
~SHARE~ SHARE SESSION REPORT

61
A260 A NEW APPROACH TO DIAGNOSIS INFORMATION

SHARE NO. SESSION NO. SESSION TITLE

DOCUMENTATION STEVE WINCKELMAN

PROJECT SESSION CHAIRMAN

200

ATTENDANCE

PSU

INST. CODE

Igg02ENNSYLVANIA STATE UNIVERSITY ZIU COMPUTER BUILDING UNIVERSITY PARK, PA.

<.D
00

SESSION CHAIRMAN'SCOMPANY, ADDRESS, AND PHONE NUMBER

A New Approach to DIagnosis Information

Jeannette Mutimer

ffiM Corporation
555 Bailey Avenue

San Jose, California 95150

DOCUMENTATION PROJECT

Session Number A260

2

Abstract

In keeping with task-oriented library design, ffiM is now publishing diagnosis information to provide
a basis for effective communication between the user and the ffiM Support Center. Problems are
diagnosed based on their symptoms. The objective of diagnosis information is to relate those
external symptoms to a functional area of the program.

The speaker will describe the organization and content of two books - the diagnosis guide and
diagnosis reference. These books complement each other and are intended to increase the produc­
tivity of the people involved in the resolution of program failures.

Introduction

The first set of diagnosis books were published in 1977 for IMS/VS. Now, at least twenty ffiM
program products have diagnosis books in their libraries. The titles and formats have evolved, but
the concept is unchanged.

I have personally worked on this concept for six years - I have written several of these books, and
now spend full time consulting with other writers who are developing diagnosis information. So
why is the title of this session, "A New Approach to Diagnosis Ioformation"? Diagnosis informa­
tion is not new to many of you. Diagnosis information remains a "new approach" after six years
because it is so very different from the information it replaces.

Diagnosis information is a "planned" method for locating the cause of a program problem. It does
not require full knowledge of the program - that knowledge is built into the methodology. Diagno­
sis becomes just another task, much like installing or using the program.

I can still remember when I was in class learning to program. I had barely Iearned the assembler
language, and the instructor moved on to a high~levellanguage. It was a long time before I was
comfortable that coding one statement would handle so many details. You may feel a similar anxie­
ty about the difference in the amount of information between the program logic manual and the
diagnosis reference.

I have three objectives today. First, to ensure that "diagnosis" is not "new" to you; to make you
comfortable with the contents and organization of the diagnosis books; and to make sure you
understand how to use diagnosis books to increase your own productivity. Second, I want to con­
vince you to use diagnosis books to resolve program problems. And third, I want to invite you to let
me know how well they work for you.

To meet these objectives, I will digress a bit to explam the concept of task-oriented libraries. I will
also review with you our analysis of the diagnosis task. For it was this analysis which set the stage
for packaging the information. I then will talk about the organization and contents of the diagnosis
guide and diagnosis reference, and review a scenario of how to use these books to resolve program
problems. I will conclude with a discussion of the merits of diagnosis information and the contrib­
ution these books can make to your productivity in performing the diagnosis task.

<...>
<..0

Task-Oriented Libraries

IBM's task-oriented libraries are geared to the activities people perform using our products. An
overall goal of task-oriented libraries is to be "task-sulficient."

Writing task-sufficient information presents some interesting challenges. It means that all informa­
tion must be pertinent, and information must be collected in one place. Of course, the information
must be complete and accurate - but there is a degree of completeness and a degree of accuracy
that is not pertinent to the task.

How do we know what is pertinent? First, we must understand the task. There is seldom only one
way to do anything, so we must make some decisions about how the task will be performed. For
example, if each of us were to give directions about the route to get to this hotel from the airport,
we would not all give the same instructions, although we all accomplished the task. We conld, how­
ever, combine our directions to describe a route that would work for everyone. All of us would not
agree that it was the best route. What is important is that the directions are straightforward with as
little room for error as possible. The directions must accurately describe the complete route, but the
directions need not describe every intersection in that route. Completeness and accuracy to this
degree would complicate rather than simplify the task.

