BET

SHARE SESSION REPORT

T 61 A764 The PL/I-VSAM Interface 78 '
SHARE NO. SESSION NO. SESSION TITLE ATTENDANCE
PL/I Dan Galender TYM
PROJECT SESSION CHAIRMAN INST. CODE

Tymshare, 20705 Valley Green Dr., Cupertino, CA. 95014, 408-446-6775

SESSION CHAIRMAN'S COMPANY, ADDRESS, AND PHONE NUMBER

TITLE: PL/I - VSAM Interface
SPEAKER: Thomas J. Kinzer (IBM)
IBM Corporation
610 Lincoln Street
Waltham, MA 02254
PROJECT: PL/I
SESSION: A764 (Wednesday, August 24, 1983, 4:30 p.m.)

IBM grants to SHARE, Inc., the right to reproduce this document in the SHARE,
Inc., proceedings. IBM retains its right to distribute copies of this
presentation to whomever it chooses.

4/C/LEI/1

The 0S/VS PL/I - VSAM Interface

I. Introduction

The IBM PL/I Program Products have provided an interface between
PL/I RECORD I/0 and VSAM since very early in the life of VSAM.
The amount of VSAM function available to PL/I users was
increased considerably by the support supplied by Release 3 of
the 08 PL/I Program Products (and for DOS/VS PL/I users by
Release 5 of the DOS PL/I Program Products). This support
became available in December 1976.

This paper attempts to describe this support and its implementa-
tion for 0S PL/I users.

II. Topics

Section I Introduction

Section II Topics

Section IITY PL/I Record I/O Language for VSAM

Section IV PL/I Record I/0 Implementation

Section Vv VSAM I/0 As Used by PL/I

Section VI General Techniques Used in PL/I's VSAM Processing

Section VII PL/I Record I/0 Modules for VSAM’
Section VIII ESDS Processing - IRMRRVAA

Section IX KSDS Sequential Output Processing ~ IRMBRVGA
Section X KSDS and Path Processing - IBMBRVHA
Section ¥I RRDS Processing - IRMBRVIA

Section XII Alternate Indices
Section XIII Buffering
Section X1V Bibliography

6T

III. PL/I Record 1/0 Language for VSAM

The details of PL/I record I/O language are covered in the PL/I
Language Reference Manual. No attempt will be made here to
summarize them exhaustively in written form. Two figures are
supplied, however, which do specify the compatible combinations
of PL/I statement constructs, PL/I file and environment
attributes, and VSAM dataset attributes. (Figures 1 and 2.)

Each statement type is associated with one and only one bit
position in the bit strings. If that position is AND'ed
together for all the file attributes and dataset attributes
applicable to the open PL/I file, a "1" indicates the statement
is valid; a "0" indicates it is not. BAND'ing together the
appropriate strings for a particular set of attributes gives a
resultant string defining (by the presence of "1" bits) the
statement types that are valid. WNote that all record I/0
statements are consistent with a VSAM RRDS!

These strings and this table come from the PL/I OPEN module,
IBMBOPEA,

Some comments are in order, however, about some of these
statements and options in cases where their meaning has
apparently not been clear.

A. KEYED SEQUENTIAL Processing of an ESDS.

This support allows sequential processing with or without
retrieval of the RBA for any record which VSAM reads from or
writes to an ESDS. It also allows retrieval and update by
key. PL/I regards RBA's as four-byte character strings
which are obtainable from VSAM for use as keys. Using such
an RBA as a key should always result in successful retrieval
of a record and establishment of positioning for future
successful sequential processing (if desired). Use of an
invalid RBA as a key results in the KEY condition being
raised without positioning being established. Since KEYED
SEQUENTIAL processing allows access by RBA to an ESDS, there
is no need to support the DIRECT attribute for an ESDS.

B. KEYED SEQUENTIAL Processing of a KSDS.

This support allows retrieval (and update if the UPDATE
attribute applies) by key anywhere in the dataset. If a key
is specified and a record exists to match this key, the
record is retrieved and positioning is established for
subsequent sequential reads. If no record is found to match
the specified key, the KEY condition is raised, but PL/I
establishes positioning in the dataset at the next record
following where the missing record would have been, so that

2

sequential reads may be performed anyway. This provides a
technique for "key-greater-than" processing. KFYFD
SEQUENTIAL processing also allows insertion of new records
via WRITE KEYFROM statements either within or bheyond the
current key range of the dataset. A failing WPITE operation
does not cause positioning to he established, and, in fact,
causes positioning to be lost insofar as PL/I's definition
of positioning is concerned. Under the current
implementation of PL/I and VSAM, if an attempt to write to a
PL/I KEYED SFQUENTIAL file (with or without ENV(SKIP)) fails
due to a duplicate key condition, VSAM will establish
positioning at the stored record with the duplicate key. A
sequential read will actually retrieve it, but the PL/I
language does not define this to be the case, and the PL/I
programmer should not, therefore, depend on it. A PL/I
program should use a read by key to retrieve this record.

