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We have found that the best form of presentation for management is 
graphic in nature. Generally, graphs present considerable 
information in a concise manner. Tabular reports have been 
aggresively avoided. We believe this approach offers superior· 
final products, with higher degrees of acceptability to 
management. The basic graph to management presents some dependent 
variable, such as utilization or response time, graphed against 
transaction rate. With many dependent variables to be graphed, 
management will find some continuity in being able to find the 
faithful transaction rate on the independent axis. Find what 
suits your immediate management, and use it to your advantage. 
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Abstract: The Research Queueing Package (RESQ) is a tool for constructing 
and solving models of contention systems. A contention system is a col­
lection of interconnected resources and jobs which demand service from 
these resources. Examples of contention systems are computer systems, 
communication networks, manufacturing systems, office systems and dis­
tributed systems. We first illustrate the basic facilities available in 
RESQ for representing such systems and provide a simple example in order 
to illustrate their use. 

Next we describe how RESQ has been used as an analysis tool to assist 
in the development of the disk cache portion of the IBM 4967 disk control 
unit for the IBM Series/1 computer system. The discussion here has wider 
application because the same design problems considered for the 4967 will 
also occur in one form or another in disk controllers connected to systems 
ranging in size from the Personal Computer to the top of· the line MVS and 
VM systems. Also, programming design has a need similar to hardware 
design as to modeling and understanding sequence relationships and over­
lap in a complex system with many process steps. Based on such modeling 
experience, it is the authors' opinion that the RESQ approach involving a 
network of queues and the facility of passive queues is very well suited 
for investigation of many design issues associated with development of 
hardware B.S well as both operating systems and applications programming. 
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1. INTRODUCTION 

The continuing use of computer modeling techniques [2,4J has led to a 
need for a comprehensive set of tools for representing systems which are 
becoming increasingly complex. The Research Queueing Package (RESQ) 
[8-12J had its genesis in the solution of simple (by current standards) 
queueing networks that were not feasible by manual methods. As new nUmer­
ical algorithms (e.g., ~lean Value Analysis [3J) and simulation constructs 
(e.g., "passive" queues [4]) have been developed, they have been imple­
mented in RESQ to extend its application to more general types of systems 
and to enhance its computational efficiency. In order to familiarize the 
reader with RESQ concepts and notation, this section describes how RESQ is 
used in modeling systems. In the remaining sections, we discuss the use 
of RESQ as an analysis tool to assist in the development of the disk cache 
portion of the IBH 4967 disk control unit for the IBH Series/1 computer 
system. 

(A). THE RESEARCH QUEUEING PACKAGE (RESQ) 

The Research Queueing Package (RESQ) is a set of programs for the con­
struction, analysis, and solution of models of contention systems. Con­
tention systems are collections of interconnected resources through which 
basic entities (jobs) flow and demand service. RESQ provides extensive 
facilities for representing both the resource network and the behavior of 
jobs within that network. Models can be solved by simulation, or where 
the model structure, parameters, and assumptions permit, by one of several 
known analytical methods. Currently under development are approximation 
techniques that will offer numerical solution methods for a larger set of 
system configurations. 

In RESQ, system resources are represented by "queues." Queues are 
grouped into two general categories, "active" and "passive." Jobs in 
active queues cannot interact with other model elements while remaining in 
the queue; those in passive queues can simultaneously occupy other system 
resources and perform other activities. Active queues are further subdi­
vided into types based upon their service disciplines: first come first 
served (FCFS), last come first served (LCFS), priority (PRTY), preemptive 
priority (PRTYPR), infinite server (IS), processor shared (PS), and a 
generic queue type called ACTIVE. This last type permits representation of 
active queues (such as multiple servers with different rates) for which 
there is no predefined RESQ queue entity. Associated with active queues 
are one or more "classes" (waiting lines) which may be used to distinguish 
jobs with different service time distributions and, where appropriate, 
priorities. 

Passive queues are used to model concurrency of events. Each passive 
queue has an associated tftoken pool." When jobs arrive at a passive 
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queue, the RESQ program attempts to allocate a user-specified number of 
tokens from the associated token pool. If the pool does not contain the 
required tokens, the job is delayed until they become available. Passive 
queues are often used for modeling contention for shared resources such as 
computer memory, input/output channels, controllers, etc. Response time 
measurements and the representation of communication protocols are two 
additional typical uses for passive queues. 

