEY,FROM-'key',TO-'key'\.!I

-or-
/I SELECT RECORD,FROM-number

-or-
/I SELECT RECORD,FROM-number,TO-number

/I SELECT PKY,FROM-'key' CD

-or-

/I SELECT PKY,FROM-'key',TO-'key' CD

/I END

~ OUT_oPrT_ X-~
/I COPYFILE PRINT

OUTPUT-

/I END

I/COPYFILE ~Ou::rX-t PRINT

IOUTPUT-~
/I SELECT KEY,FROM-'key,0

-or- t7\
/I SELECT KEY,FROM-'key',TO-'key' \.!I

-or-
/I SELECT RECORD,FROM-number

-or-
/I SELECT RECORD,FROM-number,TO-number

1/ SELECT PKy,FROM-'key'CD
-or- r.i'\

/I SELECT PKY,FROM-'key' ,TO-'key' 0
/I END

One of these 0

One of these (!)

<DThe program uses include the possible combinations of copying and printing files.

® For each use, the program requires the control statements in the order they are listed: COPYPACK, END; COPYFI LE, END; and
COPYFILE,SELECT,END.

CDNeeded only if you want to delete a certain type of record. DELETE cannot be used with direct files.

0APPlies only to indexed files. When OUTPUT-BOTH is specified, REORG-YES is required.

(DWORK-YES applies if you are copying the file from one removable disk to another using the same disk drive (drive one). WORK-NO
.applies if you are copying the file from one area to another on the removable disk on drive one.

CD Identifies the portion you want to print.

eD Index files with packed keys.

128

PARAMETER SUMMARY

COPYPACK Statement

FROM-code

TO-code

COPYFILE Statement CD
OUTPUT-DISK

OUTPUT-PRINT

OUTPUT-BOTH CD
~ DISK I

OUTPTX- 1 PRINT (
(BOTH'

DE LETE-'position,character'
-or

OMIT-'position, character'

REORG-N00
REORG-VES0 CD
WORK-NOC!)

WORK-VESQ)

SELECT Statement

{~~} ,FROM-'key'

{~~ },FROM-'keY',TO-'keY' . ;

RECORD,FROM-number

RECORD,FROM-number,
TO-number

Location of disk to be copied. Possible codes are R1, F1, R2, F2, 01, 02.

Location of disk to contain the copy. Possible codes are R1, F1, R2, F2, 01, 02.

Copy the file from one disk to another, or from one area to another on the same diSk.Q)

Print the entire fi Ie or only part of the file. Q)

Copy the file from one disk to another, or from one area to another on the same diSk.Q)
Also print the entire file or only part of it.

Printed output will be displayed in hexadecimal values.

These parameters are oPtional. It means that all records with the specified character in the speci
fied record position are deleted. DELETE causes deleted records to be printed. OMIT causes
deleted records not to be printed. Position can be any position in the record (the first position
is 1, second 2, and so on!. The maximum position is 9999.

Indexed files only. Copy records in the same way as they are organized in the original file
(the file from which the records are copied).

Indexed files only. Reorganize the records so that the records in the data portion of the
file are in the same order as their keys are listed in the index.

Required for copying a file from one area to another on a removable disk on drive one (Rl or 01).
It means: do not use a work area.

Required for copying a file from one removable disk on drive one to another removable
disk on that drive. It means: use a work area on the fixed disk on drive one or on the
removable disk on drive one if the file being copied is on the 5445. R1 must have a
minimum of 198 contiguous unused tracks.

Indexed files only. Print only the part of the file from the record key that is specified
in the FROM parameter to the end of the file.

Indexed files only. Print only the part of the file between the two record keys that are
specified in the F ROM and TO parameters (including the records indicated by the
parameters!. To print only one record, make the FROM and TO record keys the same.

Print only the part of the file from the relative record number specified in the FROM
parameter to the Ilnd of the file.

Print only the part of the file between the relative record numbers indicated by the
parameters (including the records indicated by the parameter). To print only one record, the
FROM and TO record keys should be the same.

Disk Copy/Dump Program-$COPV 129

G) In the OCl load sequence, you indicate which file is to be copied or printed. For files being copied, you must also indicate
whether the file is being copied from one disk to another or from one location to another on the same disk.

(DREORG-NO is assumed if you omit the REORG parameter. When OUTPUT-BOTH is used for indexed files, REORG-YES
is required.

(DWORK-NO is assumed i~ you omit the WORK parameter.

If halt UC3CCS occurs, indicating that there is not enough core available to execute the job, consider the following:

1. If you have OUTPUT-BOTH, change to OUTPUT-DISK.

2. If you have REORG-YES, change to REORG-NO.

3. If running on a DPF system, use a larger partition if possible.

130

PARAMETER DESCRIPTIONS

FROM and TO Parameters (COPVPACK)

The COPYPACK statement is used to copy the con
tents of one disk to another. It has two parameters:
F ROM and TO. They tell the program the locations
of the two disks on the disk unit.

The FROM parameter (FROM-code) indicates the
location of the disk you are copying. The TO para
meter (TO-code) indicates the location of the disk
that is to contain the copy. The FROM and TO
codes must be for the same type disk drive. You
cannot copy a 5444 pack from or to a 5445 pack.

Codes for the possible locations are as follows:

Code Meaning

R 1 Removable disk on 5444 drive one

F 1 Fixed disk on 5444 drive one

R2 Removable disk on 5444 drive two

F2 Fixed disk on 5444 drive two

01 Removable disk on 5445 drive one

02 Removable disk on 5445 drive two

Copying Entire Disk

When copying a disk, the Disk Copy/Dump program
transfers the contents of the disk to another disk.
The content of the two disks will be the same, except
for the disk names and alternate track information
which may be different.

The disk you are copying can contain libraries or data
files or both. The disk that is to contain the copy
must not contain libraries, temporary data files, or
permanent data files.

The program can copy the contents of one removable
disk to another using one disk drive. The drive
however, must be drive one when using the 5444
disk. (The system pack and the pack from which
the Disk Copy/Dump program is loaded must be
F1.)

To do this the program needs 20 tracks on the fixed
disk on drive one (5444 disk). It fills this space with
information from the disk you are copying. Then it
prints a message telling the operator to mount the
other removable disk (the one to contain the copy)
on drive one. After transferring the information

from the fixed disk to the removable disk, the program
prints another message telling the operator to remount
the disk you are copying. The program repeats this
procedure until all information has been transferred.

Until the contents of the disk is completely copied
on the new disk, three addressing portions of the
new disk are changed to prevent accidental usage
of a partially filled disk. Therefore, if the copying

process is stopped before it is completed, the pack
is unusable. You can restart the copying process
by reloading the Disk Copy/Dump program, or
you can resotre the disk by reinitializing.

After a successful copy, the copy program prints
a message:

COPYPACK IS COMPLETE

Note: If you copy a disk containing an active
checkpoint, that checkpoint will exist on both
the FROM and TO disks. When one of the two
active checkpoints is utilized to restart the check
pointed program, care must be taken to ensure that
the job is not restarted a second time. To ensure
that this will not occur, it is recommended that you
perform IPL and load Restart ($$RSTR) from the
pack containing the second active checkpoint. If
you then select the controlled cancel option when
the Hlinn halt occurs (nn is the last requested check
point number), the checkpoint will be activated.

OUTPUT Parameter (COPVFI LE)

The OUTPUT parameter is used when copying and
printing data files. It indicates whether you want
the program to copy, print, or copy and print a
file. The OUTPTX parameter can be used to dis
play printed output in hexadecimal values.

The parameter OUTPUT-DISK means to copy the
file; OUTPUT-PRINT means to print the file; and
OUTPUT-BOTH means to copy and print the file.

The output file must be a new file unless the file
you are copying over is a temporary file, in which
case, the following rules apply:

1. If RECORDS were used to create the tem
porary file, then the COPYO file card must
specify RECORDS and LOCATION.
RECORDS must be equal to the number
used to create the original file.

Disk Copy/Dump Program-$COPY 131

2. If TRACKS were used to create the
temporary file, then the COPYO file card
must specify TRACKS and LOCATION.
TRACKS must be equal to the number
used to create the original file.

Copying Files

The Disk Copy/Dump program can copy a file from
one disk to another or from one area to another on
the same disk.

The Disk/Copy Dump program cannot be used
to copy a single volume file to a multivolume
file or one volume of a multivolume file to a
single volume file.

The OCL load sequence for the Disk Copy/Dump
program indicates (1) the name and location ofthe
file being copied, and (2) the name and location of
the copy being created. (See DCL Considerations
in this section.)

The program can copy a file from one removable
disk to another using one disk drive. The drive,
however, must be drive one. (See description of
the WOR K parameter for more information.)
(The system pack and the pack from which the
Disk Copy/Dump program is loaded must be F1.)

In copying a file, the program can omit records.
(See the description of the DELETE parameter
for more information.)

Printing Files

132

The program can print all or part of a data file.
To print only part, the program needs a SELECT
control statement.. (See the description of the
SELECT control statement parameters in this
section.) If you do not use a SELECT statement,
the entire file is printed.

If you use SELECT or REORG, records from in
dexed files are printed in the order their keys
appear in the index portion of the file; otherwise,
they are printed as they appear in the file. For
each record, the program prints the record key
followed by the contents of the record.

Records from sequential and direct files are print
ed in the order they appear in the file. For each
record, the program prints the relative record
number followed by the contents of the record.

The program uses as many lines as it needs to print
the contents of a record. Appendix A lists the
hexadecimal numbers for characters in the standard
character set.

The following is an example of the way the program
prints hexadecimal numbers using OUTPTX:

ABCDE GHIJ 12345

CCCCCBCCCDFFFFF4444444
1234567891123450000000

The hexadecimal number 86 represents a character
that has no print symbol.

After printing the last record, the printer triple
spaces and prints the following message:

(number) RECORDS PRINTED

DELETE Parameter (COPVFILE)

In copying a data file, the Disk Copy/Dump program
can omit records of one tYpe. The DELETE para
meter identifies the type of record. Use of the
DELETE parameter is optional. If you do not use
it, no records are deleted.

The form of the parameter is DELETE-'position,
character'-. Position is the position of the character
in the records. Character is the character, except
for apostrophes, blanks, or commas, that identifies
the record. For example, with the parameter
DELETE·'100,R', all records with an R in position
100 are deleted. By specifying the hexadecimal
code for the character, any character (including
apostrophes, blanks, commas, and packed data)
can be used to identify the records to be deleted.
For example, with the parameter DELETE-'100,
X40', all records with a blank (hexadecimal 40)
in position 200 are deleted.

Deleted records are always printed. If you are
both copying and printing a data file, deleted
records are printed with the other records that
are printed. The deleted records are preceded
by the word DELETE.

The OMIT keyword can be used instead of
DELETE. The deleted records are not printed
if OMIT is used.

REORG (Reorganize) Parameter (COPVFILE)

In copying an indexed file, the program can
reorganize the file, such that the records in the
data portion are in the same order as their keys in
the file index. The REORG parameter tells the
program whether or not to reorganize the file.

REORG-YES means to reorganize. REORG-NO
means not to reorganize. REORG-NO is assumed
if you omit the parameter.

If you tell the program to reorganize the file, the
reorganization applies to the copy of the file
rather than the original file. The original file is
not affected.

Reorganization (REORG-YES) is required when
you are both copying and printing an indexed
file (OUTPUT-BOTH).

WORK Parameter (COPVFILE)

The WORK parameter applies to copying a data
file from (1) removable disk to another using
the same disk drive (WORK-YES), or (2) one
area to another on a removable disk on drive one
(WORK-NO). It tells the program whether or not
to use a work area on the fixed disk on drive one.

The parameter WORK-YES means to use a work
area. WORK-NO means not to use a work area.
WORK-NO is assumed if you omit the WORK
parameter.

Work Area

If you have only one disk drive, a common use of
the Disk Copy/Dump program might be to copy
a file from one removable disk to another. To do
this, the program must use a work area on the
fixed disk.

If you are copying on 5445 drive one, the work
area will be on R1. R1 must contain a minimum
of 198 contiguous unused tracks. It is recommend
ed, however, that R1 contain no files or libraries
as the number of pack changes on 01 will decrease
with an increase in work area space. You cannot
copy split cylinder files from 01 to 01 using
WORK-YES.

In copying the file, the program fills the work
area with records from the file you are copying.
Then it prints a message telling the operator to
mount the other removable disk (the one to con
tain the copy) on drive one. After transferring
the records from the work area to the removable
disk, the program prints another message telling
the operator to remount the disk containing the
file you are copying. The program repeats this
procedure until all records have been transferred.

If you have two disk drives, you can still use the
same drive to copy a file from one removable disk
to another. The drive, however, must be drive one.

You can copy a file from one area to another on the
same disk. If you do, and the disk is a removable
disk that you plan to mount on drive one, use the
WORK-NO parameter. This keeps the program from
using a work area on the fixed disk when it transfers
the file from one area to the other.

When using WORK-YES, the input and output files
must have different labels, locations, or pack names.
It is good practice to have different pack names on
all packs in an installation.

SELECT KEV and SELECT PKV Parameters
(SELECT)

The SELECT KEY and SELECT PKY parameters
apply to printing part of an indexed file. The
SELECT PKY parameter applies to printing part
of the index file which contains packed keys. The
parameters are FROM and TO.

The FROM parameter (FROM-'key') gives the key
of the first record to be printed. The TO para
meter (TO'key') gives the key of the last record to
be printed. The record keys between those two in
the file index identify the remaining records to be
printed. If you want to print only one record, use
the same record key in both the FROM and TO
parameters.

For example, the parameters FROM-'000100' and
TO-'000199' mean that records identified by keys
000100 through 000199 are to be printed.

If the file index does not contain the key you
indicate in a FROM parameter, the program uses
the next higher key in the index.

Disk Copy/Dump Program-$COPY 133

You can omit the TO parameter. If you do, the
program assumes that the last key in the index is
the TO key.

You can use fewer characters in the FROM or TO
parameter than are contained in the actual keys;
when keys are packed, however, you must use the
same number of characters as contained in the
actual keys. If you use fewer characters, the pro
gram ignores the remaining characters in the record
key. The number of characters used in the FROM
and TO parameters need not be the same.

SELECT RECORD Parameters (SELECT)

The SELECT RECORD parameters can apply to any
file, but are normally used for sequential and direct
files. These parameters use relative record numbers
to identify the records to be printed.

Relative record numbers identify a record's location
with repsect to other records in the file. The rela
tive record number of the first record is 1, the
number of the second record is 2, and so on.

The SELECT RECORD parameters are FROM and
TO. The F ROM parameter (F ROM-number) ~ives
the relative record number of the first record to
be printed. The TO parameter (TO-number) gives
the number of the last record to be printed. Records
between those two records in the file are also
printed.

For example, the parameters F ROM-1 and TO-30
mean that the first thirty records (1·30) in the
file will be printed.

You can omit the TO parameter. If you do, the
program assumes that the number of the last re
cord in the file is the TO number. If you want
to print only one record, use the same number in
the F ROM and TO parameters.

COPYING MULTIVOLUME FILES

When copying multivolume files the first volume
of the input file has to be online when the job is
initiated. The output file must be a new file. If
either condition is not satisfied, a halt occurs.

Maintaining Proper Volume Sequence Numbers

134

To maintain proper volume sequence numbers
when copying a multivolume file, you must either
copy all the volumes of the file in one run or copy

only one volume for each run of $COPY. For
example, if you copy a 3-volume file one volume
at a time (volume 1 in the first run, volume 2 in
the second run, and volume 3 in the third run),
the volumes will retain their original sequence
numbers in the output file. Or if you copy all the
volumes (1, 2, and 3) in the same run, the volume
sequence numbers in the new file will be the same
as in the orginal file. However, if you copy only
volumes 2 and 3 in one run, their volume sequence
numbers will be changed to 1 and 2 in the output
file.

$COPY will insure that all volumes of a multivolume
file have the same date in the following manner.
If only one volume of a multivolume file is copied,
for each run of $COPY, the new file will assume
the same data as the input file. If all volumes, or
as in the example above, volume 2 and 3 of a 3-
volume file are copied in a single run, the new file
will assume the current system data.

Maintaning Correct Relative Record Numbers

To maintain correct relative record numbers when
copying one volume of.a multivolume direct file,
the size of the output volume must be the same as
the size of the input volume. (If you want to in
crease the size of a file, you must copy the entire
file.) If you copy the first volume of a 2-volume
file and increase the number of records on that
volume, you are also increasing relative record
numbers of all records on the next volume. There
fore, to maintain the correct relative record num
bers, output and input volume extents must be
equal if you are copying only one volume of a
multivolume direct file.

