
....
l'¢
~

What the DI3000 EXEC Does

The DI3000 EXEC is written in EXEC2 and depends on features of VM/SP. It uses
the following CP and CMS commands:

CONWAIT GENMOD LOAD SET
DROPBUF GLOBAL MAKEBUF START
EXECIO HELP QUERY (STACK
FILEDEF INCLUDE SENTRIES

The DI3000 EXEC works like this:

1. Cbecks for ? among arguments and prints help if? is found. Uses
Cornell's HELP processor, but it should not be too difficult to convert
the help file to IBM HELP format.

2. Cbecks for R/W A disk.

3. Sets default options. You can change the defaults in this section.

4. Parses command line

a. Checks that at least the minimum abbreviations were requested.

b. Compares each option against list of legal options.
the list of acceptable options •

You can change

c. Parses all options, even if a bad one is found.
run routines if one or more bad options found.

Does not load or

d. Save current CMS settings and turns off any settings that could
cause an asynchronous message to appear in the graphics area if
certain message-sensitive devices were requested. You can modify
this section to turn other settings off or include other devices in
the list of sensitive ones.

5. Sends a message to USE to keep track of the number of times this exec
was successfully invoked. Delete this line.

6. CLEARs and sets FILEDEFs for TERM and the error message file.
calls the file DI3000 MESSAGES; PVI calls it ERROR MESSAGES.

Cornell

7. GLOBALs TXTLIBs corresponding to the sections of DI3000 requested.

8. LOADs application program using the CLEAR option.

9. INCLUDEs VS FORTRAN and CMS runtime libraries (we had too many TXTLIBs
to GLOBAL them all).

10. GENMODs and/or RUNs loaded module depending on options requested.

11. Cleans up (restores any saved settings, CLEARs FILEDEFs).

Throughout, the exec checks for error conditions and uses EXECIO to print CMS­
style messages.

:SSHARE~
SHARE SESSION REPORT

61 A733 Using the Fortran Extended Error

SHARE NO. SESSION NO. SESSION TITLE

Fortran w. Horowitz

PROJECT SESSION CHAIRMAN

D & B Computing Services 187 Danbury Rd. Wilton, Ct. 06897

SESSION CHAIRMAN'S COMPANY, ADDRESS, AND PHONE NUMBER

4/B/RC/l

USING THE FORTRAN EXTENDED ERROR HANDLER

May 1983

Pat Hennessy

Hughes Aircraft Co.
2000 E. El Segundo Blvd. EI/F128

El Segundo CA 90245
(HUG)

ATTENDANCE

CSS

INST. CODE

.....
No

ABSTRACT

The extended error handler is a set of routines which permit the Fortran programmer to
take control when exceptional events occur during execution of the Fortran library subrou­
tines. This paper gives several examples illustrating the use of these error handling routines.

The routines may be used to extend processing capability by circumventing the standard
error handling associated with the language, or they may be used to provide informative
messages, useful in debugging during execution.

Five subroutines will be discussed: ERRSA V, ERRSTR, ERRTRA, ERRSET, and ERRMON.
In addition, examples of user exit subroutines will be presented.

ii

TABLE OF CONTENTS

THE OPTION TABLE

Description of the Option Table Entries
Examining the Option Table Entries
Modifying the Option Table Entries

ERRSAV
ERRSTR
ERRSET

Adding Your Own Option Table Entries
User Generated Messages

ERRTRA
ERRMON

EXTENDED ERROR HANDLER EXAMPLES
Examples
Supplying a User Corrective Routine.
The WAITER Program

... There's a fly in my soup
Solution of a Format Conversion Problem

APPENDIX A. SOURCE PROGRAM FOR IFYUOPT

LIST OF ILLUSTRATIONS

Figure

1 Examining an Option Table Entry

2 Example of ERRMON

3 A Main Program and User Exit

4 A Program to Process Files as they Appear in the Reader

5 The PLOTMETA Main Program

6 The ESUB Subroutine

Page

1
1
2
2
3
3

4
4
4
5

7
7
7
8
8

10

A-I

Page

1

6

7

9

11

12

""" M
U1

THE OPTION TABLE

DESCRIPTION OF OPTION TABLE ENTRIES

In the Fortran library there is a member, IFYUOPT, which contains no executable code. It
is a table of constants called the "option table". Associated with each error detected by
routines in the Fortran library there is an entry in the option table which determines the
action which will take place when that error is encountered. A description of each type of er­
ror can be found in VS FORTRAN Application Programming: Library Reference SC26-3989.