The structure of a model is defined by linking resources together by 
means of "chains." Chains designate the permissible paths over which jobs 
can be routed. Chains are either "closed" or "open," and also either "ex ... 
ternal" or "internal." Closed chains have a fixed "population" of jobs 
which circulate in the chain for the entire model execution time. 1n gen­
eral, open chains contain a variable number of jobs that are generated at 
input "sources" to the chain and terminated at "sinks." External and 
internal chains are used with "submodels, It which are parameterized tem'" 
plates of user defined subsystems. Exte~nal chains are connected to chains 
within the exterior model (or submodel) that invokes the submodel. 
Internal chains on the other hand are contained entirely within a 
submodel. Both external and internal chains can be either open or closed; 
however, an external chain is open (closed) if the chain to which it is 
connected is open (closed). 

Several RESQ entities are provided to add flexibility in modeling 
alternative timings, configurations, job routing, etc. "Numeric" and 
"distribution parameters" can be modified before each solution of a model 
to test the effect of variations in arrival and service rates and distrib ... 
utions, number of users, memory size, etc. "Job variables" are associated 
with each job to define its behavioral characteristics, such as its 
"type", memory and service requirements, and routing decisions. "Chain 
variables" can be identified with each chain and are accessible only to 
jobs within that chain. "Global variables" may be accessed from anywhere 
within their defined (model or submodel) scopes to allow for communication 
between jobs and other RESQ entities. Job, chain, and global variables 
are assigned values at "set" nodes by "expressions" with rules closely 
resembling those found in most programming languages. In RESQ simulation 
models, expressions containing job, chain, and global variables, can be 
used to model status dependent assignments and decisions. 

Some other RESQ entities are "split", "fission, II and tlfusion" nodes 
which permit the splitting of jobs into copies, another method for model­
ing simultaneity as well as signaling between, and sychronization of, 
processes. The split and fission nodes create additional copies of a job 
passing through the node; a fusion node joins those jobs that have previ­
ous ly separated at a fisson node. 

A variety of measures are available for evaluating system performance. 
These include resource utilization and throughput, mean queue length, 
queue length distribution, mean queueing time, and queueing time distrib­
ution. Similar output is also available for the usage of passive queue 
tokens. For numerically (as opposed to simulation) solved models, only 
utilization, throughput, mean queue length, and mean queueing time are 
provided. 
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Since simulation is equivalent to a statistical sampling experiment, 
RESQ makes available three methods for generating confidence intervals 
for performance measurements. Under the "independent replications" 
method, the simulation is executed several (user specified) times with 
different sequences of random numbers. An "initialization" period may be 
specified for each replication; data collected during this period will be 
discarded when calculating output statistics. The effect of transient 
results may thus be minimized, permitting model equilibrium to be better 
approximated. A confidence interval with a (user) specified confidence 
level is then calculated after all replications have been completed. The 
"spectral" confidence interval method [1] uses the correlation properties 
of sequential values of the measured parameter instead of relying soley 
upon the assumption of independence. It too provides options for specify­
ing a confidence level, run limits, and initialization period, as well as 
a sequential stopping rule whereby the user designates a confidence inter­
val width criterion for terminating the simulation. The "regenerative" 
method [2,4] has some very special requirements for its use. A state in 
the model must be identified at which the system "regenerates." That is, 
the future behavior of the system is independent of all states prior to 
entrance into the regeneration state. The regenerative method provides 
all the options of the spectral method except for initialization period 
specification. 

The next section describes a simple mutiprogramming computer system 
model illustrating some of the RESQ facilities mentioned above. 

(B). A RESQ EXAMPLE 

We will describe a simple model of an interactive computer system to 
illustrate some of the features of RESQ. Figures 1.1 and 1.2 are diagrams 
of the model. The model is structured hierarchically with a submodel 
representing the computer system with its memory, CPU and two input/output 
devices. The terminals are defined at the highest level of the model. 

TERMINALS 

rl?~rCSSMi: o~'mm __ m 1 
Figure 1.1. Terminals and submodel 

Commands submitted from the terminals go through a set node to deter­
mine the type of command which was submitted. Each command requests a cer­
tain number of memory page frames at allocate node GETMEMORY. If the 
request can be satisfied, the command is permitted to enter the CPU-I/O 
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subsystem. Otherwise the command will wait until there is a sufficient 
number of page frames. The command then cycles between the CPU and one of 
the I/O devices. The number of cycles is determined by the type of 
command. When the command is finished, it releases its allocation of memo­
ry page frames at release node FREEMEMORY and sends a response back to the 
terminals. 