If GENKEY processing is required, the short (generic) key
should be supplied via a PL/I character string the length of
which (or current length of which, if it has the VARYING
attribute) is less than the length of the key. Otherwise,
GENKEY has no effect.

KEYED SEQUENTIAL Processing of an PRDS.

This support allows a RRDS to be processed either
sequentially or by key (relative slot number). Assuming
that positioning already exists, a READ without a key causes
the next non-empty slot's record to be read. A READ with
key specified returns the record stored in the specified
slot and establishes positioning for subsequent sequential
retrieval. If the slot addressed by the RFAD with key is
empty, PL/I raises KEY but establishes positioning at the
empty slot so that a subseguent sequential read will return
the record from the next non-empty slot. An attempt to
write (not rewrite) into a slot that is already occupied
causes positioning to be lost, with KFY (if KEYFROM was
specified) or ERROR (if KEYFROM was not specified) being
raised. GENKEY cannot be specified for an a RRDS.

DIRECT Processing

The DIRECT attribute is not supported when one processes an
ESDS (and is not needed since KEYED SEOUFNTIAL processing
provides the function). DIRFCT processing requires the use
of exact full-length keys on a KSDS: GENKFY is not
supported. For an RRDS, DIRECT processing can be performed
using slot numbers.

For AIX processing, the AIX must have the UNIOUE attribute
(i.e., no duplicate alternate keys). If the alternate keys

are non-unique, KEYED SEQUFNTIAL processina must be used. -

3

ovi

E. The DELETF Statement

If no key is specified, the record just read will be
deleted. If a key is specified and the user has not just
read the records with that key, PL/I will read it and then
delete it. Such a request by key is not desirable if the
file being processed is associated with a PATH used for
processing a non-uniqgue alternate index, since the record
read and deleted will be the base cluster record associated
with the first entry in the alternate index record. Which
record this might be is a matter of luck.

F. The REWRITE Statement

REWRITE is handled just like DELETE (above) except that
some additional length checking must be performed. Record
lengths in an ESDS cannot be changed when the record is
rewritten. The warning ahout alternate index processing
{above, under DELETE) is appropriate for REWRITE as well.

IV. PL/I RECORD I/0 Implementation Overview.

The 0S5 PL/I Optimizing Compiler and Checkout Compiler do not
build detailed control block structures for PL/T files. They
build a simple control block called the Declaration Control
Block (DCILCB), which contains the information which can be
specified on a PL/I file declaration. At execution time, PL/I
OPEN builds the PL/I and 0S control blocks required to process
the dataset, loads the appropriate PL/I I/0 routine
("transmitter”), and identifies (and perhaps loads) the
appropriate error handling and end-of-file modules.

This process can be seen on the following chart, taken from the
0S PL/I Transient Library PLM. (Figure 3.)

PL/I OPEN may be invoked explicitly via an OPEN statement, in
which case one or more files can be opened, or implicitly by an
I/0 request to a file which is not open. In.this case, either
compiled code or the link-edited record I/0 interface module
IBMBRIOA branches to an address obtained from PL/I's "Dumny File
Control Block" (built during PL/I initialization).This address
does not point to 0S Data Management or a PL/I transmitter (as
it would if the file were open) but to the implicit open entry
point of PL/I OPEN/CLOSE. The link-edited OPEN/CLOSE bootstrap
module IBMBOCLA loads the first of PL/I's OPEN transients
(module IBMBOPAA) from the PL/I Transient Library.

IBMBOPAA is the "driver" of PL/I OPEN. It gets a parameter list
from the OPEN statement (or builds one if an implicit open
request is being processed), builds a control block called an
Open Control Block, and then loads IBPMBOPBA to process non-VSAM

4

STREAM or RECCRD files (if there are any) followed by IRMROPFA
to process VSAM files (if there are any). After those modules
have completed execution, IBMROPAA scanns the parameter list and
OCB to see if UNDEFINEDFILE should be raised for any files or if
PL/I CLOSE should be invoked to close PL/I files whose
associated datasets were opened with some sort of error.

The non-VSAM PL/I OPEN module, IRMBOPBA, builds a PL/T File
Control Block (FCB) and the appropriate DCB for each non-veaM
dataset in the list and then XCTL's to modules to issue the 08
OPEN macro, validate information derived from OS control blocks
after the dataset is open, select and load the appropriate
non-VSAM transmitters, etc. The details of this are not germane
to the present discussion, except for one special bit of
processing that IBMBOPRA performs; as it scans the OPEN
parameter list, skipping files declared with "ENMVIRONMENT
(VSAM)", it issues the RDJFCB macro for each remaining dataset's
JECB and looks to see if the dataset is really a VSaM dataset.
If it is, IBMBOPBA flags it as VSAM so PL/I VSAM OPEN can
process it later. (Actually, if the file declaration specified
"ENVIRONMENT (INDEXED)" and the dataset is a VSAM dataset,
IBMBOPBA does a little extra checking for certain special cases
that require an ISAM DCB and VSAM's FIP. See the PL/T
Programmer's Guide.)