EXAMINING THE OPTION TABLE ENTRIES

Each table entry occupies 8 bytes (a double word). Figure 1 shows a program I used to ex­
amine the option table entry for error 218 (a permanent I/O error occurred).

REAL *8 OTE218
CALL ERRSAV(218,OTE218)
WRITE(6 ,1) OTE218
FORMAT (, OPTION TABLE ENTRY FOR 218: ' ,Z16)
STOP
END

Figure 1. Examining an Option Table Entry.

The output is: OPTION TABLE ENTRY FOR 218: OA05005200000001
We interpret this result as explained in Appendix 0 of VS FORTRAN Application Program­

ming: Language Reference GC26-3986.
The first byte 'ON means that we will tolerate a 218 error ten (the decimal equivalent of

OA) times. If we have ten errors of this type, execution should be terminated. If this byte had
had the value 00, it would mean to never terminate execution because of a 218 error, but to
continue regardless of how many times it occurs.

The second byte 'OS' determines the number of times the error message associated with a
218 error should be printed. (see also the description of bit 5 below)

The next byte '00' shows how many times the error has occurred during this execution.
Note that 255 is the maximum value one byte can represent. One of the flag bits (see below) is
used as the 256's place, and counting may continue up to 511. (see description of bit 2 beloW).

The next byte '52', the flag byte, must be interpreted in binary: 01010010. Each bit is an in­
ternal flag.

Bit 0 indicates whether or not a carriage control character should be supplied when
an output line is generated by the error handler (see the discussion of 212
beloW).

Bit 1 indicates whether or not a Fortran user may modify this entry in the option
table.

Bit 2 this bit is the 256's place of the error count. Counting stops at 511.

Bit 3 indicates whether or not the contents of the I/O buffer should be printed.

Bit 4 give an informative message only.

Bit 5

Bit 6

Bit 7

can override the number of times an error message prints:

If 0, .it means that the value given in the second byte should rule.

If 1, it means that every occurrence of the error should produce a message.

determines whether or not a traceback map should be printed.

is reserved.

The default Option Table uses the following values for the flag byte:

00 No options selected.

Error 205

02 A traceback should be printed.

Errors 153, 156-158, 162-165, 167, 168, 230, 240

42 User may modify, traceback should be printed.

Errors 140-150, 152, 154, 155, 159-161, 166, 169-204, 206-211, 213, 214, 216,
217,219,220,226,228,231-237,239,241-301

4C User may modify, always print informative message.

Error 151

52 User may modify, I/O buffer and traceback should be printed.

Errors 212, 215, 218, 221-225, 227, 229, 238

The remaining four bytes are used to specify the address of a user written error handler. If
the value is different from 00000001, when the error occurs control will transfer to the
specified address. If the value is 00000001, a "standard fixup" will be applied in order to
continue processing.

MODIFYING THE OPTION TABLE ENTRIES

ERRSAV

The ERRSA V subroutine illustrated above has two arguments:

CALL ERRSA V(msgno,dpvar)

where msgno is the message number of interest, and dpvar is a double precision variable. The
option table entry for msgno is copied to the eight byte variable dpvar.

2

.....
N
CI)

ERRSTR

The ERRSTR subroutine is the complement of ERRSAV:

CALL ERRSTR(msgno,dpvar)

where msgno is the message number of interest, and dpvar is a double precision variable. The
eight byte variable dpvar is copied to the option table entry for msgno if permitted by bit 1 of
the flag byte presently in the option table entry.

One interesting use of ERRSA V and ERRSTR is to first use ERRSA V to capture the option
table entry for a particular error, turn off bit 2 of the flag byte, set the third byte of the double
word to zero, and then use ERRSTR to save it back into the table. If this is done immediately
before execution terminates, the error will not show up in the summary usually printed after
program execution.

ERRSET

You can modify the option table entry for a particular error by using ERRSA V to get a
copy of the entry, modify your copy, and use ERRSTR to store it back into the table. However,
if you wish to supply a user subroutine, you would have to know its entry point. In addition,
much of the manipulation requires single byte arithmetic, something that is not easily done
in Fortran. A simpler way to modify an entry in the option table is to use the ERRSET routine.
This routine can be used in conjunction with ERRSA V, and ERRSTR to temporarily modify
the table, or it can be used alone to modify an entry for the entire execution.

In an attempt to make ERRSET easy to use, the convention was adopted that if a particular
call argument was zero, or omitted from the end of the parameter list, the option table entry
corresponding to that argument should remain unchanged. While nice in principle, this
convention makes it difficult to set a value to zero. This problem was overcome by adopting
another convention -- giving a parameter an impossible value will (usually) cause it to be set
to zero.