MEMORY .0, 
.................. i·Lq~~1~~ql~~···· .... ] 

SETCMDTYPE i ~: ~i i " CPU . ::7! ... Y.\ : ~ ~ I L ............. ~ DECRCYCLE i FREEMEMORY 

(INPUT) ~~RY I . ..L9~2.DISK ;JJ-01" ..... ; 
. . , ' L~. ___________ ~ 

Figure 1,2. Computer system submodel 

First we will describe the contents of the model with the submodel 
removed. The following is a listing of the model. 

MODEL:CSM 
METHOD: simulation 
NUMERIC PARAMETERS:thinktime users 
NUMERIC IDENTIFIERS:userframes 

USERFRAMES : 50 
MAX JV: 1 /*0: commanc;l type, 1: cycle count* / 
QUEUE:terminalsq 

TYPE: is 
CLASS LIST:terminals 

SERVICE TlMES:thinktime 
INCLUDE:cssm 
INVOCATION:cssml 

TYPE:cssm 
PAGEFRAMES:userframes 
INTERACTIV:interactiv 

CHAIN:interactiv 
TYPE: closed 
POPULATION:users 
:terminals->cssml.input 
:cssml.output->terminals 

QUEUES FOR QUEUEING TIME DIST:cssml.memory 
VALUES:l 2 3 4 5 6 7 8 

QUEUES FOR QUEUE LENGTH DIST:cssml.memory 
MAX VALUE:users 
CONFIDENCE INTERVAL METHOD:spectral 
INITIAL STATE DEFINITION -
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END 

CHAIN:interactiv 
NODE LIST:terminals 

INIT POP:users 
CONFIDENCE LEVEL:90 
SEQUENTIAL STOPPING RULE:yes 
CONFIDENCE INTERVAL QUEUES:terminalsq cssml.memory cssml.cpuq 

MEASURES:qt 
ALLOWED WIDTHS: 10 

CONFIDENCE INTERVAL QUEUES:cssml.iosysl.diskq cssml.iosys2.diskq 
MEASURES: qt 
ALLOWED WIDTHS:lO 

INITIAL PORTION DISCARDED: 10 /*percent" / 
INITIAL PERIOD LIMITS -

SIMULATED TlME:3600 
EVENTS: 50000 
QUEUES FOR DEPARTURE COUNTS:cssml.memory 

DEPARTURES:500 
LIMIT - CP SECONDS:5 
TRACE:no 

The name of the model is CSM. Simulation will be used as the solution 
method. Two numeric parameters are defined: THINKTlME and USERS. Numeric 
parameters are variables which will receive values when the model is eval­
uated, THINKTlME will be the service time at the terminals. USERS will be 
the number of terminals. A numeric identifier called USERFRAMES is defined 
to have a value of 50; this will be used as the total number of memory page 
frames. Each job will have two job variables: JV(O) will indicate the type 
of command, and JV(l) will be a counter indicating the number of times a 
command cycles through the CPU-I/O subsystem. The TERMINALSQ is an infi­
nite server queue with the think time being a numeric parameter. 

The definition of the computer system submodel CSSM is retrieved by 
using the INCLUDE facility. This facility permits a submodel definition to 
be retrieved from a library and logically inserted into the model defi­
nition. A copy of the submodel is created with the CSSM1 invocation. The 
two submodel parameters, PAGEFRAMES and INTERACTIV, are assigned values 
USERFRAMES and INTERACTIV. A closed chain is defined with a population 
equal to the numeric parameter USERS. The routing is from the terminals to 
the submodel input, and from the output of the submodel back to the termi­
nals; routing within the submodel is contained in the submodel defintion. 
The model also requests RESQ to collect statistics for the queueing time 
distribution and the queue length distribution at the getmemory queue 
(within the submodel) in addition to collecting the other standard statis­
tics. 

The remainder of the model specifies information related to the confi­
dence intervals and the length of the simulation run, We are using the 
spectral method [1) for generating the confidence intervals. All of the 
users will be initialized at the terminals. We will use 90 percent as the 
confidence level. The sequential stopping rule is employed to determine 
when the desired level of accuracy has been attained. Confidence inter-
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vals for the mean queueing times at the specified queues will be con­
structed by RESQ. When the confidence interval width divided by the point 
estimate is less than 10 percent, the simulation program will stop. 10 
percent of the initial portion of the run will be discarded. This could 
represent a transient portion of the simulation. The initial period for 
the sequential stopping rule will be when 3600 time units have elapsed, 
50000 events, or 500 departures from the MEMORY queue. 

