75

SHARE SESSION REPORT

61	A111	LP Solution Analysis with PERUSE	10
SHARE NO.	SESSION NO.	SESSION TITLE	ATTENDANCE
Math Programming		T. R. White	SO
PROJECT		SESSION CHAIRMAN	INST. CODE
Shell Oil Co	., P.O. Box	2463, Houston, TX (713) 241-3482	

SESSION CHAIRMAN'S COMPANY, ADDRESS, AND PHONE NUMBER

Phyllis Gilmore of US Dept. of Energy described the PERUSE/XMP System for interactive analysis of LP models and solution. Description of the system is attached.

THE PERUSE/XMP SYSTEM FOR

INTERACTIVE LP MODEL ANALYSIS

Ву

Richard P. O'Neill, William Kurator and Phyllis Gilmore Office of Oil and Gas, Natural Gas Division Energy Information Administration Department of Energy Washington, D.C. 20461

> Roy Marsten Dept. of Management Information Systems University of Arizona Tucson, Arizona 85721

Presented at

SHARE Annual Meeting New York, New York August 22, 1983

2/R/rcg/1

SECTION 1

INTRODUCTION TO PERUSE/XMP

1.1. Description of the Software

This section describes the purpose and background of PERUSE. Although the speed of today's computers and mathematical programming software (MPS III, MPSX/370) is very fast and leads to model run times of a few minutes or less, the total turnaround time to validate and verify a model run is a long and tedious process that can take several hours or more. The original purpose of the PERUSE system was to facilitate interactive analysis of the solution and matrix information to reduce model turnaround time. The commands allow the user to delimit information displayed, avoid information overload and eliminate manually paging through several inches of computer printouts*. Simple reports can also be generated. With the addition of an optimization capability callable from PERUSE, the analyst can now change the model, solve it quickly, and generate answers to "what-if?" questions.

*This method of manual paging is known as PCIMPAM (Paper Clip Indexing Manual Paging Access Method), a name applied by the original PERUSE development group.

1.2 Design Concept and Description

Beginning in 1977, a group of analysts in the Energy Information Administration (EIA) developed an interactive query system called PERUSE for accessing matrix and solution values from a linear programming model. This group, which included Dr. Harvey J. Creenberg, Dr. Richard P. O'Neill, Mr. William G. Kurator, and others, laid the foundation for the development of computer-assisted analysis (CAA) programs for mathematical programming models. PERUSE is used within the Department of Energy as well as in many private sector and academic installations.

In 1982, an optimization capability was added to PERUSE. This new feature allows the analyst to make changes to the data in his model and solve the revised problem -- <u>interac-</u> <u>tively</u>! This capability results in a reduction in time necessary to make modest sensitivity changes to a model and receive the new answers. The optimizer used by the PERUSE SOLVE command is based on the XMP library of FORTRAN subroutines developed by Dr. Roy E. Marsten of the University of Arizona under several National Science Foundation grants. The optimizer is known as XMP for Experimental Mathematical Programming System.

The design purpose of XMP is to facilitate algorithmic research and model development. This system was selected because of its flexibility and ease of modification. XMP has been designed to solve LP models on the order of 1500 constraints and is not intended to compete with MPSX/370 or MPS III which can handle problems of 8000 constraints or more.

The XMP subroutines included in PERUSE are restricted to the <u>Bolution</u> of mathematical programming models. There are no routines for model generation or report generation based on solutions. These tasks are best handled by other existing languages and systems such as OMNI, DATAFORM, or GAMMA. The user simply issues the command SOLVE while in PERUSE to invoke the optimization process of XMP.

76

SECTION 2

SAMPLE PROBLEM DESCRIPTION

2.1 Dil Production, Refinery, and Distribution (OPRD)

The following sample problem has been developed to demonstrate the use of interactive optimization using PERUSE and XMP. The model will be modified and re-optimized during an interactive session.

The problem considers the production and transportation of two types of crude oil (TG and OK) from two producing regions. (Gulf Coast-08 and Mid-Continent-09) to two refining regions. Each refinery produces three products -- gasoline, distillate and residual fuel oil -- which are transported to demand regions 1, 2, and 5. Each refinery region may supply each of the three demand regions with any of the three products. The matrix structure and data for the problem are described in the following sections. The names for the objective function and right-hand side for this example (AMINCST and ZRHS) were chosen to insure their alphanumeric sort location in the PICTURE command. That is, given the other row names in the problem, AMINCST will be listed first. Given the column names in the problem, ZRHS will be listed last.