The calling sequence to ERRSET is:

ierno

inoal

inomes

CALL ERRSET(ierno,inoal,inomes,itrace,iusadr,irange)

the number of the error message whose option table entry is to be modified.

number of times to tolerate the error. This value is used to set the first byte of
the option table entry. If the value of the first byte of the option table entry is
zero, it means to tolerate the error forever. If you specify a zero or a negative in­
teger for this entry, it means to leave the option table entry unchanged. If you
specify a value greater than 255, it means to set the first byte of the option table
entry to zero, thus permitting the error to occur an unlimited number of times.
(256 => infinite)

the number of times the error message is to be printed. If you specify a value of
zero, the table entry is unchanged. If you specify a negative number, the table
entry is set to zero and no messages are printed. If you specify a number greater
than 255, bit 5 of the flag byte is set and an unlimited number of messages are
printed. (256 => infinite, -1 => never print a message)

3

itrace

iusadr

irange

'\

modifies bit 6 of the flag byte. If you specify a value of 0, the bit is unchanged. If
you specify a value of 1, the flag is cleared, and no traceback is printed. If you
specify a value of 2, the flag is set, and a traceback will be printed.

modifies the last four bytes of the option table entry. If the value is zero, the ta­
ble entry is unchanged. If the value specified is a subprogram name (which must
appear on an EXTERNAL statement in the source program), the last word of the
table entry is set to the address of the entry point of the subprogram. If the value
is 1, the last word of the table entry is set to 00000001, indicating that there is no
user supplied error handler.

if this value is numerically higher than the one specified in the first argument,
it means that the option table modifications are to be applied to all table entries
from ierno through irange. If ierno is 212, then this value (0 or 1) specifies the
value to give to bit 0 of the flag byte.

Error Number 272. A 212 error is a FORMATTED 1/0, END OF RECORD. If the error occurs
during a WRITE, a new output record is started. If the standard option is used, this new
record will not have a carriage control character. By setting bit 0 of the option table entry for
212 to a 1, you cause the new record to have the carriage control character corresponding to
single spacing.

An example of ERRSET is given in Figure 4 page 10.

ADDING YOUR OWN OPTION TABLE ENTRIES

Appendix A shows the source program I use to generate a custom version of IFYUOPT.
I.B.M. supplies a macro for this purpose, however I prefer this Simpler and more straightfor­
ward version.

In CMS, if the text file IFYUOPT TEXT exists on an accessed disk, the local copy will be
chosen in preference to the one in the Fortran library. Note that you can define a V type con­
stant as the address of a fixup routine, but then this routine will be loaded whenever the local
version of IFYUOPT is used.

USER GENERATED MESSAGES

ERRTRA

The ERRTRA subroutine is the Simplest of the five routines supplied by LB.M. It requires
no arguments, and its function is to provide a traceback telling where you are now, and how
you got there. If you have included user written assembler routines in the executable module,
it is important to have followed the linkage conventions as described in VS FORTRAN
Application Programming: Guide SC26-3985. You may insert a CALL ERRTRA within any source
subprogram, prOVided that the subprogram does not "have ERRTRA as an antecedent, since
Fortran does not provide for recursion.

I found ERRTRA useful in the following situation. Our installation supports a very large
interactive optical design and evaluation program. Originally developed using TSO in a small
region, it seemed a good idea at the time to have a single subroutine whose function was to
print error messages to the user. These messages were collected into the routine PRERR
which accepted an integer CALL argument, K, which determined which message should be
output. As the other routines in the package were executed, a value for K was calculated, and
eventually passed to PRERR. If K was zero, the PRERR routine returned without producing
any message.

4

....
M

"""

Eventually the program grew to where overlays were required. At this point it seemed
exceptionally silly to load in an overlay which frequently did nothing. So one by one, the
routines were modified to include the statements:

IF (K .NE. 0) CALL PRERR(K)

so that PRERR would only be called if needed.
Since the subroutines numbered in the hundreds, we were never sure that all of them

were fixed. So we inserted the following statements into PRERR:

SUBROUTINE PRERR(K)
IF (K .NE. 0) GO TO 10
CALLERRTRA
RETURN

10 GO TO (20,30,),K
C TO PRINT THE APPROPRIATE ERROR MESSAGE

This code causes a traceback whenever PRERR is entered unnecessarily; the message is
frightening enough to make the users quickly report it.