In this way, most files oriainally declared as usinqg ISAM
("ENVIRONMENT (INDEXED)") end up using PL/I native VSAM support
if the dataset is actually VSAM. 1In addition, in many cases a
VSAM ESDS, KSDS, or RRDS can be processed via a PL/I file
declaration originally coded for QOSAM. 1In particular, if no
environment option for dataset organization was coded in the
declaration and no information incompatible with VEAM was coded,
the PL/I file can process an ESDS, KSDS, or RRDS, If
"FENVIRONMENT (CONSECUTIVE)" was explicitly coded, an FSDS can he
processed. VSAM datasets cannot be processed via PL/I STRFAM
files. Under MVS JFCB's look the same whether built by
scheduler allocation or dynamic allocation, and PL/I can detect
VSAM datasets to be associated with PL/I files not declared with
"ENV(VSAM)" under either TSO or batch. 1In the TSO foreground
under SVS (not MVS) this JFCB information is not available to
PL/I.

When non-VSAM OPEN is complete, control returns to IRMBOPAA
which looks to see if there is any VSAM dataset to open. If
there is it calls the PL/I VSAM open module, IBMROPEA.

IBMBOPEA issues a SHOWCB macro to obtain the size of an ACB and
an RPL, gets some PL/I non-LIFO storage, in which it builds PL/I
FCB's and VSAM RPL's and ACB's for the VSAM datasets being
opened, opens them, issues SHOWCR macros for dataset
information, validates dataset information against PL/I file
information previously known, gets non-LIFO storage for control

5

|34}

blocks and perhaps a dummy buffer, selects and loads the proper
VSAM transmitter, issues any required POINT macros, and returns
to IBMBOPAA.

V. VSAM I/0 as Used by PL/I

To communicate with VSAM, the assembler language programmer sets

fields in a VSAM Request Parameter List (RPL). Thesge fields c.
specify which dataset is to be accessed by addressing its ACB,

the address and length of the user's I/O area (if there is one),

the length of a short key, and processing options in a field

called "OPTCD". After setting these fields in the RPL, the

programmer issues GET, PUT, POINT, and perhaps READ, WRITE,

CHECK, and ENDRE(Q) macros. The way the macros function is

conditioned by the various fields in the RPL.

The PL/I programmer codes PL/I READ, WRITE, REWRITE, UNLOCK, and
perhaps WAIT statements. The transmitter must estahlish the
correct values of the RPL fields, issue the appropriate macros,
and interpret VSAM error information (if there is any) in PL/I
terms. It must see to it that the PL/I record I/0O language is
implemented, and this means, for example, that PL/I file
positioning must be provided even though it sometimes differs
from VSAM's own positioning conventions.

VSAM QPTCD settings important for PL/I are reviewed bhelow: D.
A. ADR/KEY (Addressed vs. Keyed).

"ADR" implies use of a Relative BRyte Address, and thus
applies only to ESDS processing in PL/I. "REY" implies use
of a logical key. This key is embedded within each record
if the dataset is a KSDS. For an PRRDS, this kev is not
within a record, but is a relative slot number.

This distinction represents a VSAM distinction, not a PL/T

distinction. If the PL/I programmer is to process via a

key, the PL/I file must have the KFYED attribute. This kev E.
will be a character string. The transmitter will set

ADR/KEY in the RPL based on type of request and type of

dataset. In the PL/I program an ESDS RRA, a KSDE logical

key, or an RRDS slot number are all keys.

B. FWD/BWD (Forward vs. Backward).

PL/I always uses FWD unless the user coded ENV(RBKWD) in the
file declaration. In this case PL/I OPEN issues a POINT
macro to establish positioning at the end of the dataset.

Backwards retrieval by key (full key, not generic) may he
done anywhere in the dataset, but any sequential retrieval
(retrieval without a key specified) will retrieve the record

6

prior to the point of current positioning. If a backwards
read by key results in a key-not-found condition, PI./I does
not provide positioning for subsequent sequential read
requests. VSAM permits the user to switch back and forth
between FWB and BWD, but PL/I does not support this
capability.

ASY/SYN (Asynchronous vs. synchronous)

Normal synchronous processing returns control to the user
only after the request has heen "completed", meaning after
the RPL and user I/0 area are available for reuse.
Asynchronous processing returns control to the user hefore
the user can safely reuse the RPI. and I/0 area; the user
rust issue a CHECK macro to geét error information and
re-synchronize with VSAM, thus being assured of being ahle
to safely reuse the I/0 area and RPL. Note that the
question of when VSAM actually performs the physical I1/0
operation is an entirely different guestion.

PL/I normally uses SYN, but if the user requests the EVENT
option on the I/0 statement, PL/T will issue the I/0
requests in ASY mode and issue the CHECK macro at the user's
WAIT statement.

KEQ/KGE (Key Equal vs., Key Greater Than or Equal)

This distinction is meaningful only for keyed retrieval

from a KSDS or RRDS. It specifies for a KSDS whether the
user insists on an exact match on key or will take the next
higher record in the dataset. This distinction applies also
to an RRDS, but only for a POINT macro, not GET.