4

2.2 Row and Column Name Structure

A meaningful name structure is essential for good design practice when building LP models. The name structure used in the sample problem is shown below. A count of the rows and columns in each group is included in parentheses.

ROWS (Total 24)

AMINCST (1)	Objective function to be minimized
M(LO)(MT)XX1(12)	Material balance at location (LO) for material
MO8TGXX1 MO9OKXX1	(MT) in time period 1. The XX is used as a filler and has no mnemonic significance.
MRIOKXXI	
MRIGAXXI MRIDSXXI MRIRSXXI	
MR2TGXX1 MR2OKXX1	
MR2GAXX1 MR2DSXX1 MR2RSXX1	
L(LO)(MD)XX1(2)	Limit of capacity in location (LO) for process
LR1CDXX1 LR2CDXX1	(MD) in time period 1.
D(LO)(PP)XX1(9)	Demand at location (LO) for product (PP) in
DD1GAXX1 DD1DSXX1 DD1RSXX1	time period 1.
DD2GAXX1 DD2DSXX1 DD2RSXX1	
DD5GAXX1 DD5DSXX1 DD5RSXX1	

77

COLUMNS (Total 30)

	P(LO)(MT)(II)1(4)	Production of material (MT) at location (LO)
	POK09111 POK09511	and supply step increment II in time period 1.
	PTG08111 PTG08511	
	R(LO)(MD)XX1(4)	Operation of a facility at location (LO) and
	RRIOKXXI) RRITGXXI	mode (MD) in time period 1.
	RR2OKXX1 RR2TGXX1	
	T(MT)(OR)(RR)1(4)	Pipeline transport of material (MT) from
	TOKO9R11 TOKO9R21	source (OR) to destination (RR) in period 1.
78	TTG08R11 TTG08R21	
	U(PP)(RR)(DD)1(18)	Transport by barge/tanker of material (PP)
	UDSR1D11 UDSR1D21 UDSR1D51 UDSR2D11 UDSR2D21 UDSR2D51	from source (RR) to destination (DD) in time period 1.
	UGAR1D11 UGAR1D21 UGAR1D51 UGAR2D11 UGAR2D21 UGAR2D21 UGAR2D51	
	URSR1D11 URSR1D21 URSR1D51 URSR2D11 URSR2D21 URSR2D51	

*Items in () represent variable characters.

2.3 Dictionary Classes

The classes of variable names described in the previous section can be defined for this problem through the use of dictionary classes. The classes serve to define the mnemonic names and contain full text descriptions that will be used when producing custom reports.

Locations (LO)

Class	OR	Oil Producing Regions
	08	Gulf of Mexico
	09	Mid-Continent
Class	RR	Refining Regions
	Rl	PAD 1A No. East
	R2	PAD 2A Midwest
Class	DD	Demand Regions
	Dl	New England
	D2	N.Y., N.J Mid-Atlantic
	D5	Midwest

Materials (MT)

. •

Class	CR	Crude Oils
	TG	Texas Gulf Coast
	OK	Oklahoma Mix
Class	PP	Petroleum Products
	GA	Gasoline
	DS	Distillate Oils
	RS	Residual Fuel Oil

6

Operating Modes (MD)

Class	MD	Operating Modes	
	CD	Crude Dist	tillation

Supply Segments (II)

II	Oil	Supply Segments
11	01d	Primary
51	New	Primary
	11 11 51	II Oil 11 Old 51 New

Transportation Modes (T)

Class	т	Transportation	
	Т	Pipeline Crude	Oil

U Tanker/Barge Products

8

79

2.4 Data Tables

Data tables are required which describe the available crude oil supplies and capacities, the supply costs, oil transportation costs, refinery operation yields and costs, product transportation costs, and market demands. For our sample problem the data has been organized into the following tables. The table names are designed with the same care used in row and column names.

TABLE OL185

OIL PRODUCTION LEVEL AND COST

	Production Level (MB/D)*	Supply Cost Price/B
Oil	0-1,100	\$5.00
Region 8	1,100 - 2,300	5.50
Oil	0-1,300	\$5.25
Region 9	1,300 - 2,700	5.50

9

*MB/D - thousand barrels/day

TABLE TROPLPRC

OIL TRANSPORT COSTS TO REFINERY CENTERS (Dollars/Barrel)

<u>Refinerv Center Rl</u>	Refinery Center R2

Oil	Region	8	4.00	3.00
0i1	Region	9	3.50	2.00

Refineries differ in terms of their yields for each product (yield patterns). This table contains the yield patterns for refineries 1 and 2 for refined products and the associated costs.

