
:SSHARE:
- = SHARE SESSION REPORT

....
o.-J
~

B232 Software Subsystems in MVS

SHARE NO. SESSION NO. SESSION TITLE

MVSE MVS Project Mary Jane Akin

PROJECT SESSION CHAIRMAN

225

ATTENDANCE

NNL

INST. CODE

Northwestern Nat'l Life, Route 3235, 20 Washington Ave. S., Minneapolis,
MN 55440, 612-372-5695

SESSION CHAIRMAN'S COMPANY, ADDRESS, AND PHONE NUMBER

James Antognini (IBM) described the elements of subsystems: Identification to
MVS, initialization, subsystem interface, subsystem function support,
authoirzation, restrictions, command broadcast, notification of other events,
and uses and advantages.

A copy of the foils from this presentation and a paper are attached.

3/J/ear/l

SOFTWARE SUBSYSTEMS IN MVS

Session B232, SHARE 61
24 August 1983

New York NY

James Antognini
IBN Santa Teresa Laboratory

555 Bailey Avenue
San Jose CA 95150

17 August 1983, 11:16:01

Abstract

Subsystems in the classical MVS sense are often spoken of but
seldom understood even though they are integral to MVS (the
master and job entry subsystems). Subsystems are programs
started through the master subsystem; they are able to accept
broadcast of commands, to be notified of other events and to
communicate through the subsystem interface. This paper deals
with the elements of subsystems: Identification to MVS,
initialization, subsystem interface, subsystem function
support, authorization, restrictions, command broadcast,
notification of other events, and uses and advantages.
Examples are taken from a user-written subsystem and from JES2.

Permission is granted to SHARE to publish this presentation paper in the
SHARE Proceedings. IBM retains its right to distribute copies of this
presentation to whomever it chooses.

""'" -.l

""

Antognini MVS Software Subsystems page 2

"Subsystem" is a word that has taken on more and more meanings, so that it
now may designate merely a complex software program or a sophisticated
hardware function. In the classical MVS sense of the word, a subsystem is
a program started by means of master subsystem services rather than job
entry subsystem services. Also characteristic of a subsystem is the
ability to employ the subsystem interface for communication, so that the
subsystem can accept its own operator commands and be notified of other
events and requests for services. Subsystems have been integral to MVS
from the beginning, for the original and still best-known examples are the
master subsystem (responsible for such things as starting the master
scheduler and the job entry subsystem), JES2 and JES3. Yet the workings
of subsystems continue to be an esoteric, even arcane subject.

An MVS subsystem consists of one or more distinct pieces: (1) The
subsystem address space (for example, JES2) , (2) globally addressable
function support routines (as an instance, HASPSSSM) (3) an
initialization routine that may be executed shortly after IPL, (4) the
subsystem interface (strictly speaking, an operating system component),
(5) control blocks created or required by MVS (SSCVT, SSVT, SSOB and SSIB)
and control blocks unique to the subsystem and (6) one or more SVCs
providing authorized services or carrying out other functions (fo~
example, SVC 100, making job entry subsystem functions available to
certain TSO commands). These several constituents will be examined here,
but it should be understood from the start that no single one "makes" a
subsystem (although the SSCVT control block is the sole indispensable
component--an illustrative reflection of MVS's architectural philosophy).
A subsystem is better regarded as a collection of capabilities, and a
particular subsystem will use various components to realize some of the
capabilities.

It is the intent of this paper to put forth the essential features of
subsystems thoroughly enough that the seasoned systems programmer will
understand their basic workings and could even write his or her own. Two
caveats, however: Being so central a part of MVS, subsystems reflect the
particulars of the operating system. The details presented here apply to
MVS from the base SCP to MVS/System Product (SP) 1.3; later versions of
MVS such as MVS/Extended Architecture may well introduce changes. Second,
the reader of this paper is assumed to be a systems programmer of some
experience who is already familiar with the more common MVS conventions,
services and manuals.

Identification of Subsystems to MVS

Subsystems may be identified to MVS in several ways. The basic element in
identification is the subsystem I s name. The name-one to four
alphanumeri~ or national characters, though a numeric cannot be the first

Antognini MVS Software Subsystems page 3

character-may be placed in the SCHEDULR macro and become part of the
SYSGEN process; the name may be ins·erted into the link list module
IEFJSSNT; or, in an SPl.3 system, it may be defined in
SYSl.PARMLIB(IEFSSNxx). These respective possibilities are described in
System Generation Reference, in Job Management and in Initialization and
Tuning Guide.

