Systems
Network
Architecture

Format and Protocol
Reference Manual:
Architecture Logic
for LU Type 6.2

"lli=

- Systems
Network
Architecture

Format and Protocol
Reference Manual:
Architecture Logic
for LU Type 6.2

S$C30-3269-2

Third Edition (December 1984)
This publication obsoletes document SC30-3269-1.

Changes are continually made to the information in IBM systems publications. Before using this publica-

tion in connection with the operation of IBM systems, consult your IBM representative to find out which
editions are applicable and current.

It is possible that this material may contain references to, or information about, IBM products (machines
and programs) or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announce such IBM products or services in your country.

Publications are not stocked at the address given below; requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Networking Architecture, Department E96, P.0. Box 12195,
Research Triangle Park, North Carolina 27709, U.S.A. IBM may use or distribute any of the information
you supply in any way it believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1984

ii SNA Format and Protocol Reference Manual for LU Type 6.2

PREFACE

This book is intended for product developers, system programmers, and others who need detailed
information about Systems Network Architecture (SNA) logical unit (LU) type 6.2 in order to
develop or adapt a product or program to function within an SNA network. The book describes the
formats and protocols for LU type 6.2 from a design vieuwpoint.

This book does not describe any specific machines or programs that may implement SNA, nor does
it describe any implementation-specific subsets or deviations from the architectural description
that may appear within any IBM SNA product. These matters, as well as information on SNA prod-
uct installation and system definition, are described in the appropriate publications for the
particular IBM SNA machines or programs to be used.

The following books should be read in conjunction with this one.

PREREQUISITE PUBLICATIONS

® SNA Concepts and Products, GC30-3072—basic information on SNA for those readers wanting
either an overview or a foundation for further study.

® SNA Technical Overview, GC30-3073—additional details on SNA, especially on functions and
control sequences; bridges the gap between the most elementary overview of SNA and the
detailed descriptions of the formats and protocols.

® SNA Transaction Programmer's Refersrce Manual for LU Type 6.2, 6C30-3084—reference informa-
tion un LU tyne 6.2 verbs for programmers writing transaction programs to run on SNA.

RELATED PUBLICATIONS

e SNA Format and Protocol Reference Manual: Architectural Logic, SC30-3112—comprehensive
information on the formats and protocols of SNA nodes.

® SHA Reference Summary, GA27-3136—summary information on SNA formats and sequences.

® SNA—Sessions Between Llogical Units, GC20-1868—reference information on SNA formats and
protocols for LU types other than type 6.2.

e IBM SDLC General Information, GA27-3093—supplementary details of Synchronous Data Link Con-
trol.

Preface iii

iv SNA Format and Protocol Reference Manual for LU Type 6.2

CONTENTS

CHAPTER 1. INTRODUCTION . . . ¢ ¢ ¢ ¢« o ¢ ¢ o s o o o o o &

Use and Organization of This Book C e e e e e e e e e e e
General Concepts . . e e e e s s s s s s e e e e
Definition of an SNA Netuork C e e e s e s e s s e e e e
Nodes P c e s e e e e e e e e s e s e ae e
NAUs and Node Types s e s e e e e s s e s e e e e e
The Path Control Netuwork c e e e e e e e e e e e e e e e
Other Definitions and Notational Conventions e e e e e e e

CHAPTER 2. OVERVIEW OF THE LU c e e e e e e s e s e e e e

Introduction ¢ .t i it it e e e e e e e e e
Concepts and Terms c e e e s e s e e e e e e e e eeee e
Distributed Transaction Processing « « v & « « .
Transaction Programs © s s e e s e s s e s e s s e e e e
Control Operator e e s s e e e e e e s e e e s e e e e e

Resources t e s e s s s s s e s s e s s e s e s e e e s
Protocol Boundaries e e e e s e e e s e e e e s e e e e
Names e o e o s e s e s o s e s e s s e s s s s s e s s
Roles e e e e e e e e e s e e e e ae e
Transaction Program References e e e s e e e e e e e s
LU References c s e s e s e s s e s e e e e s e e e
Mode Names c s v s e e e s e e s e e e s e e e e

Internal Identifiers e e e e e e e e e e e e s e e e e
Conversation Characteristics s e e e s e e e s e e e e e

Send/Receive Protocol e e e e e e e s e e s e e e e
Sender/Receiver Concurrency e e e e e e e e e e s e e
Mapping e e s s s e v s b s s s e s e e s s e e e

Session Allocation e e e e e e e e e e e s e e s e e e s
Session Multiplicity ¢ ¢ ¢ ¢ v v v v v ¢ v o o &
Session Pool e e e e e e e s e e e e e e e e e e e e
Session Selection .. e e s s e e e e e e s e e e e
Session Contention Polarlty e e e e v e e e e e e e e
Session Limits s e e e e e e s e s e e e s e e e e e e

Starting and Ending Sessions e e e s s e e e e e e s e e

Phases .. e e s s s s e e s s e s s e s e s e s e
Session Usage Characterxstlcs e e e e s s s s s e e s e
Session Activation Polarity e s e e s e s e e e e e e e
Session-Level Pacing e e e s s e s s s e e e e s s e s
Profiles e s e s s v 4 e s s s e s e e e s s ae s e

Security C et e e e e s e e e e e e e e e e e e e e e
Error Handling C e e e e e e e e e e e e s e e e e e e e
Kinds of Errors e e e e s e e s s e s s e e s e e e s
Application Errors e

Local Resource Failure C e e e e e e e e e e e e e

Recoverable System Errors e e e e e e e e e e e e
Program Failures e e e e e e e e e e e e e e e e e
Session Failure C e s e e e e e e e e e e e e e e
Conversation Failures e e e e e e e e e s e e e e

LU Failure . . ¢ ¢ ¢ v ¢ v v v o o o o o o o v o o
Program Error Recovery Support Functions C e e e e e e
Confirmation c e e C e e e e e e e e e e e e e
Program Error Indlcatlon e e e e s e e e s s e s
Sync Point e v e e e s e s e s e e e e s e e e e
Abnormal Conversation Deallocation e e e e e e e e
LU Error Recovery Functions--Abnormal Session Deactivation

Base and Optional Function Sets e e e e e e e s e e e e
Application Program Interface Implementations e e e e e
Principal Base Functions et e e e e s e e e e e e e e

Basic Conversations e o b s s e s s e s s s e e s

Mapped Conversations s e e e e e e e e e e e e e e
Principal Optional Functions c ot s e s e e e e e e e e
Mapping e e s e s e e e e s e s e e e e e e e e
Sync Point c e e e e e e . e s e e e s e
Program Initialization Parameters (PIP) e
Performance Options e e e e e e s e e e e e e e

Contents

LI R O A L T R T U S U |

Ry
OCVOVOVVIVIVVVIVIOVOPOPOPOPRPREPRNNNNOCOCRCTTUNINIUIL GG

NNNNNNNNNNNNNNNNNNN?NNNNNNNNNNNNNNNNNN

t
[

NI‘?NN
bt ot et
coC

v

Message Units and their Transformations

Mapped-Conversation Message Units e s s s o o
Basic-Conversation Message Units ¢ s e s s e s
GDS Variables C e e e s e e s e e e e e e
Logical Record s s e e e s s s s s s s e s
Buffer Record c e e e e e e e e e e e e e
Conversation Message-Unit Sequences e e e e e
Conversation Message . . . « « ¢« o« ¢ o o o &
Conversation Exchange c e e e e e e e e e
Session Message Units e e e s e e e e e e
Function Management Headers c e e e e s e
Basic Information Unit e e s e e s e e s s
Session Message-Unit Sequences [N . ..

Mapped-Conversation Message-Unit Transformation
Basic-Conversation Message-Unit Transformation
Data Exchange with other NAUs c o s s e b s
LU-CP Message Units C e e e e e e e e e e
LU-PU Records e e e e e e e e e e e s
External Flow Sequences for the Base Function Set
Notation e
Verbs and Parameters c e e e s
Data Transfer Description ..
Error-Free Flouws e e e e e e e
Allowable Combinations of Sequences
Exception Flow
Error Flous e o s s s

e o

« o e .

LU Structure « e e e

SNA layers e o v s » .
Component Overview . . .
Functional Summary by Function
Example Transaction Program
Message-Unit Transfer
Sending Data e e e e e
Receiving Data . e e
Internal Buffering . . .
Transaction Program Initiation and Terminatio
Invoking a Remote Transaction Program

e o o o

.
.
.
.

s ¢ o e e o s

e« o o e o o o o o o

.
. .
.
.

e e o o e o & o e o & & e o o
e e o e o o o o s o e e e s o o

e o e ¢ o e ¢ o o o

e o o e

.
.
.
.
.
°
.
.
.
.
.
.
.
-
o e o e o

Terminating a Transaction Program
Conversation Allocation and Deallocation . .
Selecting a Session C e e e e e e e s ..
Bidding e e e e e e e e e e e e e e . .
Newly Active Session
Deallocation . . ¢ « v ¢ ¢« v v ¢ o o & . .
Session Activation and Deactivation . . .
Starting a Session . + ¢« v ¢ 0
Initializing Session Limits . . . o
Session Initiation
Session Activation
Session Outage e e e e e e e e e e e . .
Ending a Session e s e s e e e e e e ..
Operator Request e s e s o s s s s . .
Session Shutdouwn c e e e e e s . .
Session Deactivation e s e e e e e . .
Functional Summary by Component e e s e e . .
Presentation Services e e s e e e e . .
Half-Session e e e e e e e e e e e e . .
Resources Manager e o e s e o o s s . .
LU Network Services c s s e s s s a s ..
Functions of Service Transaction Programs . .
Control-Operator Functions e e s e e e e e e
SNA Distribution Services c e e e e e e e
Document Interchange Services e o s s s o &
Optional Functions s o 5 s b s e 5 b s e v e s
Mapping Function « ¢« ¢ v ¢ ¢ ¢ o .
Sync Point Function “ o s s s o s s 8 s s
Syne Point Control e s o s e b s e s bs
Logging v s s 4 s e s s 6t b s s b s e
Resources Manager s e e s s s s s e s s
Protection Managers e o s s s s s s s e

Syne Point Protocol s e e s s e e e e

Commi tment and Back-Out e s s s s s s »
Resynchronization e o s e e s e s e e

Data Structures s e s o e e e e s e s s e e o0

SNA Format and Protocol Reference Manual for LU Type 6.2

io
Initiating the Initial Local Transaction Program

e ¢ 2 e & ¢ & o e o & o o

e v e e

e o e e o & o ¢ e ¢ o o s & o e o o

e ¢ o o o ¢ e o o € e 8 & e e e % e e ¢ ¢ % e e e o e & & 9 o ¢ o & o

o o e e e e o o e s e e & e o s © © s e e e e o o e e ° e o o e o o

e ¢ o o © © e o ¢ & o 6 & e & ¢ e e * e o o 9 ° & © e & o s ° o e o o €

s e o & o o e e ® © e © © ® e o e & 4 & e © ® © ° ¢ e % e e & e e ° e e o &

e o 9 o o e 9 6 ® 8 s e & e e e e e & ® © s e © 8 e e & o6 ° e o o s o

@ o e e & e 6 e ® 9 s e e © 6 e s e ¢ e e e ° & & e & 6 o O ¢ * e € ©° e e s e e e o o o = o o

e @ o o e 2 e e 9 e o e ¢ ¢ ¢ ¢ % e e e ¢ s e © o e s

e o ¢ o & 8 e o e e e ° e o o e o @

e © o o ¢ & 6 o e & s o & o s 8 e s e e e e ° © ° ° e e e e ¢ °© & o e ° I & e e & e & ° ° & © o & e o o & o o o

e e s e © e e © © & € € 3 e 9 6 e e & e e e e ¢ e e & ¢ e e o e s e o e o

e @ o o e © 6 ¢ ¢ e e © s o s e o e © e e s s 3 & s e e e e ¢ o o o

e ¢ e © e e e o ©° o e e © o & ® € o e ® v e © e e s e e & e © O o

e ¢ e o e o o o e e e & & o & s ® e e e 3 e s € o © 6 e o e e & © o e ° s © o e o

e ¢ 9 o o o e e e e o © € o e ® ® e ® & & o ® e e & e e e e e e e e e e s+ e e e & e ® € O & 6 o & & & e ¢ ° o e e e ¢ e e o & & © ° & & & o & e o e

o ¢ s o o o e e o & o o & & © © ® o © e © & 8 © e e e e & e ° e % e ® e e e e e e e 6 0o € e o © o o e e 6 e e * T T s © 9 © e e e o o & & o & & o o

¢ o e & e e © e e 6 6 e & € o o 4 o e & © e o @ e+ & e e e e e e e o o & o o

e ¢ ¢ o @ € & o e & e 8 e e & © o o e e & 8 © 6 o°© o € 9 s e e o 3 & o o

e e o o & e e s e e

e ® o o ® 6 o e ® o e 8 & & & e © e € e e e s & e e e ¢ e e e e s e e o s+ e e 9 e e & S & e & e e ¢ o e & ¢ e o e e ¢ o O o & o

e e o ® o ® @ o & o o o o & ® ® © e ® ® e e & e o © © & e e e e ° 6 e & s e ° e e © e e © € © e o & & s e e o e e e v 6 o ¢ o 9 o & ° 6 e o o o ©° o

e ¢ s o & @ e o o & 9 e & o € ® 9 e @ ® e & & e e © &6 o 6 * ¥ S e * ° I e e e o e © O & e © e e & & & e e e s+ ¥ 9 © ¥ 6 © ¢ ¢ Y © o © & & o & o o o

o ¢ 9 o ® © ® ¢ e & e & € & e e e e ® I o e e 8 © © & & s ¢ e T °© € e o © e e e e O O s e & © & & & e e s o o s e € 9 6. e o e e e & O e o e & o ¢ o

e ® o o % e e e 6 o s ® & e e ® % e e & & o e € e + & e e & e P e € e 6 e e e e & O € © & o & o o & o 6 o ©°06 o ¢ 9 © 6 © ¢ e s ° e ¢ & & & ¢ ¢ ¢ o

e o e © o e e e e @ © ° & 0 o ° & & e o I e e 6.6 ¢ e 9 e © e & & e e o o o

e ¢ 8. ¢ © & & 6 8 e & e e e s e e e & e s o e 6 o 6 6 e o 9 s e e o e o

e o ® o 9 e © e @ @ ® 6 e e e e s & 6 © e e ® e s 6 © * s e © e & e e e e e e e e e © o © e e e & e o o © o o e e e ° e o ¢ e 9 o e e & o & o * o @

e ¢ o & 5 € & & o & 6 ¢ & o s e © e & % e o e e o s & e o O & s e e ° e e e * e & & ° & € O & & & 0 & e & e & 0 ¢ e ¢ e o e & o ° o & o o o e ¢ ° o

e o & o @ 6 o o o s e e e e e e & e e ® & & 8 8 e e 6 & s e e © e © O e e © 9 e e e e & O O° o s 2 O e e e e © ° °© e e ° S & & 6 o & 6 & o & & o e

¢ ¢ o 9 e e e e o e e e & e e e e e e & & 6 9 6 o 6 © O e e € ¢ o e e e I e & e 6 e e & G e e e ¢ e e & & & e e ¢ ¢ e ¢ @ o ° o o & e e e ¢ O o o

2-33
2-33
2-33
2-33
2-34
2-34
2-34
2-34
2-34
2-34
2-34
2-35
2-35
2-35
2-35
2-35
2-36
2-36
2-36
2-36
2-36
2-37
2-39
2-39
2-39
2-39
2-39
2-39
2-39
2-40

LU-Accessed Network Resources c e e e e e e e e e

Processes and Dynamic Resources .. e e

Resource Relationships in a Distrzbuted Transactton
LU Startup and Shutdown C e e s e e e e e e e s

LU Process Creation and Termination C e e e e e e
CP-LU Session Activation C e e e e e e e e s e e e
Control-Operator Transaction Program Initiation ..
Control-Operator Actions C e e e e e e e e e e e e
Running State C e e e e e e e e e e e e e e e e e
Example C e e st e e e s s e e s e e e s e e e e
Protocol Boundary Summary . c e e e .« e e
External Protocol Boundary Verbs and Message Un\ts .

PS-TP Protocol Boundary: Transaction Program Verbs
LNS-PU Protocol Boundary c e e e e e

HS-PC Protocol Boundary C e e e e e e e e e e e
Inter-Component Structures e s e e e e e e e e e e
PS-HS Protocol Boundary e e s e e e e e e e e
PS-RM Protocol Boundary e e e e e e e e e e e
RM-HS Protocol Boundary C e e e e e e e e e e e
RM-LNS Protocol Boundary e e e e e e e e e e e e
LNS-HS Protocol Boundary c s s e s e e s e s e
Component Interactions and Flow Sequences [
Notation C e e e e e e e e e e e e e e e e s e e e

CHAPTER 3. LU RESOURCES MANAGER e e e e e e e e e e

General Description C e e e e e e e e e e e e e e e
Resources Manager Functions C e e e s e e e s e e e e
Component Interactions e e e e s e s e e e e e e e
Resources Manager Data-Base e e e e e s e e e e e e s
Control Blocks Maintained by the Resources Manager .
Control Blocks Accessed by the Resources Manager ..
Establishing a Conversation C e e e e e e e e e e e
Allocating a New Conversation e e e . e e e e e
Obtaining a Session e e e e e s e e e e e e e e e
Immediate Session Processing C e e e e e e e e e e
Attaching a Transaction Program . . e e s e e e s
Races for the Use of a Session e e e e e e e e e e e
Terminating a Conversation e e e e e e s e e e e e e
Activating a New Session . . . v ¢« v ¢« ¢« ¢ o o o o o
Changing the Maximum Session Limit e e e e e e e e e
Session Outage . . v ¢ ¢ ¢« o o v 0 e e . . e e e e
Creation and Termination of Presentation Servxces ..
High-Level Procedures et e e e e e e e e e e e e e
RM . e . . e e e e e e s e e e e e e s
PROCESS_HS_ TO RN RECORD c e e e e e s e e e e e e .
PROCESS_LNS_TO_RM_RECORD + & « v v v o v o o v o o &
PROCESS_PS_TO_RM_RECORD e e e e e e e e e e e
Low-Level Procedures C e e e s e e e e e e e e e e .
ACTIVATE_NEEDED_SESSIONS . v & v v v v o o o o o o »
ACTIVATE_SESSION_RSP_PROC e e e s e e s e e e e s
ALLOCATE_RCB_PROC e e e s e s s e s s e e e s e s e
ATTACH_CHECK . . “ s e e s e s e e s e s e e e e e
ATTACH_LENGTH_| CHECK e o o s s e s s e s e s e e e
ATTACH_PROC e o o s s e s s e s e s s s e s e s e
BID_PROC e s s s s s s s e s o s s s e e s s s e v
BID_RSP_PROC e e o e s s s o 6 o s s s s s e s s s o
BIDDER_FPROC e e s s s e o v s s e s s e s e s s e
BIS_RACE_LOSER « & & o v o o o o v v o o o o o o o«
BIS_REPLY_PROC e s s s e e e s e e s e e e e e e e
BIS_RQ_PROC e e e e e e e e e e e e e e e e e e
COMPLETE_HS_ATTACH e s o s s s e s s e e s e s e s .
CONNECT_RCB_AND_SCB e e e e e e e e e e e e e
CHANGE_SESSIONS_PROC e s e e s e s o s s s e s e s .
CHECK_FOR_BIS_REPLY e e e e e e e e e e e e e
CREATE_RCB e o e s e 4 e s s s s s e s v s s e e s .
CREATE_SCB . e o o o s o s s s s s s e e
CTERM_| DEACTIVATE SESSION PROC e o s 5 s e s s 0w s
DEACTIVATE_FREE_SESSIONS e s v s s o s s s e e e e s
DEACTIVATE_PENDING_SESSIONS e o e e s e s s e s e e
DEQUEUE_WAITING_REQUEST e o s s e o o s e s s s e
FIRST_SPEAKER_PROC s e 6 s s s s e s s e o 6 e s o
FREE_SESSION_PROC © e s o s e s s o s s s s s o s
BET_SESSION_PROC + v « v « o o o o o o o o o o o o «

e ¢ ¢ e s v e e o s s .

L S N I T T}

e o e+ o & &

e e o2 e e 8 ¢ e e o o 3 6 e 6 o € o 9 O & e 6 e e e e ¢ 6 e € 6 °© o & & o e e &

¢ s e o s s e e e & + s e+ e e e 6 s o 9 o

e ¢ s+ s e & e o ¢ s ¢ o s o

e o e e o

e e o e e e © e o e & o & o e 6 e e o e & o

e ¢ o e e e ¢ ¢ ¢ ¢ s e ¢ s s e s & s s

e ¢ 6 & s o o ¢ o o e o .

e ¢ s e o e o s o

¢ o s e e o o & e o ¢ o

e o & ¢ ¢ o o e e o ¢ ¢ o o

s e e o o o o

« e o o

e ¢ 6 © o e 0 6 o & e 9 e o & e ¢ & € & & o o o

¢« e e

e e e e e ¢ e e e s e e 9 e o e ¢ =

¢« e o e e

e o o o e o s e & e ¢ & o o

e e e e

e e & o e ¢ e ¢ o o o s

6 e & e o e o o o o € & o o

e e o ¢ o

« ¢ e o o ¢ o e &

e ¢ ¢ e o & o o

e o e ¢ e s s

© ¢ & o o o o

@ e o6 e ¢ ¢ & e % 9 e e e & e s 6 & O e ° e ¢ o ° e e & € o @

e e e e & o & e ¢ s ¢ 3 e o e e 0 s s 0

o e o ¢ o e o

e ® © ® 9 9 e e 6 e o e e o e o o ¢ o s ° & o & O s e & ¢ e o

e ¢ e e e e o & ¢ o «

s e e s e

.

s e e o e o o

¢ e ¢ & e ¢ e o & 9 6 o e & o

e o o o & © e o e o o © e & ©5 o s e O e o o

e ¢ o e e e * o ¢ o o o & e T &

¢« e o e e o e ¢ e e & o o

e e e o o e ¢ & o

€ o o © ¢ o e o & ¢ © % e o ¢ & % ¢ e o s o & ¢ o O e ¢ ¢ o o 9

¢ & e o 4 o & € e ¢ & 6 e ¢ o o & o ¢ ¢ & v

e e ¢ e o

e e e s o

. e

¢ o e & o 0 e e

e ¢ ¢ o o e & ¢ o o «

¢ o e & o © 6 € o s o s o e o

. e ¢ o e o e e o & e o+ e e e e e o o & =

e ¢ s e o o e

o

e o & & o © & o o 6 e © 9 o e e ¢ s €6 & e ¢ o s 5 ¢ 0 & & 6 s ¢ © o e

s e e e . ¢ s e e & e e & & ¢ e o & ¢ o s v e e e e v o

¢« o s s

L I

e 6 & e © e e & o ¢ % e o e 9 e e s+ ¢ e e o e & 9 o e € ¢ o o & o

e s s s e ¢ o e e o 35 o e o o

¢« e e .
“ e e e
© s s .
e e e .
« s e
“ s e .
.« s e .
.« e s s
“ e e .
e e e
e s s .
« s e o
. s e
e e s .
Y
o e e e
o e s .
« e s
e o+
« s s .
e e s .
v e s .

« s e
* s s »
s e e e
e s e e
o e e .
© e e e
o e s s
« o s e
e e s e
. e o e
o o o
v e e .
« o e 2
v e s e
. . .
. .« .
.

.

@ e o6 e © e ¢ & 8 e e © 8 & & e + I % & 6 s e s ¢ e o o o & e o 9

e & o 6 e e e & e e ¢ 0 ¢ & e e e ¥ & ¢ & & 6 ¢ s ¢ © ¢ & o o
¢ o e e e e @ & o e e ¢ & ¢ ¢ o © ° e 9 6 & 0 & € o ¢ & ¢ o

¢ ¢ e o & s s 6 o s & o s &

Contents

e ¢ & e e o o & ¢ s o s o

« e o o o

e e ¢ o e o & + e o o o

e 6 ® 6 9 e e & © e e e & e e 3 e 6 e € o & o & 9 e & & o o ¢ © € © o

2-40
2-40
2-43
2-43
2-43
2-43
2-463
2-43
2-64
2-45
2~-46
2-46
2-46
2-46
2-46
2-46
2-46
2-46
2-47
2-47
2-67
2-47

v
[£
- ~

[[
NMOVERLPLPUHWUNDPDMN M

Gl W W
Fl ol oW o
zl—'t—'l [1

PS_CREATION_PROC

UNSUCCESSFUL_SESSION_ACTIVATION
Finite-State Machines .

RM_ACTIVATE_SESSION_PROC
RM_DEACTIVATE_SESSION_PROC . . . e
RM_PROTOCOL_ERROR . . . «
RTR_LRQ_PROC v v v v v v v v v & ...
RTR_RSP_PROC . . e e e
SEND_ACTIVATE_SESSION
SEND_BIS v » v ¢ o o ¢ o o o « & . e
SEND_BIS_REPLY . v v v v o «
SEND_BIS_RQ . e e e ...
SEND_DEACTIVATE_SESSION
SESSION_ACTIVATED_ALLOCATION
SESSION_ACTIVATED_PROC
SESSION_ACTIVATION_POLARITY
SESSION_DEACTIVATED_PROC
SESSION_DEACTIVATION_POLARITY
SET_RCB_AND_SCB_FIELDS
SHOULD_SEND_BIS
SUCCESSFUL_SESSION_ACTIVATION . ..
TEST_FOR_FREE_FSP_SESSION
UNBIND_PROTOCOL_ERROR_PROC

@ o e o & e e e e & o & & e ¢ & & e e e ¢ e e e ® 6 & & e & & e e & & o e e o

@ ¢ e e e e o o e e & e & & ¢ 6 & e e & ¢ + ¢ 9 e e 0 o e e e & o o o e e v e

#FSM_SCB_STATUS . . . » v . . .
FSM_SCB_STATUS_BIDDER " e e e e
FSM_SCB_STATUS_FSP “ e o s e o e
#FSM_BIS e e e e e e e e e e e
FSM_BIS_BIDDER e o o o o o o o o
FSM_BIS_FSP e s s s o s e s s s
#FSM_RCB_STATUS . e o o o o .
FSM_RCB_ STATUS BIDDER « o s o e .
FSM_RCB_STATUS_FSP . « « « o + . .
Local Data Structures e s e e e s . .
LU_NAME e e e e e e e e e e e . .
MODE_NAME e e e e e e e e
HS_ID v v v v v e e e e e e e C e
RCBLID v v v v v o v o o v o w ...
TCBLID v v v e e e e e e e e . ..
SENSE_CODE * o.0 o s o v s o . « o o

CHAPTER 4. LU NETWORK SERVICES e e e e s e

General Description e e s e e e e e e e
Overview of CP-LU Session Activation ..
Overview of CP-LU Session Deactivation .
Overview of LU-LU Session Initiation . .
Overview of LU-LU Session Termination .
Session Outage and Session Reinitiation

Network Context for Session Initiation and Term

IV and TLU .

OLU and DLU e o o o s o o o o s o v e s s
PLU and SLU e s s s s s s s e s b s s e s
RU Parameters * s s s s s s s s s e s e s
Network Name . . C e e e e e e e s
Fully Qualified Network Name “ e e e e e
Uninterpreted Name s e e e e e e e e e e
User Request Correlation c e e e e e e e s
Mode Name e e s e e e e e e e e e e e e s
Session Key and Session Key Content . e s
Specification of RU Parameters c e e e e e
Implementation-Dependent Parameters . ..
Installation-Specified Parameters . e e e
Session-Services RU's . e e v e e e e e
INITIATE-SELF (INIT- SELF) c s s e o s s
CONTROL INITIATE (CINIT) e o s e o s s s s
RSP(CINIT) e e e e * o o o o o s o s e
SESSION STARTED (SESSST) e e o s s s s s e
BIND FAILURE (BINDF) e o o o s s o s s o
TERMINATE-SELF (TERM-SELF) e s e e s e e
CONTROL TERMINATE (CTERM) “ e e e e e e
CLEAN UP SESSION (CLEANUP) e v e o6 o s »
SESSION ENDED (SESSEND) e« v s o o o s s o
UNBIND FAILURE (UNBINDF) “ e e s s e o o o
NOTIFY e o o o o o o s o o s e e . . .

viii SNA Format and Protocol Reference Manual for LU

@ o & e o o o e e e e e o o e e e & & o & o o o e o

© & e e e e e e e e e e e e e e & e e & e & o + e e s s+ e o v o

¢ ¢ e e s e o e 6 e e e e e e & & 9 e e e e & & & ¢ ¢ o e o 0 e & & o o & e o
e o o o e o o s o

@ ¢ o e e e e o o e & 6 e e e ¢ & e 6 6 e e e e ° e & e e ° o & e s e e e ¢ e

e ¢ e ¢ e o @

e e e
e e e e
e e e
e e e
e e e .
e e e .
ination
e e e
e e e
e e e
e e e e
e e e .
« e e
e e e
e e e
e e e .
e e e
e e e
e e e .
e e e
e e e
. e e .
e e e .
e e e
e e e
e e e .
e e s .
e e e
e e
e v e .
e e e .
e e o e

Type 6.2

e 6 e e e @ & 6 e & e & & 9 & e & e 6 e e e e e e o ¢ & ® e o & e o+ o o

e e e o o o

e o o s e »

e ® 9 e e ¢ e & o & & 9 e o € o o o

¢ e o s o o

e ¢ * o e e o e e o ¢ o 9 e o

¢ o 9 o e e o e ¢

¢ e e o e e o e o e & e 6 & 9 & ¢ & e * e e e e e e e e & e o o & 6 ¢ v o

e s o v o o

e e ¢ e e e e e o e s e o

e o 9 9 e & & & 9 ¢ e e

¢ o 6 e 6 o ¢ e e e e e e & & o e & & e e e o e s o @

e ¢ o o o s e &

o e e o

e ¢ e 9 9 e+ e e e o ¢ o o

¢ e e © o o e e e e o e o o e

.

4 ¢ o e o e e e e e e ° & s 6 & e e + + e ¢ © o e e & e 9 e & e & 0 9 e o e

o o o o e s e e & o & & e & & ¢ 9 e ¢ o e e o o o o

o e 9 e e o

¢ e o e e o e e & e o e & o ¢ & 6 e & ¢ 9 ¢ e & e o & e & o o e e ° 0

¢ s e o

e o e o e+ e e e o s e o o

o ¢ o e & ¢ e o o ° o e ¢ & ¢ o o o @

¢ e e & o o e & e o e o e ° & o o & & e e o s e e e o o

¢ o e e o e & e o o o

e e ¢ e e e o o o

¢ o e o e e o e e s

o o e o e

e e ¢ o e e

® o ¢ e o ©c e o e s e e e e ¢ e o ¢ o @

e ¢ o o o o o

e ¢ ¢ o e o o o

« e e e

¢ ¢ 6 e e e e e e o o e e e

e e e e o o @

e e ¢ o o e e e 6 e & e -6 o ¢ e & o o e e e & o o e 6 o e e ° o o o ¢

¢ o o o e e o o 9 e e o o o &

e o e e o & o

e o o o e o o

S 6 e & e o o o & 4 e ¢ e 9 e e e e e

@ & & & o s e s e e e e e o e e e s v 0 @ 4 e e e e e o s & e e s o e ¢ o e e .

e o o o o o o

. .

¢ s o e e ¢ o e o

e ® e s e o & e e e o e & o o o e o & s e e e o ¢ ¢ o o o

€ o o o & o e o e o e ¢ o 2 e ¢ e e e @

e o & o o o o ¢

e 6 e e e e e s e e & e e e & e ¢ s ¢ & & ¢ o e € o ¢ o o ¢ e o e ¢ e o

e e o e o o e e e e o e & 2 e e e e e o o

¢« o+ o e o o e

e e ¢ e e & e o e e e e & e & o e e o e e e e @

e o ¢ ¢ o o o e s e e e e o e e ¢ @ e * e e o e & e o ¢ e o o o

o e o ¢ o o e e e ¢ @

¢ e e o o e o o & o ¢ o o o & o o ¢ ® o 6 e e e e o 3 e 0 & e e e © & o ¢ & e e ¢ & € o ¢ e o ¢ & ¢ 0 ¢ & &

e e ¢ e o o ¢ e o e o

o ¢ ¢ e e e e e e e e e & o o o ¢ e o s & © & e & s & 6 o 6 ¢ 4 e e o ¢ e o

e e o e o e & e ¢ e o e ¢ e s o @

o ¢ o e o o ¢ e s o o

¢« e o

® ¢ o s e e o o e e e o 0 o o o e o e e e,

.

e ¢ e o o ¢ e e o e e o o ¢ v e e 9 e o e e e e o e o o o

e e ¢ o & ¢ 3 e e e & o @ & o & o o o

¢ o o ¢ ¢ e+ e ¢ & e & e o & o ¢ o o s o+ o ¢ =

e o o o e ¢ e o e e e e ¢ o o o

¢ ¢ e o o e o o o e o

.

e ¢ o e o o o o

¢ ¢ o 6 e ¢ s e o s o

@ ¢ 6 e e e e e o e e e o e e & & & e e e © o & & & ¢ o o ¢ e ¢ o ¢ o

e o o e e e s e o o e @ ¢ e o o

e e o e o e

e 8 s e e ¢ e o

| L U

]
HMOVVNOCUVVTUVUINVUVIUPRLLPLPPLPPUHUEDN -

lb#bbbbbb&b&f&bbbb&k#bb# »

[=

@J-\k-&‘f‘-l-\-b-bl-‘
—
n

4-15
4-17
4-17
4-19
4-19
4-25
4-28
4-29
4-31
4-31
4-32
4-34
4-35
4-41
4-46
4-47

.

Session-Control RU's

.

.

ACTIVATE LOGICAL UNIT (ACTLU)

RSP(ACTLU)

e o o+ s s o
o o

. .

.

.

DEACTIVATE LOGICAL UNIT (DACTLU)
BIND SESSION (BIND)

RSP(BIND)

UNBIND SESSION (UNBIND)
Maintenance-Services RU's

. e

ECHO TEST (ECHOTEST)

.

REQUEST ECHO TEST (REQECHO)
LNS Protocol Boundaries

LNS Flows

* s s s .

.

.

Flows for a Peripheral LU
Flows for a Subarea LU

.

.

Introduction to Formal Description

High-Level Procedures

N Qoo
11§%
TS
e
e o .
¢ o o .
Ll
Ll
Ll
Ll
Ll
¢ o s o
Ll
Ll
Ll
Ll
Ll
Ll
Ll
Ll
Ll
Ll
il
Ll
Ll
Ll
Sl
Ll
Ll
Ll
Ll
L
A
:
=
EWNZ
R_H_N
EEZ
+O0O0O
XX o
.F_F—F
000
oo o
000
(SRR E]
oW ow
R_R_nK
nuvn
nunn
wowow
(SRS NE]
nooo
ZXxxo
- 0 oo

Lowu-Level Procedures (in alphabetical order)

4-51

- 0NM O
pippne
TErIEFTS
« o e o
Y
« e e s e
o e s o e
s e e s e
o e e s e
“ o e o
o o e o o
o s s s
o e e e e
“ o o s e
o s e e e
o s o o e
o s e s e
e e s s
e e s e
“ s s s e
o s e s
e e e e
s e e e
« e s e e
e e e e e
“ e e e e
o o e s e
o e s s
o e e s e
o e e o
e e e
[L]
o o w
z
. e e |
o0
DR YR
[=Y "
DN TV |
w o
[«4 [SRT]
o X uw
X @wwn
xxo | |
WOk
2o HO
ZXWwE
ow I+ |
oW
VWi | 2Z
V=g Zw
Ww<<k=OoOun
O =0 -
10 1V o
F_nun.na pra
- v w<
<Sxxv |
> 1 1 1o
HoooQ -
-ZZZH
QHHMHD
< Mmoo

4-57
4-58
4-59
4-60
4-60
4-61
4-61
G-62
4-63
4-63
4-64

. .

BUILD_AND_SEND_ACTLU_RSP_NEG

BUILD_AND_SEND_ACT_SESS_RSP_POS

. .

BUILD_AND_SEND_ACTLU_RSP_POS

.

.

BUILD_AND_SEND_BIND_RQ

BUILD_AND_SEND_BIND_RSP_NEG

.

.

BUILD_AND_SEND_BIND_RSP_POS

o
I_awn
gL
12

T b=
[~ W=l
< Z O
= <L
_B_C_D
[=Ra]
ZZZ
W
_S_S_S
229
_A_A_A
999
ol =]
222
@ mQ

BUILD_AND_SEND_DEACTIVATE_SESS

.

BUILD_AND_SEND_HIER_RESET_RSP

oM
PEYEY
TS TS
Ce e
Ce e
Ce e
Ce e
Cee e
Cee e
Cee e
Ce e
* o 0 » o
Ce e
Ce e
Ce e
Ce e
Cee e
Ce e
Ce e
ce e
Cee e
Ce e
Ce e
Ce e
Ce e
Ce e
Ce e
Ce e
Ce e
Ce e
Cee e
o . -
(&)
} oo e w
[LE 4
oLz
- w O
0N 1Z0
oz
I 1 1000
ot LR
-)
ZZONOY
_TJI_R_P_P
oo
ZZZZZ
[T Ty Tr Y]
_S_S_S_S_S
oooop
ZZZZZ
~AﬁA_A_A_A
anoonn
- d) o
o
22322
@ O@o@oo

4-68
4-68
4-69
4-69
4-70
4-70
4-71
4-71
4-72
4-72
4-74
4-74
4-75
4-76
4-77
4-78
4%-78

BUILD_AND_SEND_PC_HS_DISCONNECT

BUILD_AND_SEND_SESS_ACTIVATED

.

.

BUILD_AND_SEND_SESS_DEACTIVATED

.

_SESSEND_RQ

BUILD_AND_SEND_SESSEND_R

BUILD_AND_SEND_SESSST_R

.

.

.

.

]

Q
ND_RQ

BUILD_AND_SEND_TERM_R

.

BUILD_AND_SEND_UNBIND_RSP

BUILD_AND_SEND_UNBI

.

Q

BUILD_AND_SEND_UNBINDF_R

CINIT_RQ_STATE_ERROR

.

CLEANUP_LU_LU_SESSION

o o

INITIALIZE_LULU_CB_ACT_SESS

.

INITIALIZE_LULU_CB_BIND

INITIALIZE_LULU_CB_CINIT

.

LU_MODE_SESSION_LIMIT_EXCEEDED

.

-

* Z
o
[
(23

[2]

i

[
9w
= d
1<
=-2>
X
O -
[N S]
_A_A
w v
(2723
w o
QO
10 O
[« 34
o o

OO m -G INO
TP R
LS 2 R~ S - -
e o s e o o o o
e o s s s o o
e o s e e s s e
e o s s s o s o
e e s s s s s e
e s e e e s o o
“ s s s e s s o
o e e o o s o
s e s e 0 e s e
o o o e o s o .
« e s e s e s e
o s 4 s s e s .
e e s s s e o
s s o o s o e e
o e s s s s e e
P
e e s s s s s e
e s s o o o s o
LI I I D 2 e e
PR R T S P S
e s s e s s s
e e s s e o o e
e e e o o & o e
o s s e s e s e
e o s s s 4 s e
o s s e s s s e
e s 4 e e e s e
L
s e s e s s e e
e s s e o o s @
PR S R RPN
e e s e e e o2
O
o o o o o o o P
[,
s e o o e s e tD
w
. . . ;]
& ok
o 00 |0
xoVoxolo 1>
jxx 13 1D M
D 1 I-ZE A
—“ooH<<K O
ZZZ W Q<
Qb W
AJanJrerrJnJD
DVWVYONYY
NDYLOBWLVBVOWN
IR R Y]
[SRURTRTRTRERERT
CO0OO0OO00COO0
[« s Qe eIy P e
aoooooo

4-86
. 4-86

.

.

.

PROCESS_ECHOTEST_RQ

PROCESS_HIERARCHICAL_RESET

NI oo
29009
TS
o o s e o
o o o e o
o s s s e
o e e s e
o o o s
¢ o e s 0
o e e s o
o e s s .
o e e e e
PRI
o & o s 0
o e e s
e o e e e
o e e s e
o s e s o
o s e s e
o e o o o
e o e s o
o e e s e
o s e e e
o s s e e
PR
o o o o
PP
e e e e
e s s e
o e e e e
e e e s e
s e e e e
PR SN
o e s s s
. PN
Y "
o v
a %
[T - o
[~ Qo T N S)
Quﬂ R_R_E
HSYYW
I b O
= O
(el el =g~
ZZOO W
TJTaN_N_P_
[RN NN
nuyvmwyvuvm
W ud b
COLOLVOLY
COOCO00
oo o
ooooo

LD ¢

Contents

X

PROCESS_REQECHO_RSP . .