PL/I always uses KEQ, except that after a keyed retrieval
attempt fails due to "key not found", PIL/I reestablishes
positioning by issuing POINT using the same key but KCF.

FKS/GEN (Full Key Search vs. Generic)

This distinction is meaningful only for keyed retrieval

from a KSDS. It specifies whether the KEQ or KGF comparison
in (D.) above is to be made on the whole key or only on a
leading substring of it.

PL/I always uses FKS unless the "GENKEY" environment option
applies. If GENKFEY was specified a short key will he
compared only against a leading substring of a key in the
dataset, the length compared being determined by the lenath
of the short key. If a full length key is specified, CENKFY
has no effect, that is, the search simply becomes a full key
search.

4

H. DIR/SEQ/SKP (Direct vs. Sequential vs. Skip)

For example, suppose a dataset has seven-hyte keys. If
GENKEY were not specified and the program supplied a five
byte key field, a full key comparison would be performed
using the supplied five bytes padded out to seven bytes with
blanks. TIf GENKEY had been specified, only the first five i
bytes would have been compared. If GENKEY had been

specified and a seven-byte key provided, the search would

have become a full key search.

LOC/MVE (Locate vs. Move)

Conventionally, this distinction differentiates between
processing in the buffers and moving the data to or from a
workarea. In VSAM, LOC may only bhe used for input-only
requests. This is of such limited usefuluness that PL/I only
uses LOC for READ ICNORE processing of datasets without
spanned records.

PL/I READ INTO and WRITE FROM statements are implemented
using MVE, with VSAM moving the data to or from the PL/I
record variable. If the PL/I file has the BUFFERED
attribute, so that READ SET and LOCATE SET statements may be
used, PL/I OPEN allocates a buffer big enough to hold the
maximum-sized logical record. RFAD SET and LOCATF SET
statements are then implemented using this buffer and VSAM
MVE processing.

NSP/NUP/UPD (Note String Position vs. No Update vs. Update) 2.

These distinctions apply to the retrieval, rewriting, and
insertion of records. Their meaning with GET and PUT macros
is as follows:

GET UPD - Retrieve for update and establish positioning.

PUT UPD ~ Rewrite and establish positioning.

GET NSP - Retrieve for input only, but establish
positioning.

PUT NSP - Write new record and establish positioning.

GET NUP ~ Retrieve for input and don't establish
positioning.

PUT NUP - Write new record and don't establish positioning.

For PL/I files that have the DIRECT attribute, positioning is

irrelevant, and PL/I uses either UPD or MUP.

For PL/I KEYFRR

SEQUENTIAL files, positioning must be maintained, and PL/I uses
either UPD or NSP,

These three critical distinctions represent the three VSaM
processing modes:

direct, sequential, and skip sequential.

DIR implies that the user must supply a key {(RBA for an
FSDS, logical key for a KSDS, or relative slot number
for an RRNS). PL/I uses DIR to process a KSDS or RRDS
if the PL/I file declaration has the DIRECT attribute.
In this case, PL/I requires a "full key" (FKS). and a
"key equal” (KEQ) comparison, although VSAM itself
permits KGE and/or GEN for GET requests in DIR mode.

If a PUT macro is issued against a KSDS using DIR, VSAM
finds the appropriate control interval by means of a
top-down index search, and places the record in it if
there is room for it, If there is not room, VSAM
"splits" the control interval at the record boundary
nearest the mid-point of the control interval. 1If a
control area must be split, it is split roughly in

half. Freespace percentages play no role in determining
whether there is room for a new record or a new CI when
an insert or update is performed in DIR mode.

A PUT in DIR mode causes an immediate write to DASD.
This immediate write, other DIR processing logic, hut
record insertion as though SED were in effect can be
obtained by coding "SIS" - Sequential Insert Strateqy.

SEQ implies that position is held in the dataset and
the user wishes to process forward (if FWD is in effect)
or backward (if BWD) from that position.

For a GET request, there is no way to specify a key.
Positioning in the dataset determines which record will
be retrieved. Thus retrieval by key using SEQ implies
that a POINT/GET macro sequence is required. If a
record was retrieved using GET UPD, a subsequent PUT
UPD will rewrite (and thus update) it. .

The PUT macro in SEQ mode for a new record must be
clearly understood. PUT SEQ conjures up the intuitive
image of writing the next tape record, and indeed, this
image is appropriate if the VSAM dataset is an ESDS or
an RRDS; a new record is always written at the end of an
ESDS, and a PUT SEQ to an RRDS causes the record to be
written into the slot at which VSAM is positioned. 7In a
KSDS, however, each record, including the new one, has a
key embedded within it. The logical sequence of the
dataset is defined by the sequence of these keys; VSaM
will not write a new record in the wrong place. For a
PUT SEQ, VSAM presumes that the new key is higher than

9

g

A !

the key of the current positioning and moves forward
through the dataset to the proper location in the
dataset at which to write the new record. If
positioning is not established or if the new key is
lower than the key of current positionina, VSAM returns
an error indication and does not write the record, If,
to implement a PUT SEQ, VSAM must move forward past the
end of the current CI, it does so by searchinag the index
top down - a sort of implicit POINT.