The linklist module approach also allows designation of a routine to be
executed shortly after IPL to effect initialization on behalf of the
subsystem. The PARMLIB approach provides the further capability· of
passing a parameter string to the invoked routine. The initialization
routine, invoked during operating system initialization, would probably
do things like preparing the subsystem's control blocks, but it might be
responsible for carrying out other tasks such as insuring that required
volumes are online. It is even possible that ~ the initialization
function would be carried out: A subsystem as such would never be
actually started; rather, the initialization routine would be a way of
carrying out certain install·ation-defined actions following IPL. The
subsystem intialization routine would serve, in effect, simply as an
installation exit during master scheduler initialization.

Subsystem Initialization

An essential component of a subsystem is a pair of control blocks
describing it to the operating system: The Subsystem Communication Vector
Table (SSCVT) and the Subsystem Vector Table (SSVT). 1 These control
blocks give the subsystem its characteristic features: The ability-to use
the subsystem interface and, in particular, the capability of accepting
direct operator commands (such as JES2' s "$" commands) in addition to the
MODIFY and STOP commands available to any address space.

Soon after IPL, operating system initialization creates an SSCVT for each
identified subsystem. The SSCVT contains the subsystem's name in SSCTSNAM
(for example, 'MSTR' for the master subsystem, 'JES2' for a job entry
subsystem) and a place, SSCTSSVT, for the subsystem to put a pointer to
its SSVT; the SSCVT also contains a fullword (SSCTSUSE) reserved for the
subsystem's use, and this might be employed, for example, as an anchor for
other control blocks defined by the subsystem or by the installation.
Following the building of a subsystem's SSCVT, a routine to perform
initialization activities is LINKed to if the subsystem's identification
in module IEFJSSNT or in PARMLIB member IEFSSNxx named such a routine.
This routine can carry out functions like creating the SSVT and
establishing any unique control blocks or other resources, with the SSCVT
or the SSVT serving to anchor them on pointer chains; a formatted SSVT
would be found through an installation-defined chain (eg, SSCTSUSE),

1 Unless otherwise noted, control blocks are described in the Debugging
Handbook ~d mapped in the usual system macro libraries.

.....
--.l
en

Antognini MVS Software Subsystems page 4

since the SSVT generally would not be connected to the SSCVT via SSCTSSVT
at this stage.

After the operating system is initialized, a console operator may issue
the command 'START subsystem name'; The master scheduler will start the
subsystem's address space, started task control in the new address space
will learn via HSTR' s subsystem determination function that a subsystem is
being started, and the initiator will use HSTR's converter/interpreter
interface to read the JCL procedure from SYSl.PROCLIB(subsystem name).
(The *HASTER* address space is a special case; This will have been
started by NIP employing the same converter/interpreter to read the master
scheduler's JCL in assembled, link-edited format from
SYSl.LINKLIB(HSTRJCL) or, in recent SPl.3 systems, from
SYSl.LINKLIB(HSTJCLxx)). Any cataloged datasets specified in such JCL
must be described in the master catalog; they will not be found if
cataloged elsewhere and a JCL error will prevent the subsystem from being
started.

It is up to the subsystem to get global storage for the SSVT, to fill in
the SSVT and to point to it from SSCTSSVT. 2 The first two requirements
could be carried out by the subsystem routine invoked during operating
system initialization, or they could be done by the subsystem address
space after it has been started. But the third, connecting the SSVT to
the SSCVT, must be done only after the subsystem considers itself ready
for work, for once the connection is made, the operating system regards
the subsystem as active and will examine the SSVT to see whether the
subsystem is supporting functions requested via the subsystem interface.