PROCESS_SESSION_ROUTE INOP . . .
PROCESS_TERM_SELF_RSP « o o v @
PROCESS_UNBIND_RQ c e s s e e
PROCESS_UNBIND_RSP e o o o o'
Finite-State Machines e e e e e e
FSM_STATUS « v v o v v o v v o &
Local Data Structures e e e e e e
LOCAL e e s e e e s e e e e e
ERROR_TYPE * o 6 o o s o s s s &
SESSION_TYPE e s s o s s s s v e

CHAPTER 5.0.

General Description
PS Component Functions ..
TP: e o o s o o o . .
PS.INITIALIZE:
PS.VERB_ROUTER: . . .
PS.MC, PS.SPS, ..., PS.COPR
PS.CONV: e e e e .

Data Base Structure .

¢ e e e o

Beooov o

.nocoqc

Initialization and Termlnat1on (PS.INITIALIZE)

Verb Processing (PS.VERB_ROUTER)
WAIT Verb Processing e e e e s
GET_TYPE Verb Processing

High-level Procedures c v e e e s
PS . s o e o o 6 6 o s s o
PS_. INITIALIZE . > o s o
RECEIVE_PIP_FIELD_ FRON HS . o .
PS_ATTACH_CHECK e e e e e e
ATTACH_ERROR_PROC e s s o o o
PS_ VERB ROUTER . “ e e o
DEALLOCATION_! CLEANUP PROC . . .
WAIT_PROC ¢ o o o s o 8 o o o &

Low-level Procedures c e e e e e
PS_PROTOCOL_ERROR . e e s s
INITIALIZE_ ATTACHED RCB e s o
TEST FOR_RESOURCE POSTED o o o o

Undefined Protocol Machines . e e
UPM_EXECUTE e e e e e e e
UPM_ATTACH_LOG « s s o s s o s
UPM_RETURN_PROCESSING > o s o o

Local Data Structures v e e e e
PS_PROCESS_DATA e e e e e e
PIP_FIELD « o o o o o o s o
RETURN_CODE e o e o s o s o s @
PIP_LIST & v v v v v v v v e n
LU_ID e e e e e e e e e
TCB_LIST_PTR + v v v o v v o v«
RCB_LIST_PTR + v v o v v v v « «
LUCB_LIST_PTR e e e e e e e
SENSE_DATA “ o o o s 6 o s o o o

CHAPTER 5.1.

General Description o o s o o o
PS.CONV Functions e e e e e
Component Interactions
PS.CONV Data-Base Structure . .

LU Control Block (LUCB) and Associate

Transaction Control Block (TCB)
PS_PROCESS_DATA . .
Resource Control Block (RCB)
Verb Parameters c e e e e e
PS-RM Records « v s s e e e s
PS-HS Records N
Tracking Logical Record Length
Maintaining and Checking the Basi
Verb Processing c e e e e e
Verb Checking .

e e e e e B e e e s

ALLOCATE . v v v v o o v v &
POST_ON_RECEIPT
REQUEST_TO_SEND

SNA Format and Protocol Reference Manual

OVERVIEW OF PRESENTATION

.« .
o o
. .
.- .
* .
. .
. .
« .
. .

.
. .

e o s o o o o

o e e e

. .
. .
. .
. .
.« .
.« .
. .
. .
. .
. .
. .
(Y
. .
.« .
. .
-,
. .
« .
° .
. .
. .
. .
.« .
.« .
. .
. .
. .

e o e o

1

e e+ e e
e o o o
e o o o
« o s
e » o .
. e s .
e o o o
L
o o o o
e s s .
« s s .

SERVICES

.
.
.
. .
.
.
.

.

¢« e e e e e e e

.
« e e e
.

B .
.« . .
e o o o
« e+ s
« e s .
« o o .
« s v .
* e s e
e s o .
« o s .
s e o .

. s .
e s s .
* e o .
« s o e
¢« s e .
« o s e
« o e .
s s e o
* s e .
e o s
c s e .
s s s e
e o o o
e o o
. e s .
“ s e .
« e o .

d Lists .
tion St
C s s s e e

LU Type

.« .
o .
. .
. .
[
. .
. .
.« .
° .
.- .
. .

.
o« .
. .
. .
. .
. .
. .
. .
. .

.
Y
. .
. .
. .
Y
. .
.
. .
. .
. .
. .
.« .
. .

.
Y
. .
. .
. .
.
. .
. .
o .
. .
. .
. .
o« .
.« .
. .
. .
. .

6.2

e e o s e e o o

e e o o 4 e e e ¢ e o o

* e e e

¢ o e 9 e e e e o & o

e e ¢ e o o e e e e o o

PRESENTATION SERVICES--CONVERSATION VERBS

e e ¢ ¢ o o s o

¢ o o o o ke o o o

D Y

e ¢ ¢ e e e s ¢ o e e e e e

e ¢ o e e o o o

e e e o

e e o e e o o e 9 o o o

¢« o e o o

s e o ¢ e e ¢ e o o

e e e e e e o s e

e e e o o

e ¢ ¢ e e e e e s e e+ e+ e e * & e e e ¢ o & ¢ o e o o

¢ e e e e

e o e o o o e o 0 s o o

e e s o o

L)

* e e e e

e e s e o o«

e s e e e

e e e e e e e & o e e o e ¢ o s e+ e & ¢ o o o

¢ o o & o o 4 e 9 e e & o o e o o o

s e o e e o o

e o o o e e e o o e e v e e o e e e o e ¢ o & e e o o s o . e e e o o e s e s e e o e s e e s & o

o e

¢ o ¢ e s v e e o o e

s e o e s o

e o o ¢ ¢ o & o+ e e e+ .

e & ¢ & o s 8 o s e 4 e e e o

¢ e e e

e o e o e e o o e e e o e e o o o o

¢ o o e ¢ e o & o o o

e ¢ & o e o e o & s & e o & e e o s s e ¢ o o

e e ¢ e s e o o o s o

e ¢ o o ¢ ¢ e e e+ e e o e e e e o o

* e s & s v s e e e o

e o e e e o & s+ e e e o o ® 9 e+ e .

e ¢ e e e e o e

e e o s e o o

e e o o o

¢ o e o o ¢ e o e e e o

¢« e o o o e ¢ o e ¢ o e e e e o

¢ o o e e e e e e e e e o o e e e ° e o

¢« o o e « o o o o

e o o o o o ¢ e e o o o

e s e e e e o

e ¢ o o e e e e & 0 e e e + e 0 e e o s o e s e .

e ¢ o o o o e ¢ o ® o & o e T e e o e s 9 e s o e o

¢ o o e o o o e o

e o e e o o o

« e o e

e o e e . o 9 e o e o o o e @ o o o e+ e e e e e & & & 9 s e o o & ¢ e e 0 o

@ o o & e e o e e e e o e o e o e o

e ¢ e e o e e o

e e e e v e e o ¢ e e e o o e e o e o ¢ & e e e e e ¢ ¢ o o e o

¢ ¢ o ¢ & o o e e v e e s e ¢ ¢ o o

« e e e

¢ o ¢ 9 e e e e e e o o s e o e s o v .

e e o

« o e o o o

e 4 9 e & o ¢ e & ¢ o o e & o o o o

® e e e o e e e e+ o

e o e o s+ o o 2 e o o

.

e e e o o &

* e s e e. e e e o e o

¢ o e e e ¢ e e e e e o

e ¢ o e o s e o e o

.

e e e e o o o o

® o e o ¢ o e s e e * e e o o o & o

¢ e ¢ ¢ ¢ ¢ e o e e e @ ¢ ¢ o e e e e e o a2 o

e e e e ¢ e o e e e s o & o

e e o o o o o

e o & o o o o e o * e o e s o s o @

® e e ¢ e o e e e e e s s e 0 s & s ¢ e * € & e ¢ e ¢ o o e ¢ o & 6 e o o e e o

e o e o e e s s s o

e ¢ e o o o o e o 9 e e ¢ o e e o o

e e o o o s s e e e e e o e © ¢ o o e ¢ o o o 9 e o e o e

e ¢ o e e o o e + e e o o o e o

* o e e .

¢ e o e o o o e e e e & ¢ o & ¢ o ¢

e e o o e e s o

WMNWWWWWWU‘UWWWWW?‘I? [

DA

bbab&f#&\ff.{a
VOOV VOOV IOOOR
VOOV~ OOC V0

.
o
]
b

.
1

. .
[N T B B |

U

. D)
| T O |

UV OUWN N
ooco0oooocoo ? (- -N- - NN -]

OOOOOOOOOOO?OOOOOOOOOO'

L

. D
LI D D O U B |

1 i

.

D
1

.
1

]
NN NN NN DO N bt et bt bt bt ot ot ot b et et ot

Ui n
Nt bt et e - QO O0OO VOO NOTOVTLPNOONPUIUIEL O P G e et bt et b e s

.
—
1
—

o e e o o
LU U T T A B |

e« o o o
f 11t

Bt Gt ot b Pt ek foud (et G Gt Pt Gt funk Puot Gt (et ped Pt
1
NNV L P GG

SEND_ERROR c e e e

Protocol Errors
Conversation Failures . ..
High-Level Procedures c e e e
PS_CONV e o o o o o s e o e
ALLOCATE_PROC e s e e e e
CONFIRM_PROC . . » . « . . .
CONFIRMED_PROC e o s s s s &
DEALLOCATE_PROC e e o s o o
FLUSH_PROC . N e o o o
GET_ATTRIBUTES_ PROC « o s e
POST_ON_RECEIPT_PROC
PREPARE_TO_RECEIVE_PROC ..
RECEIVE_AND_WAIT_PROC . . .
REQUEST_TO_SEND_PROC
SEND_DATA_FROC " o e o &
SEND_ERROR_PROC e e
TEST_PROC e e e e e

Low-Level Procedures e e e e e
COMPLETE_CONFIRM_PROC ...
COMPLETE_DEALLOCATE_ABEND_PROC
CONVERSATION_FAILURE_PROC .
DEALLOCATE_ABEND_PROC “ o o
DEALLOCATE_CONFIRM_PROC .
DEALLOCATE_FLUSH_PROC o o o
DEQUEUE_FMH7_PROC « o o s o
GET_END_CHAIN_FROM_HS ...
OBTAIN_SESSION_PROC e
PERFORM_RECEIVE_PROCESSING
POST_AMD_WAIT_PROC
PREPARE_TO_RECEIVE_CONFIRM_
PREPARE_TO_RECEIVE_FLUSH_PROC
PROCESS_DATA_PROC P
PROCESS_FMH7_PROC o s o o
PROCESS_RM_OR_HS_TO_PS_| RECORDS
RCB_ALLOCATED_PROC
RECEIVE_DATA_PROCESSING .
RECEIViI_RM_OR_HS_TO_PS_RECORD
SEND_DATA_BUFFER_MANAGEMENT
SEND_DATA_TO_HS_PROC o o o ®
SEND_ ERROR DONE_PROC . . .
SEND_ERROR_IN_ RECEIVE STATE
SEND_ERROR_IN_SEND_STATE .
SEND_ERROR_TO_HS_PROC . o
SET_ FNH7 RC s = o o o o

.

TEST_FOR_POST_ SATISFIED
NAIT_FOR_CONFIRMED_PROC
WAIT_FOR_RM_REPLY e .
WAIT_FOR_RSP_TO_RQ_TO_SEND_|
WAIT_FOR_SEND_ERROR_DONE_PROC
Finite-State Machines .
FSM_CONVERSATION . s o
FSM_ERROR_OR_FAILURE .
FSM_POST e o o » o o

.

.
.
¢« ¢ o e e

Local Data Structures
TEST v e e e e e e
CHAPTER 5.2. PRESENTATION
General Description .. s .
PS.MC Functions e e e e e .
Component Interactions . . .
PS.MC Data Base Structure . o
Transaction Control Block (TCB)
LU Control Block (LUCB) ..

PROC

e ¢ 9 e ¢ o o o

e o e e o

.

PROC

D)

@ ¢ s e e e e e+ e e e e & e e o e e & 0 e & o

o o e o

e e e o e o

e e e e o o

SERVICES-

e e+ o o

Transaction Program Control Block

Resource Control Block (RCB)

Conversation Data Stream Formatting

Construction of GDS Variables

GDS Variables with Multiple Logical Records

FM Header Data c e e e e e

Examples of Mapped Conversation Verb Processing

.

Establishing a Mapped Conversation

Terminating a Mapped Conversation

e ¢ e ¢ o s s e o & .

« e e o o e o

« o o e o

MAPPED CONVERSATION

« e o e o

e e 6 & e e o ¢ e e ¢ e e @

e o o o e e e o

e ¢ e o e & e e + e e o & & 0 e o o

e ¢ e o o & o

(TP

.

D I T)

e o e e o e e o e

e e o e e e e e o
¢« .

.
e o o & e * o o e o

o o
. .
. .
. .
. .
. .
.

. .
.« .
. .
. .
. .
.« .
- o
.« .
. .
D
.

. .
.« .
. .
. .
. .
. .
o o
.« .
.« .
. .
. .
. .
. .
. .

B

¢ 0 we o o o o o

. . n. « o e o o

. .

« e e e .

e e e e e s e s e o

* e o e o

o e e e e e

¢ ¢ o o e o e e o

e e o o ¢ o

e ¢ o e e o e s 6 e o o s o

¢ e o e e o

¢ o e o e o e o o o

« e s e .

e e s e o e o

e ¢ e e e e o e o

e o o e o o e o e o

e e e v e o

e e o o o e o

e ¢ e o 4 e o e & s e 5 e e 0

¢ e e e ¢ o o o o e e e e o o

¢ o ¢ e e e e s e s e s o

e ¢ e s .

e o o e e o o o e e e & o o

e ¢ e e e o e e o o o

e ¢ o o ¢ o o

e e e o o e e o

e o e ¢ o e e e e o o

e e e e e o o

e o o o o o o

e o o ¢ o o o ¢« e o o o

e o e o e o o o o

D R)

e e o e e o o o e e o

VERBS

e & e o o o ¢ e o o e s 9 e o

e o & o o e o s e o e o o

e e o o o ¢ e o o e o o ¢ o

“ e e e e e o

¢ s e e s e e s e o

« e e e

¢ e e o ¢ e o o o o

e o o o ¢ o o

e e o e o e e e o & o o e o o

@ e e e 6 e o e e+ 9 e e e e ® e e e & 6 o 9 & e & & s e e o e ¢ o

e e o e o e e o

¢ ¢ e e e o e e e o o o

e e e o e s e e o

L I I e I R)

« o e e .

« v e e o

e ¢ e & e e o o e o o o

* e o s s o o

e e o ¢ e o e e s e e e o o o

e o o + e o e o

e ¢ e e o o o

¢ e e o 0

o« e e e

. e ¢ o o

® e e & e e 9 e e o o+ e e o .

e e ¢ e & s s e v e T e o e e

e ¢ e s & o s o ¢ s o e o

e & o o 4 e e o e o

e o o o ¢ o o

¢ e o e ¢ o s o e e s & e o o

e o o e e e e 0 o e 9 e . e e e e e o e o

e e e e e s o s e e .

. € ¢ 6 e e o o e e e o e e e o e ¢ o o o

e e o ¢ o 6 o o e o e o o

e ¢ o ¢ o e @ s e e & o e e & e ¢ o 0 e »

e ¢ e o e o o 0 e e e & o s e o

e ¢ ¢ o e e & & o o o o

e o o e ¢ & o e ¢ o o o o s =

e e o e & s+ e ¢ e o s e o e e s e s s o

¢ o e o o

.

e o o e e o

e ¢ o o o o e o o o o o o

e e o e ¢ & o o e e s o e ¢ o

e o o o e e e s e+ e e e+ e+ o e e e & & o e & ¢ ¢ s o o o

e s e o & o s o o

e ¢ e ¢ o o e s e e o s e s o o

® ¢ & e ¢ o o e e s ¢ s e o .

e e e e e s & o s e e T e e s e .

¢ e e e e e e e e e e & e & s s e & & & o e o

e o s o

e e o ¢ 4 o e s e e e s o o o

e ¢ e o s e s+ e ¢ e & s e e e s e e o & o

o o s & e o e e o e o o e ¢ e e ¢ e o o

¢« e e o e o

e o o & o o o o

e o e ¢ 4 o e & o e e o e o o

e ¢ 4 e e o e o s o o

e e e e e s e e

® e o e e o o e e e e e e & e o

* o & & o e e o e & 4 e o e o

e e o o s o e o o e o ¢ e o o

e 4 e e e ¢ e e ¢ e e e o s e 2 e e e e e

¢ e e e ¢ o o o

e & ¢ e e o o e e ¢ e o & e e ¢ s e e o e e s e s s o

e o o o 8 e e o e e e ¢ e o o

Contents

(LR
I b=t b
1

]
COOCOCUTUNUNITUIUNIUVIVIVIVIVIVID DL PRPDDLPPLPPLPUHUUMUKWUWUWMWOKUOUMNMNDRD MMM NN M b b e b b et et e e |

. . D)
L T A R R N U L U U N P N U A BN B |

DA
[T B |

o e e e v e o . e e e v
| A S U T U Y U S N U R R (N A U A O A |

1

VU= OO NCTCTILPUNFFOORONNTRUNOOVOINIUVIPUNFOORNNOGOCPRPNFOONNGTRLREN,OOVRN

LRLEURURURELUEURU R EURURUELUELURURGURURURURU R RURGEGEC R LRV RO RUEGRURGURURURGRURURURUERU R RGO RYEG RO RS RS R RS E |
bt bt bt et et fd (et Gt b Bt bt et bt et (et bt (et Pt Bt (ot et (et Bt el bt et et fd et (et bt et Bt et (et Bt et bt et (et et et (b bt Bt ot fd bt bt Bt et (et et 0 0 e
1

Ut
n
1
=

e o o e o
| O L

e o e o o o o
1

(LR RU R RO R R R R R R R R G R]
NNNNNNNI’:’NNNNNNN
NNSNNUUVVLRPLEEN -

888899000011
etedet et e

222222
—L.m_m.m.m—momZZZZZ2222222222222222222222222
10 1010 10 1D 1A LA IO IO IO 1O 1O L I LD IO LD 1D LA I N LD LD MO IO L WY WD 10 N LN

.

Data Mapping and the Mapper

Block Mapping

.
o
.
.

.
.
.
.

- .
.
e o o o

Mapping Example
Map Names o .

Map Name GDS Variables
Mapper Invocation
Mapper Parameters

-

Supplied Information

.

Returned Information

Send Mapping

o o e
« o
« o e

Receive Mapping
MC_TEST_PROC

NNIFITITITNOO
llllllll

.

.

Mapped Conversation Errors

" Mapper Errors

.
.

.
.

.
.

Error Data GDS Variables

Protocol Violations

Service Errors

o o
« e
o o

.
.
-

e o o o
e o o

e e o o e e s e o

.

.

Processing of a Service Error Detected by Partner LU

Service Errors Detected in Received Data
Formal Descriptions

s & o o e o s e o

.

S NMMIEIFIHNONODO =MLY ON

o o & o

o o o o & o o o o o

.
.
°
-
.
.
.
.
.
.

PS_MC

* s o o o o+ o [8)

[o]
e o o o s » o
La o
e o s o o (SR =] —R
oxwao
D x> |
[T T
. O o Ik-wH
OO oo
e O W WX
oxa —wo |
sxOO | DO _IS
o IWwWOoowoZ
e OO HXEJT
w W |||
X OO T WW
<CxxO IFOX>
OHMHT € <M
oW Ju -0 w
- ZZC<OF VWO
-0 0 WdwO o
.A_C_C_D_F_G_P_P_R_
VOO LVLLLLLO
P b b b > =i b i

.
.

.
. .

.

RECEIVE_INFO_PROC

MC_TEST_PROC

PROCESS_ERROR_OR_FAILURE_RC

.

PROCESS_DATA_COMPLETE

-

PROCESS_MAPPER_RETURN_CODE

1

-

PROCESS_DATA_INCOMPLETE

22222222222333333

MC REQUEST_TB_SEND PROC

.
.
.

.
.
.

.

M
. . .
o o ¥ o

=
P |

o
« o Z D

o'

Z O
(SR <4
Loxo
Ok o
xo |
Gl
Ix O O
<O X
oo
<X W
aow |
1 100
DmVV
ZZWOWO
W |
nnoo
| 1> >
VOOLO
TrXoxox

PROCESS_ERROR_DATA

.

GET_SEND_INDICATOR

. .

SEND_SVC_ERROR_PURGING

.

UPM_MAPPER

-

PROTOCOL_ERROR_PROC

.

Local Data Structures

.
.

.

.

SEND_BUFFER

ERROR_DATA_STRUCTURE

-

555555555 .
5 555 5555555555

e s o o o s o o+ s

. e o o o o 6 o s o 8 o s o
. e o o o s e e e s o s s s s @
. e 6 s o s e e o e e s e s s o
. e o o 6 o o o s o o s s e o @
. o 6 4 6 s o s s e s s s 8 s e
. 6 6 o o o o o o s s o o o s o
. e o 6 o s. 0 o s e s s s s s o
. e ¢ 6 o 8 o 2 s e & o s s o
. e o o s o s o s e s o s s e
. * & o 8 e e o e+ 8. 8 s o s e
. e o o s ¢ 6 s s s s s s s s

e o o s o o o s e e s s 0 o
s s o s s e e o s s s s 8 s

%) [T S T T

©

[+4 o 6 o o e o e e & s s s s o

w

> o o o o s s o e s s s s s e o

) e 6 o s e o e s s s s s s e e

w

(%] ¢ ¢ o o s o e o s s s e o s o

T

> e s s 6 s s e s a8 4. s s e e @

o

w e o o o o 8 9 o & o s 0o & s o

[22]

e o s 6 6 s s e s e s s s o »

[

z e o o o s e s e s s s s s s e

[

o e o s o 8 o s 9 8 o s s e e o

.

e o o s 6 s s s s s s s 0o e o

g e e e e

S

7] o o s . e o s o s s s ® s e

[+

w e o o s L e s s o o s 2 o o

(5] [

P> e s oL o o & o o o e o o

> <]

[+ 4 Sye e s D s s e s s e o« e e

B 8.3 ...

o« s e o e e s e .
> (%]]

= D ¢ o o e o o o o oy o .

(=] [¥] 2 .

- @ e cud o . o o 3

- x + C

< . L o @ o @ ¢ oL sur o

= T (7] u "] - o}

z cw « L B B « 0 O o

w s o c+ L L o

[72] w .00 0O O . Q .

B vw -moDc wun £ 5

o [N 8 g LCOO0UY:m > D0

~ NSt EL VN O x

I = +#*BEQ N D |

e MO EMH 8L O 3N Cx
mn - g £ L0 OCTL > U~0
. B OV 3 om o s o~ C L
n W onQO00Y @+ > T
e OO~ L NHHR_ OW

[4 -~ u v u e YU~ U LD 1

w nu OO UVUDLIED+ CNY

b= L OXO0OL LR UTEL VN~ LO

o OUD- 232 & 0030 0

< . 0L UNULUOLXOW~ L L0

X L L - O L

O wo LS

. o

DEALLOCATE_ABEND_*

BACKED_OUT

e s o s =

RESOURCE_FAILURE_3*, Recovery, and Heuristic Decisions

BACKOUT processing

e o o

.

.

Heuristic Decisions and Reliable Resources

Resynchronization Logic

.

.

Validation of Log IDs

SNA Format and Protocol Reference Manual for LU Type 6.2

e
o=

5.3-17
5.3-20
5.3-20

e o o o o
e o o o o

e o o o o
e o o o o

* o o o o o o

® ® o o o * o o o
s e o o

* o o »
LY

* o »

Procedures Used by SYNCPT
PS_SPS

Log Name Processing

I. l11.l.13333336.44l.w55556666790112223344456690001122223444445555577777888

5 555555555555&&&&&&&5555&&444bnl.ml.w/.vl.w444'%“1&4.446..ﬁnl.ml.mﬁhl.wQ/.wh.ﬁ./.w441&444444“444444
1IN 10 10 10 1A 1O LN ID WD WA LG WA LD D LY IO L DN WD IO A G LD N LA WD IO LA WD I LA L IO A LG NN AN N N n
. ® 8 6 6 6 6 8 8 6 & 6 0 & B 8 0+ 06 O 6 * & S & e s+ 8 s+ s s s e+ e e+ s & 5 o 0 s 2 e s e 0 s o 2 s & & 0+ & o s 2 2 e o s & 2 s s s s o+
. e 8 8 0 e 6 & B 8 6 & 6 & 2 6 8 & 8 & e & & s 2 0 e s & s s 0 0+ e+ 4 s 4 0 3 2 s s o b o 2 e e s+ s 4 o s e+ s e .+ 2 2 s s s 0 0+ o
. @ & 8 8 & 6 e 8 8 6 6 6 8 e S 8 6 & 8 0 6 & ° 6 0+ ° * ° 0 s 2 s s b & 0 2 o s s s s s s 2 s o 0+ & 2 o+ s 0 e 0 s s o s o o * 0o o
. @ 8 6 8 8 6 & 6 6 & & ° & & 6 & 6 e % e 6 o s 6 5 s+ B v 6 6 s * e " & 6 & 6 0+ & s s s ° s+ s s s e &+ 2 % 0+ s b s e o & e+ 0 s o s 0+ o+ 2
. ® 8 6 @ 8 8 8 6 6 & & ° 6 8 & & 8 6 6 s 2 6 s+ 6 s 4 % 8 6 2 s 2 0 e s s o s s 2 e+ s s s+ 2 S 0+ b 0+ s+ 2 s s b+ s s o+ s 0+ s s 0 2 o o o
. ® @ 8 6 8 o & 6 6 & 8 B & 8 0 & 6 0 5 B 0 0 2 o ¢ 0+ 6 s 6 s 4 s e s s s " s o s+ s s s 2 0 2 0 e+ o 0+ 0 e 0 s ¢ 0+ 2 e s s 0+ 2 0 4 0+ o o
. ® ® 6 6 & 8 & e & e & & & & 8 6 e o o T 6 B b 6 s 6 s s s 0+ v s s 9 2 s e 0 0+ 2 6 s 2 s+ 2 s 2 s o o+ b+ & s e+ o o & ¢ ° s o
. ® 6 8 8 8 @ ° & 6 6 & B 8 5 % 8 6 0 s o 6 4 6 B % 0+ 2 s 6 o s s e+ 0 s s o B o 0+ s s s s 2 s s s s 0 s+ 2 s s s s s e 2+ 0 s s
. ® & 8 6 O ® e 6 6 * & 8 & % 0 & 6 6 & & & 6 0 0 * P & s & s &+ s s o 4+ s v 2 » 6 0 s s e 0+ s 2 e b s s e s o s 0 * 0+ s & s bt o o+ o+
. ® 6 6 6 ® e & 8 6 6 8 0 & 8 8 5 6 6 5 8 0 6 e o " P & B B s s T e O 6 s s & o 0+ s s B o s T s s 6 + s e s 2 s 2 6 ¢ s 2 s s 2 0 o+ o
. ® & 6 6 % 8 6 8 6 & & 8 6 0 8 8 S ° 8 0 2 O e & * * 0 s * 2 B 2 0 2 s 2 & o 0 o s B 2 0 s s s > 0 s s * s o 0+ s o 2 0 0 2 s 0+ o o
. ® ® & o 8 © 8 % 8 6 6 e & & o & @ ° e & & 2 0 P 6 & 6 B 8 st 0+ e & s o s s s s 2 s s+ s . e+ e o s s 0+ e o+ s & o+ o+ s s s 2 o
L ® ® o 6 & 85 8 8 6 6 & & & 6 B 8 8 6 6 6 S 8+ B 0 ¢ & ¢ 6 & s 0 2 " s s s s v 2 s 0 s s s B 0 s s e+ 2+ s s e o+ s 0+ & 2 2 b s s s
© o 6 o o 6 8 o 6 6 6 6 ¢ 6 ® 6 5 e 6 o & e & 6 o e s s s 6 & 8 s 6 o 6 8 6 & s s o 6 6 6 % e & 6 s 6 6 & 5 0 o 06 s s s 8 s 6 s 2 s o o
‘...‘.OQUDDQQ..O..OCOOO @ o e e 8 & & & 8 8 e * & & & 0 » & % & s 2 * & 0+ P * B+ e+ o+ 5 6 o 2 o+ s & o+ 0o & o 2 O 2 o
“ o-.-oo.-oooo.oo-o-..ow.oo..-..-..o..oo.-o-o-o-o-.-u...‘.o.o.o-...o
m 6 6 6 6 6 8 8 6 8 6 8 © 6 8 6 6 8 6 e O 6 G 6 & 0 e & & 5 S 2 6 o e 6 & & ° & 0 s 0 & s o s s s & 6 2 .+ s s s e e s s 0+ s b s s 0 s 0
V . . * . o o . s o . L . L] L] . Om . * e L3 s o o o L] . . » s o L3
m ® 8 6 6 e © o o o o o e o & s s s o o o s 2D e o o e s e s 8 & 8 e 6 & o 8 6 0 5 6 8 0 o s 0+ & o 0 2 & o s s e s o o s 6 s & o o
“ o.oooooooooqoouo..oonom-.o..oo.SU.o..ooooooo.o-:o.oooooo.c.ooo.o.;-o
[- 4 o =]
w o & o o s 8 o 6 o 8 s 8 e e s s s s s s o o e o o o o o . ® o o o 6 5 s o e s 4 6 s 6 6 s e s s e s e s s s s s e s s s s s o @
[-Y £ 9
(=] e o o o 8 8 s 6 8 6 e e 8 6 o & & 6 6 8 8 oL e s s o o oA} oL E o+ o o e s 6 s s e o s o o 6 ¢ & s -8 s 8 e & s s 6 s s 4 e & e s o e o
|—- oooo-ooo-o-ooo»ooooocoW-oaoo.mvom&-oooooono.o.o.oooo.o.oo.. L R
e oooooc.coc-aocoooo.o-.d.oo-.ulm o."eooooooooooo-o. e o o . * o o o o o o o o o o o
m o € ‘st =) >
e s s s 0 © e o & 6 o o o 6 6 s s s o s o4 o o o o ¢ ¢+ 0 SO A o s e e s 0 s e s s . e o E o o e B) o I S e R T T Y -
- 2 S T -~ T A - -
] m - 3 o m W. un o [Y EQ
} o o & a2 e o o e e s o o o o o o s e L oo o o o erd o o o o s o s o @ o e . . E o o 1)l ol ¢ ¢ s oL e e 0 0 s oM B
(2] - 9 uw v Y (] L’] n 3 [
w ® & o o s * e .o.n.o..o.va n o e n o o ¥ o+ QU G o o o ¢ o 8 3J e s e o QL L e e o @ o o s O o e e s s J DI
(5] +*» W— 0o~ 3 0O -4 *> o <] 0 [’ 0 Ok
[=1 e s e s . .« o 00 * 0 ¢ ot ¢ C € o o e o o espm o 0 s Q) s e L O o oL Ob + o o e e s e e L
> ws - L - Q u (3] > (] < oL o [} L]] o o
[e s e e U o esm o m.s .-t . S QP L o olsm o o @ I3 ¢ oL e o w e .3 cam O o o o X b = e oL sim s e e e & L
w W O n < <] ne> 0 £ [uun -~ 'S + L C L= -~ - O L+
[77] e o s e o & n . 0O +0 L WY e O 0¢ f..tS..OESS..ﬂ..% c W eV L ¢ o term O . o3 o o o w0
L 3 a n 7o - L] [] = C L O M- w [] +~ - Q i O g UL i Ll 0 ot ad
m e ¢ ¢+ s+ +00 cw Y o oL O 0 hs..mo..p.n o . ¢ s Q Uim L B o N o D> OZ Z M 0 ¢ ¢ oV
+< uunoi mk m O r- >T o Q Lot Q0 - s o+ L 00U C.LC c+ >0 [=] -4 L U
|l e o s o o B OU Qi [O > - Cemom o o & o Y33 L L c @+ XX OOV OUY B0 « «L O HHEZHEY L S e BN
[4 Lw U >0 = £ -~ 68 n.L ¢n cunoge] Spw. - L L B OO0~ NJO WV U < [u o
A L o o @ Lol X B 8 i oL @] 55..91...15VVM.0..Q€PP 4+ 00k u L0V _IHWOD . Wl € CO
m WkSCl.l T ow Luec) (=R £ L0 I3V L Q- E < s LWwZuw.~-CC] D e
. . Lemsm B LT L ¢ & + n+ cwo wex ¢« «T M WNem o & o ¢33 >0 DO+ B LRV L L HONONW > 0 ¢+ 3 + ™ L >
w > 1 oL LmBLC] VO LCO - n cCQ 33+ o] e C +~ Q B L 0L+ PP W JLxem 1] g v L
(] el WY e T U B0 . > L LLOmY=wunCou o B %L 003 - . wmee O U0 QAC~NDIHP - CH QL OWNOW U O - «°0 g o
w L BE O+ +#+0 0O Qo BB IO+ OB YO WY = T] -~ fOURBYW JO0UOR 30 JON® |FUR [oaw
m *BEL +LUOC PSW..P?W > 1 = Y- [} 1>CcCco0w [TI T CILM=L L L UL 01> HWww L una «cEC.C
mwe +*Z oGO - + Q u c L U BP0 [s ounuove g1 1 EO0C v ¢ 00— CdN>HOL~T [
- Fd“h.lh.pn £ L0 dx.CORBO # O U+ UL UNOUYO~OENUT Q= O O L O |l = gQ L «DL -
30N 0T g+ 0 E-m O WU O Y= 0 A RBLCLUBmmmMea+ IR/l JU0HLCO>DEQLUrHPE>HFEY> B0 -~ 0 E
4 mS T O e L 1 [T] £ usa do+ o33 OX DAY Q+F¥ EN C O LOLFEH NEWHO=DILCwr 0 w o
< g C noegiI+Jdo e T IS LCLCU] QCEEUT O~ cJ OO0 m Il Himed O U C U UUHVIFECL U0 L O - -t
. .lmrﬂrfs 049 C MOYUIVEYIZLCORBHY NT Bimemm UL LU O O mnl + 0wn S O0EQCZWOW I OB NNOUN LI
in - 3 Ooen.llennerdbmas.t O L XO WU UWVNVV B B.— ZVwo sT -0+ 0 L o OtuHDEPAD £ > L+ gL
Qerm + 1 ¥ OO ud+ 00UV O r L S W=z OLC x ExX 0 dCuZ~CorM < o> nwon 330
o ..Wtc.taec:..snn.l:lahmrpralbgta oo EOVO >R\ lemnooo.l.al e OO LT T
w CI3Q2LOLC VNS~ OV UL O ~+ B~ C 0L NY L Lo~ Bnoon 4 I n C oZoLuZnoan neLzZzOoZzLao0 0N
[OLLUYO I NLVLLUVLUOLOUD V- VLRLCUIOO IO V- OV VOLOVUODLORLL VYV D NoLVLWWD XX UV
o. LI+ 0QR0UDU o Q - 3D 0O+ COQZZ L = Q- 8 Z 0 Q L [0D o g]
M MFSMOSLS nu (DWLLSCFOCCT (8] RMBCPMT [- 8 -t d d (2 ['2]
g
(5] L] (8] -t =] [+] o

xi

Contents

«©
Y

0
N
11

4444444444444444444444

e & o s o o .

¢ o e

» o o o s s o. .8 s o

555555555555555555555555&5555555

o e s o o o o o o s & s o 8

.
.

s o e e o e e e =

CNOS Reply

Session-Limit Parameter Negotiation

o s s s s e 6 s o o o
e s s s s o s e e o o
. e P S T S R Y
o e I o s s

1 N
e o g o » . . e
O > [5]
* 2 M3 L. o o 0 .
C + n o
s s B L ¢ o 0L .
= w v 1 O
LI ¢ et 0
¢~ THOX O
. '] e C X x O o
0 MO O
e~ 0 Q X |FODQ
c £ & = oz
OB ~3 cOZFTHEZOZ
e 3D L OX - _JO
e B oad U o U - T
0D~V >0 OO
. c - v _1Z =0
L gL ~NWZOVUN
el O s CVOHOVYW
L~ [L N Y]
Lo D Wy nw
H DO CN®W |-

" 1L e 0 M W v W<

L L Cm Q- (>

00 00X 30 | L juw

L Lom QOO CHFUD -

L+ N OO Ok=WZ MO

WO W | fom DA =

g QU unZwrow
(7] Lo uHROLWCO
g o
> u

.

DEFINE_FROC

DISPLAY_PROC

-
-
.

.
.
.
.

.
.
.
.

.
°
.
.

.
-
.

LY

.

.

.

LOCAL_SESSION_LIMIT_PROC

LOCAL_VERB_PARAMETER_CHECK

SNASVCMG_VERB_PARAMETER_CHECK

CHANGE_ACTION

Source-LU CNOS Procedures

SOURCE_SESSION_LIMIT_PROC

° o o o

-

VERB_PARAMETER_CHECK

.

SOURCE_CONVERSATION_CONTROL

.

-

SOURCE_CONVERSATION

RESULT_CHECK_ALLOCATE

.

RESULT_CHECK_SEND_COMMAND

RESULT_CHECK_RECEIVE_REPLY

RESULT_CHECK_RECEIVE_DEALLOCATE

CHECK_CNOS_REPLY

Target—tu CNOS Procedures

.

.

.

.

X06F1

.

.

.

.

PROCESS_SESSION_LIMIT_PROC

TARGET_COMMAND_CONVERSATION

RESULT_CHECK_RECEIVE_COMMAND

RESULT_CHECK_RECEIVE_SEND

CHECK_CNOS_COMMAND

.

°

CLOSE_ONE_REPLY

NEGOTIATE_REPLY

PP
PN
o e
o e e
©
. . . WJ
(L]
. <
z
. <
z =
=]]
Rt 4
e ad O
<O
R R
xox |
Wi
=0k
ZZ <
owe
[ZR7 |
1N} ot
>
-0 X
j0. W H
w r -J
x O |
11z
= O
ul Jd
[L e 3
xuvun
<< LW
o

HALF-SESSION

CHAPTER 6.0.

v—d
1
0

General Description

123445666
000000000

s e s o o & »

6 666666666 6 L2 I« I Bt i e Q= e Qe e Qo < R el B e -

.

.

.

.

.

-

°

.

.

Protocol Boundaries between HS and Other Components
HS

Formal Description

o & o e

.

Data Structures

PROCESS_CP_LU_SESSION

PROCESS_LU_LU_SESSION

DATA FLOW CONTROL

LOCAL

SNF
CHAPTER 6.1.

-
1
1

Introduction

« o o

.

.

Initialization

Overview of DFC Functions
Send

DFC for LU-LU Half-Sessions
DFC Structure

-

.

.

Termination
Protocol Boundaries

Receive

.

.

.

-

.

.

.

Function Management Profile 19

.

.

Usage Associated with FM Profile 19

Conditional End Bracket (CEB)

FM Header Usage

-

.

.
.
3
.

e o o o o o

11111412224444444

o o s
o s o o
. . e
. . e
* L3 LJ
. L .
* L] L3
° * .
. * .
. . .
. . .
. . e
. . o
. o o
. . .
. o o
. * L3
. . e
. . e
. . .
. o .

|
e @ o o
u
e O o o
-
. o
.5 .
g
D R
€ m
c Gl o
-
s
O v
QW
Q)
o B X e
FE~E-]
et O
Yo~ O
e O
moo
) OO
- oo
o ff
=l
v ol g
2 Z

[t v O

X w2

QO

x

Yo Yo N

oo O
c

¢.- g g
QT OO
oL BB
u 9o unuy

peo IR 77 s s

SNA Format and Protocol Reference Manual for LU Type 6.2

xXiv

Sequence Numbering of
Stray SIGNALs and Res
Sending SIGNAL and
RQD required on CEB
Receiving SIGNAL Re
Receiving Responses
SEND_ERROR Processing
Detailed Description of
Request/Response Format
Chaining Protocol .
Request/Response Correl
Request/Response Mode P
Bracket Protocols .
Send/Receive Mode Proto
Queued Response Protoco.
PS Send and Receive Rec
DFC Request and Respons
DFC Request and Respons
BIS (BRACKET INITIATION
LUSTAT (LOGICAL UNIT ST
RTR (READY TO RECEIVE)
SIG (SIGNAL) “ o o

DFC for CP-LU Half- Se551o

Overview of DFC Functio
Request/Response Form
Immediate Request and

Error Processing . .