Direct File Attributes

If you copy an entire multivolume direct file in
one run, the output file will be given sequential
attributes in the Volume Table of Contents
(VTOC). However, this does not effect file pro
cessing. A file with either sequential or direct
attributes can be accessed by a consecutive or
random access method. If only one volume is
copied, the direct attributes will be maintained.

Copying Multivolume Indexed Files

If you want to copy a multivolume file, REORG
YES must be given in the FILE statement. Since
an unordered load to a multivolume indexed load
is not permitted, a REORG-NO will cause a halt

if an out of sequence record is encountered. If
you would prefer not to reorganize the file, it must
be copied one volume at a time. When copying
one volume at a time, the HIKEY on the output
volume must be the same as the HIKEY on the
input volume. Making the HIKEYs the same will
ensure that both the input and output volumes
are the same length and no records will be lost.
When copying one volume of a multivolume file,
either REORG-YES or REORG·NO may be
specified.

OCL CONSIDERATIONS

The following OCl statements are needed to
load the Disk Copy/Dump program, if you are
using the program to copy an entire disk.

II lOAD $COPY, code
II RUN

The code you supply depends on the location of
the disk containing the Disk Copy/Dump pro
gram. The codes are as follows:

Code Meaning

Rl Removable disk on drive one

Fl Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Disk CoPv/Dump Program-$COPY 135

If you are copying or printing files you must (1)
describe the disk files being copied or printed and
(2) describe the file being created. To do this,
the following OCL statements are needed in the load
seque'nce:

II LOAD $COPY,code

II FI LE NAME-COPYIN,UNIT-code, PACK-diskname, LABEL-filename

II FILE NAME-COPYO, UNIT-code, PACK-diskname, LABEL-filename,

II {TRACKS-number } ,RETAIN-code
R ECO R OS-number

II RUN

Statement
Entry

II LOAD

$COPY

code

II FILE

NAME-COPYIN

UNIT-code

PACK-diskname

LABE L-filename

136

Considerations

Name of Disk Copy/Dump
program.

Location of disk !=On
taining Disk Copy/Dump
program. Can be Rl, R2,
Fl, F2.

Name Disk Copy/Dump
program uses to refer to
file to be copied (input
file).

Location of disk containing
file to be copied. Can be
Rl, R2, Fl, F2, 01, 02.

Name of disk containing
file to be copied.

Name by which file to be
copied is identified on disk.

Statement
Entry

/I FILE

NAME-COPYO

UNIT-code

PACK-diskname,

LABE L-filename

TRACKS-number
RECORDS-number

RETAIN-code

1/ RUN

For further information on the
FI LE statements, see Disk File
Statement, File Processing
Considerations in Part I of this
manual.

Considerations

Name Disk Copy/Dump
program uses to refer to
output file being created.

Location of disk on which
output file is to be created.
Can be Rl, R2, Fl, F2,
01,02,.

Name of disk on which
output file is to be identi
fied on disk.

Name by which output
file is to be identified on
disk.

Size of output file ex
pressed either as number
of records (RECORDS)
or number of disk tracks
(TRACKS).

Designation (temporary,
permanent, or scratch)
of output file. Can be
T, P, or S.

EXAMPLES

1

lit
IV
II

4

Figures 38 through 43 are three examples of the Del
statements and utility control statements needed to

(1) copy an entire disk, (2) copy a file from one
disk to another and (3) print part of a file. Each
of the three examples has two figures.

8 12 16 20 24 28 32

L AD Ie. "'P'I' F!
IR N

Explanation:

1 4 8 12 16 20 24 28 32

II py p~ ik FR OM -rF 11, 10 -R2.
II "

Explanation:

• The Disk Copy/Dump program is loaded from the fixed disk on
drive one.

• The contents of the fixed disk on drive two (FROM-F2 in
COPYPACK statement) is copied onto the removable disk on
drive two (TO-R2).

Figure 38. DCl load Sequence for Copying an Entire Disk Figure 39. Utility Control Statements for Copying an Entire Disk

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

I
III. LO ~D $C OP 'II) Fl
II FI LE NA ME -c 0 p~ \~ I U NI T- F1 ,p A. I< A1 , L ~A & E::L -M AS h"~~
1// lLE NA ME - 0 p~ 0, N I I- gl) P A' K- i82. J L Ail!! EL -I A I<~ P, ~~ iAC K~ -~ ~,Ii! Tit. IN -p
III RuN

Explanation:

• Disk Copy/Dump program is loaded from fixed disk on drive one.

• Input file (OCl sequence):
1. Name that identifies file on disk is MASTE R (lABE l-MASTE R).
2. Disk that contains the file is the fixed disk on drive one (UNIT-F1).

Its name is A1 (PACK-All.

• Output file (OCl sequence):
1. Name to be written on disk to identify the file is BACKUP (lABEL-BACKUP).
2. Disk that is to contain the file is the removable disk on drive one (UNIT-R1).

Its name is B2 (PACK-B2).
3. The file is to be permanent (RETAIN-P).
4. The length of the file is 50 tracks (TRACKS-50).

Figure 40. DCl load Sequence for Copying a File from One Disk to Another

Disk Copy/Dump Program-$COPY 137

1 4 8 12 16 20 24 28 32 36

III c." p~ II" I LE. no rT'P ~IT -D 15~
II ~.v

Explanation:

• The COPYFI lE statement tells the program to create the output
file using all the data from the input file. The output file is a
copy of the input file.

40 44

Figure 41. Utility Control Statements for Copying a File from One Disk to Another

1 4 8 12 16 20 24 28 32 36 40 44

II~
II L AD ~Ic. If' p ~II Fl
IV FI LE ~A ~E- P", IN \ ~\ T- R1 ,P lAir K- 2, I.A BE L- &A
!f I R N

Explanation:

• Disk Copy/Dump program is loaded from the fixed disk on drive one.

• Input file (OCl sequence):
1. Name that identifies the file on disk is BACKUP (lABEL-BACKUP).
2. Disk that contains the file is the removable disk on drive one (UNIT-R11.

Its name is B2 (PACK-B2).

Figure 42. OCl Load Sequence for Printing Part of a File

1 4 8 12 16 20 24 28 32 36 40

II C.O P'r' IF I LE IUT Pi' T- PRo IIN1
II ~L!; rr l(E~ I~ 101-'~ DIA ~Ic,

, TO -~ 5AIK ~., ,
1/ N

Explanation:

• The file is being printed (COPYFI lE statement!.

• The file is an indexed file. The part being printed is identified by the record
keys from ADAMS to BAKER in the index (SELECT statement).

Figure 43. Utility Control Statements for Printing Part of a File

138

44

~\(

48 52 56 60 64 68 72

48 52 56 60 64 68 72

UP

48 52 56 60 64 68 72

DUMP/RESTORE PROGRAM - $DCOPY

The Dump/Restore program ($DCOPY) is a utility program used with the IBM
System/3 Model 10 Disk System control program. The $DCOPY program allows
the user to copy or dump the entire contents of a disk onto tape. The tape then
serves as a back-up copy in case something happens to the information on the disk.
The disk can at any time be restored to its original contents by transferring informa
tion back from the tape. Important disks, such as those containing libraries and
permanent data files, are normally the ones copied. The tape contains a copy of
the data on all tracks, including those on cylinder 0, except for the alternate and
CE tracks.

CONTROL STATEMENT SUMMARY

Uses

Copy an entire
disk to tape or
restore an entire
disk from tape.

Control Statements Q)
II COPYPACKCD~ TO-code t C PACK-name]

(;"\ (F ROM-code ~
IIEND0

Q)

CD

0)

Control statements are required in the order they are listed.

There can be only one COPYPACK statement in a program.

END statement must appear only once in a program since it is a delimiter
indicating end-of-job.

PARAMETER SUMMARY

COPYPACK Statement

Parameter

FROM-code

TO-code

PACK-name

Meaning

Location of disk to be copied. Possible codes are F 1, R 1,
F2, R2, 01, 02.

Location of disk to receive the copy. Possible codes are F 1,
R1,F2, R2, 01, 02. See Figure for relationship of FROM
and TO locations.

Name of the disk pack being used.

Dump/Restore Program-$DCOPY 139

PARAMETER DESCRIPTIONS

FROM and TO Parameters (COPYPACK) Code Location

140

The COPYPACK statement is used to copy informa
tion from disk to tape or from tape to disk.

The FROM parameter (FROM-code) indicates the
location of the disk being copied. The TO
parameter (TO-code) indicates the location of disk
to receive the copy.

Codes for possible locations of F ROM and TO
parameters are:

5444 Disk
(Fl, R1, F2, or R2)

5445 Disk
(Dl or D2)

Notes:

I DUMP COPY TO >

and < RESTORE COpy TO

I DUMP COpy TO>

and < RESTORE COpy TO I

F1 5444, fixed disk on drive one
R1 5444, removable disk on drive one
F2 5444, fixed disk on drive two
R2 5444, removable disk on drive two
D1 5445, disk drive one
D2 5445, disk drive two

See Figure 44 for the relationship of FROM and TO
locations.

3410/3411 Tape
(Tl, T2, T3, or T4 as

indicated on // FI LE
statement)

3410/3411 Tape
(Tl, T2, T3, or T4 as
indicated on 1/ FI LE
statement)

1. When copying disk to tape (dump). any pack may be specified as input including the IPL pack or program pack.

2. When copying tape to disk (restore), the disk must not be the IPL pack, the program pack, or another pack can·
taining libraries, temporary data files, or permanent data files.

3. The disk receiving the copy at restore time must be the same type (5444 or 5445) and at least as large as the
original disk.

Figure 44. Relationship of Disk to Tape Drives when Using $DCOPY

PACK Parameter (COPYPACK)

The pack name specified will be checked against the
actual name of the pack. A halt occurs if they are
not the same. If the parameter is not used, no check
ing will occur.

OCl CONSIDERATIONS

The $DCOPY utility requires the following OCl

statements:

II lOAD, $DCOPY, code

II FI lE parameters

II RUN

The code identifying the location of the $DCOPY
program can be one of the following:

Code Location

R 1 Removable disk on 5444 drive one
F1
R2
F2

Fixed disk on 5444 drive one
Removable disk on 5444 drive two
Fixed disk on 5444 drive two

FI lE Statement When Copying From Disk to
Tape (Dump)

For 7-track tape:

/I FILE NAME·BACKUP ,UN IT· { ~~ } !.R EEL· 1 ~n:nnn ! I
j filename on tape t j mmddyy t

[,lABEl- 1 'character string' \] [,DATE- 1 ddmmyy \]

5 codet
['RETAIN- 1 000 \] [,BlKl-block length]

[,RECl-record length] [,RECFM-F]

{
lEAVE } { 200}

[,END- REWIND] [,DENSITY- 556]
UNLOAD 800

,CONVERT-ON [,PARITY-ODD] [,TRANSlATE-OFF]

For 9-track tape: {T1 (.

/I FILE NAME·BACKUP,UNIT· ~! ~ !.REEL.l ~,;:,nnn ! I

5 filename on tape t 5 mmddyy t
[,lABEl- I 'character string' \] [,DATE- I ddmmyy \]

5 code t
['RETAIN-1 000 \] [,BlKl-block length]

[,RECl-record length] [,RECFM-F]

{
lEAVE } 800

[,END- REWIND] [,DENSITY- ~ 1600 ~]
UNLOAU ---

FilE Statement When Copying From Tape to
Disk (Restore)

For 7-track tape:

II FILE NAM E·BACKUP ,UN IT· { ~~ } ,R EEL· 1 ~,;:,nnn!
j filename on tape t j mmddyy t

[,lABEl- 1 'character string' \] ['DATE- 1 ddmmyy \]

[,BlKl-block length] [,RECl-record length]

[,RECFM-F] [,END- REWIND] [,DENSITY- 556] {
lEAVE } {200}

UNLOAD 800

,CONVERT-ON [,PARITY-ODD] [,TRANSlATE-OFF]

Note: The DENSITY parameter must be the same
number as specified for the dump.

For 9-track tape:

/I FILE NAME·BACKUP ,UN IT. { ~~ } ,R EE L. j. ~n:nnn !

j filename on tape t j mmddyy t .
[,lABEl- I 'character string' \] ['DATE- 1 ddmmyy \]

[,BlKl-block length] [,RECl-record length]

{
lEAVE }

[,RECFM-F] [,END- REWIND]
UNLOAD

Dump/Restore Program-$DCOPY 141

Statement Entry

142

// LOAD

$DCOPY

code

// FILE

NAME-filename

UNIT-code

{ nnnnnn}
REEL- NL

{
filename on tape}

LABEL- 'character string'

DATE-date

RETAIN-code

BLKL-block length
RECL-record length

RECFM-code (record format)

END-position of tape after
processing

~ 200 l
DENSITY- 556

800
1600

Considerations

Name of Dump/Restore program.

Location of disk containing Dump/Restore program. Can be R 1, R2, F1, F2.

Filename entry must be BACKUP.

The UNIT parameter is required. Code indicates tape unit. Allowable codes are:
T1, T2, T3, T4

The REEL parameter is optional when copying from disk to tape; it is required
when copying from tape to disk.

nnnnnn Volume is identified by coding a maximum of six characters,
excluding commas, apostrophes, and blanks.

NL Not labeled. The first record of an unlabeled tape must not be
an 80-byte record beginning with VOL 1.

If REEL parameter is not specified, standard labels are assumed.

The name of the tape file as it exists in the header label.

Format can be mmddyy or ddmmyy.

Specifies number of days (000-998) a file should be retained. RETAIN
parameter does not apply when copying from tape to disk. Default value
when copying from disk to tape is 000.

Block length and record length. must be equal and one of the following values:

Note: The tape record created is two bytes longer than specified since a two
byte logical record number is appended to the tape record. Defaults are
underlined.

Disk

5444

5445

Length in Bytes

3072
6144

12288

2560
5120

10240

Number of Tracks

1/2 track
1 track
2 tracks

1/2 track
1 track
2 tracks

RECFM entry must be fixed length (F).

END entries can be LEAVE, REWIND, or UNLOAD. Default is UNLOAD.

800 is the default when using 7-track tape; 1600 is the default value when using
9-track tape. DENSITY parameter does not apply for the 9-track Restore opera
tion. If correct density is not specified (or defaulted) for the 7-track Restore
operation, tape errors will occur.

Parameter Summary (Con't)

Statement Entry

CONVERT-ON

PARITY-ODD

TRANSLATE-OFF

II RUN

Considerations

For 7-track tape, CONVERT-ON must be specified; CONVERT-ON must
be used for $DCOPY or data will be lost. Default is OFF. CONVERT-ON
is not a valid parameter for 9-track tape.

Should be specified if 7-track tape is used. PARITY-ODD must be used
for $DCOPY or data will be lost. Default is ODD.

Do not use TRANSLATE-ON since TRANSLATE-ON and CONVERT-
ON are mutually exclusive (cannot specify both as ON). TRANSlATE
ON specifies that a 64-character subset of EBCDIC is being used; characters
outside the subset (such as X'OO') are lost - translated without error
indication to something that is not meaningful. Default is OFF.

For a detailed description of the OCl statements, see Part I, OCL Statements.

Messages for DUMP/RESTORE

Note: The following messages will be printed if the 1403 is the logging device and is not allocated to the other
partition.

Message Meaning

Copypack is complete This message is printed when the
specified pack has been dumped
to tape or when the tape has
been restored to disk.

n tracks not restored at This message is printed when
tracks have not been restored t fflS

}

on the 5444 or 5445 disk. n =
the number of tracks not res-

CCC/hh/rr tored. CC/SS is the disk
address for a 5444 disk.
CCC/hh/rr is the disk address
for a 5445 disk.

nn tape errors occurred This message is printed when
pack is not completely tape errors have occurred or the
restored. restored pack has missing data.

nn = the number of tape errors.
See previous messages for loca-
tion of tracks not restored.

Dump/Restore Program-$DCOPY 143

EXAMPLES

The parameters of the FI lE statement vary depend
ing upon whether the copy is to or from the tape.

D FROM disk TO tape:

Only required parameters are included in this ex
ample. See DCL Considerations for listing of
possible parameters.

OCl STATEMENTS
1 4 8 12 16 20 24 28
IJlf

II ~ ISD hpl)I 11
/ I L VIlA ~I'F -114 11l~ K It: IlJlf\ Ilf -h'b
II I~ N

II FROM tape TO disk:

All possible parameters are included in this example.

OCl STATEMENTS

1 4 8 12 16 20 24 28

V!~
VV Air !In roW\ 'y IFl1.
1/ IF I N~ NlE -R AI" IK IPh NI IT-11 III EE
'/ If :1 I<IL -, J.tJ " ~ II - .LltJ ~
IV Il- l< I flY ""0 n II ~ Ii: - IFF
VII IFUN

Explanation:

- The Dump/Restore program is loaded from the
fixed disk on drive one.