SUBMODEL: cssm /"Computer System Submodel*/ 
NUMERIC PARAMETERS:pageframes 
CHAIN PARAMETERS:interactiv 
NUMERIC IDENTIFIERS:cmdtype cyclecount 

CMDTYPE:O /*JV(O) to be used to indicate command type*/ 
CYCLECOUNT:I /*JV(l) to be used to count CPU-I/O cycles*/ 

NUMERIC IDENTIFIERS:cpiocycles(3) pageneed(3) 
CPIOCYCLES: 8 15 50 
PAGENEED: 20 24 30 

NUMERIC IDENTIFIERS:cputime 
CPUTlME: .025 /"mean time in seconds* / 

QUEUE:memory 
TYPE:passive 
TOKENS: page frames 
DSPL:fcfs 
ALLOCATE NODE LIST:getmemory 

NUMBERS OF TOKENS TO ALLOCATE:pageneed(jv(cmdtype)) 
RELEASE NODE LIST:freememory 

QUEUE:cpuq 
TYPE:ps 
CLASS LIST: cpu 

SERVICE TlMES:cputime 
SET NODES:setcmdtype 

ASSIGNMENT LIST:jv(cmdtype)=discrete(1,.8;2,.15;3,.05),++ 
jv(cyclecount)=cpiocycles(jv(cmdtype)) 

SET NODES:decrcycles 
ASSIGNMENT LIST:jv(cyclecount)=jv(cyclecount)-l 

INCLUDE:iosys 
INVOCATION:iosysl 

TYPE:iosys 
INTERACTIV:interactiv 

INVOCATION:iosys2 
TYPE:iosys 
INTERACTIV:interactiv 

CHAIN:interactiv 
TYPE: external 
INPUT:setcmdtype 
OUTPUT:freememory 
:setcmdtype->getmemory->cpu->iosysl.input iosys2.input 
:iosysl.output iosys2.output->decrcycles 
:decrcycles->cpu freememory;if(jv(cyclecount»O) if(t) 

END OF SUBMODEL CSSM 
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The CSSM submodel has a numeric parameter, PAGEFRAMES, which is the 
total number of memory page frames. A chain parameter is defined in the 
submodel to connect the chain in the submodel to the chain in the model. 
The numeric identifiers CMDTYPE and CYCLECOUNT will be used as mnemonic 
subscripts for the job variables. The numeric identifiers CPCIOCYCLES and 
PAGENEED are vectors; their values are the number of CPU-I/O cycles and 
the number of pages required by the three different types of commands. 
CPUTlME is a numeric identifier representing the average amount of time a 
command spends running on the CPU during each visit. 

Next we have the queue definitions. The memory qaeue is a passive queue 
with PAGEFRAMES equal to the number of tokens. The number of tokens to 
allocate to a command will be selected from PAGENEED according to the type 
of command. The CPU queue has the processor sharing queueing discipline. 
At SETCMDTYPE, the job variables representing the command type and the 
number of CPU-I/O cycles are assigned values. Each time the command fin­
ishes a cycle, the job variable representing the cycle count is decre­
mented by one at DECRCYLES. We INCLUDE a submodel for an I/O device. 
Notice that this submodel is nested within the CSSH submodel. Two copies 
of the IOSYS submodel are created with the two invocations IOSYSl and 
IOSYS2. The only parameter is a chain parameter. 

The ~hain in CSSM is an external chain because it is be connected to 
the chain defined in the model. Input and output nodes are defined to 
indicate the nodes at which jobs enter and leave the submodel. A command 
which enters the submodel starts at SETCMDTYPE. After setting the command 
type and the cycle count, a request is made at the allocate node, 
GETMEMORY, to allocate page frames. When a sufficient number of page 
frames are available, the command cycles between the CPU and an I/O 
device. When a job leaves the I/O submodel, the number of remaining 
cycles is decremented by one, and the job goes back to the CPU if the num­
ber of cycles if greater than zero. Otherwise, the job releases its page 
frames and leaves the submodel. 

SUBMODEL:iosys 
CHAIN PARAMETERS:interactiv 
QUEUE:diskq 

TYPE:fcfs 
CLASS LIST:disk 

SERVICE TIMES:.06 
CHAIN:interactiv 

TYPE: external 
INPUT: disk 
OUTPUT: disk 

END OF SUB MODEL IOSYS 

The IOSYS submodel consists of only an active queue for a disk device. 
It has a chain parameter because the chain in this submodel is connected 
to the chain defined in the CSSM submodel. Since the DISK class is the 
input and output node for this submodel, no routing statements are neces­
sary. 
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2. A MODEL OF A TRANSACTION PROCESSING SYSTEM WITH DASD 
CACHE 

The question of consistency in system level response is used as the 
vehicle for demonstrating how the facilities provided by RESQ are used to 
good advantage. In particular, the consistency in response time is 
affected by the operation of DASD cache in the presence of application 
determined parameters such as cache hit ratio, the ratio of disk reads to 
disk writes, and the degree of overlap between CPU service and disk ser­
vice. Additionally, the consistency of systems level response time is 
influenced by the design of the cache management algorithms as well as the 
fact that the cache control and cache buffer have been located in the disk 
control unit. The intent of this paper is to emphasize the approach taken 
in the development of the model rather than any specific results deter­
mined from exercise of the model. 

