Series/1 SC34-0937-0

Event Driven Executive
Language Reference

Version 6.0

Library Guide and
Common Index

Installation and
System Generation
Guide

Operator Commands
and
Utilities Reference

SC34-0938 SC34-0936 SC34-0940
& &
4 G
Language Communications Messages and
Reference Guide Codes
SC34-0937 SC34-0935 SC34-0939
X, \&
4 i
Operation Event Driven APPC
Guide Language Programming Guide
Programming Guide and Reference
SC34-0944 SC34-0943 SC34-0960
& .
-
Problem Customization Internal
Determination Guide Design
Guide
SC34-0941 SC34-0942 LY34-0364
\ & -

SC34-0937-0

Series/1

Event Driven Executive
Language Reference

Version 6.0

> ;ﬁﬁ

-

i

s
o

Rk

I ———

b

o o
e T
L R

i

c

L2

s

&4

Tt
B o

o
S

To Rt
et

S-S

H
£

g e e

¥

Guide

i

T

i

e

4

0

2 2 1
N

33

B EY

P
.

Language
Reference

SC34-0937

First Edition (September 1987)
Use this publication only for the purposes stated in the section entitled “About This Book.”

Changes are made periodically to the information herein; any such changes will be reported in subsequent
revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not
be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Publications are not stocked at the address given below. Requests for copies of IBM publications should be
made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for readers’ comments
is provided at the back of this publication. If the form has been removed, address your comments to IBM
Corporation, Information Development, Department 28B (5414), P. O. Box 1328, Boca Raton, Flor‘ida'
33429-1328. IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1987

O

O

Summary of Changés for Version 6.0

This document contains the following changes.
3151 Display Terminal

e Chapter 2, “Instruction and Statement Descriptions” has been updated to
include the 3151 display in the READTEXT, TERMCTRL, and WAIT
instructions everywhere a reference to the 3161 display appears.

* Appendix A, “Formatted Screen Subroutines” includes information for the 3151
display everywhere a reference to the 3161 display appears.

EDX Line Sharing Support

e The TERMCTRL instruction contains updates to the LOCK and UNLOCK
parameters (3101, 3151, and 316x terminals) for use with line sharing.

4202 Proprinter XL

* The TERMCTRL instruction has been updated to include the 4202 printer
everywhere a reference to the 4201 printer appears.

‘Extended Address Mode Support

¢ The BUFFKEY operand for the LCCIOCB instruction has been updated to
allow values of 0—31 for the 4956 J and K processors.

e The PART operand for the LOAD instruction has been updated to allow 1 —32
partitions for the 4956 J and K processors.

e The FKEY and TKEY operands for the MOVE instruction has been updated to
allow 1—32 partitions for the 4956 J and K processors..

¢ The EXBREAK instruction cannot be used with extended address mode.
System Partition Statements

¢ References to the SYSTEM statement have been replaced by the appropriate
system partition statement: SYSPARTS, SYSPARMS, SYSCOMM, or
SYSEND.

Editorial/Usability Changes

e Numerous editorial and usability changes have been made throughout this book.

Summary of Changes for Version 6.0 iii

iv

SC34-0937

O

Contents

Chapter 1. Introduction 1-1

The Event Driven Language 1-1

The Format of EDL Instructions and Statements 1-1
Sample EDL Instruction 1-4

Common Terms 1-5

Syntax Rules 1-6

Software Register Usage 1-8

Using the Parameter Naming Operands (Px=) 1-10
Rules to Remember 1-12

Chapter 2. Instruction and Statement Descriptions 2-1
Instructions and Statements Chart 2-1

$ID — Identify System Release Level 2-4

ADD - Add Integer Values 2-6

ADDV — Add Two Groups of Numbers (Vectors) 2-9

ALIGN - Instruction or Data to a Specified Boundary 2-13
AND — Compare the Binary Values of Two Data Strings 2-14
ATTACH — Start a Task 2-16

ATTNLIST — Enter Attention-Interrupt-Handling Routine 2-18
BSCCLOSE — Free a BSC Line for Use by Other Tasks 2-22
BSCIOCB — Specify BSC Line Address and Buffers 2-23
BSCOPEN — Prepare a BSC Line for Use 2-25

BSCREAD — Read Data from a BSC Line 2-28

BSCWRITE — Write Data to a BSC Line 2-32

BUFFER — Define a Storage Area 2-39

CACLOSE - Close a Channel Attach Port 2-43

CAIOCB — Create a Channel Attach Port I/O Control Block 2-45
CALL — Call a Subroutine 2-46

CALLFORT — Call a FORTRAN Subroutine or Program 2-49
CAOPEN — Open a Channel Attach Port 2-51

CAPRINT — Print Channel Attach Trace Data 2-53

CAREAD — Read from a Channel Attach Port 2-55
CASTART - Start Channel Attach Device 2-57

CASTOP — Stop a Channel Attach Device 2-59

CATRACE - Control Channel Attach Tracing 2-61
CAWRITE — Write to a Channel Attach Port 2-63

COMP — Define Location of Message Text 2-65

CONCAT — Concatenate Two Character Strings 2-67
CONTROL - Perform Tape Operations 2-68

CONVTB — Convert Numeric String to EBCDIC 2-74

‘CONVTD — Convert EBCDIC String to Numeric String 2-77

COPY — Copy Source Code into Your Source Program 2-82
CSECT - Identify Object Module Segments 2-85
DATA/DC — Define Data 2-87

DCB — Create a Device Control Block 2-91
DEFINEQ — Define a Queue 2-93

DEQ — Release a Resource for Use 2-97

DEQT — Release a Terminal for Use 2-99
DETACH — Deactivate a Task 2-101

DIVIDE — Divide Integer Values 2-103

DO — Perform a Program Loop 2-106

DSCB — Create a Data Set Control Block 2-112

Contents

vi

SC34-0937

ECB — Create an Event Control Block 2-113
EJECT —~ Continue Compiler Listing on a New Page 2-115 .“

=

ELSE — Specify Action for a False Condition 2-116
END - Signal End of Source Statements 2-117
ENDATTN — End Attention-Interrupt-Handling Routine 2-118
ENDDO - End a Program Loop 2-119
ENDIF — End an IF-ELSE Structure 2-120
ENDPROG — End a Program 2-121
ENDTASK — End a Task 2-123
ENQ — Gain Exclusive Control of a Resource other than a Terminal 2-125
ENQT — Gain Exclusive Control of a Terminal 2-127
ENTRY — Define a Program Entry Point 2-130
EOR - Compare the Binary Values of Two Data Strings 2-132
EQU — Assign a Value to a Label 2-134
ERASE — Erase Portions of a Display Screen 2-137
EXBREAK — Break Circular Chained DCBs 2-143
EXCLOSE — Close an EXIO Device 2-145
EXIO — Execute /O 2-146
EXOPEN — Open an EXIO Device 2-150
EXTRN — Resolve External Reference Symbols 2-152
FADD — Add Floating-Point Values 2-154
FDIVD - Divide Floating-Point Values 2-157
FIND — Locate a Character 2-160
FINDNOT — Locate the First Different Character 2-162
FIRSTQ — Acquire the First Queue Entry in a Chain = 2-165
FMULT — Multiply Floating-Point Values 2-167
FORMAT - Format Data for Display or Storage 2-170
FPCONV — Convert to or from Floating Point 2-180
FREESTG — Free Mapped and Unmapped Storage Areas 2-183
FSUB - Subtract Floating-Point Values 2-185
GETEDIT — Collect and Store Data 2-188
GETSTG — Obtain Mapped and Unmapped Storage Areas 2-195
GETTIME — Get Date and Time 2-197
GETVALUE - Read a Value Entered at a Terminal 2-199
GIN — Enter Unscaled Cursor Coordinates 2-206
GOTO — Go to a Specified Instruction 2-207
HASHVAL — Condense a Character String ~ 2-209
IDCB — Create an Immediate Device Control Block 2-211
IF — Test If a Condition Is True or False 2-213
INTIME - Provide Interval Timing 2-219
IOCB ~ Define Terminal Characteristics 2-221
IODEF — Assign a Symbolic Name to a Sensor-Based I/O Device 2-224
IODEF (Analog Input) 2-225
IODEF (Analog Output) 2-226
IODEF (Digital Input) 2-227
IODEF (Digital Output) 2-228
IODEF (Process Interrupt) 2-229
IOR — Compare the Binary Values of Two Data Strings 2-231
LASTQ — Acquire the Last Queue Entry in a Chain 2-233
LCCIOCB — Specify Device Subchannel Command and Buffer 2-234
LCCCLOSE — Close the Device Subchannel - 2-236
LCCCNTL — Initiate Control Functions 2-237
LCCOPEN — Open Device Subchannel 2-238 O
LCCRECV — Receive Data from a Series/l1 on a Ring 2-239
LCCSEND — Send Data to a Series/l on a Ring 2-241
LOAD — Load a Program 2-243

O

MECB — Create a List of Events 2-250
MESSAGE — Retrieve a Program Message 2-252
MOVE — Move Data 2-256
MOVEA — Move an Address 2-260
MULTIPLY — Multiply Integer Values 2-261
NETCTL — Controlling SNA Message Exchange 2-264
NETGET — Receive Messages from the SNA Host 2-269
NETHOST — Build an SNA Host ID Data List 2-273
NETINIT — Establish an SNA Session 2-275
NETPACT — Activate a Specific PU 2-282
NETPUT — Send Messages to the SNA Host 2-284
NETTERM - End an SNA Session 2-288
NEXTQ — Add Entries to a Queue 2-291
NOTE - Store Next-Record Pointer 2-294
PLOTGIN — Enter Scaled Cursor Coordinates 2-296
POINT — Set Next-Record Pointer 2-298
POST - Signal the Occurrence of an Event 2-300
PRINDATE — Display the Date on a Terminal 2-302
PRINT - Control Printing of a Compiler Listing 2-304
PRINTEXT — Display a Message on a Terminal 2-307
Request Special Terminal Function (4975-01A) 2-316
Code Extension Sequences 2-317
Set Spacing Increment (SPI) 2-317
Resetting to Initial State (RIS) 2-320
Data Stream Example 2-320
Terminal I/O Return Codes 2-322
PRINTIME — Display the Time on a Terminal 2-328
PRINTNUM - Display a Number on a Terminal 2-330
PROGRAM - Define Your Program 2-335
PROGSTOP — Stop Program Execution 2-342
PUTEDIT — Collect and Store Data from a Program 2-344
QCB — Create a Queue Control Block 2-350
QUESTION — Ask Operator for Input 2-352
RDCURSOR - Store Static Screen Cursor Position — 2-357
READ — Read Records from a Data Set 2-359
READTEXT — Read Text Entered at a Terminal 2-367
RESET — Reset an Event or Process Interrupt ~ 2-383
RETURN — Return to the Calling Program 2-385
SBIO — Specify a Sensor-Based I/O Operation 2-386
SBIO Analog Input 2-387
SBIO (Analog Output) 2-389
SBIO (Digital Input) 2-391
SBIO (Digital Qutput) 2-393
SCREEN — Convert Graphic Coordinates to a Text String 2-396
SETBIT — Set the Value of a Bit 2-397
SHIFTL — Shift Data to the Left 2-398
SHIFTR — Shift Data to the Right 2-400
SPACE - Insert Blank Lines in a Compiler Listing 2-402
SPECPIRT — Return from Process Interrupt Routine 2-403
SQRT — Find the Square Root 2-404
STATUS — Set Fields to Check Host Status Data Set 2-405
STIMER — Set a System Timer 2-407
STORBLK — Define Mapped and Unmapped Storage Areas 2-412
SUBROUT — Define a Subroutine 2-414
SUBTRACT — Subtract Integer Values 2-416
SWAP — Gain Access to an Unmapped Storage Area 2-418

Contents

vii

viii

SC34-0937

TASK — Define a Program Task 2-421
TCBGET — Get Task Control Block Data 2-424
TCBPUT — Store Data in a Task Control Block 2-425
TERMCTRL — Request Special Terminal Function 2-426
TERMCTRL Functions Chart 2-426
2741 Communications Terminal 2-435

3101, 3151, 3161, 3163, and 3164 Display Terminals (Block Mode) 2-436

4013 Graphics Terminal 2-439

4201/4202 Printer 2-440

4224 Printer 2-456

4973 Printer 2-495

4974 Printer 2-496

4975 Printer 2-498

4978 Display 2-502

4979 Display 2-505

4980 Display 2-507

5219 Printer 2-509

5224, 5225, and 5262 Printers 2-515

ACCA Attached Devices 2-519

General Purpose Interface Bus 2-521

Series/1-to-Series/1 ~ 2-524

Teletypewriter Attached Devices — 2-527

Virtual Terminal 2-528
TEXT - Define a Text Message or Text Buffer 2-530
TITLE — Place a Title on a Compiler Listing 2-533

TP Instruction — Perform Host Communications Facility Operations 2-534

TP (CLOSE) — End a Transfer Operation 2-535
TP (FETCH) — Test for a Record in the System-Status Data Set 2-536
TP (OPENIN) — Prepare to Read Data from a Host Data Set 2-537

TP (OPENOUT) — Prepare to Transfer Data to a Host Data Set 2-538

TP (READ) — Read a Record from the Host 2-539

TP (RELEASE) — Delete a Record in the System-Status Data Set 2-540

TP (SET) — Write a Record in the System-Status Data Set 2-541
TP (SUBMIT) — Submit a Job to the Host ~ 2-542
TP (TIMEDATE) — Get Time and Date from the Host 2-543
TP (WRITE) — Write a Record to the Host 2-544
USER — Use Assembler Code in an EDL Program 2-547
WAIT — Wait for an Event to Occur 2-550
WAITM — Wait for One or More Events in a List 2-553
WHERES — Locate an Executing Program 2-555
WRITE — Write Records to a Data Set 2-558
WXTRN/EXTRN — Resolve Weak External Reference Symbols ~ 2-565
XYPLOT — Draw a Curve 2-567
YTPLOT — Draw a Curve 2-568

Appendix A. Formatted Screen Subroutines A-1
SIMDATA Subroutine A-2

$IMDEFN Subroutine A-4

$IMOPEN Subroutine A-6

$IMPROT Subroutine A-9

$PACK Subroutine A-11

SUNPACK Subroutine A-12

Appendix B. Program Communication Through Virtual Terminals B-1
Requirements for Defining Virtual Terminals B-1
Considerations for Coding a Virtual Terminal Program B-2

@

Virtual Terminal Communication B-2
Sample Virtual Terminal Programs B-4

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition

Services) C-1
Transferring Data Across Partitions C-1
Starting a Task in Another Partition (ATTACH) C-8
Synchronizing Tasks and the Use of Resources in Different Partitions

Appendix D. EDX Programs, Subroutines, and In-Line Code D-1
EDX Programs D-1
$DISKUT3 — Manage Data from an Application Program D-1
$PDS — Use Partitioned Data Sets D-9
$RAMSEC — Replace Terminal Control Block (4980) D-23
$SUBMITP — Submit a Job for Execution D-26
$USRLOG - Log Specific Errors From a Program D-28
Tape Source Dump Program Example D-30
EDX Subroutines D-36
DSOPEN — Open a data set D-37
Formatted Screen Subroutines (Syntax Only) D-42
Indexed Access Method (Syntax Only) D-43
Multiple Terminal Manager (Syntax Only) D-44
SETEOD — Set the Logical End-of-File on Disk D-45
UPDTAPE — Add Records to a Tape File D-46
In-Line Code (EXTRACT) D-46

Appendix E. Creating, Storing, and Retrieving Program Messages E-1
Creating a Data Set for Source Messages E-1
Entering Source Messages into a Data Set E-1
Formatting and Storing Source Messages (using $SMSGUT1) E-4
Retrieving and Printing Formatted Messages E-4

Appendix F. Conversion Table F-1

Index X-1

C-10

Contents

ix

X SC34-0937

O

About This Book

This book contains details and examples of how to code the instructions and
statements you can use to write Event Driven Language application programs.

Audience

This book is intended for application programmers who write and maintain
programs using the Event Driven Language. You can learn the Event Driven
Language by using the Language Programming Guide.

How This Book Is Organized

This book contains two chapters and six appendixes:

Chapter 1. Introduction describes how instructions and statements are presented
in this book. The chapter also describes the syntax rules for the language,
defines key terms used throughout the book, and provides information about a
number of special features available with the Event Driven Language.

Chapter 2. Instruction and Statement Descriptions contains a detailed description
of each EDL instruction and statement and shows the syntax of the instruction
or statement, the required operands, and the default values. The instructions
and statements are arranged in alphabetical order.

Appendix A. Formatted Screen Subroutines contains a description of each of the
formatted screen subroutines (SIMAGE routines) along with its syntax, required
operands, and default values.

Appendix B. Programs Communication Through Virtual Terminals contains a
description of the virtual terminal facility that allows application programs to
communicate as if they were EDX terminals.

Appendix C. Communicating with Programs in Other Partitions (Cross-Partition
Services) contains examples that show how programs can share data and
communicate with other programs across partitions.

Appendix D. EDX Programs, Subroutines, and Inline Code lists the syntax,
options and default values for the Indexed Access Method, Multiple Terminal
Manager, and Formatted Screen subroutines. In addition, the appendix
describes a data management program and subroutines, a program for using
partitioned data sets, and a copy code routine for identifying device types.

Appendix E. Creating, Storing, and Retrieving Program Messages describes how
to build and use formatted program messages in your EDL application
programs.

Appendix F. Conversion Table contains a table that shows the hexadecimal,
binary, EBCDIC, and ASCII equivalents of decimal values. The table also
shows transmission codes for communications devices.

About This Book Xi

Aids in Using This Book

This book contains the following aids to using the information it presents:

—_—

¢ A table of contents that lists the major headings in the book.

e An Instructions and Statements Chart that groups EDL instructions and
statements by the common tasks they perform. The chart also lists the
statements used during system generation.

e An index of the topics covered in this book.

Using the Enter and Attention Keys

This book uses the term “enter key” to mean the key that indicates that you have
completed input to a screen and want the system to process the data you keyed in.
It uses the term “attention key” to mean the key that indicates that you want to
direct keyboard input to the operating system supervisor. If your keyboard does not
have these keys, use the corresponding keys on your keyboard.

A Guide to the Library

Refer to the Library Guide and Common Index for information on the design and
structure of the Event Driven Executive Library, for a bibliography of related
publications, for a glossary of terms and abbreviations, and for an index to the
entire library.

o

Contacting IBM about Problems

You can inform IBM of any inaccuracies or problems you find when using this book
by completing and mailing the Reader’s Comment Form provided in the back of the
book.

If you have a problem with the IBM Series/l1 Event Driven Executive services, refer
to the IBM Series/1 Software Service Guide, GC34-0099.

xil SC34-0937

O

Introduction

Chapter 1. Introduction

The Event Driven Language (EDL) is a programming language designed for use on
the Series/1 computer. The language enables you to write programs that perform
specific tasks. This chapter describes how the various instructions and statements
that make up the Event Driven Language are presented in this book. The chapter
also includes:

* Definitions of terms commonly used throughout the book
e A list of syntax rules you need to know to code EDL instructions and statements

e A description of how to use parameter naming operands and the two software
registers available to your program.

Note: For a detailed description of how to write and structure EDL programs, refer
to the Language Programming Guide.

The Event Driven Language

The Event Driven Language is composed of instructions and statements. Instructions
allow you to perform specific operations such as adding or subtracting data or
printing a message on a terminal. Instructions generate object code that the system
can process and execute. Statements enable you to define the parts of a program,
define data and system resources, and format compiled output, but not all EDL
statements generate object code. The system typically uses the code that is generated
by statements to set up storage locations.

Because statements do not execute in the same manner as instructions, you should
not place statements between the instructions in your programs. The exception to
this rule is the four statements used to control the formatting of compiler listings:
PRINT, SPACE, TITLE, and EJECT. You can code these statements between

program instructions because the system ignores them after the compile operation.

The Format of EDL Instructions and Statements

EDL instructions and statements have the general format:

label operation operands

where these terms have the following meanings:

label The symbolic name you assign to an instruction or statement. You
can use this name in your program to refer to that specific instruction
or statement. In most cases, a label is optional.

operation The name of the instruction or statement you are coding.

operands These constitute the body of the instruction or statement. An operand
can represent data that is required to complete an operation, or it can
define how an operation is to be performed.

Chapter 1. Introduction 1-1

Introduction

The Event Driven Language has two types of operands: positional operands and
keyword operands. Positional operands must be coded in the position shown in the
operand field for the instruction or statement. These operands appear in lowercase.
Positional operands usually require a specific value, address, or label. Keyword
operands can be coded in any order following the positional operands (if any)
contained in an instruction or-statement. These operands are in the form

"KEYWORD =. Keyword operands typically enable you to control how the system

performs an operation.

Depending on the type of operation you are performing, you may need to code an
operand with a specific value or label. For the purposes of this book, such values or
labels are generally referred to as parameters. Figure 1-1 shows the syntax of the
EDL ADD instruction.

label ADD opndl,opnd2,count, RESULT =,PREC=,
Pl1=,P2=P3=

Figure 1-1. ADD Instruction Syntax

In the following example, operand 2 (a value of 5) is added to operand 1 (the
contents in A). The system places the result of this operation in SUM, the location
specified on the keyword operand RESULT =.

*
ADD A,5,RESULT=SUM
L J
L J
®
A DATA F'8'
SUM DATA F'0'

The parameter for opndl in the above operation is A. The parameter specified for
opnd2 is 5, and SUM is the parameter coded for the RESULT = operand.

Instruction and Statement Descriptions

1-2 SC34-0937

This book describes each EDL instruction and statement beginning in Chapter 2.
Each description begins with an explanation of what the instruction or statement
does. This explanation is followed by a syntax box which shows the operands that
make up the instruction or statement. Positional operands are shown in the order
you must code them.

Each syntax box also contains a list with the following headings:

Required: You are required to code the operand or operands listed here.

Defaults: The system will supply the data shown if you do not specify the
operand or operands listed here.

Indexable: You can use the two software registers, #1 and #2, for the operands
listed here. See “Software Register Usage” on page 1-8 for further
information on the software registers.

G

Introduction

All operands that make up an instruction or statement are defined in a list following
each syntax box. The operands are listed in the order they appear in the syntax box.
The operand description details the use of the operand and any restrictions that may
apply to its use.

Special Considerations

Syntax Examples

Coding Examples

Certain IBM devices may require you to code an EDL instruction in a special way.
Other devices offer additional features which expand the use of an instruction.
Special considerations that can affect the way you use an instruction are described
after the operand list.

Most instructions and statements in this book contain syntax examples. Syntax
examples show the various ways you could code an instruction or statement. They
generally consist of a single line of code.

Many instructions and statements in this book also contain one or more coding
examples. These examples consist of entire programs or pieces of programs. Coding
examples illustrate how an instruction or statement works in relation to other
instructions and statements in the language.

Return or Post Codes

If an instruction issues return or post codes, these are listed after the examples.
Return and post codes are issued as follows:

Return codes Issued as a result of executing an EDL instruction to indicate
whether the operation was a success or a failure. Return codes are
returned in the first word of the task control block of the program
or task issuing the instruction, unless otherwise stated. The label of
the task control block (TCB) is the taskname (label) you specify on
the PROGRAM or TASK statement. You can examine the return
code from an instruction by referring to the taskname in your
program or by using the TCBGET instruction.

The following example shows several ways you can check the return

code:
START PROGRAM BEGIN
BEGIN EQU *
READTEXT ...
IF (START,EQ,-1),GOTO,MESSAGE

TCBGET RC,$TCBCO
PRINTEXT 'ERROR RETURN CODE IS: '
PRINTNUM RC

MESSAGE PRINTEXT 'OPERATION IS SUCCESSFUL'

RC DATA F'o'

Post codes Issued by the system to signal the occurrence of an event. Unless
otherwise stated, post codes are returned in the first word of the
event control block (ECB) that is posted when the event occurs.
You must specify the ECB to be posted with an ECB statement.

Chapter 1. Introduction 1-3

Introduction

Sample EDL Instruction

Syntax Example

Coding Example

1-4 SC34-0937

The following example shows how instructions and statements are presented in this-
book. A full description of the MESSAGE instruction and its operands appears in O
“MESSAGE — Retrieve a Program Message” on page 2-252.

The MESSAGE instruction retrieves a program message from a data set or module

and displays or prints the message.

Syntax:
label MESSAGE msgno,COMP = ,SKIP =,LINE =,SPACES =,
PARMS = (parml,...parm8),MSGID =,
XLATE=,PROTECT =,P1 =
Required: msgno,COMP =
Defaults: MSGID=NO,XLATE = YES,PROTECT =NO
Indexable: none
Operand Description
msgno Positional operand
COMP= Keyword operand
SKIP = Keyword operand
LINE = Keyword operand -
SPACES = Keyword operand ((,))
PARMS = Keyword operand
MSGID= Keyword operand
XLATE= Keyword operand

PROTECT= Keyword operand

Pl1= Parameter-naming operand

Retrieve the first message in the disk data set to which the COMP statement points.
MsSG1 MESSAGE 1,COMP=MSGSET

[]
[]
[]
PROGSTOP
MSGSET COMP "ERRS' ,DS1,TYPE=DSK

The following example uses the MESSAGE instruction to retrieve a message

contained in a disk data set. The program named TASK loads a second program,

CALCPGRM. A WAIT instruction suspends the execution of TASK until

CALCPGRM completes. When CALCPGRM finishes, it posts the ECB at label

LOADECB. The MESSAGE instruction at label MSG1 retrieves the first message

in the disk data set MSGDSI1 on volume EDX002. ()

TASK
LOADECB
START

MSG1

A
MSGSET

Return Codes

PROGRAM
ECB

EQU

[]

L]

LOAD
WAIT
MESSAGE

PROGSTOP
DATA
comp
ENDPROG
END

Introduction

START,DS ((MSGDS1,EDX002))

*

CALCPGRM, EVENT=LOADECB
LOADECB
1,COMP=MSGSET, SKIP=1,PARMS=A,MSGID=YES

'CALCPGRM'
'STAT',DS1,TYPE=DSK

The return codes are returned in the first word of the Task Control Block (TCB) of
the program issuing the instruction. The label of the TCB is the label of your
program or task (taskname).

Return
Code

Description

-1

Successful completion.

301 -316

Error while reading message from disk.

335

Disk messages not supported (MINMSG support 6n1y).

Common Terms

The following list contains some terms commonly used in the Language Reference,
along with their definitions:

constant

A value or address that remains unchanged throughout program
execution. The number 5 is an example of an integer constant. An
address in a program, such as 009E, is an example of an address

constant.

self-defining term
A decimal, integer, or character that the computer treats as data and
not as an address or pointer to data in storage. Self-defining terms
include expressions such as C'A' and X'5B'

variable

An area in storage, referred to by a label, that can contain any value
during program execution. In the example below, the label A refers to
an area in storage. The area contains the value 10. When the
DIVIDE instruction executes, it divides the contents of A by 5. The
system places the result of the operation in A. The variable A now
contains a value of 2.

Chapter 1. Introduction 1-5

Introduction

DIVIDE A,5

]
]
*

A DATA Fr10'

immediate = Immediate data refers to the way you can use a self-defining term.

data If you code a self-defining term such as 8 for an operand in an

instruction, you are using this term as “immediate data.” Operand 2
in the following example uses immediate data. The MULTIPLY
instruction multiplies the value of B by 8 and puts the result in B.

MULTIPLY B,8

precision The number of words in storage needed to contain a value in an

operation.

Syntax Rules

1-6 SC34-0937

This section contains syntax rules you should be aware of when coding programs in
the Event Driven Language. These rules apply whether you are using the Event
Driven Executive Compiler (SEDXASM) or the IBM Series/1 Macro Assembler
($S1ASM).

An “alphabetic string” can contain one or more alphabetic characters (A —Z)
and any of the following special characters: §, #, @

An “alphanumeric string” can contain one or more alphabetic or numeric
characters (0 —9).

You must code all instructions, statements, and keyword operands in upper case
letters (as shown in the syntax descriptions starting in Chapter 2, “Instruction
and Statement Descriptions” on page 2-1).

When you.code a keyword operand, you must also code the equal sign (=) that
follows it as shown in the following example.

PREC=

Operands must be separated by commas. Operands also must be separated from
the operation name by one or more blanks.

An ellipsis (...) indicates that an operand may be repeated a variable (n) number
of times.

A vertical bar (]) between two operands indicates that you can use one operand
or the other, but not both.

All labels must be alphanumeric strings 1 —8 characters in length. The first
character of the label must be a letter or one of the following special characters:

$,# 0r @

Instruction and statement labels must begin in column 1. Operation names can
begin in column 2, but must not go beyond column 71.

To continue a line of code on another line, code any nonblank character in
column 72, for example an “X,” and begin the next line in column 16. If the
continuation line contains a blank between column 16 and column 71, the
system ignores any information after that blank. The system concatenates the
data on the continuation line to the data on the preceding line.

O

Introduction

The number of continuation lines allowed is limited only by the maximum of
254 characters allowed in the operands field.

0 You can code operands through column 71 of the line to be continued, or you
can break off the line after a comma following an operand. An example of
breaking off the line before column 71 follows:

e B T Tt TR I SN, By S

label PRINTEXT ° 'ANNUAL STATUS AND RECOMMENDATION REPORT', X
SPACES=20,SKIP=1

¢ To include a comment following an instruction in your program, separate the
comment from the operands field by at least one blank. You can reserve an
entire line in the program for comments by coding an asterisk (*) in column 1.
The system ignores everything on the line following the asterisk.

Avoid the use of commas within comments for any of the following instructions
or statements: DEQT, ECB, ENQT, IOCB, PROGSTOP, or QCB.

e The system interprets any label you assign a value to with the EQU statement as
an address unless you code a plus sign (+) in front of the label. The plus sign
indicates that the label represents a numeric value.

¢ The following labels are reserved for system use:
— All labels beginning with a $
0 — RO, R1, R2, R3, R4, RS, R6, R7, FRO, FR1, FR2, FR3
- #1,#2
— RETURN (except when used in the instruction to end a user subroutine)
— SETBUSY
— SUPEXIT
- SVC.

Note: You can refer to these labels within your program in the instruction
operands.

¢ The maximum number of delimiters allowed in the operands field is 70.
Delimiters are () or , or ’

* To indicate an apostrophe mark within a text message, code double apostrophe
marks ('').

¢ The EDX arithmetic operators are + (plus), — (minus), * (multiply), and /
(divide).
You can use the plus and minus operators to create expressions that refer to
specific addresses in your program. The expression B+2, for example, defines
an address equal to the address of B plus 2 bytes. The expression C— A defines
an address equal to the address of C minus the address of A. You can use the
expressions you create with the plus and minus operators in all EDL instructions
that allow you to code a label for an operand. You can use an expression
instead of a label.

Chapter 1. Introduction 1-7

Introduction

The multiply and divide operators are valid only when you use them in an
arithmetic expression that you equate with a label. You equate arithmetic
expressions with labels by using the EQU instruction. The multiply operator
multiplies an address by the number of bytes you specify. The expression B*2
multiplies the address of B by 2. The divide operator divides an address by the
number of bytes you specify. In the expression C/D, the address of C is divided
by the value of D. See the EQU statement for examples that use the multiply
and divide operators.

Each arithmetic expression can contain only one operator. For example, the
expressions A+ B, C—1 D*4, and E/2 are all valid. If you require an expression
containing more than one operator, you can code it using multiple equate
(EQU) statements. The EQU statement equates a label with a value. To
compute the address of A+ B—2, for example, you could code the following:

APB EQU A+B EQUATE APB WITH A+B
APBM2 EQU APB-2 EQUATE APBMZ2 WITH APB-2

An arithmetic expression normally consists of two terms separated by an
operator. You can construct an expression, however, consisting of an operator
followed by a symbol. In this case, the system assumes that the first term of the
expression is 0. For example, if the value 2 is at location A, then +Ais2, —A
is —2, *Ais 0, and /A is 0.

e Operands that do not belong with an instruction are normally not flagged as
errors when compiled under SEDXASM. The erroneous operand does not
generate any code and does not affect the execution of the instruction.

Software Register Usage

1-8 © SC34-0937

Each task in your program has access to two software registers. You can use these
registers to hold data during an operation or as a means of computing addresses.
You can also use the registers as counters. The registers are named #1 and #2.
With operands that are listed as “indexable,” you can treat the registers in the same
manner as any other variable. For example, you can code instructions in your
program to set, modify, or test these registers.

In the example below, the MOVE instruction moves the value 0 into #1. The 0
value replaces any existing data in #1, thereby setting the software register to 0.

MOVE #1,0 SET #1 TO ZERO

The MOVE instruction in the next example moves the contents of variable A into

#2.
MOVE #2,Av SET #2 TO THE CONTENTS OF A
An example of a register used as the second operand in an instruction is:
ADD A,#1 |
Here, the ADD instruction adds the contents of #1 to the variable A, and places the
result in A.
You may also want to place the address of a variable into a software register. You
can accomplish this by using the MOVEA instruction. For example,
MOVEA #2,BUFFER1
sets register #2 to the address of the variable BUFFERI.

O

Introduction

Indexing with the Software Registers

You can use #1 and #2 to modify addresses in your program while the program is
executing. The process is called “indexing” and #1 and #2 are referred to as “index
registers.” In the following example,

MOVE A, (B,#1)

the MOVE instruction moves the contents specified by (B,#1) into variable A. The
system treats the second operand of the MOVE instruction as an address because
this operand is in the form,

(parameter,#r)

where parameter is either a label or an integer and r is either a | or a 2. If #1 in the
preceding example contains a 5, then the data the system moves into variable A is
located at the address of B plus 5 bytes. This sum is called the “indexed address.”
Note that only one of the variables in an operand with the (parameter,#r) format,
either the parameter or the index register, can represent an address. The other
variable must be an integer or a label preceded by a plus sign (+) that is equated to
an integer. (Use the EQU statement to equate a label with an integer.)

The following example shows how you could use an index régister to find the
location of data in a buffer. The example uses a DO loop to find the value —350 in
a buffer containing 1000 entries.

MOVE #1,0
DO 1000, TIMES
IF ((BUF,#1) ,EQ,-350) ,G0TO, FOUND
ADD #1,2
ENDDO
[]
. (DID NOT FIND A MATCH)

FOUND MOVE DISP,#1

L]
L]
L
PROGSTOP
BUF BUFFER 1000,WORDS

The first MOVE instruction sets the index register, #1, to 0. A DO instruction is
coded to perform the operations within the loop 1000 times. The IF instruction
checks to see if the first word in the buffer BUF is equal to —350. If the first word
is not equal to — 350, the ADD instructions adds the value 2 to #1. When the loop
repeats, (BUF,#1) points to the address of BUF plus two bytes (one word). With
each succeeding loop, the program increments #1, and points to the next word in the
buffer. BUF has a length of 1000 words (2000 bytes).

If the program finds the value —350 in the buffer, it executes the MOVE instruction

at label FOUND. The MOVE instruction saves the displacement from the start of
the buffer, which is contained in #1, at the location DISP.

Chapter 1. Introduction 1-9

Introduction

Register Considerations

Because each task in a program has its own software registers, the values in #1 and
#2 can vary from task to task. The system will use whatever values are in the
software registers of the task that is executing.

If several different tasks call a subroutine, the subroutine uses the software registers
belonging to the calling task. Overlay programs, however, are independent programs
with their own tasks. They have their own registers and do not use the calling task’s
registers.

Using the Parameter Naming Operands ‘(Px =)

1-10 SC34-0937

Often, when you create a program, you do not know the exact data the program will
use when it executes. Normally, you can code a label with a DATA, DC or TEXT
statement. In the MOVE instruction, for example, you may not know the byte
count until a previous instruction executes. When the instruction executes, it uses
whatever data is stored at the location defined by the label. Sometimes, however, a
label cannot be coded for instruction parameters.

In the following example, the number of bytes to move is dependent on the value of
the variable called NUMBER. The count parameter of the MOVE instruction does
not allow use of a label. So, multiple MOVE instructions are needed for every count
parameter option. In the following example, only two values for NUMBER exist.

A separate MOVE instruction is needed for each value. Note that this technique
requires a great deal of storage.

[]
[]
[]
IF (NUMBER,EQ,6)
MOVE A,B, (6,bytes)
ELSE
IF (NUMBER,EQ,10)
MOVE A,B, (10,bytes)

ENDIF
ENDIF

L]

L]

[
A TEXT LENGTH=10
B TEXT LENGTH=10
NUMBER DATA F'e'

If the value of NUMBER is a 6, then 6 bytes are moved from location B to A. If
the value of NUMBER is 10, 10 bytes are moved from location B to A.

The parameter naming operand (Px =) enables you to supply data to an instruction
in your program without having to define it with a DATA, DC or TEXT statement.

The Px= operands correspond to other operands in the instruction syntax. Pl =
represents the first operand in an instruction, P2 = represents the second operand,
P3 = represents the third operand, and so on. The number of parameter naming
operands allowed within each instruction varies.

Figure 1-2 on page 1-11 shows the syntax for the MOVE instruction. The MOVE
instruction has three parameter naming opei’ands._ P1= refers to opndl, P2= refers
to opnd2, and P3 = refers to count.

O

Introduction

label MOVE opndl,opnd2,count, FKEY=,TKEY =,
P1=P2=,P3=

Figure 1-2. MOVE Instruction Syntax

To use a Px= operand, you must first code it with a label. The label refers to a
storage location within the instruction. The system refers to the label you assign to
the Px = operand when your program executes. The system treats the label as the
parameter of the operand to which the Px= operand refers. Once you assign a label
to the Px= operand, you can use that label in other instructions in your program.

In the following example, a parameter naming operand (P3 =) is used on the MOVE
instruction to provide the number of bytes to be moved.

MOVE A,B, (0,bytes),P3=NUMBER

>
—
m
>
-

LENGTH=10
B TEXT LENGTH=10

This single line of code can replace the previous example. The system generates the
label and data area NUMBER when it assembles the MOVE instruction. The count
parameter of the MOVE instruction updates automatically when the variable called
NUMBER contains the value 6 or 10. This method of coding does not require an
IF instruction because the NUMBER variable is in the MOVE instruction. The
system generates the variable called NUMBER from the Px= operand code.
Storage is significantly reduced because it uses only one MOVE instruction.

In the following program, the GETVALUE instruction asks you for the number of
bytes to move from B to A. Since the TEXT statement is only 10 bytes, the
program checks for errors in data by making sure INPUT is between 1 and 10 bytes.
When the GETVALUE instruction receives the value for INPUT, the system
automatically updates the MOVE instruction’s byte count field. At that point the
data and characters moved from location B to A are printed on the terminal.

TEST PROGRAM START
START EQu *
RETRY GETVALUE INPUT,MESSAGE
IF (INPUT,LT,0),0r, (INPUT,GT,10) ,GOTO,RETRY
MOVE A,B, (0,bytes),P3=INPUT
PRINTEXT A
PRINTEXT SKIP=1
PROGSTOP
A TEXT ' ',LENGTH=10
B TEXT 'ABCDEFGHIJ', LENGTH=10
MESSAGE TEXT "ENTER BYTE COUNT'
ENDPROG
END

Chapter 1. Introduction 1-11

Introduction

Rules to Remember
You should remember the following rules when coding parameter naming operands

in your program.

Coding Labels on Px= Operands
When the compiler sees a Px= operand, it generates the label that you specify. The
compiler flags an error if you attempt to define that label again in your program.

Referring to Px= Operand Labels
You can refer to the label you code on the Px= operand more than once in your
program. However, once you have defined a label with a Px= operand, you cannot
use the same label on another Px= operand in the program.

Coding the Operand that Px= Replaces
When you code a Px= operand, you must still code a value or label for the operand
that Px= replaces. The system does not process the Px= operand if the label you
specified for it contains a 0 when the instruction executes. (The system defines the
value of the label on the Px= operand to be 0 at compilation time.) The example
that follows shows a case in which the system does not process the P2= operand
until the instruction at GETDATA executes and supplies label B with a value other

than 0.
CHECK PROGRAM START
START EQU *
ADDVAL ADD A,0,P2=B
IF (A,GT,10),60T0,END
GETDATA GETVALUE B,'ENTER NUMBER FROM 1 TO 10 ',SKIP=1
GOTO ADDVAL P
END PRINTNUM A, SKIP=1 L&J)
PROGSTOP =
A DATA F'1!
ENDPROG
END

On the first pass through the program, the label B contains a 0. The system adds
the value coded for operand 2 (0) to the value in A. After the GETVALUE
instruction executes, B contains whatever value was entered at the terminal. The
GOTO instruction passes control to the ADD instruction at the label ADDVAL.
When the ADD instruction executes the second time, the system adds the value in B
to the value in A. The system replaces the 0 value coded for operand 2 with the
value entered in B.

Matching Operand and Px= Operand Data Types
The type of data that the Px= operand supplies in an instruction must match the
type of data that is being replaced. For example, if you specify the label of an
address for operand 2, P2= must also supply an address. If you specify a constant
for operand 2, P2= must supply a constant.

1-12 SC34-0937

O

Introduction

In the example that follows, the ADD instruction contains a P2= operand. The
P2= operand refers to operand 2 which is coded with the constant 5. Because the
parameter coded for operand 2 is a constant, the P2= operand must replace this
parameter with another constant to get the desired results. In this case, the MOVE
instruction moves the value 2 into A. The system adds 2 to C and stores a result of
2 in SUM.

°
[
[]

MOVE A2
ADD C,5,RESULT=SUM, P2=A
L
[]
[
c DATA

F
SUM DATA F

In the next example, operand 2 of the ADD instruction is coded with the label D.
The label refers to the address of a data area. Because the parameter coded for
operand 2 (D) is an address, the P2= operand must replace this parameter with
another address to get the desired results. In this case, a MOVEA instruction moves
the address of B into A. The system adds the contents of B to the contents of C and
places the result in SUM.

MOVEA A,B

ADD C,D,RESULT=SUM, P2=A
*
L]

DATA F'2
DATA F'0
DATA F'5
UM DATA F'O

Lo O W

Instruction and Operand Address Boundaries

Some functions of the Series/1 require that instructions conform to certain storage
restrictions. These functions include those that deal with I/O data buffers, program
entry points, branch-to labels, and general data areas. Requirements can be for
byte, word, or doubleword alignment. The ALIGN instruction is used to ensure that
boundary requirements are met. For additional information refer to “ALIGN —
Instruction or Data to a Specified Boundary” on page 2-13. Check boundary
requirements when establishing data areas and when assigning labels.

Chapter 1. Introduction 1-13

Introduction

1-14 SC34-0937

All storage addressing is defined by byte location. Instructions can refer to bits,
bytes, byte strings, words, or doublewords as data operands. All fullword and
doubleword operand addresses must be on even-byte boundaries. All fullword and
doubleword operand addresses point to the most significant (leftmost) byte in the
operand. Bit addresses are specified by a byte address and a bit displacement.

e All instructions must be on an even-byte boundary.
* The effective address for all branch-type instructions must be on an even-byte
boundary to be valid.

If the rules of even-byte addressing are violated, a program check interrupt occurs
with specification check set in the processor status word (PSW).

@

Instruction and Statement Descriptions

0 Chapter 2. Instruction and Statement Descriptions

This chapter presents the Event Driven Language (EDL) instructions and statements
in alphabetical order. A description of the use of each instruction and statement is
provided, followed by its syntax, required operands, and the default values the
system uses when you do not specify certain operands. Each operand is listed and
described. Examples and other information, such as return codes and post codes,
also are provided. See “The Format of EDL Instructions and Statements” on

page 1-1 for more details on how this book presents instructions and statements.

Note: The Installation and System Generation Guide contains the statements you use
to define and generate your system. These statements are listed in the “Instructions
and Statements Chart.”

Instructions and Statements Chart

The chart on the following pages groups EDL instructions and statements by the
common tasks they perform. The chart also lists the statements you use to define
and generate a system.

Chapter 2. Instruction and Statement Descriptions 2-1

Instruction and Statement Descriptions

Add Device Support . Define Data
DCB EXCLOSE ALIGN EQU
EXIO EXOPEN BUFFER STATUS
EXBREAK IDCB DATA/DC TEXT
Call Programs and Subroutines Define 1/0
CALL RETURN B3CIOCB IODEF
CALLFORT USER CAIOCB PROGRAM
SUBROUT I0CB SBIO
Code Graphics Applications End a Program
CONCAT SCREEN END
GIN XYPLOT ENDPROG
PLOTGIN YTPLOT PROGSTOP
Control Program Logic Format and ldentify Compiler Listings
DO FINDNOT $ID SPACE
ELSE GOTO EJECT TITLE
ENDIF IF PRINT
ENDDO QUESTION
FIND
Control Tasks ~ Initiate and Terminate Telecommunications
ATTACH PROGRAM BSCCLOSE NETHOST
ATTNLIST PROGSTOP BSCOPEN NETINIT
DETACH PROGRAM CACLOSE NETTERM
END QBC CAOPEN TP CLOSE
ENDATTN RESET CASTART TP OPENIN
ENDPROG TASK CASTOP TP OPENOUT
ENDTASK WHERES NETCTL
LOAD
Control the Terminal Manipulate Data
ATTNLIST 10CB ADD HASHVAL
ENDATTN RDCURSOR ADDV IOR
ERASE TERMCTRL AND MOVE
CONCAT MOVEA
Convert Data DIVIDE MULTIPLY
CONVTB FPCONV EOR SETBIT
FADD SHIFTL
CONVTD GETEDIT
FORMAT PUTEDIT FDIVD SHIFTR
FMULT SQRT
FPCONV SUBTRACT
FSUB

2-2 $C34-0937

BGO05565

O

Instruction and Statement Descriptions

Obtain Date and Time

Respond to Errors

GETTIME CATRACE SBIO
PRINTDATE FREESTG SWAP
PRINTIME GETEDIT TCBGET
GETSTG TCBPUT
LOAD WRITE
READ
Obtain and Release Resources Retrieve User-Written Messages
DEQ COMP QUESTION
DEQT GETVALUE READTEXT
ENQ MESSAGE
ENQT Refer to External Modules
EF;_E;?GG COPY EXTRN
STORBLK CSECT WXTRN
ENTRY
SWAP
Perform Communication 1/0 Send or Receive Terminal Data
CAREAD TP (READ) GETEDIT PRINTEXT
CAWRITE TP (RELEASE) GETVALUE PRINTIME
CAPRINT TP (SET) MESSAGE PUTEDIT
NETGET TP (SUBMIT) PRINTDATE QUESTION
NETPUT TP (WRITE) PRINTNUM READTEXT
TP (FETCH)
Perform Disk, Diskette, and Tape /O Set Timers
CONTROL POINT INTIME
DSCB READ STIMER
NOTE WRITE
Process interrupts Synchronize Tasks
ATTNLIST ECB STIMER
|IODEF INTIME WAIT
SPECPIRT POST
Queue Processing System Generation
DEFINEQ ADAPTER SNALU
FIRSTQ BSCLINE SNAPU
LASTQ DISK SYSTEM
NEXTQ EXIODEV TAPE
HOSTCOMM TERMINAL
SENSORIO TIMER

Chapter 2. Instruction and Statement Descriptions

BG0556

2-3

$ID

$ID — Identify System Release Level

2-4 SC34-0937

The $ID statement enables you to record within an application program the EDX O
system release level that you use to compile the program. If you dump the program

at a later date to diagnose a problem, the $ID statement eliminates the need to refer

back to the original source listing to find out the system release level in use when the

program was compiled.

The system release level coded with $ID appears as the last word in the dumped
program.

Code the $ID statement between the ENDPROG and END statements of your

program. This is an exception to the rule that ENDPROG and END must be the
iast two statements of your program.

The $ID statement generates a 1-word constant in the form of VMLP. Each
parameter is packed into four bits and is specified in hexadecimal notation.

The $1D statement is already coded on all EDX supplied software.

Syntax
label $ID V=M=,L=P=
Required: None
Defaults: V=M=, and P = default to the current release level ~
of the EDX program product ((J

Operand Description

V= The EDX system release level; it ranges from 0—9, A~F
(hexadecimal).

M= The EDX modification or revision level; it ranges from 0~9, A—F
(hexadecimal).

L= The unique identifier you assign to programs not prepared by IBM; it
ranges from 1 —9, A—F (hexadecimal). The value 0 is reserved for
IBM use.

P= The program temporary fix (PTF) release level, it ranges from 0 -9,

A —F (hexadecimal).

O

Syntax Examples

$ID

1) In the following example, only operand L, which is designated for your use, is
coded. Operands V, M, and P are allowed to default to the current release level of
the EDX program product.

L]
]
L[]

ENDPROG
IDNOTE $1D L=2
END

2) The $ID statement in the example below will cause the identifier, 3121, to be
printed out as the last word in the program when it is dumped. The identifier shows
that the program was compiled under EDX system release level 3, modification level
1, and program temporary fix 1. The 2 on the L= operand is for the programmer’s
use.

ENDPROG
IDNOTE $1D V=3,M=1,1=2,P=1
END

Chapter 2. Instruction and Statement Descriptions 2-5

ADD

ADD — Add Integer Values

2-6 SC34:0937

The ADD instruction adds an integer value in operand 2 to an integer value in
operand 1. The values can be positive or negative. To add floating-point values, use
the FADD instruction.

See the DATA/DC statement for a description of the various ways you can represent
integer data.

EDX does not indicate an overflow condition for this instruction.

Syntax:
label ADD opndl,opnd2,count, RESULT = ,PREC =,
P1=,P2=,P3=
Required: opnd1,opnd2
Defaults: count=1,RESULT = OPND1,PREC=S
Indexable: opnd1,0pnd2, RESULT

Operand Description

opnd1 The label of the data area to which opnd2 is added. Opndl cannot be
a self-defining term. The system stores the result of the ADD
operation in opndl unless you code the RESULT operand.

opnd2 The value added to opndl. You can specify a self-defining term or the
label of a data area. The value of opnd2 does not change during the
operation.

count The number of consecutive values in opndl upon which the system

performs the operation. The maximum value allowed is 32767.

RESULT= The label of a data area or vector in which the result is placed. The
data area you specify for opndl is not modified if you specify
RESULT. This operand is optional.

PREC =xyz Specify the precision of the operation in the form xyz, where x is the
precision for opndl, y is the precision for opnd2, and z is the precision
of the result (“Mixed-Precision Operations” on page 2-7 shows the
precision combinations allowed for the ADD instruction). You can
specify single-precision (S) or double-precision (D) for each operand.
Single precision is a word in length; double precision is two words in
length. The default for opndl, opnd2, and the result is single
precision.

If you code a single letter for PREC, the letter applies to opndl and
the result. Opnd2 defaults to single precision. If, for example, you
code PREC =D, opndl and the result are double precision and opnd2
defaults to single precision.

If you code two letters for PREC, the first letter applies to opndl and
the result, and the second letter applies to opnd2. With PREC=DD,
for example, opndl and the result are double precision and opnd2 is
double precision.

O

Mixed-Precision Operations

Coding Example

Px

ADD

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

The following table shows the precision combinations allowed with the ADD

instruction:
opnd1 opnd2 ' Result Precision
S S S S
S S D SSD
D S D D
D b D DD

Opnd2 is one or two words long depending on the precision you specify on the
PREC= keyword. The length of opndl is equal to the operand’s precision
multiplied by the value of the count operand. SSSS is the defauit.

The following example moves the value 0 to index register #1. Next, the value 5 is
added to #1. Index register #1 now contains the value 5. The contents of variable
A are then added to each of three words starting at label V1. The results are placed
in three words starting at label V2. The contents of V1 and A remain unchanged
because the keyword RESULT is specified. The third ADD instruction adds 15 to
the double-precision value at label E.

V2

.MOVE

ADD
ADD

ADD

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

#1,0
#1,5

MOVE 6 TO #1
INCREASE #1 BY 5

V1,A,3,RESULT=V2 ADD THE VALUE IN A TO EACH OF 3 WORDS

E,15,PREC=D

F'10'
Flll
FI2|
FI3I
FIOI
FIOI
FIOI
D'100000"

STARTING AT V1 AND PLACE THE RESULT
IN 3 WORDS STARTING AT V2

ADD 15 TO DOUBLE-PRECISION VALUE E

Chapter 2. Instruction and Statement Descriptions 27

ADD

2-8 8C34-0937

The results from the previous coding example follow:

#1

vl

V2

Before

F'o'
F'10°
F'1
Flzl
F|3I
FIOI
F'o’
FIOI
D' 100000

#1

V1

V2.

After

FI5|
F'10°
Fr1

Flzl

F'3'
F'i1’
F'12"
F'13’
D'100015'

O

O

ADDV

ADDV — Add Two Groups of Numbers (Vectors)

The add vector instruction (ADDV) adds two groups of numbers or “vectors.” The
number of times the operation occurs depends on the count you specify. The
instruction adds each consecutive value in operand 2 to the corresponding value in

operand 1.

Note: An overflow condition is not indicated by EDX.

Syntax:

label

Required:
Defaults:
Indexable:

ADDV opndl,opnd2,count, RESULT = ,PREC =,
P1=,P2=,P3=

opnd1,opnd2,count
count =1,RESULT =opnd1,PREC=S
opndl,opnd2, RESULT

Operand
opnd1

opnd2

count

RESULT=

PREC =xyz

Description

The label of the data area that is modified by opnd2. Opndl cannot
be a self-defining term.

Do not code the software registers, #1 or #2, for this operand.
However, you can use the software registers to create an indexed
address for opndl.

The value by which opndl is modified. You can specify a self-defining
term or the label of a data area.

The number of consecutive values in both opndl and opnd2 upon
which the system performs the operation. The maximum value
allowed is 32767.

The label of a data area or vector in which the result is placed. The
data area you specify for opndl is not modified if you specify
RESULT. This operand is optional.

Specify the precision of the operation in the form xyz, where x is the
precision for opndl, y is the precision for opnd2, and z is the precision
of the result. (“Mixed-Precision Operations” on page 2-10 shows the
precision combinations allowed for the ADDV instruction.) You can
specify single-precision (S) or double-precision (D) for each operand.
Single precision is a word in length; double precision is two words in
length. The default for opndl, opnd2, and the resuit is single
precision.

If you code a single letter for PREC, the letter applies to opndl and
the result. Opnd2 defaults to single precision. If, for example, you
code PREC=D, opndl and the result are double precision and opnd2
defaults to single precision.

If you code two letters for PREC, the first letter applies to opndl and
the result, and the second letter applies to opnd2. With PREC=DD,
for example, opndl and the result are double precision and opnd?2 is
double precision.

Chapter 2. Instruction and Statement Descriptions 2-9 .

ADDV

Px= Parameter naming operands. See “Using the Parameter Naming

Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands. ()

Mixed-Precision Operations

Syntax Example

Coding Example

2-10 sC34-0937

The following table lists the precisions allowed with the ADDYV instruction:

opndl opnd2 Result Precision
S S S S
S S D SSD
D S D D
D D D DD

‘PREC=S is the default.

The ADDYV instruction in the following example adds each consecutive value in V1
to the corresponding value in V2. After the instruction executes, V1 contains
32F'3!

ADDV V1,V2,32 THE COUNT IS 32
L
[]
[]
Vi DATA 32F'1’
V2 DATA 32F'2'

The following example moves the value 10 to X1 and the value 20 to X2. The first
ADDY instruction adds the value in Cl1 to X1 and the value in C2 to X2. Because
the keyword RESULT is specified, the values in C1, C2, X1, and X2 remain
unchanged. The system places the results in D1 and D2. The second ADDV
instruction adds the values of the five words, starting at Bl, to the values of the five
words starting at Al. The ADDYV operation occurs in the following sequence: The
value in Bl is added to.the value in Al, the value in B2 is added to the valie in A2,
and so on through BS and AS.

ADDV

Results of the example follow on the next page.

X1
X2

Al
A2
A3

A4

A5

Bl
B2
B3
B4
B5

C1
c2

D1
D2

.
.
.

MOVE

MOVE

ADDV

ADDV

DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA

DATA
DATA

X1,16
X2,20

MOVE 10 TO X1
MOVE 20 TO X2

X1,C1,2,RESULT=D1 ADD VALUE OF C1 TO X1 AND

‘Al1,B1,5

THEN C2 TO X2

PLACE RESULTS IN
LOCATIONS D1 and D2

ADD THE VALUE OF THE 5 WORDS

STARTING AT B1 TO THE 5 WORDS
STARTING AT Al

Chapter 2. Instruétion and Statement Descriptions 2-11

ADDV

2-12 SC34-0937

Results of the previous coding example follow:

X1
X2

Al
A2
A3
A4
A5

Bl
B2
B3
B4

BY

C1
c2

D1
D2

Before

F'00'
F'00°

X1
X2

Al
A2
A3
A4
A5

Bl
B2
B3
B4
B5

C1
c2

D1
D2

After

Fr10°
F'20°

Frir
Fre2!
F'33'
Fra4!
F'55°

F'10'
F'20'
F'30"
Fa0'
F'50'

F|5l
F10’

F'15'
F'30'

ALIGN

ALIGN — Instruction or Data to a Specified Boundary

0 The ALIGN statement ensures that the next instruction or data item in a source
statement list begins on a specified boundary: an odd byte, a word, or a doubleword.
The ALIGN statement is nonexecutable and should only be used to align data
within data areas.