PUT SEQ uses a special technique for inserting records
into a KSDS so that in case a numher of records are to
be inserted at one spot in the dataset, vSAM will be
able to insert them efficiently. If the new record
would have neither the highest nor lowest key in the.
target CI, VSAM inserts it if it will fit and splits the
CI at the point of record insertion if it will not fit.
If the new record would have the highest or lowest key
in the control interval, VSAM may place it in a new CI
by itself so there will bhe plenty of space after it for
the "mass sequential insertion" that mav be about to
occur. If the new record would have the lowest key in
the CI, but there is not room for it, VSAM will always
put it in a new CI unless there is not only room for it
to fit, but room for it to fit while preserving the
free space percentaae specified in the catalog. If the
record goes into a new CI and the mass sequential
insertion does occur, the new CI's will contain free
space as specified in the catalog. In effect, PUT SFQ
into the middle of a dataset is executed as though the
operation were in initial load of the dataset which
happens to be occurring in the middle of it, not at the
end.

PUT SEQ works similarly insofar as control area splits
are concerned. If a CI split would produce a new CI
that would not be the last CI in the CA, VSAM will split
the CA, but at the point of insertion, not in the
middle. If a new highest CI in the CA would cause the
CA's freespace to fall below the freespace percentage
specified in the catalog, VSAM will not split the CA but
will put the new CI at the beginning of a new CA.

Fxtension into a new CI or CA does not count as a CI or
CA split in the VSAM statistics.

It follows that if all insertions into a KSP'S are done
via PUT SEQ, a lot of freespace will be created,
preserved, and propagated, but little of it will he used
to hold new records. One might bhe well-advised to
create the dataset with freespace and then alter the
freespace percentages downwards after loading the

10

dataset, but before inserting new records via sequential
(PUT SEQ) processing.

PL/I primarily uses SEpD mode to access a VSBAM dataset
associated with a PL/I SEQUENTIAL file. Records are
read sequentially by means of GET SEQ macros. TIf the
file has the KEYED attribute, then records are retrieved
by key by using a POINT/GET macro sequence in SEQ mode.

WRITE KEYFROM {or LOCATE KEYFROM) is implemented by PUT
SEQ if the key of current positioning is known and the
key.of the new records is higher than the key of current’
positioning. If either of these conditions is not met,
the record is written using PUT DIR,NSP.

It sbould be remembered that VSAM reads ahead when one
retrieves in SEQ mode and defers writing to disk when
one adds or updates records in SEQ mode.

SKP implies that skip sequential mode will be used, and
is meaningful only for processing a KSDS. GFT and PUT
with SKP function like GET and PUT with DIR in that the
user must supply a key, but differently in that SKp
requires that keys be supplied in ascending sequence.
SKP processing for ascending keys establishes
positioning by reading the sequence set rather than
searching the index top down. SKP functions like DIR
for inserting new records in that no attempt is made to
preserve feespace percentages, and CI splits and CA
splits occur at midpoint, not point of insertion. That
is, insertions done in SXP mode use "direct insert
strategy", not "sequential insert strateqgy"®.

Since VSAM will not insert a record in the wrong place
in a KSDS, it may have to position itself forward in the
dataset beyond the control interval associated with
current positioning. Whereas VSAM uses a top-down index
search (implicit POINT) to move forward to implement a
PUT SEQ reguest, it reads forward via the seguence set
for a PUT SKP request.

If the PL/I file declaration specifies "KEYED
SEQUENTIAL ENV(SKP)", PL/I sets the default processing
mode to SEQ and uses SEQ for reading without a key
specitied, but attempts to use SKP for keyed requests.
For a keyed read PL/I issues GET SKP if the key is -
greater than the key of current positioning and POINT
followed by GET SEQ otherwise.

For a write by key, PL/I issues a PUT SKP if the key is
greater than the key of current positioning and PUT
DIR,NSP otherwise.

11

TEY

VI. Implementation Techniques Used in PL/I Processing of VSaM

After the dataset has been successfully opened, there are a PL/T
File Control Block (FCB), a VSAM Access Method Control Block
(ACB), a dumny record buffer (if the PL/I file has the BUFFERED
attribute), a PL/I I/0 Control Block (IOCR), and a pair of areas
in which to save keys (if the PL/I file has the KEYED
attribute). A VSAM Request Parameter List has beer built within
the PL/I IOCB.

The PL/I control blocks listed here are not unigue to PL/I's
VSAM support; they might be built (with some differences in
content) for datasets requiring other access methods. The V&AM
ACB and RPL are not built for any other access method that PL/I
supports.