High-Level Procedures

DFC_INITIALIZE . . .
DFC_SEND_FROM_PS . .
DFC_SEND_FROM_RM . .
DFC_SEND_FROM_LNS .
TRY_TO_RCV_SIGNAL .
DFC_RCV e e e e
DFC_RCV_FSMS
DFC_SEND_FSMS ...

Low-Level Procedures (in

FORMAT_ERROR
FORMAT_ERROR_EXP_RSP
FORMAT_ERROR_NORM_RSP
FORMAT_ERROR_RQ_DFC
FORMAT_ERROR_RQ_FMD
FORMAT_ERROR_SSCP_LU
GENERATE_RM_PS_INPUTS
INVALID_SENSE_CODE .
OK_TO_REPLY e ..
PROCESS_RU_DATA ..
PROCESS_SEND_PARM .
RCV_STATE_ERROR ..
SEND_BIU
SEND_NEG_RSP_OR_LOG
SEND_RSP_BIU
SEND_RSP_TO_RM_OR_PS
STATE_ERROR_SSCP_LU
STRAY_RSP e e
UPDATE_FSHMS e e

Finite-State Machines

FSM_BSM_FMP19 « o .
FSM_CHAIN_RCV_FMP19
FSM_CHAIN_SEND_FMP19
FSM_IMMEDIATE RQ_MODE S
FSM_IMMEDIATE_RQ_MODE_R
FSM_QRI_CHAIN_RCV_FMP19

Requests and Responses [
ponses c e e e e e e e e e e
Responses e e e s e e e e e e s
ques ts e e e e e s e e e e e

DFC Functlons c s s s s o s e
ting e v e s e e e e e e e e
at!on “ e o o o o « e e e e o
rotocols c e e e e e e e s
cols e e e e s e e e e e e e
1 e 6 e s s s s s s e e v e e
ords e e e e e e e e e e e
e Formats e e e e e e e e e
e Descriptions ¢ o s s s s e

STOPPED) e e e e e e e e e e
ATUS) e e o o o o e s s e s s
ns © 2 s o s s a2 s e s s e s s
ns e e e e e s e e s s e e
attingo .

Immediate Response

e e+ o o o o o e o e
e e+ & e e e o e e o
e e e e o o s e e
e s e e e o o e o
e e e e+ e e o e o .
e e o s s e o e o o
e o o e+ s s e o e o
* e o o e e e s e e
e o o o e o o e o o
. .

Alphabetical Order)

FSM_RCV_PURGE_FMP19
CHAPTER 6.2.

Introduction .
Initialization Phase

. o

CRYPTOGRAPHY VERIFICATION (CRV)

Normal Operation . .

TC Procedures Invoked from Other Components o
Sequence Numbering of Requests and Responses

.

.

TRANSMISSION CONTROL

e e e e e e e e e
e e e e e e e e e
e e e e e e s e e

“ e e e e e e e e .
c e e e e e e e e
e e e e e e e e e
e e e e e e e e

e e e e e e e e e
e e e e e e e e e e
e e e e e e e e e
e e e e e e e e e e
e e e e e e e e e
c e e e e e e e e s
e e e e e e e e e e
© e e e e e e e e
e e e e e e e e e
e e e e e e e e e e
e e e e e e e e e e
e e e e e e e e e
“ e e e e e e e e
c e e e e e e e e
e e e s e e e e e s
. e e e e e e e e
END e e e e e e e
Ccv © e e e e e s
e e e e e e e s
L
.« e e e

e e e e e e e e e e
. c e e e e
o e e e

. e e e e e e

Sessions With Cryptography

-

Hode Enforcement

.
.
.
.
.
.
.
.
.

¢ & & ¢ o e o e

e o e ¢ e o 6 e e e e e e o e o o o o

e o o o

.

.

« o e

e ¢ o o

@ e ¢ o e & 0 ¢ e s e e @ o o o ¢ o & ¢ o

f

.

e ¢ e o o o o

¢ e e e ¢ o & e o o o e o

e o ¢ ¢ e e e e o ¢ o e e o o s

e ¢ o o

¢« o e e

¢ ¢ e o & o

e ¢ o e o 4 e & s+ e o e e & e e o

« o e o

the

.

.

.

o o

¢ s s ¢ e s e ¢ o

e ¢ 9 e o o & e e e+ e e & & e o e o & & o

H

.

¢ & o o o e & o o o

e ¢ ¢ e e ¢ o o

e o o o ¢ 6 6 o e o o e e & o

¢ o oo o o o

e ¢ & 6 o e e o e e e e o ¢ s & ¢ & e o & & e o o

e o o o o o o o o o o o

¢ s e e

o« o

¢« e o o o o

¢ & 4 e e e 4 s e e e o o

e o ¢ & ¢ o o o o o

¢ o e o o

¢ & o o e o e e e e e e e & o o o

e e e e o o

« e o o

¢ ¢ e o o e e o o e e e o

@ ¢ o o ¢ e e ¢ o+ s o s o ¢

e e e e e e e o o o o ¢ o o @ e e o o & e & e e & & o & & e e & & e ¢ ¢ e o o o

@ ¢ o e 6 o e e & 4 e+ e e ¢ e ¢ e o e

e ¢ o o o e e o o o o

¢ e & & 4 & e e & ¢ o o o o o

@ & e o e e e e & 0 e+ & 0 + & & e e e 8 e 4 o e e & o 4 & e s o o

« o o o

© 4 o ¢ 4+ e e 4 & e e o o 2 0 e e e 0 e e e o

e o ¢ o e e e

e e e e

e o o o e o o ¢ o+ e

e o o+ e e & o e o s e e

¢ o e e o

e ¢ & 6 e o e e 4 e e 6 & 4 e s s e ° e e e e 0 o

s e ¢ o o o o

¢ ¢ o e e e s s+ e ¢ e o o e o

¢ ¢ e o

6 e o o o s e e o e s e e e s 2 2 e e & e e e s e & ¢ o e & 2 o &

e ¢ o o e e e

e o o o o e o

¢« e o o &

¢ ¢ o e 6 e & o o e s e e & ® e o e o o o o o

e o e o e o & o @

e ¢ e e e e e

e o o ¢ ¢ e e e o e ¢ o e

s e & o o e o

I Y

¢ e o e + e e & o e o e o e ¢ e e s e e e s e

¢« o o e o

.

.

e e o o e e e e e e e o 0 & & e e & o & o o o ¢ o o @

e o & ¢ & o o

¢ e o o e s e e &

¢ o e & e ¥ & & e e s e e & e s s s e e o

o 4 e e o e o ¢ o o o

e ¢ ¢ o e o e o

e o ¢ o ¢ e e o

e o e ¢ o o o

¢« e o e

e o o o ¢ o & e o e ¢ & o o

e o e ¢ o o o

o ¢ o o

¢ e o e e s e e o e e o ¢ e e o

¢« e e s

¢ o e e s s e e o

D T)

¢ o o e ¢ o o o o e o

o s e o o o o

o o .
o o o
« o .
o o
o s .
.« s .
. o .
« o .
« o o
e o o
« o .
o o .
« e .
« o o
« o o
o o e
« o .
o« . .
“ . .
« o .
o« o .
o o .
.« e .
« o .
e o o
. o .
« o o
« o .
e e e
.« o .
o o o
« e .
o o .
. .
. e e
« o .

. .
o o o
.« e .
o s e
« o .
« o o
o o .
« o .
o o .
o o o
« o .
o o e
e o e
« o o
. e e
« o .
o« o .
o e .
« o .
o o e
© o .
e o .
« o o
« o o
« o o
e o o
e o o
o o o

e o & o ¢ ¢ o
¢ ¢ o 2 e e o
e o e ¢ o o o

Contents

e o o o o @

¢ e e e o

. ;cOOCOCOCOCOCTOTOTETOOROR

e o o o o

o e e e
1

o e e
LI |

.« .

Pt o et et ot Bt ot Gk et Gk Gt Gt Gt ot Gt ok (e ot (ot ed (ot et fed b Gt ot et ot okt ok Gt b ot fod Pt ok (ot et Gt bk ot ot ok Gt et et o
1
WO WO WO WM NN N NN N R N b bt bt bt ot ot ok ok (ot ok ot ot ot ok ek ot fed |

Yy
N OVURONNOCOUVPLPUNFHFOYVOENNGOUILUNNOOVRRROTTOUINPLALPLPFROOOCOCRDDIORNNNNNGTGTOS

{
£
(V]

-43
-44
.1-46
1-48
1-48

e ¢ e e o e

cooCroccrocrCccrcrrcrrcc0cccrccrcrrOCrOCCCCOCCOCCOCOCCOCTONOCTOCCOCTOCTOCTOTOCTFOCCOTOCTOCTOTOTOOTOCOOOO O

. e
-
1
U o
o o

=~ e e e e e) o

Xv

VOOV OVOOVOY

e o o o o

.

Session-Level Pacing

ISOLATED PACING RESPONSE (IPR)

.

.

-

Request and Response Control Modes
Transmission Control Calling Trees

Formal Description

.
.

e o e o

Session Initialization Procedures

VOOV OVOOVOVOVIOOVIOVOOY

.
.

TC.INITIALIZE
TC.EXCHANGE_CRV

TC.BUILD_CRV

o o o
o o o
o o o
e o o
o o o
* v 0
o o o
o o o
o o
o o o
* o e
o o o
o o o
o o o
s o o
o o o
o o o
e o »
o s o
s o o
e o o
o o o
o o o
o o o
o o o
e o o
e o o
¢ o o
o e

o .

TC Send and Receive Procedures

TC.FORMAT_CHECK

.
.

TC.TRY_TO_ENCIPHER

TC.SEND

TC.RCV_CHECKS

TC.RCV

TC.RCV_NORM_RQ

TC.DEQUEUE_PAC

TC Finite-State Machines

TC.TRY_TO_SEND_IPR

. .
o o

Q_SEND

FSM_PAC_RQ_RCV

FSM_PAC_R

NODE DATA STRUCTURES

APPENDIX A.

1112234_.“._#4»_0
LI

[I |
<<

.
-

Control Blocks

1
g

PARTNER_LU

1
<

MODE
TRANSACTION_PROGRAM

LULU_CB

RCB

¢ o o
o ..
o e e
o o e
v e e
e e
v e e
“ s
o o
o o e
o s e
o s
o . e
o e
o o e
o s e

« . e
D
D
“ o .
o o e
e e

o« e
o o
o o e
« o e
)
o« o e
o o
o o e
.
.
Eo
[NTT TS
==z
(R R)
- |
(BTN =~]
[T
x>
o
A W
w o
2w
o

A-9

* o o o =
* e s o o

.
.

scB

TCB
Interprocess Records

v e e
" e e
. e e
o e e
¢ s e
o . e
. e
D
“ . e
e e
s
o e
. o e
« o e
.
o o o

o o e
* o e
o s o
* o o
* o o
o o o
s s e
s s 0
o o o
¢ o 0
« o e
o o o
o s e
o o o
o o o
* o o

.
.
.

.
.

ABORT_HS
HS_RCV_RECORD

HS_TO_LNS_RECORD

.

.

HS_TO_PC_RECORD

INIT_HS_RSP

HS_TO_PS_RECORD

CONFIRMED

RECEIVE_DATA

RECEIVE_ERROR

REQUEST_TO_SEND

.

T_TO_SEND

QUES

HS_TO_RM_RECORD

RSP_TO_RE

.

.

o e
“ o e
o« o
e o
“ o
o o
“ .
o« o e
o e
o o s
o e
L] . .
o e e
P
o o
« 0
.« o
.« o
o e
. o e
“ ..
PPN
“ o e
. e e
o« o
o« e e
o o e
[T
. e e
[
o e e
o e e
o e e
“ e e

PN
.

o

Y

Q

< .

wi

€I .

] [N

x [y

(%} x

<

FO0OO0

=

< 0

BIS_RQ

.

.

BIS_REPLY

o o
o o
o o
o e e
o o e
o o
s o e
R
o s e
.« o
o o e
o o e
“ .
. v
o s
o s
o s e
o e e
. .
o e e
. 0 e

...
I
o« o
. e
o o e
o« o
. 0.
I
o e e
« o 0e
o o e
PRI
e e

. .
=z

o

[

0

0

w_ o

noen
X o

w |

W

[~

[Ty

LNS_TO_HS_RECORD

.

HS_SEND_RECORD

o e

INIT_HS

. an
(=] [~ &7
X o0
ooxO |
OO Wk
woonw
xOw 10
0 lwxow
Exox jZx
OZ Iow |
QO Z Y-
W Z W e
x _jWwno o
L jnH
=Ewn nxD.R x
Z X n _10
Z @D
1D 1 I~ <
[« g N W %
—Z2Z0OW
1Q o M
nC<Oomox
z
=

PC_CONNECT

.

PC_HS_CONNECT

.

PC_HS_DISCONNECT

.
.

UNBIND_RQ_SEND_RECORD

UNBIND_RSP_SEND_RECORD

.

.

.

LNS_TO_RM_RECORD

* e e
o o e

.

.

ACTIVATE_SESSION_RSP

SNA Format and Protocol Reference Manual for LU Type 6.2

Xvi

OO et AINNNMMOMMIIITITIITNNOOONNDNOOD
NNANNANNANANMNANANNANANNNNNNNNNNNNNNNNN

R T R T T T T T T T T T R T T T O O T T T O O U T T T T T T T O T T O S S T O T T T T T T T T T T R T I U I
AL ALqALAALCLEALCAAAAAALALELLCAALqLALC LA AL CqLqQLLqLqIALqQACA LA L A LqLLLCLC

DO OO OO0
NNNNNMM MM MM

® ¢ 5 + e e s s+ o s o s e s 2 e e & s s ° e s o * s T e T s & ° & e s e o e s o 9 e s O o e o 4 s s o v 2 o s o

-

CTERM_DEACTIVATE_SESSION

SESSION_ACTIVATED

.

SESSION_DEACTIVATED

-

NNM_TO_LNS_RECORD

ACTLU_RQ_RCV_RECORD

BIND_RQ_RCV_RECORD

.

BIND_RSP_RCV_RECORD

DACTLU_RQ_RCV_RECORD

HIERARCHICAL_RESET

PC_CONNECT_RSP

.

SESSION_ROUTE_INOP

.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.

o
o . . * 0
&0
OO + o o
O w
e % :
1> .2
>000 W
O o
& 1606
.00 j=)
oVWwwo -
LA
CEFRERR
ZT T HW
=i W D
LEooZT
4 0w
55 1 10w
O
an

SEND_DATA_RECORD

SEND_ERROR

PS_TO_RM_RECORD

ALLOCATE_RCB

CHANGE_SESSIONS

DEALLOCATE_RCB

.

GET_SESSION

-

RM_ACTIVATE_SESSION

.
.

.
.

RM_DEACTIVATE_SESSION

TERMINATE_PS

UNBIND_PROTOCOL_ERROR

-

RM_TO_HS_RECORD

.

BID_RSP

.

.

BID_WITH_ATTACH

.

BID_WITHOUT_ATTACH

LIY

BIS_REPLY

BIS_RQ

.«

HS_PS_CONNECTED

.

RTR_RQ

.

RTR_RSP

“ o o
« o .
« e .
¢« o .
e o

YIELD_SESSION
RM_TO_LNS_RECORD

DEACTIVATE_SESSION

ACTIVATE_SESSION

RM_TO_PS_RECORD

.
.

.
.

ATTACH_RECEIVED

CONVERSATION_FAILURE

RCB_ALLOCATED

.
.
.

.
.
.

RCB_DEALLOCATED

RM_SESSION_ACTIVATED

SESSION_ALLOCATED

-
.
.

CRV_RQ_RU
Miscellaneous Structure Types

Request RUs

ADDRESS
BIU

.

-

.

.

-
-

.

PC_CHARACTERISTICS
PIU .

.

SESSION_INFORMATION

-

SEND_PARM

.

Miscellaneous Enumeration Types

-
]
=

RH FORMATS

APPENDIX D.

-4
J
w

REQUEST-RESPONSE UNIT (RU) FORMATS .

APPENDIX E.

NS nn oo o
| J T T TR N I A |

TS SR U e T (el |
(LI (Y]

Summary of Request RU's by Category

.

Index of RU's by NS Headers and Request Codes

Request RU Formats

OO0 0O
ot

® o e s & s & © o

-

e & o s e s & e o e s o s o

-

ACTLU; SSCPIPNCP-->LU, Exp; SC (ACTIVATE LOGICAL UNIT)

BIND; PLU-->SLU, Exp; SC (BIND SESSION)

BINDF3 PLU-->SSCP, Norm;

BIS;

.

.
.
.
.

.

FMD NS(s) (BIND FAILURE)

LU-->LU, Norm; DFC (BRACKET INITIATION STOPPED)

CINIT; SSCP-->PLU, Norms; FMD NS(s) (CONTROL INITIATE)
CLEANUP; SSCP-->SLU, Norm; FIiD NS(s) (CLEAN UP SESSION)

o .

FMD NS(s) (CONTROL TERMINATE)

CRV; PLU-->SLU, Exp; SC (CRYPTOGRAPHY VERIFICATION)

CTERM; SSCP-->PLU, Norm;

Xvii

Contents

-te

wie

-t

DACTLU; SSCP-->LU, Exps3 SC (DEACTIVATE LOGICAL UNIT) .

ECHOTEST; SSCP-->LU, Norm; FMD NS(ma)’ (ECHO TEST) o o
INIT-SELF; ILU-->SSCP, Norm; FMD NS(s) (INITIATE-SELF) .
LUSTAT; LU-->LUISSCP, Norm; DFC (LOGICAL UNIT STATUS) .
NOTIFY; SSCP<-->LU, Norm; FMD NS(s) (NOTIFY) e e e e e
ILU/TLU Notification e e e e e e e e e e e e eae e
LU-LU Session Services Capabilities . .
REQECHO; LU-->SSCP, Norm; FMD NS(ma) (REQUEST ECHO TEST)
RTR; LU-->LU, Norm; DFC (READY TO RECEIVE) . . . o
SESSEND; LU-->SSCP, Norm; FMD NS(s) (SESSION ENDED) . e
SESSST; LU-->SSCP, Norm; FMD NS(s) (SESSION STARTED) . e
SI6; LU-->LU, Exp; DFC (SIGNAL) o e o o » . . .
TERM-SELF; TLU-->SSCP, Norm; FMD NS(s) (TERMINATE SELF)
UNBIND; LU-->LU, Exp; SC (UNBIND SESSION) . . o
UNBINDF; PLU-->SSCP, Norm; FMD NS(s) (UNBIND FAILURE) .
User Data Structured Subfield Formats e s e e e ee e e
Unformatted Data e e s e s e e e e s s e e s e e e e
Mode Name c e e e e e e s s e e e e e e e e e e e e
Session Instance Identifier e s 8 o s o s s e s e v »
Fully Qualified PLU Network Name « « ¢« « « &
Fully Qualified SLU Network Name « . .
Summary of Response RU's .. e e e e e e e e e e
Positive Response RU's with Extended Formats e s s o o o
RSP(ACTLU); LU-->SSCP, Exp; SC e o o o o s o s s s s o o
RSP(BIND); SLU-->PLU, Exp; SC e e s e o s s o o s e o
RSP(CINIT); PLU-->SSCP, Norms; FMD NS(s) e o o s s s s o
Common Structured Subfields e o o s s s e a s s a4 s e u e
Control Vectors . . e e e e e s e e e e e e e
SSCP-LU Session Capabllltles e e e e e e e e e e e e
LU-LU Session Services Capabilities . . e s s o o
Mode/ Class-of-Service/ Virtual- Route-Identlfier-List
Network-Qualified Address Pair e e e e e e e e e e e
VR-ER Mapping Data e o s o s e s 8 s s s e s s e e s
Local Form Session Identifier ® s s o o s o e e s o e
Control Vector Keys Not Recognized e s e s e e s s e
Session Keys (SRS e ¢ s o s s e s e s s s s s e o s
Network Name Pair e e s s s e e e e s s e e e e e
Network Addr:+s Pair e et s e e s e e e e e e e e e
URC .« o o o o e o o o o o o s s s o o
Network- Quallfred Address Palr c e e e e e e e e e e
Common Subvectors e e e s e e e e e e e e e e e ..
Product Set ID (X' 10) s e s e e e e e e e e e e e e
Product ID (X'11') e * o e 6 s o s o s s s e e s e e o
Product Instance .« .. . e s e e e e e e e e e
Emulated Product Identlfler (X'Ol) c e o o o v o
Software Product Version and Release Level Identifier (
PTF-Level Data (X'05') e o o o o o o o s e e s s o o
APPENDIX F. PROFILES e o o o o o o o s s s s e e s o o
Function Management (FM) Profiles et e e e s e e e e e
FM Profile 0 e o % o s 2 s e e s s s e s s e e s s e o
FM Profile 6 s s e s e s s e s e e s s s e s e e e s
FM Profile 19 e e e e e e e e e e e s e s e e e e e
FM Profile vs. Type of Session « ¢« ¢ ¢ o « &
Transmission Services (TS) Profiles t e e e e e e e e e
TS Profile 1 e o o o s o s o s s s s e e e s e e s s s e
TS Profile 7 e e e e s s s e s e e s s e e e e e e e e
TS Profile vs. Type of Session . . . ¢ ¢« ¢ &+ ¢ o o o o &
APPENDIX G. SENSE DATA e o 6 o o o 6 o s 6 6 0 6 o e o
Request Reject (Category Code = X'08') e o e o o e o o o o
Request Error (Category Code = X'10') e e s e e e e e e e
State Error (Category Code = X'20') e s o o o b e s s e e
RH Usage Error (Category Code = X'40') e e e s e s e e e e
Path Error (Category Code = X'80') . . . « ¢ ¢ ¢« ¢ « o « &
APPENDIX H. FM HEADER AND LU SERVICES COMMANDS [
Symbol-String Length ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ s ¢ o o »
FM Headers e 6 e s s s s e s s e s e s e s e e e s e s
Function Management Header 5: Attach c e o o o o o o o
Access Security Information Subfields e e s s s s o o

SNA Format and Protocol Reference Manual for LU Type 6.2

® o & o e e & 2 s e e & 9 e s & 4 e e ¢ o & & & o e o o &

e o o ¢ o o o

e o o o ¢ o o o o

e o o o o

e o o o

e ¢ e 6 o e e 4 e e e o e e e & e o e & o e & & o o o e o

¢ o e e e e o 6 o 6 s o e 4+ e s e s e o o e e e o o a4 o

o o o o

© o e o o e e o e & o e e e & e 6 e o e o & & ¢ o ¢ & o e & o

e o o o o o o o o

e o o o ¢ o o o o

e o o o o

@ e e o e o e e e o & o & & e e e & & o e & & & e e % e T & 6 e + e * e e o o & e o e e o

¢« e o o o o ¢ o ¢

e e e o o

o o o o

e © 6 e e o e e e e & & & 6 6 ® e & & e e e & & 6 e & e e e 6 & & o 6 & o o e e o o e o e

e o o o o & o o o

e ¢ o o o

e o o o o e o e o

e ¢ o o o

o ¢ o o

® o o e e e & o 6 o e s & 8 & 6 s e o e 8 o e e s o e o

o o o e o o o e e o e o & e & o o o o

e o o o o o o e o

e o o o e o ¢ o e e e

e o e o o o o o o e o o o o 6 6 o e o e e & e & & o e & ¢ ¢ e & © & o o 0 & e & & o ¢ ¢

o o o o o

e & o o

o o o o e o o

@ o o ¢ e e e e e o e & o ¢ e 06 e e o e @ o & 9 o ¢ e o

e o ¢ o o o o o

e o o ¢ o o o o o o o e o

o e o o o

o ¢ o o

@ @ o e 6 e e e e e e o e & e o e e e & 0o & e ° 6 6 e & & e 6 & & & & o e o e 6 & & * e e e o

« ¢ o e o o ¢ o o

o e o o o

e ¢ e o

¢ o o e e e e e o & -6 e o o o o6 6 ¢ o o o o

@ ¢ e e e o e e o 4 e e e 6 6 & o e & o o o o 0

e o o o o o o e o

e o o o o

¢ ¢ o o

@ @ o o e o e e e e e e 6 & e e e o e 6 e & e 6 6 ¢ e o & 9 6 & 6 & & & 6 ¢ e e s 0 ¢ o e ¢ o

e o o e o o o o o

« o e o o

e o o e

@ e & ¢ e o o & e & e e e 6 e e e e e e e o e o e+ & & e & & & 6 & & & ¢ & & e e & & ¢ ¢ ¢ e o

e o o o o e o e o

e o o o o

o o o o

© o e @ e o & e ¢ e e e e o e e e e e e e o e 6 e e o e e e @ e ¢ ¢ o o s o

« o o o o e ¢ o o o o o o

¢ ¢ o o

© & o 8 e e o o e o e e e o ¢ & e e e s+ e e e 6 e o e ¢ 6 e e 6 o e o o e o

e o o o o o o o o

e o ¢ o o ¢ o o o

o o o o o

o o e

E-11
E-11
E-11
E-12
E-12
E-12
E-12
E-13
E-13
E-13
E-13
E-14
E-14
E-14
E-15
E-16
E-16
E-16
E-16
E-16
E-16
E-18
E-18
E-18
E-19
E-19
E-20
E-20
E-20
E-21
E-21
E-21
E-22
E-22
E-22
E-23
E-23
E-23
E-23
E-23
E-24
E-24
E-24
E-24
E-26
E-26
E-26

-
1
-

UV L O =

(]
]
-

G-1
G6-5
G-6
6-7
6-8

H-1

H-2
H-4%
H-6
H-7

PIP Variable . e e e e . .« o e e

Function Management Header 7:

Presentation Services (PS) Headers . .

Presentation Services Header 10: Sync Point Control

Error Description

-

¢ o o

.

¢« o

Formats of Records used by LU 6.2 Service Transaction Programs
Change Number of Sessions (CNOS) ..
Exchange Log Name t e e e e e e e .

SNA-Defined Transaction Program Names

Compare States e e e e s s e e e e e

GDS Variables . . .

Format
Format
Format
Format
Format
Format

APPENDIX

of
of
of
of
of
of

I.

Application Data GDS Variable
Null Structured Data Variable
User Control Data GDS Variable
Map Name GDS Variable “ ..
an Error Data GDS variable .
Error Log GDS Variable . . .

GENERAL DATA STREAM

Structured Fields C e e e e e e e e e
Length (LL) Description e e e e e
Identifier (ID) Description e e e e

APPENDIX
APPENDIX

INDEX

N.

T.

FSM NOTATION e e v e e e

TERMINOLOGY:

« o o o

e & e o o o o o s o

e o & ¢ o e o o o o

.

e o e o ¢ o o+ s o e

.

ACRONYMS AND ABBREVIATIONS

e o o o e o o o s e e

e o o o o e o o o e

e ¢ o o o o e ¢ o o

e o o e e o s o o o

e o o o o o ¢ o e o

« o o

e o o ¢ e o o o e o .

e & ¢ o e o e e o o s e o e o o

e o 4 o e o e e & e ¢ s s e o

e e o o ¢ o e o o s e s e e e o

e ¢ e o o e e e s o 4 ¢ s o o o

e @ e o o o s e e e e e e e & o

¢ e o o o o s e o e o o e o s o

e o o o o ¢ o e 4 e s s e o e o

« e e e
« o s o
« s o o
* o o s
e o s .
e s s .
« s e o
« o e o
e o o o
« s s .
o o o .
« e e o
* o o o
e o o o
e o o o
e o o o

Contents

e o o o o e o e o ¢ ¢ o o o e o

Xix

XX SNA Format and Protocol Reference Manual for LU Type 6.2

-

CHAPTER 1.

Figure
Figure

CHAPTER 2.

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure 2-

OF ILLUSTRATIONS

INTRODUCTION
1-1. Overvieu of the SNA Network
1-2. Examples of Nested Nodes e o s o s s e 8 s s e s e
OVERVIEW OF THE LU
Placement of LUs within the SNA Network (Example) . .

. Peer and Layer Exchanges e e e e
. Relationships of Sequences of Message Units (Example)

e o o o o e e s e =

. Start Conversation without Confirmation e e e e e e
. Conversation Turnaround without Confirmation [
. Finish Conversation uithout Confirmation e s e e e .
. Start Conversation with Confirmation o o o « o o o
Continue Conversation: Confirmation uithout Turnaround

Finish Conversation with Confirmation« ..
.. Possible Next Sequence in Error-Free Cases .

One-Way Conversation without Confirmation
Two-Hay Conversation with Confirmation . e . .

SEND_ERROR Issued by Sender e e e e e e e e e e e e
SEND_ERROR Issued by Receiver
DEALLOCATE ABEND Issued by Sender e e e s s e o o »
DEALLOCATE ABEND Issued by Receiver e e e e e e s

Overvien of LU 6.2 Components . e . e s 2 o o =

Structure of a Presentation Services Process . o

Example of Communicating Transaction Programs . .
Internal Buffering in LU Send/Receive Data Operations
Map Name Usage by Mapped Conversations P
Relationship of LU Components for Sync Point Functions
. LU Static Data Structures (Example) e e e e e e e e
. LU Dynamic Data Structures and Processes (Example) .

-
.
.
.

(Example) e e s e s e e e o e o s e e s e
LU Process Creation and Term1natlon Hierarchy
Complete Conversation Example--Local LU . . .
Complete Conversation Example--Remote LU . .
Session Deactivation--Local LU s e o o v o o
Session Deactivation--Remote LU o« e e e .
ALLOCATE (when allocated), CONFIRM (by Flrst Speaker)
. ALLOCATE (when allocated), CONFIRM (by First Speaker)
ALLOCATE
. ALLOCATE
ALLOCATE
ALLOCATE
. ALLOCATE
. ALLOCATE

2-32.
2-33.
2-34.

e e o o

.
. .
. .
. .
. .

e e o e o o

(delayed), CONFIRM (by First Speaker) --Remote
(delayed), RECEIVE_AND_WAIT (by First Speaker)
(delayed), RECEIVE_AND_WAIT (by First Speaker)
(when allocated), RECEIVE_AND_WAIT (by Bidder)
(when allocated), RECEIVE_AND_WAIT (by Bidder)

. Relationship of Data Records to Logical Records (Example)
Relationship of Conversation Message to BIU Chain (Example)

Conversation Turnaround with Confirmation, using LOCKS(SHORT)
Conversation Turnaround with Confirmation, using LOCKS{LONG)
Conversation Turnaround following REQUEST_TO_SEND (wlthout

SEND_ERROR Issued by both Sender and Recelver (SEND ERROR

--Local
--Remote LU
(delayed), CONFIRM (by First Speaker) --Local LU .« o o e

o o

.«

« e o o

o e o o

« ¢ o o o

. .

e e e e & & o & & & & e ¢ o o 0

.
.« o
.
.

C fi

e s .

.
« o o

e o o o o

)
¢ o e o o o ¢ o ¢ o o & s Qe o e o o & o & & s s s s & s ¢
*

Data Structure Relationships among LUs for a Distributed Transaction

e ¢ o o o
e o o o
¢« o o e

e e e o

e ¢ ¢ o o o

LU

LU PR
--Local LU
--Remote LU
--Local WU
--Remote LU

-“te o o e ¢ o e e o e e o & e e o

e o e o o o ¢ o & e ¢ o o

¢ ¢ & o o o o o o o

e e e o o o ¢ ¢ o o o e

e o e e o o ¢ o o & o o o

. ALLOCATE

ALLOCATE

. ALLOCATE

ALLOCATE
ALLOCATE
ALLOCATE

. ALLOCATE
. ALLOCATE

ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE

(delayed),
(delayed),
(delayed),
(delayed),
(delayed),
(delayed),

(immediate), Successful --Local LU e e s e e e e s
(immediate), Successful --Remote LU c e e e e
(immediate), Unsuccessful --Local LU e e e e e
(immediate), Unsuccessful --Remote LU . . .
(delayed) Race,
(delayed) Race,
(delayed) Race,
(delayed) Race,

CONFIRM (by Bidder) --local LU c e e s s s
CONFIRM (by Bidder) --Remote LU o . o« o o
RECEIVE_AND_MWAIT (by Bidder) --Local LU . .
RECEIVE_AND_NAIT (by Bidder) --Remote LU .
CONFIRM (by Bidder), Attach Error --Local LU

CONFIRM (by Bidder), Attach Error --Remote LU

.
.
.

e ¢ o s o

« e o o

Bracket Rejected --Bidder LU .
Bracket Rejected --First Speaker LU
Bracket Accepted --Bidder LU .« o e e
Brackat Accepted --First Speaker LU

® e e e e 4 e & e e e & 2 e o & & o & & & o & & 4 ¢ o

e o & 6 e o e & o e ¢ ¢ e e & & & e. & 4 e o s e 4 s e o

e o e ¢ o o o o

« o e o e o .
e e e o & o & o o o e o o o

List of Illustrations

e o e e ¢ o ¢ o & o o e v o e o

¢ ¢ o ¢ e e & o o & o o o

¢ e o o o o e o e & o o 0o & o e * & & & & & ¢ o 0 6 ¢ o

lf?N

I‘:)N
-
(-0

2-16
2-18
2-18
2-19
2-19
2-19
2-20
2-20
2-20

2-64
2-65
2-66
2-67
2-68
2-69
2-70
2-71
2-72
2-73

xxi

wge

wile

-~-Remote

€ 6 & & 6 & o e e & e e o o e & o e o ¢ o o

.
.
.
.
.
.
.
.

e ¢ o e o ¢ e e o o e s o

¢ e e & & o & 4 e s e ¢ s e 0 & & o o & o ¢ ¢ o

¢ o o e & + o ¢ ¢ ¢ e e & e ¢ o o e o o s o

¢ ¢ e e e e & & 6 & o o e ¢ s o e s s e s o e o o o

@ o o e e 8 e o e e e & o e o e e o s o e o o

Figure 2-59. DEALLOCATE FLUSH (RQEl) --Local LU e o e s s s 4 s e s e s o o o
Figure 2-60. DEALLOCATE FLUSH (RQEl) --Remote LU T e e s e s e s e e s e s s u
Figure 2-61. DEALLOCATE FLUSH (RQD1) --Local LU e o o o o .6 s s s s e e s o s
Figure 2-62. DEALLOCATE FLUSH (RQD1) --Remote LU . e o o o . . c o o o o
Figure 2-63. DEALLOCATE FLUSH (RQE1), SEND_ERROR, -RSP Sent --Local LU « e o o
Figure 2-64. DEALLOCATE FLUSH (RQE1), SEND_ERROR, -RSP Sent --Remote LU [P
Figure 2-65. DEALLOCATE FLUSH (RQE1l), SEND_ERROR, -RSP not Sent --Local LU .o
Figure 2-66. DEALLOCATE FLUSH (RQE1l), SEND_ERROR, -RSP not Sent --Remote LU .
Figure 2-67. DEALLOCATE CONFIRM (RQD2|3) --Local LU e e o s s s a2 s e s o s
Figure 2-68. DEALLOCATE CONFIRM (RQD2|3) --Remote LU o« o v » e o o s o o o
Figure 2-69. DEALLOCATE ABEND Issued in SEND, Betueen-Chain State ~--Local LU
Figure 2-70. DEALLOCATE ABEND Issued in SEND, Between-Chain State --Remote LU
Figure 2-71. DEALLOCATE ABEND Issued in SEND, In-Chain State ~-Local LU e o e
Figure 2-72. DEALLOCATE ABEND Issued in SEND, In-Chain State --Remote LU . .
Figure 2-73. DEALLOCATE ABEND Issued in SEND, -RSP Received State --Local LU
Figure 2-74. DEALLOCATE ABEND Issued in SEND, -RSP Received State --Remote LU
Figure 2-75. DEALLOCATE ABEND Issued in SEND State --Local LU
Figure 2-76. DEALLOCATE ABEND Issued in SEND State --Remote LU e e e e e e s
Figure 2-77. DEALLOCATE ABEND Issued in RCV, Between-Chain State --Local LU .
Figure 2-78. DEALLOCATE ABEND Issued in RCV, Between-Chain State --Remote LU
Figure 2-79. DEALLOCATE ABEND Issued in RCV, In-Chain State --Local LU o« .
Figure 2-80. DEALLOCATE ABEND Issued in RCV, In-Chain State --Remote LU . .
Figure 2-81. ALLOCATE (delayed), DEALLOCATE FLUSH (by First Speaker) --Local LU
Figure 2-82. ALLOCATE (delayed), DEALLOCATE FLUSH (by First Speaker) --Remote LU
Figure 2-83. ALLOCATE (delayed), DEALLOCATE CONFIRM (BY First Speaker) --Local LU
Figure 2-84. ALLOCATE (delayed), DEALLOCATE CONFIRM (BY First Speaker) --Remote LU
Figure 2-85. ALLOCATE (delayed), DEALLOCATE FLUSH (by Bidder) to RECEIVE_AND_WAIT

--Local LU . . . B
Figure 2-86. ALLOCATE (delayed), DEALLOCATE *LUSH (by BIdder) to RECEIVE_AND_| NAIT

--Remote LU . e s o s o e o o s o o s s e . e o e s e o o
Figure 2-87. ALLOCATE (delayed), DEALLOCATE FLUSH (by Bidder) to SEND_ ERROR --Local LU
Figure 2-88. ALLOCATE (delayed), DEALLOCATE FLUSH (by Bidder) to SEND_ERROR

LU e s e . e o o o s » . . P o s o o« o o
Figure 2-89. ALLOCATE (delayed), DEALLOCATE CONFIRM (by Bldder) -~Local LU o .
Figure 2-90. ALLOCATE (delayed), DEALLOCATE CONFIRM (by Bidder) --Remote LU .
Figure 2-91. CONFIRM (RQD2|3) --Local LU e o 8 o o s s e s s e e e b s e s e
Figure 2-92. CONFIRM (RQD2|3) --Remote LU e o s o 4 s s s e s o 4 s e e e o o
Figure 2-93. CONFIRM (RQE2I3) ==Llocal LU . . o ¢ ¢ ¢ ¢« ¢ o o o o o o o o o o =
Figure 2-94. CONFIRM (RQE2}3) --Remote LU e e e o o o o o s e s e s s s
Figure 2-95. CONFIRM (RQE2!3), SEND_ERROR --Local LU * v 5 o s 8 s s s 8 o v
Figure 2-96. CONFIRM (RQE2|3), SEND_ERROR --Remote LU e o o o o s o o o o o o
Figure 2-97. CONFIRM (RQD2{3), SEND_ERROR --Local LU e e o e s 2 e s e s s e »
Figure 2-98. CONFIRM (RQD2|3), SEND_ERROR --Remote LU c e.% o s 4 s s s e e
Figure 2-99. RECEIVE_AND_WAIT Causing RQE,CD --local LU e e s e e s
Figure 2-100. RECEIVE_AND_WAIT Causing RQE,CD --Remote LU e s e e s o e s s s
Figure 2-101. SEND_ERROR before SEND_DATA --Remote LU e o o o 2 s s s s s s ®
Figure 2-102. SEND_ERROR before SEND_DATA --Local LU e s s s s s s e s e s .
Figure 2-103. SEND_ERROR before CONFIRM --Remote LU e o o o s s e 6 s o e e e
Figure 2-104. SEND_ERROR before CONFIRM --Local LU s e s e e s e e e e e e
Figure 2-105. SEND_ERROR at End-of-Chain --Remote LU« ¢« ¢ « .
Figure 2-106. SEND_ERROR at End-of-Chain --Local LU . e e e e e e e e e
Figure 2-107. REQUEST_TO_SEND, Received in Send State -~Remote Ly e e 4 s s e
Figure 2-108. REQUEST_TO_SEND, Received in Send State --local LU e e e e e e e
Figure 2-109. REQUEST TO_SEND. Received in Receive State --Remote LU
Figure 2-110. REQUEST_TO_SEND, Received in Receive State --Local LU e s e o o

CHAPTER 3. LU RESOURCES MANAGER

Figure 3-1. Overview of Component Interactions Involving the Resources Manager
Figure 3-2. Allocation of a Resource Control Block (RCB) e e e e e e e e e
Figure 3-3. Allocation of Session Using BID_WITHOUT_ATTACH e s e e s o e o e
Figure 3-4. Allocation of Session Using BID_WITH_ATTACH c e e e e e e e e
Figure 3-5. Responding to a Bid for a Session ¢« « ¢« ¢« v o o o o o o o
Figure 3-6. Immediate Allocation of a Session . . . ¢« ¢ ¢ ¢« ¢ ¢ ¢ o o o o o &«
Figure 3-7. Attach Flous e e e C 4 e s o s s s s s s s s e e s e e e
Figure 3-8. BIidRACES . + ¢ ¢ ¢ ¢« o+ o o o o o o s « o s s s s o s o o o o o
Figure 3-9. READY TO RECEIVE (RTR) Flous e e s e s s e s e e s s e e e e
Figure 3-10. End of a Conversation e e e e s s s e e s e e e s e e e e e e e
Figure 3-11. Activation of a New Session e ¢ s s s s s s s s s s s s e e s e
Figure 3-12. Decreasing the Number of Sessions “ s b s e s e e s e s e s e e
Figure 3-13. Session-Outage Actions e s v e e e e s e e e s e e s e e e e e

SNA Format and Protocol Reference Manual for LU Type 6.2

¢ o o o ¢ ¢ o o o o o o

e ¢ e ¢ o ©o & o e o o & o

¢ o o o e o o o o o o o o

¢ & e e + o o o o e ¢ s o e e e e o o s & o o o o @

¢ o o o o o & e o & ¢ ¢ o

3-1
3-3
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-16

CHAPTER 4. LU NETHWORK SERVICES

Figure 4-1. Protocol Boundaries Between LU Network Services and Other Components
Figure 4-2. Session-Services RH Formats .
Figure 4-3. Session-Control RH Formats .
Figure 4-4, Format of User Data e e e e
Figure 4-5. Reinitiation Responsibility .
Figure 4-6. Maintenance Services RU Formats

Figure

Figure

Figure 4-10. SSCP-LU Session Activation to an LU in a Peripheral Node .
Figure 4-11. SSCP-LU Session Deactivation to an LU in a Peripheral Node .
Figure 4-12. LU-LU Session Initiation by Local PLU in a Peripheral Node .
Figure 4-13. LU-LU Session Initiation by Local S5LU in a Peripheral Node . .
Figure 4-14. LU-LU Session Initiation by Remote LU to Local LU in a Peripheral Node

4-7. Records Exchanged Between LNS and Other Components
Figure 4-8. PNCP-LU Session Activation . e e
4-9. PNCP-LU Session Deactivation .. e e e e e e e s

« e . . e . « o e o s .

o

o« o

. e

e ¢ o e
o o o o

. .
. . .
. . .
. . -

¢ o s e @
o e o
o e o o

-
.
o o .
.

