
~
~

W

SESSION REPORT

~SHARE~
"=

__ ~l. __ _ _ __ a2.6.1!_________ _ _lll3QQQ _ll_eJl;r_~;ri=-e.---- _____ _ ~---
SHARE NO. SESSION NO. seSSION TITLE ATTENDANCE

Graphics E!'l.ucat;ion __________ _ Gail Garrison GFC

PROJECT SESSION CHAIRMAN INST.CODE

___ <!29 N"-~:t.h_S:tre~-->-.!!hite Plains, New York (General Foods ~-.2.~126L __ _
SESSION CHAIRMAN'S COMPANY, ADDRESS. and PHONE NUMBER

Abstract:

Part I: What is DI 3000 and Pretty Pictures?

DI3000 is a system of device-independent FORTRAN-callable graphics tools.
Its capabilities range from presentation graphics to Mandelbrot sets.

Part II. A DI3000 under ~ User Experience or How I Learned VS/FORTRAN,
Assembler, and PER

A naive applications programmer learns what it's like to be among the
first on your block to install a software package written for VAXes under
C~.

Part III. The June 1 "Slam Dunk" Tape

The somewhat less naive programmer describes how easy it is to install
the new Precision Visuals, Inc. (PVI) "CMS Slam Dunk Tape", provided you
know what stuff on it is Cornell-dependent.

SPEAKER: Wendy Alberg (CUN)
Cornell University
Ithaca, New York

SHRM-730-1/S1

(The information in this section is drawn heavily from the Introduction to
the DI-3000 User's Guide and the DI-3000 Short Course -- Instructor's Manual.)

Precision Visuals
when they designed
portab Ie, and make
software.

set out to create a flexible and durable graphics system
DI3000. They wanted to make it device independent,
it adhere to existing and future standards for graphics

Different graphics devices have different special capabilities. Plotters
produce permanent copies of your graphics output. One kind of screen may be
able to draw circles, another may be able to fill a polygon with one of a menu
of patterns, and yet another may allow you to use 4096 different colors at
once. Rather than write a separate graphics system for each device, Precision
Visuals chose to write one device independent sysstem that attempts to
simulate the features of all devices on every device Whenever possible. If a
device can't erase lines in hardware, for example, the device independent
system will attempt to simulate that function in software. If it can't
simulate the function (for example, trying to let you use 4096 simultaneous
colors on a plotter) the system will ignore it. The advantage of a device
independent system is that graphics ouput produced by a given application on
one device will be very similar, if not identical, to graphics output produced
by the same application on another device, eliminating the need to spend hours
modifying an application each time you must switch devices.

Since DI3000 is a library of subroutines, a programmer can build up his or
her own combinations of graphics primitives in endless different ways,
unrestricted by patterns pre-programmed into the system. A turnkey system may
produce a pie chart with a single keystroke, for example, but may be limited
in the ways it can display it. A subroutine library allows you (with more
effort) to customize the pie any way you like - adding plums, for example.
Precision Visuals chose to write the DI3000 subroutine library in FORTRAN in
order to take advantage of the fact that since there are }'ORTRAN compilers on
almost any system, DI3000 can potentially be made to run almost anyWhere.

Establishing graphics standards and making DI3000 conform to those
standards has several advantages. When people first started writing graphics
software, they wrote it to take advantage of hardware features of the graphics
device(s) they happened to have. Such software is useless for different
graphics devices and often for the same device on a different system. If a
graphics system can be written to be device independent and to adhere to a
widely accepted standard, the same program can be run on different devices
and/or different systems. A programmer used to writing graphics applications
on one computer can easily write them on another. Software that conforms to
the standard will continue to run, and a graphics device, once the graphics
system has a device driver for it, will never become obsolete. Such a
graphics system would be extremely durable.

Currently, DI3000 supports thirty or more devices and the list grows
steadily. Precision Visuals also claims to support at least nine different
computer systems. At Cornell, we're running DI3000 under CMS, with various
degrees of success, on a Tektronics 4013 (green storage tube), a Tektronix
4027 (8 simultaneous color raster device), an HP7221 (8 pen flatbed plotter),
an AED 512 (Advanced Electronic Design's 256 simultaneous color raster

~
~

device), and an ACT-l (Advanced Color Technology) ink-jet printer.

What can you do with your DI3000 application program? Your program creates
graphics objects for a sort of generic device that Precision Visuals calls. the
"virtual device". In theory, this device possesses every feature of any real
graphics device. In practice, defining such a device may be difficult as long
as hardware companies keep developing new and better devices. Your
application builds graphics objects from DI3000's graphics primitives: such
things as lines, the current cursor position, or the size of a letter. It
combines primitives into segments that are treated as user-defined primitives
(rather like the way an exec in CMS can be considered a user-defined CMS
command) •

Using modeling transformations, you can rotate, shrink, chop corners off,
or otherwise alter these segments. Once the segments look the way you want
them to, you can use a viewing transformation to translate a rectangular
region (or "window") of your "world coordinates". the coordinates of the sheet
of graph paper you designed your object on, to a "viewport" in "virtual
coordinates", the normalized (x and y range from -1 to +1) coordinate system
of the virtual device. Once you've translated an object to virtual
coordinates, you may use an image transformation to rotate, shrink, or
otherwise alter the image once more.

You may use another viewing transformation to define what Precision Visuals
refers to as a "virtual camera". Just as you might set a real camera close to
or far away from the object you want to photograph, and just as you might walk
around the object searching for the best angle from which to take your
picture, so you can use a viewing transformation to get a close up or far away
view of the object from any angle you like. If you think of the image of the
object that will appear in the viewport as what you'd see if you looked in the
range finder of a camera, and think of the virtual coordinate system as a
photograph album in which you'll paste that viewport once you've taken the
picture, you've got the concept.

Finally, DI3000
graphics device,
applications.

defines six different types of input from the
allowing you to create truly interactive

virtual
graphics

As you write your application, you think in terms of the omnipotent virtual
device. Not until you actually run the program do you tell it what real
device it will be using. In fact, with the Metafile Generator system, you may
save graphics output as if it had been displayed on the virtual device.
Later, you can go back and use the Metafile Translator to display that output
on any real device at all. Saved metafiles are analogous to load modules in
the sense that you don't need to rerun your application program to run a
device with its output.

So much for the metaphysical details of DI3000's design.
basics you have to work with?

What are the

DI3000 has six non-text primitives and nine text primitives.
primitives include standard basic objects: lines, polylines,
markers; and abstract concepts: current position and move.