The SSVT contains several fields. The principal is SSVTFCOD, a 256-byte
array that holds values corresponding to function codes 1 through 256.
The values are indices into SSVTFRTN, a variable-length array of fullword
addresses of the routines actually supporting the subsystem functions. A
value of 0 has the special role of indicating no support for that function
by the subsystem. On the other hand, a value of, say, 1 in the first byte
of SSVTFCOD would denote the first fullword of SSVTFRTN as the address of
a routine for supporting subsystem function 1. A value of 5 in the second
byte would designate the fifth fullword as the address of the routine for
function 2; a value of 0 in the third byte would indicate no support for
function 3; and so on. A subsystem may stop support for a function simply
by zeroing its SSVTFCOD byte and may later reinstate support by setting
the byte back to an appropriate index value. The halfword SSVTFNUH gives
the largest value in SSVTFCOD; if a function is requested whose value is
found to be larger, the subsystem interface treats the request as an error
and so indicates to the requester. The addresses in SSVTFRTN are placed

2 HVS SPl.3.2 contains routines to build an SSVT and to enable or disable
functions in an SSVT. These recent enhancements are described in the
logic manu~ls for that level of the operating system.

Antognini MVS Software Subsystems page 5

there by the subsystem after it has determined by LOADing the support
routines (or by some other means) what their entry points are.

The greater part of the 256 function codes will have meanings only to a
particular subsystem and requesters of its services. Certain codes,
though, have significance to the operating system as well. Function code
10, for example, corresponds to command broadcast, whereby the operating
system sends notice of operator commands to subsystems that have asked for
this information. Command broadcast is an instance of communication via
the subsystem interface and gives subsystems the capability of having
native commands. If a subsystem has not initiated or has stopped support
for command broadcast, it has available only HODIFY and STOP as
communication commands.

Termination of a subsystem may be considered part of initialization in
that termination consists of undoing effects of initialization. The least
a subsystem ought to do when it terminates normally or abnormally is to
zero SSCTSSVT, the pointer to the SSVT; a zero pointe;-is taken by HVS to
mean that the subsystem is not active. The SSVT's storage does not have
to be freed if it can be used by the subsystem when it comes up again; the
SSVT must be locatable in such an event, and SSCTSUSE might profitably
serve as the pointer to control blocks unique to the subsystem and
including an alternate pointer to the SSVT. The clean-up process might
also reset parts of the SSVT and of those other control blocks, especially
if a subsequent initialization were to consist only of pointing to the
SSVT from the SSCVT again; Any non-zero bytes left in SSVTFCOD would
cause those functions to be supported immediately upon the SSVT's
reconnect ion to the SSCVT.

The Subsystem Interface

The subsystem interface is an HVS technique for making requests to
subsystems. The particulars of a request are contained in two control
blocks, the Subsystem Options Block (SSOB) and the Subsystem
Identification Block (SSIB). The SSOB's main components are the function
code for the request (SSOBFUNC), a pointer to the SSIB (SSOBSSIB) and a
fullword (SSOBINDV) whose meaning depends on the subsystem and the
function; this fullword often serves to point to a function-dependent area
that is an extension of the SSOB and gives specifics for the function.
The SSIB contains the name of the desired subsystem (SSIBSSNH) and, like
the SSOB, has a fullword (SSIBSUSE) reserved for subsystem use. When the
S50B and SSIB are prepared and Register 1 points to a one-word parameter
list for the SSOB, the macro IEFSSREQ should be employed to branch to
IEFJSREQ, the subsystem interface routine. This routine checks the SSOB
and SSIB for correct format, locates the SSCVT for the subsystem named in
SSIBSSNH and examines the SSVT to see if the requested function is being
supported. For supported functions, the address of a supporting routine
is found, registers are set up-Register 14 pointing back to the caller of

"'" -..J
CI)

Antognini MVS Software Subsystems page 6

IEFJSREQ and not to IEFJSREQ itself--and control passes by branch to the
routine.

The support routine does what is necessary and branches back to the issuer
of the IEFSSREQ macro. A valuable convention for support routines is that
they put their return code in SSOBRETN and always set Register 15 to zero;
upon return to the issuer of the macro, Register 15 will thereby indicate
the degree of success in the interface:

o (SSRTOK, an EQUate in mapping macro IEFJSSOB): Everything
OK; ie, the support routine got the request

4 (SSRTNSUP): Subsystem doesn't support the requested
function

8 (SSRTNTUP): Subsystem is not currently up; ie, SSCTSSVT = 0
12 (SSRTNOSS): Subsystem doesn't exist; ie, there is no

matching SSCVT
16 (SSRTDIST): Disastrous error, function not complete; eg,

selected byte value found in SSVTFCOD is greater than
SSVTFNUM

20 (SSRTLERR): Logical error; eg, bad SSOB format, incorrect
length

If the support routine was actually entered (R15 = 0), then SSOBRETN gives
indication of success or lack of it in the support routine. Under this·
convention, therefore, the issuer of the macro must examine both R15 and
SSOBRETN, since R15 would indicate the success of the subsystem interface
in fielding the request and SSOBRETN would tell how the subsystem support
routine actually handled it.