The FCB contains various fields relating to PL/I I/0, and for
VSAM it includes the default settings of such fields in the RPL
as OPTCD, RECLEN, AREA, AREALENM, and KEYLEM. These default
values were placed in the RPL when IBMBOPEA issued the GENCR
macro to generate the RPL.

The IOCB contains in addition to the RPL, fields to hold backup
copies of the fields in the RPL. The OPTCR, AREA, AREALFN, and
KEYLEN do not change unless PL/I changes them, so the PL/I
transmitter can generate in workareas in the IOCB the settings
required for the current request, compare them to the current
settings in the RPL (without actually referencing the RPL)} and
avoid issuing a MODCB macro unless it is really necessary. In
this way, PL/I can maintain the discipline of the MODCB, SHOWCE,
TESTCB, GENCB interface without actually issuing any more of
these macros than absolutely necessary. Record length
represents a special case, since after a READ operation,the
length of the record just read is stored in the RECLEN field of
the RPL. The PL/I transmitter does not retrieve it unless it
has to, (i.e., unless the file has the SCALARVARYING attribhute,
the record variable has the VARYING attribute, or a record from
an ESDS is to be rewritten). Thus, if the most recent operation
was READ, PL/I may have to execute an otherwise unneeded MODCR
before executing a WRITE or REWRITF because it doesn't know the
value currently set for RECLEN in the RPL.

At the beginning of each I/0 request, the default setting of
OPTCD is copied from the FCB into a workarea in the ICCB. The
options are then modified as necessary for this request, and
required values of other RPL fields are determined. Finally, a
~common routine is invoked to compare the requisite fields to the
backup copies of the current RPL fields and a MODCB parameter
list is progressively built in the IOCB as mismatches are
found. At the end of this process, if a MONDCB parameter list
has been started, it is completed and a single MODCB macro is
issued. If MODCB is not needed, it is not issued.

12

VII. PL/I Record I/0 Modules for VSAM

PL/I OPEN loads the appropriate transmitter to provide the
interface to data management. There are currently some
fifty~four of these modules in the PL/I Transient Library. They
all have names of the fomm:

IBMBRxYA

There are four VSAM transmitters, recognizable by the "y" as the
sixth letter of their names. They are:

IBMBRVAA ~ ESDS Transmitter

IBMBRVGA - KSDS Sequential Output Transmitter
IBMBRVHA - KSDS and PATH Transmitter

IBMBRVIA ~ RRDS Transmitter

PL/I OPEN also at least identifies an error module and an FOF
module, but does not actually load them into storage unless the
program is running under PL/I multitasking., For VSAM there is a
single error module, and it handles EOF as well. Record I/0
error modules all have names of the form:

IBMBREyA
PL/I's error module for VSAM is IBMBREEA.

The transmitters receive each request, validate it, handle WAIT
statements and event variables if necessary, build the
parameters needed by VSAM as described earlier, issue the MODCB
macro if necessary, issue the appropriate VSAM macros (CRT, PUT,
POINT, plus CEECK for WAIT statements), and set flags for the
error module if any exceptional conditions arise. The
transmitter either returns control to the user, or loads (if
necessary) and calls the error module.

The error module sets up the paremeters (ONKEY, ONFILE, OWCODE,
etc.) needed by the error handler and identifies the condition
to be raised based on information passed to it by the
transmitter. This does not include VSAM feedback (FDBK) fields,
since the transmitter has already translated VSAM information
into PL/I terms. When an attempt to read a KSDS or RRDS
declared with the KEYED SEQUENTIAL attributes causes
key-not-found, it is the error module which, just bhefore raising
the PL/I KEY condition, issues a POINT macro with OPTCD KGE to
establish positioning for the user.

VIII. ESDS Processing - IBMBRVAA

This transmitter executes using the SEQ and ADR options. Any
WRITE request places the new record at the end of the dataset.

13

SP1

A RFEAD KEY statement becomes a VSAM POINT/GFT macro sequence, -
The KEYTO option allows RBA's to be retrieved.

IX. KSDhS Sequential Output Processing — IBMBRVGA

This transmitter performs only the functions of initial load and
resume load of an KSDS. It only implements WRITE KEYFROM, WRITE
KEYFROM EVENT, and LOCATE KEYFROM statements. FEach new record
must have a higher key than any record already in the dataset.

¥. KSpS and Path Processing - IBMBRVHA

This transmitter performs all functions associated with KSDS
processing except dataset loading. It processes alternate index
paths. It implements, in one context or another, every record
I1/0 statement defined by the PL/I languaae except WRITE or
LOCATE without KEYFROM.

If the PL/I file has the KEYED and SEQUENTIAL attributes, then
the default processing mode established by PL/I OPEN is SEQ. If
ENV(SKIP) was not specified, SEQ is reinstated for every I1/0
operation except an out-of-sequence WRITE, in which case PUT
DIR,NSP is issued., If FMV{SKIP) was specified, SE(Q is
tentatively reinstated for every I/0 regquest (and used in a RFAD
request without a key specified), but PUT DIR,NSP is used for an
out-of-sequence WRITE, POINT followed by GET SFQ is used for an
out-of-sequence keyed RFEAD, and SKP mode is used for all other
keyed requests.