- The file name is always BACKUP.

- Tape unit two contains the disk copy.

- Tape unit two is a 7-track drive.

144

32

tL. - I -

36

e!I\
I::IJ.
!n_

Explanation:

- The Dump/Restore program is loaded from the
fixed disk on drive one.

- The file name is always BACKUP.

- The copy will go to tape unit two.

- Tape unit two is a 9-track drive.

40 44 48 52 56 60 64

tJ

IAR ~ lit '13
fit. ~o N\tE~ ~t\

.\-

- T APE2 is the label of the tape volume.

- KEEP5 is used in the header label.

- The date is March 11, 1973.

- Block and record lengths are 6144 and indicate
that the disk device is a 5444.

- CONVERT-ON indicates data conversion.

- END, PARITY, and TRANSLATE parameters
given are the same as the default values.

The following control statements show the use of
all possible parameters.

- The COPYPACK statement tells the program to
copy an entire disk to tape.

- The copy is from the fixed disk on drive one.

FIXED 1 is the name of the pack being used. The
program will verify that the specified pack is
mounted.

Note: These utility control statements would be used
with the OCL shown in example 1.

Dump/Restore Pro!;orarr.-SCCOPY' '45

146

LIBRARY MAINTENANCE PROGRAM-$MAINT

The Library Maintenance program has five functions:

Function

Allocate

Copy

Delete

Modify

Rename

Meaning

Create (reserve space for), delete, re-organize, and
change the sizes of libraries.

Place entries in, and display the contents of, libraries.

Delete library entries.

Modify source library entries.

Change the names of library entries.

The control statements you must supply depend on the function you are using.

LIBRARY DESCRIPTION
The source library is an area on disk for storing procedures and source statements.
Procedures are groups of OCl statements used to load programs. The statements
can be followed by input data for the programs. (Procedures for utility programs
can, for example, contain utility control statements.) Source statements are sets
of data, the most common of which are RPG II source programs and Disk Sort
sequence specifications.

The object library is an area on disk for storing object programs and routines. Object
programs are programs and subroutines in such a form that they can be loaded for
execution. (They are sometimes called executable object programs.) Routines are
programs and subroutines that need to be link-edited into object programs before they
can be loaded for execution. (They are sometimes called nonexecutable object
programs.)

Location of Libraries on Disk
Libraries can be located anywhere on disk. However, the location of a source
library with respect to an object library is always the same:

I

User Area Source Library Object Library : User Area

I

• Track 0 Upper Boundary

The boundaries of a source library are fixed. They can be changed only by the
allocate function of the Library Maintenance program. The upper boundary of an
object library, however, can be moved as additional space is needed when entries
are placed in the library. This happens only if space is available following the library
and if the entries being placed beyond the normal boundary are not permanent
entries_

Library Maintenance Program-$MAINT 147

148

Organization of Library Entries

Object library
Entries are stored in the object library serially; that is, a 20-sector program occupies
20 consecutive sectors. Temporary entries follow·all permanent entries in the object
library.

If necessary, the upper boundary is changed to allow more space for temporary
entries. The upper boundary of the library is extended to the end of the pack or to
the first temporary or permanent file, allowing the maximum amount of space for
the temporary library entry. At the successful completion of the copy, the upper
boundary is returned to its original position or to the end of the last temporary
entry. If the copy was not completed successfully, the upper boundary may
remain extended. When a permanent entry is placed in the library or the library is
reorganized, all temporary entries are deleted and the upper boundary returns to
its original location. Permanent entries cannot exceed the original upper boundary.

Gaps can occur in the object library when an entry is deleted. The associated directory
entries will point to these gaps. When the library Maintenance program places a new
entry in the library, it searches the directory for a gap that has the same number of
sectors, or the fewest number of sectors over the number required by the new entry.
If the entry is smaller than the gap, the last part of the gap will not be pointed to by a
directory entry. Since this gap has no directory entry, it will not be used until the
library is reorganized.

If the number of unusable sectors becomes excessive, the library should be re
organized. In reorganizing entries, the library Maintenance program deletes
temporary entries and shifts entries so that gaps do not appear between them. This
makes more sectors available for use.

Source library
The source library differs from the object library in that entries within the source
library need not be stored in consecutive sectors. An entry can be stored in many
widely separated sectors with each sector pointing to the sector that contains the
next part of the entry. When an entry is placed in the source library, it is placed in
as many sectors as required regardless of where the sectors are located within the
library.

The boundary of the source library cannot be expanded; therefore, an entry must
fit within the availa,ble library space. To provide as much space as possible with-
in the prescribed limits of the source library, the system compresses entries. That
is, all duplicate characters and blanks are removed from entries. Later, if the entries
are printed or punched, the duplicate characters and blanks are re-inserted.

When the size of the source library is changed or the source library is reorganized,
all temporary entries are deleted.

library Directories
The program creates a separate directory for each library. Every library entry has a
corresponding entry in its library directory. The directory entry contains such infor
mation as the name and location of the library entry. The first character of a
directory name must be an alphabetic character. Maximum length is six characters.
The program also creates a system directory, which contains information about the
size and available space in libraries and their directories.

Organization of this Section
The five functions of the Library Maintenance programs are described separately.
Every description contains the following:

1. List of specific uses.

2. Control statement summary indicating the form of control statement needed
for each use.

3. Parameter descriptions explaining in detail, the contents and meanings of the
parameters.

4. Function descriptions explaining the details of each function.

Following the function descriptions are:

1. OCl considerations

2. Examples

Library Maintenance Program-$MAINT 149

ALLOCATE FUNCTION

ALLOCATE USES

• Create (reserve space forI libraries.

• Change the sizes of libraries.

• Delete libraries.

• Reorganize libraries.

ALLOCATE CONTROL STATEMENT SUMMARY

/I ALLOCATE To-code,souRcE.l ~umber ~ .OBJECT·

Source
Library

Object
Library

Use CD
Create

Change Size

Delete

Reorganize

Create

Change Size

Delete

Reorganize

1 ~umber ~ ,SYSTEM· 1 ~~s ~ ,DIRSIZE·number,WORK-code

Parameter Needed®

TO'COde,SOURCE.number,WORK,cOde®

TO·code,SOURCE.number,WORK·code

TO·code,SOURCE-O

TO·code,SOURCE·R,WORK·code

TO·code,OBJECT·number,SYSTEM· {~~s ~
TO-code,OBJECT·number,WORK·code @

TO·code,OBJECT·O

TO·code,OBJECT·R,WORK-code ®

G) You can indicate a source library use, any object library use, or uses involving both libraries (for example, deleting the source
library and changing the size of the object library).

® If you are indicating uses for both libraries, use only one TO parameter. (The libraries must be on the same disk;) Also, use
only one WORK parameter if both uses require a WORK parameter.

® The WORK parameter is needed only if the disk contains an object library that you are not deleting.

@ The WORK parameter is not required if this is a compress in place.

'-----------------------,-_ .. _-------,._._--_. __ . __ .. _-._----------

150

Library Maintenance Allocate Restrictions
This program has restrictions and operating condi
tions that the user must be aware of when maintain
ing libraries.

Allocation of Disk Space
The Library Maintenance program allocates disk
space for each of the following functions:

Allocate a library
Increase the size of a library
Reorganize a library
Dynamically extend an object library to copy
temporary entries to the library
Sort a directory before it is printed

Modify a source library entry

The space allocated by the program is the first con
tiguous space large enough for the function to be
performed. The Library Maintenance program will
use as much space as is available to the end of the
pack or to the first temporary or permanent data
file. removing all scratch files in this area. If within
a single load of the program. there are functions
performed which require more than four disk areas
to be allocated. a halt will occur. The Library
Maintenance program must be reloaded to continue.

Removing Temporary Entries
When a library is reorganized. its size is changed, or
it is moved, all temporary entries in that library are
deleted. This applies to both the source and object
libraries.

Library Restrictions
The Allocate function cannot reference the libraries
on the pack from which the Library Maintenance
Program or the system was loaded. For example. if
the system was loaded (tPLl from F1 and the Library
Maintenance Program was loaded from R 1, the source
or object libraries on F1 and R1 cannot be referenced
on an ALLOCATE statement.

Moving the Object Library
When allocating or reallocating the source library on
a pack that contains an object library, the object
library is reorganized and all temporary entr·ies are
deleted.

ALLOCATE PARAMETER SUMMARY

TO-code

SOURCE-number (no
source library on disk)

SOURCE-number (source
library already on disk)

SOURCE-R

OBJECT-number (no
object library on disk)

OBJECT-number (object
library already on disk)

OBJECT-R

DIRSIZE-number

SYSTEM-NO

SYSTEM-YES

WORK-code

Location of disk you are using.
Possible codes are Rl, Fl, R2,
and F2.

Create a source library. Number
indicates the number of tracks
you want to assign.

Delete or change the size of the
source library. Use depends on
number:

Number

o

Any number
but zero

Use

Delete

Change size

Reorganize the source library.

Create an object library. Number
indicates the number of tracks
you want to assign.

Delete or change the size of the
object library. Use depends on
number:

Number

o

Any number
but zero

Use

Delete

Change size

Reorganize the object library.

Number of tracks you want for
the directory when creating, re
allocating, or reorganizing the
object library.

Do not create a scheduler work
area. This will be a program pack.

Create a scheduler work area.
This will be a system pack.

Location of disk containing space
the program can use as a work area.
Possible codes are Rl, Fl, R2, or
F2.

Library Maintenance Program-$MAI NT 151

•

TO Parameter
The TO parameter (TO-code) indicates the location
of the disk that contains, or will contain, the library.
If the program use involves both libraries, the
libraries must be on the same disk. The TO para
meter cannot be the same unit from which the
Library Maintenance program or system is loaded.

Codes for the possible locations are as follows:

Code

R1

F1

R2

F2

Meaning

Removable disk on
drive one

Fixed disk on drive
one

Removable disk on
drive two

Fixed disk on drive
two

SOURCE and OBJECT Parameters
These parameters identify library uses:

152

Parameter Use

SOURCE-number • If the disk contains
OBJECT-number no library, parameter
(number is not zero) means create a library.

SOURCE-O
OBJECT-O

SOURCE-R
OBJECT-R

Number is the number
of tracks you want to
assign to the library.

• If the disk contains a
library, parameter
means change the
library size. Number
is the number of tracks
you want to assign to
the library.

Oelete the library.

Reorganize the library.

DIRSIZE Parameter
The 01 RSIZE parameter allows the user to specify
the size of the object library directory. The number
of tracks specified (1·9), overrides the SYSTEM
parameter in determining directory size. Each track
can contain 288 directory entries. One entry is
needed for the directory, so the formula for the
number of entries in a directory is (t x 288)-1, where
t is the number of tracks. If the OIRSIZE parameter
is omitted, the SYSTEM parameter determines the
directory size.

SYSTEM Parameter
The SYSTEM parameter applies when creating,
changing the size of and reorganizing object libraries.
It tells the program whether you intend to include
system programs in the library. If system programs
are to be included, a scheduler work area must be
assigned and the directory must be large enough for
all those system programs necessary for program
loading and running (minimum system), and those
necessary for generating and maintaining a system.

Space for the scheduler work area is assigned imme
diately preceding the object library. If the disk con
tains a source library, the work area is between the
source and object libraries. For information about
the size of the scheduler work area, see Scheduler
Work Area Size.

The following charts show the results of coding the
SYSTEM parameter for different allocate users.

Creating an Object Library

Parameter Scheduler Work Area Directory Size *

SYSTEM-YES Created Three Tracks

SYSTEM-NO Not Created One Track

not coded Not Created One Track

*The directory size is overridden if the 01 RSIZE
parameter is coded.

Changing the Size of or Reorganizing an Object library
That Contains System Programs

Parameter Scheduler Work Area Directory Size *

SYSTEM-YES Retained Not Changed

SYSTEM-NO Removed Not Changed

not coded Retained Not Changed

*The directory size is overridden if-the 01 RSIZE
parameter is coded.

Changing the Size of or Reorganizing an Object Library
That Does Not Contain System Programs

Parameter Scheduler Work Area Directory Size *

SYSTEM-YES Created Not Changed

SYSTEM-NO Not Created Not Changed

not coded Not Created Not Changed

*The directory size is overridden if the 01 RSIZE
parameter is coded.

WOR K Parameter
The WORK parameter (WORK-code) indicates the
location of the disk that contains a work area.
Library entries are temporarily stored in the work
area while the program moves and reorganizes
libraries.

Codes for the possible disk locations are as follows:

Code Location

R 1 Removable disk on drive 1.

F1 Fixed disk on drive 1.

R2 Removable disk on drive 2.

F2 Fixed disk on drive 2.

When the WORK parameter is coded on an ALLO
CATE statement, an additional allocation of disk
space may result (see Allocation of Disk Space).

Size of the Work Area
The work area must be large enough to hold the
permanent entries of the source library, object
library, or both libraries'depending on the program
use. If you are combining uses, such as changing
the sizes of both libraries,the work area must be
large enough to hold the contents of both libraries.

Use

Create a source
library (disk con
tains an object
library).

Change source
library size (disk
contains an ob
ject library).

Change source
library size (disk
doesn't contain
an object library).

Reorganize
source library

Change object
library size.

Reorganize
object library.

Contents of Work Area

Object library.

Source library and object
library.

Source library.

Source library

Object library, if not
compress in place.
(see compress in place.)

Object library, if not
compress in place.

Location of Work Area on Disk
The program uses the first available disk area large
enough to hold the library, or libraries.

Location of Disk Containing the Work Area
The work area can be on either disk on either drive.
However, it cannot be the same disk as the one you
specified in the TO parameter. The only require
ment is that the disk must have an available area
large enough for the work area. If your system has
two disk drives, the program works faster if the disk
containing the libraries is on a different drive than
the disk containing the work area.

Library Maintenance Program-$MAINT 153

Using the Allocate Function

Creating a Source Library (SOURCE-number)

Source Library Size
• Minimum: One track.

• Maximum: Number of tracks in the available
area.

• Regardless of the number of tracks you specify,
the first two sectors of the first track are assigned
to the library directory. Additional sectors are
used as needed for the directory.

Placement of Source Library (Disk With an Object
Library)

• The source library must immediately precede the
object library. A disk area large enough for the
source library must follow the object library
because the program moves the object library to
make room for the source library (Figure 45). To
do this, it needs a work area. (See WORK para
meter) The object library is reorganized and all
temporary entries are deleted.

• If you allocate a source library after deleting it,
the program automatically moves the object
library to make room for the source library. The
starting location of the source library is the pre
vious starting location of the object library.

Disk Space Before Creating Source Library'

Object Library
(30 tracks)

Available Space
(15 tracks

Tracks

Disk Space After Creating Source Library

Source Object Library Available
Library (30 tracks) Space
(5 tracksl (10 tracks)

I 0-71 8-12 !--13-42 ,I. 43-52-1
Tracks

Customer
Files

Figure 45. Moving Object library to Insert Source Library

154

\

Placement of the Source Library (Disk Without an Object
Library). The program assigns the source library to
the first available disk area large enough for the
library.

If you allocate a source library after deleting it, the
source library is assigned the same way.

Changing the Size of a Source Library
Any time the program changes the source library
size, it reorganizes both the source and object
libraries and deletes all temporary entries. (See
Reorganizing a Source Library.) To do this, it needs
a work area. (See WORK parameter.)

Making the Source Library Larger
• If the disk contains an object library space must

be available immediately following the object
library. The program moves the object library to
make tracks available at the end of the source
library (Figure 46).

• If the disk does not contain an object library,
space must be available immediately following
the source library.

Disk Before Tracks Are Added to Source library

Source Object Available C~stomer 1
Library Library Space Files)
(10 tracksl (30 tracks) (15 tracks)

I 0-71 8-17 1-18-47 -I 48-62
Tracks

Disk After Five Tracks Are Added to Source Library

Source Object Available Co",,,,,,,, \
Library Library Space Files

(15 tracks) (30 tracks) (10 tracks)

1 0-71 8-22 !-23-52-1 ·53-62
Tracks

Figure 46. Increasing Source Library Size

Making the Source Library Smaller
• If the disk contains an object library, the program

moves the end location of the source library to
make the library smaller. The object library is
moved and space becomes available following the
object library (Figure 47).

• If the disk does not contain an object library, the
program moves the end location of the source
library to make the source library smaller.