Here is an example of making a call to a user subsystem support routine
and then interpreting the results of the call:

LA R2,LOCSSOB point to SSOB in working storage
ST R2,LOCSSOB@ store SSOB's addr
01 LOCSSOB@,X'SO' indicate only pointer
USING SSOB,R2 symbolic addressability
XC SSOB(SSOBHSIZ),SSOB zero SSOB
MVC SSOBID,=C'SSOB' copy EBCDIC identifier
MVI SSOBLEN+l,SSOBHSIZ store EQUated length
MVI SSOBFUNC+l,GVDSPRT store EQUated function code
LA R3,LOCSSIB get and store addr of
ST R3,SSOBSSIB SSIB in working storage
USING SSIB,R3
XC SSIB(SSIBSIZE),SSIB zero SSIB
MVC SSIBID,=C'SSIB' copy EBCDIC identifier
MVI SSIBLEN+l,SSIBSIZE store SSIB's EQUated length
MVC SSIBSSNM,SUBSYSNM copy subsystem name
LA R4,LOCGVREQ get and store addr of
ST R4,SSOBINDV function-dependent extension

Antognini

SUCCESS
NOSUPPT
NOTACT
BADSUBS
DISERR
LOGERR
SUCCESSI

GVDSPRT

MVS Software Subsystems .page 7

LA Rl,LOCSSOB@
IEFSSREQ ,
LA R2,LOCSSOB
B *+4(R15)
B SUCCESSI
B NOSUPPTl
B NOTACTl
B BADSUBSI
B DISERRI
B LOGERRI
DS OH
L R15,SSOBRETN
B *+4(R15)
B EXIT
B QUIESCG
B NOBUFFRS
B BADESTAE
B NOTAUTH
B DSNOTOPN

EQU 256
IEFJSSOB ,
IEFJSSIB ,
CVT DSECT=YES
IEFJESCT ,

prepare function-
dependent extension

point to pointer to SSOB
go to subsystem interface
point to SSOB again
branch to wherever
RI5=O from IEFJSREQ
R15=4, function not supported
R15=8, subsystem not up
R15=12, subsystem doesn't exist
R15=16, disastrous error
R15=20, logical error
interpret SSOBRETN
load return code from sppt rtn
branch to wherever
SSOBRETN=O, close dataset
SSOBRETN=4, subsystem quiescing
SSOBRETN=8, no CSA buffers free
SSOBRETN=12, sppt rtn ESTAE failed
SSOBRETN=16, sppt rtn not authorized
SSOBRETN=20, dataset not open

print dataset
map SSOB
map SSIB
map CVT for IEFSSREQ macro
map JESCT for IEFSSREQ macro

The non-zero codes in R15 at return mean that the subsystem interface had
trouble with the request. The return codes in SSOBRETN have meanings
defined solely in terms of the function and have no significance to the
subsystem interface.

Subsystem Function Support

Subsystem function support usually has two components: Routines residing
in global storage and accessible by branching from any address space, and
the address space program which commonly does the substantive work of
satisfying out function requests.

Subsystem support routines receive control via the subsystem interface to
provide or initiate the function requested. These routines must be in
globally addressable storage, for they may be invoked from any address
space. The pageable link pack area is most frequently used, but it is
possible for subsystem initialization to copy routines into other global
storage (CSA or SQA); in these cases, however, the copied routines cannot
employ A- or V-constants unless these are updated by the copying program
or by the routines themselves.

....
-J
-J

Antognini MVS Software Subsystems page 8

Upon entry to a support routine, the following information is available:

RO address of the subsystem's SSCVT
Rl address of the SSOB designated by Rl' s parameter

list at entry to the IEFSSREQ macro
R13 address of a save area provided by the macro issuer
R14 address for-return to the macro issuer
Rl5 address of routine's entry point

(In fact, Registers 2-13 are all as they were at entry to the macro.)

