
G)
W

We have found that the best form of presentation for management is
graphic in nature. Generally, graphs present considerable
information in a concise manner. Tabular reports have been
aggresively avoided. We believe this approach offers superior·
final products, with higher degrees of acceptability to
management. The basic graph to management presents some dependent
variable, such as utilization or response time, graphed against
transaction rate. With many dependent variables to be graphed,
management will find some continuity in being able to find the
faithful transaction rate on the independent axis. Find what
suits your immediate management, and use it to your advantage.

Acknowledgements.

The author wishes to gratefully acknowledge the following
individuals for their continued support during the modeling
studies: Raul Araujo, Dave Brown, Al Gonda, Fran Hildebrand, Tim
Jones, Arlie Lamb, and Mike McElwee, all of Pacific Telephone.

SHARE 61 Presentation August 1983 Page 23

:SSHARE~

SHARE SESSION REPORT

61 A085 A Research Queuing Package (RESQ) Model 45

SHARE NO.
BlsB ~Ien~action Processing System with

SESSION NO. SESSION TITLE ATTENDANCE

PJE Modeling and Analysis Bruce Hibbard

PROJECT SESSION CHAIRMAN INST. CODE

Project Software and Development, Inc., 14 Story Street, Cambride, MA 02138
617-661-1444, Ext. 214
SESSION CHAIRMAN'S COMPANY, ADDRESS, AND PHONE NUMBER

A Research Queueing Package (RESQ) Model of
A Transaction Processing System with DASD Cache

G; A. Marazas
IBM Corporation
P. O. Box 1328
Boca Raton, FL 33431

Alvin M. Blum and Edward A. MacNair
IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

SHARE Installation Code: IBM

SHARE Project: Modelling and Analysis

SHARE Session Number: A085

Abstract: The Research Queueing Package (RESQ) is a tool for constructing
and solving models of contention systems. A contention system is a col­
lection of interconnected resources and jobs which demand service from
these resources. Examples of contention systems are computer systems,
communication networks, manufacturing systems, office systems and dis­
tributed systems. We first illustrate the basic facilities available in
RESQ for representing such systems and provide a simple example in order
to illustrate their use.

Next we describe how RESQ has been used as an analysis tool to assist
in the development of the disk cache portion of the IBM 4967 disk control
unit for the IBM Series/1 computer system. The discussion here has wider
application because the same design problems considered for the 4967 will
also occur in one form or another in disk controllers connected to systems
ranging in size from the Personal Computer to the top of· the line MVS and
VM systems. Also, programming design has a need similar to hardware
design as to modeling and understanding sequence relationships and over­
lap in a complex system with many process steps. Based on such modeling
experience, it is the authors' opinion that the RESQ approach involving a
network of queues and the facility of passive queues is very well suited
for investigation of many design issues associated with development of
hardware B.S well as both operating systems and applications programming.

4/Y/LEJ/1

=

CONTENTS

1. Introduction•....•
(a). The Research Queueing Package (RESQ)
(b). A RESQ Example•.•.

2. A Model of a Transaction Processing System with DASD Cache

3. Description of Transaction Processing System

4. Operation of Disk Cache Subsystem
(a). High-Level Model of Disk Cache
(b). Model Representation of Hit Processing and Miss Processing
(c). Discussion of the Physical Access Model and Consistency of
Response Time•......•

5. Model of Service Time for Physical Disk Access

6. A Measure for Consistency of System Response Time

7. Results

8. Conclusions

9. Acknowledgements

Contents

1
1
3

8

9

11
12
13

14

16

18

19

20

21

1. INTRODUCTION

The continuing use of computer modeling techniques [2,4J has led to a
need for a comprehensive set of tools for representing systems which are
becoming increasingly complex. The Research Queueing Package (RESQ)
[8-12J had its genesis in the solution of simple (by current standards)
queueing networks that were not feasible by manual methods. As new nUmer­
ical algorithms (e.g., ~lean Value Analysis [3J) and simulation constructs
(e.g., "passive" queues [4]) have been developed, they have been imple­
mented in RESQ to extend its application to more general types of systems
and to enhance its computational efficiency. In order to familiarize the
reader with RESQ concepts and notation, this section describes how RESQ is
used in modeling systems. In the remaining sections, we discuss the use
of RESQ as an analysis tool to assist in the development of the disk cache
portion of the IBH 4967 disk control unit for the IBH Series/1 computer
system.

(A). THE RESEARCH QUEUEING PACKAGE (RESQ)

The Research Queueing Package (RESQ) is a set of programs for the con­
struction, analysis, and solution of models of contention systems. Con­
tention systems are collections of interconnected resources through which
basic entities (jobs) flow and demand service. RESQ provides extensive
facilities for representing both the resource network and the behavior of
jobs within that network. Models can be solved by simulation, or where
the model structure, parameters, and assumptions permit, by one of several
known analytical methods. Currently under development are approximation
techniques that will offer numerical solution methods for a larger set of
system configurations.