PL/I DIRECT files are processed in VSAM DIR mode.

XI. RRDS Processing = IBRMBRVIA

This transmitter performs all functions associated with RRDS
processing. In one context or another it implements every
possible syntactic variant of every record I/0 statement defined
by the PL/I language!

The key used with an RRDS is a relative slot number, which from
VSAM's point of view is a binary integer. To PL/I, dataset keys
are character strings, and the relative slot number is a
character string eight bytes long. When the user supplies the
key, the key field must be a decimal number that either fills
the whole eight-byte string or is bounded bhefore, after, or hoth
by blanks. When PL/I returns such a key to the user (e.q.,
KEYTO) the numeric digits will be right-justified and the
leading zeroes will be suppressed. One should code rather
carefully to minimize character-to-arithmetic conversions, since
they are performed by library call. It is best to use "PIC
"(7)29'" as the data type of the key.

14

XII. Alternate Indices

VSAM permits the user to define alternate indices over a KSDS or
an ESDS using any contiguous field within the first 4096 bhytes
of a record (and within the first segment of a spanned record)
as the alternate key. The maximum length of such a key is 256
bytes. As the base cluster records are changed, VSAM "upgrades"
the alternate indices as necessary to reflect these chanaes.

To process a dataset by alternate key, one declares a PL/T file
just as one would for a KSDS. The execution time DD statement
points to a dataset name which is the name of a PATF linking the
alternate index and base cluster. If the keys in the ATY¥ are
UNIQUE, the PL/I file can have aither the DIRECT or KFYFD
SEQUENTIAL attributes. If they are non-unique, the PL/I file
must have the KEYED SEQUENTIAL attributes. For non-unique
alternate keys, the SAMEKEY BIF tells the user whether or not
the set of primary keys for an alternate key has been exhausted
as the user processes them sequentially.

It is possible to declare two PL/I files, point one to an AIX
path and the other to the base cluster, and process either or
both at the same time. There are no problems at all with doing
this for input-only processing. There are no problems doing
this with updates to either or both as long as both are PL/I
DIRECT files (in which case the AIX must have the UNIQUE
attribute).

Problems can arise when updating with both a path and base
cluster open if the AIX is non-unique (and thus must be
processed via a PL/I KEYED SEQUENTIAL file) and/or the bhase
cluster is processed as a PL/I KEYED SEQUENTIAL file.

Users should be very careful with application proarams that do
such processing. There is no way for the PL/I programmer to
deal with the VSAM nultiple-string processing issues that arise
in such a program.

XIII. Buffering

0S/vS PL/I-VSAM users can control buffering by specifying RURNI
and BUFND either in the JCL or in the PL/I file declaration.

For KSDS processing that does anything except read the KSDS
sequentially as though it were a reel of tape, it is essential
to good performance to provide enough index buffers (via BUFNI)
to enable VSAM to do top-down index searches efficiently. Thus
a PL/I file declaration that specifies KEYFD SEQUENMTIAL (with or

without ENV(SKIP)) or DIRECT should specify a numher for BUFNI

larger than VSAM's default of one. The number specified should
exceed the number of index levels shown in the VSAM catalog for
the KSDS to be processed.

15

9IFT

Extra data buffers are helpful for doing CA splits and for

reading ahead sequentially. They are not helpful if one's XIV.

sequential processing is really direct processing by key with

occasional "runs" of sequential processing interspersed with A.
lots of repositioning in the dataset. This latter situation is

likely not uncommon for PL/I KEYED SEQUENTIAL processing.

A special case of interest involves an application program which
reads an input transaction file and either updates an existina
master file record (if such a record exists) or writes a new
record into the master file. One can imagine two scenarios for
such a program:

-Try to read the master file record. If it exists, update
it. If KEY is raised (due to key-not-found), build a new
record and write it.

~Build and try to write a new master file record. If KEY
is raised (due to duplicate key), read the record and
update it. : :

Most programmers instinctively implement the first approach. If

any significant percentage (over five or ten percent) of the

transactions will actually result in adding a new record, the

second approach is more efficient because of VSAM buffering and B.
the fact that a failed read-for-update attempt causes loss of

positioning.

16

Bibliograph
SHARE/GUIDE Papers

1. "VSAM Concepts and Ulser Fxperiences", Tina Martin,
SHARE 45, August 1975,

2. ™"VSAM Application Desian and Implementation", T. J.
Kinzer, SHARE 45, Augqust 1975,

3. "New Releases of PL/I Products - A Step Forward", T.
J. Kinzer, GUIDE 43, November 1976.

4., '"Recent Improvements in PL/I", T. J. Kinzer, SHAPE
48, March 1977.

5. "VSAM Performance Improvements for Random or
Alternate Index Processing”, G. H. Royer, GUIDE 45,
November 1977.

6. "PL/I and VSAM: Forwards, Backwards, and Inside-Qut,
Bob Stearns, SHARE 51, August 1978.