In release 3.0 of VS Fortran, all messages, including the traceback, have been significantly
improved over those given in previous releases or products. The traceback now includes the
load address of each subprogram in the chain, the offset of the calling instruction, the
location of the start of each parameter list, and the value of the first word of each argument
passed; interpreted in hexadecimal, integer, and character. Internal statement numbers are
displayed if the source program was compiled using the GOSTMT option.

ERRMON

ERRMON is probably the least understood of the five routines supplied by LB.M. I shall
attempt to explain it through the following example.

Suppose I am requested to provide a subroutine, MATH, which accepts four parameters,
A, B, C, and N. My task is to calculate C from A and B. N controls the operation to be
performed. If N is 1,2,3, or 4, I should add, subtract, multiply, or divide accordingly. What
shall I do if N has an value other than 1,2,3, or 4? I will define and document the "standard
corrective action". In this example the standard fixup will be to act as if N were 1, and add. I
will also alert the user by printing message 302.

The first step is to add an entry to IFYUOPT for error 302. The sample source program for
IFYUOPT provided in Appendix A includes this entry.

I now code the program shown in Figure 2, page 6.
Now suppose I have a user who wishes a different fixup. Say, for example, that he would

like the corrective operation to be a little more complex. If the illegal value for N is 7, he
wishes to multiply, but for any other illegal value he will accept my corrective action. In that
case he may call ERRSET to supply a user routine to apply his action. The code he would write
is given in Figure 3, page 7.

If you choose to use ERRMON, then error toleration, message printing, counting number
of occurrences, and the address of the user processing routine will all be controlled by the op­
tion table entry. You, of course, must supply ERRMON with the error message text to be used,
as well as the parameters to be passed to the user error handler.

5

2

3

4

5

SUBROUTINE MATH(A,B,C,N)
CHARACTER • 28 MSG
EQUIVALENCE (MSG,MGL)
DATA MSG!' WPH302I ILLEGAL OP CODE' !
MGL = 24
K=N
IF (K .LT. 1 .OR. K .GT. 4) THEN

CALLERRMON(MSG,IFIX,302,K)
IF (IFIX .EQ. 0) K = 1
GO TO 1

ENDIF
GO TO (2,3,4,5) ,K
C=A+B
RETURN
C = A - B
RETURN
C = A· B
RETURN
C = A! B
END

Figure 2. Example of ERRMON

The calling sequence to ERRMON is:

imes

iretcd

ierno

datal ...

CALL ERRMON(imes,iretcd,ierno [,datal,data2, ...])

a count of the number of characters in the message to be printed (in integer' 4),
followed by the character string, see Figure 2.

a return code from the error handler. If no user exit has been supplied to the op­
tion table entry, a zero will be returned, and standard correction should be
applied. If the user has modified the option table entry to indicate that he has
supplied a correction routine, he will be passed all of the parameters which
were originally passed to ERRMON, except imes. The user indicates that he
wishes no further corrective action by setting the first parameter (iretcd) to 1, or
that he wishes standard corrective action applied also, by setting the first
parameter (iretcd) to O. (See VS Fortran Compiler and Library: Diagnosis SC26-3990
Errors detected by the Library or a User Program).

the error message number

these parameters are optional. The user correction routine will be passed all of
the parameters which were originally passed to ERRMON, except imes. There­
fore he will receive iretcd,ierno,datal ... The usual caveats apply to the mode of
parameters, and the dangers which accompany passing constants which may be
altered.

6

""" N
00

EXTENDED ERROR HANDLER EXAMPLES

EXAMPLES

This section exhibits several examples using the routines described above, as well as
demonstrating user corrective routines.

SUPPL YING A USER CORRECTIVE ROUTINE

In the ERRMON example given in Figure 2 on page 6 we suppose that the user wants to
multiply rather than add should an invalid value of 7 be given for N. This is accomplished as
follows:

C

EXTERNAL FIXIT
CALLERRSET(302,O,O,O,FIXIT)
CALL MATH (2. ,3. ,C, 7)
WRITE(6,')C
END

SUBROUTINEFIXIT(IRT,MSGNO,K)

C PREPARE FOR STANDARD FIXUP
C

IRT ~ 0
IF (K .NE. 7) RETURN

C
C IT'S 7 l' LL FIX IT
C

IRT ~
K~3

END

Figure 3. A Main Program and User Exit

In the main program, the user calls ERRSET to supply the name of the user fixup routine
for error 302. Notice that this name must be specified on an EXTERNAL statement, otherwise
Fortran will assume FIXIT is the name of a variable, and will send its (undefined) value
(probably 0) to ERRMON, which will assume it is receiving an address, or that the entry table
should remain unchanged. This is a tough bug to find no matter what symptoms you have.
Since the value of N is out of range, MATH will call ERRMON with four parameters, which
will in turn call FIXIT with three parameters, iretcd, ierno, and K. MATH has protected the
original value of N by copying it into K so that the user's constant will not be altered.