When coding the ALIGN instruction, you can include a comment that will appear
with the instruction on your compiler listing. If you include a comment, you must
also code the type operand. The comment must be separated from the operand field
by at least one blank and it cannot contain commas.

Syntax:
blank ALIGN type comment
Required: type (if you include a comment)
Default: WORD
Indexable: none
Operand Description
type WORD (the default) or blank aligns data on a fullword boundary.

BYTE aligns data on an odd-byte boundary.
0 DWORD aligns data on a doubleword boundary.

Note: If the data field is already aligned at the boundary requested, no action
results. WORD and BYTE align the data a maximum of 1 byte. DWORD aligns
the data a maximum of 3 bytes.

Coding Example
The ALIGN statement in the following example aligns the data area labeled BUFF
on a word boundary (even address).

Loc

0200 PROGNME DC C'EDX UTILITY'

0208 ALIGN WORD ALIGN TO WORD BOUNDARY
020C BUFF DC CL'64'

Chapter 2. Instruction and Statement Descriptions 2-13

AND

AND — Compare the Binary Values of Two Data Strings

The AND instruction compares the binary value of operand 2 with the binary value
of operand 1. The instruction compares each bit position in operand 2 with the
corresponding bit position in operand 1 and yields a result, bit by bit, of 1 or 0. If
both of the bits compared are 1, the result is 1. If either or both of the bits
compared are 0, the result is 0.

Syntax:

label

Required:
Defaults:

Indexable:

AND opnd1,opnd2,count, RESULT =,
P1=,P2=,P3=

opnd1,opnd2
count = (1, WORD),RESULT = opnd1,
opnd1,0pnd2,RESULT

Operand
opndl

opnd2

count

RESULT =

-2-14 SC34-0937

Description

The label of the data area to which opnd2 is compared. Opndl cannot
be a self-defining term. The system places the result of the operation
into opndl unless you code the RESULT operand.

The length of opndl is equal to the operand’s precision multiplied by
the value of the count operand.

The value compared to opndl. You can specify a self-defining term or
the label of a data area.

The number of consecutive values in opndl upon which the operation
is to be performed. The maximum value allowed is 32767.

The count operand can include the precision of the data. Select one
precision which the system uses for opndl, opnd2, and the resulting bit
string. When specifying a precision, code the count operand in the
form,

(n,precision)
where “n” is the count and “precision” is one of the following:

BYTE Byte precision
WORD Word precision (default)
DWORD Doubleword precision

The precision you specify for the count operand is the portion of
opnd?2 that is used in the operation. If the count is (3,BYTE), the
system compares the first byte of data in opnd2 with the first three
bytes of data in opndl.

The label of a data area or vector i which the result is to be placed.

When you specify this operand, the value of opndl does not change
during the operation.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)” on page 1-10 for a detailed description of how to
code these operands.

O

O

Syntax Examiples

AND

1) In the following example, the AND instruction turns off the rightmost four bits in
DATAI1 without affecting the other data field bits. After the instruction executes,
DATALI contains X'EQ' (binary 1110 0000).

AND DATA1,MASK, (1,BYTE)

DATA1 DC X'ET7! binary 1110 0111
MASK DC X'FO' binary 1111 0000

2) The AND instruction in this example compares opnd2 with the first three bytes of
data in opndl. The system places the result in RESULTX.

AND OPER1,0PER2, (3,BYTE) ,RESULT=RESULTX

OPER1 DC X'e0' binary 0000 0000
DC X'A5' binary 1010 0101
DC X'or' binary 0000 0001
OPER2 DC X'FF! binary 1111 1111
RESULTX DC 2F'0’ binary 0060 0000 6000 0000

After the AND operation, RESULTX contains X'00AS 0100* (binary 0000 0000
1010 0101 0000 0001).

3) In the following example, the AND instruction compares the first byte of data in
TEST to the first three bytes of data in INPUT. The system stores the result in
OUTPUT.

AND INPUT,TEST,(3,BYTE),RESULT=0UTPYT

INPUT DC c'1.2' binary 1111 0001 0100 1011 1111 0010
TEST DC c'e.o’ binary 1111 0000 0100 1011 1111 0660
OUTPUT DC 3C'o’ binary 1111 0000 1111 0000 1111 0000

After the AND operation, the contents of OUTPUT are C'0.0' (binary 1111 0000
0100 1011 1111 0000).

Chapter 2. Instruction and Statement Descriptions 2-15

ATTACH

ATTACH — Start a Task

The ATTACH instruction starts the execution of or “attaches” another task. If the
task you specify has already been attached, no operation occurs. You deactivate
tasks with the DETACH instruction.

The task to be attached is usually in the same partition as the ATTACH instruction.
However, you can attach a task in another partition by using the cross-partition
capability of ATTACH.

Note that the program load point of the attaching task is placed in the STCBPLP
field of the task being attached. The system, however, will not reference the
$TCBPLP of the attached task if the attaching task is in another partition. To avoid
this problem, put the load point of the task to be attached in the STCBPLP field of
the attaching task before the ATTACH instruction is executed. Be sure to restore it
after the ATTACH instruction is completed.

See Appendix C, “Communicating with Programs in Other Partitions
(Cross-Partition Services)” on page C-1 for an example of attaching a task in
another partition. Refer to the Language Programming Guide for more information
on cross-partition services. }

The system records the address space in which a task is executing in the $TCBADS
field of the task’s task control block (TCB). When your program attaches a task,
the system moves the address space in the program’s TCB into the $STCBADS field
of the attached task’s TCB.

When the ATTACH instruction executes, the system stores the address of the
terminal from which the main task was loaded in the STCBCCB field of the attached
task. In this way, the same terminal is active for both tasks.

If your program is to be link edited, place all TASKs to attach via the ATTACH
instruction in the same module. The assembler will chain all the TASKs within the
module it assembles. Your application program will have to chain the tasks together
if they are not within the same module. Modify the correct field in the TCB to
chain tasks accross modules.

Syntax:
label ATTACH taskname,priority, CODE =,
P1=,P2=,P3=
Regquired: taskname
Defaults: CODE=-1
Indexable: none

2-16 SC34-0937

Coding Example

ATTACH

Operand Description

taskname Label of the task to be attached. You must define this task with a
TASK statement.

priority The priority you assign to the task. This priority replaces the one you
assigned on the TASK statement. It remains in effect unless it is
overridden by a subsequent ATTACH instruction. See the TASK
statement for a description of the valid priorities you can assign a task.

CODE = A code word to be inserted in the first word of the task control block
of the task being attached. This code word could help your program
determine at what point the task is being attached. The attached task
could examine the code word by referring to the taskname operand.
The code word should be examined immediately upon entry into the
attached task because execution of certain instructions (for example,
I/O instructions) cause this word to be overlaid.

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

In the following example, the ATTACH instruction attaches a task that reads a
record from a data set. The program begins by attaching TASK1. TASKI is the
label of a TASK statement. TASK1 prints the message at label P1 and reads a
record from MYFILE into the buffer BUF. The MOVE instruction moves the first
8 bytes of BUF into the text buffer labeled REC. When TASKI1 ends, it posts the
event specified on the EVENT = operand of the TASK statement. The main
program receives control and the WAIT instruction at label W1 checks to see if
TASK1 has ended. The PRINTEXT instruction at label P2 prints the message
'PROGRAM COMPLETE', and the program ends.

SAMPLE PROGRAM START,DS=((MYFILE,EDX40))
START EQU *
ATTACH TASKI
Wi WATT EVENT
P2 PRINTEXT ~ 'PROGRAM COMPLETE',SKIP=2
PROGSTOP
BUF BUFFER 256,BYTES
REC TEXT LENGTH=8
kkkkkhkdkhkkhhrkkhkkkhkkhkkkkhkkkkkkkhkkhkrhkkkkkik
TASK1 TASK NEXT, EVENT=EVENT
NEXT ENQT $SYSPRTR
P1 PRINTEXT ~ '@TASK1 ATTACHED'
READ DS1,BUF,1
MOVE REC,BUF, (8,BYTES)
DEQT $SYSPRTR
ENDTASK
dkkhhkkkkkkhkhkdkhkhhkkkhkhhkkdhhhkkhhkkkkkdkkdhkkdikik
ENDPROG
END

Chapter 2. Instruction and Statement Descriptions 2-17

ATTNLIST

ATTNLIST — Enter Attention-Interrupt-Handling Routine

2-18 sC34-0937

The ATTNLIST statement provides entry to one or more
attention-interrupt-handling routines.

With the ATTNLIST statement, you can produce a list of command names and
associated routine entry points. When you press the attention key on a terminal,
your program waits for you to enter a 1 —8 character command. If the command
you enter matches one that is specified in the list, the associated routine receives
control. No action occurs if the command you enter is not contained in the list or if
the system cannot find the entry point of the routine.

The character § is reserved for system use and should not be used as the first
character of a command name unless you are assigning PF keys. The characters
ERAP are also reserved. All other character combinations are allowed. Your
attention routines must end with an ENDATTN instruction.

Your program and the ATTNLIST routine execute asynchronously. When the
ATTNLIST routine finishes, control passes to the instruction that was executing
when you pressed the attention key. Figure 2-1 on page 2-21 shows the operation
of the ATTNLIST instruction.

The attention list for programs you compile with $EDXASM can be up to 254
characters long and can contain a total of 24 ATTNLIST entries. Programs
compiled under SEDXASM can contain one LOCAL ATTNLIST and one
GLOBAL ATTNLIST statement. (See the SCOPE= operand for an explanation of
LOCAL and GLOBAL ATTNLIST.) The Series/l macro and host assemblers allow
multiple attention lists with a maximum of 125 characters in each list.

ATTNLIST routines should execute quickly. Because the routines execute on
hardware level 1, lengthy routines can slow the execution of other application
programs or system tasks.

Notes:

1. You should not use the following instructions in an ATTNLIST routine:
DEQT, DETACH, ENDTASK, ENQT, LOAD, PROGSTOP, READ,
STIMER, TP, WAIT, and WRITE.

2. ATTNLIST routines cannot gain access to an enqueued terminal until the
program that has exclusive access releases the terminal by issuing a DEQT or
PROGSTOP instruction.

3. Do not use SDEBUG command names as command names in your attention list
routine. Refer to the Operator Commands and Utilities Reference for a list of the
$DEBUG command names.

Syntax:
label ATTNLIST (ccl,locl,cc2,loc2,...,ccnloen),SCOPE =
Required: ecl,locl
Defaults: SCOPE =LOCAL
Indexable: none

Syntax Example

Operand

ccl

locl
SCOPE =

ATTNLIST

Description

A command name consisting of 1—8 alphanumeric characters. Do not
use the character $ as the first character of the command name unless
you are assigning PF keys. For a description of using and assigning
the 4979, 4978, 4980, and 3101 terminal program function (PF) keys to
use ATTNLIST routines, refer to the Operation Guide.

Name of the routine to be called.

GLOBAL,’ allows the ATTNLIST command routines to be used on

any terminal assigned to the same storage partition.

LOCAL, limits the use of ATTNLIST commands to the specific
terminal (assigned to the same partition) from which the program
containing the commands was loaded.

A program can have one LOCAL ATTNLIST and one GLOBAL
ATTNLIST.

The ATTNLIST statement that follows allows you to use the PCODEI! routine by
pressing the attention key and entering PC1. To use the PCODE?2 routine, you
would press the attention key and enter PC2.

ATTNLIST (PC1,PCODE1,PC2,PCODE2)

PCODE1 MOVE CODE,1
ENDATTN

PCODE2 POST EVENT,2
ENDATTN

Chapter 2. Instruction and Statement Descriptions 2-19

ATTNLIST

Coding Examples

2-20 SC34-0937

1) The following example uses the ATTNLIST statement to control the printing of
repetitive test patterns. Once the test pattern begins printing, it can only be stopped O
by pressing the attention key and entering the command “CA.” o

The program begins printing a test pattern consisting of 10 numbers. You can
expand the test pattern to include 24 special characters by pressing the PF1 key.

If you press the PF2 key, the test pattern includes the alphabet, the 10 numbers
(0—9), and the 24 special characters.

TESTLOOP PROGRAM START
ATTNLIST (CA,CANCEL,$PF1,PF1,$PF2,PF2)

CANCEL EQU *
MOVE SWITCH,99
ENDATTN
PF1 EQU *
MOVE SWITCH,1
ENDATTN
PF2 EQU *
MOVE SWITCH,2
ENDATTN
START EQU *
ENQT
DO WHILE, (SWITCH,NE,99)
PRINTEXT '@1234567890"
IF (SWITCH,GE,1)
PRINTEXT ' |#$%¢&*()_-+=1-":;2/>.<,"
ENDIF
IF (SWITCH,EQ,2) Q{::D
PRINTEXT 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' '
ENDIF
ENDDO
DEQT
PROGSTOP
SWITCH DATA F'o'
ENDPROG
END

ATTNLIST

2) The following example also illustrates coding of the ATTNLIST statement.
However, it uses PF keys to call ATTNLIST instead of entering a command.

ATTEST PROGRAM ATLIST
ATTNLIST ($PF1,PCODE1,$PF3,PCODE3)
PCODE1 PRINTEXT 'PF1 KEY WAS PRESSED@'
MOVE VAR, 1
ENDATTN
PCODE3 PRINTEXT '"PF1 KEY WAS PRESSED@'
MOVE VAR, 3
ENDATTN
ATLIST EQU *
DO (WHILE, (VAR,NE,1)
MOVE #1,#2
ENDDO
PROGSTOP
VAR DATA X'0000'
ENDPROG

ATTNLIST
»| abc,exit1
Xyz,exit2 L] exit1
‘ ENDATTN

exit2 e

ENDATTN

A0937001

Figure 2-1. Function of ATTNLIST

Chapter 2. Instruction and Statement Descriptions 2-21

BSCCLOSE

BSCCLOSE — Free a BSC Line for Use by Other Tasks

Return Qodes

2-22 SC34-0937

The BSCCLOSE instruction frees a binary synchronous line for use by other tasks.
If the line is a switched line (TYPE=SM or SA), this instruction disconnects it.

Syntax:
label BSCCLOSE bscioch, ERROR =,P1=,P2=
Required: bscioch
Defaults: none
Indexable: bscioch

Operand Description

bscioch The label or indexed location of the BSCIOCB statement associated
with the close operation.

ERROR= The label of the instruction to be executed if an error occurs while
closing the line. If you do not code this operand, control passes to the
next sequential instruction. In either case, the return code reflects the
results of the operation.

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)” on page 1-10 for a detailed description of how to
code these operands.

All BSC instruction return codes are listed with the BSCWRITE instruction under
“Return Codes” on page 2-36.

O

BSCIOCB

BSCIOCB — Specify BSC Line Address and Buffers

The BSCIOCB statement specifies the line address and buffer(s) needed to perform
BSCCLOSE, BSCOPEN, BSCREAD, and BSCWRITE operations.

If you are sending variable-length records, the length field (lengthl operand) must
contain the actual length of the message to be written. Reset the value coded for the
length field to the buffer length before issuing a READ. Figure 2-2 on page 2-24
lists the number of buffers required for each type of BSCREAD and BSCWRITE

operation.
Syntax:
label BSCIOCB lineaddr,bufferl,lengthl buffer2,
length2,pollseq,pollsize,P1 =,P2 =,
P3=,P4=,P5=,P6=,P7=
Required: lineaddr
Defaults: none
Indexable: none
Operand Description
label The label of the BSCIOCB. The BSCCLOSE, BSCOPEN,
BSCREAD, and BSCWRITE instructions refer to this label.
Other instructions can use the label to obtain additional status
information stored in the first word of the BSCIOCB. After text is
successfully received, this word contains the address of the last
character received. For all other conditions, the word contains the
Interrupt Status Word from the Series/1 BSC Adapter.
lineaddr The hardware address, in hexadecimal, of the line on which the
operation is to be performed.
bufferl The label of the first buffer used in an I/O operation. This buffer is
located in the target address space. The target address space is
determined during a BSCOPEN operation and is defined in
$TCBADS. This address space is used as the address space of the
buffer until another BSCOPEN operation changes it.
lengthl The length, in bytes, of the first buffer.
buffer2 The label of the second buffer used in an I/O operation. This buffer is
located in the target address space as defined by $TCBADS.
length2 The length, in bytes, of the second buffer.
pollseq The address of the poll or selection sequence to be used in a multipoint
control line initial operation.
pollsize The length, in bytes, of the poll or selection sequence.

Chapter 2. Instruction and Statement Descriptions 2-23

BSCIOCB

The polling and selection sequences consist of one to seven characters
followed by: ENQ,(Read or Write Initial)!. You can find specific
sequences for a given device in the device component description
manual. Generally, a 3-byte pollsize is sufficient for a sequence of
address,address, ENQ! between Series/l processors. The device type
tributary determines the actual sequence.

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Number Number
Read of Write of
Type Buffers Type Buffers
C 1 C 1
D 0 CvV 2
E 1 CVvX 2
I 1 CX i
P 1 CXB 1
Q 0 D 0
R 1 E 0
U 1 EX 0
1 |
v 2
IvX 2
X 1
IXB 1
Q 1
N 0
U 1
UX 2

Figure 2-2. Required Buffers for BSCREAD and BSCWRITE

1 Commas are for readability only and are not part of the data stream.

2-24 SC34-0937

O

O

BSCOPEN

BSCOPEN — Prepare a BSC Line for Use

The BSCOPEN instruction prepares a binary synchronous line for use by a task.
The instruction acquires use of the BSC line and prepares it for a subsequent read or
write operation.

If the line is a switched manual line (TYPE =SM), BSCOPEN requests a Data
Terminal Ready acknowledgement and waits for the telephone connection to be
established. If the line is a switched auto-answer line (TYPE =SA), BSCOPEN waits
indefinitely for the ring interrupt and then requests a Data Terminal Ready
acknowledgement.

Note: BSCOPEN assumes that point-to-point lines have Data Terminal Ready
(DTR) permanently set on.

Syntax:
label BSCOPEN bscioch, ERROR = X21RN =,P1=,P2=,P3=
Required: bscioch
Defaults: none
Indexable: bscioch

Operand Description

bsciocb The label or indexed location of the BSCIOCB statement associated
with the open operation.

ERROR= The label of the instruction to be executed if an error occurs while
opening the line. If you do not code this operand, control passes to
the next sequential instruction. In either case, the return code reflects
the results of the operation.

X21RN= The label of the data area containing the name of a member in the
X.21 Circuit Switched Network Support connection data set. This
member contains the connection information for this BSCOPEN. See
“X21RN Coding Example” on page 2-26 for the layout of the data
area.

This parameter must be coded for auto-call (TYPE=SE or

TYPE =SM) if the default data set name is not used. This parameter
is optional for direct call (TYPE =DC) and is ignored for all other
connection types. (The default name and the data set contents are
explained in the Communications Guide.)

Px= Parameter naming operands. See “Using the Parameter Naming

Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-25

BSCOPEN

X21RN Coding Example

Return Codes

2-26 ' SC34-0937

The following example shows how to code the data area referred to by the X21RN

operand. This data area contains the name of the X.21 Circuit Switched Network "v.ﬁ
connection record data set. The data area must be eight characters long. If the data

set name contains fewer than 8 characters, the remaining positions in the data area

must contain blanks. (Refer to the Communications Guide for additional information

about the connection data set.)

[
L]
L
BSEOPEN BSCIOCB,X21RN=MYDS
.

MYDS DC CL8'X21RNDS ' DATA SET NAME

The following are the return codes for X.21 Circuit Switched Network. All other
BSC instruction return codes are listed with the BSCWRITE instruction under
“Return Codes” on page 2-36.

Return

Code Condition

-32 System is unable to find X.21 support. IPL the system.

-31 Not enough storage available to handle the number of X.21 requests.
Use the $SDISKUT2 SS command to allocate more storage for $X21.
You can issue three simultaneous requests for every 256 bytes of @
storage allocated.

—-30 Your supervisor does not contain X.21 support.

-29 System does not have enough storage available to load the X.21
support or the connection record data set, $$X21DS, is not on the IPL
volume.

—27 Unrecoverable hardware error. If $LOG is active, check the error log
record for the X.21 device for more details.

—26 Hardware error for the 2080 feature card. Invalid interrupt received.

=25 Connection failed.

—-24 Time expired for the completion of a call request. Call request failed.

=23 You cancelled a call request with an SNADACT or $C command.

-22 Call request failed due to Public Data Network problems. Call
progress signals invalid.

-21 Call request failed due to Public Data Network problems. Call
progress signals incomplete.

—20 Call request failed and network would not allow the request to be
retried. If $LOG is active, check the error log record for the X.21
device for more details.

- 19 Number of retries exhausted for the call request. If SLOG is active,
check the error log record for the X.21 device for more details.

BSCOPEN

O

Return
Code Condition
—18 Hardware error for the 2080 feature card. I/O request could not be
completed.
-17 No call request in progress.
- 16 The Network information field of the X.21 connection record has no
plus sign or only a plus sign.
—15 The value in the Retry or Delay field of the X.21 connection record
exceeds the maximum value allowed.
- 14 The Retry or Delay field of the X.21 connection record contains a
negative value.
—-13 A comma must separate the Retry, Delay, and Network information
fields of an X.21 connection record.
—-12 The Retry or Delay field of the X.21 connection record contains an
invalid character.
—-11 System does not have enough storage to execute a call request.
-10 Not enough storage in partition 1 for X.21 to execute a request.
-9 Either the connection record was never created or an EDL instruction
failed.
-1 Successful completion.
0 You cancelled a call request with an SNADACT or $C command.
1 Registration or cancellation request processed.
2 Redirection activated.
3 Redirection deactivated.

Chapter 2. Instruction and Statement Descriptions 2-27

BSCREAD

BSCREAD — Read Data from a BSC Line

The BSCREAD instruction reads data from a binary synchronous line. If the read
operation is successful, the first word of the associated BSCIOCB contains the
address of the last character read.

2-28 SC34-0937

Syntax:
label BSCREAD type,bscioch, ERROR = ,END =,CHAIN =,
TIMEOUT =,P1=,P2=,P3=
Required: type,bscioch
Defaults: CHAIN=NO,TIMEOUT =YES
Indexable: bscioch

Operand Description

type The type of read operation you want to perform. The read operations
listed below are described in detail under “BSCREAD Types” on
page 2-30.

C Read Continue
b Read Delay

E Read End

I Read Initial

P Read Poll

Q Read Inquiry
R Read Repeat
U Read User.

bscioch The label or indexed location of the BSCIOCB statement associated
with the read operation.

ERROR= The label of the instruction to be executed if an error occurs (return
codes 10 through 99). If you do not code this operand, control passes
to the next sequential instruction. In either case, the return code
reflects the results of the operation.

END= The label of the instruction to be executed if an ending condition

occurs (return codes 1 through 6). If you do not code this operand,
control passes to the next sequential instruction. In either case, the
return code reflects the results of the operation.

e

CHAIN=

TIMEOUT =

BSCREAD

YES, to cause a write operation to take place before the read
operation. Code CHAIN =YES for Read Poll (type P) and Read User
(type U). The system chains the DCB for the read operation to the
DCB for the write operation.

You must provide the address of the data for the write operation in
the buffer2 field of the BSCIOCB instruction. This buffer is located in
the target address space as defined by $STCBADS during a BSCOPEN
operation. You also must define the length (in bytes) of the data for
the write operation in the length?2 field of the BSCIOCB.

Your program receives an error return code if the address of the data
or the length of the data for the write operation is zero. No write or
read operation is performed.

NO, to cause the read operation to take place before any write
operation.

Note: You can code CHAIN =YES to respond to a POLL with an
EOT and then immediately set up the next read poll operation. This
may be necessary in direct-connect environments where the Series/1 is
a tributary to an extremely fast polling device.

YES, to cause a time-out error to occur if the access method does not
receive data within three seconds during a receive operation.
Normally, the access method attempts to recover from the error the
number of times that you coded on the RETRIES operand of the
BSCLINE statement that defines this line. Retry on time-out is not
performed by the access method for the following BSCREAD and
BSCLINE types:

BSCREAD Type BSCLINE Type

I

PP.MC

P

any

U

any

Px=

Return Codes

NO, to prevent a time-out error from occurring if the access method
does not receive data within three seconds during a receive operation.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

All BSC instruction return codes are listed with the BSCWRITE instruction under
“Return Codes” on page 2-36.

Chapter 2. Instruction and Statement Descriptions 2-29

BSCREAD

BSCREAD Types

Type Operation

C

D

2-30 SC34-0937

Read Continue — Reads subsequent blocks of data after an initial block has O
been received with a Read Initial.

Read Delay — Acknowledges that a block of data was correctly received and
asks the transmitting station to wait before sending the next block. You can
issue several Read Delays before resuming transmission of data with a Read

Continue.

Read End — Acknowledges that a block of data was correctly received and
asks the transmitting station to stop sending data. You should issue only one
Read End during a single transmission. Once you issue the Read End, issue
Read Continues until you actually receive an EOT.

Read Initial — Reads the first block of data in a transmission. After a
successful Read Initial operation, issue Read Continues until you receive an
EOT.

For a point-to-point operation (TYPE =PT,SA,SM), Read Initial monitors the
line for an ENQ sent by the transmitting station, writes a positive response
(ACK-0), and reads the message block that follows.

In a multipoint controller operation (TYPE=MC), Read Initial polls a
tributary station and, if the response to polling is positive, reads the message
text.

For a multipoint tributary operation (I'YPE =MT), Read Initial writes a
positive response (ACK-0) and reads the message block that follows.

Read Poll — Reads the poll or select sequence received when the Series/1 is
acting as a tributary station on a multipoint line (TYPE=MT). If the @
operation is successful, the specified buffer contains the sequence received -
starting with the second station (control unit) address character. The access

method does not check the contents of the received data stream, including

control characters.

Once it is polled or selected, your program should check the next operation
requested and issue the appropriate Read/Write Initial operation.

If you code CHAIN =YES, you can provide data to be transmitted by a write
operation before the Read Poll operation. For example, you can provide three
synchronization (SYN) characters and an EOT to be transmitted before the
Read Poll operation.

Read Inquiry — Reads an ENQ character. Read Inquiry returns an invalid
sequence error if ENQ or EOT is not received. If EOT is received, the access
method takes the END = exit, if specified.

BSCREAD

R Read Repeat — Requests that the last block of data be retransmitted following
an unsuccessful read operation.

0 The RETRIES operand on the BSCLINE statement determines the number of
times the read operation attempts to recover from a common error condition.
You can use Read Repeat, however, to attempt further recovery depending on
the actual error encountered.

U Read User — Receives data without issuing a response. The access method
does not check the data or attempt any error recovery.

If you code CHAIN =YES, you can provide data to be transmitted by a write
operation before the Read User operation.

Return Codes
All BSC instruction return codes are listed with the BSCWRITE instruction under
“Return Codes” on page 2-36.

O

Chapter 2. Instruction and Statement Descriptions 2-31

BSCWRITE

BSCWRITE — Write Data to a BSC Line

The BSCWRITE instruction writes data to a binary synchronous line.

2-32 SC34-0937

Syntax:
label BSCWRITE type,bscioch, ERROR = ,END =,CHECK =,
P1=,P2=,P3=
Required: type,bscioch
Defaults: CHECK =YES
Indexable: bscioch
Operand Description
type The type of write operation you want to perform. The write
operations listed below are described in detail under “BSCWRITE
Types” on page 2-33.
C Write Continue
Cv Write Continue Conversational
CVX Write Continue Conversational Transparent
CX Write Continue Transparent
CXB Write Continue Transparent Block
D Write Delay
E Write End
EX Write End Transparent
1 Write Initial
v Write Initial Conversational
IVX ~ Write Initial Conversational Transparent
IX Write Initial Transparent
IXB Write Initial Transparent Block
N Write NAK (negative acknowledgement)
Q Write Inquiry
U Write User
UX Write User Transparent
bscioch The label or indexed location of the BSCIOCB statement associated
with the write operation.
ERROR= The label of the instruction to be executed if an error occurs (return

codes 10 through 99). If you do not code the operand, control passes
to the next sequential instruction. In either case, the return code
reflects the results of the operation.

&

C

BSCWRITE Types

END=

BSCWRITE

The label of the instruction to be executed if an ending condition
occurs (return codes 1 through 6). If you do not code this operand,
control passes to the next sequential instruction. In either case, the
return code reflects the results.

CHECK= YES, to allow normal checking of the response to occur. This

Px=

Type

Ccv

CvX

CX

CXB

parameter is only valid for type CV or CVX operations.

NO, to prevent the response from being checked for protocol validity.
CHECK =NO provides a chained write-to-read operation similar to
Write User and Read User.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Operation

Write Continue — Writes subsequent blocks of data after an initial block has
been written with a Write Initial operation.

Write Continue writes the message text and reads a response from the
receiving station.

Write Continue Conversational — Writes subsequent blocks of data after an
initial block has been written in conversational mode.

Write Continue Conversational writes the message text and reads a response
into your buffer. The access method checks acknowledgement sequences
and attempts error recovery when necessary. If text is received, a —2 return
code is returned instead of the normal —1.

Write Continue Conversational Transparent — Writes subsequent blocks of
transparent data after an initial block has been written in conversational
mode.

Write Continue Conversational Transparent writes the message text and the
ending characters DLE ETX. It then reads a response into your buffer.
The access method checks acknowledgement sequences and attempts error
recovery when necessary. If text is received, a —2 return code is returned
instead of the normal —1.

Write Continue Transparent — Writes subsequent blocks of transparent data
after an initial block has been written.

Write Continue Transparent writes the message text and the ending
characters DLE ETX. The operation then reads a response from the
receiving station.

Write Continue Transparent Block — Writes subsequent blocks of
transparent data after an initial block has been written. This operation is
the same as BSCWRITE type CX except that it uses ETB as the ending
character instead of ETX.

Write Continue Transparent Block writes the message text and the ending
characters DLE ETB. It then reads a response from the receiving station.

Chapter 2. Instruction and Statement Descriptions 2-33

- BSCWRITE

2-34 SC34-0937

EX

v

Write Delay — Informs the remote station that the transmission of the next
block of data will be delayed. You can perform several Write Delay -
operations before data transmission resumes.

Write Delay writes a temporary text delay (TTD) to the receiving station
and reads a NAK response. The purpose of this operation is to inform the
receiving station of a TTD before data transmission resumes.

Write End — Informs the remote station that the previous block of data
completed the write operation. Write End writes an EOT.

Write End Transparent — Writes a transparent EOT (DLE EOT). You can
use this operation to notify the receiving station on a switched line that the
transmitting station is disconnecting from the line.

Write Initial — Writes the first block of data in a transmission. Write Initial
establishes the correct initial sequence (depending on the type of line), writes
the first block, and checks the response.

For a point-to-point operation (TYPE =PT,SA,SM), Write Initial:
¢ Writes an ENQ to gain use of the line
e Readsa positivé response (ACK-0)
e Writes the message text
¢ Reads the response to the message text.
In'a multipoint controller operation (TYPE =MC), Write Initial:
¢ Selects a tributary station
¢ Waits for a positive response to the selection
¢ Writes the message text
¢ Reads the response to the message text.
For a multipoint tributary operation (TYPE =MT), Write Initial:
* Writes the message text
¢ Reads a response from the controller station.

Write Initial Conversational — Writes the first block of data for a
transmission in conversational mode.

Write Initial Conversational establishes the correct initial sequence
(depending on the type of line), writes the first block of the message text,
and reads a response into your buffer. The access method checks
acknowledgement sequences and attempts error recovery when necessary. If
text is received, a — 2 return code is returned instead of the normal —1.

For a point-to-point operation (TYPE =PT,SA,SM), Write Initial
Conversational:

e Writes an ENQ to gain use of the line
¢ Reads a positive response (ACK-O)
e Writes the message text

¢ Reads the response to the message text.

IvX

rxp

BSCWRITE

In a multipoint controller operation (TYPE =MC), Write Initial:
¢ Selects a tributary station
* Waits for a positive response to the selection
e Writes the message text
¢ Reads the response to the message text.

For a multipoint tributary operation (TYPE =MT), Write Initial:
¢ Writes the message text
¢ Reads a response from the controller station.

Write Initial Conversational Transparent — Writes the first block of
transparent data of a transmission in conversational mode.

Write Initial Conversational Transparent establishes the correct initial
sequence (depending on the type of line), writes the first block of the
message text and the ending characters DLE ETX. It then reads a response
into your buffer. The access method checks acknowledgement sequences
and attempts error recovery when indicated. If text is received, a —2 return
code is returned instead of the normal —1.

For point-to-point operation (TYPE =PT,SA,SM), Write Initial
Conversational Transparent:

* Writes an ENQ to gain use of the line
* Reads a positive response (ACK-O)
e Writes the message text
¢ Writes the required ending characters DLE ETX
» Reads the response to the message text.
In a multipoint controller operation (TYPE =MC), Write Initial:
¢ Selects a tributary station
¢ Waits for a positive response to the selection
e Writes the message text
* Writes the required ending characters DLE ETX
¢ Reads the response to the message text.
For a multipoint tributary operation (TYPE =MT), Write Initial:
o Writes the message text
¢ Writes the required ending characters DLE ETX
* Reads a response from the controller station.

Write Initial Transparent — Writes the first block of transparent data in a
transmission. Write Initial Transparent establishes the correct initial
sequence (depending on the type of line), writes the first block of transparent
data, and checks the response. The access method ends the message text
with DLE ETX.

Write Initial Transparent Block — Same as Write Initial Transparent (IX)
except that ETB is used as the ending character instead of ETX.

Chapter 2. Instruction and Statement Descriptions 2-35

BSCWRITE

UX

Return Codes

Write Inquiry — Writes an ENQ character and reads the response into your
buffer. The response is either a control sequence or text.

Use this operation to request that a response to a message block be
retransmitted. The access method retries the operation if it times out.

Write NAK — Writes a NAK (negative acknowledgement) character. Use
this operation to respond “device not ready” to polling or selection when the
Series/1 operates as a tributary station on a multipoint line (TYPE=MT).

Write User — Transmits a character stream. The access method does not
perform an associated read operation or attempt error recovery.

Write User Transparent — Transmits a transparent character stream. The
access method does not perform an associated read operation or attempt
€Iror recovery.

The operation concludes with one of the following character pairs contained
in BSCIOCB buffer2: DLE ETX, DLE ETB, or DLE ENQ.

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname).

Return
Code

Condition

-32

System is unable to find X.21 support. IPL the system. 7

-31

Not enough storage available to handle the number of X.21 requests.
Use the $DISKUT?2 SS command to allocate more storage for $X21.
You can issue three simultaneous requestsfor every 256 bytes of
storage allocated. 7

—30

Your supervisor does not contain X.21 support. 7

-29

System does not have enough storage available to load the X.21
support or the connection record data set, $$X21DS, is not on the IPL
volume. 7

-27

Unrecoverable hardware error. If $LOG is active, check the error log
record for the X.21 device for more details. 7

—25

Connection failed. 7

~-24

Time expired for the completion of a call request. Call request failed. 7

—23

You cancelled a call request with a $C command. 7

-22

Call request failed due to Public Data Network problems Call progress
signals invalid. 7

-21

Call request failed due to Public Data Network problems. Call
progress signals incomplete. 7

-20

Call request failed and network would not allow request to be retried.
If $LOG is active, check the error log record for the X.21 device for
more details. 7

-19

Number of retries exhausted for the call request. If $LOG is active,
check the error log record for the X.21 device for more details. 7

2-36 SC34-0937

O

BSCWRITE

Return
Code

Condition

—18

Hardware error for the 2080 feature card. I/O request could not be
completed. 7

—16

The Network information field of the X.21 connection record has no
plus sign or only a plus sign. 7

-15

The value in the Retry or Delay field of the X.21 connection record
exceeds the maximum value allowed. 7

—-14

The Retry or Delay field of the X.21 connection record contains a
negative value. 7

—13

A comma must separate the Retry, Delay, and Network information
fields of an X.21 connection record. 7

-12

The Retry or Delay field of the X.21 connection record contains an
invalid character. 7

System does not have enough storage to execute a call request. 7

Not enough storage in partition 1 for X.21 to execute a request. 7

An EDL instruction failed. If $LOG is active, check the error log
record for the X.21 device to find the failing instruction. 7

Text received in conversational mode.

Successful completion.

EOT received.

DLE EOT received.

Reverse interrupt received.

Forward abort received.

Remote station not ready (NAK received). 4

Remote station busy (WACK received). 4

Time-out occurred. 1

Unrecovered transmission error (BSC error). !

Invalid sequence received. 3

Invalid multipoint tributary write attempt. 2

Disregard this block sequence received. !

Remote station busy (WACK received). 1

Your supervisor does not contain X.21 support. 7

The connection type you defined on the BSCLINE statement is not
valid for the X.21 Circuit Switched Network. 7

18

The 2080 feature card is incorrectly jumpered for use with the X.21
Circuit Switched Network. 7

19

The X.21 network has been deactivated (DCE CLEAR). 7

20

Wrong length record — long (No COD). 6

21

Wrong length record — short (write only). 2

22

Invalid buffer address. 2

Chapter 2. Instruction and Statement Descriptions

2-37

BSCWRITE

2-38 SC34-0937

N v ok

Return
Code Condition
23 Buffer length zero. 2
24 Undefined line address. 2
25 Line not opened by calling task. 2
126 Registration or cancellation request processed. 7
27 Redirection activated. 7
28 Redirection deactivated. 7
30 ‘Modem interface error. 2
31 Hardware overrun. 2
32 Hardware error. 5
33 Unexpected ring interrupt. 2
34 Invalid interrupt during auto-answer attempt. 2
35 Enable or disable DTR error. 2
99 Access method error. 2
Notes:
1. Retried up to the limit specified in the RETRIES = operand of the BSCLINE
statement.
2. Not retried.
3. Retried during write operation only when a wrong ACK is received following an

ENQ request after timeout (indicating that no text had been received at the
remote station).

Returned only during an initial sequence with no retry attempted.
Retried only after an unsuccessful start I/O attempt.
Retried only during read operations.

Returned only if your system contains support for the X.21 Circuit Switched
Network.

BUFFER

BUFFER — Define a Storage Area

0 The BUFFER statement defines a data storage area. The standard buffer contains
an index word, a length word, and a data buffer.

The index word indicates the number of data items (words or bytes) stored in the
buffer, but only when incremented by your program. A label assigned to the index
word in your program will enable you to increment and reset the index word from
the program. The system sets the index word to 0 when it creates the buffer. The
length word indicates the total length of the buffer in data items (words or bytes).

Certain instructions, for example INTIME and SBIO allow you to add new entries
sequentially to a buffer by referring to and incrementing the index word.

You can use a BUFFER statement to define the storage area needed for use with the
Host Communications Facility TP READ/WRITE instruction. The use of the
BUFFER statement to set up a temporary I/O buffer for a terminal is explained
under the IOCB statement.

READTEXT and GETEDIT instructions can be used to modify the BUFFER
statement. PRINTEXT and PUTEDIT instructions use the BUFFER statement to

determine the number of values to print.

Figure 2-3 on page 2-41 shows the physical layout of a buffer.

Syntax:
label BUFFER length,item, INDEX =
Required: length
Defaults: item=WORD
Indexable: none

Operand Description

length The length of the buffer in terms of the data item (words or bytes) you
specify. The system allocates two words of control information, the
index word and the length word, in addition to the buffer itself. The
length must not exceed 16380 words or 32760 bytes.

If your program includes a READ instruction that will use the buffer,
the buffer area should be a multiple of 256 bytes.

Note: When filling a buffer, you should be careful not to exceed the
buffer size. The system does not check for an overflow condition.

Chapter 2. Instruction and Statement Descriptions 2-39

BUFFER

2-40 SC34-0937

item

INDEX =

Code BYTE or BYTES if the buffer length is defined in terms of bytes.
Code WORD or WORDS if the buffer length is defined in terms of
words. The default for this operand is WORD. @

Code BYTE or BYTES if you are using the BUFFER statement with
a CALL $IMOPEN instruction.

Code TPBSC to generate a buffer for use with the TP READ/WRITE
instruction (Host Communications Facility). The count operand
reflects the length of the buffer in bytes when you code TPBSC.

The label of the buffer index word. Do not code this operand if you
coded TPBSC for the item operand. You can think of this operand as
a pointer to the next available data location in the buffer.

O

Standard BUFFER

label BUFFER length,item,INDEX=name

v

name index
length

—p label X

X

X

X

0

0

0

0

0

TPBSC BUFFER
label BUFFER length, TPBSC

.

length

pad

request

» label

data

pad

)

index
size in bytes
DLE/STX

TP request block

ETX

2 words

length in
bytes

1 word

1 word

8 words

length in
bytes

1 word

A0937002

Figure 2-3. Physical Layout of a Buffer

BUFFER

Chapter 2. Instruction and Statement Descriptions 2-41

BUFFER

Coding Example

2-42 SC34-0937

The BUFFER statement labeled BUFF defines a 102-word storage area. The first
word of this area is labeled INDX as coded on the keyword INDEX. The second
word contains the count of the total number of BUFFER entries. The remaining
100 words are the actual BUFFER storage area.

SUBROUT STORE

IF (INDX,GE,198)
ENQT $SYSPRTR
PRINTEXT '@BUFFER IS FULL'
DEQT
RETURN
ENDIF
MOVEA #1,BUFF MOVE ADDR OF BUFF
ADD #1,INDX INCREMENT #1
MOVE (0,#1) ,DATAL, (1,WORD) MOVE DATA TO BUFF
ADD INDX,2 INCREMENT -BUFFER INDEX
RETURN
BUFF BUFFER 100, WORDS , INDEX=INDX
DATA1 DATA F'o!

O

C

CACLOSE

CACLOSE — Close a Channel Attach Port

Syntax Examples

The CACLOSE instruction ends the connection between your application program
and a Channel Attach port and disables the port from receiving interrupts from the
System/370.

Syntax:
label CACLOSE caioch,ERROR =,P1=
Required: caioch
Defaults: none
Indexable: caioch

Operand Description

caioch The label or indexed location of the Channel Attach I/O control block
defined for this port.

ERROR= The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CACLOSE and your program must test for errors before issuing a
WAIT.

P1= Parameter naming operand. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

1) The following example closes a port defined by the CAIOCB at USERIOCB.
CLOSE10 CACLOSE USERIOCB

2) This example closes a port defined by the CAIOCB at the indexed location of
USER plus the contents of #1. If an error occurs, the instruction at label E1
receives control.

CLOSEFC CACLOSE (USER,#1),ERROR=E1

Return and Post Codes

Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code other than —1 indicates that the link
module found an error before the instruction performed an I/O operation. Your
program must check the return code before it issues a WAIT because a WAIT
should only be used if an I/O operation is being performed.

CACLOSE post codes are returned to the first word of the CAIOCB you defined for
the instruction.

Chapter 2. Instruction and Statement Descriptions 2-43

CACLOSE

2-44 SC34-0937

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation
FEOC —500 Data pending from host.
-1 FFFF -1 Successful.
501 01F5 EXIO error; device not attached.
502 01F6 EXIO error; busy.
503 01F7 EXIO error; busy after reset.
504 01F8 EXIO error; command reject.
505 01F9 EXIO error; intervention required.
506 01FA EXIO error; interface data check.
507 01FB EXIO error; controller busy.
508 01FC EXIO error; channel command not
allowed.
509 01FD EXIO error; no DDB found.
510 O01FE EXIO error; too many DCBs chained.
511 01FF EXIO error; no residual status address.
512 0200 EXIO error; zero bytes specified for
residual status.
513 0201 EXIO error; broken DCB chain.
516 0204 EXIO error; device already opened.
524 020C Timeout.
0234 564 User’s CAIOCB not linked to port.
567 0237 567 System error; CAPGM terminating.
0238 568 Port not opened.

Note: Channel Attach codes 501 — 513 are the same as the EXIO post codes 1 —13

respectively.

O

CAIOCB

CAIOCB — Create a Channel Attach Port I/0 Control Block

The CAIOCB statement creates a Channel Attach port I/O control block that
contains the information your program requires to use a port.

You supply the device address, the port number, and the label of the first buffer
control area. You must provide a CAIOCB for all operations to a port. Do not try
to modify the CAIOCB during program execution.

Syntax:
label CAIOCB address,PORT = ,BUFFER =
Required: label,address,PORT = ,BUFFER =
Defaults: none
Indexable: none
Operand Description
label The label of the CAIOCB for use with the CAOPEN, CACLOSE,
CAREAD, and CAWRITE instructions.
address A 2-digit hexadecimal device address.
PORT = The number of the port (0—31) for which this I/O control block is
being created.
BUFFER = The label of a 3-word area containing:

Syntax Example

* First word — the address of the buffer to be used for the first
read.

¢ Second word — the number of bytes to be used.

e Third word — the partition number of the buffer. If this word is
zero, the system assumes the buffer is in the partition in which you
loaded your program.

The following statement creates a Channel Attach port I/O control block for port 3.
The device address is 10.

USERIOCB CAIOCB 10, PORT=3,BUFFER=AREA

Chapter 2. Instruction and Statement Descriptions 2-45

CALL

CALL — Call a Subroutine

The CALL instruction executes a system subroutine or a subroutine that you write.
You can pass up to five parameters as arguments to the subroutine. If the
subroutine you call is a separate object module to be link-edited with your program,
you must code an EXTRN statement with the subroutine name in the calling
program. Figure 2-4 on page 2-48 shows an example of a primary task calling a
subroutine which in turn calls a second subroutine.

2-46 SC34-0937

Syntax:

label

Required:
Defaults:

Indexable:

CALL name,parl,...,par5,P1=,... ,P6=

name
none
none

Operand

name

par(n)

Description
The name of the subroutine to be executed.

The parameters you want to pass to the subroutine. You can pass up
to five single-precision integers or the labels of single-precision integers
or null parameters to the subroutine. The CALL instruction replaces
the parameters specified in the subroutine with the parameters you
specify. For example, the instruction replaces the first parameter of
the subroutine with parl, the second parameter with par2, and so on.

If the parameter name is enclosed in parentheses, for example (parl),
the instruction passes the address of the variable to the subroutine
parameter. The address can be the label of the first word of any type
of data item or data array. Within the subroutine it will be necessary
to move the passed address of the data item into one of the index
registers, #1 or #2, in order to refer to the actual data item location in
the calling program. If the parameter name enclosed in parentheses is
the label of an EQU instruction, the instruction passes the value of
that label as the parameter.

If the parameter to be passed is the label of an EQU instruction, you
can code a plus sign (+) in front of that label. The plus sign causes
the value equated to the label to be passed to the subroutine. If you
do not code a plus sign in front of the label, the instruction assumes
that the value equated to the label is an address and passes the data at
that address as the parameter.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Q

G

O

Syntax Examples

Coding Example

CALL

1) Call the PROG subroutine and pass it a value of 5.
CALL PROG,5

2) Call the PROG subroutine and pass it a value of 5 and the null parameter 0.
CALL PROG,5,

3) Call the SUBROUT subroutine and pass it the contents of PARMI, the address
of PARM?2, and the value of the equated label FIVE.

CALL SUBROUT,PARM1, (PARM2) ,+FIVE

The following coding example shows a use of the CALL instruction. The main
routine calls the subroutine READREC. A relative record number is passed to the
subroutine as RECNUMBR and is received as RECORD#.

Two methods of passing an address to a subroutine are illustrated. First, at label
MA, the address of ENDFILE is moved to EOF. Then EOF is passed to the
subroutine as a parameter of a CALL instruction.

Second, in the same CALL instruction, the address of READERR is passed to the
subroutine by enclosing the label in parentheses. When EOF and READERR are
passed to the subroutine, they are referred to as EOFEXIT and ERREXIT,
respectively.

The EOFEXIT and ERREXIT parameters are addresses. In order to branch to the
locations these parameters represent, they must be enclosed in parentheses as the
object of a GOTO instruction.

The subroutine uses the relative record number defined by RECORD# to read the
data file. An end-of-file condition causes a branch to the appropriate exception
routine whose address is contained in EOFEXIT.

A read error will cause a branch to the location whose address is contained in

ERREXIT. If no exception condition is encountered, control is returned to the
calling routine by the RETURN instruction.

Chapter 2. Instruction and Statement Descriptions 2-47

CALL

MA MOVEA
CALL
GOTO
READERR EQU
PRINTEXT
PRINTNUM
PROGSTOP
ENDFILE EQU
PRINTEXT
PROGSTOP
CONTINU EQU
[]

EOF ,ENDFILE

READREC ,RECNUMBR, EOF , (READERR)

CONTINU

*

'@ ERROR ENCOUNTERED READING DISK FILE RECORD NUMBER'

RECNUMBR

*

'@ END OF INPUT DATA FILE REACHED'

*

SUBROUT READREC,RECORD#,EQFEXIT,ERREXIT
READ DS1,DISKBUFR,1,RECORD#, END=ENDEXIT,ERROR=ERRORXIT
RETURN
ENDEXIT EQU *
GOTO (EOFEXIT)
ERRORXIT EQU *
GOTO (ERREXIT)
[]
[]
[]
CALL name1 ——®»| SUBROUT name1
° “—_“—— °
CALL name2 — | SUBROUT name2
* [)
RETURN

RETURN

A0937003

Figure 2-4. Execution of Subroutines

2-48 SC34-0937

O

CALLFORT

CALLFORT — Call a FORTRAN Subroutine or Program

The CALLFORT instruction calls a FORTRAN program or subroutine from an
Event Driven Executive program. If you call a FORTRAN main program, the
name you specify for the name operand is the name you coded on the FORTRAN
PROGRAM statement or the default name, MAIN, if no PROGRAM statement
was coded. If you call a FORTRAN subroutine, specify the name of the subroutine
for the name operand. You can pass parameters to FORTRAN subroutines.
Standard FORTRAN subroutine conventions apply to the use of CALLFORT.

If separate tasks within an EDL program each contain CALLFORT instructions, the
tasks should not execute concurrently because the FORTRAN subroutines are
serially reusable and not reentrant.

For a more complete description of the use of the CALLFORT instruction, refer to
the IBM Series|1 Event Driven Executive FORTRAN IV Program 5719-FO2 User's
Guide, SC34-0315.

Syntax:
label CALLFORT name,(al,a2,...,an),P = (pl,p2...pn)
Required: name
Defaults: none
Indexable: none

Operand Description

name The name of a FORTRAN program or subroutine, consisting of 1 —6
alphanumeric characters, that begins with an alphabetic character.
You must also code this name, or entry point, on an EXTRN
statement.

al,a2,an A list of parameters or arguments (al,a2, and so on) that you want to
pass to the subroutine. The argument can be a constant, a variable, or
the name of a buffer. If you are passing the subroutine only one
argument, you do not have to enclose it in parentheses.

pl,p2,pn Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands. Each name in this list can be up to 8 characters
long. The system assigns the first name in the list to the first
argument, the second name in the list to the second argument, and so
on.

Chapter 2. Instruction and Statement Descriptions 2-49

CALLFORT

Syntax Examples

- 2-50 $C34-0937

1) Call the SORT1 subroutine.

SAMPLE PROGRAM
EXTRN
EQU
CALLFORT

START

START
SORT1

*

SORT1

2) Call the SUM subroutine and pass it an integer constant of 3.

SAMPLE PROGRAM
EXTRN
EQU
CALLFORT

START

START
SUM

*

SUM,5

3) Call the SUM subroutine and pass it variables A and B.

SAMPLE PROGRAM

EXTRN
START EQU
CALLFORT
[
L 3
[]
A DATA
B DATA

START
SUM

*

SUM, (A,B)

F|5I
FIOI

4) Call the SUM subroutine and pass it variables A and B. Assign the label INPUT
to argument A and OUTPUT to argument B.

SAMPLE PROGRAM

EXTRN
START EQU
CALLFORT
[]
[]
[]
A DATA
B DATA

START
SUM

*

SUM, (A,B) ,P=(INPUT,QUTPUT)

C

F|5l
2F'0"

O

b

CAOPEN

CAOPEN — Open a Channel Attach Port

Syntax Examples

The CAOPEN instruction establishes a connection between your application
program and a Channel Attach device port.

You must issue a CAOPEN instruction before your program can use a port for data
transfer. When your program opens a Channel Attach port, it has exclusive use of
the port until the port is closed. The system rejects any request to open a port
already opened.

Syntax:
label CAOPEN caioch,ERROR =,P1 =
Required: caioch
Defaults: none
Indexable: caioch

Operand Description

caiocb The label or indexed location of the Channel Attach port 1/O control
block you defined for this port.

ERROR = The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CAOPEN and your program must test for errors before issuing a
WAIT.

Pl1= Parameter naming operand. See “Using the Parameter Naming
Operands (Px=)” on page 1-10 for a detailed description of how to
code this operand.

1) Open a port defined by the CAIOCB at label USERIOCB.
OPEN10 CAOPEN USERIOCB

2) Open a port defined by the CAIOCB at the indexed location of USER plus the
contents of #1. If an error occurs, the instruction at label El receives control.

OPENFC CAOPEN (USER,#1) ,ERROR=E1

Chapter 2. Instruction and Statement Descriptions 2-51

CAOPEN

Return and Post Codes

2-52 SC34-0937

Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code other than — 1 indicates that the link
module found an error before the instruction performed an I/O operation. Your

program must check the return code before it issues a WAIT because a WAIT
should only be used if an I/O operation is being performed.

CAOPEN post codes are returned to the first word of the CAIOCB you defined for
the instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation
-1 FFFF —1 Successful.
501 01FS EXIO error; device not attached.
502 01F6 EXIO error; busy.
503 01F7 EXIO error; busy after reset.
504 01F8 EXIO error; command reject.
505 01F9 EXIO error; intervention required.
506 01FA EXIO error; interface data check.
507 01FB EXIO error; controller busy.
508 01FC EXIO error; channel command not
» allowed.
509 01FD EXIO error; no DDB found.
510 01FE EXIO error; too many DCBs chained.
511 01FF EXIO error; no residual status address.
512 0200 EXIO error; zero bytes specified for
residual status.
513 0201 EXIO error; broken DCB chain.
516 0204 EXIO error; device already opened.
520 0208 Interrupt error.
524 020C Timeout.
0227 551 Device not started.
0228 552 Stop in progress.
022C 556 Port out of range.
022D 557 Port already open.
022E 558 Read buffer not provided.
022F 559 Read buffer count = 0.
567 0237 567 System error; CAPGM terminating.
023A 570 Device in diagnostic mode.

Note: Channel Attach codes 501 —513 are the same as the EXIO post codes 1 —13,

respectively.

C

O

O

O

CAPRINT

CAPRINT — Print Channel Attach Trace Data

The CAPRINT instruction prints the entire trace area on your printer or terminal.
Use this instruction for problem determination. Tracing is disabled while printing is
being done.

Syntax:
label CAPRINT address,event, TITLE = ,CONSOLE =,ERROR =,
P1=,P2=,P3=,P4=
Required: address
Defaults: CONSOLE =3$SYSPRTR
Indexable: EVENT,TITLE

Operand Description
address A 2-digit hexadecimal device address.
event The label or indexed location of the event to be posted when printing

has completed. If you do not code this operand, your program is not
posted when printing completes.

TITLE= The label or indexed location of a 2-word area defining the title on the
trace data listing. The first word contains the address of the title. The
second word contains the length, in bytes, of the title. If you do not
code this operand, no title appears on the trace data listing. TITLE =
cannot exceed 72 bytes if you are using the SCHANUT!] utility.

CONSOLE =
The label of the IOCB statement that defines the terminal used as the
output device for this trace print request.

ERROR= The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CAPRINT and your program must test for errors before issuing a
WAIT.

Px

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-53

CAPRINT

Syntax Examples

Return Codes

2-54 SC34-0937

1) Print trace data for the device at address 10 on $SYSPRTR.
PRINT10 CAPRINT 10,ERROR=ERRORZ2

2) Print trace data for the device at address FC on PRTR2. When the printing
completes, the instruction posts the event at the indexed location of address A plus
the contents of #1.

PRINTFC CAPRINT FC,(A,#1),TITLE=HEAD, X
CONSOLE=PRTR2,ERROR=E1

Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code indicates that the link module found
an error before the instruction performed an I/O operation. Your program must
check the return code before it issues a WAIT because a WAIT should only be used
if an I/O operation is being performed.

For detailed explanations of the return codes, refer to Messages and Codes.

Return
Hex Code Explanation
0227 551 Device not started.
0228 552 Stop in progress.
022A 554 Device not found.

C

CAREAD

CAREAD — Read from a Channel Attach Port

0 The CAREAD instruction reads data from a Channel Attach port. The operation
occurs at the port you specify in the CAIOCB statement.

Syntax:
label CAREAD caioch,thisbuf,nextbuf, ERROR =,
P1=,P2=P3=
Required: caioch, thisbuf,nextbuf
Defaults: none
Indexable: caioch, thisbuf,nextbuf
Operand Description
caioch The label or indexed location of the Channel Attach port I/O control

block defined for this port.
thisbuf The label of a 3-word area containing:

e First word — the address of the buffer receiving the data from this
read

¢ Second word — the number of bytes to be read into the buffer
¢ Third word — the partition number of the buffer
0 nextbuf The label of a 3-word area containing:
¢ First word — the address of the buffer to be used for the next read
¢ Second word — the number of bytes to be read into the buffer
* Third word — the partition number of the buffer.

ERROR = The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CAREAD, and your program must test for errors before issuing .a
WAIT.