TABLE RN185

REFINERY YIELDS AND COSTS

	Refinery Rl		Refine	
Crude (Mode)	TG	OK	TG	OK
Gasoline	.50	.48	.60	.50
Distillate	.25	.25	.20	.25
Residual F.O.	.15	.15	.05	.05
Cost/Barrel	.75	.75	.50	.50

The processing capacity at each refinery is given in the following table.

TABLE I	RNCA	P		
REFINERY (NERY CAPACITY			
	J	MB/D		
Refinery I	R1 :	2200		
Refinery I	R2 :	2500		

After the oil is refined, the oil products are shipped from the refineries to the demand regions. The transportation costs are given in the following table:

TABLE LPRC(PP)

OIL TRANSPORT COSTS TO DEMAND REGIONS (Dollars/Barrel)

			Gasoline*			
		Demand <u>Region 1</u>	Demand <u>Region 2</u>	Demand <u>Region 5</u>		
Refinery	Rl	1.64	1.63	1.73		
Refinery	R2	1.58	1.61	1.61		

*Similar, but slightly different costs are present for distillate and residual.

The market demands are shown in the following table.

TABLE PRDEM (PP)

MARKET DEMANDS

GASOLINE	Region Dl	Region D2	Region D5
Demand, MB/D	1400	600	400
DISTILLATE			
Demand, MB/D	400	300	350
RESIDUAL FUEL OIL			
Demand, MB/D	150	150	100

08

SECTION 3

SAMPLE PROBLEM RESULTS

3.1 Changes Made to Base Case

A summary of changes made to the base case model is listed below. Case AF is the base case and Case BF will be the new case. The crude refining capacity was increased by 800 MB/D at location Rl and reduced by 100 MB/D at location R2. The demand for distillate (DS) in region D2 was increased by 200 MB/D. The oil production limits were altered by decreasing the new primary production (51) for crude TG in oil region 08 by 300 MB/D. The crude production limits for OK crude in oil region 09 were increased for old primary (11) by 700 MB/D and for new primary (51) by 600 MB/D.

* C *	HANGES FROM	CASEAF	ARE	NAME	CASEAF OLD	CASEBF NFW
* Z	RHS			LR1CDXX1	2200	3000
*				LR2CDXX1	2500	2400
*				DD2DSXX1	300	500
* 8	OUND CHANGES	3 - 1				
	DUNDRCW			PTGC8511	1200	530
*				POK09511	1400	2000
•				POKC9111	1300	2000

3.2 <u>Review Base Case Solution</u>

The next command we issue is to DISPLAY the row and column answers of the original case before we change and solve the revised case. We first request a DISPLAY (D) of row answers : (R) for 'all rows (*) which includes solution values, slack, lower and upper limit and dual activity.

The objective function value for the base case is 46510 (Row AMINCST). The dual activity for distillate (DS) in region 2 (D2) is 14.408\$/Bbl. which indicates the cost increase if demand is increased for this product in this region.

The column answers are displayed for all columns with their activity levels (X), objective function coefficients (C) lower and upper limits and reduced costs (D).