What the support routine does depends, of course, on the function
requested, but it will often be desirable for the actual work of the
request to be carried out by the subsystem address space rather than by
the support routine. Handling native commands, described below, is such
an instance, for actually doing what a command asks could be
time-consuming or involve a long wait. All a support routine might do is
to verify the correctness and legitimacy of a request and then to pass it
on to the subsystem address space by a cross-memory post, by manipulation
of the SUbsystem's unique global control blocks, by the PC instruction or
by some other mechanism. The subsystem address space would receive
notification, find the work and do it. Generally the caller would be
notified when the work was complete. (If the subsystem address space does
the work, the user would not, of course, be accountable or billable for it
unless the request were somehow recorded by the subsystem I s support
routine or address space. JES2, for example, writes an SMF record for the
amount of printing/punching actually done on behalf of a user.)

Certain functions may be requested by one or more tasks or address spaces
at the same time; the broadcast of operator commands and notification of
other events are cases where requests for the same function may occur more
or less simultaneously. It is the responsibility of the subsystem's
support routines and address space to maintain the integrity of resources
such as control blocks and buffers. If, for example, data such as command
strings are to be copied from local areas to global buffers, the use of
buffers by subsystem components must be serialized. Furthermore, if
sensitive information such as passwords might be in such areas, it would
be advisable to get such storage from fetch-protected, non-key-8 storage
so as to prevent snooping by programs that are not part of the subsystem.

Subsystem Authorization

A subsystem support routine has only the authorization of its caller,
b"ecause it is entered by branch; the subsystem interface does not involve
an SVC call, so there is no inherent authorization. The support routine
will, however, usually reqUire some authorization, sin"ce it is typical for
the actual work of function support to be effected in the subsystem
address space. Notification of that address space may be done by
cross-memory~ post or, alternatively, by manipulation of the subsystem's

Antognini MVS Software Subsystems page 9

own control blocks, and these would presumably be in some system key
(frequently, key 0) or at least in a key other than key 8, the ordinary
user key (otherwise, ordinary programs could tamper with the
subsystem's resources). But since the support routines are generally
called by branches from such user programs, there is a need for an
authorization mechanism to permit the support routines to do what the user
programs cannot achieve directly.

The simplest way to authorization is an SVC issued by the support
routines: The SVC might carry out the manipulation of control blocks or
issue the cross-memory post. A variant of this approach is an sve
ascertaining that its caller ,is indeed a legitimate subsystem support
routine and then instating job-step authorization, so that the support
routine may employ MODESET or other services needing authorization; when
the routine has done its work, job-step authorization would be
relinquished by reinvoking the SVC to turn off authorization or by the
routine doing so directly whilst in key O. A third way to design an SVC is
for i! to make requests via the subsystem interface; the support routines
thereby inherit the SVC's authorization. SVC 100, employed by the TSO
commands SUBMIT, STATUS/CANCEL and OUTPUT, is an example of this last
approach; SVC 34 (for issuing operator commands) and SVC 35 (for issuing
WTOs) are other instances.

A different technique, available in SPl.3 systems, is to employ the PC
instruction to transfer control to routines in a different address space
that enjoys greater authorization than the calling address space. The
called address space might well be the subsystem address space itself.

Whatever procedure is chosen as a means of authorization must possess
carefully devised controls to guarantee legitimate use. The users of the
technique must be true subsystem support routines and not bogus routines
devised by a user to cause control to return to him in an authorized state
or to bring about changes in subsystem or operating system resources that
the user could not achieve directly and which the SUbsystem's designers
did not intend. Insuring legitimate use of routines that are to run
authorized is a considerable topic, one on which a great deal of effort
has been spent both by systems designers and by people attempting to
thwart controls. It will not be explored here. It must suffice that the
reader is warned that this matter is important and difficult and may
constitute one of the most formidable tasks in building a subsystem.

Quite often the substantive work of function support is carried out in the
subsystem address space. Performing such work will generally require that
the subsystem address space be authorized itself. It will, for example,
need to run in a special key to change its global control blocks. It may
have to do a cross-memory post of its caller if the ca1ler is waiting for
completion of a piece of work, and the subsystem address space may need
all manner of other system services restricted to authorized routines.
The subsystem address space enjoys no inherent authorization; even though
it has been started via the master subsystem rather than a job entry

..
...:J
<Xl

Antognini MVS Software Subsystems page 10

subsystem, the address space is subject to security mechanisms (eg,
expiration dates on datasets, password, Resource Access Control Facility)
and integrity mechanisms (enqueues) and has been initiated in user key and
problem state and is subject to CPU consumption restrictions (job-step CPU
time limits, SRM controls). In sum, a subsystem address space has no
privileges merely because it is a subsystem.