Disk Before Source· Library Size Was Decreased

Source Object
Library Library
(15 tracks) (30 tracks)

1 0-71- 8-22--i.I~'--23.52 --+f. I
Tracks

Customer 1
Files)

Disk After Five Tracks Were Taken From Source Library

Source
Library

(10 tracks)

I 0.71 8·17

Object Available
Library Space

(30 tracks) (5 tracks)

I- 18-47 -I 48·52
Tracks

Figure 47. Decreasing Source Library Size

Deleting a Source library (SOURCE-O)

Files
C,"om" \

The program makes the disk area occupied by the
source library available for other use (disk files)

(Figure 48).

Disk Before Source Library Deleted

Source Object Library Customer
Library (30 tracks) Files
(15 tracks)

10.71- 8.22-· ... 1·- 23.52--1

Disk After Source Library Deleted

Available Object Library Customer
Space (30 tracks) Files
(15 tracks)

I 0.7!--8-22 -· ... 1.- 23-52 -I
Figure 48. Deleting Source Library

)
\

\

Reorganizing a Source Library (SOURCE-R)

Reason for Reorganizing the Library. Areas from which
source library entries are deleted are completely reo
used for new entries. If an entry exceeds the space
in such an area. the program puts as much of the
entry as will fit in the area and continues the entry
in the next available area. In this way, the program
efficiently uses library space. This can, however,
decrease the speed at which those entcies can be
read from the library. Therefore, if you frequently
add and delete source library entries, you should
reorganize your source library periodically.

Reorganizing the Library. The program relocates entries

so that no entry is started in one area and continued
in another. All temporary entries are deleted. The
program needs a work area. (See WORK parameter.)

Creating an Object Library (OBJECT-number)

Object Library Size

• Minimum: Three tracks including the directory
tracks.

• Maximum: Number of tracks in available area.

• Library Directory: The first three tracks in the
library are reserved for the library directory if the
library is to contain system programs; otherwise,
only the first track is used. If the 01 RSIZE para·
meter is entered, the directory size specified is

used.

Library Maintenance Program-$MAINT 155

• Scheduler Work Area: If the library is to contain
system programs, the space available on the pack
must be large enough to contain a work area for
the Scheduler program (one of the system pro
grams). The work space is not included in the
number you specify in the OBJECT parameter;
the space is calculated and assigned by the Library
Maintenance program. The amount of space
needed depends on whether DPF (Dual Program
ming Feature) and/or the inquiry capability is gener
ated in the supervisor. For non-DPF systems, two
tracks are needed; for DPF systems, four tracks are
needed. The inquiry and checkpoint/restart features
require additional tracks for a Roll-in/Roll-out
area. The number of tracks needed depends on the
main storage size of the system.

Main Storage Size Roll-inIRoll-out Tracks

12K 4

16K 5

24K 6

32K 8

48K 10

64K 13

Placement of Object Library (Disk With a Source Library).
Space for the object library must be available immed
iately following the source library.

Placement of Object Library (Disk Without a Source
Library). The program assigns the object library to
the first available disk area that is large enough.

Changing the Size of an Object Library (OBJECT-number)

Making the Library Larger. The number of tracks you want
to add must be available immediately following the
object library. The program assigns the additional
tracks to the library. (The starting location of the
library remains unchanged.)

Making the Library Smaller. The program moves the end
location of the object library to decrease the library
size. Tracks, therefore, become available following
the library.

156

Reorganizing the Library. Any time the program changes
the library size it also reorganizes the library and
deletes all temporary entries. (See Reorganizing an
Object Library.) A work area is needed if other
functions are being performed with the reorgani
zation. (See WORK parameter.) If not, a work
area is not used. (See Compress in Place.)

Deleting an Object Library (OBJECT-O)
The program makes the disk area occupied by the
object library (and the scheduler work area if this
was a system pack) available for other use.

Reorganizing an Object Library (OBJECT-R)
Gaps can occur between object library entries when
you add and delete entries. By reorganizing the
library, these gaps are removed. When the library is
reorganized. all temporary entries are deleted. A
work area is needed if other functions are being
performed with the reorganization. (See WORK
parameter.) If not, a work area is not used. (See
Compress in Place.)

Compress in P~ace . (OBJ~CT - ~ ~umber ~)
If an object library IS to be reorganized, or the
size is to be changed and this is the only func
tion to be performed, the object library will be
compressed in place. This means that the lib
rary will be reorganized with all gaps removed
and all temporary entries deleted without using
a work area. The WORK parameter will be
ignored if supplied.

If, however, a source library function is to be
performed or if the directory size (DI RSIZE
parameter) or the pack type (SYSTEM parame
ter) is to be changed in conjunction with an
object library function, a work area will be
used. (See WORK parameter.) Compress in
place allows the user with a single-spindle or
half-capacity 5444 disk drive \0 reorganize
the object library.

COPY FUNCTION

COpy USES

Reader-to-Library

File-to-Library

Library-to-Library

Library-to-Printer

Library-to-Card

Library-to-Pri nter
and-Card

• Add or replace a library entry. The reader is the system input device, which can be either
the keyboard or a card reader.

• Add or replace one or more library entries. A 5444 disk file is the input. Each entry in the
file must have a 1/ COpy statement and a /I CEND statement. The file is opened and
accessed consecutively.

I • Copy one library entry (or those entries with the same name from alilibrariesl.

• Copy library entries that have names beginning with certain characters.

• Copy all library entries.

• Copy minimum system.

I
• Print one library entry (or those entries with the same name from all libraries).

t • Print library entries that have names beginning with certain characters.

• Print all library entries of a certain type.

• Print directory entries for I ibrary entries of a certain type. , • Print entries from all directories including system directory.

• Print system directory only.

{

• Punch one library entry (or those entries with the same name from alilibrariesl.

• Punch library entries that have names beginning with certain characters.

• Punch all library entries of a certain type.

{

• Print and punch one library entry (or those entries with the same name from alilibrariesl.

• Print and punch library entries that have names beginning with certain characters.

• Print and punch all temporary or permanent library entries of a certain type.

Library Maintenance Program-$MAI NT 157

158

COpy CONTROL STATEMENT SUMMARY: READER-TO-LiBRARY

Add or Rep/ace a Library Entry

/I COpy FROM-READER.LlBRARY-{ ~ } .NAME~~"TO--.RETAIN-l :!
Library Entry

/I CEND ~ Must always follow the source or object entry being placed into
the source or object library.

/* or /& statements cannot be present in the entries being copied into the libraries.

COpy CONTROL STATEMENT SUMMARY: FI LE-TO-LIBRARY

Add or replace one or more library entries.

/I COPY FROM-DISK,FI LE-filename,RECL- ~ :~J ,TO-code,RETAIN- ~ ~ f
CD /I ~OPY FROM-READER,LIBRARy-o,RETAIN-P,NAME-DECK01 \

load module

/I CEND

CD /I ~OPY LlBRARY-S,NAME-DECK02

source module

II CEND

(DIIEND

I

I

Example
of Data
in Disk
File

CD Only the LIBRARY and NAME parameters are required. Other parameters are ignored.

o The /I END card is optional as the FILE-TO-LIBRARY copy will recognize the

\V physical end of the data file and terminate the job.

COpy CONTROL STATEMENT SUMMARY: LlBRARY·TO·LIBRARY

Copy One Library Entry (or Entries with the Same Name from All Libraries)

/I COPY FROM-COde'LlBRARY.{~ l ,NAME-nomo.TO~de.RET AIN'{~'NEWNAME~~,<D
ALS

Copy Library Entries that Have Names Beginning with Certain Characters

" COpy F ROM~",.LI'RARY.\ ~ l.NAME<h""""".ALL.TO-codo.RETAIN·l : ~ .NEWNAME<h,m"'" <D

tALJ
Copy All Library Entries

"COPY FRO"" LI.RARYj ~ l.NAME.ALL.TO<odo.RETAIN·l :~
tALL)

Copy Minimum System

/I COpy FROM-code,LI BRARY·O,NAME-5YSTEM,TD-code

Q) NEWNAME parameter is needed in any of the following cases:
1. If you want the copy to have a different name than the original entry.
2. If you want to replace an entry on the TO disk with an entry from the

FROM disk, but the entries have different names.
3. If you want the names of the copies to begin with different characters

than the names of the original entries, the same number of characters
must be in the NEWNAME parameter as in the NAME parameter.

4. If the FROM and TO packs are the same pack.

Note: Newname cannot be OIR, ALL, or SYSTEM.

Library Maintenance Program-$MAINT 159

160

copy CONTROL STATEMENT SUMMARY: LIBRARY-TO-PRINTER-ANO/OR-CARO

Print and/or Punch One Library Entry (or Entries with the Same Name from All Libraries)

~ s l P PUNCH
1/ COPY FROM-code,L1BRARY-. 0 ,NAME-name, TOJ PRINT }

R 1 PRTPCH
ALL

Print and/or Punch Temporary and Permanent Library Entries that Have Names Beginning with
Certain Characters

ts
}

P PUNCH
1/ COpy FROM-code,LIBRARY- 0 ,NAME-characters.ALL,TO- {PRINT }

R PRTPCH
ALL

Print and/or Punch All Temporary and Permanent Library Entries of a Certain Type

/I COpy FROM-code,L1BRARY- P ,NAME-ALL,TO- PRINT {S} {PUNCH}

~ PRTPCH

Prin.t Directory Entries for Library Entries of a Certain Type

/I COPY FROPkodo,LlBRARV'{ ~} ,NAME·OIR,To-PRINT

Print Entries from All Directories Including System Directory

II COpy FROM-code,L1BRARY-ALL,NAME-OIR,TO-PRINT

Print System Directory Entries Only

/I COpy FROM-code,LIBRARY-SYSTEM,NAME-OIR,TO-PRINT

Print Directory Entries, Omitting Selected Entries

/I COpy FROM-code,L1BRARY- {~ J ,NAME-OIR,TO-PRINT,OMIT-j' name l
R characters.ALL ~

ALL

COpy PARAMETERS

FROM-READER

FROM-code

FROM-DISK

FI lE-filename

REel- ~ :~f

UBRARV.{ ~ l
\ R)

LIBRARY-All

LlBRARY-SYSTEM

1 name !
NAME- characters.All

All

Entry to be placed in library is to be read from system input device, which
can be a keyboard or card reader.

location of disk containing library entries being copied, printed, or punched.
Possible location codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

The entry or entries to be placed into a library or libraries reside in a disk file.
The disk file must be described by an Oel FI lE statement.

For a file-to-library copy, this parameter is needed to identify the file on disk.
The filename must match the filename on the Oel FI lE statement.

For a file-to-library copy, this parameter gives the size of the disk records.
Only 80 or 96 column card image records (unblocked) are allowed. If this
parameter is omitted, 96 is assumed.

Type of library entries involved in copy use. Possible codes are:

Code Meaning

S Source statements (source library)

P oel procedures (source library)

o Object programs (object library)

R Routines (object library)

All types of entries (5, P, 0, and R) from both libraries are involved in copy use.

Only system directory entries are being printed.

Specific library entries on the FROM pack, of the type indicated in LIBRARY
parameter, involved in copy use. Possible information is:

Information Meaning

name Name of the library entry involved.

characters.All Only those entries beginning with the indicated characters.
The names of the copies and original entries will be the
same unless you use a NEWNAME parameter (NEWNAME
characters)' (You can use up to five characters')

All All entries. (The type indicated in LIBRARY parameter.
To copy a system which you can IPl, specify LlBRARY
All and NAME-ALL.)

Library Maintenance Program-$MAI NT 161

NAME-SYSTEM

NAME-DIR

NAME-$cc.ALL

RETAIN-l ~ ~

TO-code

TO-PRINT

TO-PUNCH

TO-PRTPCH

NEWNAME-name

NEWNAME-characters

OMIT-name

OMIT-characters.ALL

162

Only system programs that make up the minimum system are involved in the
copy use. The minimum system is made up of system programs necessary to
load and run programs. System programs necessary to generate and maintain
the system are not included.

Directory entries for all library entries of the type indicated in the LIBRARY
parameter are involved in the copy use. If the LIBRARY parameter is
LIBRARY-ALL, system directory entries are also printed.

The IBM program with the name beginning with the indicated characters ($cc)
is involved in the copy use. For example, $MA.ALL means the Library
Maintenance program ($MAINTI.
Adding Entry to Library. RETAIN gives designation of the TO entry:

Code Meaning

T Temporary

Por R Permanent

Replacing Existing Library Entry. RETAIN gives designation of the TO entry and
tells program whether to halt before replacing entry:

Code

T

P

R

Meaning

Temporary designation. Halt before replacing entry.

Permanent designation. Halt before replacing entry.

Permanent designation. Do not halt before replacing
entry.

Printing or Punching Entries. The RETAIN parameter is ignored.

Location of disk that is to contain the copies of the entries:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Entries are being printed.

Entries are being punched.

Entries are being printed and punched.

Name you want used on the TO disk to identify the entries being put on that
disk. If you omit this parameter, the program uses the NAME parameter in
naming the entries.

Beginning characters you want to use in names identifying entries being put
on TO disk. You must use the same number of characters as in the NAME
parameter (NAME-characters.ALL). If you omit this parameter, the program
uses the NAME parameter in naming the entries.

When printing directory entries, omit the entry specified by name.

When printing directory entries, omit all entries with these beginning
characters.

Library Directories

Source and Object Library Directories
• The source and object libraries have separate

library directories. Every library entry has a
corresponding entry in its library directory. The
directory entry contains such information as the
name and location of the library entry (see
Figures 49-51).

• The Library Maintenance program makes entries
in the directories when it puts entries in the
libraries.

System Directory
• Every disk that contains libraries contains a

system directory. The system directory contains
information about the sizes of and available
space in libraries and their directories (see
Figures 49-51).

• The Library Maintenance program creates and
maintains the system directory.

Naming Library Entries

Characters to Use. Use any combination of System/3
characters except blanks, commas, quotes, and
periods. (Appendix A lists the characters.) The
names of all IBM programs begin with a dollar sign
($). Therefore, to avoid possible duplication. do not
use a dollar sign as the first character in the names
you use for your entries. The first character must be
alphabetic.

Length of Name. The name can be from one to six
characters long.

Restricted Names. Do not use the names ALL, DIR, and
SYSTEM. They have special meanings in the NAME
and NEWNAME parameters.

Entries with the Same Name. For each of the two physical
libraries, source and object, there are two types of
entries. The source library has type P and type S
entries. The object library has type 0 and type R
entries. Entries of the same type cannot have the
same name, but entries of different types may. For
example, two procedures in a source library cannot
have the same name, but a procedure and a set of
source statements can.

Retain Types

Temporary Entries
• Temporary entries are entries you do not intend

to keep in your libraries. They are normally used
only once or a few times over a short period.

• In the object library, temporary entries are placed
together following the permanent entries. Any
time a permanent entry is added to the library, all
temporary entries are deleted. Temporary entries
are also deleted when you replace one permanent
entry with another.

• In the source library, temporary and permanent
entries can be in any order. One entry is placed
after another regardless of their designations.
Temporary entries, therefore, are not automatically
deleted every time you add a permanent entry.
However, whe(l the source library is reallocated or
reorganized, only permanent entries will remain.

• You can use temporary entries as often as you
like until they are deleted.

• A temporary entry cannot replace a permanent
entry.

Permanent Entries
• Permanent entries are entries you intend to keep

in your libraries. They are normally entries you
use often or at regular intervals (once a week,
once a month, and so on).

• The program will not delete permanent entries
unless you use the delete function of Library
Maintenance to delete them, or the allocate
function to delete the entire library.

Library Maintenance Program-$MAI NT 163

Using the Copy Function

Reader-to- Library

Inpot. The program reads one library entry. It can be any
one of the following types:

1. Soorce statements

2. Procedure

3. Object program

4. Routine

The entry is read from the system input device, which
is normally the primary hopper of the MFCU. The
operator can, however, change the system input
device by using theOCl READER statement.

The header card on an object deck(H in column 1)

contains the date the deck was punched. This date is
in columns 58-63 and is in the format of the system
date, either mmddyy or ddmmyy.

Output
• Blanks and duplicate characters are removed from

source statements and procedures before they are
put in the source library. The program does not
check them for errors.

~ Object programs and routines are placed in the
object library.

Adding Entries
• The program can add a new entry to a library.

The name of the entry is taken from the NAME
parameter. See Naming Library Entries for valid
names. The RETAIN parameter specifies whether
the entry will be temporary or permanent. If the
RETAIN parameter is omitted, RETAIN-T is
assumed. (see Retain Types)

Replacing Existing Entries

164

• The program can replace an existing library entry
with the entry you are putting in the library. The
RETAIN parameter specifies the new retain type.
If the RETAIN parameter is omitted, RETAIN-T
is assumed. A temporary entry cannot replace a
permanent entry.