In RESQ, system resources are represented by "queues." Queues are
grouped into two general categories, "active" and "passive." Jobs in
active queues cannot interact with other model elements while remaining in
the queue; those in passive queues can simultaneously occupy other system
resources and perform other activities. Active queues are further subdi­
vided into types based upon their service disciplines: first come first
served (FCFS), last come first served (LCFS), priority (PRTY), preemptive
priority (PRTYPR), infinite server (IS), processor shared (PS), and a
generic queue type called ACTIVE. This last type permits representation of
active queues (such as multiple servers with different rates) for which
there is no predefined RESQ queue entity. Associated with active queues
are one or more "classes" (waiting lines) which may be used to distinguish
jobs with different service time distributions and, where appropriate,
priorities.

Passive queues are used to model concurrency of events. Each passive
queue has an associated tftoken pool." When jobs arrive at a passive

1. Introduction

0)

Con

queue, the RESQ program attempts to allocate a user-specified number of
tokens from the associated token pool. If the pool does not contain the
required tokens, the job is delayed until they become available. Passive
queues are often used for modeling contention for shared resources such as
computer memory, input/output channels, controllers, etc. Response time
measurements and the representation of communication protocols are two
additional typical uses for passive queues.

The structure of a model is defined by linking resources together by
means of "chains." Chains designate the permissible paths over which jobs
can be routed. Chains are either "closed" or "open," and also either "ex ...
ternal" or "internal." Closed chains have a fixed "population" of jobs
which circulate in the chain for the entire model execution time. 1n gen­
eral, open chains contain a variable number of jobs that are generated at
input "sources" to the chain and terminated at "sinks." External and
internal chains are used with "submodels, It which are parameterized tem'"
plates of user defined subsystems. Exte~nal chains are connected to chains
within the exterior model (or submodel) that invokes the submodel.
Internal chains on the other hand are contained entirely within a
submodel. Both external and internal chains can be either open or closed;
however, an external chain is open (closed) if the chain to which it is
connected is open (closed).

Several RESQ entities are provided to add flexibility in modeling
alternative timings, configurations, job routing, etc. "Numeric" and
"distribution parameters" can be modified before each solution of a model
to test the effect of variations in arrival and service rates and distrib ...
utions, number of users, memory size, etc. "Job variables" are associated
with each job to define its behavioral characteristics, such as its
"type", memory and service requirements, and routing decisions. "Chain
variables" can be identified with each chain and are accessible only to
jobs within that chain. "Global variables" may be accessed from anywhere
within their defined (model or submodel) scopes to allow for communication
between jobs and other RESQ entities. Job, chain, and global variables
are assigned values at "set" nodes by "expressions" with rules closely
resembling those found in most programming languages. In RESQ simulation
models, expressions containing job, chain, and global variables, can be
used to model status dependent assignments and decisions.

Some other RESQ entities are "split", "fission, II and tlfusion" nodes
which permit the splitting of jobs into copies, another method for model­
ing simultaneity as well as signaling between, and sychronization of,
processes. The split and fission nodes create additional copies of a job
passing through the node; a fusion node joins those jobs that have previ­
ous ly separated at a fisson node.

A variety of measures are available for evaluating system performance.
These include resource utilization and throughput, mean queue length,
queue length distribution, mean queueing time, and queueing time distrib­
ution. Similar output is also available for the usage of passive queue
tokens. For numerically (as opposed to simulation) solved models, only
utilization, throughput, mean queue length, and mean queueing time are
provided.

1. Introduction 2

Since simulation is equivalent to a statistical sampling experiment,
RESQ makes available three methods for generating confidence intervals
for performance measurements. Under the "independent replications"
method, the simulation is executed several (user specified) times with
different sequences of random numbers. An "initialization" period may be
specified for each replication; data collected during this period will be
discarded when calculating output statistics. The effect of transient
results may thus be minimized, permitting model equilibrium to be better
approximated. A confidence interval with a (user) specified confidence
level is then calculated after all replications have been completed. The
"spectral" confidence interval method [1] uses the correlation properties
of sequential values of the measured parameter instead of relying soley
upon the assumption of independence. It too provides options for specify­
ing a confidence level, run limits, and initialization period, as well as
a sequential stopping rule whereby the user designates a confidence inter­
val width criterion for terminating the simulation. The "regenerative"
method [2,4] has some very special requirements for its use. A state in
the model must be identified at which the system "regenerates." That is,
the future behavior of the system is independent of all states prior to
entrance into the regeneration state. The regenerative method provides
all the options of the spectral method except for initialization period
specification.

The next section describes a simple mutiprogramming computer system
model illustrating some of the RESQ facilities mentioned above.

(B). A RESQ EXAMPLE

We will describe a simple model of an interactive computer system to
illustrate some of the features of RESQ. Figures 1.1 and 1.2 are diagrams
of the model. The model is structured hierarchically with a submodel
representing the computer system with its memory, CPU and two input/output
devices. The terminals are defined at the highest level of the model.