The program sets the return code to zero so that if N is other than 7, MATH will apply the
standard corrective action. However, if N is 7, FIXIT makes the return code 1 to avoid the
standard corrective action, and then sets K to 3 in order to specify multiplication .. MATH, as
written, will again check the value to see if user correction has made it legal; if not, ERRMON

7

is called again. Without a tolerance threshold, this could result in an endless loop. LB.M.
routines behave in a similar manner.

THE WAITER PROGRAM

This sample program is called WAITER for two reasons. First, the purpose of the program
is to perform service as files appear in the CMS virtual card reader. Second, in our environ­
ment, files don't appear in the reader very frequently, so most of the time the virtual machine
is in the wait state.

The READ statement at statement 1 attempts to read a record from the card reader. When
the card reader is empty, a 218 error will occur causing control to pass to statement 3. ERRSET
has been invoked to tolerate a 218 error for an unlimited number of times, and to suppress all
messages.

The REWIND statements prevent Fortran from trying to read from FILE FT01F002. The
"processing" in this sample is simply to write a copy of the input record to file 6, but could be
replaced with any code desired.

... There's a fly in my soup

Control passes to statement 3 when the reader is empty. In this sample I print a message,
and call the assembler routine HOTRDR, which executes a W AITD macro, waiting for an
interrupt. When the interrupt happens, we return to the Fortran program in order to process
the new file.

8

jIooO

N
tt;,)

CHARACTER • 80 A
C
C ERRNO TOLERATE NO NO
C INFINITE MESSAGES TRACEBACK

CALLERRSET(218, 256, -I, 1
C SINCE THE LAST TWO ARGUMENTS HAVE BEEN OMITTED
C THEIR CURRENT VALUES ARE UNCHANGED.
C
1 READ(l,5,END=2,ERR=3)A

WRITE(6,6)A
GO TO 1

C
C HERE IF END OF FILE
C
2 REWIND 1

GO TO 1
C
C HERE WHEN READER IS EMPTY
C
3 WRITE(6,4)
4 FORMAT(' WAITING FOR READER')

REWIND 1
CALL HOTRDR
GO TO 1

C
5 FORMAT (A)
6 FORMAT (1X,A)

END
******** •••••••• ** •••••• ***** •••• *** ••• ********** •••••••••••• **** ••

GIVE USER A HOT READER

**** ••• ** •••••••• ** •••••••••••••••• * ••••••••••••••••••••••• ** ••••••
HOTRDR CSECT

SAVE
LR
USING

WAIm

(14,12),,·
R10,R15
HOTRDR,RlO

RDR1

SAVE REGISTERS
EST ADDRESSABILITY
TELL THE ASSEMBLER

WAIT UNTIL INTERRUPT

CONTINUE WHEN AN INTERRUPT HAPPENS

RETURN

REGEQU
end

(14,12), T ,RC=O RESTORE REGS AND EXIT

Figure 4. A program to process files as they appear in the reader.

9

SOLUTION OF A FORMAT CONVERSION PROBLEM

This final example illustrates how we are able to submit jobs which produce plots to a
remote computer. We then wish to plot the output from those jobs locally. In this example,
the host computer has a peculiar convention which we are forced to accommodate; all of the
output returned to us is in lower case.

The programs which we send have standard calls to plot subroutines. We also send to the
remote machine fake "plot" subroutines which do not plot, but rather punch card images
containing the parameters given at the time of the plot calls. When we receive the cards back,
they are read and interpreted locally. At this time we call the real plot subroutines, and
produce the plots at our site.

The "plot" decks appear in the submitting user's virtual card reader, and are usually very
large. We simply FILEDEF a unit to the reader, and process the input records as they are read.
In this way we do not have to give the users huge disks, since the files never reside on their
disks.

The program which reads and processes the plot deck is written in Fortran. Reading cards
with alphabetic characters poses no problem, but reading floating point numbers in 'E' format
when the 'E' is in lower case causes a 215 format conversion error. The solution was to use the
extended error handling routines to prOVide a user correction.