* DISPLAY THE COLUMN ANSWERS FOR THE BASE PROBLEM

*					
DC×					BED COST
NAME STATUS	ACT LEVL	COST	LLIMII	ULIMII	KED COST
POK09111 UL	1300.0	5.2500	.0	1300.0	46390
POK09511 UL	1400.0	5.5000	.0	1400.0	21390
PTG08111 UL	1100.0	5.0000	.0	1100.0	50000
PTG08511 BS	737.78	5.5000	.0	1200.0	.0
PRINKYY1 BS	1888.9	.75000	.0	.10000E+31	.0
RRITGXX1 BS	148.89	.75000	.0	.10000E+31	.0
PP20KYY1 BC		50000	n	.10000F+31	. 0
BOSTOVVI BC	1499 0	50000	100 00	10000F+31	. 0
KKZIGAAI BS	1000.7	7 5000	100.00	100005+31	ň
TUKU9KII B5	1000.7	3.5000		10000000000	
TURU9R21 BS	011.11	2.0000		300005+31	
IIGUSKII BS	148.89	4.0000		1000002+31	
TTGD8R21 BS	1688.9	3.0000		.100002431	
UDSRIDII BS	400.00	1.4500		.100002+31	
UDSR1D21 LL	.0	1.4400	.0	.100002+31	.100002-01
UDSR1D51 BS	109.44	1.4100	.0	.10000E+31	.0
UDSR2D11 LL	.0	1.5000	.0	.10000E+31	.80000E-01
UDSR2D21 BS	300.00	1.4000	. 0	.10000E+31	.0
UDSR2D51 BS	240.56	1.3800	.0	.10000E+31	. 0
UGAR1D11 BS	381.11	1.6400	.0	.10000E+31	.0
UGAR1D21 BS	600.00	1.6300	.0	.10000E+31	.0
UGAR1D51 LL	. 0	1.7300	.0	.10000E+31	.59999E-01
UGAR2D11 BS	1018.9	1.5800	.0	.10000E+31	.0
UGAR2D21 II	. 0	1.6100	. 0	.10000E+31	.40000E-01
UGAR2D51 BS	400.00	1.6100	0	.10000E+31	.0
UPSPIDII BS	155 67	98000	. 0	.10000E+31	. 0
UPCPID21 BC	150 00	1 0100		.10000E+31	Ō
HPCP1D51 II		1 1100	. ň	.10000E+31	13000
		1 1000	ň	.10000F+31	34000
UDEDODO1 II		1 0000		10000F+31	21000
URSKEDEL LL	105 00	45000		100000000000	
UK5K2D51 85	152.00	.65000			

30. ACTIVITIES WITH MASK ******** SATISFY THE CONDITION The sum of their act. Levels is 17494.

* DISPLAY ROW ANSWERS FOR THE BASE PROBLEM Enter a command

NOP					
DRX					
NAME STATUS	ACT LEVL	SLACK	LLIMIT	ULIMII	DUAL ACT
AMTNEST BS	46510.	10000E+31	10000E+31	.10000E+31	
DDIDEVYI II	400 00		400.00	.10000E+31	14.428
	1600.00		1400.0	.10000E+31	15.945
DDIGAXXI LL	1400.0		150 00	10000E+31	. 0
DDIRSXXI BS	155.6/	-3.0000	300 00	10000E+31	14.408
DD2D5XX1 LL	300.00		400.00	10000F+31	15.935
DD2GAXX1 LL	600.00	. 0	500.00	10000E+31	30000F-01
DD2R5XX1 LL	150.00	.0	150.00	.100002.31	14 798
DD5D5XX1 LL	350.00	.0	350.00	.100002+31	15 075
DD5GAXX1 LL	400.00	.0	400.00	.1000UE+31	15.9/5
DD5PSYY1 BS	125.00	-124.00	1.0000	.10000E+31	. 0
I BI CDYYI BS	2037 8	162.22	10000E+31	2200.0	.0
	2500 0		- 10000E+31	2500.0	-2.1781
LK2CDAAI UL	2500.0		0	. 0	5.5000
MUSIGXXI UL				. 0	5.7139
MO90KXX1 UL	. 0				12.978
MRIDSXX1 UL	.0	. 0			14.305
MRIGAXXI UL	.0	.0			9 2139
MRIOKXX1 UL	.0	.0	. 0		_ 98000
MRIRSXX1 UL	.0	.0	.0		0 5000
MRITGXX1 UL	.0	.0	.0		7.5000
MP2D5XX1 III	. 0	.0	.0	.0	13.000
MP2GAYY1 UI		.0	.0	.0	14.365
MP20KYY1 III	ň	Ó	.0	.0	7.7139
MB3BEVVI III		Ō	. 0	.0	85000
PIRZESAAL UL			0	.0	8.5000
TIKZIGXXI UL			• •		

24. ACTIVITIES WITH MASK ******** SATISFY THE CONDITION The sum of their act. Levels is 54929.

8 2 8

3.3 Interactively Revise the Model

8

دى

The changes described in Section 3.1 are made with the CHANGE command of PERUSE. The user enters CHANGE SRHS, LRICDXX1 3000 and the system responds with:

Value 2200.0 for ZRHS,LR1CDXX1 is now 3000.00.