It must be noted that any performance data referenced herein was deter­
mined in a controlled environment, and therefore, the results which may be 
obtained in other operating environments may vary significantly. Users of 
this paper should verify the applicable data for their specific environ­
ment. It is possible that this material may contain reference to, or 
information about, IB~1 products (machines and programs), programming or 
services that are not announced in your country. Such reference or infor­
mation must not be construed to mean that IBM intends to announce such IBM 
products, programming, or services in your country. 
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3. DESCRIPTION OF TRANSACTION PROCESSING SYSTEM 

Figure 3.1 provides a summary in RESQ terminology of the transaction proc­
essing which is the subject of this paper. For purposes of being 
specific, the IBH Series/l is used as the example system. During the 
course of the following discussion, selected portions of the systems such 
as the disk controller and cache buffer are identified as the focal points 
for design issues. These selected portions are then modeled in additional 
detail so as to reflect the major hardware and programming interactions 
which are judged to be important. Other portions of the system such as 
the operating system and central processor unit (CPU) are not modeled in 
any further detail because they are not involved in the design questions 
being investigated. 

.cu 
//" .......... 

./ ...... 

Figure 3.1. High Level Simulation Model of Transaction Processing System 

As shown in Figure 3.1, transactions originate from a set of connected 
terminals. The system level response time is measured using a passive 
queue with a large supply of tokens such as 10,000. The response time 
interval begins with the start of a service request message from a given 
terminal directed to the CPU. The end of the response time interval 
occurs when the reply message is sent from the CPU back to the originating 
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terminal. For purposes of the present investigation, it is not necessary 
to model the length of either the service request message or the reply 
message. Neither is it necessary to consider the speed of the trans­
mission line or the communications protocol connecting the terminal to the 
CPU. Our interest is focused on the amount of CPU and disk service per­
formed in response to the request portion of the transaction. 

A second passive queue controls the number of transactions (the multipro­
gram level) which may be concurrently present in the main memory attached 
to the central processor unit. In the case of maximum interest for con­
sistency of response time, the multiprogram level should be in the range 
of 50 to 100 larger than the number of attached disk units. Addi­
tionally' the number of attached terminals and terminal think time should 
be selected so as to ensure the number of transactions active in the CPU 
are near the multiprogram level. In this manner, the disk control unit 
will have a high prospect for overlapped operation relative to its 
attached disk units. 

Figure 3.1 shows one passive queue for each of the four attached disk 
units. A larger number of disk units and controllers are capable of being 
connected to the Series!1 but the number shown in Figure 3.1 is sufficient 
for this paper. For each passive queue, the token pool equals one. In 
this manner, it is assured that one and only one access at a time is 
directed to any given disk unit. A disk unit not presently occupied with 
an access may accept a new access. This represents the actual state of 
affairs in which queueing for individual disks is maintained within the 
CPU. The probabilities P1, P2, P3, and P4 reflect the probabilities of an 
access to the given disk units one through four. To represent the well 
known phenomenon of unequal accessing of disk units, (also known as disk 
skew), the probability Pl=0.4 and the probabilities P2, P3, and P4 are 
each 0.2. 

The access control mechanism is provided to ensure that an exact number of 
disk accesses are involved in the service of each transaction. In this 
manner, the amount of disk burden is removed as a variable influencing the 
consistency of system response time. For the study reported here, a rela­
tively heavy disk burden of 20 accesses per transaction is used. 
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4. OPERATION OF DISK CACHE SUBSYSTEM 

Figure 4.1 illustrates the four possibilities relative to an individual 
access in a system with disk cache implemented in the disk control unit. 