The main program calls ERRSET to set the tolerance of 215 type errors to an unlimited
number, and to give the entry point of the user corrective routine ESUB. A call to ERRSAV is
done so that error occurrence counting can later be modified to give a count of "true" errors,
i.e. those errors caused by other than encountering a lower case 'e' in a floating point number.

We now follow in detail what happens when the main program attempts to read such a
card from the virtual reader. VLDIO# is called, which in turn calls IFYVCVTH who gets mad
when he finds a lower case 'e'.

So IFYVCVTH calls ERRMON with the 215 error message, a variable for the return code,
the message number (215), and the address of the place in the buffer which contains the
illegal character.

ERRMON checks the option table entry for 215 and finds that the job can continue
regardless of the number of times the error occurs, and that the user has provided a correction
routine, ESUB. ERRMON then calls ESUB with all the parameters it received from IFYVCVTH
except the first.

ESUB checks the offending character, and if it is not a lower case 'e', sets the return code to
zero, increments its local error counter, and returns to IFYVCVTH which applies standard
corrective action.

If, however, ESUB finds that the buffer contains a lower case 'e' the buffer contents are re­
placed with an upper case 'E', the return code is set to one, the local error counter is not incre­
mented, and control is returned to IFYVCVTH. IFYVCVTH does not apply standard correc­
tive service, but simply continues the format conversion using the substituted character.

When the main program senses an end of file from the reader it calls ECNT, an entry
point in ESUB. The true error count maintained in ESUB is inserted into the copy of the
option table entry for 215 that the main program has been saving. This copy, via ERRSTR, is
now stored into the option table so that when the summary of errors is printed, only "true"
errors will be reported.

10

IMPLICIT REAL*S (A-H,O-Z)
EXTERNAL ESUB

C REAL * S OPT215
C THIS PROGRAM PLOTS METAFILES
C

CALLERRSAV(215,OPT215)
CALLERRSET(215,256,-l,l,ESUB)

C
3 READ (5,l,END~101) ISUB,INT,F
1 FORMAT(Il,)
C

GO TO (10,20,30,40,50), ISUB
WRITE (6,100)

100 FORMAT (, ILLEGAL METAPLOT CARD')
C
C NOW TO GET THE TRUE ERROR COUNT
C
101 CALL ECNT(OPT215)

CALLERRSTR(215,OPT215)
C

STOP

;~ ... C

CA'I 10 CALL
<= GO TO 3

20

GO TO 3
30

END

Figure 5. The PlOTMETA Main Program

11

***** ••• * ••••• * ••••••••••••••••••••••••••••••••••••• * ••••••••••••••

THE ESUB PROGRAM WILL CONVERT A LOWER CASE E
TO UPPER, AND MAINTAIN A LOCAL ERROR COUNT

P 1 ~ ADD OF RETURN CODE FIELD (* 4)
IF I MARE IT 0, ~ > STAND FlXUP
IF I MARE IT 1, ~ > NO STAND FlXUP

P2 ~ ADD OF ERROR NUMBER (*4)
P3 ~ ADD OF INVALID CHAR (*1)

THE ENTRY POINT ECNT RETURNS THE LOCAL VALUE OF
ERROR COUNT INTO BYTE 2 OF THE DOUBLE WORD ARGUMENT.

.* •••
ESUB

STFIX

STFIX1
STFIX2
STFIX3

FIXIT

DONE

ECNT

ERRCNT
ERRFLG

CSECT
ENTRY
USING
SAVE
LM
CLI
BE
L
CH
BNE
TM
BO
MVI
LA
B
LA
ST
LA
ST
B
MVI
LA
ST
RETURN
USING
SAVE
L
L
STC
OC
RETURN
DC
OC
REGEQU
END

ECNT
• ,R15
(14,12)" .
R2,R4,O(R1)
0(R4),C'E' -X'40'
FIXIT
R5,ERRCNT
R5,~H'255'

STFIX1
ERRFLG,X' 20'
STFIX3
ERRFLG,X' 20'
R5,O
STFIX2
R5,l(,R5)
R5,ERRCNT
R5,O
R5,O(R2)
DONE
0(R4) ,C' E'
R5,l
R5,O(R2)
(14,12),T,RC~0

• ,R15
(14,12) "ECNT
R1,O(,R1)
R2,ERRCNT
R2,2(R1)
3(l,R1), ERRFLG
(14,12), T ,RC=O
1F'O'
XLI' ~O'

R2 ~ ADD RET CD, R4~ ADD BAD CHR
IS P3 A LOWER CASE' E' ?
YES - SUBSTITUTE A CAP E
LOCAL ERROR COUNT
IS ERRCNT 255?
NO - INCREMENT LOCAL COUNT