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Syntax Examples
1) Read data from the port defined by the CAIOCB at label USERIOCB. The
address of the buffer receiving the data is in the 3-word area at label BUF1.

READ10 CAREAD USERIOCB,BUF1,BUF2

2) Read data from the port defined by the CAIOCB at the indexed location of
USER plus the contents of #1. The address of the buffer receiving the data is in the
3-word area at the indexed location of BUF1 plus the contents of #2.

READFC CAREAD (USER,#1),(BUF1,#2), X
(BUF2,#1) ,ERROR=E1

Chapter 2. Instruction and Statement Descriptions 2-55

CAREAD

Return and Post Codes

2-56 SC34-0937

Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code other than —1 indicates that the link

module found an error before the instruction performed an I/O operation. Your
program must check the return code before it issues a WAIT because a WAIT
should only be used if an I/O operation is being performed.

CAREAD post codes are returned to the first word of the CAIOCB you defined for

the instruction. For detailed explanations of the return and post codes, refer to
Messages and Codes.

Post Return
Code Hex Code Explanation
-1 FFFF -1 Successful.
501 01F5 EXIO error; device not attached.
502 01F6 EXIO error; busy.
503 01F7 EXIO error; busy after reset.
504 01F8 EXIO error; command reject.
505 01F9 EXIO error; intervention required.
506 01FA EXIO error; interface data check.
507 01FB EXIO error; controller busy.
508 01FC EXIO error; channel command not
allowed.
509 01FD EXIO error; no DDB found.
510 01FE EXIO error; too many DCBs chained.
511 01FF EXIO error; no residual status address.
512 0200 EXIO error; zero bytes specified for
residual status. ,
513 0201 EXIO error; broken DCB chain.
516 0204 EXIO error; device already opened.
524 020C Timeout.
520 0208 Interrupt error.
521 0209 Negative acknowledgement (write only).
522 020A Buffer overlay (read only).
523 020B Protocol error.
022E 558 Buffer not provided.
022F 559 Buffer count = 0.
0232 562 Write buffer not provided.
0233 563 Write buffer count = 0.
0234 564 Users CAIOCB not linked to port.
1 567 0237 567 System error; CAPGM terminating.
0238 568 Port not opened.

Note: Channel Attach codes 501 —513 are the same as the EXIO post codes 1 —13,

respectively.

C

C

CASTART

CASTART — Start Channel Attach Device

Syntax Example

The CASTART instruction starts a Channel Attach device. Your program must
start the Channel Attach device before it can open any of the device’s ports.

The first CASTART instruction you issue loads the Channel Attach device handler
program, initializes the control blocks for the device, and prepares the device to
accept interrupts from the System/370. Subsequent CASTART instructions connect
to the device handler program initially loaded.

Syntax:
label CASTART address,ech, ERROR = P1=,P2=
Required: address,ech
Defaults: none
Indexable: ech

Operand Description
address A 2-digit hexadecimal device address.

ech The label or indexed location of the event to be posted upon
completion of the CASTART operation.

ERROR= The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CASTART, and the program must test for errors before issuing a
WAIT.

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

The CASTART instruction in the following example starts the device at address 10.
When the start operation ends, the instruction posts the event at SECB.

START16 CASTART 10,$ECB

Chapter 2. Instruction and Statement Descriptions 2-57

CASTART

Return and Post Codes

2-58 SC34-0937

Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code other than — 1 indicates that the link
module found an error before the instruction performed an I/O operation. Your
program must check the return code before it issues a WAIT because a WAIT
should only be used if an I/O operation is being performed.

CASTART post codes are returned to the first word of of the event control block
(ECB) you defined in the instruction.

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation
-1 FFFF -1 Successful.
501 O01F5 EXIO error; device not attached.
502 01F6 EXIO error; busy.
503 01F7 EXIO error; busy after reset.
504 01F8 EXIO error; command reject.
505 01F9 EXIO error; intervention required.
506 01FA EXIO error; interface data check.
507 01FB EXIO error; controller busy.
508 O01FC EXIO error; channel command not
allowed.
509 01FD EXIO error; no DDB found.
510 01FE EXIO error; too many DCBs chained.
511 01FF EXIO error; no residual status address.
512 0200 EXIO error; zero bytes specified for
residual status.
513 0201 EXIO error; broken DCB chain.
516 0204 EXIO error; device already opened.
524 020C Timeout.
525 0200 Not a Channel Attach device.
0228 552 Stop in progress.
022A 554 Device not found.
567 0237 567 System error; CAPGM terminating.
0239 569 » Device already started.

Note: Channel Attach codes 501 —513 are the same as the EXIO post codes 1 —13,
respectively.

O

O

CASTOP

CASTOP — Stop a Channel Attach Device

Syntax Example

The CASTOP instruction stops a Channel Attach device and disables the device
from receiving interrupts from the System/370. Your program can stop a device
only if no ports are open. When your program stops the last device, the Channel
Attach device handler program ends.

Syntax:
label CASTOP address,ecb, ERROR =,P1=,P2=
Required: address,ech
Defaulits: none
Indexable: ech

Operand Description
address A 2-digit hexadecimal device address.

ech The label or indexed location of the event to be posted upon
completion of the CASTOP operation.

ERROR= The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CASTOP, and your program must test for errors before issuing a
WAIT.

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

The CASTOP instruction in the following example stops the device at address 10.
When the operation ends, the instruction posts the event at SECB.

STOP16 CASTOP 10,$ECB

Return and Post Codes

Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code other than —1 indicates that the link
module found an error before the instruction performed an I/O operation. Your
program must check the return code before it issues a WAIT because a WAIT
should only be used if an I/O operation is being performed.

CASTOP post codes are returned to the first word of the event control block (ECB)
you defined in the instruction.

Chapter 2. Instruction and Statement Descriptions 2-59

CASTOP

2-60 SC34-0937

For detailed explanations of the return and post codes, refer to Messages and Codes.

Post Return
Code Hex Code Explanation
-1 FFFF -1 Successful.
501 01F5 EXIO error; device not attached.
502 01F6 EXIO error; busy.
503 01F7 EXIO error; busy after reset.
504 01F8 EXIO error; command reject.
505 01F9 EXIO error; intervention required.
506 01FA EXIO error; interface data check.
507 01FB EXIO error; controller busy.
508 01FC EXIO error; channel command not
: allowed.
509 01FD EXIO error; no DDB found.
510 01FE EXIO error; too many DCBs chained.
51t 01FF EXIO error; no residual status address.
512 0200 EXIO error; zero bytes specified for
residual status.

513 0201 EXIO error; broken DCB chain.
516 0204 EXIO error; device already opened.
524 020C Timeout.

0227 551 Device not started.

| 0228 552 Stop in progress.

0229 553 Device in use.

022A 554 Device not found.
567 0237 567 System error; CAPGM terminating.

023A 570 Device in diagnostic mode.
599 0257 $CAPGM has ended.

Note: Channel Attach codes 501 —513 are the same as the EXIO post codes 1 — 13,

respectively.

O

¢

CATRACE

CATRACE — Control Channel Attach Tracing

The CATRACE instruction controls the collection of I/O trace data for a Channel
Attach device. You can turn tracing on or off.

Syntax Examples

This instruction collects Channel Attach trace data in processor storage which can
slow system performance. For this reason, you should use the CATRACE
instruction primarily for problem determination.

Syntax:
label CATRACE address, ENABLE = ,ERROR=,P1=
Required: address
Defaults: ENABLE =YES
Indexable: none

Operand Description

address A 2-digit hexadecimal device address.

ENABLE= YES (the default), to turn on or enable tracing.

NO, to turn off or disable tracing.

ERROR= The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CATRACE and your program must test for errors.

P1= Parameter naming operand. See “Using the Parameter Naming

Operands (Px=)” on page 1-10 for a detailed description of how to
code this operand.

1) Turn on tracing for the device at address 10.
TRACE10 CATRACE 10

2) Turn off tracing for the device at address FC. If an error occurs, the instruction
at label E1 receives control.

TRACEFC ~ CATRACE FC,ENABLE=NO,ERROR=E1

Chapter 2. Instruction and Statement Descriptions 2-61

CATRACE

Return Codes

2-62 SC34-0937

Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code indicates that the link module found
an error before the instruction performed an I/O operation. Your program must
check the return code before it issues a WAIT because a WAIT should only be used
if an I/O operation is being performed.

For detailed explanations of the return codes, refer to Messages and Codes.

Return
Hex Code Explanation
0227 551 Device not started.
0228 552 Stop in progress.
022A 554 Device not found.
0235 565 Trace already on.,
0238 566 Trace already off.

U

CAWRITE

CAWRITE — Write to a Channel Attach Port

O

Syntax Examples

The CAWRITE instruction sends data to a Channel Attach port. The operation
occurs at the port you specify.in the CAIOCB statement.

Syntax:
label CAWRITE caiocb,buffer, ERROR = ,P1=,P2=
Required: caioch,buffer
Defaults: none
Indexable: caioch,buffer

Operand Description

caiocb The label or indexed location of the Channel Attach port I/O control
block defined for this port.

buffer The label of a 3-word area containing:

¢ First word — the address of the buffer containing the data to be
sent.

e Second word — the number of bytes to be sent.

e Third word — the partition number of the buffer. If this word is
zero, the system assumes the buffer is in the partition in which you
loaded your program.

ERROR = The label of the instruction to be executed if an error occurs. If you
do not code this operand, control passes to the next instruction after
the CAWRITE, and your program must test for errors before issuing a
WAIT.

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

1) Write data to a port defined by the CAIOCB at label USERIOCB. BUFA is the
label of the 3-word area that contains the address of the buffer from which the data
is to be sent.

WRITE1@ CAWRITE USERIOCB,BUFA

2) Write data to a_port defined by the CAIOCB at a location specified in #1. The
address of the buffer containing the data to be sent is specified in a 3-word area
located at an address in #2.

WRITEFC CAWRITE #1,#2,ERROR=ERROR1

Chapter 2. Instruction and Statement Descriptions 2-63

CAWRITE

Return and Post Codes

Return codes are returned in the first word of the task control block of the program
or task issuing the instruction. A return code other than —1 indicates that the link
module found an error before the instruction performed an I/O operation. Your
program must check the return code before it issues a WAIT because a WAIT
should only be used if an I/O operation is being performed.

CAWRITE post codes are returned to the first word of the CAIOCB you defined for
the instruction. For detailed explanations of the return and post codes, refer to
Messages and Codes.

Post Return
Code Hex Code Explanation
-1 FFFF -1 Successful.
501 01F5 EXIO error; device not attached.
502 01F6 EXIO error; busy.
503 01F7 EXIO error; busy after reset.
504 01F8 EXIO error; command reject.
505 01F9 EXIO error; intervention required.
506 0lFA EXIO error; interface data check.
507 01FB EXIO erro/r; controller busy.
508 01FC EXIO error; channel command not
allowed.
509 01FD EXIO error; no DDB found.
510 01FE EXIO error; too many DCBs chained.
511 01FF EXIO error; no residual status address.
512 0200 EXIO error; zero bytes specified for
residual status.
513 0201 EXIO error; broken DCB chain.
516 0204 EXIO error; device already opened.
520 0208 Interrupt error.
521 0209 Negative acknowledgement (write only).
522 020A Buffer overlay (read only).
523 020B Protocol error.
524 020C Timeout.
022E 558 Buffer not provided.
022F 559 Buffer count = 0.
0232 562 Write buffer not provided.
0233 563 Write buffer count = 0.
0234 564 Users CAIOCB not linked to port.
567 0237 567 System error; CAPGM terminating.
0238 568 Port not opened.

Note: Channel Attach codes 501 — 513 are the same as the EXIO post codes 1 —13,

respectively.

2-64 SC34-0937

O

O

COMP

COMP — Define Location of Message Text

The COMP statement points to a data set or module that contains formatted
program messages. The MESSAGE, READTEXT, GETVALUE, and QUESTION
instructions refer to the label of the COMP statement when retrieving program
messages.

The COMP statement also assigns a 4-character prefix to the messages your program
obtains. This prefix, the number of the message being retrieved, and the message
text are the components that make up a complete program message.

You must code at least one COMP statement in a program that retrieves program
messages. The message utility, SMSGUT1, formats the messages you write for your
programs. Refer to the Operator Commands and Utilities Reference for a description
of this utility. See Appendix E, “Creating, Storing, and Retrieving Program
Messages” on page E-1 for more information.

Syntax:
label COMP '‘idxx’,name,TYPE =
Required: label,’idxx’,name
Defaults: TYPE=STG
Indexable: none

Operand Description

label The label you specified for the COMP = keyword on a MESSAGE,
READTEXT, GETVALUE, or QUESTION instruction.

‘idxx’ A 4-character prefix that identifies the messages your program obtains
through this COMP statement. The system displays this prefix with
the message text when you code MSGID =YES on a MESSAGE,
READTEXT, GETVALUE or QUESTION instruction.

name The name of the module or data set that contains the formatted
messages.

For a module, this is the name you assigned to the module with the
STG option of the message utility, SMSGUT1. This name can be up
to 8 characters long.

Note: You must link-edit the message module with your program.

For a disk or diskette data set, specify the name in the form DSx,
where “x” indicates the position of the message data set in the list of
data sets you defined on the PROGRAM statement. DSI, for
example, refers to the first data set in the list. DS2 refers to the
second data set in the list, and so on. The valid range for “x” is 1 —9.

If your program contains a DSCB instruction, you can use the label
you coded on the DS#= operand for this operand.

TYPE= STG (the default), if the messages reside in a module that you link-edit
with your program.

DSK, if the messages reside in a disk or diskette data set.

Chapter 2. Instruction and Statement Descriptions 2-65

COMP

Syntax Examples _
1) The COMP statement in this example points to the message module PROMPTS.
The MESSAGE instruction, which retrieves the first message in PROMPTS, refers
to the label of the COMP statement. Because the MESSAGE instruction contains
‘MSGID =YES, the system displays the prefix PROM and the number of the
message before the message text.

MESSAGE ~ 1,COMP=A,SKIP=1,MSGID=YES

PROGSTOP
A comp 'PROM' ,PROMPTS , TYPE=STG

2) The COMP statement in this example points to the message data set MESSAGEI
on volume EDX002. The GETVALUE instruction, which retrieves the fifth message
from MESSAGE], refers to label of the COMP statement.

MESSAGE PROGRAM START,DS=(MESSAGE1,EDX002)

[]
L
[]
GETVALUE INPUT,5,SKIP=1,COMP=B
PROGSTOP
B comp 'MSG1',DS1,TYPE=DSK

2-66 SC34-0937

O

CONCAT

CONCAT — Concatenate Two Character Strings

The CONCAT instruction concatenates two character strings, or a character string
and a graphic-control character. The instruction places the contents of string2 to the
right of any contents in stringl. The resulting character string remains in stringl.

Syntax Examples

CONCAT changes the character count of stringl after the operation to reflect the
original contents of stringl plus the concatenated data from string2. Truncation on
the right occurs if the combined counts exceed the physical length of stringl.

Note: To use the CONCAT statement, you must specify an AUTOCALL to
$AUTO,ASMLIB during program preparation (link-edit.)

Syntax:
label CONCAT stringl,string2, RESET,REPEAT =,P1=,P2=
Required: string1,string2
Defaulits: REPEAT =1
Indexable: none
Operand Description
stringl The label of a data string to which the contents of string2 are
concatenated.
string2 The data to be concatenated to stringl. You can code the label of a
character string, a 1-character constant (left-justified, for example
C'A' or X'07"), or a symbol representing one of the following ASCII
graphic-control characters: GS, BEL, ESC, ETB, ENQ, FF, CR, LF,
SUB, or US.
RESET Resets the character count of stringl to zero before starting the
CONCAT operation. The count is not reset if you omit this operand.
REPEAT= The number of times string2 is to be concatenated to stringl. For
example, if string2 contains C' ' and you code REPEAT =5, five
blanks are concatenated to the contents of stringl. Code a positive
integer for this operand.
Px= Parameter naming operands. See “Using the Parameter Naming

Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

1) Concatenate ESC to TEXT1. Reset the character count of TEXT1 before the

operation.

CONCAT TEXT1,ESC,RESET

2) Concatenate the control character FF to TEXT]1.
CONCAT TEXTL,FF

Chapter 2. Instruction and Statement Descriptions 2-67

CONTROL

CONTROL — Perform Tape Operations

2-68 SC34-0937

The CONTROL instruction allows you to execute tape functions. You can space
forward or backward a specified number of records or files (a file is the data between
the beginning tapemark and the ending tapemark). You can also write tapemarks,
rewind the tape, erase the tape, set the tape drive offline, or rewind the tape and set
the tape drive offline. With the 4968 tape unit, the CONTROL instruction allows
you to write at a density of 1600 bits per inch or 3200 bits per inch.

In addition, you can use the CONTROL instruction to close tape data sets. You
should close all tape data sets. If you do not close data sets, you must control the
tape drive directly with the various CONTROL functions.

When you close an SL (standard-label) output tape, the CONTROL instruction
writes the following trailer label: TM EOF1 TM TM. The instruction writes the
following label when you close an NL (nonlabeled) tape: TM TM.

Input tapes are automatically rewound as the result of a close operation. An
attempt to write a tapemark to an unexpired file is an error condition.

If you have two tape drives on one controller and they receive concurrent rewind
requests, one tape drive waits for the other to complete. To allow concurrent rewinds
to multiple standard label tape drives on one controller, you must issue the
“CONTROL DSxx,REW?” instruction to each open tape drive.

Syntax:
label CONTROL DSx,type,count, END =, ERROR = ,WAIT =,P1=,P3=
Required: DSx,type
Defaults: count =1,WAIT = YES
Indexable: count

Operand Description

DSx The data set you want to use. Code DSx, where “x” is the relative
number of the data set in the list of data sets you defined on the
PROGRAM statement. DSI, for example, points to the first data set
in the list; DS2 points to the second data set, and so on.

You can substitute a DSCB name defined by a DSCB statement for
this operand.

type The CONTROL function to be performed. The following functions
are available:

FSF Forward space file (tapemark). Regardless of where the
tape is currently positioned, the tape searches forward the
number of tape marks indicated in the count operand. If
the specified number of tapemarks indicated by the count
field is not on the tape, the positioning of the tape is
unpredictable.

@

BSF

FSR

BSR

WTM

REW
ROFF
OFF
CLSRU

CONTROL

Backward space file (tapemark). The tape searches
backward until the next tapemark is read. The default value
for count is 1. If the tape is at load point when your
program issues this command, the load point return code is
returned.

Forward space record. The tape will space forward past the
number of records specified in the count field. The default
value for count is 1.

Backward space record. The tape spaces backward past the
number of records specified in the count field. The default

value for count is 1. If the tape is at load point when your

program issues this command, the load point return code is
returned.

Write tapemark. This function writes a tapemark on the
tape. If the count field is coded, successive tapemarks are
written according to the count value.

Rewind tape to load point (beginning of tape).
Rewind tape and set the tape drive to offline.
Set tape drive to offline.

Close tape data set and allow it to be reused (reopened by
another task without an intervening SVARYON command).
For standard-label tapes, the tape is repositioned to the
HDRU1 label of the data set. For nonlabeled tapes, the tape
is positioned to the beginning of the first data record. You
can use SVARYON to change the file number being
processed or you can use a CONTROL function.

Once you close a tape data set, you must call DSOPEN to
open the data set before you can use it again. You can call
DSOPEN with the CALL instruction or call the subroutine
implicitly by having the name of the data set in another
program header.

CLSOFF Close tape data set, rewind tape, and set the tape drive to

DEN16

DEN32

ERASE

offline.

Sets the density of the 4968 tape unit to 1600 bits per inch.
This function is not valid for other tape devices.

To set the density, the tape must be at the load point.

Sets the density of the 4968 tape unit to 3200 bits per inch.
This function is not valid for other tape devices.

To set the density, the tape must be at the load point.

Erases forward from the point where the tape is positioned
to a point five feet beyond the end-of-tape marker (EOT).
The function then rewinds the tape and unloads it.

The system sends out a device interrupt when the tape is at
the load point and ready.

Chapter 2. Instruction and Statement Descriptions 2-69

CONTROL

count

END =

ERROR =

WAIT =

Px=

Syntax Examples

The number of files or records to be skipped or the number of
tapemarks to be written. You can code a constant or the label of a
count value. The default is count=1.

The label of the first instruction of the-routine to be called if the
system detects an “end-of-data-set” (EOD) condition (return
code=10). If you do not specify this operand, the system treats an
EOD as an error. Do not code this operand if you code WAIT =NO.

If END is not coded, a tapemark being encountered is also treated as
an error. The physical position of the tape, under this condition, is the
read/write head position immediately following the tapemark. See the
CONTROL close functions for the repositioning of the data set.
Remember also that the count field might not be decremented to zero.

The label of the first instruction of the routine to be called if an error
condition occurs during this operation. If you do not specify this
operand, control passes to the next sequential instruction in your
program and you must test the return code in the first word of the task
control block for errors. Do not code this operand if you code
WAIT=NO.

If WAIT is not coded, or if it is coded as WAIT =YES, the current
task will be suspended until the operation is complete. If the function
selected is CLSRU or CLSOFF, then WAIT =YES is the only valid
option for this operand, and any other option will be ignored.

For functions other than close, if the operand is coded as WAIT =NO,
control is returned after the operation is initiated and a subsequent
WAIT DSx must be issued in order to determine when the operation is
complete.

END and ERROR cannot be coded if WAIT=NO is coded. You
must subsequently test the return code in the Event Control Block
(ECB) named DSx or in the first word of the task control block (TCB)
(referred to by “taskname”). Two codes are of special significance. A
—1 indicates a successful end of operation. A +10 indicates an “End
of Data Set” and may be of logical significance to the program rather
than being an error. For programming purposes, any other return
codes should be treated as errors.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

1) The instruction closes the tape data set specified by DS1, rewinds the tape, and
sets the tape drive offline.

CONTROL DS1,CLSOFF

2) The instruction causes the tape data set specified by DS2 to be spaced forward 16

data records.
CONTROL DS2,FSR,16

2-70 SC34-0937

@

O

Coding Example

CONTROL

The following program uses the CONTROL FSF command, at label Cl, to advance

the “master name file” to the third data set on a nonlabeled tape. The program asks
the operator if he or she wants to search the file for a particular name. If the answer
is yes, the program requests the file name.

At label C2, a CONTROL FSR command advances the tape file to record 90. If the
end-of-file is reached before the tape is positioned to the target record, control passes
to an error routine (not shown).

The program then reads a record and compares the name field in it to the name the
operator entered. This sequence continues until the program finds the name the
operator entered or until the end-of-file is reached.

Assuming the program finds the name, it prints the name (and accompanying file
information) and the record for the names before and after it.

If the name is the first on the file INDEX=1), the program can only print the name
and the record that immediately follows it. Therefore, the CONTROL BSR
command, at label C3, uses the P3= parameter naming operand to determine
dynamically how many records to back space. The count is 1, if the name is in the
first data record on the file, or 2, if the name is not in the first data record on the
file.

A DO loop at label LOOP2 reads the name records and prints them. If the
end-of-file is reached before the last record can be printed, the program passes
control to an error routine (not shown).

At label C4, the tape is backspaced past the tapemark preceding the name file and at

label C5, the tape is positioned to the first record on the file. Control then passes to
the beginning of the program.

Chapter 2. Instruction and Statement Descriptions 2-71

CONTROL

FILESRCH PROGRAM
START EQU
C1 CONTROL
INQUIRE EQU
QUESTION
PRINTEXT
READTEXT
c2 CONTROL
MOVE
LooP EQU
ADD
READ
IF
GOTO
ENDIF
IF

START ,DS=(NAMEFILE,TAPEQ1)

*

DS1,FSF,3,ERROR=DS1ERROR

*

'@D0 YOU WISH TO SEARCH THE MASTER NAME FILE ?',NO=END
'@PRECEEDING AND SUCCEEDING NAMES WILL ALSO BE LISTED'
NAME, '@ENTER SUBJECT NAME UP TO 12 CHARACTERS'
DS1,FSR,90,END=DS1ENDF1,ERROR=DS1ERROR

INDEX,0

*

INDEX,1 .

DS1,BUFR,END=DSIENDF2

(BUFR,NE,NAME, (12,BYTES))

LoopP

(INDEX,LE,1)

PRINTEXT '@GNAME AT BEGINNING OF FILE - ONLY 2 LISTED'
MOVE COUNT,2

ELSE

MOVE COUNT,3

MOVE
ENDIF
C3 CONTROL
DO
READ
MOVE
PRINTEXT
ENDDO
c4 CONTROL
C5 CONTROL
GOTO

INDEX,2

DS1,BSR,2,P3=INDEX
1, TIMES,P1=COUNT
DS1,BUFR,END=LASTONE
BUFR, TEXT, (50,BYTES)
TEXT,SKIP=1

DS1,BSF
DS1,FSF
INQUIRE

hhkkhhhhkhhkhhhkhhhkhhhhhkrkdhdhhkrdrrrix

DATA
TEXT DATA
NAME TEXT
DS1ERROR EQU

[]
L]
[
DS1ENDF1 EQU
L]
[]

DS1ENDFZ EQU
L]

LASTONE EQU

2-72 SC34-0937

X'3232'
50C" !
LENGTH=12

*

CONTROL

Tape Return Codes and Post Codes
Tape return codes are returned in the first word of the task control block of the

0 program that issues the instruction.
Return
Code Condition
-1 Successful completion.
1 Exception but no status.
2 Error reading cycle steal status.
3 1/O error; retry count exhausted.
4 Error issuing READ CYCLE STEAL STATUS.
6 1/O error issuing I/O operations.
10 End of data; a tape mark was read.
21 Wrong length record.
22 Device not ready.
23 File protected.
24 End of tape.
25 Load point.
26 Unrecoverable I/O error.
27 SL data set not expired.
28 Invalid blocksize.
0 29 Offline, in use, or not open.
, 30 | Incorrect device type.
31 Close incorrect address.
32 Block count error during close.
33 Close detected on EOV1.
34 Write — Defective reel of tape.

The following post codes are returned to the event control block (ECB) of the calling

program.
Post
Code Condition
-1 Function successful.
101 TAPEID not found.
102 Device not offline.
103 Unexpired data set on tape.
104 Cannot initialize BLP tapes.

Chapter 2. Instruction and Statement Descriptions 2-73

CONVTB

CONVTB — Convert Numeric String to EBCDIC

The CONVTB instruction converts both integer-and floating-point values to an

EBCDIC character string. You can also convert floating-point values to E notation.

Syntax:
label CONVTB opndl,opnd2, PREC = ,FORMAT =,P1=,P2=
Required: opnd1,opnd2
Defaults: PREC=S,FORMAT =(6,0,I)
Indexable: opnd1,epnd2

Operand Description

opndl1 The label of a storage area where the converted results are to be
placed. The system stores the results beginning at the label referred to
by this operand. The converted results are in EBCDIC.

Opndl must be a different storage location than opnd2.

opnd2 The label of a storage area containing the-value to be converted to
EBCDIC. You must know the form (precision) of the data. The
following opnd?2 types are supported:

Single-precision integer — 1 word
Double-precision integer — 2 words
Single-precision floating-point ~— 2 words
Extended-precision floating-point — 4 words

PREC= The form of opnd2. The valid precisions are:

|

Single-precision integer
Double-precision integer
Single-precision floating-point
Extended-precision floating-point

cTgw
!

FORMAT = The format (w,d,t) of the value after the system converts it:
w Width of the EBCDIC field in bytes. If the field will contain a

decimal point or sign character (+ or —), include it in the count.

d Number of digits to the right of the decimal point. This is valid
for floating-point variables only. Code a 0 for integer values:

t Type of EBCDIC Data. Code I for integer data, F for
floating-point data (XXXX.XXX), or E for a number in
exponent (E) notation. See the value operand under the
DATA/DC statement for a description of E notation format.

Px= Parameter naming operands. See “Using the Parameter Naming

Operands (Px=)” on page 1-10 for a detailed description of how to
code these operands.

2-74 SC34-0937

O

Syntax Examples

CONVTB

Notes:

1. Conversion routines assume that the type of variable to be converted is specified
by the PREC operand. If the PREC operand is not specified, and if the variable
is not of the default precision, incorrect results can occur.

2. Exponent (E) notation should be used for floating-point numbers greater than
1012, Otherwise, a conversion error will occur.

1) The CONVTB instruétion in the following example uses an integer value.
CONVTB TEXTA,VALUE,PREC=S,FORMAT=(8,0,1)

VALUE DATA F'12345'
TEXTA TEXT LENGTH=8

The value 12345 in the variable VALUE is converted to EBCDIC at TEXTA in the
following format (b represents a blank):

bbb12345
If conversion of double-precision integers is required, PREC=D is coded.

2) In this example, the CONVTB instruction uses floating-point values.

CONVTB TEXTB,VALUE,PREC=F,FORMAT=(15,4,F)
CONVTB TEXT1,VALUE1,PREC=L,FORMAT=(20,14,E)

VALUE DATA E'62421.16'

VALUE1 DATA 1L'4926139.2916"'

TEXTB TEXT LENGTH=15

TEXT1 TEXT LENGTH=20

The result of the CONVTB operation (where b represents a blank) is:
TEXTB = bbbbb62421.1600

TEXT1=1b.49261392916000Eb07

Chapter 2. Instruction and Statement Descriptions 2-75

CONVTB

Coding Example
This example demonstrates one use of the CONVTB instruction.

HEADER EQU *
READTEXT TITLE,TITLEMSG
PRINTEXT SKIP=4
*
CONVERT EQU *
CONVTB ENUMEXP ,BNUMEXP
PRINTEXT '@NUMBER OF EXPERIMENTS CONDUCTED :',SKIP=1
PRINTEXT ENUMEXP

CONVTB EMANHRS ,BMANHRS , PREC=F , FORMAT=(10,2,F)
PRINTEXT '@TOTAL MANHOURS EXPENDED ON PROJECT :', SKIP=1
PRINTEXT EMANHRS

CONVTB EAVERAGE ,BAVERAGE ,PREC=L ,FORMAT=(20,14,E)
PRINTEXT '@AVERAGE PENETRATION IN CONCRETE (MILLIMETERS):'

PRINTEXT EAVERAGE

BNUMEXP DATA F'e' BINARY VALUE - # EXPERIMENTS
ENUMEXP TEXT LENGTH=6 EBCDIC VALUE - # EXPERIMENTS
BMANHRS DATA L'e’ BINARY VALUE - MAN-HOURS USED
EMANHRS TEXT LENGTH=8 EBCDIC VALUE - MAN-HOURS USED
BAVERAGE DATA Lo BINARY VALUE - AVERAGE RESULT
EAVERAGE TEXT LENGTH=20 EBCDIC VALUE - AVERAGE RESULT
TITLE TEXT LENGTH=40

TITLEMSG TEXT "ENTER A 40 CHARACTER TITLE FOR YOUR REPORTS'

If, for example, the initial value of BNUMEXP is X'0038', the value of
BMANHRS is X'431B0C00', and the value of BAVERAGE is
X'4087915E8CA84482", the results of the program would appear as follows:

NUMBER OF EXPERIMENTS CONDUCTED : 56
TOTAL MAN-HOURS EXPENDED ON PROJECT : 432.75

AVERAGE PENETRATION IN CONCRETE (MILLIMETERS) : .52956191000060E+00

Return Codes
The return codes are returned in the first word of the task control block (TCB) of
the program or task issuing the instruction. The label of the TCB is the label of
your program or. task (taskname).

Return

Code Description

-1 “Successful completion.
3 Conversion error.

2-76 SC34-0937

CONVTD

CONVTD — Convert EBCDIC String to Numeric String

0 The CONVTD instruction converts an EBCDIC character string to an integer or
floating-point numeric string.

Syntax:
label CONVTD eopndl,opnd2, PREC = ,FORMAT =,P1=,P2=
Required: opnd1,opnd2
Defaults: PREC=S,FORMAT =(6,0,I)
Indexable: opndl,opnd2

Operand Description

opndl The label of a storage area where the converted results are to be
placed. Opndl must be a different storage location than opnd2. Make
sure that you reserve enough space to accommodate the results.

Single-precision integer — 1 Word
Double-precision integer — 2 Words
Single-precision floating-point — 2 Words
Extended-precision floating-point — 4 Words
O opnd2 A label that points to the first character of the EBCDIC character

string. You can code the following range of data values:
Single-precision integer: —32768 to 32767
Double-precision integer: —2147483648 to 2147483647
Single-precision floating-point: 6 decimal digits*
Extended-precision floating-point: 15 decimal digits*

*Valid range is from 10-85 through 1075
The EBCDIC field should contain only those characters that are valid for the
operation being performed. For example:

¢ Integers—

Leading blanks

Sign character + or —
Digits 0 through 9
Trailing blanks

Chapter 2. Instruction and Statement Descriptions 2-77

'CONVTD

¢ Floating-point —

Leading blanks

Sign character + or —

Digits 0 through 9

Decimal point

The character E, if E notation, followed by a sign character, + or —, or the
digits 0 through 9.

If the system finds any other character during the conversion, it takes the following
action:
¢ If the delimiters , or / are found within a string:

The system stops the conversion and returns a “successful completion” code
(—1). Opndl contains the data the system converted before it found the
delimiter.

o If the delimiter , or / or * or . is the first character found in a string:

The system returns a “field omitted” code (2). The variable you defined in
opndl (the target field) remains unchanged.

e If all blanks are found in opnd2:

The system places zeros in opndl and returns a “successful completion”
code (—1).

e If any other character (for example, an alphabetic character) is found within a
string:

The system returns a code of 1, “invalid data encountered during
conversion.” Data converted before the system found the invalid character
is stored in opndl.

e If only an invalid character is found in opnd2 or the value being converted is too
large or too small:

The system returns a “conversion error” (3). The contents of the variable
you defined for opndl (the target field) are unknown.

2-78 SC34-0937

CONVTD

The following table shows the results of several conversion operations using the
default format (6,0,1):

Return
Input Code Output
12 -1 12
12, -1 12
12/ -1 12
(blanks) -1 0
12C 1 12
12.B 1 12
12C 1 12
, 2 Target field unchanged
/ 2 Target field unchanged
* 2 Target field unchanged
2 Target field unchanged)
A 3 Target field unchanged
1234567 3 Value of target field unknown
PREC= The form of opndl. The valid precisions are:

S Single-precision integer

D Double-precision integer

F Single-precision floating-point

L Extended-precision floating-point.

FORMAT = The format (w,d,t) of the value to be converted:

I

Px

w Width of the EBCDIC field in bytes. If the field will contain a
decimal point or sign character (+ or —), include it in the count.

d Number of digits to the right of the decimal point. This option
is valid only for floating-point variables. Code a 0 for integer
values.

t Type of EBCDIC Data. Code I for integer data, F for
floating-point data (XXXX.XXX), or E for a number in
exponent (E) notation. See the value operand under the
DATA/DC statement for a description of E notation format.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-79

CONVTD

Syntax Examples

Coding Example

2-80 SC34-0937

1) The following CONVTD instruction uses an integer value.

CONVTD VALUE,TEXT,PREC=S,FORMAT=(8,0,I)

VALUE DATA Fa
TEXT TEXT '12345"' ,LENGTH=8

Note: The value in EBCDIC, 12345, will be converted to a single-precision binary
value and stored at VALUE as X'3039'. Double-precision integers can also be
converted by using the PREC=D parameter and using a 2-word variable at
VALUE.

2) The CONVTD instruction in this example uses floating-point values.

CONVTD VALUE,TEXT1,PREC=F,FORMAT=(5,1,F)
CONVTD VALUE1,TEXT2,PREC=L,FORMAT=(15,0,E)

L]
L]
[
VALUE DATA 2F'0’
VALUE1 DATA 4F'Q’
TEXT1 TEXT '100.5' ,LENGTH=10
TEXT2 TEXT '0.1005E3"',LENGTH=15

Note: Both values shown in the TEXT statements result in the same binary data
values being stored in the two DATA statements. The only difference is that at
VALUE], an extended-precision value is stored.

O

The following example demonstrates one use of the CONVTD instruction:

CONVERT EQU *
READTEXT UNIT,'GENTER UNIT NUMBER'
CONVTD BUNIT,UNIT,PREC=S,FORMAT=(6,0,I)

READTEXT MILES, '@ENTER MILES FROM FIRE '
CONVTD BMILES,MILES,PREC=F,FORMAT=(10,4,F)

READTEXT RESPONSE,'@ENTER UNIT RESPONSE TIME '
CONVTD BRESPONS ,RESPONSE , PREC=L , FORMAT=(15,8,E)

L]

UNIT TEXT LENGTH=6 EBCDIC VALUE/UNIT ID

BUNIT DATA F'o BINARY VALUE/UNIT ID

MILES TEXT LENGTH=10 EBCDIC VALUE/MILES FROM FIRE
BMILES DATA p'e! BINARY VALUE/MILES FROM FIRE
RESPONSE TEXT LENGTH=15 EBCDIC VALUE/RESPONSE TIME
BRESPONS DATA 2D'oe’ BINARY VALUE/RESPONSE TIME

CONVTD

Assuming that unit #6553 took 42.45292378 minutes to respond to an alarm for a

O fire 41.5429 miles from the station, the results of the CONVTD operations would be:
opndl Before After
BUNIT X'0000' X'1999'
BMILES X'00000000" X '42298 AFB'
BRESPONS X'0000000000000000' X'422A73F2D016AE42"
opnd2 Before After
UNIT 6553bb X'F6F5FS5F34040'
MILES 41.5429bbb X'F4F14BF5F4F2F9404040"
RESPONSE 42.45292378bbbb X'F4F24BF4F5F2F9F2F3F7F840404040"

Return Codes

The return codes are returned in the first word of the task control block (TCB) of
the program or task-issuing the instruction. The label of the TCB is the label of
your program or task (taskname).

Return
Code Description
-1 Successful completion.
1 Invalid data encountered during conversion.
2 Field omitted.
Q\, 3 Conversion error.

Chapter 2. Instruction and Statement Descriptions 2-81

COPY

COPY — Copy Source Code into Your Source Program

System Equates

2-82 SC34-0937

The COPY statement copies source code into your source program. The operation O)
occurs each time you compile or assemble the program containing the COPY
statement.

The source code you copy must be in a disk or diskette data set. The source code
must not contain a COPY statement. The system copies the source code into your
source program immediately following the COPY statement.

To prevent the system from printing the source code in your listing each time you
compile your program, code PRINT OFF before the COPY statement and PRINT
ON following it. See the program example given in “PRINT — Control Printing of
a Compiler Listing” on page 2-304 for more detail.

Syntax:
blank COPY name
Required: name
Defaults: none
Indexable: none
Operand Description
name The name of the data set on disk or diskette that contains the source
code to be copied into your source program.

Notes:

1. When using the SEDXASM compiler, if the source code to be
copied is not on volume ASMLIB, you must code a *COPYCOD
statement in the SEDXL data set to indicate on what volume the
source code resides. $EDXL is on volume ASMLIB. Refer to the
Customization Guide for an explanation of the *COPYCOD
statement.

2. For details on using the COPY statement with the Series/1 macro
assembler, refer to IBM Series/1 Event Driven Executive Macro
Assembler (5719-ASA).

3. For details on using the COPY statement with the System/370
macro assembler, refer to the IBM System/370 Program
Preparation Facility, SB30-1072.

This section contains the equate names for some commonly used system control
blocks. Coding the COPY statement with the equate name gives you a listing of the
control block. You can use the equates in the control block listing to refer to and
obtain data from fields within the control block. When you compile programs with
the host or Series/l macro assemblers, the system includes the following equate
names in your program when it encounters a PROGRAM statement: PROGEQU,
TCBEQU, DDBEQU, CMDEQU, and DSCBEQU.

The Internal Design contains a complete list of the control blocks in the system. The
control block equates reside on volume ASMLIB and end with the characters EQU.

BSCEQU

CCBEQU
CMDEQU

DDBEQU

DDODEFEQ

DSCBEQU

ERRORDEF

FCBEQU

IAMEQU

PROGEQU

TCBEQU

STOREQU

COoPY

Provides a map of the control block built by the BSCLINE system
definition statement.

Note: BSCEQU is also the name of a macro in the macro libraries
that the host and Series/1 macro assemblers use. Do not attempt to
copy BSCEQU when using either of the macro assemblers.

Provides a map of the control block (CCB) built by the TERMINAL
system definition statement.

Provides a map of the supervisor’s emulator command table built by
the PROGRAM statement.

Provides a map of the device data block (DDB) built by the DISK
system definition statement.

Provides a table that defines the format of disk directory control
entries (DCEs) and member entries.

Provides a map of the data set control block (DSCB) built by the
PROGRAM or DSCB statements.

Provides equates for use in checking the return codes from the LOAD,
READ, WRITE, and SBIO instructions.

Provides a map of an Indexed Access Method file control block (FCB)
for use with the EXTRACT subroutine.

Provides a set of symbolic parameter values for use in constructing
parameter lists for calls to Indexed Access Method subroutines.

Provides maps of the program header, built by the PROGRAM
statement, and the supervisor’s communication vector table (CVT).

Provides a map of the task control block (TCB) built by the TASK or
PROGRAM statements.

Provides a map of the storage control block built by the STORBLK
statement.

Chapter 2. Instruction and Statement Descriptions 2-83

COPY

Coding Example

The following example uses a COPY statement to copy the source code labeled
CHKBUPFR into a source program. O

[]
L 4
[
CALL CHKBUFR,BUFRSIZE, (EOBUFFER)
®
(]
L
COoPY CHKBUFR
L
L

When the source program is compiled, the COPY statement copies the following
code into the source program:

SUBROUT CHKBUFR,BUFFLEN,BUFFEND
SUBTRACT BUFFLEN,1

IF (BUFFLEN,GE,MAX)
GOTO (BUFFEND)

ENDIF

ADD BUFFLEN,1

RETURN

MAX DATA F'256' ‘
: U
' ,

2-84 SC34-0937

O

CSECT

CSECT — Identify Object Module Segments

The CSECT instruction names a program module to identify its location within the
program output from SEDXLINK.

The CSECT instruction is optional and if it is omitted, the program module has a
blank name.

Program modules assembled by SEDXASM can have multiple CSECT instructions.
However, all CSECTs, after the first one, generate ENTRY instead of CSECT
definitions.

Program modules assembled by the Series/l Macro Assembler or host assembler are
also permitted to have multiple CSECT instructions in a single assembly. These

assemblers will generate a separate program module for each uniquely-named
CSECT.

Syntax:
label CSECT
Required: label
Defaults: none
Indexable: none

Operand Description

label The label must be the name of the program module for the first
CSECT. For following CSECTs the label must be an entry name.

Chapter 2. Instruction and Statement Descriptions 2-85

CSECT

Coding Example
In module A, the first CSECT statement signifies that the program can be entered at
label GETTIME. In module B, the CSECT statement defines label GOTTIME as @
being an entry point. The ENTRY statement in module A will allow the time to be :
printed without the 'THE TIME IS NOW'' text.

MODULE A

[

GETTIME CSECT
ENTRY GETTIME2
EXTRN GOTTIME

L]
L

GETTIME EQU *

PRINTEXT '@THE TIME IS NOW'
GETTIME2 EQU *

PRINTIME

GOTO GOTTIME

MODULE B

: U
*
GOTTIME CSECT
EXTRN GETTIME

TIME EQU *
GOTO GETTIME
GOTTIME EQU *

2-86 SC34-0937

DATA/DC

DATA/DC — Define Data

The DATA/DC statement defines the data you are using in your program. You can
represent data in the following forms: binary, integer, hexadecimal, character,
floating-point, or address.

Within a single DATA statement, you can define one or more character strings or
variables. With programs you compile under SEDXASM, you can code up to 10
separate data specifications on a single DATA statement by separating the individual
specifications with commas. However, a DATA statement can contain only 8
hexadecimal digits (4 bytes). When you assemble programs under $S1ASM, a
DATA statement can contain only one data specification.

Syntax:
label DATA dup type value
label DC dup type value
Required: type, value
Defaults: dup=1
Indexable: none

Operand Description

dup Duplication factor for the data type you define.
type Data type or form of data representation. The valid data types are:
Code Data Type Storage Format
C EBCDIC 8-bit code for each character
| X Hexadecimal 4-bit code for each digit
B Binary 1 bit for each digit (not allowed with
$EDXASM)
F Integer, signed fullword | 2 bytes
H Integer, signed 1 byte
halfword
D Integer, signed 4 bytes
doubleword
E Floating-point Floating-point binary; 4 bytes
L Floating-point Floating-point binary; 8 bytes
A Address Value of address or expression; 2 bytes

Note: A halfword definition may cause data to fall on an odd-byte boundary.
Fullword data must, however, be on an even-byte boundary to be accessed as a byte
-or as bytes. For this reason, use the ALIGN statement when coding data areas. See
“ALIGN — Instruction or Data to a Specified Boundary” on page 2-13 or
“Instruction and Operand Address Boundaries” on page 1-13 for additional
information.

Chapter 2. Instruction and Statement Descriptions 2-87

DATA/DC

value The value to be assigned to the data area. This operand is also the

field length for some data types. The value is enclosed in quotes for

all data types except A, in which the value is enclosed in parentheses. O
Notes:

1. Except for A-type data (address), the value must be a self-defining term and
cannot be defined with an EQU statement.

2. The maximum number of hexadecimal digits you can specify for this operand is
8; the maximum number of characters you can specify is 15.

3. For programs compiled under SEDXASM, the value operand can define a
maximum of 65535 bytes.

Considerations when Detining Data
The allowable ranges for data values are:

Single-precision integer — 32768 to 32767

Double-precision integer — 2147483648 to 2147483647

Single-precision floating-point — 6 decimal digits (valid range is from 10-85 to
1075)

Extended-precision floating-point — 15 decimal digits (valid range is from 10-85
to 1075)

You can express floating-point values as real numbers with decimal points (for
example 1.234) or in exponent (E) notation. E notation uses the form:

SX.XXESYY
where: C(_)
S = Optional sign character (+ or —); default is (+)
X = Characteristic of 1 to 6 numeric digits for PREC=E,
or 15 digits for PREC=L
.= Decimal point anyplace within characteristic
E = Designation of E notation

YY = Mantissa, range —85 to +75; the base is 10
(for example, 3.1415E-2 = .031415)

When coding character strings (C), you can specify a field length by coding the type
as CLn, where “n” is the length of the field in bytes. If the length of the character
string you specify is less than the field length chosen, the balance of the field to the
right of the string is filled with blanks. To specify the field length for hexadecimal
values (X), code the type as XLn. If the length of the hexadecimal value you specify
is less than the field length chosen, the balance of the field to the left of the value is
filled with zeros.

Neither SEDXASM nor $S1ASM supports such complex data expressions as:
DATA A(B-C)

where B is an external label.

2-88 $C34-0937

o

Syntax Examples

DATA/DC

The following examples show some of the ways that you can define data in your
program.

1) Hexadecimal 30F in binary. This format is not allowed with SEDXASM.
BINCON DATA B'001100001111'

2) An integer constant of 1.
A DATA F'1!

3) 128 words of 0.
BUF DC 128F'0"

4) The EBCDIC string 'XYZ'.
CHAR DATA C'XYZ!

5) 80 EBCDIC blanks.
BLANK DC 80C' '

6) The character '$' followed by seven blanks.
c8 DC cLs's!

7) The integer 241 in hexadecimal.
HEXV DATA X'OOF1'

8) The address of 'BUF".
ADDR DATA A(BUF)

9) The 2-word integer constant 100000.
DBL DATA D'100000'

10) The floating-point value 1.234.
F1 DATA E'1.234'

11) Four floating-point values of 0.123 (4 bytes for each value).
F2 DATA 4E'0.123'

12) Four extended-precision floating-point values of 12345678.9 (8 bytes for each
value).

L2 DATA 4L'12345678.9'

13) An extended-precision floating-point value in exponent (E) form.
L3 DATA L'123456E-40'

14) A word with a value of 1 and a doubleword with a value of 2.
MANY DATA F'1',D'2'

Chapter 2. Instruction and Statement Descriptions 2-89

DATA/DC

15) The hexadecimal string X'0001'.
X DC XL2'1

16) The hexadecimal string X'000123".
Y DC XL3'123"

2-90 SC34-0937

O

DCB

DCB — Create a Device Control Block

The DCB statement creates a standard device control block (DCB) for use with
EXIO. For additional information on DCBs refer to the description manual for the
processor in use.

Syntax:

labetl DCB PCI=,JOTYPE=,XD=,SE=,DEVMOD =,DVPARMI =,
DVPARM2 = ,DVPARM3 =,DVPARM4 = ,CHAINAD =,
COUNT =,DATADDR =

Required: label
Defaults: PCI=NO,JOTYPE=OUTPUT ,XD=NO,SE=NO
Indexable: none

Operand Description

PCI= YES, to cause the device to present a program-controlled intérrupt at
the completion of the DCB fetch before data transfer.

NO (the default), does not cause the device to present a
program-controlled interrupt.

IOTYPE= INPUT, for operations involving transfer of data from device to
processor or for bidirectional transfers under one DCB operation.

OUTPUT (the default), for operations involving transfer of data from
processor to device or for control operations involving no data

transfer.

XD = YES, if the DCB is a nonstandard type.
NO (the default), if the DCB is a standard type.

SE= YES, to allow the device to suppress the reporting of certain exception
conditions.

NO (the default), to report all exception conditions.

DEVMOD =
The byte. that describes functions unique to a particular device. This
byte is in word 0 of the device’s DCB. Code two hexadecimal digits.

DVPARMI1 =
The value of device-dependent parameter word 1. Code as four
hexadecimal digits or the label of an EQU preceded by a plus sign

(+).

DVPARM2 =
The value of device-dependent parameter word 2. Code as four
hexadecimal digits or the label of an EQU preceded by a plus sign

(+).

DVPARM3 =
The value of device-dependent parameter word 3. Code as four
hexadecimal digits or the label of an EQU preceded by a plus sign

(+).

Chapter 2. Instruction and Statement Descriptions 2-91

DCB

Syntax Examples

Coding Example

2-92 SC34-0937

DVPARM4 =
The value of device-dependent parameter word 4. Code as four N
hexadecimal digits or, if SE=YES, the label of the first byte to which Q
residual status data is to be transferred. The length of the residual
status area is device dependent.

CHAINAD =
The label of the next DCB in the chain if chained DCBs are desired.

COUNT = The number of data bytes to be transferred. Code a decimal number
from 0 to 32767 or the label of an EQU preceded by a plus sign (+).

DATADDR =
The label of the first byte of data to be transferred.

For information on the contents of DVPARMI1 ~DVPARM4 and DEVMOD, refer
to the description manual of the device you are using.

1) The DCB labeled WR1DCB is for an output operation in which the 120-byte
field labeled MSG1 will be transferred to the device. IOTYPE = defaults to
OUTPUT. The device places any status information from the operation in
RESTAT.

WRIDCB DCB SE=YES,DVPARM1=0300,DVPARM2=3048,DVPARM3=1100, X
DVPARM4=RESTAT ,CHAINAD=WR2DCB,COUNT=120, X
DATADDR=MSG1

L i
MSG1 DATA 120X'00' @

RESTAT ~ DATA 2F'0Q'

2) The DCB labeled WR2DCB is for a type of device-control operation. IOTYPE
defaults to OUTPUT but no data transfer occurs because the statement does not
contain the DATADDR or COUNT operands. The device places any status
information from the operation in RESTAT.

WR2DCB DCB SE=YES,DVPARM1=20A0,DEVMOD=6F ,DVPARM4=RESTAT

*

RESTAT DATA 2F'0'

For a coding example using a DCB statement, see the example following the
description of the EXIO instruction.

O

DEFINEQ

DEFINEQ — Define a Queue

Queue Layout

The DEFINEQ statement defines the queue descriptor (QD) and a set of queue
entries (QEs) used by FIRSTQ, LASTQ, and NEXTQ. DEFINEQ can optionally
define a pool of data storage areas or data buffers. For additional information refer
to the discussion of queue processing in the Language Programming Guide.

Syntax:
label DEFINEQ COUNT=,SIZE=
Required: label, COUNT =
Defaults: SIZE =2 (2 bytes of data for each element in the
free queue chain)
Indexable: none
Operand Description
label The label of the queue that this statement creates.

COUNT= The number of 3-word queue entries (QEs) to be generated. The
system also generates a 3-word queue descriptor (QD) and assigns the
first word of the QD the label of the DEFINEQ statement.

“Queue Layout” describes the structure of a queue.

The COUNT operand must be specified using a self-defining term; an
equated value is not allowed. This operand must also be a positive
number greater than 0.

SIZE= The size, in bytes, of each buffer (data area) to be included in the
buffer pool in the initial queue. The system generates as many buffers
as'you specified in the COUNT operand. It initializes each buffer to
binary zeros. Each QE in the queue contains the address of an
associated buffer in the buffer pool.

If you do not specify the SIZE operand, the system places all QEs in
the free chain and the queue is defined as empty. If you specify SIZE,
the system includes all QEs in the active chain and the queue is defined
as full.

A queue is composed of a queue descriptor (QD) and one or more queue entries
(QEs). Figure 2-5 on page 2-95 shows the layout of a queue.

The DEFINEQ statement generates a 3-word QD. Word 1 of the QD is a pointer
to the most recent entry in a chain of active QEs. -Word 2 is a pointer to the oldest
entry in a chain of active QEs. Word 3 is a pointer to the first QE in a chain of free
QEs. If the queue is empty, words 1 and 2 contain the address of the queue (the
address of the QD). If the queue is full, word 3 contains the address of the queue.

DEFINEQ also generates several 3-word QEs. Word 1 of the oldest QE in the

active chain points back to the QD. For the rest of the QE'’s in the active chain,
word 1 is a pointer to the next most recent QE in the chain.

Chapter 2. Instruction and Statement Descriptions 2-93

DEFINEQ

Word 2 of the most recent QE in the active chain points back to the QD. For the
rest of the QEs in the active chain, word 2 is a pointer to the next oldest QE in the

chain. ; O

Word 3 of a QE in the active chain is a queue entry. The entry is a 16-bit word that
can be a data item or the address of an associated data buffer.

When a QE is in the free chain, word 3 is a pointer to the next element in the free
chain. Word 3 of the last QE in the free chain is a pointer back to the QD.

2-94 SC34-0937

DEFINEQ

Qb Active QE Optional
0 Chain buffer pool buffer areas
L; ——
—> 0500 3000 ™ 1000 0500 Oldest
> entry
2000
1000 ‘
Queue f—m———
4000 [entry
o
r 2000 1000
3000
Queue >
entry
S -
> 3000 2000 Most
recent
0500 entry
‘ Queue ————>
entry
—> 4000 Free QE
chain
0500
5000

0500

BG1163

Figure 2-5. Layout of a Queue

Chapter 2. Instruction and Statement Descriptions 2-95

DEFINEQ

Syntax Examples

2-96 SC34-0937

1) The following statement generates a 3-word queue descriptor (QD), followed by }
four 3-word queue entries (QE). All four of the QEs are placed in the QE free ()
chain. ,

QUE1 DEFINEQ COUNT=4

2) The following statement generates a 3-word QD, followed by two 3-word QEs
and two 6-word queue data areas (one 6-word area for each of the QEs) initialized
to binary zeros. Because the SIZE operand is specified, all QEs are included in the
active chain and the queue is defined as full.

QUE2 DEFINEQ COUNT=2,SIZE=12

DEQ

0 DEQ — Release a Resource for Use

The DEQ instruction releases exclusive control of a resource other than a terminal
by releasing control of the queue control block (QCB) associated with that resource.

You acquire exclusive control of the QCB associated with a resource with the ENQ
instruction. (See the ENQ instruction for more information.) Your program must
release exclusive control of, or “dequeue,” a QCB associated with a resource before
other programs can use the resource again. Note that any task may dequeue a QCB,
even if it is not the owner of that QCB.

DEQ normally assumes that the QCB for the resource is defined in the same
partition as the current program. However, your program can dequeue a QCB in
another partition by using the cross-partition service capability of DEQ. See
Appendix C, “Communicating with Programs in Other Partitions (Cross-Partition
Services)” on page C-1 for an example that dequeues a resource in another
partition. Refer to the Language Programming Guide for more information on
cross-partition services.

When you use the $SIASM macro assembler or the host assembler, the DEQ
instruction causes the assembler to generate a QCB for a resource at the end of the
program. When you use SEDXASM, no QCBs are generated; you must use the
QCB statement to generate the QCBs your program requires. '

Syntax:

O label DEQ qcb,code,P1=,P2=

Required: qcb
Defaults: code=—1
Indexable: qcb

Operand Description

gcb The label of the QCB to be dequeued. This must be the same label
used for the ENQ instruction and is usually the label of a QCB
statement.

code A code word to be inserted into the queue control block (QCB)

associated with the resource. Your program can examine the code
word by referring to the label of the QCB. A code of 0 is interpreted
by the ENQ instruction to mean that the resource is unavailable for -
use; all nonzero codes show that the resource is available. You must
code a self-defining term for this operand.

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-97

DEQ

Coding Example

2-98 S(C34-0937

See “ENQ — Gain Exclusive Control of a Resource other than a Terminal” on
page 2-125 for an example using the DEQ instruction.

C

DEQT

@ DEQT — Release a Terminal for Use

The DEQT instruction releases control of the terminal that your program acquired
control of with an ENQT instruction.