Read Hit: Transfer Data Amount 1 From Cache Buffer to the CPU 

Read Miss: (a). Read Data Amount 2 From Disk Into the Cache Buffer 
(b). Transfer Data Amount 1 From Cacge Buffer to the CPU 

Write Hit: (a). Transfer Data Amount 1 From CPU to Disk 
(b). Optionally, Update the Cache Buffer 

Write Miss: Transfer Data Amount 1 From CPU to the Disk 

Figure 4.1. Process Responses for the Four Possibilities of an 
Access in a Disk Cache --- Cache Located in Disk Controller 

The terminology of read/write reflects the perspective of the disk. Thus, 
a disk read involves a transfer of data from the disk to the CPU; and a 
disk write involves the transfer of data from the CPU to the disk. A hit 
is the case in which the referenced data is presently in the cache buffer. 
A miss is the case in which the data is not in the cache buffer. A given 
disk access is either a hit or a miss; with the result that the probabili­
ty of a hit and the probability of a miss add up to one. 

The primary information conveyed by Figure 4.1 is the response of the 
Series/I IBM 4967 disk cache control system to the four cases of read hit 
through write miss. The cache system and its response pattern is modeled 
in RESQ terms as illustrated in Figure 4.2. 

4. Operation of Disk Cache Subsystem 11 
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NOTE: PASSrvE QUEUE CNTlQ 
SHARED BY ALL DISK UNITS 

DISKIO 

FUSION 
NODE 

Figure 4.2. Cache Control Portion of Disk Unit I ~lodel 

Before discussing the modeling of the cache process sequence, the reader's 
attention is directed to the relation between Figure 3.1 and Figure 4.2. 
Specifically, Figure 4.2 is an expansion in detail relative to cache con­
trol functions for a single disk unit shown in Figure 3.1. Thus, the 
structure shown in Figure 4.2 is repeated four times in the system model, 
once for each disk unit connected. In a later section, there will be pro­
vided a still further expansion in detail as to the service time associ­
ated with a physical access to a disk unit. 

(A). HIGH-LEVEL MODEL OF DISK CACHE 

The process flow depicted in Figure 4.2 is as follows. A task cannot 
enter a disk unit until it acquires the single token for that queue. For 
DISKl, the entrance controlling passive queue is called DISKIQ. As stated 
earlier, this passive queue guarantees that only one task at a time is in 
service for any given disk. 

A special feature shown in Figure 4.2 is the representation of overlap in 
operation between disk service and execution of instructions in the CPU. 
The fission node represents the creation of two related simulation tasks 
in relationship to a single service action for DISKl. RESQ operates to 
prevent exit from the companion fusion node until both of the two created 
tasks are completed. This fission/fusion node pairing models the situ­
ation in which the total service time of CPU execution or disk service. 
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Consequently, the improvement caused by successful operation of disk 
cache is moderated by the amount of CPU overlap time. 

Repeating for emphasis, two tasks - a CPU overlap task, and a disk service 
task - leave the fission node and are later recombined at the companion 
fusion node. This disk service task enters a new passive queue denoted as 
CNTLQ in Figure 4.2. A discussion of the operation of passive queue CNTLQ 
is deferred until the section devoted to modeling the physical access por­
tion of disk service. For the present, the disk service task eventually 
receives its token and proceeds with the service time represented by the 
box with label "CACHE ALGO HGHT". The given box represents the processing 
time undertaken by the disk controller to determine if the given disk 
access is a cache hit or a cache miss. Other housekeeping details associ­
ated with the management of the cache buffers are also included within 
this service block. 

(B). MODEL REPRESENTATION OF H IT PROCESSING AND MISS PROC­
ESSING 

Continuing in Figure 4.2, the disk service task proceeds through a prob­
abilistic routing choice to obtain service as a cache hit or a cache miss. 
The probabilities P(HIT) and P(HISS) reflect the success of the cache 
buffer management policies in the presence of the given application envi­
ronment. Based on Figure 4.1, the model in Figure 4.2 reflects the buffer 
management decision that a hit involves transfer of data between the CPU 
and the cache buffer. Note that the token from CNTLQ is not released 
until after the data transfer is completed. The case of a miss requires a 
physical access to the disk which is represented in Figure 4.2 by entry-to 
the DISKI physical access model. Note further that for the case of a 
miss, the token from CNTLQ is released immediately after completion of the 
cache algorithm management function. RESQ permits two or more release 
nodes in relation to a given allocation node. 