The commands and responses are listed below:

CHANGE ZRHS, LRICEXX1 3000. ,LRICDXXI IS NCW 3000.00 FOR ZRHS VALUE 2200.0 CHANGE ZRHS, LR2CDXX1 2400. .1R2CDXX1 IS NEW 2400.00 VALUE 2500.0 FCR ZRHS CHANGE ZRHS, DD2DSXX1 500. .DD2DSXX1 IS NOW 500.00 VALUE 300.00 FCR ZRHS CHANGE PTG08511,BCUNDUP 900. FOR PTG08511,BOUNDUP IS NOW SCC.00 VALUE 1200.0 CHANGE POK09511, BOUNDUP 2000. FOR POK09511, BOUNDUP IS NEW 2000.00 VALUE 1400.0 CHANGE POKO9111, BOUNDUP 2000. FOR POKO9111, BCUNDUP IS NEW 2000.00 VALUE 1300.0

We now look at selected matrix coefficients to verify the changes using the LIST command. The first LIST (L) checks columns that begin with P (Production) and their bound values (BO). The next two LIST commands check the righthand-side (ZRHS) and the coefficients for capacity rows (LR1,LR2) and demand in region D2 for distillate (DD2D*).

K

L	Z#,L*			
	ZRHS	LR1CDXX1	3000.0	
	ZRHS	LR2CDXX1	2400.0	
	2	COEFFICIENT(S)	SATISFY THE	MASK

L Z*,DD2D*		,	
ZR HS	DD2DSXX1	500.00	
1	COEFFICIENT(S)	SATISFY TH	E MASK

3.4 OPTIMIZE with XMP

The next command issued is SOLVE, which solves the revised model. The total cost has increased from 46510 to 50567. The row answers show that the marginal cost (dual activity) for DS in region 2 (D2) has jumped from 14.408 to 44.278\$/Bbl. The increased demand has sharply increased the cost of producing distillate.

84

CALL SOLVE
 SOLVE
 BEGIN SOLVE FOR CURRENT PACKED MATRIX
 XFEAS...FEASIBLE SOLUTION FOUND.
 OBJ VALUE = 50567.
 SOLVE HAS ENDED
 SOLUTION AFTER SOLVE
 SELECTED ROW VALUES
 D R L* X,D
 NAME STATUS ACT LEVL DUAL ACT
 LRICDXX1 B5 2620.0
 LR2CDXX1 UL 2400.0

2. ACTIVITIES WITH MASK L******* SATISFY THE CONDITION THE SUM OF THEIR ACT. LEVELS IS 5020.0

D R DD2* X,D NAME STATUS ACT LEVL DUAL ACT DD2D5XX1 LL 500.00 44.278 DD2GAXX1 B5 686.00 .0 DD2R5XX1 LL 150.00 .30000E-01

> 3. ACTIVITIES WITH MASK DD2***** SATISFY THE CONDITION The sum of their act. Levels is 1336.0

The production column values only are displayed below and indicate the major change is to reduce the production of high cost TG crude (PTGO85111) from 737 to 0 MB/D. The last command, END, terminates the PERUSE session.

LOOK AT PRODUCTION COLUMN VALUES D C P* X,C,U,D NAME STATUS ACT LEVL POKO9111 UL 2000.0 COST ULIMIT RED COST 5.2500 2000.0 -.28260 POK09511 UL PTG08111 BS 5.5000 -.32600E-01 2000.0 2000.0 1020.0 1100.0 . 0 PTG08511 LL 5.5000 900.00 .50000 . 0

4. ACTIVITIES WITH MASK P****** SATISFY THE CONDITION THE SUM OF THEIR ACT. LEVELS IS 5020.0

END COMMAND ENCOUNTERED. PERUSE TERMINATES

3.5 Command Input File Listing

The previous output was generated using the input file feature of PERUSE. The user prepares a file of commands as shown below and supplies the file name to PERUSE. This feature; saves analyst time when repetitive commands are required.