The non- tex t
polygons, and

A polyline is a
defined in world collection of line segments. The current position is

coordinates; move changes the current position.

Non-text primitives have various attributes. Color, linestyle, linewidth,
and intensity are just what you'd think they are. Pen is a conglomerate of
the first four attributes. Polygons can have an edge style, an interior
(fill) style, and an interior color and intensity. The marker symbol is an
attribute of the current position, rather than the other way round as I'd
expect. With these primitives and some modeling transformations, you can
build just about any image you'd care to.

The only other thing you'd probably like to add to your image is text. In
the real world there are two ways to generate text. One is to let the
hardware generate its internal characters; the other is to draw each letter
segment by segment ("stroke-generated"). DI3000 recognises two types of each.
Hardware-generated text can be drawn character by character or as an entire
string. Stroke-generated text can be uniformly spaced or proportionally
spaced (the latter is used for publication-quality text).

Text has its own set of attributes. Although I haven't seen it stated, I
assume that the usual non-text attributes like color and intensity apply to
text as well. In addition, characters have a font, or typeface, and size;
they are justified with respect to the current position and have a character
path that determines the direction the string goes (right, up, down, left).
If you get tired of strings going in only four directions, you can change
their character base, the direction the base of the string goes in relation to
the world coordinate system. Strings may also have a character plane, defined
at some angle to the world coordinates; depending on the way the characters
are generated, they will lie in that plane. Strings have a string extent, the
width and height of the string; it's useful to know what it is if you're
trying to put a string "inside" another object. Finally, strings have a
character gap, the space between letters in the string, that lets you stretch
the letters out or squeeze them close together.

Segments, the collections of graphics primitives that make up an object,
have attributes, too. Segments can be temporary or retained. Temporary
segments vanish when you clear the screen and are useful for experimentng with
combi~ations of primitives. Retained segments have names and survive screen
clears (although they aren't saved between DI3000 runs). You can make them
invisible, copy them into other segments, or make them a different intensity
from other segments you're displaying (called highlighting). One of their
most interesting attributes is that you can use the device input functions to
PICK named segments and build pictures or complicated objects from them. Our
part-time graphics support person is currently writing a slide-generating
utility that lets you PICK character fonts, type sizes, justification, color -
any text attributes - and construct a slide image from a file of character
strings.

Besides PICK, DI3000 supports five other input functions. A button returns
an integer value to the application program; a key on the keyboard could be a
button. A locator returns a device coordinate; the location of the cross-hair
cursor on a Tektronix terminal, for example. A valuator returns a floating
point number; the intensity of the point on the screen given by a locator
perhaps. A keyboard returns a string (a response to a question from your
program maybe). Stroke gives you a string of virtual coordinates; the input

....
c.n

from a mouse or bit pad, for example. You can also ask the device for its
characteristics; depending on the device driver you'll get different answers.
You may ask DI3000 what the last error was, or what the names of the current
saved segments are. Your program can ask the device to pause; the device will
~ait for some sort of input to continue. You can send the device a message,
or send it an escape sequence. Because of the way DI3000's device drivers are
written, the driver will ignore any message or escape sequence it doesn't
understand, rather than stopping your program.

DI3000 is smart enough to tell when you aren't using it correctly.
Whenever you make a mistake calling a DI3000 routine, the system writes an
error message to the error log. There are different severity levels for
errors. You can decide what level of error will stop your program. That
means when you're debugging you can see many of your errors at once, instead
of having your program die with the first error, fixing that one, and running
it again to find the next error. Imbedded in DI3000 routines is debugging
trace code. There are different levels of tracing, too; you may choose to see
all the messages, some of them, or none. You can turn the debugging level up
or down as much as you want within a sigle run, with the advantage that if
you're homing in on a bug you can look at detailed messages from the
suspicious parts of your program without getting a ton of verbiage from the
parts you know are ok.

In addition to the basic DI3000 package, Precision Visuals puts out two
other software tools, Grafmaker and Contouring. Grafmaker does presentation
graphics (pie charts, bar charts, etc) quickly and easily. You can make use
of the DI3000 routines to customize your graphs.

The Contouring system produces contour plots. A little surprisingly,
Contouring is the most popular part of DI3000 at Cornell. People who used to
use the NCAR routines have switched to DI3000, perhaps because the same person
who wrote NCAR long ago also wrote the Contouring system more recently. John
Hubbard and David Zimmerman from the Mathematics department are using
Contouring in combination with ADABAS and our Floating Point Systems Array
Processor in a novel application. They are exploring the characteristics of
Mandelbrot sets, spaces in the complex plane of fractal dimension. They are
producing some extraodinary pictures as well as doing abstract mathematics.

DI3000 sounds like a really spiffy graphics system, so we were eager to put
it up under CMS. Someone from Precision Visuals apparently assured us that it
would run under CMS. In fact it eventually did run under CMS, but only after
a lot of sweat and many modifications. The major problem with the initial
"CMS" release of DI3000 3.0 was that the installation instructions lulled me
into a false sense of security. I got the impression that DI3000 did
understand EBCDIC and would talk to my devices and the operating system
fluently, that it was written in IBM FORTRAN, and that although each new
obstacle I encountered was worse than the one before, it would surely be the
last.

The problems we encountered in that first release of DI3000 were that the
distribution tapes were incomplete, the design of DI3000 doesn't suit IBM
systems in general and CMS in particular, the source contained non-IBM
FORTRAN, there was no suggestion of what the user interface should look like,
the installation documentation described steps common to all machines very
well but lacked system-specific instructions for the rest of the steps, and
initially, Precision Visuals wasn't very supportive of our struggles.

The first problem was trying to decide how large a minidisk I'd need to
build the DI3000 system. Precision Visuals's prior IBM experience was with
TSO, a system with essentially unlimited disk space. There was no way to tell
how much minidisk space I might need to work on DI3000; the five cylinder
minidisk I defined initially was way to small for even the source files.
After a few iterations, I arrived at 30 cylinders of 3350 as a workable
minidisk size •

The state of the distribution tape should have made me suspect that
installing DI3000 was going to be harder than installing a typical so'ftware
package. The systems that are easiest to install have been tested on the
operating system they're being distributed for and are therefore shipped as
object modules. The systems that are, the most troublesome are shipped as
source. Not only did Precision Visuals send us source, they sent us the wrong
source or neglected to send parts of the source. The TSO-specific routines
that Precision Visuals thought they had included weren't there. We asked for
a Tektronix 4013 device driver; they sent us a 4014 driver that, due to the
hardware differences between the two devices, never could have run. Most
humorous was the file containing the ASCII I/O routines; it was written in
ASCII rather than EBCDIC.