TERMINALS

rl?~rCSSMi: o~'mm __ m 1
Figure 1.1. Terminals and submodel

Commands submitted from the terminals go through a set node to deter­
mine the type of command which was submitted. Each command requests a cer­
tain number of memory page frames at allocate node GETMEMORY. If the
request can be satisfied, the command is permitted to enter the CPU-I/O

1. Introduction 3

=
~

subsystem. Otherwise the command will wait until there is a sufficient
number of page frames. The command then cycles between the CPU and one of
the I/O devices. The number of cycles is determined by the type of
command. When the command is finished, it releases its allocation of memo­
ry page frames at release node FREEMEMORY and sends a response back to the
terminals.

MEMORY .0,
.................. i·Lq~~1~~ql~~····]

SETCMDTYPE i ~: ~i i " CPU . ::7! ... Y.\ : ~ ~ I L ~ DECRCYCLE i FREEMEMORY

(INPUT) ~~RY I . ..L9~2.DISK ;JJ-01" ;
. . , ' L~. ___________ ~

Figure 1,2. Computer system submodel

First we will describe the contents of the model with the submodel
removed. The following is a listing of the model.

MODEL:CSM
METHOD: simulation
NUMERIC PARAMETERS:thinktime users
NUMERIC IDENTIFIERS:userframes

USERFRAMES : 50
MAX JV: 1 /*0: commanc;l type, 1: cycle count* /
QUEUE:terminalsq

TYPE: is
CLASS LIST:terminals

SERVICE TlMES:thinktime
INCLUDE:cssm
INVOCATION:cssml

TYPE:cssm
PAGEFRAMES:userframes
INTERACTIV:interactiv

CHAIN:interactiv
TYPE: closed
POPULATION:users
:terminals->cssml.input
:cssml.output->terminals

QUEUES FOR QUEUEING TIME DIST:cssml.memory
VALUES:l 2 3 4 5 6 7 8

QUEUES FOR QUEUE LENGTH DIST:cssml.memory
MAX VALUE:users
CONFIDENCE INTERVAL METHOD:spectral
INITIAL STATE DEFINITION -

1. Introduction 4

END

CHAIN:interactiv
NODE LIST:terminals

INIT POP:users
CONFIDENCE LEVEL:90
SEQUENTIAL STOPPING RULE:yes
CONFIDENCE INTERVAL QUEUES:terminalsq cssml.memory cssml.cpuq

MEASURES:qt
ALLOWED WIDTHS: 10

CONFIDENCE INTERVAL QUEUES:cssml.iosysl.diskq cssml.iosys2.diskq
MEASURES: qt
ALLOWED WIDTHS:lO

INITIAL PORTION DISCARDED: 10 /*percent" /
INITIAL PERIOD LIMITS -

SIMULATED TlME:3600
EVENTS: 50000
QUEUES FOR DEPARTURE COUNTS:cssml.memory

DEPARTURES:500
LIMIT - CP SECONDS:5
TRACE:no

The name of the model is CSM. Simulation will be used as the solution
method. Two numeric parameters are defined: THINKTlME and USERS. Numeric
parameters are variables which will receive values when the model is eval­
uated, THINKTlME will be the service time at the terminals. USERS will be
the number of terminals. A numeric identifier called USERFRAMES is defined
to have a value of 50; this will be used as the total number of memory page
frames. Each job will have two job variables: JV(O) will indicate the type
of command, and JV(l) will be a counter indicating the number of times a
command cycles through the CPU-I/O subsystem. The TERMINALSQ is an infi­
nite server queue with the think time being a numeric parameter.

The definition of the computer system submodel CSSM is retrieved by
using the INCLUDE facility. This facility permits a submodel definition to
be retrieved from a library and logically inserted into the model defi­
nition. A copy of the submodel is created with the CSSM1 invocation. The
two submodel parameters, PAGEFRAMES and INTERACTIV, are assigned values
USERFRAMES and INTERACTIV. A closed chain is defined with a population
equal to the numeric parameter USERS. The routing is from the terminals to
the submodel input, and from the output of the submodel back to the termi­
nals; routing within the submodel is contained in the submodel defintion.
The model also requests RESQ to collect statistics for the queueing time
distribution and the queue length distribution at the getmemory queue
(within the submodel) in addition to collecting the other standard statis­
tics.

The remainder of the model specifies information related to the confi­
dence intervals and the length of the simulation run, We are using the
spectral method [1) for generating the confidence intervals. All of the
users will be initialized at the terminals. We will use 90 percent as the
confidence level. The sequential stopping rule is employed to determine
when the desired level of accuracy has been attained. Confidence inter-

1. Introduction 5

CD
-.l

vals for the mean queueing times at the specified queues will be con­
structed by RESQ. When the confidence interval width divided by the point
estimate is less than 10 percent, the simulation program will stop. 10
percent of the initial portion of the run will be discarded. This could
represent a transient portion of the simulation. The initial period for
the sequential stopping rule will be when 3600 time units have elapsed,
50000 events, or 500 departures from the MEMORY queue.