	* * CASEBF INPUT FILE PERUS	LIB(PERINB)		
	NUP * CHANGES FROM CASEAF ARE	* NAME	CASEAF	CASEBF
	¥ ZRHS ¥ ¥	LR1CDXX1 LR2CDXX1 DD2D5XX1	2200 2500 300	3000 2400 500
	* BOUND CHANGES * Boundrow * *	PTG08511 P0K09511 P0K09111	1200 1400 1300	900 2000 2000
	¥ * CHECK SOME KEY VALUES I * MATRIX VALUES L ZR*,L* L Z*,DD2D*	N ORIGINAL M	DDEL	
85 85	L P*,BO* * LOOK AT SOLUTION BEFORE * THEY WILL MATCH CASEAF * CAPACITY AND DEMAND IN D R L* X,D D R DD2* X.D	SOLVE. NOTE (original) Region D2 I	ACT. LEVEL. Row Answers	, DUALS
	E LOOK AT PRODUCTION D C P* X,C,U,D	COLUMN VALU	ES	
	* CHANGE AND REVISE CHANGE ZRHS, LR1CDXX1 3000 CHANGE ZRHS, LR2CDXX1 2409	MODEL		
	CHANGE ZRHS, DD2DSXX1 500. * CHANGE UPPER BOUNDS O CHANGE PTG08511, BOUNDUP 2 CHANGE POK09511, BOUNDUP 2 CHANGE POK09111, BOUNDUP 2	N PRODUCTION 00. 000. 000.		
	* * LOOK AT REVISED MODEL L Z*,L* L Z*,DD2D*			
	L PX,BOX X CALL SOLVE			
	SOLVE SOLUTION A SELECTED ROW VALUE D P I * X.D	FTER SOLVE S		
	D R DD2* X,D * LOOK AT PRODUCTION D C P* X,C,U,D END	COLUMN VALU	ES	

3.6 PERUSE/XMP Saves Time

A major advantage to the use of PERUSE/XMP is the time the analyst can save when making minor corrections to a model. By minor corrections, we mean that a few values are changed to either correct an error or resolve an infeasibility. Major changes, which involve many values or changes to the permanent model data, should be done with existing model generation software to keep the model current. The following table compares the elapsed time required to make the changes previously described when the MPS REVISE procedure is used.

.

い毎

Minor Model Revisions with PERUSE

Approach:	MPS REVISE	PERUSE
Optimizer:	WHIZARD	XMP
Time:	HH:MM:SS	HH:MM:SS
l. Problem Identified	00:00:00	00:00:00
 Revisions Made Revise Input Change Command 	00:11:14	00:02:25
 Re-Optimize Run New Solution Solution Reviewed 	00:02:00	00:00:10
TSO "Output" PERUSE Display	00:08:00	00:01:00
TOTAL ELAPSED TIME	00:21:14	00:03:35

3.7 XMP Optimization Time

Although XMP was not designed to compete with MPSX/370 or MPS III, the speed of optimization for typical models of se veral hundred rows is very satisfactory. We believe that the most important timing consideration is the time required for the analyst to obtain <u>answers</u> to the current model run. Optimization time is only one part of the several steps required to produce answers from model runs. The next page displays results of solving a 250 and 500 row model from scratch using WHIZARD of MPS III and XMP. The models are 10 and 20 time period versions, with inventory transfer, of the sample problem described in this paper.

SESS	ION REP	ORT SHAF	
61	A216	Considerations in Designing a GML Application	75
SHARE NO.	SESSION NO.	SESSION TITLE	ATTENDANCE
Document. Co	omposition	Sharon Adler	BCG
	PROJECT	SESSION CHAIRMAN	INST. CODE
Boeing Com	puter Services,	7970 Gallows Ct, Vienna, VA 22180 (703) 827-462	29

SESSION CHAIRMAN'S COMPANY, ADDRESS, and PHONE NUMBER

SHRM-730-1/81

Considerations in Designing a GML Application

Truly Donovan

IBM Corporation 555 Bailey Avenue San Jose, California 95150

DOCUMENT COMPOSITION PROJECT

Session Number A216

PERUSE/XMP

TIMING RESULTS

IBM 3033

HODEL :	10 periòds		20 periods	
ROWS:	254		504	
COLUMNS:	475		9 55	
ELEMENTS :	1802		3622	
UNIQUE ELEMENTS	581		1119	
	WHIZARD	XMP	WHIZARD	XMP
STARTING BASIS	NO	NO	NO	NO
OPTIMIZATION TIME				
CPU SECONDS	3.4	N/A	8.3	N/A
ELAPSED TIME, MM:SS	00:53	01:00	01:57	04:45
ELAPSED TIME DIFFERENCE	7 seconds		2 min 48 sec	
8	BASE	+13	BASE	+143