• The program can halt before replacing an existing
entry. Whether it does depends on the RETAIN
parameter you use. (see RETAIN parameter)

• Before the new entry is added, the duplicate entry
is deleted. Additional library space is not needed
unless the new entry is larger than the old one.

File-to- Library

Input. The disk file can contain one or more library entires.
The entries must be in the format put out by the
library-to-card function or by the linkage editor. The
II COpy statement at the beginning of each entry
contains the name of the entry and the type of library
(S,P,O,R). A II CEND statement must follow each
entry in the file.

The disk file must be a sequential 5444 file and be
defined by a FI LE statement in the OCl for the
Library Maintenance program.

Output. The output from the file-to-library function is the
same as for the reader-to-library function except that
temporary entries are not allowed.

library-to-Library

Input. The program can copy one or more library entries
from one disk to another. The types of entries can
be:

1. Source statements

2. Procedures

3. Object programs

4. Routines

5. All the preceding types

6. Minimum system

The NAME and LIBRARY parameters specify which
entries to copy,

Output
• The entries, regardless of their type, are copied

from one disk to the other without change. How·
ever, if all library entries are copied (LIBRARY·
ALL, NAME·ALL), the object library is reorgan
ized and temporary entries become permanent
entries in both the source and object libraries.

• Entries can be copied and renamed on the same
disk by using the NEWNAME parameter. (see
NEW NAME parameter and Naming Library
Entries)

• If you are copying a minimum system or all of the
types (LIBRARY-ALL, NAME-ALL), the object
library on the disk you specify in the TO parame
ter must be empty. That is, it cannot contain any
entries or deleted entries. When LIBRARY-ALL,
NAME-ALL is specified and the FROM disk is a
system pack, then the TO disk will be a system
pack.

• The RETAIN parameter specifies whether the
entries will be temporary or permanent. If the
RETAIN parameter is omitted, RETAIN-T is
assumed. When the parameters LIBRARY-ALL
and NAME-ALL or LlBRARY-O and NAME
SYSTEM are used, RETAIN-P is assumed and
RETAIN-T is invalid.

Adding Entries
• You can omit the NEWNAME parameter. If you

do, the name used for the copy is taken from the
NAME parameter. (The copy will have the same
name as the original entry.)

• If NAME-ALL is specified, the names by which
the entries are identified on the F ROM disk are
also used on the TO disk to identify the entries.

Replacing Existing Entries
• The program can replace existing entries with the

entries you are putting in the library. If the entry
you are copying (the entry on the disk you identi
fy in the FROM parameter) has the same name as
the entry you are replacing (the entry on the disk
you identify in the TO parameter), you must omit
the NEWNAME parameter because the NEWNAME
parameter cannot be the same as the NAME para
meter. If the names are not the same, you must
use the NEWNAME parameter to give the name of
the entry being replaced.

• The program can halt before replacing an existing
entry. Whether it does depends on the RETAIN
parameter. (See RETAIN parameter.)

• A temporary entry cannot replace a permanent
entry.

Library-to-Printer andlor Card

Types of Entries that Can Be Printed or Punched
• The program can print or punch one or more

library entries. They can be anyone of the
following types:

1. Source statements

2. Procedures

3. Object programs

4. Routines

5. All of the preceding types (limited to entries
having the same name and entries beginning
with the same characters)

• The program can print (but not punch) the follow
ing types of directory entries:

1. Source statements

2. Procedures

3. Object programs

4. Routines

5. System directory

6. All of the preceding types

The program will sort directory names before
printing them only if there is available work space
on the FROM pack. This causes an allocation of
disk space. (See Allocation of Disk Space.)

Printed or Punched Library Entries
• Blanks and duplicate characters are reinserted

into source statements and procedures to make
them readable.

• Object programs and routines are printed and
punched as they exist in the library.

Printout of Directory Entries

• Source library directory (Figure 49)

• Object library directory (Figure 50)

• System directory (Figure 51)

Library Maintenance Program-$MAINT 165

PRINTOUT

SOURCE DIRECTORY FROM XX VOL. ID XXXXXX MM/DD/YY

TYPE NAME
X XXX XXX

ADDRESS
FIRST@ LAST@
XXX-XX XXX-XX

ATTRI #SECTORS
X XXXX

Explanation:

Heading

TYPE

NAME

ADDRESS
(FIRST and LAST)

ATTRI

#SECTORS

Meaning

S = source statements
P = procedure

Name of library entry (up to six characters)

Addresses of first and last sectors that contain the library entry.
Addresses are expressed by track and sector numbers.
EXAMPLE: 008-03 means track 8, sector 3.

T = temporary
P = permanent

Total number of sectors used for the library entry.

Figure 49. Source Library Directory Printout

PRINTOUT

OBJECT DIRECTORY FROM XX VOL. 10 XXXXX MM/DD/YY

TYPE NAME
X X XXX XXX

EXPLANA TlON:

Heading

TYPE

NAME

DSKADD

CYL/SEC

TXT-CAT

DSK CYL!
ADD SEC
TTT ISS CC/SS

Meaning

TXT
CAT
XXX

LINK RLD ENTRY CORE
AD DR DISP PNT SEC
XXXX XX XXXX .XXX

ATTR
XXXX

TOT
LEVEL SEC
XXX XXXX

The fist character printed indicates the attributes of the entry as follows:

P = permanent

T = temporary

The second character printed indicates the type of module the entry is. Its
meaning is as follows:

o = Object program
R = routine

Name of library entry (up to six characters)

Address where library entry begins on disk. EXAMPLE: 015/10 means track 15, sector 10
(in decimall. T = track, S = sector.

Address where library entry begins on disk (in hexadecimall. C = cylinder,S = sector.

For object programs, this number indicates the number of sectors used for the text portion of
the library entry. Object programs consist of two parts: text and RLD. Text is the program;
RLD is information used in loading the program for execution.

For routines, this number is the category of the routine. This number is used by the Overlay
Linkage Editor for determining overlays.

Figure 50 (Part 1 of 2). Object Library Directory Printout
166

PRINTOUT (Continued)

Heading

LlNKADDR

RLD DISP

ENTRY PNT

CORE SEC

ATTR

LEVEL

TOT SEC

Meaning

Object programs only. ASSigned core hexadecimal address of this library entry.

Object programs only. It indicates the hexadecimal position in which RLD information begins in
the last text sector. If the last text sector contains no RLD information, the RLD displacement
is 0, indicating the information starts in the next sector.

Object programs only. Main storage address hexadecimal where program execution begins before
relocations.
Core size, given in sectors, required to run the program.

Byte 1:

Bit 0=1
o

Bit 1=1
Bit 2=1

Bit 3=1

Bit 4=1

Bit 5=1
Bit 6=1
Bit 7=1

.Byte 2:

Bit 0=1

Bit 1=1
Bit 2=1

Bit 3=1

Bit 4
Bit 5=1

Bit6
Bit 7

Permanent Entry
Temporary Entry
Inquiry. This program requires that the Inquiry key be pressed to start processing.
Inquiry Invoking. This program runs in program level 1 and can be rolled out to
allow an Inquiry program to run.
Dedicated. In a DPF system, this program must run with the other program level
inactive.
Source RequireLi. This program requires the allocation of the $WORK and $SOURCE
files. $SOURCE must be filled either from the system input device or a source library.
Deferred Mount. This program accepts mounting of packs during its execution.
PTF Applied. A program temporary fix (PTF) has been applied to this program.
Overlay Object Program

System Input Dedication. The system input device must be dedicated to this program.
The device is released at end of job.
Checkpoint/Restart Program
Direct Source Read. This program can have a /I COMPI LE statement and a no source
required attribute (byte 1, bit 4=01. The program will access the source itself.

Macro Processor Allowed. This program can be preceded by the macro processor.
If the source required attribute is present and a /I SWITCH 1 XXXXXXX statement
was processed, the $SOURCE file is opened as input instead of output.
Reserved
Program Common. This program requires that a new load address be calculated at
load time to place it in main storage beyond its own program common region.
Reserved
Reserved

Release level of system programs. For user programs this can be assigned by the Overlay
Linkage Editor.

Total number of disk sectors occupied by the library entry.

Figure 50. Object Library Directory Printout (Part 2 of 2)

Library Maintenance Program-$MAI NT 167

SYSTEM DIRECTORY FROM xx VOL. ID xxxxxx mm/dd/yy

SOURCE LIBRARY SECTION CD
Source Directory Location TTT-SS
Next Available Library Sector TTT-8S
End of Library TTT-SS
Number of Directory Sectors XXX
Number of Permanent Library Sectors XXX
Number of Active Library Sectors XXX
Number of Available Library Sectors XXX
Allocated Size of Library YYY

OBJECT LIBRARY SECTION

Object Directory Location TTT-8S
Allocated Size of Directory YYY
Start of Li brary TTT-8S
Allocated End of Library TTT-8S
Extended End of Library TTT-8S
Number of Available Permanent Directory Entrias XXX
Number of Available Temporary Directory Entries XXX
First Temporary Directory Entry TTT-SS-DDD
Next Available Temporary DirectOry Entry TTT-SS-DDD
Next Available Library Sector for Permanents TTT-8S
Next Available Library Sector for Temporaries CD TTT-SS
Number of Available Library Sectors for Permanents 2 xxx
Number of Available Library Sectors for Temporaries XXX
Number of Active Library Sectors XXX
Number of Active Object Permanent Library Sectors XXX
Number of Active Routine Permanent Library Sectors XXX
Allocated Size of Library YYY

Roll-in/Roll-out Location TTT-SS
ROIl-in/Roll-out Size YYY

Scheduler Work Area Location TTT-SS
Scheduler Work Area Size YYY

Start of Libraries TTT-SS
End of Libraries TTT-SS

CD TTT -SS-DDD means track. sector. and displacement. Displacement is the number of characters from
the beginning of the sector. XXX means number of sectors. YYY means number of tracks.

CD Number of Available Library Sectors for Permanents reflects the space available from the last per-
manent library entry to the allocated end of the library. Gaps and temporary library entries are not
reflected in this figure. The actual number of sectors available for permanent entries may be calcu-
lated by subtracting Number of Active Object Permanent Library Sectors from the total number of
sectors in the library. If the result is much larger than Number of Available Library Sectors for Per-
manents. the library should be reorganized using the ALLOCATE function to remove gaps and tem-
porary object library entries.

Figure 51. System Directory Printout

168

DELETE FUNCTION

DELETE USES

• Delete a temporary or permanent entry from a library {or
entries with the same name from all libraries!.

• Delete temporary or permanent library entries that have names
beginning with certain characters.

• Delete all temporary or permanent library entries of a certain
type.

DELETE CONTROL STATEMENT SUMMARY

DELETE RESTRICTIONS

• System modules cannot be deleted from the active
system pack {the pack the system was loaded from at
IPL time!.

• Library Maintenance program modules cannot be de
leted from the active program pack.

• When all temporary entries are deleted from the object
library using L1BRARY-O.NAME-ALL,RETAIN-T. the
temporary routines (L1BRARY-R) are also deleted.

• The RETAIN parameter must match the attribute of the
entry in the library. Otherwise the entry is considered
not found. RETAIN-T is assumed if the RETAIN para
meter is omitted.

Delete a Temporary or Permanent Library Entry (or Entries with the Same Name from All Libraries)

/I DELETE FROM_COde'L1BRARY-{~ l'NAME'~'RETAIN'{:}
ALL~

Delete Temporary or Permanent Entries with Names Beginning with Certain Characters

1/ DELETE FROM~""'.LIBRARV· ~ (.NAME-ch,,"'ALL.RETAIN·l:!
{

s \

. ALL,\

Delete All Temporary or Permanent Entries of a Certain Type

1/ DELETE FROM"""""LlBRARV'{~ }.NAME-ALL.R ETA I N.{ :}

Library Maintenance Program-$MAI NT 169

DELETE PARAMETERS

lIBRARV.~~ (

tALL)

{
name }

NAME- characters.ALL
ALL

RETAIN-I: !

170

Location of disk that contains library entries you are deleting. Possible codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Type of entries being deleted. Possible codes are:

Code Meaning

5 Source statements (source library)

P Procedures (source library)

o Object programs (object library)

R Routines (object library)

ALL All types of entries (5, P, 0, and R) are being deleted.

Particular entries, of type indicated in LIBRARY parameter, being deleted. These
entries are further identified by the RETAIN parameter. Possible codes are:

Code

name

character.ALL

ALL

Meaning

Name of the library entry, or entries, being deleted.

Entries that have names beginning with the indicated
characters. You can use up to five characters.
EXAMPLE: NAME-INV.ALL refers to the entries
having names that begin with INV.

All entries (of the type indicated in LIBRARY parameter).
NAME-ALL cannot be used with LIBRARY-ALL.

Designation of entries being deleted:

Code Meaning

T Temporary

P Permanent

MODIFY FUNCTION

MODIFY USES

• The MODIFY ·function is intended primarily for maintenance of source statements and procedures
by using a card reader.

• Reserialize a source library entry.

• List the statements in a source library entry.

• Remove statements from a source library entry.

• Replace source library statements.

• Insert statements into a source library entry.

MODIFY RESTRICTIONS

• Sequence numbers are a physical part of the source record and must be placed where they will not
conflict with other data in the record. In a procedure they should be placed near the end of the
record beyond the OCL and utility control statements' keywords and parameters. The sequence
numbers should be placed in source statements where they will not overlay data. For example,
data could be destroyed if sequence numbers were placed in RPGII source statements that con
tained compile-time tables.

• At least three control statements must be entered to modify the source library. A II MODIFY
statement is needed to describe the library entry. A II REMOVE,II REPLACE, or II INSERT
statement describes the type of modification. A II CEND statement indicates the end of the con
trol statements.

• The sequence numbers specified by the FROM-seqno, TO-seqno, and AFTER-seqno parameters on
the II REMOVE,II REPLACE, and I/INSERT statements must be valid numbers and exist in the
source library entry. There are no default values for these parameters. The number of digits entered
must be the same as the number of positions specified by the SEOFLD parameter.

• All statements in a source library entry must have ascending sequence numbers in the positions
specified by the SEOFLD parameter.

• Multiple operations (REMOVE, REPLACE, INSERT) may be performed within the same MOD
IFY run if they are done in an ascending sequential order. That is, the FROM sequence number in
a REMOVE or REPLACE statement must be greater than the last sequence number in the preced
ing statement. The AFTER sequence number of an INSERT statement must be equal to or greater
than the last sequence number of the preceding statement. Consecutive INSERT statements must
not have the same sequence number.

• When modification is complete, the directory entry is written back with a permanent attribute.

• The control statements following the II MODIFY statement are read from the system input device,
which can be the keyboard or a card reader. Since the REMOVE control statement is valid for both
the $DELET utility and $MAINT utility, care should be used when modifying a $DELET procedure.
The program will attempt to determine if the REMOVE statement is data or a control statement.
If a determination cannot be made, the program will halt and wait for further instructions.

library Maintenance Program-$MAINT 171

172

MODIFY CONTROL STATEMENT SUMMARY

Initiate Modification

1/ MODIFY NAME-name,FROM-code,LlBRARY

SEaF LD-xxyy ,I NCR-number

Control Statements Following 1/ MODI FY

Delete all statements between and including the FROM and TO sequence numbers.

/I REMOVE FROM-seqno. TO-seqno

Replace all statements between and including the FROM and TO sequence numbers with the statements supplied.

1/ REPLACE FROM-seqno, TO-seqno

1 • n statements to replace those removed

Insert the supplied statements after the statement indicated by the AFTER parameter.

/I INSERT AFTER-seqno

1 - n statements to be inserted

MODIFY PARAMETERS

NAME-name

FROM-code

LIBRARY- { Ps }

WORK-code

{
YES} RESER- NQ.
ONLY

{ YES} LIST- t!Q

SEQFLD-xxyy

I NCR-number

Current name of the entry you are modifying. This is the name that identifies the entry in
the library di rectory .

Location of the disk that contains the entry you are modifying. Possible codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Type of library entry you are modifying. Possible codes are:

Code Meaning

S Source statements (source library)

P Procedures (source library)

Location of the disk containing space the program can use as a work area. Possible codes
are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Specifies whether reserialization should be done when the entry is placed back in the source
library. Possible information is:

Information

YES

NO

ONLY

Meaning

Reserialization is done.

Reserialization is not done. NO is assumed if the RESER parameter
is omitted.

Reserialize only; no other maintenance is done. When this is coded,
no REMOVE, REPLACE, or INSERT statements can be entered.
A 1/ CENO statement is not needed.

Specifies whether the source library entry should be listed when the MODI FY run is complete.
NO is assumed if the LIST parameter is omitted.