Once weld copied the files onto the minidisk, Precision Visuals's
installation instructions said, "Make the necessary changes to the machine
dependent source." It took us two months to comply with this simple
instruction, and in trying to do so we ran into most of the problems we were
going to encounter. These problems divided themselves neatly into 5
categories: making software designed for a VAX work on an IBM system, finding
and correcting non-IBM FORTRAN in the source, trying to make the I/O routines
tolerant of CMS, and dealing with Precision Visuals's support group and
documentation.

One problem that anyone with an IBM machine will have with DI3000 is that
each source file on the DI3000 tape is composed of many subroutines. If you
compile all these routines as one file and generate a CMS TXTLIB or OS object

....
C')

library from the resulting TEXT file, you'll get a library with only one entry
point. The loader would load the entire library into memory each time you
used DI3000, even though you might need only a few of the routines. Precision
Visuals suggested separating the source files into individual subroutines. I
wasted a lot of time writing EXECs and EDIT run files to do that; there were
just too many routines to keep track of, and it was too easy to miss one
routine when I was trying to compile them all. Gary Buhrmaster, one of our
programmers, solved the problem by writing an assembler routine to take the
TEXT file you get when you compile one of the DI3000 source files and create a
new TEXT file with ESD cards in front of each subroutine. The loader can then
load only the routines it needs, saving you memory. You can use this new TEXT
file to generate a TXTLIB with one entry for each subroutine. The assembler
routine he wrote, ULOADM, is on Precision Visuals's eMS tape.

Since the rest of the world uses AScrI in their machines, it makes sense
that DI3000 writes all its I/O buffers directly in ASCII. That would be fine
if IBM machines spoke to their ASCII devices in ASCII. Unfortunately, most
IBM systems communicate in EBCDIC and rely on a communications controller of
some sort to convert output to devices to ASCII and input from devices to
EBCDIC. If we allowed DI3000 to send out its ASCII buffers directly, the
controller would cheerfully try to convert them into ASCII again and send
garbage to the graphics device. To outwit the controller, DI3000 must
translate its output buffers into EBCDIC so the controller can convert them
back to ASCII for the device, and convert the ASCII buffers the controller
receives from the devices and converts to EBCDIC back into ASCII. It is not
very efficient to do things this way. but it's also probably not worth
Precision Visuals's time to translate all DI3000's buffers into EBCDIC •

Precision Visuals was aware of the communications controller problem, so
they supplied routines to do the character conversions. Every installation's
translate tables are different, however, so you have to insert your tables
into the DI3000 code. Since they weren't wr1t1ng specifically for IBM
machines, Precision Visuals didn't put sequence numbers on the code, so there
was no way to make an update file containing your tables to apply to
subsequent DI3000 releases. It turns out you can't use Precision Visuals's
conversion routines anyway, since they tried to use LOGICAL*l arrays for I/O
buffers in a way that wouldn't work. To avoid extensive recoding, we used
Gary Buhrmaster's revised versions of the PLOTI0 ADEIN and ADEOUT routines.
These routines call separate assembler routines (DSECTs) containing the
conversion tables; you still have to change the tables; more about how to do
that later. Precision Visuals now includes Gary's ADEIN and ADEOUT on their
CMS tape.

DI3000 uses BYTE (LOGICAL*l, although the BYTE statements were left in the
code) arrays to hold its buffers of ASCII characters. Both the original
DI3000 character translation routines and Gary's modified PLOTI0 translation
routines used INTEGER variables. Since the two types are incompatible in IBM
FORTRAN, we changed all BYTE variables to INTEGER variables. It solved the
problem, but increased the buffer storage 300%.

We ran into even more problems getting around some of the limitations of
IBM FORTRAN. One routine tried to initialize a variable in COMMON with a DATA
statement. Apparently Precision Visuals was aware that you can't do that in
IBM FORTRAN, because at the end of one of the assembler routines to perform

logical AND or OR was a strange little CSECT that initialized the same COMMON
variable. They didn't bother to document it. I think we ended up using the
CSECT; it was easy, if not straightforward.

Another bit of leftover non-IBM FORTRAN was the "Q" format. "Q" format
returns the number of characters in the string just input. We wrote a DDSTRP
routine to simulate that function, but so many people were working on it at
the same time that it doesn't work. It's on the CMS tape, though.

The last IBM FORTRAN limitation we had to deal with was the problem of
dynamic FILEDEFs. DI3000 is parsimonious with its I/O units; it originally
tried to use the same FORTRAN unit numbers for seven different files (six font
files and the error message file). VAX FORTRAN lets you use an OPEN statement
to dynamically allocate the chosen file to the unit number and open the file.
Remnants of that syntax were left in the version we got, although the OPEN
statement had oddly been changed to CALL OPEN. There was some confusion about
whether we were missing an OPEN routine or whether that call was just bad
syntax (it was just bad syntax).

There is no facility in IBM FORTRAN for dynamically assigning a file to a
unit number. There was no facility in FORTRAN IV, the version of FORTRAN that
DI30003.0·was written in, for explicitly opening a file. Since it makes
sense not to FILEDEF all the FONT files to separate unit numbers if you really
only wanted to use one of them, Ben Schwarz, another of our programmers, wrote
four routines, TOKEN, CMSCMD, CUOPEN, and CUCLOS, that tokenize a line of
text, send the line to eMS as a command, open a file, and close a file. We
used TOKEN, CMSCMD, and CUOPEN to select a font file, issue a FILEDEF command
for that file, and open the file while running DI3000.

We were then faced with the problem of what to do if the application used
more than one font file in a run. If you want to reuse a FORTRAN unit number
for another file under CMS, you have to close the current file first
(otherwise CMS assumes that the second file has exactly the same attributes as
the first). We used Ben's CUCLOS routine to close the file. Because the
attibutes for the font files and the error message file were so different, we
assigned the message file its own new unit number and issued a FILEDEF for it
before running DI3000.

The JFILES routine lets you change the unit number(s) for one or more of
DI3000's internal files (error message file, debugging output, graphics input,
graphics output) dynamically. In this case, however, it was impossible to
modify the routine to do dynamic FILEDEFs to these new units since we had no
way of knowing (without rewriting DI3000 extensively) what the attributes of
the files were and What media they were to reside on. We ask our users to
issue their own FILEDEFs for these unit numbers before running DI3000 if they
want to use JFILES to change them.