SUBMODEL: cssm /"Computer System Submodel*/
NUMERIC PARAMETERS:pageframes
CHAIN PARAMETERS:interactiv
NUMERIC IDENTIFIERS:cmdtype cyclecount

CMDTYPE:O /*JV(O) to be used to indicate command type*/
CYCLECOUNT:I /*JV(l) to be used to count CPU-I/O cycles*/

NUMERIC IDENTIFIERS:cpiocycles(3) pageneed(3)
CPIOCYCLES: 8 15 50
PAGENEED: 20 24 30

NUMERIC IDENTIFIERS:cputime
CPUTlME: .025 /"mean time in seconds* /

QUEUE:memory
TYPE:passive
TOKENS: page frames
DSPL:fcfs
ALLOCATE NODE LIST:getmemory

NUMBERS OF TOKENS TO ALLOCATE:pageneed(jv(cmdtype))
RELEASE NODE LIST:freememory

QUEUE:cpuq
TYPE:ps
CLASS LIST: cpu

SERVICE TlMES:cputime
SET NODES:setcmdtype

ASSIGNMENT LIST:jv(cmdtype)=discrete(1,.8;2,.15;3,.05),++
jv(cyclecount)=cpiocycles(jv(cmdtype))

SET NODES:decrcycles
ASSIGNMENT LIST:jv(cyclecount)=jv(cyclecount)-l

INCLUDE:iosys
INVOCATION:iosysl

TYPE:iosys
INTERACTIV:interactiv

INVOCATION:iosys2
TYPE:iosys
INTERACTIV:interactiv

CHAIN:interactiv
TYPE: external
INPUT:setcmdtype
OUTPUT:freememory
:setcmdtype->getmemory->cpu->iosysl.input iosys2.input
:iosysl.output iosys2.output->decrcycles
:decrcycles->cpu freememory;if(jv(cyclecount»O) if(t)

END OF SUBMODEL CSSM

1. Introduction 6

The CSSM submodel has a numeric parameter, PAGEFRAMES, which is the
total number of memory page frames. A chain parameter is defined in the
submodel to connect the chain in the submodel to the chain in the model.
The numeric identifiers CMDTYPE and CYCLECOUNT will be used as mnemonic
subscripts for the job variables. The numeric identifiers CPCIOCYCLES and
PAGENEED are vectors; their values are the number of CPU-I/O cycles and
the number of pages required by the three different types of commands.
CPUTlME is a numeric identifier representing the average amount of time a
command spends running on the CPU during each visit.

Next we have the queue definitions. The memory qaeue is a passive queue
with PAGEFRAMES equal to the number of tokens. The number of tokens to
allocate to a command will be selected from PAGENEED according to the type
of command. The CPU queue has the processor sharing queueing discipline.
At SETCMDTYPE, the job variables representing the command type and the
number of CPU-I/O cycles are assigned values. Each time the command fin­
ishes a cycle, the job variable representing the cycle count is decre­
mented by one at DECRCYLES. We INCLUDE a submodel for an I/O device.
Notice that this submodel is nested within the CSSH submodel. Two copies
of the IOSYS submodel are created with the two invocations IOSYSl and
IOSYS2. The only parameter is a chain parameter.

The ~hain in CSSM is an external chain because it is be connected to
the chain defined in the model. Input and output nodes are defined to
indicate the nodes at which jobs enter and leave the submodel. A command
which enters the submodel starts at SETCMDTYPE. After setting the command
type and the cycle count, a request is made at the allocate node,
GETMEMORY, to allocate page frames. When a sufficient number of page
frames are available, the command cycles between the CPU and an I/O
device. When a job leaves the I/O submodel, the number of remaining
cycles is decremented by one, and the job goes back to the CPU if the num­
ber of cycles if greater than zero. Otherwise, the job releases its page
frames and leaves the submodel.

SUBMODEL:iosys
CHAIN PARAMETERS:interactiv
QUEUE:diskq

TYPE:fcfs
CLASS LIST:disk

SERVICE TIMES:.06
CHAIN:interactiv

TYPE: external
INPUT: disk
OUTPUT: disk

END OF SUB MODEL IOSYS

The IOSYS submodel consists of only an active queue for a disk device.
It has a chain parameter because the chain in this submodel is connected
to the chain defined in the CSSM submodel. Since the DISK class is the
input and output node for this submodel, no routing statements are neces­
sary.

1. Introduction

CI)
OC

2. A MODEL OF A TRANSACTION PROCESSING SYSTEM WITH DASD
CACHE

The question of consistency in system level response is used as the
vehicle for demonstrating how the facilities provided by RESQ are used to
good advantage. In particular, the consistency in response time is
affected by the operation of DASD cache in the presence of application
determined parameters such as cache hit ratio, the ratio of disk reads to
disk writes, and the degree of overlap between CPU service and disk ser­
vice. Additionally, the consistency of systems level response time is
influenced by the design of the cache management algorithms as well as the
fact that the cache control and cache buffer have been located in the disk
control unit. The intent of this paper is to emphasize the approach taken
in the development of the model rather than any specific results deter­
mined from exercise of the model.