The basis for designing a task-oriented library is a task analysis. In this analysis, each major task is
examined to identify the significant activities in the task, and a plan is developed that describes the
steps required to accomplish those activities. The task analysis becomes the criterion to evaluate
appropriateness of information during the writing of the manual. If there is any doubt about the
completeness, or the need for any portion of the content, that question can be answered by match­
ing the iulormation against the requirements of the task. Likewise, if a piece of information appears
to be valuable, but does not map to the task analysis, then the analysis itself is reexamined.

The Diagnosis Task

Diagnosis is only one of the "tasks" supported by a task-oriented library. But diagnosis has three
characteristics not common to other tasks.

1. Diagnosis involves the same basic activities for all programs.

2. A single problem could easily cause you to use books from several product libraries.

3. This is the only task that requires interaction between IBM and its customers.

Because all the activities are essentially the same for all program products, the information can be
organized in the same way, even though the contents are product-specific. I am sure you will agree
that consistency in organization is particularly helpful when books from two or more product
libraries are used simultaneously.

4

DiagllOJfis Task Analysis

The scope of the diagnosis task is, in reality, doing whatever is necessary to keep a program productive. To
bring this into focus it is necessary to establish boundaries.

Defmition of the Task

The diagnosis task begins, by definition, whenever an mM program is suspected of not functioning correct­
ly. This definition assumes that there is reasonable evidence to suspect a software failure. The information
in the diagnosis books does not address hardware problems. The definition also assumes that the program
has been used correctly - although it may tum out that the problem was caused by a user error.

Diagnosis books deal with software problems, and software diagnosis typically begins with the symptoms,
and tracks back to the cause of the problem, using the symptoms as clues. What may appear to be a soft­
ware problem, may, in fact, be caused by an obscure user errllr, or a hardware problem. But tbat fact must
usually be revealed by the same diagnostic processes that locate code problems.

Task Activities

Within the scope of this definition we separated the diagnosis task into five activities, as shown in the figure
below. As I mentioned earlier. diagnosis is unique in that mM shares the responsibilities with its customers.
Some of the responsibilities overlap, and others belong either to mM or to you, mM's customers. Let's look
at how the activities in this task relate to the people who will perform them.

Keep in mind while we go through this analysis, that we are setting the limits for both the information that
will be included, as well as what will be excluded, in a task-sufficient library.

I. Identify the Source of the Problem

The diagnostician is responsible for identifying the component in control at the time of the failure.

The diagnostician is principally you, ffiM's customer, although an ffiM representative may also assist in
that process. I use the term "diagnostician" to identify everyone who participates in the preliminary
investigation of the problem.

2. Describe the Problem

The objective of this activity is to investigate a problem sulficiently to be able to describe it with a set of
keywords.

A large percentage of program problems experienced in the field are already known, are described in the
software support data base, and are corrected. The challenge for the diagnostician is describing prob­
lems consistently, so that known problems can be distingnished from new problems.

....... o
L)

Diagnosis
Task
Activities

Software
Support
Data Base

3. Search for Similar Known Problem

The quickest way to resolve a problem is to find a ready-made solution. So the next activity is to search
the software support data base for a similar problem description.

The ffiM Support Center Level I representative will search the software support data base, using the
keyword string developed by the diagnostician. Level 1 contributes expertise on using the search argn­
ment effectively, as well as selecting the most appropriate descriptions from the list of similar problems.

There are other methods the diagnostician can use to search the data base without contacting the sup­
port center, such as using Early Warning System microfiche.

6

4. Report New Problems

If a similar problem description is not found, or the problem being investigated cannot be resolved with
an existing correction, the problem is reported as a new problem. The objective of this activity is to
ensure that the problem is accurately described and the necessary supporting documentation is gathered.

The IBM Support Center Level 2 representative reviews the information obtained by the diagnostician
and may suggest additional investigation. Level 2 will confirm that the keywords used to search the data
base describe the problem accurately. Level 2 is also responsible for creating an APAR (Authorized
Program Analysis Report).