Finally, the buggy version of the VS FORTRAN compiler that we were using at
the time (1. I.?) hindered our efforts to put up DI3000. Whenever you passed a
character string to a subroutine, that early VS FORTRAN passed an implicit
string length as the next parameter to the subroutine. Subroutines written in
VS FORTRAN were clever enough to pick up that extra parameter automatically;
subroutines, like CMSCMD, written in assembler weren't that clever. We also
rediscovered an early bug in the compiler's computed GOTO handling code. The

... ...
-..J

compiler was using the storage area reserved for computed GOTO addresses as
scratch space for implicit type conversions in assignment statements (e.g. the
statement RVALUE = IVALUE could cause DI3000's computed GOTO to branch to the
middle of your graphics data because it used the computed GOTO's branch table
as scratch space to convert the integer value in IVALUE to floating point).
(I did say in the title of this section that I'd learned to use PER While
installing DI3000!) The moral of all that is, if you're going to develop a
machine-specific version of software that doesn't yet run on your machine, at
least use a compiler you are certain is stable.

CMS's limitations and quirks gave us trouble with the device drivers. We
had to use ADEIN and ADEOUT rather than FORTRAN READs and WRITEs for most of
the device driver I/O because FORTRAN in CMS uses the CMS RDTERM macro Which
can only read 130 characters/input line (no more, no less), and CMS thinks
that each WRITE to the terminal must end with a carriage return/line feed,
even When you're doing graphics output.* We had to change the length of all
device driver's I/O buffers to 130 because that was the length RDTERM could
use. We had to set off any terminal settings that would allow the terminal to
receive asynchronous messages (handled by the DI3000 EXEC discussed later).

CMS also imposed restrictions on what kind of user interface we could set
up for DI3000. ~estions we need to answer were: How do you store DI3000
itself? In separate TEXT files? TXILIBs (how many? how do you select the
ones you want to use?) Since the routines that make up a device driver have
the same names as the ones for all other device drivers, how do you store a
device driver? How do you pick the correct device? How do you get around the
fact that CMS lets you GLOBAL only up to eight TXILIBs at a time? Since
Precision Visuals had no CMS experience, they didn't suggest a possible user
interface. We had to develop one ourselves.

What we came up with was the DI3000 EXEC. We put each section of DI3000
(DI3000, levels A, B, and C of segment storage support, Contouring, Grafmaker,
and each device driver) in a separate TXILIB. To use DI3000, you ask for the
section(s) your application program uses; the EXEC GLOBALs the TXILIBs
corresponding to those sections. We got around the problem of needing to
GLOBAL more than eight TXILIBs by GLOBALing only the DI3000 libraries, LOADing
the program, GLOBALing the FORTRAN and CMS runtime libraries, and using
INCLUDE VSCOM# to pull them into core.

Since the routines that make up each device driver do not have unique
names, presently there is no way to use more than one device in a single
DI3000 run. Earl tells me that the TSO version of DI3000 uses concurrent
device support and that he's certain we could get it running under CMS, but I
haven't looked at it.

*Joe Shapiro, our part-time graphics support person, has since discovered that
if you issue strange-looking FlLEDEFs for the terminal you can READ and WRITE
about 1600 characters before getting a CR-LF. Once you can output that many
characters it becomes less impractical to strip off the CR-LFs. He thinks
we'll be able to use FORTRAN READs and WRITEs for the device driver input and
output after all, but he's still working on it.

Earl came up with a set of execs to do the same thing as the DI3000 EXEC.
The difference is that you need to remember many commands rather than just
one. There's more about the DI3000 EXEC and exactly What it does in the next
section.

As I mentioned above, the DI3000 documentation was not much help When it
came to trying to solve CMS-dependent problems, because the machine-dependent
parts of the documentation were missing or vague. Along with the instruction
that advised us to "verify [the] correctness [of the machine dependent
routines]", there was a note declaring that "Code Which may have to be changed
for various files is heavily commented and easy to follow." There are about
six printed inches of code in Which those easy to follow comments might be
located. It would have been helpful to have had a list of the subroutines
containing the comments. Since any graphics system will do a lot of I/O, and
since I/O varies greatly from machine to machine, it would have been helpful
to have had a list of all I/O routines, at least, along with an index listing
which DI3000 source file these routines could be found in, to give you an idea
of Which routines to start looking at. Earl has since told me that the name
of each routine tells you Which source file to find it in. An explanation of
these naming conventions in the installation manual would have been handy.

The documentation about the device drivers was particulaly vague. It was
not clear for a While Whether Precision Visuals had supplied device drivers or
whether they had supplied a skeleton for each driver that we were to flesh out
ourselves. The notes sounded like they were trying to instruct people in the
art of device driver writing, but without much detail. Once I believed the
drivers they had sent might work without a lot of additional coding, I still
couldn't tell from the documentation that 'the drivers could handle synchronous
messages, but couldn't handle asynchronous ones. It never was clear What
parts of the drivers needed to be changed. We did need to rewrite the I/O
routines to call ADEIN and ADEOUT. Bad documentation for one of the routines
calling ADEIN (MGRINP) resulted in setting the value of the constant "6" to
"0". The installation documentation said that the variable RSPLEN was the
length of the input string the device returned. The subroutine comments said
that RSPLEN was the maximum length of the input string returned. The comments
in the routine were correct. The installation documentation should be fixed
in the next release of DI3000.

Now that Precision Visuals has all the modified-for-CMS software,
installing DI3000 under CMS should be much easier in the future. If from now
on they can make their CMS tapes "Slam Dunk" tapes, we won't need as much
detailed documentation as we needed, but didn't have, this time.

At first, support from Precision Visuals people was not good. There was a
TSO person on the staff, but no one who knew CMS. When I asked if anyone else
had ever put up DI3000 under CMS, they said that a few had, but that Precision
Visuals couldn't tell anyone else who they were. The only person they told me
about was Samuel Chan at the University of Houston Who was having trouble with
the BYTE variable types. Even if Precision Visuals couldn't have told me who
else had successfully installed DI3000 under CMS, I am surprised that the
other installations hadn't written up notes from their experience that they
could give Precision Visuals to share with other CMS installations.