It must be noted that any performance data referenced herein was deter­
mined in a controlled environment, and therefore, the results which may be
obtained in other operating environments may vary significantly. Users of
this paper should verify the applicable data for their specific environ­
ment. It is possible that this material may contain reference to, or
information about, IB~1 products (machines and programs), programming or
services that are not announced in your country. Such reference or infor­
mation must not be construed to mean that IBM intends to announce such IBM
products, programming, or services in your country.

2. A Hodel of a Transaction Processing System with DASD Cache 8

3. DESCRIPTION OF TRANSACTION PROCESSING SYSTEM

Figure 3.1 provides a summary in RESQ terminology of the transaction proc­
essing which is the subject of this paper. For purposes of being
specific, the IBH Series/l is used as the example system. During the
course of the following discussion, selected portions of the systems such
as the disk controller and cache buffer are identified as the focal points
for design issues. These selected portions are then modeled in additional
detail so as to reflect the major hardware and programming interactions
which are judged to be important. Other portions of the system such as
the operating system and central processor unit (CPU) are not modeled in
any further detail because they are not involved in the design questions
being investigated.

.cu
//"

./

Figure 3.1. High Level Simulation Model of Transaction Processing System

As shown in Figure 3.1, transactions originate from a set of connected
terminals. The system level response time is measured using a passive
queue with a large supply of tokens such as 10,000. The response time
interval begins with the start of a service request message from a given
terminal directed to the CPU. The end of the response time interval
occurs when the reply message is sent from the CPU back to the originating

3. Description of Transaction Processing System

en =

terminal. For purposes of the present investigation, it is not necessary
to model the length of either the service request message or the reply
message. Neither is it necessary to consider the speed of the trans­
mission line or the communications protocol connecting the terminal to the
CPU. Our interest is focused on the amount of CPU and disk service per­
formed in response to the request portion of the transaction.

A second passive queue controls the number of transactions (the multipro­
gram level) which may be concurrently present in the main memory attached
to the central processor unit. In the case of maximum interest for con­
sistency of response time, the multiprogram level should be in the range
of 50 to 100 larger than the number of attached disk units. Addi­
tionally' the number of attached terminals and terminal think time should
be selected so as to ensure the number of transactions active in the CPU
are near the multiprogram level. In this manner, the disk control unit
will have a high prospect for overlapped operation relative to its
attached disk units.

Figure 3.1 shows one passive queue for each of the four attached disk
units. A larger number of disk units and controllers are capable of being
connected to the Series!1 but the number shown in Figure 3.1 is sufficient
for this paper. For each passive queue, the token pool equals one. In
this manner, it is assured that one and only one access at a time is
directed to any given disk unit. A disk unit not presently occupied with
an access may accept a new access. This represents the actual state of
affairs in which queueing for individual disks is maintained within the
CPU. The probabilities P1, P2, P3, and P4 reflect the probabilities of an
access to the given disk units one through four. To represent the well
known phenomenon of unequal accessing of disk units, (also known as disk
skew), the probability Pl=0.4 and the probabilities P2, P3, and P4 are
each 0.2.

The access control mechanism is provided to ensure that an exact number of
disk accesses are involved in the service of each transaction. In this
manner, the amount of disk burden is removed as a variable influencing the
consistency of system response time. For the study reported here, a rela­
tively heavy disk burden of 20 accesses per transaction is used.

3. Description of Transaction Processing System 10

4. OPERATION OF DISK CACHE SUBSYSTEM

Figure 4.1 illustrates the four possibilities relative to an individual
access in a system with disk cache implemented in the disk control unit.

Read Hit: Transfer Data Amount 1 From Cache Buffer to the CPU

Read Miss: (a). Read Data Amount 2 From Disk Into the Cache Buffer
(b). Transfer Data Amount 1 From Cacge Buffer to the CPU

Write Hit: (a). Transfer Data Amount 1 From CPU to Disk
(b). Optionally, Update the Cache Buffer

Write Miss: Transfer Data Amount 1 From CPU to the Disk

Figure 4.1. Process Responses for the Four Possibilities of an
Access in a Disk Cache --- Cache Located in Disk Controller

The terminology of read/write reflects the perspective of the disk. Thus,
a disk read involves a transfer of data from the disk to the CPU; and a
disk write involves the transfer of data from the CPU to the disk. A hit
is the case in which the referenced data is presently in the cache buffer.
A miss is the case in which the data is not in the cache buffer. A given
disk access is either a hit or a miss; with the result that the probabili­
ty of a hit and the probability of a miss add up to one.

The primary information conveyed by Figure 4.1 is the response of the
Series/I IBM 4967 disk cache control system to the four cases of read hit
through write miss. The cache system and its response pattern is modeled
in RESQ terms as illustrated in Figure 4.2.