. .

o e & o o o

.
.
°
s °© o s s o @
-
.

s & s © e e e o

e s & o & o o

.
.
.

o« .
. .

o o e

°a e e

. .

.

.

e & & & o o s o o e @
€« o 4 ¢ e o e e o & o o

e e 2 e o e e & o o o o

.
.
.
°
.
°
.
.
.
.
.
.

.

Figure 4-15. LU-LU Session Termination by Local LU in a Perlpheral Node
Figure 4-16. LU-LU Session Termination by Remote LU to Local LU in a Peripheral Node

Figure 4-17. SSCP-LU Session Activation to an LU in a Subarea Node “ e e e
Figure 4-18. SSCP-lLU Session Deactivation to an LU in a Subarea Node
Figure 4-19. LU-LU Session Initiation by Local PLU in a Subarea Node
Figure 4-20. LU-LU Session Initiation by Local SLU in a Subarea Node . .
Figure 4-21. LU-LU Session Initiation by Remote PLU to Local SLU in a Subarea Node

Figure 4-22. LU-LU Session Initiation by Remote PLU to Local SLU in a Subarea Node

Figure 4-23. LU-LU Session Termination by Local LU ¢ o o v v o o &
Figure 4-24. LU-LU Session Termination by Remote LU e e e e e e e e e e e e e e

°

¢ ¢ o

.
. .
.

+ ¢ ¢ ¢ e o e o

CHAPTER 5.0. OVERVIEW OF PRESENTATION SERVICES

Figure 5.0-1.

Figure 5.0-2.

Overvieuw of Presentation Services, Emphasizing PS.INITIALIZE and

PS .VERB_ROUTER o e e s e s s s e e s s s e s e s s s e s e e e
Initialization and Termlnat1on of Presentation Services and Transaction
Program R

CHAPTER 5.1. PRESENTATION SERVICES--CONVERSATION VERBS

Figure 5.1-1.

Figure 5.1-2.
Figure 5.1-3.
Figure 5.1
Figure 5.1
Figure 5.1-
Figure 5.1

Overview of Presentation Services, Emphasizing Presentation Services for
Basic Conversations . ..
LU Control Block List and Assoc!ated Llsts

Transaction Control Block (TCB) [P
Resource Control Block (RCB) [.
PS.CONV Requests and Associated RM Responses
SEND_ERROR Race .« . e s e s s s e
SEND_ERROR Race uith Deallocatlon e e e e e e

e o ° s e o -

¢ e o 0
o e e e o o
¢ ¢ o e s
o o o o o o o
e e o
« o o o o o s
« o o @ o o e
e e s e o o o
o e s o o o
e o o & o
« ¢ o e & o
e o o o 4 o o
¢ e o o o o

CHAPTER 5.2. PRESENTATION SERVICES--MAPPED CONVERSATION VERBS

Figure b5.2-1.

Figure 5.2-2.
Figure 5
Figure 5
Figure 5
Figure 5
Figure 5
Figure 5
Figure 5.2-9.
Figure 5.2-10.

Overviewn of Presentation Services, Emphasizing Presentation Services for
Mapped Conversations e e e e 0 s . e e e
PS.MC's Use of the Basic Conversation Protocol Boundary e o
GDS Variables and Logical Records e e e e e e s e e e ee e

. .

Transformation of Data from MC_SEND_DATA to a GDS Variable
An Example of Mapping . . . + ¢« ¢ ¢ ¢ s v ¢ v o v e 4. e
MC_TEST_PROC . e .

Detecting a Service Error as a Result of MC RECEIVE AND NAIT Processtng
Detecting a Service Error as a Result of a Call to MC_TEST_PROC . ..
Receipt by PS.MC of a SVC_ERROR_PURGING Return Code .. .
Receipt by PS.MC of a SVC_ERROR_TRUNC or SVC_ERROR_NO_ TRUNC Return Code

« o o e e

°
°
.
.
°

e o & o

.
-
.
.
.

CHAPTER 5.3. PRESENTATION SERVICES--SYNC POINT SERVICES VERBS

Figure 5.3-1.
Figure 5.3-2,
Figure 5.3-3,
Figure 5.3-4.

Figure 5.3-5,
Figure 5.3-6.
Figure 5.3-7.
Figure 5.3-8.

Relationships among Failures and Recovery

A Typical Sync Point Tree s e s e e e e s
Basic Sync Point Flows e e e s e e e e
Optimized Flow: No Resource Changed . .
Optimized Flow: Last Resource s s e e e
Sync Point Services for Local (Nonconversati
Files s s s s e s s s e e s e e e e s e s
Sync Point Services for Conversation Resources
Sync Point Services for Function Shipping . .

e o & o o
e 6 o o &
e s o e
v e e e
e o o o o
¢ e o o
¢ o o o o
e« ¢ o o o
e o o o o

.
esources, Such as
.

.

€ wwro ¢ & e

omoaoco
=

.
.
-
-
-
. e o o o e « o o

e ¢ o Ao o ¢ o o

.
e o o e o o e e
°

* o s o o s s o

List of Illustrations

e ¢ e e 4 e o s s s s s s o o

Iy
i1

1

VIMTPU~LN =~ OO VONCOTUIVTUWONWOO @

«P#bh&b&&#b?&‘b#b&&#‘bb##
LLLDLPLLLLLULIVOLVIOGEVOUMNN M~

5.0-2

5.0-3

o o o
i

(S RC CE S]
t—o-n-crl-o—v-
PoVVILHUN

.
]

NN!:)NN

s TTBIBILN
NNI‘:’NI:)O o o e
et ot ot ot

yluwnnm
oYU N

e e o o &
[}

oowm e wm

o o o

O Ll W ou'»uuu

1
Nowm pprPun

xxiv

Figure 5.3-9. Illustrative Sync Point Flow: General Cas

Figure 5.3-11. Illustrative Sync Point Flow: No Resources changed

Figure 5.3-12. Back Out Example 1 e o v s 0 e s e e .
Figure 5.3-13. Back Out Example 2 e s e e e e e e e s
Figure 5.3-14. Resync After Conversation Failure . . .
Figure 5.3-15. Resync after LU Failure e e e e e e e s
Figure 5.3-16. Cold Start of an LU
Figure 5.3-17. Log Name Mismatch during Resync

CHAPTER 5.4. PRESENTATION SERVICES--CONTROL-OPERATOR VERBS

Figure b5.4-1. Control-Operator Components in Relation to Other Components of the LU

e o o o o

.
.
.
.

e o ¢ e o

* e ¢ & o o

* e & e o o o

Figure 5.3-10. Illustrative Sync Point Flou: Last Resource Optimization

.

P Y
e e e e o o 0

e e 4 e o e e s o
« s e e e o .0 o o
e« o 4 8 6 e e s e

Figure 5.4-2. LU Component Relationships for Distributed Session-Control Verbs
Figure 5.4-3, Sequence of Verbs and Information Exchange in CNOS Transaction Programs
Figure 5.4-4. CNOS External Message-Unit Flows c e e e e s e e e

"Figure 5.4-5. CNOS Process Interactions at a Single LU
Figure b5.4-6. Transaction Handling Component Relationshi

« o e s o

ps--Case 1

Figure 5.4-7. Transaction Handling Component Relationships--Case 2
Figure 5.4-8. Transaction Handling Component Relationships--Case 3

Figure 5.4-9. NoRace ¢ v v v v v o o o s
Figure 5.4-10. Single-Failure Race Condition--Case 1 .
Figure 5.4-11. Single-Failure Race Condition--Case 2 .
Figure 5.4-12. Double-Failure Race Condition

Figure 5.4-13. Structure of Presentation Services for the Control Operator

© o

¢ o o e
« o o o

-
o s e o
* o o
« o s o

Figure 5.4-14. Single-Session Contention Polarity Determined by

Minimum-Contention-Hinner-Limit Parameters .

Figure 5.4-15. Source-LU Component Interactions for CNOS
Figure 5.4-16. Target-LU Component Interactions for CNOS

CHAPTER 6.0. HALF-SESSION

Figure 6.0-1. Overview of Half-Session c e s e e e e

CHAPTER 6.1. DATA FLOW CONTROL

Figure 6.1-1. Overview of DFC for LU-LU Half-Sessions
Figure 6.1-2. Detatled Structure and Protocol Boundaries
Half-Sessions . . ¢ ¢ ¢« ¢« v o ¢ o o o &«
Figure 6.1-3. Use of Sequence Numbers c e ee e e e
Figure 6.1-4. Case 1: "Late" SIGNAL or Response .
Figure 6.1-5. Case 2: "Early" SIGNAL e e e e e
Figure 6.1-6. Case 3: "Early" SIGNAL e e e e e e
Figure 6.1-7. SEND_DATA_RECORD to Request RH Mapping
Figure 6.1-8. Request RH to RECEIVE_DATA Record Mapping
Figure 6.1-9. DFC Request Formats e e e e e e e e e
Figure 6.1-10. DFC Response Formats e e e e e e e e s
Figure 6.1-11. Overvieu, Structure, and Protocol Boundari
Half-Sessions e e e e e e e e e e e s

-
.
.
-

CHAPTER 6.2. TRANSMISSION CONTROL

Figure 6.2-1. Structure of TC and Flow of Data within the Half-Session “ e
Figure 6.2-2. Distributing the Session Cryptography Key and Session Seed to the
Figure 6.2-3. Interrelation of TC.SEND and TC.RCV + ¢ ¢ v « ¢ « & + &«
Figure 6.2-4. TC Initialization Calling Tree et s e s e e e et e e e e e
Figure 6.2-5. SEND Calling Tree e o s s 5 s e v s s 4 s s e e e e s e e woes
Figure 6.2-6. RCV Calling Tree e e e e s e e s s e e e e e e e e e e e e

APPENDIX A. NODE DATA STRUCTURES

APPENDIX D. RH FORMATS

Figure D-1. RH Formats e e e e e e e e e e e e e e

.
. .
.

« o e
« o

-
. o

* e o o e o

of

-

.
.

-

e e o ¢ ¢ ¢ o o o o Y

for

e o e o o o

I - K

¢« o o o o o o o

es of

-
e (Yo o o e o o o @
¢ wye o ¢ o o o o o o

s o = s s

¢ o o

e o s e o & s o o =

]
3

« o .

e o e o o s o
¢ o ¢ e o o o
e o ¢ o o o o ¢

.

e & o o o & o o o »
e o e ¢ o e o o o

<
I
[~

o G s e e e e 4 o

« s e e .

Figure D-2. FMD Request/Response Combinations for Sessions between Two LU 6.2s

SNA Format and Protocol Reference Manual for LU Type 6.2

¢ e ¢ o ¢ o o s o

o e e ¢ ¢ ¢ o o o o

e e e ¢ o o o o o

¢ ¢ e o

~

e e ¢ o ¢ o s s e

.

¢ o ¢ o ¢ o o o o

¢ o o ¢ o o & o o

e o o

* e ¢ o o o ¢ o o

.

e e e o s o o ¢ o o

o o e o o e o & o

e o e o

5.3-9
5.3-11
5.3-12
5.3-14
5.3-15
5.3-16
5.3-17
3-18
3-19

o,

nown

LR U‘IUIU!:J!U!U!UIU‘IU!U‘I
S oL p .
1 -bf&

1 U L I
D) bt bt ot Gt ot Pt Gt Pt Gt

.
1

WO NGOPLPUN=OONN

.

[
NN
o o &

D)

.
1

6.0-1

s e s s OO o~
.
P
1

[- N N

o
.
-
1
[
~

APPENDIX

Figure

APPENDIX

APPENDIX

Figure

APPENDIX

Figure
Figure
Figure

APPENDIX

Figure

APPENDIX

Figure

APPENDIX

E.

E-1. RU Sizes Corresponding to Values X'ab' in

F.

REQUEST-RESPONSE UNIT (RU) FORMATS

PROFILES

SENSE DATA

G-1. Sense Data Format “ e e o e o s o s

H. FM HEADER AND LU SERVICES COMMANDS

H-1. Symbol-String Types
H-2. Symbol String Lengths e e e e e e s
H-3. Examples of FM Header Placement . .

I.

GENERAL DATA STREAM

I-1. GDS Structured Field e e v e e s

N.

N-1. Syntax of an FSM State-Transition Matrix

T.

FSM NOTATION

TERMINOLOGY:

ACRONYMS AND ABBREVIATIONS

BIND

List of Illustrations

E-8

XXV

XXVi SNA Format and Protocol Reference Manual for LU Type 6.2

CHAPTER 1. INTRODUCTION

E AND ORGANIZATION OF THIS BOOK

This book, in conjunction with the companion
books listed in the Preface, provides a
formal definition of Systems Network Archi-
tecture (SNA). It is intended to complement
individual SNA product publications, but not
to describe individual product implementa-
tions of the architecture.

SNA logical unit type 6.2 (hereafter general-
ly referred to as LU 6.2, or simply LU) is
defined here in the form of a functionally
layered system, represented by a formal
description, that is decomposable into compo-
nents called protocol machines. Protocol
machines generate output sequences in
response to input sequences, in accordance
with fixed rules, or protocols, governing
distincet information transfers into, out of,
and within the system.

The protocol machine definition of SNA uses
the following basic notions:

¢ Finite-state machines: A finite-state
machine (FSM) is an abstract device hav-
ing a finite number of states (memory)
and a set of rules whereby the machine's
responses (state transitions and output
sequences) to all input sequences are
well defined.

® Routing and checking logic: Routing and
checking logic performs a mapping of
inputs (message units and FSM states)
into outputs. It is used to verify
validity of message units and to route
them to FSMs.

e Block diagrams: A block diagram repres-
ents the decomposition of a protocol
machine into its component submachines
(which themselves are protocol machines)
and the signaling paths between them.
Each block in the diagram can be further
decomposed into its constituent subma-
chines.

® Protocol boundaries: A protocol boundary
is a specification of the format and con-

tent requirements imposed on the signals
exchanged between protocol machines.

The remainder of the book presents details of
the SNA formats and protocols for LU 6.2,
arranged as follows:

¢ Chapter 2 provides an overview of the
functions and structure of the LU, as
well as the sequences and message units
exchanged between two communicating LUs.

¢ Chapters 3 and 4 describe LU services
manager components; these components
attach transaction programs as requested,
allocate sessions to transaction pro-
grams, and coordinate the activation and
deactivation of sessions involving LUs.

¢ Chapters 5.0 through 5.4 describe the
general structure and detailed functions
of presentation services—in particular
the execution logic for LU 6.2 verbs.

® Chapter 6.0 provides an overview of the
half-session, while Chapters 6.1 and 6.2
describe the data flow control and trans-
mission control protocols, respectively,
within half-sessions.

® Appendix A describes the data structures
used in the formal description and the
relationships among the control blocks.

® Appendixes D through I provide details of
the general data stream and various head-
ers, request-response units, profiles,
and sense data used in SNA.

e Appendix N describes the basic concept
of, and notation for, finite-state
machines.

¢ Appendix T (included as foldout pages at
the back of the book) provides a compre-
hensive list of abbreviations and acro-
nyms used in the book.

Chapter 1. Introduction 1-1

tessiscessssssesssssssssessss.Other NAUS (PUs and SSCPS) ..coccecceccacccasccaccnonnns

tesecsesesesessssssesessesonses e A. . . .A S
e T 2 T
cesecccssssssssssscsccssssssscessss Vo o o JV I
. - . . B
. . . .
. . . .

. <~>|Half-Session|<t> — = = = =>|<}>lHalf-Session|<->) < >lUser

. Upper . . : Upper .

End . Layers J . I . ° Layers .

User|< >lof the o . . . of the .
. LU L4 . | . . L .
. . | . .

. <->|Half-Session|<{> <1>|Half-Session|<—> ; < >1End
. .] . .| |User

. LUnal |. | . : LUnaj |.

. . . .
teceeseectessesassessssssasessenns | e

. . tesecsssssenssececasesassenosssnns

. . i teetseseecaccesctsetteesrstesnonan

. . eesseesseesssssssessessessoasanns

. . l eeesesccresesstssessrssrsceasenns

. <->lHalf-Session|<{> csecssnsssebessscsssssessennansnse

. . | sevesessesnsas seeessssescrsanss

. Upper . cesssecnsses L sessssssenesnis

. Layers . . | cessesesssusss seesssessssssseas

< >lof the . . sesecssssnes . cesnssssencssan

. L ® . | ceseesesesssns sessenservesssnes

. . S 9200030000 . *P 000 EePLLIEVO S

. . I erssecssssenne cerscsssrsenssnss

. <->|Half-Session|<{> ceesscssssasessessescssesenrn s

. . | N

. . teesecstsreserersersnrrenrerasreie

. LUna2 |. | ceescescessssssessessresrersaerss e

. . Ceessessessseaseesencscssresrasuans
seeestsssescenscrscscsesorsarstras I ceteseesserstssstesasensesennssens

End cescenesssssss @ Liiiiieessncons ceeesecessssssactsecstaavooansnens
User] J.oeeeeeocnccanns tececescvesesacs | teesesccrevescecsstectsacrtancstone
LR B A A B A) . 9 020 000 e0 000 4 6 0000 00NN LELN SNBSS ISSL
tececessscenane ceesetencssonses | tesecessseecsscsrssacrsasesssnsns

o000 e es e . ® 5 8600000000000 © 6 0O P OGPPSO EROOI LI OOELILLIEIBGENOESES

. . | . .

. . . .

. . | . .

. . | . .

. <->|Half-Session|<t>| = —d <>fHalf-Session|<—> .

. . e MSG=(najrnai, . .
. Upper . |lother parameters,|. - Upper .
. Layers . .Jand data) . . Layers |[< >|End

< >lof the o . . ° of the . User
. Ly ° . . . L ;

. <~>lHalf-session|<i> <t>|Half-session|<-> .

. .| Path Control . .
. LUnai |. Netuwork . : LUnak | .

. . - -

© 8 8 008 0000008000800 RB0000CE00OCOCCRPIOCLOEEGOIEOLOEEOEOLULIOCOEEOCERNRITOIOEOERDRLIOCEORIRBCOELIOLIEOIOTLOIVPAIBOIOOROEOSTOIOGCOIOOROIORIOOROGOIOGOEGOMGES

ceescecssvssscscnsvsscncscsssncsees SNA Network ...ccieiiececsorscsscocscescsscnncnnsns

Figure 1-1. Overview of the SNA Network

1-2 SNA Forﬁat and Protocol Reference Manual for LU Type 6.2

GENERAL CONCEPTS

DEFINITION OF AN SNA NETWORK

An SNA netuwork:

® Enables the reliable transfer of data
between end users (typically, terminal
operators and application programs).

® Provides protocols for controlling the
resources of any specific network config-
uration.

An SNA network consists logically of a set of
network addressable units (NAUs) intercon-
nected by an inner path control network con-
sisting of the path control, data 1link
control, and physical layers; Figure 1-1 on
page 1-2 shows the general relationships.
SNA networks functionally have a layered
organization, the outermost layers of which
form the NAUs, each of which in a general SNA
network is associated with a network address
(na). A NAU consists of the upper layers,
transaction services (TS) and presentation
services (PS), and one or more half-session
protocol machines (consisting of the data
flow control and transmission control layers)
depending on the number of other NAUs with
which it can be paired to form sessions.

Those NAUs serving end users are called log-
ical units (LUs). An LU allows an end user
to gain access to network resources (such as
links, programs, and directories) and to com-
municate with other end users. An LU may
also provide a service (such as for a control
operator) wholly contained within the LU that
is accessed from another LU via a session.
Thus, in some cases, an LU-LU session has an
end user only at one end. The presence of
various services within an LU is a function
of LU type, product design, and installation
options.

In general, there need not be a one-to-one
relationship between end users and LWUs. The
association between end users and the set of
LUs is an implementation design option.

The LUs provide protocols allowing end users
to communicate with each other and with other
NAUs in the network. An LU can be associated
with more than one network address (or with
multiple, distinct local-form session identi-
fiers); this allows two LUs (and therefore
their end users) to form multiple, concur-
rently active sessions with each other.

Besides LUs, two other network addressable
units are defined: physical units (PUs) and
system services control points (SSCPs).
These NAUs, in conjunction with one another
and with LUs, provide a variety of session,
configuration, management, and
network-operator services.

Message units are transported between NAUs by
the path control network. These message
units are of the general form:

MS6 = (naj,nai,other parameters, and data),

where naj is an address of the destination
NAU, and nai that of the origin NAU. (The
pair, naj and nai, together identify a par-
ticular session; their form varies depending
on the types of nodes involved.) The path
control network routes and delivers message
units to naj in the same order as sent from
nai.

The message units transferred within an SNA
network generally have +two components:
end-user information and control information.
The end-user information is passed by the SNA
network and does not affect its state. Con-
trol information may sometimes be passed to
the end users (as in the case of the Change
Direction indication, which allows one end
user to transfer the right to transmit data
to the other); however, its main purpose is
to change the state of the SNA network, thus
effecting a normal control change (such as a
change to a path control routing table) or a
recovery from an exception condition.

NODES

The SNA network physically consists of nodes
interconnected via links. An SNA node is a
grouping of SNA-defined protocol machines.
An SNA product node may consist of addi-
tional, product-specific protocol machines
that use one or more SNA nodes. A
user-application node may consist of addi-
tional, installation-defined protocol
machines that use one or more SNA product
nodes. These relationships are shown in Fig-
ure 1-2 on page 1-4. The abstraction of
nested nodes is a useful reminder that each
product exists in an environment that con-
tains many design features that are not
defined by SNA.

For specific details of nesting of SNA nodes
and SNA product nodes within user-application
nodes, see SNA Concepts and Products and SNA .
Technical Overvieu.

In this book, 'node" is synonymous with "SNA
node," and the qualifier will generally be
omitted. Thus, end users and protocol
machines not defined in SNA are external to
the node, as that term is used hereafter.

Various node types are defined in SNA: types
1, 2.0, 2.1, 4, and 5. They are distin-
guished by varying capabilities, such as for
interconnection, and by the presence or
absence of different NAU types.

For example, type 2.1 nodes can connect to
the general subarea routing network or to
other type 2.1 nodes directly. In the former
case, subarea nodes (discussed below) provide
general intermediate routing within the path
control layer, allowing complex network con-
figurations to be fashioned; in the latter

Chapter 1. Introduction 1-3

(a)

(b)

(e)

D R I I R A I I A N N A I A A ST AP A AR

ves SNA Node eee

Ly DY

LI I I R R N I I I I A seeven

sessssssssssssssessssssssss SNA Product Node

User-Application Node

Typical Case

D I I N I A A R I A A A A R N)

coe P A R Y e
v seesesesvee voe

«+«+| SNA Node checenenen SNA Node oo

.o sseecccnce Ly

I N I I A I I I S A A A N I I I I S AP AP

tesssssssssssencnssssssssses SNA Product Node

User-Application Node

Two SNA Nodes within an SNA Product Node

evossesesessesseceense R A R R N N N N R

DY ves s e Ly
cee cew L oo

.+«.| SNA Node v ves SNA Node ‘e

s so e oo s

L R I A A seevecsesssssssecroos

..+ SNA Product Node ... SNA Product Node

User-Application Node

Two SNA Product Nodes within a User-Application Node

Figure 1-2. Examples of Nested Nodes

1-4

case, two type 2.1 nodes can interconnect thereby insulated from changes in the global
independently of other nodes, in a network address space resulting from reconf-
peer-to-peer relationship. igurations.

Type 1 and type 2 (i.e., 2.0 or 2.1) nodes Types 4 and 5 nodes are referred to as sub-
are also referred to as peripheral nodes, area nodes. (A subarea represents a parti-
because they have limited addressing and tioning of the network address space. It
path-control routing capabilities. They do contains a subarea node and all the peripher-
not participate in the general network rout- al nodes attached to the subarea node.) Sub-
ing based on a global network address space. area nodes, besides also being sources and
Instead, they depend on "boundary function" sinks of data, have more general path control
support in types 4 or 5 nodes to transform capabilities. They can perform intermediate
between the address forms, local to the routing—passing message units received from
peripheral nodes, and the network addresses one node on to another—and provide adaptive
used in the general routing portion of the control of traffic flow within the subarea
path control network. Peripheral nodes are routing portion of the network.

SNA Format and Protocol Reference Manual for LU Type 6.2

NAUS AND NODE TYPES

A node always includes a physical unit (PU),
which controls the attached links and various
other resources of the node. A PU has a type
designation corresponding to the type (1,
2.0, 2.1, 4, or 5) of node in which it
resides.

A node typically also includes logical units
(LUs), through which end users attach to the
node, and thus to the SNA network. From the
vantage of this book, node types 2.1 and 5
are of primary interest, as these are the
only nodes that include LU 6.2 implementa-
tions.

A subarea PU or subarea LU resides in a sub-
area node. A peripheral PU or peripheral LU
resides in a peripheral node.

Type 5 nodes each contain a system services
control point (SSCP). (Type 4 nodes do
not—the primary architectural distinction
between subarea node types.) An SSCP sup-
ports protocols for management and control of
a domain. A domain consists of one SSCP and
the PUs, LUs, links, and link stations that
the SSCP can activate. Each PU, LU, link,
and link station in a network belongs to one
of the domains comprising the network, and
soma can belong to more than one domain—a
feature referred to as 'shared control."
Each SSCP provides network services wuithin
its domain (basically for converting local
names to global addresses) through protocols
supported in conjunction with the PUs or LUs
in the domain. The multiple SSCPs in a net-
work jointly support network services across
domains.

Type 2.1 nodes each contain a peripheral node
control point (PNCP), which provides services
on a more local scale than an SSCP provides.
In particular, a PNCP can mediate LU-LU

OTHER DEFINITIONS AND NOTATIONAL CONVENTIONS

This section describes some notational con-
ventions widely used in both the figures and
the text. (Additional conventions are
defined within figure legends throughout the
book.)

A naming convention, using qualifiers sepa-
rated by periods to denote more specific com-
ponents of a composite protocol machine, is
used throughout the book. Component subma-
chines are shown as blocks within a larger
block that represents the composite machine.

In many cases, it is desirable to identify a
qualifier by a phrase of multiple terms, in
order to better convey the meaning of the
qualifier. The multiple terms in the phrase
are connected by underscores to indicate that
they are part of a phrase rather than sepa-
rate qualifiers representing further decom-

session-initiation requests (by doing local
address look-up) . in the type 2.1 node
peer-to-peer context just as an SSCP does in
the more general network configuration con-
text.

THE PATH CONTROL NETWORK

The system consisting of all interconnected
path control (PC) and data link control (DLC)
components forms the path control network.
The input/output streams of the path control
network consist of streams of control infor-
mation, such as addresses, and associated
user data.

Each node has a PC element and NAUs. The
node and link connections of the network, and
the PC routing algorithms, combine to provide
the following behavior for the path control
netuwork:

® An input to a PC element in node-i from a
NAU is transmitted and routed by the path
control network and emitted as output by
the PC element in node-j to the destina-
tion NAU. (Since node-i and node-j can
be the same node (i=j), NAUs uithin the
same node can be connected by a session.)

® Message units with the same session iden-
tifiers are emitted by the path control
network in the order submitted by the
origin NAU.

Just as primary-secondary DLC asymmetries and
other DLC details are hidden from PC, so the
routing and other concerns of the path con-
trol netuwork are not visible at the protocol
boundary with the NAUs; in particular, the
path control network conceals the node inter-
connections and the NAUs need only consider
their logical connections (i.e., sessions)
with other NAUs.

positions. The underscore convention is also
used in names of states and data structures.

Each protocel machine in the book has a
unique name consisting of a sequence of qual-
ifiers. For example, (MACHINE.PRI.X_SEND,
MACHINE.SEC.X_RCV) and (MACHINE.SEC.X_SEND,
MACHINE.PRI.X_RCV}) are examples of two basic
protocol machine pairs. This naming conven-
tion produces protocol machine names that
carry precise information on the role of the
protocol machine and its relative position in
the network structure.

Tuo other symbols, "|" and "&," are usad in
names and expressions. The "|" symbol indi-
cates one of several (or “either...or'"). For
example, MACHINE.(PRIISEC) means ‘'either
MACHINE.PRI or MACHINE.SEC.'" The '"&" symbol
is used to indicate composition. For exam-
ple, MACHINE.(RCV&SEND) is the composite pro-

Chapter 1. Introduction 1-5

1-6

tocol machine consisting of MACHINE.RCV and
MACHINE.SEND.

Some of the protocol machines defined in the
book interact directly with undefined compo-
nents. These undefined components, called
undefined protocol machines (UPMs), represent
implementation and/or installation options
that are not architecturally prescribed (be-
ing product or user oriented).

Within block diagrams, the following con-
ventions indicate the type of interaction
between components:

® Solid arrows indicate data flow; between
processes, this implies send/receive
(asynchronous) logic.

¢ Dotted arrows indicate calling relation-
ships.

¢ Dotted lines indicate data structure
access.
/
Message units exchanged between SNA compo-
nents are also denoted by special notation,
particularly in sequence flow diagrams. A
message unit is either a request or a
response, depending on the RH coding (see
"Appendix D. RH Formats'); these are denoted
respectively by a request-unit name (here

designated generically by the term "RQ") and
by RSP.

RQ(QUAL) denotes a request having the proper-
ty described by QUAL; for example, RQ(Begin
Chain), or simply RQ(BC), denotes a request
whose RH is coded "Begin Chain." A similar
convention applies to responses. For exam-
ple, RSP(BIND) denotes a response to the BIND
request—a response that echoes the request
code '"BIND."

The asterisk (%) character is used in
sequence flows, as well as elsewhere, to mean
"any value" (or "don't care"). For example,
"¥BC" means "BC or -BC'"—where '"-" is the
standard symbol for '"NOT."

The procedural logic in the formal
description uses simple English, some
control-structure elements (e.g.»

if/then/else) common to most high-level lan-
guages, and a few straightforuard conventions
that are generally clear in context. For
example, a call is frequently shoun in the
form: "Call PROCEDURE(X, Y, 2Z)'"3 this
results in calling PROCEDURE and passing it
the arguments X, Y, and Z.

Abbreviations commonly used in the text are
listed at the back of the book on foldout
pages (Appendix T) for easy reference.

SNA Format and Protocol Reference Manual for LU Type 6.2

CHAPTER 2. OVERVIEW OF THE LU

INTRODUCTION

This chapter is an overview of logical unit
type 6.2 (hereafter referred to simply as
). The LU provides application programs

CONCEPTS AND TERMS

DISTRIBUTED TRANSACTION PROCESSING

Distributed transaction processing involves
two or more programs, usually at different
systems, cooperating to carry out some proc-
essing function. This involves program
intercommunication to share each other's
local resources such as processor cycles,
data bases, work queues, or human interfaces
such as keyboards and displays.

The LU supports distributed transaction proc-
essing by serving as the port betueen the
programs and the Path Control network. It
allows a transaction program (TP) to invoke
remote programs and to exchange data with
them.

All communication provided by the LU is
program-to-program. Any end user that is not
a program is represented to the LU by a pro-
gram. For example, fixed-function terminals
and their devices (e.g., keyboards and dis-
plays) present themselves as fixed programs
(e.g., microcode) that use the same LU func-
tions as user-wuritten application programs.
Human users at workstations do not interact
directly with the LU but rather with local
workstation programming support which in turn
interacts with the LU.

This program-to-program communication accom-
modates a variety of distributed processing
connections, including peripheral node to
subarea node, subarea node to subarea node,
and peripheral node to peripheral node. For
example, an application program at an
outlying site (a terminal or a distributed
processor) might communicate with a data-base
management system at a central processor to
maintain consistency between regional and
central records. For another example, sys-
tems programs in workstations might exchange
files and documents with each other.

Figure 2-1 on page 2-2 illustrates the role
of the LU in relation to an SNA netuwork. The
LU connects transaction programs to the path
control network. The LUs activate sessions

with support functions for distributed trans-
action processing.

between themselves. The component of a ses-
sion in each LU is called a half-session.
Two or more sessions between the same pair of
LUs are called parallel sessions. Multiple
sessions can concurrently use the same phys-
ical resources connecting the LUs.

The logical connection between a pair of
transaction programs is called a
conversation. A transaction program initi-
ates a conversation with its partner with the
assistance of the LUs. While a conversation
is active, it has exclusive use of a session,
but successive conversations may use the same
session.

An LU may run many transaction programs suc-
cessively, concurrently, or both. Each
transaction program may be connected to one
or more other transaction programs by conver-
sations. Multiple conversations between dif-
ferent pairs of transaction programs can be
active concurrently, with each conversation
using a distinct session.

Conversations connect TPs in pairs, but any
TPs directly or indirectly connected to each
other by conversations are participating in
the same distributed transaction. For exam-
ple, if TP A and TP B are connected by a con-
versation, and, concurrently, TP B and TP C
are connected by a conversation, then TPs A,
B, and C all are participating in the same
distributed transaction.

TRANSACTION PROGRAMS

The direct user of the LU is an application
transaction program (application TP). Appli-
cation TPs are provided by the end user to
carry out functions of distributed applica-
tions.

A transaction program is distinguished from
programs in general by two characteristics:
the way it is invoked, and the communication
functions it initiates.

Chapter 2. Overview of the LU 2-1

L3 . .. oo ®e oo eo 20 0s os e e [oe oo .
. . ®s o0 00 40 ss o0 e oo oo se oo s oo .o
Lad (13 .o s oo L13
Ll . [.o .
o .. [e .
3] . . [. s
a . a . .
- . - . .
o oo oo . . .
.. . . oo
e .o .o (44
oo [] . .. B oo o
. s oo B o ss o0 oo oe oo B s oo 0o oo . .
Eid s oo I oo os o0 oo oo . B s oo o0 oo .. Lid
pos H H . .
. H = . .
. - - s .
. H = oS .
Y y . - o (13
hod = B » . pos
s - EEERER b
oS H = .
.o - W - B —— - — - L
. = H .
. H a .
pos " H o
. » ——] D —— - .
pos H n oS
. N = .
. . - . » s oo oe .
. . »n . = . .
L3 oo » v » . .
o oo - . n . o
oo .o n . » . .
3 o - . »n .o o
. .] . s . .
.. o » o o . oe
. .o = o » . .
.o .. » . [. .
. o » o » . o
. . - . » . s
o o = . B
. B o n .
. »n .] o |
n o lm
% = R]
EEEREREDR o |'m
- . n
.o n
LI T o n e os
e oo .. n e oo . .
.. e oo .o n s o0 .. .
oo o o oo o0 s - e oo eo oo e o0 o oo
.o -t » . . os o
. . . n . ™ o o0
. . .] . . Y
L . »
[. »]
O EEBEREBANEENEEERNEERR] EEEEEBEEEDS o o
=] .] L] -
r n o I'm »
— . |} o n]
.. [} 3] |]
. n . n »
. |] . |} f] Lid
.o | § .o n | |} (44
.. e o |] .. f] |] Led
.. o . » .. " n oo
. o . - o n] .
. . . n o] = ..
. o . » o » » .
o . . » . n » .o
.o - .. »] °s o5 se e o
. o . n o n - o o e .
o .o - » = .
. . » » » [3d 123
. o " B —— - a—— T o
.. . n B - v es e
. . »] n bt
. . M . | .
.. o - g - b -, .
. o o] =] [
o so o0 W X = [N n o
.) <C =T] n = o4
v o z - B B AR EEBEEEREBBERSB o
o o0 os oo = »] .
B o) —— 044
£c » .] o o .
0 O » B » .
ape oy e oo .. o . M e B oo B e oo e o0 oo oo s o0 oo e o
L o od B o B oo B e s se o0 . . 3
B O o oo o o Tl a2] .. o oo
on oo oo
" | oo oo . . . o v
~ C . . . 3] by o . . o
o . . P o o . . .
QL . . o = ™ o o o
< =
. v o L . s .
e 08 oo (1] . s e 0% e e0 e s (1 (13 e LLd
o o0 ev oe pos o . e oo oo o0 oo s oo . se oo oo . o e pos

ion
ini-
internal

ted to the conversat
(In the case of the

the LU generates an

18 connec

invoker.

The invoked program is started run-

nd

th its

(connecting two LUs)
tial program,

Parallel Sessions

ning a

program.
wi

ism called

transaction program
th another named

.

ion wi

by a mechan

(connecting two LUs)
King

Conversation(connecting two TPs)

Single Session
invol

The

Placement of LUs within the SNA Network (Example)
tes a conversat

tia

A transaction program is invoked by another
ttach.

transaction program

2-1.
ini

SNA Format and Protocol Reference Manual for LU Type 6.2

LEGEND:
Figure

2-2

Attach to simulate invocation by another
transaction program. It does this in
response to some external stimulus, e.g.,
operator action.)

A transaction program uses the LU to communi-
cate with other transaction programs by issu-
ing transaction program verbs (which are
described in the publication SNA Transaction
Programmer's Reference Manual for LU Type
6.2). (In some cases, internal LU components
also issue transaction program verbs on
behalf of transaction programs.)

Besides application transaction programs,
distributed transactions can include trans-
action programs provided by the LU itself,
called service transaction programs (service
TPs). These are SNA-defined transaction pro-
grams within the LW that provide utility
services to application transaction programs
or that manage the LUs. They are attached by
other transaction programs and they issue
transaction program verbs to communicate with
other transaction programs. For example, the
LU includes service transaction programs for
distributed operator control of the LU, by
which control operators can determine the
number of parallel sessions they will share,
and for sync point resynchronization, which
assists distributed transaction recovery fol-
lowing transaction failure in certain circum-
stances. Other service TPs provide document
interchanqge services (using Document Inter-
change Architecture [IDIAl;, which allow
processors and uworkstations to synchronously
exchange files and documents. Furthermore,
SNA Distribution Services (SNADS) service TPs
provide asynchronous distribution of files
and documents.

Different execution instances of the same
transaction program could perform parts of
the same distributed transaction at different
LUs or parts of several different trans-
actions at the same LU.

CONTROL OPERATOR

The LU control operator describes and con-
trols the availability of certain resources
{see "Resources'); for example, it describes
network resources accessed by the local LU
and it controls the number of sessions
between the LU and its partners.