It should be observed in Figure 4.1 that several distinctions are made 
between a read access and a write access. In particular, the data trans­
fer amount differs between a read and write. Another difference is that a 
write hit requires a physical access to the disk whereas a read hit does 
not. These circumstances are accommodated in Figure 4.2 by inclusion in 
both the hit processing and in the miss processing sequences by a probabi­
listic branch based on the probability of a write access P(WRITE), and the 
probability of a read access P(READ). As shown in Figure 4.2, both the 
read hits and the write hits experience the service time associated with 
data transfer with the CPU. The read hit then goes to the fusion node; the 
write hit goes to the model of the physical access time portion of disk 
service. As dictated by Figure 4.1, set nodes are used to set the data 
transfer time used in the physical access model to correspond to data 
transfer amount 2. 
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(C). DISCUSSION OF THE PHYSICAL ACCESS MODEL AND CONSIST­
ENCY OF RESPONSE TIME 

Figure 4.3 provides the final level to be considered in the expansion of 
detail for the disk cache subsystem. 

PR=2 
TKN=l 

?{SEEK) 

TKN=4 

Figure 4.3. Cache Control Portion of Disk Unit I Model 

,... The physical access model shown in Figure 4.3 represents the operation of 
both the disk controller and the actual disk unit during the conduct of a 
physical access to the disk unit. The major items are: 

Processing the command in the disk controller so that the seek opera­
tion is sent to the proper disk actuator. 

The delay associated with completing the seek operation at the disk 
actuator. 

The delay associated with waiting for the proper data record to rotate 
under the disk read/write head. The time necessary to transfer the 
requested data to or from the disk surface. 

In terms of consistency of system level response time, the determining 
factors are the degree to which there is overlap of process times among 
several disks balanced against blockage by one disk of operations on 
another disk. 

The potential impact of the disk cache can be reviewed in conceptual 
terms. Without the cache, all disk service requests become physical disk 
accesses and there is a great need to achieve overlap. However, under 
heavy load, the existence of skew and the operation of precedence 
relations described in the next section act to delay many disk accesses 
within the disk controller. With the disk cache, many of the disk service 
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requests are satisfied very rapidly by the cache with the service model 
shown in Figure 4.2. with disk cache, a much reduced number of disk ser­
vice requests become physical disk access. For those physical accesses 
remaining, there is a much improved chance for normal service. Consisten­
cy response time is potentially improved by the combination of the rapid 
service associated with the cache buffer and the much improved chances for 
the slower physical accesses to proceed without delay. 
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5. MODEL OF SERVICE TIME FOR PHYSICAL DISK ACCESS 

The model structure depicted in Figure 4.3 is intended to simulate the 
sequence relationships shown in Figure 5.1. 

* Overlap is Possible Among Seek Operations for Different Disks 

" No Overlap of Rotation Delay and Data Transfer for Different 
Disks 

* Cache Algorithm Management and Processing of Seek Commands can 
Continue if Initiated Prior to Start of Rotation Delay 
Data Transfer 

* Start of Rotation Delay and Data Transfer Blocks Start of New 
Cycle of Cache Algorithm Management and Processing of Seek 
Commands 

* Once Started a Seek Operation on One Disk can Continue During 
Rotation Delay and Data Transfer on Another Disk 

Figure 5.1. Sequence Relationships for Operations Involving Disk 
Controller and Disk Unit 

Such sequence precedence indicates which process of events can be over­
lapped among mUltiple disk units and the circumstances under which one 
disk can block the start of other events on a different disk. These 
sequence relations are dictated by the design considerations and limita­
tions of available disk controllers. In particular, controllers of inter­
est within a Series/l environment implement only a single read/write path 
between the I/O channel and the attached disks. Thus, only one disk at a 
time can be actively involved in transferring data. By way of contrast, 
each disk can undertake an independent seek operation and these can be 
overlapped. 

In comparing the degree to which the model in Figure 4.3 correctly repres­
ents the functions of Figure 5.1. special emphasis is placed on the role 
played by the passive queue CNTLQ. This same passive queue appears in 
Figure 4.2 relative to process time for cache management algorithms. The 
key feature of queue CNTLQ is that it allocates tokens on a priority basis 
and in different amounts at each of the allocation nodes. The start of 
rotation time delay and data transfer time processes on one disk in the 
IBM 4967 controller will prevent the start of a new seek operation or any 
process of a new seek command for any other disk attached to the same con­
troller. However, the seek operation could continue on other disks in 
overlap fashion if started before the rotation time delay/data transfer 
delay on the other disk. Thus, there is much motivation to 'initiate if 
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possible new seek operations on the rema1n1ng disks prior to start of 
rotation delay on a given disk having previously completed its seek opera­
tion. 