4. Operation of Disk Cache Subsystem 11

--J =

NOTE: PASSrvE QUEUE CNTlQ
SHARED BY ALL DISK UNITS

DISKIO

FUSION
NODE

Figure 4.2. Cache Control Portion of Disk Unit I ~lodel

Before discussing the modeling of the cache process sequence, the reader's
attention is directed to the relation between Figure 3.1 and Figure 4.2.
Specifically, Figure 4.2 is an expansion in detail relative to cache con­
trol functions for a single disk unit shown in Figure 3.1. Thus, the
structure shown in Figure 4.2 is repeated four times in the system model,
once for each disk unit connected. In a later section, there will be pro­
vided a still further expansion in detail as to the service time associ­
ated with a physical access to a disk unit.

(A). HIGH-LEVEL MODEL OF DISK CACHE

The process flow depicted in Figure 4.2 is as follows. A task cannot
enter a disk unit until it acquires the single token for that queue. For
DISKl, the entrance controlling passive queue is called DISKIQ. As stated
earlier, this passive queue guarantees that only one task at a time is in
service for any given disk.

A special feature shown in Figure 4.2 is the representation of overlap in
operation between disk service and execution of instructions in the CPU.
The fission node represents the creation of two related simulation tasks
in relationship to a single service action for DISKl. RESQ operates to
prevent exit from the companion fusion node until both of the two created
tasks are completed. This fission/fusion node pairing models the situ­
ation in which the total service time of CPU execution or disk service.

4. Operation of Disk Cache Subsystem 12

Consequently, the improvement caused by successful operation of disk
cache is moderated by the amount of CPU overlap time.

Repeating for emphasis, two tasks - a CPU overlap task, and a disk service
task - leave the fission node and are later recombined at the companion
fusion node. This disk service task enters a new passive queue denoted as
CNTLQ in Figure 4.2. A discussion of the operation of passive queue CNTLQ
is deferred until the section devoted to modeling the physical access por­
tion of disk service. For the present, the disk service task eventually
receives its token and proceeds with the service time represented by the
box with label "CACHE ALGO HGHT". The given box represents the processing
time undertaken by the disk controller to determine if the given disk
access is a cache hit or a cache miss. Other housekeeping details associ­
ated with the management of the cache buffers are also included within
this service block.

(B). MODEL REPRESENTATION OF H IT PROCESSING AND MISS PROC­
ESSING

Continuing in Figure 4.2, the disk service task proceeds through a prob­
abilistic routing choice to obtain service as a cache hit or a cache miss.
The probabilities P(HIT) and P(HISS) reflect the success of the cache
buffer management policies in the presence of the given application envi­
ronment. Based on Figure 4.1, the model in Figure 4.2 reflects the buffer
management decision that a hit involves transfer of data between the CPU
and the cache buffer. Note that the token from CNTLQ is not released
until after the data transfer is completed. The case of a miss requires a
physical access to the disk which is represented in Figure 4.2 by entry-to
the DISKI physical access model. Note further that for the case of a
miss, the token from CNTLQ is released immediately after completion of the
cache algorithm management function. RESQ permits two or more release
nodes in relation to a given allocation node.

It should be observed in Figure 4.1 that several distinctions are made
between a read access and a write access. In particular, the data trans­
fer amount differs between a read and write. Another difference is that a
write hit requires a physical access to the disk whereas a read hit does
not. These circumstances are accommodated in Figure 4.2 by inclusion in
both the hit processing and in the miss processing sequences by a probabi­
listic branch based on the probability of a write access P(WRITE), and the
probability of a read access P(READ). As shown in Figure 4.2, both the
read hits and the write hits experience the service time associated with
data transfer with the CPU. The read hit then goes to the fusion node; the
write hit goes to the model of the physical access time portion of disk
service. As dictated by Figure 4.1, set nodes are used to set the data
transfer time used in the physical access model to correspond to data
transfer amount 2.

4. Operation of Disk Cache Subsystem 13

...:l

(C). DISCUSSION OF THE PHYSICAL ACCESS MODEL AND CONSIST­
ENCY OF RESPONSE TIME

Figure 4.3 provides the final level to be considered in the expansion of
detail for the disk cache subsystem.

PR=2
TKN=l

?{SEEK)

TKN=4

Figure 4.3. Cache Control Portion of Disk Unit I Model

,... The physical access model shown in Figure 4.3 represents the operation of
both the disk controller and the actual disk unit during the conduct of a
physical access to the disk unit. The major items are:

Processing the command in the disk controller so that the seek opera­
tion is sent to the proper disk actuator.

The delay associated with completing the seek operation at the disk
actuator.

The delay associated with waiting for the proper data record to rotate
under the disk read/write head. The time necessary to transfer the
requested data to or from the disk surface.

In terms of consistency of system level response time, the determining
factors are the degree to which there is overlap of process times among
several disks balanced against blockage by one disk of operations on
another disk.

The potential impact of the disk cache can be reviewed in conceptual
terms. Without the cache, all disk service requests become physical disk
accesses and there is a great need to achieve overlap. However, under
heavy load, the existence of skew and the operation of precedence
relations described in the next section act to delay many disk accesses
within the disk controller. With the disk cache, many of the disk service

4. Operation of Disk Cache Subsystem 14

requests are satisfied very rapidly by the cache with the service model
shown in Figure 4.2. with disk cache, a much reduced number of disk ser­
vice requests become physical disk access. For those physical accesses
remaining, there is a much improved chance for normal service. Consisten­
cy response time is potentially improved by the combination of the rapid
service associated with the cache buffer and the much improved chances for
the slower physical accesses to proceed without delay.