When an ENQT instruction redefines the characteristics of a terminal through an
IOCB statement, DEQT restores the terminal characteristics defined on the
TERMINAL definition statement. (Refer to the Installation and System Generation
Guide for information on the TERMINAL statement.) DEQT also causes partially
full buffers to be written to the terminal, completes all pending I/O, and forces the
cursor-or forms to the next line (carriage return.) In addition, you can use the
DEQT instruction to end spooling to a printer assigned to your program.

Your program also releases exclusive control of a terminal when it executes a
PROGSTOP instruction.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a DEQT instruction causes a terminal 1/O operation to occur.
If the return code is not a — 1, the address of this instruction will be placed in the
second word of the task control block (taskname +2). The terminal I/O return codes
are described at the end of the PRINTEXT and READTEXT instructions in this
manual and also in Messages and Codes.

When coding the DEQT instruction, you can include a comment that will appear
with the instruction on your compiler listing. If you include a comment, you must
also code the CLOSE operand. The comment must be separated from the operand

0 field by at least one blank and it cannot contain commas.
Syntax:
label DEQT CLOSE = comment
Required: none
Defaults: CLOSE=NO
Indexable: none

Operand Description
CLOSE= This operand provides additional control for spool jobs.

Code CLOSE =YES to logically end a spool job. Logically ending a
SPOOL job allows the executing program to create separate printed
output on the spool device. This operand has no effect on the DEQT
instruction if the device to which the DEQT is directed is not a spool
device, or if spool is not active.

Code CLOSE =ALL to end all spool jobs associated with this task and
all other tasks in the program that have previously issued a DEQT
instruction.

Coding CLOSE =NO (the default) has no affect on the DEQT
instruction or spool operation.

Chapter 2. Instruction and Statement Descriptions 2-99

DEQT

Syntax Examples
1) Release control of the system printer, $SYSPRTR.

ENQT ~ $SYSPRTR
*

DEQT

2) Release control of the device TTY1.
ENQT TERMI,BUSY=ALTERN

L
L]
L
DEQT CLOSE=NO THIS IS A COMMENT
.
[]

PROGSTOP
TERM1 I0CB TTY1,PAGSIZE=24

2-100 SC34-0937

O

C

DETACH

DETACH — Deactivate a Task

The DETACH instruction removes a task from operational status. A task can only
detach itself. If a program reattaches a task, execution begins with the instruction
following the DETACH in the reattached task.

Coding Example

Syntax:
label DETACH code,P1=
Required: none
Defaults: code = —1
Indexable: none
Operand Description
code The posting code to be inserted in the terminating ECB ($TCBEEC) of
the task being detached. A complete list of TCB equates is in the
Internal Design.
Pl= Parameter naming operand. See “Using the Parameter Naming

Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

The following program announces the start of each race at a racetrack.

TASKA is the program’s primary task. It starts, or “attaches,” TASKB, which
enqueues the track announcement board at label RACEBORD (code not shown).
TASKB then prints the time of day and the number of the race that is about to
begin. When TASKB completes, it executes a DETACH instruction and detaches
itself from the program.

When the primary task reattaches TASKB at label A2, the GOTO instruction
immediately following the DETACH instruction executes. The GOTO instruction
passes control back to the beginning of the TASKB and execution resumes at the

label BEGIN.

Chapter 2. Instruction and Statement Descriptions 2-101

DETACH

2-102 SC34-0937

TASKA
START

‘A2

TASKB
BEGIN

NUMBER

PROGRAM
EQU

[]

[]

[]
ATTACH

]

[]

[]
ATTACH

L]

L

°
PROGSTOP

L]

[]

TASK
EQU

" ENQT

ADD
PRINTEXT
PRINTIME
PRINTEXT
PRINTNUM
PRINTEXT
DEQT
DETACH
GOTO
DATA
ENDTASK
ENDPROG
END

START

*

TASKB

TASKB

BEGIN

*

RACEBORD

NUMBER, 1

'@THE TIME IS NOW'

' AND RACE# '
NUMBER
' OF THE DAY IS ABOUT TO BEGIN '

BEGIN
FIOI

O

DIVIDE

DIVIDE — Divide Integer Values

The DIVIDE instruction divides an integer value in operand 1 by an integer value in
operand 2. The values can be positive or negative. To divide floating-point values,
use the FDIVD instruction.

See the DATA/DC statement for a description of the various ways you can represent
integer data.

The system stores the remainder of the operation (an integer) in the first word of the
task control block (TCB). This remainder will be lost if a subsequent instruction
issues a return code and updates the TCB. The remainder is double-precision only if
operand 2 is double precision.

The system indicates an overflow for the DIVIDE operation by placing a
X'80000000' in the first two words of the TCB. X'80000000' is also the result of a
divide by zero operation.

Syntax:
label DIVIDE opndl,opnd2,count, RESULT = ,PREC =,
P1=,P2=,P3=
Required: opndl1,opnd2
Defaults: count=1,RESULT =o0pnd1,PREC=S
Indexable: opnd1,0pnd2, RESULT

Operand Description

opndl The label of the data area containing the value divided by opnd2.
Opndl cannot be a self-defining term. The system stores the result of
the DIVIDE operation in opndl unless you code the RESULT
operand.

opnd2 The value by which opndl is divided. You can specify a self-defining
term or the label of a data area. The value of opnd2 does-not change
during the operation.

count The number of consecutive values on which the system performs the
operation. The maximum value is 32767.

RESULT = The label of a data area or vector in which the result is placed. The
data area you specify for opndl is not changed if you specify
RESULT. This operand is optional.

PREC=xyz Specify the precision of the operation in the form xyz, where the
precision for opndl is x. The precision for opnd2 is y, and the
precision of the result is z (“Mixed-precision Operations” on
page 2-104 shows the precision combinations allowed for the DIVIDE
instruction). You can specify single precision (S) or double precision
(D) for each operand. Single precision is a word in length; double
precision is two words in length. The default for opndl, opnd2, and
the result is single precision.

Chapter 2. Instruction and Statement Descriptions 2-103

DIVIDE

If you code a single letter for PREC, the letter applies to opnd! and

the result. Opnd2 defaults to single precision. If, for example, you

code PREC=D, opndl and the result are double precision and opnd2)
defaults to single precision. O

If you code two letters for PREC, the first letter applies to opndl and
the result, and the second letter applies to opnd2. With PREC=DD,
for example, opndl and the result are double precision and opnd?2 is
double precision.

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Mixed-precision Operations

Syntax Example

Coding Example

2-104 SC34-0937

The following table lists the precision combinations allowed for the DIVIDE
instruction:

opnd1 opnd2 Result Precision
S S S S
S S D SSD
D S D D
D D D DD
D S S DSS

PREC=S is the default.

The following DIVIDE instruction divides the value at location DATA by a value at (()
a location defined by the label TAB plus the contents of index register 1. Both
operands are single precision because no precision is specified.

DIVIDE DATA,(TAB,#1)

The following example uses the DIVIDE instruction to determine the amount of
time an experiment required in hours, minutes, and seconds. If the data area labeled
TIME contained a value of 4796 (seconds), the first DIVIDE instruction would place
a result of 1 in HOURS. It would also leave a remainder of 1196 in the first word
of the TCB. The label of the TCB is TASK, the label of the PROGRAM statement.

C

DIVIDE

The second DIVIDE instruction at label GETMINS would divide the remainder by
60 and place a result of 19 in MINUTES and a remainder of 56 in the TCB. This
remainder represents the number of seconds and would be moved into SECONDS.
The program would print out a final result of 1 hour, 19 minutes, and 56 seconds.

TASK PROGRAM
START EQU
L

NEXTIME EQU
L]

GETHOURS EQU
DIVIDE
GETMINS EQU
DIVIDE
GETSECS EQU
MOVE
PRINTIME EQU
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
GOTO

.

L]

]
TIME DATA
HOURS DATA
MINUTES DATA
SECONDS DATA

START

*

*

*

TIME,3600,RESULT=HOURS NUMBER OF HOURS

*

TASK,60,RESULT=MINUTES NUMBER OF MINUTES

*

SECONDS , TASK, (1,WORD) GET REMAINDER

*

" ELAPSED TIME IN HOURS:MINUTES:SECONDS'

HOURS

MINUTES

SECONDS

NEXTIME CONVERT ANOTHER COUNT
D'’ BEGINNING VALUE

F'o NUMBER OF ELAPSED HOURS
F'o!' NUMBER OF ELAPSED MINUTES
F'o! NUMBER OF ELAPSED SECONDS

Chapter 2. Instruction and Statement Descriptions 2-105

DO

DO — Perform a Program Loop

2-106 SC34-0937

The DO instruction begins a program loop. A loop is a set of one or more ()’
instructions that executes repeatedly until a condition you specify in the DO
instruction is satisfied. You must end the DO loop with an ENDDO instruction.

You can code a loop within another loop. This technique is called “nesting.” You
can include up to 20 nested loops within your initial DO-ENDDO structure.

There are three forms of the DO instruction. DO UNTIL and DO WHILE provide
a means of looping until or while a condition is true. The third form of the DO
instruction causes a loop to be executed a specific number of times. In all of these
forms, a branch out of the loop is allowed.

You also can use the DO instruction to perform a loop while or until a certain bit is
on (set to 1) or off (set to 0).

The syntax box shows the DO UNTIL and DO WHILE forms of the DO instruction
with a single conditional statement. You can specify several conditional statements,
however, by using the AND and OR keywords. These keywords allow you to join
conditional statements. The keywords are described in the operands list and
examples using the keywords are shown under “Syntax Examples with DO and
ENDDO” on page 2-109.

Syntax:
IR
label DO count, TIMES,INDEX =,P1 =)y/
Iabel DO UNTIL,(datal,condition,data2,width) ~
label DO WHILE,(datal,condition,data2,width)
Required: count or one conditional statement
with UNTIL or WHILE
Defaults: width is WORD
Indexable: count or datal and data2 in each statement
Operand Description
count The number of times the loop is to be executed. You can specify a
constant or the label of a variable. The maximum value is 32767. The
system completes one loop each time it encounters the ENDDO
instruction.)
Note: If count=0, the system executes the loop one time.
TIMES This optional operand serves only as a comment for the count
operand.
INDEX = The label of a data area that the system resets to 0 before starting the
DO loop and increases by 1 each time the instruction following the
DO instruction executes. The first time the DO loop executes, the
index has a value of 1.
UNTIL This operand defines a loop that executes until the condition you ‘
specify is true. The loop executes at least once, even if the condition ‘

is initially true.

WHILE

datal

condition

data2

width

o

AND

OR

O

DO

This operand defines a loop that executes as long as the condition you
specify is true. The loop does not execute if the condition is initially
false.

The label of a data item to be compared to data2 or the label of the
data area that contains the bit to be tested. This operand is valid only
in a conditional statement with UNTIL or WHILE.

An operator that indicates the relationship or condition to be tested.
Only code this operand in a conditional statement with UNTIL or
WHILE. The valid operators for the DO instruction are as follows:

EQ — Equalto

NE - Not equal to

GT — Greater than

LT — Less than

GE — Greater than or equal to
LE — Less than or equal to

ON — Bitison

OFF — Bitis off
The data to be compared to datal or the position, in datal, of the bit
to be tested. Only code this operand in a conditional statement with
UNTIL or WHILE. You can specify immediate data or the label of a
variable. Immediate data can be an integer from 1—32768 or a
hexadecimal value from 1-65535 (X'FFFE").

Bit 0 is the leftmost bit of the data area.

Specifies an integer number-of bytes or one of the following:

BYTE — Byte (8 bits)
WORD — Word (16 bits)
DWORD - Doubleword (32 bits)

FLOAT — Single-precision floating point (32 bits)
DFLOAT Extended-precision floating point (64 bits)

Code this operand only in a conditional statement using UNTIL or
WHILE. The default is WORD.

Enables you to join conditional statements when you code DO UNTIL
or DO WHILE. Code the operand between the conditional statements
you want to join. With DO UNTIL, the AND indicates that the loop
should execute until all the conditional statements that the operand
joins are true. With DO WHILE, the AND indicates that the loop
should execute while all the conditional statements the operand joins
are true.

You can join several pairs of conditional statements with several AND
operands. You also can use the AND and OR operands within the
same DO instruction.

Enables you to join conditional statements when you code DO UNTIL
or DO WHILE. Code the operand between the conditional statements
you want to join. With DO UNTIL, the OR indicates that the loop
should execute until one of the conditional statements the operand
joins is true. With DO WHILE, the OR indicates that the loop should
execute while any of the conditional statements the operand joins is
true. See the syntax examples for this instruction.

Chapter 2. Instruction and Statement Descriptions 2-107

DO

You can join several pairs of conditional statements with several OR
operands. You also can use the AND and OR operands within the
same DO instruction. @

P1= Parameter naming operand. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

Rules for Evaluating Statement Sirings Using AND and OR

2-108 sSC34-0937

The IF and DO instructions permit logically connected statements in the form of
either: '

statement,OR ,statement

statement, AND,statement

More than two statements may be logically connected in an instruction. Logically
connected statement strings are not evaluated according to normal Boolean
reduction. Instead, the string is evaluated to be true or false by evaluating each
sequence of:

statement, conjunction
to be true or false as follows:
e The expression is evaluated from left to right.

¢ If the condition is true and the next conjunction is OR, or if there are no more
conjunctions, the string is true and evaluation ceases.

e If the condition is true and the next conjunction is AND, the next conjunction is
checked. @

¢ If the condition is false and the next conjunction is OR, the next condition is
checked.

e If the condition is false and the next conjunction is AND, or if there are no more
conjunctions, the string is false and the evaluation ceases.

The order of the statements and the conjunctions in a statement string determines
the evaluation of the string. It may be possible, by reordering the sequence of
statements and conjunctions, to produce a statement string that will be evaluated to
the same results as Boolean reduction of the statement. For example, the statement
string:

(A,EQ,B),AND,(C,GT,D),OR,(E,LT,F)
could be reordered as
(E,LT,F),OR,(A,EQ,B),AND,(C,GT,D)

without changing the results if evaluated by Boolean reduction. As a statement
string in the IF or DO instructions, however, the two forms produce different
evaluations. If A is not equal to B, but E is less than F, the first statement string
will be evaluated false and the evaluation will cease as soon as (A,EQ,B,) is
evaluated; however, the second statement string will be evaluated true if E is less
than F, as would be expected from Boolean reduction for either the first or second
statement string.

O

™

DO

Syntax Examples with DO and ENDDO

See the IF instruction for more samples of conditional statements.

1) Execute a loop 100 times.
DO 100

L]
L]

ENDDO

2) Execute a loop the number of times specified in N. The TIMES operand serves
as a comment.
DO N, TIMES

ENDDO

3) Execute a loop until the first 4 bytes of A are less than the first 4 bytes of B.
DO UNTIL,(A,LT,B,4)

ENDDO

4) Execute a loop until A contains a floating-point value equal to 1000.
DO UNTIL, (A,EQ,1000,FLOAT)

ENDDO

5) Execute a loop while the first word of B is not equal to the first word of C.
DO WHILE, (B,NE,C)

ENDDO

6) Execute a loop while the first 4 bytes of A are less than the first 4 bytes of B.
DO WHILE, (A,LT,B,4)

ENDDO

7) Execute a loop until the third bit starting at label A is a 1.
DO UNTIL,(A,ON,2)

ENDDO

Chapter 2. Instruction and Statement Descriptions 2-109

DO

2-110 SC34-0937

8) Execute a loop until the bit number contained in BITI, starting at label A, is a 0.
DO UNTIL, (A,OFF,BIT1) Y
[]

O

ENDDO

9) Execute a loop until A equals.B and A equals C.
DO UNTIL,(A,EQ,B) ,AND, (A,EQ,C)

ENDDO

10) Execute a loop while A is not equal to 1, or while the first doubleword in D is
equal to the first doubleword in E, and while register 1 is not equal to 14.

DO WHILE, (A,NE,1),0R, (D,EQ,E,DWORD) ,AND, (#1,NE,14)
L]
[]

ENDDO

11) This example shows a nested DO loop.
DO UNTIL, (A,EQ,B,DFLOAT),0R, (#1,EQ,1000)

°

L]
DO 10, TIMES @

[
L]
[]
ENDDO
ENDDO

12) This example shows a nested DO loop that is also within an IF-ELSE-ENDIF
structure.

DO WHILE, (A,GT,B,DWORD)
IF (CHAR,EQ,C'A" ,BYTE)
DO 40, TIMES

ENDDO
ELSE

ENDIF
ENDDO

O

O

Coding Example

The following example shows three DO loops.

DO

The first DO loop, at label D1, executes twice and ends. The second DO loop, at
label D2, executes at least once and continues to loop until the value of INDEXI1 is
greater than or equal to 2.

The third DO loop, at label D3, executes as long as (WHILE) the value of INDEX2
is less than or equal to 1. If the condition is not initially true, the third loop does
not execute at all.

D1

D2

D3

INDEX
INDEX1
INDEX2

The above example generates the following printout:

N NNN -

[
[]
(]
DO 2,TIMES, INDEX=INDEX
MOVE INDEX1,0
DO UNTIL, (INDEX1,GE,2)
ADD INDEX1,1
MOVE TINDEX2,0
DO WHILE, (INDEX2,LE,1)

ADD INDEX2,1
PRINTNUM INDEX,3,3,4
ENDDO
ENDDO

ENDDO

[

.

[]

DATA F'1!

DATA F'1!

DATA F'1!

1 1

NN NN -
N = NN =N

Chapter 2. Instruction and Statement Descriptions

2-111

DSCB

DSCB — Create a Data Set Control Block

Syntax Example

2-112 SC34-0937

The DSCB statement creates a data set control block (DSCB). A DSCB provides
the information the system requires to use a data set within a particular volume.

The first 3 words of every DSCB contain the event control block (ECB) information.
You can refer to fields within a DSCB by using the DSCB equate table, DSCBEQU.

Syntax:
DSCB DS#=,DSNAME =,VOLSER = ,DSLEN =
Required: DS#=,DSNAME =
Defaults: VOLSER =null, DSLEN =0
Indexable: none

Operand Description

DS#= The alphanumeric label that is used to refer to a DSCB in disk or tape
I/O instructions. This label will be assigned to the first word (ECB) of
the generated DSCB. Specify 1 —8 characters.

DSNAME = The data set name field within the DSCB. Specify 1 —8 characters.

VOLSER = The volume label to be assigned to the volume label field of the DSCB.

Specify 1 —6 characters. A null entry (blanks) will be generated if you
do not specify VOLSER.

Note: If the DSCB is for a tape data set, you must specify VOLSER
prior to DSOPEN. In addition, you must supply the 1 —6 character
tape drive ID if there is no volume label. The tape drive ID is
assigned during system generation with the TAPE definition statement.

DSLEN= The size of the referenced direct access space. If no number is
specified, this value will be set to 0. This parameter is not used if the
DSOPEN routine will be used to open the DSCB.

When a data set is defined using the DSCB statement it must be opened before

attempting disk or tape I/O operations such as READ or WRITE. The routines

DSOPEN and $DISKUT?3 are provided for this purpose. DSOPEN must be copied
into your program with the COPY statement and then called with the CALL
instruction. The $DISKUT?3 utility is loaded with the LOAD instruction. For more
information on DSOPEN and $DISKUTS3 see Appendix D or refer to the Language
Programming Guide.

The following DSCB statement creates a data set control block with the label
INDATA.

DSCB DS#=INDATA,DSNAME=MASTER,VOLSER=EDX003

O

0

ECB

ECB — Create an Event Control Block

The ECB statement generates a 3-word event control block (ECB) that defines an
event. The system places a value in the first word of the control block when an
event has occurred. When the system signals the occurrence of an event in the ECB,
the ECB is said to have been “posted.”

Normally this statement is not needed for application programs you assemble with
the host or Series/1 macro assemblers. The host and Series/l macro assemblers
automatically generate a control block for an event named in a POST instruction.

You must code the necessary ECBs in programs assembled under SEDXASM,
except for those ECBs created when you code the EVENT = operand on the
PROGRAM or TASK statement.

You can code a maximum of 25 ECB statements in a program. If your program
requires more than 25 ECBs, you must create them using DATA statements. An
example of how to create an ECB is shown following the description of this
statement.

When coding the ECB statement, you can include a comment that will appear with
the statement on your compiler listing. If you include a comment, you must also
specify the code operand. The comment must be separated from the operand field
by at least one blank and it cannot contain commas.

Syntax:
label ECB code comment
Required: label
Defaults: code = —1
Indexable: none

Operand Description
label The label of the event that you specify in a POST instruction.

code Initial value of the code field (word 1). If this word is not a zero when
a WAIT is issued, no wait occurs unless the WAIT has RESET coded.
You must leave the comment section blank if you plan to take the
default (—1) for this operand.

Chapter 2. ‘Instruction and Statement Descriptions 2-1 13

ECB

Syntax Example

2-114 SC34-0937

The ECB statement:

ECB1 ECB

is-equivalent to coding,

ECB1 DATA Ft-1'
DATA 2F'0!

The ECB statement:

ECB2 ECB 0 CODE IS O, NOT DEFAULT

is equivalent to coding,

ECB2 DATA Fro'
DATA 2F'0"

C

C

EJECT

0 EJECT — Continue Compiler Listing on a New Page

The EJECT statement causes the next line of the listing to appear at the top of a
new page. This statement provides a convenient way to separate sections of a
program. It does not change the page title if you are using one.

You can place EJECT within executable instructions.

Syntax:
blank EJECT -
Required: none)
Defaults: none
Indexable: none

Operand Description

none none

Coding Example
See the PRINT statement for an example using EJECT.

Chapter 2. Instruction and Statement Descriptions 2-115

ELSE

ELSE — Specify Action for a False Condition

The ELSE statement defines the start of the false-path code associated with the
preceding IF instruction. The end of the false-path code is the next ENDIF '
statement.

When coding the ELSE statement, you may include a comment that will appear with
the instruction on your compiler listing. If you include a comment, we recommend
that the first character of the comment text not be a special character. If the
comment starts with one or more special characters, it must be separated from the
instruction by a comma with a blank on each side.

Syntax:
Iabel ELSE
Required: none
Defaults: none
Indexable: none

Operand Description

none none

Syntax Examples
The examples for IF, ELSE, and ENDIF are shown following the IF instruction. @

2-116 5C34-0937

O

A

END

END — Signal End of Source Statements

Coding Example

The END statement signals the compiler that the program contains no further
source statements.

END must be the last statement in a program, a separately compiled task, or a
subroutine. Unpredictable results can occur if you do not code an END statement.

Syntax:
blank END
Required: none
Defaults: none
Indexable: none

Operand Description

none none

The following example enqueues $SYSLOG, prints the time and date, dequeues
$SYSLOG, and ends. END is the last statement in the program.

PRINDATE PROGRAM START
START EQU *

ENQT $SYSLOG

PRINTIME

PRINDATE

DEQT

PROGSTOP

ENDPROG

END

Chapter 2. Instruction and Statement Descriptions 2-117

ENDATTN

ENDATTN — End Attention-Interrupt-Handling Routine

The ENDATTN instruction ends an attention-interrupt-handling routine, as
described under ATTNLIST, and is the last instruction of that routine.

Syntax:
label ENDATTN
Required: none
Defaults: none
Indexable: none

Operand Description

none none

Coding Example
See the ATTNLIST statement for an example using the ENDATTN instruction.

2-118 SC34-0937

O

ENDDO

ENDDO — End a Program Loop

Coding Example

The ENDDO statement defines the end of a DO loop. It must be preceded by a DO

instruction.

Syntax:
label ENDDO
Required: none
Defaults: none
Indexable: none

Operand Description

none nomne

See the examples following the DO instruction.

Chapter 2. Instruction and Statement Descriptions

2-119

ENDIF

ENDIF — End an IF-ELSE Structure

The ENDIF statement indicates the end of an IF-ELSE structure. If ELSE is coded,
ENDIF indicates the end of the false-condition code associated with the preceding
IF instruction. If ELSE is not coded, ENDIF indicates the end of the true code
associated with the preceding IF instruction.

When coding the ENDIF statement, you can include a comment that will appear
with the instruction on your compiler listing. If you include a comment, we
recommend that the first character of the comment text not be a special character.
If the comment starts with one or more special characters, it must be separated from
the instruction by a comma with a blank on each side.

Syntax:
Iabel ENDIF
Required: none
Defaults: none
Indexable: none

Operand Description

none none

Syntax Examples
The examples for IF, ELSE, and ENDIF are shown following the IF instruction.

2-120 SC34-0937

ENDPROG

@ ENDPROG — End a Program

The ENDPROG statement ends a program. It must be the next to the last
statement in your program (except when you include a $ID statement). The last
statement must be END. You can code the RETURN = operand on the
ENDPROG statement to acquire the system-return subroutine support without
link-editing the subroutine with your program.

The ENDPROG statement generates a task control block (TCB) for the main
program. You can locate the TCB by referring to the label on the PROGRAM

statement.
Syntax:
blank ENDPROG RETURN =
Required: none
Defaults: RETURN =NO (if your program contains
a USER instruction, the default is YES)
Indexable: none
Operand Description

RETURN= RETURN=YES generates the $SRETURN subroutine in your
program. $$RETURN enables you to return to an EDL program
O from an assembler subroutine when you code

BAL RETURN,R1

in the assembler subroutine. When you specify RETURN=YES, it is
not necessary to link-edit the $SRETURN subroutine to your
program.

If your program has a USER instruction coded, then the RETURN
operand is not necessary on the ENDPROG statement. The USER
instruction causes the system module $SSRETURN to be generated as
part of your program.

RETURN=NO is the default value for the RETURN operand unless
your program contains a USER instruction. If you code
RETURN=NO or allow the default, the system module is not
generated as part of your program.

RETURN=EXTRN generates an external reference to the system
subroutine $SRETURN. If you code RETURN=EXTRN, you must
link-edit the SSRETURN subroutine to your program.

O

Chapter 2. Instruction and Statement Descriptions 2-121

ENDPROG

Syntax Example _
The ENDPROG statement precedes the END statement.

PROGSTOP

FIELD DATA F'o

MESSAGE TEXT '"ENTER YOUR NAME :'
ENDPROG
END

2-122 SC34-0937

O

C

O

ENDTASK

ENDTASK — End a Task

Coding Example

The ENDTASK instruction defines the end of a task. Each task, except the primary
task, requires one ENDTASK as its final instruction. When this instruction
executes, the task is detached. If another ATTACH is issued, execution begins at
the first instruction of the task.

ENDTASK actually generates two instructions: DETACH and GOTO start, where
“start” is the label of the first instruction to be executed when the system attaches
the task.

Syntax:
label ENDTASK code,P1=
Required: none
Defaults: code=—1
Indexable: none

Operand Description

code The post code can be any 1-word value. This code will be inserted in
the terminating ECB ($STCBEEC) of the task being detached. A
complete list of TCB equates is in the Internal Design.

Pl1= Parameter naming operand. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

The main program in the following example, PROGA, attaches both TASKA and
TASKB during execution. Both tasks must be coded within the main program; you
cannot code the tasks in subprograms that are later link-edited with the main
program. The main program code always ends with the ENDPROG and END
statements (unless you code an intervening $ID statement). The task source code
always ends with the ENDTASK statement.

The first ATTACH instruction starts TASKA. TASKA begins by setting its post
code to — 1. If an error occurs, the task ends with a post code of 999. The second
ATTACH instruction starts TASKB.

The IF instruction at label CHECK examines the post code of TASKA to see if the
task ended successfully. If the task did not end successfully, another ATTACH

instruction reattaches TASKA. Because TASKA can only end with an ENDTASK
statement, execution always resumes at the instruction following the BEGINA label.

If TASKB detaches at the DETACH instruction, execution resumes at the

instruction following the DETACH. If TASKB detaches at the ENDTASK
statement, the task resumes execution at BEGINB.

Chapter 2. Instruction and Statement Descriptions 2-123

ENDTASK

PROGA PROGRAM START
START EQU *
[

L]
L]
ATTACH TASKA
L
L4
ATTACH TASKB
L
L]
[
CHECK IF {$TCBEEC+TASKA,NE,-1)
ATTACH TASKA
ENDIF

[]
L]
*
ATTACH TASKB
L
.

PROGSTOP
L]
®
[]
TASKA TASK BEGINA
BEGINA EQU *
MOVE CODE,-1
L]
[]
*
IF (RESULT,EQ,ERROR)
MOVE CODE,999
ENDIF
ENDTASK 1,P1=CODE
*
TASKB TASK BEGINB
BEGINB EQU *
ADD C,D
L]
L]
L]
DETACH
[]
[)
L]
ENDTASK
ENDPROG
END

2-124 SC34-0937

O

ENQ

ENQ — Gain Exclusive Control of a Resource other than a Terminal

The ENQ instruction gains exclusive control of a resource other than a terminal by
acquiring control of the queue control block .(QCB) associated with that resource.
Use ENQ to gain control of logical or physical resources such as sensor-based I/O
devices, subroutines, and data sets. The task remains the owner of the QCB until
the QCB is dequeued.

Note: Use the ENQT instruction to acquire exclusive use of any resource you define
with a TERMINAL statement, such as a display station or printer.

When several programs need to use the same resource, the ENQ instruction can
ensure serial (one at a time) use of the resource. Programs try to acquire control of,
or “enqueue,” a specific QCB before trying to use the resource. If the QCB is
“busy,” the program can wait for the resource to become available or execute
another routine.

In general, there are two types of resources, system and user. System resources can
be shared serially by all programs and are defined by labels that are known across
the system. The QCBs associated with these resources must reside in $SYSCOM, the
system common area. (Refer to the Installation and System Generation Guide for a
discussion of $SYSCOM.) User resources are shared serially by different parts of
one user program and are identified by labels known only within that program. The
QCBs associated with these resources reside within the program.

You must define each QCB contained in a program compiled under SEDXASM with
the QCB statement. The QCB statement generates the 5-word queue control block
in your program. The Series/1 and host macro assemblers automatically create a
required QCB if you include a DEQ instruction naming the QCB in your program.

ENQ normally assumes that the QCB to be enqueued is in the same partition as the
current program. However, your program can enqueue a QCB in another partition
by using the cross-partition capability of ENQ. See Appendix C, “Communicating
with Programs in Other Partitions (Cross-Partition Services)” on page C-1 for an
example of enqueuing a resource in another partition. Refer to the Language
Programming Guide for more information on cross-partition services.

Syntax:
label ENQ qcb,BUSY =,P1 =
Required: qcb
Defaults: none
Indexable: qchb

Chapter 2. Instruction and Statement Descriptions 2-125

ENQ

Coding Example

2-126 SC34-0937

Operand
qch
BUSY=

Description
The label of the QCB to be enqueued. @

The label of the instruction to receive control if the QCB you try to
enqueue is in use. If you do not code this operand and the QCB is in
use, the system suspends the execution of your program until the
resource associated with the QCB becomes available.

Parameter naming operand. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

The following example shows the use of ENQ and DEQ instructions.

The ENQ instruction attempts to enqueue the queue control block labeled
SBRTNQCB. If the first word of the QCB contains a zero, the subroutine labeled
SUBRTN is being used by another program. The program, in this case, would wait
for the resource to become available. If the first word of the QCB is not a zero, the
program can call SUBRTN.

When SUBRTN ends, it places a code of 99 in RETURNCD. The DEQ instruction
releases exclusive control of the QCB and places the value of RETURNCD (99) in
the first word of the QCB. The nonzero value in the QCB serves as a signal to other
programs that the resource associated with the QCB is available.

.
.
.

‘ ‘\%\
SBRTNQCB ‘ ;

ENQ
CALL SUBRTN
DEQ SBRTNQCB, 0, P2=RETURNCD

SUBROUT ~ SUBRTN

MOVE RETURNCD, 99
RETURN
[]
L]
[
SBRTNQCB QCB -1

L]
L]

0

O

ENQT

ENQT — Gain Exclusive Control of a Terminal

The ENQT instruction acquires exclusive control of a terminal. To acquire exclusive
contro! of a terminal is to “enqueue” it. A “terminal” is any device, such as a
display station or printer, that you define with a TERMINAL statement during
system generation.

Your program releases exclusive control of a terminal when it executes a DEQT or
PROGSTORP instruction. Once your program enqueues a terminal, it must release
control of that terminal with a DEQT instruction before attempting to enqueue
another terminal.

When coding the ENQT instruction, you can include a comment that will appear
with the instruction on your compiler listing. If you include a comment, you must
specify at least one operand with the instruction. The comment must be separated
from the operand field by one or more blanks and it cannot contain commas.

Syntax:
label ENQT name,BUSY =,SPOOL =,P1= comment
Required: none
Defaults: SPOOL=YES
name — label of the terminal that is currently in use
by the program
Indexable: none

Operand Description

name The label of an IOCB statement or one of two special device names:
$SYSLOG or $SYSPRTR. $SYSLOG is the name of the system
display station; $SYSPRTR is the name of the system printer. Your
program enqueues the terminal from which you loaded it if you allow
this operand to default.

When you specify $SYSLOG or $SYSPRTR, the system refers to the
TERMINAL statement you set up for each of these devices during
system generation. Do not code an IOCB statement for these devices.

When you want to specify a terminal other than $SYSLOG or
$SYSPRTR, you can code the label of an IOCB statement for this
operand. The ENQT instruction refers to the IOCB statement for the
name of the terminal you want to control. The name on the IOCB
statement is the name you assigned to the terminal during system
generation. By referring to an IOCB statement, you also can redefine
certain terminal characteristics. You can, for example, reset screen or
page margins, or change a terminal from a roll screen device to a static
screen device. (See the IOCB statement for a description of the
terminal characteristics you can redefine.)” The terminal characteristics
you specify with an IOCB statement remain in effect until you release
control of the terminal.

Chapter 2. Instruction and Statement Descriptions 2-127

ENQT

BUSY = The label of the instruction to receive control if the terminal you try to

enqueue is in use. If you do not code this operand and the terminal is
in use, the system suspends the execution of your program until the
terminal you request becomes available.

SPOOL= YES, the default, to allow the system to send spooled output to the
spool device you enqueue when the spool facility is active. This
operand has no effect if the spool facility is not active or if the device
you enqueue is not a spool device.

NO, to prevent the system from sending spooled output to the spool
device you enqueue when the spool facility is active.

This operand remains in effect until your program executes a DEQT or

PROGSTOP instruction.

Pl= Parameter naming operand. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

Special Considerations

2-128 SC34-0937

You should note the following considerations when using the ENQT instruction:

e If your program has exclusive control of a terminal and loads another program,
the system dequeues the terminal unless you coded DEQT =NO on the LOAD
instruction. See “LOAD — Load a Program” on page 2-243 for a description
of the DEQT operand.

e ATTNLIST instructions cannot gain access to an enqueued terminal.

* If your program attempts to enqueue a terminal it already controls, the ENQT
instruction can change the characteristics of the terminal in use if it refers to an
IOCB statement that defines new terminal characteristics.

e If an ENQT instruction refers to an IOCB that sets up the limits of a logical
screen, the output for that screen starts at the top of the working area. The
system, however, does not immediately move the cursor to this location. Your
program can position the cursor at the top of the working area by issuing a.
TERMCTRL DISPLAY.

* To preserve the correct current line pointer when the system sends spooled
output to an enqueued terminal, code a TERMCTRL DISPLAY as the last I/O
instruction. Do this before your program issues an ENQT instruction redefining
the characteristics of that terminal.

C

C

O

Syntax Examples

Coding Example

ENQT

1) Enqueue the system printer, $SYSPRTR.
ENQT $SYSPRTR

DEQT

2) Enqueue the device TTY1. The ENQT instruction refers to the IOCB labeled
TERMI for the name of the device. If TTY1 is not available, the program passes
control to the label ALTERN and enqueues $SYSLOG.

TEST PROGRAM START
TERM1 10CB TTY1,PAGSIZE=24
START EQU *

ENQT TERM1,BUSY=ALTERN

L]
L]
.
DEQT
ALTERN ENQT $SYSLOG

The first ENQT instruction in the program attempts to enqueue $SYSPRTR. If the
device is busy, the program displays a message and attempts to enqueue an alternate
printer ($SYSLIST). If the alternate printer is busy, the program waits for it. When
the program obtains a printer, it executes the CALL instruction at the label
GOTPRTR. The DEQT instruction at the label RELEASE releases exclusive
control of the enqueued printer (either SSYSPRTR or $SYSLIST).

L]
L]

GETPRTR EQU *
ENQT $SYSPRTR,BUSY=BUSYEXIT
GOTO GOTPRTR
BUSYEXIT EQU *
PRINTEXT '$SYSPRTR IS BUSY. ATTEMPTING TO ENQT ALTERNATE'
ENQT PRTRIOCB
GOTPRTR EQU *
CALL SUBRTN
[]
[]
[]
RELEASE EQU *
DEQT
PROGSTOP
PRTRIOCB 10CB $SYSLIST
ENDPROG
END

Chapter 2. Instruction and Statement Descriptions 2-129

ENTRY

ENTRY — Define a Program Entry Point

2-130 sC34-0937

The ENTRY statement defines one or more labels as being entry points within a
program module. Each ENTRY statemant allows a maximum of 10 labels. These
entry-point labels can be referred to by instructions in other program modules that
are link-edited with the module that defines the entry-point label. The program
modules that refer to an entry-point label must contain either an EXTRN or
WXTRN statement for the label.

Syntax:
blank ENTRY one or more relocatable symbols
separated by commas
Required: one symbol
Defaults: none
Indexable: none

Operand Description

symbol One or more symbols that appear as instruction labels within the.
program module.

O

Coding Example

ENTRY

In module A, the first ENTRY statement signifies that the program can be entered
at label GETTIME. In module B, the entry defines label GOTTIME as being an
entry point. Both of these labels are also used with EXTRN statements so that their
addresses can be resolved when the two modules are link-edited together. The
second ENTRY statement in module A allows the time to be printed without 'THE
TIME IS NOW ' text.

MODULE A
[]
[]
®
ENTRY GETTIME
ENTRY GETTIME2
EXTRN GOTTIME
L]
[]
[]
GETTIME EQU *
PRINTEXT ~ '@THE TIME IS NOW '
GETTIME2 EQU *
PRINTIME
GOTO GOTTIME
[]
[]
[]
MODULE B
L
[
[]
ENTRY GOTTIME
EXTRN GETTIME
[]
[]
[]
TIME EQU *
GOTO GETTIME
GOTTIME EQU *

[

Note: The two ENTRY statements in module A also could be coded as follows:
ENTRY GETTIME,GETTIMEZ2

Chapter 2. Instruction and Statement Descriptions 2-131

EOR

EOR — Compare the Binary Values of Two Data Strings

The Exclusive OR instruction (EOR) compares the binary value of operand 2 with O
the binary value of operand 1. The instruction compares each bit position in

operand 2 with the corresponding bit position in operand 1 and yields a result, bit by

bit, of 1 or 0. If the bits compared are the same, the result is 0. If the bits

compared are not the same, the result is 1. If both input fields are identical, the

resulting field is 0. If one or more bits differ, the resulting field contains a mixture

of Os and 1s.
Syntax:
label EOR opndl,opnd2,count, RESULT =,
P1=,P2=,P3=
Required: opndl,opnd2
Defaults: count =(1,WORD),RESULT = opnd1
Indexable: opnd1l,o0pnd2, RESULT

Operand Description

opndl The label of the data area to be compared with opnd2. Opndl cannot
be a self-defining term. The system stores the result of the operation
in this operand unless you code the RESULT operand.

This operand can be a byte, word, or doubleword. -

opnd2 The value compared with opndl. You can specify a self-defining term ((j
or the label of a data area. This operand can be a byte, word, or
doubleword.

count The number of consecutive values in opndl on which the operation is

to be performed. The maximum value allowed is 32767.

The count operand can include the precision of the data. Select one
precision that the system uses for opndl, opnd2, and the resulting bit
string. When specifying a precision, code the count operand in the
form,

{n,precision)

where “n” is the count and “precision” is one of the following:

BYTE — byte precision
WORD — word precision (default)
DWORD — doubleword precision

The precision you specify for the count operand is the portion of
opnd?2 that is used in the operation. If the count is (3,BYTE), the
system compares the first byte of data in opnd2 to the first three bytes
of data in opndl.

RESULT= The label of a data area or vector in which the result is to be placed.
When you specify RESULT, the value of opndl does not change
during the operation. This operand is optional. O

2-132 SC34-0937

A

Syntax Examples

EOR

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

1) The EOR instruction compares the first byte of data in D to the first byte of data
in C and places the result in R.
EOR C,D,(1,BYTE),RESULT=R

C DATA X'92' binary 1001 0010
D DATA X'8F' binary 1000 1111
R DATA X'00'

After the operation, R contains:
X'ID' — hexidecimal
0001 1101 — binary.

2) The EOR instruction compares the first byte of data in OPER?2 to the first three
bytes of data in OPER1. The result of the operation is stored in RESULTX.

EOR OPER1,0PER2, (3,BYTE) ,RESULT=RESULTX

OPER1 DC X'00' binary 0600 0000
DC X'A5! binary 1010 0101
DC X'01' binary 0000 0001
OPER2 DC X'FF' binary 1111 1111

RESULTX DC 2F'0'

L]
After the operation, RESULTX contains:

X'FF5A FEOO' — hexidecimal
1111 1111 0101 1010 1111 1110 0000 0000 — binary.

3) The EOR instruction compares the first byte of data in TEST to the first three
bytes of data in INPUT. The result of the operation is stored in OUTPUT.

EOR INPUT,TEST, (3,BYTE) ,RESULT=0UTPUT

INPUT DC c'.z2 binary 1111 0001 0100 1010 1111 0010
TEST bC c'o.0 binary 1111 0000
OUTPUT DC 3C'o! binary 1111 0000 1111 0000 1111 0000

After the operation, OUTPUT contains:
0000 0001 1011 1010 0000 0010 — binary.

Chapter 2. Instruction and Statement Descriptions 2-133

EQU

EQU — Assign a Value to a Label

The EQU statement assigns a -value to a label. The value is a word in length. You (j)
can use the label you define with the EQU statement as an operand in other

instructions that permit the use of labels. The “value” the statement assigns, or

equates, to a label can consist of an integer constant, another label, an expression

containing an arithmetic operator (for example, A +2), or an asterisk (*). See

“Syntax Rules” on page 1-6 for a description of the four arithmetic operators: +

(plus), — (minus), * (multiply), and / (divide).

Syntax:
label EQU value
Required:label,value
Defaults: none
Indexable: none

Operand Description

label The label to be assigned a value. Do not define this label elsewhere in
your program.

value An integer constant, another label, an expression containing an
arithmetic operator, or an asterisk (*). The asterisk points to the next
available storage location in a program. It allows you to generate
convenient labels that you can use within your program. Do not @
confuse this use of an asterisk with the arithmetic operator that -
signifies multiplication (*).

Your program must define any labels you code for this operand before
the system processes the EQU statement. For example, if you code:

A EQU B

you must have defined the label B in your program previously.

Special Considerations

2-134 SC34-0937

Here are some things to consider when you use the EQU statement in your program:

¢ When you use the label on the EQU statement as an operand in another
instruction, the system interprets the label as a storage address unless you
include a plus (+) sign before it. The system interprets a label preceded by a
plus sign as a constant.

¢ Because EQU assigns a word value to a label, a byte-precision move of a label
preceded by a plus sign would only move the leftmost byte of the word. If you
equated the label A to the value 4 (X'0004'), for example, the system would
move only the value X'00'.

e If you equate a DATA or DC statement with a label, the system interprets the
label as the address of the DATA or DC statement. If you try to use this label
with a plus sign, however, the label will no longer point to the data when the

load point of the program changes. 0

)

Syntax Examples

EQU

* You can equate a hexadecimal value to a label if the value can fit in a word (for
example, X'FEDI1'). You can also equate one or two EBCDIC characters with
a label (for example, C' AB'). You cannot form EQU expressions with the
following types of data: H, D, E, and A. (See DATA/DC for a description of
each of these data types.)

1) Assign a value of 2 (X'0002') to A.
A EQU 2

2) Assign the value of A to label B. If A has a value of 5 (X'0005'), B also has a
value of 5.

B EQU A

3) Assign the value of B plus 2 bytes to label A.
A EQU B+2

4) CALLA is equivalent to CALLSUB. The asterisk (*) points to the next available
storage location in the program.

GOTO CALLA

L
L]

CALLA EQU *
CALLSUB CALL PROGA

5) Move the contents at address X'0002' to C.
A EQU 2

MOVE C,A
6) Move A, a value of 2, to C.
A EQU 2

MOVE C,+A
7) Move 7 to the indexed location of A plus #1.
A EQU 2

MOVE (A, #1),7

8) Add the value of C (X'0002') to D (X'0008'). The example defines the labels B
and A before they appear in the EQU statements.

SAMPLE PROGRAM START

B DATA Fr2
START EQU *

[]

[]

L]

C EQU B
ABD D,C
PROGSTOP

A DATA F'8'

D EQU A

Chapter 2. Instruction and Statement Descriptions 2-135

EQU

9) A has a word value of X'0005'. The leftmost byte (value X'00') moves to

location C.

A EQU 5 “ .M‘
MOVE C,+A,(1,BYTE)

10) Equate C to the address of F'0'. Move a value of 0 into TEMP.

C EQU *
DATA F'O'

MOVE TEMP,C

11) HERE has a value of 20. Move a value of 0 to address X'0014".

HERE EQU 20
MOVE HERE,O

Coding Example
The following program moves data from three storage locations labeled A, C, and E.
Label A is equal to the address of B times 2. Label C is equal to the address of D
divided by 4. Label E is equal to the address of F divided by 5.

If the address of B is X'0052', the arithmetic expression B*2 refers to address
X'00A4'. If the address of D is X'0054', the arithmetic expression D/4 refers to
address X'0015'. For label F, if the address is X'0056', the arithmetic expression
F/5 yields the address X'0017'. The system disregards the remainder in an
arithmetic expression using the divide operator.

OPERATOR PROGRAM START

START EQU * O
L] i
.
.
M1 MOVE HOLD1,A
M2 MOVE HOLDZ2,C
M3 MOVE HOLD3,E
.
.
.
PROGSTOP
HOLD1 DATA F'o’
HOLD2 DATA F'o
HOLD3 DATA F'o’
B DATA F'i'
D DATA F'2
F DATA F'3!
B L]
A EQU B*2
C EQU D/4
E EQU F/5
P e Rt T
ENDPROG
END

2-136 $C34-0937

O

O

ERASE

ERASE — Erase Portions of a Display Screen

The ERASE instruction clears or blanks a portion of a display screen. The
instruction is only for terminals that have static screens. You can specify a static
screen with the SCREEN operand of the TERMINAL statement or the IOCB
instruction.

With a 4978, 4979 or 4980 terminal, the ERASE instruction clears a portion of the
screen by setting that portion to a no data (null characters) condition. For a 3101
terminal in block mode, the instruction normally clears a portion of the screen by
writing unprotected blanks to that area.

The ERASE instruction works differently on a 4978, 4979, or 4980 terminal than it
does on a 3101 terminal in block mode. These differences are described under “31xx
Display Considerations” on page 2-139.

The supervisor places a return code in the first word of the task control block
(taskname) whenever an ERASE instruction causes a terminal I/O operation to
occur. If the return code is not a — 1, the address of this instruction will be placed
in the second word of the.task control block (taskname +2). The terminal I/O
return codes are described at the end of the PRINTEXT and READTEXT
instructions in this manual and also in Messages and Codes.

Note: Any references to 31xx terminals means 3101, 3151, 3161, 3163, and 3164
terminals, unless otherwise noted.

Syntax:
label ERASE count, MODE =, TYPE = ,SKIP =,LINE = ,SPACES =
Required: none
Defaults: count =maximum,MODE =FIELD,TYPE =DATA,
SKIP = 0,LINE = current line, SPACES =0
Indexable: count,SKIP,LINE,SPACES

Operand Description

count The number of bytes to be erased. Both nonprotected and protected
characters contribute to the count, even if only nonprotected
characters are to be erased. The ERASE instruction can erase up to
an entire logical screen.

MODE = FIELD, to end the erase operation when the display characters change
from nonprotected to protected, or when the operation reaches the end
of the current line.

LINE, to end the erase operation at the end of the current line.

SCREEN, to end the erase operation at the end of the logical screen.

Chapter 2. Instruction and Statement Descriptions 2-137

ERASE

2-138 SC34-0937

TYPE=

SKIP =

LINE=

SPACES =

When the ERASE instruction erases the number of bytes you specified
for the count, the operation will end. It will do so even though the
condition you specified on the MODE operand is not satisfied. The
MODE operand determines the end of the erase operation if you do
not code a count value or if the condition you specify for MODE =
occurs before the instruction erases the number of bytes in count.

DATA, to erase only unprotected characters.
ALL, to erase both protected and unprotected characters.

The number of lines to be skipped before the system does an I/O
operation. For example, if your cursor is at line 2 on a display screen
and you code SKIP =6, the system does the I/O operation on line 8.
For a printer, the SKIP operand controls the movement of forms.

The SKIP operand causes the system to display or print the contents
of the system buffer.

If you specify a value greater than or equal to the logical page size, the
system divides this value by the page size and uses the remainder in
place of the value you specify.

The line number on which the system is to do an I/O operation. Code
a value between zero and the number of the last usable line on the
page or logical screen. The line count begins at the top margin you
defined for the printer or display screen. LINE =0 positions the cursor
at the top line of the page or screen you defined; LINE =1 positions
the cursor at the second line of the page or screen.

For printers, if you code a value less than or equal to the current line
number, the system does the I/O operation at the specified line on the
next page or logical screen. For static screens, if you code a value
within the limits of the logical screen, the system does the I/O
operation on the line you specified.

If you code a value greater than the last usable line number, the system
divides this value by the logical page size and uses the remainder as the
line number on which to do the I/O operation. For example, if you
code LINE =22 and your static screen has a logical page size of 20, the
I/O operation occurs on the second line of the logical screen.

The LINE operand causes the system to print or display the contents
of the system buffer.

The number of spaces to indent before the system does an 1/O

operation. SPACE =0, the default, positions the cursor at the

beginning of the left side of the page or screen. If the value you
specify is beyond the limits of the logical screen or page, the system
indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system
begins indenting from the left margin of the page or screen. If you
specify SPACES without coding LINE or SKIP, the system begins
indenting from the last cursor position -on the line.

O

O

ERASE

31xx Display Considerations

Syntax Examples

The following considerations apply to the use of the ERASE instruction on a 31xx
terminal in block mode.

If you code an ERASE instruction in with TYPE =DATA, the system ignores the
count value. The instruction erases from the current cursor position to the end of
the screen, clearing all unprotected data.

If you code TYPE=ALL on the ERASE instruction, the erase operation ends when
the instruction erases the number of bytes in count, or when the operation reaches
the end of a logical screen (whichever happens first). The default for count, when
you code TYPE=ALL, is from the current cursor position to the end of the screen.

The system clears the entire 31xx screen if the cursor is in the home position (line
zero,space zero), and an ERASE instruction with a count of 1920 executes.

The MODE operand on the ERASE instruction is affected by the TYPE operand in
the following ways:

* MODE defaults to MODE = SCREEN if you code TYPE=DATA. The system
forces the MODE operand to SCREEN even if you code MODE=LINE or
MODE=FIELD.

* You can code the MODE =SCREEN or MODE = LINE if you code
TYPE=ALL. ‘

¢ The system forces the MODE operand to MODE=LINE if you code
MODE=FIELD with TYPE=ALL.

If you code an ERASE instruction after a READTEXT instruction and the
READTEXT buffer or TEXT statement is smaller than the number of characters
actually transmitted by the 31xx, you will need a delay between the READTEXT
and ERASE instructions. The delay is necessary because your program should not
issue an ERASE instruction until the 31xx completes sending the screen buffer.
Depending on your application, you can use either an STIMER or WAIT KEY
instruction to cause the delay.

1) Erase 4 bytes of unprotected data. End operation if protected data or the end of
the line is reached.

ERASE 4 ,MODE=FIELD,TYPE=DATA

2) Erase the entire screen of protected and unprotected data.
ERASE LINE=0,SPACES=0,MODE=SCREEN,TYPE=ALL

3) Erase all protected and unprotected data on line 1 of the screen.
ERASE LINE=1,MODE=LINE,TYPE=ALL

Chapter 2. Instruction and Statement Descriptions 2-139

ERASE

Coding Examples

2-140 SC34-0937

1) The following example is part of a program a company uses to update its
personnel files. The example shows how you can use the ERASE instruction to
erase portions of a display screen, and it begins by enqueuing the terminal from
which the program is loaded. The ENQT instruction refers to the label of an IOCB
instruction that sets up a static screen for the terminal. This example assumes that
the enqueued terminal is a 4978 or 4980.

The ERASE instruction at label El clears the entire screen, erasing both protected
and unprotected characters (TYPE=ALL). Once the program erases the screen, it
asks the operator to enter the employee’s name and address in the three fields it
displays on the screen. The WAIT key at label W1 prevents the program from
reading the data until the operator presses the enter key. When the operator presses
the enter key, the first READTEXT instruction reads in the data from the name
field, the sscond READTEXT instruction reads in the data from the street field, and
the third READTEXT instruction reads in data from the city field.

‘After the READTEXT instructions execute, the ERASE instructions at labels E2
through E4 erase all the data the operator entered on the screen. The ERASE
instruction at label E2 clears the name field and ends after erasing 71 bytes of
unprotected data. The count value overrides the MODE =SCREEN operand. The
ERASE instruction at label E3 defaults to MODE =FIELD and clears the street
field. The instruction stops erasing when it reaches the end of the line. The last
ERASE instruction at label E4 clears the city field and continues to erase to the end
of the line because MODE =LINE is coded.

[

ENQT TERMINAL
El ERASE MODE=SCREEN, TYPE=ALL,LINE=0
PRINTEXT MSG1,LINE=4,SPACES=2,PROTECT=YES
PRINTEXT MSGZ,LINE=5,SPACES=2,PROTECT=YES
PRINTEXT FIELD1,LINE=6,SPACES=2,PROTECT=YES
PRINTEXT FIELD2,LINE=7,SPACES=2,PROTECT=YES
PRINTEXT FIELD3,LINE=8,SPACES=2,PROTECT=YES
Wl WAIT KEY
READTEXT NAME,LINE=6,SPACES=11,MODE=LINE
READTEXT STREET,LINE=7,SPACES=11,MODE=LINE
READTEXT CITY,LINE=8,SPACES=11,MODE=LINE

E2 ERASE 71,MODE=SCREEN, TYPE=DATA, LINE=6,SPACES=11
E3 ERASE LINE=7,SPACES=11
E4 ERASE MODE=LINE,LINE=8,SPACES=11
DEQT
PROGSTOP
TERMINAL IOCB SCREEN=STATIC
MSG1 TEXT "ENTER EMPLOYEE'S NAME, STREET ADDRESS, AND CITY'
MSG2 TEXT "IN THE LABELED FIELDS. PRESS ENTER WHEN FINISHED'
FIELD1 TEXT ' NAME : !
FIELDZ TEXT " STREET: '
FIELD3 TEXT ' CITY

NAME TEXT LENGTH=40
STREET TEXT LENGTH=60
CITY TEXT LENGTH=30
ENDPROG
END

C

O

ERASE

2) The example that follows is similar to Example 1 but uses a 31xx terminal in
block mode. The example begins by enqueuing the 31xx terminal. The IOCB
instruction labeled TERMINAL sets up a static screen and a temporary I/O buffer
for the device. The buffer area, labeled BUFFER, is 1920 bytes long.

As shown in Example 1, the ERASE instruction at label E1 erases the entire screen
of protected and unprotected data. The program then issues a message asking the
operator to enter the employee’s name and address in three fields: NAME,
STREET, and CITY. The program creates unprotected fields for the operator’s
input with the PRINTEXT instructions at labels P1, P2, and P3.

The WAIT key at label W1 prevents the program from reading the data until the
operator presses the SEND key. When the operator presses the SEND key, the
READTEXT instruction reads the entire display screen (protected and unprotected
data) into the buffer area. A READTEXT instruction on 31xx terminals in block
mode starts reading at the beginning of the display screen if it does not issue a
prompt message. The program reads the entire screen into the buffer area and then
moves the desired data from the name, street, and city fields into three text buffers.

The ERASE instructions at label E2 through E4 erase all the employee data the
operator entered on the screen. TYPE=ALL is coded on the ERASE instructions
so that the count operand is not ignored. The ERASE instruction at label E2 clears
the name field and ends after erasing 71 bytes of unprotected and protected data.
The count value overrides the MODE =SCREEN operand. The ERASE instruction
at label E3 clears the street field and also ends after erasing 71 bytes of protected
and unprotected data. Because the instruction has TYPE=ALL, the system changes
the default MODE =FIELD to MODE =LINE. The last ERASE instruction at
label E4 clears the city field and ends after erasing 20 bytes of protected and
unprotected data.

Chapter 2. Instruction and Statement Descriptions 2-141

ERASE

2-142 SC34-0937

Note: The coding of the data fields in this example differs slightly from Example 1
to allow for the attribute byte at the beginning of each field.