The LU control operator is represented to the
LU by a control-operator transaction program
that interacts with the LU on behalf of, or
in lieu of, a human operator. The relation-
ship between the control-operator transaction
program and the LU control operator is
implementation-defined.

The control-operator transaction program
invokes operator functions by issuing
control-operator verbs. These verbs are
issued by the control-operator transaction
program to convey operator requests to the
internal components of the LU.
Control-operator verbs are described in SNA

Transaction Programmer's Reference Manual for
LU Type 6.2.

RESOURCES

The LU provides several kinds of resources to
support distributed transactions.

Conversations connect transaction programs
and are used by the transaction programs to
transfer messages. A conversation is acti-
vated when one transaction program attaches
another.

Associated with each end of a conversation
are protocol states that each LU maintains in
order to coordinate interaction between the
two TPs. These indicate (for example) which
TP is sender and which is receiver at a given
time.

The LU provides two types of conversations.

Mapped conversations allow the 7TPs to
exchange arbitrary data records in any format
set by the programmers.

Basic conversations allow TPs to exchange
records containing a two-byte Lenqth prefix.

Application transaction programs typically
use mapped conversations, and service trans-
action programs typically use only basic con-
versations; however, either conversation type
might be used by either program type.

Sessions provide relatively long-lived con-
nections between LUs; a session can be used
by a succession of conversations. Sessions
are activated by LU pairs as a result of
operator commands and transaction-program
requests for conversations. They are not
explicitly visible to transaction programs;
for example, a transaction program cannot
explicitly request use of a particular ses-
sion.

A mode is a set of characteristics that may
be associated with a session. These charac-
teristics typically correspond to different
requirements for cost, performance, security;
and so forth. Modes are defined by the con-
trol operator as a selection of
path-control-network facilities and LU
session-processing parameters.

One characteristic of mode is class of serv-
ice. The path control network can offer dif-
ferent classes of service that correspond to
particular physical links and routes and par-
ticular transport characteristics such as
path security, transmission priority, and
bandwidth.

Other characteristics of mode include
operator-selected processing parameters such
as message-unit sizes and the number of mes-
sage units sent beiween acknowledgments (pac-
ing window sizes).

Each mode characterizes a group of sessions
with a particular partner LU; multiple modes

Chapter 2. Overview of the LU 2-3

2-4

may exist for the same partner LU. Modes
associated with different partner LUs are
considered distinct, even if they represent
similar sets of characteristics.

A combination of partner LU and mode is
called an (LU,mode) pair.

" LU-accessed network resources constitute the
relatively static environment that the LU or
its containing node establishes as a result
of installation definition. The principal
components of this environment are the LU
itself, the control points that serve the LU,
the transaction programs that the LU can run,
the potential partner LUs (remote LUs) with
which the LU can communicate, and the modes
of service available between the LUs.

Local resources are resources whose principal
functions and operations are not defined by
SNA, but which LU components use or interact
with for some functions. These include local
files, data bases, recovery and accounting
logs, queues, and terminal components. For
example, LU components interact with local
data-base managers to coordinate distributed
error recovery of data-base updates. Also,
SNA distribution services uses queues to
exchange messages between application trans-
action programs that provide document routing
and distribution.

Protected resources are local resources, such
as data bases, whose state changes are logged
so that all resources changed by a trans-
action can be restored to a consistent state
in the event of a transaction failure. The
LU interacts with protected resources to pro-
vide the sync point function (see 'Sync Point
Function” on page 2-37) for distributed error
recovery.

PROTOCOL BOUNDARIES

In order to accommodate LU implementations on
di fferent processors and transaction programs
written in different programming languages,
SNA defines the LU's interface to application
transaction programs in generic terms only.
This specification is called the transaction
program protocol boundary. It consists of
the set of LU functions that a TP may
request, and the possible parameter values
that may be supplied or returned for these
functions.

SNA does not define a particular syntax or
format for representing these functions and
parameter values. Nevertheless, for purposes
of discussion in SNA publications, the func-
tions and parameters are represented gener-
ically by tfransaction program verbs; these
are described in SNA Transaction Programmer's
Reference Manual for LU Type 6.2.

Each LU implementation, however, does provide
one or more concrete representations of these
functions and parameters. Such a represen-
tation of the transaction program protocol

boundary is called the an application program
interface (API). For example, an API might
be statements in a programming language that
an implementation supports.

The LU actually presents a partitioned proto-
col boundary to the transaction program; for
example, there are separate subsets of the
verbs for mapped conversations, for basic
conversations, and for SNADS. When a hierar-
chical relationship exists between these sub-
sets, e.g., when verbs from one set cause
internal issuances of verbs from another set,
this partition introduces sublayers within
the LU.

A protocol boundary can be interpreted from
two points of view.

From one point of view, a protocol boundary
is a boundary between two layers or sublayers
of the node. For example, TPs exchange data
with LWUs across the TP-LU protocol boundary,
and LUs exchange data with the path control
netuork across the LU-path-control protocol
boundary. From this viewpoint, the rules of
exchange are called layer protocols.

But from another point of view, a protocol
boundary is a boundary between two peer com-
ponents of the same layer. In other words,
the transaction program protocol boundary may
be thought of as a direct boundary between
one TP and another, and similarly, the path
control protocol boundary may be regarded as
a direct boundary between LUs. From this
viewpoint, the rules of exchange are called
peer protocols.

From either viewpoint, the operations and
flows across the boundary are the same, e.g.,
a transaction program uses the same verbs and
data formats whether the interaction is
thought of as TP-TP or as TP-LU. Specif-
ically, the formats and protocols for peer
exchange are the same as those for layer
exchange with the next lower layer.

Figure 2-2 on page 2-5 shows the principal
protocol boundaries between the LU and
external components. The figure jllustrates
how the protocol boundaries divide the LU
into layers and sublayers, and how the con-
ceptual flows between peer components are
accomplished by interlayer exchanges. 1In
this example, the application TP has a mapped
conversation with another application TP and
a basic conversation with a service TP. The
figure illustrates that the conceptual infor-
mation flow between peer components at each
layer is reduced to conceptual information
flow at the next lower layer by actual infor-
mation flow between layers and information
transformation within layers. For example,
the conceptual mapped conversation connection
is reduced to a basic conversation; each bas-
ic conversation is reduced to a session; and
finally, the sessions are reduced to con-
nections in the path control network (which
itself performs further layer transformations
that are not shown). :

SNA Format and Protocol Reference Manual for LU Type 6.2

Application

Mapped-Conversation
Protocol Boundary usssussummum

O = = ==
A
.
Basic—Conversation
Protocol Boundary ENEEEE | EENED |sEn | wn
)
v A
< - —

Mapped Conversation

Application
l TP

Basic Conversations

Path—Control

Protocol Boundary wususssszsus|sssssw

I NN NN NN RN EE NN
(Path Control Network)

LEGEND:

<— = => conceptual flows between peer
< > actual flows across interlayer
sesunE® protocol boundary between laye

Figure 2-2. Peer and Layer Exchanges

components (peer exchange)
protocol boundaries {layer exchange)
rs or sublayers

NAMES

environment,

the name of each entity of a

The LU allows transaction programs to refer
to its resources, such as other TPs and LUs
and shared communication facilities, by
installation-selected names. Thus, the pro-
grams need not be concerned with implementa-
tion and configuration details such as the
actual network addresses or transport charac-
teristics. For example, when one transaction
program invokes another, the invoking TP
identifies the partner TP by a transaction
program name, it identifies the partner LU by
an LU name, and it identifies the desired set
of session characteristics by a mode name.

Names are character strings that the instal-
lation associates with particular resources.
They are specified by the control operator
(on behalf of the installation management)
subject to the SNA-imposed constraints, e.g.,
character set and length restrictions,
described in "Appendix H. FM Header and LU
Services Commands'. (Within an LU implemen-
tation, the local resource names may differ
from those that conform to SNA; for example,
a program directory might use names of a dif-
ferent length or character set. In this
case, the implementation always translates
between its internal names and the
SNA-conforming names that are used by trans-
action programs or that are transmitted out-
side the LU.)

The name of a particular resource is known
within a particular environment. Within this

particular class is unique, but the same
entity might have different names in differ-

ent environments. For example, each LU
allows local aliases for remote resource

names, so that local transaction programs can
be made insensitive to name changes elsewhere
in the network. Of course, the control oper-
ator must change the LU's relevant
name-translation tables whenever the remote
names are changed.

Roles

Hereafter, tne following terms are used to
distinguish the roles of individual TPs and
LUs of a pair. HWith respect to location, the
term Jlocal means residing at the LU from
whose perspective an activity is described;
the term remote means residing at that LU's
actual or potential session partner. MWith
respect to a conversation, the source TP (or
its LU) is the initiator of a conversation
with the target TP (or its LU).

Transaction Program References

A source TP selects a target transaction pro-
gram by its transaction program name (TPN) as
defined at the source LU. In the simplest
case, this is also the name of the TP as
defined at the target LU. Optionally, howev-
er, the source LU can allow the two names to

Chapter 2. Overview of the LU 2-5

2-6

be different, in which case it converts the
TP-supplied name into the TPN recognized at
the target LU.

A TPN alone does not uniquely identify a
transaction program instance. The target LU
always creates a new transaction program
instance for each Attach it receives.

LU References

Each LU provides a set of LU names by which
its TPs may refer to remote LUs: these names
are called local LU names (a local LU name
is a local alias of a remote LU's name, not
the local LU's own name). Local LU names are
unique within each local LU, but not neces-
sarily outside an LU.

The path control network routes information
to an LU by a network address rather than by
a name. The correspondence between names and
addresses is maintained at the control point,
which is another NAU that assists the LU dur-
ing session initiation.

The control point identifies each LU by its
fully gqualified LU name (also called
network-qualified LU name). It consists of a
network ID followed by a network LU name.
The network ID is unique throughout a set of
interconnected SNA networks; the network LU
name is unique within a particular SNA net-
work, which may contain multiple domains (for
more information on domains, see '"Chapter 1.
Introduction').

The control point uses the fully qualified LU
name of the intended partner LU to determine
the corresponding network addresses used for
routing within the path control network. The
LUs themselves use their fully qualified LU
names for certain purposes; for example, LUs
resolve some race conditions by exchanging
and comparing their fully qualified LU names.

An LU may provide another set of names by
which it refers to remote LUs when issuing
session-initiation requests to its control
point: these names are called uninterpreted
LU names. Each uninterpreted LU name is
unique within a particular initiating LU, and
is knowun to that LU's control point but is
not knoun elsewhere in the network.

The LU name is converted into the network
address in stages. If the LU uses an unin-
terpreted LU name to identify its partner,
the control-point translates this into a ful-
ly qualified LU name; otherwise, the LU sup-
plies the fully qualified LU name to the
control point directly. Then, the the con-
trol point provides the network address for
that fully qualified LU name.

Mode Names

A source TP cannot select a particular ses-
sion for a conversation, but it can specify

that the session selected have a particular
set of characteristics, or mode. It does
this by specifying a corresponding mode name.

Mode names are unique relative to a partic-
ular partner LU. Mode names for different
partner LUs are independent: the same mode
name can correspond to different sets of ses-
sion characteristics for different partner
LUs.

Internal Identifiers

The LU assigns internal identifiers to con-
versations and sessions once they are acti-
vated. These are called resource IDs and
half-session IDs, respectively. TPs or the
control operator use these identifiers for
subsequent references to these entities.
These identifiers are generated by the LU and
passed back to the transaction program or to
the control operator in the form required for
subsequent verbs; the transaction program or
operator need not interpret these identifi-
ers.

CONVERSATION CHARACTERISTICS

Send/Receive Protocol

The LU normally allows TPs to exchange data
in only one direction at a time, i.e., one TP
sends and the other receives until the send-
ing TP surrenders the right to send. This is
called half-duplex flip-flop protocol. The
LUs coordinate and enforce the send/receive
state at each end of the conversation. LUs
do allow some exceptions to strict alter-
nation of send and receive: the receiving
TP, at any time, can send an error indi-
cation, putting itself in send state; it can
send the partner an attention indication,
e.g.» to request the right to send; and it
can abnormally terminate the conversation.

Sender/Receiver Concurrency

Different applications require different
degrees of concurrency between sender and
receiver. For example:

e On-line inquiry applications might
require real-time interaction.

® Status-reporting applications might
require immediate transmission but no
responsa.

¢ Document distribution applications might
allow sending and receiving at the send-
er's and receiver's convenience, respec-
tively, which might be separated by
arbitrary periods of time.

For the first two cases, the LUs use direct
conversations between the TPs.

SNA Format and Protocol Reference Manual for LU Type 6.2

For the real-time interactive case, the LU
keeps the TP-TP connection active until the
transaction is completed; both the source and
target TPs are concurrently active. This is
called synchronous transfer.

The LU treats the immediate-transmission,
no-response case as a special case of syn-
chronous communication, using a one-way con-
versation. The source LU allocates
(initiates) a conversation as in the first
case, sends the data, and deallocates (re-
leases) the conversation. When the message
reaches the target LU, it initiates the tar-
get TP, which receives the data and likeuise
deallocates the conversation. But since the
source TP is expecting no reply, it might
have terminated while the data is still in
transit through the path control network,
before the target TP is initiated. Thus, the
source and target TPs are not necessarily
active at the same time.

For the third case, the LU provides SNA Dis-
tribution Services (SNADS). In this case,
the sender, called the origin TP, and the
ultimate receiver, called the destination TP,
are typically not active at the same time.
Therefore, the data is stored at one or more
locations en route between periods of active
transmission. This mode of communication is
called asynchronous transfer.

In SNADS, the origin application TP sends a
message unit, ultimately intended for the
destination TP, to a local service TP. The
service TP at the origin stores the data in
local permanent storage. When the appropri-
ate time for sending the data arrives, e.g.,
when lower-cost transmission facilities
become available or after compensating for
time-zone differences, a service TP at the
origin allocates a conversation to a service
TP at the destination and sends the data.
The receiving service TP at the destination
LU stores the data in local permanent storage
for later retrieval. Finally, an application
TP at the destination retrieves the stored
message.

SNADS also allows multiple intermediate serv-
ice TPs between origin and destination. The
origin service TP can allocate a conversation
to an intermediate service TP, which would
receive the data, store it, and later forward
it to another intermediate service TP or to
the ultimate destination service TP.

Each SNADS service TP can also duplicate the
data and send it to multiple destinations or
application programs.

Mappin

Two communicating TPs might process the same
information using different internal data
formats (presentation spaces) e.g., differ-
ently organized data structures or different
sets of individual structures and variables.
To assist the TPs in interpreting data in
formats suited to their internal processing

algorithms while providing a mutually under-
stood format for the data transmitted over
the conversation, some LUs provide an
optional function of mapped conversations,
called mapping. (Mapping concepts are dis-
cussed in '"Mapping Function" on page 2-36).

SESSION ALLOCATION

A principal function of the LU is to provide
sessions between LUs for use by conversations
between TPs.

Session Multiplicity

Only one transaction-program pair at a time
can use a particular session. In order to
allow multiple concurrent transactions, e.g.,
for a multiprogrammed processor or a
multiple-user workstation, some LUs, called
parallel-session LUs, allow two or more ses-
sions at the same time, even with the same
partner LU. Any session between a pair of
LUs that both provide parallel sessions is
called a parallel session, even if only one
such session is currently active.

Some LUs, called gsingle-session LUs, can have
only one active LU-LU session at a time (but
can have successive sessions with different
partner LUs). Any session involving a
single-session LU is called a single session,
whether the other partner is a single-session
LU or a parallel-session LU.

Thus, all sessions between a pair of LUs are
of the same type: single or parallel. Some
LU protocols used on single sessions are dif-
ferent from those used on parallel sessions,
but these differences are indistinguishable
to transaction programs.

An LU that does not support parallel sessions
can have only one active LU-LU session at a
time. A parallel-session LU can have, con-
currently, one or more parallel-sessions with
each of one or more parallel-session LUs, and
cne single session with each of one or more
single-session LUs. (No middle capability
[multiple-session LUl exists, i.e., any LU
that supports multiple concurrent single ses-
sions also supports parallel sessions.)

Session Pool

To avoid repeating session-activation proc-
essing for each conversation between the same
pair of LUs, the LU allows successive conver-
sations to use the same session.

When the LU activates a session or when a
session previously in use by a conversation
becomes free, the LU places the session in a
session pool. MKWhen a transaction program
initiates a new conversation, the LU =allo-
cates a session from this pool, if one is
available.

Chapter 2. Overview of the LU 2-7

2-8

Session Selection

Transaction programs do not select particular
sessions, but specify only that the conversa-
tion be allocated a session with a particular
partner LU and with a particular mode name.
The LU partitions the session pool by partner
LU and mode name; the LU allocates a session
from only those sessions for the requested
(LU;mode) pair.

Session Contention Polarity

Another session-selection criterion concerns
the relative priority of the LU for use of
the session. The LUs at each end of a ses-
sion could both try to start a conversation
at the same time. To resolve this con-
tention, the LU operator specifies, for each
session, which LU's TP will be allowed to use
the session in such a case; this is called
the session contention polarity of the ses-
sion. From the viewpoint of the local LU, a
session for which that LU is designated to
win an allocation race is called a
contention-uwinner session (or first-speaker
session). A session that the local LU will
surrender to the partner is called a
contention-loser session (or the bidder ses-
sion--so called because a contention-loser LU
will bid, i.e., request permission of the
contention-winner LU to use the session).

Session Limits

The number of sessions in the session pool is
constrained by operator-specified criteria,
including several limits on the number of
active sessions.

The total LU-LU session limit is the maximum
number of sessions that can be active at one
time at the LU.

The (LU,mode) session limit is the maximum
number of LU-LU sessions that can be active
at one time for that particular (LU,mode)
pair.

The automatic activation limit for a partic-
ular (LU,mode) pair specifies the maximum
number of LU-LU sessions that the LU will
activate independently of requests for con-
versations. Automatically activated sessions
constitute the initial session pool (addi-
tional sessions, within the other limits, are
added to the pool on demand from conversation
requests).

The local-LU minimum contention-winner limit
for a particular (LU,mode) pair determines
the minimum share of the total number of ses-

sions for that (LU,mode) for which the local
LU can be contention winner. Similarly, the
partner-LlU minimum contention-winner imit
determines the minimum share of those ses-
sions for which the partner LU can be con-
tention winner.

Session limits are discussed in more detail

in "Chapter 5.4, Presentation Serv-
ices--Control-Operator Verbs'.

STARTING AND ENDING SESSIONS

Phases

Starting and ending sessions involves four
phases of activity, although some phases are
omitted in some circumstances.

Session-limit initialization and reset con-
sists of issuing control-operator verbs
(e.g.,» INITIALIZE_SESSION_LIMIT,
RESET_SESSION_LIMIT) to specify the number of
sessions the LU can have with a given part-
ner, and to specify conditions for their
activation and deactivation.

Session initiation and termination consists
of control-point activity, such as supplying
the network addresses corresponding to LU
names, that mediates requests for session
activation and deactivation.?!

Session shutdown consists of the LU activity
to terminate conversation activity on a ses-
sion prior to deactivating the session.?

Session activation and deactivation consists
of creating or destroying the end-to-end log-
ical connection betuween the LUs.

SESSION USAGE CHARACTERISTICS

Session Activation Polarity

An LU activates a session with its partner by
sending a message unit called BIND. The LU
that activates a session (sends BIND) is
called the primary LU; the LU that receives
BIND is called the secondary LU. These terms
are relative to a particular session: the
same LU can be primary LU for one session and
secondary LU for another.

The primary LU always has first use of the
session, i.e., it can initiate the first con-
versation on the session, regardless of the
session contention polarity. (When the first
conversation completes, the principal right
to initiate conversations reverts to the
contention-winner LU.)

1 gession initiation and termination protocols use session services RUs, a.g., INIT_SELF,
CINIT.
§ Session shutdown protocols use data flow control RUs, e.g., BIS.

Session activation and deactivation protocols use session control RUs, e.g., BIND, UNBIND.

SNA Format and Protocol Reference Manual for LU Type 6.2

Session-Level Pacing

To prevent an LU from sending data faster
than the receiving LU can process it (e.g.,
empty its receive buffers), the two LUs
observe a session-level pacing protocol. At
the time a session is activated, the LUs
exchange the number (the pacing window size)
and size (the maximum RU size) of the message
units they can accept at one time. The send-
ing LU will send no more message units than
the receiver will accept (a pacing window)
until the receiver sends an acknowledgment
(pacing response) indicating that it can
receive another pacing window.

Profiles

Session traffic is characterized by a partic-
ular set of SNA-defined formats and proto-
cols, identified by a function management
(FM) profile and a transmission services (TS)
profile (see "Appendix F. Profiles"). The
profile used depends on the kind of session
and the kind of node:

® On an LU-LU session, all LUs use FM pro-
file 19 and TS profile 7.

® On a CP-LU session, an LU in a subarea
node uses FM profile 6 and TS profile 1.

® On a CP-LU session, an LU in a peripheral
node uses FM profile 0 and TS profile 1.

SECURITY

The LU provides two functions to assist the
installation in providing security.

To help prevent unauthorized remote programs
from accessing local transaction programs,
the LU optionally verifies the identity of
the remote user by means of a user ID and
passuord supplied in the Attach FM header.
(User IDs and passwords are verified and
enforced in an implementation-defined way.)

To help prevent data from being interpreted
during transit, the LU provides session
cryptography, whereby all user data is enci-
phered at the source LU and deciphered at the
target LU. The encryption algorithm uses a
cryptographic key, supplied by the control
point, and a session seed, generated by one
of the LUs when the session is activated.
(See ''Chapter 6.2. Transmission Control' for
a full discussion of session cryptography.)

ERROR HANDLING

Kinds of Errors

Errors affecting transaction processing are
classified as follows:

Application Errors: These are errors related
to the application data and processing, e.g.»
user input error or data-base record missing.
Detection and recovery are the responsibility
of the transaction programs.

Local Resource Failure: These are failures
in non-SNA resources, e.g., a disk read
error. If the resources are not protected
resources, recovery is the responsibility of
the transaction program or of the non-SNA
support for the failing resource, e.g., a
disk subsystem. If the resource is a pro-
tected resource, the TPs can use the LU sync
point function (see "Sync Point Function' on
page 2-37) to assist in recovery in conjunc-
tion with non-SNA support.

Recoverable System Errors: These are errors
or exceptional conditions, e.g., races
resulting from contention for use of a ses-
sion, for which an SNA-defined recovery algo-
rithm exists. The LU performs the recovery
algorithm; the transaction programs are
normally not aware of these errors, except as
they affect timing.

Program Failures: These are errors that
cause abnormal termination of a transaction
program. The LU recovers from such errors by
deallocating any active conversations for the
TP that were not deallocated by the failed
transaction program, thus freeing the ses-
sions for use by other transaction programs.
Any further recovery depends on transaction
program logic and implementation-defined
capabilities such as error exits.

Session Failure: These are failures caused
by unrecoverable failure of the
half-sessions, e.g., invalid session proto-
cols received, or by failure of the underly-
ing network components, e.g., the links.
This case is reported to the LUs through ses-
sion outage notification (SON).

If a conversation is active on the session at
the time of failure, the failure is mani-
fested to the transaction program as a con-
versation failure (see below); otheruise,
these errors do not affect transaction pro-
grams. LUs report the conversation failure
to the affected transaction programs.

Conversation Failures: These are failures
caused by unrecoverable failure of the under-
lying session. The resulting conversation
failure is reported to each transaction pro-
gram by a return code on the next verb
issued. The same session and conversation
cannot be recovered, but the LU can activate
another session.

The operator or the transaction programs have
the responsibility to recover the trans-
action. To recover from an interruption in
transaction processing, for example, the
source transaction program can allocate a new
conversation, using another session, to a new
instance of the target transaction program or
to another transaction program.

Chapter 2. Overview of the LU 2-9

2-10

LU Failure: This is a failure of an LU from
such causes as malfunction of the implement-
ing hardware or software. In many cases,
such a failure appears to remote
(non-failing) LUs as a session failure, and
they recover as they would from any other
session failure. In some cases, recovery is
performed by the sync point function.

Program Error Recovery Support Functions

The LU assists TP recovery from application
errors and local resource failures by sup-
porting the protocols discussed below to
exchange error information and to immediately
end messages or conversations.

Confirmation: This function (e.g., CONFIRM
verb) allows a TP to solicit positive or neg-
ative acknowledgment of a message unit from
the partner TP. The interpretation of this
positive or negative acknowledgment (CON-
FIRMED or SEND_ERROR verbs, respectively) is
program dependent: for one application, con-
firmation might mean only that the data was
received; for another, it might mean data was
safely stored on disk; for a third, it might
mean that the data represents a valid account
record update; and so forth.

Program Error Indication: This function
(SEND_ERROR verb) allows a TP to inform the
partner TP of a program-detected error; this
includes sending negative acknowledgment to a
confirmation request.

This function also causes program-to-program
transfer of the current message unit to
cease. If a TP detects an error while
receiving, issuing the SEND_ERROR verb
directs the receiving LU to ignore any addi-
tional data in transit (i.e., to the end of
the conversation message--see ‘''Conversation
Message' on page 2-12); this is called purg-
ing. Similarly, if a sending TP detects an
error, issuing the SEND_ERROR verb informs
the partner that the source TP has stopped
sending. If the TP stops sending before
reaching a predetermined application-program
data boundary (i.e., the end of a logical
record--see ''Logical Record' on page 2-12),
this is called truncation.

Sync Point: Many transactions require con-
sistent, regular updates of distributed
resources such as distributed data bases.
While a transaction is in progress, however,
the resources at different LUs can enter
mutually inconsistent interim states. If one
of the transaction programs encounters an
error, some recovery action may be necessary
to restore the resources to mutually consist-
ent states. In order to verify or restore
consistency among distributed resources, some
LUs provide a distributed error-recovery
function, called sync point. (Sync point
concepts are discussed in 'Sync Point Func-
tion'" on page 2-37.)

Abnormal Conversation Deallocation: This
function allows a TP to abnormally terminate
a conversation. A TP might do this, for

example, when an error is detected for which
it has no recovery procedure and continuing
the transaction uwould be meaningless. HWhen
this is received, the LU informs the TP that
the conversation has been abnormally termi-
nated.

LU Error Recovery Functions--Abnormal Session
Deactivation

For some errors, the LU or operator initiates
recovery.

If an unrecoverable session-protocol error
occurs, the LU abnormally deactivates the
session.

If the control operator detects an error,
e.g., an apparent deadlock or loop, it can
force immediate abnormal deactivation of a
session.

Either of these cases are normally manifested
to affected transaction programs as conversa-
tion failure.

BASE AND OPTIONAL FUNCTION SETS

The LU functions and protocols are organized
into subsets. The function sets consist of a
base function set, which provides basic com-
munication services common to all LU imple-
mentations, and a small number of optional
function sets, which which may be used by
implementations with more sophisticated addi-
tional requirements. These SNA-defined func-
tion sets are described in SNA Transaction
Programmer's Reference Manual for LU Type
6.2.

All LU 6.2 implementations of a given func-
tion set provide that function in a way that
conforms to the protocol boundary. Further-
more, an LU 6.2 implementation that provides
one function in an option set provides all
other functions in that option set as well.
Thus, all LU 6.2 implementations can communi-
cate using the base set, and any two imple-
mentations supporting functions in the same
option set can communicate using that full
option set.

Two Kinds of optional functions exist. Send
options determine what formats and protocols
will be sent but do not affect what can be
received; all formats and protocols sent
using these options can be received by all
LUs. Receive options determine what can be
received as well as what can be sent. For
receive options, the source LU and TP
requirements are described in the BIND and
the Attach; the receiving LU rejects the ses-
sion or conversation if it, or the specified
TP, does not support the required options.

The principal base and optional functions are
listed below. The complete sets are defined
in SNA Transaction Programmer's Reference
Manual for LU Type 6.2.

SNA Format and Protocol Reference Manual for LU Type 6.2

Application Program Interface Implementations

Open-API implementations support arbitrary
user-written transaction programs, e.g., a
data-base management system running on a host
processor. For these implementations, the
API provides verbs and parameters for all of
the base function set, and perhaps some
optional function sets.

Closed-API implementations do not support
user-writtén programs but provide only a
fixed, implementation-determined set of serv-
ice transaction programs, e.g., a DIA service
transaction program for an office work-
station. For these implementations, the API
provides only the particular verbs and param-
eters that the transaction program set
requires.

Principal Base Functions

Basic Conversations: All implementations
provide receive support for all
basic-conversation formats and protocols.

Open-API implementations provide basic con-
versation verbs, but not necessarily in all
supported programming languages. For exam-
ple, an implementation might support both
basic- and mapped-conversation verbs in a
systems-programming language such as Assem-

MESSAGE UNITS AND THEIR TRANSFORMATIONS

A message unit (MU) is any bit-string that
has an SNA-defined format and is transferred
between SNA components or sublayers.

Distributed transaction programs exchange MUs
with each other by means of LUs. Transaction
programs exchange application-oriented units
of data, e.g., a customer record or a docu-
ment, over a conversation. The LUs, in turn,
exchange session-oriented MUs via the
path-control network. But the content and
format of an MU most appropriate for exchange
between transaction programs is in general
different from that most appropriate for
transmission on a session. Whereas an appli-
cation program typically uses a record size
corresponding to logical groupings of the
data, the LU typically uses MU sizes related
to internal buffer sizes and efficient flow
control. Furthermore, the LU may need to add
encoded protocol information, such as confir-
mation requests or MU sequence numbers, to
the program-supplied data.

The LU transforms program-oriented MUs used
by the TP into network-oriented MUs used by
the path control network, and vice versa.
(Throughout this section, message-unit tran-
sformations are described from the sender's
side, i.e., transaction program to LU to net-
work; the process is inverted at the receiv-
er.)

bler, but provide only wmapped-conversation
verbs in high-level languages.

Mapped Conversations: All open-API implemen-
tations provide mapped conversations (prima-
rily in high-level languages).

Principal Optional Functions

Mapping: This is an optional function for
mapped conversations (see '"Mapping Function"
on page 2-36).

Sync Point: This is an optional function for
basic and mapped conversations (see ''Sync
Point Function" on page 2-37).

Program Initialization Parameters (PIP):
This is the means of passing initial parame-
ters or environment setup information to a
target TP.

Performance Options: Several optional func-
tions exist to maximize performance for spe-
cific transaction requirements. For example,
an LU can optionally allow transaction pro-
grams to eliminate or accelerate certain
acknowledgments, or to perform processing
concurrently with certain conversation func-
tions. These are send options, so TPs writ-
ten for implementations that support these
options will operate correctly with partner
TPs and LUs that do not support them.

The message-unit transformation takes place
in stages. Each stage transforms some of the
information from the higher stage into a
SNA-defined bit string. Typically, a stage
reblocks (regroups) the MUs from the previous
stage into differently sized units and con-
verts the protocol information into formatted
headers (prefixes) to the reblocked data,
thus creating new MUs.

MAPPED-CONVERSATION MESSAGE UNITS

A data record, at the mapped-conversation
protocol boundary, is a collection of data
values that correspond to the DATA parameter
of a single mapped-conversation MC_SEND_DATA
verb issuance. The format of a data record
is completely arbitrary within the con-
straints of the implementation and the trans-
action program. For example, it need not
even be a contiguous byte string, but might
be a collection of variables and structures.

A mapped-conversation record (MCR) is the
elementary unit of information transferred
betueen two TPs on a mapped conversation. A
MCR contains the values of a data record
represented as a string of contiguous bytes.
It may be of arbitrary length. It contains
no information for use by the LU; its

Chapter 2. Overview of the LU 2-11

2-12

internal format is significant only to the
TP. The TP supplies needed protocol informa-
tion, such as the mapped-conversation record
length, in separate parameters of the verb,
using representations appropriate to the pro-
gramming language and processor being used.

(A MCR consists of data from a single verb
issuance by the sender, but it may be
received in one or more parts, each with a
single verb issuance, depending on the
receiving TP's receive buffer size).

BASIC-CONVERSATION MESSAGE UNITS

GDS Variables

Full connectivity among programs requires
that all transaction programs interpret the
records they transfer in the same way. To
facilitate uniform interpretation of records
among programs written for different process-
ors, service transaction programs and some
internal LU components, including
mapped-conversation support, use the formats
defined by general data stream architecture
to represent records (see Appendix I).

A general data stream (GDS) variable consists
of a GDS header (LLID) followed by the data.
The GDS header is a descriptive prefix con-
taining a 2-byte lenqth prefix (LL) that
indicates the length of the variable, includ-
ing prefix, and a format identifier called
the GDS ID that indicates the 6DS-defined
format of the data. The LlLs identify the
boundaries of variable-length fields within a
message unit of contiguous fields, and the
GDS IDs identify the representation of the
data. A GDS variable may be of arbitrary
length. If the variable length exceeds the
value that can be represented in the length
prefix (215-1 = 32,767 bytes, including the
prefix), the record consists of multiple seg-
ments, each with its own length prefix. Only
the first segment contains an ID field. The
length prefix also contains a continuation
bit that indicates whether the corresponding
segment is the last (or only) segment in the
GDS variable.

All data transferred at the
basic-conversation protocol boundary by serv-
ice TPs and other internal LU components (but
not necessarily data transferred by applica-
tion transaction programs) is represented as
GDS variables with SNA-defined formats (see
"Appendix H. FM Header and LU Services Com-
mands').

Logical Record

A logical record is the elementary unit of
information transferred betuween users of the
basic-conversation protocol boundary. A log-
ical record consists of a 2-byte length pre-
fix (LL) followed by data. Its maximum
length is 32,767 bytes, including the prefix.

The LL prefix of a logical record has the
same format as the LL field in a GDS variable
segment; thus, a GDS variable segment is also
a logical record. The basic-conversation
protocol boundary requires only the LL pre-
fix, not a full GDS LLID. Thus, logical
records generated by application TPs need not
use ID fields; if they do, the application
assigns and interprets the ID fields; the
basic-conversation support of the LU treats
everything following the LL prefix of the
logical record as user da‘ta.

The logical record is the elementary unit for
which the LU detects or reports truncation.

Buffer Record

It might be inconvenient for a transaction
program to issue a single send or receive
verb for each logical record. For example,
the sender or the receiver might have limited
buffer space or might not know ahead of time
the maximum length of the records being sent.
Or, the transaction program might prefer to
send a group of small, related records with a
single verb issuance. So, the unit of data
that a program sends or receives with a sin-
gle basic-conversation verb is of
program-determined length. This unit 1is
called a buffer record.

No SNA-defined limit exists on the length of
a buffer record; for example, it could exceed
32,767 bytes. The buffer-record length can
be different for each verb issuance.

No correspondence is necessary between the
lengths or boundaries of logical records and
those of buffer records, or between send
buffer records and receive buffer records.
Nevertheless, a receiving program may
optionally specify that the LU begin a neu
receive buffer record for each new logical
record received. The relationship between
logical records and buffer records is illus-
trated in Figure 2-5 on page 2-16.

CONVERSATION MESSAGE-UNIT SEQUENCES

Certain sequences of message units are rele-
vant to conversation protocols.

Conversation Message

A basic-conversation message consists of the
sequence of logical records transferred in
one direction from one TP to another without
an intervening change of direction or confir-
mation. (The Attach FM header generated from
the ALLOCATE verb is also considered part of
the initial basic-conversation message.)

The end of a conversation message is deter-
mined, when sending, by a conversation state
change caused by the verbs issued. For exam-
ple, PREPARE_TO_RECEIVE, RECEIVE_AND_WAIT,
CONFIRM, SYNCPT, and DEALLOCATE end a conver-

SNA Format and Protocol Reference Manual for LU Type 6.2

sation message. When receiving, the end of a
conversation message and conversation state
change is determined from corresponding pro-
tocol information received from the sender.
The information identifying the end of a con-
versation message and specifying the way it
was ended is generically called the
end-of-conversation-message indication.

A basic-conversation message is the elementa-
ry unit for which the LU supports confirma-
tion or program-error reporting (e.g.,
SEND_ERROR) between sender and receiver, and
for which it performs purging.

A mapped-conversation message is analogous to
a basic-conversation message; that is, it
consists of the sequence of
mapped-conversation records (or data records)
transferred in one direction from one TP to
another without an intervening change of
direction or confirmation, as understood at
the mapped-conversation protocol boundary.

The unqualified term conversation message is
used when the intended protocol boundary is
clear from the context, or when both the
mapped-conversation message and its corre-
sponding basic-conversation message are
designated.

Conversation Exchange

A conversation exchange consists of the com-
plete set of mapped- or basic-conversation
messages transferred between a pair of TPs
using a particular conversation.

SESSION MESSAGE UNITS

Session message units are formatted for LU-LU
protocols and for effective use of the path
control network.

Function Management Headers

A function management (FM) header is a mes-
sage unit generated by the LU to carry cer-
tain LU control information. The LU uses two
FM headers:

® An Attach FM header (FMH-5) specifies the
name and required characteristics, e.g.,
option sets required, of the target TP.

® An error-description FM header (FMH-7)
describes a transaction program error or
attach failure.

Basic Information Unit

A basic information unit (BIU) is the message
unit transferred between two LUs. It con-
sists of a request header (RH) and a
request/response unit (RU).

The RH is a formatted prefix to the RU. It
carries protocol information encoded from the
TP verbs or generated internally by the LU.
"Appendix D. RH Formats" gives further
details.

RUs carry FM headers, TP-supplied data (for-
matted by the TP or the LU into logical
records), and other protocol information.
The LU uses the following RUs on an LU-LU
session:

® Category FMD RUs, for transaction-program

data

® Category DFC RUs, such as BIS, LUSTAT,
RTR, SIG

® EXR,» for some path-control-detected
errors

(For details, see ""Appendix E.

Request-Response Unit (RU) Formats" and "Ap-
pendix H. FM Header and LU Services
Commands''.)

The LUs also transfer other information
dascribing the BIU, such as the length and
sequence number, which is formatted by path
control. Path control uses this information
to build a transmission header (TH).

SESSION MESSAGE-UNIT SEQUENCES

The following sequences of BIUs are relevant
to session protocols:

A (BIU) chain is a sequence of BIUs that con-
stitute a single unidirectional transfer.
The chain is the most elementary unit that
can be independently confirmed or for which
errors can be reported using SNA-defined LU
protocols. It corresponds to a TP-TP conver-
sation message.

A bracket consists of the set of all chains
transferred on a particular conversation. It
corresponds to a TP-TP conversation exchange.
The first data RU in a bracket begins with an
Attach FM header that identifies the target
TP.

The total session traffic comprises a
sequence of one or more brackets. Prior to
bracket traffic, the session is activated
(BIND protocols). Prior to normal session
deactivation, bracket traffic is shut doun
(BIS protocols). All session traffic stops
when the session is deactivated (UNBIND pro-
tocols), whether or not any brackets are in
transit.

Figure 2-3 on page 2-14 illustrates the cor-
respondence between the conversation
message-unit sequences and session
message-unit sequences. In the figure:

¢ The column labelled TP-TP shouws the con-
versation message-unit sequences.

