
-~ 
~ 

SESSION REPORT 
---
~SHARE§ 

61 __ ~n5 ___ __ ]'lew E~at\lr:"Lj,_njTQ=-EQRTRAN_Belease 3--- __ _ 
SHARE NO. SESSION NO. 

EQRTRAN__ _ ________ ~ __ ~~~_ 
PROJECT 

SESSION TITLE 

_ Sylvia' "Sunni~" SliIl9: ______ " __ 
SESSION CHAIRMAN 

ATTENDANCE 

___ S~ 
INST.CODE 

Stanford Line~,\ccel",oator.Center, P.O. BoU~llin 2.6..-Stanford, c~---$4.~~300 
SESSION CHAIRMAN'S COMPANY, ADDRESS. and PHONE NUMBER 

A copy of the speaker's talk is attached 

VS FORTRAN SHARE PRESENTATION 

VS FORTRAN Release 3.0 

G. R. Garabedian 
IBM 

Santa Teresa Laboratory 
San Jose, California 

SHRM- 730-1/81 

PAGE 2 

1.0 GENERAL OVERVIEW - RELEASE 3.0 CONTENT 

Release 3.0 of VS FORTRAN was announced AprilS, 1983, and is currently 
available in the U.S. and World Trade countries. This release includes improved 
CHARACTER data handling, enhanced diagnostics and debugging aids, improved 
usage of the INCLUDE statement, compile- time checking of OPEN/CLOSE/INQUIRE 
parameters which are constants, continued execution after I/O failure, and 
automatic formatting of direct access files identified by the OPEN statement. 



~ 

W 
~ 

PAGE 3 

2.0 CHARACTER DATA TYPE IMPROVEMENTS 

CHARACTER Argument Passing 

The key change for CHARACTER data type handling was to make subprogram calls 
insensitive to this data type. 

In previous VS FORTRAN releases, parameter lists, which contained 
CHARACTER-type arguments, had the length of those arguments embedded within 
the parameter list. 

The new construction provides a means of passing arguments to functions and 
subroutines in such a manner that the information needed for character-type 
arguments is "transparent"; i.e., the parameter list can be referenced 
without any regard to the character-type-argument information. 

The method is to provide a double parameter list for all argument lists 
which contain any character-type argument or for any reference to a 
character-type function. The primary list consists of pointers to the actual 
arguments; the secondary list consists of pointers to the lengths of the 
actual arguments. The high-order bit in the last argument position of each 
part of the parameter list is set on. If there are no character-type 
arguments or if the function being referenced is not character-type, only a 
primary list is passed. 

The doubling of all parameter lists (except for intrinsic functions which do 
not involve character arguments and for implicitly invoked function 
references) not only implies that the parameter lists themselves are 
different but that the prologues of FORTRAN subprograms are different in 
order to process these changed parameter lists. Therefore, if any FORTRAN 
program, compiled previously to Release 3, which references subprograms 
with character-type arguments (or is a character-type function itself) is to 
be used with a FORTRAN program which is compiled with Release 3, then the 
old program must also be re-compiled with Release 3 of VS FORTRAN. 

Note that programs compiled on releases of VS FORTRAN before Release 3.0 
with LANGLVL(66) as well as programs compiled with FORTRAN H Extended, 
FORTRAN Gl or FORTRAN F do not have to be recompiled to operate with VS 
FORTRAN Release 3.0. 

Remember also that if you have changed your assembler-language programs to 
receive the non-transparent parameter lists, these must be changed to 
operate with Release 3.0 compiled VS FORTRAN programs which contain 
CHARACTER-type data. 

The SC option has been removed. This Release 2.0 option had been used to 
specify those subroutine names for which length parameters for 
CHARACTER-type arguments were not to be passed. This option is no longer 
needed with the Release 3.0 "transparent" argument passing. 