Figure 4.3 shows one way in which the desired sequence relations can be 
simulated. It is seen that the allocation node prior to rotation time 
delay has the lowest priority (priority three, denoted as PR=3) among all 
allocation nodes for CNTLQ. Also, the rotation delay allocation node 
requires all four of the available tokens (denoted as TKN=4). Assume that 
while a seek command or algorithm processing cycle is underway on DISK! 
that DISK2 has completed its seek operation. The operation of the priori­
ty allocation of tokens allows the command processing on DISKl to run to 
completion. The seek operation itself requires no tokens so that the seek 
operation can start immediately after completion of processing the seek 
command. Thus, DISK! releases its token at the completion of processing 
the seek command. DISK2 may acquire that token and thereby fulfilling the 
token requirement for it to proceed. The objective is met for overlapping 
a seek on DISK1 with rotation delay on DISK2. 

If the seek operation on DISK1 finishes before DISK2 is finished with its 
service, then DISKl must wait to start its rotation delay until DISK2 
releases its four tokens. DISK2 could then seize them if no high priority 
request existed. 

Completing the description is the case in which a rotation delay period 
has started on DISK2 and afterwards a seek command arrives at DISK3. In 
this case, DISK2 has all the available tokens and blocks the start of com­
mand processing on DISK3. Finally, DISK2 finishes its service and 
releas~s its four tokens. If DISK1 were waiting for the start of its 
rotation delay, that rotation delay on DISK1 waits to get started until 
DISK3 completes processing of the seek command. Finally, DISKI is able to 
obtain all four tokens for start of its operation. As a minor point, both 
the allocation node and service processing for management of cache algo­
rithms are given higher priority than allocation node and service process­
ing for the seek command. Thus, if a service request has arrived at 
DISK4, its cache processing is completed before processing of the seek 
command on DISK3 or the rotation delay on DISK1. 
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6. A MEASURE FOR CONSISTENCY OF SYSTEM RESPONSE TIME 

As an example of some of its more valuable outputs, RESQ provides for 
evaluation of both the average value of system level response time as well 
as the statistical distribution of this response time. The calculation 
process for the distribution is based on counting the fraction of 
responses which are longer than specified check point values. As experi­
ence is gained through repeated exercise of the model, the required check 
point values for response time can be given in relation to the previously 
determined average value of response time. In this manner, the fraction 
of responses can be found which are two times or even three times longer 
than the average value of all response times. 

In many heavily used systems, it is not at all unusual to find that the 
slowest 10 of response times are up to three times the average response 
time. Such a state of affairs is very disturbing to the users at the ter­
minals. Often it is the low fraction of very slow responses which make 
the impression on the user community. In the authors' opinion, these 
users tend to perceive the average value of response time to be much long­
er than it actually is based on their frustration with the inconsistent 
longer response times. Consequently, it is desirable to achieve a con­
sistency level wherein much less than 10 of the slowest responses are 
more than 1.5 or 2.0 times the average response. 

Ideally, the disk cache provides for improvement in consistency as well as 
improvement (reduction) in the value of average response time for the work 
load previously applied to the system. A further desirable feature for 
disk cache is an ability to preserve consistency in response times as the 
average value increases due to increases in workload which can be applied 
to the computer system. 
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7. RESULTS 

Reported below are representative results to the consistency of system 
level response times for a Series/1 system based on a composite of instal­
lations visited by the author. Without DASD cache, the system is disk 
bound. The typical access at the disk unit can be taken as 38 millisec­
onds; and the typical CPU process time per access can be taken as 22 
milliseconds, with perhaps 10 or 20 of this in overlap with the disk 
time. The case is considered where there are exactly 20 disk accesses per 
transaction, a hit ratio of 75 and four read accesses per each write 
access. Without the disk cache, the RESQ simulation showed the average 
response time to be 1.6 seconds and nearly 8 of responses were longer 
than three times the average. Under the same workload and with disk 
cache, the average response time is reduced to .96 seconds - a 40 
improvement. As to consistency, there is also a significant improvement 
with fewer than 5 of responses being no more than twice the average 
response time. Similar benefits are maintained when the number of 
attached terminals is increased significantly. 
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8. CONCLUSIONS 

The RESQ simulation provides a powerful and useful tool for gaining 
increased understanding regarding responses and interactions in a complex 
environment such as the transaction processing system with DASD cache 
described here. 

Quantification is made possible for the significant improvement in 
response time and consistency achievable in many application environments 
with disk cache. As to RESQ, the real-system features of a priority 
structure for processing with combinations of overlap and precedence 
relations are easily represented by simulation facilities provided by 
RESQ. Additionally, simulation provides the only available means for 
determining the distribution in response time so crucial to the present 
study. 
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