Chapter 2. Overview of the LU 2-13

TP—TP LU X LU—LU wy

via via
Lu Path Control
session
activation
TP A ssszes=ssmmssszssesd
e © © BIUs © © o
(431 + -+ 4 1 41 8§ ¢+ 4
: (TP A sending) :
H sosss| Attach cescecns :
s : ANNNNNY (LU X sending) e B :
c : ANNNRNN BIU with FMH-5 : : :
0 CM L ASSSANNNNNNNNG ==== H H :
N 0Ss logical records | \\A\\NAANAD : : :
v N G LA LI ANNNRNNNNNNNTS I I c :
E \Y/ szszosssssoosssEsssd L LLLLLLLLLWLS BIUs H H H
R Zeens ANSNNN S 00 A : :
S ANNNN B2 I B :
A ANSN N R H
T N\\\> : A H
I cest C H
0 (LU X receiving) ..o K :
N ’ 7727777 <====z==s=zzsszssEns C E :
veeset (TP A receiving) 1707777 L H T
E 3 Kemsmmmsmmmsnsssss==|K L0000 0007 BlUs A : s
X CM L \ 00044420444 00 I : E
c oS logical records ([<//////77////7)<====z=zzzzzzzzzzzzs N H S
H N 6 L \ 99994 senl : S
A A" Kmmmmsmmummoszs=ss=e=iL//l/ll07 : I
N Seaee H o
(¢} / / / / : N
E <z==z TP A, LU X alternating send/receive ===> :
H / / 7/ / H
ZTeasencnne cocecesd T
R
A
o 0 o o ® 0 o 0 0 F
(other TPs) {other conversations) (other brackets) F
® o ¢ ® ® o ¢ @ @ I
cescsses Cc
(LU X receiving) “ee B
BIU with FMH-5 : s H
TP B Attach 7777 : B :
<= e e S C L R0 99994 cC R H
ceeesenene KS/II2I77777) © @ @ H A :
Cc 0000442844444 BIlUs A C :
0 e PPV 044 e o 0 I K H
N : (TP B receiving) KIII277277777 N E H
v CHM L V777772200474 1 T 3
0Ss L </l 77 H H
E N 6 logical records <////7/ shutdown IR :
X v 80 /7 :
(o H <==mzs=mszszzso=ss=z|L//// . :
H Seees H
Geoeovooon [P
session
deactivation
B e s >
o © o BIUs © © ©
{EmmEusonomznnnasnnn
LEGEND:

<z==z=> message-unit flows

NMAMNA> conversion of logical records to BlUs
<//// conversion of BIUs to logical records
seeese. Message unit sequence boundaries

Figure 2-3. Relationships of Sequences of Message Units (Example)

2-14 SNA Format and Protocol Reference Manual for LU Type 6.2

Data Record

A

{optional mapper transformation)

v
J< Mapped-Conversation Record >|
1 ¥
length '/ LA 0'/

LLIID s H
| ¢=——————Logical Record ————————>| : :
: 1 H H
: LL /e 00 : s
. J . .
: I< : :
: Logical Records : :
:)' H
: T :
: e o 0o / .
: L H
: L L
. |<— Logical Record —>

L 6DS Variable

b 00 e 00

LEGEND:
data record: data supplied by the transaction program MC_SEND_DATA verb (arbitrary format)
length: length of the mapped-conversation record (after mapper transformation, if any)
LL: logical-record Length field; the first bit is the continuation field
ID: 6GDS ID field
Figure 2-4. Relationship of Data Records to Logical Records (Example)
(The corresponding conversation supplies the data in MCR format (i.e., a con-

message-unit sequences for the partner
TPs at LU Y are not shoun; they are the
reverse of those shoun for TP A and TP
B.)

¢ The column labelled LU-LU shows the ses-
sion message-unit sequences.

® The column labelled LU X shows the
relationship betueen the two sets of
sequences .

MAPPED-CONVERSATION MESSAGE-UNIT TRANSFORMA-
TION

The mapped-conversation support in the LU
converts a data record into a GDS variable.

First, the LU optionally performs a
TP-specified mapping transformation on the
data record, producing a mapped-conversation
record. If mapping transformations are not
supported or if one is not specified, the TP

tiguous byte string of TP-determined length).

The mapped-conversation support in the LU
then segments the MCR into units of alloued
logical-record length and adds LLID prefixes,
thus producing a GDS variable consisting of a
sequence of logical records. This is illus-
trated in Figure 2-4.

BASIC-CONVERSATION MESSAGE-UNIT TRANSFORMA-
TION

Above the basic-conversation protocol bounda-
ry, a TP, or an internal LU component such as
the mapped-conversation support, generates a
sequence of logical records constituting a
conversation message. It passes this conver-
sation message to the LU as a sequence of
buffer records, by issuing basic-conversation
verbs. Along with the buffer records, it
passes unformatted protocol information such
as the ALLOCATE verb parameters, from which
the LU builds FM headers.

Chapter 2. Overvieu of the LU 2-18

| <=~ 6DS variable / /—>|< 6DS variable >|
J< LR >|< LR / 7->|< LR >
Attach 1 T
values LL|ID data LL data |/ ° 0 .1/ LLIID data
A
| |<Buffer Record>|<Buffer Record>| L) |<Buffer Record>|<Buffer Record>|
v H H H H : :
FMH-5 : H H : H
I< Conversation Message >|
TH : : H :
val- |[R H RU : : : :
ues : : : :
|< BIU >| H H H H
: TH values |R H RU : : :
B |< BIU >| : H H
: 1 : : :
: TH values |R H /e 00 : : :
: BIUs H H :
H >| H H
: — : H
e ® o o / -4 H
: —_— : :
: TH values |R H RU :
: J< BIU >| :
: TH values |R H RU
: |<— BIU —>|
L BIU Chain]
LEGEND:
LR: logical record LL: Length field GDS ID field
RH: request header RU: request unit basic information unit
FMH-5: Attach FM header (occurs only on first conversation-message of conversation)
Attach values: information for the Attach FM header, from the ALLOCATE verb.
TH values: protocol information generated by the LU; the TH is built by path control.
Figure 2-5. Relationship of Conversation Message to BIU Chain (Example)
Conceptually, the LU assembles the sequence example, it sets the chaining indicators
of FM headers and logical records into a com- (BCI, ECI) to indicate the first and last
plete conversation message. It then converts BIUs in the chain, and it sets the bracket
this conversation message into a chain of indicators (BB, CEB) to indicate the first
BIUs. Of course, the LU does not necessarily and last BIUs in a bracket. When necessary,
store a complete conversation message at one the Lu also generates Attach ~ or
time; when it accumulates enough buffer error-description FM headers (FMH-5 and
records to build one or more BIUs, it builds FMH-7) from verb parameters and includes
those BIUs and sends them out, saving any these in the BIUs. The final result is a BIU
residual data for the next BIU. chain. Along with the BIU, the LU generates
parameter values for use by path control (to
To build BIUs, the LU reblocks the FM headers build the transmission header). The LU
and logical records into RU-sized units and transfers the BIUs and the unformatted BIU
generates the necessary RHs. The LU sets the parameters to path control for transmission
RH indicators to correspond to functions or to the partner LU. Figure 2-5 illustrates
states specified by verb parameters; for the conversion process.
2-16 SNA Format and Protocol Reference Manual for LU Type 6.2

EXTERNAL

DATA EXCHANGE WITH OTHER NAUS

The LU also exchanges message units with oth-
er NAUs, specifically with the CP, via the
CP-LU session, and with the PU, directly.
These message units are listed in "Chapter 4.
LU Netuwork Services" and are described brief-
ly belou.

LU-CP Message Units

The LU sends session services RUs on the
CP-LU session. These RUs are used in the
session-initiation protocols for LU-LU ses-
sions, e.g., for translating the partner LU
name into the network address. In some
cases, the choice of RUs depends on the type
of node (subarea or peripheral) containing
the sending LU.

This section illustrates the correspondence
between some typical basic-function-set
transaction program verb sequences and the
resulting flows of BIUs through the path con-
trol network. (The verbs are described in
detail in SNA Transaction Programmer's Refer-
ence Manual for LU Type 6.2).

The correspondence is illustrated in Fig-
ure 2-6 on page 2-18 through Figure 2-22 on
page 2-26. In the figures, the left column
shous verbs issued by the invoking or
initially-sending TP, and the right column
shous verbs issued in response by the invoked
or initially-receiving TP. The center column
shows the contents of the resulting chain (RH
indicator settings, RU data and FM headers).
The arrows indicate direction of BIU flow. A
group of arrows in the same direction repres-
ents a chain, but no necessary correspondence
exists between arrows in the figures and BIUs
in the chain.

Each figure shows one of the following:

¢ The beginning of a chain, for chains that
begin a bracket

®* The end of one chain and the beginning of
the next

¢ The end of a chain, for chains that end a
bracket

"Allowable Combinations of Sequences' on page
2-21 shows how these flows can be combined,
or sequenced, to form complete conversations.

Finally, "Error Flows'" on page 2-23 shous
asynchronous response cases.

The LU also uses the CP-LU session to send
and receive maintenance services RUs.

LU-PU Records

The LU has a direct protocol boundary with
the PU in its node.

The LU generates and uses session control RUs
for session activation and deactivation. It
sends these to the PU for routing to the
remote LU.

Another group of LU-PU internal records is
used to connect the LU to other node compo-
nents or to reset the LU.

NOTATION

The following notation is used

ures.

in the fig-

> Request RU
Response RU
RH indicators:

The flow is labeled with the indicator values
that are carried in the RH.

BB Begin bracket
CEB Conditional end of bracket
BC Begin chain

EC End chain

RQEl Request exception response 1

RQE2 Request exception response 2 (in this
case, DRII = DR1|-DRl; i.e., RQE3 is
equivalent to RQE2).

RQD1 Request definite response 1

RQD2 Request definite response 2 (in this

case, DRII = DR1|-DR1; RAD3 is

equivalent to RQD2).

i.e.y

cob Change direction
+DR2 Positive response to RQD2
-RSP(0846) Negative response to chain
RU contents:

FMH-5 Attach FM header
Overview of the LU

Chapter 2. 2-17

FMH-7 Error-description FM header
The sense-data categories shown are:
0864 Abnormal deallocation
0889 Program-detected error

data User data in FMD RU

Verbs and Parameters

The returned RETURN_CODE parameter of the
RECEIVE_AND_WAIT verb is not shoun when it is
set to OK; in that case, the returned
WHAT_RECEIVED parameter is shown instead.

DATA_%* represents either setting (DA-
TA_COMPLETE or DATA_INCOMPLETE) of this
parameter.

Data Transfer Description

Whenever a TP has the right to send, it
issues SEND_DATA zero or more times. Simi-
larly, a TP in receive state repeatedly
issues RECEIVE_AND_WAIT, until it receives
all of the data and the
end-of-conversation-message indication. The
receiver issues at least one receive verb; in
the absence of errors, zero or more initial
issuances of SEND_DATA by the source TP
result in zero or more receive verb issuances
(with WHAT_RECEIVED = DATA_INCOMPLETE) at the

end-of-conversation-message indicator as
WHAT_RECEIVED = DATA_COMPLETE. Since the
buffer record sizes used at the sending TP
and at the receiving TP may differ, the num-
ber of receive verb issuances does not neces-
sarily match the number of send verb
issuances.

All of the following figures begin or end
with the data-transmission sequence just
described. That sequence is reprsented in
the figures as follows.

When the figure begins with (the end of) the
data-transmission sequence, it shows (at the
sending TP) a single SEND_DATA verb, and a
corresponding data arrow, followed by verti-
cal ellipsis marks (:). No RECEIVE_AND_WAIT
verb is shown at the receiving TP.

When the figure ends with (the beginning of)
the data-transmission sequence, it shows (at
the receiving TP) vertical ellipsis marks
(:), followed by a single RECEIVE_AND_WAIT
verb with WHAT_RECEIVED = DATA_COMPLETE.
""Data' is shown on the corresponding arrouw,
along with the end-of-conversation-message RH
indicators. No SEND_DATA verb is shown at
the beginning of the receiving-TP verb
sequence.

ERROR-FREE FLOWS

The error-free flows for the base function
set flows are described in terms of the verb
sequences shown in Figure 2-6 through Fig-

target. The final issuance receives the ure 2-13 on page 2-20.
SEQUENCE 1
ALLOCATE
SYNC_LEVEL(NONE) BC,BB,FMH-5
> (TP started)
SEND_DATA data
>
Figure 2-6. Start Conversation without Confirmation

SEQUENCE 2
PREPARE_TO_RECEIVE EC,RQE1,CD,data
TYPE(FLUSH) >
BC,data SEND_DATA

Figure 2-7.

RECEIVE_AND_WAIT
WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT
WHAT_RECEIVED=SEND

. .
. .

is omitted, and a receive

Conversation Turnaround without Confirmation:

verb is issued from SEND state,

PREPARE_TO_RECEIVE is optionals when it
the function of

PREPARE_TO_RECEIVE is performed before any data is actually received.

2-18

SNA Format and Protocol Reference Manual for LU Type 6.2

SEQUENCE 3

DEALLOCATE EC,RQE1,CEB,data RECEIVE_AND_WAIT
TYPE(FLUSH) > WHAT_RECEIVED=DATA_COMPLETE
(local deallocation) RECEIVE_AND_WAIT
RETURN_CODE=DEALLOCATE_NORMAL
DEALLOCATE

TYPE(LOCAL)
(local deallocation)

Figure 2-8. Finish Conversation without Confirmation

SEQUENCE 4
ALLOCATE BC,BB,FMH-5
SYNC_LEVEL(CONFIRM) > (TP started)
SEND_DATA data

>

. . .
. s .

Figure 2-9. Start Conversation with Confirmation

SEQUENCE &
CONFIRM EC,RQD2,-CD,data RECEIVE_AND_WAIT
> WHAT_RECEIVED=DATA_COMPLETE
RECEIVE_AND_WAIT
WHAT_RECEIVED=CONFIRM
+DR2 CONFIRMED

RETURN_CODE=0K <
SEND_DATA BC,data

.
.

Figure 2-10. Continue Conversation: Confirmation without Turnaround

Chapter 2.

Overview of the LU

2-19

SEQUENCE 6A

 PREPARE_TO_RECEIVE

.
.

RECEIVE_AND_WAIT

" TYPE(SYNC_LEVEL) EC,RQD2,CD,data
LOCKS(SHORT) > WHAT_RECEIVED=DATA_COMPLETE

RETURN_CODE=OK <

°
.

RECEIVE_AND_WAIT
WHAT_RECEIVED=CONFIRM_SEND
+DR2 CONFIRMED

BC,data SEND_DATA

£<

° °
. .

Figure 2-11. Conversation Turnaround with Confirmation, using LOCKS{SHORT):
When the receiving TP issues CONFIRMED after the LU has received RQD2--indicating
CONFIRM LOCKS(SHORT)--the LU immediately sends a CONFIRMED response (+DR2). This
allows the CONFIRM sender to resume processing immediately, so that, for example, it
can release locks on its local resources.
(The receiving LU processes the RAD2 internally; it does not inform the receiving TP of
the LOCKS parameter value.))

SEQUENCE 6B

PREPARE_TO_RECEIVE

. .
.

RECEIVE_AND_WAIT

TYPE(SYNC_LEVEL) EC,RQE2,CD,data
LOCKS(LONG) > WHAT_RECEIVED=DATA_COMPLETE

RETURN_CODE=0K <

RECEIVE_AND_WAIT
WHAT_RECEIVED=CONFIRM_SEND
CONFIRMED
(LU omits sending +DR2)
BC,data SEND_DATA

. .
H .

Figure 2-12. Conversation Turnaround with Confirmation, using LOCKS(LONG):
When the receiving TP issues CONFIRMED after the LU has received RQE2--indicating
CONFIRM LOCKS(LONG)--the LU does not send an immediate confirmation response. Instead,
it continues processing until it has a complete BIU to send. The CONFIRM sender
interprets receipt of BC without an intervening response as positive confirmation.
LOCKS(LONG) does not require the +DR2 response BIU that LOCKS(SHORT) requires, but it
can cause the CONFIRM sender to wait longer before resuming processing.

SEQUENCE 7

DEALLOCATE EC,RQD2,CEB,data RECEIVE_AND_WAIT

TYPE(SYNC_LEVEL) > WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT
WHAT_RECEIVED=CONFIRM_DEALLOCATE

+DR2 CONF IRMED
RETURN_COBE=0K K -
Local Deallocation DEALLOCATE
TYPE(LOCAL)

Figure 2-13,

Finish Conversation with Confirmation

2~20 SNA Format and Protocol Reference Manual for LU Type 6.2

ALLOWABLE COMBINATIONS OF SEQUENCES

When a program issues one of the verb
sequences shown above, that program is limit-
ed in its choice of the next verb sequence it
can issue. The matrix in Figure 2-14 shows
which verb sequences can follow a given verb
sequence in the base function set. The
matrix has the following meaning:

¢ The row numbers (left column) and column
numbers (top row) in the matrix corre-
spond to the sequence numbers in Fig-
ure 2-6 on page 2-18 through Figure 2-13
on page 2-20.

A rou corresponds to the verb sequence
just issued; a column corresponds to the
verb sequence issued next.

In the matrix, row 0 or column 0 repres-
ents the state in which no conversation
exists, i.e., the state prior to ALLOCATE
or subsequent to DEALLOCATE.

® A letter N or C in a cell indicates that
the sequence corresponding to the column
number can follow the sequence corre-
sponding to the row number.

-~ N--indicates a next sequence allowed
for conversations allocated with
ei ther SYNC_LEVEL(NONE) or
SYNC_LEVEL(CONFIRM), i.e., conversa-
tions started with sequences 1 or ¢

- C--indicates a next sequence allowed
only for conversations allocated with
SYNC_LEVEL(CONFIRM), i.e., conversa-
tions started with sequence 4

- empty--indicates that the correspond-
ing sequence order is invalid

¢ The Next-Sender column indicates which TP
is initial sender (i.e., issues the verbs
in the left column of the figure) for the
next sequence:

~ SAME--the initial sender of the next
sequence is the same as the initial
sender of the previous sequence.

—~ OTHER--the initial sender of the next
sequence is the partner of the ini-
tial sender of the previous sequence.

Figure 2-15 on page 2-22 and Figure 2-16 on
page 2-22 illustrate the application of these
rules to generate allowable conversation
sequences.

12| 3] 4]5]| 6| 6B] 7 | Next-Sender
0 N c
1 NN ' SAME
2 NN clclc]c SAME
3
4 clc clclc]c SAME
5 clc clc]lcl|c SAME
6A c|c clclc]c OTHER
6B c|c clclc]c OTHER
7

Figure 2-16.

Possible Next Sequence in Error-Free Cases

Chapter 2. Overview of the LU 2-21

0

ALLOCATE

[NOTE 1--see text]

WHAT_RECEIVED=DATA_COMPLETE

RETURN_CODE=DEALLOCATE_NORMAL

SYNC_LEVEL(NONE) BC,BB,FMH-5
: > (TP started)
SEND_DATA data RECEIVE_AND_WAIT
> WHAT_RECEIVED=DATA_%
SEND_DATA RECEIVE_AND_WAIT
DEALLOCATE EC,RQE1,CEB,data
TYPE(FLUSH) > RECEIVE_AND_WAIT
(local deallocation)
DEALLOCATE
TYPE(LOCAL)

Figure 2-15.

(local deallocation)

One-Way Conversation without Confirmation:

Combines Sequences 1 and 3

The sequence shown in Figure 2-15 is gener-
ated as follows:

SEND_DATA and one additional issuance of
RECEIVE_AND_WAIT.

1. Begin in state 0. 4. Select a column containing an N in romw 1.
2. Select a column containing a lettered In this example, column 3 was chosen.
cell in row 0.
5. Orient sequence 3 according to the 'next
In this example, column 1 was chosen. sender" column for the previous sequence.
This corresponds to sequence 1.
In this example, the next sender is SAME,
3. Supply an arbitrary number of SEND_DATA so the left column of sequence 3 is
and RECEIVE_AND_WAIT verbs following issued by the same TP as the left column
sequence 1, as allowed by the the of sequence 1.
data-transfer convention.
6. Select a column containing an N in row 3.
In this example, the ellipsis was The only choice is column 0, indicating
replaced by one additional issuance of the end of the sequence.
ALLOCATE BC,BB, FMH-5

PREPARE_TO_RECEIVE EC,RQE2,CD
TYPE(SYNC_LEVEL) >
LOCKS(LONG) CONFIRMED
BC,data SEND_DATA
RETURN_CODE=0K <
RECEIVE_AND_WAIT
WHAT_RECEIVED= EC,RQD2,CEB,data DEALLOCATE

SYNC_LEVEL(CONFIRM)

DATA_COMPLETE <

RECEIVE_AND_WAIT
WHAT_RECEIVED=
CONFIRM_DEALLOCATE

CONFIRMED +DR2
- ->
DEALLOCATE
TYPE(LOCAL)
Figure 2-16. Two-Way Conversation with Confirmation:

>(TP started)
RECEIVE_AND_WAIT
WHAT_RECE IVED=CONFIRM_SEND

RETURN_CODE=0K

TYPE(SYNC_LEVEL)

Combines Sequences 4, 6B, and 7.

2-22

The sequence shown in Figure 2-15 is gener-
ated as follows:

1.

2.

Beginning in state 0, select sequences 4%,
6B, and 7, returning to state 0.

Supply some number of SEND_DATA and
RECEIVE_AND_WAIT verbs following sequence
4.

In this example, 0 instances of SEND_DATA
were chosen. Thus, following the data
transfer convention, the SEND_DATA verb
and data arrow in sequence 4 are elimi-
nated, as is the RECEIVE_AND_WAIT
WHAT_RECEIVED = DATA_COMPLETE and the
data on the EC arrow in sequence 6B.

The next sender following sequence & is
SAME; therefore, sequence 6B has the same
orientation as the preceding sequence.

SNA Format and Protocol Reference Manual for LU Type 6.2

4. Supply some number of SEND_DATA and
RECEIVE_AND_WAIT verbs following secquence
6B.

In this example, only one instance of
each was chosen, corresponding exactly to
the number in the sequence figures.

(This figure illustrates that the arrous
do not necessarily correspond to BIUs.
For example, the CONFIRM, SEND_DATA, and
DEALLOCATE might generate only one BIU,
even though two arrows are shown in the
figure.)

5. The next sender following sequence 6B is
OTHER; therefore, sequence 7 is reversed
to have the opposite orientation from
that of the preceding sequence (i.e.,
since the left column of sequence 6B cor-
responds to the left column of the com-
bined sequence, the left column of
sequence 7 corresponds to the right col-
umn of the combined sequence).

6. The next row number is 0; therefore this
completes the sequence.

.

SEND_DATA data
SEND_DATA

REQUEST_TO_SEND_RECEIVED=YES

<

RECEIVE_AND_WAIT
> WHAT_RECEIVED=DATA_%
BC,EC,SIGNAL (expedited flow) REQUEST_TO_SEND
RECEIVE_AND_WAIT

WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT
WHAT_RECEIVED=SEND

PREPARE_TO_RECEIVE EC,RQE1,CD,data
TYPE(FLUSH) >
RECEIVE_AND_WAIT BC,data
<
WHAT_RECEIVED=DATA_%

.

Figure 2-17.

. .
. :

SEND_DATA

Conversation Turnaround following REQUEST_TO_SEND (without Confirmation):

REQUEST_TO_SEND issued by the receiving TP results in an expedited-flow one-RU chain.

The TP sending data
subsequent verb.

is notified via the REQUEST_TO_SEND_RECEIVED parameter of a
The interpretation of REQUEST_TO_SEND_RECEIVED is determined by the

TP. In this example, the sending TP stops sending and issues RECEIVE_AND_WAIT.

EXCEPTION FLOW

Figure 2-17 illustrates the only non-error
case for which a TP can send while in receive
state. This flow represents issuing the
REQUEST_TO_SEND verb and sending the SIGNAL
RU.

This flow can be substituted for sequence 2.
A similar sequence corresponding to sequence
6A or 6B exists, but is not illustrated here.

ERROR FLOWS

Figure 2-18 on page 2-24 through Figure 2-22
on page 2-26 illustrate flows resulting from
transaction-program error recovery for the
base function set. When the TP detects a
TP-defined error (e.g., the received data

fails an application validity check, or the
partner sends more logical records than
expected) it issues SEND_ERROR or DEALLOCATE
TYPE(ABEND). When the LU detects a trans-
action program error, such as an Attach fail-
ure, it generates similar flowus.

Three cases exist:
® Verb issued by sender
® Verb issued by receiver

® Verb issued by both (e.g., a SEND_ERROR
race has occurred)

(This case is not illustrated for DEALLO-
CATE.)

For cases not shown here, see '"Component
Interactions and Flow Sequences'" on page
2-G7.

Chapter 2. Overview of the LU 2-23

.

SEND_DATA

°
.

v

(TP detects RECEIVE_AND_KWAIT

an error)

SEND_ERROR data
right 4 > WHAT_RECEIVED=DATA_INCOMPLETE
SEND_DATA FMH-7(0889),data RECEIVE_AND_WAIT

> WHAT_RECEIVED=PROGRAM_ERROR_TRUNC

Figure 2-18. SEND_ERROR Issued by Sender:

The SEND_ERROR verb forces sending of accumulated data and begins a new RU with an
FMH-7. The issuing TP remains in send state; it can, for example, send additional
TP-determined data to further describe the error.

ve

SEND_DATA data RECEIVE_AND_WAIT
> WHAT_RECEIVED=DATA_x
(TP detects an error)
-RSP(0866) SEND_ERROR
(R,
SEND_DATA datal Purge incoming BIUs
| > to end of chain
| "
: | i : z :
(LU ends ‘chain) <-=--- - "
. EC,RQE1,CD,no data "
> " (LU detects end of chain)
RETURN_CODE=0K
BC,FMH-7(0889),data SEND_DATA
<
RETURN_CODE=

PROG_ERROR_PURGING
RECEIVE_AND_MAIT

»
e H

v

Figure 2-19. SEND_ERROR Issued by Receiver:

The SEND_ERROR verb causes a negative response to the incoming chain; the sending TP
sends End-of-chain and Change-direction when it receives the response. Meanwhile, the
receiver purges incoming RUs until the End-of-chain indication is received, then it
sends FMH-7 and leaves the issuing TP in send state so it can, for example, send
additional TP-determined data describing the error.

2-24 SNA Format and Protocol Reference Manual for LU Type 6.2

SEND_DATA data RECEIVE_AND_WAIT
> WHAT_RECEIVED=DATA_%
(TP detects an error)

(TP detects -RSP(0846) SEND_ERROR

an error) [rmme e ————

SEND_ERROR datal Purge incoming BIUs
| > to end of chain

SEND_DATA FMH-7(0889),data "
|

I "
(LU ends chain) <----J "
EC,RQE1,CD,no data "
> " (LU detects end of chain)
RETURN_CODE=0K
BC,FMH-7(0889),data SEND_DATA

.
.

.
o
.

<

RETURN_CODE=

PROG_ERROR_PURGING
RECEIVE_AND_WAIT

Figure 2-20. SEND_ERROR Issued by both Sender and Receiver (SEND_ERROR Race):

Each LU begins SEND_ERROR processing as in the no-race case, but since the receiver is

purging to end of chain, the SEND_ERROR from the sender is also purged,

receiver's SEND_ERROR takes precedence.

so the

. 13

SEND_DATA RECEIVE_AND_WAIT
DEALLOCATE data
TYPE(ABEND_PROG) > WHAT_RECEIVED=DATA_#*
EC,RQD1,CEB,FMH-7(0864) RECEIVE_AND_WAIT
> RETURN_CODE=
+DR1 DEALLOCATE_ABEND_PROG
(response used <---emrmcccccmamaneaen~
internally)

Figure 2-21. DEALLOCATE ABEND Issued by Sender:

The flow is similar to SEND_ERROR in send state. The +DR1 response is required for

internal processing.

Chapter 2. Overview of the LU 2-25

SEND_DATA data

SEND_DATA

(LU ends chain)

.
.

Figure 2-22.

4

RECEIVE_AND_WAIT

> WHAT_RECEIVED=DATA_*

-RSP(0846) DEALLOCATE

--------- TYPE(ABEND_PROG)
datal Purging

' > "

I "

i H : H
(---._J (1]

EC,RQE1,CD,no data "

BC,EC,RQD1,CEB,FMH-7(0864)
<

RETURN_CODE=
DEALLOCATE_ABEND_PROG

+DR1

. .
. .

DEALLOCATE ABEND Issued by Receiver:

The flow is similar to SEND_ERROR in receive state.

internal processing.

> "(LU detects end of chain)

(response used internally)

The +DR1 response is required for

LU STRUCTURE

2-26

Figure 2-23 on page 2-27 illustrates the
structure of the LU.

The upper protocol boundary of the LU is the
transaction program protocol boundary (de-
scribed in SNA Transaction Programmer's Ref-
erence Manual for LU Type 6.2). A
transaction program processes end user data,
and requests LU services to communicate with
other transaction programs.

The lower protocol boundary of the LU is the
path control protocol boundary, below which
is the SNA path control network, which the LU
uses to communicate with other LUs and with
its control point (CP).
The LU also has a protocol boundary with the
PU (see '"Chapter 4. LU Network Services").
SNA LAYERS
The LU contains instances of the following
four SNA layers:

Transaction services

Presentation services

Data flow control

Transmission control

Component Overvieu

The LU has two layers of components, one for
its upper protocol boundary with transaction
programs, and one for its lower protocol
boundary with the path control network. Each
layer consists of a group of processes con-
taining a pair of SNA layer-instances, and a
manager component that creates, destroys, and
otherwise manages these instances.

The upper layer contains transaction proc-
esses, which contain instances of the follow-
ing SNA layers:

Transaction services
Presentation services

More concretely, each transaction process
contains an execution instance of a trans-
action program and some Presentation Services
components for processing the verbs issued by
it. (See Figure 2-24 on page 2-28.)

This layer is managed by the resources manag-
er component (RM), which creates transaction
processes (in response to Attaches received
from remote LUs), destroys them after they
have finished executing, and connects them
with sessions (thus enabling them to partic-
ipate in distributed transactions).

SNA Format and Protocol Reference Manual for LU Type 6.2

]

)
® Application Control- < > Control Operator
Transaction Operator
Program Transaction
Program
A
: : | .
: : .
: : I DIA .
H H SNADS _J
H H RESYNC
H : CNOS
: : Service
H : Transaction
: : Programs
H : A
H v :
: : 1
r—-: v .
: °
[v .
< > __J
Presentation Services
Resources
Manager
A
<
A
|
\'
<
PU < > < I
(1 C—
Network v v l v v L4
Services , ®
.
> Data Flow
. PNCP-LU SSCP-LU Control
Half- Half-
Session Session Transmission
Control
Services Manager LU-LU Half-Session
A A A
w
) v Y] \
LEGEND: PATH-CONTROL NETWORK
< > SEND/RECEIVE relationship
<....> CALL/RETURN relationship
CNOS: Change Number of Sessions RESYNC: Sync Point Resynchronization
SNADS: SNA Distribution Services DIA: Document Interchange Architecture Services

Figure 2-23. Overview of LU 6.2 Components

Chapter 2.

Overview of the LU

2-27

Resources Manager

LEGEND:
veese> CALL/RETURN relationship (within a process)

<
’ NOTE:

Figure 2-24.

> SEND/RECEIVE relationship (between processes)

l Transaction Program
ssesecsscscescsssesece
H any verb issued
PS_INITIALIZE PS Verb Router v
s A s A s A H
oo 3 e 3 sz So—2 / / 2
A v v : v : v
i other
PS for PS for PS for PS PS for
Mapped Sync Point . | Control verb Basic
Conversations| Services Operator handlers |Conversations
PS.MC PS.SPS PS.COPR| o o o PS.CONV
/ /- A
I
v v

Half-Session or
Resources Manager

PS verb router is called recursively by PS verb handlers.

Structure of a Presentation Services Process

The lower layer contains half-sessions (HSs),
which contain instances of the following SNA
layers:

Data flow control

Transmission control

Half-sessions enforce protocol rules for con-
versation data exchange, and transform mes-
sage units between the format useful to
conversing programs and the format appropri-
ate for the Path Control network (this
includes implementing session services such

FUNCTIONAL SUMMARY BY FUNCTION

2-28

This is the first of two sections describing
the functions and interactions of LU compo-

nents. This section is organized by func-
tion; it concentrates on functions that
‘involve multiple components. For each func-
tion, it explains in approximate time

sequence the roles of the various LU compo-
nents. The next section is organized by com-
ponent, and covers functions performed
principally by one component. A full
description of each component is given in its
corresponding chapter of this book.

For illustrations of the component inter-
actions discussed in this section, including
a variety of cases not discussed elsewhere in
this chapter, see "Component Interactions and
Flow Sequences' on page 2-47. In particular,
Figure 2-33 on page 2-48 and Figure 2-34 on
page 2-49 illustrate the interactions, at the
source and target LUs, respectively, for a

as pacing and cryptography). MWhile most of
these are LU-LU half-sessions for transport-
ing conversation data, one of them must be a
CP-LU half-session connecting the LU to its
Control Point.

This layer is managed by the LU network serv-
ices component (LNS), which creates and
destroys half-sessions and interacts with SNA
components outside the LU (the control point
and the nodal NAU manager in the PU).

The resources manager and LU network services

components are created by the PU when it
activates the LU; they run continuously
thereafter.

typical conversation; Figure 2-35 on page
2-50 and Figure 2-36 on page 2-51 illustrate
typical interactions for session deacti-
vation.

The LU manages the state and configuration of
its local resources, including transaction
programs, conversation resources, and
half-sessions. It cooperates with other LUs,
using shared sessions and conversations, to
configure these resources to support distrib-
uted transactions. (An LU implementation
might also manage other, non-SNA, resources
such as processor execution cycles, storage,
and data bases.)

The principal functions leading to LU trans-
action processing are the following, not nec-
essarily performed in this order:

® Activating sessions between two LUs

SNA Format and Protocol Reference Manual for LU Type 6.2

¢ Invoking transaction programs

® Initiating conversations betueen the
transaction programs

® Transferring message units between the
transaction programs

EXAMPLE TRANSACTION PROGRAM

Figure 2-25 outlines some typical verb issu-
ances for an example pair of transaction pro-
grams.

SOURCE TP TARGET TP
MC_ALLOCATE
MC_SEND_DATA MC_RECEIVE_AND_WAIT
1] "
11} "
" "
MC_RECEIVE_AND_WAIT "
MC_SEND_DATA
" "
" (1]
" MC_DEALLOCATE
MC_DEALLOCATE

Figure 2-25. Example of Communicating
Transaction Programs

The programs, running at different LUs, issue
complementary sequences of verbs. The LUs
convert these executed verbs into
message-unit flows.

MESSAGE-UNIT TRANSFER

First, consider transfer of message units.
Assume that two transaction programs are run-
ning at their respective LUs and are con-
nected by a mapped conversation. For the
programs to transfer data, one program must
issue MC_SEND_DATA verbs while the other

issues complementary MC_RECEIVE_AND_WAIT
verbs.
The TP invokes PS for each

transaction-program verb it issues. PS per-
forms the function appropriate to the specif-
ic verb. For each verb, PS verifies that the
verb is valid in the current conversation
state, converts the verb parameters to an
intermediate representation, and performs
verb-specific processing that includes issu-
ing appropriate requests to other LU compo-
nents.

When sending, PS transforms the
mapped-conversation record (MCR) into logical
records, determines wmessage-unit sequence
boundaries such as the end of a conversation
message, and passes the data and control
information to HS. HS converts the logical
records into one or more RUs, encodes the
protocol information into the RH, and passes

the resulting BIU and TH information to path
control.

When receiving, HS checks incoming BIUs for
format and protocol validity and passes the
data to PS. When the TP issues a
RECEIVE_AND_WAIT verb, PS checks the verb for
validity, waits until HS supplies the
requested amount of data, and passes the data
and protocol information back to the TP.

The following sections discuss these func-
tions in more detail. (Figure 2-3 on page
2-14, Figure 2-4 on page 2-15, and Figure 2-5
on page 2-16 illustrate the message-unit
relationships discussed.)

Sending Data

For MC_SEND_DATA, PS verifies that the con-
versation is in send state. If mapping is
being performed, PS maps the
transaction-program data record into a
mapped-conversation record (see ‘''Mapping
Function” on page 2-36). It transforms the
MCR into a sequence of logical records of
implementation-defined length by segmenting
the supplied data and prefixing the appropri-
ate GDS LLID fields. It issues SEND_DATA
verbs as often as necessary (determined by
the buffer-record size used by the PS.MC
implementation) to send all the logical
records.

PS (in particular, the PS verb router) is
recursively callable: it is called by a TP
when the TP issues a verb, and it is also
called by verb handlers uithin PS that them-
selves issue verbs. For example, the
mapped-conversation verb handlers in PS typi-
cally issue one or more basic-conversation
verbs to perform the function requested by a
mapped-conversation verb.

When PS has first entered send state, it
expects an LL at the beginning of the first
buffer record. From then on, PS compares the
accunmulated length of the data passed on suc-
cessive issuances of SEND_DATA to the
logical-record lengths specified in the LLs,
thus verifying that the conversation message
sent ends at a logical record boundary.

PS accumulates the data from successive buff-
er records in an internal buffer of
implementation-defined length. When the
buffer is full, PS transfers the data to HS
with an indication of whether it is the last
of the data for a conversation message. When
PS detects the end of a conversation message,
e.g.» a PREPARE_TO_RECEIVE, RECEIVE_AND_WAIT,
CONFIRM, SYNCPT, or DEALLOCATE verb was
issued, PS transfers its remaining accumu-
lated data with an indication of how the con-
versation message was ended, e.g.»
confirmation request, conversation turn-
around, or deallocatton. It also places the
conversation in the appropriate state.

Meanwhile, the HS process, also in send

stote, waits for data from PS. When PS
passes the data, HS reblocks it into RU-sized

Chapter 2. Overview of the LU 2-29

2-30

units (the RU size for a session is deter-
mined by BIND negotiation when the session is
activated). When HS has received more data
than necessary to fill an RU, it generates an
RH, builds the BIU, and generates a sequence
number and other TH information. If session
cryptography is being used, HS enciphers the
data.

HS encodes each RH to indicate the beginning
or end of a bracket (corresponding to a com-
plete conversation exchange) and the begin-
ning or end of a chain (corresponding to a
conversation message). For all but the last
BIU in a chain, HS encodes the RH with RQE!L.

For the last BIU for the conversation mes-
sage, HS encodes the RH with EC (the
end-of-conversation-message indicator) and
other indicators selected by PS, such as CD
(e.g.» PREPARE_TO_RECEIVE verb issued), RQD2
(e.g.» CONFIRM issued), RQD1 (DEALLOCATE
TYPE[ABEND]) issued), and CEB (DEALLOCATE
issued). HS changes the local session state
accordingly.

HS passes each completed BIU and the corre-
sponding TH information to path control for
transmission to the receiving HS in the
remote LU.

HS enforces session-level pacing. The send-
ing HS sends at most one pacing window of
BIUs before receiving a pacing response. It
then requires a pacing response from the
receiver before sending another window. The
receiving HS sends a pacing response when it
can receive another pacing window, e.g., when
it has enough free buffers. Depending on its
ability to receive additional data, the
receiver may send a pacing response at any
time after receiving the first BIU of a win-
dow.

Receiving Data

The HS process at the receiving LU receives
BIUs and TH information from path control.
It sends pacing responses when it is able to
receive additional BIUs. If session
cryptography is specified, it deciphers the
data. It checks for correct session proto-
col. It checks BIU sequence numbers to
detect lost or duplicate BIUs and to corre-
late responses with the correct bracket. If
it detects any protocol error, it abnormally
deactivates the session, i.e., it requests
LNS to issue UNBIND indicating a format or
protocol error.

If the BIU is satisfactory, HS5 sends the
Attach FM header, if present, to RM, and
sends all other RU data to PS. HS also sends
PS an indication of significant state changes
that were encoded in the received RH such as
end of a conversation message (End-of-chain),
enter send state (Change-direction), confir-
mation request (Definite-response 213) and
end of conversation
(Conditional-end-of-bracket). HS changes its
ouwn session state accordingly.

Meanwhile, the receiving TP issues
MC_RECEIVE_AND_WAIT verbs to receive the con-
versation message. Each verb issuance calls
PS.

For each MC_RECEIVE_AND_WAIT issuance, PS
repeatedly tand recursively) issues
RECEIVE_AND_WAIT verbs until it receives a
complete MCR from HS.

For each RECEIVE_AND_WAIT verb issuance (in-
cluding the case in which RECEIVE_AND_WAIT is
issued directly by a transaction program,
i.e., for a basic conversation), PS waits for
the data from HS. As PS receives the data,
which includes LL fields, PS accumulates the
data in an internal buffer, until it reaches
the end of a logical record (or buffer
record). While accumulating the data, PS
keeps track of the LL fields, to verify that
the conversation message ends on a logical
record boundary.

When the PS verb handler for RECEIVE_AND_WAIT
returns (recursively) to the PS verb handler
for MC_RECEIVE_AND_WAIT, PS checks the length
and continuation fields in the LLs to verify
that a complete MCR has been received, strips
the GDS LL and ID fields, and reblocks the
data into an MCR. (If the TP receive buffer
cannot contain the complete MCR, PS passes it
to the TP in receive-buffer-sized segments,
i.e., mapped-conversation buffer records.)

If PS receives an end-of-conversation-message
indication, it does not forward this indi-
cation to the TP until after all logical
records and MCRs have been received. It then
returns the end-of-conversation-message indi-
cation alone on the next MC_RECEIVE_AND_WAIT
verb issued, and places the mapped conversa-
tion into the appropriate state.

Internal Buffering

Figure 2-26 on page 2-31 illustrates internal
buffering that the LU may perform during send
and receive operations. The figure has the
following meaning.