~

.....
00

When I finally ground to a halt trying to install the device drivers and we
were seriously considering sending DI3000 back, Precision Visuals rallied and
sent their itinerant consultant, Earl Billingsley, out to install DI3000 in
return for a tape with the modified source and -our utilities. Earl, an
impressive professional, whipped into town, worked on the device drivers for a
week, and got all the tests to run without having ever worked on a eMS system
before. Precision visuals is now distributing the modified DI3000 source and
utilities that came out of this experience- more on that in the next section.

Since December 1982, Precision Visuals CMS support has improved
dramatically. They are aware of the problems of installing DI3000 under CMS,
and have hired Ken Tallman to be their resident DI3000 under CMS expert. Ken
seems eager to learn all he can about DI3000 and CMS. He came to Cornell with
Earl in June to install some DI3000 updates and a new AED device driver. He
documents his work, so Precision Visuals should have CMS-specific
documentation out in future releases of DI3000. It is nice to have this
assurance of Precision Visuals's commitment to eMS. It was nice to have had
the benefit of Earl's experience.

The hard part of getting DI3000 to work under CMS seems to be done. There
are still a few things that don't work, but now Precision Visuals is
distributing a version of DI3000 that doesn't need to be extensively modified
in order to run. There are some modifications that any eMS shop will have to
make for every release of DI3000, and there are some things on the current
distribution tape that work only at Cornell. The next section of this paper
talks about what you'll have to do to put up Precision Visuals's CMS tape for
DI3000 •

The June, 1, 1983
Oe.o .. \~

How to III Install

"Siam Dunk" Tape:

DI3000 Under CMS

Once Earl finished installing DI3000 for us in December '82, Precision Visuals
took all the utilities and modified routines he sent back and combined them
into a "Slam. Dunk"* tape for eMS. The contents of this tape went up
relatively easily at Cornell (before we got rid of MVT), but probably won't go
up without some nasty surprises anywhere else unless you keep reading. There
are things you may want to do differently and things you must change.

The first thing you do is get a large CMS minidisk to work on. Thirty
cylinders of 3350 space was enough for us to put DI3000 up on if we used T­
disks for holding some of the source files while we compiled them. The DI3000
Grafmaker, Contouring, and device driver TXTLIB's and two sample contouring
DATA fils currently occupy 1543 cylinders of 2048-byte blocks on the 3375 that
contains our 308l's Y-disk. PVI may tell you a number of cylinders to use; if
you haven't bought all the parts of DI3000 or if your tape isn't the June 1
version go with PVI's number.

The next thing you do is set up the tape. On the tape are two EXECs, DISET
and GMSET, for setting up the DI3000 and Grafmaker tapes, respectively. It is
nice to have such EXECs if you discover you need to keep going back to one of
the tapes to unload something you've forgotten; however, DISET and GMSET use
an obsolete SETUP processor that ran on Cornell's heavily modified MVT system.
Write your own SETUP EXEC.

Once the tape is set up, read the appropriate files off it. PVI supplies
two EXECs to do that. The DI3RD EXEC reads particular files from the DI3000
tape; the GCRD EXEC reads files from the Grafmaker-Contouring tape. Unless
PVI custom-tailors these execs for the features of DI3000 you ordered, DI3RD
and GCRD will work only if you have exactly the same files on your
distribution tape(s) as Cornell has on theirs. Compare the list(s) of tape
contents PVI sent you with the lists in the handout. You may need to modify
DI3RD and GCRD to read only the files you received into the correct CMS files.
If you want to be able to ue PVI's BLD •••• EXECs to compile the source and
build your TXTLIBs, retain the fileids that DI3RD and GCRD give the source
files when they load them off the tape. DI3RD and GCRD use a utility. DIFI,
that should work without modification on any CMS system.

Now you'll need to make the necessary changes to the source. Precision
Visuals supplies two routines, Q3ATOI and Q3ITOA, to translate EBCDIC to ASCII
and vice versa. They tell you to alter the routines by changing the translate
tables to match your system's tables. Ihese two routines don't work well with
IBM FORTRAN; you would have to do some recoding. The CMS-specific file on the
tape provides four other routines that are easier to install than PVI's
original translation routines. ADEIN and ADEOUT do the ASCII input and EBCDIC
output, calling AS2EB and EB2AS to do the translation. All you need to do is
modify the translate tables in MAS2EB ASSEMBLE and MEB2AS ASSEMBLE to match
your installation's translation codes. John Baird's TABLES MEMO file that may

*A technical term. meaning "installs itself painlessly".

...
c.c

or may not be on your tape has good instructions for choosing the values to
put in the tables. Ignore the values in the sample tables in that memo,
however; they're idiosyncratic Cornell values guaranteed to be wrong for your
system. Earl and Ken already modified the device driver I/O routines to call
ADEIN and ADEOUT.

Some of the device drivers contain non-IBM FORTRAN in the debugging code.
Compile each driver once to find out where the errors are. Edit the source
and either fix the code or, since debugging code isn't an essential part of
the routines, delete it.

We continue to have problems with I/O to and from devices, particularly
with input. JKEYBD, JLOCATE, and JPICK have given us the most problems, due
to STRG4 and DDSTRP, two routines that are supposed to simulate VAX FORTRAN's
"Q" format by stripping trail ing blanks from an input ·string and returning the
length of the resulting string. Truncation or round-off errors in JCONWV may
be causing DI3000 to occasionally interpret coordinates input with a cross­
hair cursor as being outside the current viewport. In general, the device
drivers are the part of the code that need the most work, and that you should
be most suspicious of.

Better device drivers may be on the way. Joe Shapiro, one of our part-time
programmers, has become intrigued with how the device drivers work and has
cleaned up some of the code. For example, by recoding LOWIOL, the main I/O
routine, he reduced the number of FORTRAN WRITE statements required to put up
a menu screen for his interactive transparency-generating program from 800 to
six. He has improved the speed of the HP7221 plotter driver by 200%. With
luck, we can afford to pay him long enough for him to develop some really
efficient device drivers for use with CMS.