PAGE 4 

CHARACTER Data Types in COMMON with non-CHARACTER Data TYPes 

CHARACTER type data may now share the same COMMON (both blank and named) 
with data of non-CHARACTER types. A warning message will be issued only if 
FIPS flagging has been requested. 

CHARACTER Data Types EQUIVALENCEd to non-CHARACTER Data Types 

CHARACTER type data may now be EQUIVALENCEd to data of non-CHARACTER types. 
A warning message will be issued only if FIPS flagging has been requested. 

CHARLEN Compiler Option 

A compiler option, CHARLEN, has been added to VS FORTRAN Release 3.0 which 
allows the user to specify the maximum length he wishes to use for CHARACTER 
data type. 

The compiler option is of the form: 

CHARLEN(k) 

where k is an unsigned integer constant greater than 0 but no greater than 
32767. This constant represents the maximum length permitted for any 
character variable, array element or function. 

The limits for the values of symbolic names of character constants(255), for 
character constants in FORMAT statements (255), and for character constants 
in the STOP/PAUSE statements (72) remain the same in Release 3.0. 

If k > 32767, then an error message is given and the value 32767 is used. If 
the option is not used, a value of 500 will be assumed. The value 500 is the 
default length. 

The advantage of the compiler option is that those users who do not require 
large character variables will not have the large character "temporaries II 
(which are generated as necessary for inherited length character entities) 
in their object programs. 



~ 

W 
Ul 

PAGE 5 

3.0 ENHANCED DIAGNOSTIC AND DEBUGGING AIDS 

Symbolic Dump Capability 

To improve debugging, VS FORTRAN now provides a symbolic dump. 

The compiler option, SDUMP, causes the generation of a dictionary in the 
object text file. SDUMP is the default setting of the option and can be set 
off by specifying NOSDUMP when the dictionary is not desired, with the 
understanding that a symbolic dump of variables in that routine is not then 
possible. 

A symbolic dump can be produced anywhere via a call to a new library routine 
SDUMP. Also, it is automatically called when certain abnormal termination 
conditions are detected. 

If the user program does terminate abnormally, the dictionary of the data 
within the program is interrogated and the value of each variable in storage 
is printed accorjing to±e defined data type. The user is able to 
determine both w)lere the prog terminated with the traceback information 
as well as the status of the data at termination in terms of the FORTRAN data 
types. r 
A description of the SDUMP routi~e and examples of its output are described 
in Appendix E of the VS FORTRAN Llnguage Reference manual. 

Improved Compile Time Messages 1 

Two options, TRMFLG and SRCFLG, I have been added to control the display of 
the error messages on the terminal and listing data sets. 

Terminal display I 
! 

The option, TRMFLG, can be uSFd to display the source statement in error 
on the SYSTERM data set along with the diagnostic message. (The error 
message is formatted for tht terminal being used.) This facilitates 
finding the statement in error in the original source file. 

Certain error messages occur~ing after the scan of the source statement 
are displayed at the termil>al alone. These are more global type of 
messages nqt linked to a pa1'ticular source statement - like messages 
about ill-nested DO-loops. 

If you are using an operatiig system which does not allow interactive 
transactions (such as OSjVS b tch or DOSjVSE), then specify NOTRMFLG and 
NOTERMINAL when you install S FORTRAN in order to avoid messages about 
"no terminal on line" when th "is option is used. 

Batch compiler listing 

PAGE 6 

The option, SRCFLG, may be specified to insert diagnostic messages in 
the printed source listing. Error messages will be displayed 
immediately following the source statement in error during the scan of 
the source statement. 

Error messages occurring after the scan of the source statement will be 
displayed at the end of the listing. 

SRCFLG cannot be specified if NOSOURCE is also used, 

SYM Card Support 

A new compiler option, SYM, is used to invoke the production of SYM cards in 
the object text file. These SYM cards can be used by TSO TEST for 
interactive debugging or can be obtained by a user program and used for any 
function desired. 