- O

[]

ENQT TERMINAL

E1 ERASE MODE=SCREEN, TYPE=ALL,LINE=0
PRINTEXT MSG1,LINE=4,SPACES=1,PROTECT=YES
PRINTEXT MSG2,LINE=5,SPACES=1,PROTECT=YES
PRINTEXT FIELD1,LINE=6,SPACES=2,PROTECT=YES

P1 PRINTEXT NAME,LINE=6,SPACES=10,PROTECT=NO
PRINTEXT FIELD2,LINE=7,SPACES=2,PROTECT=YES
P2 PRINTEXT STREET,LINE=7,SPACES=10,PROTECT=NO
PRINTEXT FIELD3,LINE=8,SPACES=2,PROTECT=YES
P3 PRINTEXT CITY,LINE=8,SPACES=10,PROTECT=NO
Wl WAIT KEY

READTEXT BUFFER,TYPE=ALL,MODE=LINE,LINE=0,SPACES=0
MOVEA #1,BUFFER

MOVE NAME, (492,#1) , (40,BYTES)

MOVE STREET, (572,#1), (60 ,BYTES)

MOVE CITY, (652,#1), (7,BYTES)

E2 ERASE 71,MODE=SCREEN,TYPE=ALL,LINE=6,SPACES=11
E3 ERASE 71,LINE=7,SPACES=11,TYPE=ALL
E4 ERASE 20,MODE=SCREEN,LINE=8,SPACES=11,TYPE=ALL
DEQT
PROGSTOP
TERMINAL I0CB SCREEN=STATIC,BUFFER=BUFFER
MSG1 TEXT 'ENTER EMPLOYEE'S NAME, STREET ADDRESS, AND CITY
MSG2 TEXT 'IN THE LABELED FIELDS. PRESS ENTER WHEN FINISHED' AN
FIELDI TEXT 'NAME :' 'Y
FIELD2 TEXT 'STREET:'
FIELD3 TEXT 'CITY '

NAME TEXT LENGTH=40
STREET TEXT LENGTH=60
CITY TEXT LENGTH=30
BUFFER BUFFER 1920,BYTES
ENDPROG
END

O

®

O

EXBREAK

EXBREAK — Break Circular Chained DCBs

The EXBREAK instruction enables you to break a circular chain of DCBs. Once

Syntax Example

you initiate

the I/O with an EXIO start I/O request, you can “break” the chained

DCBs at whichever DCB you specify in the EXBREAK instruction.

When using this instruction, code operands 1 and 2 as absolute values.
Note: You cannot use the EXBREAK instruction with extended address mode
support.
Syntax:
label EXBREAK devaddr,dcb, ERROR =,P1=,P2=
Required: devaddr,dcb
Defaults: none
Indexable: none
Operand Description
devaddr The device address. Specify two hexadecimal digits.
dcb The number of the DCB in the chain of DCBs where the break will
occur. EXBREAK will turn this DCB'’s chaining flag off. The
number must be a self-defining term. It cannot be a label or variable.
ERROR = The label of the first instruction to be executed if an error occurs
during the execution of this instruction.
Px= Parameter naming operands. See “Using the Parameter Naming

Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

The following example removes the chaining flag in DCB number 2 for the EXIO
device at address X'08"'.

EXOPEN 08,EXIOADDR
EXIO PREPARE
[]

[)
EXIO0 CIRCIOCB
EXBREAK 08,02

Chapter 2. Instruction and Statement Descriptions 2-143

EXBREAK

Return Codes

Return

Code Description

19 DCB specified in the EXBREAK instruction was not in the valid
range.

20 DCB specified in EXBREAK instruction was found, but the chaining'
bit was not on.

21 Device address specified in the EXBREAK instruction has no circular
chained I/O in progress.

Special Consideration
I/O activity continues until the I/O operation detects the DCB with the chain bit off.

2-144 5C34-0937°

EXCLOSE

0 EXCLOSE — Close an EXIO Device

The EXCLOSE instruction closes, or disables, an EXIO device that you opened with
the EXOPEN instruction.

Syntax:
label EXCLOSE devaddr,ERROR =,P1 =
Required: devaddr
Defaults: none
Indexable: none
Operand Description
devaddr The device address. Specify two hexadecimal digits.
ERROR= The label of the first instruction to be executed if an error occurs
during the execution of this instruction.
Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.
Syntax Example
Close the EXIO device at the address X'08".
0 EXOPEN 08,EXIOADDR
EXIO PREPARE
L]
[
[]
EXCLOSE 08

O

Chapter 2. Instruction and Statement Descriptions 2-145

EXIO

EXIO — Execute I/0

Coding Example

2-146 SC34-0937

The EXIO instruction executes a command in an immediate device control block @
(IDCB) that you define using the IDCB statement. This instruction can execute only

in a static partition. Attempting to read or write to a dynamic partition will produce
unpredictable results.

See “EXBREAK — Break Circular Chained DCBs” on page 2-143 for information
on breaking circular chained I/O.

Syntax:

label EXIO ideb, ERROR =,P1=

Required: idch
Defaults: none
Indexable: idcb

Operand Description
idcb The label of an IDCB statement.

ERROR= The label of the first instruction to be executed if an error occurs
during the operation. This instruction will not be executed if an error
is detected at the occurrence of an interrupt caused by the command.
The condition code (ccode) returned at interrupt time is posted in an
ECB (see_ the EXOPEN instruction). @:\\

Note: If the ECB being posted has not been reset, then the system
posts the ECB provided for posting after an exception interrupt.

A “device busy” bit is set on by the EXIO instruction if a START
command is executed. It is reset after the device interrupts if the
operation is complete. If a device fails to interrupt or complete an
operation, it will be necessary to reset the “device busy” bit so that
another command may be executed. The device busy bit can be reset
by issuing an EXIO instruction to the appropriate IDCB that points to
an IDCB instruction with COMMAND =RESET.

P1= Parameter naming operand. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

In the following example, the first instruction (EXOPEN) specifies that, for the
device at address X'08", information returned after an EXIO device interrupt is to
be returned at the addresses pointed to by the 3 words following the EXIOADDR
label.

The first EXIO instruction prepares the device at address X'08' so it can interrupt
on level 1.

The second EXIO instruction resets the device so any incomplete I/O operation is 0
ended.

e

O

EXIO

The third EXIO instruction issues a START I/O command with the IDCB labeled
STARTRD. The STARTRD IDCB uses the DCB labeled WRITEDCB.
WRITEDCSB is built for an ACCA device so that a WRITE operation will be
executed with the receiving station having the capability to BREAK the
transmission. The TIMERI (pre and posttransmit delays) value is set to 33
milliseconds and the TIMER2 value (HALF-DUPLEX TURNAROUND) is set to
6.6 milliseconds. There is to be no DCB chaining and 12 bytes of data are to be
transmitted starting at the address labeled MSG.

OPEN EQU * ‘
EXOPEN 08,EXIOADDR
EXIO PREPARE

EXIO RESET

EXIO STARTRD, ERROR=I0OERROR
EXCLOSE 08

TOERROR EQU *
PRINTEXT '@IOERROR OCCURRED DURING INITIALIZATIONG'

MSG DATA X'54484953'
DATA X'20414E20'
DATA X'41534349'
*
PREPARE IDCB COMMAND=PREPARE,ADDRESS=08,LEVEL=1,IBIT=1
RESET IDCB COMMAND=RESET,ADDRESS=08
STARTRD IDCB COMMAND=START,ADDRESS=08,DCB=WRITEDCB

*

WRITEDCB DCB IOTYPE=QUTPUT,DEVMOD=03,DVPARM1=0,DVPARM2=0002, X
DVPARM3=000A, DVPARM4=0, CHAINAD=0,COUNT=12,DATADDR=MSG
*
EXIOADDR DATA A(EXIO1) POINTER TO 3-WORD INTERRUPT BLOCK
DATA A(EXECBS) ADDRESS OF ECB ADDRESSES
DATA A(EXSCSDCB) ADDRESS OF START CYCLE STEAL STATUS DCB
EXIOlL DATA F'' INTERRUPT 1D WORD
DATA F'0' LSR AT .INTERRUPT
DATA F'0Q' ADDRESS OF ECB POSTED
*
EXECBS DATA A(EXCEND) CONDITION CODE © ECB ADDR
DATA F'0' NOT USED
DATA A(EXEXECP) CONDITION CODE 2 ECB
DATA A(EXDEND) CONDITION CODE 3 ECB ADDR

*

EXSCSDCB DCB IOTYPE=INPUT,COUNT=6,DATADDR=EXSCSWDS
* START CYCLE STEAL STATUS DCB
EXSCSWDS DATA 3F'0O’

EXCEND ECB 0 CONTROLLER END ECB
EXEXECP ECB 0 EXCEPTION ECB
EXDEND ECB © DEVICE END ECB

Chapter 2. Instruction and Statement Descriptions 2-147

EXIO

Return Codes

2-148 SC34-0937

Note: Additional examples using EXIO are shown in the Customization Guide.

The following codes are issued by the EXIO, EXOPEN, and EXBREAK

instructions and are returned in word 0 of the TCB. Word 1 of the TCB contains

the supervisor instruction address.

Return
Code Condition
-1 Command accepted.
1 Device not attached.
2 Busy.
3 Busy after reset.
4 Command reject.
5 Intervention required.
6 Interface data check.
7 Controller busy.
8 Channel command not allowed.
9 No DDB found.
10 Too many DCBs chained.
11 No address specified for residual status.
12 EXIODEYV specified zero bytes for residual status.
13 Broken DCB chain (program error).
16 Device already opened.
17 Device not opened or already closed.
18 Attempt to read or write to dynamic partition failed. Use a static
partition.
19 DCB specified in the instruction was not in the valid range.
20 DCB specified in EXBREAK instruction was found, but the chaining
bit was not on.
21 Device address specified in the instruction has no circular chained I/O

in progress.

O

o

O

Interrupt Codes

EXIO

The following codes are issued when an EXIO instruction completes successfully but
the hardware performing the operation encounters an error. The hardware interrupt
condition codes are returned in bits 4 —7 of the ECB (word 0). If bit 0 is on, then

- bits 8 — 15 equal the device address.

Return
-Code Condition
0 Contréller end.
1 Program Controlled Interrupt (PCI).
2 Exception.
3 Device end.
4 Attention.
5 Attention and PCI.
6 Attention and exception.
7 Attention and device end.
8 Not used.
9 Not used.
10 SE on and too many DCBs chained.
11 SE on and no address specified for residual status.
12 SE on and EXIODEY specified no bytes for residual status.
13 Broken DCB chain.
14 ECB to be posted not reset.
15 Error in Start Cycle Steal Status (after exception).

Chapter 2. Instruction and Statement Descriptions

2-149

EXOPEN

EXOPEN — Open an EXIO Device

The EXOPEN instruction opens an EXIO device and specifies the locations where
information is to be returned after an EXIO device interrupt. EXOPEN does not
reset device status or device busy.

Syntax:

label

Required:
Defaults:

Indexable:

EXOPEN devaddr,listaddr, ERROR =,P1=,P2 =

devaddr,listaddr
none
listaddr

Operand
devaddr
listaddr

ERROR =

Px=

2-150 sC34-0937

Description
The device address. Specify 2 hexadecimal digits.
The label of a 3-word list containing the following addresses:

Word 1 The address of a 3-word block where, after an interrupt,
the system will store:

1. Interrupt ID word
2. Level status register at time of the interrupt
3. Address of ECB posted.

Note: If this address is zero, the information is not
returned.

Word 2 The address of a list of ECB addresses. The interrupt
condition code (ccode) received from the device will
determine which ECB in the list will be posted. A
ccode=0 will cause posting at the first ECB in the list, and
so on. The same ECB can be specified for more than one
condition code. The ECB specified for ccode =2
(exception) will be posted in the event of a program error.
The posting code contains:

Bit 0 of the posting code is on (1). Bits 4—7 contain the
ccode; bits 8 — 15 contain the device address.

Interrupt condition codes are shown in “Return Codes” on
page 2-148.

Word 3 The address of a DCB statement containing the parameters
of a start cycle steal status operation. This operation will
be started by the system, using this DCB, if an exception
interrupt is received from this device. If this address is
zero, the operation is not performed.

The label of the first instruction to be executed if an error is
encountered during the execution of this instruction.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

@

C

O

A

Coding Example

EXOPEN

Note: Refer to the description manual for the processor in use for more information
on interrupt ID, level status register, interrupt condition codes, and DCBs. Refer to
the description manual for the device in use for information on the causes of various
condition codes and the status information available using start cycle steal status.

The EXOPEN instruction specifies that, for the device at address X'08',
information returned after an EXIO device interrupt is to be returned at the
addresses pointed to by the 3 words following the EXIOADDR label.

OPEN EQU *
EXOPEN 08,EXIOADDR

EXCLOSE 08
L[]
L]
L]
EXIOADDR DATA A(EXIOL) POINTER TO 3-WORD INTERRUPT BLOCK
DATA A(EXECBS) ADDRESS OF ECB ADDRESSES
DATA A(EXSCSDCB) ADDRESS OF START CYCLE STEAL STATUS DCB
EXI01 DATA F'O' INTERRUPT ID WORD
DATA F'0O' LSR AT INTERRUPT
DATA F'O' ADDRESS OF ECB POSTED
*
EXECBS DATA A(EXCEND) CONDITION CODE O ECB ADDR
DATA F'O' NOT USED
DATA A(EXEXECP) CONDITION CODE 2 ECB
DATA A(EXDEND) CONDITION CODE 3 ECB ADDR

*

EXSCSDCB DCB IOTYPE=INPUT,COUNT=6 START CYCLE STEAL STATUS DCB
EXSCSWDS DATA 3F'0'

EXCEND ECB @ CONTROLLER END ECB
EXEXECP ECB 0O EXCEPTION ECB
EXDEND ECB © DEVICE END ECB

Return Codes and Interrupt Codes

For a list of return codes and interrupt condition codes, see the EXIO instruction.

Chapter 2. Instruction and Statement Descriptions 2-151

EXTRN

EXTRN — Resolve External Reference Symbols

The EXTRN and WXTRN statements identify labels that are not defined within an
object module. These labels reside in other object modules that will be link-edited to

the module containing the EXTRN or WXTRN statements. The system resolves the

reference to an EXTRN or WXTRN label when you link-edit the object module

containing the EXTRN or WXTRN statement with the module that defines the

label. The module that defines the label must contain an ENTRY statement for that

label. (See the ENTRY statement for more information.)

If the system cannot resolve a label during the link-edit, it assigns the label the same
address as the beginning of the program. You can include up to 255 EXTRN and
WXTRN symbols in your program.

WXTRN labels are resolved only by labels that are contained in modules included
by the INCLUDE statement-in the link-edit process or by labels found in modules
called by the AUTOCALL function. However, WXTRN itself does not trigger
AUTOCALL processing.

Only labels defined by EXTRN statements are used as search arguments during the
AUTOCALL processing function of SEDXLINK. Any additional external labels
found in the module found by AUTOCALL are used to resolve both EXTRN and
WXTRN labels. Refer to the description of SEDXLINK in the Operator Commands
and Utilities Reference for further information. '

The main difference between the WXTRN and EXTRN statements is that you must

resolve an EXTRN label at link-edit time, It is not necessary to resolve a WXTRN ‘
label at link-edit time. The unresolved label coded as an EXTRN receives an error @
return code from the link process. The same unresolved label coded as a WXTRN

receives a warning return code. Both the error and the warning codes indicate

unresolved labels. If you know that your application program does not need a label

resolved, code it as a WXTRN and your program should execute successfully. Your

application will not execute correctly, however, if you try to reference an unresolved

label coded in your application program as a WXTRN.

Syntax:

blank EXTRN label
blank " WXTRN label
Required: one label
Defaults: none
‘Indexable: none

Operand Description

label An external label. You can code up to 10 labels, separated by
commas, on a single EXTRN or WXTRN statement.

2-152 SC34-0937

O

O

A

Coding Example

EXTRN

The following coding example shows a use of the EXTRN statement.

The labels DATAIL, DATA2, LABELIL, and LABEL2 are defined outside this
module. The ADD instruction adds the values at DATA1 and DATAZ2 although the
values are defined outside the module where they are being added. The GOTO
instructions also can pass control to the two externally defined labels, LABELI and
LABEL2.

Each of the external labels could have been entered on a separate line, or all three of
the EXTRN labels could have been entered with a single EXTRN statement.

EXTRN DATA1,DATA2
EXTRN LABEL1
WXTRN LABEL2

ADD DATA1,DATA2 ,RESULT=INDEX
IF (INDEX,GT,6)
GOTO LABEL1

GOTO LABEL2

INDEX DATA F'o'

Chapter 2. Instruction and Statement Descriptions 2-153

FADD

FADD — Add Floating-Point Values

The floating-point add instruction (FADD) adds a floating-point value in operand 2
to. a floating-point value in eperand 1. You can use positive or negative values.

You must code FLOAT =YES on the PROGRAM statement of a program using
floating-point instructions in its initial task and on the TASK statement of every
task containing floating-point instructions.

Syntax:

label

Required:
Defaults:

Indexable:

FADD opndl,opnd2,RESULT =,PREC = ,P1=,P2=,P3=

opndl,opnd2
RESULT =opnd1,PREC =FFF
opnd1,0pnd2, RESULT

Operand
opndl

opnd2

RESULT =

PREC=

2-154 sC34-0937

Description

The label of the data area to which opnd2 is added. Opndl cannot be
a self-defining term. The system stores the result of the operation in
opndl unless you code the RESULT operand.

The value added to opndl. You can specify a self-defining term or the
label of a data area. The valid range for this operand is from —32768
to +32767.

The label of a data area in which the result is to be placed. When you
specify RESULT, the value of opndl does not change during the
operation. This operand is optional.

All possible combinations of single and extended precision are
permitted. An immediate value for opnd2 will be converted to a
single-precision value regardless of any other method of precision
specification discussed in the following paragraphs.

The PREC operand is specified as Xxyz where X, y, and z are characters
representing the precision of opndl, opnd2, and the RESULT
operands, respectively. Either 2 or 3 characters can be specified
depending on whether the RESULT operand was coded. Permissible
characters are:

F — Single-precision (32 bits)
L — Extended-precision (64 bits)
* — Default (single-precision)

The default is single precision.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

C

o

O

index Registers

Syntax Examples

FADD

You cannot use the index registers (#1 and #2) as operands in floating-point
operations because they are only 16 bits in length. You can, however, use the
software registers to specify the address of a floating-point operand.

1) The FADD instruction adds two single-precision floating-point values and stores
the result in RESULTF.

FLOAT PROGRAM START,FLOAT=YES

FADD OP1F,0P2F ,RESULT=RESULTF,PREC=FFF
[]
(]
[
OP1F DC E'1.5'
0P2F DC £'0.2'
RESULTF DC E'e’

After the FADD operation, RESULTF contains the value 1.70 .

2) The FADD instruction adds two extended-precision floating-point values and
stores the result in RESULTL.

FLOAT PROGRAM START,FLOAT=YES

FADD OP1L,0P2L,RESULT=RESULTL,PREC=LLL
[]
*
.
OP1L DC L'50000.5"
oP2L DC L'40.4'
RESULTL DC L'e

After the FADD operation, RESULTL contains the value 50040.90 .

3) The FADD instruction adds two single-precision floating-point values written in
exponent (E) notation. The result is stored in RESULTFE.

FLOAT PROGRAM ~ START,FLOAT=YES

FADD OP1FE,QP2FE,RESULT=RESULTFE,PREC=FFF

[]

L]

L]
OPLFE DC E'2.5E+1" Equals decimal 25.0
OP2FE DC E'0.5E-1" Equals decimal .05
RESULTFE DC E'Q'

After the FADD operation, RESULTFE contains the value .2505E+02 . This value
is equal to the decimal value 25.05 .

Chapter 2. Instruction and Statement Descriptions 2-155

FADD

Return Codes

Return codes are returned in the first word of the task control block (TCB) of the

program or task issuing the instruction. The label of the TCB is the label of your O
program or task (taskname). You must test for the return code immediately after

the floating-point instruction is executed or the code may be destroyed by any

instructions that follow.

Return
Code Description
-1 Successful completion.
1 Floating-point overflow.
5 Floating-point underflow.

2-156 SC34-0937

FDIVD

FDIVD — Divide Floating-Point Values

The floating-point divide instruction (FDIVD) divides a floating-point value in
operand 1 by a floating-point value in operand 2. You can use positive or negative

values.

You must code FLOAT =YES on the PROGRAM statement of a program that uses
floating-point instructions in its initial task and on the TASK statement of every
task containing floating-point instructions.

Syntax:

label

Required:
Defaults:

Indexable:

FDIVD opndl,opnd2,RESULT = ,PREC =,
P1=,P2=,P3=

opndl,opnd2
RESULT =opnd1,PREC =FFF
opnd1,0pnd2, RESULT

Operand
opndl

Q opnd2

RESULT =

PREC=

Description

The label of the data area containing the value divided by opnd2.
Opndl cannot be a self-defining term. The system stores the result of
the operation in opndl unless you code the RESULT operand.

The value by which opndl is divided. You can specify a self-defining
term or the label of a data area. The valid range for this operand is
from —32768 to +32767.

The label of a data area in which the result is to be placed. When you
code RESULT, the value of opndl does not change during the
operation.

All possible combinations of single and extended precision are
permitted. An immediate value for opnd2 will be converted to a
single-precision value regardless of any other method of precision
specification discussed in the following paragraphs.

The PREC operand is specified as xyz where X, y, and z are characters
representing the precision of opndl, opnd2, and the RESULT
operands, respectively. Either 2 or 3 characters can be specified
depending on whether the RESULT operand was coded. Permissible
characters are:

F — Single-precision (32 bits)
L — Extended-precision (64 bits)
* — Default (single-precision)

The default is single precision.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-157

FDIVD

Index Registers

Syntax Examples

2-158 SC34-0937

You cannot use the index registers (#1 and #2) as operands in floating-point
operations because they are only 16 bits in length. You can, however, use the O
software registers to specify the address of a floating-point operand.

1) The FDIVD instruction divides two single-precision floating-point values and
stores the result in RESULTF.

FLOAT PROGRAM START,FLOAT=YES

[]
L]
L
FDIVD OP1F,0P2F ,RESULT=RESULTF,PREC=FFF
[]
[)

OP1F DC E'l.5'
0P2F Dec E'0.2'
RESULTF DC E'O'

After the FDIVD operation, RESULTF contains the value 7.50 .

2) The FDIVD instruction divides two extended-precision ﬂoating-point values and
stores the result in RESULTL.

FLOAT PROGRAM START,FLOAT=YES

L]
FDIVD 0P1L,0P2L,RESULT=RESULTL ,PREC=LLL @
(]
L]
(]
OP1L DC L'50000.5'
oP2L DC L'40.4'
RESULTL DC L'e!

After the FDIVD operation, RESULTL contains the value 1237.64 .

3) The FDIVD instruction divides two single-precision floating-point values written
in exponent (E) notation. The result is stored in RESULTFE.

FLOAT PROGRAM START,FLOAT=YES

L]
]
[]
FDIVD OP1FE,OP2FE,RESULT=RESULTFE,PREC=FFF
[
[]
[)

OP1FE DC E'2.5E+1" Equals decimal 25.0
OP2FE DC E'0.5E-1" Equals decimal .05
RESULTFE DC E'Q'

After the FDIVD operation, RESULTFE contains the value .5000E+03 . This
value is equal to the decimal value 500 . 0

Return Codes

O

O

FDIVD

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname). You must test for the return code immediately after

the floating-point instruction is executed or the code may be destroyed by any
instructions that follow.

Return

Code Description

-1 Successful completion.

1 Floating point overflow.

3 Floating point divide check (divide by 0).
5 Floating point underflow.

Chapter 2. Instruction and Statement Descriptions 2-159

FIND

FIND — Locate a Character

Syntax Examples

2-160 SC34-0937

The FIND instruction searches a character string for the first occurrence of a

specific character (byte).

Syntax
label FIND character,string,length,where,
notfound, DIR =,P1=,P2=,P3=P4=,P5=
Required: character, string, length, where, notfound
Defaults: DIR =FORWARD
Indexable: string, length, and where
Operand Description
character The character that is the object (target) of the search. You can specify
a text character or a hexadecimal value.
string The label of the string to be searched. The search will begin at the
address of the label.
length The number of bytes to be searched. You can code a positive integer
or the label of a data area containing a positive integer.
where The label of a data area where the address of the target character is to
be stored if it is found. If the target character is not found, this data '
area remains unchanged. WJ
notfound The label of the instruction to be executed if the target character is not
found.
DIR = FORWARD (the default), to search from left to right.
REVERSE, to search from right to left.
Px= Parameter naming operands. See “Using the Parameter Naming

Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

1) The FIND instruction searches the first 20 bytes of MSG1 for the character 'S$’.
If it finds a $, it stores the address of the character in the data area labeled
POINTER. If the instruction does not find a $, it passes control to the instruction
at label NOTFOUND. The direction of search is from left to right.

FIND C'$',MSG1,20,POINTER,NOTFOUND

2) The FIND instruction searches for the string X'05' beginning at the address
contained in index register 1. The search continues for the length value stored in the
data area labeled LSTR. If the instruction finds the X'05' string, it stores the
address of the string in the data area labeled POINTER. If the instruction does not
find the string, it passes control to the instruction at label NOGOOD. The direction
of the search is left to right.

FIND X'e5',(0,#1),LSTR,POINTER,NOGOOD

O

O

Coding Example

FIND

To determine if a hyphen has been included in a 40-byte parts inventory number, the
FIND instruction could be used as follows:

GETPART# EQU *
READTEXT PARTNUM,'ENTER REQUESTED PART NUMBER', X
SKIP=1
*
FINDASH EQU *
FIND C'-',PARTNUM,40,POINTER,NOTVALID
MOVEA #1,PARTNUM GET PARTNUM ADDRESS

SUBTRACT POINTER,#1,RESULT=LENGTH FIND LENGTH OF PREFIX
IF (LENGTH,LE,1),G0TO,BADPREFX IF FEWER THAN 2, REJECT IT

IF (LENGTH,LE,4),GOTO,GETCOST IF FEWER THAN 5, IT'S OK
*
BADPREFX EQU * ELSE REJECT IT
PRINTEXT PARTNUM,SKIP=1
PRINTEXT ' IS INVALID (PREFIX NOT OF ALLOWABLE SIZE)'
GOTO GETPART# RETRY
*
NOTVALID EQU *
PRINTEXT PARTNUM,SKIP=1
PRINTEXT ' IS INVALID (MISSING HYPHEN) - REENTER'

GOTO GETPART# RETRY
*
GETCOST EQU *

L]

[

[]
PARTNUM TEXT LENGTH=40 TEXT BUFFER FOR PART #
POINTER DATA F'o' POINTER TO ADDR OF CHAR
LENGTH DATA F'o LENGTH OF PART # PREFIX

If the part number entered was 1213-9234, and the label PARTNUM was at address

X'2040°, the instruction would place a result of X'2044' in the data area labeled
POINTER. The data area labeled LENGTH would contain a value of 4, and the
program would branch to the label GETCOST.

Chapter 2. Instruction and Statement Descriptions 2-161

FINDNOT

FINDNOT — Locate the First Different Character

Syntax Examples

2-162

SC34-0937

The FINDNOT instruction searches a character string for the first occurrence of a
character (byte) that is different than the character you specify.

Syntax:
Iabel FINDNOT character,string,length,where,
notfound,DIR =,P1=,P2=,P3=,P4=P5=
Required: character, string, length, where, notfound
Defaults: DIR =FORWARD
Indexable: string, length, and where

Operand Description

character FINDNOT searches for a character that is different than the one you

specify for this operand. You can specify a text character or a
hexadecimal value.

string The label of the string to be searched. The search will begin at the
address of the label.

length The number of bytes to be searched. You can code a positive integer

or the label of a data area containing a positive integer.

where The label of a data .area where the address of the first different
character is to be stored if it is found. If a different character is not
found, this data area remains unchanged.

notfound The label of the instruction to be executed if a different character is
not found.
DIR= FORWARD (the default), to search from left to right.

REVERSE, to search from right to left.

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)” on page 1-10 for a detailed description of how to
code these operands.

1) The FINDNOT instruction searches for the first nonblank character, starting at
label INPUT. The search continues for 80 bytes. If a nonblank character is found,

the character’s address is stored in the data area labeled CPOINTER. If no
characters are found during the 80-byte search, the FINDNOT instruction passes

control to the instruction at label ALLBLANK. The direction of the search is from

left to right.
FINDNOT C' ',INPUT,80,CPOINTER,ALLBLANK

O

O

Coding Example

FINDNOT

2) This instruction searches for the first bit string other than X'40'. The search
starts at label CARD +79 and continues for 80 bytes. If a bit string other than
X'40' 1s found, the address of the bit string is stored in the data area labeled

LASTCHAR. If no bit string other than X'40' is found during the search, the
FINDNOT instruction passes control to the instruction at label ALLBLANK. The
direction of search is from right to left.

FINDNOT ~ X'40',CARD+79,80,LASTCHAR,ALLBLANK,DIR=REVERSE

To reduce fixed-length, 80-byte records to variable-length records, the FINDNOT
instruction could be used as follows:
L]

[]

NEXTCARD EQU *
ADD CARDNUM, 1
[]
*
[
FINDLAST EQU *
FINDNOT X'40',CARD+79,80,POINTER, BLANKCRD, X
DIR=REVERSE
*
GOTCHAR EQU *
MOVEA #1,CARD GET ADDRESS CARD BUFFER
SUBTRACT POINTER,#1, X
RESULT=LENGTH GET NOMINAL LENGTH
ADD LENGTH, 1 BUMP TO TRUE LENGTH
MOVE (0,#2) ,LENGTH STORE LENGTH OF DATA
ADD #2,2 BUMP BUFFER POINTER
MOVE (0,#2) ,CARD, (1,BYTES), X
P3=LENGTH STORE CARD DATA
ADD #2 ,LENGTH BUMP BUFFER BY DATA SIZE
GOTO NEXTCARD GET ANOTHER CARD
*
BLANKCRD EQU *
PRINTEXT ' CARD # ' PRINT MESSAGE ON
PRINTNUM CARDNUM LISTING INDICATING THAT
* THE CARD WAS BLANK
PRINTEXT ' IS REJECTED AS BLANK'
ADD BLANKS, 1 INCR. BLANK CARD COUNT
GOTO NEXTCARD GET ANOTHER CARD
*
CARDNUM DATA Flo CARDS READ COUNTER
POINTER DATA F'o POINTER TO ADDR OF CHAR
CARD DATA cLso' ! STORAGE BUFFER
BLANKS DATA F'o BLANK CARD COUNTER

Chapter 2. Instruction and Statement Descriptions 2-163

FINDNOT

2-164 sC34-0937

If the data on the card occupied the first 15 character positions and the next
available buffer location (indexed by register #2) was X'5C00', POINTER would
return as X'SCOE'. LENGTH would compute as X'000F' (X'000E' + X'0001').
Locations X'5C00' — X'5C01' would contain X"000F' and addresses X'5C02'
through X'SC10' would receive the data. Register #2 would then be set to X'5011"
and another card would be searched.

U

FIRSTQ

@ FIRSTQ — Acquire the First Queue Entry in a Chain

The FIRSTQ instruction acquires the first (oldest) entry in a queue. You define a
queue with the DEFINEQ statement. A queue entry can contain data or the address
of a data buffer.

When you acquire the oldest entry with the FIRSTQ instruction, the second oldest
entry becomes the first or oldest entry in the queue. After you acquire the contents
of the oldest entry, the system adds the entry to the free chain of the queue.

Syntax:
label FIRSTQ gname,loc,EMPTY =,P1=,P2=
Required: gqname,loc
Defaults: none
Indexable: gname,loc
Operand Description
qname The name of the queue from which the entry is to be fetched. The
queue name is the label of the DEFINEQ statement that creates the
queue.
loc The label of a word of storage where the entry is placed. You can use

0 EMPTY =

Px=

Coding Example

the index registers, #1 and #2.

The first instruction of the routine to be called if a “queue empty”
condition is detected during the execution of this instruction. If you
do not specify this operand, control returns to the next instruction
after the FIRSTQ.

A return code of —1 in the first word of the task control block
indicates that the operation completed successfully. A return code of
+1 indicates that the queue is empty.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

See the example of queuing instructions in the example following the NEXTQ

instruction.

O

Chapter 2. Instruction and Statement Descriptions 2-165

FIRSTQ

Return Codes

2-166 sC34-:0937

The return codes are returned in the first word of the task control block (TCB) of
the program or task issuing the instruction. The label of the TCB is the label of

your program -or task (taskname).

Return
Code

Description

-1

Successful completion.

1

Queue is empty. .

C

FMULT

FMULT — Multiply Floating-Point Values

C) The floating-point multiply instruction (FMULT) multiplies a floating-point value in
operand | by a floating-point value in operand 2. You can use positive or negative

values.

You must code FLOAT =YES on the PROGRAM statement of a program that uses
floating-point instructions in its initial task and on the TASK statement of every
task containing floating-point instructions.

Syntax:

label

Required:
Defaults:

Indexable:

FMULT opndl,opnd2,RESULT = ,PREC=,
P1=,P2=,P3=

opnd1,opnd2
RESULT =opnd1,PREC =FFF
opnd1l,0pnd2, RESULT

Operand
opnd1

opnd2
‘ ;,‘
RESULT =

PREC=

O

Description

The label of the data area containing the value multiplied by opnd?2.
Opndl cannot be a self-defining term. The system stores the result of
the operation in opndl unless you code the RESULT operand.

The value by which opndl is multiplied. You can specify a
self-defining term or the label of a data area. The valid range for this
operand is from —32768 and +32767.

The label of a data area in which the result is placed. When you
specify RESULT, the value of opndl does not change during the
operation.

All possible combinations of single and extended precision are
permitted. An immediate value for opnd2 will be converted to a
single-precision value regardless of any other method of precision
specification discussed below.

The PREC operand is specified as xyz, where x, y, and z are characters
representing the precision of opndl, opnd2, and the RESULT
operands, respectively. Either 2 or 3 characters must be specified
depending on whether the RESULT operand was coded. Permissible
characters are:

F — Single-precision (32 bits)
L — Extended-precision (64 bits)
* — Default (single-precision)

The default is single-precision.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-167

FMULT

Index Registers
You cannot use the index registers (#1 and #2) as operands in floating-point
operations because they are only 16 bits in length. You can, however, use the 0
software registers to specify the address of a floating-point operand.

Syntax Examples
1) The FMULT instruction multiplies two single-precision floating-point values and
stores the result in RESULTF.

FLOAT PROGRAM START,FLOAT=YES

FMULT OP1F,0P2F ,RESULT=RESULTF,PREC=FFF

OP1F DC E'1.5'
OP2F DC E'0.2'
RESULTF DC E'e!

After the FMULT operation, RESULTF contains the value .30.

2) The FMULT instruction multiplies two extended-precision floating-point values
and stores the result in RESULTL.

FLOAT PROGRAM START,FLOAT=YES

L] :
FMULT OP1L,0P2L,RESULT=RESULTL,PREC=LLL @
L]
L]
L]
OP1L DC L'50000.5'
opzL DC L'40.4'
RESULTL DC L'o!

After the FMULT operation, RESULTL contains the value 2020020.20.

3) The FMULT instruction multiplies two single-precision floating-point values
written in exponent (E) notation. The result is stored in RESULTFE.

FLOAT PROGRAM START,FLOAT=YES
FMULT OP1FE,OP2FE,RESULT=RESULTFE,PREC=FFF

OPIFE DC £'2.
OP2FE DC E'0.
RESULTFE DC £'0

E+1* Equals decimal 25.0
E-1' Equals decimal .05

After the FMULT operation, RESULTFE contains the value .1250E+01. This
value 1s equal to the decimal value 1.250. 0

2-168 SC34-0937

FMULT

Return Codes
Return codes are returned in the first word of the task control block (TCB) of the
0 program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname). You must test for the return code immediately after
the floating-point instruction is executed or the code may be destroyed by
subsequent instructions.

Return .

Code Description

-1 Successful-completion.
1 Floating-point overflow.
5 Floating-point underflow.

O

Chapter 2. Instruction and Statement Descriptions 2-169

FORMAT

FORMAT — Format Data for Display or Storage

2-170 SC34-0937

The FORMAT statement specifies the type of conversion to be performed when data O
is transferred from storage to a text buffer by a PUTEDIT instruction, or from a
text buffer to storage by a GETEDIT instruction.

The FORMAT statement must be contained in the assembly in which it is referred
to and cannot be placed within a sequence of executable instructions.

Note: The FORMAT statement can be continued onlmultiple lines, but each line
(except the last) must be coded through column 71 and must have a continuation
symbol in column 72. Commas cannot be used to continue a line before column 71.

Syntax:
label FORMAT (list),gen
Required: (list)
Defaults: gen=BOTH
Indexable: none
Operand Description
list The format you want the data to be in after it is converted.
The valid options are:
C
Item Type Definition '
1 Integer numeric
F Floating-point numeric
E Floating-point numeric E notation
H Literal alphanumeric data, enclosed in quotes
X Blanks
A Alphanumeric data.
gen GET, if this FORMAT statement is for the exclusive use of GETEDIT

instruction. ‘

PUT, if this format statement is for the exclusive use of PUTEDIT
instructions.

BOTH, if this format statement can be used with GETEDIT and
PUTEDIT instructions. BOTH, the default, requires more storage
than either GET or PUT.

C

O

FORMAT

The PUTEDIT instruction retrieves each variable in the list, converts it according to
the respective item specification in the FORMAT statement, and loads it into the
text buffer specified. Spaces (blanks), line control characters (@), and self-defining
terms can be inserted.

The GETEDIT instruction moves data from the text buffer, converts it as specified
in the FORMAT statement, and stores it at specified addresses. Characters in the
input buffer may be skipped.

The slash (/) in a FORMAT statement associated with a GETEDIT instruction acts
as a delimiter, performing the same function as a comma. .

Successive items in the buffer transfer list are converted and moved according to
successive specifications in the FORMAT statement until all items in the list are
transferred. If there are more items in the list than there are specifications in the
FORMAT statement, control transfers to the beginning of the FORMAT statement
and the same specifications are used again until the list is exhausted. The entire
transfer is treated as a single record.

No check is made to see that the specifications in a FORMAT statement correspond
in mode with the list items in the GETEDIT or PUTEDIT instructions. It is your
responsibility to ensure that integer variables are associated with I-type format
specification and real variables with F-type or E-type format specifications. You
must also ensure that ample storage is available for transfer of data in a PUTEDIT
operation.

Conversion of Numeric Data

The following specifications, or conversion codes, are available for the conversion of
numeric data:

Item Type Form Definition
I Iw Integer numeric
F Fw.d Floating-point numeric
E Ew.d Floating-point numeric E notation
where:
w is an unsigned integer constant specifying the total field length of the

data. This specification may be greater than that required for the
actual digits to provide spacing between numbers; however, the
maximum width allowed is 40 for I or F specifications.

d is an unsigned integer constant specifying the number of decimal places
to the right of the decimal point. The allowable range is 0 to w—1 for
F-type specifications and 0 to w—6 for E-type specifications.

Note: The decimal point between the w and d portions of the specification is
required.

The following discussion of conversion codes deals with loading a text buffer, using
PUTEDIT, in preparation for printing a line. The concepts, however, apply to all
permissible text buffer operations.

Chapter 2. Instruction and Statement Descriptions 2-171

FORMAT

2-172 SC34-0937

Integer Numeric Conversion: General form is Iw.

The specification Iw loads a text buffer with an EBCDIC character string
representing a number in integer form; “w” print positions are reserved for the
number. The number is right-justified. If the number to be loaded is greater than
w— 1 positions and the number is negative, an error condition will occur. A print
position must be reserved for the sign if negative values are possible. Positive values
do not require a position for the sign. If the number has fewer than “w” digits, the
leftmost print positions are filled with blanks. If the quantity is negative, the
position preceding the leftmost digit contains a minus sign.

The following examples show how each quantity on the left is converted, according
to the specification “I3”:

Internal Value Value in the Buffer
721 721
—721 Kk k
—12 -12
8114 *EE
0 0
-5 =5
9 9

Note that all error fields are stored and printed as asterisks.
Floating-Point Numeric Conversion: General form is Fw.d.

For F-type conversion, “w” is the total field length and “d” is the number of places
to the right of the decimal point. For output, the total field length must include
positions for a sign, if any, and a decimal point. The sign, if negative, is also
loaded. For output, “w” should be at least equal to d+2.

If insufficient positions are reserved by “d,” the number is rounded upwards. If
excessive positions are reserved by “d,” zeros are filled in from the right for the
insignificant digits.

If the integer portion of the number has fewer than w—d —1 digits, the leftmost
print positions are filled with blanks. If the number is negative, the position
preceding the leftmost digit contains a minus sign.

O

FORMAT

The following examples show how quantities are converted according to the
specification F5.2:

Internal Value Value in the Buffer
12.17 12.17
-2 —0.20
7.3542 b7.35
-1 —1.00
9.03 b9.03
187.64 Hokkkx
Notes:

1. A “b” represents a blank character stored in the text buffer.

2. Internal values are shown as their equivalent decimal value, although actually
stored in floating-point binary notation requiring two or four words of storage.

3. All error fields are stored and printed as asterisks.

4, Numbers for F-conversion input need not have the decimal point appearing in
the input field (in the text buffer). If no decimal point appears, space need not
be allocated for it. The decimal point is supplied when the number is converted
to an internal equivalent; the position of the decimal point is determined by the

O§ format specification. However, if the position of the decimal point within the
field differs from the position in the format specification, the position in the field
overrides the format specification. For example, for a specification of F5.2, the
following conversions would be performed:

Text Buffer Characters Converted Internal Value
12.17 12.17
b1217 12.17
121.7 121.7

Floating-Point Number Conversion (E-notation): General form is Ew.d.

For E-type conversion, “w” is the total field length and “d” is the number of places
to the right of the decimal point. For output, the total field length must include
enough positions for a sign, a decimal point, and space for the E-notation (4 digits).
For output, “w” should be at least equal to d+6. For input, “d” is used for the
default decimal position if no decimal is found in the input character string.

If insufficient positions are reserved by “d,” the digits to the right of “d” digits are

truncated. If excessive positions are reserved by “d,” zeros are filled in from the
right for the insignificant digits.

Chapter 2. Instruction and Statement Descriptions 2-173

FORMAT

Alphanumeric Data Specification

2-174 sSC34-0937

The following examples show how each value on the left is converted according to
the specification E10.4:

Internal Value Value in the Buffer
12.17 | b.1217Eb02
—41.16 —.4116Eb02
-2 ~ — 2000Eb00
7.3542 b.7354Eb01
—1. —.1000Eb01
9.03 b.9030Eb01
.00187 b.1870E—02
Notes:

1. A “b” represents a blank character stored in the text buffer.

2. Internal values are shown in their equivalent decimal value, although actually
stored in floating-point binary requiring 2 or 4 words of storage.

3. All error fields are stored and printed as asterisks.

4. Numbers for E-conversion need not have the decimal point appearing in the
input field (in the text buffer). If no decimal point appears, you need not
allocate space forit. The decimal point is supplied when the number is
converted to an internal equivalent; the position of the decimal point is
determined by the format specification. However, if the position of the decimal
point within the field differs from the position in the format specification, the
position in the field overrides the format specification. For example, for a
specification of E7.2, the following conversions would be performed:

Text Buffer Characters

Converted Internal Value

12.17E0 12.17
b1217E1 121.7
121 7TE—-2 1.217

The following specifications are available for alphanumeric data:

Item Type Form Definition

H 'data’ Literal alphanumeric data

A A Alphanumeric data

X X Insert blanks (output) or skip input fields

FORMAT

The H-specification is used for alphanumeric data that a program does not change,
such as printed headings.

The A-specification is used for alphanumeric data in storage that a program operates
on, such as a line that is to be printed.

The X-specification is used to bypass one or more input characters or to insert
blanks (spaces) on an output line.

Literal Specification: General form is H.

The H-specification is used to create alphanumeric constants. The maximum length
for a literal is 255.

Literals must be enclosed in apostrophes. For example:
FORMAT ('INVENTORY REPORT')

The apostrophe (") and ampersand (&) characters within literal data are represented
by two successive characters. For example, the characters DO & DON'T must be
represented as:

FORMAT ('DO && DON''T')

Literal data can be used only in loading a text buffer; it is invalid in a GETEDIT
instruction. All characters between the apostrophes (including blanks) are loaded
into the buffer in the same relative position they appear in the FORMAT statement.
The lines:

FM FORMAT ('THIS IS alphanumeric DATA',3X,A6)

PUTEDIT FM,TEXT, (ALP)

cause the following record to be loaded into the buffer labeled TEXT.
THIS IS alphanumeric DATA EASY12

Literal data may also be included with variable data.

For example, the instructions:
FM FORMAT ('TOTAL OF',I2,' VALUES = ',F5.2)

PUTEDIT FM,TEXT, (TOTAL,VALUE)

cause a record such as the one in the following example to be loaded into the buffer.
TOTAL OF 5 VALUES = 35.42

Chapter 2. Tnstruction and Statement Descriptions 2-175

FORMAT

2-176 SC34-0937

Alphanumeric Specification: General form is Aw.

The specification Aw is used to transmit alphanumeric data to or from data areas in
storage. It causes the first w characters to be stored into or loaded from the area of
storage specified in the text buffer transfer list. For example, the statements:

FM FORMAT (A4)

L
L]

GETEDIT FM,TEXT, (ERROR)

cause four alphanumeric characters to be transferred from the buffer TEXT into the
variable named ERROR.

The following statements:
M FORMAT ('XY=',F9.3,A4)

PUTEDIT FM,TEXT, (A,ERROR,B,ERROR)
may produce the following line:
XY= 5976.000....XY= 6173.500....

In this example, the ellipsis (....) represents the contents of the character string field
ERROR.

The A-specification provides for storing alphanumeric data into a field in storage,
manipulating the data (if required), and loading it back to a text buffer.

The alphanumeric field can be defined using the DATA statement or the TEXT
statement. On input (GETEDIT) the alphanumeric field is set to blanks before data
conversion. The alphanumeric data is left justified in the field.

Blank Specification: General form is X.

The X-specification allows you to insert blank characters into an output buffer
record and to skip characters of an input buffer record.

When the nX specification is used with an input record, “n” characters are skipped
before the transfer of data begins. When the nX specification is used with an output
record, “n” characters are inserted before the transfer of data begins. For example,
if a buffer has four 10-position fields of integers, the statement:

FORMAT (110,10X,110,110)

could be used to avoid transferring the second field.

When the X-specification is used with an output record, “n” positions are set to

blanks, allowing for spaces on a printed line. For example, the statement:
FORMAT (F6.2,5X,F6.2,5X,F6.2,5X)

can be used to set up a line for printing as follows:

-23.45bbbbbb17.32bbbbbb24 .67bbbbb

where b represents a blank.

O

C

FORMAT

Blank Lines in Output Records

You can insert blank lines between output records by using consecutive slashes (/).
The slash causes a line-control character to be inserted into the buffer. The number
of blank lines inserted between output records depends on the number and
placement of the slashes within the statement.

If there are “n” consecutive slashes at the beginning or end of a format specification,
“n” blank lines are inserted between output records. For “n” consecutive slashes
elsewhere in the format specification, the number of blank lines inserted is n— 1.

For example, the statements:

PUTEDIT FM,TEXT,(X,(Y,D),Z)

FM FORMAT ('SAMPLE OUTPUT',/,15////19,14//)

X DC F'-1234"
Y DC D'111222333"
JA DC F'22'

TEXT TEXT LENGTH=50

result in the following output:

SAMPLE OUTPUT
-1234

(3 blank lines)
111222333 22

(2 blank lines)

Repetitive Specification

You can repeat a specification, within the limits of the text buffer size, by coding an
integer from 1 to 255 before the specification.

For example,
(2F10.4)

is equivalent to:
(F10.4,F10.4)

and uses less storage.

You can use a parenthetical expression with a multiplier (repeat constant) to repeat
data fields according to the format specifications contained within the parentheses.
All item types are permitted within the parenthetical expression except another
parenthetical expression. You can specify multiple parenthetical expressions within
the same FORMAT statement. For example, the statement:

FORMAT (2(F10.6,F5.2),14,3(15))
is equivalent to:
FORMAT (F10.6,F5.2,F10.6,F5.2,14,15,15,15)

Chapter 2. Instruction and Statement Descriptions 2-177

FORMAT

Storage Considerations

Coding Example

2-178 SC34-0937

In general, the fewer items in the FORMAT list, the less storage required. An item
is defined as a single conversion specification, a literal data string, one or more
grouped record delimiters, or a parenthetical multiplier. For example, the following
format statements all have three items:

FORMAT (15,15,16)

FORMAT (15,315,'ITEM 3')
FORMAT (3(15),315)
FORMAT (15/,15)

FORMAT (15,///,15)
FORMAT (/,/,/)

FORMAT (2(/),/)

FORMAT (2(1X),2X)

FORMAT (15/,2X)

The following example begins by executing a PRINTEXT instruction that prints a
message requesting the model year and serial numbers for the automobile of interest.
The first GETEDIT actually reads the two requested numbers into a TEXT
statement labeled TEXT1.

The GETEDIT instruction searches the TEXT1 data and converts the first entry to a
single-precision variable called LIST1. The second entry is converted to a
double-precision variable called LIST2. Both LIST1 and LIST2 are then converted
back to EBCDIC and displayed on the printer by the first PUTEDIT instruction
using the PEIFMT FORMAT statement. The PUTEDIT instruction and
FORMAT statement determine the layout of the data as it is displayed.

The GETEDIT instruction following label GE2 takes the data already entered into
TEXT]1 with the preceding READTEXT and again converts it into the two binary
variables called LIST1 (single-precision) and LIST2 (double-precision). Because
ACTION=STG, a READTEXT must be issued before executing the GETEDIT.

The PUTEDIT instruction at label PE2 converts the two variables back to EBCDIC
and places them into the TEXT?2 statement as formatted by the PE2FMT FORMAT
statement. Again, the keyword ACTION =STG prevents the data from being
printed until the following PRINTEXT instruction is executed.

C

FORMAT

GE1 EQU *
PRINTEXT '@ENTER MODEL YEAR AND SERIAL NUMBER®'
GETEDIT GELFMT,TEXT1,(LISTL,(LIST2,D)), X
ACTION=10,ERROR=ERR1
*
PE1 EQU *
ENQT $SYSPRTR :
PUTEDIT PELFMT,TEXT2,(LISTL,(LIST2,D)), X
ACTION=10
*
GE2 EQU *
READTEXT TEXT1,'@ENTER YOUR DEPT. AND SYSTEM ID NUMBERE'
*
GETEDIT ~GE2FMT,TEXT1, (LISTL, (LIST2,D)), X
ACTION=ST6, ERROR=ERRL
*
PE2 EQU *
PUTEDIT ~PE2FMT,TEXT2, (LISTL, (LIST2,D)),ACTION=STG
ENQT $SYSPRTR
PRINTEXT TEXT2
DEQT
[
L]
L]
ERRlL EQU *
PRINTEXT '@GETEDIT GE1 HAS FAILEDE'
GOTO ERROROUT
*
ERR2 EQU *
PRINTEXT '@GETEDIT GE2 HAS FAILEDE'
GOTO ERROROUT
*
GELFMT FORMAT (I4,1X,I8)
PELFMT FORMAT ('MDL. YR. = ',I4,6X,:'SER. NO. = ',I8)
GE2FMT FORMAT (I3,1X,16)
PE2FMT FORMAT ('DEPT. = ',I3,4X,'SYST. ID. = ',I6)
LISTL DATA F'O'
LIST2 DATA D'0
TEXTL TEXT LENGTH=13
TEXT2 TEXT LENGTH=42
ERROROUT EQU *

Chapter 2. Instruction and Statement Descriptions 2-179

FPCONV

FPCONV — Convert to or from Floating Point

The FPCONY instruction converts integer values to or from floating-point numbers
by using the optional floating-point hardware feature.

You must code FLOAT =YES on the PROGRAM statement of programs whose
primary task uses floating-point instructions and on the TASK statement of every
task containing floating-point instructions.

Syntax:

label

Required:
Defaults:

Indexable:

FPCONV opndl,opnd2, COUNT =,PREC =,

P1=,P2=,P3=
opnd1,opnd2
COUNT =1,PREC=FS
opnd1,opnd2

Operand
opndl
opnd2

COUNT =

PREC =xy

Px=

2-180 5C34-0937

Description
The label of the data area to receive the result of the conversion.

The label of the data area that contains the value to be converted.
You can also code an integer number between — 32768 and +32767.

The number of values in opnd2 to be converted and stored at locations
beginning at opndl. If opnd2 is immediate data, it is converted and
placed in the storage area defined by opndl in the number of
consecutive locations defined by this operand.

Defines the precision of opndl and opnd2 and the type of data (integer
or floating-point) you coded for these operands. Specify the precision
and data type in the form PREC=xy, where “x” is the precision and
data type for opndl and “y” is the precision and data type for opnd2.
Opnd! and opnd2 cannot be the same data type.

The valid precisions and data types for “x” and “y” are as follow:

S - Single-precision integer (1 word)

D - Double-precision integer (2 words)

F - Single-precision floating-point value

L - Extended-precision floating-point value
* - Use default (FS)

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

O

Syntax Examples

Coding Example

FPCONV

1) Convert five double-precision integers beginning at label B to extended-precision
floating-point values. Store the result beginning at label A.

FPCONV A,B,COUNT=5,PREC=LD

2) Convert an extended-precision floating-point value at label L4 to a
double-precision integer. Store the result beginning at label X.

FPCONV X,L4,PREC=DL

3) Convert a single-precision integer value at label C to a single-precision
floating-point value. Store the result beginning at the indexed location (6,#1).

FPCONV (6,#1),C

4) Convert an extended-precision floating-point value at the indexed location of
(X,#1) to a double-precision integer. Store the result beginning at the indexed
location (Y,#2).

FPCONV (X,#1),(Y,#2),PREC=DL

The example estimates the number of hours required for a plane, carrying a specified
load weight, to travel to a destination a given number of miles from its departure
point.

The FPCONYV instruction at label FP1 converts a single-precision integer to
single-precision floating-point value. This instruction uses the default precision.

The FPCONY instruction, at label FP2, converts a double-precision integer to a
single-precision floating-point value.

At label FP3, the FPCONY instruction converts two single-precision integers to
single-precision floating-point values. The values to be converted are indexed and
the parameter naming operand (P1=) allows the result field locations to be assigned
dynamically.

The FPCONV instruction at label FP4 converts a single-precision floating-point
value to a single-precision integer.

Chapter 2. Instruction and Statement Descriptions 2~-181

FPCONYV

2-182 SC34-0937

CONVERT PROGRAM

START EQU
GETVALUE
FP1 FPCONV
GETVALUE
FP2 FPCONV
READTEXT
CALL
MOVEA
MOVEA
L]
]
[]
FP3 FPCONV
CALL
[]
[]
L
FP4 FPCONV
PRINTEXT
PRINTNUM
[
[)
[]
BUFR DATA
TYPE TEXT
MILES DATA

FREIGHT DATA
ELAPSED DATA
*

FMILES DATA
FFREIGHT DATA
FFUELUSE DATA
FSPEED DATA
FELAPSED DATA

L]
L]

[)

START, FLOAT=YES

*

MILES, '@ENTER MILES TO DESTINATION'

FMILES,MILES

FREIGHT, '@POUNDS OF CARGO ?',FORMAT=(10,0,1),TYPE=D
FFREIGHT , FREIGHT , PREC=FD

TYPE, '@ENTER PLANE TYPE'

FINDTYPE, TYPE

#1,BUFR

RESULT, FFUELUSE

*,(32,#1),COUNT=2,P1=RESULT
CALCTIME

ELAPSED, FELAPSED, PREC=SF
‘@NUMBER OF HOURS OF ELAPSED FLIGHT TIME '
ELAPSED

256H'0'
LENGTH=4
F'e'
D'o'
F'o’

O

FREESTG

FREESTG — Free Mapped and Unmapped Storage Areas

Syntax Examples

The FREESTG instruction releases the mapped and unmapped storage areas you
obtained with the GETSTG instruction.

Note: “Mapped storage” is the physical storage you defined on the PARTS operand
of the SYSPARTS statement during system generation. “Unmapped storage” is any
physical storage that you did not include on the PARTS operand of the SYSPARTS
statement.

Syntax:
label FREESTG name,TYPE =,ERROR=,P1=
Required: name
Defaults: TYPE=ALL
Indexable: none

Operand Description

name The label of a STORBLK statement. The STORBLK statement
defines the mapped and unmapped storage areas that your program
uses.

TYPE = ALL, the default, to release the mapped storage area and all the
unmapped storage areas your program acquired with GETSTG
instruction.

UNMAP, to release only the unmapped storage areas your program
acquired with the GETSTG instruction.

ERROR= The label of the first instruction of the routine to be called if an error
occurs during the execution of this instruction.

P1= Parameter naming operand. See “Using the Parameter Naming
‘Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

1) Release the mapped storage area and all unmapped storage areas defined by the
STORBLK statement labeled BLOCK.

FREESTG BLOCK

2) Release only the unmapped storage areas defined by the STORBLK statement
labeled BLOCK.