The starting and ending positions of the field that contains the sequence number. The sequence
number can be up to eight digits long. The starting position is entered first (xx) and then the
ending position (yy). If this parameter is not entered, 9296 is assumed.

Increment value for sequence field if reserialization (RESER-YES or RESER-ONL Y.l is
specified. The value can be up to five digits. If this parameter is not entered, a value of 10 is
assumed.

Library Maintenance Program-$MAINT 173

REMOVE. REPLACE. INSERT PARAMETERS

FROM-seqno

TO-seqno

AFTER-seqno

The sequence number of the first
statement to be used in the
operation.

The sequence number of the last
statement to be used in the
operation.

The sequence number of the state
ment after which the new statements
are to be added.

RENAME FUNCTION

RENAME USE

• Change the name of a library entry.

• Change the name of library entries that have names
beginning with certain characters.

RENAME CONTROL STATEMENT SUMMARY

1/ RENAME FROOk LlBRARY.{ U .NAME~'m •• NEWNAME·",~

1/ RENAME FRO_.LlBRARY{ g .NAME·d .. ,,,,,,,.ALL.NEWNAME~h~' .. "

RENAME RESTRICTIONS

• System modules should not be renamed on the
active system pack (the pack the system was
loaded from during IPL).

• Library Maintenance modules should not be
renamed on the active program pack.

174

RENAME PARAMETERS

FROM-code

LIBRARV·m

NAME-name

location of disk that contains the entry
you are renaming. Possible codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Type of library entry you are renaming.
Possible codes are:

Code Meaning'

S Source statements (source
library)

P Procedures (source library)

o Object programs (object library)

R Routines (object library)

Current name of the entry you are re
naming. This is the name that identifies
the entry in the library directory.

NAME-characters.All Only those entries beginning with
the indicated characters. (You can
use up to five characters'!

NEWNAME-name New name you want to give the entry.
Follow these rules to construct the name:

1. You can use any System/3 charac
ters except blanks, commas, quotes,
and periods. (Appendix A lists the
characters'! However, the names
of all IBM programs begin with a
dollar sign ($). Therefore, to avoid
possible duplication, do not use a
dollar Sign as the first character in
the names you use for your entries.
The first character must be alpha
betic.

2. You can use up to six characters,
but you cannot use the names All,
DIR and SYSTEM. They have
special meanings in the NAME
parameter.

NEWNAME-characters Beginning characters you want to use in
names identifying the copies. (You can
use up to five characters.

OCl CONSIDERATIONS
The following OCL statements are needed to load
the Library Maintenance utility program.

II LOAD $MAINT,code

II RUN

The code you supply depends on the location of
the disk containing the Library Maintenance pro
gram. The codes are as follows:

Code Meaning

Rl Removable disk on
drive one

Fl Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

EXAMPLES

1

II
1/
I

4

Figures 52-67 illustrate the functions of the Library
Maintenance utility program. Figure 52 is an exam
ple of the OCL needed to load the utility program.
The other figures are examples of the control state
ment necessary to carry out the specified function.

8 12 16 20 24 28 32

L Ain $" A I Nil I, F1
J((II

Explanation:

• Library Maintenance program is loaded from the fixed disk on
drive one

Figure 52. oel load Sequence for library Maintenance

Library Maintenance Program-$MAI NT 175

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

II ALL I'Air ~n -~ 1~ sn Ipll' -I 2.1\ "Ie .JE ~rt' -~~ S~~ S
/I END

Explanation:

• Libraries are being created on the removable disk on drive one (TO-A1 in ALLOCATE statement).

• Source library space is 12 tracks (SOURCE-12).

• Object library space is 45 tracks (OBJECT-45). The object library will contain system
programs (SYSTEM-YES). Thus, the disk area will also include space for the Scheduler work area.

• Directory will be three tracks.

Figure 53. Allocate Example. Creating Both Source and Object Libraries on a Disk

1 4 8 12 16 20 24 28 32 3€ 1 4 8 12 16 20 24 28 32

III ALL AT E h" IR 1 S UR. "E 1-1 f ~O RK FI1 III All l" Ah" E h"o 1(1 niB ~E '"'(-~
1/ END 1/1 END

Explanation: Explanation:

• Source library is located on the removable disk on drive one
(TO-R1 in ALLOCATE statement).

• Object library is located on the removable disk on drive one
(TO-R1 in ALLOCATE statement).

• Size of the source library is being changed to 15 tracks
(SOUACE-15).

• OBJECT-O parameter tells the program to delete the object
library. If a Scheduler work aree precedes the object library,
it is also deleted.

• Any time the program changes the size of a library, it re
organizes the library. To do this, it needs a work area. This
area is on the fixed disk on drive one (WOAK-F1).

Figure 55. Allocate Example: Deleting the Object Librery from

a Disk

Figure 54. Allocate Example: Changing the Size of a Source

Library

1 4 8 12 16 20 24 28 32

/il ~ p~ R M- F1 LI SiR Ai1i~ ,(-0 \II. ~E -s ~S
1/ END

Explanation:

36 40

tTlE MI, h'o -Iii

• System programs are in the object library on the fixed disk on drive "ne
(LiBRARY-O and FROM-F1 in COpy statementl.

• The NAME parameter (NAME-SYSTEM) tells the program to copy the
system programs.

• The disk that is to contain the copy is the removable disk on drive one
(TO-R1).

44

Figure 56. COpy Example: Copying Minimum System from One Disk to Another

176

48 52 56 60 64 68 72

1 4 8 12 16 20 24 28 32 36 40 44

II/ "'P't IRn :~ -IR1 ,. L 18 RA IR~ -IA;L NA ME -D It "T ,,- P~ 1~1r / ~ND

Explanation:

• All library directories and the system directory on the removable disk on drive one
are printed (COPY statement):

1, FROM identifies the disk containing the directories.
2. LI BRARY indicates which directories are to be printed.
3. NAME and TO indicate that the program is to oe printing directories.
4. All entries beginning with a $ are not printed.

Figure 57. Copy Example: Printing Library Directories

1 4 8 12 16 20 24 28 32 36 40 44

1/11 lrll' PI\, IRb M-1'R111 18 ~~ IRI'1' -0 I, tI A~ E-I,V' Irh h'o -F 1 I~E h'~
II ,1'1 II)

Explanation:

• L1BRARY-D, NAME-ACCT, and FROM-Rl in the COpy statement tell the program
to read the object program named ACCT from the removable disk on drive one.

• TO-Fl tells the program to copy the object program to the fixed disk on drive one.
There is no NEWNAME parameter in the COpy statement. Therefore, the name the
program will have on the fixed disk is ACCT (NAME-ACCTI. Since the old version
of the program already exists on the fixed disk under that name, the old version is
replaced.

• The Library Maintenance program normally halts before replacing a library entry.
The RETAI N-R parameter, however, tells the.program to omit that halt.

Figure 58. Copy Example: Copying Object Program to F1

1 4 8 12 16 20 24 28 32 36

JI/ o L l'E F~ ~M -R1 16 Rll :RY -s, l,tll Ato1 E- p~ ~R"
1/ I~O

Explanation:

• The program deletes a set of source statements (L1 BRARY-S in
DELETE statement) named PAYROL (NAME-PAYROll from
the removable disk on drive one (FROM-Rl) that has a temporary
attribute.

Figure 59. Delete Example: Deleting an Entry from a library

40 44

48 52 66 60 64 68 72

M' T- ~ ~

48 52 66 60 64 68 72

I~ -~

48 52 56 60 64 68 72

Library Maintenance f'>f'owarn-$MAI NT 177

1 4 8 12 16 20 24 28 32 36

1'1 !I ~~ $~ AI NT lL
1/ ILE NA rvE - Is~ 1lI1FI E Nl IT~ :1 A K- IRS
III HUN
1/ PrY FR ~- I'll SK iT -r:'lL 1R1r: TA IN- II L -
)(X IPIY I -Ip IN~ IVE- IA c

S
R I,.., E
{

XIX 11-'1'{ 1I IN III ~E - JlN !I"'E~
\

T IF I<
(

XIX N
III lF~

Explanation:

• The OCl for a File-to-Library copy must contain a FI lE statement
for the disk file.

• The filename on the II COpy statement (FI lE-BSCAFI LE)
matches the filename on the OCl FI LE statement (NAME
BSCAFllE).

• The II COPv' statement does not contain an RECl parameter,
so a record length of 96 is assumed.

• All source and object decks in the disk file must have a
II COpy statement as the first card image. These II statements
(including the II END statement) are printed with XX replacing
the II to indicate they were read from disk rather than from
the system input device.

• All source and object decks in the disk file must have a
II COpy statement as the first card image and a II CEND
statement as the last card to indicate the end of the copy
for each deck. These II statements (including the II END
statementl are printed with XX replacing the II to indicate
they were read from disk rather than from the system input
device.

Note: The II CEND statement is not printed.

• The II END statement read from the file (printed XX END),
causes the next statement to be read from the system input
device. A II END statement must still be read from the
system input device to indicate the end of the Library
Maintenance control statements.

Note: The II END statement in the file is optional as the
system will recognize the physical end of the data file
and terminate the copy.

Figure 60. Copy Example: Disk File to Library

178

40 44

IA LA IBE IL -

JlIF JILiF

48 52 56

From System
Input Device

From Disk File

~ From System
Input Device

1 4 8 12 16 20 24 28 32 36

III D LE T~ F~ "1M -1~1 LI IBR All 1'1' - AL NA ME - I
II E~

Explanation:

• The entries being deleted are on the removable disk on drive one
(FROM-R1 in DELETE statement!.

• The program deletes all entries from both source and object
libraries (L1 BRARY-ALLl that have names beginning with the
characters I NV (NAME-I NV.ALLl, with temporary attributes.

40 44 48 52 56 60 64 68 72

Nv .A.L

Figure 61. Delete Example: Deleting All Entries with Names that Begin with Certain Characters

1 4 8 12 16 20 24 28 32 36

11/ PE Lie TE ~~ II' - IR1 III -p N .. liE ~ L
11I1 IEINID

Explanation:

• The entries being deleted are on the removable disk on drive one
(FROM-R1 in DELETE statement).

• All temporary procedures are being deleted from the source
library (L1BRARY-P,NAME-ALLl.

RE

Figure 62. Delete Example: Deleting All Library Entries of One Type

Explanation:

40

triA

• The source module named INPUT1 on disk drive R1 is being modified.

• The work space will be on R1.

• The sequence numbers are in positions 1-5 of the statements.

• Sequence numbers 00124 - 00156 are being deleted from the module.

• The module is reserialized with increments of one.

• The module is not listed.

Figure 63. Modify Example: Removing Source Statements from a Module

44 48 52 56 60 64 68 72

I~ -h"

Library Maintenance Program-$MAINT 179

il M(\ If" Iv NA iME -:ll 0(' 1"11 R f/<- R~ LI Rf III I\{ - f lIN 0 IRK. -I~ I
!I I R A I£; fl~ 0", -0 ,.,[Ifllt T,.., -" ~"'1Ii'1
II I 1- E. NiA I\j - I f,/V PR r II(-v ot. U/II 1:1' -IR I IfE lr~ en s -3 f2
1/'1 I f INA IME -1.11 Oi. If PiA rK- I; NI T- fj[

/1 H~

Explanation:

• The procedure named POC01 on disk drive R2 is being modified.

• The work space will be on R1.

• The sequence numbers are in default positons 92-96.

• Statements with sequence numbers 00101-00102 are being replaced.

• The module is not reserialized.

• The module is listed.

Figure 64. Modify Example: Replacing Statements in a Procedure

1 4 8 12 16 20 24 28 32 36 40 44 48
1)/ RE NIA ~E ~O loI-IR1 III &~

IE IN 0
~~ ~- Is INI~ ME -It! c"'lT E- 1~lc

1/

Explanation:

• The removable disk on drive one contains the entry being renamed (FROM-R1
in RENAME statement!.

• The entry isa set of source statements in the source library (LIBRARY-5).
Its name is ACCT (NAME-ACCT).

• The entry name is being changed to ACCT1 (NEWNAME-ACCT1).

Figure 65. Rename Example: Renaming a Set of Source Statements in a Source Library

l< f::R -IN

{<E TA. liN -p

52 56

'!TI1

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56

1/1 Nt' I.e I iF"ly ~~ ON -F I Iwo ~K.- I INIA ME -r' 05 IT" 1..1 19~ AR '1-'5
il / IRE SIF R-v S S~ QI1= Lt.. -(kl8 14 1..1 ST -IV' E~
II I rN Sf ~tr ~~ [p:: ~-
~!Z IZS Illl 3 g ATIE
III Nt1

Explanation:

• The source module COST on disk drive F1 is being modified.

• The work space is on F1.

• The sequence numbers are in positions 80-84 of the statements.

• A statement is being inserted after statement number 00070.

• The module is reserialized with the default increment value of 10.

• The module is listed.

Figure 66. Modify Example: Inserting a Statement in a Source Module

180

I I LL L I

LI 7- IvlElsl I 1

I
I

iLl
11 11 '

I I I I I I I I

60 64 68 72

1 4 8 12 16 20 24 28 32

t. 1/ LO A ill $14 Air tiT .I~ !
/I Rlu!N

2.
3.
4.

I I AL Llel CA 7'E TO -Iii 1 , 08 JE CiT -191 Sill Ull eli:

I I ALL CA 7'E TO - lilt 08 JE C7' -IIJ ¢ , ~O RC
I I CO py ~R 01M -F1. T~ - RJ. l.1 81l ~R v- Al.l.

I I EIAI 0

Reload System (lPL) from R1

5 1/ L AD :$M AI NT R1.

" RuiN
6.

7.

8.

I I 4L ILO C.A 7E: 70 - F 1. OB JE cr -1<1 so UR ce
I I AL LO eA TE Tin - F! 08 .rE CT - iI~ SO IlC

I I CO py IJ:R IM- ILt TO -FI- Ll &Ii AR y- AL L

" END

Reload System (lPL) from F1

Explanation:

1. The system and $MAINT are both loaded from F1.

2. The libraries on R1 are deallocated (if present!.

3. New library space is allocated on Rt.

36 40 44

-'Ill
e- 12 Sy 5T &~

WA INa -1+ LI

-~
E- L2 I!;~ lstr e~

IAI II I~ e -II LL

4. The libraries are copied from F1 to R1. The object library is reorganized as it is copied.

48

-y es

-y E5

Temporary entries become permanent when copied (see Disk·to·Disk Considerations, Output).

5. The system and $MAINT are now loaded from R1.

6. The libraries on F 1 are deallocated.

7. New library space is allocated on F 1.

8. The libraries are copied back to F1. The pack on R 1 could be used as a back-up pack. It
contains the same libraries as F 1.

Figure 67. Reorganizing the System Pack

52 56 60 64 68

»z RS Iii £-7

DlZ R~ [Z £-7

Library Maintenance Program-$MAINT 181

182

IBM SYSTEM/3 5445 DATA INTERCHANGE UTILITY PROGRAM-$VTOC

All IBM 2316 disk packs initialized on System/3 5445 Disk Drive by $INIT have a System/360-
System/370 formatted volume table of contents (VTOC). The System/360-System/370
VTOC is not used by System/3. When it is necessary to exchange data between System/3 and
System/360-System/370 on a 2316 disk pack, the IBM System/3 5445 Data' Interchange
Utility can be used (see Appendix C for an alternate method). The utility must be run going
to and returning from System/360-System/370.

When the utility program is run against a 2316 disk pack, the contents of the System/3
VTOC are mapped to the System/360-System/370 VTOC. If data is to be returned to the
System/3 via the utility without reinitialization, then restrictions on the use of the pack on
System/360-System/370 must be observed. Any deviations from these restrictions can
result in the format of the pack being altered beyond the capacity of the utility to return
the pack to normal System/3 format. This can result in errors in the utility run returning
the pack or unrecoverable errors on the pack while processing it on System/3.

Following is a list of the methods of processing data files on the interchange pack by OS
or DOS:

Functions (sequential processing only) Disposition Type Open

Reading with OS using BSAM or OSAM OLD FBS INPUT

Output with OS using BSAM or OSAM OLD FB or FBS OUTPUT

Reading with DOS using SAM-GET INPUT

Update in place with OS using BSAM or
OSAM OLD FBS UPDATE

Update in place with DOS using SAM-
GET/PUT UPDATE INPUT

CAUTION:

Only the above disposition and open types may be used.

The update-in-place function can be used on a data set written on System/3 filled with
dummy records. Since duplicate file names are not allowed on System/360-System/370, the
System/3 file names will be qualified with the file date. An example would be PAYROLL.
0711026. PAYROLL would be the file name on System/3 and the file was created on
October 26, 1971.