The primary responsibility of Level 2 is to act as a problem manager - that means applying the appro­
priate expertise at the appropriate time to resolve a problem expeditiously.

5. Correct New Problems

The change team is responsible for locating the cause of the program problem and making the necessary
corrections to the code: When the problem is corrected, they place a description of the problem and its
correction in the software support data base. If the same problem is experienced by another user, its
description will be found during the search of the data base.

Members of the change team are ffiM's product experts. For some products, the same individuals per­
form both the Level 2 and the change team activity, but have different responsibilities depending on

which role they are performing.

Things are seldom as simple as this characterization suggests. These "activities" depict the intermediate
results that lead to problem resolution. The objective of the diagnosis documentation is to direct you in

achieving these results.

Information Packages

The purpose of going through the task analysis with you today is to give you a better understanding of what
to expect from task-sufficient diagnosis books. You really need to know very little about the analysis in
order to use the books effectively.

The conclusion drawn from the task analysis was that three types of information were involved.

1. Precise guidance information for the predictable activities.

For each program product we can predict what information is vital· for each type of failure and where
that information is located. Locating this information yields a description that is suitable as a search

argument.

The diagnosis guide contains the information needed resolve similar known problems. Its
product-specific procedures lead you to:

identify the source of the problem,
describe the problem in keywords,
search the software support data base, and
interact with the ffiM Level I representative.

7

2. Selected reference information for free-form activities.

Investigating new problems is a free-form activity. By ttiat I mean we cannot predict what clue will pro­
vide the starting point for the investigation. The facts learned about the problem, following the proce­
dures in the diagnosis guide, will determine where the investigation resumes.

The diagnosis reference describes the program in terms of the processing it performs. Its primary func­
tion is to supply the information needed to investigate new problems, and contribute to a productive dia­
log with Level 2.

3. information needed by the ffiM change team to perform its task of problem correction.

The change teams needs information that describes both the intent of the program's design and the
sequence of its processing. This information need is met by the design documentation and is not part of
the program's library.

b DiIlglIIJIJiy Guide
I--'

The Diagnosis Guide contains a diagnosis methodology. Its procedures contain enough information to
locate key facts to build a keyword description, but are not intended to provide an in-depth understanding of
why the procedures are appropriate.

There is seldom only one way to diagnosis problems. But, for purposes of clarity and brevity, a method is
selected at the time the procedures are developed. Writing procedures, actoally putting the words on paper,
is particularly challenging. For procedures must do more than just inform, they must lead. This sounds like
a very obvious idea, but it is not uncommon for the action that needs to be taken not to be clear from the
information provided.

Contents of Diagnosis Guide

The Diagnosis Guide is organized like this:

Introduction

The Introduction explaios the concepts of using keywords to describe program failures and of using
keywords to search a software support data base. The Introduction may also recommend preliminary
activities to eosure that optimum diagnostic information is generated by the product.

Component Identification Keyword

The component identifier is the first keyword in the search argument. The order of keywords in the
search argument is not critical; however, it does put you on the appropriate Levell queue, and is a more

8

efficient search for the data base system. The release level is also used as a keyword to screen out prob­
lems reported agaiost earlier releases.

Type-of-Failure Keyword

The main value of the Diagnosis Guide is its product-specific procedures. These procedures reduce the
amount of product expertise required to diagnosis problems and contribute to the productivity of every­
one who uses them.

This section contains procedures for each major symptom, or "type of failure." These procedures
describe what facts are important, and how to find those facts. A type-of-failure keyword descnbes an
exteroal symptom of a program failure, such as an abnormal termination, a wait, a loop, a message, or
performance degradation.

There is also a DOC keyword, but that is seldom needed. If it were needed, it would be used to search
for descriptioos of misleadiog or inaccurate documentation problems. Only documentation problems
that are misleading in such a way as to cause lost time to other users are entered as DOC AP ARB.