FREESTG BLOCK, TYPE=UNMAP

3) Release the mapped storage area and all unmapped storage areas defined by the
STORBLK statement labeled BLOCK. The label of the first instruction of the error
routine is QUT.

FREESTG BLOCK, TYPE=ALL, ERROR=0UT

Chapter 2. Instruction and Statement Descriptions 2-183

FREESTG

Coding Example
See the SWAP instruction for an example that uses the FREESTG instruction.

Return Codes [:

The return codes are returned in the first word of the task control block (TCB) of
the program or task issuing the instruction. The label of the TCB is the label of
your program or task (taskname).

Return
Code Description
-1 Successful completion.
1 No storage entires exist in storage control block.
2 Error occurred while freeing the mapped storage area.
100 No unmapped storage support in the system.

2-184 sc34-0937

o

FSUB

FSUB — Subtract Floating-Point Values

The floating-point subtract instruction (FSUB) subtracts a floating-point value in
operand 2 from a floating-point value in operand 1. You can use positive or
negative values.

You must code FLOAT =YES on the PROGRAM statement of a program that uses
floating-point instructions in its initial task and on the TASK statement of every
task containing floating-point instructions.

Syntax:

label

Required:
Defaults:
Indexable:

FSUB opndl,opnd2, RESULT =,PREC =,
P1=,P2=,P3=

opnd1,opnd2
RESULT = opnd1,PREC =FFF
opnd1,0pnd2, RESULT

Operand
opndl

opnd2

RESULT =

PREC=

Description

The label of the data area from which opnd?2 is subtracted. Opnd!l
cannot be a self-defining term. The system stores the result of the
operation in opndl unless you code the RESULT operand.

The value subtracted from opndl. You can specify a self-defining
term or the label of a data area. The valid range for this operand is
from —32768 to +32767.

The label of a data area in which the result is to be placed. When you
specify RESULT, the value of opndi does not change during the
operation.

All possible combinations of single and extended precision are
permitted. An immediate value for opnd2 will be converted to a
single-precision value regardless of any other method of precision
specification discussed below.

The PREC operand is specified as xyz, where X, y, and z are characters
representing the precision of opndl, opnd2, and the RESULT
operands, respectively. Either 2 or 3 characters must be specified
depending on whether the RESULT operand was coded. Permissible
characters are:

F Single-precision (32 bits)
L Extended-precision (64 bits)
* Default (single-precision)

The default is single-precision.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

Chapter 2. Instruction and Statement Descriptions 2-185

FSUB

Index Registers

Syntax Examples

2-186 SC34-0937

You cannot use the index registers (#1 and #2) as operands in floating-point
operations because they are only 16 bits in length. You can, however, use the
software registers to specify the address of a floating-point operand.

1) The FSUB instruction subtracts two single-precision floating-point values and
stores the result in RESULTF.

FLOAT PROGRAM START,FLOAT=YES

FSUB OP1F,0P2F,RESULT=RESULTF,PREC=FFF
[]
[]
[]
OP1F DC E'l.5'
0P2F DC E'0.2'
RESULTF DC E'0

After the FSUB operation, RESULTF contains the value 1.30.

2) The FSUB instruction subtracts two extended-precision floating-point values and
stores the result in RESULTL.

FLOAT PROGRAM START,FLOAT=YES

FSuB OP1L,0P2L,RESULT=RESULTL,PREC=LLL
L]
®
[]
OP1L DC L'50000.5'
oP2L DC L'40.4'
RESULTL DC L'o!

After the FSUB operation, RESULTL contains the value 49960.10.

3) The FSUB instruction subtracts two single-precision floating-point values written
in exponent (E) notation. The result is stored in RESULTFE.

FLOAT PROGRAM START,FLOAT=YES

FSUB OP1FE,OP2FE,RESULT=RESULTFE,PREC=FFF

L]

[]

[J
OP1FE DC E'2.5E+1" Equals decimal 25.0
OP2FE DC E'0.5E-1" Equals decimal .05
RESULTFE DC E'0'

After the FSUB operation, RESULTFE contains the value .2495E +02. This value
is equal to the decimal value 24.95. '

O

C

FSUB

Return Codes
: Return codes are returned in the first word of the task control block (TCB) of the
0 program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname). You must test for the return code immediately after
the floating-point instruction is executed or the code may be destroyed by
subsequent instructions.

Return

Code Description

-1 Successful complétion.
1 Floating-point overflow.
5 Floating-point underflow.

Chapter 2. Instruction and Statement Descriptions 2-187

GETEDIT

GETEDIT — Collect and Store Data

The GETEDIT instruction acquires data from a terminal or storage area, converts @
the data according to a FORMAT list, and stores the data in your program at the
locations specified by the data list.

When you use the GETEDIT instruction in your program, you must link-edit your
program using the “autocall” option of SEDXLINK. Refer to the Language
Programming Guide for information on how to link-edit programs.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a GETEDIT instruction causes a terminal I/O operation to
occur. If the return code is not a — 1, the address of this instruction will be placed
in the second word of the task control block- (taskname +2). The terminal I/O
return codes are described at the end of the PRINTEXT and READTEXT
instructions in this manual and also in Messages and Codes. See Figure 2-6 on
page 2-193 for an illustration of how the GETEDIT instruction works.

Note: Any references to 31xx terminals means 3101, 3151, 3161, 3163, and 3164
terminals, unless otherwise noted.

Syntax:
label GETEDIT format,text,(list),(format list),
ERROR = ,ACTION = ,SCAN =,SKIP =,LINE=,
SPACES =,PROTECT = §
Required: text, (list), and either format (ﬂ
or (format list)
Defaults: ACTION =10,SCAN =FIXED,PROTECT =NO
Indexable: none

Operand Description

format The label of a FORMAT statement or the label to be attached to the
format list optionally included in this statement. This statement or list
will be used to control the conversion of the data. This operand is
required if the program is compiled with SEDXASM.

text The label of a TEXT statement defining a storage area for character
data. If data is moved from a terminal, this area stores the data as an
EBCDIC character string before it is converted and moved into the
variables.

list A description of the variables or locations that will contain the desired
data. The list will have one of the following forms:

((variable,count,type),...)
or
(variable,...)
or
((variable,count),...)

or 3
((variable,type),...) G

- 2-188 SC34-0937

format list

ERROR =

ACTION=

SCAN=

SKIP =

GETEDIT

where:

variable is the label of a variable or group of variables to be
included.

count is the number of variables that are to be converted.

type is we type of variable to be converted. The type can be:

S Single-precision integer (default)
D Double-precision integer

F Single-precision floating-point

L Extended-precision floating-point

The type defaults to S for integer format data and to F
for floating-point format data.

Refer to the FORMAT statement description for coding FORMAT
operands that are to be used by GETEDIT instructions. This operand
is not allowed if the program is compiled with SEDXASM. If you
wish to refer to this format statement from another GETEDIT

instruction, then both the format and format list operands must be
coded.

The label of the routine to receive control if the system detects an error
during the GETEDIT operation. The system returns a return code to
the task even if you do not code this operand.

Errors that might cause the system to call the error routine are:
¢ Use of an incorrect format list
¢ Field omitted (attempt is made to convert the rest)
¢ Not enough data in input text buffer to satisfy the data list
¢ Conversion error (value too large).

IO (the default), causes a READTEXT instruction to be executed
before conversion.

STG, causes the conversion of a text buffer that has been previously
obtained. The data must be in EBCDIC.

FIXED, data elements in the input text buffer must be in the format
described in the format statement. That is, if a field width is specified
as 6, then there are 6 EBCDIC characters used for the conversion.
Leading and trailing blanks are ignored.

FREE, data elements in the input text buffer must be separated by
delimiters:. blank, comma, or slash. If A-format-type items are
included, they must be enclosed in apostrophes; for example, 'xyz'.
This allows you to include any alphanumeric characters except the
apostrophe.

The number of lines to be skipped before the system does an I/O
operation. For example, if your cursor is at line 2 on a display screen
and you code SKIP =6, the system does the I/O operation on line 8.
For a printer, the SKIP operand controls the movement of forms.

The SKIP operand causes the system to display or print the contents
of the system buffer.

Chapter 2. Instruction and Statement Descriptions 2-189

GETEDIT

If you specify a value greater than or equal to the logical page size, the
system divides this value by the page size and uses the remainder in
place of the value you specify. For roll screens, the logical page size
equals the screen’s bottom margin minus the number of history lines
and the screen’s top margin.

LINE= The line number on which the system is to do an I/O operation. Code
a value between zero and the number of the last usable line on the
page or logical screen. The line count begins at the top margin you
defined for the printer or display screen. LINE=0 positions the cursor
at the top line of the page or screen you defined; LINE=1 positions
the cursor at the second line of the page or screen. For roll screens,
line 0 equals the screen’s top margin plus the number of history lines.

For printers and roll screens, if you code a value less than or equal to
the current line number, the system does the I/O operation at the
specified line on the next page or logical screen. For static screens, if
you code a value within the limits of the logical screen, the system does
the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system
divides this value by the logical page size and uses the remainder as the
line number on which to do the I/O operation. For example, if you
code LINE =22 and your roll screen has a logical page size of 20, the
I/O operation occurs on the second line of the logical screen.

The LINE operand causes the system to print or display the contents
of the system buffer.

SPACES= The number of spaces to indent before the system does an I/O
operation. SPACES =0, the default, positions the cursor at the
beginning of the left side of the page or screen. If the value you
specify is beyond the limits of the logical screen or page, the system
indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system
begins indenting from the left margin of the page or screen. If you
specify SPACES without coding LINE or SKIP, the system begins
indenting from the last cursor position on the line.

PROTECT = Code PROTECT =YES if the input text is #ot to be printed on the
terminal. This operand is effective only for devices that require the
processor to echo input data for printing.

The PROTECT operand does not apply to the 31xx in block mode.

31xx Display Considerations

2-190 sC34-0937

When using a 31xx in block mode, the attribute byte associated with the prompt
message and the input data will depend on the current TERMCTRL SET,ATTR in
effect. The default is SET,ATTR=HIGH (high intensity) for the attribute byte.

O

U

O

Syntax Examples

Coding Example

GETEDIT

1) The following GETEDIT instruction converts the first four characters to an
integer and stores them at A. It converts the next six characters to a single-precision
floating-point value and stores them at B. The next two characters are bypassed,
and the last 10 characters are converted to an extended-precision floating-point value
(because of the E-type specification) and are stored at C.

GETEDIT FM,TEXT1,(A,(B,F),(C,L))

L]
[
L]
TEXT1 TEXT LENGTH=24
FM FORMAT (14,F6.2,2X,E10.4)

2) This GETEDIT instruction converts four integer values contained in the text
buffer XSCREEN to a single hexadecimal word. The GETEDIT instruction places
the results in the location SCREEN.

GETEDIT FM1,XSCREEN, ((SCREEN,S)),ACTION=STG

L]

[)

[]
FM1 FORMAT (14),GET
XSCREEN TEXT LENGTH=4

The example begins by executing a PRINTEXT instruction that issues a message

requesting the model year and serial numbers for the automobile of interest. The
first GETEDIT actually reads the two requested numbers with a TEXT statement
labeled TEXTT1.

The GETEDIT instruction searches the TEXT1 data and converts the first entry to a
single-precision variable called LIST1. The second entry is converted to a
double-precision variable called LIST2. The first PUTEDIT instruction, using the
FORMAT statement labeled PEIFMT, converts LIST1 and LIST2 back to

EBCDIC and displays these values on the printer. The PUTEDIT instruction and
FORMAT statement determine the layout of the data as it is displayed.

The GETEDIT instruction after label GE2 takes the data already entered into
TEXT1 with the preceding READTEXT and converts it into the two binary
variables called LIST1 (single-precision) and LIST2 (double-precision). Because
ACTION =STG, a READTEXT must be issued before executing the GETEDIT.

The PUTEDIT instruction at label PE2 converts the two variables back to EBCDIC
and places them into the TEXT2 statement as formatted by the PE2FMT FORMAT
statement. Again, the keyword ACTION =STG prevents the data from being
printed until the following PRINTEXT instruction is executed.

Chapter 2. Instruction and Statement Descriptions 2-191

GETEDIT

2-192 5C34-0937

GE1

PE1

GE2

PE2

ERR1

ERR2

GELFMT
PELIFMT
GE2FMT
PE2FMT
LIST1
LIST2
TEXT1
TEXT2

EQU
PRINTEXT
GETEDIT

EQU
ENQT
PUTEDIT
DEQT

EQU
READTEXT

GETEDIT

*

'GENTER MODEL YEAR AND SERIAL NUMBER®@'

GE1FMT,TEXT1,(LIST1,(LIST2,D)), X O
ACTION=I0,ERROR=ERR1

*

$SYSPRTR
PELFMT,TEXT2, (LIST1,(LIST2,D)),ACTION=I0

*

TEXT1, '@ENTER YOUR DEPT. AND SYSTEM ID NUMBERe'

GE2FMT,TEXT1, (LISTL,(LIST2,D)), X

ACTION=STG, ERROR=ERR1

EQU
PUTEDIT

ENQT
PRINTEXT
DEQT

[]

[]

[
EQU
PRINTEXT
GOTO

EQU
PRINTEXT
GOTO
FORMAT
FORMAT
FORMAT
FORMAT
DATA
DATA
TEXT
TEXT

ERROROUT EQU

*

PE2FMT, TEXT2, (LIST1,(LIST2,D)),ACTION=STG

$SYSPRTR
TEXT2

*

'"@GETEDIT GE1 HAS FAILED®'
ERROROUT

*

'@GETEDIT GE2 HAS FAILED@'

ERROROUT

(14,1X,18)

('MDL. YR. = ',I4,6X,'SER. NO. = ',I8)
(13,1X,16)

('DEPT. = ',13,4X,'SYST. ID. = ',I6)
Fro

D'0

LENGTH=13

LENGTH=42

*

®

GETEDIT

e

e
.

l

IREADTEXT TEXT1, '@ENTER YOUR DEPT. AND SYSTEM (D NUMBER@’[

il

ITEXT1 TEXT LENGTH=13]

oD
06
F6

length

count
TEXT1

F6
40
F2

F3
F3

[GETEDIT GE2FMT,TEXT1,(LIST1,(LIST2,D)),ACTION=STG,ERROR=ERRT|

4 LIST1 0042
LIST2 0000

40

O0O0E9
40
40

GE2FMT FORMAT (13,1X,16)—

A0937004

Figure

2-6. GETEDIT Overview

2-193

Chapter 2. Instruction and Statement Descriptions

GETEDIT

Return Codes
Return codes are returned in the first word of the task control block (TCB) of the

program or task issuing the instruction. The label of the TCB is the label of your O
program or task (taskname).

For several errors, the system returns the return code with the highest value.

Return

Code Description

-1 Successful completion.
1 Invalid data encountered during conversion.
2 Field omitted.
3 Conversion error.

U

2-194 SC34-0937

GETSTG

0 GETSTG — Obtain Mapped and Unmapped Storage Areas

The GETSTG instruction obtains mapped and unmapped storage areas.

The SWAP instruction allows your program to use the unmapped storage areas you
acquire with the GETSTG instruction. You release mapped and unmapped storage
areas with the FREESTG instruction.

Note: “Mapped storage” is the physical storage you defined on the PARTS operand
of the SYSPARTS statement during system generation. “Unmapped storage” is any
physical storage that you did not include on the PARTS operand of the SYSPARTS
statement. This instruction obtains unmapped storage areas only from the partition
in which the program is executing.

Syntax:
label GETSTG name,TYPE=,ERROR=,P1=
Required: name
Defaults: TYPE=ALL
Indexable: none
Operand Description
name The label of a STORBLK statement. The STORBLK statement
‘ specifies the size of the mapped storage area and the number of
i unmapped storage areas the GETSTG instruction can obtain.
TYPE= MAP, to acquire only the mapped storage area you defined on the
STORBLK statement.
NEXT, to acquire one of the unmapped storage areas you defined on
the STORBLK statement. The instruction also obtains the mapped
storage area if it has not acquired it already.
ALL, the default, to acquire all the unmapped storage areas you
defined on the STORBLK statement. The instruction also obtains the
mapped storage area if it has not acquired it already.
ERROR= The label of the first instruction of the routine to be called if an error
occurs during the execution of this instruction.
Pl1= Parameter naming operand. See “Using the Parameter Naming

Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

Chapter 2. Instruction and Statement Descriptions 2-195

GETSTG

Syntax Examples

Coding Example

Return Codes

2-196 SC34-0937

1) -Obtain all the unmapped storage areas and the mapped storage area defined on
the STORBLK statement labeled BLOCK.

GETSTG BLOCK,TYPE=ALL

2) Obtain only the mapped storage area defined on the STORBLK statement
labeled BLOCK.

GETSTG ~ BLOCK,TYPE=MAP

3) Obtain one of the unmapped storage areas defined on the STORBLK labeled
BLOCK. The label of the first instruction of the error routine for this instruction is
OUT.

GETSTG BLOCK, TYPE=NEXT,ERROR=0UT

See the SWAP instruction for an example that uses the GETSTG instruction.

Return codes are returned in the first word of the task control block (TCB) of the
program or task issuing the instruction. The label of the TCB is the label of your
program or task (taskname).

Return
Code Description
-1 Successful completion.

1 A mapped storagé entry already exists in the storage control block.

2 Mapped storage area is not available in the system.

99 No unmapped storage table exists.

100 No unmapped storage support in system.

3 Unmapped storage is not available or only partial storage was
obtained. Check the second word of the TCB. A zero shows that no
unmapped storage is available. A nonzero value equals the number of
unmapped storage areas obtained by the instruction.

4 All unmapped storage entries in the storage control block are in use.

@ ,

O

GETTIME

GETTIME — Get Date and Time

The GETTIME instruction places the contents of the system'’s time-of-day clock in a
3-word table that you define in your program. The 3 words contain the hours,
minutes, and seconds, in that order. You also can specify that the date be stored in
an additional 3 words, resulting in a 6-word table containing hours, minutes,
seconds, month, day, and year. Use this instruction when you want to store the time
of day and date as you collect data.

The maximum time on the clock is 23.59.59. At midnight, the supervisor resets the
time-of-day clock to 0 and increases the date by 1. The supervisor resets the month
and year as necessary.

Syntax:
label GETTIME loc,DATE=,P1=
Required: loc
Defaults: DATE=NO
Indexable: loc

Operand Description

loc The label of a 3-word table where the system stores the time of day as
hours, minutes, and seconds; or the label of a 6-word table where the
time of day and the date are stored as hours, minutes, seconds, month,
day, and year. The time and date are in hexadecimal format.

DATE = YES, to obtain the date as well as the time of day. If the task control
block code word, $STCBCO, contains a — 2, the date is in the form:
day, month, year. If $TCBCO contains a — 1, the date is in the form:
month, day, year. The format of the date was specified on the
SYSPARMS statement during system generation.

NO, to obtain only the hours, minutes, and seconds, in that order.

Px= Parameter naming operands. See “Using the Parameter Naming

Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-197

GETTIME

Syntax Example

6-word table beginning at the label TAB.
GETTIME TAB,DATE=YES

This GETTIME instruction obtains the time and date and places the result in a @

The following example shows the possible contents of TAB (in hexadecimal format)
after the GETEDIT operation:

TAB 000D (hours)
0018 (minutes)
0005 (seconds)
0006 (month)
001B (day)
0053 (year)

The time and date shown is 13:24:05 on June 27, 1983.

Coding Example
The following program demonstrates a method of acquiring the system date and
time then displaying both on a terminal according to the coded FORMAT

statement.
DTERTN PROGRAM START
START EQU *

ENQT $SYSLOG

GETTIME TAB,DATE=YES
PUTEDIT FORMAT,TEXT,((TAB,6,S)),LINE=8,ERROR=ERR

GOTO DONE @
* —_—

ERR EQU *
IF DTERTN+2,NE,-1
MOVE CODE,DTERTN+2
PRINTEXT '@RETURN CODE:
GOTO DONE
ENDIF
*
DONE EQU *
DEQT
PROGSTOP
CODE TEXT LENGTH=2
TAB DATA 6F'0"
TEXT TEXT LENGTH=36
FORMAT ~ FORMAT ('TIME ',I2,':',I2,':',12,10X, X
'DATE ',12,'/',12,'/',12)
ENDPROG
END

2-198 SC34-0937

O

GETVALUE

GETVALUE — Read a Value Entered at a Terminal

The GETVALUE instruction reads one or more integer values, or a single
floating-point value, entered at a terminal. The values can be decimal or
hexadecimal, and of single or double precision. The system treats invalid characters
as delimiters.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a GETVALUE instruction causes a terminal I/O operation to
occur. If the return code is not a —1, the address of this instruction will be placed
in the second word of the task control block (taskname+2). The terminal I/O
return codes are described at the end of the PRINTEXT and READTEXT
instructions in this manual and also in Messages and Codes.

Note: Any reference to 31xx terminals means 3101, 3151, 3161, 3163 and 3164
terminals, unless otherwise noted.

Syntax:
label GETVALUE loc,pmsg,count, MODE = ,PROMPT =,
" FORMAT =, TYPE =, ,SKIP =,LINE = ,SPACES =,
COMP =,PARMS = (parml,...,parm8),
MSGID =,P1=,P2=P3=
Required: loc
Defaults: MODE =DEC,PROMPT =UNCOND,count = 1 (word)
FORMAT = (6,0,), TYPE =S,SKIP =0
LINE = current line,SPACES =0,MSGID =NO
Indexable: pmsg,SKIP,LINE,SPACES

Operand Description

loc The label of the variable to receive the input value. If your program
requests more than one value, the system stores the successive values in
successive words or doublewords depending on the precision you
specify in the count operand.

pmsg The prompt message. Code the label of a TEXT statement or an
explicit text message enclosed in single quotes. The GETVALUE
instruction issues this prompt according to the parameter you code for
the PROMPT keyword.

To retrieve a prompt message from a data set or module containing
formatted program messages, code the number of the-message you
want displayed or printed. You must code a positive integer or a label
preceded by a plus sign (+) that is equated to a positive integer. If
you retrieve a prompt message from storage, you must also code the
COMP= operand. See Appendix E, “Creating, Storing, and
Retrieving Program Messages” on page E-1 for more information.

Chapter 2. Instruction and Statement Descriptions 2-199

GETVALUE

2-200 SC34-0937

count

MODE =

The number of integer values to be entered. If the FORMAT

parameter is used, the count is forced to 1 regardless of the value

specified. The precision specification can be substituted for the count ‘
specification. If the precision is substituted for the count, the count " .”
defaults to 1. The precision can accompany the count in the form of a

sublist: (count,precision). The default value for precision is word, or

the keyword WORD can be specified. If double-precision is desired,

code the precision keyword DWORD. Only the WORD and

DWORD precisions can be specified.

With conditional prompting, the system issues the prompt message if
you do not enter advance input. Once a prompt message has been
issued, however, you may enter one or more values. Omitted values
leave the corresponding internal variables unchanged and are indicated
by coding two consecutive delimiters. The delimiters allowed between
values are the characters slash (/), comma (,), period (.), or blank ().
The number of values entered is stored at taskname+2 when the
instruction completes.

HEX, for hexadecimal input.
DEC, the default, for decimal input.

PROMPT = COND (conditional), to prevent the system from displaying the prompt

FORMAT =

message if you enter a value before the prompt.

UNCOND (unconditional), to have the system display the prompt
message without exception. UNCOND is the default.

The format of the value to be read in. Use the FORMAT operand
where the default is not desired. The count parameter is ignored. The
format is specified as a 3-element list (w,d,f), defined as follows: @

w A decimal value equal to the maximum field width expected from
the terminal. Count the decimal point as part of the field width.

d A decimal value equal to the number of digits to the right of an
assumed decimal point. (An actual decimal point in the input
will override this specification.) For integer variables, code this
value as zero.

f Format of the input data. Code I for integer data, F for
floating-point data (XXXX.XXX), or E for floating-point data in
E notation. See the value operand under the DATA/DC
statement for a description of E notation format.

Note: You can use the floating-point format for data even if you
do not have floating-point hardware installed in your system.
Floating-point hardware is required, however, to do
floating-point arithmetic.

The first FORMAT operand to execute generates a work area that all
subsequent FORMAT operands will use also. The generated work
area is nonreentrant in a multitasking environment, and all tasks must
use the ENQ/DEQ functions to serialize access to it.

Note: If you code the FORMAT parameter and you are entering

advanced input (PROMPT = COND) for multiple GETVALUE

statements, a blank must be used to separate the input values. No

other delimiters are valid. C})

TYPE=

SKIP =

LINE =
C

SPACES =

GETVALUE

The type of variable to receive the input. Use this operand with
FORMAT = only. The valid types are:

S Single-precision integer (1 word)

D Double-precision integer (2 words)

F Single-precision floating-point (2 words)

L Extended-precision floating-point (4 words)

The number of lines to be skipped before the system does an I/O
operation. For example, if your cursor is at line 2 on a display screen
and you code SKIP =6, the system does the I/O operation on line 8.
For a printer, the SKIP operand controls the movement of forms.

The SKIP operand causes the system to display or print the contents
of the system buffer.

If you specify a value greater than or equal to the logical page size, the
system divides this value by the page size and uses the remainder in
place of the value you specify. For roll screens, the logical page size
equals the screen’s bottom margin minus the number of history lines
and the screen’s top margin.

The line number on which the system is to do an I/O operation. Code
a value between zero and the number of the last usable line on the
page or logical screen. The line count begins at the top margin you
defined for the printer or display screen. LINE =0 positions the cursor
at the top line of the page or screen you defined; LINE =1 positions
the cursor at the second line of the page or screen. For roll screens
line 0 equals the screen’s top margin plus the number of history lines.

For printers and roll screens, if you code a value less than or equal to
the current line number, the system does the I/O operation at the
specified line on the next page or logical screen. For static screens, if
you code a value within the limits of the logical screen, the system does
the I/O operation on the line you specified.

If you code a value greater than the last usable line number, the system
divides this value by the logical page size and uses the remainder as the
line number on which to do the I/O operation. For example, if you
code LINE =22 and your roll screen has a logical page size of 20, the
I/O operation occurs on the second line of the logical screen.

The LINE operand causes the system to print or display the contents
of the system buffer.

The number of spaces to indent before the system does an I/O
operation. SPACES=0, the default, positions the cursor at the
beginning of the left side of the page or screen. If the value you
specify is beyond the limits of the logical screen or page, the system
indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system
begins indenting from the left margin of the page or screen. If you
specify SPACES without coding LINE or SKIP, the system begins
indenting from the last cursor position on the line.

Chapter 2. Instruction and Statement Descriptions 2-201

GETVALUE

COMP =

PARMS =

MSGID =

Px=

31xx Display Considerations
When using a 31xx in block mode, the attribute byte associated with any prompt
message and the input data will depend on the current TERMCTRL SET,ATTR in
effect. The default is SET,ATTR =HIGH (high intensity) for the attribute byte.
Also TERMCTRL SET,STREAM = NO should be in effect when the GETVALUE
instruction is executed for a 31xx in block mode.

Syntax Examples

2-202 SC34-0937

The label of a COMP statement. You must specify this operand if the
GETVALUE instruction is retrieving a prompt message from a data

set or module containing formatted program messages. The COMP (JJ
statement provides the location of the message. (See the COMP =
statement for more information.)

The labels of data areas containing information to be included in a
message you are retrieving from a data set or module containing
formatted program messages. You can code up to eight labels. If you
code more than one label, you must enclose the list in parentheses.

Note: To use this operand, you must have included the FULLMSG
module in your system during system generation. Refer to the

Installation and System Generation Guide for a description of this
module.

YES, if you want the message number and 4-character prefix to be
printed at the beginning of the message you are retrieving from a data
set or module containing formatted program messages. See the COMP
statement operand “idxx” for a description of the 4-character prefix.

NO (the default), to prevent the system from printing or displaying this
information at the beginning of the message.

Note: To use this operand, you must have included the FULLMSG
modaule in your system during system generation. Refer to the
Installation and System Generation Guide for a description of this
module.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to i@
code these operands.

The syntax examples for this instruction use the following data areas:
TEXT "ENTER NEXT NUMBER'

MSG
A

mrTmmo O

DC
DC
DC
DC
DC
]y
DC

FIOO
Flol
F'e'
D'0"
D'0'
E'0.0000'
L'0.000"

1) Read a single-precision integer of up to 6 decimal digits into data area A.
GETVALUE A,MSG

GETVALUE A,MSG,TYPE=S,FORMAT=(6,0,1) ‘ O

GETVALUE

2) Read 3 consecutive single-precision integers (of 6 decimal digits or fewer) into
data areas A, B, and C.

GETVALUE A,MSG, (3,WORD)

3) Read a double-precision integer of up to 10 decimal digits into doubleword data
area D.

GETVALUE D,MSG,DWORD

GETVALUE D,MSG,TYPE=D,FORMAT=(10,0,1)

4) Read 2 consecutive single-precision integers (of 6 decimal digits or fewer) into
data areas B and C.

GETVALUE B,MSG,2

5) Read 2 consecutive double-precision integers (of 10 decimal digits or fewer) into
data areas D and E.

GETVALUE D,MSG, (2,DWORD)

6) Ignore the count and read a single-precision integer of up to 4 decimal digits into
data area A.

GETVALUE A,MSG,3,TYPE=S,FORMAT=(4,0,I)
7) Read a double-precision integer of up to 6 decimal digits into doubleword data
area E.

GETVALUE E,MSG,TYPE=D,FORMAT=(6,0,I)
8) Read a single-precision floating-point (F-format) number of 7 digits, with 4 digits
to the right of an assumed decimal point, into data area F.

GETVALUE F,MSG,TYPE=F,FORMAT=(8,4,F)

9) Read an extended-precision floating-point (E-format) number of 8 digits, with 3
digits to the right of an assumed decimal point, into data area E.

GETVALUE G,MSG,TYPE=L,FORMAT=(9,3,E)

Chapter 2. Instruction and Statement Descriptions 2-203

GETVALUE

Coding Examples

2-204

SC34-0937

1) If, in the following example, the operator entered 55 23A5 68 in response to the

-prompt from the third GETVALUE, the first three of five storage locations in

DATAS3 would assume the values 0055, 23A5, and 0068, respectively. The other 2
word locations would remain unchanged (X'0000").

GETVALUE DATA,MESSAGE
GETVALUE DATAZ2,'@ENTER A: ',PROMPT=COND
GETVALUE DATA3,MSG,5,MODE=HEX

L]
[

MESSAGE TEXT "ENTER YOUR AGE'
MSG TEXT 'DATA !

DATA DATA F'o'

DATA2 DATA F'o

DATA3 DATA 5F'0!

]

2) In the following example, the GETVALUE instruction, at label G1, prints a
message then reads a value entered by an operator. Note that the message in single
quotes is printed and provides an unconditional prompt. Also, the value read uses
the following defaults: decimal, integer, 1 —6 digits, and single-precision.

The GETVALUE at G2 issues a prompt only if there is no advance input and it
reads 1 hexadecimal input value. Default values are in effect for the FORMAT and
TYPE parameters.

The GETVALUE at G3 reads a variable number of hexadecimal input values, using
the default FORMAT and TYPE parameters.

The G4 GETVALUE uses the FORMAT parameter to read a single, floating-point
value of up to 9 digits in length and then places the result in a doubleword field.
[]

Gl GETVALUE COUNT,'@ HOW MANY WORDS OF STORAGE ? '

G2 GETVALUE DATA,'@ ENTER START ADDRESS',MODE=HEX,PROMPT=COND
MOVE #1,DATA
AND #1,X'FFFE' INSURE EVEN STORAGE ADDRESS

PRINTEXT '@ CURRENT VALUE(S) NOW :'
PRINTNUM (0,#1),1,MODE=HEX,P2=COUNT
MOVE KOUNT ,COUNT
G3 GETVALUE DATA,'@ ENTER NEW VALUE(S)',1,P3=KOUNT,MODE=HEX

[]
L]
L
G4 GETVALUE FLOAT,'@ ENTER DATA',FORMAT=(9,2,F),TYPE=D
*
[

®,

GETVALUE

3) In this example, the GETVALUE instruction displays a prompt message
contained in the disk data set MSGSET on volume EDX002. Because +MSG9
equals 9, the system retrieves the ninth message in MSGSET.

SAMPLE PROGRAM START,200,DS=((MSGSET,EDX002))

L]
L]
L4 =
GETVALUE PNUMB,+MSG9Y,PROMPT=COND, COMP=MSGSTMT
[]
L]

MSGY EQU 9
PNUMB DATA F'o
MSGSTMT COMP 'SRCE"' ,DS1,TYPE=DSK

Message Return Codes

The system issues the following GETVALUE return codes when you retrieve a
prompt message from a data set or module containing formatted program messages.
The return codes are returned in the first word of the task control block (TCB) of
the program or task issuing the instruction. The label of the TCB is the label of
your program or task (taskname).

Return

Code Description

-1 Message successfully retrieved.

301—-316 Error while reading message from disk. Subtract 300 from this value
to get the actual return code. See the disk return codes following the
READ or WRITE instruction for a description of the code.

326 Message number out of range.

327 MeSsage parameter not found.

328 Instruction does not supply message parameter(s).

329 Invalid parameter position.

330 Invalid type of parameter.

331 Invalid disk message data set.

332 Disk message read error.

333 Storage resident module not found.

334 Message parameter output error.

335 Disk messages not supported (MINMSG support only).

Chapter 2. Instruction and Statement Descriptions 2-205

GIN

GIN — Enter Unscaled Cursor Coordinates

Syntax Example

2-206

SC34-0937

The GIN instruction allows you to specify unscaled cursor coordinates interactively.

The instruction rings the bell, displays cross-hairs, and waits for you to position the
cross-hairs and enter a single character. GIN then stores the coordinates of the
cross-hair cursor. It also stores the character you entered, if you request this.

Cursor coordinates are unscaled. The PLOTGIN instruction obtains coordinates
scaled by the use of a PLOTCB control block.

Syntax:
label GIN x,y,char,P1=,P2=,P3=
Required: X,y
Defaults: no character returned
Indexable: none
Operand Description
X The location where the x cursor coordinate value is to be stored.
y The location where the y cursor coordinate value is to be stored.
. char The location where the character you select is to be stored. The
character is stored in the right-hand byte. The left byte is set to zero.
If you do not code this operand, the instruction does not store the
selected character.
Px= Parameter naming operands. See “Using the Parameter Naming

Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Store the x coordinate in X and the y coordinate in Y. Store the character in the
location CHAR.

GIN

X,Y,CHAR

C

U

O

GOTO

GOTO — Go to a Specified Instruction

The GOTO instruction allows you to pass control, or “branch,” to another
instruction in the program.

The statement can:

¢ Pass control directly to the label of an instruction.

e Pass control to an address defined by a label.

¢ Pass control to one of the labels in a list based on the value of an index word.

GOTO can also be used as an operand of the IF instruction.

Syntax:
label GOTO loc,P1=
label GOTO (loc),P1=
label GOTO (locO,locl,loc2,...,Jlocn),index,P1 = P2 =
Required: loc
Defaults: none
Indexable: index
Operand Description
loc The label of the instruction to receive control. Enclose this label in

parentheses if the label points to a data area containing the address of
the next instruction to be executed. It may also be a displacement
value from index register #1 or #2.

The instruction you branch to must be on a fullword boundary.

loc0,locl,...,Jocn

index

The labels in a list of instruction labels that can receive control
depending on the value of the index word. The label at locl receives
control if the index value is equal to 1. The label at loc2 receives
control if the index value is equal to 2, and so on. The first label,
locO, is the label of the instruction that receives control if the value of
the index word is not in the range of locl —locn.

The number of instruction labels in the list plus 1 must not exceed 50.

The label of an index word containing a value that determines the
label to branch to in a list of labels.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-207

GOTO

Syntax Examples

2-208 SC34-0937

1) Branch to the label EXIT.
GOTO EXIT

2) Move the address of the ADD instruction into HOLD and branch to that
address.

MOVEA HOLD,NEXT

.
L]
L]
GOTO (HOLD)
[]
®
L]
NEXT ADD A,B
[]
[]
L]

HOLD DATA F'e

3) The branch depends on the value in INDEX. If the value in INDEX is 1, the
instruction branches to label 1. If the value in INDEX is 2, the instruction
branches to label L2. Any other value in INDEX causes the instruction to branch to
ERR.

GOTO (ERR,L1,L2),INDEX

Another example using GOTO is shown under “Syntax Examples with IF, ELSE,
and ENDIF” on page 2-215.

C

O

HASHVAL

HASHVAL — Condense a Character String

The HASHVAL instruction generates a value that is the sum of the binary values of
a specified character string. You can use this value to provide a compressed form of
character strings. Although other applications are possible, the following two uses
are most common:

* You can use the hash value as an element in a list of nearly unique 1-byte values
corresponding to a list of character strings. Your program can search this list
for a match condition using a computed hash value.

¢ You can use the hash value as an index into a table of up to 256 bytes.

Because there are far more combinations of 8-byte character strings than can be
represented in one byte, duplicate hash values can result from unique character
strings. Using a hash technique should provide help in dealing with this potential
condition. When the number of duplicate hash values exceeds approximately one
half of the total number of character strings, the hash technique begins to lose its
advantage.

The algorithm used to get the hash value is as follows:

1. The character string is padded with blanks on the right to the length specified in
the instruction; then, if required, the string is padded with zeros to make a total
of eight characters.

2. The first four bytes are added to the second four bytes to form a partial result.

3. The first two bytes of the partial result are then added to the second two bytes,
forming a second partial result.

4. The resulting two bytes are then added together forming the final result or
1-byte hash total.

Syntax:
label HASHVAL ’character string’,RANGE =,LENGTH =,
TYPE =
Required: ‘character string’
Defaults: RANGE =256,LENGTH =8, TYPE=DATA
Indexable: none

Chapter 2. Instruction and Statement Descriptions 2-209

HASHVAL

- Syntax Examples

2-210 SC34-0937

Operand

Description

character string

RANGE=

LENGTH=

TYPE=

Code the actual character string and enclose it in quotes. The
maximum length is 8 bytes (characters) unless specified as less with the
LENGTH operand. If fewer characters are coded than the default or
specified length, the string is padded to the right with blanks to fill the
field.

A value from 1 to 256 that specifies the maximum range of resulting
hash values (the modulus function). The resulting hash value is the
remainder of the 1-byte sum divided by either the range value specified
or the default value of 256.

A value from 1 to 8§ that specifies the maximum number of characters
to be used in calculating the hash value. If you specify a character
string with fewer characters than the maximum, the system pads the
character string to the right with blanks until it equals the length
specification.

EQU, assigns the resulting hash value the label you coded for the
HASHVAL instruction.

DATA (the default), does not equate the final hash value with the
instruction label.

1) Generate a hash value of X'7F"'.
HASHVAL 'EIGHTCNT'

2) Generate a hash value of X'5C".
HASHVAL 'FOUR'

3) Generate a hash value of X'5A"'. The value is not padded with blanks because
LENGTH =4.

HASHVAL 'FOUR',LENGTH=4

4) Generate a hash value of X'2A" (X'5C' modulus 50).
HASHVAL 'FOUR',RANGE=50

5) Generate a hash value of X'5C"' and assign the HASHVAL label this value
(LABEL EQU X'5C").

LABEL HASHVAL 'FOUR',TYPE=EQU

C

O

IDCB

IDCB — Create an Immediate Device Control Block

The IDCB statement creates a standard immediate device control block that specifies
a hardware operation. You must use this statement when doing EXIO processing.

Note: Refer to the description manual for the processor in use for more information

on IDCB:s.
Syntax:
label IDCB COMMAND = ,ADDRESS =,DCB =,DATA =,
MOD4=,LEVEL =,IBIT =
Required: label, COMMAND = ,ADDRESS =
Defaults: LEVEL =1LIBIT=0N
Indexable: not applicable

Operand Description

COMMAND =
The specific I/O operation. Code one of the keywords from the
following list. In the following keyword list the resulting hexadecimal
command code is shown in parentheses. An x represents a character
that is filled in by the value specified by MOD4.

READ Transfer a byte or word from the device. (0x)
READ1 Same as READ plus function bit set. (1x)
READID Read the device-identification word. (20)
RSTATUS Read the device status. (2x)
WRITE Transfer a byte or word to the device. (4x)
WRITEI1 Same as WRITE plus function bit set. (5x)
PREPARE Prepare the device for interrupts or initialization. (60)
CONTROL Initiate a control action to the device. (6x)
RESET Initiate a device reset operation. (6F)
START Initiate a cycle-steal operation. (7x)
SCSS Initiate a start-cycle-steal-status operation. (7F)

ADDRESS = The device address as two hexadecimal digits.

DCB= The label of a DCB statement. See your hardware description
manual to determine whether you need to code this operand for the
operation you want to perform.

DATA= The data word to be transferred to the device by a WRITE,
WRITEIL, or CONTROL command. Code the actual data as four
hexadecimal digits.

MOD4 = A 4-bit device-dependent value that modifies the command code

specified by the COMMAND operand. Code one hexadecimal digit.

Chapter 2. Instruction and Statement Descriptions 2-211

IDCB

Syntax Examples

2-212 SC34-0937

LEVEL= The hardware interrupt level to be assigned to the device by a
PREPARE command.
IBIT = ON (the default), to allow the device to present interrupts.

OFF, if the device should not present interrupts.

1) Transfer data to the device and set the function bit.
1DCBL IDCB COMMAND=WRITE1,ADDRESS=00,DATA=0041

2) Prepare the device for interrupts on hardware level 3.
PREPIDCB IDCB COMMAND=PREPARE,ADDRESS=E4,LEVEL=3,IBIT=0N

3) Start a cycle steal operation for the device.
WR1IDCB IDCB COMMAND=START,ADDRESS=E1,DCB=WR1DCB

O

IF

IF — Test If a Condition Is True or False

The IF instruction determines whether a conditional statement is true or false and,
based on its decision, determines the next instruction to execute.

A conditional statement can compare two data items or ask whether a bit is “on”
(set to 1) or “off” (set to 0). The instruction syntax shows the general format of
conditional statements used with the IF instruction.

You can compare data in two ways: arithmetically or logically. When you compare
data arithmetically, the system interprets each number as a positive or negative
value. The system, for example, interprets X'OFFF' as 4095. It interprets
X'FFFF', however, as a —1. Although X'FFFF' seems to be a larger hexadecimal
number than X'0FFF', the system recognizes the former as a negative number and
the latter as a positive number. X‘FFFF’ is a negative number to the system
because the leftmost bit is “on.”

When you compare data logically, the system compares the data areas byte by byte.
The system interprets X'FFFF' not as a —1 but as a string of 2 bytes with all bits

13 b3

on.

With EBCDIC or ASCII character data, the system makes a logical comparison of
the characters byte by byte. In a logical comparison of a capital ‘A’ (X'C1"') with a
capital “H” (X'C8’), the system recognizes the capital A to be “less than” the capital
H. By comparing character data logically, you can use the IF instruction to sort
items alphabetically (“a” is less than “c” which is greater than “b”).

The syntax box shows the IF instruction with a single conditional statement. You
can specify several conditional statements on a single IF instruction, however, by
using the AND and OR keywords. These keywords allow you to join conditional
statements. “Rules for Evaluating Statement Strings Using AND and OR” on

page 2-108 provides additional information regarding use of the IF instruction. The
keywords are déscribed in the operands list and examples using the keywords are
shown following the instruction description.

Syntax:
label 1F (datal,condition,data2,width)
label IF (datal,condition,data2,width), GOTO,loc
Required: one conditional statement
Defaults: width is WORD for arithmetic comparison
Indexable: datal and data2 in each statement

Chapter 2. Instruction and Statement Descriptions 2-213

2-214 SC34-0937

Operand
datal

condition

data2

width

GOTO

loc

Description

The label of a data item to be compared to data2 or the label of the
data area that contains the bit to be tested.

An operator that indicates the relationship or condition to be tested.
The valid operators for the IF instruction are as follows:

Arithmetic and Logical Testing a Bit
Comparisons Setting
EQ - Equal to ON or OFF

NE — Not equal 10

GT - Greater than

LT -— Less than

GE — Greater than or equal to
LE — Less than or equal to

The label of a data item to be compared to datal or the label of the
data area that contains the bit in datal to be tested. For an arithmetic
comparison, specify immediate data or the label of a data area.
Immediate data can be an integer from 0 to 32767, or a hexadecimal
value from 0 to 65535 (X'FFFF'). For a logical comparison, specify
the label of a data area. For a bit comparison, specify immediate
data.

When you check a bit setting, remember that bit 0 is the leftmost bit of

- the data area.

Specify an integer number of bytes in the range of 1 to 65535 for a
logical comparison (no default). For a bit comparison, specify an
immediate data area in words. This form specifies that both DATAI
and DATA2? are storage locations; an immediate operand is not
permitted.

For an arithmetic comparison, you can specify one of the following:

BYTE Byte (8 bits)

WORD Word (16 bits), the default

DWORD Doubleword (32 bits)

FLOAT Single-precision floating-point (32 bits)
DFLOAT Extended-precision floating-point (64 bits)

If the statement is true and GOTO is coded, control passes to the
instruction at the address specified in the loc operand. If the statement
is false, execution proceeds sequentially.

If GOTO is not coded, THEN is assumed and the next instruction is
determined by the IF-ELSE-ENDIF structure. If the condition is true,
execution proceeds sequentially. If the condition is false, execution
continues with the next ELSE statement (if one is coded) or ENDIF
statement.

Used with GOTO to specify the address of the instruction to be
executed if the statement is true. The instruction must be on a
fullword boundary.

IF

AND Enables you to join conditional statements. Code the operand between
the conditional statements you want to join. The AND operand
indicates that each of the conditional statements must be true before a
program will execute. See the syntax examples for this instruction.

You can join several pairs of conditional statements by using several
AND operands. You also can use the AND and OR operands within
the same IF instruction.

OR Enables you to join conditional statements. Code the operand between
the conditional statements you want to join. The OR operand
indicates that one of the conditional statements must be true before a
program will execute.

You can join several pairs of conditional statements by using several
OR operands. You also can use the OR and AND operands within
the same IF instruction.

Notes:

1. See “Rules for Evaluating Statement Strings Using AND and OR” on
page 2-108 for information on use of the OR and AND operands to connect
statements logically within the IF instruction.

2. Code the word THEN after the conditional statement to make the program
easier to read. See Syntax Example 2.

Syntax Examples with IF, ELSE, and ENDIF

1) If A equals B, pass control to the instruction at label ERROR. This is an
arithmetic comparison.

IF (A,EQ,B),GOTO,ERROR

2) If the first 4 bytes of A are greater than or equal to the first four bytes of B, pass
control to the instruction at label RETRY. This is a logical comparison.

IF (A,GE,B,4),GOTO,RETRY

3) If Cis not equal to D, execute the code that follows the IF instruction. This is
an arithmetic comparison.
IF (C,NE,D) ,THEN
*

L]

ENDIF

4) If register #1 is equal to 1, execute the code that follows the IF instruction; if #1
is not equal to 1, execute the code following the ELSE statement. This is an
arithmetic comparison.

IF (#1,EQ,1)

Chapter 2. Instruction and Statement Descriptions 2-215

IF

5) If the first three bytes of A are less than the first three bytes of B, execute the
code following the IF instruction. If the first three bytes of A are greater than or

" equal to the first three bytes of B, execute the code following the ELSE statement. .A
This is a logical comparison.)

IF (A,LT,B,3)

ENDIF

6) Test whether A is equal to B and whether C is equal to D. If both conditional
statements are true, execute the code that follows the IF instruction; if either one or
both of the conditional statements are false, execute the code following the ELSE
statement. This is an arithmetic comparison.

IF (A,EQ,B),AND, (C,EQ,D)

ENDIF

7) If A equals B and X is greater than Y, instructions x1, x2, and x3 will execute. If @
A equals B, but X is not greater than Y, instructions x1 and x3 will execute. If A
does not equal B, only instruction x4 executes.

IF (A,EQ,B)
x1
IF (X,GT,Y)
X2
ENDIF
x3
ELSE
x4
ENDIF

8) If the third bit starting at label A is a 1, execute the code following the IF
instruction. If the third bit starting at label A is a 0, execute the code following the
ELSE statement.

IF (A,0N,2)

2-216 SC34-0937

IF

9) If the bit in A at the position defined by BIT1 is a 0, execute the code following
the IF instruction. If the bit is not a 0, set the value of the bit to 0.

IF (A,OFF,BIT1)
L]
®
ELSE
SETBIT A,BIT1,0FF
ENDIF

Sample Conditional Statements

Arithmetic Comparisons

Comments

(A,EQ,0)

A equal to 0, WORD

(A,EQ,X'0022')

A equal to hexadecimal 22, WORD

(A,NE,B)

A not equal to B, WORD

(DATA1,LT,DATA2,WORD)

DATAI less than DATA2, WORD

(CHAR,EQ,C'A',BYTE)

| CHAR equal to 'A', BYTE

(XVAL,GT,Y,DWORD) XVAL greater than Y, DWORD
(A#1),EQ,1) (A#1) equal to 1, WORD
((A1,#1),LE,(B1,#2)) (AL#1) LE (B1,#2), WORD
(#1,EQ,1) #1 equal to 1, WORD
#1,GT.#2) #1 greater than #2, WORD
((C;#2),EQ,CHAR,BYTE) (C,#2) equal to CHAR, BYTE

(F1,GT,0,FLOAT)

F1 greater than 0, FLOAT

(L2,LT,L3,DFLOAT)

L2 less than L3, DOUBLEWORD
FLOATING-POINT

((BUF,#1),LE,1,FLOAT)

(BUF,#1) less than or equal 1, FLOAT

D EQU 2

D has a word value of X'0002"*

IF (B,EQ,+D,BYTE)

B equal to X'00' (leftmost byte of D)

Logical Comparisons

Comments

(A,EQ,B.B)

A equal to B, 8 bytes

((BUF,#1),NE,DATA,3)

(BUF,#1) not equal to DATA, 3 bytes

(A.EQ,B,2)

A equal to B, 2 bytes

(DATAI1,LT,DATAZ2,3)

DATAI less than DATA2, 3 bytes

(BUF,#1),GE,DATA 4) (BUF,#1) greater than or equal to DATA, 4 bytes
Testing a Bit Comments

(A,ON,B)‘ The bit at position B in data area A is a 1
(A,OFF,C'BB") The bit at the hexadecimal displacement represented

by the characters 'BB' in data area A is a 0. Actual

displacement is X'C2C2'.

(DATA1,0ON,X'413C")

Bit at displacement X'413C"' in DATAT isa 1.

Chapter 2. Instruction and Statement Descriptions

2-217

IF

Sample Conditional Statement Strings

(A,EQ,B) ,AND, (A,EQ,C)

(A,NE,1),0R, (D,EQ,E,DWORD) ,AND, (#1,NE, 14)

(F,EQ,G,8) ,AND, (#1,EQ,#2) ,AND, (X,EQ,1) ,OR, (RESULT,GT,0)
(DATA,EQ,C' /' ,BYTE) ,OR, (DATA,EQ,C'*',BYTE)

((BUF,#1) ,NE, (BUF,#2)) ,OR, (#1,EQ, #2)

2-218 SC34-0937

G

INTIME

INTIME — Provide Interval Timing

The INTIME instruction provides two forms of interval timing information, reltime
and loc. The first form, reltime, is a 2-word area in your program where INTIME
stores a value each time an INTIME instruction executes. This value is equal to the
elapsed time since system IPL. The count is expressed in milliseconds and is in
double-precision integer format. The maximum value for reltime is reached after
approximately 49 days of continuous operation. The system resets the counter to 0
at that time.

The second form, loc, is a single-precision integer variable where INTIME stores the
time in milliseconds since the previous execution of an INTIME instruction in this
task. The maximum interval between calls to INTIME (that is, the maximum value
that can be stored at loc) is 65,535 milliseconds (65.535 seconds).

Note: Each task in the system has available to it one software-driven timer that
operates with a precision of 1 millisecond. Use the STIMER instruction to operate
this timer in any task.

Syntax:
label INTIME reltime,loc,INDEX,P2 =
Required: reltime,loc
Defaults: no indexing
Indexable: loc

Operand Description

reltime The label of a 2-word table where a relative time marker can be stored.
This field should be defined by DATA 2F'0'. The relative time
marker is a double-precision count, in milliseconds, that indicates the
relative time at which the last INTIME was issued. It should be
initialized to 0. Proper use of this parameter allows you to measure
different intervals from the same origin in time.

loc The label of a buffer of data area where interval time data is to be
stored. When reltime = 0, as after initialization, the first interval
returned will also be 0.

INDEX Automatic indexing is to be used. The operand loc must be defined by
a BUFFER statement when INDEX is used.

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-219

INTIME

Coding Example

2-220 SC34-0937

When the INTIME instruction executes, it places the number of milliseconds that
have elapsed since system IPL in the UPTIME variable. Because the LOC variable
refers to a BUFFER statement and automatic indexing is used, the interval count
since execution of the previous INTIME instruction will be placed in the next
available BUFFER location. The PRINTEXT and PRINTNUM instructions print
the data on the appropriate forms.

GETTIME EQU *
INTIME UPTIME,INTERVAL,INDEX GET TIME IN MILLISECONDS
DIVIDE UPTIME,1000,DWORD CONVERT TIME TO SECONDS
DIVIDE UPTIME,3600,DWORD DIVIDE TO GET HOURS
DIVIDE TASK,60,RESULT=MIN DIVIDE THE REMAINDER TO

* GET MINUTES
ENQT $SYSPRTR
PRINTEXT 'GADDITIONAL 100 BARRELS OF OIL X

PROCESSED AT HR:MIN'
PRINTNUM UPTIME,TYPE=D
PRINTNUM MIN
PRINTEXT '@AFTER BEGINNING OF PROCESSING RUN@'
PRINTEXT '@CURRENT BATCH TOOK '
MULT ENTRIES,2,RESULT=INDX
MOVEA #1,INTERVAL
ADD #1, INDX
DIVIDE (0,#1),1000,RESULT=SECONDS
PRINTNUM SECONDS
PRINTEXT ' SECONDS TO PRODUCE®'
DEQT
[]
[
[]
UPTIME DATA 2F'0!
MIN DATA F'o*
SECONDS DATA F'o
INTERVAL BUFFER 1000,WORDS, INDEX=ENTRIES
INDX DATA F'o

10CB

0 IOCB — Define Terminal Characteristics

The JOCB statement defines a terminal name and terminal characteristics for use
with the ENQT instruction. You can use this statement to change such terminal
characteristics as screen or page margins temporarily. You define these and other
terminal characteristics during system generation. When your program releases
control of a terminal, the characteristics you defined with the IOCB statement are no
longer in effect.

When coding the IOCB instruction, you can include a comment that will appear
with the instruction on your compiler listing. If you include a comment, you must
specify at least one operand with the instruction. The comment must be separated
from the operand field by one or more blanks and it cannot contain commas.

Do not code PAGSIZE, TOPM, BOTM, LEFTM, RIGHTM, or NHIST IOCB
instruction operands for a 31xx in block mode.

Note: Any references to 31xx terminals means 3101, 3151, 3161, 3163, and 3164
terminals, unless otherwise noted.

Syntax:

label 10CB name,PAGSIZE =, TOPM = ,BOTM =,LEFTM =,
RIGHTM = ,SCREEN = ,NHIST =,OVFLINE =,
0 Required: none

BUFFER= comment
Defaults: see discussion below
Indexable: none

Operand Description

name The naime of a terminal as defined by the label on a TERMINAL
definition statement used in system generation. Refer to the
Installation and System Generation Guide for a description of the
TERMINAL definition statement. This operand generates an
8-character EBCDIC string, padded as necessary with blanks, whose
label is the label on the IOCB instruction. It may, therefore, be
modified by the program. If unspecified, the string is blank and
implicitly refers to the terminal that is currently in use by the program.

Note: Except for the BUFFER operand, the following operands have
default values established by the TERMINAL definition statement

PAGSIZE = The physical page size (form length) of the I/O medium. Specify an
integer between 1 and the maximum value taht is meaningful for the
device. For printers, specify the number of lines per page. For screen
devices, specify the size of the screen in lines. This operand is not
required for the 4978, 4979, or 4980 display terminal.

If you specify this operand, BOTM must be between TOPM plus
NHIST, and PAGSIZE —1. Otherwise, unpredictable results will
occur.

Chapter 2. Instruction and Statement Descriptions 2-221

10CB

2-222 SC34-0937

TOPM =

BOTM =

LEFTM=

RIGHTM =

SCREEN =

NHIST =

OVFLINE =

BUFFER =

The top margin (a decimal number between zero and PAGSIZE —1) to
indicate the top of the logical page within the physical page for the
device. The default is 0.

The bottom margin; the last usable line on a page. Its value must be
between TOPM + NHIST and PAGSIZE — 1. The default is
PAGSIZE — 1. If an output instruction would cause the line number
to increase beyond this value, then a page eject, or wrap to line zero, is
done before the operation is continued.

The left margin, the character position at which input or output
begins. The default is 0. Specify a decimal value between zero and
LINSIZE — 1.

A value (between LEFTM and LINSIZE — 1) that determines the last
usable character position within a line. Position numbering begins at
Zero.

If a BUFFER statement is not specified, the default is LINSIZE—1.
If a BUFFER statement is specified, the value you specify should be
one less than the buffer size value.