Files to be processed by OSAM must have a logical record length that is an even submultiple
of 256.

No files may be allocated or deleted on System/360 or System/370 if the pack is to
be read on System/3 without reinitializing.

IBM System/3 5445 Data Interchange Utility Program-$VTOC 183

Any System/3 P or T file on the pack is mapped into the System/360-System/370 VTOC.
Multivolume files are not supported and their interchange results in a System/360-
System/370 entry that appears like a single volume file. Split cylinder files will have a
System/360-System/370 format one but it is not usable due to basic differences in split
file philosophy between the systems. If the System/3 file type is either sequential or
indexed but not split, then a System/360-System/370 end-of·file mark is written in the
file area at the end of data (256 bytes must be available). When the utility is run to
return the pack to System/3, the end of file marks are removed and thl' System/360-
System/370 VTOC entries are deleted.

The utility must always be run just before going to System/360-System/370 and just
after returning to System/3. Any deviation from this procedure can result in loss of
data on the pack.

The attributes of all System/360-System/370 VTOC entries assigned by the utility are
as follows:

Name of file

Creation date

Expiration date

Volume sequence number

Record/block format

Organization

System Code

Block length

Logical record length

Extent type

CONTROL STATEMENT SUMMARY

Systeml3 to SystemI360-8ystemI370 Conversion

184

/I NEWVTOC UNIT-{ ~~} ,PACK-name

/I END

SystemI360-8ystemI370 to Systeml3 Conversion

/I UPDATE UNIT- {~~} ,PACK-name

/I END

name. DYYMMDD

00000

99365 (date protected)

0001

FIXED BLOCK STANDARD (FBS)

sequential (regardless of S/3 type)

"IBM DSM/3"

256 bytes

same as S/3 length

single

PARAMETER SUMMARY

PACK-name

UNIT-code

Name of the disk.

Location of the disk. Possible codes
are D1 and D2.

PARAMETER DESCRIPTIONS

PAC K Parameter
The PACK parameter (PACK-name) tells the pro
gram the name of the pack being transferred. The
name you supply in this parameter is the one written
on the disk by the Disk I nitialization program.

The 5445 Data Interchange program compares the
name in the PACK parameter with the name on the
disk to ensure they match. In this way, the program
ensures that it is using the right disk.

UN I T Parameter
The UNIT parameter (UNIT-code) tells the program
the location of the pack being transferred. Codes for
the possible locations are as follows:

Code

D1

D2

OCL CONSIDERATIONS

Meaning

Removable disk on
5445 drive one

Removable disk on
5445 drive two

The following OCL statements are needed to load
the 5445 Data Interchange Utility program:

/ / LOAD $VTOC, code
II RUN

The code you supply depends on the location of the
disk containing the utility program. The codes are
as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 RemovlJ,llle disk on
drive t~

F2 Fixed disk on drive
two

1 4 8 12 16 20 24 28 32

/i

" LO Au 1$ V 170e F1
1/ R. N

Explanation:

• 5445 Data Interchange Utility is loaded from the fixed disk
on drive one.

IBM System/3 5445 Data Interchange Utility Program-$VTOC 185

186

APPENDIX A. IBM SYSTEM/3 STANDARD CHARACTER SET

Hexadecimal Hexadecimal Hexadecimal
Character Equivalent Character Equivalent Character Equivalent

Blank 40 # 7B Q 08

¢ 4A @ 7C R 09

48 • (apostrophe) 70 S E2

< 4C = 7E T E3

(40 .. 7F U E4

+ 4E A C1 V E5

I 4F B C2 W E6

& 50 C C3 X E7

! 5A 0 C4 Y E8

$ 5B E C5 Z E9

* 5C F C6 0 FO

) 50 G C7 1 F1

; 5E H C8 2 F2

--, 5F I C9 3 F3

- (minus) 60 } DO 4 F4

/ 61 J 01 5 F5

. 68 K 02 6 F6

% 6C L 03 7 F7

- (underscore) 60 M 04 a Fa

> 6E N 05 9 F9

? 6F 0 06

: 7A P 07

Appendix A. IBM Svstem/3 Standard Character Set 187

188

APPENDIX B. CONVERSION

RECORDS TO TRACKS CONVERSION

Determining the Number of Sequential or Direct File Tracks
The following two steps should be followed to determine the number of tracks in a
sequential or direct file. (Round results to the next higher whole number.)

1. number of records x record length = number of characters

2. number of characters (from step 1)
fj'\=

number of characters per track \!.J
number of tracks

Determining the Number of Indexed File Tracks
The following two steps should be used to determine the number of data tracks in an
indexed file:

1. number of records x record length = number of characters

2. number of characters (from step 1)

number of characters per track 0 number of data tracks (round to the next
higher whole number)

The following four steps should then be followed to determine the number of index
tracks in an indexed file:

1. key field length + (3 for 5444 or 4 for 5445) = index entry length

2. number of characters in a sector CD
index entry length (from step 1)

number of entries per sector

3. number of records

number of entries per sector (from step 2)
number of sectors

4. number of sectors (from step 3)

number of sectors per track CD number of index tracks (round to the next
higher whole number)

0 6144 for the 5444
5120 for the 5445

0 256 (For the 5445, a sector is referred to as a fixed record.)

CD 24 for the 5444
20 for the 5445

Appendix B. Conversion 189

190

If an indexed 5445 file has more than 15 index tracks (from step 4 above), the file
will have a disk master index in addition to the regular index. The following two
steps should be followed to determine the number of tracks needed for the master
index:

1.

2.

number of index tracks (greater than 15)
number of entries per sector (from step 2)

number of fixed records (from step 1)
20

number of fixed records

number of disk master index tracks
(round results to the next higher
whole number)

The total number of tracks in a 5445 indexed file can be determined by adding the
number of data tracks, the number of regular index tracks, and the number of disk
master index tracks.

CYLINDER/TRACK TO TRACK NUMBER CONVERSION
To convert cylinder/track to track number, multiply cylinder number by the number
of tracks on each cylinder and add track.

EXAMPLE: 5/3 = cylinder/track
5 X 20*+3 = 103
103 = track number

TRACK NUMBER TO CYLINDER/TRACK CONVERSION
To convert track number to cylinder/track, divide track number by the number of
tracks on a cylinder. The quotient is the cylinder and the remainder is track.

EXAMPLE: 103 = track number
103 -:- 20* = 5 (remainder 3)
5/3 is the cylinder/track

* 20 number of tracks on a cylinder

APPENDIXC. SYSTEM/360-SYSTEM/370 DISK FILE COMPATIBILITY

This appendix is intended for the user who intends to exchange data between System/3
and System/360-System/370 without using the IBM System/3 5445 Data Interchange
Utility Program. The access method limitations listed in the utility program section of
this manual should be followed.

Disk files created on the 5445 can be read and updated using System/360-System/370.
Disk files can also be created using System/360-System/370 and subsequently read or
updated with a System/3 Model 10 Disk System.

The volume label and volume table of contents (VTOC) identify the information con
tained on the disk pack. The volume label identifies the volume and points to the
System/360-System/370 VTOC. The System/360-System/370 VTOC contains one label
record which describes the complete pack as one System/360-System/370 file. The
System/3 VTOC resides in a fixed location within this System/360-System/370 file and
can be examined by the System/360-System/370 program.

See IBM System/3 Disk Systems System Control Program Logic Manual, SY21-0502,
for a description of the System/3 VTOC and volume label.

System/3 to System/360-System/370
The System/3 Disk I nitialization Program writes a volume label in the System/360-
System/370 format on every disk pack. The System/3 disk format consists of
256-byte physical records. This record length may be altered for System/360-
System/370 VTOC records.

Any of the access methods previously listed may be used by System/3 when creat
ing a file to be used by System/360-System/370. The logical records in a particular
System/3 file can be accessed by System/360-System/370 by means of a user pro
gram using the Sequential Access Method if the user program:

• Locates the file label in the System/3 VTOC for the desired file.

• Uses the st!!rt of data information and record length information from the
System/3 VTOC to perform the accessing and logical deblocking.

• Uses the end-of-file information from the System/3 VTOC.

System/360-System/370 to System/3
Volumes created on System/360-System/370 can be processed on System/3 if
System/360-System/370 provides a System/3 VTOC entry and writes 256-byte
physical records. A System/3 user program or utility can then read and unblock
the file according to the information in the System/3 VTOC.

CAUTION

If the System/3 VTOC provided by System/360-System/370 is not exactly
the same as the System/3 format, unexpected results (destroyed data files
or unrelated halts) may occur.

Appendix C. System/360-System/370 Disk File Compatibility 191

192

* (comment) statement (OCl) 31
* parameter for the lOAD statement (OCl) 17
$Al T (see Alternate Track Assignment program)
$BUllD (see Alternate Track Rebuild program)
$COPY (see Disk Copy/Dump program)
$DCOPY (see Dump/Restore program)
$DElET (see File Delete program)
$INIT (see Disk Initializations program)
$lABEl (see File and Volume Label Display program)
$MAINT (see Library Maintenance program)
$TINIT (see Tape Initializations program)
$TVES (see Tape Error Summary program)
$VTOC (see 5445 Date Interchange Utility program)
/& statement (OCl) 32
/* statement (OCl) 32

accessing existing split cylinder files 72
adding a missing parameter to a procedure 54
adding a statement to a procedure 54
adding source library entries 171, 180
additional disk identification 102
advantages of nested procedures 55
AFTER parameter 171, 174
allocate restrictions 151
AllOCATE statement ($MAINT)

Allocation of Disk Work Space 151
control statement summary 150
DIRSIZE parameter 152
function 151
OBJECT parameter 152
parameter summary
restrictions 151
SOURCE parameter
SYSTEM parameter
TO parameter 152
WOR K parameter

allocation limit 151

151

152
152

153

Alternate Track Assignment program 105
Al T statement (see Al T statement)
cancel prior assignment 108
conditional assignment 107
examples 109
messages 110
OCl considerations 109
unconditional assignment 108

Alternate Track Rebuild program 111
examples 113
OCl considerations 113
REBUilD statement (see REBUilD statementl
substitute data 112

Al T statement ($Al T)
ASSIGN parameter 108
control statement summary 106
PACK parameter 107
parameter summary 106
UNASSIGN parameter 108
UNIT parameter 107
VERIFY parameter 107

ASCII parameter
FI lE statement 48
VOL statement 90

ASSIGN parameter for the Al T statement 108
assignment of alternate tracks

Alternate Track Assignment program 107
Disk Initialization program 101

automatic file allocation 73

BlKl parameter, FI lE statement 46

CAll statement (OCl) 51
cancel prior alternate track assignment 108
CAP parameter for the UIN statement 101
chain-image area 24

changing 24
changing a permanent file to a scratch file 38
changing a scratch file to a temporary file 38
changing a temporary file to a scratch file 38
changing procedure parameters 53
changing punch device (see PUNCH statement!
changing the contents of the chain-image area 24
changing the logging device 28
changing the name of a library entry 174
changing the number of lines the printer will print

per page 27
changing the size of the object library 153
changing the size of the source library 154
changing the system input device 29
characters from the source Ii,brary on disk 26
characters from the system input device 24

example 26
characters to use when naming library entries 163
CHAR, format parameter for the IMAGE

statement 24
Checkpoint/Restart

OCl consideration 79
programming consideration 79

choosing the designation of a library entry
permanent 163
temporary 163

clear initialization 100
coding rules for OCl 6

comments 8
continuation 7
statements beginning with /I 6
statement beginning with other than /I 7

coding rules for utility control statements 86
comments 8
compatibility of disk files 191
COMPilE statement (OCl) 22
compiling source programs and storing them in the

object library 73
sample statements 74

compiling an RPG II program 60

INDEX

Index 193

compress in place 156
conditional assignment of alternate tracks 105,107

example 109
incorrect data 108
surface analysis 101, 107

CONSOLE parameter
lOG statement 28
READER statement 29

continuation (OCl) 7
control statement summary (utility programs)

AllOCATE statement ($MAINTI 150
Al T statement ($Al T) 106
COpy statement ($MAINT) 157-168
COPYFllE statement ($COPY) 128
COPYPACK statement ($COPY) 128
COPYPACK statement ($DCOPY) 139
DELETE statement ($MAINT) 169
DISPLAY statement ($lABELI 115
INSERT statement ($MAINTI 172
MODIFY statement ($MAINTI 172
NEWVTOC statement ($VTOC) 184
REBUI lD statement ($BUI lD) 111
REMOVE statement ($MAINT) 172
REMOVE statement ($DElETI 122
RENAME statement ($MAINT) 174
REPLACE statement ($MAINT) 172
SCRATCH statement ($DElETI 122
SELECT statement ($COPY) 128
UIN statement ($INIT) 98
UPDATE statement ($VTOC) 184
VOL statement ($INIT) 98
VOL statement ($TINITI 90

conversion
cylinder- tracks 190
records - tracks 189
track number - cylinder number 190
convert seven track tape 48

COpy statement ($MAINT)
control statement summary 158-160
File-to-library 164
FROM parameter 161
function 157
LI BRARY parameter 161
library-to-card 165
library to library 164
library-to-printer/card considerations 165
NAME parameter 161
NEWNAME parameter 162
parameters 161-162
reader-to-library 164
RETAIN parameter 163
TO parameter 162
uses 157

COPYFI lE statement ($COPY)
control statement summary 128
DELETE parameter 133
OMIT parameter 133
OUTPTX parameter 130
OUTPUT parameter 130
parameter summary 129
REORG parameter 133
WORK parameter

copying an entire disk
example 137

194

133
130,139

copying files 132
example 137

copying minimum system from one disk to
another 159

example 176
copying multivolume files 135

copying multivolume indexed files 135
direct file attributes 135
maintaining correct relative record numbers
maintaining proper volume sequence numbers

copying multivolume indexed files 135
copying object program to F1 177

example 177
COPYPACK statement ($COPY)

control statement summary 128
FROM parameter 131
parameter summary 129
TO parameter 131

COPYPACK statement ($COPY)
control statement summary 139
FROM parameter 140
parameter summary 139
TO parameter 140

correcti ng characters on an alternate track 111
example 113

creating a source library
creating an object library
creating disk files 60
creating split cylinder files

154
152

71-72

Data Interchange Utility 183
DATA parameter for the REMOVE statement

($DElET) 124
DATE parameter

FilE statement (OCl) 39
disk 39
tape 46

REMOVE statement ($DElET) 122
SCRATCH statement ($DElET) 122

135
135

date parameter for the DATA statement (OCl) 16
DATE statement (OCl) 16
DEFER parameter, FI lE statement 48
DELETE parameter for the COPYFI lE statement

($COPY) 133
DELETE statement ($MAINT)

control statement summary 169
FROM parameter 170
function 169
LI BRARY parameter 170
NAME parameter 170
parameters 170
restrictions 169
RETAIN parameter 170
summary 169
uses 169

deleting an object library 156
deleting a procedure parameter 53
deleting a source library 155

deleting library entries ($MAINT)
all entries of one type 169

example 179
all entries with names that begin with certain

characters 1 59
example 179

all temporary or permanent entries of a certain
type 159

an entry from a library 159
example 177

library entries 159
temporary or permanent entries with names beginning

with certain characters 159
deleting one of several files having the same name ($DE lET)· 125
DENSITY parameter

FilE statement 47
VOL statement 90, 91

DEVICE parameter for the FORMS statement (OCl) 27
direct file attributes 134
DIRSIZE parameter for AllOCATE statement

($MAINT) 152
Disk Copy/Dump program 127

COPYFllE statement (see COPYFllE statement)
copying multivolume files (see copying multivolume

files)
COPYPACK statement (see COPYPACK statement)
examples 137
OCl considerations 135
SELECT statement (see SELECT statement)

disk drive capacity 100
disk file compatibility 191
Disk Initialization program 97

clear ininitalization 100
disk drive capacity 100
examples 102
messages 103
OCl considerations 102
primary initialization 100
secondary initialization 100
UIN statement (see UIN statement!
VOL statement (see VOL statement)

Disk System 3
DISPLAY statement ($lABEl)

control statement summary 115
lAB E l parameter 116
parameter summary 115
UN I T parameter 116

DlSP parameter for the REBUI lD statement 112
dual programming feature 74

additional space 156
considerations 77
loading programs in a DPF environment (see

loading programs in a DPF environment)
dumping disk to tape 139
Dump/ Restore program 139

COPYPACK statement 139
FROM parameter 140
OCl considerations 141
TO parameter 140

end-of-data (see /* statement)
END parameter, FilE statement 47
END statement 86
ERASE parameter for the UIN statement 101
examples