COUNT ~ 511
SET BIT 2 - - 256' S PLACE
RESET LOW ORDER BYTE

INCREMENT ERROR COUNT
SAVE IT
CLEAR R3
SET PI ~ 0 (~> TAKE STAND FlXUP)
RETURN
REPLACE WITH UPPER E
SET R3 = 1
SET PI ~ 1 (~> AVOID STAND FlXUP)

R1 ~ ADD OF PI (A DOUBLE WORD)
PUT MY ERRCNT INTO BYTE 2 OF
HIS DOUBLE WORD
HIS FLAG BYTE

Figure 6. The ESUB Subroutine

12

ERR174 DC XL8'OA05004200000001' 10 5 N Y Y Y
APPENDIX A ERR175 DC XL8'OA05004200000001' 10 5 N Y Y Y

SOURCE PROGRAM FOR IFYUOPT ERR176 DC XL8'OAOS004200000001' 10 5 N Y Y Y
ERR177 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR178 DC XL8'OA05004200000001' 10 5 N Y Y Y

IFYUOPT CSECT ERR179 DC XL8'OA05004200000001' 10 5 N Y Y Y
NUMENT DC AL4«EOT-BOT)/8) NUM OF TABLE ENTRIES ERR180 DC XL8'OA05004200000001' 10 5 N Y Y Y
FIRSTERR DC AL4(140) ERR MSG NUM 1ST ERR ERR181 DC XL8'OA05004200000001' 10 5 N Y Y Y

ERR182 DC XL8'OA05004200000001' 10 5 N Y Y Y
BOT EQU . BEGINNING OF TABLE ERR183 DC XL8'OA05004200000001' 10 5 N Y Y Y

ERR184 DC XL8'OA05004200000001' 10 5 N Y Y Y
DMP USR STD TRC ERR185 DC XL8'OA05004200000001' 10 5 N Y Y Y

TaL MSG BUF MOD FIX BAK ERR186 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR187 DC XL8'OA05004200000001' 10 5 N Y Y Y

ERR140 DC XLB'OA05004200000001' 10 5 N Y Y Y ERR188 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR141 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR189 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR142 DC XLB'OA05004200000001' 10 5 N Y Y Y ERR190 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR143 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR191 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR144 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR192 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR145 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR193 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR146 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR194 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR147 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR195 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR148 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR196 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR149 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR197 DC XL8'OA05004200000001' 10 5 N Y Y Y ...
ERR150 DC XI,8'OA05004200000001' 10 5 N Y Y Y ERR198 DC XL8'OA05004200000001' 10 5 N Y Y Y W - ERR151 DC XL8'0000004COOOOOOOl' N Y N N ERR199 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR152 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR200 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR153 DC XL8'0101000200000001' 1 1 N N Y ERR201 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR154 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR202 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR155 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR203 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR156 DC XL8'0101000200000001' 1 1 N N Y ERR204 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR157 DC XL8'0101000200000001' 1 1 N N Y ERR205 DC XL8'01 01000000000001' 1 1 N N N
ERR158 DC XL8'0101000200000001' 1 1 N N Y ERR206 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR159 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR207 DC XL8'0005004200000001' 5 N Y Y Y
ERR160 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR208 DC XL8'0005004200000001' 5 N Y Y Y
ERR161 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR209 DC XL8'0005004200000001' 5 N Y Y Y
ERR162 DC XL8'0101000200000001' 1 1 N N Y ERR210 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR163 DC XL8'0101000200000001' 1 1 N N Y ERR211 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR164 DC XL8'0101000200000001' 1 1 N N Y ERR212 DC XL8'OA05005200000001' 10 5 Y Y Y Y
ERR165 DC XL8'0101000200000001' 1 1 N N Y ERR213 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR166 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR214 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR167 DC XL8'0101000200000001' 1 1 N N Y ERR215 DC XL8'0005005200000001' 5 Y Y Y Y
ERR168 DC XL8'0101000200000001' 1 1 N N Y ERR216 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR169 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR217 DC XL8'0101004200000001' 1 1 N Y Y Y
ERR170 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR218 DC XL8'OA05005200000001' 10 5 Y Y Y Y
ERRI71 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR219 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERRI72 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR220 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR173 DC XL8'OA05004200000001' 10 5 N Y Y Y