4. Operation of Disk Cache Subsystem 15

...:t
N

5. MODEL OF SERVICE TIME FOR PHYSICAL DISK ACCESS

The model structure depicted in Figure 4.3 is intended to simulate the
sequence relationships shown in Figure 5.1.

* Overlap is Possible Among Seek Operations for Different Disks

" No Overlap of Rotation Delay and Data Transfer for Different
Disks

* Cache Algorithm Management and Processing of Seek Commands can
Continue if Initiated Prior to Start of Rotation Delay
Data Transfer

* Start of Rotation Delay and Data Transfer Blocks Start of New
Cycle of Cache Algorithm Management and Processing of Seek
Commands

* Once Started a Seek Operation on One Disk can Continue During
Rotation Delay and Data Transfer on Another Disk

Figure 5.1. Sequence Relationships for Operations Involving Disk
Controller and Disk Unit

Such sequence precedence indicates which process of events can be over­
lapped among mUltiple disk units and the circumstances under which one
disk can block the start of other events on a different disk. These
sequence relations are dictated by the design considerations and limita­
tions of available disk controllers. In particular, controllers of inter­
est within a Series/l environment implement only a single read/write path
between the I/O channel and the attached disks. Thus, only one disk at a
time can be actively involved in transferring data. By way of contrast,
each disk can undertake an independent seek operation and these can be
overlapped.

In comparing the degree to which the model in Figure 4.3 correctly repres­
ents the functions of Figure 5.1. special emphasis is placed on the role
played by the passive queue CNTLQ. This same passive queue appears in
Figure 4.2 relative to process time for cache management algorithms. The
key feature of queue CNTLQ is that it allocates tokens on a priority basis
and in different amounts at each of the allocation nodes. The start of
rotation time delay and data transfer time processes on one disk in the
IBM 4967 controller will prevent the start of a new seek operation or any
process of a new seek command for any other disk attached to the same con­
troller. However, the seek operation could continue on other disks in
overlap fashion if started before the rotation time delay/data transfer
delay on the other disk. Thus, there is much motivation to 'initiate if

5. Model of Service Time for Physical Disk Access 16

possible new seek operations on the rema1n1ng disks prior to start of
rotation delay on a given disk having previously completed its seek opera­
tion.

Figure 4.3 shows one way in which the desired sequence relations can be
simulated. It is seen that the allocation node prior to rotation time
delay has the lowest priority (priority three, denoted as PR=3) among all
allocation nodes for CNTLQ. Also, the rotation delay allocation node
requires all four of the available tokens (denoted as TKN=4). Assume that
while a seek command or algorithm processing cycle is underway on DISK!
that DISK2 has completed its seek operation. The operation of the priori­
ty allocation of tokens allows the command processing on DISKl to run to
completion. The seek operation itself requires no tokens so that the seek
operation can start immediately after completion of processing the seek
command. Thus, DISK! releases its token at the completion of processing
the seek command. DISK2 may acquire that token and thereby fulfilling the
token requirement for it to proceed. The objective is met for overlapping
a seek on DISK1 with rotation delay on DISK2.

If the seek operation on DISK1 finishes before DISK2 is finished with its
service, then DISKl must wait to start its rotation delay until DISK2
releases its four tokens. DISK2 could then seize them if no high priority
request existed.

Completing the description is the case in which a rotation delay period
has started on DISK2 and afterwards a seek command arrives at DISK3. In
this case, DISK2 has all the available tokens and blocks the start of com­
mand processing on DISK3. Finally, DISK2 finishes its service and
releas~s its four tokens. If DISK1 were waiting for the start of its
rotation delay, that rotation delay on DISK1 waits to get started until
DISK3 completes processing of the seek command. Finally, DISKI is able to
obtain all four tokens for start of its operation. As a minor point, both
the allocation node and service processing for management of cache algo­
rithms are given higher priority than allocation node and service process­
ing for the seek command. Thus, if a service request has arrived at
DISK4, its cache processing is completed before processing of the seek
command on DISK3 or the rotation delay on DISK1.

5. Model of Service Time for Physical Disk Access 17

'" W

6. A MEASURE FOR CONSISTENCY OF SYSTEM RESPONSE TIME

As an example of some of its more valuable outputs, RESQ provides for
evaluation of both the average value of system level response time as well
as the statistical distribution of this response time. The calculation
process for the distribution is based on counting the fraction of
responses which are longer than specified check point values. As experi­
ence is gained through repeated exercise of the model, the required check
point values for response time can be given in relation to the previously
determined average value of response time. In this manner, the fraction
of responses can be found which are two times or even three times longer
than the average value of all response times.