Column (A)

TP send buffer record is the DATA parameter
(LL and data) of the SEND_DATA verb.

Column (B)

PS send buffer is a buffer in the sending PS
of implementation-defined length (in this
example, 6) for accumulating TP data to
be sent to HS.

PS-to-HS record is the data transferred to
HS from a full PS send buffer.

Column (C)

HS internal buffer is a buffer in the send-
ing HS of RU size (in this example, 4)
that accumulates data from PS until a
complete RU can be sent.

SNA Format and Protocol Reference Manual for LU Type 6.2

Source LU Path Control Target LU
(A) (B) (c) (D) (E)
TP Send : PS PS—to—-HS : HS HS—-to-HS : HS—to-PS : PS TP Receive
Buffer : Send Record : Internal via : Record : Receive Buffer
Record : Buffer : Buffer PC : : Buffer Record
:(length 6) (length 6):(RU size 4) (RU size 4): (RU size 4):(infinite) (length 8)
Data LL: : : : Data (len)
: : : :
1) gfedcbA 7 : ¢ fedcbhbA @ fe dcbA : dcbA : dcbA
(2) | ponmlkjiH 9 : ponm lkjiHg 1kji Hgfe : Hgfe : H gfedbcA 7
(3) : :(HS defers sending RU) : :
(4) srQ 3 : s rQponm : rQ@ponm 1kji : 1kji : 1kjiH
(5) : : rQ ponm s ponm : p ormlkjiH 9
(6) vuT 3 : vuls : rqQ H : [
(7) ZyxH & : zy : xWvuTs H xHvu TsrQ : TsrQ : T srQ 3
(8) #0: : #zy : #zy xHvu ¢ xhvu : xW vul 3
(9) : : : #zy H #zy : # zyxH &
(10) H : : ; ; #
1 1 1 1
Direction of Flow
>
NOTATION:

Read data strings right to left to correspond with the order of

A capital

(i.e., the first byte of the LL field.)

letter represents the start of a logical record

represents the end-of-conversation-message indication.

(This is actually coded in the RH, which is not shoun in this
Parenthesized numbers and letters identify rows and columns for

Figure 2-26.

flow on the session.

example.)

explanations in the text.

Internal Buffering in LU Send/Receive Data Operations (Example)

HS-to-HS via PC is an RU transmitted over
the path control network.

Column (D)

HS-to-PS record is a received RU sent from

HS to PS.
Column (E)

PS Receive Buffer is an unbounded buffer for
accumulating received data from HS.

IP Record is the DATA parameter buffer of
the RECEIVE verb (of length 8 in this
example).

This example assumes that the FILL parameter
of the receive verb has the value LL. The
buffer and record sizes were selected to sim-
plify the illustration; typical actual sizes
uwould be much larger, e.g., 256 bytes for the

RU size, and up to 32,767 bytes for a TP

record.

Notes on the figure:
Row (1)

(A) The sending TP sends a 7-byte logical
record (Abcdefg) to PS.

(B) PS sends the first 6 bytes (its buffer
length) to HS (Abcdef) and retains the
7th (g), awaiting more data.

(C) HS at the sender receives the 6 bytes
from PS and sends 1 RU (4 bytes: Abcd)
to path control and retains the remain-
ing 2 bytes (ef).

HS at the receiver receives the RU (4
bytes) and sends the data to PS

(D)

Chapter 2. Overview of the LU 2-31

2-32

(E) Meanwhile, the receiving TP issues
RECEIVE_AND_MWAIT.

PS accumulates the data in its buffer
until it has enough to satisfy a TP
request, i.e., enough to fill the TP
‘receive buffer or complete a logical
record.

Row (2)

(A) The sending TP sends a 9-byte logical
record (H...p).

(B) This forces another 6-byte buffer from
PS (g...1l); PS retains the remaining 4
bytes (m...p).

(C) HS now has 8 bytes; it sends 1 RU (4
bytes: efgH) and retains 4 (ijkl).

(D,E) At the receiving LU, this RU completes
the logical record (A...g) at the
receiver. PS passes the record to the
TP and retains the first byte of the
next record (H).

Row (3)

(€C) HS at the sender still has exactly
enough data accumulated for one more RU
(ijkl), but HS does not send this RU
until forced by arrival of another byte
or an end-of-conversation-message indi-
cation. HS always waits with an exact-
ly full RU so it can incorporate any
subsequent protocol signals into the
RH.

The interpretation of the remaining lines is
similar. Highlights are given belou.

Rou (5)

(E) At the receiver, the second RU received
completes the second logical record
(H...p) at the receiving PS. But since
the receiving TP buffer is only 8
bytes, PS can pass only 8 bytes (H...0)
on the current receive verb.

Row (6)

(E) PS at the receiver passes the last byte
(p) of the second logical record to the
TP on the next receive verb.

Rows (8-9)

(A-C) The end-of-conversation-message indi-
cation (#) from the sending TP forces
the sending PS and HS to send all resi-
dual data in their buffers. This makes
one more record available to the
receiving TP.

Rou (9)

(D,E) When the receiving HS and PS get the
end-of-conversation-message indication,
they forward all residual data as soon
as possible. The TP gets the last log-
ical record.

Row (10)
(E) The receiving ™ gets the

end-of-conversation-message indication
alone on the next receive verb.

TRANSACTION PROGRAM INITIATION AND TERMI-
NATION

Before the TPs can exchange message units,
the TPs must be brought into execution.

Invoking a Remote Transaction Program

Assume that a source TP is already in exe-
cution. It requests invocation of a remote
TP by issuing the ALLOCATE verb (or
MC_ALLOCATE, which PS.MC converts into an
ALLOCATE). It identifies the program to be
invoked by specifying the remote transaction
program name and remote LU name, and selects
the desired transport characteristics by
specifying a mode name.

Using the parameters from ALLOCATE, the
source PS builds an Attach FM header and
sends it to HS (in some cases, via RM) for
transmission to the partner W. When the
target HS receives the Attach FM header, it
passes it to its RM. This RM then creates a
PS process and passes it the Attach FM head-
er. The new PS analyzes the Attach FM head-
er, selects and loads the specified
transaction program code, and calls it, plac-
ing it initially in receive state for the
conversation.

Once a target TP is invoked, it can act in
turn as a source TP to invoke other TPs.

Initiating the Initial Local Transaction Pro-
qram

The first TP activated for a distributed
transaction is initiated in a way that
appears to the TP as though it were invoked
as a target TP by another source TP. To do
this, the source RM behaves as if it had
received an Attach: it creates the PS proc-
ess and generates an Attach FM header to pass
to PS. These RM actions are triggered by
implementation-defined means such as issuing
a local control-operator verb.

PS then loads and calls the TP, which can
then issue verbs by calling PS.

Terminating a Transaction Program

A TP ends by returning to PS.INITIALIZE. PS
then performs any necessary final processing
(such as deallocating the TP's remaining con-
versations), and notifies RM. RM then
destroys the PS process.

SNA Format and Protocol Reference Manual for LU Type 6.2

CONVERSATION ALLOCATION AND DEALLOCATION

A source TP initiates a conversation with a
target TP by issuing the ALLOCATE (or
MC_ALLOCATE) verb.

The source PS satisfies the TP request in two
steps.

First, PS sends RM a request to allocate a
conversation. RM creates a conversation
resource and notifies PS.

Second, PS sends RM a request to assign a
session to the conversation. When RM has a
session available for the conversation, RM
connects the PS process of the issuing TP to
the HS process of the session and notifies PS
and HS. PS places the source end of the con-
versation (where the allocation was
requested) initially in send state.

If a session is not immediately available, RM
suspends the issuing process.

After a session is assigned to the conversa-
tion at the source LU, PS sends the Attach FM
header to HS for transmission to the target
LU. (In some cases, PS sends the Attach FM
header to RM rather than directly to HS; RM
then sends it to HS when bidding for the ses-
sion.)

When HS at the target LU receives the first
BIU of - the bracket, it notifies RM. RM
receives the Attach from HS, creates the con-
versation resource, and makes it accessible
to HS and PS. It places the target end of
the conversation initially in receive state,

The following sections give further details
of these functions.

Selecting a Session

RM maintains a list of allocation requests
and a list of free sessions and their con-
tention polarities. If RM has an allocation
request and a first-speaker
(contention-winner) session is free (i.e., in
between-brackets state), RM allocates that
session to the conversation. If a
first-speaker session is not free but a bid-
der (contention-loser) session is free, RM
bids for the session. If no sessions are
free, but the session limits have not been
reached; RM requests that LNS activate a new
session.

Bidding

RM requests HS to attempt to begin a bracket
by sending an RU with BB; this is called
bidding for the session.

RM always accepts a bid received on a bidder
session.

If RM receives a bid on a first-speaker ses-
sion, RM accepts or rejects the bid depending
on whether any of its own transactions need
to allocate the session for use by their own
conversation (if they do, then it sends a
negative response to the bid; otherwise, it
sends a positive response to the bid).

Optionally, a negatively-responding RM will

inform the partner when it is again uilling
to accept a bid.

Nenly Active Session

When a session becomes newly active, it is
initially in in-brackets state. The LU that
activated it (the primary LU, or BIND sender)
has first right to send, regardless of the
session contention polarity. If RM at the
primary LU has no unsatisfied conversation
request when a session becomes active, it
requests HS to yield the session, i.e., to
end the bracket.

Deallocation

When PS requests deallocation of the conver-
sation, HS ends the current bracket, and RM
deletes the conversation resource and places
the session in the free-session list.

SESSION ACTIVATION AND DEACTIVATION

If RM has a conversation request for a ses-
sion but no session is free and the session
limits bave not been exceeded, RM requests
LNS to activate a new session. RM also
requests session activation as a result of
operator commands (such as INITIAL-
IZE_SESSION_LIMIT). .

Starting a Session

Starting a session involves the following
three activity phases: session limits
initialization, session initiation, and ses-
sion activation.

Initializinhg Session Limits: Prior to any
transaction activity, the control operator
sets limits on the maximum and minimum num-
ber, and contention polarity, of active ses-
sions with particular partner LWUs using
particular mode names (see 'Control-Operator
Functions" on page 2-36 for details).

Session Initiation: When LNS receives a ses-
sion activation request from RM, LNS sends an
INITIATE session-services RU, containing the
partner LU name, to its control point, using
the CP-LU session.

When the control point receives the INITIATE,

it translates the LU name into a network
address.

Chapter 2. Overview of the LU 2-33

The CP then sends a CINIT RU, which contains
the network address, the cryptographic key if
session cryptography is wused, and a
description of other characteristics for the
session, to the LU that is to activate the
session. (The LU that activates a session is
called the primary LU [PLUl. The PLU is not
necessarily the LU that requested session
initiation.)

Session Activation: LNS for the PLU receives
the CINIT and retains the address. Using
information from the CINIT and from the LU's
mode table for the requested mode, LNS then
generates a BIND session-control RU contain-
ing the desired session parameters and sends
it to its local PU for routing to the partner
LU.

LNS for the LU receiving BIND (the secondary
‘LU or SLU) negotiates the proposed session
parameters to acceptable values and sends a
positive response to BIND via its local PU.

(If the LUs cannot agree on session parame-
ters, the session activation fails.)

When the positive response to BIND is sent or
received, the LNS at each end connects a new
HS process to the path control network. If
the session uses cryptography, the HSs
exchange cryptography-verification RUs.
Then, each LNS notifies its RM that a neuw
session is available.

Session Outage

If session outage occurs, LNS notifies RM.
If a conversation was active on the session,
RM notifies PS, which notifies the trans-
action program of conversation failure. RM
requests LNS to activate another session if
it has unsatisfied conversation requests or
an unsatisfied auto-activation limit.

Ending a Session

Ending a session involves the following three
activity phases: operator request, session
shutdown, and session deactivation.

Operator Request: Sessions are not deacti-
vated in the normal course of transaction
program processing; they are deactivated only
upon specific request from the
control-operator transaction program.

When the LU operator at either end of a ses-
sion determines that a session is to be deac-

FUNCTIONAL SUMMARY BY COMPONENT

2-34

This section is organized by component; it
reviews the specific functions of each prin-

tivated, the control-operator transaction
program issues a control-operator verb. The
control operator can cause sessions to end in
two ways.

The operator can issue a RESET_SESSION_LIMIT
verb to reset the session limits to 0 for
specified partner LUs and mode names. The LU
proceeds with subsequent phases until there
are no active sessions for the specified
(LU)mode) pairs.

The operator can also issue & DEACTI-
VATE_SESSION verb to deactivate a specific
session (this might be done, for example, to
recover from certain error situations). This
does not change the session limits, however,
so the LU might activate another session to
replace it.

When PS.COPR receives the verb, it issues a
session-limit-change notification or a
session-deactivation request to RM.

Session Shutdowun When RM receives a
session-limit-change notification, RM first
performs drain processing. If the operator
has requested RESET_SESSION_LIMIT with drain
indicated, then RM performs no deactivations
until all requests for allocation of sessions
with the specified mode name have been satis-
fied.

When drain is complete, or when RM receives a
session-deactivation request, and an affected
session next enters between-brackets state,
RM initiates a bracket-termination protocol.
This consists of an exchange of
bracket-initiation-stopped (BIS) RUs assuring
that all brackets have completed at both ends
of the session, i.e., that no other BIUs are
in transit between the LUs.

After receiving BIS, the partner LU drains
its allocation requests and sends BIS in
return.

When the BIS protocol is complete, the RM
that initiated the BIS protocol instructs its
LNS to deactivate the session.

Session Deactivation: MWhen LNS receives a
session-deactivation request from RM, it
sends UNBIND, via the local PU, and awaits a
response. When the partner LNS receives an
UNBIND, it unconditionally sends a positive
response. When the response to UNBIND is
sent or received, the corresponding LNS dis-
connects the half-session process from the
path control network, notifies the CP that
the session is ended, and destroys the
half-session process.

cipal component, and describes functions per-
formed primarily in one component.

SNA Format and Protocol Reference Manual for LU Type 6.2

Presentation Services

PS manages transaction programs and controls
conversation-level communication between TPs:

® Loads and calls the transaction program

® Maintains the conversation protocol
state, e.g., send/receive state of the TP

® Enforces correct verb parameter usage and
sequencing constraints

® Coordinates specific processing for each
verb

¢ Performs mapping of transaction program
data into mapped-conversation records

® Converts mapped-conversation records to
GDS variables, and the reverse: it par-
titions the data into logical records and
generates LLID prefixes

® Buffers conversation-message data from
the transaction program into contiguous
blocks for efficient subdivision by HS

® Reblocks RU data from HS into logical
records or buffer records as required by
the TP

e Verifies logical-record length and bound-
aries

. Truncates or purges data when errors are
reported or detected by the TP

® Generates and issues FM headers for
Attaches and Error-descriptions

Half-Session

HS controls session-level communication

between LUs:
¢ Reblocks data from PS into RU-sized units

® Builds RHs and enforces correct RH param-
eter settings

® Creates chains and enforces chaining as
the unit of LU-to-LU error recovery

® Correlates responses with the correct
bracket

® Enforces bracket protocol and purges

rejected brackets

® Enforces protocols for the relevant FM
and TS profiles for the session

® Generates and enforces sequence numbering
to detect lost or duplicate BIUs

® Provides session-level pacing

® Exchanges cryptography-verification RUs
when session cryptography is being used

® Enciphers and deciphers data when session
cryptography is being used

Resources Manager

RM manages presentation services and conver-
sations.

® Creates and destroys instances of presen-
tation services

® Creates and destroys conversation
resources and connects them to
half-sessions and to presentation serv-
ices

® Maintains the data structures represent-
ing the dynamic relationships among con-
versation resources, half-sessions,
transaction program instances, and trans-
action program code

® Chooses the session to be used by a con-
versation and controls contention for the
session

® Performs drain action: allouws session
traffic to cease before requesting ses-
sion deactivation

® Requests LNS to activate and deactivate
sessions

LU Network Services

LNS manages sessions:

® Coordinates session initiation in concert
with the control point

¢ Sends and receives BIND

® Supplies and negotiates session parame-
ters during BIND exchange

L Exchanges cryptographic key and session
seed

¢ Notifies RM of session outage

® Notifies the control point of LU charac-~
teristics and conditions during LU
initialization (ACTLU exchange)

¢ Creates and destroys half-session
instances and connects them to path con-
trol instances

FUNCTIONS OF SERVICE TRANSACTION PROGRAMS

Service tfransaction programs provide func-
tions to the end user that require communi-

cation with another LW wusing a special
SNA-defined pattern of verbs.

Service TPs form part of a distriButed trans-

action similarly to other TPs. They have a
transaction program name and are invoked by

Chapter 2. Overview of the LU 2-35

2-36

the Attach mechanism, and they exchange
information with these other TPs by issuing
transaction-program verbs.

Service transaction programs differ from
user-application transaction programs in that
they are SNA-defined and are considered part
of the LU. The names of service transaction
programs are SNA-defined. The records that
service TPs send and receive are SNA-defined
GDS variables.

Control-Operator Functions

All Ws have an implementation- or
installation-defined control operator trans-
action program (COPR TP) that represents the
LU control operator's interface to the LU.
Using a program-selected means such as opera-
tor console input, this TP issues
control-operator verbs to perform
control-operator functions.

Control-operator verb functions include cre-
ation and modification of the data structures
that describe the LU and the LU-accessed net-
work resources: control points, transaction
programs, partner LUs, and modes. Other
control-operator verb functions limit the
numbers and contention polarities of sessions
with particular 1LUs for particular mode
names, and also determine when sessions will
be activated and deactivated.

For an LU that supports parallel sessions,
there are additional transaction services
components for the control operator. These
LUs contain a change-number-of-sessions
(CNOS) service transaction program. When
processing CNOS verbs, the COPR TP at one LU
exchanges GDS variables with the CNOS service
TP at its partner to reach mutual agreement
about limits on the number of parallel ses-
sions between them.

(Control-operator functions are discussed in
further detail in '"Chapter 5.4. Presentation
Services--Control-Operator Verbs" .)

SNA Distribution Services

SNA Distribution Services (SNADS) provides a
set of verbs that an application TP may issue
to request asynchronous distribution of data.

The service is provided by a network of dis-
tribution service units (DSUs) interconnected
by conversations and sessions. Each DSU con-
sists of PS verb handlers and a collection of
service TPs within the LU. The service TPs
provide data storage, routing, and distrib-
ution asynchronously with the origin or des-
tination application programs.

SNADS is described in the publication SNA
Format and Protocol Reference Manual: Dis-
tribution Services.

Document Interchange Services

Document Interchange Architecture (DIA)
describes formats and protocols for synchro-
nous exchange of documents by using
basic-conversation verbs in a prescribed way.
Document interchange services include service
TPs for synchronous document transfer.

Document interchange architecture is
described in the publication Document Inter-

change Architecture--Concepts and Structures.

OPTIONAL FUNCTIONS

This section describes the principal optional
function sets.

Mapping Function

The mapping function is an optional function
of mapped conversations (PS.MC) that allows a
TP to select transformations, called maps, to
be applied to TP data at the sending and
receiving TP protocol boundaries. Maps are

- non-SNA-defined transformation tables or pro-

cedures that can be defined by the installa-
tion at both the source and target LUs. Maps
can specify, for example, how fields of a
mapped-conversation record are related to the
TP variables (data record) referred to in
protocol-boundary verbs.

Each LU can support multiple maps. Each map
is identified by a map name. The maps to be
applied are selected by the transaction pro-
gram (via verb parameters) and by other maps
(in an implementation-defined way), as shown
in Figure 2-27 on page 2-37.

Three separate map-name name spaces exist
(terms in parentheses correspond to those in
the figure):

1. Sender locally-known map name: This map
name (map-name-1) is known to the TPs at
the sending LU. It identifies a map
(map-1) at the sending LU that defines
the transformation performed by the send-
er from the format of the sending-program
data (data-1) to the format of the MCR
(data-2) that is sent on the conversa-
tion. This map also defines a corre-
spondence betueen the sender
locally-known map name (map-name-1) and
the globally-known map name (map-name-2)
described below.

2. Globally-known map name: This map name
(map-name-2) is known at both the sending
and receiving LUs, and is transferred on
the conversation between sender and
receiver. It identifies a map (map-2) at
the receiving LU. This map defines the
transformation performed by the receiver
from the format of the MCR received on
the conversation (data-2) to the format
of the data presented to the receiving
transaction program (data-3). This map

SNA Format and Protocol Reference Manual for LU Type 6.2

* * ® %
* * * *
I%___ *| Jse___ |
| | Sender map (map-1) | | Receiver map (map-2)
*__ x *__ *
| |
| |
v \'
— —
source TP sends: | | transferred on conversation: : : target TP receives:
| |
map-name-1, data-1 | | map-name-2, data-2 | | map-name-3, data-3
>| | > | >
| | | |
| Send | | Receive |
| Mapping | | Mapping |
| I— | IR— |

Figure 2-27. Map Name Usage by Mapped Conversations

also defines a correspondence between the
globally-known map name (map-name-2) and
the receiver locally-known map name
(map-name-3) described belouw.

3. Receiver locally-known map name: This
map name (map-name-3) is known to TPs at
the receiving WU. This identifies the
format of the data presented to the pro-
gram (data-3), e.g., it allows the pro-
gram to select the correct structure
definition or format description for the
data produced by the execution of the
receiver map (map-2).

Mapping is performed by a PS.MC component
called the mapper.

The mapper at the sender selects the send map
specified by the sender locally-known map
name, which is supplied as a parameter of the
MC_SEND_DATA verb. It performs the send map-
ping on the TP-supplied data, producing a
mapped-conversation record. Using the sender
map, the mapper also selects the
globally-known map name.

The LU sends the globally-known map name over
the conversation in an SNA-defined map-name
GDS variable (see "Appendix H. FM Header and
LU Services Commands"), and sends the
mapped-conversation record in a separate GDS
variable.

The mapper at the receiver selects the
receive map specified by the globally-known
map name received. It performs the receive
mapping on the mapped-conversation record it
receives, resulting in data formatted for
presentation to the TP. Using the receiver
map, the mapper also selects the receiver
locally-known map name. PS.MC passes the
receiver locally-known map name and the
reformatted data to the TP as returned param-
eter values for the next receive verb issued,
 e.g., MC_RECEIVE_AND_WAIT.

The receiving TP uses the receiver
locally-known map name in a TP-determined way
to interpret the received data.

The TPs supply or receive a map name parame-
ter value for each send or receive verb
issued, respectively. The LU, however, does
not send another map-name GDS variable if the
globally-known map name has not changed from
that of the previous record sent. To accom-
plish this, the mapper at each LU retains the
most recently sent and most recently received
values of map-name-2 for the conversation
(the send and receive map names can be dif-
ferent). The retained values for each direc-
tion persist until changed or until the end
of the conversation, regardless of interven-
ing turnarounds.

Sync Point Function

The sync point function allows all TPs proc-
essing a distributed transaction to coordi-
nate error recovery and maintain consistency
among distributed resources such as data
bases.

The sync point functions affect protected
resources. These include conversation
resources and implementation- or
installation-designated resources such as
data bases. Any changes to a protected
resource are Jlogged so that they can be
either backed out (reversed) if the trans-
action detects an error, or committed (made
permanent) if the transaction is successful.

The transaction programs divide the distrib-
uted transaction into discrete, synchronized
logical units of work (LUWs), delimited by
synchronization points (sync points). (Cor-
responding sync points occur at each TP par-
ticipating in the distributed transaction.)
LUWs are sequences of operations that are
indivisible units for the application, i.e.,
any failure in an LUH invalidates the entire
LUW (all LUK processing by all TPs for the
transaction); so the transaction is backed
out to the previous sync point.

The LU components for the sync point function
are shown in Figure 2-28 on page 2-38.

Chapter 2. Overview of the LU 2-37

log
manager

< —2

resources manager

~
Z<—p

NOTES:

G.
Fi

A

Function-shipping resource control recursively calls PS to communicate with the partner.
The conversation used for communication with the partner has its own protection manager.

PS components not relevant to sync point have been omitted from this figure.

A distinct protection manager exists for each conversation resource created by PS.

The non-SNA components are undefined protocol machines (UPMs).

gure 2-28.

Relationship of LU Components for Sync Point Functions

application RESYNC
transaction service
program transaction
A program
\J. ll'
cescesssssssssesssssss (Note 1)
; ® & & i
PS PS PS ¢ =y (NOte 2)
sync point local function— function- PS.CONV
services resource shipping shipping
resource resource
control
(PS.SPS) (non—SNA) (non—SNA) (non—-SNA)
A A A 'y A A
A AAAA :
- []
H ® (Note 3)
l : e | =V
—V. Ve~ Ve V. V. KV MR v S
protection| |protection ¢ |protection protection
manager manager : manager manager
-—— = for : -] b - - - -]
local function— : conversa— conversa-
resource shipping : tion tion
control resource $ resource resource
(non—SNA) (non—SNA) H -
A A gt : A A
l PS
®
L]
°
r
v v v v v
local LU-LU LU-LU
resource half- half-
control session session
| | |
v v v v
log file local resource path control

2-38

SNA Format and Protocol Reference Manual for LU Type 6.2

Highlights of the sync point function are
discussed below. (See '"Chapter 5.3. Presen-
tation Services--Sync Point Services Verbs'
for details.)

Sync Point Control: The sync point function
at each LU is coordinated by PS.SPS.

For each TP process participating in the dis-
tributed logical unit of work, the corre-
sponding PS.SPS tracks the state of that
logical unit of work. To do this, PS.S5PS has
protocol boundaries with the TP and with the
protection managers for each conversation and
for each protected local resource allocated
to that TP.

Logaing: When processing a given logical
unit of work, whenever a TP issues a verb
that makes any changes to a protected
resource, the corresponding resource pro-
tection manager logs the change so that, if
necessary, the change can be backed out lat-
er.

The log manager maintains the log entries for
each active LUN (i.e., for each active trans-
action) on non-volatile storage, wusing
implementation-defined data-management func-
tions. The same log is used to record all
log entries for all the LU resources for the
LUK,

Resources Manager: When it creates the PS
process, RM provides P5.5PS with access to
the log. RM also logs conversation allo-
cations, thereby supplementing the work of
the conversation protection manager.

In some cases, a transaction program can ter-
minate normally before its sync point log
entries are erased. In these cases, RM
assumes the function of the terminated sync
point control to complete the protocol and to
release (forget) the log entries.

Protection Managers: Each protected
resource, e.g.» a conversation or a local
data base, has a protection manager that logs
significant state changes during a logical
unit of work, detects errors affecting the
integrity of the changes, and commits or
backs out the changes as determined by the
sync point protocol.

The protection manager for a conversation is
defined by SNA; protection managers for other
(non-SNA) resources are defined by the imple-
mentation, but have a similar protocol bound-
ary to P5.5PS. The protection managers form
a sublayer between PS verb handlers and the
resource-control components.

Sync Point Protocol: At the end of a logical
unit of work, an application-designated TP
initiates sync point. The LUs then carry out
a protocol involving all local protected
resources and conversations being used by the
TP, and all partner LUs and TPs directly con-
nected by those conversatiops, to determine

whether any TP or protected resource detected
an error in the LUW, and to propagate this
result to the other LUs and TPs.

When a TP issues a verb that invokes the sync
point function (e.g., SYNCPT, BACKOUT) its
PS.SPS coordinates the sync point protocol.
PS.S5PS exchanges sync point commands, in the
form of presentation services (PS) headers
and FM headers, over the TP's conversations
with other TPs. Each PS.SPS component for
the transaction performs similar exchanges,
in turn, with its TP's conversation partners.
The PS.SPS components also determine the sta-
tus of local non-SNA resources by exchanging
appropriate commands across their internal
protocol boundaries. These exchanges direct
the protection managers to complete any pend-
ing log entries for the LUW.

The sync point protocol culminates with a
mutual decision among all TPs processing the
LUW either to commit or to back out the LUW.

Commi tment and Back-Out: When the sync point
protocol is complete at a particular TP, the
resource control components use the LUW log
entries to supply the information needed
(e.g.» data base change records) to perform
the required commitment or back out. They
then notify PS.5PS to erase the log entries
for that LUW.

Resynchronization: An LU failure might occur
during the sync point protocol, so that some
LU never receives an expected LUK status
report. To recover from this case, the other
LWUs can wait until the failing LU is reini-
tialized, and then the LUs perform a resyn-
chronization (resync) protocol to complete
the sync point processing at each LU. Resync
uses service transaction programs to exchange
sync point status among the LUs.

When the failing LU is reactivated, the LU
completes the resync transaction before run-
ning any other transaction programs that
require sync point. The resync service TP is
initiated by RM at some LU, typically at the
sync point initiator; this TP attaches the
resync TP at its partners, which continue
propagating the resync TP throughout the LUs
that had been processing the distributed
transaction.

The first step of the resync transaction is
to validate the integrity of the LU logs,
i.e., to determine that all LUs' logs contain
consistent entries for the same LUW. To do
this, the resync service TPs exchange
EXCHANGE_LOG_NAME €DS variables on the con-
versation. Next, the service TPs exchange
COMPARE_STATES GDS variables to determine the
status of the sync point protocol at the time
of failure. PS.SPS then uses this informa-
tion to complete the sync point protocol.
(See "Appendix H. FM Header and LU Services
Commands" for the SNA-defined format of the
EXCHANGE_LOG_NAME and COMPARE_STATES GDS var-
fables.)

Chapter 2. Overview of the LU 2-39

DATA STRUCT:RES

2-40

The LU maintains data structures representing
the state and configuration of its resources.

Some system-definition data structure ele-
ments represent the LU-accessed network
resources, These structures describe the
characteristics of the LU itself, the trans-
action programs that the LU can run, the
control-points that serve this LU, the part-
ner LUs with which this LU can communicate,
and the modes characterizing possible ses-
sions with particular partner LUs.

Other data structure elements represent the
dynamic environment created by the LU. The
principal components of this environment are
the transaction program instances in exe-
cution (represented by transaction-program
processes) the active sessions with other LUs
(represented by half-session processes), and
the active conversations (represented by con-
versation resources). This environment also
includes the relationships of the dynamic
components to the LU-accessed network
resources and to each other.

LU-ACCESSED NETWORK RESOURCES

Figure 2-29 on page 2-41 illustrates the data
structures that represent the LU-accessed
network resources.

The LUCB structure (and some associated lists
not shoun) describe the local W. This
information includes the LU's fully qualified
name and the set of optional functions (e.g.,
parallel sessions and mapping) that the LU
supports. The LUCB is also the anchor for
lists of data structures describing the other
LU resources.

A TRANSACTION_PROGRAM structure (and associ-
ated lists not shoun) describe the trans-
action programs at the local LWU. This
information includes the transaction program
name, its current availability status, and
the set of optional functions (e.g., sync
point and mapping) that it supports.

An CPLU_CAPABILITY structure describes a con-
trol point. This information includes ' the
allowed formats of addresses and the set of
session-services RUs used on the LU-CP ses-
sion.

A PARTNER_LU structure describes a remote LU
(potential partner LU). This information
includes the remote LU's names: local LU
name, fully-qualified LU name, and uninter-
preted LU name. It also includes the set of
the LU's optional capabilities such as paral-
lel sessions. The PARTNER_LU structure also
contains a list of mode descriptions.

A MODE structure describes a mode. This
information includes the mode name and the
set of optional functions that are supported

by the remote LU on a mode basis, e.g.,» sync
point. It also includes the session parame-
ters that characterize this mode, such as
maximum allowed RU size, session-pacing win-
dow size, and session cryptography parame-
ters. The mode structure also indirectly
describes link characteristics: the mode name
is used by the control-point as the key to
tables identifying the links and routes to be
used for sessions for that mode.

PROCESSES AND DYNAMIC RESOURCES

Figure 2-30 on page 2-42 illustrates the
principal data structures and processes, and
their relationships, that represent the
dynamic environment. The formal description
represents these relationships in various
ways such as pointers between control blocks,
keys of elements in lists, and intermediate
dynamic control blocks.

The processes also contain state information
used by LU functional components; this is
described in more detail in chapters con-
cerned with the relevant functional compo-
nents.

The TP process represents a transaction pro-
gram instance. It identifies the transaction
program code that it is using. There may be
multiple transaction program processes exe-
cuting the same transaction program code.

The HS process represents a half-session. It
identifies the remote LU and mode with which
it is associated. A mode may be associated
with many half-session processes, but each HS
process is associated with only one mode.

The RCB structure represents a conversation
resource. The RCBs are the central elements
in the dynamic configuration of the LU: they
represent the connection of a transaction
program to a half-session; this connection is
dynamically created and destroyed, and allous
an asynchronous (SEND/RECEIVE) relationship
between TP and HS. The RCB identifies the
local TP using the conversation and the
half-session being used, if any. Because a
session might not be immediately available
when a TP allocates a conversation, the RCB
also identifies the remote LU (PARTNER_LU)
and mode name (MODE) for the desired session.
Many conversation resources, hence RCBs, may
be associated with the same local TP, but
each RCB may be associated with only one
local TP, one partner LU, one mode, and one
half-session.

Figure 2-30 on page 2-42 illustrates several
of the possible relationships among these
structures. In the figure:

® An active session is associated with the
control-point (CPC).

SNA Format and Protocol Reference Manual for LU Type 6.2

Luce

TPGM

TPGM

TPGM

LEGEND :

Vertical lines represent lists of subordinate resources

Abbr.

TPGM: Transaction Program Code information

=]

PTNR

MODE

MODE

MODE

PTNR

MODE

PTNR

MODE

MODE

PTNR

MODE

MODE .

MODE

Data Structure Name
LUCB: Local LU information (LucB)

(TRANSACTION_PROGRAM)

CPC: Control Point information (CPLU_CAPABILITY)
PTNR: Partner LU information (PARTNER_LU)
MODE: Mode information (MODE)

Figure 2-29. LU Static Data Structures (Example)

(This session is used directly by LU
internal components, so no relationship
to a transaction program is shoun.)

RCB E associates active TP A for trans-
action program code 1 with mode name U,
awaiting a free session with mode name U.

‘4

Active TP B for transaction program code
2 has two active conversations:

- RCB F connects it to remote LU W via
session K with mode name U.

Chapter 2. Overview of the LU 2-41

HS geesssesese CPC —{
[]
1 TPGM 1 |:3::3:2: TP A .
[]
#
HRABRE|] RCB E | I6363636 363636 3636 36 36 363636 I6 36 36 36 36 36 36 36.36.36 36 36 36.36 36 36 3636 36 36 36 36 36 36 36 3¢ PTNR W
%
.2.4:2:2.2.2:202:2:2] HS K Jssseseseses] MODE U
#
#
—— TPGM 2 |ssc2s: TP B # MODE
#
%
HU#R| RCB F |pusnun HS M |sss22cscess| MODE L
e
H
#R#FRARE| RCB G [HRRNNR HS N |sssssses: PTNR X
#
#
— TPGM 3 # MODE
#
#
PTNR Y
#
#
$3se TP C #R/RABARBNN| HS P Jocsesszsess:| MODE V
$e [2
$e # #RER]| RCB H |SRRRABHBANRBANNE] HS Q J:ooscssssess:| MODE
- #
H] #
—TPGM & |::3:: #RRRRRR]| RCB I |[HBRRRR PTNR
HY] #
tH] ——
. R R TP D #RRRRRN[ARRE HS R |:ssrrzsssss| MODE Z
. | I e .
[) # s L] []
® RRRRUR| RCB J |[HARRRARRFRANBRAN HS T |sessse: L .
. T .
L []
[]
[]
LEGEND:

Vertical lines represent lists of subordinate resources
t::: association of process to static data elements

##4% association of processes via RCB dynamic data element
*#x% association of RCB with MODE in lieu of unavailable HS

Abbr. Data Structure Name
LUCB: Local LU information (LuUCB)

TPGM: Transaction Program Code information (TRANSACTION_PROGRAM)
CPC: Control Point information (CPLU_CAPABILITY)
PTNR: Partner LU information (PARTNER_LU)

MODE: Mode information (MODE)

TP: Transaction program process

RCB: Conversation resource information (RCB)

HS: Half-session process

Figure 2-30. LU Dynamic Data Structures and Processes (Example)

- RCB 6 connects it to remote LU Y via ® LU W has tuwo free sessions, M and N, each
session P with mode name V. with mode name L.

2-642 SNA Format and Protocol Reference Manual for LU Type 6.2

® Remote LU X has a single mode name with
no active sessions.

® No active TP instances exists for trans-
action program 3.

® Two active TP instances exist for trans-
action program 4: TPs C and D.

® Two conversations G and H exist with
remote LU Y, each using a different mode
name.

®* Two conversations I and J use separate
sessions R and T, both with mode name Z.

LU STARTUP AND SHUTDOWN

LU startup consists of four phases: creating
the LU processes, activating the CP-LU ses-
sion, initiating the control operator trans-
action program, and setting the LU parameters
and session limits. The LU then initiates
programs and activates sessions in response
to further operator, transaction program, or
partner-LU actions.

To shut down the LU, the steps are reversed,
but some can be omitted. The minimum steps
to terminate communications include resetting
the session limits and deactivating the CP-LU
session.

LU PROCESS CREATION AND TERMINATION

Figure 2-32 on page 2-45 shows the process
creation and termination hierarchy for the
LU.

First, the PU in the node creates two dynamic
processes, RM and LNS. These processes con-
tinue running thereafter.

The PU creates the CP-LU half-session when it
receives ACTLU session-control RU from the CP
(see "CP-LU Session Activation").

The TP and HS processes are discussed in
“Running State'" on page 2-44.

CP-LU SESSION ACTIVATION

The CP in the network (the PNCP or the SSCP)
activates the CP-LU session for the LU by
sending ACTLU, to which LNS responds, if
ready, with +RSP(ACTWU). This session acti-
vation is required prior to any LU-LU session
initiation or termination.

When the CP determines that no further ses-
sion initiation or termination activity is
required, it deactivates the CP-LU session by
sending DACTLU to the LU.

RESOURCE RELATIONSHIPS IN A DISTRIBUTED
TRANSACTION

In contrast to Figure 2-30, which illustrates
the data structures for several transactions
from the perspective of a single LU, Fig-
ure 2-31 on page 2-44 illustrates the
relationships among data structures at
several LUs from the perspective of a single
distributed transaction. 1In this case, the
paired half-sessions connect LUs, and the
paired conversation resources, represented by
RCBs, connect transaction program instances.

If the CP-LU session is interrupted because
of session outage, the CP attempts to reacti-
vate it. This need not interrupt normal
LU-LU session traffic.

CONTROL-OPERATOR TRANSACTION PROGRAM INITI-
ATION

RM creates a PS process and initiates the
control-operator TP.

CONTROL-OPERATOR ACTIONS

The control operator specifies the LU parame-
ters describing the LU-accessed network
resources: the control points, transaction
programs, partner LUs, and modes. (An imple-
mentation might provide this function without
requiring explicit operator interaction,
e.g.» the LU parameters might be defined at
system-definition time.)

The operator initializes session limits with
the partner LUs by issuing the INITIAL-
IZE_SESSION_LIMIT verb for the relevant mode
names. For parallel-session mode names, this
verb activates an LU-LU session using the
SNA-defined mode name SNASVCMG (if not
already active) and establishes mutually
agreeable session limits for other mode names
by exchanging CNOS GDS variables on that ses-
sion. This verb optionally causes activation
of a predetermined number of sessions for the
specified mode name.

When sessions are to be deactivated, the con-
trol operator issues RESET_SESSION_LIMIT for
the mode name. For a parallel-session con-
nection, this causes another CNOS GDS vari-
able exchange to elicit the partner LU's
cooperation in the session shutdoun. In any
case, this verb causes the LU to eventually
cease initiating new transaction programs and
activating new sessions (drain). As sessions
become unused, RM and LNS deactivate them.

Chapter 2. Overview of the LU 2-43

TPGM TPGM TPGM
TP TP ™
RCB | wssunsussunusunanswnns {RCB RCB |wunaw LT we s |RCB
HS i HS HS L S N HS
wsB we
TPGM
TP
RCB L (1T 1] (LITTTTT EusEsEEEEsssuawnEns |RCB
" zzz=== =zzzzzzszszzssssssssTsTTIsEss HS
LU A wo
LEGEND :

= o
s=S====

Association of a process with its data structures
nwnwsw Conversation (connection between transaction program instances [TPs])

Session (connection between LUs)

Transaction program data structure (represents transaction program code)
Resource control block (represents a conversation)

Transaction program process instance
Half-session process instance

2-31.