Once you have made the changes to the source, you need to compile it and
store it in TXTLIBs. PVI suppiles eight execs to compile, load, and build a
library of the seven sections of· the DI3000 system (DI3000, Contouring,
Metafile Generator, Metafile Translator, and Level A, Level B, and Level C of
segment storage support). They call them, respectively, BLDDILIB, BLDCTLIB,
BLDMFG, BLDMFT66, BLDMFT77 , BLDLEVA, BLDLEVB, and BLDLEVC. Before you run any
of them you'll need to GLOBAL the assembler MACLlB(s) yourself. BLDDILIB,
BLDCTLIB, BLDMFG, BLDMFT66, and BLDMFT77 try to compile the routines DI3RD or
GMRD EXEC read off the tape. If you didn't use those execs to copy the source,.
off the tape, be sure you have given the DI3000 source files the same names
those two execs do. Again, if you don't have the same tape files as the ones
Cornell got you'll need to edit the BLD •••• execs and delete references to the
files you don't have.

These same caveats apply to BLDLEVA, BLDLEVB, and BLDLEVC. You may not
have bought all three levels of segment storage support, so of those execs,
run only the one(s) you need. Unlike the other four BLD •••• execs, these
three leave the compiled code in a TEXT file rather than storing it in a
TXTLIB. I find these TEXT files clutter up an already cluttered Y-disk, so I
just TXTLIB GEN each into its own separate TXTLIB. Any segment storage level
uses all its routines whenever you call it, so you can get by with only one
entry point for the whole TXTLIB rather than needing a separate entry for each
routine in that level.

These eight execs use one or more of three utility execs. COMP66 compiles
FORTRAN with the IANGLVL(66) option of the VS FORTRAN compiler. If you don't
have VS FORTRAN, you'll want to change the name the exec uses for the command
invoking your FORTRAN compiler. Even if you have VS FORTRAN you may want to
change some of the compiler options the exec uses.

COMP77 compiles using the IANGLVL(77) option of VS FORTRAN. Again, you may
want to change some of the compiler options used.

The third utility, ULOADM, takes the TEXT file created when you compile one
of the DI3000 source files containing numerous subroutines and converts it to
a TEXT file with a separate ESD card for each routine. What that means is
that if you TXTLIB GEN the original TEXT file into a TXTLIB you'll end up with
a library with about 200 names listed and only one entry point; if DI3000
loaded one of those routines it would have to load them all. If you TXTLIB
GEN the ULOADMed TEXT file you'll get a TXTLIB with 200 names and 200 entry
points; DI3000 can then load only the routines it needs, saving you space. I
don't know what use ULOADM DATA is, although Ken and Earl maintain you need
it.

PVI includes two other execs for doing compilations, BCOMP and COMDITST.
COMDITST compiles DI3000 test routines. You may need to change the name of
the command it uses to invoke FORTRAN (FORTVS).

BCOMP sends a compilation job to Cornell's obsolete MVT system to compile
while you do something useful. It is garbage; can't possibly work anywhere
else. Write your own batch compile exec, if you have the facilities;
otherwise compile in CMS while you eat lunch or perform some other useful task
away from the keybored.

As far as I can tell, PVI has no execs specifically for compiling device
drivers. Compile them your favorite way, or use one of the BLD •••• execs as a
template for your own device driver compiling exec, and use ULOADM and TXTLIB
GEN to create a separate library for each driver.

PVI does provide execs to GLOBAL the necessary libraries, load and run your
application program with DI3000. They also provide the DI3000 EXEC, which
does the same thing in a more friendly way (fewer command names to remember).

The DI3LB, GML8 , and CONTLB EXECs GLOBAL the TXTLIBs you need to run
DI3000, Grafmaker, or Contouring, respectively. Inside each EXEC, the names
of the libraries on the GLOBAL command line from ''VFORTLIB'' to the end of that
line may be peculiar to Cornell. These are the FORTRAN and CMS standard run
time libraries. Use your system's names if they're different.

The DI3LD, GMLD, CONTLD, and METRNS EXECs load your program with the DI3000
base routines and the segment storage level and device driver you ask for,
then execute the program. For some reason, they also always load the Metafile
Generator routines; wasting space if you don't need the Generator, and causing
an error if your shop didn't purchase the Generator. Additionally, CONTLD
issues FlLEDEFs for the PVI sample DA~ fies; they're large enough that you
may not want to keep them on your Y-disk.

DI3LD. GMLD. CONTLD and METRANs use the ERRFl utility EXEC to set up a
FILEDEF for the D13000 error messages file. At Cornell. we called this
message file "D13000 MESSAGES" rather than using PVl' s name "ERROR MESSAGES"
to avoid confusion with other message fies on the Y-disk.

D13000 EXEC is much nicer*. but depends on VM/SP and EXEC2. You'd need to
rewrite the EXEC if you don't have both; probably not worth the effort.
You'll otherwise need to change only four lines in the EXEC to make it work on
your system. First. we use the line beginning "SMSG USE ••• " at Cornell to
collect data about how often a package is used per month. You don't need this
line. so delete it. Second. the EXEC uses Cornell's HELP processor rather
than IBM's to display info about the D13000 command. You need only replace
the line "HELP DI3000(S" with a call to your own HELP processor. or with the
syntax of the D13000 command. We have routines at Cornell to transform IBM­
format HELP into Cornell format HELP; we might be able to persuade them to
work in reverse. Third, at Cornell, rather than GLOBAL a lot of TXTLIBs by
hand whenever we want to compile and/or load an applications program. we run
an EXEC to GLOBAL the relevant libraries. The D13000 EXEC expects you to give
it the name of such an EXEC or uses "FORTLIBS EXEC" by default. You need only
replace the line "EXEC &LIBS" with a statement that GLOBALs the list of VS
FORTRAN and CMS runtime libraries. For increased flexibility. you could write
your own one-line FORTLIBS EXEC. Fourth. PVl calls their file of error
messages ERROR MESSAGES; we call it D13000 MESSAGS to avoid confusing it with
other message files on the Y-disk. If you don't like "D13000 MESSAGES".
change it to "ERROR MESSAGES" in the exec.

~ PVl includes some other execs and routines in their collection of CMS-
~ specific files. RENSUF EXEC is left over from a predecessor of ULOADM and is -= garbage. The conversion tables in CMSTABLES.DAT on the tape are another

version of Cornell's translate tables; use them as models. but ignore the
values in them. As I mentioned before. STRG4 FORTRAN and DDSTRP FORTRAN
probably don't work. XGLOBAL EXEC. a utility to add to or change the names of
currently GLOBALed libraries. is included on the tape. but doesn't seem to
have been used by any of the runtime execs.

The chart on the pages that follow contains all the information presented
in this section in a format that's easier to use as a reference. Following
the chart is an outline of the D13000 EXEC, then the complete listing of
r.ornell's D13000 distribution tapes. (which you also have in your handouts).
Using these lists. you can check whether the files on your tape are in the
same order as the files on our tape. and thus tell how much you'll need to
modify PVl'-s •••• RD. BLD ••••• and •••• LD utility execs to get them to work for
you.