This option produces SYM cards containing location information for 
variables within a FORTRAN program. Information for all referenced 
variables in each program unit is recorded by name and location in the 
appropriate CSECT. All entities in COMMON blocks are recorded by name and 
location. 



...... 
W 
0') 

PAGE 7 PAGE 8 

4.0 IMPROVEMENTS IN INCLUDE· FACILITY 5.0 COMPILE-TIME DIAGNOSTICS FOR OPEN/CLOSE/INQUIRE 

The INCLUDE statement has been improved in two ways: The OPEN, CLOSE, and INQUIRE statement processing has been enhanced to include 
compile-time syntax checking for all parameters which are expressed as CHARACTER 

Blocked Files for INCLUDE statements constants in the statement and appropriate error diagnostics generated if 
required. Previously, all parameters, constant and variable, were checked at 
execution-time only. 

Statements to be INCLUDEd can now be placed in files which have a record 
format of fix-blocked when processed in the MVS/370, MVS/XA and VSl 
environments. DOSjVSE does not provide a library structure which supports 
fix-blocked files. 

The block size of the data sets containing the members to be INCLUDEd may 
now be a multiple of 80. Moreover, when concatenating partitioned data sets, 
the block sizes may be different. However, the first data set in a 
concatenated sequence must have the largest block size. Therefore, when 
concatenating data sets with different block sizes, one may need to use a 
dummy data set first to establish the maximum block size. 

Conditional INCLUDE 

A new compiler option is provided of the form: CI(nl,n2, ... ) . 

By setting the CI compiler option, one can select which INCLUDE statements 
in the source file will be activated during compilation. 

The syntax of the INCLUDE statement is now of the form: 

INCLUDE (member) en) 

where, if n is a number corresponding to one in the CI option list, then that 
INCLUDE will be activated. 



... 
W 
-.:J 

PAGE 9 

6.0 CONTINUED EXECUTION AFTER I/O ERRORS 

A change has been made in the handling of transmission errors which result in 
the issuing of message IFY218I. The first time such an error occurs, the 
message is issued and the ERR= exit is taken (if specified) or an Extended error 
user exit taken if one has been established. If neither of these exits have been 
given, the failing record will be bypassed with continued execution of the 
program. The IOSTAT variable (if specified) is set to the value of 218. 

However, if a second error of this type occurs in the processing of the next I/O 
on the same unit, then if neither an ERR;;;: exit nor a user exit has been 
established, the program terminates execution. 

This allows users to continue processing the data in spite of intermi~tent I/O 
errors. We specifically allow one error but chose to interpret the second 
consecutive error to mean that the data is permanently unavailable. Note that 
the system has already performed its normal error recovery processing before 
signalling the error to the FORTRAN library. 

PAGE 10 

7.0 FORMATTING DIRECT ACCESS DATASET FOR OPEN 

The FORTRAN statement OPEN does not specify a parameter for the maximum number 
of records which may be contained in a direct access dataset (as the LANGLVL(66) 
statement, DEFINE FILE, does). Therefore, the preformatting for new direct 
access datasets had not been done for the datasets defined in the OPEN 
statement. Migration of users from LANGLVL(66) programs to LANGLVL(77) has been 
difficult because the direct access dataset must exist and be formatted before 
the data management READ/WRITE services can be used. 

To aid this migration, the first extent of a DISP=NEW dataset will be formatted 
in the OS/VS and VM/CMS environments. Since the DOS/VSE user has always had the 
CLEAR DISK system utility to preformat the dataset, no support is required for 
this environment. 

Only the first extent of a multi-extent dataset will be formatted. An 
informational message is produced at execution time indicating the size of the 
file that has been created. 

An additional facility to aid this migration is to allow the mode of a file to be 
switched from SEQUENTIAL to DIRECT and vice versa when the file is not connected 
to a unit. This way, the program can open a file for SEQUENTIAL access, write 
fixed length records, close the file and reopen for DIRECT access. 