You can also influence the contents of a publication by sending a Readers' Comment to the writer.
Errors reported through Readers' Comments are not entered in the software support data base, but are
incorporated in the next update to the publication.

Area-of-Failure Keyword

The area-of -failure keyword associates a problem with a subset of the program.

Procedures in this section continue the diagnosis, begun with the symptom, to narrow the area of the
product that could contain the error. Ideally, the area of failure is isolated to a particular module or
module equivalent. A program may have several "..rea-of-failure" keywords; such as, fuuction name,
module name, or modifier. A "modifier" keyword could be the command or type of statement being
processed at the time of failure.

Search Argument Procedure

The Search Argument Procedure prepares the diagnostician to search the software support data base. It
explaios how to' use the keyword string as a search argument and how to determine the service that has
been applied to the system.

Search Argument Techniques

Search Argument Techniques are ways to vary the search argument - to narrow the search by making
the argument more specific if the search yields too many possibilities; or to broaden the search by mak­
ing the argument more general.

This section is not a tutorial on searching the data base, but rather gives specific information relative to
the search arguments developed in that diagnosis guide.

......
c.:>
N

9

AP AR Preparation Procedure

For most products, if an APAR is necessary, it is created by a support center representative. The pur­
pose of this section is to make that first call to Level 2 as productive as possible. It describes the type of
documentation you will need to investigate certain types of problems to prepare yourself for a produc­
tive dialog.

Appendixes

Frequently, there are long lists or tables of information needed to complete the procedures. This infor­
mation is placed in an appendix to prevent the procedures from becoming cluttered. The titles of this
reference information appear in the table of contents so that the information can be easily locared.

Index

The diagnosis guide is not indexed because it is procedural. The table of contents provides an overview
of the organization, and the page numbers indicate the beginning of each procedure. It is not appropri­
ate to enter a procedure anywhere but at its beginning.

Diog_is Re/emree

The contents of the diagnosis reference might sound similar to the program logic manual. It does contain
many of the same types of informatioh. However, the level of detail makes the diagnosis reference signif­
icantly different from a logic manual.

Contents of DIagnosis Reference

Section 1. Program Overview

Section 1 is an overview of the program. It describes how this program interacts with other programs.
The overview names each function and briefly describes the type of processing performed.

Section 2. Program Functional Description

Section 2 describes the principal processing paths through each function and describes how the func­
tions interact with each other. These descriptions generalize many small actions into a statement that
summarizes the results of the actions. The level of detail of the information is quite limited when com­
pared to that of the program logic manual.

The information presented allows the user to follow the flow of the processing through the program, and
to know when the program interacts with another program. From this section, the user can relate
external input to the processing within the function.

Section 3. Module Directory

Section 3 shows the module-to-module communications within the program. Module information is
organized alphabetically by module name and typically lists:

modules it calls.
modules that call it.

10

a brief description of the processing it performs.
names of the functional areas it is part of.

Section 4. Data Areas

Section 4 describes the data areas (or control blocks) used for communication between functions, pr0-

grams, or parts of the system. Ouly those data areas are documented which contain fields directing flow
of control from one function to another. These are the same data areas that are mentioned in Section 2
- the fields that are necessary to confmn successful completion.

Section 5. Service Aids

Section 5 describes the dumps and tools used to collect diagnostic information for the program. The
task-oriented approach to presenting this information includes a full description of how to use the ser­
vice aid, as well as when, or with what type of problem, the service aid is most valuable.

Organization of DIagnosis Reference

The diagnosis reference could be read from cover to cover to become acquainted with the program, but it is
intended to be a reference manual. Each section has its own information objective and is organized to meet
that objective. Each section stands alone. That means, depending on what is known about the problem -
whatever piece of information you have - you can enter the appropriate section of the diagnosis reference.

Section 1 describes the functional areas in context of the type of processing they perform in the program.

Sections 2, 3, and 4 are organized alphabetically. This organization assumes you know the name of the item
you are looking for.