Data Structure Relationships among LUs for a Distributed Transaction (Example)

2-44

The LU initiates no further actions to shut
doun the LU. Any further actions are at the
initiative of the CP or the PU.

RUNNING STATE

Once the CP-LU session has been activated and
the LU-LU session limits have been set, the
LU is ready to process transactions.

RM creates a transaction-program process when
it receives an Attach or an initial TP invo-

cation request; it destroys that process when
PS indicates that the TP has completed and
all its conversations have been deallocated.

Either RM or the partner LU can request ses-
sion activation; in either case, LNS performs
the relevant processing. LNS creates an HS
process for an LU-LU session and connects it
to a path control instance whenever it sends
or receives BIND. LNS destroys that process
when it has sent or received a positive
response to UNBIND, has disconnected the
half-session from path control (by sending
PS_HS_DISCONNECT), and has notified the CP

SNA Format and Protocol Reference Manual for LU Type 6.2

U O— >

1] .

PU o

LEGEND:
.

Figure 2-32.

.
.
Transaction
I Program /
Presentation
I I Services
. > Process
Resources I
Manager
Process
(RM)
®
[]
(K1) 3
Network V-
Services l I
Process
(LNS) LU-CP LU~-LU
Half-Session Half-Session —
Process Process

> process creation (The arrow points from creator to created.)

LU Process Creation and Termination Hierarchy

that the

SESSEND).

EXAMPLE

Figure 2-35 on page 2-50 and Figure 2-36 on
page 2-51 illustrate typical interactions at

session

ended

(by sending

the local and remote LUs, respectively, for
an LU shutdoun sequence. LU startup and
shutdown are described in more detail in
"Chapter 5.4, Presentation Serv-
ices--Control-Operator Verbs" .

Chapter 2. Overview of the LU 2-45

PROTOCOL BOUNDARY SUMMARY

This section lists the external message units
and internal records exchanged by LU compo-
nents. For full descriptions of these struc-
tures, see "Appendix A. Node Data Structures"”
in Appendix A

EXTERNAL PROTOCOL BOUNDARY VERBS AND MESSAGE
UNITS

PS-TP Protocol Boundary: ITransaction Program
Verbs

TRANSACTION_PGM_VERB

Basic-Conversation Verb Variants

ALLOCATE

CONFIRM
CONFIRMED
DEALLOCATE

FLUSH
GET_ATTRIBUTES
GET_TYPE
POST_ON_RECEIPT
PREPARE_TO_RECEIVE
RECEIVE_AND_WAIT
REQUEST_TO_SEND
SEND_DATA
SEND_ERROR

TEST

WAIT

Mapped-Conversation Verb Variants

MC_ALLOCATE
MC_CONFIRM
MC_CONFIRMED
MC_DEALLOCATE
MC_FLUSH
MC_GET_ATTRIBUTES
MC_POST_ON_RECEIPT
MC_PREPARE_TO_RECEIVE
MC_RECEIVE_AND_WAIT
MC_REQUEST_TO_SEND
MC_SEND_DATA
MC_SEND_ERROR
MC_TEST

Control-Operator Verb Variants

ACTIVATE_SESSION

CHANGE _SESSION_LIMIT
DEACTIVATE_SESSION
INITIALIZE_SESSION_LIMIT
PROCESS_SESSION_LIMIT
RESET_SESSION_LIMIT

LNS-PU Protocol Boundary

LNS_TO_NNM_RECORD
ACTLU_RSP_SEND_RECORD
BIND_RQ_SEND_RECORD
BIND_RSP_SEND_RECORD
DACTLU_RSP_SEND_RECORD

HIERARCHICAL_RESET_RSP
PC_CONNECT
PC_HS_CONNECT
PC_HS_DISCONNECT
SESSION_ROUTE_INOP_RSP
UNBIND_RQ_SEND_RECORD
UNBIND_RSP_SEND_RECORD

NNM_TO_LNS_RECORD
ACTLU_RQ_RCV_RECORD
BIND_RQ_RCV_RECORD
BIND_RSP_RCV_RECORD
DACTLU_RQ_RCV_RECORD
HIERARCHICAL_RESET
PC_CONNECT_RSP
SESSION_ROUTE_INOP
UNBIND_RQ_RCV_RECORD
UNBIND_RSP_RCV_RECORD

HS-PC Protocol Boundary

PC_TO_HS_RECORD

HS_TO_PC_RECORD

INTER-COMPONENT STRUCTURES

PS-HS Protocol Boundary

PS_TO_HS_RECORD

Variants
CONFIRMED
REQUEST_TO_SEND
SEND_DATA_RECORD
SEND_ERROR

HS_TO_PS_RECORD
CONFIRMED
RECEIVE_DATA
RECEIVE_ERROR
REQUEST_TO_SEND
RSP_TO_REQUEST_TO_SEND

PS-RM Protocol Boundary

PS_TO_RM_RECORD
ALLOCATE_RCB
CHANGE_SESSIONS
DEALLOCATE_RCB
GET_SESSION
RM_ACTIVATE_SESSION
RM_DEACTIVATE_SESSION
TERMINATE_PS
UNBIND_PROTOCOL_ERROR

RM_TO_PS_RECORD
ATTACH_RECEIVED
CONVERSATION_FAILURE
RCB_ALLOCATED
RCB_DEALLOCATED
RM_SESSION_ACTIVATED
SESSION_ALLOCATED

2-46 SNA Format and Protocol Reference Manual for LU Type 6.2

RM-HS Protocol Boundary

RM_TO_HS_RECORD
BID_RSP
BID_WITH_ATTACH
BID_WITHOUT_ATTACH
BIS_REPLY
BIS_RQ
HS_PS_CONNECTED
RTR_RQ
RTR_RSP
YIELD_SESSION

HS_TO_RM_RECORD
ATTACH_HEADER
BID
BID_RSP
BIS_RQ
BIS_REPLY
FREE_SESSION
RTR_RQ
RTR_RSP

COMPONENT INTERACTIONS AND FLOW SEQUENCES

The following figures illustrate both the
internal-protocol-boundary flow sequences
among LU components and the external flows
between tuo LUs that result from
basic-conversation verb issuances.

Each sequence is illustrated by a pair of
figures on facing pages. Each separate fig-
ure represents the complete flow as seen by a
single L. The figure labeled local LU
represents the LU that initiates the sequence
being illustrated; the figure labeled remote
LU represents the partner LU. For cases
illustrating a race between two LUs, the LUs
are distinguished as first speaker and
bidder. The flows through the path control
network are shown in the column nearest the
center margin, and are replicated in each
figure; numerals in parentheses correlate
corresponding flows in the facing figures.
When flouws cross in the path-control network,
the crossing is illustrated on the sending
side of the delayed flou.

NOTATION

For the interpretation of labels on the
arrows, see the following. (In some cases,
these names have been abbreviated.)

RM-LNS Protocol Boundary

RM_TO_LNS_RECORD
ACTIVATE_SESSION
DEACTIVATE_SESSION

LNS_TO_RM_RECORD
ACTIVATE_SESSION_RSP
CTERM_DEACTIVATE_SESSION
SESSION_ACTIVATED
SESSION_DEACTIVATED

LNS-HS Protocol Boundary

LNS_TO_HS_RECORD
HS_SEND_RECORD
INIT_HS

HS_TO_LNS_RECORD
ABORT_HS
HS_RCV_RECORD
INIT_HS_RSP

® For verb and verb-parameter names
(TP-PS), see SNA Transaction Programmer's
Reference Manual for LU Type 6.2

® For protocol-boundary records and message
units (TP-PS, PS-RM, RM-LNS), see 'Proto-
col Boundary Summary' on page 2-46

. For RU names (LNS-LNS, HS-HS), see '"Ap-
pendix E. Request-Response Unit (RU) For-
mats'

® For RH indicators (LNS-LNS, HS-HS), see
"Appendix D. RH Formats"

The following abbreviations for chaining
indicators are also used:

- FIC (first in chain) = (BC,~EC)

MIC (middle in chain) = (-BC,-EC)’

LIC (last in chain) = (-BC, EC)

- O0IC (only in chain) = (BC, EC)
® For data elements of RUs (LNS-LNS,

HS-HS), see "Appendix H. FM Header and LU
Services Commands"

Chapter 2. Overview of the LU 2-47

IP PS RM LNS __HS(FSP) ' part U)

ALLOC(when allocated) ALLOCATE_RCB

o >0 >0
RCB_ALLOCATED(OK)
o<
GET_SESSION(NO_ATTACH) ACTIVATE_SESSION ! ~ BIND?
) >0 >0 - > (a)
+RSP(BIND)2
1 o< (b)
IINIT_HS
>0
ACTIVATE_ INIT_ | CRV3 .
SESSION_ HS_ > (e)
RC=0K SESSION_ALLOCATED(OK) RSP(+) RSP(+) +RSP(CRV)3
o< o< o< o< o< (d)
HS_PS_CONNECTED
>0 ‘)
SEND_DATA SEND_DATA(ALLOC, FMH,DATA,NOT_END_OF_DATA) BC,RQE1,*BB, FMH-5,DATA
>0 >o ' > (1)
RC=0K |
o<
RQE1,DATA
> (2)
SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) RQE1,DATA
>o >o > (3)
RC=0K |
o(
SEND_DATA(DATA,
RECEIVE_AND_WAIT PREPARE_TO_RCV_FLUSH) EC,RQE1,CD,DATA
>0 >o > (&)
RC=0K,DATA_COMPLETE = RCVD_DATA(DATA,DEALLOCATE_FLUSH) BC,EC,RQE1,CEB,DATA
o< o< o< (5)
lRECEIVE_AND_HAIT FREE_SESSION l
>0 o<
RC=DEALLOCATE_NORMAL
o< |
IDEALLOCATE LOCAL DEALLOCATE_RCB
>o >0
RC=0K RCB_DEALLOCATED]
o< o<
NOTES:

1 Session-activation flows to PU, CP, and path control have been omitted;
see "Chapter 4. LU Network Services' for details.

2 BIND/RSP(BIND) flows through the PU (not shoun).

3 CRV/RSP(CRV) flows only when session-level cryptography is being used.

Figure 2-33. Complete Conversation Example--Local LU

2-48 SNA Format and Protocol Reference Manual for LU Type 6.2

(t rtner) (Bidder)HS LNS RM PS TP
BIND? 1
(a) >0
+RSP(BIND)? |
(b) < s 1
INIT_HS
¢<___‘__J
CRV3 «
(c) -20
+RSP(CRV)?] INIT_
() < HS_
l,RSP(+) SESSION_ACTIVATED
- >0 >0
BC,RQE1,*BB, FMH-5,DATA BID
(1) >or >0
‘ BID_RSP(POS) |
o<
| ATTACH_HEADER ATTACH
- >0 >0 >0
HS_PS_CONNECTED | RECEIVE_AND_WAIT
o< O~
RQE1,DATA RCVD_DATA(DATA,NOT_END_OF_DATA)
(2) >o >0
2o RC=0K,
RQE1,DATA RCVD_DATA(DATA,NOT_END_OF_DATA) WHAT_RCVD=DATA_*COMPLETE
(3) >0 - >0 - >0
RECEIVE_AND_WAIT I
o(
RCVD_DATA(DATA, RC=0K,
EC,RQE1,CD,DATA PREPARE_TO_RCV_FLUSH) WHAT_RCVD=DATA_COMPLETE
4) >0 > - >0
_RECEIVE_AND_WAIT |
oKX
RC=0K,
I WHAT_RCVD=SEND
. >0
SEND_DATA(DATA,NOT_END_OF_DATA) SEND_DATA |
tog: o<
| RC=0K
>0
BC,EC,RQE1l,CEB,DATA SEND_DATA(DATA,DEALLOCATE_FLUSH) DEALLOCATE FLUSH I
(5) <« 0<- o<
DEALLOCATE_RCB |
o<
RCB_DEALLOCATED RC=0K
>o >0
FREE_SESSION
>0
NOTES:
! Session-activation flows to PU, CP, and path control have been omitted.
2 BIND/RSP(BIND) flows through ‘the PU (not shoun).
3 CRV/RSP(CRV) flows only when session-level cryptography is being used.
Figure 2-34. Complete Conversation Example--Remote LU
Chapter 2. Overview of the LU 2-49

COPR TP PS RM LNS HS(FSP) (to partner LU)

RESET_SESSION_LIMIT!

o >0
(if parallel session, CNOS exchange occurs here)
o< > (%)
CHANGE_SESSIONS?
o >0
r
(drain action)®
BIS_RQ BIS,RQ,BC,EC,RQEl,~BB,~CEB
o >0 > (1)
Repeat for
each session < BIS_REPLY BIS,RQ,BC,EC,RQE3,~BB,~CEB
for the o< o< (2)
specified
mode name. DEACTIVATE_SESSION ¢ UNBINDS
>0 > (a)
+RSP(UNBIND)3
4 o< tb)
NOTES:

1 For specific-session deactivation, substitute DEACTIVATE_SESSION and eliminate the CNOS exchange.
2 For specific-session deactivation, substitute RM_DEACTIVATE_SESSION and eliminate the drain action

3 pDrain action: wait until no allocation requests allowed by drain state are pending,

then wait until session is in between-brackets state, i.e., +RSP(CEB) is sent or received.
4 session-deactivation flows to PU and CP have been omitted.
5 UNBIND/RSP(UNBIND) flows through the PU (not shoun)

Figure 2-35. Session Deactivation--Local LU

2-50 SNA Format and Protocol Reference Manual for LU Type 6.2

(to _partner LU) (Bidder)HS LNS RM PS CNOS_TP

(if parallel session, CNOS exchange occurs here)

(%) < >o
BIS’RQ)BC’EC’RQEI)‘BB:"CEB BIS_RQ
(89) >o >0
(drain action)3
BIS,RQ,BC,EC,RQE3,-BB,~CEB BIS_REPLY
(2) < o< 0 repeat for
> each session
UNBIND® SESSION_DEACTIVATED in mode
(a) >o >0
+RSP(UNBIND)"
(b) < 4

NOTES:

3 Drain action: wait until no allocation requests allowed by drain state are pending,

then wait until session is in between-brackets state, i.e., +RSP(CEB) is sent or received.
4 Session—activation flows to PU and CP have been omitted.
5 UNBIND/RSP(UNBIND) flous through the PU (not shown).

Figure 2-36. Session Deactivation--Remote LU

Chapter 2. Overview of the LU 2-51

TP A PS RM HS(FSP) % rt)
ALLOC(when allocated) ALLOCATE_RCB
o >0 >0
RCB_ALLOCATED(OK!AJ
o<

GETTSESSION(NO_ATTACH) HS_PS_CONNECTED

>0 >0
RC=0K SESSION_ALLOCATED(OK)]
o< o<
| SEND_DATA
>0
RC=0K
o(
I CONFIRM SEND_DATA(ALLOC, FMH,DATA, CONFIRM) 0IC,BB,RAD2|3,ATTACH,data
>0~ >O0—— > (1)
RC=0K CONFIRMED +RSP
o< o< o< 2)
Figure 2-37.

ALLOCATE (when allocated), CONFIRM (by First Speaker) --Local LU

2-52 SNA Format and Protocol Reference Manual for LU Type 6.2

(1o partner LU) HS(Bidder) RY PS 1P
0IC,BB,RQD2|3,ATTACH,data 8ID
(1) >o >0
BID_RSP(POS) |
°(4
| ATTACH_HEADER ATTACH
>o >0 >0
HS_PS_CONNECTED | RECEIVE_AND_MWAIT |
o< o<
RC=0K,
RCVD_DATA(DATA,CONFIRM) WHAT_RCVD=DATA_%COMPLETE
>o >0
RECEXIVE_AND_WAIT |
o<
RC=0K,
WHAT_RCVD=CONFIRM
>0
+RSP CONFIRMED CONF IRMED |
(2) < o< o<
| RC=NONE
>0

Figure 2-38.

" Chapter 2.

ALLOCATE (when aullocated), CONFIRM (by First Speaker) --Remote LU

Overview of the LU

2-53

Ip PS RM HS(FSP)

(t artner)
ALLOC(delayed) ALLOCATE_RCB
-, >0 >0
RC=0K RCB_ALLOCATED(OK)
o< o<:
l SEND_DATA
>0
RC=0K J
o<
| CONFIRM GET_SESSION(ATTACH) BID_WITH_ATTACH 0IC,BB,RAD2|3,ATTACH,data
>0 >o >o > (1)
SESSION_ALLOCATED(OK)
o<
HS_PS_CONNECTED
>0
RC=0K CONFIRMED +RSP
o< o< o< 2)

Figure 2-39. ALLOCATE (delayed), CONFIRM (by First Speaker) --Local LU

2-54

SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) HS(Bidder) RM) TP
0IC,BB,RQD2|3,ATTACH,data BID
(1) >o >0
BID_RSP(POS) |
o<
| ATTACH_HEADER ATTACH
>0 >0 >0
HS_PS_CONNECTED J RECEIVE_AND_WAIT |
o< o<
RC=0K,
RCVD_DATA(DATA, CONFIRM) WHAT_RCVD=DATA_*COMPLETE
>0 >0
RECEIVE_AND_WAIT |
o<
RC=0K,
WHAT_RCVD=CONFIRM
>0
+RSP CONFIRMED CONFIRMED |
2) < o< o<
| RC=NONE
>0

Figure 2-640. ALLOCATE (delayed), CONFIRM (by First Speaker) --Remote LU

Chapter 2. Overview of the LU

2-55

P

PS RM HS(FSP) {10 partner LU)
ALLOC(delayed) ALLOCATE_RCB
[, >0 >0
RC=0K RCB_ALLOCATED(OK)]
o< o< ,
| SEND_DATA
>0
RC=0K
o<
| RCV_AND_WAIT GET_SESS(ATTACH) BID_WITH_ATTACH 0IC,BB,RQEL,CD,ATTACH,data ~
>o >o >0 > (1)
SESSION_ALLOCATED(OK)
o<
‘ HS_PS_CONNECTED
: >0
. RCVD_ERROR -RSP(0846)
o< o< (2)
RC=PROG_ERROR_ RCVD_DATA(FMH,DATA,
PURGING PREPARE_TO_RCV_FLUSH) , OIC,RQE1,CD,FMH7
o< o< - - 0< - (3)

Figure 2-41. ALLOCATE (delayed), RECEIVE_AND_WAIT (by First Speaker) --Local LU

2-56

SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) HS(Bidder) RM PS TP
0IC,BB,RQE1,CD,ATTACH,data BID
(1) >o - >0
BID_RSP(POS) |
o<
| ATTACH_HEADER ATTACH
>0 >0 >0
HS_PS_CONNECTED J RECEIVE_AND_HAITAJ
o< o<
RCVD_DATA(DATA, RC=0K,
PREPARE_TO_RCV_FLUSH) WHAT_RCVD=DATA_%COMPLETE
>0 >0
-RSP(0866) SEND_ERROR SEND_ERROR '
(2) < o< <
| RC=0K
SEND_DATA(FMH,DATA, >o
OIC,RQE1,CD,FMH7 PREPARE_TO_RCV_FLUSH) RECEIVE_AND_WAIT l
(3) < o< o<
Figure 2-62. ALLOCATE (delayed), RECEIVE_AND_WAIT (by First Speaker) --Remote LU

Chapter 2.

Overview of the LU

2-57

Ip

PS RM HS(Bidder)

ALLOC(when allocated) ALLOCATE_RCB

(to partner LU)

o >0 >0
RCB_ALLOCATED(OK) |
o<
GET_SESS(NO_ATTACH) BID_WITHOUT_ATTACH LUSTAT,BB,RQD1
o o > (1)
RC=0K SESSION_ALLOCATED(OK) BID_RSP(FOS) +RSP
o< O o< o< (2)
| SEND_DATA I HS_PS_CONNECTED
>0 >0
RC=0K
o< SEND_DATA(FMH,DATA,
I RCV_AND_WAIT PREPARE_TO_RCV_FLUSH) OIC,RQE1,CD,ATTACH,data
>o >o- > (3)
Figure 2-43. ALLOCATE (when allocated), RECEIVE_AND_WAIT (by Bidder) --Local LU
2-58 SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) HS(FSP) RM PS TP
LUSTAT,BB,RQD1 BID
(1 >o >0
+RSP BID_RSP(POS)
(2) < o<
OIC,RQEL1,CD,ATTACH,data ATTACH_HEADER ATTACH
(3) >0 >0 >0 >0
HS_PS_CONNECTED RECEIVE_AND_WAIT I
o< o<
RCVD_DATA(DATA, RC=0K,
PREPARE_TO_RCV_FLUSH) WHAT_RCVD=DATA_%COMPLETE
>0 >0
RECEIVE_AND_WAIT |
o<
RC=0K,

WHAT_RCVD=SEND
>0

Figure 2-44. ALLOCATE (when allocated), RECEIVE_AND_WAIT (by Bidder) --Remote LU

Chapter 2. Overview of the LU 2-59

TP PS RM HS(B

idder) artne
ALLOC(delayed) ALLOCATE_RCB
o >0 >0
RC=0K RCB_ALLOCATED(OK) |
o< o<
| SEND_DATA
>0
RC=0K
o<
| CONFIRM GET_SESSION(ATTACH) BID_WITH_ATTACH OIC,BB,RQD2{3,ATTACH,data
>o >0 >0- i > (1)
SESSION_ALLOCATED(OK) BID_RSP(POS) +RSP
o< . _ L

<
A4

< o (2)
HS_PS_CONNECTED

>0

RC=0K ' CONFIRMED

o< o<

Figure 2-45. ALLOCATE (delayed), CONFIRM (by Bidder) --lLocal LU

2-60 SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner U HS(FSP) RM PS IP
0IC,BB,RQD2|3,ATTACH,data BID
(1) >0 >0
BID_RSP(POS) |
°(
| ATTACH_HEADER ATTACH
>0 >0 >0
HS_PS__CONNECTED' RECEIVE_AND_WAIT |
o< o<
RC=0K,
RCVD_DATA(DATA, CONFIRM) WHAT_RCVD=DATA_*COMPLETE
>0 >0
RECEIVE_AND_WAIT |
o<
RC=0K,
WHAT_RCVD=CONFIRM
>0
+RSP ~ CONFIRMED CONFIRMED |
(2) < o< o<
| RC=NONE
>0
Figure 2-46. ALLOCATE (delayed), CONFIRM (by Bidder) --Remote LU

. Chapter 2.

Overview of the LU

2-61

Ip PS RM HS(Biddg;l

ALLOC(delayed) ALLOCATE_RCB
o >0 >0
RC=0K RCB_ALLOCATED(OK)
o< o<
| SEND_DATA
>0
RC=0K
o(

(to partner LU)

l RCV_AND_KWAIT GET_SESSION(ATTACH) BID_WITH_ATTACH OIC,BB,RQE1l,CD,ATTACH,data

.
>0 20 e

SESSION_ALLOCATED(OK) BID_RSP(POS)

o< o< o<
, | HS_PS_CONNECTED
RC=0K , WHAT_RCVD= >0
DATA_%COMPLETE RCVD_DATA(DATA,NOT_END_OF_DATA)
o< o<

Figure 2-47. ALLOCATE (delayed), RECEIVE_AND_WAIT (by Bidder) --Local LU

2-62 SNA Format and Protocol Reference Manual for LU Type 6.2

(to_partner LU)

0IC,BB,RQEL,CD,ATTACH,data

1)

2) <

HS(FSP) RM PS 1P
BID
>o >0
BID_RSP(POS) |
o<
| ATTACH_HEADER ATTACH
>o >0 >0
HS_PS_CONNECTED I RECEIVE_AND_NAITI
o< o<
RCVD_DATA(DATA, RC=0K,

PREPARE_TO_RCV_FLUSH WHAT_RCVD=DATA_%*COMPLETE
>0 >0

RECEIVE_AND_WAIT l

o<
RC=0K,
WHAT_RCVD=SEND
>0
FIC,data SEND_DATA(DATA,NOT_END_OF_DATA) SEND_DATA |
Q' %4
| RC=0K
>0

Figure 2-48. ALLOCATE (delayed), RECEIVE_AND_WAIT (by Bidder) --Remote LU

Chapter 2. Overview of the LU

2-63

1P PS : RM HS(Bidder) Lo partner LU)

ALLOC(delayed) ALLOCATE_RCB
o >0 >0
RC=0K RCB_ALLOCATED(OK) |
o< o< -
ISEND_DATA
>0
RC=0K
o< .
|courmn GET_SESSION(ATTACH) BID_WITH_ATTACH OIC,BB,RQD2|3,ATTACH,data ‘
>o >o : >o ‘ > (1)
SESSION_ALLOCATED(OK) BID_RSP(POS) « -RSP(0846) «
o< o< o< 2)
| HS_PS_CONNECTED
>0
RCVD_ERROR |
el
RCVD_DATA(FMH,DATA,
RC=ALLOCATION_ERROR DEALLOCATE_FLUSH) OIC,CEB,RQE1,FMH7
o< o< — o< 3
IDEALLOCATE_LOCAL DEALLOCATE_RCB FREE_SESSION |
>0 - >0¢<
RC=0K RCB_DEALLOCATED
o< o<

Figure 2-49. ALLOCATE (delayed), CONFIRM (by Bidder), Attach Error --Local LU

2-64 SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) HS(FSP) RM PS Ip

0IC,BB,RAD2|3,ATTACH,data BID
n >o >0
BID_RSP(POS) |
o(
ATTACH(ALLOCATION
ATTACH_HEADER ERROR)
>o >0
HS_PS_CONNECTED |
o<
I RCVD_DATA(DATA ,CONFIRM)
-RSP(0846) SEND_ERROR
(2) <« o<
>0

SEND_DATA(FMH,DATA,

OIC,CEB,RQE1l,FMH7 DEALLOCATE_FLUSH)
(3) < - o<
FREE_SESSION DEALLOCATE_RCB
>0<:

" RCB_DEALLOCATED
>0

Figure 2-50. ALLOCATE (delayed), CONFIRM (by Bidder), Attach Error --Remote LU

Chapter 2. Overview of the LU 2-65

Ie __PS RY : HS(FSP)
ALLOCATE(immediate) ALLOCATE_RCB(immediate)

o (-, >0
FSP session available
RC=0K RCB_ALLOCATED(OK) |
o< 2.

L4 L° 2

| HS_PS_CONNECTED

>0
(]

[The flow continues as in the ALLOCATE(when allocated) case.l}
Figure 2-51. ALLOCATE (immediate), Successful --Local LU

2-66 SNA Format and Protocol Reference Manual for LU Type 6.2

(no activity at remote LU}

from here on just like ALLOCATE(when allocated)
Figure 2-52. ALLOCATE (immediate), Successful --Remote LU

Chapter 2. Overvien of the LU . 2-67

Ip

L : , RM Hs

ALLOCATE(immediate) ALLOCATE_RCB(immediate)

A4

>0 >0
(no first-speaker
session available)
RCB_ALLOCATED

RC=UNSUCCESSFUL (unsuccessful)

o<

2 C.
0O

Figure 2-53. ALLOCATE (immediate), Unsuccessful --Local LU

2-68

SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) : HS RM PS TP

(no activity at remote LU)

Figure 2-54. ALLOCATE (immediate), Unsuccessful --Remote LU

Chapter 2. Overview of the LU 2-69

1)

(3)

TPN(A) ~ PS(A) RY : HS(Bidder)
ALLOC(delayed) ALLOCATE_RCB ,
o >0 —>0
RC=0K RCB_ALLOCATED(OK)
o< o< -
| SEND_DATA ‘
>0
RC=0K
1<
l CONFIRM GET_SESSION(ATTACH) BID_WITH_ATTACH OIC,BBpRQDZ|3aATTACH;data
>0 - >0 >0 - 1 o
BID ‘ OIC,BB,RQEI,CD.ATTACH,data‘
o< o<:
TPN(B) PS(B) ,I BID_RSP(PQS)
: >0
ATTACH ATTACH_HEADER
o< o< o<
| HS_PS_CONNECTED
>0
RECEIVE_AND_WAIT
>0
RC=0K,WHAT_RCVD= RCVD_DATA(DATA,
DATA_%COMPLETE PREPARE_TO_RCV_FLUSH)
o< o< g
IRECEIVE_AND_NAIT
>0
RC=0K ,WHAT_RCVD=
SEND
o<
| SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA)
>0 >0
RC=0K I enqueued . e——
o< BID_RSP(NEG) -RSP(0813)
: o< o<
etc. © try another session |
or enqueue dequeue
| FIC,data

Figure 2-55. ' ALLOCATE (delayed) Race, Bracket Rejected --Bidder LU

2-70 SNA Format and Protocol Reference Manual for LU Type 6.2

> (4)

(to _partner LU)

0IC,BB,RQEL,CD,ATTACH,data BID_WITH_ATTACH GET_SESS(ATTACH)

HS(FSP) RM PS TP
ALLOCATE_RCB ALLOC(delayed)
o< o< 0
[RCB_ALLOCATED(OK) RC=0K
>o >0
SEND_DATA J
o<
RC=0K

>0

RECEIVE_AND_WAIT

Ve

(1) <

2)

(3) <

A% A4 %4
| SESSION_ALLOCATED(OK)
>0
HS_PS_CONNECTED |
o<
0IC,BB,RQD2|3,ATTACH,data BID
>o >0
-RSP(0813) BID_RSP(NEG)
o<
‘ RC=0K,
FIC,data RCVD_DATA(DATA,NOT_END_OF_DATA) WHAT_RCVD=DATA_¥%COMPLETE
20 >0 >0

(4)

Figure 2-56. ALLOCATE (delayed) Race, Bracket Rejected --First Speaker LU

Chapter 2. Overview of the LU

2-71

IPN(A) PS(A) RM HS(Bidder) {to partner LU).
ALLOC(delayed) ALLOCATE_RCB
-, >0 - >0
RC=0K RCB_ALLOCATED(OK)
o< o<
| SEND_DATA
>0
RC=0K |
o(
| CONFIRM GET_SESSION(ATTACH) BID_WITH_ATTACH OIC,BB,RQD2|3,ATTACH,data
>0 >0 >0 1
BID 0IC,BB,CEB,RRE1,ATTACH,data .
‘ o< o< ‘ (1)
TPN(B) PS(B) , | BID_RSP(POS)
: ‘ >0
ATTACH ATTACH_HEADER J
o< o< o<
HS_PS_CONNECTED
>0
RECEIVE_AND_WAIT v)
>0 > (2)

RC=0K, WHAT_RCVD=

DATA_*COMPLETE

RCVD_DATA(DATA,
DEALLOCATE_FLUSH)

.

o<

IRECEIVE_AND_NAIT

%)

FREE_SESSION |

3

>0 ‘ o<
RC=DEALLOCATE_
NORMAL
o<
I DEALLOCATE DEALLOCATE_RCB
>0 >0
RC=0K RCB_DEALLOCATED
o< o<
TPN(A) PS(A)
SESSION_ALLOCATED(OK) BID_RSP(POS) +RSP
o< o< ’ o<
HS_PS_CONNECTED
>0
RC=0K CONFIRMED l
o< o<
Figure 2-57. ALLOCATE (delayed) Race, Bracket Accepted --Bidder LU
2-72 SNA Format and Protocol Reference Manual for LU Type 6.2

(1)

HS(FSP) RM PS 1P
ALLOCATE_RCB ALLOC(delayed)
o< o< L]
I RCB_ALLOCATED(OK) RC=0K
>0 >0
SEND_DATA
o<
RC=0K
>0

0IC,BB,CEB,RQE1,ATTACH,data BID_WITH_ATTACH GET_SESS(ATTACH) DEALLOCATE_FLUSH
[< <. <. 2.

O

A4 A4
SESSION_ALLOCATED(OK) RC=0K

(2)

>0
Hs_Ps_couuecreol
o<
FREE_SESSION DEALLOCATE_RCB
20<
| RCB_DEALLOCATED RC=0K
>¢r >0
0IC,BB,RAD2|3,ATTACH,data BID
>0 >0
BID_RSP(POS) |
o(
| ATTACH_HEADER ATTACH
>0 >0 >0
HS_PS_CONNECTED | RECEIVE_AND_WAIT
o< o<
RC=0K,
RCVD_DATA(DATA,CONFIRM) WHAT_RCVD=DATA_*COMPLETE
>0 >0

(3) <«

RECEIVE_DATA

o<
RC=0K, WHAT_RCVD=
CONFIRM
>0
+RSP CONFIRMED CONFIRMED
v’ \)’
| RC=NONE
>0

Figure 2-58. ALLOCATE (delayed) Race, Bracket Accepted --First Speaker LU

Chapter 2. Overview of the LU

2-73

Ie ‘ = ' . S H8 Lt partner L)

DEALLOCATE_FLUSH ~ SEND_DATA(DEALLOCATE_FLUSH) LIC,CEB,RQEL ;'

- » FREE_SESSION . ')
DEALLOCATE_RCB

__Re=x) _RCB_DEALLOCATED 7 o

Figure 2-59. DEALLOCATE FLUSH (RQEl) --Local LU

2-74 SNA Format and Protocol Reference Manual for LU Type 6.2

(o partner LU) bs , RM PS i1

RECEIVE_AND_WAIT

o< 0

LIC,CEB,RQE1 RCVD_DATA(DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMA!

1) > >0 >0

FREE_SESSION . DEALLOCATE_RCB DEALLOCATE_LOCAL |
< <

>,
(4

RCB_DEALLOCATED .RC=0K

Figure 2-60. DEALLOCATE FLUSH (RQEl) --Remote LU

Chapter 2. Overview of the WU 2-75

IP : PS : RM ‘ HS : (to_partner LU)

(sequence rumber wrap)

DEALLOCATE_FLUSH SEND_DATA(DEALLOCATE_FLUSH) LIC,CEB,RQD1? . }
o — DO >0 > (1)
FREE_SESSION +RSP))
o< o< 2)
DEALLOCATE_RCB
>0
RC=0K _RCB_DEALLOCATED
o< o<
NOTES:

1 RQD! is required under certain sequence number wrap conditions.

Figure 2-61. DEALLOCATE FLUSH (RQD1) --Local LU

2-76 SNA Format and Protocol Reference Manual for LU Type 6.2

{to partner LU) ‘ HS RM PS TP
RECEIVE_AND_WAIT

o<]
LIC,CEB,RQD1 RCVD_DATA(DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMAL
($%) > >o >0
+RSP DEALLOCATE_RCB DEALLOCATE_LOCAL
(2) < o< o<
| FREE_SESSION
>0
| RCB_DEALLOCATED RC=0K
>0 >0

Figure 2-62. DEALLOCATE FLUSH (RQD1) --Remote LU

Chapter 2. Overview of the LU 2-77

P __Ps ; RM Hs : rtner LU)

SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) FIC,data
o >0 - — - e > - : - -—> (1)
RC=0K
o< “
DEALLOCATE_FLUSH SEND_DATA(DATA,DEALLOCATE_FLUSH) LIC,CEB,RQE1
s 7~ -
FREE_SESSION
o< -
DEALLOCATE_RCB -RSP(0846)
>0 o< - (2)
(This stray response
is discarded) > (3)

RC=0K RCB_DEALLOCATED
o< o< -

Figure 2-63. DEALLOCATE FLUSH (RQEl), SEND_ERROR, -RSP Sent --lLocal LU

2-78 SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) HS RM PS Ip

RECEIVE_AND_WAIT

o<]
FIC,data RCVD_DATA(DATA,NOT_END_OF_DATA) RC=0K,
(1) o >0 WHAT_RCVD=
DATA_*COMPLETE
>0
—RSP(0846) SEND_ERROR SEND_ERROR
(2) < o< o<
LIC,CEB,RQE1 RCVD_DATA(DATA,DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMAL
(3) >0 (o2 >0
FREE_SESSION DEALLOCATE_RCB DEALLOCATE_LOCAL
20< o<
RCB_DEALLOCATED RC=0K
O >0

Figure 2-64. DEALLOCATE FLUSH (RQE1), SEND_ERROR, -RSP Sent --Remote LU

Chapter 2. Overview of the LU 2-79

TP) RY HS {to partner LU)

SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) FIC,data '
o >0 >o > (1)
RC=0K
o<
l DEALLOCATE_FLUSH SEND_DATA(DATA,DEALLOCATE_FLUSH) LIC,CEB,RQE]
>o > > (2)
FREE_SESSION
o<
DEALLOCATE_RCB
L >0
RC=0K RCB_DEALLOCATED
o< o<

Figure 2-65. DEALLOCATE FLUSH (RQE1), SEND_ERROR, -RSP not Sent --Local LU

2-80 SNA Format and Protocol Reference Manual for LU Type 6.2

HS RM PS P

(to partner LU)
RECEIVE_AND_WAIT

o<]
FIC,data RCVD_DATA(DATA,NOT_END_OF_DATA) RC=0K,
(1 : >o- >0 WHAT_RCVD=
L DATA_*COMPLETE
>0
LIC,CEB,RQEL RCVD_DATA(DATA,DEALLOCATE_FLUSH)
(2) 20 >0
FREE_SESSION SEND_ERROR
>0 o<
|RC=DEALLOC_NORMAL
>0
DEALLOCATE_RCB DEALLOCATE_LOCAL J
o< o<
RCB_DEALLOCATED RC=0K
>0 >0

Figure 2-66. DEALLOCATE FLUSH (RQE1l), SEND_ERROR, -RSP not Sent --Remote LU

Chapter 2. Overview of the LU 2-81

Ip pPsS RM Hs {to partner LU)

DEALLOCATE_CONFIRM SEND_DATA(DEALLOCATE_CONFIRM) EC,CEB,RGQD2|3
o >o >0 > (1)
CONFIRMED +RSP
o< < (2)
DEALLOCATE_RCB FREE_SESSION
>0<:
RC=0K RCB_DEALLOCATED

o< o<

Figure 2-67. DEALLOCATE CONFIRM (RQD2|3) --Local LU

2-82 SNA Format and Protocol Reference Manual for LU Type 6.2

(to partner LU) HS RM PS TP
RECEIVE_AND_WAIT

o< L]
EC,CEB,RQD2|3 RCVD_DATA(DEALLOCATE_CONFIRM) RC=0K,WHAT_RCVD=CONFIRM
(n >o- o >0
+RSP CONFIRMED CONFIRMED |
2) < o< o<
[FREE_SESSION | RC=0K
>0 >0

RECEIVE_AND_WAIT]

o<
RC=
DEALLOCATE_NORMAL
>0
DEALLOCATE_RCB DEALLOCATE_LOCAL I
o< o<
RCB_DEALLOCATED RC=0K
>o >0

Figure 2-68. DEALLOCATE CONFIRM (RQD2|3) --Remote LU

Chapter 2. Overview of the LU 2-83

IP PS RM HS {10 partner LU)

SEND_DATA(FMH,DATA,

DEALLOCATE_ABEND DEALLOCATE_FLUSH) 0IC,CEB,RQD1,FMH7(0864)
o >0 >0 > (1)
DEALLOCATE_RCB FREE_SESSION +RSP
>0< . o< (2)
RC=0K RCB_DEALLOCATED -
o< o<

Figure 2-69. DEALLOCATE ABEND Issued in SEND, Between-Chain State --Local LU

2-84 SNA Format and Protocol Reference Manual for LU Type 6.2

Lo partner LU) Hs RM PS TP
" RECEIVE_AND_WAIT

RCVD_DATA(FMH,DATA, o< 0
0IC,CEB,RQD1,FMH7(0864) DEALLOCATE_FLUSH) RC=DEALLOC_ABEND
(1) >0 >0 >0
+RSP DEALLOCATE_RCB DEALLOCATE_LOCAL
(2) < o< o<
RCB_DEALLOCATED RC=0K
>0 >0

FREE_SESSION

>0

Figure 2-70. DEALLOCATE ABEND Issued in SEND, Between-Chain State --Remote LU

Chapter 2. Overview of the LU 2-85

Ip PS RM HS (to partner LU)

SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) FIC,data)
o >or >or - —> (1)
RC=0K
o<
SEND_DATA(FMH,DATA, : ; -
DEALLOCATE_ABEND DEALLOCATE_FLUSH) .~ LIC,CEB,RQD1,FMH7(0864)
>0 - >0 - > (2)
| DEALLOCATE_RCB. FREE_SESSION +RSP .
=>0< o< (3)
RC=0K RCB_DEALLOCATED
o< o< ‘

Figure 2-71. DEALLOCATE ABEND Issued in SEND, In-Chain State --Local LU

2-86 SNA Format and Protocol Reference Manual for LU Type 6.2

(1)

(2)
(3)

Figure 2<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>