Other mechanisms are necessary to confer such privileges. The subsystem t s
job-step program (that is, the one designated by 'PGM=' in its JCL) might
be an authorized program from an authorized library, so that it can use
MODESET and other restricted services; or the program might receive
control in a system key because it was identified in the Program
Properties Table (PPT; consult the Job Management manual for details); or
the program might have a unique authorizing mechanism such as a special
SVC.

In short, a subsystem requires two things to be effective: Identification
as a subsystem and a way of getting control in an authorized state.

Restrictions on Subsystems

Some restrictions apply to subsystems. A couple have been mentioned. One
is that a subsystem's JCL procedure must be in SYSl.PROCLIB so that MSTR's
converter/int~rpreter interface can find it. A second is the requirement
that datasets in the JCL be identified by UNIT and VOL=SER parameters or
be cataloged in the master catalog; datasets dynamically allocated by the
subsystem after being started may, however, be identified in -other
catalogs. Another restriction on allocations is that subsystems, since
they are not started by a job entry subsystem, cannot use SYSOUT datasets;
if dump information is desired (for example, through the SYSABEND ddname) ,
a dataset must be allocated instead of SYSOUT.

Several limitations apply to subsystem execution. If the job-step program
is identified in the PPT, it has to be from an authorized library and it
must be invoked in a single-step procedure (otherwise, the program
receives control with problem program attributes such as key B).
Subsystem support routines should ordinarily be in SYSl.LPALIB, although
they may be copied into any globally addressable storage so long as A- and
V-constants contain correct addresses. A number of function codes, listed
below under "Events Broadcast to Subsystems) II have meanings predefined to
operating system components for certain functions and should be employed
by subsystems only to support those functions. Furthermore, quite a few
function codes-l through 63 at the time of writing-have specific
meanings for MSTR, JES2 or JES3 (consult System Logic Library for
details); although other subsystems could probably use the non-broadcast
codes without problems, it is more prudent to employ function codes from
256 on down, just as has been the recommended practice for user SVCs.

Antognini MVS Software Subsystems page 11

Support for Command Broadcast

Certain subsystem function codes have predefined meanings to MVS.
Probably the most interesting is code 10, command broadcast. The
operating system uses the subsystem interface to give control to the
support routine of each active subsystem wanting command broadcast (as
indicated in the tenth byte of the subsystem's SSVTFCOD). Such a support
routine is an exit from SVC 34, so that the routine receives control in
supervisor state, key 0, enabled, in the issuiilg address space (eg,
MASTER, a TSO user) for all operator commands.

At entry, Rl points to an SSOB, SSOBINDV points to a function extension,
and in the extension is a pointer to the command buffer. This buffer can
be examined to see if the command belongs to the subsystem, where
"belonging" means whatever the subsystem defines that to be: Perhaps
commands that have no equivalent in MVS, JES2 or JES3, perhaps commands
that begin with a special character like JES2' s "$". The following
illustration shows how to recognize a SUbsystem's commands (begun by II.")
and how to handle commands that do not belong to the subsystem or that
belong but cannot be processed (perhaps because of a shortage of subsystem
resources like its own buffers in CSA):

USING SSOB,Rl
L R7 ,SSOBINDV point to function area
L R4,SSCMBUFF-SSCMBGN(R7) point to command buffer
USING CBF,R4 map buffer
IJI R5,CBFCNT pick up length of buffer
CH R5,=Y(CBFL) standard length?
BH NOTOURS no, tell MVS it's not ours
LTR R5,R5 zero?
BZ NOTOURS yes; not ours
CLI CBFTEXT,C'.' command for this subsystem?
BNE NOTOURS no; not ours

* get length of command string without trailing blanks
LA R6,CBFTEXT-l(R5) point to buffer end

CHKBLANK CLI 0(R6),C" current byte a blank?
BNE DETORGN no; skip ahead
BCTR R5,O yes; take 1 from length, point
BCT R6, CHKBLANK 1 byte back and check more

* R5 = command string length w/o blanks; determine origin of command
DETORGN CLC SSCMSCID-SSCMBGN(2,R7),=XL2'O'