A-I A-2

ERR221 DC XL8'OA05005200000001' 10 5 Y Y Y Y ERR268 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR222 DC XL8'OA05005200000001' 10 5 Y Y Y Y ERR269 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR223 DC XL8'OA05005200000001' 10 5 Y Y Y Y ERR270 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR224 DC XL8'OA05005200000001' 10 5 Y Y Y Y ERR271 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR225 DC XL8'OA05005200000001' 10 5 Y Y Y Y ERR272 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR226 DC XL8'OA05004200000001' 10 5 N y y y ERR273 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR227 DC XL8'OA05005200000001' 10 5 Y Y Y Y ERR274 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR228 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR275 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR229 DC XL8'OA05005200000001 ' 10 5 Y Y Y Y ERR276 DC XL8'OA05004200000001' 10 5 N y y y

ERR230 DC XL8'0101000200000001' 1 1 N N Y ERR277 DC XL8'OA05004200000001' 10 5 N y y y

ERR231 DC XL8'OA05004200000001 ' 10 5 N Y Y Y ERR278 DC XL8'OA05004200000001' 10 5 N y y y

ERR232 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR279 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR233 DC XL8'OA05004200000001 ' 10 5 N Y Y Y ERR280 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR234 DC XL8'OA05004200000001 ' 10 5 N Y Y Y ERR281 DC XL8'OA05004200000001' 10 5 N y y y

ERR235 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR282 DC XL8'OA05004200000001' 10 5 N y y y
ERR236 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR283 DC XL8'OA05004200000001' 10 5 N y y y
ERR237 DC XL8'OA05004200000001 ' 10 5 N Y Y Y ERR284 DC XL8'OA05004200000001' 10 5 N y y y
ERR238 DC XL8'OA05005200000001' 10 5 Y Y Y Y ERR285 DC XL8'OA05004200000001' 10 5 N y y y

ERR239 DC XL8'OA05004200000001' 10 5 N y y y ERR286 DC XL8'OA05004200000001' 10 5 N y y y

ERR240 DC XL8'0101000200000001' 1 1 N N y ERR287 DC XL8'OA05004200000001' 10 5 N y y y
ERR241 DC XL8'OA05004200000001 ' 10 5 N Y Y Y ERR288 DC XL8'OA05004200000001' 10 5 N y y y

ERR242 DC XL8'OA05004200000001' 10 5 N y y y ERR289 DC XL8'OA05004200000001' 10 5 N y y y

ERR243 DC XL8'OA05004200000001' 10 5 N y y y ERR290 DC XL8'OA05004200000001' 10 5 N y y y

..... ERR244 DC XL8'OA05004200000001 ' 10 5 N Y Y Y ERR291 DC XL8'OA05004200000001' 10 5 N y y y

W ERR245 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR292 DC XL8'OA05004200000001' 10 5 N y y y

N ERR246 DC XL8'OA05004200000001' 10 5 N y y y ERR293 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR247 DC XL8'OA05004200000001' 10 5 N y y y ERR294 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR248 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR295 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR249 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR296 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR250 DC XL8'OA05j)04200000001' 10 5 N Y Y Y ERR297 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR251 DC XL8'OAOS004200000001' 10 5 N Y Y Y ERR298 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR252 DC XL8'OA05004200000001' 10 5 N y y y ERR299 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR253 DC XL8'OA05004200000001' 10 5 N y y y ERR300 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR254 DC XL8'OA05004200000001' 10 5 N y y y ERR301 DC XL8'OA05004200000001' 10 5 N y y y
ERR255 DC XL8'OA05004200000001' 10 5 N y y y
ERR256 DC XL8'OA05004200000001' 10 5 N y y y PUT LOCAL ENTRIES HERE--302 - 899
ERR257 DC XL8'OA05004200000001' 10 5 N y y y
ERR258 DC XL8'OA05004200000001' 10 5 N Y Y Y ERR302 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR259 DC XL8'OA05004200000001' 10 5 N Y Y Y EOT EQU . END OF TABLE
ERR260 DC XL8'OA05004200000001' 10 5 N Y Y Y END
ERR261 DC XL8'OA05004200000001' 10 5 N Y Y Y
ERR262 DC XL8'OA05004200000001 ' 10 5 N y y y
ERR263 DC XL8'OA05004200000001' 10 5 N y y y
ERR264 DC XL8'OA05004200000001' 10 5 N y y y
ERR265 DC XL8'OA05004200000001' 10 5 N y y y
ERR266 DC XL8'OA05004200000001' 10 5 N y y y
ERR267 DC XL8'OA05004200000001' 10 5 N y y y

A-3 A-4