Precision Visuals has come a long way toward a true CMS version of D13000
in a short time. We no longer need to worry about encountering non-IBM
FORTRAN in the source code or ASCII files on the tape. The utility EXECs make
it easier to build the D13000 libraries. especially if you're not familiar
with how all D13000's components fit together. The D13000 EXEC or the DI3LD.
GMLD. CONTLD, and METRNS EXECs provide a well-defined user interface-where

*I'm biased. though. since I wrote it.

there was nothing before.

All this is not to say that D13000 works perfectly from CMS. There are
still bugs to work out of the device driver code and the I/O routines. The
utility EXECs are still in a rough form. and need to be documented better.
Now that we have a rough idea of what steps are necessary to put D13000 up
under CMS and how CMS users will interface with D13000. someone at PVl needs
to take Earl's and Ken's notes and write up CMS-specific installation and
user's manuals.

Precision Visuals has demonstrated their commitment to CMS and IBM machines
by hiring Ken Tallman to work full-time on making D13000 work from CMS. Their
support and their product is enormously improved from what it was just nine
months ago. That's enough to make me hope we may see that true CMS version of
D13000 in another nine months.

..

.....
N>

MODIFICATIONS TO DI3000 EXECS AND UTILITIES

In general, read the comments at the top of each utility before you try to use
it.

1. Se tup Tape

DISET EXEC
GMSET EXEC

II. Read the Tape

DI3RD EXEC
GCRD EXEC

DIFI EXEC

Set up DI3000 and Grafmaker/Contouring tapes,
respectively. Depends on obsolete Cornell setup
processor. Write your own tape setup EXEC.

Unless the contents of your tape(s) exactly matches the
contents of Cornell's (see attached tape lists), modify
these two EXECs to load the correct disk files from the
correct tape files. Retain PVI's fileids if you want to
use the BLD ••••• EXECs to compile, link. and build
libraries from the source.

Utility routine for DI3RD and GCRD. Should work ok; only
difference could be the tape density (the exec uses 1600
bpi).

III. Change the Source

Q3ATOI FORTRAN
Q3ITOA FORTRAN

ADEIN ASSEMBLE
ADEOUT ASSEMBLE
MAS2EB ASSEMBLE
MEB2AS ASSEMBLE

CONVERSION TABLES
(CMSTABLES.DAT)

PVI's routines to translate ASCII to EBCDIC and vv.
Contains translate tables consisting of decimal codes for
ASCII or EBCDIC characters. These routines don't work
well with IBM FORTRAN; you have to do some recoding.

These are Gary Buhrmas ter I s routines; Ear 1 and I agree
that they're easier to install than Q3ATOI and Q3ITOA.
PVI's tape contents document says you need to supply
these routines from the PLOTIO library. They are
actually included on the tape in the IOASCCMS.FOR file;
you need only supply the values for the translate tables,
MASZEB and MEB2AS ASSEMBLE. ('These files might be called
AS2EB and EB2AS instead.) The translate table entries
are the hexadecimal codes for the characters to translate
to. The file TABLES MEMO, if it's on your tape, has good
suggestions for how to decide what values to put in the
translate tables. Since translate tables are truly
installation dependent, build your own tables using the
sample attached to this handout as a model and your own
installation's translation codes. Keep the assembled
text for these routines in the DI3000 TXTLIB.

Garbage. These are Cornell's own ideosyncratic translate
tables, guaranteed to be wrong for your system.

CUOPEN FORTRAN
CUCLOS FORTRAN
CMSCMD ASSEMBLE
TOKEN ASSEMBLE
TEDON ASSEMBLE
TEDOFF ASSEMBLE

Device Drivers

Utilities to open a file, close a file, send a command to
CMS, tokenize a line to pass to CMS, and turn TERMINAL
settings on and off, all dynamically from within DI3000.
Essential for DI3000's on-the-fly FILEDEFs and terminal
I/O. Keep the text for them in the 013000 TXTLIB.

Some of the debuggiug code has non-IBM FORTRAN; compile
the routines to find out where the bad code is. Edit the
source and either fix the code or comment it out. In
general, the device drivers and I/O routines are the ones
most likely to give you problems. Test JKEYBD, JLOCATE,
and JPICK thoroughly.

IV. Compile Source and Build Libraries

BCOMP EXEC

BLDDILIB EXEC
BLDCTLIB EXEC
BLDMFG EXEC
BLDMFT66 EXEC
BLDMFT77 EXEC

BLDLEVA EXEC
BLDLEVB EXEC
BLDLEVC EXEC

COMP66 EXEC
COMP77 EXEC

COMDITST EXEC

ULOADM EXEC
ULOADM MODULE

No longer works even at Cornell. Write your own exec to
send the compilation off to your batch system (if you
have one) or compile the routines interactively while you
go to lunch.

Compiles, links, adds DI3000 routines to a TXTLIB with
one entry per routine. You must GLOBAL the Assembler
macro libraries yourself before running any of the
BLD ••••• EXECs. Take the names of the routines your
installation didn't buyout of these EXECs and use only
the EXECs corresponding to the pieces of DI3000 you
bought. BLDDILIB handles the basic DI3000 routines,
BLDCTLIB applies to Contouring, BLDMFG applies to the
Metafile Generator routines, and BLDMFT66 handles the
:Metafile Translator routines.

Build the level A, B, and C segment storage TEXT files,
respectively. PVI leaves the text in TEXT files; I feel
that adds to the clutter of TEXT files on the Y disk. I
TXTLIB GEN each TEXT file so you get only the level you
explicitly GLOBAL and don't get the text accidentally
ltlhen you meant to load your own routine called "LEVELA".
You may not have bought all levels.

Utilities that compile 013000 source using VS FORTRAN
I.ANGLVL(66) and LANGLVL(77) respectively. Called by
lILD. • • • • EXECs. You might want different compile
options. The command to invoke FORTRAN on your system
,oight not be "FORTVS".

Compiles test routines.
options. The command
nlight not be "FORTVS".

You might want different compile
to invoke FORTRAN on your system

Utility that takes TEXT file made up of many routines but
only one entry (ESD) and produces a TEXT file of many
routines with one entry (ESD) per routine. Called by the

.­
N
N

lILD ••••• EXECs.
can TXTLIB GEN
this TEXT file.