In many heavily used systems, it is not at all unusual to find that the
slowest 10 of response times are up to three times the average response
time. Such a state of affairs is very disturbing to the users at the ter­
minals. Often it is the low fraction of very slow responses which make
the impression on the user community. In the authors' opinion, these
users tend to perceive the average value of response time to be much long­
er than it actually is based on their frustration with the inconsistent
longer response times. Consequently, it is desirable to achieve a con­
sistency level wherein much less than 10 of the slowest responses are
more than 1.5 or 2.0 times the average response.

Ideally, the disk cache provides for improvement in consistency as well as
improvement (reduction) in the value of average response time for the work
load previously applied to the system. A further desirable feature for
disk cache is an ability to preserve consistency in response times as the
average value increases due to increases in workload which can be applied
to the computer system.

6. A Measure for Consistency of System Response Time 18

7. RESULTS

Reported below are representative results to the consistency of system
level response times for a Series/1 system based on a composite of instal­
lations visited by the author. Without DASD cache, the system is disk
bound. The typical access at the disk unit can be taken as 38 millisec­
onds; and the typical CPU process time per access can be taken as 22
milliseconds, with perhaps 10 or 20 of this in overlap with the disk
time. The case is considered where there are exactly 20 disk accesses per
transaction, a hit ratio of 75 and four read accesses per each write
access. Without the disk cache, the RESQ simulation showed the average
response time to be 1.6 seconds and nearly 8 of responses were longer
than three times the average. Under the same workload and with disk
cache, the average response time is reduced to .96 seconds - a 40
improvement. As to consistency, there is also a significant improvement
with fewer than 5 of responses being no more than twice the average
response time. Similar benefits are maintained when the number of
attached terminals is increased significantly.

7. Results 19

-..1 ...

8. CONCLUSIONS

The RESQ simulation provides a powerful and useful tool for gaining
increased understanding regarding responses and interactions in a complex
environment such as the transaction processing system with DASD cache
described here.

Quantification is made possible for the significant improvement in
response time and consistency achievable in many application environments
with disk cache. As to RESQ, the real-system features of a priority
structure for processing with combinations of overlap and precedence
relations are easily represented by simulation facilities provided by
RESQ. Additionally, simulation provides the only available means for
determining the distribution in response time so crucial to the present
study.

8. Conclusions 20

9. ACKNOWLEDGEMENTS

The first author gratefully wishes to acknowledge the support and encour­
agement of Dr. Jerry Merckel and Mr. Richard Robinson, as well as the sig­
nificant contributions to engineering development of the IBM 4967 disk
controller achieved by Mr. Jerry Dixon and Mr. Andrew MacNeil.

We are also grateful to the many colleagues and RESQ users who have
helped us in this work. We particularly wish to thank Charles H. Sauer.

REFERENCES

1. P. Heidelberger and P.D. Welch, "A Spectral Method for Confidence
Interval Generation and Run Length Control in Simulations," CACM,
Vo1.24, No.4, pp. 233-245, (April 1981).

2. S.S. Lavenberg (Editor), E.A. MacNair, H.M. Markowitz, C.H. Sauer,
G.S. Shedler and P.D. Welch, Computer Performance Modeling Handbook,
Academic Press (1983).

3. M. Reiser and S.S. Lavenberg, "~!ean Value Analysis of Closed Multi­
chain Queueing Networks," JACM 27, 2 (April 1980) pp. 313-322.

4. C.H. Sauer and K. M. Chandy, Computer System Performance Modeling,
Prentice-Hall (1981).

5. C. H. Sauer and E. A. MacNair, "Queueing Network Software for Systems
Nodeling," Software-Practice and Experience 9 , 5 (Nay 1979).

6. C.H. Sauer and E.A. NacNair, "The Research Queueing Package Version 2:
Availability Notice," IBM Research Report RA-144, Yorktown Heights,
New York (August 1982) .

7. C.H. Sauer and E.A. MacNair, Simulation of Computer Communication
Systems, Prentice-Hall (1983).

8. C.H. Sauer, E.A. MacNair and J.F. Kurose, "The Research Queueing Pack­
age Version 2: Introduction and Examples, II IBM Research Report
RA-138, Yorktown Heights, New York (April 1982).

9. C.H. Sauer, E.A. MacNair and J.F. Kurose, liThe Research Queueing Pack­
age Version 2: eMS Users Guide," IBM Research Report RA-139, Yorktown
Heights, New York (April 1982).

10. C.H. Sauer, E.A. MacNair and J.F. Kurose, "The Research Queueing Pack­
age Version 2: TSO Users Guide, II IBM Research Report RA-140, Yorktown
Heights, New York (April 1982).

11. C.H. Sauer, E.A. MacNair and J.F. Kurose, "The Research Queueing Pack­
age: Past, Present and Future," Proceedings of the National Computer
Conference, pp. 273-280 (June 1982).

12. C.H. Sauer, E.A. MacNair and S. Salza, If A Language for Extended Queue­
ing Network Models," IBM Journal of Research and Development, Vol. 24,
No.6, pp. 747-755, (November 1980).

9. Acknowledgements 21