Each section contains enough information to give you pointers into the other sections. So whatever clues
you have will lead you to a full description of the related information.

The index is concise, because the entire book is organized for easy retrieval. The principal items in the index
are concepts, since items arranged alphabetically within each section are not repeated in the index. This
concise index contributes to its effectiveness. For example, if each mention of a module name were listed in
the index you could not decide from the index which page contained the reference you were seeking. The
table of contents shows page numbers for the items within the sections. When you enter a particular sec­
tion, you know the type of information you will fmd there.

Using Diagnosis Books

The diagnosis guide and diagnosis reference complement each other. Neither are sufficient, alone, to meet
your information needs. Let me take you through a scenario of how, and when, you might use these books.

When you suspect a program failure, you first use the diagnosis guide for the component you suspect.
Its procedures will guide you to investigate the failure and develop a set of keywords that describes it.

i--' o
V.j

11

Next, you will use the set of keywords to search the software support data base for a similar known
problem. Hopefully, the search yields a similar problem with a correction which resolves your problem.
If not, you may need to vary the search argument to broaden the search. This involves omitting one or
more of the keywords that are particularly limiting.

If you decide that you have searched the data base efficiently without locating a correction for your
problem, you will report the problem. Your task may end there or you may do some additional investi­
gation.

To continue investigating the problem, you will use the keywords you selected using the procedures in
the diagnosis guide to index into the diagnosis reference.

For example, if you have the name of a module, you would enter the diagnosis reference at Section
3. In the module directory, you would rmd a brief description of the processing that module per­
forms, and the name of the function in which it participates.

You then would go to the description of that function in Section 2. Because you know what pr0c­

essing the module performs, you can determine the role the module plays within that functional area.
You will also gain additional insight into what other processing was involved at the time of failure, or
just preceding the failure.

In some types of failures, you may know the nature of the processing being performed, but need to
know what functional area was involved and the modules that participated. In that case, you would
review Section I, to determine the name of the functional area which interests you, and go to Section 2
to read ahout the processing and "footprints" that indicate successful processing.

Summary

There are many ideas ahout how to improve the diagnostic process. Evaluating the effectiveness of each
idea in a scientific way is next to impossible - unless, of course, some of you would like to volunteer to do
a comparative study. You could handle each problem in five different ways and have a contest between
your teams to see which method took the least amount of time. Seriously though, there are so many vari­
ables with each problem that a time comparison by method is not feasible even if someone cared to try it.
So how do we pick a method to improve the process1The answer is that we prohably won't pick just one
method.

I have just described a method that can increase your productivity while investigating problems and working
with the IBM Support Center. I have described the organization and contents of two books - the diagnosis
guide and diagnosis reference. This task-oriented information addresses many of the current difficulties
encountered while diagnosing problems.

Users no longer need to understand the logic of the program to understand what information is signif­
icant and how to find it.

Users can quickly build their own expertise by following detailed procedures that locate significant facts
ahout a failure.

12

The success rate of searching the software support data base is increased by describing problems in a

consistent way.

Interaction with the Support Center is streamlined by establishing a common starting point for that
interaction thus increasing the productivity of the first telephone call.

Diagnosis information is not the ultimate solution for resolving program problems. That position is reserved
for automatic data capture and automatic error recovery; or better yet, error-free code. However, diagnosis
information does rill the gap between where we are today' and where we want to be. I like to believe that
having developed this information in book form is the first step toward a more perfect solution.

I appreciate you spending your time attending this session to listen to me discuss my favorite project. I hope
that you feel that it has been informative. This session is, however, just the first step. There are four more
steps you should take when you return to your office to make the time you have just spent truly productive:

1. Add to your library the diagnosis books for the products you have installed.

2. Become familiar with their contents before a problem occurs.

3. Use the hooks to diagnosis problems and to work with the IBM Support Center.

4. Use the Readers' Comment Form to let the writer know the strengths as well as the weaknesses you
found in the information.