You (or the BLD..... EXEC you're using)
a TXTLIB with one entry per routine from

V. GLOBAL Libraries Before Running Application

DI3LB EXEC
GMLB EXEC
CONTLB EXEC

Library names from "VFORTLIB" to the end of the line in
these EXECs may be Cornell-specific. Substitute the
names of the VS FORTRAN and CMS runtime libraries from
your system where you need to.

VI. Load and Run Application

DI3LD EXEC
GMLD EXEC
CONTLD EXEC
METRNS EXEC

ERRFI EXEC

RUNTST EXEC

DI3000 EXEC

VII. Miscellaneous

XGLOBAL EXEC

These are PVI's utilities for running DI3000, Grafmaker,
Contouring, or the Metafile Translator. Not as flexible
as the DI3000 EXEC. All except METRNS always load the
Metafile Generator, too. CONTLD always sets up FILEDEFs
for PVI's Contouring sample DATA files.

This is a utility called by the •••• LD and METRNSEXECs.
It sets up a FlLEDEF to ERROR MESSAGES *, D13000's error
message file.

Runs the DI3000 test program of your choice.

GLOBALs libraries for, LOADs, and optionally RUNs any
DI3000 application program. Requires VM/SP and EXEC2,
but is more flexible than PVI' s runtime execs. You
definitely have to make the following four changes to use
it.
1) Delete the line containing SMSG USE.
2) If the syntax of your P.ELP is different from "HELP

DI3000 (SYNTAX" you' 11 need to change that line or
replace it with lines that type the syntax of the
DI3000 command.

3) We use an exec named FORTLIBS to GLOBAL the VS FORTRAN
and eMS runtime libraries; either replace the H&LIBS"
line with a GLOBAL command for these libraries, or
write your own FORTLIBS EXEC consisting of a line to
GLOBAL these libraries.

4) We renamed the DI3000 error message file DI3000
MESSAGES instead of ERROR MESSAGES to avoid confusing
it with message files for other packages on the Y
disk; either rename the file or change "DI3000
MESSAGE S" to "ERROR MESSAGE S" •

Utility that lets you change or add to GLOBALs already in
effect. Not sure why it's included.

RENSUF EXEC

STRG4 FORTRAN
DDSTRP FORTRAN

Left over from a predecessor to ULOADM; garbage.

Probably don't work, and thus probably the roots of
JKEYBD problems. The assertion in the tape contents
document about Hnon-fence" characters in relation to
STRG4 is absurd. It was a comment from an old version of
STRG4 written before I knew that the CMS RDTERM macro
couldn't handle lines longer than 130 characters.

ADEIN and ADEOUT expect an assembler DSECT of the following form that they
use as a translate table. Unlike the translate tables from PVI's Q3ATOI and
Q3ITOA, which contain decimal values for the characters to translate to,
the DSECTs contain hex values.

EB2AS

*
CSECT

*--
* This is part of Cornell's EBCDIC =) ASCII table. It probably is wrong
* for your installation. Use it as a model to build a similar table
* containing your system's translation values. For example, if your
* system translates the EBCDIC value 'FO' to the ASCII value '30', put
* '30' in row F, column 0 of the table.
*--
*
*
*

*
*

DC
DC

DC

END

o 2 3 4 5 6 89ABCDEF
I I I I I I I 1 I I I I 1 I I I
I I I I I I I I I I I I I I I I

X'OO, 01, 02, 03,lA, 09 ,lA, 7F ,lA,lA,lA, OB, OC, OD, OE, OF'
X' IO,l1,12,lA,lA,IA,08,lA,18,19,IA,IA,lC,lD,IE,lF'

. .
X' 30,31,32,33,34,35,36,37,38, 39,lA.IA,lA,IA,lA,lA' , I , , , , , , , , , , , ! , , , , , , , , , , , , , , , , , ,

0 1 2 3 4 5 6 7 8 9 A B C D E F

-0
-1

-F

...
N
~

What the DI3000 EXEC Does

The DI3000 EXEC is written in EXEC2 and depends on features of VM/SP. It uses
the following CP and CMS commands:

CONWAIT GENMOD LOAD SET
DROPBUF GLOBAL MAIalBUF START
EXECIO HELP QUERY (STACK
FILEDEF INCLUDE SENTRIES

The DI3000 EXEC works like this:

l. Checks for among arguments and prints help if is found. Uses
Cornell's HELP processor, but it should not be too difficult to convert
the help file to IBM HELP format.

2. Checks for R/w A disk.

3. Sets default options. You can change the defaults in this section.

4. Parses command line

a. Checks that at least the minimum abbreviations were requested.

b. Compares esch option against list of legal options.
the list of acceptable options •

You can change

c. Parses all options, even if a bad one is found.
run routines if one or more bad options found.

Does not load or

d. Save current CMS settings and turns off any settings that could
cause an asynchronous message to appear in the graphics area if
certain message-sensitive devices were requested. You can modify
this section to turn other settings off or include other devices in
the list of sensitive ones.

5. Sends a message to USE to keep track of the number of times this exec
was successfully invoked. Delete this line.

6. CLEARs and sets FILEDEFs for TERM and the error message file.
calls the file DI3000 MESSAGES; PVI calls it ERROR MESSAGES.

Cornell

7. GLOBALs TXTLIBs corresponding to the sections of DI3000 requested.

8. LOADs application program using the CLEAR option.

9. INCLUDEs VS FORTRAN and CMS runtime libraries (we had too many TXTLIBs
to GLOBAL them all).

10. GENMODs and/or RUNs loaded module depending on options requested.

11. Cleans up (restores any saved settings, CLEARs FILEDEFs).

Throughout, the exec checks for error conditions and uses EXECIO to print CMS­
style messages.

:SSHAREi

SHARE SESSION REPORT

61 A733 Using the Fortran Extended Error

SHARE NO. SESSION NO. SESSION TITLE

Fortran w. Horowitz

PROJECT SESSION CHAIRMAN

D & B Computing Services 187 Danbury Rd. Wilton, Ct. 06897

SESSION CHAIRMAN'S COMPANY, ADDRESS, AND PHONE NUMBER

4/B/RC/l

USING THE FORTRAN EXTENDED ERROR HANDLER

May 1983

Pat Hennessy

Hughes Aircraft Co.
2000 E. El Segundo Blvd. E1/Fl28

El Segundo CA 90245
(HUG)

ATTENDANCE

CSS

INST. CODE