IBM PL/I Manuals

1. 0S PL/I Checkout and Optimizing Compilers:
lLanguage Reference Manual, GC33-0009.

2. 0S8 PL/I Checkout Compiler: Programmer's Guide,
SC33-0007.

3. 0S PL/I Optimizing Compiler: Programmer's Guide,
SC33~0006.

4. 0S PL/I Checkout Compiler: Messages, SC33-0034.

5. O0S PL/I Optimizing Compiler: Messages, SC33-0027.

6. O0S PL/I Checkout Compiler: Fxecution Lodgic,
8C33~0032.

7. 0S PL/I Optimizing Compiler: Fxecution ILoqgic,
SC33-0025.

8. 08 PL/I Transient Library: Program Logic, LY33-f009.

17

vl

Masks which indicate valid statements.
bits represent which statements.

IBM VSAM Manuals 1 BYTE 0 80 READ SET
2 40 SET KEYTO
1. Planning for Enhanced VSAM Under 0S/VS, GC26-3842, 3 20 SET KEY
4 10 INTO
2. 08/VS Virtual Storage Access Method (VSAM) Options 5 08 INTO KEYTO
For Advanced Applications, GC26-3819. 6 04 INTO KEY
7 02 INTO KEY NOLOCK
3. 08/Vs Virtual Storage Access Method (VSAM) 8 01 IGNORE
Programmer's Guide, (For VS1 R6 and MVS R3, 7), 9 BYTE 1 80 INTO EVENT
GC26-3838. ig §g INTO KEYTO EVENT
. INTO KEY EVENT
4, 08/VS2 Access Method Services, (For MVS), GC26-3841. - %g ég INTO KEY NOLOCK EVENT
5. Data Facility Extended Function: Access Method 14 04 WRITEIgggﬁE EVENT
Services Reference, SC26-3967. %g 8% FROM KEYFROM
s FROM EVENT
.] 3 -3 .
6 0S/VS1 Access Method Services, (For VSsl), GC26-3840 ig BYTE 2 80 FROM KEYFROM EVENT
7. 08/VS2 Virtual Storage Access Method (VSAM) Logic, 19 ;8 REWRITE
(For MVS), SY26-3825. 5 FROM
_ ;O 10 FRCM KEY
8. 0S/VSl Virtual Storage Access Method (VSAM) Logic, 5% 08 FROM EVENT
{For VS1), sy26-3841. ‘ 04 FROM KEY EVENT
éz 02 LOCATE
9. 08/VS2 SVS Independent Component: Access Method 01 KEYFROM
Services, (For SVS), GC26-3867. 25 BYTE 3 80 DELETE
S, 26 40 KEY
10. 0S8/vVS2 SVS Independent Component: Planning For 2 20 EVENT
Enhanced VSAM, (For SVS), GC26-3869. 28 10 KEY EVENT
2 39 08 UNLOCK
11. 08/vS2 SVS Independent Component: VSAM Options For 30 04 WRITE FROM XEYTO
Advanced Applications, (For SVS), GC26-3870. 31 02 FROM KEYTO EVENT
12. 08/vs2 SvS Independent Component: Virtual Storage
Access Method (VSAM) Programmer's Guide, (For SVS),
GC26-3868.
13. 08/VS2 SVS Independent Component: Virtual Storage
Access Method (VSAM) Logic, (For SvS), SY26-3857.
Other Figure 1
1. 08/VS VSAM Sharing - A Technical Discussion (Part I),
Edward H. Daray, IBM Corporation, Palo Alto Systems
Center, G320-6015.
2. IMS/VS and 0S/VS VSAM Buffer Options (Shared vs.
on-Shared Pesources), Wayne Weikel & Fdward H. Daray,
IBM Corporation, Palo Alto Systems Center, G320-6035.
3. VSAM Primer and Reference, G320-5774. 19

18

This table shows which

8FT

Bit Strings For Valid Combinations

X'26329458"
X'FDEFFFF6'
X'FFFFFDFE'
X'918D6AA0!
X'FFF80008"
X"FFFFFCFE'
X'00078306"
X'FFFD7EQE!
X'FFFAFDF8'
X'1FFFBCFE'
X'FF0673CC!
X'FDEFFFF6'
X'FFF87CF8'
X'FFFFFFFF’

DIRECT
SEQUENTIAL
KEYED
NON-KEYED
INPUT
UPDATE
OUTPUT
ESDS

KSDS
UNBUFFERED
BUFFERED

NON-EXCLUSIVE

BKWD
RRDS

Figure 2

20

Ip s tatement

QPEN

CLOSE

I3MBRIOA

L

1BMBOCLA,3,¢,D

AN

7
L

1BMBOPA

N

A i3

LBMBOPEA
(YSAM OPEN)

IBMBOCA

IBHBOPBA

4

IZMBOPCA

2

— IRMBOPLA

I2MBOPZA

21

o
Transmiter

Figure 3: OPEN/CL0SE