BNE handle bad command if not 0, not console or TSO
SLR R2,R2 - - clear R2
TM SSCMSCID-SSCSBGN+2(R7),SSCSUSID TSO user?
BO GETASID yes, skip ahead
IC R2,SSCMSCID+3 no, load UCMID (console id)
B GETBUFFR skip TSO section

GETASID ICM R2,3,SSCMSCID-SSCSBGN+2(R7) load TSO address space id
N R2,=X'FFFF7FFF' turn off SSCSUSID flag (X'BO')
o R2,=X' BOOOOOOO' remember R2 has TSO asid

...
-..J =

Antognini MVS Software Subsystems page 12

GETBUFFR ..• get CSA buffer for command

* indicate command is accepted by the subsystem
OURCMD LA R15,SSCMSUBC load EQUated value

ST R15,SSOBRETN and store it

* indicate command doesn't belong to the subsystem
NOTOURS LA RI5,SSCMSCMD load EQUated value

ST RI5,SSOBRETN and store it

* indicate command belongs to subsystem but cannot be handled
CANTHNDL LA R15,SSCMIMSG load EQUated value

EXIT

CBF
CBFCNT

CBFTEXT
CBFL

ST R15, SSOBRETN and store it

1M
LA
BR

DSECT

RI4,R12,12(RI3)
RI5,SSRTOK
Rl4

DS H
DS H
DS CL140
EQU *-CBF
IEFJSSOB (CM,CS),CONTIG=NO

restore registers
load EQUated value of 0
back to MVS

not a standard dsect
length of entire buffer

text area

map SSOB and ext ens ions .•

Whether the command belongs to the subsystem, does not belong or belongs
but cannot be processed, R15 is always to be loaded with SSRTOK (EQUated
to 0): It is SSOBRETN's value that tells the operating system how the
command was handled. When at least one subsystem receiving a command
accepts it, ~lVS does nothing further, and it is up to the subsystem to
execute the command and provide information to the issuing console or
address space. When no subsystem accepts a command that is not a standard
MVS command, the operating system tells the issuer in message IEE305I that
the command is invalid. (One can see this happen with JES2 commands
before JES2 has been started.) If a support routine accepts a command but
cannot actually process it-perhaps because all the subsystem's own
command buffers are in use--the operating system sends message IEE707I to
the issuer, indicating that the command could not be executed because of a
resource shortage in the subsystem.

When a command is to be accepted, the support routine will typically copy
the command string and origin to the subsystem's own buffers in global
storage so that this information remains available after the return to
MVS. Then the subsystem address space is notified in one manner or
another so that it can do the actual work of carrying out the command.

Antognini MVS Software Subsystems page 13

Finally SSOBRETN and R15 are set as indicated and the support routine
passes control back to the subsystem interface's caller.

This, then, is how a subsystem handles its commands: Its SSVT shows that
it is accepting command broadcast and supplies the entry point of the
support routine; the support routine is invoked by the subsystem interface
with an SSOB pointing to a copy of each command issued in the system; the
support routine decides which commands to accept and which to ignore (or
to accept with inability to process) and, generally, tells the subsystem
address space to carry out the sub~tantive processing of commands that
belong to it.

Commands not belonging to a subsystem can be controlled by it, too,
because a support routine gets to examine commands before SVC 34
determines their validity as standard MVS commands (eg, START, CANCEL) and
executes such commands. By setting SSOBRETN to SSCmMSG (and R15 to
SSRTOK) for MVS commands deemed "undesirable," the support routine would
cause them to he not executed; this is, for instance, a way of preventing
the subsystem address space from being cancelled. Furthermore, since the
routin~ has access to the command buffer, buffer contents may be changed,
as, in fact, the job entry subsystem does to turn short-form replies into
standard replies (for instance, '99ANYTHING' becomes 'R 99,ANYTHING') .
Obviously, a subsystem support routine should make changes with care, for
subsystems receiving the broadcast subsequently and SVC 34 itself will be.
processing the altered buffer, and the operating system's command
capability could be compromised so long as the subsystem is receiving
command broadcast.