ROLL, the default, for screens that are to be operated similar to a
typewriter. For screen devices that are attached through the
teletypewriter adapter, ROLL indicates that the system will pause
when a screen-full condition occurs during continuous output.

STATIC, for a full-screen mode of operation, if full-screen mode is
supported for the device. For a 31xx terminal, STATIC is valid only
for block mode.

The number of history lines to be retained when a page eject is
performed on the 4978, 4979, or 4980 display. The default is 0. The
line at TOPM + NHIST corresponds to logical line zero for the
terminal I/O instructions. When a page eject (LINE=0) is performed,
the screen area from TOPM to TOPM +NHIST — 1 will contain lines
from the previous page.

YES, if output lines that exceed the right margin are to be continued
on the next line.

NO, the default, if the lines are not to be continued.

The overflow condition occurs when the system buffer (or a buffer in
an application program) becomes full and the application program has
taken no action to write the buffer to the device.

If the application requires a temporary 1/O buffer of a different size
from that defined by the LINSIZE parameter on the TERMINAL
statement, then set this operand with the label of a BUFFER
statement allocating the desired number of bytes. The buffer size then
temporarily replaces the LINSIZE value and is also the maximum
amount that can be read or written at a time. For data entry
applications that require full screen data transfers, for example, this
avoids the need for allocation of a large buffer within the resident
SUpErvisor.

C

10CB

Note that when the buffer size is greater than the 80-byte line size of
the 4978, 4979, and 4980 displays, all data transfers take place as if
successive lines of the display were concatenated. Screen positions are
still designated, however, by the LINE and SPACES parameters with
respect to an 80-byte line.

If the buffer size is less than the 80-byte line size of the 4978, 4979, or
4980 display, the logical screen boundaries are adjusted accordingly. If
the RIGHTM is not specified or has a value greater than the buffer
size, it is adjusted to one less than the buffer size value. Portions of
the screen outside this range are not accessible by the application
program.

Direct 1/0 Considerations

Coding Example

If the temporary buffer is not directly addressed by a terminal I/O instruction, then
it acts as a normal system buffer of size RIGHTM + 1. It may also be used,
however, for direct terminal I/O. Direct terminal I/O occurs when the buffer,
defined by an active IOCB, is directly addressed by a PRINTEXT or READTEXT
instruction. In this case the data is transferred immediately and the new line
character (for carriage return, line feed, and so on) is not recognized.

When doing direct output operations, you must insert the output character count in
the index word of the BUFFER before the PRINTEXT (output) instruction. This
mode of operation allows the transfer of large blocks (larger than can be
accommodated by a TEXT buffer) of data to and from buffered devices such as the
4978, 4979, 4980, and 31xx displays or buffered teletypewriter terminals. On
execution of DEQT, the buffer defined by the TERMINAL statement is restored.

The following example shows a use of the IOCB instruction.

In this program an ENQT instruction enqueues an IOCB whose label is
TERMINAL. The IOCB instruction refers to a terminal that was assigned the label
TERM24 during system generation. If no terminal named TERM24 had been
defined in the system generation, the terminal currently in use by the program would
be used by default. The IOCB defines a logical static screen that is 40 columns wide
and 12 rows deep, in the middle of the physical display.

The terminal does not use the system-defined buffer for 1/O operations, but instead
uses a program-defined data buffer area called BUFR. The terminal retains the
characteristics defined in the IOCB until the program executes a DEQT or
PROGSTORP instruction.

* .
[
L]
GETPRTR EQU *
ENQT TERMINAL

[]
[]
L
TERMINAL I0CB TERM24,TOPM=6,BOTM=17,LEFTM=20,RIGHTM=59, c
SCREEN=STATIC,BUFFER=BUFR
BUFR BUFFER 480,BYTES

Chapter 2. Instruction and Statement Descriptions 2-223

IODEF

IODEF — Assign a Symbolic Name to a Sensor-Based 1/0 Device

2-224 SC34-0937

The I/O definition statement (IODEF) defines the hardware address and attributes of Q
a sensor-based I/O device and assigns a label to that device.

The device label consists of two characters that define the type of sensor-based I/O
device you are using, followed by a number from one to 99 that identifies the
individual device. The types of devices are: Al (Analog Input), AO (Analog
Output), DI (Digital Input), DO (Digital Output), and PI (Process Interrupt).

You use the label assigned by IODEF to code a sensor-based I/O instruction (SBIO).
The SBIO instruction only refers to the label of the I/O device. You specify the
actual physical address of the device and the device attributes on the IODEF
statement. (See the SBIO instruction for more details on using the symbolic device
name.) The WAIT and POST instructions refer to the IODEF Process Interrupt
statement.

Each IODEF statement creates an SBIO control block (SBIOCB). The control
block provides the link between the IODEF statement and the SBIO instruction that
refers to it. The control block also provides a location into which your program can
read data or fromi which it can write data. The system stores data in the control
block if you have not specified another storage location on the SBIO instruction.
The contents of the SBIOCB are described in the Internal Design.

Each type of sensor-based I/O device requires a specific type of IODEF statement.

You must group all IODEF statements that refer to the same type of device together

in your application program. In addition, you must place all IODEF statements in ‘
your program before the SBIO instructions that refer to them. @

In EDL, All IODEF statements must be in the same assembly module as the TASK
or ENDPROG statement. If the SBIO instructions are to be in a separate module,
you can provide symbolic names using ENTRY/EXTRN statements. You must
create a separate IODEF for each task; different tasks cannot use the same IODEF
statement.

The syntax of the IODEF statement for each device type (Al, AO, DI, DO, and PI)
appears on the following pages.

IODEF (Analog Input)

IODEF (Analog Input)

O

Syntax Example

Syntax:
label IODEF AIx,ADDRESS =,POINT =,RANGE=,ZCOR =
Required: AIx,ADDRESS =,POINT =
Defaults: RANGE =5V, ZCOR=NO
Indexable: none
Op_erand Description
Alx Analog Input, where “x” is the number (1 —99) you assign to an I/O
device to identify it in your application program. If you include more
than one IODEF Alx statement in the program, you must group these
statements together.
ADDRESS =

A 2-digit hexadecimal address.

POINT = The analog input point. The point is 0 —7 for Al relay or 0—15 for
Al solid state.

RANGE= Range for the multirange amplifier.

5V = 5 Volts

500MV = 500 Millivolts
200MV = 200 Millivolts
100MV = 100 Millivolts
S50MV = 50 Millivolts
20MV = 20 Millivolts

10MV = 10 Millivoits
ZCOR= YES, to use the zero-correction facility of Al

NO (the default), not to use the zero-correction facility.

Define an analog input device with the label AIl.

INPUT IODEF AIl,ADDRESS=72,POINT=1,RANGE=50MV,ZCOR=YES

Chapter 2. Instruction and Statement Descriptions 2-225

IODEF (Analog Output)

IODEF (Analog Output)

Syntax:
label IODEF AOx,ADDRESS = ,POINT =
Required: AOx,ADDRESS =
Defaults: POINT =0
Indexable: none

Operand Description

AOx Analog Output, where “x” is the number (1 —99) you assign to an I/O
device to identify it in your application program. If you include more
than one IODEF AOx statement in the program, you must group these
statements together.

ADDRESS =
A 2-digit hexadecimal address.

POINT= The analog output point. The point range is 0—1.

Syntax Example
Define an analog output device with the label AO2.

OUTPUT IODEF AO2,ADDRESS=75,POINT=1

2-226 SC34-0937

'IODEF (Digital Input)

IODEF (Digital Input)

Syntax:
label IODEF DIx,TYPE=GROUP,ADDRESS =
or
DIx,TYPE = SUBGROUP,ADDRESS = ,BITS = (u,v)
or
DIx,TYPE = EXTSYNC,ADDRESS =
Required: All
Defaults: none
Indexable: none

Operand Description

[l

DIx Digital input, where “x” is the number (1 —99) you assign to an I/O
device to identify it in your application program. If you include more
than one IODEF DIx statement in the program, you must group these
statements together.

TYPE= The type of DI operation you are performing. Code one of the
following:
GROUP The I/O operations will use the entire group of 16 DI

points. DI operates in unlatched mode.

SUBGROUP The I/O operations will use a subset of the 16-bit
group. The subgroup is stored right-adjusted in the
input word with the leftmost bits set to 0. DI operates
in unlatched mode.

EXTSYNC The I/f) operations will use the hardware external
synchronization feature for DI. You must code the
count field on the associated SBIO instructions. DI
operates in latched mode.

ADDRESS =
A 2-digit hexadecimal address.

BITS =(u,v) The portion of the 16-point group you are using when you specify
TYPE =SUBGROUP. The portion starts at bit u (0 to 15) for a
length of v (1 to 16 —u).

Syntax Example
Define a digital input device with the label DII1.

INPUT TODEF DI1,TYPE=GROUP,ADDRESS=49

Chapter 2. Instruction and Statement Descriptions 2-227

TODEF (Digital Output)

IODEF (Digital Output)

Syntax Examples

2-228 SC34-0937

Syntax:
label IODEF DOx,TYPE=GROUP,ADDRESS =
or
DOx, TYPE = SUBGROUP,ADDRESS = ,BITS = (u,v)
or
DOx, TYPE =EXTSYNC,ADDRESS = ,BITS = (u,v)
Required: All
Defaults: none
Indexable: none

Operand Description

DOx Digital output, where “x” is the number (1 —99) you assign to an 1/O
device to identify it in your application program. If you include more
than one IODEF DOx statement in the program, you must group
these statements together.

TYPE = The type of DO operation you are performing. Code one of the
following:
GROUP The I/O operations will use the entire group of 16 DO
points.

SUBGROUP The I/O operations will use a subset of the 16-bit
group. Bits that are not part of the subset you specify
remain unchanged.

EXTSYNC The I/O operations will use the hardware external
synchronization feature for DO. You must code the
count field on the associated SBIO instructions.

ADDRESS =
A 2-digit hexadecimal address.

BITS=(u,v) The portion of the 16-point group you are using when you specify
TYPE=SUBGROUP. The portion starts at bit u (0 to 15) for a
length of v (1 to 16 —u).

1) Define a digital output device with the label DO1. The I/O operations will use
the entire group of 16 DO points (TYPE=GROUP).

OUTPUT IODEF DO1,TYPE=GROUP,ADDRESS=4B

2) Define a digital output device with the label DO2. The I/O operations will use
the hardware external synchronization feature (TYPE =EXTSYNC).

OUTPUTZ IODEF DO2,TYPE=EXTSYNC,ADDRESS=4A

0

IODEF (Process Interrupt)

IODEF (Process Interrupt)

Syntax:
label IODEF PIx,ADDRESS = BIT =,SPECPI=
or
PIx,ADDRESS =,TYPE =BIT,BIT = ,SPECPI =
or
PIx,ADDRESS =, TYPE = GROUP,SPECPI =
Required: PIx, ADDRESS =
Defaults: none
Indexable: none

Operand Description

[Tl

Pix Process interrupt, where “x” is the number (1 —99) you assign to an
I/O device to identify it in your application program. If you include
more than one IODEF PIx statement in the program, you must group
these statements together.

ADDRESS =
A 2-digit hexadecimal address.
BIT = The bit number (0&ndash15) used for PIL.
TYPE = Indicates when the system will call the special process interrupt routine

you provide. Code one of the following:

GROUP The supervisor gives control to the special interrupt routine
you provide if an interrupt occurs on any bit in the PI
group. The PI group is not read or reset; reading or
resetting the PI group is the responsibility of your routine.

Control returns to the supervisor with a branch to the entry
point SUPEXIT. You must include the module
$EDXATSR with your program to use SUPEXIT. If the
routine processes the interrupt on level 0, it can issue a
Series/1 hardware exit level instruction (LEX) instead of
returning to SUPEXIT. Issuing the LEX instruction
greatly improves performance.

Note: To use TYPE =GROUP, you must be familiar with
the operation of the Series/l process interrupt feature.
Your routine must contain all the instructions necessary to
read and reset the process interrupt group to which it
refers.

BIT The supervisor gives control to the special interrupt routine
you provide only when an interrupt occurs on the bit
specified in the BIT = operand.

When control returns to the supervisor, the contents of Rl
must be the same as when the system called your routine
and RO must contain either 0 or a POST code. If RO
contains a POST code, R3 must contain the address of an
ECB to be posted by the POST instruction.

Chapter 2. Instruction and Statement Descriptions 2-229

IODEF (Process Interrupt)

Syntax Examples

Coding Examples

2-230 SC34-0937

Register 7 contains the supervisor return address on entry.
If your routine is in partition 1, you can return control to

the supervisor by using the assembler instruction BXS (R7).

The SPECPIRT instruction allows you to return control to
the supervisor from any partition. (See the SPECPIRT
instruction for a coding description.)

SPECPI= The label of the first instruction of a special process interrupt routine.
You must write the routine in Series/1 assembler language.

The supervisor €xecutes the routine when the defined interrupt occurs.
This routine bypasses the normal supervisor response and allows you
to handle process interrupts quickly.

You can include more than one special process interrupt routine in
your program.

1) Define a process interrupt device with the label PI1.

A IODEF PI1,ADDRESS=48,BIT=2

2) Define a process interrupt device with the label PI2.

B IODEF PI2,ADDRESS=49,BIT=15

1) The supervisor passes control to the special interrupt routine FASTPI1 when an
interrupt occurs on bit 3.

IODEF P12 ,ADDRESS=48,BIT=3,TYPE=BIT,SPECPI=FASTPI1

FASTPI1 EQU *
MVW . R1,SAVER1 SAVE R1
[]
[]
L]
MVA PI2,R3 PUT THE ADDR OF PIZ IN R3
MVWI 3,R0 POSTING CODE IN RO
MVW SAVER1,R1 RESTORE R1
SPECPIRT RETURN TG SUPERVISOR

2) The supervisor passes control to the special interrupt routine labeled FASTPI2
when an interrupt occurs on any one of the PI group bits at address 49.

IODEF PI6,ADDRESS=49,TYPE=GROUP,SPECPI=FASTPI2

FASTPIZ EQU *

@

O

IOR

IOR — Compare the Binary Values of Two Data Strings

The Inclusive OR instruction (IOR) compares the binary value of operand 2 with the
binary value of operand 1. The instruction compares each bit position in operand 2
with the corresponding bit position in operand 1 and yields a result, bit by bit, of 1
or 0. If either or both of the bits compared is 1, the result is 1. If neither of the bits
compared is 1, the result is 0.

Syntax:

label

Required:
Defaults:
Indexable:

IOR opndl,opnd2,count, RESULT =,
P1=,P2=,P3=

opnd1l,opnd2
count = (1,WORD),RESULT = opndl
opnd1,0pnd2, RESULT

Operand
opndl

opnd2

count

RESULT =

Px=

Description

The label of the data area to be compared with opnd2. Opndl cannot
be a self-defining term.

The value to be compared with opndl. You can specify a self-defining
term or the label of a data area.

Specify the number of consecutive values in opndl on which the
operation is to be performed. The maximum value allowed is 32767.

The count operand can include the precision of the data. Select one
precision that the system uses for opndl, opnd2, and the resulting bit
string. When specifying a precision, code the count operand in the
form,

(n,precision)
where “n” is the count and “precision” is one of the following:

BYTE Byte precision
WORD Word precision (default)
DWORD Doubleword precision

The precision you specify for the count operand is the portion of
opnd?2 that is used in the operation. If the count is (3,BYTE), the
system compares the first byte of data in opnd2 with the first three
bytes of data in opndl.

The label df the data area or vector in which the result is to be placed.
When you specify RESULT, the value of opndl does not change
during the operation. This operand is optional.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-231

IOR

Syntax Examples

2-232 SC34-0937

1) Compare X'F008' with the contents of STRING and‘place the result in the data

area labeled ANS. (“})

IOR STRING,X'F008',RESULT=ANS

*

*

L]
STRING DATA X'GFO8' binary 0000 1111 0000 1000
ANS DATA F'O' binary zeros’

After the IOR operation, ANS contains:
Hexadecimal — X'FFO08'
Binary — 1111 1111 0000 1000

2) Compare the contents of OPER2 to the first three doublewords beginning at
label OPERI and place the result in the data area labeled RESULTX.

I0R OPER1,0PER2, (3,DWORD) ,RESULT=RESULTX

L]
L]
L]

OPER1 DC X'FFFF? binary 1111 1111 1111 1111
DC X'0000' binary zeros
DC X'8888' binary 1000 1000 1000 1000]
DC X'4567" binary 0100 1010 0110 0111 @[;;D
DC X'1111' binary 0001 0001 0001 6001
DC X' AAAA' binary 1010 1010 1010 1010

OPER2 DC 2X'AAAA'
RESULTX DC 6F'0'

After the operation, RESULTX contains:
Hexadecimal — X'FFFF AAAA AAAA EAEF BBBB AAAA'

3) Compare the first byte of data in TEST to the first three bytes of data in
INPUT. Place the result in the data area labeled OUTPUT.

IOR INPUT,TEST, (3,BYTE) ,RESULT=0UTPUT

INPUT DC C'1.2' binary 1111 0001 0100 1010 1111 0010
TEST DC C'0.0' binary 1111 0000
OUTPUT DC 3croe’ binary 1111 0000 1111 0000 1111 0000

.
L]

[

After the operation, OUTPUT contains:
Binary — 1111 0001 1111 1010 1111 0010 ()

LASTQ

Coding Example

Return Codes

The LASTQ instruction acquires the last (most recent) entry in a queue. You define
a queue with the DEFINEQ statement. The queue entry can contain data or the
address of a data buffer. After you acquire the contents of the queue entry, the
system adds the entry to the free chain of the queue.

Syntax:
label LASTQ gname,loc, EMPTY =,P1=,P2=
Required: qname,loc
Default: none
Indexable: gname,loc
Operand Description
gname The name of the queue from which the entry is to be fetched. The
queue name is the label on the DEFINEQ statement that creates the
queue.
loc The label of a word of storage where the entry is placed. #1 or #2 can
be used.
EMPTY= Specify the first instruction of the routine to be called if a “queue
empty” condition is detected during the execution of this instruction.
If this operand is not specified, control returns to the next instruction
after the LASTQ. A return code of —1 in the first word of the task
control block indicates that the operation completed successfully. A
return code of +1 indicates that the queue is empty.
Px= Parameter naming operands. See “Using the Parameter Naming

Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

See the examples following the NEXTQ instructions.

The return codes are returned in the first word of the task control block (TCB) of
the program issuing the instruction. The label of the TCB is the label of your
program or task (taskname).

Return
Code

Description

-1

Successful completion.

1

Queue is empty

2-233

Chapter 2. Instruction and Statement Descriptions

LCCIOCB

LCCIOCB — Specify Device Subchannel Command 'and Buffer

The LCCIOCB statement specifies the device subchannel command and buffer for ()‘D
Local Communications Controller instructions.

2-234 SC34-0937

Refer to the Communications Guide for programming considerations and an example
of the LCCIOCB statement.

Syntax:
label LCCIOCB ADDRESS =,BUFFER =,BUFFKEY =,RINGADR =,
COMMAND = ,ATTNECB=,P1=,P2=,
P3=,P4=,P5=
Required: labe,ADDRISS = ,COMMAND =
Defaults: None
Indexable: None

Operand Description

ADDRESS =
The hexadecimal device address of the subchannel on which the system
will perform the operation.

BUFFER = The label of the area from which to send and receive data.

BUFFKEY = @
The number (0—31, depending on your processor) of the address that W 4
contains the buffer. If you omit this operand, the buffer must be in
the same address space as the requesting program. :

RINGADR =
A 1-byte hexadecimal address designating the label of an area storing
data you send or receive. After a receive operation completes, the
system updates. the field to indicate the sending ring address.

Note: Ring addresses are determined when the attachment card is
installed. If you are unsure of your ring address, issue the RA
command of SLCCUT]1 to determine what it is.

COMMAND =

Indicate one of the following options.
Receive Operations:

RSP. Receive specific data. This operation receives data from the
ring address specified by the RINGADR operand. If your system
issues this command to subchannel 1, the device times out if it receives
no data within seven seconds.

RUS. Receive unsolicited data. This operation receives data from any
ring address.' This type of receive does not involve a time out.

Send Operations Received on Subchannel 0:

SIPL. Send IPL request. This send places the specified ring address
in the IPL state. The next command you issue should be a send
containing the bootstrap loader.

ATTNECB =

Px=

LCCIOCB

ST. Send status request. This send requests the hardware status from
the specified ring address. Issue a receive to subchannel 0 before this
send.

SREQ. Send request. You may send up to 1000 bytes of data with
this message.

RREQ. Receive request. You may receive up to 1000 bytes of data
with this message.

BC. Broadcast. Broadcast up to 1000 bytes of data to all Series/ls on
the ring.

Send Operations Received on Subchannel 1:

SSP. Send specific data. This command sends up to 64K bytes of
data to the specified ring address.

SSPE. Send specific data end. This command sends up to 64K bytes
of data to the specified ring address and indicates to the receiving
Series/1 that data transfer is complete.

SUN. Send unsolicited data. This command sends up to 64K bytes of
data to the specified ring address.

SUSE. Send unsolicited data end. This command sends up to 64K
bytes of data to the specified ring address and indicates to the
receiving Series/1 that data transfer is complete.

Control Operations:
CLR. Clear the ring.

RBP. Reset bypass. This command connects this LCC device to the
ring.

SBP. Set bypass. This command disconnects this LCC device from
the ring.

The label of the attention ECB that will be posted when your system
receives an attention interrupt. When the attention task has finished
processing the request, the task should detach itself to wait for another
attention interrupt.

Parameter-naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Use the following guide when using parameter naming operands for
the LCCIOCB statement.

Parameter Operand

P1 ADDRESS =

P2 BUFFER =

P3 BUFFKEY= (one byte)
RINGADDR = (one byte)

P4 COMMAND =

P5 ATTNECB=

Chapter 2. Instruction and Statement Descriptions 2-235

LCCCLOSE

LCCCLOSE — Close the Device Subchannel ()

The LCCCLOSE instruction closes the device subchannel and allows no further
interrupts. Issue it to end I/O immediately and to post any waiting ECBs with a
HALT status code.

Return Codes

2-236 SC34-0937

Refer to the Communications Guide for programming considerations and an example
of the LCCCLOSE instruction.

Syntax:
label LCCCLOSE 10CB=,ERROR =
Required: I0CB=
Defaults: None
Indexable: I0CB=

Operand Description

I0CB The label of the LCCIOCB statement associated with the close
operation. Close processing uses this statement to determine which
subchannel to close.

ERROR = The label of the next instruction to be executed if an error occurs
during closing of the subchannel. If ERROR = is omitted, control
returns to the next sequential instruction. ™

Return

Code Description

-1 Successful completion.

4 The SDDBTYPE field of the DDB does not specify Local
Communrications Controller.

O

LCCCNTL

LCCCNTL - Initiate Control Functions

The LCCCNTL instruction initiates control functions to the Local Communications
Controller device.

Return Codes

Refer to the Communications Guide for programming considerations and an example
of the LCCCNTL instruction.

Syntax:
label LCCCNTL IOCB=,ERROR=,WAIT=
Required: I0CB=
Defaults: WAIT =YES
Indexable: IOCB=

Operand Description

I0CB The label of the LCCIOCB statement to be associated with the control
operation.

ERROR= The label of the next instruction to be executed if an error occurs.
ERROR = is valid only when WAIT=YES. If ERROR = is omitted,
control returns to the next sequential instruction.

WAIT = An indicator of whether or not the current task is suspended until the
operation ends.

YES, the task is suspended until the operation ends.
NO, control returns after the system initiates the operation. Issue a
subsequent WAIT to determine when the operation is complete.
Return
Code Description
-1 Successful completion.
4 The $SDDBTYPE field of the DDB does not specify Local
Communications Controller.
6 An unrecoverable I/O error occured.
7 The Local Communications Controller subchannel is not open or the
task issuing the LCC instruction is not the same task that issued the
LCCOPEN instruction.
8 1/O in progress.
13 Request ended by CLOSE.

Chapter 2. Instruction and Statement Descriptions 2-237

LCCOPEN

LCCOPEN — Open Device Subchannel

Y
The LCCOPEN instruction opens and prepares the device subchannel for interrupts. (5V

Refer to the Communications Guide for programming considerations and an example
of the LCCOPEN instruction.

Syntax:
label LCCOPEN IOCB=,ERROR =
Required: I0CB=
Defaults: None
Indexable: IOCB=

Operand Description

I0CB = The label of the LCCIOCB statement associated with the open
operation. Open processing uses this statement to determine which
subchannel to open.

ERROR= The label of the next instruction the system should execute if an error
occurs during opening of the subchannel. If ERROR = is omitted,
control returns to the next sequential instruction.

Return Codes

O

Return

Code Description

-1 Successful completion.

4 The SDDBTYPE field of the DDB does not specify Local
Communications Controller.
Subchannel already open.

6 An unrecoverable error occurred during the Local Communications
Controller RESET BYPASS command.

12 The DDB indicates that device initialization was not completed
successfully.

2-238 SC34-0937

O

LCCRECV

LCCRECV — Receive Data from a Series/1 on a Ring

The LCCRECYV instruction allows reception of data from another Series/1 on the

ring.

Refer to the Communications Guide for programming considerations and an example
of the LCCRECY instruction.

Syntax:
label LCCRECV 10CB=,ERROR=,WAIT=
Required: I0CB=
Defaults: WAIT =YES
Indexable: IOCB=

Operand Description

I0CB= The label of the LCCIOCB statement associated with the receive
operation.

ERROR= The label of the next instruction the system should execute if an error
occurs during a receive operation. ERROR = is valid only when
WAIT=YES. If ERROR= is omitted, control returns to the next
sequential instruction.

WAIT = YES, the task is suspended until the operation ends.

NO; control returns after the system initiates the operation. A
subsequent WAIT must be issued to determine when the operation is
complete.
Return
Code Description
-1 Successful completion.
4 The SDDBTYPE field of the DDB does not specify Local
Communications Controller.
6 An unrecoverable 1/O error occurred.
7 The Local Communications Controller subchannel is not open or the
task issuing the LCC instruction is not the same task that issued the
LCCOPEN instruction. /O in progress.
9 The record length specified is less than the length of the data received;
no data movement will take place.
10 A DCB specification check occurred.
11 An invalid address was specified; a protect check occurred, or the
address is past the end-of-storage.

Chapter 2. Instruction and Statement Descriptions 2-239

LCCRECV

2-240 SC34-0937

Return

Code Description

13 ' Request ended by CLOSE.

14 The cycle-steal status command failed.

15 The cycle-steal status data, bytes 4 and 5, are available in the

LCCIOCB.

O

LCCSEND

0 LCCSEND — Send Data to a Series/1 on a Ring

The LCCSEND instruction allows you to send data to another Series/1 on the ring.

Refer to the Communications Guide for programming considerations and an example
of the LCCSEND instruction.

Syntax:
label LCCSEND I0OCB=,ERROR =,WAIT =
Required: IOCB =
Defaults: WAIT =YES
Indexable: IOCB=

Operand Description

I0CB= The label of the LCCIOCB statement associated with the send
operation.
ERROR = The label of the next instruction the system should execute if an error

occurs. ERROR = is valid only when WAIT=YES. If ERROR= is
omitted, control returns to the next sequential instruction.

WAIT = YES, the task is suspended until the operation ends.
h NO, control returns after the system initiates the operation.” A
s’ subsequent WAIT must be issued to determine when the operation is
complete.
Return Codes

Return

Code Description

-1 Successful completion.

4 The SDDBTYPE field of the DDB does not specify Local
Communications Controller.

6 An unrecoverable I/O error occurred (LCCOPEN, LCCRECYV, and
LCCSEND).

7 The Local Communications Controller subchannel is not open or the

task issuing the LCC instruction is not the same task that issued the
LCCOPEN instruction.

8 | 1/O in progress.

9 The record length specified is less than the length of the data received;
no data movement will take place:

10 A DCB specification check occurred.

11 An invalid address was specified; a protect check occurred, or the

address is past the end-of-storage.

Chapter 2. Instruction and Statement Descriptions 2-241

LCCSEND

2-242 SC34-0937

Return

Code Description

13 Request ended by CLOSE.

14 The cycle-steal-status command failed.

15 The cycle-steal-statﬁs data, bytes 2 and 3, are available in the

LCCIOCB.

O

LOAD

LOAD — Load a Program

The LOAD instruction allows one program to load another main program or
overlay program from a program library on disk or diskette. The loaded program
runs parallel with, and independently of, the loading program, regardless of whether
it is a main program or an overlay. The loading program may, however,
synchronize its own execution with the loaded program.

The LOAD instruction also allows you to load a program in another partition and
to pass that program parameters. See Appendix C, “Communicating with
Programs in Other Partitions (Cross-Partition Services)” on page C-1 for an example
of such a cross-partition operation. Refer to the Language Programming Guide for
more information on cross-partition services. See “Coding the LOAD Instruction
for Extended Address Mode” on page 2-248 for information on coding the LOAD
instruction for the extended address mode.

A program can be loaded in two ways:
¢ As an independent program in its own contiguous storage area

* As an overlay program within the storage area allocated for the loading
program.

The advantages of the independent LOAD operation are:
e Main storage is allocated only when required

* More than one program may be loaded for simultaneous execution.

The advantages of the overlay LOAD operation are:

e The availability of main storage can be guaranteed by the loading program since
it is within its own storage area

¢ The loaded program is brought into storage more quickly than by an
independent LOAD.

Figure 2-7 on page 2-247 illustrates the two ways of loading a program.

You can test the first word of the task control block (TCB) of the loading program
to determine the result of the load operation. The label of the TCB is the label of
the program (taskname). If this word is — 1, the operation was successful.

When a LOAD instruction loads either an independent program or an overlay, the

address of the currently active terminal of the loading program is stored in the
program header of the program being loaded.

Chapter 2. Instruction and Statement Descriptions =~ 2-243

LOAD

Syntax:

label

label

Required:
Defaults:

Indexable:

LOAD progname,parmname, DEQT = 7 O
DS = (dsnamel,...,dsname9), EVENT =,
LOGMSG =,PART =,ERROR = ,STORAGE =,P2=
or
LOAD PGMx,parmname,DS = (DSx,...),DEQT =,
EVENT = ,ERROR =,P2=

progname or PGMx
LOGMSG =YES,STORAGE =0,DEQT =YES
none

Operand

progname

PGMx

parmname

DEQT =

2-244 SC34-0937

Description

The 1 —8 character name of a program stored in an Event Driven
Executive library. You can specify the volume from which to load the
program by separating the program name and the volume name by a
comma and enclosing both in parentheses. To load program PROGA
on volume EDX003, you would code: (PROGA,EDX003). The
program must reside on disk or diskette. The volume name can be

1 —6 characters long.

The parameter “x” is a number from 1 to 9 that specifies which of the

overlay programs defined in the PROGRAM statement is to be

loaded. PGMx is not valid with PART; overlay programs are loaded

in space included with the loading program. (@

The label of the first word in a list of consecutive parameter words to
be passed to the loaded program. (See the PROGRAM statement for
the maximum length of this list.)

YES (the default), dequeues the terminal currently in use by the
loading program.

NO, prevents the terminal from being dequeued when the LOAD
instruction executes. Coding DEQT =NO also forces the LOGMSG
operand to LOGMSG =NO.

Note: Allow this operand to default or code DEQT =YES for a
virtual terminal program.

The names of the data sets to be passed to the loaded program.

If your program loads another program, you can pass the loaded
program the names of 1 to 9 data sets. This operand enables the main
program to define, during the load operation, the names of the data
sets the loaded program will use. On the PROGRAM statement of the
program to be loaded, the data set list contains the sequence “??” for
each missing data set name. This sequence indicates that the data set
name will be supplied at load time. (See the PROGRAM statement
for more information.)

O

LOGMSG =

EVENT =

LOAD

For example, if the PROGRAM statement in the program to be
loaded contained the data set list:

...DS=(PARMFILE,??,RESULTS)

the LOAD instruction in the main program,

LOAD MYPROG,DS=(MYDATA)

would pass the data set name MYDATA to the loaded program and
produce the following list for the loaded program:

...DS=(PARMFILE ,MYDATA,RESULTS)

The LOAD instruction, in this case, replaces the sequence “??” with
the data set name MYDATA.

When the main program loads an overlay program, you must code
DSx, where “x” is the relative position (number) of the data set in the
list of data set names on the PROGRAM statement of the main
program.

The parameter “x” can be a number from 1 to 9. For example, to pass
the second data set name in a list to an overlay program named
OVPGM, you would code:

LOAD OVPGM,DS=DS2

All unspecified data set names in the program being loaded must be
resolved at LOAD time or the load operation will fail.

If the main program passes a tape data set to another program, the
main program’s data set control block (DSCB) is no longer associated
with the tape data set. This allows the loaded program to have access
to the tape data set using the main program’s DSCB. When the
loaded program ends, the system closes the tape data. If the main
program needs to use the tape data set again, the main program must
call DSOPEN or load $DISKUTS3 to reopen the tape data set.

YES (the default), to print or display the “PROGRAM LOADED”
message on the terminal being used by the program.

NO, to avoid printing or displaying this message.
The label of an event (ECB statement) that the system posts complete
when the loaded program issues a PROGSTOP.

By issuing a LOAD and a subsequent WAIT for this event, the main
program can synchronize its own execution with the loaded program.
The ECB, however, must not be reset with a RESET instruction or
with the RESET operand of a WAIT instruction, or synchronization
may be lost.

Chapter 2. Instruction and Statement Descriptions 2-245

LOAD

2-246 SC34-0937

PART =

ERROR =

STORAGE =

P2=

Notes:

loaded program to end. Otherwise, the system will post the ECB
when the loaded program ends even though the main program
may no longer be active. The results, in such a case, are
unpredictable.

1. If you specify this operand, the main program must wait for the (\

2. If a program check occurs, the ECB will be posted with the value
of the PSW. Refer to the Problem Determination Guide for
information on the PSW.

The number of the partition in which you want to load the program.
If you do not code this operand, the system loads the program in the
same partition as the main program. See

Appendix C, “Communicating with Programs in Other Partitions
(Cross-Partition Services)” on page C-1 for an example of loading a
program in another partition. See “Coding the LOAD Instruction for
Extended Address Mode” on page 2-248 for information on coding
the PART = operand for extended address mode support.

You can code one of the following:

¢ A number from 1 to 32 (partition 1 to 32, depending on your
processor)

¢ PART=ANY, to load the program in any available partition.

e The label of a 1-word data area that contains the partition
number.

If the data area contains a 0, the system loads the program in any \\
available partition. Q=

Do not use this operand if the main program loads an overlay
program.

The label of the first instruction of the routine to receive control if an
error condition occurs during the load operation. If you do not code
this operand, control passes to the instruction following the LOAD
instruction and you can test for errors by referring to the return code
in the first word of the task control block (TCB).

The number of bytes of additional storage to be added to the loaded
program. This operand overrides the value of the STORAGE operand
on the PROGRAM statement of the program to be loaded.

Some application programs have a minimum storage requirement; be
sure you know what it is before using this override. The load
operation will fail if the loaded program requires more storage than is
available. (See the PROGRAM statement for more information on
allocating program storage.)

This operand does not override the STORAGE operand on the
PROGRAM statement if you code a 0 or allow the operand to default.

Do not use this operand if the main program loads an overlay
program.

Parameter naming operand. See “Using the Parameter Naming 0
Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

LOAD

The following figure illustrates two ways the system can load a program.

PROGRAM
. Independent
. program in its
. own storage area
LOAD l
: and .
. 4— independent ————P» .
. execution
LOAD
: PROGRAM | Overlay program
0’« . within storage area
g Loading . of loading program.
. Independent execution.
A0937005

Figure 2-7. Two Ways of Loading a Program

2-247

Chapter 2. Instruction and Statement Descriptions

LOAD

Coding the LOAD Instruction for Extended Address Mode

When you use the LOAD instruction with extended address mode support, you have
several options for the PART = operand. The PART = operand indicates the
number of the partition in which you want to load the program. If you do not code
this operand, the system loads the program in the same partition as the main
program.

Syntax Example

2-248 SC34-0937

Note: Do not use the PART = operand if the main program loads an overlay
program.

You can code one of the following for the PART = operand:

In the following example, the system tries to load program PGMA into any available

A partition number from 1 to 32 (depending on your processor).

PART =ANY to load the program into any available partition. If you specified
LOADER=(8S,) in the $SRPROF data set, then the loader will try to load the
program into one of the static partitions only.

PART=DYNAMIC to load the program in any available dynamic partition.
This option overrides the LOADER =(8,) option in the $SRPROF data set.

PART=STATIC to load the program in any available static partition.

The label of a 1-word data area that contains the partition number. If the data
area contains a 0, the system loads the program into any available partition
depending on what you specified in SSRPROF.

static partition.

LOAD PGMA,PART=STATIC

Note: If you specify the PART = operand as ANY, STATIC, or DYNAMIC, then
the order of the partitions into which the system attempts to load a program

depends on the LOADER = statement in the IPL configuration data set, $SSRPROF.

Refer to the Installation and System Generation Guide for an explanation of
$SRPROF and static and dynamic partitions.

U

O

Return Codes

LOAD

The return codes are returned in the first word of the task control block (TCB) of
the program issuing the instruction.

Return

Code Condition

-1 Successful completion.

61 $LOADER (the transient loader) is not included in the system.

62 In an overlay request, no overlay area exists.

63 In an overlay request, the 6verlay area is in use.

64 No space available for the transient loader.

65 In an overlay load operation, the number of data sets passed by the
LOAD instruction does not equal the number required by the overlay
program.

66 In an overlay load operation, no parameters were passed to the loaded
program.

67 A disk(ette) I/O error occurred during the load process.

68 Reserved.

69 Reserved.

70 Not enough main storage available for the program.

71 Program not found on the specified volume.

72 Disk or diskette I/O error while reading directory.

73 Disk or diskette I/O error while reading program header.

74 Referenced module is not a program.

75 Referenced module is not a data set.

76 One of the data sets was not found on referenced volume.

77 Invalid data set name.

78 LOAD instruction did not specify required data set(s).

79 LOAD instruction did not specify required parameters(s).

80 Invalid volume label specified (two or more programs referenced the
same volume).

-81 Cross partition LOAD requested, support not included at system
generation.

82 Requested partition number greater than number of partitions in the
system.

83 Load instruction attempted to access a 1024-bytes-per-sector diskette
without $101024 preloaded in storage.

Note: If the program being loaded is a sensor I/O program and a sensor I/O error is
detected, the return code will be a sensor I/O return code, not a load return code.

Chapter 2. Instruction and Statement Descriptions 2-249

MECB

MECB — Create a List of Events

2-250 SC34-0937

The MECB statement creates a control block for use by a WAITM instruction. The
control block contains control information and a list of the ECBs for the events on
which the WAITM instruction must wait.

You can specify labels for several of the fields in the MECB so that you can get
access to them from your application program. The fields you can get access to are:

¢ The number of events posted
¢ The pointer to the last (most recent) event posted
* The post code received by each event in the list.

You must use the ECB statement to code the necessary ECBs in programs assembled
under SEDXASM, except for those ECBs specified with the EVENT = operand on
the LOAD instruction or on the PROGRAM or TASK statement. In programs
assembled with the host or Series/1 macro assemblers, the system automatically
generates an ECB for an event named in a POST instruction.

See “WAITM - Wait for One or More Events in a List” on page 2-553 for the
description and syntax of the WAITM instruction. See “ECB — Create an Event
Control Block™ on page 2-113 for the description and syntax of the ECB statement.

Note: To use the MECB statement, you must have included the SWAITM module

in your system and specified the MECBLST keyword on the SYSPARMS statement
during system generation. (Refer to the Installation and System Generation Guide for
additional information.)

Syntax:

label MECB (ecbl,echb2,...ecbn),nwait, MAXECB = ,CODE =,
NUMP =,LAST =,P1 = (Ibl1,Ibl2,...1bln),P2 =

Required: label

Defaults: nwait=1, CODE =-1,
MAXECB = number of ECB labels coded
Indexable: none

Operand Description

ecbl,ech2,....,ecbn
The label of each ECB you are including in the MECB list. The
system generates additional blank entries if the number of labels is less
than the value coded for MAXECB=.

nwait The number of events that must occur before the waiting program can
continue.

MAXECB= The number of events (ECBs) in the MECB list. If this value is larger
than the number of ECB labels coded, the system generates blank
entries to make up the difference.

Syntax Example

CODE =

NUMP =
LAST =
P1=(.)

P2=

MECB

The initial value of the MECB post code. If this word is not 0 when,
your program issues the WAITM instruction, the system does not wait
unless the WAITM instruction has the RESET operand coded. (The
default is —1.)

The label for the field containing the number of events posted.
The label for the pointer to the last event posted.

Parameter naming operand. Specify labels for the fields in the MECB
that contain the post code for the respective ECBs. (The system places
the post code received by an ECB in the first word of the MECB entry
for that ECB.)

Parameter naming operand. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Wait for two of the three specified events to occur before continuing. Place labels
on the pointer to the last event that occurred and on the post codes.

MECB1 MECB

(ECB1,ECB2,ECB3),2,LAST=LASTECB,P1=(P0ST1,P0ST2,P0ST3)

Chapter 2. Instruction and Statement Descriptions 2-251

MESSAGE

MESSAGE — Retrieve a Program Message

The MESSAGE instruction retrieves a formatted program message from a data set
or module and displays or prints the message. See Appendix E, “Creating, Storing,
and Retrieving Program Messages” on page E-1 for more information.

The instruction also allows you to include data or text generated by your program
within the message.

Note: Any references to 31xx terminals means 3101, 3151, 3161, 3163, and 3164
terminals, unless otherwise noted.

Syntax:

label

Required:
Defaults:

Indexable:

MESSAGE msgno,COMP = ,SKIP =,LINE = ,SPACES =,
PARMS = (parml,...,parm8), MSGID =,
XLATE =,PROTECT =,P1=

msgno,COMP =
MSGID =NO,XLATE =YES,PROTECT =NO
none

Operand

msgno

COMP=

SKIP =

LINE =

2-252 SC34-0937

Description

The number of the message you want displayed or printed. This
operand must be a positive integer or a label preceded by a plus sign
(+) and equated to a positive integer.

The label of the COMP statement that points to the data set or
module that contains the formatted program messages. See the COMP
statement description for more information.

The number of lines to be skipped before the system prints or displays
the message. If your cursor is at line 2 on a display screen and you
coded SKIP =6, the system displays the message on line 8. For a
printer, the SKIP operand controls forms movement.

The SKIP operand causes the system to display or print the contents
of the system buffer.

If you specify a value greater than or equal to the logical page size, the
system divides this value by the page size and uses the remainder in
place of the value you specify. For roll screens, the logical page size
equals the screen’s bottom margin minus the number of history lines
and the screen’s top margin.

The line number on which the message is to be printed or displayed.
Code a value from 0 to the number of the last usable line on the page
or logical screen. The line count begins at the top margin you defined
for the printer or display screen. LINE =0 positions the cursor at the
top line of the page or screen you defined; LINE=1 positions the
cursor at the second line of the page or screen. For roll screens, line 0
equals the screen’s top margin plus the number of history lines.

O

C

SPACES =

PARMS =

MSGID =

XLATE =

MESSAGE

For printers and roll screens, if you code a value less than or equal to
the current line number, the system prints or displays the message at
the specified line on the next page or logical screen. For static screens,
if you code a value within the limits of the logical screen, the system
displays the message on the line you specified.

If you code a value greater than the last usable line number, the system
divides this value by the logical page size and uses the remainder as the
line number on which to print the message. For example, if you code
LINE =22.and your roll screen has a logical page size of 20, the
message appears on the second line of the logical screen.

The LINE operand causes the system to print or display the contents
of the system buffer.

The number of spaces to indent before the system prints or displays
the message. SPACES =0, the default, positions the cursor at the
beginning of the left side of the page or screen. If the value you
specify is beyond the limits of the logical screen or page, the system
indents the next line by the excess number of spaces.

When you code the LINE or SKIP operands with SPACES, the system
begins indenting from the left margin of the page or screen. If you
specify SPACES without coding LINE or SKIP, the system begins
indenting from the last cursor position on the line.

The labels of data areas containing information to be included in the
message. You can code up to eight labels. If you code more than one
label, you must enclose the list in parentheses.

Note: To use this operand, you must have included the FULLMSG
module in your system during system generation. Refer to Installation
and System Generation Guide for a description of this module.

YES, if you want the message number and 4-character prefix to be
printed at the beginning of the message you are retrieving from a data
set or module containing formatted program messages. See the COMP
statement operand “idxx” for a description of the 4-character prefix.

NO (the default), to avoid printing this information.

Note: To use this operand, you must have included the FULLMSG
module in your system during system generation. Refer to Installation
and System Generation Guide for a description of this module.

NO, to send the message to the terminal as is, without translation.
Code this option if the message contains special characters that should
not be altered or interpreted by the terminal.

YES (the default), to cause translation of characters from EBCDIC to
the code the terminal uses to display the message.

With a 31xx in block mode, XLLATE =NO also prevents the system
from inserting the attribute byte and escape sequences into the
message, and overrides the effects of TERMCTRL

SET,STREAM =YES.

Note: For a description of 31xx escape sequences, refer to the
appropriate display terminal description manual.

Chapter 2. Instruction and Statement Descriptions 2-253

MESSAGE

Syntax Examples

Coding Example

2-254 5C34-0937

PROTECT =
YES, to write protected characters to a static screen device that
supports this feature, such as an IBM 4978, 4979, 4980, or 31xx in
block mode. Protected characters cannot be typed over.

NO (the default), to avoid writing protected characters to a static
screen.

P1= Parameter naming operand. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

Note: $TCBADS must contain the address space of the task control block when the
MESSAGE statement is executed.

1) Retrieve and print the first message in the disk data set to which the COMP
statement points.

MSG1 MESSAGE 1,COMP=MSGSET

[
[]
L]
PROGSTOP
MSGSET COMP '"ERRS',DS1,TYPE=DSK

2) Retrieve and print the fifth message in the module to which the COMP statement
points. Insert the parameter “ACCOUNTS” in the message.

MSG2 MESSAGE ~ +MSG,PARMS=A,COMP=MSGSET

PROGSTOP
MSG EQU 5
A DATA C'ACCOUNTS'
MSGSET COMP 'ERRS' ,ERRORS , TYPE=STG

The following example uses the MESSAGE instruction to retrieve and print a
message contained in a disk data set. The program TASK loads a second program
called CALCPGRM. A WAIT instruction suspends the execution of TASK until
CALCPGRM completes. When CALCPGRM finishes, it posts the ECB at label
LOADECB. The MESSAGE instruction at label MSG1 retrieves the first message
in the disk data set MSGDSI1 on volume EDX002. The first message in this data set
is:

< <PROGRAM > > HAS FINISHED PROCESSING/*

The MESSAGE instruction inserts the parameter CALCPRGM into the
“PROGRAM?” field of the message and displays the message as follows:

STAT0001 CALCPGRM HAS FINISHED PROCESSING

&l

C

o

Return Codes

MESSAGE

Because the MESSAGE instruction contains MSGID =YES, the number of the
message and the 4-character prefix “STAT” appear at the beginning of the message.
The COMP statement assigns the 4-character prefix to the message.

TASK
LOADECB
START

MSG1

A
MSGSET

PROGRAM START,DS=((MSGDS1,EDX002))
ECB
EQU *

L]

LOAD CALCPGRM, EVENT=LOADECB
WAIT LOADECB
MESSAGE 1,COMP=MSGSET,SKIP=1,PARMS=A,MSGID=YES

PROGSTOP

DATA "CALCPGRM'

CcoMp 'STAT',DS1,TYPE=DSK
ENDPROG

END

The return codes are returned in the first word of the task control block (TCB) of
the program or task issuing the instruction. The label of the TCB is the label of
your program or task (taskname).

Return

Code Description

-1 Successful completion.

301 —325 Error while reading message from disk. Subtract 300 from this value
to get the actual return code. See the disk return codes following the
READ or WRITE instruction for a description of the code.

326 Message number out of range.

327 Message parameter not found.

328 Instruction does not supply message parameter(s).

329 Invalid parameter position.

330 Invalid type of parameter.

331 Invalid disk message data set.

332 Disk message read error.

333 Storage-resident module not found.

334 Message parameter output error.

335 Disk messages not supported (MINMSG sypport only).

Chapter 2. Instruction and Statement Descriptions 2-255

MOVE

MOVE — Move Data

The MOVE instruction moves data from operand 2 to operand 1. If operand 2 is
“immediate data,” it must meet the requirements listed in the opnd2 description.

2-256 SC34-0937

For an example of moving data across partitions, see Appendix C, “Communicating
with Programs in Other Partitions (Cross-Partition Services)” on page C-1. Refer to
the Language Programming Guide for more information on cross-partition services.

Syntax:
label MOVE opndl,opnd2,count, FKEY =, TKEY =,
P1=,P2=,P3=
Required: opnd1,opnd2
Defaults: count = (1,WORD)
Indexable: opndl,opnd2
Operand Description
opndl The label of the data area to receive the data from opnd2. Opndl
cannot be a self-defining term.
opnd2 The value moved into opndl. You can specify a self-defining term or
the label of a data area.
If opnd2 is a self-defining term, it must be one of the following:
* An integer, whose value is from —32768 to +32767
¢ An EBCDIC character string of one or two bytes, enclosed in
single quotes, and preceded by the constant type indicator C
¢ A hexadecimal character string of 1 to 4 hexadecimal digits,
enclosed in single quotes, and preceded by the constant type
indicator X.
count The number of consecutive values on which the operation is to be

performed. Do not code a label for count. The maximum value
allowed for the count operand is 32767.

The count operand can include the precision of the data. Since these
operations are parallel (the two operands and the result are implicitly
of the same precision) only one precision specification is required.
That specification may take one of the following forms:

BYTE Byte precision

WORD Word precision (the default)
DWORD Doubleword precision

FLOAT Single-precision floating-point
DFLOAT Extended-precision floating-point

You can substitute the precision specification for the count
specification, in which case the count defaults to 1, or the precision
specification can accompany the count in the form of a sublist:
(count,precision). For example, MOVE A,B,BYTE is equivalent to
MOVE A,B,(1,BYTE). When using the sublist form of the count
operand, you must specify both the count and the precision.

O

FKEY =

TKEY =

MOVE

For all precisions other than BYTE, opndl and opnd2 must specify
even addresses.

The precision is always BYTE when you do a cross-partition MOVE
operation. For example, MOVE A,B,(4, DWORD) becomes MOVE
A,B,(16, BYTE). This precision change is important to remember when
you use the P3= operand to change the count. The instruction,

-MOVE A,B, (4,WORD),FKEY=0,P3=COUNT

really has a count of 8 bytes. If you want to change the count to
(2,WORD), you must move a value of 4 into COUNT.

If FLOAT or DFLOAT precision is specified, the system converts the
immediate data field to floating-point format.

If BYTE precision is specified and opnd2 is immediate data, the system
moves different bytes of opnd2 depending on which assembler is used.
The macro assembler causes the system to to move the leftmost byte of
opnd?2.

For example, if the following is coded:

Q EQU X'1234'
MOVE HERE,+Q,(1,BYTE)

The system moves X'34' to location HERE if the instruction is

assembled with a macro assembler. The system moves X'12' to
location HERE if the instruction is assembled with SEDXASM.

This operand provides a cross-partition capability for opnd2 of
MOVE. FKEY designates the address key of the partition containing
opnd2 (the address key is one less than the partition number). FKEY
can specify either an immediate value from 0 to 31 (depending on your
processor) or the label of a word containing a value from 0 to 31. If
FKEY is not specified, opnd2 is in the same partition as the MOVE
instruction. If FKEY is specified, opnd2 cannot be immediate data or
an index register. However, it can contain an index register in the
(parameter,#r) format. See “Software Register Usage” on page 1-8 for
further information.

This operand provides a cross-partition capability for opndl of
MOVE. TKEY designates the address key of the partition containing
opndl (the address key is one less than the partition number). TKEY
can specify either an immediate value from 0 to 31 (depending on your
processor) or the label of a word containing a value from 0 to 31. If
TKEY is not specified, opndl must be in the same partition as the

‘'MOVE instruction. If TKEY is specified, opndl cannot be an index

register. However, opndl can contain an index register if it is of the
format (parameter,#r). See “Software Register Usage” on page 1-8 for
further information.

If you specify TKEY and opnd? is immediate data, opnd?2 is always
one word in length regardless of the precision specified. The values
you code for the precision and the count operand determine the
amount of data that is moved.

Chapter 2. Instruction and Statement Descriptions 2-257

MOVE

Syntax Examples

2-258 SC34-0937

Px

When you specify byte precision in a cross-partition move and opnd2

is immediate data, the system reads an entire word of data and moves -
that word one byte at a time. For example, if opnd2 is X'F5', the ()
system reads that value as X'00FS' and moves X'00' as the first byte. S

Parameter naming operands. If P3 is coded, only the count operand is
altered. The precision specification remains unchanged. See “Using
the Parameter Naming Operands (Px=)" on page 1-10 for a detailed
description of how to use these operands.

The following syntax examples show the variety of ways you can code the MOVE

instruction:

1) Move a word of B to A.

A,B

2) Move 64 EBCDIC blanks to TEXT.

TEXT,C' ',(64,BYTE)

3) Move 16 words of V2 to V1.

V1,V2,16
4) Move the contents of index register 1 to SAVE. (Gl(\ N
|
A
SAVE, #1

5) Move contents of INDEX into index register 2.

MOVE - #2,INDEX

6) Move four doublewords of C to D.

D,C, (4,DWORD)

7) Move a single-precision floating-point value from F1 to F2.

F2,F1,(1,FLOAT)

8) Move the address of $START into index register 1.

#1,+$START

9) Move 6 doubleword floating-point numbers (24 words) from L1 to LR.

LR,L1, (6,DFLOAT)

MOVE

10) Move 10 floating-point zero values to the indexed address of (BUF,#1).

MOVE (BUF,#1),0,(10,FLOAT)

11) Move one word from $START in partition 1 to HERE.

MOVE HERE,$START,FKEY=0

12) Move the contents of index register 2 to the indexed address (0,#1) in a
partition defined by KEY.

MOVE (0,#1),#2, TKEY=KEY

13) Move 4 words of blanks to the indexed address (SNAME, #1) in partition 1.
Operand 2 must be a word value.

MOVE ($NAME,#1),C' ', (4,WORD),TKEY=0

14) Move the leftmost byte value X‘00’ to B when assembling with SEDXASM.
Move the rightmost byte value X'02' to B when assembling with the macro
assemblers. A has a value of X'0002'.

A EQU 2
[]
L]

MOVE B,+A,(1,BYTE)

15) Move the 4-byte character string 3333’ to the indexed address (HERE,#1) in
partition 1.

MOVE (HERE,#1),C'3",(4,BYTE),TKEY=0

16) Move the character string '22222222"' to the indexed address (HERE,#1) in
partition 1.

.MOVE (HERE,#1),C'12',(8,BYTE),TKEY=0
Only one character may be specified in immediate mode. When assembled with the
macro assembler the system takes the rightmost character. In this example the

character string has been truncated and 8 characters of 2 have been moved.

17) Move the data string X'0505050505' to the indexed address (THERE,#1) in
partition 1.

MOVE (THERE,#1),X'05',(5,BYTE),TKEY=0

Chapter 2. Instruction and Statement Descriptions 2-259

MOVEA

MOVEA — Move an Address

The MOVEA instruction moves the address of operand 2 to operand 1.

Syntax Examples

2-260 SC34-0937

Syntax:
label MOVEA opndl,opnd2,P1=,P2=
Required: opnd1,opnd2
Defaults: none
Indexable: opndl
Operand Description
opndl The label of the data area to receive the address of opnd2. This
operand must be a word in length.
opnd2 The label of the data area whose address is moved to opndl.
Px= Parameter naming operands. See “Using the Parameter Naming

Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

1) Move the address of A into PTR.

MOVEA PTR,A

2) Move the address of B plus 4 bytes into PTR.

MOVEA PTR,B+4

®

O

MULTIPLY

MULTIPLY — Multiply Integer Values

The MULTIPLY instruction multiplies an integer value in operand 1 by an integer
value in operand 2. The values can be positive or negative. To multiply
floating-point values, use the FMULT instruction.

See the DATA/DC statement for a description of the various ways you can represent

integer data.

The supervisor places X'80000000" in the first two words of the task control block if
an overflow condition occurs during double-precision multiplication.

Note: You can abbreviate the instruction as MULT.

Syntax:

label

Required:
Defaults:
Indexable:

MULTIPLY opndl,opnd2,count, RESULT =,PREC =,
P1=,P2=,P3=

opnd1,opnd2
count =1,RESULT = opnd1,PREC=S
opndl,opnd2, RESULT

Operand
opndl

opnd2

count

RESULT =

PREC=xyz

Description

The label of the data area containing the value to be multiplied by
opnd2. Opndl cannot be a self-defining term. The system stores the
result of the MULTIPLY operation in opndl unless you code the
RESULT operand.

The value by which opndl is multiplied. You can specify a
self-defining term or the label of a data area. The value of opnd2 does
not change during the operation.

The number of consecutive values in opndl on which the operation is
to be performed. The maximum value allowed is 32767.

The label of a data area or vector in which the result is placed. The
variable you specify for opndl is not changed if you specify RESULT.
This operand is optional.