CAll statement 51
changing the size of a source library 154
characters from the source library on disk 26
characters from the system input device 26
COMPilE statement 23
conditional assignment 109
copying a file from one disk to another 137
copying an entire disk 137
copying disk file to library 178
copying minimum system from one disk to another 176
copying object programs to F1 177 '
correcting characters on an alternate track 113
creating both source and object libraries on a disk 176
DATE statement 16
deleting all entries of one type 179
deleting all entries with names beginning with certain

characters 179
deleting an entry from a library 177
deleting one of several files having the same name 125
deleting the object library from a disk 176
FilE statement

disk 33-42
tape 44

FORMS statement 27
inserting a statement in a source module 180
lOAD statement 17
nested procedures 55
primary initialization of two disks 102
printing library directories 177
printing part of a file 138
printing VTOC information for two files 120
printout of Tape Initialization program 92
printout of Tape Error Summary program 95
procedures 53
removing source statements from a module 179
renaming a set of source statements in a source library 180
reorganizing the system pack 181
replacing statement in a procedure 180

external indicators 21

File and Volume label Display program 115
DISPLAY statement (see DISPLAY statement)
examples 120
OCl considerations 119

File Delete program 121
examples 125
OCl considerations 125
REMOVE statement (see REMOVE statement)
SCRATCH statement (see SCRATCH statement)

file names used in the FI lE statement 34
FilE statement (OCl)

ASCII parameter 48
BlKl parameter 46
CONVERT 48

Index 195

DATE parameter
disk 39
tape 46

DEFER parameter 48
DENSITY parameter 47
END parameter 47
example 40-42
file processing considerations 42
format 33
function 33
HIKEY parameter 39,67
LABEL parameter

disk 36
tape 45

LOCATION parameter 37,67
NAME parameter

disk 33
tape 43

PACK parameter 36,65
PARITY 48
packed HIKEY parameter 68
placement 33
RECL parameter 46
REEL parameter 45
RETAIN parameter

disk 38,67
tape 46

TRACKS or RECORDS parameter 36,66
TRANSLATE 48
UNIT parameter

disk 35,65
tape 44

FILE statement considerations for multivolume files 64
file-to-library copy function of Library Maintenance program 164
format of OCL statement

* statement 31
/& statement 32
/* statement 32
BSCA statement 50
CALL statement 51
COMPI LE statement 22
DATE statement 16
FILE statement 33
FORMS statement 27
HALT statement 31
IMAGE statement 24
LOAD statement 17
LOCKOUT statement 52
LOG statement 28
NOHAL T statement 31
PARTITION statement 52,76
PAUSE statement 32
PUNCH statement 30
READER statement 29
RUN statement 20
SWITCH statement 21

format parameter for the IMAGE statement
CHAR 24
HEX 24
MEM 25

196

FORMS statement (OCL) 27
F ROM parameter

COpy statement 161
COPYPACK statement ($COPY) 129
COPYPACK statement ($DCOPY) 139
DE LETE statement 170
MODI FY function 173
RENAME statement 174

function of OCL statements (see desired statement type)

gaps in the object library 148
general form of OCL statements 5

HALT statement (OCL) 31
HEX, format parameter for the IMAGE statement 24
H I KEY parameter for the FI LE statement 39,67

packed 68

IBM SYstem/3 Standard Character Set 187
ID parameter, VOL statement 90,98
IMAGE statement (OCL) 24-26
including comments in OCL statement 8
including system programs in a library 152
incorrect data 108
INCR parameters of MODIFY statement 173
indicating the number of lines per page the printer will print 27
indicator-settings parameter for the SWITCH statement 21
initializing disks 97
initializing tapes 89
input device, changing (see READER statement)
input/output devices in a DPF environment 74
I NSE RT statement ($MAI NT)

control statement summary 172
functions 171
parameters 174

inserting source library entries 171
IPL (initial Program Load) 3

job stream 4
relationship to OCL 4
sample 4

keyword 6
keyword parameter 6

LABEL parameter
DISPLAY statement 115
FILE statement

disk 36
tape 45

REMOVE statement 122
SCRATCH statement 122

length of names given to library entries 163
LENGTH parameter for the REBUI LD statement 112

library description 148
library directory printouts

object library 166
source library 166
system directory 168

library entries
removing temporary 151

library maintenance allocate restrictions 151
Library Maintenance program 147

ALLOCATE statement (see ALLOCATE statement)
COpy statement (see COpy statement)
DELETE statement (see DELETE statement)
examples 175-181
library description 148
MODI FY statement 171
OCL considerations 175
RENAME statement (see RENAME statement)

library, object (see object library)
library, source (see source library)
LIBRARY parameter

COpy statement 161
DE LETE statement 169
MODI FY statement 173
RENAME statement 174

library, source (see source library)
library-to-card considerations for the copy function of the Library

Maintenance program 165
library-to-library considerations for the copy function of the Library

Maintenance program 164
library-to-printer considerations for the copy function of the

Library Maintenance program 165
LIST parameter of MODI FY statement 173
listing source library statements 171
LOAD * statement (OCLI 17
loading and running programs 61

I BM programs 61
object programs using card files 61
object programs using more than one disk file 62
object programs using one disk file 61
object programs using one disk file and external indicators 62

loading existing split cylinder files 72
loading object programs from the system input device 17
loading programs from disk 17
loading programs in a DPF environment 74

DATE statement 74
FORMS statement 75
HALT statement 75
IMAGE statement 75
LOAD statement 75
LOG statement 74
NOHAL T statement 75
PARTITION statement (see PARTITION statement)
planning information 76
sample job streams 77

LOAD statement (OCL) 17
* parameter 17
example 17
format 17
function 17

placement 17
program-name parameter 17
UNIT parameter 19

location of object library 155
location of source library 154
LOCA TI ON parameter for the FILE statement 37, 67
LOG statement (OeL) 28

use in checkpoint/restart 79
logging device 28

magnetic tape (see tape, magnetic)
maintaining correct relative record number when copying

multivolume files 134
maintaining proper volume sequence numbers when copying

multivolume files 134
maximum number of levels that can be nested together 56
maximum number of utilitY control statements in a procedure 53
MEM, format parameter for the IMAGE statement 25
messages

Alternate Track Assignment program 110
Disk Initialization program 103
Dump/Restore 143
Tape Initialization 90

MFCUl parameter
PUNCH statement 30
READER statement 29

MFCU2 parameter
PUNCH statement 30
READER statement 29

MODI FY statement ($MAI NT)
control statement summary 172
functions 171
parameters 173

moving object library 151
multivolume files

copying 134
disk 64
file statement considerations 65-68
tape 69

naming library entries
characters to use 163
length 163
restrictions 163

name of entry to be deleted 169
name of entry to be renamed 174
NAME360 parameter

VOL statement 102
NAME parameter

COpy statement 161
DE LETE statement 170
FI LE statement

disk 33
tape 43

IMAGE statement 24
RENAME statement 175

nested procedures 55
advantages 55
examples 57
maximum number of levels that can be nested 56

rules 57

Index 197

NEWNAME parameter
COpy statement 162
RENAME statement 175

new name to be given to an entry 163
rules 163

NEWVTOC statement ($VTOC) 184
NOHAl T statement (OCl) 31
normal procedure call 53
number of alternate tracks on a disk 105
NUMBER parameter for the IMAGE statement 24

object library
changing size 153
creating 152
deleting 156
gaps 148
location 155
moving 151
organization 153
reorganizing 153

OBJECT parameter
AllOCATE statement 150
COMPI lE statement 23

OCl considerations for utility programs
Alternate Track Assignment program 109
Alternate Track Rebuild program 113
Disk Copy/Dump program 135
Disk Initialization program 102
Dump/Restore 141
File and Volume Label Display program 119
File Delete program 125
Library Maintenance program 175
Tape Error Summary program 96
Tape Initialization program 91
5445 Data Interchange Utility program 185

OCl parameters summary 12-15
OC l statement

* statement 31
/& statement 32
/* statement 32
BSCA 48
CAll statement 51
COMPI lE statement 22
DATE statement 16
FilE statement 33
FORMS statement 27
HALT statement 31
IMAGE statement 24
lOAD statement 17
lOCKOUT 52
lOG statement 28
NOHAl T statement 31
PARTITION statement 52, 76
PAUSE statement 32
PUNCH statement 30
READER statement 29
RUN statement 20
SWITCH statement 21

OCl statement summary 9
OFF parameter for the LOG statement 28

198

OMIT parameter for the COPYFllE statement 132
ON parameter for the lOG statement 28
organization of the object library 148
organization of the source library 148
OUTPTX parameter for the COPYFllE statement 129
OUTPUT parameter for the COPYFllE statement 129

PACK parameter
Al T statement 107
FilE statement 34, 65
NEWVTOC statement 185
REBUilD statement
REMOVE statement
SCRATCH statement
UPDATE statement
VOL statement

parameter 5
keyword 6

102

112
123
123

184

table of parameters 12-15
parameter summary of utility control statements

AllOCATE statement 150
A l T statement 106
COpy statement 161-162
COPYFllE statement 129
COPYPACK statement 129
DELETE statement 170
DISPLAY statement 115
I NSERT statement 172
MODIFY statement 173
REBUilD statement 111
REMOVE statement 172
RENAME statement 174
REPLACE statement 172
SCRATCH statement 122
SELECT statement 128
UIN statement 99
VOL statement

$INIT 99
$TINIT 90

PARITY seven track tape 48
PARTITION statement (OCl) 75, 76

use in checkpoint/restart 79
PAUSE statement (OCL) 32
permanent file 38

changing to a scratch file 38
placement of OCl statements (see the desired statement type)
primary initialization 100

example 102
printer chain image (see IMAGE statement)
printer forms (see FORMS statement)
PRINTER parameter for the lOG statement 28
printing file information from the VTOC 115
printing files 133

example 138
printing library directories 165-167

example 177
printing records using record keys 134
printing records using relative record numbers 134
printing the entire contents of the VTOC 116

procedure-name parameter for the CAll statement
procedure override statement 53
procedures 53

adding a missing parameter 54
adding a statement 54, 171
changing procedure parameters
deleting a procedure parameter
example 53,179-180
inserting statements 171
listing 171
modifying 171
nested 55

53, 171
53, 171

normal procedure call 53
procedure override statement 53
removing statements 171
replacing statements 171

processing large indexed files 63

51

processing multivolume files 64-70
program-name parameter for the lOAD statement
program size 77

17

PUNCH statement (OCL) 30

READER statement (OCl) 29
reader-to-library copy function of the Library Maintenance

program 164
REBUI lD statement ($BUI lD)

control statement summary 111
DISP parameter 112
lENGTH parameter 112
PACK parameter 112
parameter summary 111
TRACK parameter 112
UNIT parameter 112

RECFM parameter, FilE statement 47
RECl parameter, FI lE statement 46
RECORDS parameter for the FilE statement 36,60
records-trac ks conversion 189
REEL parameter

FI lE statement 44,70
VO l statement 90

relationship of OCl to the job stream 4
REMOVE statement ($DElET)

control statement summary 122
DATA parameter 124
DATE parameter 124
lABEL parameter 123
PACK parameter 123
parameter summary 123
UNIT parameter 123

REMOVE statement ($MAINT)
control statement summary 172
functions 171
parameters 173

removing files from a disk 121
removing source library statements 171
removing temporary library entries 151
RENAME statement ($MAINT)

control statement summary 174
FROM parameter 174
function 174

liBRARY parameter 174
NAME parameter 175
NEWNAME parameter 175
parameter summary 175

renaming a set of source statements in a source library
example 180

REORG parameter for the COPYFllE statement 133
reorganizing a source library 155
reorganizing an object library 156
reorganizing the system pack 181
REPLACE statement ($MAINT)

control statement summary 172
functions 171
parameters 174

replacing existing library entries 164
replacing incorrect data 111
replacing source library entries 171
replacing statements in a procedure 180
replacing the printer chain 24
RESER parameter of MODIFY statement 173
reserializing a source library entry 171
restarting checkpointed program 79
restrictions, library maintenance 151
restrictions on naming library entries 151
restrictions on split cylinder files 71
restrictions using Library Maintenance 139
RETAIN parameter

COpy statement 163
DE lETE statement 170
FilE statement

disk 33,67
tape 43

retrieving a scratch file 38
rules for nested procedures 57
RUN statement (OCl) 20

sample job stream 4

174

sample statements for compiling and storing source programs
in the object library 74 .

scratch file
changing a permanent file to a scratch file 38
changing a scratch file to a temporary file 38
changing a temporary file to a scratch file 38
split cylinder 72

scratching a file 38,121
SCRATCH statement ($DElET)

control statement summary 122
DATE parameter 124
lABE l parameter 123
PACK parameter 123
parameter summary 123
UNIT parameter 123

secondary initialization 100
SELECT KEY for the SELECT statement 133
SELECT PKY for the SELECT statement 133
SELECT RECORD for the SELECT statement 134
SELECT statement ($COPY)

control statement summary 128
FROM parameter 134
parameter summary 129
SELECT KEY 135
SELECT RECORD 135
TO parameter 135

Index 199

SEQFlD param~ter of MODIFY statement 173
sequence numbei's in MODI FY functions 173
setting external indicators 21
size of DPF programs 74 .
size parameter for the PARTITION statement 52, 76
source librarY

adding entrie$ 171
changing siZe 154
creati ng 154
deleting 155
inserting entries . 171
listing entries 171
location 156
organizati01ll 148
removing entries 171
reorganizing 155
replacing entries 171
reserializing entries 171

SOURCE parameter
AllOCATE statement 152
COMPILEstl\tement 22'

special meaning of cepit!!1 letters, numbers, and special
characters 87

split cylinder files 71-72
SPLIT cylinder files 71-72
SPLIT parameter for the FilE statement 39
starting the loggi'ng device 28
statement descriptions (OOll 9
statement examples (OCl) 80·83
statement identifier 5
statements beginning with -II 6
statements beginning with other than /I .7
stopping the logging device 5
storing and compiling source programs in the object library 73

sample statements 74
substitute data 112
summary of Oel parameters 12-15
summary of OCl statements 9
surface analysis 101, 107
SWITCH statement (OeL) 21
system date 16
system directory 168
system input device 29

changing 29
SYSTEM parameter for the AllOCATE statement 152
system punch device (see PUNCH statement)
System/360-System/370 packs 191

table of OCl statements 10-11
table of parameters 12~ 15
Tape Error Summary program 95
Tape Initialization program 89
tape, magnetic

error logging 95
FilE statement 43
initialization 89
multivolume files 70

telling the system not to halt 31
telling the system to halt 31

200

temporary file 38
changing a scratch file to a temporary file 38
changing a temporary file to a scratch file 38

temporary library entries 151
TO parameter

AllOCATE statement 152
COPY statement 160
COPYPACK statement 128
MODI FY function '173

TRACKS parameter for the FI lE statement 36,66
TRACKS parameter for the REBUilD statement 112
TRANSLATE seven track tape 48
TYPE parameter

U I N statement 100
VOL statement 90

types of directory entries 166
types of library entries 148

UIN statement ($,NIT)
CAP parameter 101
control statement summary 98
ERASE parameter 101
parameter summary 99
TYPE parameter 100
UNIT parameter 100
VERIFY parameter 101

UNASSIGN parameter for the Al T statement 108
unconditional assignment 108
UNIT parameter

A l T statement 107
COMPI lE statement 22
DISPLAY statement 116
FilE statement

disk 34,65
tape 44,70

NEWVTOC statement 184
REBUI lD statement 11,.
REMOVE statement 122
SCRATCH statament 122
UIN statement 100
UPDATE statement 184
VOL statement 90

unit parameter
CAll statement 51
IMAGE statement 25
lOAD statement 19

UPDATE statement 184
using OCl 59

VERIFY parameter
A l T statement 107
UIN statement 101

VOL statement ($INIT)
contrOl statement summary 98
ID parameter 102
PACK parameter 101
parameter summary 99

VOL statement ($TINIT)
control statement summary 90
parameters 90

VTOC (volume table of contents)
LABEL parameter 116
System/3 115-120
System/360-370 183

work area
Disk Copy/Dump program 133
Library Maintenance program 153

WORK parameter
ALLOCATE statement 153
COPYFI LE statement 133
MODI FY statement 173

writing uti I ity control statements 85
coding rules 86
control statements 86
END statement 86

1442 parameter
PUNCH statement 30
READER statement 29

5445 Data I nterchange Utility program 183

Index 201

READER'S COMMENT FORM

IBM System/3 Model 10
Disk System Control Programming
Reference Manual

YOUR COMMENTS, PLEASE .••

GC21-7512-6

Your comments concerning this publication will help us produce better pUblications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. AU comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of pUblications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality .

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