Events Broadcast to Subsystems

Commands are not the only events that may be broadcast to subsystems.
Although details will not be provided here, a subsystem may indicate in
SSVTFCOD that it wishes notification of the following events:

End of task (function code 4, SSOBEOT)
End of memory (function code 8, SSOBEOM)
WTO message (function code 9, SSOBWTO)
Operator command (function code 10, SSOBCMND)
Delete operator message (function code 14, SSOBDOM)
Failing START command (function code 32, SSOBCFCD)
Early notification of end of task (function code 50,

SSOBFEOT)
Service processor damage (function code 63)

Since the operating system recognizes special meanings for these
functions, a subsystem should not employ them for other purposes and,
furthermore, should enable them only when it wishes and is ready to
support broadcast of information. Thus, the appropriate byte in SSVTFCOD
should be set to an indexing value only after all necessary buffers and

....
00 =

Antognini MVS Software Subsystems page 14

other resources are prepared, after the support routine is in common
storage (if it has to be copied there) and after the entry point of that
routine is placed in the appropriate fullword in SSVTFRTN.

As noted above, it falls to the subsystem to carry out any necessary
serialization to protect its resources (buffers, control blocks, etc)
that it uses in supporting broadcast functions. The operating system will
not do so and it may very well send the subsystem several event
notifications in an effectively simultaneous fashion.

Uses and Advantages of Subsystems

Subsystems have uses and advantages that make them attractive from an
installation's point of view. One valuable feature is that a subsystem
can be started without JES2 or JES3. Consequently, a subsystem can carry
out installation-defined functions shortly after IPL and before a job
entry subsystem has come up; in fact, a subsystem might carry out those
functions and conclude by issuing the operator command to start JES2 or
JES3. When the job entry subsystem is down because of problems, an
installation-defined subsystem can be a powerful help if that subsystem is
capable of things like cataloging and uncataloging datasets, editing JCL,
listing VTOCs, locating online datasets and so forth; the list of
possibilities is limited only by imagination and programming ingenuity.
Anything that might be helpful when jobs cannot be started and TSO users
cannot log on is a candidate.

Since subsystems can support their own commands, they can put! more
operator-friendliness into running MVS. Here, too, the possibilities are
limited only by imagination and expertise. One possible application would
subsystem commands that cause the subsystem to issue standard but less
"friendly" MVS commands; for example, a command like' . ONLINE DASD' could
instruct the subsystem to issue the command 'D U,DASD,ONLlNE' via SVC 34
after placing proper command and origin information in SVC 34's parameter
registers.

Another application of subsystems doesn't require development of a full
set of support routines and the job-step program: The SSCVT and the SSVT
may serve as anchors for installation-defined resources and control block
chains. Such resources might be utilized for billing, system access, job
control, security functions, problem reporting and so fort;h. There is
often a requirement for a global anchor for such resources, and whilst
there is only one CVTUSER, many subsystems with their associated SSCVTs
and SSVTs might be ident ified to HVS.

Examples of Subsystems

The master subsystem, JES2 and JES3 are the best-known subsystems. There
are a few pr~prietary subsystems such as IBM's Vector Processing Subsystem

Antognini MVS Software Subsystems page 15

(VPSS) and some non - IBM software. IBM's Informat ion Management
System/Virtual Storage (IMS) is, however, possibly the commonest product
to use subsystem services, though it is not a full-fledged, typical
subsystem. Part of IMS installation is definition of the IMS Resource
Lock Manager's (IRLM) name as a subsystem. Certain IMS regions will
create an SSVT for the IRLM and chain it to its SSCVT, whereupon IMS can
function as a subsystem and use the subsystem interface. Specific uses
include interception of CANCELs, MODIFYs and STOPs (that is, command
broadcast) as well as notification of end of task and end of memory.

In addition to MVS and proprietary subsystems, a few installations have
written their own subsystems for internal use. At one site, the subsystem
is started just after IPL to carry out chores like issuing operator
commands found in a dataset and starting JES2. In another installation,
the subsystem is responsible for certain front-end services for
terminals. In a third, the subsystem provides VTAM support for certain
kinds of printers and also supplies a variety of specially tailored
commands to invoke services of help to system operators.

References

Several manuals contain information about subsystems:

~/VS2 System Logic Library
~/VS2 MVS System Initialization Logic
MVS Diagnostic Techniques
~/VS2 System Programming Library: System Generation Reference
~/VS2 MVS System Programming Library: Job Management
~/VS2 MVS System Programming Library: Initialization and

Tuning Guide
~/VS2 System Programming Library: Debugging Handbook

Another source of information is the distributed source code for JE82,
especially the module HASPSSSM.