Specify the precision of the operation in the form xyz, where x is the
precision for opndl, y is the precision for opnd2, and z is the precision
of the result (“Mixed-Precision Operations” on page 2-262 shows the
precision combinations allowed for the MULTIPLY instruction). You
can specify single precision (S) or double precisien (D) for each
operand. Single precision is a word in length; double precision is two
words in length. The default for opnd1, opnd2, and the result is single
precision.

If you code a single letter for PREC, the letter applies to opndl and

the result. Opnd2 defaults to single precision. If, for example, you

code PREC=D, opndl and the result are double precision and opnd?2
defaults to single precision.

Chapter 2. Instruction and Statement Descriptions 2-261

MULTIPLY

If you code two letters for PREC, the first letter applies to opndl and

the result, and the second letter applies to opnd2. With PREC=DD,

for example, opndl and the result are double precision and opnd?2 is O
double precision.

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Mixed-Precision Operations
The following table lists the precision combinations allowed for the MULTIPLY

instruction:
opnd1 opnd2 Result Precision
S S S S (the default)
S S D SSD
D S D D
D D D DD

Syntax Examples
1) Multiply a value in C by a value in D and put the result in E. The resuit of the

operation is double precision.

MULT C,D,RESULT=E,PREC=SSD

2) Multiply a double-precision value in A by 10. The result of the operation is @
double precision.

MULT A,10,PREC=D

3) Multiply the single-precision values at X and X+2 by 10.

MULTIPLY X,10,2

2-262 SC34-0937

0

Coding Example

MULTIPLY

The MULTIPLY instruction at label M1 multiplies a full-word value in the data
area labeled HOURS by 60. The instruction places the result in the data area
labeled MINUTES. MINUTES is defined with the P2= parameter naming operand
on the MULTIPLY instruction labeled M2.

At label M2, the second operand, defined with the parameter naming operand P2=,
is multiplied by the value located at label SIXTY. The result is placed in the data
area labeled SECONDS.

The first pair of MULTIPLY instructions uses the single-precision default for opndl,
opnd2, and RESULT=.

The third MULTIPLY instruction, at M3, multiplies the doubleword value at label
MILLISEC by 1000, and places the doubleword result in MILLISEC.

The last MULTIPLY instruction, at label M4, multiplies the value at label OP11 by
the value at label OP12, and places the result in the data area labeled RESULTX. -
Because the count operand equals 2, this instruction also multiplies the value at label
OP21 by the value at label OP12, and places the result at RESULTX + 2.

L4
L

M1 MULTIPLY HOURS,60,RESULT=MINUTES

M2 MULT SIXTY,0,RESULT=SECONDS,P2=MINUTES
MOVE MILLISEC,0
MOVE MILLISEC+2,SECONDS

M3 MULT MILLISEC,MILLI,PREC=DSD

L
L]
L]
M4 MULTIPLY OP11,0P12,2,RESULT=RESULTX
[)
[)

HOURS DATA F'o'
SECONDS DATA F'o
SIXTY DATA F'60'
MILLISEC DATA Do’
MILLI DATA F'1000'
0pP11 DATA F'1
0P21 DATA F'2!
0P12 DATA F'3!
RESULTX DATA 2F'0'

.
L]
L]

Chapter 2. Instruction and Statement Descriptions 2-263

NETCTL

NETCTL — Controlling SNA Message Exchange

The NETCTL instruction controls the exchange of status and error information
between your Series/1 application program and the host program.

2-264 SC34-0937

You can use the instruction to:

¢ Send error or status messages to the host application program

* Receive error or status messages from the host application program.

Before you can use the NETCTL instruction, you must establish a session with the
host. You can use NETCTL to receive status information regardless of which
session partner has the right-to-send.

Syntax:
label NETCTL LU=,BUFF=,TYPE=,EXIT=,
P1=,P2=
Required: LU=
Defaults: TYPE =RECV
Indexable: none
Operand Description
LU= A 1-word field containing the number of the logical unit (LU) and the
number of the physical unit (PU) to be used for the session. The
high-order byte identifies the PU and can be any value from 0 to 4 (0
indicates use PU #1 and is the same as specifying 1). The low-order
byte is the LU number. LU= can be any value from 1 to 32.
BUFF = The label of a 6-byte status area that is used when you code

TYPE=RECV, TYPE=REJECT, or TYPE=LUSTAT.

If you do not specify RECV, REJECT, or LUSTAT for the TYPE
operand, the BUFF operand is ignored. The use of the status area is
as follows:

o If you specify TYPE=RECYV, the status received from the host is
placed in this area. The format of the status information varies
depending on what type of information it is. The NETCTL return
codes indicate the type of status information received. ‘

If the return code indicates message reject, status message, or
request for right-to-send, the status area is as follows:

Message reject The first two bytes of the area are the system sense
code. The next two bytes are the user sense code.

If you do not select message resynchronization support for the
session, the last two bytes are the message number of the message
rejected by the host. If you do-select message resynchronization
support for the session, the message rejected by the host is always
the last message sent.

TYPE=

EXIT =

Px=

The

NETCTL

Status message The first two bytes of the area are the status value.
The next two bytes are the status extension field.

Request for right-to-send The first two bytes of the area are the
signal value. The next two bytes are the signal extension field.

If you specify TYPE=REJECT, you must supply the sense codes
indicating the reason the host message is unacceptable. The first
two bytes of the area are the system sense code. The next two
bytes are the user sense code. If you do not specify the sense
codes,the host receives a system sense code of X'081C' (Request
Not Executable) along with a user sense code of X'0000'
(No-operation).

The host message rejected is always the last message received from
the host.

If you specify TYPE=LUSTAT, you must supply the status codes
to be sent to the host. The first two bytes of the area are the
status value. The next two bytes are the status extension field.

control operation to be performed. Code one of the following:

RECV Receive status information from the host. The return code

indicates the type of status information received. If
applicable, the area specified in the BUFF operand receives
data associated with the status. RECV is the default.

ACCEPT Send the host 4 message acceptance, if necessary, for the

message received.

REJECT Send the host a message rejection for the message received.

The sense code, containing the reason for the rejection, is
returned in the area specified in the BUFF operand.

CANCEL Cancel a partially transmitted message.

QEC Ask the host to temporarily stop transmitting messages

after the current message.

RELQ Ask the host to resume sending messages. This operand is

SIG

valid only if you have issued TYPE =QEC previously.

Ask the host to give the right-to-send to the Series/1 SNA
application.

LUSTAT Send status information to the host. The 4-byte status

code to be sent is contained in the area you specified with
the BUFF operand.

RTR Notify the host that the SNA application is ready to

The
pass

receive the next message.

The BUFF parameter is required if TYPE=RECYV,
RETECT, or LUSTAT.

label of the error-processing routine for your program. Control
es to this label if any return code other than —1 is returned to

your program.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-265

NETCTL

Coding Examples

2-266 SC34-0937

The examples presented here illustrate various ways in which you can use the
NETCTL instruction to control the exchange of messages.

1) Receiving Status from Host

This example shows the use of a NETCTL instruction to receive status information
from the host program. The location STATUS receives the status data (if any).

NETCTL LU=NETLU,TYPE=RECV,BUFF=STATUS

[]

L]

L]
NETLU DATA- F'l'
STATUS DATA F'6'

2) Rejecting a Message

This example shows a NETCTL instruction that rejects a message received from the
host program. :

NETCTL LU=NETLU,TYPE=REJECT ,BUFF=STATUS

NETLU DATA F'l!
STATUS DATA F'6'

3) Sending Status to Host

In this example, a NETCTL instruction sends status information to the host
program. The location STATUS receives the status data.

NETCTL LU=NETLU,TYPE=LUSTAT,BUFF=STATUS

*

NETLU DATA F'l!
STATUS DATA F'6'

O

G

O

Return Codes

NETCTL

The NETCTL return codes are placed in the first word of the task control block
($TCBCO) of the task that issued the instruction.

The positive return codes from NETCTL TYPE =RECYV have bit-significant values
to allow for efficient analysis in the Series/1 SNA application. The bit positions
have the following meanings:

............... 1 End of transaction received.
..I. Right-to-send received.

The following values are returned in combination with the above bit-significant
information:

X'0010" Status message received.

X'0020" Message being received from host canceled.
X'0030" Session termination request received.
X'0050" Request for right-to-send received.

X'0060" Host permission to resume sending received.
X'0070" Message sent to host rejected.

Chapter 2. Instruction and Statement Descriptions 2-267

NETCTL

The valid combinations of the values and bit positions are listed in the following
decimal return codes.

Return
Code

Condition

—26

No status available.

-25

Not right-to-send.

—24

The selected PU is not active.

-23

Invalid PU number.

—22

Session reset. CLEAR and SDT commands received.

-21

More than two tasks running under this LU. Limit is two tasks.

-20

UNBIND HOLD received.

-19

$SNA not currently loaded.

- 18

Session quiesced.

—-17

Status available.

- 16

Session abnormally terminated by host.

—15

NETTERM in progress.

-14

SNA system error.

-13

Invalid request.

—12

Invalid LU number.

-11

Instruction must be issued under program linked to SNETCMD.

-10

Session does not exist.

LU is busy‘with another operation.

$SNA is deactivating.

SNA is in the process of loading or unloading and is not usable
temporarily.

Operation successful.

END BRACKET received.

CHANGE DIRECTION received.

LUSTAT received.

LUSTAT with EB received.

LUSTAT with CD received.

CANCEL received.

CANCEL with EB received.

CANCEL with CD received.

SHUTDOWN received.

SIGNAL received.

RELQ received.

112

Negative response received.

The valid combinations of the values and bit positions are listed in the following
decimal return codes.

2-268 SC34-0937

O

™

NETGET

NETGET — Receive Messages from the SNA Host

The NETGET instruction allows your application to receive messages from the host
application program. Before you can use the NETGET instruction, you must
establish a logical-unit-to-logical-unit session.

When you issue the NETGET instruction, Series/1 SNA passes messages received
from the host’s application program into a buffer area provided by NETGET. If the
buffer area is not large enough to contain the complete message, you can issue
additional NETGET instructions.

NETGET supplies a return code when it receives the complete message.

Syntax:
label NETGET LU= BUFF=,BYTES=RECLEN=,
EXIT =,P1=,P2=,P3=,P4=
Required: LU,BUFF,BYTES,RECLEN
Defaults: none
Indexable: none

Operand Description

LU= A one-word field containing the number of the logical unit (LU) and
the number of the physical unit (PU) to be used for the session. The
high-order byte identifies the PU and can be any value from 0 to 4 (0
indicates use PU #1 and is the same as specifying 1). The low-order
byte is the LU number. It can be any value from 1 to 32.

BUFF = The buffer area where the message or partial message is to be received.

BYTES = A word value containing the length, in bytes, of the buffer area you
specified in the BUFF operand.

RECLEN= A word value to receive the actual length, in bytes, of the message or
partial message received.

EXIT= The label of the error-processing routine for your program. Control
passes to this label if a return code less than —1 is returned to your
application.

Px= Parameter naming operands. See “Using the Parameter Naming

Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands. For NETGET, Px= corresponds to the
following parameters:

P1 LU
P2 BUFF
P3 BYTES

P4 RECLEN

Chapter 2. Instruction and Statement Descriptions 2-269

NETGET

Coding Example

This example issues a NETGET instruction to receive a message or partial message ,
stored at address INBUFF. In addition: O

e The LU is number 1 at location NETLU.
¢ The length of the input area is at location INBLEN.

* The length of the message or partial message received is stored at location
COUNT.

NETGET LU=NETLU,BUFF=INBUFF,BYTES=INBLEN, C
RECLEN=COUNT

[)

L[]

L]
NETLU DATA F'1!
INBUFF DATA XL80
INBLEN. DATA F'80'
COUNT DATA F'O'

Return Codes

The NETGET return codes are placed in the first word of the task control block
($TCBCO) of the task that issued the instruction.

The positive return codes from NETGET contain bit-significant values to allow for
efficient analysis in the Series/1 SNA application. The bit positions have the
following meaning:

~
.~/

.1 Function management header received.
R End of message received.
. P Right-to-send received.
............ 1. Response to message requested.
........... ... End of transaction received.
B PR Start of transaction received.

The valid combinations of the bit positions are listed in the following decimal return

codes:
Return
Code Condition
—26 Host initiated transaction.
-25 No messages available.
-24 The selected PU is not active.
—23 Invalid PU number.
—22 Session reset. CLEAR and SDT commands received.
-21 More than two tasks running under this LU. Limit is two tasks.
—20 UNBIND HOLD received.
-19 $SNA not currently loaded.

2-270 SC34-0937

NETGET

Return
Code Condition
-17 Status available.
-16 Session abnormally terminated by host.
-15 NETTERM in progress.
—14 SNA system error.
-13 Invalid request.
-12 Invalid LU number.
-11 Instruction must be issued under program linked to SNETCMD.
-10 Session does not exist.
-9 LU is busy with another operation.
-8 $SNA is deactivating.
-7 SNA is in the process of loading or unloading and is not usable
temporarily.
-1 Operation successful.
1 FMH received.
2 End of message received.
3 End of message and FMH received.
6 End of message and right-to-send received.
7 End of message, FMH, and right-to-send.
10 End of message received, response requested received.
11 End of message, and FMH received, response requested.
14 End of message, and right-to-send received, response requested.
15 End of message, FMH, and right-to-send received, response requested.
18 End of transaétion and end of message received.
19 End of transaction, end of message and FMH received.
26 End of transaction and end of message received, response requested.
27 End of transaction, end of message and FMH received, response
requested.
32 Start of transaction received.
33 Start of transaction and FMH received.
34 Start of transaction and end of message received.
35 Start of transaction, end of message, and FMH received.
38 Start of transaction, end of message, and right-to-send received.
39 Start of transaction, end of message, FMH, and right-to-send received.
42 Start of transaction, end of message, and response requested.
43 Start of transaction, end of message, and FMH received, response
requested:
46 Start of transaction, end of message, and right-to-send received,
response requested.

Chapter 2. Instruction and Statement Descriptions 2-271

NETGET

Return
Code

Condition

47

Start of transaction, end of message, FMH, and right-to-send received,

response requested.

50

Start and end of transaction, and end of message received.

51

Start and end of transaction, end of message and FMH received.

58

Start and end of transaction, and end of message received response
requested.

59

Start and end of transaction, end of message and FMH received,
response requested.

2-272 SC34-0937

O

NETHOST

NETHOST — Build an SNA Host ID Data List

The NETHOST instruction generates an assembly-time host ID data list that defines
logical unit (LU) requirements and session resources.

Certain operands in the NETHOST instruction can affect the performance of other
LU operations. You may, therefore, need the help of the host system programmer
when coding the instruction. You also may require the host system programmer’s
knowledge of SNA protocols.

Syntax:
label NETHOST ISAPPID = ,ISMODE =,ISPASWD = ,ISQUEUE =,
ISRQID = ,ISUSFLD = ,SSCPID =
Required: ISAPPID =,ISMODE =
Defaults: ISPASWD =,ISRQID = ,ISUSFLD = (all default to 8 blanks)
ISQUEUE =NO,SSCPID = 6X"00" (bytes)
Indexable: none

Operand Description

ISAPPID= A 1—8 character name that identifies the host user program
identification (APPLID) to be used for a session. Trailing blanks are
ignored by NETINIT.

ISMODE= A 1—8 character name that identifies the set of rules and protocol for
a session. The system services control point (SSCP) also uses the name
to build the CINIT request.

ISPASWD =
A 1—8 character password used to verify the identity of a Series/1
user. The default of 8 blanks causes NETINIT to generate a null (zero
length) field in the INITSELF command. NETINIT ignores trailing
blanks.

ISQUEUE =
YES, to place the INITSELF request in a queue if it cannot be
executed immediately.

NO (the default), to prevent the request from being held in a queue.

ISRQID= The 1 —8 character name that identifies the Series/1 user initiating a

request. You can also use ISRQID to establish authority for you to
use a particular resource. The default of eight blanks causes
NETINIT to generate a null (zero length) field in the INITSELF
command. NETINIT ignores trailing blanks.

Chapter 2. Instruction and Statement Descriptions 2-273

NETHOST

2-274 SC34-0937

ISUSFLD =

SSCPID =

A 1—20 character string for carrying data you specify. Network
services request processors do not process this data. The Series/l SNA
support passes the data to the primary logical unit (PLU).. The default
of eight blanks causes NETINIT to generate a null (zero length) field
in the INITSELF command. NETINIT ignores trailing blanks.

The system services control point (SSCP) identification for the network
to be attached. You can code this operand using 0 — 12 hexadecimal
digits. A 0 value specifies the session is to be opened with any SSCP
attached.

You can specify any 6-byte binary value. However, to be meaningful,
the bit representation must match the identification of the attached
SSCP. The default is 6 bytes containing zeros.

NETINIT

O NETINIT — Establish an SNA Session

The NETINIT instruction initiates a request for establishing a session with the host
application program. The established session remains in effect until you end it by
issuing a NETTERM instruction.

Note: In coding your program, you can (if the system resources are available)
establish multiple sessions for each task. All tasks using these sessions must be
within the same program.

Syntax:
label NETINIT LU=|HOLDLU=,HOSTID =,MSGDATA =,
SESSPRM = ,ATTNEV = RDSCB=,ERRCODE =,
FULLDPX =,ACQUIRE =,RESYNC =,RTYPE =,
LUSWAIT = MSGPRIO =,PTHRU=,PACB =,
EXIT =,P1=,P2=,P3=,P4=,P5=,P6=,P7=
Required: LU= |HOLDLU = ,HOSTID =,PACB = (if PTHRU =YES)
Defaults: LUSWAIT =YES,MSGPRIO =255,PTHRU =NO,
ACQUIRE =YES,RESYNC =YES,RTYPE =DISK,
FULLDPX=NO
Indexable: none
Operand Description

C

HOLDLU =

-HOSTID =
MSGDATA =

A one-word field containing the number of the logical unit (LU) and
the number of the physical unit (PU) to be used for the session. The
high-order byte identifies the PU and can be any value from 0 to 4
(0 indicates use PU #1 and is the same as specifying 1). The
low-order byte is the LU number. It can be any value from 0 to 32.
If you code the LU number with a value of 0, the Series/1 SNA
support returns the LU number in the second code word of the TCB
($TCBC02), along with the PU number.

If you specify this operand, you cannot specify the HOLDLU
operand on this instruction.

The LU number of the session to be reestablished after receiving an
UNBIND HOLD. A one-word field containing the number of the
logical unit (LU) and the number of the physical unit (PU) to be
used for the session. The high-order byte identifies the PU and can
be any value from 0 to 4 (0 indicates use PU #1 and is the same as
specifying 1). The low-order byte is the LU number. It can be any
value from 1 to 32.

The label of the NETHOST data definition.

The label of a 6-byte data area where the SNA support stores
information about messages exchanged during the session.

If RESYNC=YES or INIT, the following considerations apply:

¢ If RTYPE=DISK, MSGDATA is ignored.
o If RTYPE=STG, MSGDATA is required.

Chapter 2. Instruction and Statement Descriptions 2-275

NETINIT

2-276 SC34-0937

SESSPRM =

ATTNEV =

RDSCB=

ERRCODE =

SNA uses the data area you specify with MSGDATA for

resynchronization data. SNA returns the resynchronization data
on successful completion of an SNA operation. The ()}
resynchronization data is reserved for SNA use only and must =
be supplied on the NETINIT instruction when the session is

restarted.

If RESYNC=NO, MSGDATA is optional. When you specify
MSGDATA, SNA uses the area to hold message data. When a
NETPUT LAST = YES operation is successful, SNA stores the
number assigned to the message sent to the host in the first and
second bytes of the data area. The remaining bytes of the area are
reserved for SNA use only.

The label of a data area where SNA stores session-establishment
parameters (BIND) received from the host. The area contains the
parameters after the NETINIT operation completes successfully.
This area must be 256 bytes.

The address of an event control block (ECB) to be posted when an
attention event occurs while no SNA operations are active. You
should issue a NETGET instruction to determine whether the event
is for status information or data if the session is not a pass-through
session. If the session is a pass-through session (PTHRU =YES),
the post code in the first word of the ECB indicates the new status
of the pass-through session. ATTNEYV is recommended for
pass-through operations.

The address of an opened data set control block (DSCB) to be used
by SNA resynchronization processing. Code this operand only if ‘F“&
you specify RTYPE = DISK. \

The label of a 4-byte data area where SNA stores extended error
information. If you code this operand and the SNA operation
returns a negative return code (other than —1), this data field
identifies the SNA instruction and the related SNA function that
failed, plus the return code of the SNA function. A breakdown of
the data area follows:

* Byte I — The SNA operation in progress when the error was

encouytered:

00 NETINIT
01 NETPUT
02 NETGET
03 NETCTL

05 NETTERM

e Byte 2 — The Event Driven Executive or SNA base function
that reported the error. The following hexadecimal codes are
returned:

01 NETOPEN
02 NETRECV
03 NETSEND
04 NETCLOSE

05 NETBIND

06 NETUBND 0
08 BIND event post code

0A READ

FULLDPX =

ACQUIRE =

RESYNC=

RTYPE =

LUSWAIT =

MSGPRIO =

NETINIT

0B WRITE
0C Session termination

Note: Refer to IBM Series/1 Event Driven Executive Systems
Network Architecture and Remote Job Entry Guide, SC34-0773
for additional information on the return codes for these
functions.

¢ Bytes 3 and 4 — The error return code from the Event Driven
Executive or SNA base function.

YES, to establish a session in a duplex transmission mode.

Nete: If you code FULLDPX =YES, you cannot use message
resynchronization and attention event processing.

NO (the default), to establish a session in a half-duplex transmission
mode.

YES (the default), to cause SNA to initiate the session for your
application program.

NO, to indicate that the host is to initiate the session.

YES (the default), to use the contents of the resynchronization data
set during session establishment.

NO, to disable session resynchronization. You must specify
RESYNC=NO if PTHRU=YES or if FULLDPX=YES.

INIT, to initialize the contents of the resynchronization data set
during establishment of a session.

DISK (the default), to save session resynchronization data on disk.
You must code the RDSCB operand if you specify this parameter.

STG, to save session resynchronization data in storage. You must
code the MSGDATA operand if you specify this parameter.

This operand is ignored if you code RESYNC=NO.

Note: Your program must open and close the 256-byte
resynchronization data set.

YES (the default), to force NETINIT to wait for the LU SSCP
session to activate. You must specify LUSWAIT=YES if
PTHRU=YES.

NO, to force NETINIT to fail if the LU SSCP session is not active.

The message priority for all outgoing messages for this LU while in
session. This value overrides the value specified on the SNALU
statement for the LU.

When the session ends, the value reverts back to the value on the
SNALU statement. This operand specifes the order of messages as
they are presented to SDLC. If messages are queued to SDLC
waiting to be sent, then higher priority messages will be placed in the
queue ahead of all lower priority messages. Specify MSGPRIO as
any number from 1 to 255, with 1 as the highest priority. 255 is the
default.

Chapter 2. Instruction and Statement Descriptions 2-277

NETINIT

»2-278 SC34-0937

PTHRU =

PACB=

EXIT =

Px=

YES, means the session is part of a pass-through session and all

messages are to be passed through the Series/1 to the remotely w
attached LUs. PTHRU=YES is valid only when used in l(j}
conjunction with Primary SNA. ATTNEYV is recommended for

pass-through sessions.

NO, indicates the messages are to be handled by the application
issuing the NETINIT. This is the default.

PACB establishies the logical connection between two
remotely-connected applications and is valid only when
PTHRU=YES. The primary side of the pass-through session
establishes communications with the remote secondary application
using NETOPEN. The secondary side establishes communications
with the remote primary application using NETINIT. You must
issue NETINIT and NETOPEN for a pass-through session to exist.
The second command (whether NETINIT or NETOPEN) must
specify PACB to link the two commands. Do no specify PACB on
the forst command issued for the pass-through session. For
NETINIT, PACB contains the session Access- Control Block (ACB)
returned to the application when NETOPEN is issued.

The label of the error-processing routine for the Series/l application.
Control passes to this label if a return code other than —1 is
returned to your program.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands. Px= corresponds to the following parameters:

P1 LU/HOLDLU @

P2 MSGDATA
P3 SESSPRM

P4 ATTNEV

Ps RDSCB/PACB
P6 ERRCODE

P7 MSGPRIO

G

Coding Examples

NETINIT

The examples presented here illustrate various ways you can use the NETINIT
instruction to establish a session.

1) Session with Resynchronization Data to Disk

This example illustrates establishing a session where the resynchronization data
resides on a disk. In addition:

s Series/1 SNA initiates the session with the host. SNA saves the extended error
information at location SAVERC.

¢ The resynchronization data set RDSCB is RESTART.
* The LU is number 1, on PU 1. specified at location NETLU.
e NETINIT should wait if the LU-SSCP session is not active.

* Priority for all outbound messages is 40 while the LU is in session.

NETINIT LU=NETLU,HOSTID=SNAID,ACQUIRE=YES, C
ERRCODE=SAVERC,RESYNC=YES ,RTYPE=DISK, c
RDSCB=RESTART

NETLU DATA F'1

SAVERC DATA 4F'0’

RESTART DSCB DS#=RSYNC,DSNAME=RSYNDSCB
SNAID NETHOST ISAPPID=IMS,ISMODE=INQUIRY

Chapter 2. Instruction and Statement Descriptions 2-279

NETINIT

Return Codes

2-280 SC34-0937

2) Session with Resynchronization Data to Storage

This example illustrates establishing a session where the resynchronization.data ()
resides in storage. In addition: .

e Series/1 SNA support waits for the host to initiate the session.

¢ SNA initializes the contents of the resynchronization data set when the session
starts.

¢ SNA saves the resynchronization data at address RDATA.

NETINIT LU=NETLU,HOSTID=SNAID,ACQUIRE=NO, C
RESYNC=INIT,RTYPE=STG,MSGDATA=RDATA

[]
]
]

NETLY DATA Fri
RDATA DATA 6F'0"
SNAID NETHOST ISAPPID=CICS,ISMODE=INQUIRY

3) Session without Resynchronization

This example illustrates establishing a session without resynchronization support.
SNA saves the message numbers at address MDATA.

¢ NETINIT for any LU on PU #3.
e NETINIT should fail if the LU-SSCP session is not active.

¢ Priority for all outbound messages is 80 while the LU is in session. {)
NETINIT LU=NETLU, ANY LU ON PU 3 C
HOSTID=SNAID, SPECIFY WHICH HOST APPL C
ACQUIRE=NO, LET THE HOST START THE SESSION C
RESYNC=NO, NO MESSAGE RESYNCHRONIZATION USED C
MSGDATA=MDATA, PASS BACK THE SEQUENCE NUMBERS C
LUSWAIT=NO, FAIL IF LU-SSCP SESSION IS INACTIVE C

MSGPRIO=MPRIO MESSAGE PRIORITY IS 86

NETLU DATA X'0300' PU NUMBER 3, ANY LU

MDATA DATA 6F'0’ MSGDATA AREA

SNAID NETHOST ISAPPID=JES2,ISMODE=RMT26 TALK TO JES2 APPL ON HOST
MPRIO DATA F'80' MESSAGE PRIORITY = 80

NETINIT return codes are placed in the first word of the task control block
($TCBCO) of the task that issued the instruction.

If you code the ERRCODE operand on the NETINIT instruction, additional error
information is returned, when appropriate, to the area you specified. Refer to the
IBM Series/1 Event Driven Executive Systems Network Architecture and Remote Job
Entry Guide, SC34-0773 for a description of this extended error code information.

&

®

NETINIT

The positive return codes from NETINIT have bit-significant values to allow for
efficient analysis in the Series/1 SNA application. For a description of the
bit-significant values, refer to the Systems Network Architecture and Remote Job
Entry Guide.

The following are the decimal return codes that could be returned from a NETINIT
operation.

Return
Code Condition
-33 Invalid message priority specified.
—-32 No NETTERM HOLD = YES issued.
-31 STSN error.
-30 BIND from host rejected.
—27 No logical unit available.
~26 Logical unit already open.
—-24 The selected PU is not active.
=23 Invalid PU number.
-19 $SNA not currently loaded.
—16 Session abnormalily terminated by host.
-15 NETTERM in progress.
—-14 SNA system error.
—-12 Invalid LU number.
-8 ; $SNA is deactivating.
-7 SNA is in the process of loading or unloading and is not usable
temporarily.
-1 Operafion successful.
2 Unpresented message from host lost.
4 Partially presented message from host lost.
17 Message flow to host cold-started, no messages to host lost. Message
flow from host cold-started, no messages from host lost.
19 Message flow to host cold-started. Message flow from host
cold-started, message from host lost.
32 Message to host lost.
49 Message flow to host cold-started, message to host lost. Message flow
from host cold-started no messages from host lost.
81 Message flow to host cold-started, message to host possibly lost.
Message flow from host cold-started, no messages from host lost.

Chapter 2. Instruction and Statement Descriptions 2-281

NETPACT

NETPACT — Activate a Specific PU

The NETPACT instruction makes it possible for you to start a PU from an
application program.

Syntax:
label NETPACT PU=,PART#=,IDSSCP =,EXIT =
P1=,P2=,P3=
Required: PU=
Defaults: none
Indexable: none
Operand Description
PU= A 1-word field containing the number of the PU to be started. Valid
values are 1 —4.
PART#= A one-word field containing the partition number where the PU

control blocks are to be loaded. If specified, this value overrides the
value specified in SNAINIT for the PU. Valid values are 0—8. 0
indicates that the PU can be loaded into any static partition.

IDSSCP= Specifies a three byte field containing the SSCP id for the PU if the g@
PU is on a switched line. If specified, this value overrides the value ‘
specified on the SNAPU statement when the PU was defined. The
SSCP is a 5-nibble value and must be left justified in the field.

EXIT = The label of the error-processing routine for the Series/1 application.
Control passes to this label if any return code other than —1 is
returned to your application.

Px= Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

Coding Example
The following example illustrates starting a PU from an application program.

e The PU being started is number 4.
* The program loads the PU into partition #4.
e The program overrides the SSCPID given in the SNA PU statement with 000C1.

NETPACT PU=NETPU, START PU #4 c
PART#=PART, OVERRIDE THE PARTITION # IN SNAINIT C
IDSSCP=SSCPID OVERRIDE THE SSCPID IN THE GEN

[]
NETPU DATA F'4' PU NUMBER 4 ()
SSCPID DATA 3X'000C10' SSCP ID (LAST NYBBLE IGNORED)
PART DATA F'4' PARTITION NUMBER 4

2-282 SC34-0937

NETPACT

Return Codes

O Return

Code Condition

-9 Error reading SNA initialization dataset (SNAINIT).

-8 Invalid partition number in SNAINIT for PU requested to be
activated.

-7 Invalid partition number. You coded a partition number out of the
required range (0 through 8).

-6 Load failed for $SNA.

-5 $SNA is unusable. All PUs are deactivated and $SNA is waiting to
unload. The request to activate a PU is ignored.

-4 PU load of control blocks failed.

-3 : $SNA is deactivating all PUs. When they are deactivated $SNA will
attempt to unload. The request to activate a PU is ignored.

-2 Invalid PU number.

-1 PU load successful.

1 SNA and PU load successful.

2 PU already activated.

Chapter 2. Instruction and Statement Descriptions 2-283

NETPUT

NETPUT — Send Messages to the SNA Host ’ .»

The NETPUT instruction transmits messages from a Series/1 application program to
the host application program. You can issue a NETPUT instruction only after
establishing a session successfully.

You can send a complete message to the host with one NETPUT operation, or, if
necessary, you can send a single message with multiple NETPUT operations.

You must have the right-to-send for the NETPUT operation to be successful. If you
are receiving and need to send, issue the NETCTL instruction with TYPE =SIG to
request the right-to-send. When no transaction is active on the session, both you
and the host have the right-to-send.

You can cancel a message during transmission to the host by issuing a NETCTL
instruction with TYPE=CANCEL. The host discards any part of the message it has
already received. See the NETCTL instruction for more coding information.

Syntax:
label NETPUT LU=,BUFF=,BYTES=,EOT=,FMH=,INVITE =,
LAST =,VERIFY = ,EXIT =,P1=,P2=,P3=
Required: LU=,BUFF=,BYTES =
Defaults: EOT=NO,FMH =NO,INVITE =YES,
LAST =YES,VERIFY =NO
Indexable: none

Operand Description

LU= A one-word field containing the number of the logical unit (LU) and
the number of the physical unit (PU) to be used for the session. The
high-order byte identifies the PU and can be any value from 0 to 4 (0
indicates use PU #1 and is the same as specifying 1). The low-order
byte is the LU number. It can be any value from 1 to 32.

BUFF = The message, or partial message, to be sent.

BYTES= A word containing the number of bytes in the message or partial
message to be sent.

EOT= YES, to end the transaction after the message is sent.

NO (the default), to avoid ending the transaction after the message is
sent.

This operand is recognized only on the first NETPUT instruction you
issue for a message.

FMH = YES, if the message contains function management (FM) headers.
NO (the default), if the message does not contain FM headers.
This operand is recognized only on the first NETPUT instruction you

issue for a message. (}

2-284 SC34-0937

Coding Examples

INVITE =

LAST =

VERIFY =

EXIT =

Px=

NETPUT

YES (the default), to give the host the right to send after this message
is transmitted.

NO, if you do not want to give the host the right to send.

This operand is ignored unless you specify LAST=YES (see the LAST
operand).

YES (the default), if this is the last NETPUT operation for the
message.

NO, if this is not the last NETPUT operations for the message.
YES, if the host should verify that it received the message.

NO (the default), if you do require verification.

This operand is ignored if you do not specify LAST =YES.

The label of the error-processing routine for the Series/l application.
Control passes to this label if any return code other than —1 is
returned to your application.

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

The examples presented here illustrate various ways you can use the NETPUT
instruction to send messages.

1) Sending a Message with a Single NETPUT

This example illustrates sending a message to the host using one NETPUT
instruction. In addition:

e The LU is number 1 at location NETLU.

¢ The message to be sent is at location OUTBUFF.

¢ The length of the message to be sent is at location BYTECNT.

¢ The data is to be sent as a complete message.

¢ The host receives the right-to-send.

* Function management headers are included in the data.

NETPUT LU=NETLU,BUFF=0UTBUFF,BYTES=BYTECNT, c

INVITE=YES, FMH=YES,LAST=YES

NETLU DATA F'1'
OUTBUFF DATA CL80'MESSAGE'
BYTECNT DATA F'80'

Chapter 2. Instruction and Statement Descriptions 2-285

NETPUT

2) Sending a Message with Multiple NETPUT Operations

This example illustrates one message being sent to the host with three NETPUT C
instructions. In addition: J

¢ The lengths of the “partial messages” to be sent are at locations BYTECNTI,
BYTECNT?2, and BYTECNTS3.

o. The host should verify that it received the message.

® The transaction ends after sending the message.

NETPUT LU=NETLU,BUFF=0UTBUFF1,BYTES=BYTECNT1, C
EOT=YES,LAST=NO

NETPUT LU=NETLU,BUFF=QUTBUFF2,BYTES=BYTECNT2, C
LAST=NO

NETPUT LU=NETLU,BUFF=0UTBUFF3,BYTES=BYTECNT3, C

VERIFY=YES, LAST=YES

L

[

L]
NETLU DATA F'1'
OUTBUFF1 DATA CL40'MESSAGE PART 1'
OUTBUFF2 DATA CL20'MESSAGE PART 2'
OUTBUFF3 DATA CL20'MESSAGE PART 3'
BYTECNT1 DATA F'40'

BYTECNT2 DATA F'20'
BYTECNT3 DATA F'20'
Return Codes

NETPUT return codes are placed in the first word of the task control block
($TCBCO) of the task that issued the instruction.

2-286 SC34-0937

NETPUT

The positive return codes from NETPUT have bit-significant values to allow for
efficient analysis in the Series/1 SNA application. The bit positions have the
following meaning:

Host attempted to start a transaction.

The valid combinations of the bit positions are listed in the following decimal return

codes:
Return
Code Condition
-26 Bracket state manager is pending begin bracket (sent RTR). Issue a
NETGET.
=25 Not right-to;send.
—24 The selected PU is not active.
—23 Invalid PU number.
-22 Session reset. CLEAR and SDT commands received.
—21 More than two tasks running under this LU. The limit is two tasks.
~20 UNBIND HOLD received.
-19 $SNA not currently loaded.
- 18 Session quiesced. ‘
-17 Status available.
-16 Session abnormally terminated by host.
—15 NETTERM in progress.
-14 SNA system error.
—13 Invalid request.
—12 Invalid LU number.
—11 Instruction must be issued under program linked to NETCMD.
—10 Session does not exist.
-9 LU is busy with another operation.
-8 $SNA is deactivating.
-7 SNA is in the process of loading or unloading and is not usable
temporarily.
-1 Operation successful.
1 Host attempted to start transaction.

Chapter 2. Instruction and Statement Descriptions

2-287

NETTERM

NETTERM — End an SNA Session

| o
The NETTERM instruction releases the logical communications path previously (:>
established between session partners with the NETINIT instruction. NETTERM

ends the session and releases the Series/1 resources used for the session.

You can use the system resources freed with the NETTERM instruction to establish
other sessions.

At any time, either the host program or your application program can end the

session.
Syntax:
label NETTERM LU= _HOLD=,TYPE =,EXIT =,P1=
Required: LU=
Defaults: HOLD=NO,TYPE=NORMAL
Indexable: none

Operand Description

LU= A one-word field containing the number of the logical unit (LU) and
the number of the physical unit (PU) to be used for the session. The
high-order byte identifies the PU and can be any value from 0 to 4 (0
indicates use PU #1 and is the same as specifying 1). The low-order (@
byte is the LU number. It can be any number from 1 to 32. ;

HOLD = YES, to keep sesston resources if the host issues a BIND command
following the NETTERM instruction.

NO (the default), to end the session and release all session resources.

Code this operand only when the host issues an UNBIND HOST

command.

TYPE = The type of session termination requested by the Series/1 application.

Specify one of the following:

NORMAL The Series/1 application requests the host LU
to terminate the session. NORMAL is the
default.

QUICK The Series/1 application requests VTAM to
terminate the session between itself and the host
LU.

IMMED The Series/1 applications requests that the

Series/1 SNA support terminate the session
between itself and the host LU, without waiting
for any response from the host.

Note: TYPE=IMMED may not be supported
by all host systems.

EXIT= The label of the error-processing routine for your program. Control 0
passes to this label if any return code other than —1 is returned to
your application.

2-288 SC34-0937

o

Coding Example

Return Codes

NETTERM

Px

Parameter naming operand. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

The following example shows the use of the NETTERM instruction to end a session.
The LU address for the ended session is at address NETLU.

NETTERM LU=NETLU

NETLU DATA F'l!

The NETTERM return codes are placed in the first word of the task control block
($TCBCO) of the task that issued the instruction.

The positive return codes from NETTERM have bit-significant values to allow for
efficient analysis in the Series/1 SNA application. The bit positions have the
following meaning:

............... 1 Message from host rejected during termination.
..1. Message to host rejected during termination.
..1.. Message to host aborted during termination.
............ l... Message from host aborted during termination.

The valid combinations of the bit positions are listed in the following decimal return
codes:

Return
Code Condition
—-25 No UNBIND HOLD received.
—24 The selected PU is not active.
-23 Invalid PU number.
~20 UNBIND HOLD received.
-19 $SNA never loaded.
—16 Session abnormally terminated by host.
—15 NETTERM in progress.
- 14 SNA system error.
F—12 Invalid LU number.
- 11 Instruction must be issued under program linked to SNETCMD.
—10 Session does not exist.)
-7 SNA is in the process of loading or unloading and is not usable
temporarily.
-1 Operation successful.

Chapter 2. Instruction and Statement Descriptions 2-289

NETTERM

2-290 SC34-0937

‘Return
Code Condition
1 Negative response sent during NETTERM.
2 Negative response received during NETTERM.
3 Negative response received during NETTERM and negative response
sent during NETTERM.
4 CANCEL sent during NETTERM.
CANCEL sent during NETTERM and negative response sent.
6 CANCEL sent during NETTERM and negative response received
during NETTERM. '
7 CANCEL sent during NETTERM, negative response received during
NETTERM, and negative response sent during NETTERM.
8 CANCEL received during NETTERM.
9 CANCEL received during NETTERM and negative response sent

during NETTERM.

O

O

NEXTQ

NEXTQ — Add Entries to a Queue

The NEXTQ instruction allows you to add entries to a queue defined with the
DEFINEQ statement. The system removes a queue entry from the free chain of the
queue and places the entry in the queue’s active chain.

Syntax:
label NEXTQ gname,loc,FULL=,P1=,P2=
Required: gname,loc
Default: none
Indexable: gname,loc

Operand Description

qname The name of the queue in which to place the entry. The queue name is
the label of the DEFINEQ statement that creates the queue.

loc The label of a word of storage which will become an entry in the
queue. This might be a single word of data or the address of an
associated data area. If loc is coded as #1 or #2 then the contents of
the selected register will become the entry in the queue.

FULL= The label of the first instruction of the routine to be called if a “queue
full” condition is detected during the execution of this instruction. If
you do not specify this operand, control returns to the next instruction
after the NEXTQ. A return code of —1 in the first word of the task
control block indicates that the operation completed successfully. A
return code of +1 indicates that the queue is full.

Px= Parameter naming operands. See “Using the Parameter Naming

Operands (Px=)" on page 1-10 for a detailed-description of how to
code these operands.

Chapter 2. Instruction and Statement Descriptions 2-291

NEXTQ

Coding Examples

2-292 SC34-0937

1) The following example uses each of the queuing instructions. The program
defines a queue area that contains four 6-word buffers. The FIRSTQ instruction
obtains the oldest entry in TIMEBUF. The GETTIME instruction obtains the date
and time and updates the contents of the entry obtained by FIRSTQ. The program
stores the new time and date in TIMEQI! and TIMEQ2. When all buffers are
allocated, the queue entries are printed on a first-in-first-out basis, then on a
last-in-first-out basis, and the buffers used are freed. Each queue instruction

executes § times.

QTEST PROGRAM

START FIRSTQ
IF
GETTIME
NEXTQ
NEXTQ
ADD
GOTO

EMPTY FIRSTQ
LASTQ
ENQT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
DEQT
NEXTQ
GOTO

*

CHKCTR IF
GOTO

ERRORL PRINTEXT

DONE PROGSTOP

*

* DATA AREA

*

TIMEBUF DEFINEQ

TIMEQL DEFINEQ

TIMEQ2 DEFINEQ

CTR DATA
ENDPROG
END

START

TIMEBUF,LOC
(QTEST,EQ,1),GOTO,EMPTY
*,DATE=YES,P1=L0C
TIMEQ1,LOC, FULL=ERROR1
TIMEQ2Z,LOC, FULL=ERROR1
CTR,1

START

TIMEQL,OUTADDR1,EMPTY=CHKCTR
TIMEQ2,0UTADDR2 ,EMPTY=CHKCTR
$SYSPRIR

SKIP=1

* 6,6,P1=0UTADDR1

SPACES=5

*.6,6,P1=0UTADDR2

TIMEBUF,OUTADDR1
EMPTY

(CTR,GE,8),G0T0,DONE
START
'"@TIMEQ PREMATURELY FULL@'

COUNT=4,SIZE=12
COUNT=10
COUNT=10

F] G 1

C

Return Codes

NEXTQ

2) In this example, index register 1 points to a block of storage in a buffer area.

The NEXTQ instruction places the address of that location (contained in register #1)
into the queue defined by the QUEI label. If the queue is full, the program
branches to the FULLQUEI label. Otherwise, the MOVE instruction places 32
bytes of data, beginning at the address labeled DATAREC, into the buffer area.

The ADD instruction updates #1 so that it points to the next sequential block of
storage in the buffer.

SUBROUT NEXTQUE1

NEXTQ QUE1l,#1,FULL=FULLQUE1
MOVE (0,#1) ,DATAREC, (32,BYTES)

ADD #1,32
RETURN
*
FULLQUEL EQU *
PRINTEXT '@QUE1 QUEUE BUFFER FULL'
GOTO ENDIT

L]
[
L]
QUE1 DEFINEQ COUNT=8
[
.
L]
ENDIT EQU *
PROGSTOP
DATAREC DATA 16F'0'

The return codes are returned in the first word of the task control block (TCB) of
the program or task issuing the instruction. The label of the TCB is the label of
your program or task (taskname).

Return

Code Description

-1 Successful completion.
1 Queue is full.

Chapter 2. Instruction and Statement Descriptions 2-293

NOTE

NOTE — Store Next-Record Pointer

The NOTE instruction causes the value of a data set’s next-record-pointer, which is
maintained by the system, to be stored in your program. The next-record-pointer is
the relative record number that will be retrieved by the next sequential READ or
WRITE instruction.

2-294. SC34-0937

Syntax:

Iabel

~ Required:
Defaults:
Indexable:

NOTE DSx,loc,PREC=,P2=

DSx,loc
PREC=S
loc

Operand
DSx

loc

PREC=

P2=

Description

Code DSx, where “x” is the relative position (number) of a data set in

the list of data sets you define on the PROGRAM statement. The first
data set is DS1, the second is DS2, and so on. A DSCB name defined
by a DSCB statement can be used in place of DSx.

This operand specifies the address of a fullword or doubleword of
storage that will contain the next-record-pointer as the result of
executing a NOTE instruction. This value can be used as the relative
record number (relrecno) in a subsequent POINT or direct READ or
WRITE operation.

When this operand is coded as an indexable value or as an address

‘label, the PREC operand can be used to further define whether

relrecno is to be a single-word or double-word value,

If the PREC operand is coded as PREC =D, then the range of
relrecno is extended beyond the 32767 value to the limit of a
double-word value.

This optional operand further defines the relrecno operand only when
relrecno is coded as an address or as an indexable value. The default
value is S and has the same effect on relrecno as coding PREC =S,
That effect is to limit the value of relrecno to single-word precision or
a value of X'7FFF' (32767).

Coding PREC=D gives a double-word precision attribute to the
relrecno operand and, therefore, extends its maximum value range to a
double-word value.

Parameter naming operand. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

®

NOTE

Syntax Examples _
1) The following NOTE instruction is valid for records that do not exceed a length

U of 32767.

NOTEL1 NOTE DS2,L0CS

[
[
[

LoCS DATA F'o!

2) The NOTE instruction in this example is valid for records that exceed 32767
because the variable LOCD is double-word precision.

NOTELZ NOTE DS3,L0CD,PREC=D

LOCD DATA Do’

Chapter 2. Instruction and Statement Descriptions 2-295

PLOTGIN

PLOTGIN — Enter Scaled Cursor Coordinates

The PLOTGIN instruction ailows you to specify scaled cursor coordinates
interactively. The instruction uses the coordinates you specify to plot curves.
PLOTGIN rings the bell and displays the cross-hair cursor. It waits for you to
position the cross-hairs and enter a single character. The cursor coordinates you

enter are scaled with the use of the plot control clock (PLOTCB). A description of
the control block follows this instruction.

Syntax:
label PLOTGIN x,y,char,pcb,P1=,P2=,P3=,P4=
Required: X,y,pch
Defaults: no character returned
Indexable: none
Operand Description
X The location where the x cursor coordinate value is to be stored.
y The location where the y cursor coordinate value is to be stored.
char The location where the character you select is to be stored. The
character is stored in the rightmost byte. The left byte is set to 0. If
you do not code this operand, the instruction does not store the
selected character.
peb Label of an 8-word plot control block.
Px=

Plot Control Block (PLOTCB)
The plot control block defines the size and position of the plot area on the screen
and the data values associated with the edges of the plot area. The PLOTCB
consists of eight words of data defined by DATA statements.

2-296

SC34-0937

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

You must build a PLOTCB in your graphics program when using the PLOTGIN,
XYPLOT or YTPLOT instructions. The format of the control block is:

label

DATA F'xls'
DATA F'xrs'
DATA F'xiv!
DATA F'xrv'
DATA F'ybs'
DATA F'yts'
DATA F'ybv'
DATA F'ytv'

i

PLOTGIN

You must specify an explicit value for all eight statements. The required values are

defined below:
O xls x screen location at left edge of plot area
XIS X screen location at right edge of plot area
xlv x data value plotted at left edge of plot
Xrv x data value plotted at right edge of plot
ybs y screen locatien at bottom edge of plot
yts X screen location at top edge of plot

ybv y data value plotted at bottom edge of plot
ytv y data value plotted at top edge of plot.

Syntax Example

Read x and y cursor coordinates and store them in X and Y, respectively. Store
characters in the data area labeled CHAR. The plot control block is at label PCB.

PLOTGIN X,Y,CHAR,PCB

PCB DATA F'500"
DATA F'1000'
DATA Fo'
DATA F'1e'
O’ DATA F'100'
DATA F'600"
DATA F'-5'
DATA F'5'

Chapter 2. Instruction and Statement Descriptions 2-297

POINT

POINT — Set Next-Record Pointer

The POINT instruction causes the value of a data set’s next-record-pointer, which is @
maintained by the system, to be set to a new value. The system uses this new value
in later sequential READ or WRITE operations.

Syntax:
label POINT DSx,relrecno,PREC=,P2=
Required: DSx,relrecno
Defaults: PREC=S
Indexable: relrecno

Operand Description

DSx Code DSx, where “x” is the relative position (number) of the data set
in the list of data sets you define on the PROGRAM statement. The
first data set is DSI1, the second is DS2, and so on. A DSCB name
defined by a DSCB statement can be substituted for DSx.

relrecno This operand sets a new value in the system-maintained
next-record-pointer. This parameter can be either a constant or the
label of the value to be used.

If this value is coded as a self-defining term, or an equated value which

is preceded by a plus sign (), then it is assumed to be a single-word Wr\
value and is, therefore, generated as an inline operand. Because this is WJ)
a ons-word value, it is limited to a range of 1 to 32767.

When this operand is coded as an indexable value or as an address, the
PREC operand can be used to further define whether relrecno is to be
a single-word or double-word value.

If the PREC operand is coded as PREC=D, then the range of
relrecno is extended beyond the 32767 value to the limit of a
double-word value (2147483647).

PREC= This operand further defines the relrecno operand when you code an
address or an indexable value for relrecno.

PREC=S (the default) limits the value of the relrecno operand to a
single-precision value of 32767 (X'7FFF"').

PREC=D extends the maximum range for the relrecno operand to a
doubleword value of 2147483647 (X' 7FFFFFFF").

P2= Parameter naming operand. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code this operand.

2-298 SC34-0937

POINT

Syntax Examples

0 1) The following POINT instruction is valid for records that do not exceed a length
‘ of 32767.

POINTL1 POINT DS2,LOCS

LOCS DATA F'o'

2) This POINT instruction is valid for records that exceed 32767 because the
variable LOCD is double-word precision.

POINTLZ POINT DS3,LOCD,PREC=D

L]
L4

[]

LOCD DATA D'e!

Chapter 2. Instruction and Statement Descriptions = 2-299

POST

POST — Signal the Occurrence of an Event

The POST instruction signals the occurrence of an event.

A POST instruction normally assumes the event is in the same partition as the
executing program. However, it is possible to POST an event in another partition
using the cross-partition capability of POST. See Appendix C, “Communicating
with Programs in Other Partitions (Cross-Partition Services)” on page C-1 for an
example of posting an event in another partition. You can find more information
on cross-partition services in the Language Programming Guide.

Syntax:
label POST event,code,P1=,P2=
Required: event
Defaults: code =-1
Indexable: event

Operand Description

2-300 SC34-0937

The label of an event control block (ECB) that defines the event. You
must code an ECB statement in your program if you compile the

$S1ASM and the S/370 host assembler generate the ECB for the event
named in the POST instruction. You do not need to code an ECB
statement when using either of these macro assemblers.

Process interrupts are special events that can be simulated with a
POST. This is useful when one task is waiting for a process interrupt
and a second task wishes to start the first, as in a program termination

sequence. In this case, issue a POST PIx, where “x” is a process
interrupt number from 1—99 as specified in an IODEF statement.

A value, other than 0, to be inserted into the control block for the
event. You may want to use this value as a flag that indicates a
certain condition or status. To check the code value, refer to the label

event

program under SEDXASM.
code

of the ECB statement.
Px=

Parameter naming operands. See “Using the Parameter Naming
Operands (Px=)" on page 1-10 for a detailed description of how to
code these operands.

o

Coding Examples

POST

1) The POST instruction in the following example posts the event control block
labeled ECB1 when TASK1 is finished processing. TASK1 reads a record from the
data set MYFILE and places the record in the buffer labeled BUF. The primary
task, PRINTOUT, waits for ECB1 to be posted before it continues processing.
When the POST instruction posts ECBI1, the primary task enqueues the system
printer and prints the first 50 bytes of the record.

PRINTOUT
START

BUF
ECBL
REC

PROGRAM
EQU
ATTACH
WAIT
ENQT
MOVE
PRINTEXT

PROGSTOP
BUFFER
ECB

TEXT

START,DS=((MYFILE,EDX40))
*

TASK1

ECB1

$SYSPRTR

REC,BUF,25

REC,SKIP=1

256,WORD

LENGTH=50

KRIKIKKKKKRKRKKIRKRIKKRIRIIIIRKRRIERERIKIKR I RThh kxR kxkhhkhx®

TASK1
NEXT

TASK
READ
POST
ENDTASK
ENDPROG
END

NEXT
DS1,BUF,1
ECB1

2) The following example posts an ECB labeled ECB1 which is declared as external

to the assembly module.

EXTRN

MOVEA
POST

END

ECB1

B,ECB1
*,P1=B

2-301

Chapter 2. Instruction and Statement Descriptions

PRINDATE

PRINDATE — Display the Date on a Terminal

The PRINDATE instruction prints the date on a terminal. The system prints the O
date in the form MM/DD/YY or DD/MM/YY, depending on the option coded on
the SYSPARMS statement when the supervisor was generated.

Note: You must include timer support in the system and have timer hardware
installed to use the PRINDATE instruction. Otherwise, a program check will occur.

The supervisor places a return code in the first word of the task control block
(taskname) whenever a PRINDATE instruction causes a terminal I/O operation to
occur. If the return code is not a — 1, the address of this instruction will be placed
in the second word of the task control block (taskname +2). The terminal I/O
return codes are described at the end of the PRINTEXT and READTEXT
instructions in this manual and also in Messages and Codes.

Note: Any references to 31xx terminals means 3101, 3151, 3161, 3163, and 3164
terminals, unless otherwise noted.

Syntax:
label PRINDATE
Required: none
Defaults: none
Indexable: none

Operand Description

none none

31xx Display Considerations

2-302 SC34-0937

If you are using a 31xx in block mode, it will display the output from a PRINDATE
instruction according to the SET,ATTR and SET,STREAM operands of a
TERMCTRL statement currently in effect. For details on these operands see
“TERMCTRL — Request Special Terminal Function” on page 2-426.

O

Coding Example

PRINDATE

The following example prints the date and a message on the system printer.

ENQT $SYSPRTR
PRINTEXT '@ THE DATE IS '
PRINDATE

The data appears in one of two formats, depending on the option coded on the
DATEFMT keyword of the SYSPARMS statement during system generation.

If the SYSPARMS statement has DATEFMT=MMDDYY (the default), the

PRINDATE instruction in the above example would produce the following result on
February 25, 1984:

THE DATE IS 02/25/84.

If the SYSPARMS statement has DATEFMT =DDMMYY, the result of the
PRINDATE operation would be:

THE DATE IS 25/02/84.

Chapter 2. Instruction and Statement Descriptions 2-303

PRINT

PRINT — Control Printing of a Compiler Listing

2-304 SC34-0937

The PRINT statement controls the printing of the compiler listing. Because no
instructions or constants are generated in the object program by this statement, it
can be placed between executable instructions in your source statement data set.

A program can contain any number of PRINT statements. Each PRINT statement
controls the printing of the compiler listing until another PRINT statement is
encountered.

Syntax:
blank PRINT ON/OFF,GEN/NOGEN,DATA/NODATA
Required: none
Defaults: (Initially) ON,GEN,NODATA
Indexable: none

The GEN/NOGEN option is not supported by SEDXASM.

Operand Description

ON A listing is printed.
OFF No listing is printed, except for the PRINT OFF statement itself.
GEN The listing includes all object code generated by the compiler. (Not

supported by SEDXASM.)

NOGEN No object code appears with the instructions in the listing. Error
messages appear regardless of NOGEN. The PRINT instruction also
appears in the listing. (Not supported by SEDXASM.)

DATA Constants are printed out in full in the listing.
NODATA Only the leftmost 8 bytes of constants are printed on the listing.

,‘ .m

Coding Example

PRINT

The following sample program is compiled under SEDXASM using the formatting
aids PRINT, TITLE, SPACE, and EJECT. The TITLE statement places the
program title, “Compiler Listing Control Demonstration,” at the top of each page of
the listing. PRINT OFF stops the printing of the listing, which is resumed when the
system encounters the PRINT ON statement. In this case, the MOVE instruction
between two PRINT statements is omitted.

The SPACE statement inserts a specified number of blank lines between instructions,
improving the readability of the listing. When the EJECT statement is reached, the
printer ejects the page and begins printing the next line of the listing at the top of a
new page. PRINT DATA causes the hexadecimal value of the first TEXT statement
to be printed o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>